
AN OPERATOR APPROACH TO THE

IMPLEMENTATION OF SIGNAL PROCESSING

ALGORITHMS ON THE TMS320C6713 DIGITAL

SIGNAL PROCESSOR

by

Inerys Otero Pagán

A project submitted in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING

in

COMPUTER ENGINEERING

UNIVERSITY OF PUERTO RICO

MAYAGÜEZ CAMPUS

2011
Approved by:

Néstor Rodríguez , PhD
Member, Graduate Committee

Date

Nayda Santiago, PhD
Member, Graduate Committee

Date

Domingo Rodríguez, PhD

President, Graduate Committee

Date

Héctor Rosario, PhD

Representative of Graduate Studies

Date

Erick Aponte, PhD

Chairperson of the Department

Date

ii

ABSTRACT

This report details the results of research regarding what can be done to enhance the

experience of users in the process of implementing digital signal processing algorithms with

several programming tools and devices. The research process resulted in a guide that takes

users with any level of expertise in the TMS320C6713 digital signal processing unit, and

guides them in a step by step manner, so that they can use the tool or device effectively.

iii

RESUMEN

Este reporte detalla los resultados de la investigación en relación a que se puede hacer para

mejorar la experiencia de los usuarios en el proceso de implementar algoritmos de

procesamiento digital de señales en diferentes herramientas y dispositivos de programación.

Como resultado de la investigación se generó una guía que lleva a los usuarios de cualquier

tipo de experiencia con el sistema de procesamiento digital de señales TMS320C6713, paso a

paso, de forma tal que puedan usar esta o cualquier otra herramienta similar con mayor

eficacia.

.

iv

To my family . . .

v

ACKNOWLEDGEMENTS

 I want to express gratitude to my advisor Prof. Domingo Rodríguez who gave me

his unconditional support a helped me to regain my self-confidence. I also want to thank my

AIP laboratory partners Gozalo Vaca, David Márquez and Abigail Fuentes for their support

and friendship. I want to express special gratitude to Héctor O. Santiago who showed me

that I have the strength to achieve this difficult goal and to my family that has always been

with me through this difficult but gratifying process.

 The Grant from NSF CISE-CNS Grant No. 0424546 provided the funding and the

resources for the development of this research under de WALSAIP project.

vi

Table of Contents

ABSTRACT .. II

RESUMEN.. III

ACKNOWLEDGEMENTS .. V

TABLE OF CONTENTS ... VI

TABLE LIST .. VIII

FIGURE LIST ... IX

1 INTRODUCTION .. 1

1.1 MOTIVATION .. 2
1.2 SUMMARY OF FOLLOWING CHAPTERS ... 2

2 SIGNAL PROCESSING FUNDAMENTALS ... 4

3 TMS320C6713 DSP DEVELOPMENT SYSTEM ... 27

3.1 CODE COMPOSER STUDIO IDE (CCS) .. 27
3.2 CCS INSTALLATION AND SUPPORT .. 29
3.3 CCS SETUP AND INITIALIZATION... 46

3.3.1 Selecting Simulation Environment ... 49
3.3.2 Selecting Emulation Environment ... 51

3.4 GENERAL ALGORITHM IMPLEMENTATION ON THE BOARD .. 55
3.4.1 Types of Useful Files .. 55
3.4.2 DSK Support Tools .. 56

3.5 PROGRAMMING EXAMPLES TO TEST THE DSK TOOLS .. 57
3.5.1 Example 1. Hello World! ... 57
3.5.2 Example 2. Fast Fourier Transform (FFT) -- (Created Project Version) 66
3.5.3 Example 3. Fast Fourier Transform (FFT) -- (Creating the Project Version) 72
3.5.4 Example 4. Corner Turning -- (Created Project Version)... 85
3.5.5 Example 5. Corner Turning -- (Creating the Project Version) ... 91

4 SIGNAL OPERATOR FORMULATIONS FOR MATLAB IMPLEMENTATION...................... 105

4.1 LINEAR SHIFT INVARIANCE SYSTEMS .. 105
4.1.1 Matrix Representation of LSI-FIR Systems ... 105
4.1.2 Spectral Properties of LSI-FIR systems.. 112

4.2 CYCLIC MATRIX ... 114
4.3 DISCRETE FOURIER TRANSFORM ... 115
4.4 OTHER OPERATORS AND PROPERTIES .. 116
4.5 HADAMARD PRODUCT .. 118
4.6 CONVOLUTION AS A FUNDAMENTAL OBJECTIVE .. 119

4.6.1 Discrete Filter .. 120
4.6.2 Response of a Filter to a Finite Signal ... 120
4.6.3 Finite Response Filters to a Finite Impulse .. 121

5 IMAGING FORMATION ALGORITHM .. 124

5.1 SAR IMAGING FORMATION DESIGN .. 126
5.2 IMAGE FORMATION RESULTS OBTAINED .. 128

5.2.1 TMS320C6713 Emulation results for 128x128 Raw Data .. 128
5.2.2 TMS320C6713 Emulation results for 256x256 Raw Data .. 131

vii

5.2.3 TMS320C6713 Emulation results for 512x512 Raw Data .. 133
5.3 EXAMPLE. IMAGING FORMATION -- (CREATING THE PROJECT VERSION) ... 135

6 CONCLUSION AND FUTURE WORK .. 153

REFERENCES .. 154

APPENDIX A. TMS320C6713 DSP ATRIBUTES ... 156

viii

Table List

Tables Page

Table 1: TMS320C6713 DSK Features .. 156

ix

Figure List

Figure 1: Sample of Programming Environment: "Code Composer Studio". 28

Figure 2: Code Composer Studio (CCS) v3.3 Installation Wizard 29
Figure 3: CCS System Requirements Verification .. 30

Figure 4: CCS License Agreement ... 31
Figure 5: CCS Instalation Type Selection .. 32

Figure 6: CCS Destination Folder ... 33
Figure 7: Code Composer Studio v3.3 Installation .. 34

Figure 8: CCS Installation Progress.. 35
Figure 9: Finished CCS Installation .. 36

Figure 10: CCS Emulation Drivers Main Menu Window ... 37
Figure 11: CCS 3.1 Planinum Driver .. 38

Figure 12: CCS 3.1 Emulation Drivers Installation Window ... 39
Figure 13: CCS Emulation Drivers Setup Type Selection .. 40

Figure 14: Selection of Destination Location for CCS 3.1 Emulation Drivers 41
Figure 15: CCS 3.1 Emulation Drivers Installation Progress .. 42

Figure 16: CCS 3.1 Emulation Drivers Installation Progress .. 43
Figure 17: CCS Emulation Drivers Installation Closure .. 44

Figure 18: CCS 3.1 Planinum Driver .. 45
Figure 19: CCS Emulation Drivers Main Menu Window ... 46

Figure 20: Location of CCS in Windows XP .. 47
Figure 21: Code Composer Studio Setup ... 48

Figure 22: Selecting Simulation Environment .. 50
Figure 23: TMS320C6713 "Digital Starter Kit" (DSK) .. 51

Figure 24: TMS320C6713 DSP Board .. 51
Figure 25: Emulation Environment Selection .. 53

Figure 26: Establish the Connection between the CCS and the TMS320C6713 DSP 54
Figure 27: Window for the creation of a New Project .. 58

Figure 28: Project Folders .. 59
Figure 29: Project Files .. 61

Figure 30: Setting the Target Version .. 62
Figure 31: Specifying the Chip Architecture .. 63

Figure 32: Libraries Nedded for the Project .. 64
Figure 33: Compiling Results .. 65

Figure 34: Results Obtained after Run the Algorithm "hello world" 65
Figure 35: FFT Files ... 66

Figure 36: Open FFT Project .. 67
Figure 37: FFT Project Selection .. 67

Figure 38: CCS Environment for FFT Example ... 68
Figure 39: FFT Project Compiling Results .. 69

Figure 40: “Load Program” Location... 69

x

Figure 41: “FFTproject.out” File Location... 70
Figure 42: Downloading the “FFTproject.out” File to the TMS320C6713 DSP 70

Figure 43: Results Obtained after Run the FFT Algorithm. ... 71
Figure 44: FFT Project Files .. 72

Figure 45: Creating a New Project.. 73
Figure 46: Window for the Creation of a New Project ... 74

Figure 47: FFT Project Folder .. 74
Figure 48: FFT Project Files .. 75

Figure 49: Adding Files to the Project... 76
Figure 50: Project Files .. 77

Figure 51: Build Option Setting Location .. 78
Figure 52: Setting the Target Version .. 78

Figure 53: Memory Model Type Selection ... 79
Figure 54: Specifying the Chip Architecture .. 80

Figure 55: Libraries Needed for the Project .. 81
Figure 56: FFT Project Compiling Results .. 81

Figure 57: “Load Program” Location... 82
Figure 58: “FFTproject.out” File Location... 82

Figure 59: Downloading the “FFTproject.out” File to the TMS320C6713 DSP 83
Figure 60: Results Obtained after Run the FFT Algorithm. ... 84

Figure 61: Corner Turning Files ... 85
Figure 62: Open "Corner Turning" Project ... 86

Figure 63: Corner_Turning Project Selection ... 87
Figure 64: CCS Environment for Corner Turning Example ... 87

Figure 65: Corner Turning Compiling Results .. 88
Figure 66: “Load Program” Location... 88

Figure 67: “Corner_Turning.out” File Location ... 89
Figure 68: Downloading the Corner_Turning.out File to the TMS320C6713 DSP 89

Figure 69: Results Obtained after Run the Algorithm "Corner_Turning". 90
Figure 70: Corner Turning Files ... 91

Figure 71: Creating a New Project.. 92
Figure 72: Window for the Creation of a New Project ... 93

Figure 73: Corner_Turning Project Folder ... 93
Figure 74: Corner Turning Project Files ... 94

Figure 75: Adding Files to the Project... 95
Figure 76: Project Files .. 96

Figure 77: Build Option Setting Location .. 97
Figure 78: Setting the Target Version .. 97

Figure 79: Memory Model Type Selection ... 98
Figure 80: Specifying the Chip Architecture .. 99

Figure 81: Libraries Needed for the Project .. 100
Figure 82: Compiling Results .. 100

Figure 83: “Load Program” Location... 101

xi

Figure 84: Corner_Turning.out File Location ... 102
Figure 85: Downloading the Corner_Turning.out File to the TMS320C6713 DSP 102

Figure 86: Corner Turning Input Data and Validation Files ... 103
Figure 87: Results Obtained after Run the Algorithm "Corner_Turning". 104

Figure 88: Discrete System Block Diagram ... 119
Figure 89: Discrete Filter Block Diagram ... 120

Figure 90: FIR Filter Block Diagram .. 121
Figure 91: FIR Filter Block Diagram .. 121

Figure 92: Averaging Filter Block Diagram .. 122
Figure 93: Range and Azimuth Direction .. 125

Figure 94: SAR Image Formation Diagram Procedure ... 127
Figure 95: Raw Data.. 128

Figure 96: Data Compressed in Range ... 129
Figure 97: Applying Corner Turning to Data Compressed in Range Direction 129

Figure 98: Data Compressed in Azimuth Direction .. 130
Figure 99: Raw Data.. 131

Figure 100: Data Compressed in Range ... 131
Figure 101: Applying Corner Turning to Data Compressed in Range Direction 132

Figure 102: Data Compressed in Azimuth Direction .. 132
Figure 103: Raw Data .. 133

Figure 104: Data Compressed in Range ... 133
Figure 105: Applying Corner Turning to Data Compressed in Range Direction 134

Figure 106: Data Compressed in Azimuth Direction .. 134
Figure 107: ImagingFormation Files .. 136

Figure 108: Creating a New Project .. 137
Figure 109: Window for the Creation of a New Project ... 138

Figure 110: “ImageFormation” Project Folder .. 138
Figure 111: Image Formation Project Files .. 140

Figure 112: Adding Files to the Project ... 142
Figure 113: Project Files .. 143

Figure 114: Build Option Setting Location .. 144
Figure 115: Setting the Target Version .. 145

Figure 116: Memory Model Type Selection ... 146
Figure 117: Building options for Linker Basic .. 147

Figure 118: Specifying the Chip Architecture .. 148

Figure 119: Libraries Needed for the Project .. 149
Figure 120: “ImageFormation” Project Compiling Results .. 149

Figure 121: “Load Program” Location ... 151
Figure 122: “ImageFormation.out” File Location .. 151

Figure 123: Downloading the “ImageFormation.out” File to the TMS320C6713 DSP 152

xii

1

1 INTRODUCTION

At the time of working with a new algorithm design and development project, the

task of being able to connect the integrated efforts of software and hardware design usually

takes a lot of time and in most cases it requires the efficient management of many resources.

Algorithms developed for a specific architecture should work well after the testing and

refining processes are completed. Problems emerge when trying to use these same

algorithms over other architectures. To use them on a new architecture, for instance, they

may require a lot of changes or practically develop a new hardware/software integration

scheme. The problem addressed in this project deals with the need to develop a system level

design approach to assist in the design and development of a certain class of signal

processing algorithms. In particular, this class of algorithms represents finite dimensional

linear shift invariant systems. This type of systems always admits a matrix representation and,

hence, can be treated as finite dimensional operators. Signal algebra methods can then be

used to study the properties of these operators in order to arrive at desirable algorithm

formulations for integrated hardware/software implementations on a targeted architecture.

The development of an appropriate system level design approach for algorithm design and

development could contribute to the task of software reuse on different architectures with a

reduced amount of code alteration.

The linear operator nature of the class of systems addressed in this proposal allows

for the representation of these systems using and iconic or block diagram approach. In this

context, a typical finite dimensional shift invariant system may be represented as 3-tuple

entity: 1) a set of causal input signals of finite order, 2) an operator, linear transformation, or

agent, and 3) a set of output signals. The operator, linear transformation, or agent acts on a

given element of the set of input signals and it produces an element of the set of output

signals.

 2

The fundamental purpose during this research project was to develop working tools to

allow TMS320c6713 DSK future users to work in a more efficient and rapid manner. As

part of this research project, a user’s guide on implementing digital signal processing (DSP)

application programs for the SDK6713 board was designed. The main purpose was to study

and analyze the learning process involved as a specific number of individuals followed the

guide step by step, in order to interact and use Code Composer Studio v3.3 IDE to develop

different application examples for the DSP board. The level of difficulty in learning how to

implement the application program, and becoming familiarized with Code Composer and the

DSP board itself, was taken into consideration for this particular study.

1.1 Motivation

The main motivation to work in this project was that during the literature review process I

realized that there exists a big gap between the software and hardware area, and how to use

different algorithms in different architectures without any major problems. I also noticed that

this issue is a common concern in the engineering and research areas. For these reasons I

think that my work will be a great contribution for the field of signal processing algorithm

design and development and it will serve as a starting reference point for future

investigations.

1.2 Summary of Following Chapters

This document is organized as follow: Chapter 2 presents important signal processing

fundamentals theory which is essential to understand de development of this project. Chapter

3 presents a description of the TMS320C6713 Digital Starter Kit (DSK) and its development

environment Code Composer Studio v3.3. It also includes a detailed TMS320C6713 user

guide that describes how to use the Code Composer Studio for the creation of the following

project examples: Hello World!, Fast Fourier Transform (FFT) and Corner Turning.

 3

Chapter 4 presents a description of signal operators formulation. Some of these operators are

used in the implementation of the image formation advanced algorithm. Chapter 5 presents

the SAR Image Formation design description and the TMS320C6713 DSP User Guide for

this example. Chapter 6 presents the conclusion of the project and potential future projects.

 4

2 SIGNAL PROCESSING FUNDAMENTALS

Digital Signal Processing:

 Digital Signal Processing is defined as the treatment of signals using digital

electronics technology and digital computation techniques, in an algorithmic manner, to

extract information important or relevant to a user. The diagram below depicts a basic digital

signal processing system conformed of three basic components: an analog-to-digital (A/D)

conversion system, a digital processor system, and a digital-to-analog (D/A) conversion

system. The digital processor system takes a digital signal as input and produces another

digital signal as output. An analog-to-digital system converts a continuous-domain signal or

analog signal into a digital signal. A digital-to-analog system performs an inverse operation;

that is, it converts a digital signal into an analog signal or continuous-domain signal. A

continuous-domain signal is normally referred to as a continuous-time signal or simply a

continuous signal since it can describe the variations or scales of a physical quantity such as

pressure, temperature, or sound as a function of time. Examples of continuous-time signals

such as speech signals abound all around us.

Continuous-domain Signal or Analog Signal:

A continuous-domain signal or analog signal denotes a function x whose value ()x t is

defined for every value t of a set D called the domain of the function.

 5

Discrete-time Signal Processing:

 Discrete-time Signal Processing is a more general treatment of signals, which

includes digital signal processing, using other technologies such as surface acoustic wave

(SAW) devices and charged-coupled devices (CCDs) as well as analog computation

techniques such as optical and biological computing.

Discrete Signal:

A discrete signal or discrete function has as its domain a discrete set such as the set of

integers ℤ. The number of elements in the discrete set serving as the domain of the discrete

signal may be finite or infinite. As an example of a discrete signal we have the following

function

 ℤ

A signal which is discrete is also called a sequence. As an example of a finite sequence, we

provide the following function over the finite set ℤ :

 ℤ

A discrete signal can be obtained from a continuous signal by making the time axis a discrete

set. That is, if we have a continuous signal

t

t 0fj2
e x(t)


 , is a constant.

 6

Digital Signal

 A digital signal has as its range a finite discrete set.

Causal Discrete Signal:

 It is a sequence]}[{ nx such that 0][nx for n < 0.

Discrete Finite Causal Signals:

 Let }.1-N ..., 2, 1, ,0{N Example }.4 ,3 ,2 ,1 ,0{5 

A sequence]}[{ ny is causal and finite if }n],[{ Nny . In this case we say that the

signal has length N.

Discrete System:

 A discrete system T takes as input a discrete signal, say]}[{ nx and it produces as

output another discrete signal, say].[ny

Block Diagram Representation of a Discrete System:

A discrete system is usually represented using a rectangular figure, called a black box. To the

left of the box an inward directed arrow is attached to indicate the input signal to the system.

To the right of the box an outward directed arrow is attached to indicate the output signal

produced by the system. Two modalities are commonly used to describe the input and output

signals as depicted in the diagrams below. The diagram on the left describes the input and

output signals as sets but does not identify the domain of the signals. The diagram on the

right depicts an arbitrary element of the input and output signals and provides the domains

where theses signals are evaluated.

 7

Discrete Linear System:

 The system T is linear if:

 ]}[{]}[{][][2121 nxbTnxaTnbxnaxT 

Simplified condition:

1. Additivity or Superposition: 1 ba

 ]}[{]}[{][][2121 nxTnxTnxnxT 

2. Homogeneity: 0b

 ]}[{][11 nxaTnaxT 

 For the system to be linear it must satisfy, both, the additivity and homogeneity

conditions.

Example: Squarer Discrete System

Check the homogeneity condition:

 1.  ][][2

11 nxnxT 

][]}[{ 2

11 naxnxaT 

 2. Let][][1 naxng 

][]}[{ 2 ngngT 

 Substituting for],[][1 naxng  we obtain

]}[])[(]}[{
2

1

22

11 nxanaxnaxT 

Therefore the system is not linear.

 8

Discrete Shift Invariant or Time Invariant System:

A system T is shift invariant or time invariant if it satisfies the following condition:

 .

Discrete Filter:

 A discrete filter T is a system, which is, both, linear and time invariant.

 Note: Any discrete signal can be expressed as a sum of delayed unit sample functions:







k

knkxnx][][][

Finite Impulse Response Filter:

It is any filter whose impulse response signal is of final duration, that is, it has

duration equal to, say hN , an arbitrary but fixed length.

Causal Filter:

 A filter T is called causal if the impulse response signal of the filter is a causal

signal.










0n , 0

0],[
][

nnh
nh

RC-Filter:

The figure below depicts an example of an electric circuit modeling a continuous passive

RC-filter. The filter is called continuous or analog due to the fact that it operates as a rule

which assigns to an input signal, (), x t tR an output signal, (), y t tR . It is called RC

since all the components in the circuit are made up of either resistors or capacitors. Each

resistance element in the circuit models a dissipative load. Also, each capacitive element in

the circuit models an energy storage load. The overall circuit is conformed by two basic first

 9

order filters coupled in cascade. A first order continuous passive filter may be described by a

first order differential equation with constant coefficients.

General Continuous Filters:

 In general, a continuous passive filter with input the signal ()x t and output the signal

()y t may be represented in terms of a differential equation of the form:

)(...)()()(...))(())((
1

1

11

1

1 txbtx
d

d
btx

d

d
btyaty

d

d
aty

d

d
a oN

t

N

NN

t

N

NoM

t

M

MM

t

M

M 










This can also be expressed as follows using summation expressions:

0 0

() ()
m nM N

m nm n
m nt t

d d
a y t b x t

d d 

 

The input signal)(tx is also called the forcing function of the continuous filter.

Discrete Filters:

 Discrete filters may be represented using difference equations of the form

0 0

[] []
N M

k k

k k

d y n k p x n k
 

    ,

where the sequence [], x n n Z , represents and arbitrary input signal, the sequence

[], y n n Z represents the output signal, and ,k kd p are complex scalars. The output signal

[], y n n Z can be expressed in terms of the input signal and past values of the output signal.

 10

Discrete Filter Implementation:

 A large class of discrete filters can be expressed in terms of a difference equation of

the form:

 
 


M

k

N

k

kk knxbknyd
0 0

][][

 This is the only type of filters that we will study in this primer.

Filter Operators: The diagrams below represent operators to implement all filters

Discrete Time Fourier Transform:

 Let][nx be a discrete signal. Its discrete-time Fourier transforms is defined as

follows

Remember that njsenne nj   cos . This implies that the DTFT of the signal][nx is a

complex function signal.

 11

Periodic Property of the DTFT

Example: The DTFT of a Signal is Always Periodic Modulo 2

A signal)(X is periodic with period p if the following condition is satisfied:

).()( XX p 

Define )(X  




  ;][]}[{
n

njenxnx

If we let  go to p  by changing the argument of),(X we get














n

njnj

n

nj

p
pp eenxenxX


][][)(

)(

Allow  2p

Then,  
n),2sin()2cos(2 njnee njnj p 

We then have the following result:

)(][)(2  
 XenxX

n

nj

p p
 









Discrete Fourier Transform:

This is only defined for finite discrete signals, say of length N.

Let][nx be a discrete signal of length N. Its DFT is given by the following equation:

N

N

n

N

kn
jN

n

nj

N

k kenxenxkXX k

k

 











,][][][)(

1

0

21

0

2









 12

The DFT can be represented in matrix form:

xFX N

When x is a column vector and is the input signal, X is a column vector and it is the output

signal or transformed signal and NF is a square matrix of order N called the Fourier matrix.

Periodic Discrete Signals:

A signal][nx is said to be periodic, with fundamental period N , if the following condition

is satisfied:
 qnxqNnx for],[][

Example:

The signal][nx has a fundamental period equal to N. In this case :4N

Let 1q

][]4[nxnx 

For 3n

]3[]43[ xx

]1[]3[xx 

 13

Observation:

Any periodic signal][nx with fundamental period N, can uniquely be represented by a

causal signal][nx , of length equal to N, whose values are equal to the N values of the

periodic signal in its fundamental period.

Cyclic or Circular Convolution of Periodic Signals:

Given two periodic signals, say][nx and][nh , with the same fundamental period N, the

cyclic or circular convolution of][nx and][nh is a new periodic signal

][x[n]y[n] N nh ,

with fundamental period also equal to N and which is defined by the following equation

.n];[][][
1

0

N





N

k

knhkxny

Circular or Cyclic Convolution of Periodic signals using Causal Representations:

Let][nx and][nh be two periodic signals with fundamental period N. Let][nx and][nh

be their causal representations, respectively. The circular or cyclic convolution of the causal

representation is a new causal signal, of length N, and denoted by][ny .

The signal][ny is given by

N

1

0

n];[][][




N

N

k

knhkxny

The symbol Np denotes the remainder of p after being divided by N. This is sometimes

called “p modulo N”. The periodic signal][ny is obtained from its causal representation

][ny by repeating the causal signal][ny , starting at the fundamental period.

 14

Observation:

1. The efficiency of computing a cyclic convolution operation can be improved using a Fast

Fourier Transform (FFT) algorithm. An FFT algorithm is an efficient method for

computing the DFT.

2. Any linear convolution can be computed using a cyclic convolution operation.

Remember that the filters only do linear convolution.

3. The Discrete Time Domain Convolution Theorem states that the DFT of the cyclic

convolution of two discrete signals is equal to the product of the DFT of each of the

individual signals.

Inverse DTFT:

 Let  X be the DTFT of the signal][nx . We can recover the signal][nx from its

Fourier transform by using the formula (IDTFT):

.)(
2

1
][






 


deXnx nj

Example:

Obtain the DTFT of .1],[][  nunx n

Solution:

     









 
0

][][
n

njn

n

njn eennxDTFTX  

Expanding, we get

     33221)(jjj eeeX

 





0

)()(
n

njeX 

 15

Let  jeb 

   




32

0

1 bbbbX
n

n

   

1)()1(

1









Xb

bXX

  



jeb

X






1

1

1

1

Filter Design: First-order

FIR



 


otherwise ,0

 Zn],[
][

Nnh
nhD

FIR Filter Design: Windowing Technique

Given the DTFT  X of an arbitrary signal],[nx the signal can be recovered from its

spectrum using the following formula for inverse DTFT:

 16

  ZndeXnx nj  

 ;
2

1
][








If the signal  X is the frequency response of a filter, then).()( HX 

The impulse response is then obtained from the frequency response as follows:

 

Ch

deHnh nj



 


:

n ,
2

1
][

-





 


Low-pass FIR Filter Design:

1. Select an ideal filter with a prescribed frequency response.

2. Take the inverse DTFT to obtain an infinite response.

3. Multiply in the time domain by a window with the desired order or length. Allow this

first window to be rectangular.

4. Multiply the result of part 3 by a new window to improve the desired frequency

response.

Fast Fourier Transform:

It is an algorithm to compute the discrete Fourier transform in an efficient manner.

There are many fast Fourier transform algorithms. We will concentrate on the algorithms

designed by John Tukey and James Cooley in 1965 and are commonly known as Cooley –

Tukey FFT algorithms.

Cooley – Tukey FFT algorithms:

 The objective is to develop an efficient algorithm to compute the matrix-vector

operation:

xf n

The direct computation of this matrix-vector operation required 2N multiplications and

 1NN additions.

 17

Example: 4N

 xf 4



















4

2

4

3

4

2

4

2

4

3

4

2

44

1

11

1

1111

www

ww

www

 
 
 
 

 
 
 
 













































3

2

1

0

3

2

1

0

x

x

x

x

4

2

4


j

ew







4

62

6

4


j

ew 



2
4

4

22

w

j

e




1

4

42
j

e


For MN 2 , a power of 2, the Cooley-Tukey algorithm reduces the number of

multiplications to NN 2log .

Example:

N Direct Method Cooley-Tukey Algorithm

1024  21024 multiplications 1024  1024101024log

10

2 


 18

Cooley-Tukey Algorithm Technique:

 Additive property of the DFT:

Example: 4N

 
 
 
 



















3

2

1

0

44

x

x

x

x

FxF

1. We will represent x as a sum of two vectors:      nxnxnx e 0 ,
4Zn

 
 
 
 

 

 
 

 



























































3

0

1

0

0

2

0

0

3

2

1

0

x

x

x

x

x

x

x

x

x

 ex 0x

2. We will use the linearity property of the DFT   044044 xFxFxxFxF ee 

 sparse matrix





















4

2

4

3

4

2

4

2

4

3

4

2

44

4

1

11

1

1111

www

ww

www
xF e

 

 


















0

2

0

0

x

x  

 






































0

2

0

0

001

0101

001

0101

2

4

2

4

x

x

w

w

  

   
   
   

   



























20

20

20

20

2

4

2

4

xwx

xx

xwx

xx

 
 


























2

0

1

1

1

1

1

1

2

4

2

4

4
x

x

w

w
xF e

   
   
   

   



























20

20

20

20

2

4

2

4

xwx

xx

xwx

xx

 






j
j

eew 4

22

2

4
1sin cos   j

 19

 
 

   
   




























 20

20

2

0

11

11

xx

xx

x

x

  











2

,22
1

11

2 w
wF

ZnK

Kn

12

2

2  






j
j

eew

Butterfly Block Diagram (Flow Diagram)

Representation of the FFT:

    20
2

2

4 xx
F

F
xF e 










We want to compute

 0444 xFxFxF e 

16 multiplications

12 summations

1.
 
 

 

 




































0

2

0

0

2

0
4

2

2

4
x

x

F
x

x

F

F
xF e

 20

2.
 

 



















3

0

1

0

404

x

x
FxF

In general, we want to know

DFT     





1

0

00

N

n

Kn

nwnnxnnx

 00 ; nmnnnm 

DFT       
 









0

0

0

1

0

nNm

nm

nmK

nwmxnnx

 





0

0

1 nNm

nm

Km

N

Kn

N WmxW o

Example:

 21

Remainder NN qNpp
N

P










1143433 4444  q

   13 xx 

    







 





1

0

0

N

m

Km

N

Kn

N WnxWKG

 Hadamard product

DFT     0

0

Kn

NWnnx  K

N

Kn
j

Kn

N eW
0

0

2




 22

Express 04 xF in matrix form.

  NlongkG .

   kXWkG noK

N 

   xFWkG noK

N 4

04 xF
 

 





































3

0

3

0

1

11

1

1111

4

2

4

3

4

2

4

2

4

3

4

2

44

x

x

www

ww

www

 

 





































3

0

3

0

00

00

00

1010

4

3

4

2

4

2

4

3

44

x

x

ww

ww

ww

Compacting, we get

 
 

   
   
   
   























































31

31

31

31

3

1

11

4

3

4

2

4

2

4

3

44

4

2

4

3

4

3

4

2

4

4

04

xwxw

xwxw

xwxw

xx

x

x

w

w

w

w

w

w
xF

 23

We know that

 DFTN     Knnx N  0Kn

N0 W

Example:           3,2,1,0 , 4 xxxxnxN 

    2 ; 00  nnnxny N

    44 ; 2 Znnxny 

     2x200 4  xy

     3x211 4  xy

     0x222 4  xy

     1x233 4  xy

NN qNpp 








 


N

qNP
qNp N Remainder

 24

Remainder 

















N

qN

N

P
Remainder

11 4

4444 41415 

4444 814219 

4444 20145121 

11122121 11 

          1,0,3,2 xxxxny 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 













































































0

3

2

1

1

0

3

2

2

1

0

3

3

2

1

0

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

 

 
 
 

    KSnsDFT
x

x

F

F

x

x

F 




































4

2

2

4
3

1

0

3

0

1

 25

We want

 

 

   1 ;

3

0

1

0

04044 



















nnnsDFT

x

x
F

 

 

  444 ; SW

3

0

1

0

0 Zkk

x

x
F

Kn




















If 10 n























3

4

2

4

4

4

1

0

w

w

w
w

kn

 

 

 
 
 
 

























































3S

2S

1S

0S1

3

0

1

0

3

4

2

4

4

4

w

w

w

x

x
F

 

 

 
 























































3

1

0

0

0

0

0

0

0

0

0

0

0

0

1

3

0

1

0

2

2

3

4

2

4

4

4
x

x

F

F

w

w

w

x

x
F

 26

Remember:




















2

2

4

2
1

11

1

11

ww
F

 
 

 
 






































































3

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

3

1

11

2

4

2

4

3

4

2

4

4

4

2

4

3

4

3

4

2

4

4

x

x

w

w

w

w

w

x

x

w

w

w

w

w

w

0444 xFxFxF e 

 27

3 TMS320C6713 DSP DEVELOPMENT SYSTEM

The possibilities to develop an application on the DSP C6713 are varied. There are different

compiling high-level languages to DSP’s. The tools used to compile and download programs

to the DSP are MATLAB
®
, Labview, Visual Basic and Visual C++. Those tools are

interfaced with the DSP using RTDX (Real Time Data Exchange).

3.1 Code Composer Studio IDE (CCS)

This is an Integrated Development Environment from Texas Instruments used to build and

debug applications developed in C or Assembly languages (see Figure 1). Some of the

special features of this environment are the possibility of reviewing variables or registers

from the DSK and also it is useful for exchange data between the board and other

programming languages such us Labview and MATLAB
®
.

CCS is used to calculate the quantity of floating point operations executed during any process

in order to evaluate the algorithm implementation performance. CCS IDE can be used for

reviewing results of an implementation due to the possibility of checking memory map.

 28

Figure 1: Sample of Programming Environment: "Code Composer Studio".

 29

3.2 CCS Installation and Support

The development environment is provided by Texas Instruments with the DSK board. Insert

the installation CD into the CD-ROM drive with the board disconnected. The CD is labeled

as “Code Composer Studio TM IDE Platinium v3.3”. It is not required to connect the card

using the USB port at the time of installation.

In the Texas Instruments web page (www.ti.com) it is possible to access technical

documentation, download libraries, discussion groups and technical conferences.

The following figure is the first window that appears when you insert the installation CD.

Figure 2: Code Composer Studio (CCS) v3.3 Installation Wizard

In this windows click “Next” to proceed with the installation.

http://www.ti.com/

 30

CCS installation wizard will check your system in order to verify that it has the minimum

requrements for installation.

Figure 3: CCS System Requirements Verification

Note: If your system does not meet the minimum requirements the software may not

function.

Click “Next” if your system has all the minimum requirements.

 31

In order to complete the installation process it is needed to accept the license agreement.

Select the option “I accept the License Agreement”, then select the button “Next” (see

Figure 4).

Figure 4: CCS License Agreement

 32

The CCS has three types of installation: Typical Install, Debugger-Only Install and Custom

Install.

The Typical Install is the recommended installation for users without experience. In this type

of installation the most common application features will be installed. Select “Typical

Install ” and then select “Next”.

Figure 5: CCS Instalation Type Selection

 33

The installation creates a folder with the name C:\CCStudio_v3.3\ by default. The CCS icon

should be on the desktop and it is called CCStudio v3.3 by default.

Figure 6: CCS Destination Folder

 34

Once the folder is created the program is ready to be install. Click “Install Now” to proceed

with the installation.

Figure 7: Code Composer Studio v3.3 Installation

 35

This window is presenting the installation progress.

Figure 8: CCS Installation Progress

 36

Once the installation is over, click “Finish” to complete the installation procedure.

Figure 9: Finished CCS Installation

Code Composer Studio v3.3 Platinum installs all the drivers needed to work in the

simulation stage, but does not have the drivers needed to complete the emulation stage. After

installing the program Code Composer Studio v3.3 Platinum, proceed to install the drivers

CD labeled as "Code Composer Studio 2.x/3.x Driver Disk for Digital Spectrum

Emulators", that allow the users to complete the emulation stage. This software is included

in the SPI525 PCI JTAG Emulator package.

Note: Code Composer Studio 2.x/3.x Driver Disk for Digital Spectrum Emulators only will

be installed if the user wants to do implementations using the TMS320C6713 DSP

(emulation stage).

 37

Insert the CD labeled as "Code Composer Studio 2.x/3.x Driver Disk for Digital Spectrum

Emulators”. On the first window select “CCS V3.1x PRODUCTS“(see Figure 10).

Figure 10: CCS Emulation Drivers Main Menu Window

In the following window select “CCS 3.1 Platinum Drivers” in order to begin the installation

process.

 38

Figure 11: CCS 3.1 Planinum Driver

The InstallShield Wizard window for SD CCS 3.1 Emulation Drivers appears to continue the

installation. Click “Next” to proceed.

 39

Figure 12: CCS 3.1 Emulation Drivers Installation Window

The Typical option is the recommended installation for users without experience. In this type

of installation the most common application features will be installed. Select “Typical ” and

then select “Next”.

 40

Figure 13: CCS Emulation Drivers Setup Type Selection

Change “Destination Folder” from the direction C:\CCStudio_v3.1 to C:\CCStudio_v3.3.

To change the folder click “Browse…” and select the folder located at C:\CCStudio_v3.3.

 41

Figure 14: Selection of Destination Location for CCS 3.1 Emulation Drivers

In the following window you have the opportunity to go back and verify all the previous

settings. If you are satisfied with the settings click “Next”to begin the installation.

 42

Figure 15: CCS 3.1 Emulation Drivers Installation Progress

 Figure 16 presents the software installation progress window.

 43

Figure 16: CCS 3.1 Emulation Drivers Installation Progress

In order to finish the CCS Emulation Drivers installation, click “Finish”.

 44

Figure 17: CCS Emulation Drivers Installation Closure

Once the installation process is finished, select Main Menu in the Emulation Drivers window

(see Figure 18).

 45

Figure 18: CCS 3.1 Planinum Driver

Select “Exit” to finish the emulation drivers installation procedure.

 46

Figure 19: CCS Emulation Drivers Main Menu Window

3.3 CCS Setup and Initialization

– To setup the Code Composer Studio V3.3 environment in a Windows XP system,

click on Start and select All Programs Texas Instruments Code Composer

Studio 3.3 Setup CCStudio v3.3 (see Figure 20).

– If the Setup CCStudio v3.3 icon is located at the Desktop, this application can also be

accessed by double clicking on this icon.

 47

Figure 20: Location of CCS in Windows XP

 48

The following setup window for CCS will appear:

Figure 21: Code Composer Studio Setup

– Here, the programming environment must be selected by the user: simulation or

emulation.

 Simulation implies that the application program developed can be compiled

and executed, without physically connecting the target board to the computer.

 Emulation implies that the target must be connected to the computer in order

to compile and execute the application program.

 49

3.3.1 Selecting Simulation Environment

– As mentioned previously, simulation implies that the application program developed

can be compiled and executed, without physically connecting the target board to the

computer.

– To conduct a simulation analysis , the user must access the Setup Code Composer

Studio v3.3 tool, and follow these subsequent steps:

 Next to Available Factory Boards, under Family, select the option C67xx.

 Under Platform, select simulator.

 Under Endianness, select little.

 Under Available Factory Boards, a list of possible simulators should appear.

Here, C6713 Device Cycle Accurate Simulator should be selected, by a

single click, then pressing the Add button, located at the middle bottom (see

the bottom figure). The simulator can also be selected by double clicking on

the simulator board.

 Next, press Save & Quit. Note: if there are any other boards under System

Configuration, proceed to remove them. This is done by selecting each board

and hitting the delete key. Only the C6713 Device Simulator must be

selected.

 A prompt window will appear, asking the user if he/she wishes to save the

changes made to system configuration. The button Yes should be selected.

 A second prompt window will appear, asking the user if Code Composer

Studio should start on exit. The user should press Yes.

 50

Figure 22: Selecting Simulation Environment

 51

3.3.2 Selecting Emulation Environment

If the user desires to work in the emulation environment, the DSP board should be connected

to the PC or work station at this point. First, the power supply should be connected to the

board through the power jack. Next, the DSP board should be connected to the PC or work

station via the USB port (see Figure 24).

Figure 23: TMS320C6713 "Digital Starter Kit" (DSK)

Figure 24: TMS320C6713 DSP Board

Power Supply

USB Cable

Jack to Connect

the Power Supply
USB Port

 52

To set up the emulation environment, the user should access the Setup Code Composer

Studio v3.3 tool by going to All Programs Texas Instruments Code Composer

Studio 3.3 Setup CCStudio v3.3 and follow these subsequent steps:

– Next to Available Factory Boards, under Family, select the option C67xx.

– Under Platform, select dsk.

– Under Endianness, select little.

– Under Available Factory Boards, the option C6713 DSK-USB and/or

C6713 DSK should appear.

– Here, C6713 DSK-USB or C6713 DSK should be selected, by a single click,

then pressing the Add button, located at the middle bottom. The emulator can

also be selected by double clicking on the emulator board.

– Next, press Save & Quit. Note: if there are any other boards under System

Configuration, proceed to remove them. This is done by selecting each board

and hitting the delete key. Only the C6713 DSK-USB or the C6713 DSK

must be selected.

– A prompt window will appear, asking the user if Code Composer Studio

should start on exit. The user should press Yes.

 53

Figure 25: Emulation Environment Selection

Previous to start CCS operation the board should be connected to the power and also the PC

by USB connection.

– Once CCS is launched, go Debug Connect, in order to establish connection with

the board.

 54

Figure 26: Establish the Connection between the CCS and the TMS320C6713 DSP

 55

3.4 General Algorithm Implementation on the Board

The process in an algorithm implementation on the board is:

 1. Create a project, add it the C or assembly programs and the libraries nedded for the

program.

 2. Build your project

 3. Download the project to the board.

 4. Run the project

 5. Evaluate results and correct errors.

 6. In case of errors in the results return to the step two.

3.4.1 Types of Useful Files

Each program that is constructed using “Code Composer Studio” will be working with a

number of files with different extensions:

– Namefile.pjt: to create and build a project.

– Namefile.c: C source program created by the user. There could be one or more

depending on the application.

– Namefile.asm: Assembly source program created by the user. There could be one or

more depending on the application.

– Namefile.h: Header support file.

– Namefile.lib: Library file.

– Namefile.cmd: Linker command file that maps sections to memory in the DSP.

– Namefile.obj: Files created after compiling the project.

– Namefile.out: Executable file created by the linker to be loaded on the processor.

– Namefile.cdb: Configuration file when using DSP/BIOS.

 56

3.4.2 DSK Support Tools

The following support files are frequently used when a project is created:

– C6713dskinit.c: Includes functions for initializing the DSK, the codecs for the serial

ports and the I/O of the target board.

– C6713dskinit.h: Provides description of the functions used to initialize target board.

– C6713dsk.cmd: File used for the memory organization and distribution of the DSP.

– Vectors_intr.asm: Assembly source file used for managing interrupts.

– Vectors_poll.asm: Assembly source file used for managing access to ports through

“polling”.

– rts6700.lib: dsk6713bsl.lib; csl6713.lib; rtdx.lib: Support libraries needed for the

DSP target board and data interchange in “real-time”.

 57

3.5 Programming Examples to test the DSK Tools

The following program example illustrates the features of the CCS and the DSK board. This

example shows step by step how to create a project to compile and download to the DSK

TMS320C6713. Be sure to place the files included with this guide in

C:\CCStudio_v3.3\MyProjects, before starting the examples.

3.5.1 Example 1. Hello World!

AIM:

This example helps us begin to understand the functionality of the CCS and the

TMS320C6713 DSP.

EQUIPMENT:

PC - Windows XP Operating System

Software - CCStudio V3.3

Hardware - TMS320C6713 DSP

PROGRAM:

#include <std.h>

// ======== main ========

void main()

{

puts("hello world!\n");

return;

}

Creating the Project:

In this section is shown how to create a project, adding the necessary files to build a project

using “Code Composer Studio”.

1. Select Project New. In the filename, type the name “hello” of the new project

and click “Save”.

This project file (.pjt) is saved in the folder “hello” (within

C:\CCStudio_v3.3\MyProjects\hello). Figure 27 shows how create a new project

and in the Figure 28 the project view files.

 58

Figure 27: Window for the creation of a New Project

 59

Figure 28: Project Folders

2. Select File New Source File, copy the following source code (.C), click

File Save As and save the file as “hello.c” in the following path

C:\CCStudio_v3.3\MyProjects\hello.

C source code:

#include <std.h>

// ======== main ========

void main()

{

puts("hello world!\n");

return; }

 60

3. Select Project Add files to project. Add the file “hello.c” created in the previous

step.

4. Copy and Paste the file vectors_poll.asm, located in the path

C:\CCStudio_v3.3\MyProjects\Support_files_6713, to the folder “hello”. Repeat

step 3 to add to the project the “.asm” source file vectors_poll.asm. Repeat again and

select files “.cmd”, C6713dsk.cmd to add to the project.

5. Similarly as the previous step the following “.lib” files should be added: rts6700.lib,

dsk6713bsl.lib and with the chip support library file csl6713.lib.

6. Select Project Scan All Files Dependencies. Verify that all the files that are

shown in the Figure 29 were added to the project.

 61

Figure 29: Project Files

7. Once all of the files are added to the project, the project must be built. This is done by

going to Project Build Options. This option is used to properly set up the

compiler and linker, based on the characteristics of the TMS320C6713 DSP board.

Several settings should to be chosen or written, and the option OK is selected after all

settings are verified.

8. Under Compiler Category Basic

– The target version: C671x (-mv6710) should be highlighted

 62

Figure 30: Setting the Target Version

9. Under Compiler Preprocessor:

– In Pre-Define Symbol, the following should be written: CHIP_6713. This

specifies the DSP chip that the target board utilizes.

 63

Figure 31: Specifying the Chip Architecture

10. Under Linker Libraries:

– In Included Libraries (-l), these libraries must be specified: rts6700.lib;

dsk6713bsl.lib; csl6713.lib

 64

Figure 32: Libraries Nedded for the Project

11. Now the user may click OK once all the previous building option settings have been

established.

Compiling and Debugging the Project

In this step the C compilation and linker to build a project.

1. Click on the “rebuild all” button that is in the upper part of the CCS

environment and verifies that you have 0 errors.

 65

Figure 33: Compiling Results

Note: If there are errors in your code, they will be listed with the corresponding line

numbers. Correct them and rebuild your project.

2. Select File Load Program. Choose the file “hello.out” that is located in the

following path: C:\CCStudio_v3.3\MyProjects\hello\Debug.

3. Click on the “run” button that is located on the left side of the CCS

environment.

Results Obtained:

On the “Stdout” a message “hello world!” is printed and then the program is finalized.

Figure 34: Results Obtained after Run the Algorithm "hello world"

 66

3.5.2 Example 2. Fast Fourier Transform (FFT) -- (Created Project Version)

Code Developed by Rulph Chassaing[1]

AIM:

FFT algorithm takes a given input signal and returns its Fourier transform.

EQUIPMENT:

PC - Windows XP Operating System

Software - CCStudio V3.3 Platinium

Hardware - TMS320C6713 DSP

Figure 35 is presenting the files needed for the creation of the FFT project. The folder is

located at C:\CCStudio_v3.3\MyProjects\FFTproject_files.

Figure 35: FFT Files

This section show how to open a project using “Code Composer Studio”.

1. Click Project Open. Look and click on the file FFTproject.pjt in the following

path: C:\CCStudio_v3.3\MyProjects\FFTproject.

 67

Figure 36: Open FFT Project

Figure 37: FFT Project Selection

 68

2. Double click on “FFTproject.pjt” on the left side of CCS and click on Source to see

the files. Then double click on “FFTproject.c”. Your environment should looks like

Figure 38 and should have all the files that are on the left side.

Note: Verify that the options in Project Build Options, are correct (Steps from 7

to 11, Example 1: hello world)

Figure 38: CCS Environment for FFT Example

 69

Compiling and Debugging the Project

Click on the “rebuild all” button that is in the upper part of the CCS environment and

review that you have 0 errors.

Figure 39: FFT Project Compiling Results

Note: If there are errors in your code, they will be listed with the corresponding line numbers.

Correct them and rebuild your project.

3. Select File Load Program. Choose the file “FFTproject.out” that is located in

the following path: C:\CCStudio_v3.3\MyProjects\FFTproject\Debug.

Figure 40: “Load Program” Location

 70

Figure 41: “FFTproject.out” File Location

Figure 42: Downloading the “FFTproject.out” File to the TMS320C6713 DSP

4. Click on the “run” button that is located on the left side of the CCS

environment.

 71

Results Obtained:

On the “Stdout” are printed messages of the program process until the execution is done. In

the Debug folder three data files are generated: input_signal_real_DSP256pts.txt,

input_signal_imag_DSP256pts.txt and transform_DSP256pts.txt.

– input_signal_real_DSP256pts.txt – This file contains the real part of the input signal.

– input_signal_imag_DSP256pts.txt - This file contains the imaginary part of the input

signal.

– transform_DSP256pts.txt – This file contains the Fourier transform of a given

input signal.

Figure 43: Results Obtained after Run the FFT Algorithm.

 72

3.5.3 Example 3. Fast Fourier Transform (FFT) -- (Creating the Project Version)

Code Developed by Rulph Chassaing

AIM:

FFT algorithm takes a given input signal and returns its Fourier transform.

EQUIPMENT:

PC - Windows XP Operating System

Software - CCStudio V3.3 Platinium

Hardware - TMS320C6713 DSP

Figure 44 is presenting the files needed for the creation of the FFT project. The folder is

located at C:\CCStudio_v3.3\MyProjects\FFTproject_files.

Figure 44: FFT Project Files

 73

Creating the Project:

This section show how to create a project, adding the necessary files to build a project using

“Code Composer Studio”.

1. Select Project New. In the filename, type the name “FFTproject” of the new

project and click “Save”.

This project file (.pjt) is saved in the folder “FFTproject” (within

C:\CCStudio_v3.3\MyProjects\FFTproject). Figure 46 shows how create a new

project and in the Figure 47 presents where the folder is created.

Figure 45: Creating a New Project

 74

Verify if the following option is selected:

Target TMS320C67XX, and then click Finish.

Figure 46: Window for the Creation of a New Project

Figure 47: FFT Project Folder

 75

2. Copy the following files from C:\CCStudio_v3.3\MyProjects\FFTproject_files to

C:\CCStudio_v3.3\MyProjects\FFTproject:

– C6713dsk.cmd

– C6713dskinit.c

– C6713dskinit.h

– FFTproject.c

– csl6713.lib

– dsk6713.h

– dsk6713_aic23.h

– dsk6713bsl.lib

– rts6700.lib

Figure 48: FFT Project Files

 76

3. Select Project Add files to project. Add the following files:

– C6713dsk.cmd

– C6713dskinit.c

– FFTproject.c

– csl6713.lib

– rts6700.lib

– dsk6713bsl.lib

Figure 49: Adding Files to the Project

4. Select Project Scan All Files Dependencies. Verify that all the files that are

shown in the Figure 50 were added to the project.

 77

Figure 50: Project Files

5. Once all of the files are added to the project, the project must be built. This is done by

going to Project Build Options. This option is used to properly set up the

compiler and linker, based on the characteristics of the TMS320C6713 DSP board.

Several settings should to be chosen or written, and the option OK is selected after all

settings are verified.

 78

Figure 51: Build Option Setting Location

6. Under Compiler Category Basic

– The target version: C671x (-mv6710) should be highlighted

Figure 52: Setting the Target Version

 79

7. Under Compiler Category Advanced:

– In Memory Models select Far (-mem_model:data=far).

– Verify that Endianness is selected to be Little Endian.

Figure 53: Memory Model Type Selection

8. Under Compiler Category Preprocessor:

– In Pre-Define Symbol, the following should be written: CHIP_6713. This

specifies the DSP chip that the target board utilizes.

 80

Figure 54: Specifying the Chip Architecture

9. Under Linker Libraries:

– In Included Libraries (-l), these libraries must be specified: rts6700.lib;

dsk6713bsl.lib; csl6713.lib

 81

Figure 55: Libraries Needed for the Project

10. Now the user may click OK once all the previous building option settings have been

established.

Compiling and Debugging the Project

Click on the “rebuild all” button that is in the upper part of the CCS environment and

review that you have 0 errors.

Figure 56: FFT Project Compiling Results

 82

Note: If there are errors in your code, they will be listed with the corresponding line numbers.

Correct them and rebuild your project.

1. Select File Load Program. Choose the file “FFTproject.out” that is located in

the following path: C:\CCStudio_v3.3\MyProjects\FFTproject\Debug.

Figure 57: “Load Program” Location

Figure 58: “FFTproject.out” File Location

 83

Figure 59: Downloading the “FFTproject.out” File to the TMS320C6713 DSP

2. Click on the “run” button that is located in the left side of the environment

CCS.

Results Obtained:

On the “Stdout” are printed messages of the program process until the execution is done. In

the Debug folder three data files are generated: input_signal_real_DSP256pts.txt,

input_signal_imag_DSP256pts.txt and transform_DSP256pts.txt.

– input_signal_real_DSP256pts.txt – This file contains the real part of the input signal.

– input_signal_imag_DSP256pts.txt - This file contains the imaginary part of the input

signal.

– transform_DSP256pts.txt – This file contains the Fourier transform of a given

input signal.

 84

Figure 60: Results Obtained after Run the FFT Algorithm.

 85

3.5.4 Example 4. Corner Turning -- (Created Project Version)

Code Developed by Abigail Fuentes and Inerys Otero.

AIM:

This example helps us begin to understand the functionality of the CCS and the

TMS320C6713 DSP. The Corner Turning algorithm allows the users to obtain the transpose

of an input matrix.

EQUIPMENT:

PC - Windows XP Operating System

Software - CCStudio V3.3 Platinium

Hardware - TMS320C6713 DSP

Figure 61 is presenting the files needed for the creation of the Corner Turning project. The

folder is located at C:\CCStudio_v3.3\MyProjects\Corner_Turning_files

Figure 61: Corner Turning Files

This section show how to open a project using “Code Composer Studio”.

 86

1. Click Project Open. Look and click on the file Corner_Turning.pjt in the

following path: C:\CCStudio_v3.3\MyProjects\Corner_Turning.

Figure 62: Open "Corner Turning" Project

 87

Figure 63: Corner_Turning Project Selection

2. Double click on “Corner_Turning.pjt” on the left side of CCS and click on Source to

see the files. Then double click on “Corner_Turning.c”. Your environment should

look like Figure 64 and should have all the files that are on the left side.

Note: Verify that the options in Project Build Options, are correct (Steps from 7

to 11)

Figure 64: CCS Environment for Corner Turning Example

Compiling and Debugging the Project

Click on the “rebuild all” button that is in the upper part of the CCS environment and

review that you have 0 errors.

 88

Figure 65: Corner Turning Compiling Results

Note: If there are errors in your code, they will be listed with the corresponding line numbers.

Correct them and rebuild your project.

3. Select File Load Program. Choose the file “Corner_Turning.out” that is

located in the following path:

C:\CCStudio_v3.3\MyProjects\Corner_Turning\Debug.

Figure 66: “Load Program” Location

 89

Figure 67: “Corner_Turning.out” File Location

Figure 68: Downloading the Corner_Turning.out File to the TMS320C6713 DSP

4. Click on the “run” button that is located in the left side of the environment

CCS.

Results Obtained:

On the “Stdout” there are printed messages of the program process until the execution is

done. In the Debug folder a data file is generated with the transposed matrix.

 90

Figure 69: Results Obtained after Run the Algorithm "Corner_Turning".

 91

3.5.5 Example 5. Corner Turning -- (Creating the Project Version)

Code Developed by Abigail Fuentes and Inerys Otero.

AIM:

This example helps us begin to understand the functionality of the CCS and the

TMS320C6713 DSP. The Corner Turning algorithm allows the users to obtain the transpose

of an input matrix.

EQUIPMENT:

PC - Windows XP Operating System

Software - CCStudio V3.3 Platinium

Hardware - TMS320C6713 DSP

Figure 70 is presenting the files needed for the creation of the Corner Turning project. The

folder is located at C:\CCStudio_v3.3\MyProjects\Corner_Turning_files.

Figure 70: Corner Turning Files

 92

Creating the Project:

This section show how to create a project, adding the necessary files to build a project using

“Code Composer Studio”.

1. Select Project New. In the filename, type the name “Corner_Turning” of the

new project and click “Save”.

This project file (.pjt) is saved in the folder “Corner_Turning” (within

C:\CCStudio_v3.3\MyProjects\Corner_Turning). Figure 72 shows how create a new

project and in the Figure 73 presents where the folder is created.

Figure 71: Creating a New Project

Verify if the following option is selected:

Target TMS320C67XX, and then click Finish to continue.

 93

Figure 72: Window for the Creation of a New Project

Figure 73: Corner_Turning Project Folder

 94

2. Copy the following files from C:\CCStudio_v3.3\MyProjects\Corner_Turning_files

to C:\CCStudio_v3.3\MyProjects\Corner_Turning:

– C6713dsk.cmd

– C6713dskinit.c

– C6713dskinit.h

– cornerTurning.c

– csl6713.lib

– dsk6713.h

– dsk6713_aic23.h

– dsk6713bsl.lib

– main.c

– rts6700.lib

Figure 74: Corner Turning Project Files

 95

3. Select Project Add files to project. Add the following files to the project:

– C6713dsk.cmd

– C6713dskinit.c

– cornerTurning.c

– csl6713.lib

– dsk6713bsl.lib

– main.c

– rts6700.lib

Figure 75: Adding Files to the Project

4. Select Project Scan All Files Dependencies. Verify that all the files that are

shown in Figure 76 were added to the project.

 96

Figure 76: Project Files

5. Once all of the files are added to the project, the project must be built. This is done by

going to Project Build Options. This option is used to properly set up the

compiler and linker, based on the characteristics of the TMS320C6713 DSP board.

Several settings should to be chosen or written, and the option OK is selected after all

settings are verified.

 97

Figure 77: Build Option Setting Location

6. Under Compiler Category Basic

a. The target version: C671x (-mv6710) should be highlighted

Figure 78: Setting the Target Version

7. Under Compiler Category Advanced:

– In Memory Models select Far (-mem_model:data=far).

– Verify that Endianness is selected to be Little Endian.

 98

Figure 79: Memory Model Type Selection

8. Under Compiler Category Preprocessor:

– In Pre-Define Symbol, the following should be written: CHIP_6713. This

specifies the DSP chip that the target board utilizes.

 99

Figure 80: Specifying the Chip Architecture

9. Under Linker Libraries:

– In Included Libraries (-l), these libraries must be specified: rts6700.lib;

dsk6713bsl.lib; csl6713.lib

 100

Figure 81: Libraries Needed for the Project

10. Now the user may click OK once all the previous building option settings have been

established.

Compiling and Debugging the Project

In this step the C compilation and linker to build a project are performed.

1. Click on the “rebuild all” button that is in the upper part of the CCS

environment and verifies that you have 0 errors.

Figure 82: Compiling Results

 101

Note: If there are errors in your code, they will be listed with the corresponding line

numbers. Correct them and rebuild your project.

2. Select File Load Program. Choose the file “Corner_Turning.out” that is located

in the following path: C:\CCStudio_v3.3\MyProjects\Corner_Turning\Debug.

Figure 83: “Load Program” Location

 102

Figure 84: Corner_Turning.out File Location

Figure 85: Downloading the Corner_Turning.out File to the TMS320C6713 DSP

3. Copy the following files from

C:\CCStudio_v3.3\MyProjects\Corner_Turning_files\data to

C:\CCStudio_v3.3\MyProjects\Corner_Turning\Debug:

– Edatain.txt

– Sdatain.txt

 103

Figure 86: Corner Turning Input Data and Validation Files

4. Click on the “run” button that is located in the left side of the environment

CCS.

Results Obtained:

On the “Stdout” are printed messages of the program process until the execution is done. In

the Debug folder a data file is generated with the transposed matrix.

 104

Figure 87: Results Obtained after Run the Algorithm "Corner_Turning".

 105

4 SIGNAL OPERATOR FORMULATIONS FOR

MATLAB IMPLEMENTATION

This chapter presents a set of linear finite dimensional signal operators which are

fundamentals in the development of signal processing algorithms. The signal operators are

formulated with respect to the standards basis to facilitate their matrix implementation.

In this contest, the signal operators admit easy implementation in a MATLAB environment,

due to the fact that MATLAB stands for MATrix LABoratory and facilitates the

implementation of algorithms expressed in matrix-vector form.

4.1 Linear Shift Invariance Systems

4.1.1 Matrix Representation of LSI-FIR Systems

In this section we discuss the representation of LSI-FIR through matrices. Since each N -

dimensional LSI-FIR system    T L Z L Zh N N:  represents a linear transformation on the

space  L ZN
, Th is determined by its action on a set of basis vectors (signals) spanning  L ZN

.

If we choose as reference the standard basis set
  

j Nj Z:  , then each signal

    T L Zh j N  can be uniquely expressed as a linear combination of the basis set. We

write

      
T h j kh k

j Z
j

N

 


 ,

where the set of scalars

  h j k j Z k ZN N, : , 

represents the vector coordinates of the given signal   T k Zh k N ,  , with respect to the

standard basis set. The signal   T h k
 can be written as

 106

   T h k
j ZN

 


       T jh k j
 

where

                  T j h m S j h m jh k
m Z

N

m

k
m Z

k m

N N

   
 

 

         jhSkjhmkjmh k

N

Zm N

 




Thus, we write

          
T h j k h j kh k

j Z
j

j Z
j

N N

    
 

 ,

      
  

     


 S h j S T h S hN

k

j Z
N

j

S h N

k

N
N
k

Next, we define the matrix HN as follows

     H h j k h j kN j k Z j k ZN N

  
 

,
, ,

The matrix HN , thus, have the following form

       

       

       

       

H

h h N h N h

h h h N h

h h h h

h N h N h N h

N 

 



  























0 1 2 1

1 0 1 2

2 1 0 3

1 2 3 0







    



We notice that the columns of HN are formed by shifted versions of the coordinate vector

representation of the signal h; that is, we can write HN as

      H I h S h S h S hN N N N N

N , , , ,2 1

where SN is the matrix representing the shift operator SN ; and h is the coordinate vector

representation of the signal h.

 107

We would like to describe in more details how the matrix HN, representing the system

Th, is obtained. Starting with expression above, we rewrite

          
k N

j

j Z

h j k S h j k C
N

 


 , , ,

                


h k h k h N k
N

0 1 1
0 1 1

, , ,  

Evaluating this expression at different values of k ZN results in the following set of

identities:

          T h hh   
0 0 1

0 0 1 0  , , 

    


h N
N

1 0
1

, 

          T h hh   
1 0 1

0 1 11  , , 

    


h N
N

1 1
1

, 



          T h N h Nh N
  


   

1 0 1
0 1 1 1, ,

      


 h N N
N

1 1
1

, 

We write these identities in an array form:

  
  

  

     
     

     

T

T

T

h h h N

h h h N

h N h N h N N

h

h

h N







0

1

1

0 0 1 0 1 0

0 1 11 11

0 1 1 1 1 1







   






























   





















, , ,

, , ,

, , ,

 

 

 





























0

1

1



N

 108

We know obtain a vector-matrix representation of a cyclic convolution opration described in

6.5 . Given a system Th and a signal  f L ZN , the response  g T fh is obtained as

follows

   
 

g T f T f kh h j
k ZN

 








 

        
 

 

 f k T g jh k
k Z

j
j ZN N

 

Expanding the above sum, we obtain

                T f f T f T f N Th h h h N
    


0 1 1

0 1 1
  

where

                f T f h f hh0 0 0 0 0 1 0
0 0 1

    , , 

       


f h N
N

0 1
1



                 f T f h f hh1 1 0 1 1 11
10 0 1

    , , 

       


f h N
N

1 11
1

, 

 

                f N T f N h N f N hh N N
     

 
1 1 0 1 1 1

1 0 1
  ,

        


 f h N
N

1 11
1

, 

The addition of the above set of equations produces the following expression

        g T f g j f L Zh j N
j ZN

  


  ,

                   f h f h f N h N0 0 0 1 0 1 1 0 1
0

, , , 

          f h f h0 1 0 1 11, , 

         f N h N1 1 1
1

,  

            f h N f h N0 11 1 11, , 

          


f N h N N
N

1 1 1
1

, 

        
 













T f f k h j kh
k Zj Z

j
NN

, 

 109

where

          
 g m T f f k h j k mh

k Zj Z
j

NN

 












 , 

     


 f k h m k m ZN

K ZN

, ,

in vector notation, we have

 

 

 

 

   

   

   

   

g

g

g j

g N

f k h k

f k h k

f k h j k

f k h N k

k

N

k

N

k

N

k

N

0

0

1

0

1

1

0

1

0

1

0

1

0

1


























































































,

,

,

,

Factoring out the vector f form above, we obtain the following matrix-vector representation

 

 

 

 

       
       

       

       

g

g

g j

g N

h h h k h N

h h h k h N

h j h j h j k h j N

h N h N h N k h N N

0

1

1

0 0 0 1 0 0 1

1 0 11 1 1 1

0 1 1

1 0 11 1 1 1





 

 

     

 

     

 



































    



























, , , ,

, , , ,

, , , ,

, , , ,

 

 

 

 

f

f

f k

f N

0

1

1

































 110

Recalling that    h j k h j k j k ZN, , , ,   we write

 

 

 

 

       

       

       

       

g

g

g j

g N

h h N h N k h

h h h k h

h j h j h j k h j

h N h N h N k h

0

1

1

0 1 1

1 0 1 2

1 1

1 2 1 0





 

 

     

 

     

 





























 



  

   



























 

 

 

 

f

f

f k

f N

0

1

1

































The above matrix-vector operation  g H fN represents the cyclic convolution operation

 g f h T fh * , where we have the same symbols and denote, both, the coordinate

vector representation of the signals and , respectively, as well as the signals themselves;

and the matrix HN represents the system Th :

          H T T TN h h h N



  

0 1 1
, , ,

 
 

 
 

 
  


T h T h T h

N  0 1 1
, , ,

        I T S T S TN h N h N

N

h  , , , 1

 111

Here, again, we have used commas to separate the vectors; and we have used the same

notation used for the signals in order to denote the coordinate vector representation of the

signals. The computation of the cyclic convolution operation

   g f h T f f h L Zh N  * , ,

is now performed by substitution into the defining equation

     g T f T f kh h k
k

N

 














 
0

1

and proceed in the following manner

      T f T f kh h k
k ZN










 

     


 f k Th k
k ZN



      
 













 f k h j k
j

j Zk Z NN



    
 

 












 h j k f k
k Zj Z

j
NN



Evaluating  g L ZN at a particular index value j ZN results in

         
  g j T f j h j k f k jh

k Z
j

j Z NN

  












 

         








  

 

 h j k f k h j k f k
k Zj Z k ZNN N



 112

4.1.2 Spectral Properties of LSI-FIR systems

In this section we will describe the spectral properties of LSI-FIR systems. A shift

invariant linear operator acting on an N- dimensional vector space may be reprented in the

frequency domain by using the concepts of eigen-functions (eigenvectors) and eigenvalues.

The eigenvalues correspond to the natural frequencies encountered in the spectral

representation of the impulse response signal of a given LSI-FIR system. We will be more

explicit later on in describing the relationship existing between the eigenvalues (and their

associated eigenfunctions) of a given LSI-FIR operator Th and the frequency section

describing some properties of the system
 

T 1
which are essentially the same as the properties

of the shift operator SN . The simplest LSI-FIR system, apart from the trivial system, i.e., the

system represented by the identity operator IN , is the system represented by the shift operator

SN . The system is sometimes called the unit delay system because its digital electronics

hardawre implementation may be accomplished by using a single delay element. We use the

same symbol SN to denote the matrix representation of the shift operator SN . This matrix

reprentation is now given. Recalling that

    T j S S S
j Z

N

j

N

N

 
1 1

1  




we have,

             T S
k k N k k     

1 1 1
  


*

 113

The matrix SN representing the shift operator SN is obtain by allowing the vector reprentation

(with respect to the standard basis set   
k Nk Z: ) of the signal

    T k Z
k N 

1
, ,

become the columns of the matrix SN :

   
 

   
 

   
  S T T TN N


    

1 0 1 1 1 1
, , , ,

         


   
1 2 1 0

, , , ,
N

where we have separeted by commas the columns of SN for legibility. The matrix SN becomes

SN 























0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0







    



An important property of the SN operator matrix is that any LSI-FIR system Th may be

represented by a matrix HN which can be written as a sum of powers of the matrix SN pre-

multiplied by a diagonal matrix
 

D
h j

:

    H D S h j SN h j N

j

N

j

j Zj Z NN

  




where

 

 
 

 

D

h j

h j

h j

h j























 , j ZN

 114

4.2 Cyclic Matrix

A cyclic matrix of order N is a N x N matrix of the form

Notice that the input of each column is exactly the same as the previous column, but they are

shifted one position downward. In this case our matrix is cycled downward and has the

previous form.

 115

4.3 Discrete Fourier Transform

Given a finite sucession x[n], where 0<=n<= N-1, the discrete Fourier transform of x[n]

is defined as the sucession given by

where .

It is common to call Wn=e^-j2pi/N and rewrite the discrete Fourier transform x[n] as

For a finite succession y[k], where 0<=k<=N-1, the inverse discrete Fourier transform of y[k]

is given by

 116

4.4 Other Operators and Properties

The first operator studied in this section is the reflection operator, which have

important and interesting properties.

The reflection operator over the space of unidimentional signals is defined by

 ℤ ℤ

where

Lets calculate the Rn matrix of the reflection operator with respect to the standard base, this

is

now,

 117

So the matrix of the reflection operator is

which again we see is a cyclic matrix.

 118

4.5 Hadamard Product

The Hadamard product over the space I^2(Zn) of unidimensional signals is defined as

 ℤ ℤ ℤ

where

So notice that if

Then

Hadamard product satisfies the following properties:

1. ℤ

2. ℤ

3. ℤ

4. ℤ

 119

4.6 Convolution as a Fundamental Objective

The main objective of this section is the convolution operation as a basic tool in the

description of linear systems.

Given a finite signal and a discrete system, find the system output. Remember that all

finite signal must be discrete and its domain is a discrete and finite set. If we represent a

discrete system as a block diagram the following is obtained:

Figure 88: Discrete System Block Diagram

Observation

Discrete signal is defined as a vector. Finite signal is defined as finite dimension vector.

As a notation, the finite signals are represented as finite dimension vectors in column format.

Example

  4

2

4:

nj

enxn

CZx









          3,2,1,0 xxxxx

 
 
 
 



















3

2

1

0

x

x

x

x

x

Discrete
System

T

Finite

Signal
Discrete
Signal

x

 xy

 Correspond

 120

4.6.1 Discrete Filter

A discrete filter is any system that satisfies the conditions of invariance and linearity.

4.6.2 Response of a Filter to a Finite Signal

Figure 89: Discrete Filter Block Diagram

Unitary Impulse:  









N

N

Znn

Znn
n

,0,0

,0,1


We represent a vector as follows:

 nn

CZ N







:

        1,,1,0 N 

 
 

  









































0

0

1

1

1

0



N







Discrete
Filter

T

Unitary Impulse
    nTny 

 121

4.6.3 Finite Response Filters to a Finite Impulse

This type of filter is known in English by its acronym FIR (Finite Impulse Response).

Example

Figure 90: FIR Filter Block Diagram

Observation:

Every discrete filter with a finite response to an impulse is characterized by

its impulse response. This means that everything you need to now regarding this filter is

known, and even more, we can get the response of this filter to any input arbitrary but finite.

Figure 91: FIR Filter Block Diagram

Example 1

The Finite Response Averaging Filter to a unitary impulse

  













M

M

Zn

Zn
Mnh

,0

,
1

FIR Filter

T

      nhnTny     LZnn ,

  LZnnx ,     nxTny 

FIR Filter

T

     MZnnhnT  ,

     LZnnhnT  ,

CZh M :

… M

1

 122

 

 
 

  









































M

M

M

Mh

h

h

nh

/1

/1

/1

1

1

0



Example 2

Averaging Filter with input  2n

Figure 92: Averaging Filter Block Diagram

   nSn  2

 nSn

CZS L



:

 
 

 

 
 
 
 

  














































































0

0

1

0
0

3

1

0

1
2

1

1

0




L
LS

S

S

S










Observation

All finite signals with dimension L can be represented as a lineal combination of

displaced unitary impulse:      





1

0

L

k

knkxnx  .

Averaging Filter

T

    2 nTng    LZnn  ,2

 123

Example

Represent the signal     4,1 Znnxnx  as a sum of displaced unitary impulses.

  1

: 4





nnxn

CZx


  

 
 
 
  








































4

3

2

1

3

2

1

0

x

x

x

x

nx

n

 nx

1 2 3 0

2

4

  4,1 Znn 

1 2 3

1

n

  4,12 Znn 

1 2 3

2 + +

  4,23 Znn 

1 2 3

3
+ +

  4,34 Znn 

1 2 3

4

     



3

0k

knkxnx 

 n

 n

 n

 124

5 IMAGING FORMATION ALGORITHM

Synthetic aperture radar (SAR) imaging processing consists of forming an image of

a landscape or terrain surface using active sensing. In active sensing, an antenna transmits

and receives a series of pulse signals reflected from an area of interest. For SAR processing,

the antenna is placed on a moving platform, such as an aircraft or satellite. Hence a large

surface area can be covered by sections. For each section, the antenna is maintained fixed,

keeping that specific area illuminated, which is called a footprint. The antenna transmits

pulse signals to that region and receives pulses that are reflected back from the surface. The

signals that are reflected from the surface area form a reflectivity pattern. A convolution

operation is performed between the reflectivity pattern and the impulse response function that

characterizes the image formation system. This operation produces a two-dimensional raw

data. This data is spread in two distinct directions: in the azimuth direction, which is defined

to be in the same direction parallel to the antenna, and in the range direction, which is

perpendicular to the azimuth direction (see Figure 93). This data requires further processing

since the objects present in section of the surface cannot be clearly distinguished. To obtain a

better image two types of data compression are applied to the raw data, which are: range

compression and azimuth compression.

 125

Figure 93: Range and Azimuth Direction

First a range compression is performed. For this process each row of the raw data is

convolved with a range reference function. The range reference function (RRF) is

formulated taking into consideration the sampling rate, the duration of the transmitted pulse

signal and the frequency modulation (FM) rate of the radar pulse:

rate

tj FMeRRF *,
2

  
,

where  is the phase of the range reference function.

A transposed operation is applied on a resulting data obtained of the range compression. The

algorithm that is used to execute the transposed operation is known as Corner Turning. Then

an azimuth compression is performed. In the azimuth compression, the data compressed in

range is convolved with an azimuth reference function. This function is characterized by the

duration in which the target is maintained illuminated by the antenna beam, the phase

variation detected in the received signal, and the pulse repetition frequency (PRF):

22, tktfeARF anc

j   
,

where the  is the phase of the azimuth reference function which changes with the varying

frequency ncf .

 126

5.1 SAR Imaging Formation Design

SAR imaging formation was implemented on the TMS320C6713 DSP board using

the design procedure that was followed by Ana Ramirez for the implementation in MATLAB.

The Code Composer Studio V3.3 was used to develop the SAR imaging program application

in C language. Such program application included the implementation of range compression

and azimuth compression algorithms.

The first step for SAR imaging formation in hardware consisted of obtaining the

range reference function, the azimuth reference functions, and the raw data. These were

obtained by executing the MATLAB program main.m created by Ana Ramírez, and then

executing the program CreatingReferenceFunction.m. This was done in order to generate the

corresponding .txt files containing the real and imaginary parts of the complex the reference

functions and raw data. Such files were used as input for the SAR imaging formation

application program.

In the following figure, a block diagram is presented, which illustrates the overall design

procedure to implement the SAR imaging formation in hardware.

 127

Figure 94: SAR Image Formation Diagram Procedure

 128

5.2 Image Formation Results obtained

For the TMS320C6713 DSP board, the range and azimuth compression algorithms

were implemented and applied to the raw data provided. The imaging formation results are

demonstrated, where raw data of sizes 128x128, 256x256 and 512x512 were processed. The

resulting images obtained from range and azimuth compressions on the DSP board were

generated in MATLAB from the output files that were created during the imaging formation

process.

5.2.1 TMS320C6713 Emulation results for 128x128 Raw Data

Figure 95: Raw Data

Raw Data

20 40 60 80 100 120

20

40

60

80

100

120

 129

Figure 96: Data Compressed in Range

Figure 97: Applying Corner Turning to Data Compressed in Range Direction

Data Compressed in Range

20 40 60 80 100 120

20

40

60

80

100

120

Data to be compressed in Azimuth

20 40 60 80 100 120

20

40

60

80

100

120

 130

Figure 98: Data Compressed in Azimuth Direction

Data compressed in Azimuth Direction

20 40 60 80 100 120

20

40

60

80

100

120

 131

5.2.2 TMS320C6713 Emulation results for 256x256 Raw Data

Figure 99: Raw Data

Figure 100: Data Compressed in Range

Raw Data

50 100 150 200 250

50

100

150

200

250

Data Compressed in Range

50 100 150 200 250

50

100

150

200

250

 132

Figure 101: Applying Corner Turning to Data Compressed in Range Direction

Figure 102: Data Compressed in Azimuth Direction

Data to be compressed in Azimuth

50 100 150 200 250

50

100

150

200

250

Data compressed in Azimuth Direction

50 100 150 200 250

50

100

150

200

250

 133

5.2.3 TMS320C6713 Emulation results for 512x512 Raw Data

Figure 103: Raw Data

Figure 104: Data Compressed in Range

Raw Data

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Data Compressed in Range

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

 134

Figure 105: Applying Corner Turning to Data Compressed in Range Direction

Figure 106: Data Compressed in Azimuth Direction

Data to be compressed in Azimuth

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Data compressed in Azimuth Direction

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

 135

5.3 Example. Imaging Formation -- (Creating the Project Version)

Code Developed by Abigail Fuentes and Inerys Otero.

AIM:

Synthetic aperture radar (SAR) imaging formation was implemented on the TMS320C6713

digital signal processing (DSP) board. In order to obtain an image formation of a desired

surface from raw data, a range compression is first applied to the raw data. The compressed

data is then transposed, where such operation is known as corner turning; finally an azimuth

compression is applied to the transposed data in order to obtain the final image.

EQUIPMENT:

PC - Windows XP Operating System

Software - CCStudio V3.3 Platinium

Hardware - TMS320C6713 DSP

Main source files needed for application program

The image formation application program is implemented in these two source files:

 ImageFormation.c – This is the principal program where all the variables are

initialized, input data files are read, and output files are created after performing the

image formation operation.

 RangeCompression.c – This function performs the range compression using the

range reference function range_reference_real.txt, for the real part of the data and

range_reference_imagl.txt for the imaginary part.

 AzimuthCompression.c – This function performs the azimuth compression using the

nine different azimuth reference functions for both real and imaginary part.

 cornerTurning.c – This is the actually function that performs the corner turning

operation.

 create_complex_matrix.c – This function joints the real and imaginary part in one

complex matrix

 readingAzimuthFunctions.c – Reads the azimuth functions necessary for the azimuth

compression.

 FFTAzimuth.c – Computes one dimensional fast Fourier transform for the azimuth

compression.

 136

 FFTRange.c – Computes one dimensional fast Fourier transform for the azimuth

compression.

 IFFTRange.c – Computes one dimensional inverse fast Fourier transform (IFFT) for

the range compression.

 IFFTAzimuth.c – Computes one dimensional inverse fast Fourier transform for the

azimuth compression.

 divide.c – This function is used to implement the IFFT for both IFFTRange.c and

IFFTAzimuth.c.

 Separate_matrix.c – This function separates the real and imaginary part of complex

matrix

 ImageFormation_resultsDSP.m – This program provides the image obtained from

the range and azimuth compression.

Figure 107 is presenting the files needed for the creation of the Imaging Formation project.

The folder is located at C:\CCStudio_v3.3\MyProjects\ImageFormation_files.

Figure 107: ImagingFormation Files

 137

Creating the Project:

This section shows how to create a project, adding the necessary files to build a project using

“Code Composer Studio”.

1. Select Project New. In the filename, type the name “FFTproject” of the new

project and click “Save”.

This project file (.pjt) is saved in the folder “ImageFormation” (within

C:\CCStudio_v3.3\MyProjects\ImageFormation. Figure 109 shows how to create

a new project and Figure 110 presents where the folder is created.

Figure 108: Creating a New Project

 138

Verify if the following option is selected:

Target TMS320C67XX, and then click Finish.

Figure 109: Window for the Creation of a New Project

Figure 110: “ImageFormation” Project Folder

 139

2. Copy the following files from

C:\CCStudio_v3.3\MyProjects\ImageFormation_files to

C:\CCStudio_v3.3\MyProjects\ImageFormation:

– C6713dsk.cmd

– C6713dskinit.c

– C6713dskinit.h

– csl6713.lib

– dsk6713.h

– dsk6713_aic23.h

– dsk6713bsl.lib

– rts6700.lib

– AzimuthCompression.c

– bitrev.c

– cornerTurning.c

– create_complex_matric.c

– digitrev_index.c

– divide.c

– FFTAzimuth.c

– FFTRange.c

– Icfftr2_dif.c

– IFFTAzimuth.c

– IFFTRange.c

– ImageFormation.c

– RangeCompression.c

– readingAzimuthFunctions.c

– separate_matrix.c

 140

Figure 111: Image Formation Project Files

 141

3. Select Project Add files to project. Add the following files:

– C6713dsk.cmd

– C6713dskinit.c

– csl6713.lib

– dsk6713bsl.lib

– rts6700.lib

– AzimuthCompression.c

– bitrev.c

– cornerTurning.c

– create_complex_matric.c

– digitrev_index.c

– divide.c

– FFTAzimuth.c

– FFTRange.c

– Icfftr2_dif.c

– IFFTAzimuth.c

– IFFTRange.c

– ImageFormation.c

– RangeCompression.c

– readingAzimuthFunctions.c

– separate_matrix.c

 142

Figure 112: Adding Files to the Project

4. Select Project Scan All Files Dependencies. Verify that all the files that are

shown in Figure 113 were added to the project.

 143

Figure 113: Project Files

5. Once all of the files are added to the project, the project must be built. This is done by

going to Project Build Options. This option is used to properly set up the

compiler and linker, based on the characteristics of the TMS320C6713 DSP board.

Several settings should to be chosen or written, and the option OK is selected after all

settings are verified.

 144

Figure 114: Build Option Setting Location

6. Under Compiler Category Basic

a. The target version: C671x (-mv6710) should be highlighted.

 145

Figure 115: Setting the Target Version

7. Under Compiler Category Advanced:

– In Memory Models select Far (-mem_model:data=far).

– Verify that Endianness is selected to be Little Endian.

 146

Figure 116: Memory Model Type Selection

8. Under Compiler Category Preprocessor:

– In Pre-Define Symbol, the following should be written: CHIP_6713. This

specifies the DSP chip that the target board utilizes.

9. Under Linker Basic:

– In Heap Size (-heap) and in Stack Size (-stack), writes 32000.

 147

Figure 117: Building options for Linker Basic

 148

Figure 118: Specifying the Chip Architecture

10. Under Linker Libraries:

– In Included Libraries (-l), these libraries must be specified: rts6700.lib;

dsk6713bsl.lib; csl6713.lib

 149

Figure 119: Libraries Needed for the Project

11. Now the user may click OK once all the previous building option settings have been

established.

Compiling and Debugging the Project

Click on the “rebuild all” button that is in the upper part of the CCS environment and

review that you have 0 errors.

Figure 120: “ImageFormation” Project Compiling Results

 150

Note: If there are errors in your code, they will be listed with the corresponding line numbers.

Correct them and rebuild your project.

11. Copy the following files from

C:\CCStudio_v3.3\MyProjects\ImageFormation_files\data to

C:\CCStudio_v3.3\MyProjects\ImageFormation\Debug:

 raw_data_real128.txt, raw_data_imag128.txt – These files were previously

generated using MATLAB, as input raw data. Each of these files contains a 128x128

square matrix.

 Range and azimuth reference functions – These files are needed to execute the

range and azimuth compression:

– range_reference_real.txt

– range_reference_imag.txt

– azimuth128function1real.txt

– azimuth128function1imag.txt

– azimuth128function2real.txt

– azimuth128function2imag.txt

– azimuth128function3real.txt

– azimuth128function3imag.txt

– azimuth128function4real.txt

– azimuth128function4imag.txt

– azimuth128function5real.txt

– azimuth128function5imag.txt

– azimuth128function6real.txt

– azimuth128function6imag.txt

– azimuth128function7real.txt

– azimuth128function7imag.txt

– azimuth128function8real.txt

– azimuth128function8imag.txt

– azimuth128function9real.txt

– azimuth128function9imag.txt

 ImageFormation_resultsDSP.m

12. Select File Load Program. Choose the file “ImageFormation.out” that is

located in the following path:

C:\CCStudio_v3.3\MyProjects\ImageFormation\Debug.

 151

Figure 121: “Load Program” Location

Figure 122: “ImageFormation.out” File Location

 152

Figure 123: Downloading the “ImageFormation.out” File to the TMS320C6713 DSP

13. Click on the “run” button that is located in the left side of the environment

CCS.

Results Obtained:

Once the image formation application program has finished execution, the following .dat

files are created in the directory C:\CCStudio_v3.3\MyProjects\ImageFormation\Debug:

dataAzimuth_imag.dat, dataAzimuth_real.dat, DataAzimuthCompressed_imag.dat,

DataAzimuthCompressed_real.dat, dataRange_imag.dat, dataRange_real.dat. Run the

ImageFormation_resultsDSP.m file using MATLAB to see the resulting images.

 153

6 CONCLUSION AND FUTURE WORK

The TMS320C6713 User’s Guide resulted to be extremely helpful in the process of

getting acquainted with the DSP unit and Code Composer Studio. Through the User’s Guide

I was able to learn rapidly and efficiently how to implement different programs and

algorithms using the DSP unit.

SAR image formation algorithms were successfully implemented on the

TMS320C6713 DSP boards. Images were successfully obtained from the data compression

techniques, using raw data supplied by the AIP laboratory. For the TMS320C6713 DSP

board, image formation for raw data of sizes 128x128, 256x256, and 512x512 was achieved.

For raw data of size 512x512, the images were formed with more details and could be

appreciated better, in comparison with raw data of smaller sizes.

 I expected that my research project will help future users to bridge the existent gap

between the DSP and MATLAB by the further development of tools and examples similar to

the one described in this work.

 154

REFERENCES

[1] Ana B. Ramirez Silva, María Rodríguez, and Domingo Rodríguez, "TMS320C6713

User’s Guide". University of Puerto Rico, Mayagüez Campus, 2007.

[2] Ana Beatriz Ramirez Silva, "On Implementing Time-Frequency Representations on

Hardware/Software Computational Structures for SAR Aplications". University of

Puerto Rico, Mayagüez Campus, June 2006.

[3] R. Chassaing, Digital Signal Processing and Application with the C6713 and C6416

DSK.: Wiley-Interscience, John Wiley & Sons, Inc., 2005.

[4] G. Franceschetti, R. Lanari, and E.S. Marzouk, "Efficient and high precision space-

variant processing of SAR data," in Aerospace and Electronic Systems, IEEE

Transactions on , Jan. 1995, pp. 227-237.

[5] L.J. van Bokhoven, J.P.M. Voeten, and M.C.W. Geilen, "Software synthesis for system

level design using process execution trees," in EUROMICRO Conference, 1999.

Proceedings. 25th, 1999, pp. 463-467 vol.1.

[6] Guido Arnout, "C for System Level Design," in Design, Automation and Test in Europe

Conference and Exhibition 1999. Proceedings , 2002, p. 384.

[7] H.D. Patel, S.K. Shukla, and R.A. Bergamaschi, "Heterogeneous Behavioral Hierarchy

for System Level Designs," in Design, Automation and Test in Europe, 2006. DATE '06.

Proceedings, 2006.

[8] D.D. Gajski, "New Strategies for System Level Design," in VLSI Design, Automation

and Test, 2006 International Symposium on, CA, 2006.

 155

[9] Inc. The MathWorks, "Embedded MATLAB™ User’s Guide". MA: The MathWorks,

Inc., 2007.

[10] W. Tibboel, V. Reyes, M. Klompstra, and D. Alders, "System-Level Design Flow Based

on a Functional Reference for HW and SW," in Design Automation Conference, 2007.

DAC '07. 44th ACM/IEEE, June 2007, pp. 23-28.

[11] M. di Bisceglie, M. Di Santo, C. Galdi, R. Lanari, and N. Ranaldo, "Synthetic Aperture

Radar Processing with GPGPU," in Signal Processing Magazine, IEEE , March 2010,

pp. 69-78.

[12] M.G. Morrow, T.B. Welch, and C.H.G. Wright, "A Host Port Interface Board to

Enhance the TMS320C6713 DSK," in Acoustics, Speech and Signal Processing, 2006.

ICASSP 2006 Proceedings. 2006 IEEE International Conference on , May 2006.

[13] Texas Instruments Inc., TMS320C6713 Floating-Point Digital Signal Processor. Texas:

Texas Instruments Incorporated, November 2005.

156

APPENDIX A. TMS320C6713 DSP ATRIBUTES

Digital Signal Processor (DSP) is used for a wide range of applications such as image

processing, speech recognition, control, medicine, spectrography, communications,

seismography and others. The wide range of applications is due to the real-time

processing with that they are concerned. Some advantages of using DSP is because they

are less affected by environmental conditions, are easy to use, flexible and economical

in comparison with the analogous devices.

The primary tool for designing a DSP application program is the "Digital Starter Kit

(DSK) from Texas Instruments, Inc. The DSK package is useful to developers and it is

made up by Code Composer Studio (CCS) and a development board (TMS320C6713

DSK).

This starter kit is useful for developers because they can test the performance of the

algorithms implemented before the mass production of devices for specific applications.

Besides, DSK has connections for peripherals (Audio, memory or JTAG connectors for

example) to simulate the input and output signals to the processor. This tool is

compatible with PCs and requires a USB connection to program it.

TMS320C6713 DSK Features

On next table there are some basic attributes of the TMS320C6713 Digital Started Kit:

Table 1: TMS320C6713 DSK Features

FEATURES VALUE

Clock Frequency 225 MHz

SDRAM Memory 16 MB

FLASH Memory 256 KB

Architecture VLIW (Very-Long-Instruction-Word)

I/O Audio Stereo 2 for input and 2 for output

Other special characteristics available on the DSK are:

 The board has an analog to digital converter (ADC) and a digital to analog

converter (DAC).

 The McASP channels have a special input filter for anti-aliasing to eliminate

erroneous signals and an output filter to smooth or reconstruct the processed

output signal.

 A daughter card expansion with 80-pin connector provided for external

peripheral and external memory interfaces.

 Four user dip switches.

 Voltage regulators that provide 1.26V for the DSP and 3.3 V for the memory

and peripherals.

 157

TMS320C6713 DSP Architecture

The TMS320C6713 DSP internal memory has two-level cache architecture. The first

level has 4KB of program cache and 4KB data cache and the second level has 256 KB

shared between program and data memory. There are in two different banks with two

different busses of 32 bits to be accessed independently.

The CPU of the DSP has eight independent functional units divided in two paths, which

are useful for multiply operations (.M), logical and arithmetical operations (.L), for bit

manipulations (.S) and loading/storing (.D).

