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ABSTRACT 
 

 

This report details the results of research regarding what can be done to enhance the 

experience of users in the process of implementing digital signal processing algorithms with 

several programming tools and devices.  The research process resulted in a guide that takes 

users with any level of expertise in the TMS320C6713 digital signal processing unit, and 

guides them in a step by step manner, so that they can use the tool or device effectively. 
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RESUMEN  
 

Este reporte detalla los resultados de la investigación en relación a que se puede hacer para 

mejorar la experiencia de los usuarios  en el proceso de implementar algoritmos de 

procesamiento digital de señales en diferentes herramientas y dispositivos de programación. 

Como resultado de la investigación se generó una guía que lleva a los usuarios de cualquier 

tipo de experiencia con el sistema de procesamiento digital de señales TMS320C6713, paso a 

paso, de forma tal que puedan usar esta o cualquier otra herramienta similar con mayor 

eficacia. 
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1 INTRODUCTION 

 

At the time of working with a new algorithm design and development project, the 

task of being able to connect the integrated efforts of software and hardware design usually 

takes a lot of time and in most cases it requires the efficient management of many resources.  

Algorithms developed for a specific architecture should work well after the testing and 

refining processes are completed.  Problems emerge when trying to use these same 

algorithms over other architectures.  To use them on a new architecture, for instance, they 

may require a lot of changes or practically develop a new hardware/software integration 

scheme.  The problem addressed in this project deals with the need to develop a system level 

design approach to assist in the design and development of a certain class of signal 

processing algorithms. In particular, this class of algorithms represents finite dimensional 

linear shift invariant systems. This type of systems always admits a matrix representation and, 

hence, can be treated as finite dimensional operators. Signal algebra methods can then be 

used to study the properties of these operators in order to arrive at desirable algorithm 

formulations for integrated hardware/software implementations on a targeted architecture.  

The development of an appropriate system level design approach for algorithm design and 

development could contribute to the task of software reuse on different architectures with   a 

reduced amount of code alteration.   

 

The linear operator nature of the class of systems addressed in this proposal allows 

for the representation of these systems using and iconic or block diagram approach.  In this 

context, a typical finite dimensional shift invariant system may be represented as 3-tuple 

entity: 1) a set of causal input signals of finite order,  2) an operator, linear transformation, or 

agent, and 3) a set of output signals.  The operator, linear transformation, or agent acts on a 

given element of the set of input signals and it produces an element of the set of output 

signals.    
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The fundamental purpose during this research project was to develop working tools to 

allow TMS320c6713 DSK future users to work in a more efficient and rapid manner.  As 

part of this research project, a user’s guide on implementing digital signal processing (DSP) 

application programs for the SDK6713 board was designed. The main purpose was to study 

and analyze the learning process involved as a specific number of individuals followed the 

guide step by step, in order to interact and use Code Composer Studio v3.3 IDE to develop 

different application examples for the DSP board.  The level of difficulty in learning how to 

implement the application program, and becoming familiarized with Code Composer and the 

DSP board itself, was taken into consideration for this particular study. 

 

1.1 Motivation 
 

The main motivation to work in this project was that during the literature review process I 

realized that there exists a big gap between the software and hardware area, and how to use 

different algorithms in different architectures without any major problems.  I also noticed that 

this issue is a common concern in the engineering and research areas.  For these reasons I 

think that my work will be a great contribution for the field of signal processing algorithm 

design and development and it will serve as a starting reference point for future 

investigations. 

 

1.2 Summary of Following Chapters 
 

 

This document is organized as follow: Chapter 2 presents important signal processing 

fundamentals theory which is essential to understand de development of this project.  Chapter 

3 presents a description of the TMS320C6713 Digital Starter Kit (DSK) and its development 

environment Code Composer Studio v3.3.  It also includes a detailed TMS320C6713 user 

guide that describes how to use the Code Composer Studio for the creation of the following 

project examples: Hello World!, Fast Fourier Transform (FFT) and Corner Turning.  
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Chapter 4 presents a description of signal operators formulation. Some of these operators are 

used in the implementation of the image formation advanced algorithm.  Chapter 5 presents 

the SAR Image Formation design description and the TMS320C6713 DSP User Guide for 

this example.  Chapter 6 presents the conclusion of the project and potential future projects.
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2 SIGNAL PROCESSING FUNDAMENTALS 
 

 

Digital Signal Processing:  

 

 Digital Signal Processing is defined as the treatment of signals using digital 

electronics technology and digital computation techniques, in an algorithmic manner, to 

extract information important or relevant to a user. The diagram below depicts a basic digital 

signal processing system conformed of three basic components: an analog-to-digital (A/D) 

conversion system, a digital processor system, and a digital-to-analog (D/A) conversion 

system.  The digital processor system takes a digital signal as input and produces another 

digital signal as output.  An analog-to-digital system converts a continuous-domain signal or 

analog signal into a digital signal. A digital-to-analog system performs an inverse operation; 

that is, it converts a digital signal into an analog signal or continuous-domain signal. A 

continuous-domain signal is normally referred to as a continuous-time signal or simply a 

continuous signal since it can describe the variations or scales of a physical quantity such as 

pressure, temperature, or sound as a function of time. Examples of continuous-time signals 

such as speech signals abound all around us. 

 

 

Continuous-domain Signal or Analog Signal:  

A continuous-domain signal or analog signal denotes a function x  whose value ( )x t is 

defined for every value t  of a set D  called the domain of the function.  
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Discrete-time Signal Processing:  

 Discrete-time Signal Processing is a more general treatment of signals, which 

includes digital signal processing, using other technologies such as surface acoustic wave 

(SAW) devices and charged-coupled devices (CCDs) as well as analog computation 

techniques such as optical and biological computing.  

 

Discrete Signal:  

A discrete signal or discrete function has as its domain a discrete set such as the set of 

integers ℤ. The number of elements in the discrete set serving as the domain of the discrete 

signal may be finite or infinite.  As an example of a discrete signal we have the following 

function 

             ℤ      
 

  
  

 

 
  

 

 
            

A signal which is discrete is also called a sequence. As an example of a finite sequence, we 

provide the following function over the finite set ℤ           : 

           
   

 
   ℤ              

A discrete signal can be obtained from a continuous signal by making the time axis a discrete 

set. That is, if we have a continuous signal        

 

 
t

t 0fj2
e x(t)


    ,               is a constant. 
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Digital Signal 

 A digital signal has as its range a finite discrete set. 

 

Causal Discrete Signal: 

 It is a sequence ]}[{ nx  such that 0][ nx  for n < 0. 

 

Discrete Finite Causal Signals: 

 Let }.1-N ..., 2, 1, ,0{N   Example }.4 ,3 ,2 ,1 ,0{5   

A sequence ]}[{ ny is causal and finite if }n ],[{ Nny .  In this case we say that the 

signal has length N. 

 

Discrete System: 

 A discrete system T takes as input a discrete signal, say ]}[{ nx  and it produces as 

output another discrete signal, say ].[ny   

 

Block Diagram Representation of a Discrete System: 

A discrete system is usually represented using a rectangular figure, called a black box. To the 

left of the box an inward directed arrow is attached to indicate the input signal to the system. 

To the right of the box an outward directed arrow is attached to indicate the output signal 

produced by the system. Two modalities are commonly used to describe the input and output 

signals as depicted in the diagrams below. The diagram on the left describes the input and 

output signals as sets but does not identify the domain of the signals. The diagram on the 

right depicts an arbitrary element of the input and output signals and provides the domains 

where theses signals are evaluated. 
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Discrete Linear System: 

 The system T is linear if: 

  ]}[{]}[{][][ 2121 nxbTnxaTnbxnaxT   

Simplified condition: 

1. Additivity or Superposition:  1 ba  

  ]}[{]}[{][][ 2121 nxTnxTnxnxT   

2. Homogeneity:  0b  

  ]}[{][ 11 nxaTnaxT   

 For the system to be linear it must satisfy, both, the additivity and homogeneity 

conditions. 

 

Example: Squarer Discrete System 

 

Check the homogeneity condition: 

      1.    ][][ 2

11 nxnxT   

             ][]}[{ 2

11 naxnxaT   

                  2.  Let ][][ 1 naxng   

     ][]}[{ 2 ngngT   

                 Substituting for ],[][ 1 naxng   we obtain 

        ]}[])[(]}[{
2

1

22

11 nxanaxnaxT   

Therefore the system is not linear. 
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Discrete Shift Invariant or Time Invariant System: 

A system T is shift invariant or time invariant if it satisfies the following condition:  

                  . 

 

 

Discrete Filter: 

 A discrete filter T is a system, which is, both, linear and time invariant. 

 Note: Any discrete signal can be expressed as a sum of delayed unit sample functions: 







k

knkxnx ][][][   

 

Finite Impulse Response Filter: 

It is any filter whose impulse response signal is of final duration, that is, it has 

duration equal to, say hN , an arbitrary but fixed length. 

 

Causal Filter: 

 A filter T is called causal if the impulse response signal of the filter is a causal 

signal. 










0n   ,     0

0   ],[
][

nnh
nh  

 

RC-Filter: 

The figure below depicts an example of an electric circuit modeling a continuous passive 

RC-filter. The filter is called continuous or analog due to the fact that it operates as a rule 

which assigns to an input signal, ( ),  x t tR an output signal, ( ),  y t tR . It is called RC 

since all the components in the circuit are made up of either resistors or capacitors. Each 

resistance element in the circuit models a dissipative load. Also, each capacitive element in 

the circuit models an energy storage load.  The overall circuit  is conformed by two basic first 
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order filters coupled in cascade. A first order continuous passive filter may be described by a 

first order differential equation with constant coefficients.  

 

General Continuous Filters: 

 

 In general, a continuous passive filter with input the signal ( )x t and output the signal 

( )y t  may be represented in terms of a differential equation of the form: 

)(...)()()(...))(())((
1

1

11

1

1 txbtx
d

d
btx

d

d
btyaty

d

d
aty

d

d
a oN

t

N

NN

t

N

NoM

t

M

MM

t

M

M 








  

This can also be expressed as follows using summation expressions: 

0 0

( ) ( )
m nM N

m nm n
m nt t

d d
a y t b x t

d d 

   

The input signal )(tx  is also called the  forcing function of the continuous filter. 

 

Discrete Filters: 

 Discrete filters may be represented using difference equations of the form 

0 0

[ ] [ ]
N M

k k

k k

d y n k p x n k
 

    , 

where the sequence [ ],   x n n Z , represents and arbitrary input signal, the sequence 

[ ],   y n n Z represents the output signal, and ,k kd p are complex scalars. The output signal 

[ ],   y n n Z can be expressed in terms of the input signal and past values of the output signal.  
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Discrete Filter Implementation: 

 

 A large class of discrete filters can be expressed in terms of a difference equation of 

the form: 

 
 


M

k

N

k

kk knxbknyd
0 0

][][  

 

 This is the only type of filters that we will study in this primer. 

Filter Operators: The diagrams below represent operators to implement all filters  

 

 

Discrete Time Fourier Transform: 

 

 Let ][nx  be a discrete signal.  Its discrete-time Fourier transforms is defined as 

follows 

                                       

 

    

 

Remember that njsenne nj   cos .  This implies that the DTFT of the signal ][nx  is a 

complex function signal. 
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Periodic Property of the DTFT 

Example: The DTFT of a Signal is Always Periodic Modulo 2  

 

A signal )(X  is periodic with period p  if the following condition is satisfied: 

).()(  XX p   

Define )(X  




  ;][]}[{
n

njenxnx    

If we let   go to p   by changing the argument of ),(X  we get 














n

njnj

n

nj

p
pp eenxenxX


 ][][)(

)(
 

Allow  2p  

Then,  
n ),2sin()2cos(2 njnee njnj p 

      

We then have the following result: 

)(][)( 2  
 XenxX

n

nj

p p
 







  

 
 

 

Discrete Fourier Transform: 

 

This is only defined for finite discrete signals, say of length N.   

Let ][nx  be a discrete signal of length N.  Its DFT is given by the following equation: 

N

N

n

N

kn
jN

n

nj

N

k kenxenxkXX k

k

 











,][][][)(

1

0

21

0

2







  
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The DFT can be represented in matrix form: 

xFX N  

When x is a column vector and is the input signal, X  is a column vector and it is the output 

signal or transformed signal and NF  is a square matrix of order N  called the Fourier matrix. 

 

Periodic Discrete Signals: 

A signal ][nx  is said to be periodic, with fundamental period N , if the following condition 

is satisfied: 
 qnxqNnx for  ],[][  

Example: 

 

The signal ][nx  has a fundamental period equal to N.  In this case :4N  

  

Let 1q  

  ][]4[ nxnx   

For 3n  

  ]3[]43[  xx  

  ]1[]3[ xx   
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Observation: 

Any periodic signal ][nx  with fundamental period N, can uniquely be represented by a 

causal signal ][nx , of length equal to N, whose values are equal to the N values of the 

periodic signal in its fundamental period. 

 

 
Cyclic or Circular Convolution of Periodic Signals: 

Given two periodic signals, say ][nx  and ][nh , with the same fundamental period N, the 

cyclic or circular convolution of ][nx  and ][nh  is a new periodic signal 

][x[n]y[n] N nh ,  

with fundamental period also equal to N and which is defined by the following equation 

.n ];[][][
1

0

N





N

k

knhkxny  

 

Circular or Cyclic Convolution of Periodic signals using Causal Representations: 

Let ][nx  and ][nh  be two periodic signals with fundamental period N.  Let ][nx  and ][nh  

be their causal representations, respectively.  The circular or cyclic convolution of the causal 

representation is a new causal signal, of length N, and denoted by ][ny . 

The signal ][ny  is given by  

N

1

0

n ];[][][ 




N

N

k

knhkxny  

The symbol Np  denotes the remainder of p after being divided by N.  This is sometimes 

called  “p modulo N”.  The periodic signal ][ny  is obtained from its causal representation 

][ny  by repeating the causal signal ][ny , starting at the fundamental period. 
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Observation: 

1. The efficiency of computing a cyclic convolution operation can be improved using a Fast 

Fourier Transform (FFT) algorithm.  An FFT algorithm is an efficient method for 

computing the DFT. 

2. Any linear convolution can be computed using a cyclic convolution operation. 

Remember that the filters only do linear convolution. 

3. The Discrete Time Domain Convolution Theorem states that the DFT of the cyclic 

convolution of two discrete signals is equal to the product of the DFT of each of the 

individual signals. 

 

 

Inverse DTFT: 

 Let  X  be the DTFT of the signal ][nx .  We can recover the signal ][nx  from its 

Fourier transform by using the formula (IDTFT): 

.)(
2

1
][ 






 


deXnx nj  

 

Example: 

Obtain the DTFT of .1  ],[][   nunx n
  

Solution: 

     









 
0

][][
n

njn

n

njn eennxDTFTX    

 

Expanding, we get 

     33221)( jjj eeeX  

 





0

)()(
n

njeX   
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Let  jeb   

   




32

0

1 bbbbX
n

n  

 
   

1)()1(    

1









Xb

bXX
 

  



jeb

X






1

1

1

1
 

 

Filter Design:  First-order 

 

 

 

FIR 



 


otherwise           ,0

 Zn      ],[
][

Nnh
nhD

 

 

 

FIR Filter Design:  Windowing Technique 

 

Given the DTFT  X  of an arbitrary signal ],[nx  the signal can be recovered from its 

spectrum using the following formula for inverse DTFT: 



 

 

 

 

 

 16 

  ZndeXnx nj  

   ;
2

1
][ 







 

If the signal  X  is the frequency response of a filter, then ).()(  HX   

The impulse response is then obtained from the frequency response as follows: 

 

Ch

deHnh nj



 


:

n  ,
2

1
][

-





 
  

Low-pass FIR Filter Design: 

1. Select an ideal filter with a prescribed frequency response. 

2. Take the inverse DTFT to obtain an infinite response. 

3. Multiply in the time domain by a window with the desired order or length.  Allow this 

first window to be rectangular. 

4. Multiply the result of part 3 by a new window to improve the desired frequency 

response. 

 

Fast Fourier Transform: 

It is an algorithm to compute the discrete Fourier transform in an efficient manner. 

There are many fast Fourier transform algorithms. We will concentrate on the algorithms 

designed by John Tukey and James Cooley in 1965 and are commonly known as Cooley – 

Tukey FFT algorithms. 

 

Cooley – Tukey FFT algorithms: 

 The objective is to develop an efficient algorithm to compute the matrix-vector 

operation: 

xf n  

The direct computation of this matrix-vector operation required 2N  multiplications and 

 1NN  additions. 
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Example: 4N  

 

 xf 4
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 
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












































3

2

1

0

3

2

1

0

x

x

x

x

 

 

4

2

4


j

ew


  




4

62

6

4


j

ew 



2
4

4

22

w

j

e




1

4

42
j

e


 

For MN 2 , a power of 2, the Cooley-Tukey algorithm reduces the number of 

multiplications to NN 2log . 

Example: 

N  Direct Method Cooley-Tukey Algorithm 

1024  21024  multiplications  1024  1024101024log

10

2 

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Cooley-Tukey Algorithm Technique: 

 Additive property of the DFT: 

Example: 4N  

 
 
 
 



















3

2

1

0

44

x

x

x

x

FxF  

1. We will represent x as a sum of two vectors:      nxnxnx e 0  , 
4Zn  

 
 
 
 

 

 
 

 














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
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




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

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







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
















3

0

1

0

0

2

0

0

3

2

1

0

x

x

x

x

x

x

x

x

x  

               ex  0x  

2. We will use the linearity property of the DFT   044044 xFxFxxFxF ee   

               sparse matrix 
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 
 

   
   










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


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









 20
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x
 

 

  











2

,22
1

11

2 w
wF

ZnK

Kn  

12

2

2  






j
j

eew  

 

Butterfly Block Diagram (Flow Diagram) 

Representation of the FFT: 

 

    20
2

2

4 xx
F

F
xF e 








  

We want to compute 

 

 0444 xFxFxF e   

 

16 multiplications 

12 summations 

 

1.  
 
 

 

 











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


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2.  
 

 

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
















3

0

1

0

404

x

x
FxF  

 

In general, we want to know 

DFT     





1

0

00

N

n

Kn

nwnnxnnx  

  00  ; nmnnnm   

 

DFT       
 








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nNm
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nmK
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 





0

0

1 nNm
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N

Kn

N WmxW o  

 

 

 

Example: 
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Remainder NN qNpp
N

P









 

 

1143433 4444  q  

 

   13 xx   
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       Hadamard product 
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Express 04 xF  in matrix form. 
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Compacting, we get 
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We know that 

 

 DFTN     Knnx N  0Kn

N0 W  

 

Example:           3,2,1,0 , 4 xxxxnxN   

 

    2 ; 00  nnnxny N  

 

    44  ; 2 Znnxny   

 

     2x200 4  xy  

 

     3x211 4  xy  

 

     0x222 4  xy  

 

     1x233 4  xy  
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Remainder 
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
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We want 
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Remember: 
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3 TMS320C6713 DSP DEVELOPMENT SYSTEM  
 

The possibilities to develop an application on the DSP C6713 are varied. There are different 

compiling high-level languages to DSP’s. The tools used to compile and download programs 

to the DSP are MATLAB
®
, Labview, Visual Basic and Visual C++. Those tools are 

interfaced with the DSP using RTDX (Real Time Data Exchange).  

 

3.1 Code Composer Studio IDE (CCS) 
 

This is an Integrated Development Environment from Texas Instruments used to build and 

debug applications developed in C or Assembly languages (see Figure 1). Some of the 

special features of this environment are the possibility of reviewing variables or registers 

from the DSK and also it is useful for exchange data between the board and other 

programming languages such us Labview and MATLAB
®
.  

 

CCS is used to calculate the quantity of floating point operations executed during any process 

in order to evaluate the algorithm implementation performance. CCS IDE can be used for 

reviewing results of an implementation due to the possibility of checking memory map.  
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Figure 1: Sample of Programming Environment: "Code Composer Studio". 
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3.2 CCS Installation and Support 
 

The development environment is provided by Texas Instruments with the DSK board. Insert 

the installation CD into the CD-ROM drive with the board disconnected. The CD is labeled 

as “Code Composer Studio TM IDE Platinium v3.3”.  It is not required to connect the card 

using the USB port at the time of installation. 

 

In the Texas Instruments web page (www.ti.com) it is possible to access technical 

documentation, download libraries, discussion groups and technical conferences.  

 

 

The following figure is the first window that appears when you insert the installation CD. 

 

 

 
Figure 2:  Code Composer Studio (CCS) v3.3 Installation Wizard 

 

In this windows click “Next” to proceed with the installation. 

http://www.ti.com/
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CCS installation wizard will check your system in order to verify that it has the minimum 

requrements for installation. 

 

 
Figure 3: CCS System Requirements Verification  

 

 

Note: If your system does not meet the minimum requirements the software may         not 

function. 

 

Click “Next” if your system has all the minimum requirements. 
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In order to complete the installation process it is needed to accept the license agreement.  

Select the option “I accept the License Agreement”, then select the button “Next” (see 

Figure 4 ).  

 

 

 

 
Figure 4: CCS License Agreement 
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The CCS has three types of installation: Typical Install, Debugger-Only Install and Custom 

Install.   

 

The Typical Install is the recommended installation for users without experience. In this type 

of installation the most common application features will be installed.  Select “Typical 

Install ” and then select “Next”. 

  

 

 

 
Figure 5: CCS Instalation Type Selection 
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The installation creates a folder with the name C:\CCStudio_v3.3\ by default. The CCS icon 

should be on the desktop and it is called CCStudio v3.3 by default.  

 

 

 
Figure 6: CCS Destination Folder 
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Once the folder is created the program is ready to be install. Click  “Install Now” to proceed 

with the installation. 

 

 
Figure 7: Code Composer Studio v3.3 Installation 
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This window is presenting the installation progress. 

 

 
Figure 8: CCS Installation Progress 
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Once the installation is over, click “Finish” to complete the installation procedure. 

 

 

 
Figure 9: Finished CCS Installation 

 

 

 

 

Code Composer Studio v3.3 Platinum installs all the drivers needed to work in the 

simulation stage, but does not have the drivers needed to complete the emulation stage.  After 

installing the program Code Composer Studio v3.3 Platinum, proceed to install the drivers 

CD labeled as "Code Composer Studio 2.x/3.x Driver Disk for Digital Spectrum 

Emulators", that allow the users to complete the emulation stage. This software is included 

in the SPI525 PCI JTAG Emulator package.  

 

Note:  Code Composer Studio 2.x/3.x Driver Disk for Digital Spectrum Emulators only will 

be installed if the user wants to do implementations using the TMS320C6713 DSP 

(emulation stage).  
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Insert the CD labeled as "Code Composer Studio 2.x/3.x Driver Disk for Digital Spectrum 

Emulators”. On the first window select “CCS V3.1x PRODUCTS“(see Figure 10). 

 

 

 
Figure 10: CCS Emulation Drivers Main Menu Window 

 

 

 

In the following window select “CCS 3.1 Platinum Drivers” in order to begin the installation 

process. 
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Figure 11: CCS 3.1 Planinum Driver  

 

 

 

The InstallShield Wizard window for SD CCS 3.1 Emulation Drivers appears to continue the 

installation. Click “Next” to proceed. 
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Figure 12: CCS 3.1 Emulation Drivers Installation Window 

 

 

 

The Typical option is the recommended installation for users without experience. In this type 

of installation the most common application features will be installed.  Select “Typical ” and 

then select “Next”. 
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Figure 13: CCS Emulation Drivers Setup Type Selection 

 

 

 

Change “Destination Folder” from the direction C:\CCStudio_v3.1 to C:\CCStudio_v3.3. 

To change the folder click “Browse…” and select the folder located at C:\CCStudio_v3.3. 
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Figure 14: Selection of Destination Location for CCS 3.1 Emulation Drivers  

 

 

 

In the following window you have the opportunity to go back and verify all the previous 

settings. If you are satisfied with the settings click “Next”to begin the installation. 
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Figure 15: CCS 3.1 Emulation Drivers Installation Progress 

 

 

 

 Figure 16 presents the software installation progress window. 
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Figure 16: CCS 3.1 Emulation Drivers Installation Progress 

 

 

 

 

 

In order to finish the CCS Emulation Drivers installation, click “Finish”.  
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Figure 17: CCS Emulation Drivers Installation Closure 

 

 

 

Once the installation process is finished, select Main Menu in the Emulation Drivers window 

(see Figure 18). 
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Figure 18: CCS 3.1 Planinum Driver 

 

 

 

 

Select “Exit” to finish the emulation drivers installation procedure. 
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Figure 19: CCS Emulation Drivers Main Menu Window 

 

 

 

3.3 CCS Setup and Initialization 
 

– To setup the Code Composer Studio V3.3 environment in a Windows XP system, 

click on Start and select All Programs  Texas Instruments  Code Composer 

Studio 3.3  Setup CCStudio v3.3 (see Figure 20). 

– If the Setup CCStudio v3.3 icon is located at the Desktop, this application can also be 

accessed by double clicking on this icon. 
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Figure 20: Location of CCS in Windows XP 
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The following setup window for CCS will appear: 

 

 

 
Figure 21: Code Composer Studio Setup 

 

– Here, the programming environment must be selected by the user: simulation or 

emulation.  

 

 Simulation implies that the application program developed can be compiled 

and executed, without physically connecting the target board to the computer.  

 

 Emulation implies that the target must be connected to the computer in order 

to compile and execute the application program.    

 

 



 

 

 

 

 

 49 

3.3.1 Selecting Simulation Environment 
 

– As mentioned previously, simulation implies that the application program developed 

can be compiled and executed, without physically connecting the target board to the 

computer.  

 

– To conduct a simulation analysis , the user must access the Setup Code Composer 

Studio v3.3 tool, and follow these subsequent steps: 

  

 Next to Available Factory Boards, under Family, select the option C67xx. 

 

 Under Platform, select simulator. 

 

 Under Endianness, select little. 

 

 Under Available Factory Boards, a list of possible simulators should appear. 

Here, C6713 Device Cycle Accurate Simulator should be selected, by a 

single click, then pressing the Add button, located at the middle bottom (see 

the bottom figure). The simulator can also be selected by double clicking on 

the simulator board. 

 

 Next, press Save & Quit. Note: if there are any other boards under System 

Configuration, proceed to remove them. This is done by selecting each board 

and hitting the delete key. Only the C6713 Device Simulator must be 

selected. 

 

 A prompt window will appear, asking the user if he/she wishes to save the 

changes made to system configuration. The button Yes should be selected. 

 

 A second prompt window will appear, asking the user if Code Composer 

Studio should start on exit. The user should press Yes. 
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Figure 22: Selecting Simulation Environment 
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3.3.2 Selecting Emulation Environment 

 

 

If the user desires to work in the emulation environment, the DSP board should be connected 

to the PC or work station at this point.  First, the power supply should be connected to the 

board through the power jack. Next, the DSP board should be connected to the PC or work 

station via the USB port (see Figure 24). 

 

 

 
Figure 23: TMS320C6713 "Digital Starter Kit" (DSK) 

 

 
 

 

 

Figure 24: TMS320C6713 DSP Board 

Power Supply 

USB Cable 

Jack to Connect 

the Power Supply 
USB Port 
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To set up the emulation environment, the user should access the Setup Code Composer 

Studio v3.3 tool by going to All Programs  Texas Instruments  Code Composer 

Studio 3.3   Setup CCStudio v3.3 and follow these subsequent steps: 

  

– Next to Available Factory Boards, under Family, select the option C67xx. 

 

– Under Platform, select dsk. 

 

– Under Endianness, select little. 

 

– Under Available Factory Boards, the option C6713 DSK-USB and/or 

C6713 DSK should appear.  

 

– Here, C6713 DSK-USB or C6713 DSK should be selected, by a single click, 

then pressing the Add button, located at the middle bottom. The emulator can 

also be selected by double clicking on the emulator board. 

 

– Next, press Save & Quit. Note: if there are any other boards under System 

Configuration, proceed to remove them. This is done by selecting each board 

and hitting the delete key. Only the C6713 DSK-USB or the C6713 DSK 

must be selected. 

 

– A prompt window will appear, asking the user if Code Composer Studio 

should start on exit. The user should press Yes. 
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Figure 25: Emulation Environment Selection 

 

 

Previous to start CCS operation the board should be connected to the power and also the PC 

by USB connection.  

 

– Once CCS is launched, go Debug  Connect, in order to establish connection with 

the board.  
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Figure 26: Establish the Connection between the CCS and the TMS320C6713 DSP 
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3.4 General Algorithm Implementation on the Board  
 

The process in an algorithm implementation on the board is:  

 

 1. Create a project, add it the C or assembly programs and the libraries nedded for the 

program.   

 2. Build your project   

 3. Download the project to the board.  

 4. Run the project   

 5. Evaluate results and correct errors.  

 6. In case of errors in the results return to the step two.  

 

 

3.4.1 Types of Useful Files 

 

Each program that is constructed using “Code Composer Studio” will be working with a 

number of files with different extensions:  

 

– Namefile.pjt: to create and build a project.  

– Namefile.c: C source program created by the user. There could be one or more 

depending on the application. 

– Namefile.asm: Assembly source program created by the user. There could be one or 

more depending on the application. 

– Namefile.h: Header support file.  

– Namefile.lib: Library file.  

– Namefile.cmd: Linker command file that maps sections to memory in the DSP.  

– Namefile.obj: Files created after compiling the project. 

– Namefile.out: Executable file created by the linker to be loaded on the processor.  

– Namefile.cdb: Configuration file when using DSP/BIOS.  
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3.4.2 DSK Support Tools 

 

The following support files are frequently used when a project is created: 

– C6713dskinit.c: Includes functions for initializing the DSK, the codecs for the serial 

ports and the I/O of the target board. 

– C6713dskinit.h: Provides description of the functions used to initialize target board.  

– C6713dsk.cmd: File used for the memory organization and distribution of the DSP.  

– Vectors_intr.asm: Assembly source file used for managing interrupts. 

– Vectors_poll.asm: Assembly source file used for managing access to ports through 

“polling”. 

– rts6700.lib: dsk6713bsl.lib; csl6713.lib; rtdx.lib: Support libraries needed for the 

DSP target board and data interchange in “real-time”.  
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3.5 Programming Examples to test the DSK Tools 
 

The following program example illustrates the features of the CCS and the DSK board. This 

example shows step by step how to create a project to compile and download to the DSK 

TMS320C6713. Be sure to place the files included with this guide in 

C:\CCStudio_v3.3\MyProjects, before starting the examples. 

 

 

3.5.1 Example 1. Hello World! 

 

AIM:  

 

This example helps us begin to understand the functionality of the CCS and the 

TMS320C6713 DSP. 

 

EQUIPMENT: 

 

PC                                           - Windows XP Operating System   

Software   - CCStudio V3.3  

Hardware   - TMS320C6713 DSP 

 

PROGRAM: 

 

#include <std.h>  

// ======== main ========  

void main()  

{  

puts("hello world!\n");  

return;  

}  

 

Creating the Project: 

 

In this section is shown how to create a project, adding the necessary files to build a project 

using “Code Composer Studio”.  

 

1. Select Project  New.  In the filename, type the name “hello” of the new project 

and click “Save”.  

 

This project file (.pjt) is saved in the folder “hello” (within 

C:\CCStudio_v3.3\MyProjects\hello). Figure 27 shows how create a new project 

and in the Figure 28 the project view files.  
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Figure 27: Window for the creation of a New Project  
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Figure 28: Project Folders 

 

 

2. Select File  New  Source File, copy the following source code (.C), click 

File  Save As and save the file as “hello.c” in the following path 

C:\CCStudio_v3.3\MyProjects\hello.  

 

C source code: 

  

#include <std.h>  

// ======== main ========  

void main()  

{  

puts("hello world!\n");  

return; }  
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3. Select Project  Add files to project. Add the file “hello.c” created in the previous 

step.  

 

4. Copy and Paste the file vectors_poll.asm, located in the path 

C:\CCStudio_v3.3\MyProjects\Support_files_6713, to the folder “hello”. Repeat 

step 3 to add to the project the “.asm” source file vectors_poll.asm. Repeat again and 

select files “.cmd”, C6713dsk.cmd to add to the project. 

 

5. Similarly as the previous step the following “.lib” files should be added: rts6700.lib, 

dsk6713bsl.lib and with the chip support library file csl6713.lib.  

 

6. Select Project  Scan All Files Dependencies. Verify that all the files that are 

shown in the Figure 29 were added to the project.  
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Figure 29: Project Files 

 

7. Once all of the files are added to the project, the project must be built. This is done by 

going to Project  Build Options. This option is used to properly set up the 

compiler and linker, based on the characteristics of the TMS320C6713 DSP board. 

Several settings should to be chosen or written, and the option OK is selected after all 

settings are verified. 

 

8. Under Compiler  Category  Basic  

– The target version: C671x (-mv6710) should be highlighted 
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Figure 30: Setting the Target Version 

 

 

9. Under Compiler  Preprocessor: 

– In Pre-Define Symbol, the following should be written: CHIP_6713. This 

specifies the DSP chip that the target board utilizes. 
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Figure 31: Specifying the Chip Architecture 

 

10. Under Linker  Libraries:  

– In Included Libraries (-l), these libraries must be specified: rts6700.lib; 

dsk6713bsl.lib; csl6713.lib 
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Figure 32: Libraries Nedded for the Project 

 

11. Now the user may click OK once all the previous building option settings have been 

established. 

 

 

Compiling and Debugging the Project   

 

In this step the C compilation and linker to build a project.  

 

1. Click on the “rebuild all” button  that is in the upper part of the CCS 

environment and verifies that you have 0 errors.  
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Figure 33: Compiling Results 

 

Note: If there are errors in your code, they will be listed with the corresponding line 

numbers.  Correct them and rebuild your project. 

 

2. Select File  Load Program. Choose the file “hello.out” that is located in the 

following path: C:\CCStudio_v3.3\MyProjects\hello\Debug. 

 

3. Click on the “run” button  that is located on the left side of the CCS 

environment.  

 

 

Results Obtained: 

 

On the “Stdout” a message “hello world!” is printed and then the program is finalized.  

 

 

 
Figure 34: Results Obtained after Run the Algorithm "hello world" 
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3.5.2 Example 2. Fast Fourier Transform (FFT) -- (Created Project Version)  

Code Developed by Rulph Chassaing[1]  

 

AIM: 

  

FFT algorithm takes a given input signal and returns its Fourier transform. 

 

EQUIPMENT: 

 

PC                                           - Windows XP Operating System 

Software   - CCStudio V3.3 Platinium 

Hardware   - TMS320C6713 DSP 

 

 

Figure 35 is presenting the files needed for the creation of the FFT project.  The folder is 

located at C:\CCStudio_v3.3\MyProjects\FFTproject_files. 

 

 
Figure 35: FFT Files 

 

 

This section show how to open a project using “Code Composer Studio”.  

 

1. Click Project  Open.  Look and click on the file FFTproject.pjt in the following 

path: C:\CCStudio_v3.3\MyProjects\FFTproject. 
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Figure 36: Open FFT Project 

 

 

 
Figure 37: FFT Project Selection 
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2. Double click on “FFTproject.pjt” on the left side of CCS and click on Source to see 

the files. Then double click on “FFTproject.c”. Your environment should looks like 

Figure 38 and should have all the files that are on the left side.  

 

Note: Verify that the options in Project  Build Options, are correct (Steps from 7 

to 11, Example 1: hello world)  

 

 
Figure 38: CCS Environment for FFT Example 
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Compiling and Debugging the Project   

 

Click on the “rebuild all” button  that is in the upper part of the CCS environment and 

review that you have 0 errors.  

 

 

 
Figure 39: FFT Project Compiling Results 

 

Note: If there are errors in your code, they will be listed with the corresponding line numbers.  

Correct them and rebuild your project. 

 

 

3. Select File  Load Program. Choose the file “FFTproject.out” that is located in 

the following path: C:\CCStudio_v3.3\MyProjects\FFTproject\Debug. 

 

 
Figure 40: “Load Program” Location 
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Figure 41: “FFTproject.out” File Location 

 

 

 
Figure 42: Downloading the “FFTproject.out” File to the TMS320C6713 DSP 

 

 

4. Click on the “run” button  that is located on the left side of the CCS 

environment.  
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Results Obtained: 

 

On the “Stdout” are printed messages of the program process until the execution is done. In 

the Debug folder three data files are generated: input_signal_real_DSP256pts.txt, 

input_signal_imag_DSP256pts.txt and transform_DSP256pts.txt.   

 

– input_signal_real_DSP256pts.txt – This file contains the real part of the input signal. 

– input_signal_imag_DSP256pts.txt - This file contains the imaginary part of the input 

signal. 

– transform_DSP256pts.txt – This file contains the Fourier transform of a given 

input signal.  

 

 

 
Figure 43: Results Obtained after Run the FFT Algorithm. 
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3.5.3 Example 3. Fast Fourier Transform (FFT) -- (Creating the Project Version) 

Code Developed by Rulph Chassaing 

 

 

AIM:  

 

FFT algorithm takes a given input signal and returns its Fourier transform. 

 

EQUIPMENT: 

 

PC                                           - Windows XP Operating System 

Software   - CCStudio V3.3 Platinium 

Hardware   - TMS320C6713 DSP 

 

Figure 44 is presenting the files needed for the creation of the FFT project.  The folder is 

located at C:\CCStudio_v3.3\MyProjects\FFTproject_files. 

 

 

 
Figure 44: FFT Project Files 
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Creating the Project: 

 

This section show how to create a project, adding the necessary files to build a project using 

“Code Composer Studio”.  

 

1. Select Project  New.  In the filename, type the name “FFTproject” of the new 

project and click “Save”.  

 

This project file (.pjt) is saved in the folder “FFTproject” (within 

C:\CCStudio_v3.3\MyProjects\FFTproject).  Figure 46 shows how create a new 

project and in the Figure 47 presents where the folder is created.  

 

 

  
Figure 45: Creating a New Project 
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Verify if the following option is selected: 

 

Target  TMS320C67XX, and then click Finish.  

 

 

 
Figure 46: Window for the Creation of a New Project 

 

 

 

 
Figure 47: FFT Project Folder 
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2. Copy the following files from C:\CCStudio_v3.3\MyProjects\FFTproject_files to 

C:\CCStudio_v3.3\MyProjects\FFTproject: 

 

– C6713dsk.cmd 

– C6713dskinit.c 

– C6713dskinit.h 

– FFTproject.c 

– csl6713.lib 

– dsk6713.h 

– dsk6713_aic23.h 

– dsk6713bsl.lib 

– rts6700.lib 

 

 

 
Figure 48: FFT Project Files 
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3. Select Project  Add files to project. Add the following files: 

 

– C6713dsk.cmd 

– C6713dskinit.c 

– FFTproject.c 

– csl6713.lib 

– rts6700.lib 

– dsk6713bsl.lib 

 

 

 

 
Figure 49: Adding Files to the Project 

 

 

4. Select Project  Scan All Files Dependencies. Verify that all the files that are 

shown in the Figure 50 were added to the project.  
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Figure 50: Project Files 

 

 

5. Once all of the files are added to the project, the project must be built. This is done by 

going to Project  Build Options. This option is used to properly set up the 

compiler and linker, based on the characteristics of the TMS320C6713 DSP board. 

Several settings should to be chosen or written, and the option OK is selected after all 

settings are verified. 
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Figure 51: Build Option Setting Location 

 

 

6. Under Compiler  Category  Basic  

– The target version: C671x (-mv6710) should be highlighted 

 

 
Figure 52: Setting the Target Version 
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7. Under Compiler  Category  Advanced: 

– In Memory Models select Far (-mem_model:data=far). 

– Verify that Endianness is selected to be Little Endian. 

 

 

 
Figure 53: Memory Model Type Selection  

 

 

8. Under Compiler  Category  Preprocessor: 

– In Pre-Define Symbol, the following should be written: CHIP_6713. This 

specifies the DSP chip that the target board utilizes. 
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Figure 54: Specifying the Chip Architecture 

 

9. Under Linker  Libraries:  

– In Included Libraries (-l), these libraries must be specified: rts6700.lib; 

dsk6713bsl.lib; csl6713.lib 
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Figure 55: Libraries Needed for the Project 

 

 

10. Now the user may click OK once all the previous building option settings have been 

established. 

 

 

Compiling and Debugging the Project   

 

Click on the “rebuild all” button  that is in the upper part of the CCS environment and 

review that you have 0 errors.  

 

 

 
Figure 56: FFT Project Compiling Results 
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Note: If there are errors in your code, they will be listed with the corresponding line numbers.  

Correct them and rebuild your project. 

 

1. Select File  Load Program. Choose the file “FFTproject.out” that is located in 

the following path: C:\CCStudio_v3.3\MyProjects\FFTproject\Debug. 

 

 
Figure 57: “Load Program” Location 

 

 

 
Figure 58: “FFTproject.out” File Location 
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Figure 59: Downloading the “FFTproject.out” File to the TMS320C6713 DSP 

 

 

2. Click on the “run” button  that is located in the left side of the environment 

CCS.  

 

 

Results Obtained: 

 

On the “Stdout” are printed messages of the program process until the execution is done. In 

the Debug folder three data files are generated: input_signal_real_DSP256pts.txt, 

input_signal_imag_DSP256pts.txt and transform_DSP256pts.txt.   

 

– input_signal_real_DSP256pts.txt – This file contains the real part of the input signal. 

– input_signal_imag_DSP256pts.txt - This file contains the imaginary part of the input 

signal. 

– transform_DSP256pts.txt – This file contains the Fourier transform of a given 

input signal.  
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Figure 60: Results Obtained after Run the FFT Algorithm. 
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3.5.4 Example 4. Corner Turning -- (Created Project Version)  

Code Developed by Abigail Fuentes and Inerys Otero.   

 

 

AIM:  

 

This example helps us begin to understand the functionality of the CCS and the 

TMS320C6713 DSP.  The Corner Turning algorithm allows the users to obtain the transpose 

of an input matrix.   

 

EQUIPMENT: 

 

PC                                           - Windows XP Operating System 

Software   - CCStudio V3.3 Platinium 

Hardware   - TMS320C6713 DSP 

 

 

Figure 61 is presenting the files needed for the creation of the Corner Turning project.  The 

folder is located at C:\CCStudio_v3.3\MyProjects\Corner_Turning_files 

 

 
Figure 61: Corner Turning Files 

 

 

This section show how to open a project using “Code Composer Studio”.  
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1. Click Project  Open.  Look and click on the file Corner_Turning.pjt in the 

following path: C:\CCStudio_v3.3\MyProjects\Corner_Turning. 

   

 

 

 
Figure 62: Open "Corner Turning" Project 
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Figure 63: Corner_Turning Project Selection 

 

 

2. Double click on “Corner_Turning.pjt” on the left side of CCS and click on Source to 

see the files. Then double click on “Corner_Turning.c”. Your environment should 

look like Figure 64 and should have all the files that are on the left side.  

 

Note: Verify that the options in Project  Build Options, are correct (Steps from 7 

to 11)  

 

 
Figure 64: CCS Environment for Corner Turning Example 

 

 

Compiling and Debugging the Project   

 

Click on the “rebuild all” button  that is in the upper part of the CCS environment and 

review that you have 0 errors.  
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Figure 65: Corner Turning Compiling Results 

 

Note: If there are errors in your code, they will be listed with the corresponding line numbers.  

Correct them and rebuild your project. 

 

3. Select File  Load Program. Choose the file “Corner_Turning.out” that is 

located in the following path: 

C:\CCStudio_v3.3\MyProjects\Corner_Turning\Debug. 

 

 

 
Figure 66: “Load Program” Location 
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Figure 67: “Corner_Turning.out” File Location 

 

 
Figure 68: Downloading the Corner_Turning.out File to the TMS320C6713 DSP 

 

 

4. Click on the “run” button  that is located in the left side of the environment 

CCS.  

 

 

Results Obtained: 

 

On the “Stdout” there are printed messages of the program process until the execution is 

done. In the Debug folder a data file is generated with the transposed matrix.  
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Figure 69: Results Obtained after Run the Algorithm "Corner_Turning". 

 

  



 

 

 

 

 

 91 

3.5.5 Example 5. Corner Turning -- (Creating the Project Version) 

Code Developed by Abigail Fuentes and Inerys Otero.   

 

 

AIM:  

 

This example helps us begin to understand the functionality of the CCS and the 

TMS320C6713 DSP.  The Corner Turning algorithm allows the users to obtain the transpose 

of an input matrix.   

 

EQUIPMENT: 

 

PC                                           - Windows XP Operating System 

Software   - CCStudio V3.3 Platinium 

Hardware   - TMS320C6713 DSP 

 

 

Figure 70 is presenting the files needed for the creation of the Corner Turning project.  The 

folder is located at C:\CCStudio_v3.3\MyProjects\Corner_Turning_files. 

 

 
Figure 70: Corner Turning Files 
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Creating the Project: 

 

This section show how to create a project, adding the necessary files to build a project using 

“Code Composer Studio”.  

 

1. Select Project  New.  In the filename, type the name “Corner_Turning” of the 

new project and click “Save”.  

 

This project file (.pjt) is saved in the folder “Corner_Turning” (within 

C:\CCStudio_v3.3\MyProjects\Corner_Turning).  Figure 72 shows how create a new 

project and in the Figure 73 presents where the folder is created.  

 

 

  
Figure 71: Creating a New Project 

 

 

Verify if the following option is selected: 

 

Target  TMS320C67XX, and then click Finish to continue.  
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Figure 72: Window for the Creation of a New Project 

 

 

 

 
Figure 73: Corner_Turning Project Folder 
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2. Copy the following files from C:\CCStudio_v3.3\MyProjects\Corner_Turning_files 

to C:\CCStudio_v3.3\MyProjects\Corner_Turning: 

 

– C6713dsk.cmd 

– C6713dskinit.c 

– C6713dskinit.h 

– cornerTurning.c 

– csl6713.lib 

– dsk6713.h 

– dsk6713_aic23.h 

– dsk6713bsl.lib 

– main.c 

– rts6700.lib 

 

 

 
Figure 74: Corner Turning Project Files 
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3. Select Project  Add files to project. Add the following files to the project:  

 

– C6713dsk.cmd 

– C6713dskinit.c 

– cornerTurning.c 

– csl6713.lib 

– dsk6713bsl.lib 

– main.c 

– rts6700.lib 

 

 

 

 
Figure 75: Adding Files to the Project 

 

 

4. Select Project  Scan All Files Dependencies. Verify that all the files that are 

shown in Figure 76 were added to the project.  

 

 



 

 

 

 

 

 96 

 
Figure 76: Project Files 

 

 

5. Once all of the files are added to the project, the project must be built. This is done by 

going to Project  Build Options. This option is used to properly set up the 

compiler and linker, based on the characteristics of the TMS320C6713 DSP board. 

Several settings should to be chosen or written, and the option OK is selected after all 

settings are verified. 
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Figure 77: Build Option Setting Location 

 

6. Under Compiler  Category  Basic  

a. The target version: C671x (-mv6710) should be highlighted 

 

 
Figure 78: Setting the Target Version 

 

7. Under Compiler  Category  Advanced: 

– In Memory Models select Far (-mem_model:data=far). 

– Verify that Endianness is selected to be Little Endian. 
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Figure 79: Memory Model Type Selection  

 

 

8. Under Compiler  Category  Preprocessor: 

– In Pre-Define Symbol, the following should be written: CHIP_6713. This 

specifies the DSP chip that the target board utilizes. 
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Figure 80: Specifying the Chip Architecture 

 

9. Under Linker  Libraries:  

– In Included Libraries (-l), these libraries must be specified: rts6700.lib; 

dsk6713bsl.lib; csl6713.lib 
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Figure 81: Libraries Needed for the Project 

 

10. Now the user may click OK once all the previous building option settings have been 

established. 

 

Compiling and Debugging the Project   

 

In this step the C compilation and linker to build a project are performed.  

 

1. Click on the “rebuild all” button  that is in the upper part of the CCS 

environment and verifies that you have 0 errors.  

 

 

 
Figure 82: Compiling Results 
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Note: If there are errors in your code, they will be listed with the corresponding line 

numbers.  Correct them and rebuild your project. 

 

2. Select File  Load Program. Choose the file “Corner_Turning.out” that is located 

in the following path: C:\CCStudio_v3.3\MyProjects\Corner_Turning\Debug. 

 

 
Figure 83: “Load Program” Location 
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Figure 84: Corner_Turning.out File Location  

 

 

 
Figure 85: Downloading the Corner_Turning.out File to the TMS320C6713 DSP 

 

 

3. Copy the following files from 

C:\CCStudio_v3.3\MyProjects\Corner_Turning_files\data to 

C:\CCStudio_v3.3\MyProjects\Corner_Turning\Debug: 

 

– Edatain.txt 

– Sdatain.txt 
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Figure 86: Corner Turning Input Data and Validation Files 

 

4. Click on the “run” button  that is located in the left side of the environment 

CCS.  

 

 

Results Obtained: 

 

On the “Stdout” are printed messages of the program process until the execution is done. In 

the Debug folder a data file is generated with the transposed matrix.  
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Figure 87: Results Obtained after Run the Algorithm "Corner_Turning". 
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4 SIGNAL OPERATOR FORMULATIONS FOR 

MATLAB IMPLEMENTATION 

 
This chapter presents a set of linear finite dimensional signal operators which are 

fundamentals in the development of signal processing algorithms.  The signal operators are 

formulated with respect to the standards basis    to facilitate their matrix implementation.  

In this contest, the signal operators admit easy implementation in a MATLAB environment, 

due to the fact that MATLAB stands for MATrix LABoratory and facilitates the 

implementation of algorithms expressed in matrix-vector form.   

  

4.1 Linear Shift Invariance Systems 

 
4.1.1 Matrix Representation of LSI-FIR Systems 

 

In this section we discuss the representation of LSI-FIR through matrices. Since each N - 

dimensional LSI-FIR system    T L Z L Zh N N:   represents a linear transformation on the 

space  L ZN
, Th  is determined by its action on a set of basis vectors (signals) spanning  L ZN

. 

If we choose as reference the standard basis set 
  

j Nj Z:  , then each signal 

    T L Zh j N   can be uniquely expressed as a linear combination of the basis set. We 

write 

 

      
T h j kh k

j Z
j

N

 


 ,  

 

where the set of scalars 

  h j k j Z k ZN N, : ,   

 

represents the vector coordinates of the given signal   T k Zh k N ,  , with respect to the 

standard basis set. The signal   T h k
   can be written as  
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                                              T h k
j ZN

 


       T jh k j
                    

 

where 

                  T j h m S j h m jh k
m Z

N

m

k
m Z

k m

N N

   
 

                        

         jhSkjhmkjmh k

N

Zm N

 


   

Thus, we write 

   

          
T h j k h j kh k

j Z
j

j Z
j

N N

    
 

 ,                      

      
  

     


 S h j S T h S hN

k

j Z
N

j

S h N

k

N
N
k  

 

Next, we define the matrix HN as follows 

 

     H h j k h j kN j k Z j k ZN N

  
 

,
, ,

 

 

The matrix HN , thus, have the following form 

 

 

       

       

       

       

H

h h N h N h

h h h N h

h h h h

h N h N h N h

N 

 



  























0 1 2 1

1 0 1 2

2 1 0 3

1 2 3 0







    



 

 

We notice that the columns of HN are formed by shifted versions of the coordinate vector 

representation of the signal h; that is, we can write HN as  

 

      H I h S h S h S hN N N N N

N , , , ,2 1  

 

where SN is the matrix representing the shift operator SN ; and h is the coordinate vector 

representation of the signal h. 
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We would like to describe in more details how the matrix HN, representing the system 

Th, is obtained. Starting with expression above, we rewrite 

 

          
k N

j

j Z

h j k S h j k C
N

 


 , , ,      

                         


h k h k h N k
N

0 1 1
0 1 1

, , ,             

 

Evaluating this expression at different values of k ZN  results in the following set of 

identities: 

          T h hh   
0 0 1

0 0 1 0  , ,  

    


h N
N

1 0
1

,   

          T h hh   
1 0 1

0 1 11  , ,   

    


h N
N

1 1
1

,   

 

          T h N h Nh N
  


   

1 0 1
0 1 1 1, ,  

      


 h N N
N

1 1
1

,   

 

 

We write these identities in an array form: 

 

  
  

  

     
     

     

T

T

T

h h h N

h h h N

h N h N h N N

h

h

h N







0

1

1

0 0 1 0 1 0

0 1 11 11

0 1 1 1 1 1







   






























   





















, , ,

, , ,

, , ,

 

 

 

 





























0

1

1



N
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We know obtain a vector-matrix representation of a cyclic convolution opration described in 

6.5 . Given a system Th and a signal  f L ZN , the response  g T fh  is obtained as 

follows 

   
 

g T f T f kh h j
k ZN

 








   

        
 

 

 f k T g jh k
k Z

j
j ZN N

   

Expanding the above sum, we obtain 

 

                T f f T f T f N Th h h h N
    


0 1 1

0 1 1
    

where 

                f T f h f hh0 0 0 0 0 1 0
0 0 1

    , ,  

               


f h N
N

0 1
1

               

                 f T f h f hh1 1 0 1 1 11
10 0 1

    , ,   

               


f h N
N

1 11
1

,                

    

                f N T f N h N f N hh N N
     

 
1 1 0 1 1 1

1 0 1
  ,  

                    


 f h N
N

1 11
1

,              

 

The addition of the above set of equations produces the following expression 

 

        g T f g j f L Zh j N
j ZN

  


  ,             

 

                   f h f h f N h N0 0 0 1 0 1 1 0 1
0

, , ,   

          f h f h0 1 0 1 11, ,  

         f N h N1 1 1
1

,              

            f h N f h N0 11 1 11, ,  

          


f N h N N
N

1 1 1
1

,    

        
 













T f f k h j kh
k Zj Z

j
NN

,             



 

 

 

 

 

 109 

where 

 

            
 g m T f f k h j k mh

k Zj Z
j

NN

 












 ,           

       


 f k h m k m ZN

K ZN

, ,            

 

in vector notation, we have 

 

 

 

 

 

   

   

   

   

g

g

g j

g N

f k h k

f k h k

f k h j k

f k h N k

k

N

k

N

k

N

k

N

0

0

1

0

1

1

0

1

0

1

0

1

0

1


































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
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


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
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
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Factoring out the vector  f  form above, we obtain the following matrix-vector representation 

 

 

 

 

 

       
       

       
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

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
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
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
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

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Recalling that    h j k h j k j k ZN, , , ,   we write  

 

 

 

 
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
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
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
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




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
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The above matrix-vector operation  g H fN  represents the cyclic convolution operation 

 g f h T fh *  , where we have the same symbols  and   denote, both, the coordinate 

vector representation of the signals  and   , respectively, as well as the signals themselves; 

and the matrix HN represents the system Th : 

 

           H T T TN h h h N



  

0 1 1
, , ,     

  
 
 

 
 

 
  


T h T h T h

N  0 1 1
, , ,  

         I T S T S TN h N h N

N

h  , , , 1           
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Here, again, we have used commas to separate the vectors; and we have used the same 

notation used for the signals in order to denote the coordinate vector representation of the 

signals. The computation of the cyclic convolution operation 

   g f h T f f h L Zh N  * , ,  

 

 

is now performed by substitution into the defining equation  

 

     g T f T f kh h k
k

N

 














 
0

1

 

 

and proceed in the following manner 

 

        T f T f kh h k
k ZN




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


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       


 f k Th k
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 













 f k h j k
j

j Zk Z NN
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      
 

 












 h j k f k
k Zj Z

j
NN

                

 

Evaluating  g L ZN  at a particular index value j ZN  results in 

         
  g j T f j h j k f k jh

k Z
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j Z NN
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         








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4.1.2 Spectral Properties of LSI-FIR systems 

 

 

In this section we will describe the spectral properties of LSI-FIR systems. A shift 

invariant linear operator acting on an N- dimensional vector space may be reprented in the 

frequency domain by using the concepts of eigen-functions (eigenvectors) and eigenvalues. 

The eigenvalues correspond to the natural frequencies encountered in the spectral 

representation of the impulse response signal of a given LSI-FIR system. We will be more 

explicit later on in describing the relationship existing between the eigenvalues (and their 

associated eigenfunctions) of a given LSI-FIR operator Th and the frequency section 

describing some properties of the system 
 

T 1
which are essentially the same as the properties 

of the shift operator SN . The simplest LSI-FIR system, apart from the trivial system, i.e., the 

system represented by the identity operator IN , is the system represented by the shift operator 

SN . The system is sometimes called the unit delay system because its digital electronics 

hardawre implementation may be accomplished by using a single delay element. We use the 

same symbol SN to denote the matrix representation of the shift operator SN . This matrix 

reprentation is now given. Recalling that 

 

    T j S S S
j Z

N

j

N

N

 
1 1

1  


  

 

we have, 

 

             T S
k k N k k     

1 1 1
  


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The matrix SN representing the shift operator SN is obtain by allowing the vector reprentation 

(with respect to the standard basis set   
k Nk Z:  ) of the signal 

    T k Z
k N 

1
, ,  

become the columns of the matrix SN : 

 

        
   
 

   
 

   
  S T T TN N


    

1 0 1 1 1 1
, , , ,                      

          


   
1 2 1 0

, , , ,
N                   

 

where we have separeted by commas the columns of SN for legibility. The matrix SN becomes 

 

SN 























0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0







    



 

 

An important property of the SN operator matrix is that any LSI-FIR system Th may be 

represented by a matrix HN which can be written as a sum of powers of the matrix SN pre-

multiplied by a diagonal matrix 
 

D
h j

: 

 

    H D S h j SN h j N

j

N

j

j Zj Z NN

  


  

where 

 

 

 
 

 

D

h j

h j

h j

h j























 ,  j ZN  
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4.2 Cyclic Matrix  
 

A cyclic matrix of order N is a N x N matrix of the form 

   

 
 
 
 
 

         

       

    
              

            
 
 
 
 

 

 

Notice that the input of each column is exactly the same as the previous column, but they are 

shifted one position downward. In this case our matrix is cycled downward and has the 

previous form.  
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4.3 Discrete Fourier Transform 
 

Given a finite sucession x[n], where 0<=n<= N-1, the discrete Fourier transform of x[n] 

is defined as the sucession given by 

 

                    

   

   

 

where        . 

 

It is common to call Wn=e^-j2pi/N and rewrite the discrete Fourier transform x[n] as 

 

             
             

   

   

 

 

 

For a finite succession y[k], where 0<=k<=N-1, the inverse discrete Fourier transform of y[k] 

is given by 
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4.4 Other Operators and Properties 
 

The first operator studied in this section is the reflection operator, which have 

important and interesting properties. 

 

The reflection operator over the space of unidimentional signals is defined by 

 

                                                        ℤ          ℤ     

                                                                                      
 

where 

 

                                     
 

Lets calculate the Rn matrix of the reflection operator with respect to the standard base, this 

is 

                                          

 

now,  
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So the matrix of the reflection operator is  

 

   

 
 
 
 
 
 
      
      
      
      
       
       

 
 
 
 
 

 

 

which again we see is a cyclic matrix. 
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4.5 Hadamard Product 
 

The Hadamard product over the space I^2(Zn) of unidimensional signals is defined as 

 

                                              ℤ      ℤ            ℤ    
                                                                                      
 

where 

 
                     

 

So notice that if  

 

   

    

    
 

      

                    

    

    
 

      

    

 

Then 

 

      

        

        
 

            

    

 

 

Hadamard product satisfies the following properties: 

 

1.                          ℤ     

2.                                      ℤ     

3.                                     ℤ     

4.                                        ℤ                 
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4.6 Convolution as a Fundamental Objective 
 

The main objective of this section is the convolution operation as a basic tool in the 

description of linear systems. 

Given a finite signal and a discrete system, find the system output. Remember that all 

finite signal must be discrete and its domain is a discrete and finite set. If we represent a 

discrete system as a block diagram the following is obtained: 

 

 
Figure 88: Discrete System Block Diagram 

 
Observation  

Discrete signal is defined as a vector.  Finite signal is defined as finite dimension vector. 

As a notation, the finite signals are represented as finite dimension vectors in column format.   

  

Example  

 

  4

2

4:

nj

enxn

CZx








 

          3,2,1,0 xxxxx             

 
 
 
 



















3

2

1

0

x

x

x

x

x  

  

Discrete 
System 

T 

Finite 

Signal 
Discrete 
Signal 

 
x

 
 xy  

        Correspond 



 

 

 

 

 

 120 

4.6.1 Discrete Filter  

 

A discrete filter is any system that satisfies the conditions of invariance and linearity. 

 

4.6.2 Response of a Filter to a Finite Signal 

 

 

 
Figure 89: Discrete Filter Block Diagram 

 

 

Unitary Impulse:  
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
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
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We represent a vector as follows: 

 

 nn
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4.6.3  Finite Response Filters to a Finite Impulse 

 

This type of filter is known in English by its acronym FIR (Finite Impulse Response).  

 

Example 

 

 
Figure 90: FIR Filter Block Diagram 

 
Observation: 

 

Every discrete filter with a finite response to an impulse is characterized by 

its impulse response. This means that everything you need to now regarding this filter is 

known, and even more, we can get the response of this filter to any input arbitrary but finite. 

 

 
Figure 91: FIR Filter Block Diagram 

 

Example 1 

 

The Finite Response Averaging Filter to a unitary impulse  
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Example 2 

 

Averaging Filter with input  2n  

 

 

Figure 92: Averaging Filter Block Diagram 
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Observation 

 

All finite signals with dimension L can be represented as a lineal combination of 

displaced unitary impulse:      

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Example 

 

Represent the signal     4,1 Znnxnx   as a sum of displaced unitary impulses.  
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5 IMAGING FORMATION ALGORITHM 
  

 

Synthetic aperture radar (SAR) imaging processing consists of forming an image of 

a landscape or terrain surface using active sensing. In active sensing, an antenna transmits 

and receives a series of pulse signals reflected from an area of interest. For SAR processing, 

the antenna is placed on a moving platform, such as an aircraft or satellite. Hence a large 

surface area can be covered by sections. For each section, the antenna is maintained fixed, 

keeping that specific area illuminated, which is called a footprint. The antenna transmits 

pulse signals to that region and receives pulses that are reflected back from the surface. The 

signals that are reflected from the surface area form a reflectivity pattern. A convolution 

operation is performed between the reflectivity pattern and the impulse response function that 

characterizes the image formation system. This operation produces a two-dimensional raw 

data. This data is spread in two distinct directions: in the azimuth direction, which is defined 

to be in the same direction parallel to the antenna, and in the range direction, which is 

perpendicular to the azimuth direction (see Figure 93). This data requires further processing 

since the objects present in section of the surface cannot be clearly distinguished. To obtain a 

better image two types of data compression are applied to the raw data, which are: range 

compression and azimuth compression.   
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Figure 93: Range and Azimuth Direction 

 

First a range compression is performed.  For this process each row of the raw data is 

convolved with a range reference function.  The range reference function (RRF) is 

formulated taking into consideration the sampling rate, the duration of the transmitted pulse 

signal and the frequency modulation (FM) rate of the radar pulse: 

rate

tj FMeRRF *,
2

  
, 

where   is the phase of the range reference function. 

 

A transposed operation is applied on a resulting data obtained of the range compression.  The 

algorithm that is used to execute the transposed operation is known as Corner Turning.  Then 

an azimuth compression is performed.  In the azimuth compression, the data compressed in 

range is convolved with an azimuth reference function. This function is characterized by the 

duration in which the target is maintained illuminated by the antenna beam, the phase 

variation detected in the received signal, and the pulse repetition frequency (PRF): 

 
22, tktfeARF anc

j   
, 

 

where the  is the phase of the azimuth reference function which changes with the varying  

frequency ncf . 
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5.1 SAR Imaging Formation Design  

 
SAR imaging formation was implemented on the TMS320C6713 DSP board using 

the design procedure that was followed by Ana Ramirez for the implementation in MATLAB.   

The Code Composer Studio V3.3 was used to develop the SAR imaging program application 

in C language. Such program application included the implementation of range compression 

and azimuth compression algorithms. 

 

The first step for SAR imaging formation in hardware consisted of obtaining the 

range reference function, the azimuth reference functions, and the raw data.  These were 

obtained by executing the MATLAB program main.m created by Ana Ramírez, and then 

executing the program CreatingReferenceFunction.m. This was done in order to generate the 

corresponding .txt files containing the real and imaginary parts of the complex the reference 

functions and raw data. Such files were used as input for the SAR imaging formation 

application program.   

 

In the following figure, a block diagram is presented, which illustrates the overall design 

procedure to implement the SAR imaging formation in hardware. 
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Figure 94: SAR Image Formation Diagram Procedure 
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5.2 Image Formation Results obtained 
 

For the TMS320C6713 DSP board, the range and azimuth compression algorithms 

were implemented and applied to the raw data provided. The imaging formation results are 

demonstrated, where raw data of sizes 128x128, 256x256 and 512x512 were processed. The 

resulting images obtained from range and azimuth compressions on the DSP board were 

generated in MATLAB from the output files that were created during the imaging formation 

process.    

 

5.2.1 TMS320C6713 Emulation results for 128x128 Raw Data  

 

 
Figure 95: Raw Data 
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Figure 96: Data Compressed in Range 

 

 
Figure 97: Applying Corner Turning to Data Compressed in Range Direction 
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Figure 98: Data Compressed in Azimuth Direction 
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5.2.2 TMS320C6713 Emulation results for 256x256 Raw Data  

 

 
Figure 99: Raw Data 

 

 
Figure 100: Data Compressed in Range 
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Figure 101: Applying Corner Turning to Data Compressed in Range Direction 

  

 
Figure 102: Data Compressed in Azimuth Direction 
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5.2.3 TMS320C6713 Emulation results for 512x512 Raw Data  

 
Figure 103: Raw Data 

 

 
Figure 104: Data Compressed in Range 
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Figure 105: Applying Corner Turning to Data Compressed in Range Direction 

 

 
Figure 106: Data Compressed in Azimuth Direction 
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5.3 Example. Imaging Formation -- (Creating the Project Version) 

Code Developed by Abigail Fuentes and Inerys Otero.   

 

 

AIM:  

 

Synthetic aperture radar (SAR) imaging formation was implemented on the TMS320C6713 

digital signal processing (DSP) board.  In order to obtain an image formation of a desired 

surface from raw data, a range compression is first applied to the raw data. The compressed 

data is then transposed, where such operation is known as corner turning; finally an azimuth 

compression is applied to the transposed data in order to obtain the final image.  

 

 

EQUIPMENT: 

 

PC                                           - Windows XP Operating System 

Software   - CCStudio V3.3 Platinium 

Hardware   - TMS320C6713 DSP 

 

 

Main source files needed for application program  

 

The image formation application program is implemented in these two source files: 

 

 ImageFormation.c – This is the principal program where all the variables are 

initialized, input data files are read, and output files are created after performing the 

image formation operation. 

 RangeCompression.c – This function performs the range compression using the 

range reference function range_reference_real.txt, for the real part of the data and 

range_reference_imagl.txt for the imaginary part. 

 AzimuthCompression.c – This function performs the azimuth compression using the 

nine different azimuth reference functions for both real and imaginary part. 

 cornerTurning.c – This is the actually function that performs the corner turning 

operation. 

 create_complex_matrix.c – This function joints the real and imaginary part in one 

complex matrix 

 readingAzimuthFunctions.c – Reads the azimuth functions necessary for the azimuth 

compression. 

 FFTAzimuth.c – Computes one dimensional fast Fourier transform for the azimuth 

compression.   
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 FFTRange.c – Computes one dimensional fast Fourier transform for the azimuth 

compression.   

 IFFTRange.c – Computes one dimensional inverse fast Fourier transform (IFFT) for 

the range compression.   

 IFFTAzimuth.c – Computes one dimensional inverse fast Fourier transform for the 

azimuth compression.   

 divide.c – This function is used to implement the IFFT for both IFFTRange.c and 

IFFTAzimuth.c. 

  Separate_matrix.c – This function separates the real and imaginary part of complex 

matrix 

 ImageFormation_resultsDSP.m – This program provides the image obtained from 

the range and azimuth compression.   

 

 

 

Figure 107 is presenting the files needed for the creation of the Imaging Formation project.  

The folder is located at C:\CCStudio_v3.3\MyProjects\ImageFormation_files. 

 

 

 
Figure 107: ImagingFormation Files 
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Creating the Project: 

 

This section shows how to create a project, adding the necessary files to build a project using 

“Code Composer Studio”.  

 

1. Select Project  New.  In the filename, type the name “FFTproject” of the new 

project and click “Save”.  

 

This project file (.pjt) is saved in the folder “ImageFormation” (within 

C:\CCStudio_v3.3\MyProjects\ImageFormation.  Figure 109 shows how to create 

a new project and Figure 110 presents where the folder is created.  

 

 

  
Figure 108: Creating a New Project 
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Verify if the following option is selected: 

 

Target  TMS320C67XX, and then click Finish.  

 

 

 
Figure 109: Window for the Creation of a New Project 

 

 

 

 
Figure 110: “ImageFormation” Project Folder 
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2. Copy the following files from 

C:\CCStudio_v3.3\MyProjects\ImageFormation_files to 

C:\CCStudio_v3.3\MyProjects\ImageFormation: 

 

– C6713dsk.cmd 

– C6713dskinit.c 

– C6713dskinit.h 

– csl6713.lib 

– dsk6713.h 

– dsk6713_aic23.h 

– dsk6713bsl.lib 

– rts6700.lib 

– AzimuthCompression.c 

– bitrev.c 

– cornerTurning.c 

– create_complex_matric.c 

– digitrev_index.c 

– divide.c 

– FFTAzimuth.c 

– FFTRange.c 

– Icfftr2_dif.c 

– IFFTAzimuth.c 

– IFFTRange.c 

– ImageFormation.c 

– RangeCompression.c 

– readingAzimuthFunctions.c 

– separate_matrix.c 
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Figure 111: Image Formation Project Files 
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3. Select Project  Add files to project. Add the following files: 

 

– C6713dsk.cmd 

– C6713dskinit.c 

– csl6713.lib 

– dsk6713bsl.lib 

– rts6700.lib 

– AzimuthCompression.c 

– bitrev.c 

– cornerTurning.c 

– create_complex_matric.c 

– digitrev_index.c 

– divide.c 

– FFTAzimuth.c 

– FFTRange.c 

– Icfftr2_dif.c 

– IFFTAzimuth.c 

– IFFTRange.c 

– ImageFormation.c 

– RangeCompression.c 

– readingAzimuthFunctions.c 

– separate_matrix.c 
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Figure 112: Adding Files to the Project 

 

 

4. Select Project  Scan All Files Dependencies. Verify that all the files that are 

shown in Figure 113 were added to the project.  
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Figure 113: Project Files 

 

 

5. Once all of the files are added to the project, the project must be built. This is done by 

going to Project  Build Options. This option is used to properly set up the 

compiler and linker, based on the characteristics of the TMS320C6713 DSP board. 

Several settings should to be chosen or written, and the option OK is selected after all 

settings are verified. 
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Figure 114: Build Option Setting Location 

 

6. Under Compiler  Category  Basic  

a. The target version: C671x (-mv6710) should be highlighted. 
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Figure 115: Setting the Target Version 

 

7. Under Compiler  Category  Advanced: 

– In Memory Models select Far (-mem_model:data=far). 

– Verify that Endianness is selected to be Little Endian. 
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Figure 116: Memory Model Type Selection  

 

 

8. Under Compiler  Category  Preprocessor: 

– In Pre-Define Symbol, the following should be written: CHIP_6713. This 

specifies the DSP chip that the target board utilizes. 

 

 

9. Under Linker  Basic: 

– In Heap Size (-heap) and in Stack Size (-stack), writes 32000. 
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Figure 117: Building options for Linker Basic 
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Figure 118: Specifying the Chip Architecture 

 

10. Under Linker  Libraries:  

– In Included Libraries (-l), these libraries must be specified: rts6700.lib; 

dsk6713bsl.lib; csl6713.lib 
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Figure 119: Libraries Needed for the Project 

 

 

11. Now the user may click OK once all the previous building option settings have been 

established. 

 

 

Compiling and Debugging the Project   

 

Click on the “rebuild all” button  that is in the upper part of the CCS environment and 

review that you have 0 errors.  

 

 

 
Figure 120: “ImageFormation” Project Compiling Results 
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Note: If there are errors in your code, they will be listed with the corresponding line numbers.  

Correct them and rebuild your project. 

 

 

11. Copy the following files from 

C:\CCStudio_v3.3\MyProjects\ImageFormation_files\data to 

C:\CCStudio_v3.3\MyProjects\ImageFormation\Debug: 

 

 raw_data_real128.txt, raw_data_imag128.txt – These files were previously 

generated using MATLAB, as input raw data. Each of these files contains a 128x128 

square matrix. 

 

 Range and azimuth reference functions – These files are needed to execute the 

range and azimuth compression: 

– range_reference_real.txt 

– range_reference_imag.txt 

– azimuth128function1real.txt 

– azimuth128function1imag.txt 

– azimuth128function2real.txt 

– azimuth128function2imag.txt 

– azimuth128function3real.txt 

– azimuth128function3imag.txt 

– azimuth128function4real.txt 

– azimuth128function4imag.txt 

– azimuth128function5real.txt 

– azimuth128function5imag.txt 

– azimuth128function6real.txt 

– azimuth128function6imag.txt 

– azimuth128function7real.txt 

– azimuth128function7imag.txt 

– azimuth128function8real.txt 

– azimuth128function8imag.txt 

– azimuth128function9real.txt 

– azimuth128function9imag.txt    

 ImageFormation_resultsDSP.m 

 

 

12. Select File  Load Program. Choose the file “ImageFormation.out” that is 

located in the following path: 

C:\CCStudio_v3.3\MyProjects\ImageFormation\Debug. 
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Figure 121: “Load Program” Location 

 

 

 
Figure 122: “ImageFormation.out” File Location 
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Figure 123: Downloading the “ImageFormation.out” File to the TMS320C6713 DSP 

 

 

13. Click on the “run” button  that is located in the left side of the environment 

CCS.  

 

 

Results Obtained: 

 

Once the image formation application program has finished execution, the following .dat 

files are created in the directory C:\CCStudio_v3.3\MyProjects\ImageFormation\Debug: 

dataAzimuth_imag.dat, dataAzimuth_real.dat, DataAzimuthCompressed_imag.dat, 

DataAzimuthCompressed_real.dat, dataRange_imag.dat, dataRange_real.dat.   Run the 

ImageFormation_resultsDSP.m file using MATLAB to see the resulting images.  
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6 CONCLUSION AND FUTURE WORK  
 

 

The TMS320C6713 User’s Guide resulted to be extremely helpful in the process of 

getting acquainted with the DSP unit and Code Composer Studio. Through the User’s Guide 

I was able to learn rapidly and efficiently how to implement different programs and 

algorithms using the DSP unit.   

 

SAR image formation algorithms were successfully implemented on the 

TMS320C6713 DSP boards. Images were successfully obtained from the data compression 

techniques, using raw data supplied by the AIP laboratory.  For the TMS320C6713 DSP 

board, image formation for raw data of sizes 128x128, 256x256, and 512x512 was achieved. 

For raw data of size 512x512, the images were formed with more details and could be 

appreciated better, in comparison with raw data of smaller sizes. 

 

 I expected that my research project will help future users to  bridge the existent gap 

between the DSP and MATLAB by the further development of tools and examples similar to 

the one described in this work. 
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APPENDIX A. TMS320C6713 DSP ATRIBUTES 
 

 

Digital Signal Processor (DSP) is used for a wide range of applications such as image 

processing, speech recognition, control, medicine, spectrography, communications, 

seismography and others. The wide range of applications is due to the real-time 

processing with that they are concerned. Some advantages of using DSP is because they 

are less affected by environmental conditions, are easy to use, flexible and economical 

in comparison with the analogous devices. 

  

The primary tool for designing a DSP application program is the "Digital Starter Kit 

(DSK) from Texas Instruments, Inc. The DSK package is useful to developers and it is 

made up by Code Composer Studio (CCS) and a development board (TMS320C6713 

DSK).  

 

This starter kit is useful for developers because they can test the performance of the 

algorithms implemented before the mass production of devices for specific applications. 

Besides, DSK has connections for peripherals (Audio, memory or JTAG connectors for 

example) to simulate the input and output signals to the processor. This tool is 

compatible with PCs and requires a USB connection to program it. 

  

TMS320C6713 DSK Features 
 

On next table there are some basic attributes of the TMS320C6713 Digital Started Kit:  

 

Table 1: TMS320C6713 DSK Features 

 

FEATURES VALUE 

Clock Frequency 225 MHz 

SDRAM Memory 16 MB 

FLASH Memory 256 KB 

Architecture VLIW (Very-Long-Instruction-Word) 

I/O Audio Stereo 2 for input and 2 for output 

 

Other special characteristics available on the DSK are:  

 

 The board has an analog to digital converter (ADC) and a digital to analog 

converter (DAC). 

 The McASP channels have a special input filter for anti-aliasing to eliminate 

erroneous signals and an output filter to smooth or reconstruct the processed 

output signal.  

 A daughter card expansion with 80-pin connector provided for external 

peripheral and external memory interfaces.  

 Four user dip switches.  

 Voltage regulators that provide 1.26V for the DSP and 3.3 V for the memory 

and peripherals.  
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TMS320C6713 DSP Architecture  
 

The TMS320C6713 DSP internal memory has two-level cache architecture. The first 

level has 4KB of program cache and 4KB data cache and the second level has 256 KB 

shared between program and data memory. There are in two different banks with two 

different busses of 32 bits to be accessed independently.  

 

The CPU of the DSP has eight independent functional units divided in two paths, which 

are useful for multiply operations (.M), logical and arithmetical operations (.L), for bit 

manipulations (.S) and loading/storing (.D).  

 

  
 


