AN OPERATOR APPROACH TO THE
IMPLEMENTATION OF SIGNAL PROCESSING
ALGORITHMS ON THE TMS320C6713 DIGITAL
SIGNAL PROCESSOR

by
Inerys Otero Pagan
A project submitted in partial fulfillment of the requirements for the degree of
MASTER OF I_ENGINEERING
COMPUTER IIEnNGINEERING

UNIVERSITY OF PUERTO RICO
MAYAGUEZ CAMPUS

Approved by:

2011

Néstor Rodriguez , PhD Date
Member, Graduate Committee

Nayda Santiago, PhD Date
Member, Graduate Committee

Domingo Rodriguez, PhD Date
President, Graduate Committee

Héctor Rosario, PhD Date
Representative of Graduate Studies

Erick Aponte, PhD Date

Chairperson of the Department

ABSTRACT

This report details the results of research regarding what can be done to enhance the
experience of users in the process of implementing digital signal processing algorithms with
several programming tools and devices. The research process resulted in a guide that takes
users with any level of expertise in the TMS320C6713 digital signal processing unit, and
guides them in a step by step manner, so that they can use the tool or device effectively.

RESUMEN

Este reporte detalla los resultados de la investigacion en relacion a que se puede hacer para
mejorar la experiencia de los usuarios en el proceso de implementar algoritmos de
procesamiento digital de sefiales en diferentes herramientas y dispositivos de programacion.
Como resultado de la investigacion se generd una guia que lleva a los usuarios de cualquier
tipo de experiencia con el sistema de procesamiento digital de sefiales TMS320C6713, paso a
paso, de forma tal que puedan usar esta o cualquier otra herramienta similar con mayor

eficacia.

To my family . ..

ACKNOWLEDGEMENTS

| want to express gratitude to my advisor Prof. Domingo Rodriguez who gave me
his unconditional support a helped me to regain my self-confidence. I also want to thank my
AIP laboratory partners Gozalo Vaca, David Marquez and Abigail Fuentes for their support
and friendship. | want to express special gratitude to Héctor O. Santiago who showed me
that | have the strength to achieve this difficult goal and to my family that has always been

with me through this difficult but gratifying process.

The Grant from NSF CISE-CNS Grant No. 0424546 provided the funding and the

resources for the development of this research under de WALSAIP project.

Table of Contents

A B S T R A C T ettt e e ettt e e e e e ettt e e e e e ——eeeeee e e e ————teees e e e ————taeesaaaa————s 11
RESUMEN. ...ttt et e e et e oottt e e e e e e et eeee e e e e e e e e et teeesseaea s aaeeeeeesssaeraeeneaesssaaines]
ACKIN OW L ED GEMEN T S ...ttt ettt ettt e e e e e e e ettt e e e e e e e e et e e e e e e e eeeaeeseeeearaees \V
T ABLE OF CON T EN T S ..ottt ettt ettt e e ettt ettt e e e e e e ee e e e e e e ee e eeeeeeeseee e aeeeeessseeernaeees VI
A B LE LIS T oottt ettt e oo e e et ettt e e e e e e e e ee e e e e e e ee e eeeeeeesseee e eeeeeessaesraeeeeeesssaaines VI
FIGURE LIS oottt ettt e e e e ettt et e e e e e e ettt e e e e e ee e e eeeeeeeeeee e aeeeeesssaeeaaeeeeaeessaaanes IX
1 INTRODUCTION ...ttt e e et ettt e e e e e e et e e e e e e e e e et et e e e s e eee e eeaeeseeeeaeeeees 1
O A |V T Y7 o T N TR 2
1.2 SUMMARY OF FOLLOWING CHAPTERSiiiitittttiiieeetiitttiiiseessessssssssseesssssstsssssesssssstssseesssssssrsnsseeesees 2

2 SIGNAL PROCESSING FUNDAMENTALS ..ottt ettt eavan e s sbae e e 4
3 TMS320C6713 DSP DEVELOPMENT SYSTEMvviiiiiiiiie ettt svan e 27
3.1 CODE COMPOSER STUDIO IDE (CCS)..ciuiiitiiiiiiiiiiiiie ittt 27
3.2 CCSINSTALLATION AND SUPPORTteittttttttieeetstetttsisseesssestsssssessssssssaasseesseestssssessssestrsnsseesssessnnes 29
3.3 CCS SETUP AND INITIALIZATION . .uuutteetttttttttsseesstessssaseeesseesssssssessseessssnsssessseesssnseessseesrrsnsreeessersnne, 46
3.3.1 Selecting Simulation ENVIFONMENL..........coiiiiiiiiiiieiie ettt 49

3.3.2 Selecting EmMulation ENVIFONMENTcoiiiiiiiieiie ettt sttt sbe e 51

3.4 GENERAL ALGORITHM IMPLEMENTATION ON THE BOARDcvvuiiiiiiiiiiiiie i eee ettt e e s e eeabie s e e e e s eeanaen 55
341 TYPES OF USETUI FHIES.ieiiiec et e e nree e nnee s 55

3.4.2 DSK SUPPOIE TOOIS ...oeeiieeiiieiiiie ettt e e e e s nte e s e et e e snae e snte e ate e e nreeenneees 56

3.5 PROGRAMMING EXAMPLES TO TEST THE DSK TOOLS ...oevviiiiiiieiiieeiieeeeeeeeeeeeeteeeeeveeeeesssesassssssssssssssnnees 57
351 Example 1. HEHO WOIIAYcooei ettt et e e 57

3.5.2 Example 2. Fast Fourier Transform (FFT) -- (Created Project Version)..........ccccoeevevveenennn. 66

3.5.3 Example 3. Fast Fourier Transform (FFT) -- (Creating the Project Version)..............ccoc..... 72

3.5.4 Example 4. Corner Turning -- (Created Project VErsion)..........cccccvvvveerieeeiieesinesneeeseee s 85

3.5.5 Example 5. Corner Turning -- (Creating the Project VErsion)cccccovevevivevieeiiieesnnesenn, 91

4 SIGNAL OPERATOR FORMULATIONS FOR MATLAB IMPLEMENTATION.......c.cceevvinn. 105
4.1 LINEAR SHIFT INVARIANCE SYSTEMS ..uuuuuuuuuuuuusssnnssnsssssnssnnnnnns 105
4.1.1 Matrix Representation of LSI-FIR SYStEMSccoviiiiiii e 105

4.1.2 Spectral Properties of LSI-FIR SYStEMS.......cccoviiiiiiiiiiiie e 112

A O ol [0V, 1N 1 =11 114
4.3 DISCRETE FOURIER TRANSFORM ...uuuuvtuutussnssnns 115
4.4 OTHER OPERATORS AND PROPERTIESuuuuuuuuuuusstssussnnnns 116
45 HADAMARD PRODUCT ..uuiiiiiiiiiiiiiie ettt ettt e e e e e e e et e e e s e e e s bbbt e e e e s e e s bbbt seessee s bbb seeeseessreen 118
4.6 CONVOLUTION AS A FUNDAMENTAL OBJIECTIVE ..uuuuuuuureuuueiirinsssissssssssssssssssssssssssssssnssssssssnsnsnnnnsnnnnnns 119
TN R B 1 [t (=1 (<3 e (=Y 120

4.6.2 Response of a Filter to a Finite Signal ..o 120

4.6.3 Finite Response Filters to a Finite IMPUISE...........cccoeiiiii i 121

5 IMAGING FORMATION ALGORITHM ...ttt ettt e e 124
5.1 SAR IMAGING FORMATION DESIGNcceiiiiiiiiiiiiiiiiiieeiieeeeessrsree 126
5.2 IMAGE FORMATION RESULTS OBTAINEDcctttttititttttteeeetssessrees 128
5.2.1 TMS320C6713 Emulation results for 128x128 Raw Dataccoovevvvviiiieeiiiiiiiiiieeee e 128

5.2.2 TMS320C6713 Emulation results for 256x256 Raw Data...............oceevveiiieeiiiiiiiiieieeee e 131

Vi

5.2.3 TMS320C6713 Emulation results for 512x512 Raw Data........ccceeeeeeieieiiiiieieieeeeeeeeeeee e 133

5.3 EXAMPLE. IMAGING FORMATION -- (CREATING THE PROJECT VERSION)veeveeieeriieniienieesieesieenieenieens 135
6 CONCLUSION AND FUTURE WORKcooiitiii ittt et snaee e 153
L e] N[O SRR 154
APPENDIX A. TMS320C6713 DSP ATRIBUTESottt 156

vii

Table List

Tables

Table 1: TMS320C6713 DSK Features

viii

Figure List

Figure 1: Sample of Programming Environment: "Code Composer Studio™.c.cc..... 28
Figure 2: Code Composer Studio (CCS) v3.3 Installation Wizard.............cccocevvieiiieinennnn. 29
Figure 3: CCS System Requirements VerifiCationcccceovveriienieiiiencnec e 30
Figure 4: CCS LiCENSE AQIEEMENT.ccueiiiieiiiieitie ettt 31
Figure 5: CCS Instalation Type SEIECTION..........coviiiiiiiieie e 32
Figure 6: CCS Destination FOIUETcoiiiiiiiie e 33
Figure 7: Code Composer Studio v3.3 InStallationcccooiiiiiiniiinie e 34
Figure 8: CCS INStallation Progress.cuuiiiiiiieiiieiieesiee et 35
Figure 9: Finished CCS INStAllatioNncooiiiiiiiiiiee e 36
Figure 10: CCS Emulation Drivers Main Menu WINAOWcccoiieiieniiinieiie e 37
Figure 11: CCS 3.1 PIaninumM DIIVELccviiiiiiieiiie et 38
Figure 12: CCS 3.1 Emulation Drivers Installation Windowcccccovvviniiiieniicinene, 39
Figure 13: CCS Emulation Drivers Setup Type Selection ..o 40
Figure 14: Selection of Destination Location for CCS 3.1 Emulation Drivers...................... 41
Figure 15: CCS 3.1 Emulation Drivers Installation Progressccccccevvveneiiienieeinenne, 42
Figure 16: CCS 3.1 Emulation Drivers Installation Progresscccccevvveneiiienieennennne 43
Figure 17: CCS Emulation Drivers Installation CIOSUIe...........ccccoviiiiiiniiincic e 44
Figure 18: CCS 3.1 Planinum DFIVEcoouiiiiiieeeiee e see e siee e ina e stae e sian e snneeesaee e 45
Figure 19: CCS Emulation Drivers Main Menu WindOWccccveiiieeiiiee e 46
Figure 20: Location of CCS in WINAOWS XPc.uviiiiieeiiieeciie e sse e see e snaee e 47
Figure 21: Code CompoSer StUAIO SELUP .. .ccvvveiiiieeeiiie e 48
Figure 22: Selecting Simulation ENVIFONMENT..........ccovieiieeeiiie e 50
Figure 23: TMS320C6713 "Digital Starter Kit" (DSK).......ccoviveiiiieiiiie e 51
Figure 24: TMS320C6713 DSP BOAIUcccvveiiiireeiiie e cieeestee e te e stan e saee e 51
Figure 25: Emulation Environment SEIECtIONcccvveeiiiiiiiii e 53
Figure 26: Establish the Connection between the CCS and the TMS320C6713 DSP............ 54
Figure 27: Window for the creation of a New Project.........cccccoveiviveiiiee e 58
Figure 28: ProjeCt FOIAEIScciiieiie ettt aee e 59
FIgure 29: ProjECt FIlEScuvee ettt e e e e e 61
Figure 30: Setting the Target VErsioN..........ccoveiiiie it 62
Figure 31: Specifying the Chip ArchiteCture...........cooveeiiii i 63
Figure 32: Libraries Nedded for the Project...........cccoveeiiiieiiie e 64
Figure 33: Compiling RESUILS.........ccviieiee et 65
Figure 34: Results Obtained after Run the Algorithm "hello world™cc.cooiieiine, 65
FIQUIE 35 T FIIES.....iiiiiee ettt et e et e e nte e e e aee e 66
Figure 36: Open FFET PrOJECT........coiiii ittt 67
Figure 37: FFT Project SEIECHIONccoiuiiiiiiie ettt 67
Figure 38: CCS Environment for FFT EXample.........ccccooviiiiiii e, 68
Figure 39: FFT Project Compiling RESUILS.........cuveiiiiiiiii e 69
Figure 40: “Load Program’™ LOCAIION.ccoocuiuiiiuiiiiiiiiiie ettt 69

Figure 41: “FFTproject.out” File LOCATION.................ccooviiiiiiiiiiiiiiiie e 70
Figure 42: Downloading the “FFTproject.out” File to the TMS320C6713 DSP.................. 70
Figure 43: Results Obtained after Run the FFT Algorithm.cccocoiiiiiii 71
Figure 44: FFT Project FIlESoo i 72
Figure 45: Creating & NEW PrOJECT.......c.coiiiiiiieiie et 73
Figure 46: Window for the Creation of @ NeW Project...........cccovvveiiiiiiiniieiie e 74
Figure 47: FFT Project FOIURTocuiiii i 74
Figure 48: FFT Project FIlESoo i 75
Figure 49: Adding Files t0 the Project..........cocvoiiiiiiiiie e 76
FIQUIe 502 PrOJECT FIIES ... 77
Figure 51: Build Option Setting LOCAIONoiiiiiieiiieiiie e 78
Figure 52: Setting the Target VEISION...........cooiiiiiiiiiiiiee e 78
Figure 53: Memory Model Type SEleCHIONccveiiiiiiieie e 79
Figure 54: Specifying the Chip ArChiteCtUrecooviiiiiiiie e 80
Figure 55: Libraries Needed for the Project..........ccoeiiiiieiiiiiicie e 81
Figure 56: FFT Project Compiling RESUILS........cccoiiiiiiiiiieie s 81
Figure 57: “Load Program”™ LOCAIION...............ccccccuiiuuiiiiiiiiia e 82
Figure 58: “FFTproject.out” File LOCAIION...............ccccccoiiiuiiiiiiiiii i 82
Figure 59: Downloading the “FFTproject.out” File to the TMS320C6713 DSP.................. 83
Figure 60: Results Obtained after Run the FFT Algorithm.c.ccoocoiiiiiiii e, 84
Figure 61: Corner TUMING FIIESc.vviiiie e 85
Figure 62: Open "Corner TUrNiNG™ PrOJECT........cvviiiiie e 86
Figure 63: Corner_Turning Project SEIECHIONccveiiiieiiii e 87
Figure 64: CCS Environment for Corner Turning Example.........ccccocvveiive e, 87
Figure 65: Corner Turning Compiling RESUILScceeeiiiieiiii e 88
Figure 66: “Load Program’™ LOCALION.................cccciiuuuiiiiiiiiiiiiiiiiiiiiae e 88
Figure 67: “Corner Turning.out” File LOCAtIONccoviuviiiiiiiiiiiiiiiiiiiiee e 89
Figure 68: Downloading the Corner_Turning.out File to the TMS320C6713 DSP 89
Figure 69: Results Obtained after Run the Algorithm "Corner_Turning”.........c..ccccceevevvenne. 90
Figure 70: Corner TUMING FIIESc.vviiiiee ettt 91
Figure 71: Creating @ NEW PrOJECL.......cccviiiiee e 92
Figure 72: Window for the Creation of a NeW Project...........cccceovviiiiieeiiie e 93
Figure 73: Corner_Turning Project FOIAErcovivi i 93
Figure 74: Corner Turning Project FileS..........coouviiiiie i 94
Figure 75: Adding Files t0 the Project..........cccveiiiiiiiiie s 95
FIgure 76: ProjECt FIIESccuveiiee et 96
Figure 77: Build Option Setting LOCAtiON...........cceeiiiieeiiie e 97
Figure 78: Setting the Target VErsioN...........cccveiiiie e 97
Figure 79: Memory Model Type SeleCtioncc.ccoviveiiiiieiie e 98
Figure 80: Specifying the Chip ArchiteCture...........cooovveiiiii i 99
Figure 81: Libraries Needed for the Project..........ccoooveiiiie i 100
Figure 82: Compiling RESUILS.........ccviiiiiie et 100
Figure 83: “Load Program’™ LOCAIION................cccoouueiiiiiiiiiiiiii e 101

Figure 84: Corner_Turning.out File LOCAtIONc.cooiiiiiiiiiieiic e 102
Figure 85: Downloading the Corner_Turning.out File to the TMS320C6713 DSP 102
Figure 86: Corner Turning Input Data and Validation Filesccccciiiiiiiiiiiicnnn, 103
Figure 87: Results Obtained after Run the Algorithm "Corner_Turning”...........cccccooveninen. 104
Figure 88: Discrete System BIOCK DIagramc.ceivieiieiiieniieiiie e 119
Figure 89: Discrete Filter BIOCK DIagramccccoiiioiieiiieiiieiieeee e 120
Figure 90: FIR Filter BIOCK DIGQIamc.cocviiiieiiieiiie et 121
Figure 91: FIR Filter BIOCK DIGQIamcocuiiiiiiiiieiieiiie et 121
Figure 92: Averaging Filter BIOCK Diagram...........ccccvoiiiiiiiiiiiniieiie e 122
Figure 93: Range and AZIMUth DIreCIONcoovuiiiiiiiiiiie e 125
Figure 94: SAR Image Formation Diagram ProCedure...........ccoovvvviiieiiieniieiie e 127
FIQUIE 95: RAW DALeiiiiieiiii ettt 128
Figure 96: Data Compressed iN RANGEuiiiiiiiieiii et 129
Figure 97: Applying Corner Turning to Data Compressed in Range Direction................... 129
Figure 98: Data Compressed in AZimuth DIFeCHION...........ccoveiiuiiiiiiiie e 130
FIQUIE 99: RAW DALeiiiiieiiiieitie ettt ettt nnee s 131
Figure 100: Data Compressed iN RANQEooiiiiiiiiieie et 131
Figure 101: Applying Corner Turning to Data Compressed in Range Direction................. 132
Figure 102: Data Compressed in AZimuth DIreCtionccoovuverieiiiiriiieiiee e 132
FIQUIE 103: RAW DALA.......ciueieiiiiiiiiiiie ittt ettt ettt 133
Figure 104: Data Compressed iN RANQEcuvveiiiieiiiee e seeesiee e riee e see e san e seeeeaee e 133
Figure 105: Applying Corner Turning to Data Compressed in Range Direction................. 134
Figure 106: Data Compressed in AZimuth DireCtion..........ccccvvveiiiieiiiee e 134
Figure 107: ImagingFormation FIlESccveiiiiiiiie e 136
Figure 108: Creating @ NEW PrOJEC.......c.uiiiiiieiiiie et sie e sie e e e see e aee e 137
Figure 109: Window for the Creation of @ New Project.........cccccvvveiiiveiiine e 138
Figure 110: “ImageFormation” Project FOIAerccccccvviiiiiiiiiiiiiiiiiiiiiiiee s 138
Figure 111: Image Formation Project Filesc.cooveiiiieiiie e 140
Figure 112: Adding Files t0 the ProOjJeCE........c.vviiiii i 142
FIgure 113: ProjJeCt FlES ...cuveiiciie ettt e e ennee s 143
Figure 114: Build Option Setting LOCALIONcc.eciiiveeiiie e 144
Figure 115: Setting the Target VEIrSION........cccviiiiie e 145
Figure 116: Memory Model Type SEleCtiONcc.eeiiiieiiie e 146
Figure 117: Building options for LINKEr—PBaSICcccceuevreeeeeeeeeeeeeeee e 147
Figure 118: Specifying the Chip ArchiteCtUreccvveiiiei e 148
Figure 119: Libraries Needed for the Projectcccveeiiieeiiie e 149
Figure 120: “ImageFormation” Project Compiling RESUILScccovuuiviiiiniinniiinninens 149
Figure 121: “Load Program”™ LOCAIION...............ccccuiuiiiiiiiiiiiii e 151
Figure 122: “ImageFormation.out” File LOCALIONccoocueiiiiiiiiiiiiiiiieiiice e 151
Figure 123: Downloading the “ImageFormation.out” File to the TMS320C6713 DSP152

Xi

Xii

1 INTRODUCTION

At the time of working with a new algorithm design and development project, the
task of being able to connect the integrated efforts of software and hardware design usually
takes a lot of time and in most cases it requires the efficient management of many resources.
Algorithms developed for a specific architecture should work well after the testing and
refining processes are completed. Problems emerge when trying to use these same
algorithms over other architectures. To use them on a new architecture, for instance, they
may require a lot of changes or practically develop a new hardware/software integration
scheme. The problem addressed in this project deals with the need to develop a system level
design approach to assist in the design and development of a certain class of signal
processing algorithms. In particular, this class of algorithms represents finite dimensional
linear shift invariant systems. This type of systems always admits a matrix representation and,
hence, can be treated as finite dimensional operators. Signal algebra methods can then be
used to study the properties of these operators in order to arrive at desirable algorithm
formulations for integrated hardware/software implementations on a targeted architecture.
The development of an appropriate system level design approach for algorithm design and
development could contribute to the task of software reuse on different architectures with a

reduced amount of code alteration.

The linear operator nature of the class of systems addressed in this proposal allows
for the representation of these systems using and iconic or block diagram approach. In this
context, a typical finite dimensional shift invariant system may be represented as 3-tuple
entity: 1) a set of causal input signals of finite order, 2) an operator, linear transformation, or
agent, and 3) a set of output signals. The operator, linear transformation, or agent acts on a
given element of the set of input signals and it produces an element of the set of output

signals.

The fundamental purpose during this research project was to develop working tools to
allow TMS320c6713 DSK future users to work in a more efficient and rapid manner. As
part of this research project, a user’s guide on implementing digital signal processing (DSP)
application programs for the SDK6713 board was designed. The main purpose was to study
and analyze the learning process involved as a specific number of individuals followed the
guide step by step, in order to interact and use Code Composer Studio v3.3 IDE to develop
different application examples for the DSP board. The level of difficulty in learning how to
implement the application program, and becoming familiarized with Code Composer and the
DSP board itself, was taken into consideration for this particular study.

1.1 Motivation

The main motivation to work in this project was that during the literature review process I
realized that there exists a big gap between the software and hardware area, and how to use
different algorithms in different architectures without any major problems. I also noticed that
this issue is a common concern in the engineering and research areas. For these reasons |
think that my work will be a great contribution for the field of signal processing algorithm
design and development and it will serve as a starting reference point for future

investigations.

1.2 Summary of Following Chapters

This document is organized as follow: Chapter 2 presents important signal processing
fundamentals theory which is essential to understand de development of this project. Chapter
3 presents a description of the TMS320C6713 Digital Starter Kit (DSK) and its development
environment Code Composer Studio v3.3. It also includes a detailed TMS320C6713 user
guide that describes how to use the Code Composer Studio for the creation of the following

project examples: Hello World!, Fast Fourier Transform (FFT) and Corner Turning.

Chapter 4 presents a description of signal operators formulation. Some of these operators are
used in the implementation of the image formation advanced algorithm. Chapter 5 presents
the SAR Image Formation design description and the TMS320C6713 DSP User Guide for

this example. Chapter 6 presents the conclusion of the project and potential future projects.

2 SIGNAL PROCESSING FUNDAMENTALS

Digital Signal Processing:

Digital Signal Processing is defined as the treatment of signals using digital
electronics technology and digital computation techniques, in an algorithmic manner, to
extract information important or relevant to a user. The diagram below depicts a basic digital
signal processing system conformed of three basic components: an analog-to-digital (A/D)
conversion system, a digital processor system, and a digital-to-analog (D/A) conversion
system. The digital processor system takes a digital signal as input and produces another
digital signal as output. An analog-to-digital system converts a continuous-domain signal or
analog signal into a digital signal. A digital-to-analog system performs an inverse operation;
that is, it converts a digital signal into an analog signal or continuous-domain signal. A
continuous-domain signal is normally referred to as a continuous-time signal or simply a
continuous signal since it can describe the variations or scales of a physical quantity such as
pressure, temperature, or sound as a function of time. Examples of continuous-time signals

such as speech signals abound all around us.

x(t) wn] . ylx] yit)
Digital
—»— AD > > Dis, —»
Processor
Contimious Dugital Signal Digital Signal Continous
or or
Analog Signal Analog Signal

Continuous-domain Signal or Analog Signal:

A continuous-domain signal or analog signal denotes a function x whose value x(t) is

defined for every value t of a set D called the domain of the function.

Discrete-time Signal Processing:

Discrete-time Signal Processing is a more general treatment of signals, which
includes digital signal processing, using other technologies such as surface acoustic wave
(SAW) devices and charged-coupled devices (CCDs) as well as analog computation

techniques such as optical and biological computing.

Discrete Signal:

A discrete signal or discrete function has as its domain a discrete set such as the set of
integers Z. The number of elements in the discrete set serving as the domain of the discrete
signal may be finite or infinite. As an example of a discrete signal we have the following

function

1 1 1
X = {x[n] =2"ne Z} = {...,—5,—1,—5,1,2,4,8,...}

A signal which is discrete is also called a sequence. As an example of a finite sequence, we

provide the following function over the finite set Z, = {0, 1, 2, 3}:

2nn
x = {x[n] = cosT, ne 24} ={1,0,—1,0}

A discrete signal can be obtained from a continuous signal by making the time axis a discrete

set. That is, if we have a continuous signal x: R —» C

t —>x(t) =e"?™ i =y=T, f,isaconstant.

Digital Signal
A digital signal has as its range a finite discrete set.

Causal Discrete Signal:
It is a sequence {x[n]} such that x[n]=0 for n<O0.

Discrete Finite Causal Signals:
Let Z, ={0,1,2,..,N-1}. Example Z, ={0,1,2,3,4}.

A sequence {y[n]}is causal and finite if {y[n],n € Z}. In this case we say that the

signal has length N.

Discrete System:

A discrete system T takes as input a discrete signal, say {x[n]} and it produces as

output another discrete signal, say y[n].

Block Diagram Representation of a Discrete System:

A discrete system is usually represented using a rectangular figure, called a black box. To the
left of the box an inward directed arrow is attached to indicate the input signal to the system.
To the right of the box an outward directed arrow is attached to indicate the output signal
produced by the system. Two modalities are commonly used to describe the input and output
signals as depicted in the diagrams below. The diagram on the left describes the input and
output signals as sets but does not identify the domain of the signals. The diagram on the
right depicts an arbitrary element of the input and output signals and provides the domains

where theses signals are evaluated.

{"‘.[H]} Dhscrete {y[’g]} Ax] , nel Discrete Mn] |, neZ
System T > System T }’[?:i _ T{x[x])

Discrete Linear System:

The system T is linear if:

T {ax, [n] + bx, [n]} = aT{x,[n]}+ bT{x, [n]}

Simplified condition:

1. Additivity or Superposition: a=b=1
T{a[n]+ %, [n]) = T{x [n]}+T{x, [n]}

2. Homogeneity: b=0

T {ax,[n]} = aT{x,[n]}

For the system to be linear it must satisfy, both, the additivity and homogeneity

conditions.

Example: Squarer Discrete System

¥nl,ne L
—»

mwstetn
T

ynl=T(n]} = aln] @ x{n]= x*[x]

Check the homogeneity condition:

1 T [nlk=xn]

aT{x[n]}=ax[n]

2. Let g[n]=ax,[n]
T{o[n]}=g°[n]
Substituting for g[n] = ax,[n], we obtain

T{ax,[n]} = (ax,[n])* = a’x,"[n]}

Therefore the system is not linear.

Discrete Shift Invariant or Time Invariant System:
A system T is shift invariant or time invariant if it satisfies the following condition:

y[n—nel = T{x[n —n,]}.

Discrete Filter:
A discrete filter T is a system, which is, both, linear and time invariant.

Note: Any discrete signal can be expressed as a sum of delayed unit sample functions:

[e o}

x[n]= 3" X[K]S[n — k]

k=—o0

Finite Impulse Response Filter:

It is any filter whose impulse response signal is of final duration, that is, it has

duration equal to, say N h» an arbitrary but fixed length.

Causal Filter:
A filter T is called causal if the impulse response signal of the filter is a causal
signal.

h[n], n>0
o=

RC-Filter:
The figure below depicts an example of an electric circuit modeling a continuous passive
RC-filter. The filter is called continuous or analog due to the fact that it operates as a rule

which assigns to an input signal, x(t), t e Ran output signal, y(t), teR. It is called RC

since all the components in the circuit are made up of either resistors or capacitors. Each

resistance element in the circuit models a dissipative load. Also, each capacitive element in

the circuit models an energy storage load. The overall circuit is conformed by two basic first
8

order filters coupled in cascade. A first order continuous passive filter may be described by a
first order differential equation with constant coefficients.

Wt)= ce = uf), o= L

RC

t —:N— 70P = x(9) ¥hct)
=) — g L e

‘ 8 = Ixr;rjh(r— Ddr

= = ikl -+

General Continuous Filters:

In general, a continuous passive filter with input the signal x(t) and output the signal

y(t) may be represented in terms of a differential equation of the form:

M M -1 N N-1

d d
ay —w (YO) +ay . —5 (YO) +...+a, y(t) =by — X() +by_; — X(t) +... + b x(t)
dt dt dt dt
This can also be expressed as follows using summation expressions:
M d m N d n
2 an = Y =2 b, x()
m=0 dt n-0 dt

The input signal x(t) is also called the forcing function of the continuous filter.

Discrete Filters:

Discrete filters may be represented using difference equations of the form
N M
2 dyln—kl= 2 pxIn—kI,
k=0 k=0

where the sequence x[n], neZ , represents and arbitrary input signal, the sequence

y[n], neZrepresents the output signal, and d,, p, are complex scalars. The output signal

y[n], neZ can be expressed in terms of the input signal and past values of the output signal.

Discrete Filter Implementation:

A large class of discrete filters can be expressed in terms of a difference equation of

the form:

idky[n—k] = ibkx[n—k]

This is the only type of filters that we will study in this primer.
Filter Operators: The diagrams below represent operators to implement all filters

&] 5 E_]
S1 multiply delay shift delay

x[#] | ax[#]

lf‘//

Discrete Time Fourier Transform:

Let x[n] be a discrete signal. Its discrete-time Fourier transforms is defined as

follows

o0

Fix[n]} = DTFT{x[n]} = Z x[nle *m, w € R;j = V—1

n—->—oo

Remember that € /" = cos en — jsenan . This implies that the DTFT of the signal x[n] is a

complex function signal.

10

Periodic Property of the DTFT
Example: The DTFT of a Signal is Always Periodic Modulo 27

Assignal X (w) is periodic with period @, if the following condition is satisfied:

X(@+w,)=X(o).

o0

Define X (w) = H{X[n]}= D _x[nle”'";w e R

If we let goto w+@, by changing the argument of X (@), we get

X(@+a,)=> xnle”" " =3 x[nle e "

n=—w n=—ow

Allow @, = 27

Then, e " =e 2™ = cos(2zm) — jsin(2n),n e Z

We then have the following result:

o0

oz = XN = X (@)

N=—o0

X(@+w,)

Discrete Fourier Transform:

This is only defined for finite discrete signals, say of length N.
Let x[n] be a discrete signal of length N. Its DFT is given by the following equation:
. 27Kn

N-1 _ N-1 B
X(@) o= XK= Y XNl " =N xnle 'V kez,
W= n=0 n=0

11

The DFT can be represented in matrix form:
X =F X
When x s a column vector and is the input signal, x is a column vector and it is the output

signal or transformed signal and F, is a square matrix of order N called the Fourier matrix.

Periodic Discrete Signals:

A signal x[n] is said to be periodic, with fundamental period N , if the following condition
is satisfied:
X[n+gN]=x[n],forge Z

Example:
A]

3 3 3 3
2 2 2
iIE

—1| -1 -1 -1

2

.1|

—1

=¥

The signal x[n] has a fundamental period equal to N. In this case N =4:

Let g=1
X[n+4]=x[n]
For n=-3
X[-3+ 4] = X[-3]
S X3 =X[1]

12

Observation:
Any periodic signal x[n] with fundamental period N, can uniquely be represented by a
causal signal x[n], of length equal to N, whose values are equal to the N values of the

periodic signal in its fundamental period.

Cyclic or Circular Convolution of Periodic Signals:
Given two periodic signals, say x[n] and h[n], with the same fundamental period N, the

cyclic or circular convolution of x[n] and h[n] is a new periodic signal

y[n]=xXn]Oyh[n],

with fundamental period also equal to N and which is defined by the following equation

N =

yInl= 3 X[kIhn—kI;n e Z,,.

LN

=~

Circular or Cyclic Convolution of Periodic signals using Causal Representations:

Let x[n] and h[n] be two periodic signals with fundamental period N. Let x[n] and h[n]

be their causal representations, respectively. The circular or cyclic convolution of the causal

representation is a new causal signal, of length N, and denoted by y[n].
The signal y[n] is given by
N-1
yin]=) x[kln[<n-k >];neZ,
k=0
The symbol < p>,, denotes the remainder of p after being divided by N. This is sometimes
called “p modulo N”. The periodic signal y[n] is obtained from its causal representation

y[n] by repeating the causal signal y[n], starting at the fundamental period.

13

Observation:

1. The efficiency of computing a cyclic convolution operation can be improved using a Fast
Fourier Transform (FFT) algorithm. An FFT algorithm is an efficient method for
computing the DFT.

2. Any linear convolution can be computed using a cyclic convolution operation.
Remember that the filters only do linear convolution.

3. The Discrete Time Domain Convolution Theorem states that the DFT of the cyclic
convolution of two discrete signals is equal to the product of the DFT of each of the

individual signals.

Inverse DTFT:
Let X(w) be the DTFT of the signal x[n]. We can recover the signal x[n] from its

Fourier transform by using the formula (IDTFT):

_ 1 7 + jon
)= LX(a))e do.

Example:

Obtain the DTFT of x[n] =<"u[n], || <1.

Solution:

X ()= DTFT{X(nl} = Yo" pfnle " = Y ae i

Expanding, we get

X(@)=1+0e +a’e 1% + o’ 1™ +...

X (@)= (ae)"

14

X(@)=Yb"=1+b+b?+b*+-

X (w)-bX(0)=1
(1-b)X (w) =1

1 1
X (@)= = .
T T

Filter Design: First-order

x[#] Mn]= by xn]+ayln-1]
b T >
4 s

h(r] = byaulx]

FIR

he [] = h[n], neZ,
°2 o, otherwise

FIR Filter Design: Windowing Technique

Given the DTFT X (w) of an arbitrary signal x[n], the signal can be recovered from its

spectrum using the following formula for inverse DTFT:

15

-

x[n] = zir X(wp""dw; neZ
7

If the signal X (w) is the frequency response of a filter, then X (@) = H(w).

The impulse response is then obtained from the frequency response as follows:

h[n] :ij” H(w)e “dw, neZ
2 J 7
h:Z—>C

Low-pass FIR Filter Design:

1.
2.
3.

Select an ideal filter with a prescribed frequency response.

Take the inverse DTFT to obtain an infinite response.

Multiply in the time domain by a window with the desired order or length. Allow this
first window to be rectangular.

Multiply the result of part 3 by a new window to improve the desired frequency

response.

Fast Fourier Transform:

It is an algorithm to compute the discrete Fourier transform in an efficient manner.

There are many fast Fourier transform algorithms. We will concentrate on the algorithms
designed by John Tukey and James Cooley in 1965 and are commonly known as Cooley —
Tukey FFT algorithms.

Cooley — Tukey FFT algorithms:

The objective is to develop an efficient algorithm to compute the matrix-vector

operation:

X=1f X

The direct computation of this matrix-vector operation required N ? multiplications and

N(N —

1) additions.

16

Example: N =4

1 1 1 1][xo]] [x[o]
2 3 1 X1
el 3 1 3[EE
4 4
1w ow?ow, || x3]] [x[3]
jor
w,=¢e *
_ 276 —j% _j@
wi=e 4 —g ‘g
w2 1

For N=2" , a power of 2, the Cooley-Tukey algorithm reduces the number of

multiplications to N log, N.

Example:
N ‘ Direct Method ’ Cooley-Tukey Algorithm

10

1024 ‘ (1024)° multiplications | 1024 log, 1024 = (101024
%f_/

17

Cooley-Tukey Algorithm Technique:
Additive property of the DFT:

Example: N =4
x[0]

x[1]
x[2]
x[3]

X=Fx=F,

1. We will represent x as a sum of two vectors: X[n]: Xe [n]+ X, [n] ,neZ,

x[o]] [x[o]] [o0

2. We will use the linearity property of the DFT F,x=F, (Xe + XO): F, X, +F,X%,

sparse matrix

11 1 1[x0]] [1 0o 1 ofxo]] [x[o]+x[2]
w, w2 w0 10w 0O x[0]+ w2x[2]
FiX, = 2 2 -
1 w2 1 w2i[x[2]| |10 0| x[2] x[0]+ x[2]
wl w?ow, || 0 10w 0O x[0]+ w2 x[2]

11 x[0]+ x[2]
1w} [x[o]] | x[o]+w;x[2]

FXe=l {X[Zﬂ | x[0]+ x[2]
1w} x[0]+ w2 x[2]

wi=e ¢ =e " =cosz—jsinr=-1

18

+ ALl el

0] ——

2] —

1 1
F, Z[W;(n]K,nez2 ZL_ W :|

2

27

j .
w,=e 2 =—e"=-1

Butterfly Block Diagram (Flow Diagram)

Representation of the FFT:

Fox, {ﬂ[x[o] 2]

2

We want to compute

A/F4x: F,.X, +FX%

16 multiplications

12 summations

19

In general, we want to know

=

pFT {X[n—n, |} = _lX[n —n, Wy

=]
1l
o

m=n-n,;n=m+n,

m=(N-1-nq)
DFT X[n—n,J}= > me]wff(m*"")
m=-n,
m=N-1-n,
T
in]
Fundarmental Feviod
----------- . --9 :/
: -1 "
- J"ID -]
1]
Example:
n]
3

) P
Remainder (Wj =< p>y=<p+aN >,

<-3>,=<-3+04>,=<-3+4>,=<1>,=1

X[3] > x[1]

=z
LN

G[K]:WNK%(

v |

0

3
I

Hadamard product

DFT {X[n—n, }=W,™ o x[K]

J.2;z‘r<n0
Kny _ A N
W ™ =e

21

Express F,X, in matrix form.

Glk]—long.N

Glk]=W, - X[k]

G[k] =W o (F4X)

1 1 1 1 0
iy, - 1w, w2 w|x3]
1w, 1 w;| o0
1w owlow, | x[3]
0 1 0 1 0
10w, 0 wj|x[3]
1o w2 0 w2| o
0w} 0 w,|x3]
Compacting, we get
11 x[1]+ x[3]

F, X, =

w, wi [x[]] | w,x[1]+wix[3]
w2 w? | w2x]+ w2x[3]
we w, wix[1]+ w, x[3]

22

We know that
DFTy {X<n—n, >, JJ=w™ - X[K]
Example: N =4, x[n]= {x[0] x1] x[2] x[3]}
yln]=x{<n-ng >,]in, =2
yinl=x<n-2>,]inez,
ylo]=x[<0-2>,]=x[2]
yj]=x[<1-2>,]=x(3]
y[2]=x[<2-2>,]=x[0]

yBl=x<3-2>,]=x1]

<p>y=<p+agN>,

< p+0gN >, =Remainder (P +NqN J =

23

Remainder [Ej + Remainder (%)

<1>,=1
<5>,=<1+4>,=<1>,+<4>,
<9>,=<1+2-4>,=<1>,+<8>,
<21>,=<1+5-4>,=<1>,+<20>,

<-21>,=<-21+2-11> =1

24

0
F{X([)l]} =DFT,{s[xn-n, >,]};n, =1
x[3]

0
Xﬂ =W, -slk:kez,
x[3]

I:4

If n, =1

25

Remember:

1 1 1 1
I:2:1 w2l 1w
4 2

2
4

2

11 10 00|11
w, w2 [x[1] _[0w, 0 0 1w
wZw? | x[3]] [o0w?O0 |11
w; w, 00 0w |1w

F,x=F,x, +FX,

4

26

3 TMS320C6713 DSP DEVELOPMENT SYSTEM

The possibilities to develop an application on the DSP C6713 are varied. There are different
compiling high-level languages to DSP’s. The tools used to compile and download programs
to the DSP are MATLAB®, Labview, Visual Basic and Visual C++. Those tools are
interfaced with the DSP using RTDX (Real Time Data Exchange).

3.1 Code Composer Studio IDE (CCS)

This is an Integrated Development Environment from Texas Instruments used to build and
debug applications developed in C or Assembly languages (see Figure 1). Some of the
special features of this environment are the possibility of reviewing variables or registers
from the DSK and also it is useful for exchange data between the board and other
programming languages such us Labview and MATLAB®.

CCS is used to calculate the quantity of floating point operations executed during any process

in order to evaluate the algorithm implementation performance. CCS IDE can be used for
reviewing results of an implementation due to the possibility of checking memory map.

27

/C6713 DSK/CPU_1 - C671x - Code Composer Studio
File Edit Yiew Project Debug GEL Option Profile Tools DSP/BIOS Window Help

B@d| 2B~ S B R SR | EE(AR RS
| | Hleumtl o 6L
Bl 0BHEHEAL
® Files
Tt | |00 GEL fies
(2 Projects
P
©
»
0
9
V3
2
x
i
&
@
e &

GEL StartUp Complete.

=
T T kL output / Jud) siE
! @ HALTED [LE Far Help, press F1 A

Figure 1: Sample of Programming Environment: **Code Composer Studio™.

28

3.2 CCS Installation and Support

The development environment is provided by Texas Instruments with the DSK board. Insert
the installation CD into the CD-ROM drive with the board disconnected. The CD is labeled
as “Code Composer Studio TM IDE Platinium v3.3”. It is not required to connect the card
using the USB port at the time of installation.

In the Texas Instruments web page (www.ti.com) it is possible to access technical
documentation, download libraries, discussion groups and technical conferences.

The following figure is the first window that appears when you insert the installation CD.

F

i Code Composer, Studio ¥3.3 Setup EJIEIEI

Welcome to the Code Composer
Studio v3.3 Installation Wizard

It iz strongly recommended that pow exit all Windows programs befare
running thiz Setup Program.

Click Cancel to quit Setup and close any programs you have running.
Click Mest to continue with the Setup program .

WARMIMG: This program is protected by copyright law and
intemational treaties.

Unauthorized reproduction or distribution of thiz program, or any portion
of it, may rezult in gevere civil and criminal penalties, and will be
prozecuted bo the madimum extent possible under law.

Q‘ TEXAS

INSTRUMENTS

Figure 2: Code Composer Studio (CCS) v3.3 Installation Wizard

In this windows click “Next” to proceed with the installation.

29

http://www.ti.com/

CCS installation wizard will check your system in order to verify that it has the minimum
requrements for installation.

i Code Composer Studio v3.3 Setup |Z||:rg|

sComposer

studio

Operating Systern

Ok - Microsoft Windows 2000 {or higher) Detected

Internet Explorer

Ok - Internet Explorer 5.5 (or higher) Detected

b emory

0K - 3326 MB Detected

Dizplay Feszolution

Ok - 1600 x 1200, 32 Bit Detected

l < Back ” Memt =]

Figure 3: CCS System Requirements Verification

Note: If your system does not meet the minimum requirements the software may not
function.

Click “Next” if your system has all the minimum requirements.

30

In order to complete the installation process it is needed to accept the license agreement.
Select the option “l accept the License Agreement”, then select the button “Next” (see
Figure 4).

i Code Composer Studio v3.3 Setup |'_||E|§|

sComposer

studio

Code Composer Studio 33 Software License Agreement ~

Important - Please read the following license agreement carefully. This is a legally hinding
agreement. Afier you read this license agreement, you will he asked whether you accept and agree to
the terms of this license agreement. Do not click “I accept the texrms of the license agreement”
unless: (1) you are authorized to accept and agree to the texms of this license agreement on hehalf of
vourself and your company; and (2) you intend to enter inio and to be hound by the texrms of this legally
hinding agreement on hehalf of yourself and your company.

Important - Read carefully: Thiz Code Composer Studio 33 ("CC3") Software License Agreement
(& greement™ iz a legal agreement between ywou (either an indivichial or entity) and Texas Instnuments
Incotporated ("TI"). The software programs included herein (the “Licensed CC3 Programs™ consist of
the following materials: (17 the TI proprietary materials (the “Proprietary Programs™), which are subject
to the licensing terms set forth helow, () the GNTU materials, which are subject to the terms set forth in
the GHU General Public License, Version 2.0 (GPL), a copy of which is included with those materials, (3)
the Xetces materialz, which are subject to the terms set forth in the in the Apache Softuate License,
Version 1.0, a copy of which is included with those materials, (4) the Xalan materials, which are subject w

(%) | accept the License Agreement
(| do not accept the License Agreement

R T

Figure 4: CCS License Agreement

31

The CCS has three types of installation: Typical Install, Debugger-Only Install and Custom
Install.

The Typical Install is the recommended installation for users without experience. In this type
of installation the most common application features will be installed. Select “Typical
Install ” and then select “Next”.

—_—

i Code Composer Studio ¥3.3 Setup |Z||:,E|

sComposer

studio

Typical Install

The most common application features will be installed. Thiz option iz
recommendad far mast users.

Debugger-Only Install

Iriztall the minimurm set of components to debug a compiled program. This option iz
recommended for advanced users anly.

Custom Install

Customize which features will be installed. This option is recommended far
advanced uzers,

Figure 5: CCS Instalation Type Selection

32

The installation creates a folder with the name C:\CCStudio_v3.3\ by default. The CCS icon
should be on the desktop and it is called CCStudio v3.3 by default.

{2 Code Composer Studio v3.3 Setup = |

sComposer

studio

Code Compoger Studio 3.3 will be installed in the following folder. Toinstall into a different folder, click
the Browse button, and selact another folder,

Y'ou can chooze not to install Code Compozer Studio +3.3 by clicking Cancel to exit the |nstallation

wizard,

Drestination Folder
CACCStudin_v3 3
Size

Disk Space Required: 987MB

SO e " Eiok OV Bt i see A asaiatl sotamar e gacdes ragranamsets

(oo e]

Figure 6: CCS Destination Folder

33

Once the folder is created the program is ready to be install. Click “Install Now” to proceed
with the installation.

i Code Composer Studio v3. 3 Setup QIEIE

Ready to Install Code Composer
Studio v3.3

e you ready to have the Code Composer Studio 3.3 Installation “izard
begin the install?

Product: Code Composer Studio v3.3
Install Mode: Typical
Disk Space Required: 937ME

Destination Folder: CACCStudio v3.3

Once you have verified the installation options, click the "Install Mow"
buttan to ingtall Code Composer Studio v3.3,

Q‘ TExAS

INSTRUMENTS

[< Back ” Inztall Mow l

Figure 7: Code Composer Studio v3.3 Installation

34

This window is presenting the installation progress.

i Code Composer Studio v3.3 Setup E]7 y

studio

KnowledgeBase

Have a Question? Stuck on a Project?

® Easy-to-use, natural language based search
® |mmediate, relevant and focused answers

® |nfo from thousands of TI DSP sources
including technical documents

» For more info, visit www.ti.com/platinumsupport

Copying new files

File: spra500.pdf, Directory: C:ACCStudio_v3.3%docs\PDFY, Size: 353136

(T

)

Figure 8: CCS Installation Progress

35

Once the installation is over, click “Finish” to complete the installation procedure.

i Code Composer Studio ¥3.3 Setup E“EHX|

Code Composer Studio v3.3 has
been successfully installed

Please click the Finigh button to exit this installation,

’EP TExAS

INSTRUMENTS

Figure 9: Finished CCS Installation

Code Composer Studio v3.3 Platinum installs all the drivers needed to work in the
simulation stage, but does not have the drivers needed to complete the emulation stage. After
installing the program Code Composer Studio v3.3 Platinum, proceed to install the drivers
CD labeled as "Code Composer Studio 2.x/3.x Driver Disk for Digital Spectrum

Emulators”, that allow the users to complete the emulation stage. This software is included
in the SP1525 PCI JTAG Emulator package.

Note: Code Composer Studio 2.x/3.x Driver Disk for Digital Spectrum Emulators only will

be installed if the user wants to do implementations using the TMS320C6713 DSP
(emulation stage).

36

Insert the CD labeled as "Code Composer Studio 2.x/3.x Driver Disk for Digital Spectrum
Emulators”. On the first window select “CCS V3.1x PRODUCTS“(see Figure 10).

CCStudio Emulation Drivers

partnership with Texas Instruments
3 e

SPECTRUM
ITAL

INCORPORATED

ol L CONTACT.US |
5 ~— 2 =<
o

B Y <
'0}9\1,\&

»

Figure 10: CCS Emulation Drivers Main Menu Window

In the following window select “CCS 3.1 Platinum Drivers” in order to begin the installation
process.

37

CCStudiow3.1X Emulation Drivers

Supports:
CCStudio v2.40-v3.1x for C2000,
C6000, C5000 and OMAP.

Installation Requirements:

You must be logged on with
administrator privileges fo install most
products.

Code Composer Studio should be
installed first.

Adobe Acrobat reader is required to
view on-line documentation.

& MAIN MENU

Figure 11: CCS 3.1 Planinum Driver

The InstallShield Wizard window for SD CCS 3.1 Emulation Drivers appears to continue the
installation. Click “Next” to proceed.

38

SDCCS 3.1 Emulation Drivers - InstallShield Wizard [E|

Welcome to the InstallShield Wizard for 5D CCS
3.1 Emulation Drivers

The InztallShield® Wizard will install SO CCS 3.1
E mulatian Drivers o pour computer. To continue, click
et

| Mewt » | Cancel

Figure 12: CCS 3.1 Emulation Drivers Installation Window

The Typical option is the recommended installation for users without experience. In this type
of installation the most common application features will be installed. Select “Typical ” and
then select “Next”.

39

S CCS 3.1 Emulation Drivers - InstallShield Wizand

Setup Type
Select the zetup type to install.

Click the tupe of zetup you prefer, then click, Mesxt,

* Typical Program will be installed with the most common optionz. Recommended far
most ugers.

(" Compact Program will be installed with minimnunn required options.

(™ Custom Y'ou may zelect the options you want to inztall. Recommended for advanced
LIZETS,

¢ Back MHext » | Cancel

Figure 13: CCS Emulation Drivers Setup Type Selection

Change “Destination Folder” from the direction C:\CCStudio_v3.1 to C:\CCStudio_v3.3.
To change the folder click “Browse...” and select the folder located at C:\CCStudio_v3.3.

40

S CCS 3.1 Emulation Drivers - InstallShield Wizard

Choose Destination Location

Select falder where setup will inztall files.

Setup will install 50 CCS 3.1 Emulation Drivers in the following folder.

Toinztall o thiz folder, click Mexst. Taoinstall to a different folder, click Browsze and zelect
anather falder.

Destination Falder

EYEEER e 33

< Back et » | Cahcel |

Figure 14: Selection of Destination Location for CCS 3.1 Emulation Drivers

In the following window you have the opportunity to go back and verify all the previous
settings. If you are satisfied with the settings click “Next”’to begin the installation.

41

SO CCS 3.1 Emulation Drivers - InstallShield YWizard

Start Copying Files

Review settings before copying files.

Setup haz enough infarmation to start copring the program files. [F you want to resigw ar
change any settingz, chck Back. |If youw are satishied with the zettingz, click Mest to begin
copying files.

Current Settings:

Inztalling Typical Feature Set

< Back Mext > | Cancel

Figure 15: CCS 3.1 Emulation Drivers Installation Progress

Figure 16 presents the software installation progress window.

42

S0 CCS 3.1 Emulation Drivers - InstallShield Wizard

Setup Status

S0 CCS 31 Emulation Drivers iz configuring yaur new software installation.

C:ACCStudio_w3 3wepecdigh S dltaghuzbitag. dil

Cancel

Figure 16: CCS 3.1 Emulation Drivers Installation Progress

In order to finish the CCS Emulation Drivers installation, click “Finish”.

43

SD CCS 3.1 Emulation Drivers - InstallShield Wizard

InstallShield Wizard Complete

Setup has finished installing SD CCS 3.1 Emulation Drivers on
your computer,

< Back | Finizh I Cancel |

Figure 17: CCS Emulation Drivers Installation Closure

Once the installation process is finished, select Main Menu in the Emulation Drivers window
(see Figure 18).

44

CCStudio w3 1X Emulation Drivers

Supports:
CCStudio v2.40-v3.1x for C2000,
C6000, C5000 and OMAP.

Installation Requirements:

You must be logged on with
administrator privileges fo install most
products.

Code Composer Studio should be
installed first.

Adobe Acrobat reader is required to
view on-line documentation.

& MAIN MENU

Figure 18: CCS 3.1 Planinum Driver

Select “Exit” to finish the emulation drivers installation procedure.

45

CCStudio Emulation Drivers

in partnership with Texas Instruments

SPECTRUM
ITAL

INCORPORATED

Figure 19: CCS Emulation Drivers Main Menu Window

3.3 CCS Setup and Initialization

~ To setup the Code Composer Studio V3.3 environment in a Windows XP system,
click on Start and select All Programs —* Texas Instruments —» Code Composer
Studio 3.3 — Setup CCStudio v3.3 (see Figure 20).

- If the Setup CCStudio v3.3 icon is located at the Desktop, this application can also be
accessed by double clicking on this icon.

46

gogseeaogg

i

Accessaries

Games

Microsoft Office

Skartup

wiindows Media Playver
Internet Explarer

Outlonk Express

Symantec Endpoint Protection
Mozilla Firefox

nstrurnents

* v

Z6x11 D3K Lkilities

7-Zip r ©CShudio Seripting
Bloodshed Dew-C++ » Docurnenkation
MATLAB » Hardware Resets
Mozilla Thunderbird 4 RTD¥ Example Displays
PuTTY 3 & Code Composer Studio
Python 2.6 b %" Camponent Manager
55H Secure Shell » r

videal Al 3

Figure 20: Location of CCS in Windows XP

47

The following setup window for CCS will appear:

£ Code Composer Studio Setup
File Edit Yiew Help

‘ System Configuration

Available Factory Boards

B ARM11 - WPOM2420 Platform Simu. ..
ER:ARM11 - YPOMZ2430 PlatForm Simu...
ER:ARMT - VPOMZ2420 Platform Simul,..

EF:ARM? Simulakor, Big Endian
R ARMT Simulakor, Little Endian
B ARM7 xDS510 Emulator
EE: AR M7 ¥DSSA0 Ermulatar
B AR M3 %D5510 Emulator

BR: ARM3 ®DE560 Emulator

R ARMS26E 1-5 Simulator Little Endian
ER:F240 ¥D5510 Emulatar
ER:F240 ®DS560 Emulator
ER:F2401 ®DS510 Emulator
ER:Fz401 xD5560 Emulator
ER:F2402 ¥D5510 Emulator
ER:F2402 #DS560 Emulator
ER:F2403 ®DS510 Emulator
ER:F2403 xD3560 Emulator
ER:F2406 XD5510 Emulator
ER:F2406 205560 Emulator
ER:F2407 ®D5510 Emulator
ER:Fz407 xD5560 Emulator
ER:F241 ¥DS510 Emulatar
ERH:F241 ®DS560 Emulator
ERF243 ¥D35510 Emulator
EH:F243 ¥DS560 Emulator

B C27:0 Cypcle Accurate Simulatar
B C27 0 ®DS510 Emulator

B C2 730 XDE560 Emulator
EH:F2310 Device Simulakar
ER:FZ510 ¥D5510 Emulator

Family Platform Endianness
|l - |l - | e -|
ARM11 simulator *
ARMLL simulatar *
ARMT simulatar *
ARM7 simulator big
ARM7 simulator little
ARMT xds510... *
ARMF xds560 ... *
ARMS xds510.,, ¥
ARMI wdsSe0 ... ¥
ARMI simulatar little
C24 wdss10,,,
C24ux ®dsS60 ., ¥
C24x *dsS10... *
C2dux wdsSed .., ¥
C24 wdss10,,,
C24ux ®dsS60 ., ¥
C24ax *ds510.,, *
C2dux wdsSed .., ¥
C24 wdss10,,,
C24ux ®dsS60 ., ¥
C24ax *ds510.,, *
C2dux wdsSed .., ¥
C24 wdss10,,,
C24ux ®dsS60 ., ¥
C24x *ds510.,, *
C2dux wdsSed .., ¥
C2Tux simnulatar *
C2Tux ®dsS10.., *
C27ux *dsS60 ., *
C28ux simulatar *
C28x wdss10,,,

Ll

E® Factory Boards |ﬂ Custom Boards I M Create Board

My System

Save & Quit |

I |

Drag a device driver to the left ko add a board ta the system,

— Here, the programming environment must be selected by the user: simulation or

emulation.

e Simulation implies that the application program developed can be compiled
and executed, without physically connecting the target board to the computer.

e Emulation implies that the target must be connected to the computer in order

Figure 21: Code Composer Studio Setup

to compile and execute the application program.

48

3.3.1

Selecting Simulation Environment

As mentioned previously, simulation implies that the application program developed
can be compiled and executed, without physically connecting the target board to the
computer.

To conduct a simulation analysis , the user must access the Setup Code Composer
Studio v3.3 tool, and follow these subsequent steps:

Next to Available Factory Boards, under Family, select the option C67xx.
Under Platform, select simulator.
Under Endianness, select little.

Under Available Factory Boards, a list of possible simulators should appear.
Here, C6713 Device Cycle Accurate Simulator should be selected, by a
single click, then pressing the Add button, located at the middle bottom (see
the bottom figure). The simulator can also be selected by double clicking on
the simulator board.

Next, press Save & Quit. Note: if there are any other boards under System
Configuration, proceed to remove them. This is done by selecting each board
and hitting the delete key. Only the C6713 Device Simulator must be
selected.

A prompt window will appear, asking the user if he/she wishes to save the
changes made to system configuration. The button Yes should be selected.

A second prompt window will appear, asking the user if Code Composer
Studio should start on exit. The user should press Yes.

49

r

£ Code Composer Studio Setup
File Edit Wiew Help

) . ~
System Configuration Currenk Proccesor Type | Driver Location TMS8320C6713 =
g My System wTM532DCBDDU CACCStudio w3, 3driversitisimCaxs, dvr Device Type:
=B C657173 Device Cycle Accurate Simulator cPU
Summary;
Tips:

- Use init6713sim.gel

- Select Functional Simulator for faster
simulation speeds.

- Turning off resource conflict detection
improves simulation speed.

- Resemed Memory access detection
can be turned off, ifyou are sure of
memory usage, as, switching it off
makes simulation speed faster

Surmnmary:

Supports L1D, L1P, L2 Cache, EDMA,
GADMA, Timer(2), EMIF supparts
interfacing with Async and SORAM
Mermary Maodels, McBSP(2), McASP{Z),
Interrupt Selectar. Does nat suppart HP
ILe

GEL File:
CACCStudio_v3. 3ccigelinitéy 1 3sim.ge

tasterSlave:
TliA

Dewice:
CZET13

Simulator Type:
Cyele Accurate

~
E® Factory Boards I E® Custom Boards w Create Board ¢ | -
Save & Quit | Remove Remove Al | | | Maodify Properties

Select the system node to add a new board ko the system configuration.

Figure 22: Selecting Simulation Environment

| W

50

3.3.2 Selecting Emulation Environment

If the user desires to work in the emulation environment, the DSP board should be connected
to the PC or work station at this point. First, the power supply should be connected to the
board through the power jack. Next, the DSP board should be connected to the PC or work
station via the USB port (see Figure 24).

Power Supply

iy USB Cable

=3

Figure 235 TMS320C6713 "'Digital Starter Kit" (DSK)

TMS320C6713 DSK 4, .+
16 MEG SDRAM
Ol

1]

25 | bl
1. um

‘£ 2 v
Al X -

Jack to Connect USB Port
the Power Supply

Figure 24: TMS320C6713 DSP Board
51

To set up the emulation environment, the user should access the Setup Code Composer
Studio v3.3 tool by going to All Programs —® Texas Instruments —* Code Composer
Studio 3.3 — Setup CCStudio v3.3 and follow these subsequent steps:

— Next to Available Factory Boards, under Family, select the option C67xx.
— Under Platform, select dsk.
— Under Endianness, select little.

— Under Available Factory Boards, the option C6713 DSK-USB and/or
C6713 DSK should appear.

— Here, C6713 DSK-USB or C6713 DSK should be selected, by a single click,
then pressing the Add button, located at the middle bottom. The emulator can
also be selected by double clicking on the emulator board.

— Next, press Save & Quit. Note: if there are any other boards under System
Configuration, proceed to remove them. This is done by selecting each board
and hitting the delete key. Only the C6713 DSK-USB or the C6713 DSK
must be selected.

— A prompt window will appear, asking the user if Code Composer Studio
should start on exit. The user should press Yes.

52

& Code Composer Studio Setup
File Edit View Help

. . S
System Configuration Current Proccesor Type | Driver Location CPU—1
=) My System B TMS320C k% 1 CACCStudio_v3, 3driversisdgo6 71 3dsk, dvr Device Type:
|- Bl C6713 DK CPU
SEE |
GEL File:

CACCStudio_vw3. 3cclgeDEKET 13 gel

Mastersiave:
TMiA

e
B® Factory Boards I B¥ CustomBoards #% Create Board < »
Save & Quit | Femaove Remave All | | | Modify Properties

Select the system node to add a new board ko the system configuration.

Figure 25: Emulation Environment Selection

Previous to start CCS operation the board should be connected to the power and also the PC
by USB connection.

~ Once CCS is launched, go Debug —® Connect, in order to establish connection with
the board.

53

File Edit ‘Wiew Project GEL Option Profile Tools DSP{EIOS ‘Window Help

2 i A = = = = = =
2 @ | Bz g Breakpoints.. D.mﬁ"’&.?n%;s EE | EE| AR A6
Assembly/Source Stepping [
Step Into F11 ‘ t@l ﬁ .
Step Cver Fio
i | B
@ | D Skep Cut Shift+F11
?} § Files Run Fs
T | | GEL files Halt shift+FS
o (0 Projects Animate Alt+FS
& Run Free Chrl+FS
?} Low Power Run Cerl+shift+FS
‘{_}l Run to Cursor Chrl+F10
Set PC to Cursor Chrl+shift+F10
- Restart Chrl+Shift+FS
G0 Main Chrl+rM
(i} Multiple Operation. ..
'3 Advanced Resets 3
= Reset CPU Ctr+R
% Reset Emulator Ctrl+-shift+R
Halt on Reset
Restare Debug State
@ Thread Level Debugging
& Real-time Mode
@ Rude Real-time Mode
v Flush Pipeline on Halt

)4

‘ @ DISCONNECTED (UNKNOWI) Toggle the connection ta the target

Figure 26: Establlsh the Connectlon between the CCS and the TMS320C6713 DSP

54

3.4 General Algorithm Implementation on the Board
The process in an algorithm implementation on the board is:

1. Create a project, add it the C or assembly programs and the libraries nedded for the
program.

2. Build your project —®
3. Download the project to the board.

4. Run the project —» &
5. Evaluate results and correct errors.
6. In case of errors in the results return to the step two.

3.4.1 Types of Useful Files

Each program that is constructed using “Code Composer Studio” will be working with a
number of files with different extensions:

— Namefile.pjt: to create and build a project.

- Namefile.c: C source program created by the user. There could be one or more
depending on the application.

- Namefile.asm: Assembly source program created by the user. There could be one or
more depending on the application.

- Namefile.h: Header support file.

- Namefile.lib: Library file.

— Namefile.cmd: Linker command file that maps sections to memory in the DSP.

- Namefile.obj: Files created after compiling the project.

- Namefile.out: Executable file created by the linker to be loaded on the processor.

- Namefile.cdb: Configuration file when using DSP/BIOS.

55

3.4.2 DSK Support Tools

The following support files are frequently used when a project is created:

- C6713dskinit.c: Includes functions for initializing the DSK, the codecs for the serial
ports and the 1/0 of the target board.

- C6713dskinit.h: Provides description of the functions used to initialize target board.

- C6713dsk.cmd: File used for the memory organization and distribution of the DSP.

- Vectors_intr.asm: Assembly source file used for managing interrupts.

- Vectors_poll.asm: Assembly source file used for managing access to ports through
“polling”.

— rts6700.lib: dsk6713bsl.lib; csl6713.lib; rtdx.lib: Support libraries needed for the
DSP target board and data interchange in “real-time”.

56

3.5 Programming Examples to test the DSK Tools

The following program example illustrates the features of the CCS and the DSK board. This
example shows step by step how to create a project to compile and download to the DSK
TMS320C6713. Be sure to place the files included with this guide in
C:\CCStudio_v3.3\MyProjects, before starting the examples.

3.5.1 Example 1. Hello World!

AlIM:

This example helps us begin to understand the functionality of the CCS and the
TMS320C6713 DSP.

EQUIPMENT:

PC - Windows XP Operating System
Software - CCStudio V3.3

Hardware - TMS320C6713 DSP
PROGRAM:

#include <std.h>

1 main
void main()

puts("hello world\n");
return;

¥

Creating the Project:

In this section is shown how to create a project, adding the necessary files to build a project
using “Code Composer Studio”.

1. Select Project —® New. In the filename, type the name “hello” of the new project
and click “Save”.

This project file (.pjt) is saved in the folder “hello” (within
C:\CCsStudio_v3.3\MyProjects\hello). Figure 27 shows how create a new project
and in the Figure 28 the project view files.

57

Project Creation

Project Mame: |he|||:|

Location: |E: SCEStudio_w3 FMuProjectzshhella’, J

Froject Tupe: | Executable [.out) ~|

Target

Finizh | Cancel Help

x]

Figure 27: Window for the creation of a New Project

58

% JC6713 DSK/CPU_1 - C671x - Code Composer Studio

File Edit Wiew Project Debug GEL Option Profile Tools DSPJBICS ‘Window Help

B BR[| S E R RS SR | G EE(4% 6
Ihello.pit L"Debug L” @ |ﬁ| | @] ﬁ ‘ . jﬂa’ ‘

Ale 6 EBEHEAL

®

™ -] GEL Files

Ea Projects

i Eﬁ hello.pjt {Debug)

™ (L1 Dependent Praject

= ~[[] Documents

8 [DSPJBIOS Config
- [Z1 Generated Files

B

{J,} (2 Libraries

. D Saurce

&

=

=

=

EI £ il] |

nj4

GEL Startlp Complete. j
FTATF T GEL Output / Ll]
! @ [HALTED LE [A

Figure 28: Project Folders

2. Select File —» New — Source File, copy the following source code (.C), click
File —» Save As and save the file as “hello.c” in the following path
C:\CCsStudio_v3.3\MyProjects\hello.

C source code:
#include <std.h>

void main()

puts("hello world"\n");
return; }

59

. Select Project — Add files to project. Add the file “hello.c” created in the previous
step.

. Copy and Paste the file vectors poll.asm, located in the path
C:\CCStudio_v3.3\MyProjects\Support_files 6713, to the folder “hello”. Repeat
step 3 to add to the project the “.asm” source file vectors_poll.asm. Repeat again and
select files “.cmd”, C6713dsk.cmd to add to the project.

. Similarly as the previous step the following “.1ib” files should be added: rts6700.lib,
dsk6713bsl.lib and with the chip support library file csl6713.1ib.

. Select Project — Scan All Files Dependencies. Verify that all the files that are
shown in the Figure 29 were added to the project.

60

<P Fie Edt View Project Debug

=

=] =

'# /C6713DSK/CPU_1 - C671x - Code Composer Studio - [hello.c]

GEL Option Profile Tools DSP/BIOS ‘Window Help

[

|he||o.|:it j|Debug

Bl OFBE R4

(Ol e

P Files
+1-[] GEL files
= a Projects
o
[Dependent Froject
21 Documents
[[3 D5P{BIOS Config
[Generated Files
23 Inchude
-3 Libraties
516713 lib

£ b

DA

#include {std.h>

S s=sss=== EEI

vold main()

puts("hello world!~n");
return;

}

' [\ GEL Output /
! @2 HALTED

GEL StartlUp Complete.

LE

7. Once all of the files are added to the project, the project must be built. This is done by
going to Project —® Build Options. This option is used to properly set up the
compiler and linker, based on the characteristics of the TMS320C6713 DSP board.
Several settings should to be chosen or written, and the option OK is selected after all
settings are verified.

8. Under Compiler —P Category —" Basic
- The target version: C671x (-mv6710) should be highlighted

Figure 29: Project Files

61

=

Build Options for hello. pjt iDebug)

General Compiler l Linker] DspBinsBuiIder] Link Order

-g -fr"$(Prol_dir\Debug” -d"_DEBUG" -mwE710

Categary: Basic
T arget Yersion: CEF s [-rwE710)

Advanced -

Feedhack Generate Debug Info: | Full Symbalic Debug [-g] j

EISESZ by Opt Speed vs Size:; |Speed Mozt Critical [no -ms) j
Parzer Opt Level: MHane bl

Preprocessor

Diagnastics Program Lewel Opt.: | Mone j

Figure 30: Setting the Target Version

9. Under Compiler —P Preprocessor:
- In Pre-Define Symbol, the following should be written: CHIP_6713. This
specifies the DSP chip that the target board utilizes.

62

Build Options for hello. pjt (Debug)

General Compiler] Linker] DspBiDsEuiIder] Link Drder]

-g - $[Frop_dirsDebug' -4 DEBUG" -mwE710

Categorny: Freproceszzor

Baszic Include Search Path [-i): |

Advanced)

Feedback Pre-Define Symbol [-d]: |EHIF"_E‘-?'I 3

Files . .

Assembly Undefine Syrbal [-u): |

Parzer Preprocessing: | Mare ﬂ

Preproceszor . . o
Diagnostics [Continue with Compilation [-ppa]

(0] I Cancel | Help

Figure 31: Specifying the Chip Architecture

10. Under Linker —® Libraries:
— In Included Libraries (-1), these libraries must be specified: rts6700.lib;
dsk6713bsl.lib; csl6713.lib

63

Build Options for hello. pjt (Debug)

General] Compiler Linker] DspEiDSEuilder] Lirk Drder]

-z -m' D ebughhello.map' -o' . sDebughhello out -w -=

Categorny: Libraries
B aszic v Exhaustively Read Libraries [-x]
Adwanced Search Path [-i]: |

Izl Libraries [-11: |rtSE'-?I:II:I.Iib; dzkE713b:zllib; c=IE71 3.0b

| Ok I Cancel | Help |

Figure 32: Libraries Nedded for the Project

11. Now the user may click OK once all the previous building option settings have been
established.

Compiling and Debugging the Project

In this step the C compilation and linker to build a project.

1. Click on the “rebuild all” button that is in the upper part of the CCS

environment and verifies that you have 0 errors.

64

Use -heap option to change the default size.

Euild Complete,
0 Errors, 3 Warnings, 0 Femarks.

[4] > [»T GEL Qutput » Build /
m @ HALTED LE File: C:CCStudio_w3, 3\MyProjectsihelothello.c

Figure 33: Compiling Results

Note: If there are errors in your code, they will be listed with the corresponding line
numbers. Correct them and rebuild your project.

. Select File — Load Program. Choose the file “hello.out” that is located in the
following path: C:\CCStudio_v3.3\MyProjects\hello\Debug.

Click on the “run” button '& that is located on the left side of the CCS
environment.

Results Obtained:

On the “Stdout” a message “hello world!” is printed and then the program is finalized.

hella worldl

| <] » [+ % GEL Output A, Build A, Stdout /

m %0 [HALTED: sfw breakpaint

Figure 34: Results Obtained after Run the Algorithm **hello world™

65

3.5.2 Example 2. Fast Fourier Transform (FFT) -- (Created Project Version)
Code Developed by Rulph Chassaing[1]

AIM:

FFT algorithm takes a given input signal and returns its Fourier transform.

EQUIPMENT:

PC - Windows XP Operating System
Software - CCStudio V3.3 Platinium
Hardware - TMS320C6713 DSP

Figure 35 is presenting the files needed for the creation of the FFT project. The folder is
located at C:\CCStudio_v3.3\MyProjects\FFTproject_files.

& FFTproject_files

File Edit Wiew Favorites Tools Help

Q Back - 7, 'ﬁ' 7~ Search Folders ¥] x n Elv
Address |5 ChCostodio_wvd, 3\MyProjects\FFTproject_Files

Ma Size Type
Flceriadsk,cnd | LKE Windows MT Comm,
2 SKE CFile
E] 67 13dskinit. b 9kKE HFile
csl6713.lib 111 KE LIEFile
[Z] dske713.h ZKE HFile
[Z] dsk£713_aicza.h 9KE HFile
dskE713bsl lib 21 KB LIE File
[Z] FFTproject.c 6KE CFile
rks6 700, lib 336 KE LIE File

Figure 35: FFT Files

This section show how to open a project using “Code Composer Studio”.

1. Click Project —® Open. Look and click on the file FFTproject.pjt in the following
path: C:\CCStudio_v3.3\MyProjects\FFTproject.

66

=

% JC6713 DSKICPUL_1 - C671x - Code Composer Studio
File Edit Wiew QR Debug GEL Option Profile Tools DSPIBIOS wWindow Help

7|l & & TG S

Use External Makefile. .. & | CLRE ‘ . /‘b ‘
Export to Makefile. ..
Add Files to Project, .,
Save
Close
TP source Control » BBCO 92103940 [1A1]n

e __ BC4 923C54F4 [T&1]
Campile File Chrl F? EC'S 91ASEAZA [121]
Build F7 BCC 91800064 [1&1]
Rebuid Al EDO 00000000
Stap Build BD4 023C52E4 m
Build Clean BEDE 00004000
Configurations BDC OFFFFESZ
)) BED 01100Zp4
Buid Gptions... RF4 NNNNANNN L
File Specific COptions. ..

Project Dependencies. .,
Shiow Project Dependencies
Shiow File Dependencies
Scan All File Dependencies
Recent Project Files

EEEEEIEECERIEE

Figure 36: Open FFT Project

Project Open ?X
Look in: IE} FFTpraject j da £ B~

|=5)Debug

|C)FFTprajeck. C5_
FFTpr

File name: |FFT project. pit Open

Files of type: IF'n:.iect Files [*.qit) LI Cancel

i

Help

|

Figure 37: FFT Project Selection

67

2. Double click on “FFTproject.pjt” on the left side of CCS and click on Source to see
the files. Then double click on “FFTproject.c”. Your environment should looks like
Figure 38 and should have all the files that are on the left side.

Note: Verify that the options in Project —® Build Options, are correct (Steps from 7
to 11, Example 1: hello world)

8 /C6713DSKSCPU_1 - C471x - Code Composer Studio

File Edit Wiew Projeck Debug GEL Option Profile Tools DSPIBIOS Window Help
CEAER LA Sl ERhhRu|SR | ks EE
|FFTprsiect it ~[petug BRI
Bea 0PsEHEL

® ; & Disassembly

GEL Fil

(T g raiacte & 00004EED 00004000

s =3 FFTproject.pit (Deb 00004BB4 008B0ASH

2 ® 3 bependent Project 00004BBS 80000912

& N=Teakeitha 00004BBC 90081362

w (3 bSP{BIOS Corfig 00004BCO 92108940
|| [Goneratod Files 00004ECd 923054F4

- 3 indlude 00004BCE 91ASEAZA

o £ Libraries 00O04BCC 91800064
i L b 00004EDO 00000000
E deks7 135, lib NONM4rnd N2?3r572F4
: rts6700.lib

%. Lrce

% 67 1 3dskinit.c
- FFTproject.c

--[#] cev1adsk.cmd

2|

[@

L] 1l | 2
oj4

GEL StartUp Complete.

TA[ATFTHT, GEL output /
%4 @ [HALTED | LE
Figure 38: CCS Environment for FFT Example

68

Compiling and Debugging the Project

Click on the “rebuild all” button that is in the upper part of the CCS environment and
review that you have 0 errors.

Build Complete.
0 Errors, 2 Warnings, 0 Remarks.

[T > T\ GEL Output }, Build /
B4 @ HALTED =
Figure 39: FFT Project Compiling Results

Symbaol definition not Found.

Note: If there are errors in your code, they will be listed with the corresponding line numbers.
Correct them and rebuild your project.

3. Select File — Load Program. Choose the file “FFTproject.out” that is located in
the following path: C:\CCStudio_v3.3\MyProjects\FFTproject\Debug.

'# JC6713 DSK/CPU_1| - C671x - Code Composer Studio - [FFTproject.c *]

Load Program...

Load Symbols
Reload Symbols
Unload Symbols

2 Mew 4 —L| s 'd
Cpen. .. Chrl+0

|ﬁ Close - @ B SL|
Save Chr+s

5 Save As...
Save All

Load GEL... LT nedude VEima. b
0 Data v rEInclude Tsye-ctime
1 wWorkspace v | #define PTS 256
™) #define PI 3.1415926
2 Difference between files... typedef struct {floa
Merge Files. .. wvolid FFT(COMPLEY =Y,
; edaindle timeveld oi fF
% Print... Ctrl+P float z[PTS]:
Recent Source Files v | short i:;
= Recent Workspaces v | COMPLEX w[PT2]:
Recent Program Files v | TEMPLER sampldas ST
E Recent symbols » | COMPLEYX data_in[PT3]
§= Recent GEL Files » | FILE *entrada_real:
FILE *entrada_imag:
@ Launch Setup FILE *trans:
E Exit

.,xbf’ﬁpm_;’ec?t,cr FFT 13

#include "dsk6713_ai
Uint3z fs=DSKE713_AI

#include <stdio h>
#include <{math.h>

int main ()

{

Figure 40: “Load Program” Location

69

Load Program [

Loak, ir: |@ Diebug j (] cf BB~
EEE

File name: |FFTproiect.out
* ot =] Cancel

Help

Files of hype:

il

Figure 41: “FFTproject.out” File Location

. #/C6713 DSKICPU_1 - C671x - Code Composer Studio - [Disassembly]

Loading Program
Loading Program @ &
g jects\FF T projectiD ebughFF T project. out

Loading sections. ERE 5l
ARNERRNERNERENR o o
0ooo HO]
test: 32752 of B049E at 0x220 onza MY
a0ee]
|1 Documents 3666 LD
) o3piE10s Can 00000018 DOOC36EA LD
DGenaratedFlIesg 0000001C D20C3664 LD
o (3 00000020 00004000 HO]
: GL'.“;”.S no0nnnZ4 30000612 [1EO] B.
’a"f;?mb 00000026 00008000 HOJ
‘swlég”b 00000020 02ZBC3626 Loj
oot 00000030 00002902 auj
P oA 00000034 20000132 [BO] B.
c:mdu-t 00000038 3FFFFF12 [IBO] B.
FFTWD]?E[:'['E 0000003C 00800&CO ZE]
: : 00000040 308CE7AD [1BO] AN

7
B [cerradsk.cmd 00000044 02903636 =T]
=) 00000048 3ZRFETAD [1BO] AN

Figure 42: Downloading the “FFTproject.out” File to the TMS320C6713 DSP

4. Click on the “run” button '& that is located on the left side of the CCS
environment.

70

Results Obtained:

On the “Stdout” are printed messages of the program process until the execution is done. In

the Debug folder three data files are generated: input_signal_real DSP256pts.txt,
input_signal_imag_DSP256pts.txt and transform_DSP256pts.txt.

signal.

input signal.

transform_DSP256pts.txt

This

file contains

input_signal_real DSP256pts.txt — This file contains the real part of the input signal.
input_signal_imag_DSP256pts.txt - This file contains the imaginary part of the input

the Fourier transform of a given

1# JC6713 DSK/CPU_1 - C671x - Code Composer Studio - [Disassembly. (abort)]

File Edit %iew Project Debug GEL Option Profile Tools DSP/EIOS Window Help — | &
8= | j G A2
|FFTpmiect.pit leabug j ™ @ &
Hisr O =] &
[E oo0oocy4o abort, CSSEXIT: -~
1 GEL fies 200000740 00000000 NOP
taP ; 0000c744 00000090 B.21 0zC744 (PC+4 = 0x00C
= gi;:pmimpitmeh 0000C748 00008000 NOP 5
m | EEEmOI [o oot o
DDocuments
(1 DSPIEICS Config 0000cv7s4 00000000 NOP
(2 Generaked Files 0000c7ss 00000000 HOP
- 20 Include 0000c7sc 00000000 HMOP
- 53 Libraries ooooc7e0 __winit, etext, _ etext, cinit:
5] (8] eser1a.lb 0000cye0 00000230 Jward 0z00000230
& dsk6713Ibs|||b 0000cvye4 80001414 [A1] LDEL.DIT1 =A0--[0].,&0
rtss?DUIibl 0000cv7es 00000000 NOP
S E 0000770 00000000 NoP
£ -]
al ;ii;f:;“c:'i[00000774 00000000 NOP
= éé?ladskcmd. oooocyys 00000000 HOP
' 0ooocvy?e 00000012 B.52 __cinit [PC+0 = Ox0C
= 0000cvs0 00000000 NOP
el 0000c7e4 00000001 HMOP
0000C788 00000000 || NOP
& 00o0cysc 00000000 Hop
@ 0000cv7s0 00000000 NOP
0000cv794 00000000 NOP
0000c7ss 00000022 ozt 0z00000022
0000c7sc 00000001 HMOP
0000C7A0 00000002 NOP
0000cyA4 00000000 HOP
0000cv7AS 00000000 NOP
0000C7AC 00000000 HOP
0000c7B0 00000000 HMOP
< S 0000C7B4 00000024 LDE.D1TL =-A0[0] A0
_W 0000cyes 00000002 HOP v
< < >
done -
done
done
[T » 1> GEL Output A Build), Stdout Ll »
! @0 HALTED: sfw breakpoink LE For Help, press F1

Figure 43: Results Obtained after Run the FFT Algorithm.

71

3.5.3 Example 3. Fast Fourier Transform (FFT) -- (Creating the Project Version)
Code Developed by Rulph Chassaing

AIM:

FFT algorithm takes a given input signal and returns its Fourier transform.

EQUIPMENT:

PC - Windows XP Operating System
Software - CCStudio V3.3 Platinium
Hardware - TMS320C6713 DSP

Figure 44 is presenting the files needed for the creation of the FFT project. The folder is
located at C:\CCStudio_v3.3\MyProjects\FFTproject_files.

& FFTproject_files

File Edit Wiew Favorites Tools Help

eBack M > lﬁ /-__\J Szarch i Folders > (¥ x n -.-

Address |Ia CCCStudio w3, 3\ MyProjects\ FFTproject_files

Marme Size | Type
Fce713dsk,cmd LKB Windaws NT Comm.
[Z] ca713dskinit.c SKE CFile
[£] ce71adskinit.h 9KE HFie
csls713.0b 111 KB LIEFile
[£] dsk6713.h ZKE HFile
[Z] dsk6713_aic23.h 9KE HFile
dsk6713bsl.lib 21KE LIE File
[£] FFTpraject.c 6KE CFils
rs6700, lib 336KE LIG File

Figure 44: FFT Project Files

72

Creating the Project:

This section show how to create a project, adding the necessary files to build a project using
“Code Composer Studio”.

1. Select Project —® New. In the filename, type the name “FFTproject” of the new
project and click “Save”.

This project file (.pjt) is saved in the folder “FFTproject” (within
C:\CCStudio_v3.3\MyProjects\FFTproject). Figure 46 shows how create a new
project and in the Figure 47 presents where the folder is created.

' JC6T13 DSK/CPU_1 - C671x - Code Composer Studio
File Edit ‘iew BEGIEES Debug GEL Option Profile Tools DSPYBIOS Window He

g = -
Qpen...
li IUse External Makefile. .. <My
B a3
@ Files by
£ % o source Contro » JAD4 0010AA7A
D8 20000590
2 ADC 00008000
¥ AED 00000790
AE4 02000045
AES 00006000
- AEC 023CRZER
AF0 00006000
* 2F4 02108052
2 il m] | B e T s I vl vl v

Figure 45: Creating a New Project

73

Verify if the following option is selected:

Target —* TMS320C67XX, and then click Finish.

%)

Project Creation

Project Mame: |FFT project

Location; |I::\I:I:Stuu:IiD_\-'E.3'\I'-1_I.JF'rDiec:t$\FFT|:urDi J
Project Type: | Executable [.out] -
Target

Finizh | Cancel | Help |

Figure 46: Window for the Creation of a New Project

& MyProjects

File Edit Wiew Favorites Tools Help

eBack - e - lm: /_\J Search 0 Folders |';'

fiddress |E| CCostudio_w3, 3\MyProjects

Mame
ElCnrner_Turning
[Cornet_Turning_files
[CFftedpts
[CIFFT256C
[C)FFTgumstixDse
[FF Tproject
[C)FFTproject_files
ihella
() ImageformationCCv3,3_6713
[C)plantila_BETA_wersionZ3015565737831 06525
[C5upport_files_6713
£a MS01033, adl
|E_]planti|la_BET.¢l._version2.docx

Figure 47: FFT Project Folder
74

2. Copy the following files from C:\CCStudio_v3.3\MyProjects\FFTproject_files to
C:\CCStudio_v3.3\MyProjects\FFTproject:

- C6713dsk.cmd

- C6713dskinit.c

~ C6713dskinit.h
- FFTproject.c

- ¢sl6713.1ib

- dsk6713.h

~ dsk6713_aic23.h
~ dsk6713bsl.lib

~ rts6700.lib

& FFTproject_files

File Edit View Fawvorites Tools Help

eBack > lﬁ /-__\J Search (e Folders = x n v

Address |li'| CACCstudio w3 3\MyProjects\FFTpraject_Files

Marne Size | Type Da
C6?13dsk.cmd 1 KB Windows MT Comm,.. 22
[Z] c6713dskinit.c SKE File 2z
E] 267 13dskinit. b AKE HFile 112
csle713.lib 111 KB LIE File 104
[Z] dska713.h ZKE HFile 11}
[] dske713_aic23.h 9KE HFile 11}
dska713bsl.lib 21 KB LIE File 12}
I‘EJ FFTprojeck.c 6KE CFile &5,
rts6700.lib 336 KE LIE File o)

Figure 48: FFT Project Files

75

3. Select Project — Add files to project. Add the following files:

- C6713dsk.cmd
- C6713dskinit.c
- FFTproject.c

- ¢sl6713.1ib

~ rts6700.lib

~ dsk6713bsl.lib

*# /C6713 DSKJCPU_1 - C671x - Code Composer, Studio
File Edit ‘iew Project Debug GEL Option Profile Tools DSP/BIOS Wing

2 | g
|FFTpr0iect.pit j|Debug j Iﬁl EE]
Blg 8 (=] &

& Files _ i Disassembly
= GEL files 2 00004BF0 000C0363

= laF‘rojects
B 1 FFTproject.pit (Deb 00004EF4 0000S000
™ (L Dependent. Pr G =N DDCO364

200080

] k: o for Edit
(L3 Documents pen for Editing 0006000

[0 DSPJBIOS Col Export to Makefile. ..

(L7 @enerated Fil oaooood
[0 Inchude Save goooood
(27 Libraries Close gggggg
& (0 Source Buld annnnn
Build (Selection anly)
% Clean
Clean (Selection anly)
=
Project Dependencies. ..
=

Figure 49: Adding Files to the Project

4. Select Project —® Scan All Files Dependencies. Verify that all the files that are
shown in the Figure 50 were added to the project.

76

/C6713 DSK/CPU_1 - C671x - Code Composer Studio - [FFTproject.c]

QFile Edit ‘iew Project Debug GEL Cption Profile Tools DSPIBIOS Window Help

|

| H R SN

|FFT|:|roiec:t.|:|it

ﬂ|Debug

Hler O BBERBAL

Q Files

+-[_7] GEL Files

= a Projects
=|&zj FFTproject.pijt (Deb

+-[_] Include
-3 Libraries

= a Source

(2 Dependent Project
D Documents

(L) DSPYBIOS Config
([enerated Files

csl6713.lib
dski713bsl lib
tsE700.lib

c67 1 3dskinit.c

FFTprojeck.c
7 13dsk,cmd

SR F T e rect. o FEFT smplementarion o]

#include "dsk6713_aic23.h"
Uint32 fs=DSK6713_AIC23_FREQ SEHZ:;

#include <{stdiao.h>

#include {math.h>

eErnelude Vrime. 50

ceEr pedlude VEvs-tIme, £

#define PTS Z56

#define PI 3.14159265358979

typedef struct {float real,imag;} COY
vold FFT(COMPLEX =Y, int n, COMPLEX
crdtondle timenad I FFfstrect tiwewvad

float z[FT3]; R ¥
short 1i; S
COMPLEX w[PTZ]: s

SLEELEY samples FTET .
COMPLEY data_in[PTZ]: T T
FILE =*entrada_r=al;
FILE #*entrada_imag:
FILE *trans;

ant wmaawn

5. Once all of the files are added to the project, the project must be built. This is done by
going to Project —® Build Options. This option is used to properly set up the
compiler and linker, based on the characteristics of the TMS320C6713 DSP board.
Several settings should to be chosen or written, and the option OK is selected after all

settings are verified.

Figure 50: Project Files

77

Y8 JC6713 DSK/CPUL1 - C671x - Code Composer, Studio - [FFTproject.c]

|
FFTproject. pit
Hlier O E
g Files
+1-[Z7 GEL Fils
=142 Projec
=g FF
e &
i} o
&
&
"0 -
& 78
A
: S
=
= [#
=
=
&1
O

<P Fie Edit view |5

Mew..,

Qpen. ..

Use External Makefile, ..
Expork ba Makefile. ..
Add Files to Project...
Save

Close

Source Contral

Compile File
Build
Rebuild Al

Build Clean

Configurations. ..
Build ¢ a0
Filz Specific Options...

Project Dependencies. ..
Show Project Dependancies
Show File Dependencies
Scan All File Dependencies
Recent Project Files

Ctrl F7
F7

»

Debug GEL Option Profile Tools DSPIEIOS Window Help

iz

=

< R e T &R G E |

LU &

Foject.o FFYT implamentaiion calling & (-coded FFT Fu

e "dskb7V13_aicZ3.h"
fs=D3K6713_AICZ3_FREQ BFHZ:

e {stdio. h>

e {math.h>

Viwde vtime b

Virdle vSIre-time. b2

e PTS 256

e PI 3.14159265358979

f struct {float real,imag;} COMPLEX:

FT(COMPLEY #*¥, int n, COMPLEX *w); SFET e
Ve timavel diffisiruct timeved *z, struct timevad #

x[PTS]:; wrntarmedicte butfar
1: arared purpose Inder 1
X w[PT3]: SetwIddle canstants stors

LAY samples PTE
¥ data_in[PTE]:

eprImarys working bufs
SeTEpRt dEts

FILE =*entrada_real:
FILE #*=entrada_imag:
FILE #*trans:

int main ()

Figure 51: Build Option Setting Location

6. Under Compiler —P Category —" Basic
— The target version: C671x (-mv6710) should be highlighted

Build Options for, FFETproject. pjt (Debug)

General Compiler l Linker] DspBiosBuilder] Lirk. Drder]

Category:

Advanced
Feedback
Fil=z
Azzembly
Parser
Preprocessar
Diagnostics

-g -f''${Pro_dir)\Debug” -d"_DEBUG" -mwE710

Basic

T arget Yersion; |
Generate Debug Info; |Fu|| Symbalic Debug [-g]j
Opt Speed vz Size: |Speed st Critical [no -ms]ﬂ

Opt Level: MNone -
Program Lewel Opt.: |N0ne ﬂ

Figure 52: Setting the Target Version

78

7. Under Compiler —P Category —P Advanced:
- In Memory Models select Far (-mem_model:data=far).
- Verify that Endianness is selected to be Little Endian.

Build Options for FFTproject. pjt (Debug)

General Compiler l Lirk.er] DSpEiDSEuiIder] Litik, Drder]
-g -f"$(Pro_dinsDebug" -4"_ DEBUG" -mwE710 --mem_model: data=far
Categony: Advanced
Basic RTS Modiications: |Defns NoRTS Funcs v
Feedhack Auta Inline Threzhold [-oi): I—
Eilsesimbly Endianness: Im
E?;;?;CESSDT b ermory Models: Far [--rem_model:data=far]
Diagnostics RTS Calls: |Use hd erniony Mcu:lelj
Aliazing | Default j
[Interrupt Threshold [-mi): l—
[~ Speculate Threshald [-mb): ’—
[Turn Off Software Fipelining [-m)
[0Old 6400 Alignment Cormpatibility [-rib)
[Turn Off Rearder of Azsociative Floating Pt Ops [-mic)
[Uze Function Subzections [-mao)
[Hizgtoric C Painter to Const Aliaz Dizambiguation [-o:]
(] | Cancel | Help

Figure 53: Memory Model Type Selection

8. Under Compiler—» Category —» Preprocessor:
— In Pre-Define Symbol, the following should be written: CHIP_6713. This
specifies the DSP chip that the target board utilizes.

79

Build Options for FFETproject. pjt (Debug)

General Compiler] Linker] DspBiosBuiIder] Link Order]

-g -fi"$[Prol_dir\Debug" -d"CHIP_ET13" -mwE710 —mem_model: data=Far

Cateqgary: Freprocessar

B asic: Include Search Path [-): |

Advanced .

Feedback Fre-Define Symbol (-dl. [CHIP_E713

.Ellses?ambly Undefine Symbol [-u]: |

alser Preprocessing: | Mone j

Diagnggtis [~ Continue with Compilation -ppa)

0k | Cancel | Help |
Figure 54: Specifying the Chip Architecture

9. Under Linker —® Libraries:

In Included Libraries (-I), these libraries must be specified: rts6700.lib;
dsk6713bsl.lib; csl6713.1ib

80

Build Options for EFTproject. pjt (Debug)

General] Compiler Linker]DspBiDsBuildel] Lirk. Dlder]

-z -m' ADebughFF T project. map' -0 A\Debug FFT project. out’ -w -x
kP00 ib" -"dskB71 3bslib" -"zalBF 1 3 IR"

Categony: Libraries
E azic [Eshaustively Read Libraries [-x)
Bdvanced | Search Path [|

Il Libraries [-): |rlsE?DD. libs:d=k 671 3kl lib o251 30ib

kK | Cancel | Help

Figure 55: Libraries Needed for the Project

10. Now the user may click OK once all the previous building option settings have been
established.

Compiling and Debugging the Project

Click on the “rebuild all” button that is in the upper part of the CCS environment and
review that you have 0 errors.

Build Complete.
0 Errors, 2 Warnings., 0 HRemarks.

[T T T GEL Dutput), Build /

m @ HALTED LE Symbol definition not Found.

Figure 56: FFT Project Compiling Results

81

Note: If there are errors in your code, they will be listed with the corresponding line numbers.
Correct them and rebuild your project.

1. Select File — Load Program. Choose the file “FFTproject.out” that is located in
the following path: C:\CCStudio_v3.3\MyProjects\FFTproject\Debug.

'# /C6713 DSK/CPU_1| - C671x - Code Composer Studio - [FFTproject.c *]

E-‘ Mew » ﬁ ﬁ lé
Cpen. .. Chrl+0
|ﬁ Close —L| 22 <My
Save Chr+s
5 Save As...
save Al .,":";F'Hpm Fect.o FFT I
Load Program...
#include "dsk6713_ai
Load Symbals » | Uint3Z fs=DEK6713_AI
, Reload Symbols 3) .
L Unload Symbols y | #include <stdio.h>
#include <math.h>
Load GEL... LT nedude VEima. b
, Data v rEInclude Tsye-ctime
1 wWorkspace v | #define PTS 256
*) #define PI 3.1415926
2 Difference between files... typedef struct {floa
Merge Files... wvoid FFT(COMPLEX =Y,
) edaindle timeveld oi fF
% Print... Crl+P float z[PTS]:
Recent Source Files » | short i:;
= Recent Workspaces v | COMPLEX w[PT2]:
Recent Program Files v | OMPELER sampld es ST
E recent symbals » | COMPLEX data_in[PTS]
§= Recent GEL Files » | FILE *entrada_real:
FILE *entrada_imag:
& Launch Setup FILE =trans;
E Exit
int main ()
{

Figure 57: “Load Program” Location

o=

Load Program

Loak in: | 2 Debug
FFTpraject, out

File: narne: |FFTproiect.out Open

Filez of type: |"_out j Cancel

Help

il

Figure 58: “FFTproject.out” File Location
82

Loading Program
Loading Program @ &
g -..jects\FFTproject\DebughFFT project. out

Loading sections. ERE 77
NERRERRNNEREEEE
oooo HOY
tewt: 32752 of 50436 at 0x220 oozs MV
0063 Wil
|1 Documents 666 LD
(] DSPIBICS Config 00000018 000C3666 LD
] Generated Fies 0000001C 020C3664 LD
-] Inchude 00oooo0z0 oooo4o000 HOY
Z42 Librariss 00ooo0z4 30000612 ['EO] E.
. 00000025 00008000 HOY
dskﬁ?lesI.Iib 00000022 0Z28C3626 LI
Tts6700.ib 00000030 oooozec:z =
229 Source 00000034 20000192 [BO] E.
S 00000035 3FFFFF1Z2 ['EO] EB.
FFTproject c. 00oo0o003C 00s008COo ZEY
= C.;S?13dskcmd. oooooo4n 308Ce7AD [1BO] AN
) 0oooo044 02903636 =T
=] Q0000045 328F87A0 [1EO] AN

Figure 59: Downloading the “FFTproject.out” File to the TMS320C6713 DSP

2. Click on the “run” button ‘& that is located in the left side of the environment
CCS.

Results Obtained:

On the “Stdout” are printed messages of the program process until the execution is done. In
the Debug folder three data files are generated: input_signal_real DSP256pts.txt,
input_signal_imag_DSP256pts.txt and transform_DSP256pts.txt.

— input_signal_real DSP256pts.txt — This file contains the real part of the input signal.

~ input_signal_imag_DSP256pts.txt - This file contains the imaginary part of the input
signal.

- transform_DSP256pts.txt — This file contains the Fourier transform of a given
input signal.

83

| File Edit Wiew Project Debug GEL Option Profile Tools DSP{BIOS Window Help - :l"
g & | Gy 24
|FFTpmiect.pit leabug j kU] &
Hie OFEHERED
[I E— 00000740 abort, CSSEXIT: -
> C“TGELFHSS = 00000740 00000000 HOP
S Profecte 0000C744 00000090 B.S1 0xC744 (PC+4 = 0=z00C
QJFFTpmiectmt(Deh 00000748 00008000 HOP 5
= ot 00000740 00000000 HOP
o gge”"de?wm]w 00000750 00000000 HOP
DD;;‘QZ”SSC N 00000754 00000000 HOP
DGenerated:i'l“ef 0000C758 00000000 HOP
“ (3 0000C7SC 00000000 HOP
- EﬂJ:uF 0oo0cv7e0 __cinit, etext, _ _etext, cinit:
4 "a"‘:imb 00000760 00000230 word 000000230
& e 00000764 60001414 [&1] LDEU.DIT1 *A0--[0],A0
r:ssm";" 0000C768 00000000 HOP
S Ey e 0000C7eC 00000000 HOP
2 e dsknic 0000C770 00000000 HOP
—— 00000774 00000000 HOP
- Cs?lad"lime‘d" 0000C7FE 00000000 HOP
Stem 0000C77C 00000012 E.52 __cinit (PC+0 = Dx0C
= 0000C780 00000000 HOP
&= 0000C7e4 00000001 HOP B
0000C7EA 00000000 || HOP
&1 0000C7EC 00000000 HOP
@l 00000730 00000000 HOP
00000734 00000000 HOP
00000738 00000022 ward 0x00000022
00000790 00000001 HMOP
0000C7AD 00000002 HOP
0000C7A4 00000000 HOP
0000C7AR 00000000 HOP
0000C7AC 00000000 HOP
0000C7ED 00000000 HOP
< | B 0000C7E4 00000024 LDB.DIT1 *-A0[0],20
——W 0000C7EE 00000002 HOP -
’ 25/ >
done -
done
done
[AT THT GEL Output A Build 3, Stdout / K 3
! @0 HALTED: sfw breakpoink LE For Help, press F1

Figure 60: Results Obtained after Run the FFT Algorithm.

84

3.5.4 Example 4. Corner Turning -- (Created Project Version)
Code Developed by Abigail Fuentes and Inerys Otero.

AIM:

This example helps us begin to understand the functionality of the CCS and the
TMS320C6713 DSP. The Corner Turning algorithm allows the users to obtain the transpose
of an input matrix.

EQUIPMENT:

PC - Windows XP Operating System
Software - CCStudio V3.3 Platinium
Hardware - TMS320C6713 DSP

Figure 61 is presenting the files needed for the creation of the Corner Turning project. The
folder is located at C:\CCStudio_v3.3\MyProjects\Corner_Turning_files

& Corner_Turning_files

File Edit Wiew Favaorices Tools Help

Q Back - > ‘ﬁ‘ pe) search Folders ¥ 3 x E’ mv
Address || CACCShudio_v3, 3\MyProjects\Carner_Turning_files

Marme Size | Type
[)data File Folder
C6?13dsk.cm|:| 1 KB wWindows MT Comm...
[Z] ce71 adskinit.c SKE CFile
E] C6713dskinit. b 9KE HFie
E] carnet Turning.c 1KB (CFile
csl6713. lib 111 KB LIB File
[Z] dska713.h ZKE HFile
[£] dske713_aic23.h 9KE HFile
dskia713bsl.lib Z1KB LIBFile
[£] main.c ZKE CFile
rks6700.lib 336 KB LIEFile

Figure 61: Corner Turning Files

This section show how to open a project using “Code Composer Studio”.

85

1. Click Project — Open. Look and click on the file Corner_Turning.pjt in the
following path: C:\CCStudio_v3.3\MyProjects\Corner_Turning.

% JC6713 DSKICPUL_1 - C671x - Code Composer Studio
File Edit Wiew B8 Debug GEL Option Profile Tools DSPIBIOS window Help

7|l & & TG S

Open...

I—_ Use External Makefile. .. & | EURE ‘ o5 ‘
Export bo Makefile.. .
@ | it ‘ @ AddFiles ta Project...
Save
?‘} g Files Close
ﬁ‘ g SrE Source Control 4 92108940 [! 1
s __ BC4 923C54F4 [T&1]
Compile Fil= Ckrl F7 BCS 91ASELZE [1&1]
Build o BCC 91300084 [1a1]
Rebuid Al BDO 00000000
Stap Build BD4 023C52E4 p |
Build Claan BDE 00004000
Configurations Boc OFFEEESZ
) - o BED 01100Zp4
Buid Gptions... RF4 NONNANNAN)
File Specific COptions. ..

Project Dependencies. .,
Shiow Project Dependencies
Shiow File Dependencies
Scan All File Dependencies
Recent Project Files

EEEEEIEECERIEE

Figure 62: Open ""Corner Turning" Project

Project Open

Laak in: I@ Carmer_Turning j & £ ED-

[y Corner_Turning. C5_

IC)Debug

Carner_Turning. pjt

File name: |Enrner_T urming. pit Open

Files of type: I Project Files [*.pit) LI Cancel

Pl

Help

86

Figure 63: Corner_Turning Project Selection

2. Double click on “Corner_Turning.pjt” on the left side of CCS and click on Source to
see the files. Then double click on “Corner_Turning.c”. Your environment should
look like Figure 64 and should have all the files that are on the left side.

Note: Verify that the options in Project —® Build Options, are correct (Steps from 7
to 11)

#jc6713 DSKSCPU_1 - C671x - Code Composer, Studio - [main.c]

Q File Edit Wew Project Debug GEL Option Profile Tools DSPJBIOS Window Help - g x
Az | T A RRWR SR s W D E s
[Cormer_Tuming pit ~|[Debug BT Ll &
EHl& 0@ a
F Files B R =
% 1 GEL files #include "dskb713_sic23.h
535 Projerts Uint32 fs=DSK6Y13_AICZ3_FREQ_BKHZ: imet sameiiny roie

=23 Corner_Turning.pit #include <stdio.h>
™ (52 Dependent Project #include <limits.h>
(2] Documents #include <math.h>
#include <stdlib.h>

(0 psPIOS Config #include <ctype.h>

[Z] Generated Files

4? i g T;:ﬁ:s #define W 128 " & derotes the size of sgusre mairiy _
L) + .

] csl6713.0ib
& ;sskﬁﬂallnsl.hh float inputMatriz[N][N]:

sssanib float transposedMatrix[N][N];:

= 59 Source

71 3dskinit . FILE #generated_matrix:

void cornerTurning(float inputMatrix[N][N], fleoat transposedMatriz[N][N]):

C6713dsk.cmd void main ()

int row_input_matriz;
int col_input_matriz:

BHaFHOE W

o Hare we resd the ITaput dets file Fdstain.ixt
generated_matriz=fopen("Edatain.tzt","r"):
puts("done"):
if((generated _matrixz)==NULL) {

puts("File could not be cpen"):

exit(-1):

}

puts("Reading input data from file data input file"):
< > for(row_input_matriz = 0; row_input matriz < N; row_input_matrix++){

_D ry for{col_input_matriz = 0; eol_input_matriz < N; col_input_matriz++){ f
.
N »

GEL StartlUp Complete.

[\ GEL Output Ll »

%4 @ HALTED LE File: CA\CCStudin v3.3MyProjectsiCorner Turningimain.c Lnt, Coll

Figure 64: CCS Environment for Corner Turning Example

Compiling and Debugging the Project

Click on the “rebuild all” button that is in the upper part of the CCS environment and
review that you have 0 errors.

87

Euild Complete,

0 Errors, 2 Warnings., 0 Remarks.

B @ HALTED

[, GEL Qutput 4 Build /

LE

Note: If there are errors in your code, they will be listed with the corresponding line numbers.

Correct them and rebuild your project.

3. Select File —» Load Program. Choose the file “Corner_Turning.out” that is
i following

located

in the

Figure 65: Corner Turning Compiling Results

C:\CCStudio_v3.3\MyProjects\Corner_Turning\Debug.

1T/

3 ol

Chr+C

Chrl+L

Load Program. ..

Load Symbuols
Reload Symbols
Unload Symbols

Load =EL...
[ata
‘Warkspace

Difference between files. .
Merge Files. ..

Berent Soniree File

3

'# JC6713 DSK/CPU_1 - C671x - Code Composer Studio - [ma

#include "d
Uint32 f==D
#include <=
#include (1
#include <m
#include <=1
#include o

#define N 1

float input}
float transj

FILE =gener

wnid corner]

Figure 66: “Load Program” Location

88

Symbaol definition not Found.

Load Program _
Look in: | 3 Debug ~| & @& e E-

Corner_Turning.ouk

File name: |I:|:|rner_T urning. out
* oLt j Cancel

Help

Filez aof type:

Pl

Figure 67: “Corner_Turning.out” File Location

Loading Program & @J &
g ...tner_Turming'DebughCaorner_T urhing.out

Loading sections.

oecz z
ENERNEREEEEER oo i
0000 "

est; 32752 of BBESE at 0:220 Fonza 11

00es i

L Dacuments oo Doncnes C
%Eiﬁﬁi‘t’:ﬁ”&? 0000001C 02003664 L

L8P 00000020 00004000 N
00000024 30000612 [1B0] B

00000028 00008000 W

00000020 02803626 L

00000030 00002902 g

00000034 20000192 [BO] B

iy 00000038 3IFFFFF12 [1B0] B

ngnl;i“r::tngc 0000003C 00800800 z

e ' 00000040 30806720 [1BO] 2

Figure 68: Downloading the Corner_Turning.out File to the TMS320C6713 DSP

4. Click on the “run” button '& that is located in the left side of the environment

CCS.

Results Obtained:

On the “Stdout” there are printed messages of the program process until the execution is

done. In the Debug folder a data file is generated with the transposed matrix.

89

71x - Code Composer Studio - [Disassembly (abor!

[Fle Edt vew Project Debug GEL Option Profile Tools DSP/BLOS ‘Window Help -8 x
== [B S =2 %
[Cormer_Turming it ~|[Debug =] = B L] &
B 3 [] [m] £
[E— DO00E720 abort, CSSEXIT: ~
: SSGELMES S D000E720 00000000 HOP
& e 0O0DE724 00000030 B.21 0xE724 (PC+4 = Dz0000=724)
o Qf’i‘;fner Turning.pit 0000E726 00008000 HOP 5
- - DO0DE7ZC 00000000 HOP
i) %ge“”dert‘tpm’e“‘ 0000E730 00000000 HOP
DD;;‘;;Z”;C ; 0O0DE734 00000000 HOP
=P i DOO0E736 00000000 HOP
o« DIETE;M tes DOO0E73C 00000000 HOP
} i nelce 0000E740 etext, __etext, __cinit, cinit:
23 Lib
[§] il s 0000E740 00000230 ward 000000230
P DO0OE744 80020008 [1] EXTU.S1 20.16,0,40
NONOE746 DOOOODO0 HOP
DO0OE74C 00000000 HOP
o2 NONOE7SO 0OOOO0N0 HoP
DO0DE7S4 00000000 HOP
= NONOE7SE DOOOODOO HOP
DO0DE7SC 00000012 B.22 __cinit [PC+0 = 0x0000e740)
C6713dsk,cmd
= St D0O0E760 00000000 HOP
= DO0DE7E4 00000001 HOP J
NONOE76E DOOOODOO || HOP
&1 0000E76C 00000000 HOP
@ DO0OE770 00000000 HOP
NONOE774 00OOO000 HOP
DO0OE7?E 00000022 word 0x00000022
NONOE7 7 00000001 HOP
DO0OE7E0 00000002 HOP
NONOE7E4 0DOOOO0O0 HOP
DO0ODE7E6 00000000 HOP
NONOE7EC 0OOOODO0 HoP
0O0DE730 00000000 HOP
¢ 1 3> NONOE734 DOOOODZ4 LDB.DIT1 =-40[0],20
—’W DO0DE73S 00000002 HOP v
< |
done

Reading input data from file data input file

Performing Corner Turning Opsration
Corner Turning operation finished: Creating data output file
Program execution done

[“T*TH T sEL output A Build 4, Stdout
! @ HALTED: sfw breakpaint LE

;

Ln 1, Col 1

Figure 69: Results Obtained after Run the Algorithm **Corner_Turning"".

90

3.5.5 Example 5. Corner Turning -- (Creating the Project Version)
Code Developed by Abigail Fuentes and Inerys Otero.

AIM:

This example helps us begin to understand the functionality of the CCS and the
TMS320C6713 DSP. The Corner Turning algorithm allows the users to obtain the transpose
of an input matrix.

EQUIPMENT:

PC - Windows XP Operating System
Software - CCStudio V3.3 Platinium
Hardware - TMS320C6713 DSP

Figure 70 is presenting the files needed for the creation of the Corner Turning project. The
folder is located at C:\CCStudio_v3.3\MyProjects\Corner_Turning_files.

& Corner_Turning_files

File Edit Wiew Favaorices Tools Help

@ Back - > ‘ﬁ‘ pe) search Folders ¥ 3 x E’ mv
Address || CACCShudio_v3, 3\MyProjects\Carner_Turning_files

Marme Size | Type
[)data File Folder
C6?13dsk.cm|:| 1 KB wWindows MT Comm...
[Z] ce71 adskinit.c SKE CFile
E] C6713dskinit. b 9KE HFie
E] carnet Turning.c 1KB (CFile
csl6713. lib 111 KB LIB File
[Z] dska713.h ZKE HFile
[£] dske713_aic23.h 9KE HFile
dskia713bsl.lib Z1KB LIBFile
[£] main.c ZKE CFile
rks6700.lib 336 KB LIEFile

Figure 70: Corner Turning Files

91

Creating the Project:

This section show how to create a project, adding the necessary files to build a project using
“Code Composer Studio”.

1. Select Project —® New. In the filename, type the name “Corner Turning” of the
new project and click “Save”.

This project file (.pjt) is saved in the folder “Corner Turning” (within
C:\CCStudio_v3.3\MyProjects\Corner_Turning). Figure 72 shows how create a new
project and in the Figure 73 presents where the folder is created.

' JC6T13 DSK/CPU_1 - C671x - Code Composer Studio
File Edit ‘iew BEGIEES Debug GEL Option Profile Tools DSPYBIOS Window He

g = -
Qpen...
li IUse External Makefile. .. <My
B a3
@ Files by
£ % o source Contro » JAD4 0010AA7A
D8 20000590
2 ADC 00008000
¥ AED 00000790
AE4 02000045
AES 00006000
- AEC 023CRZER
AF0 00006000
* 2F4 02108052
2 il m] | B e T s I vl vl v

Figure 71: Creating a New Project

Verify if the following option is selected:

Target —* TMS320C67XX, and then click Finish to continue.

92

Project Creation gl

Project M ame: |Eomer_T urning

Location: |E:\.ECSludin_vS.S\MyProiects'\Eorner_ J

Project Tupe: | Executable [.out) =

Target

Finizh | Cancel | Help |

File Edit ‘iew Favorites Tools Help

@Back - e - lﬁ /:\J Search 0 Falders = (¥ x n v

Figure 72: Window for the Creation of a New Project

[Chello

Address |E| CiCCStudio_v3. 3\MyProjects
Mame Size Tvpe
[Corner_Turning File Folder
|CyCorner_Turning_files File Falder
File: Falder

Figure 73: Corner_Turning Project Folder

93

2. Copy the following files from C:\CCStudio_v3.3\MyProjects\Corner_Turning_files
to C:\CCStudio_v3.3\MyProjects\Corner_Turning:

- C6713dsk.cmd

- C6713dskinit.c

- C6713dskinit.h

- cornerTurning.c
- csl6713.1ib

- dsk6713.h

~ dsk6713_aic23.h
~ dsk6713bsl.lib

- main.c

- rts6700.lib

& Corner_Turning_files

File Edit ‘iew Favorites Tools Help

@Back - _/J lm: /:\J Search i Folders |'$ Lﬁ‘ x n v

Address |E CCCStudio_wE, S MyProjeckshCarner_Turning_files

Size | Type
File: Falder
1KE Windows NT Comm...
SKE CFile
AKE HFile
1KE CFile
111 KB LIE File
ZKEE HFile
AKE HFile
Z1KE LIEFile
ZKB CFile
336 KE LIE File

Figure 74: Corner Turning Project Files

94

3. Select Project —® Add files to project. Add the following files to the project:

- €C6713dsk.cmd
- C6713dskinit.c
- cornerTurning.c
- c¢sl6713.lib

~ dsk6713bsl.lib
- main.c

- rts6700.lib

% /06713 DSKICPU_1 - C671x - Code Composer, Studio
File Edit Yiew Project Debug GEL Option Profile Tools DSP/BIOS Window Help

BEH| BB~ EEEEED
IEomer_Tuming.pit L"Debug L” @ Iﬁl | @ ﬁ ‘ . j‘_l,
Rl 0EBRERHEA
?} Files |
o ---[“_‘| GEL files

=23 Projects
{rp ﬁ Corner_Turning.pjt [BO]

®

=l

Export ko Makefile. ..
Set as Ackive Project
Save
Close

Build

Build {Selection only)
Stop Build

Clean

Clean {Selection anly)

Project Dependencies. ..
Configurations. ..

Build Cptions. ..

Scan All File Dependencies
Properties...

EEEEEIEEEEE

v Allow Docking
Hide:
Float In Main Window

Figure 75: Adding Files to the Project

4. Select Project —® Scan All Files Dependencies. Verify that all the files that are
shown in Figure 76 were added to the project.

95

¥ /C6713 DSK/CPU_1 - C671x - Code Composer Studio - [main.c]

<p Fle Edt View Project Debug GEL Option Profile Tools DSPEIDS Window Help BEIES
aE 3 % % %
[Cormer_Tuming pit =|[etug B = &
BHia oEs::ERHEL
[: = =]
-] GEL files
=424 Projects
I & Comer Turning.pk #include "dsk6713_aic23.h"
™ 12 Dependent Project .
£+ =D t Uint32 fs=DSE6713_AICZ3_FREQ BKHZ: .5t sempling rate
1 DapIEIS o #include <stdio.h>
Qe tan\nlq #include <limits.h>
o D]eTedraE b #include <math.h> 7
- BLE:nZs #include <stdlib.h>
b s6713.0b #include {ctype.h>
dsk6713bsl.lib . o - .
rts£700.10 #define N 128 . N derctes the sice of square watrix
3 - aurc?nsdskmt.c float inputMatriz([N][H]:
comerTurming, float transposedMatriz[N][H];
x
=) 7?;;;: " FILE *generated_matriz;
= sh.cm void cornerTurning(float inputMatriz[N][N]. float transposedMatriz[N][H]):
o void main ()
&1
@ int row_input_matrix:
int col_input_matrix:
o Hare we resd the Imput dats file Edatarm.ixd
generated_matriz=fopen("Edatain.txt","r");
puts("done");
if((generated matrix)==NULL) {
puts('"File could not be open');
exit{-1);:
< > }
= 5 -
o4 | f
[<T>T>T GEL Outout Build 1K >
14 @0 HALTED IE For Help, press F1 lnlcoll

Figure 76: Project Files

5. Once all of the files are added to the project, the project must be built. This is done by
going to Project —® Build Options. This option is used to properly set up the
compiler and linker, based on the characteristics of the TMS320C6713 DSP board.
Several settings should to be chosen or written, and the option OK is selected after all
settings are verified.

96

File Edit Wiew Debug GEL Option Profile Tools DSPYBIOS ‘Window Help
Q@M e T KRR WRG| G| e
pen...
Comer_Tumingp Use External Makefile.., =2 M| ‘ LR} | » L ‘
Export to Makefile...
7| | & Add Files to Praject...
Save
0| [Frikes dose
Gl
T g gy Source Control » O010AATA |
i oA ADE 20000590 [BO]
= Compile File Chrl F? ADC 00008000
H o e F7 AED 00000790
7 ;| Rebuild Al AE4 02000028
il StopBuid AES 00008000
1 Build Clean AEC 023CE2ER
i Configurations oono&non
L - 02108054
Z £l y N23rA7FA
H File Specific Options, .
%_ r; Project Dependencies. ..
% Show Project Dependencies
—— | Show File Dependencies
5can All File Dependendies
Recent Project Files
i)
@

Figure 77: Build Option Setting Location

6. Under Compiler —P Category —" Basic
a. The target version: C671x (-mv6710) should be highlighted

Build Options for Corner_Turning. pjt iDebug)

General Compiler | Linker I DspBiDsBuiIderI Lirk. Elru:lerl

-g -fr"$[Prol_dirsDebug" -d"_DEBUG" -mwE710

Category: — Bazic
Target Yersion: CEF 1 [-mvE710]

Advanced -

Feedback Generate Debug Info; I Full Symbolic: Debug [-Q]LI
,E,Ilgzzmbl}' Opt Speed vz Size: ISpeed bosgt Critical [no "'“S]LI
Parzer Opt Lewvel: I More hd I

Preprocessor

Diagnostics Program Lewvel Opt.: INDne ;I

Figure 78: Setting the Target Version
7. Under Compiler —P Category —» Advanced:

- In Memory Models select Far (-mem_model:data=far).
- Verify that Endianness is selected to be Little Endian.

97

I Build Options for, Corner_Turning. pjt (Debug)

General Compiler] Linker] DspBiosBuiIderl Link. Drder]

-g -fi"$[Prop_dirDebug” -4"_DEBUG" -mwE 710 --mern_model: data=Far

Categony: Advanced
Basic RTS Madfications: |Defns Mo RTS Funes = |

Feedback Autalrine Thieshold (o[
Elsessemm}. Endianness: Litle Endian ~

Parser Mernany Maodels: Far [--mem_model:data=far]
Preprocessor

Diagnostics RTS Calls: m
Aliazing: | Diefault ﬂ

Interrupt Threshold [-mi); li

Speculate Threshald [-rk): ,7

Turn Off Software Pipelinitg [-r)

Old BA00 Alignment Compatibility [-mb)

Turn Off Reorder of Associative Floating Pt Ops [-mc)

Usge Function Subsections [-ma)

17171717117

Historic C Pointer bo Const Alias Disambiguation [-ox)

(] | Cancel | Help |
Figure 79: Memory Model Type Selection

8. Under Compiler—» Category —® Preprocessor:
— In Pre-Define Symbol, the following should be written: CHIP_6713. This
specifies the DSP chip that the target board utilizes.

98

Build Options for Corner_Turning. pjt (Debug)

General Compiler] Linker | DispBiosBuider | Link Order |

-g fr"${Proi_dirDebug” -d"_DEBUG" -rE710 --mem_rnodel data=far

Category: Preprocessar

Basic Include Search Path [-]: |

Advanced .

Feedback Pre-Define Symbal [-dj: [CHIP_E713
Filez -)

Bssembly Undefine Symbaol [-u); |

Parser Preprocessing: | Mone =7
Prepr of

Diagnostics [~ Continue with Compilation [-ppa]

ak | Cancel | Help |
Figure 80: Specifying the Chip Architecture

9. Under Linker —® Libraries:

— In Included Libraries (-1), these libraries must be specified: rts6700.lib;
dsk6713bsl.lib; csl6713.lib

99

Build Options for Corner_Turning. pjt (Debug)

General] Compiler Linker DspBiDsBuiIder] Lirik: I:In:ler]

-¢ -m" ADebugiComer_Turning.map"” -0 \DebughCorner_Turming, out' -w -2

Cateqary: Librarnies
B asic [v Exhaustively Read Libranes [-2]

Advanced | Search Path [4) |
Incl. Libraries [-]: |cs|E?1 3lib; dzk 671 3bzl lib; rtzE700.lib

(1] 4 | Cancel | Help

Figure 81: Libraries Needed for the Project

10. Now the user may click OK once all the previous building option settings have been
established.

Compiling and Debugging the Project

In this step the C compilation and linker to build a project are performed.

1. Click on the “rebuild all” button that is in the upper part of the CCS

environment and verifies that you have 0 errors.

Build Complete.
0 Errors, 2 Warnings, 0 Remarks.

[41 [»/]h GEL Cutput A Build /

@0 |HALTED LE

Figure 82: Compiling Results
100

Note: If there are errors in your code, they will be listed with the corresponding line
numbers. Correct them and rebuild your project.

2. Select File —» Load Program. Choose the file “Corner Turning.out” that is located
in the following path: C:\CCStudio_v3.3\MyProjects\Corner_Turning\Debug.

'® /C6713 DSKICPU_1 - C671x - Code Composer Studit

Cpen... Chrl+D
IC: -] &
Load Program. .. Chrl+L
Load Symbaols 3)
™ Reload Symbols » #]_-HClud
! Unload Symbols 3 U} nt32
#includ
Load GEL... #includ
Draka | #includ
Wrkspace r | #includ
#includ
| Difference between Files...
2 Merge Files... #define
£ float 1
Recent Source Files v | float t
Recent Warkspaces 3
=
Recent Program Files 3 FI];.E ®g
E Recent Symbols y | void co
@ Recent GEL Files 4 .
vold ma
& Launch Setup i
int
E Exit -
] - I int

Figure 83: “Load Program” Location

101

Load Program

Look i | |5 Debug

PIX]

T & Bk E-

Corner_Turning.ouk

File narme: |D:|mer_Tuming.aut

Files of type: |".Dut

[

Open

Cancel

il

Help

Figure 84: Corner_Turning.out File Location

Loading Program

Loading Program

Loading sections

_tet: 32752 of 58656 at 0x220

@ ...iner_Tuming D ebugiComer_Tuming. out

nacz
000
oooo

i

3666

+-[_] Documents
(2] DSP{BIOS Config
(23 senerated Files
42 Include
-4 Libraries
cslE7 13, b
dsk713hsl.ib
rts6700.lib

ooooool1a
ooooooic
ooooonzo
oooonnz4
ooooooza
ooooooze
oooooo3sn
00000034

000C3666
020C3664
oooo4000
30000612
oooos0oo0
0z28C3626
oooozacaz
20000192

[

[

Figure 85: Downloading the Corner_Turning.out File to the TMS320C6713 DSP

3. Copy

the following
C:\CCStudio_v3.3\MyProjects\Corner_Turning_files\data
C:\CCsStudio_v3.3\MyProjects\Corner_Turning\Debug:

Edatain.txt
Sdatain.txt

102

files

from
to

File Edit ‘iew Fawvoribes Tools Help

eBack M =7 | lﬁ: /.__\J Search i Folders = | ¥ x n v

Address |Iﬁ C\CCStudio_w3, 3\MyProjectsiCarner_Turning_filesidata

MName

Size Type
E] Edatain. txt 257 KB Text Document
£ MATLAE_Ernulation_YALIDATION. m 1KE MATLAE Code
£ MATLAB_Simulation _MALIDATION.m 1 KB MATLAE Code
E] Sdatain. txt 257 KB Text Document

Figure 86: Corner Turning Input Data and Validation Files

4. Click on the “run” button '& that is located in the left side of the environment
CCS.

Results Obtained:

On the “Stdout” are printed messages of the program process until the execution is done. In
the Debug folder a data file is generated with the transposed matrix.

103

File Edit Wiew Project Debug GEL Option Profle Tools DSP/EIOS ‘Window Help -8 x
3 | %
|Eﬂme|jum|ng pit jl Debug j @ &
et 0 El b (=] &
ﬁ' 0000E720 abort, CSSEXIT: -~
= IEE]ESGELHIES = 0000E720 00000000 HOP
=) £3 Projects 0000E724 00000090 BE.21 0zE724 (PC+4
O0000E728 00003000 HOP S
El ﬁ Corner_Turning.pjt
0000E72C 00000000 HOp
o gge”e"deﬁ“””’m N0AOE730 00000AA0 HOP
©] DopiBI0S Corti 0000E734 00000000 HOP
DGenerated;";s'g 0000E736 00000000 HOP
- (0 Inchude 0000E73C 00000000 HOP .
2453 Libraries O000E740 etext, __stext, __<inlt, cinit:
(67 13b O000E740 00000230 Jwrard 0x=00000230
& ezt N000E744 60020008 [A1] EXTU.51 A0, 16,0,A0
vt 0000E745 00000000 WOF
' 0000E74C 000DOODOO HOP
. =423 Source
5 srissinne || 000000y oo siop
= —] N000E7SE 00000000 WOP
N O000E7SC 00000012 BE.22 cinit (PC+0
e _
= [£1 ce71adskcmd DOOOE760 00000000 HOP
0000E7&4 0O0ODOODO1 HOp -
=
O000E76E 00000000 || HOP
& 0000E76C 00000000 HOP
0000E770 00000000 HOP
El 0000E774 000DOODOO HOP
O0000E?78 0O00DODZ2 Jwrard O=z00000022
0000E77C 00000001 HOF
O0000E780 00000002 HOP
O0000E7&4 00000000 HOP
O0000E7SE 00000000 HOP
O000E7SC 00000000 HOp
0000E790 00000000 HOF
O0000E794 00000024 LDE *-A0[07,A0
O0000E795 00000002 HOP “~
< | >
done -
Reading input data from file data input file
Performing Corner Turning Operation
Corner Turning operation finished: Creating data output file
Program exzecution done
[T F T GEL Ouiput f, Build }, Stdout |4 >
! @ HALTED: sfw breakpoint LE Far Help, press F1 Ln1, Col 1

Figure 87: Results Obtained after Run the Algorithm **Corner_Turning"".

104

4 SIGNAL OPERATOR FORMULATIONS FOR
MATLAB IMPLEMENTATION

This chapter presents a set of linear finite dimensional signal operators which are
fundamentals in the development of signal processing algorithms. The signal operators are
formulated with respect to the standards basis A to facilitate their matrix implementation.
In this contest, the signal operators admit easy implementation in a MATLAB environment,
due to the fact that MATLAB stands for MATrix LABoratory and facilitates the

implementation of algorithms expressed in matrix-vector form.

4.1 Linear Shift Invariance Systems

4.1.1 Matrix Representation of LSI-FIR Systems

In this section we discuss the representation of LSI-FIR through matrices. Since each N -
dimensional LSI-FIR system Th:L(ZN)—> L(ZN) represents a linear transformation on the

space L(ZN), T, is determined by its action on a set of basis vectors (signals) spanning L(ZN).

{i}
j}) 5 L(zN) can be uniquely expressed as a linear combination of the basis set. We

If we choose as reference the standard basis set {5 jeZN}, then each signal

T, (é‘{
write

T {0 = 2k,

jeZy

where the set of scalars
(Wik]:iez}, kez,

represents the vector coordinates of the given signal T, {@k}} K eZ, , with respect to the

standard basis set. The signal T, {b‘{k}} can be written as

105

Th{é‘{k}} = Z T, {é‘{k}} [1]5{1}

where
Tfautli] = imsila,)] = S, [1]
= 2 blmpli—k-mbn{ ks]

Thus, we write

Th{é{k}} - Zh[Lk]@jth[j—k]é{j}

- J_;N(sg th)ilsi s} = Tisg ot =Su (b}

Next, we define the matrix Hy as follows

Hy =[], =[]

The matrix Hy , thus, have the following form

h{0) h[N-1] h[N-2] - h[1]
h[1] h0] h[N-1] --- h[2]

H,=| h2] h1] ho] - h[3]

h[N.—l] h[N-—Z] h[N.—B] h[.O]

We notice that the columns of Hy are formed by shifted versions of the coordinate vector

representation of the signal h; that is, we can write Hy as

Hy =[14h,S,{h},S2{h},....sN*{h}]

where Sy is the matrix representing the shift operator Sy ; and h is the coordinate vector

representation of the signal h.

106

We would like to describe in more details how the matrix Hy, representing the system

T, is obtained. Starting with expression above, we rewrite

(6] = ZHlikJsite), njk]ec

iezy
=h0,k]g, +hLk]d, +..+[N-1K]g
Evaluating this expression at different values of k €Z, results in the following set of
identities:
7,03, | =h0.0]3, +h10]g, +...
+h[N -10]5,_,,
7,08, | =h0d)a, +h11a, +.
+h[N =118,

T8, | =h[0,N -1)g, +hLN -1g,
+.+hN-LN-1]5,_,

We write these identities in an array form:

I Th{%} | h[0,0] hLo] ... h[N-10]
o) | _ o] hLl . R[N 1]
_Th{é{:N_l}}_ foN-1] WLN-1 ... HN-1N-1]
%)

O
5{N*1}

107

We know obtain a vector-matrix representation of a cyclic convolution opration described in
6.5 . Given a system T, and a signal f e L(ZN), the response g =Th{f} is obtained as
follows

g=T,|f} :Th{z f[k]ﬁ{j}}

kezy

= X KT s, = X dlils,

kezZy JjeZy
Expanding the above sum, we obtain

T{t} = [0, {6 |+ FUT {6, |+t FIN DT, {5, |
where
[0]T, {3, | = F[0In[0.0]3,, + f[OIN[1.0]ay, +...
1[N -16),
[T, S, | = F[0N[01)5,, + f[LN[LL5, +...
+ f[2n[N -11]s

{N-1}

f[N —1]Th{5{N._l}} = f[N-1n[0,N -1]5, + f[N -1Jn[1]5
+...+ f[1n[N -11]5

{N-1}

N-1}

The addition of the above set of equations produces the following expression

o=Tl1}= T alis,. 1 etz
= (f[oJn[0.0] + f[1]n[0.4] +...+ f[N —1]n[0, N —1])5,
+(f[o]h[1,0]+ f[1h[11]+...
+ f[N =1Jh[1, N —1])5,, +...
+(flOJA[N —12]+ f[2h[N —11] +...
+ f[N=1Jn[N -1,N -1])§
=T, {f]= EZ: (kzzl f[k]h[j,k]jé{j}

108

where

o=} 3 31005, o

jeZy keZy

= > f[k]h[mk]m ez,

Kezy

in vector notation, we have

glo] X fIkIno.K]

o[0 Stk K]

il | T me A
qﬁ—ﬂ _zﬁ;quﬂN—LkL

Factoring out the vector f form above, we obtain the following matrix-vector representation

[glo] T [nfoo] hoi - h[ok] - hOoN-1]]
g[1] h[1,0] sy - hlLk] - h[L,N-1]
il | el A ik e e

dﬁ-ﬂ ﬁm;lﬂ MN;m]i-hm;LH . MN—LN—Q

f[0]

f[1]

f[:k]
f[N:—l]

Recalling that h[j,k]==h[j-k] j.k €Z,, we write

- glo] | [h[0] hKN-1] -~ hN-=-k] - H[1]
9[}] h[‘l] h[_O] - h[l_— k] - h[_2]
i) | =] e - i e

g[N'—l] _h[N-—l] h[N.—2] Ny h[N—-l—k] . h[.O] |

flo]

£[1]

f[.k]
f[N'—l]

The above matrix-vector operation g = HN(f) represents the cyclic convolution operation

g="f*h :Th{ f} , Where we have the same symbols(! and [] denote, both, the coordinate

vector representation of the signalsi] and [, respectively, as well as the signals themselves;

and the matrix Hy represents the system Ty, :

SR AT
=[7,, ()T, ()T,]

110

Here, again, we have used commas to separate the vectors; and we have used the same
notation used for the signals in order to denote the coordinate vector representation of the

signals. The computation of the cyclic convolution operation

g=f*h=T{f}, fhel(z,)

is now performed by substitution into the defining equation
N-1
o-T{} =7 S 11k,
k=0

and proceed in the following manner

Th{f}zTh{Zf[k]a‘{k}}

keZy

= > kT {3,

keZy

= f[k](z h[j—k]é{j}]

kezZy jeZy

- Z(Zh[i—k]f[kljﬁ{,-}

jeZy \kezZy

Evaluating g L(ZN) at a particular index value j €Z, results in

di)-m el | Sl
= (Zh[j —k]f[k]jazk;h[j —k]f[k]

jeZy \keZy

111

4.1.2 Spectral Properties of LSI-FIR systems

In this section we will describe the spectral properties of LSI-FIR systems. A shift
invariant linear operator acting on an N- dimensional vector space may be reprented in the
frequency domain by using the concepts of eigen-functions (eigenvectors) and eigenvalues.
The eigenvalues correspond to the natural frequencies encountered in the spectral
representation of the impulse response signal of a given LSI-FIR system. We will be more
explicit later on in describing the relationship existing between the eigenvalues (and their
associated eigenfunctions) of a given LSI-FIR operator T, and the frequency section

describing some properties of the system T&P which are essentially the same as the properties

of the shift operator S, . The simplest LSI-FIR system, apart from the trivial system, i.e., the

system represented by the identity operator Iy, is the system represented by the shift operator

Sy - The system is sometimes called the unit delay system because its digital electronics

hardawre implementation may be accomplished by using a single delay element. We use the
same symbol Sy to denote the matrix representation of the shift operator Sy . This matrix

reprentation is now given. Recalling that

T,, = 20, lilsh =s' =S8,

JeZy

we have,

Ta {é‘{k}} =0y, ¥y = Sy {é‘{k}} = Oy

112

The matrix Sy representing the shift operator Sy is obtain by allowing the vector reprentation

(with respect to the standard basis set {b“{k}:k eZN}) of the signal T% {é‘{k}},k €z,

become the columns of the matrix Sy :

Sn = [T% {5<o> }’T5<1} {é‘m }""’Tﬁ{l; {5{,“> }’]

:[5{1},5{2}1--"5{N—1} ,5{0}]

where we have separeted by commas the columns of Sy for legibility. The matrix Sy becomes

00 ..01
10

s, = |01
00 ..10

An important property of the Sy operator matrix is that any LSI-FIR system T, may be
represented by a matrix Hy which can be written as a sum of powers of the matrix Sy pre-
multiplied by a diagonal matrix Dh[E

j

Hy = 2 D8t = 2(ni]®si)

jezZy iezZy
where

(]

h[i]
Pl = g

_ of]]

, J €2,

113

4.2 Cyclic Matrix

A cyclic matrix of order N is a N x N matrix of the form

[Hy Hy_4 H, 1
| Hy H, H, |
Hy=| : : P
|Hy_, Hy_s Hy_: |
lHy_) Hys Hy |

Notice that the input of each column is exactly the same as the previous column, but they are
shifted one position downward. In this case our matrix is cycled downward and has the

previous form.

114

4.3 Discrete Fourier Transform

Given a finite sucession x[n], where 0<=n<= N-1, the discrete Fourier transform of x[n]

is defined as the sucession given by

x"[k] = x[n]e~J2mkn/N
where 0 < k<N -—1.

It is common to call Wn=e”"-j2pi/N and rewrite the discrete Fourier transform x[n] as

x'[k]=) x[n]Wf, 0<k<N-1

For a finite succession y[k], where 0<=k<=N-1, the inverse discrete Fourier transform of y[Kk]

is given by

y'[n] =

=~

N-1
Zy[n]WJ"", 0<n<N-1.
n=0

115

4.4 Other Operators and Properties

The first operator studied in this section is the reflection operator, which have
important and interesting properties.
The reflection operator over the space of unidimentional signals is defined by

Ry: lZ(ZN) - lZ(ZN)
x > Rylx} =x0),

where
Ry} k] = xO[k] = x[(N — k)y] = x[{—k)y].

Lets calculate the Rn matrix of the reflection operator with respect to the standard base, this

Ry = [Rn{6i)} Rn{Siop} -+ Rn{on-n}l-
o]
[(an{o)inl] = [sl(=nnl] = ol
Lo
[0
0
[(mN{6{1}})[n]] = [5{1}[(—n)N]] = iO :
L]
0]
1
[(ERN{5{N—1}})[”]] = [5{1\/—1}[(—71)1\/]] = OJI
o

116

So the matrix of the reflection operator is

o R

which again we see is a cyclic matrix.

o o

117

o o

o o

45 Hadamard Product

The Hadamard product over the space 1°2(Zn) of unidimensional signals is defined as

O: B(Zy) x 13(Zy) — 1*(Zy)
(x, y) — xOny,

where
(x Oy Y)[n] = x[n]y[n].

So notice that if

x[0] y[0]
x=| U y y=| Y],
%[N = 1] [N —1]
Then
x[0]y[0]
conyo| b

x[N — 1]:y[N —1]

Hadamard product satisfies the following properties:

1. xOny=yQOypx, forallx,y € 1?(Zy) .

2. xOn(ON2)=(x Ony) Oy z forallx,y,z € 12(Zy) .

3 xOy(+2)=xOyy+xQyz foralx,y,zel*(Zy).

4. a(xOyny) =(ax) Oy y =x Op (ay), forallx,y € [?(Zy) and alla € C.

118

4.6 Convolution as a Fundamental Objective

The main objective of this section is the convolution operation as a basic tool in the
description of linear systems.

Given a finite signal and a discrete system, find the system output. Remember that all
finite signal must be discrete and its domainis a discrete and finite set. If we represent a
discrete system as a block diagram the following is obtained:

g!nitel Discrete Discrete
igna System Signal
- —
X ! yix}

Figure 88: Discrete System Block Diagram

Observation
Discrete signal is defined as a vector. Finite signal is defined as finite dimension vector.

As a notation, the finite signals are represented as finite dimension vectors in column format.

Example

x:Z,—>C
—j2mn

n—x[nj]=e 4

ORI e

Correspond

119

4.6.1 Discrete Filter

A discrete filter is any system that satisfies the conditions of invariance and linearity.

4.6.2 Response of a Filter to a Finite Signal

Unitary Impulse DiS_?rete
B —— FI_It_er I y[n] T {5[n]}

Figure 89: Discrete Filter Block Diagram

1,n=0,neZ,

Unitary Impulse: 5[”]2{0 N%0 neZ
’) N

We represent a vector as follows:

o:2Z, —>C
n +— 5[N]
5[0] 1
s=ploft)...oIN-1]} o &= 5:[1] -
S[N-1]] |o

120

4.6.3 Finite Response Filters to a Finite Impulse
This type of filter is known in English by its acronym FIR (Finite Impulse Response).

Example

T{oInfi=h[n].neZz, T{s[n]}=h[n],nez,

FIR Filter |
T

h:Z, > C
Figure 90: FIR Filter Block Diagram

Observation:

Every discrete filter with a finite response to an impulse is characterized by
its impulse response. This means that everything you need to now regarding this filter is
known, and even more, we can get the response of this filter to any input arbitrary but finite.

sinl.nez, FIR Filter y[n]=T{s[n]} =h[n]
— T —
x[n],nez, y[n]=T {x[n];

Figure 91: FIR Filter Block Diagram
Example 1

The Finite Response Averaging Filter to a unitary impulse

1
h[n]={™M

0, nez, - [[{

121

, Ne’Z,

v

h[0] 1/ M
] = h[l] _ 1/.I\/I

h[M -1]| [1/M

Example 2

Averaging Filter with input &[n —2]

sln-2].nez, Averaging Filter gln]=T{6[n-2]

Figure 92: Averaging Filter Block Diagram

S[n—2]=5s]n]

S:Z, »C

n — S[n]
s[o] é&kﬂ _8_
S _ si] | | olo] | |1
BN | sp] | |0

s[L -1] 5
|s[L-3]] (0]

Observation

All finite signals with dimension L can be represented as a lineal combination of

-

-1
displaced unitary impulse: x[n]= x[k]&[n - k].

0

=
Il

122

Example

Represent the signal x[n]=x[n +1], neZ, as a sum of displaced unitary impulses.

x[o]] [1
x:2Z,—>C] x[1]| |2
n — x[n]=n+1 I x[2]] |3
x[3]| |4
X[n] 15[n],nez, 26[n-1],nez,
4 I W — . T +
| 0 I I "l : ! T e
3s[n-2],nez, 46[n-3],nez,
+ I | + [W x[n]:gx[k]é[n—k]
. —> ——e—

123

5 IMAGING FORMATION ALGORITHM

Synthetic aperture radar (SAR) imaging processing consists of forming an image of
a landscape or terrain surface using active sensing. In active sensing, an antenna transmits
and receives a series of pulse signals reflected from an area of interest. For SAR processing,
the antenna is placed on a moving platform, such as an aircraft or satellite. Hence a large
surface area can be covered by sections. For each section, the antenna is maintained fixed,
keeping that specific area illuminated, which is called a footprint. The antenna transmits
pulse signals to that region and receives pulses that are reflected back from the surface. The
signals that are reflected from the surface area form a reflectivity pattern. A convolution
operation is performed between the reflectivity pattern and the impulse response function that
characterizes the image formation system. This operation produces a two-dimensional raw
data. This data is spread in two distinct directions: in the azimuth direction, which is defined
to be in the same direction parallel to the antenna, and in the range direction, which is
perpendicular to the azimuth direction (see Figure 93). This data requires further processing
since the objects present in section of the surface cannot be clearly distinguished. To obtain a
better image two types of data compression are applied to the raw data, which are: range

compression and azimuth compression.

Range Direction

N
Azimuth . \
Direction .
Raw Data

124

Figure 93: Range and Azimuth Direction

First a range compression is performed. For this process each row of the raw data is
convolved with a range reference function. The range reference function (RRF) is
formulated taking into consideration the sampling rate, the duration of the transmitted pulse

signal and the frequency modulation (FM) rate of the radar pulse:

RRF = 9= z*FM

where @4 is the phase of the range reference function.

rate,

A transposed operation is applied on a resulting data obtained of the range compression. The
algorithm that is used to execute the transposed operation is known as Corner Turning. Then
an azimuth compression is performed. In the azimuth compression, the data compressed in
range is convolved with an azimuth reference function. This function is characterized by the
duration in which the target is maintained illuminated by the antenna beam, the phase

variation detected in the received signal, and the pulse repetition frequency (PRF):
ARF =e % 0 =-24A t+kt®

where the @is the phase of the azimuth reference function which changes with the varying

frequency f, ..

125

5.1 SAR Imaging Formation Design

SAR imaging formation was implemented on the TMS320C6713 DSP board using
the design procedure that was followed by Ana Ramirez for the implementation in MATLAB.
The Code Composer Studio V3.3 was used to develop the SAR imaging program application
in C language. Such program application included the implementation of range compression

and azimuth compression algorithms.

The first step for SAR imaging formation in hardware consisted of obtaining the
range reference function, the azimuth reference functions, and the raw data. These were
obtained by executing the MATLAB program main.m created by Ana Ramirez, and then
executing the program CreatingReferenceFunction.m. This was done in order to generate the
corresponding .txt files containing the real and imaginary parts of the complex the reference
functions and raw data. Such files were used as input for the SAR imaging formation

application program.

In the following figure, a block diagram is presented, which illustrates the overall design

procedure to implement the SAR imaging formation in hardware.

126

Raw Data

Range +——— Range Reference Function
Compression

Data compressed in
Range Direction

Corner Tuming
Operation

Azimuth

Compression — Azimuth Reference Function

Image Formation

Figure 94: SAR Image Formation Diagram Procedure

127

5.2 Image Formation Results obtained

For the TMS320C6713 DSP board, the range and azimuth compression algorithms
were implemented and applied to the raw data provided. The imaging formation results are
demonstrated, where raw data of sizes 128x128, 256x256 and 512x512 were processed. The
resulting images obtained from range and azimuth compressions on the DSP board were
generated in MATLAB from the output files that were created during the imaging formation

process.

5.2.1TMS320C6713 Emulation results for 128x128 Raw Data

Raw Data

20 40 60 80 100 120

Figure 95: Raw Data

128

Data Compressed in Range

20

40

60

80

100

120

20 40 60 80 100 120

Figure 96: Data Compressed in Range

Data to be compressed in Azimuth

20 40 60 80 100 120

Figure 97: Applying Corner Turning to Data Compressed in Range Direction

129

Data compressed in Azimuth Direction

", - TR
-';:r_, A 3 T
opy = s T .

. I k ;

60 i~ o _‘.I 5 l‘ F !I 1

- i y [A;irl
80) e il Ll i

s ¥ e L

v . - - T ‘._
100 |- - F L .
S &

W [- ™~ b "
120 A i .

r o rr.-. | r e 'r - I r sl
20 40 60 80 100 120

Figure 98: Data Compressed in Azimuth Direction

130

5.2.2TMS320C6713 Emulation results for 256x256 Raw Data

50

10

150 §

200

250 i

50 100 150 200 250

Figure 99: Raw Data

50 100 150 200 250

Figure 100: Data Compressed in Range
131

Data to be compressed in Azimuth

200

250 Y,
50 100 150 200 250

Figure 101: Applying Corner Turning to Data Compressed in Range Direction

Figure 102: Data Compressed in Azimuth Direction
132

5.2.3 TMS320C6713 Emulation results for 512x512 Raw Data

Raw Data

50
100
150
200
250
300
350
400
450

500 : R e e R R L R S
50 100 150 200 250 300 350 400 450 500

Figure 103: Raw Data

Data Compressed in Range

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

Figure 104: Data Compressed in Range

133

Data to be compressed in Azimuth

50
100
150
200
250
300
350 &8
200} :
450 [l

500

50 100 150 200 250 300 350 400 450 500

Figure 105: Applying Corner Turning to Data Compressed in Range D

irection

Figure 106: Data Compressed in Azimuth Direction
134

5.3 Example. Imaging Formation -- (Creating the Project Version)
Code Developed by Abigail Fuentes and Inerys Otero.

AIM:

Synthetic aperture radar (SAR) imaging formation was implemented on the TMS320C6713
digital signal processing (DSP) board. In order to obtain an image formation of a desired
surface from raw data, a range compression is first applied to the raw data. The compressed
data is then transposed, where such operation is known as corner turning; finally an azimuth
compression is applied to the transposed data in order to obtain the final image.

EQUIPMENT:

PC - Windows XP Operating System
Software - CCStudio V3.3 Platinium
Hardware - TMS320C6713 DSP

Main source files needed for application program
The image formation application program is implemented in these two source files:

e ImageFormation.c — This is the principal program where all the variables are
initialized, input data files are read, and output files are created after performing the
image formation operation.

e RangeCompression.c — This function performs the range compression using the
range reference function range_reference_real.txt, for the real part of the data and
range_reference_imagl.txt for the imaginary part.

e AzimuthCompression.c — This function performs the azimuth compression using the
nine different azimuth reference functions for both real and imaginary part.

e cornerTurning.c — This is the actually function that performs the corner turning
operation.

e create_complex_matrix.c — This function joints the real and imaginary part in one
complex matrix

e readingAzimuthFunctions.c — Reads the azimuth functions necessary for the azimuth
compression.

e FFTAzimuth.c — Computes one dimensional fast Fourier transform for the azimuth
compression.

135

e FFTRange.c — Computes one dimensional fast Fourier transform for the azimuth
compression.

e |FFTRange.c — Computes one dimensional inverse fast Fourier transform (IFFT) for
the range compression.

e IFFTAzimuth.c — Computes one dimensional inverse fast Fourier transform for the
azimuth compression.

e divide.c — This function is used to implement the IFFT for both IFFTRange.c and
IFFTAzimuth.c.

e Separate_matrix.c — This function separates the real and imaginary part of complex
matrix

e ImageFormation_resultsDSP.m — This program provides the image obtained from
the range and azimuth compression.

Figure 107 is presenting the files needed for the creation of the Imaging Formation project.
The folder is located at C:\CCStudio_v3.3\MyProjects\ImageFormation_files.

[—
Marne = D
data 0d
|é AzimuthCompression 3
[bitrev 2
| C6713dsk 24
[c6713dskinit 03
|k C6713dskinit 77
|A cornerTurning 23
|A create_complex_matriz 19
|| esl&T13.lib 19
|k digitrev_index 21
|k divide 17
|k dsks713 11
|k dsk6713_aic23 13
|| dsk6713bsl.lib 23
ik FFTAzimuth 14
ik FFTRange 19
|k icfitr2_dif 2
|k IFFT Azimuth 3
|} IFFTRange 3
|é ImageFoermation 3
|é RangeCompression 3
|A readingfAzimuthFuncti... 19
|| rts6700.5ib 07
|é Separate_matrix 19

Figure 107: ImagingFormation Files
136

Creating the Project:

This section shows how to create a project, adding the necessary files to build a project using
“Code Composer Studio”.

1. Select Project = New. In the filename, type the name “FFTproject” of the new
project and click “Save”.

This project file (.pjt) is saved in the folder “ImageFormation” (within
C:\CCStudio_v3.3\MyProjects\ImageFormation. Figure 109 shows how to create
a new project and Figure 110 presents where the folder is created.

'#JC6713 DSKSCPU_1 - C671x - Code Composer Studio
File Edit ‘iew BEGEES Debug GEL Option Profile Tools DSPYBIOS Window Hg

=3 -
Open...
Use External Makefile. .. <My

@ Files by

% pyl Source Contral P UAD4 O0010AE7AE
ADE 20000590
ADC 0000000

& AED 00000790
AF4 02000048
AES 00006000
- AEC 023062E6
AF0 00006000
* 2F4 02108052

A b ol B s B o ol B ol

Figure 108: Creating a New Project

137

Verify if the following option is selected:

Target —® TMS320C67XX, and then click Finish.

)

Project Creation

Project Mame: |ImageFamation

Location: |u:liu:n_v3.3'\M_l,lF'roiects'xImageFDrmation'\ J

Project Type: | Executable [.out ~|

Target

Finigh | Cancel | Help |

Figure 109: Window for the Creation of a New Project

& ryProjects

File Edit Wiy Faworites Tools Help

= =)
@Back @ Lﬁ - Search W= Faolders

Address |B CvCCskudio_w3, 3 MyProjects

MName
BCDrner_Turning
[Corner_Turning_files
L) FFEE4pEs
[CIFFT256c
[CIFFTgumnstixDSP
[C)FFTproject
[CIFFTproject_files
[hello
51 ImageFormmation
|3 ImageFormation_Files
[ImageformationCCw3.3_ 67153
[Support_files_&6713
Soa MS010335. acl
|E|_:|plantilla_EiET.ﬁ._versiDnZ.dn:n:x

Figure 110: “ImageFormation” Project Folder
138

2. Copy the following files from
C:\CCStudio_v3.3\MyProjects\ImageFormation_files to
C:\CCStudio_v3.3\MyProjects\ImageFormation:

- C6713dsk.cmd

- C6713dskinit.c

- C6713dskinit.h

- ¢sl6713.1ib

- dsk6713.h

~ dsk6713_aic23.h

~ dsk6713bsl.lib

- rts6700.lib

- AzimuthCompression.c
- bitrev.c

- cornerTurning.c

~ create_complex_matric.c
- digitrev_index.c

~ divide.c

- FFTAzimuth.c

- FFTRange.c

- lcfftr2_dif.c

- IFFTAzimuth.c

- IFFTRange.c

- ImageFormation.c

- RangeCompression.c

- readingAzimuthFunctions.c
— separate_matrix.c

139

&' ImageFormation_files

File Edit Wiew Favorites Tools Help

@Back - I._:l l@ pSearch H_i‘ Folders |& C:

Address |[E:| CACCSkudio_w3, 3\ MyProject st ImageFarmation_files

23 objects selected

Figure 111: Image Formation Project Files

140

3. Select Project — Add files to project. Add the following files:

- C6713dsk.cmd

- C6713dskinit.c

- csl6713.1ib

~ dsk6713bsl.lib
—rts6700.lib

- AzimuthCompression.c
- bitrev.c

- cornerTurning.c

~ create_complex_matric.c
- digitrev_index.c

- divide.c

- FFTAzimuth.c

- FFTRange.c
—lcfftr2_dif.c

- IFFTAzimuth.c

- IFFTRange.c

- ImageFormation.c

- RangeCompression.c

- readingAzimuthFunctions.c
— separate_matrix.c

141

6713 DSKSCPU_1 - C671x - Code Composer, Studio

Edit Wiew Project Debug GEL Option Profile Tools DSR(BIOS ‘Window Help
BH| BR[| > || & &
 eF omation. pit ~|[Debug =l & i 2% | M & ‘ |
& GEHEEHEAL

gFiles Disassemb

(1 GeL Fes ®00004BF4 00008000

"2 S succss:

g gzs;:i::; Froj Cpen for Editing Oo0AO00
(2 DSPYBICS Confi Export ta Makefile. .. Ooooooo
(3 Generated Files| oot 35 Active Project ooooooo
(23 Include Save ooooooo
(2 Libraries Close g gg gg g g
3 source Bl nnnnnnn

Build (Selection only}

Stop Build

Clean

Clean (Selection only)

Project Dependencies, ..
Configurations. ..

Build Options...

Scan All File Dependencies
Properties. ..

Allavw Docking
Hide
Float In Main Window

<

Figure 112: Adding Files to the Project

4. Select Project —® Scan All Files Dependencies. Verify that all the files that are
shown in Figure 113 were added to the project.

142

6713 DSK/CPU_1 - C671x - Code Composer, Studio - [ImageFormation.c]
ile Edit View Project Debug GEL Option Profile Tools DSP/EIOS Window H

=1= | < &R
heFormation. pjt j|Debug j @ Iﬁl @

g O i}

e — Einclude "dskf713_aid]

Uint32 fs=D3KE713_AIC
#include {stdio.h>
#include <math.h>
SeER ol ude Syt SRE. A
ceErnedude wEts TRESE
#define NAzimuthRang
#define NREFRang 128

= a Projects
= ﬁ ImageFormation.p
[_ pependent Projec
[Z7 Dacuments
[_7 pap{BIOS Corfig
|21 =enerated Files

_ g i':':rl:::s #define NazimuthFunct)
& cse7ilb e Simage of size MEri

#define RADIX 2

= .
£] dsks713bsl it #define PI 3.14159265

] rtse700.lb

=423 Source #define RangeDELTA (2

ource
%:;‘r::“;cmp #define AzimuthDELTA

[¥] c6713dskinit.c
3 carner Turning
3 create_camph
3 digitrew_inde»
3 divide.c

[¥] FFTAzimuth.c
3 FFTRange.c
] icFfr2_dif.c
[¥] IFFTAzimuth..
3 IFFTRange.c
3 ImageFormati
3 RangeCompre
3 readingAzimul

typedef struct {float]
vold FFTRange (COMPLEX]
void FFTAzimuth (COMPL
vold IFFTRange (COMPLE]
vold IFFTAzimuth (COMP

T

cembort flay = 87
TP ERT piile e ARE
COMPLEX wHange [WREFRa
COMPLEX IwRange [NEEFH
COMPLEX wiAzimuth [HAz1
3] separate_mal COMPLEY IwlAzimuth [Haz
(Eé?la ek TP ERT pndm e 5.5 f
' COMPLEX cref [MREFRang,
< S COMPLEY Azimuthref [MA
o r T MMPTFY s=imnthEFunet

Figure 113: Project Files

5. Once all of the files are added to the project, the project must be built. This is done by
going to Project —» Build Options. This option is used to properly set up the
compiler and linker, based on the characteristics of the TMS320C6713 DSP board.
Several settings should to be chosen or written, and the option OK is selected after all
settings are verified.

143

Debug GEL Option Profile Tools DSPIBIOS Mindow Help

e B
Open...

Use External Maksfile. ..] m

Export bo Makefils. .

s 8 Add Files ta Project. ..
Save -
e——r ude "dsk6713_aic23
: ggf;l Close 2 Fs-DSKE713_AICZ3
=]I" Source Control » iude <stdio.h>
y ude <math.h>
o & Compile File CtrlF7 clude TSptxISE AT
& c Buid F7 clude dataiWI5E.
c Rebuild All ne MAzimuthRang 12|
= ne MREFRang 128
-5 =5 Build Clean ne MazimuthFunctiol

& o — e of size Mdzimu
ne PI 3.1415926535

2 o Fils Specific Options. ..
B Projoct Depsndencies. . ne RangeDELTA [2xF
£ s —— ne AzimuthDELTA (2
Show File Dependencies
ef struct {float r
Bl Scan Al File Dependencies FE'I'Range(CéMPLEX .
= Recent Project Files » FFTAzimuth (COMPLEY
= AT void IFFTRange (COMPLEX
. woid IFFTAzimuth(COMPLE
&1
Ol

ort Flay = 0

LMELER wiilangeas fNEEFA]
COMPLEX wRange [NREFRang
COMPLEX IwRange [MREFRan
COMPLEYX wizimuth [NAzZimu
COMPLEX IwAzimuth [NAZim|
LML Y el m A S A
COMPLEY cref [NREFRang
< > COMPLEX Azimuthref [NAzi

= COMPLEX azimuthFunction
[1].¢ F

GEL StartUp Complete.

CHT13dsk.cmd

[T TFTh GEL Output

LFigure 114: Build Option Setting Location

6. Under Compiler —» Category —® Basic
a. The target version: C671x (-mv6710) should be highlighted.

144

Build Options for ImageFormation. pjt (Debug)

General Compiler] Linker] DspBiosBuiIder] Lirk Drder]

- -f$(Prol_difhDebug” -d"_DEBUG" -mwE710

Categony: Bazic

Target Version: CE7 1% [-mvE710)
Advanced -
Feedback Generate Debug Info: |Fu|| Symbalic Debug [-g]j
ﬁillsesimbly Opt Speed vs Size; |S|:|eed st Critizal [ma -ms]ﬂ

Parser Opt Lewel: Naone ~

Preprocessar
Diagnostics Program Lewvel Opt.: | Mane j

ak | Cancel | Help |

Figure 115: Setting the Target Version

7. Under Compiler —» Category —* Advanced:
— In Memory Models select Far (-mem_model:data=far).
- Verify that Endianness is selected to be Little Endian.

145

Build Options for ImageFormation. pjt (Debug)

General Compiler l Linker] DspBiosBuiIder] Link Drder]
-g fi"$(Prof_dir\Debug" -d"_DEBUG" -mwE710 --mem_model data=far
Cateqgory: Advanced
B asic RTS Modifications: |Defns Mo RTS Funcs j
Feedback At Inline Threshold [-oi): ,7
.giz;mbly Endianness: ,WI
E?;;?Drcessm temary Models: Far [--mem_modeldata=far]
Diagnostics RTS Calls: ’W
Aliasing: |Defau|t ﬂ
[Interupt Threshold [-mi]: ,7
[~ Speculate Threshold [-mh): li
[Tum OFf Software Pipelining [-mu)
[0Old 5400 Alignmet Compatibility [-mb)
[Tum O Rearder of Aszociative Floating Pt Opsz [-mc)
[~ Usze Function Subsections [-mo]
[Historic C Pointer to Const Alias Dizambiguation [-0=]
(] 4 | Cancel | Help |

Figure 116: Memory Model Type Selection

8. Under Compiler—® Category —* Preprocessor:
— In Pre-Define Symbol, the following should be written: CHIP_6713. This
specifies the DSP chip that the target board utilizes.

9. Under Linker — Basic:
- In Heap Size (-heap) and in Stack Size (-stack), writes 32000.

146

Categarny: Baszic
[Supprezz Banner [-q)

Libraries

Advanced | Dutput Module: |
Output Filename [-a): |."»Del:uug"ulmagan:-rmatinn
tap Filename [-m]: |."~Debug"~|maganrmatinn
Autoinit b odel: |F|un-Time Autoinitializatio
Heap Size [-heap): |32000
Stack Size [-stack) |32000)
Fill Walue [-f): |
Code Entry Point [-2]: |

Figure 117: Building options for Linker—»Basic

147

Build Options for, ImageFormation. pjt (Debug)

General Compiler] Linker l DspBiDsBuiIder] Link. Drder]

-g fr"$[Frop_dir\Debug” -d"_DEBUG" -mvE710 --mem_model data=far

Categary: Preprocessor

Basic Include Search Path [-i]: |

Advaniced .

Feedback Pre-Diefine Symbol [-d): [CHIP_E713
.E«Ilse;embl_l,l Undefine Symbal [-u): |

Farger Preprocessing: | Mane &
Preproceszar

Diagnostics [~ Continue with Compilation [-ppa)

Ok | Cancel | Help |
Figure 118: Specifying the Chip Architecture

10. Under Linker — Libraries:
— In Included Libraries (-1), these libraries must be specified: rts6700.lib;
dsk6713bsl.lib; csl6713.lib

148

Build Options for ImageFormation. pjt (Debug)

General] Compiler Linker DspEinsBuiIder] Lirk. Drder]

- -m' \DebughlmageFormation. map” -0" A0 ebughlmageFarmation. out'" -w -x

Cateqgary: Libraries
B azic [w Exhaustively Read Libraries [-x]
Advanced | Search Path [-i): |

Izl Libraries [-1): |rtsEF"DD.Iib; dsk 671 3bsl lib; c=6713.0H

(].8 | Cancel | Help |

Figure 119: Libraries Needed for the Project

11. Now the user may click OK once all the previous building option settings have been
established.

Compiling and Debugging the Project

Click on the “rebuild all” button that is in the upper part of the CCS environment and
review that you have 0 errors.

Build Complete,
0 Errors, 8 Warnings, 0 Remarks.

[4] » [*/Jh GEL output 4 Build /

@ HALTED
Figure 120: “ImageFormation” Project Compiling Results

LE File: C:ACCakudi

149

Note: If there are errors in your code, they will be listed with the corresponding line numbers.
Correct them and rebuild your project.

11. Copy

the

following

files

C:\CCStudio_v3.3\MyProjects\ImageFormation_files\data
C:\CCStudio_v3.3\MyProjects\ImageFormation\Debug:

. raw_data_reall28.txt,

from
to

raw_data_imagl28.txt — These files were previously

generated using MATLAB, as input raw data. Each of these files contains a 128x128
square matrix.

« Range and azimuth reference functions — These files are needed to execute the
range and azimuth compression:

range_reference_real.txt
range_reference_imag.txt
azimuthl128functionlreal.txt
azimuth128functionlimag.txt
azimuthl128function2real.txt
azimuth128function2imag.txt
azimuth128function3real.txt
azimuth128function3imag.txt
azimuthl128function4real.txt
azimuth128functiondimag.txt
azimuthl128function5real.txt
azimuth128functionsimag.txt
azimuthl128function6real.txt
azimuth128function6imag.txt
azimuthl128function7real.txt
azimuth128function7imag.txt
azimuth128function8real.txt
azimuth128function8imag.txt
azimuth128function9real.txt
azimuth128function9imag.txt

« ImageFormation_resultsDSP.m

12. Select File —® Load Program. Choose the file “ImageFormation.out” that is

located

In

the

following

C:\CCsStudio_v3.3\MyProjects\ImageFormation\Debug.

150

path:

#/C6713 DSKSCPU_1 - C671x - Code Composer Stu
NN Edit View Project Debug GEL Option Profile

Tew 3
Cpen... Chrl+0

My

=1
o
o
&
\L‘

Save Chrl4S

o |
I
i
-
I
p-J
=

Load Program. .. Chrl+-L

H Laad Symbals »
Reload Symbols »
Unload Symbals 3

Load GEL...
Draka 3
‘Workspace »

2

Difference between files. .,
Merge Files. ..

»

Print... Chrl+P

W
H*
f= 9
i
el

Recent Source Files
Recent Workspaces
Recent Program Files
Recent Symbals
Recent GEL Files

LR O 4
=N
=%

Launch Setup

@l 1 & [=

Exit

T[] TRFTAZImIER.
IFFTRange.c
ImageFormnaki

Figure 121: “Load Program” Location

Load Program

Lok in: |l'f}Debug ﬂ & =5 Ed-

File: narme: |Imaganlmation.out
Files of type: | *.out j Cancel
Help

Figure 122: “ImageFormation.out” File Location

151

Loading Program

Loading Program
g ...ageFamationsD ebughlmageFormation. out

Loading sections. ETilERE
NNEERRNRRNNNEEEREN ittt
noooog
text: 5504 of 81600 at 02220 G20024
0058
— BC 366
gzz:ﬁi’:f;;ﬂg 00000018 00OC366H
03 Tl 00000010 02003664
& Lbraries 00000020 00004004
8] edirtadb 00000024 30000613
5] 13t 00000028 0000800
5] wstron.ib. 0000002C 02BC3624
- & soucs 00000030 00002903
Ay - 00000034 20000133
4] birev.: 00000038 3FFFFF 13
e 00000030 008008C
‘ 00000040 308CETA]
B ernerTuring 00000044 02303634
= Ta.fte-c_”r;p' 00000048 328FET7AQ
= :E:d':i—'” ¥ 00000040 81348340
e 00000050 00040367
& ! 00000054 00008004
@ o 00000058 0000000
cfftr2_df.c 0000005C 0000000

FFTazimuth
FrTRane.e 00000060 0000000
00000064 00000000

Figure 123: Downloading the “ImageFormation.out” File to the TMS320C6713 DSP

13. Click on the “run” button ‘& that is located in the left side of the environment
CCS.

Results Obtained:

Once the image formation application program has finished execution, the following .dat
files are created in the directory C:\CCStudio_v3.3\MyProjects\ImageFormation\Debug:
dataAzimuth_imag.dat, dataAzimuth_real.dat, DataAzimuthCompressed_imag.dat,
DataAzimuthCompressed_real.dat, dataRange_imag.dat, dataRange_real.dat. Run the
ImageFormation_resultsDSP.m file using MATLAB to see the resulting images.

152

6 CONCLUSION AND FUTURE WORK

The TMS320C6713 User’s Guide resulted to be extremely helpful in the process of
getting acquainted with the DSP unit and Code Composer Studio. Through the User’s Guide
| was able to learn rapidly and efficiently how to implement different programs and
algorithms using the DSP unit.

SAR image formation algorithms were successfully implemented on the
TMS320C6713 DSP boards. Images were successfully obtained from the data compression
techniques, using raw data supplied by the AIP laboratory. For the TMS320C6713 DSP
board, image formation for raw data of sizes 128x128, 256x256, and 512x512 was achieved.
For raw data of size 512x512, the images were formed with more details and could be

appreciated better, in comparison with raw data of smaller sizes.

| expected that my research project will help future users to bridge the existent gap
between the DSP and MATLAB by the further development of tools and examples similar to

the one described in this work.

153

REFERENCES

[1] Ana B. Ramirez Silva, Maria Rodriguez, and Domingo Rodriguez, "TMS320C6713
User’s Guide". University of Puerto Rico, Mayagtiez Campus, 2007.

[2] Ana Beatriz Ramirez Silva, "On Implementing Time-Frequency Representations on
Hardware/Software Computational Structures for SAR Aplications™. University of

Puerto Rico, Mayaguez Campus, June 2006.

[3] R. Chassaing, Digital Signal Processing and Application with the C6713 and C6416
DSK.: Wiley-Interscience, John Wiley & Sons, Inc., 2005.

[4] G. Franceschetti, R. Lanari, and E.S. Marzouk, "Efficient and high precision space-
variant processing of SAR data," in Aerospace and Electronic Systems, IEEE
Transactions on , Jan. 1995, pp. 227-237.

[5] L.J. van Bokhoven, J.P.M. Voeten, and M.C.W. Geilen, "Software synthesis for system
level design using process execution trees,” in EUROMICRO Conference, 1999.
Proceedings. 25th, 1999, pp. 463-467 vol.1.

[6] Guido Arnout, "C for System Level Design," in Design, Automation and Test in Europe
Conference and Exhibition 1999. Proceedings , 2002, p. 384.

[7] H.D. Patel, S.K. Shukla, and R.A. Bergamaschi, "Heterogeneous Behavioral Hierarchy
for System Level Designs," in Design, Automation and Test in Europe, 2006. DATE '06.
Proceedings, 2006.

[8] D.D. Gajski, "New Strategies for System Level Design," in VLSI Design, Automation
and Test, 2006 International Symposium on, CA, 2006.

154

[9] Inc. The MathWorks, "Embedded MATLAB™ User’s Guide". MA: The MathWorks,
Inc., 2007.

[10] W. Tibboel, V. Reyes, M. Klompstra, and D. Alders, "System-Level Design Flow Based
on a Functional Reference for HW and SW," in Design Automation Conference, 2007.
DAC '07. 44th ACM/IEEE, June 2007, pp. 23-28.

[11] M. di Bisceglie, M. Di Santo, C. Galdi, R. Lanari, and N. Ranaldo, "Synthetic Aperture
Radar Processing with GPGPU," in Signal Processing Magazine, IEEE , March 2010,
pp. 69-78.

[12] M.G. Morrow, T.B. Welch, and C.H.G. Wright, "A Host Port Interface Board to
Enhance the TMS320C6713 DSK," in Acoustics, Speech and Signal Processing, 2006.
ICASSP 2006 Proceedings. 2006 IEEE International Conference on , May 2006.

[13] Texas Instruments Inc., TMS320C6713 Floating-Point Digital Signal Processor. Texas:

Texas Instruments Incorporated, November 2005.

155

APPENDIX A. TMS320C6713 DSP ATRIBUTES

Digital Signal Processor (DSP) is used for a wide range of applications such as image
processing, speech recognition, control, medicine, spectrography, communications,
seismography and others. The wide range of applications is due to the real-time
processing with that they are concerned. Some advantages of using DSP is because they
are less affected by environmental conditions, are easy to use, flexible and economical
in comparison with the analogous devices.

The primary tool for designing a DSP application program is the "Digital Starter Kit
(DSK) from Texas Instruments, Inc. The DSK package is useful to developers and it is
made up by Code Composer Studio (CCS) and a development board (TMS320C6713
DSK).

This starter kit is useful for developers because they can test the performance of the
algorithms implemented before the mass production of devices for specific applications.
Besides, DSK has connections for peripherals (Audio, memory or JTAG connectors for

example) to simulate the input and output signals to the processor. This tool is
compatible with PCs and requires a USB connection to program it.

TMS320C6713 DSK Features
On next table there are some basic attributes of the TMS320C6713 Digital Started Kit:

Table 1: TMS320C6713 DSK Features

FEATURES VALUE
Clock Frequency 225 MHz
SDRAM Memory 16 MB
FLASH Memory 256 KB

Architecture

VLIW (Very-Long-Instruction-Word)

I/0 Audio Stereo

2 for input and 2 for output

Other special characteristics available on the DSK are:

e The board has an analog to digital converter (ADC) and a digital to analog

converter (DAC).

e The McASP channels have a special input filter for anti-aliasing to eliminate
erroneous signals and an output filter to smooth or reconstruct the processed

output signal.

e A daughter card expansion with 80-pin connector provided for external
peripheral and external memory interfaces.

e Four user dip switches.

e Voltage regulators that provide 1.26V for the DSP and 3.3 V for the memory

and peripherals.

TMS320C6713 DSP Architecture

The TMS320C6713 DSP internal memory has two-level cache architecture. The first
level has 4KB of program cache and 4KB data cache and the second level has 256 KB
shared between program and data memory. There are in two different banks with two
different busses of 32 bits to be accessed independently.

The CPU of the DSP has eight independent functional units divided in two paths, which

are useful for multiply operations (.M), logical and arithmetical operations (.L), for bit
manipulations (.S) and loading/storing (.D).

157

