
Design and Analysis of an Accelerated Stability Test for an 

In-Vitro Diagnostic Product with Lot-to-Lot Variation 
 

By 
 

Efraín Montes Tirado 

 
A project submitted in a fulfillment of the requirements for the degree of 

 
MASTER OF ENGINEERING 

in 

INDUSTRIAL ENGINEERING 

 
UNIVERSITY OF PUERTO RICO 

MAYAGÜEZ CAMPUS 

2009 

 

 
Approved by: 

 

__________________________________    ______________ 
William Hernández-Rivera, Ph.D. Date 
Member, Graduate Committee 
 

___________________________________    ______________ 
David González-Barreto, Ph.D.                                                                             Date 
Member, Graduate Committee 
 

___________________________________    ______________ 
Noel Artiles-León, Ph.D.                                                                Date     
President, Graduate Committee 
 

___________________________________    ______________  
Isabel Ríos-López, MBA Date 
Representative of Graduate Studies 
 

___________________________________    ______________  
Agustín Rullán-Toro, Ph.D.                                                                Date     
Chairperson of the Department 
 

 



 

ii 

 

Abstract 
 

 This work presents a research project performed in Abbott’s Diagnostics Division 

in Puerto Rico with the purpose of providing an empirical rather than a simulation based 

method for applying Arrhenius kinetics theory to a set of data gathered from an 

accelerated stability study of three lots for a quantitative immunoassay reagent kit (i.e. an 

in-vitro diagnostic product).  Four models where developed to relate product content, 

time and temperature, and they where compared in terms of their ability to fit well the 

accelerated stability data, the significance of the model parameters considered, and their 

reliability for extrapolation purposes. These models included the Arrhenius classical 

approach, a polynomial function, and two nonlinear modifications of the Arrhenius life-

temperature equation for a zero and first order kinetic reaction. The Arrhenius nonlinear 

model for a zero-order reaction was selected as the most appropriate to estimate 

degradation by means of an accelerated stability test since it provided relevant statistics 

and compliance with the underlying assumptions of the Arrhenius Life-Temperature 

relationship. Finally, a validation procedure was developed for the most appropriate 

model selected, which is based on prediction intervals to contain m individual future 

observations. This procedure could be used routinely to compare degradation patterns of 

future lots at elevated temperatures and conclude if the lots have similar degradation 

patterns as the previous good lots from where the prediction intervals where developed. 
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Resumen 
 

El siguiente trabajo presenta un proyecto de investigación realizado en la división 

de Diagnóstico de Abbott Puerto Rico, con el propósito de proveer un método empírico, 

contrario a uno simulado, para aplicar la teoría cinética de Arrhenius a un grupo de datos  

obtenidos mediante un estudio de estabilidad acelerada en tres lotes de reagente de un 

ensayo inmunológico cuantitativo (un producto de diagnóstico in-vitro). Cuatro modelos 

fueron desarrollados para relacionar contenido del producto, tiempo y temperatura, y 

todos ellos fueron comparados en términos de su capacidad para ajustar los datos, la 

relevancia de los parámetros del modelo considerado, y la habilidad para realizar  

extrapolaciones.  Entre los modelos evaluados se encontraba el concepto clásico de 

Arrhenius, una función de polinomio, y dos modificaciones no-lineales de la ecuación de 

tiempo-temperatura de Arrhenius para reacciones cinéticas de cero y primer orden. El 

modelo no-lineal de Arrhenius para una reacción de cero orden fue seleccionado como el 

más apropiado para estimar degradación del producto basándose en un estudio acelerado 

de estabilidad, ya que provee análisis estadísticos relevantes y es capaz de cumplir con 

todas las presunciones que involucran la relación de vida y temperatura de Arrhenius.  

Finalmente se desarrolló un procedimiento de validación para el modelo seleccionado, el 

cual está basado en intervalos de predicción para contener m futuras observaciones 

individuales.  Este procedimiento de validación puede ser utilizado rutinariamente con el 

propósito de evaluar los patrones de degradación de lotes futuros a temperaturas elevadas 

y concluir si estos lotes tienen patrones de degradación similares a previos lotes buenos 

con los cuales se determinaron los intervalos de predicción. 
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1  Introduction 
 

1.1 Justification 

Today’s manufacturing businesses regulated by the United States Food and Drug 

Administration (FDA) require the development of highly reliable products that satisfy 

patient needs without affecting its treatment.  All these requirements need to be fulfilled 

while maintaining desire levels of productivity in the manufacturing processes and 

improving the overall quality of the product.  For market products regulated by the FDA, 

a shelf-life (or expiration date period) must be indicated on the label of the product.  The 

shelf-life is defined as the time interval that certain characteristics of the product are 

within the approved specifications. To establish this expiration date period 

(specifications), typically, a stability study is performed to characterize the degradation 

of the product [1].  Even after the products label shelf-life is approved by the FDA, every 

manufacturing site requires a product stability monitoring procedure (stability protocol) 

to ensure that products in the market can still meet the approved specifications.  

Two types of stability test procedures are most widely used in the practice: real-

time stability test and accelerated stability test.  In a real-time stability procedure, 

products are stored in normal storage conditions (or normal use conditions) and a 

specific characteristic (e.g. concentration) is monitored to evaluate product behavior 

(degradation, if any) until its expiration date [2].  The majority of diagnostic and medical 

devices products are monitored up to one month extra of the expiration date indicated by 

the manufacturer.  In an accelerated stability test, the product is put into different 

elevated temperature levels at which degradation will occur more rapidly than at the 

normal conditions.  Therefore, a detectable amount of degradation is induced at a short 

period of time.  Then, a statistical model is fitted using the data collected at high 

temperatures to predict product behavior at the normal conditions.  The Arrhenius 

equation is usually used in this type of test model since it provides a mechanism to relate 

degradation rate and temperature [3]. 

This project will focus on the development and characterization of an accelerated 

stability test for an In-Vitro Diagnostic product manufactured in Abbott Diagnostic 

International Ltd. (ADI) in Barceloneta PR, which is an FDA-regulated manufacturing 
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plant. This intervention pursues the improvement of the current stability procedure by 

providing an accelerated degradation model, which can predict product content with high 

precision and accuracy in less time than the current procedure.  This will also improve 

customer service because learning about any possible issue of product degradation faster 

will benefit the company’s response time for product and process improvement before 

the issue is observed in the market by the customer. 

1.2 Company Description 

Abbott Laboratories was founded in 1888 by Dr. Wallace Calvin Abbott, a Chicago 

physician.  Abbott Laboratories is a broad-based health care company that discovers, 

develops, manufactures and markets products and services that extends the range of care 

systems from prevention and diagnosis, to treatment and cure [5].  Abbott Diagnostic 

International Ltd. (ADI) in Barceloneta Puerto Rico, serves as an operation plant for 

Abbott Diagnostic Division (ADD).  Its operations started in august of 1984 with six 

products and 37 employees. Currently, ADI manufactures 337 products with 

approximately 500 employees.  The division of medical products group for diagnostics 

offers a range of innovative instruments and diagnostic test products to serve clinical 

laboratory customers worldwide.  The immunoassay and clinical chemistry branch 

includes systems an assays to measure a variety of analyte found in the blood, and to 

diagnose and monitor diseases and therapies [5].  ADI is responsible for the manufacture 

and distribution of reagents that serve in these systems.  The portfolio of products include 

reagents for monitoring therapeutic drugs, abuse drugs and toxicology, products for 

monitoring reproductive hormones, anemia, thyroid, cancer and hepatitis, as well as 

cardiovascular markers.   The stability monitoring procedures currently applied for all of 

these products are real-time stability tests.  Therefore, the need for alternate methods like 

accelerated stability tests has arise, so that information of product reliability could be 

obtained more rapidly.    

1.3 Objectives 

This engineering project pursues the following objectives: 

1. Design an accelerated stability test for an In-Vitro diagnostic product. 
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2. Develop a statistical model capable or relating degradation rate as a function of 

time and temperature to assess product stability. 

3. Verify goodness of fit of the data obtained by the accelerated test to the 

Arrhenius Life-Temperature Law. 

4. Develop a procedure by means of the lot-to lot variability characterized in the 

accelerated test, which could to be used routinely to compare degradation 

patterns of future lots at elevated temperatures. 
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2  Literature Review 
 

2.1 Organization 

The literature review has been divided in the following areas: 

1. In-Vitro Diagnostic Products and Immunoassay 

2. Accelerated Testing. 

3. Methods of Acceleration. 

4. Acceleration Models. 

5. Product Stability Monitoring. 

2.2 In-Vitro Diagnostic Products and Immunoassay 

A series of basic concepts and definitions are presented as an overview of the type 

of product and instrument technology used in the experiments to complete this 

engineering project. 

2.2.1 In-Vitro Diagnostic  

In-vitro is a latin word which means “within the glass”.  It is referred to the method 

of performing an experiment in a tube or a controlled environment outside a living 

organism.  An In-Vitro Diagnostic Product is defined as any medical device which is a 

reagent, reagent product, calibrator, control material, kit, instrument, apparatus, 

equipment or system, that is used alone or in combination for the examination of 

specimens, including blood and tissue donations.  This type of product is not ingested, 

injected or inoculated in human beings [6].  They are solely used to provide information 

about a sample collected from human body: 

 concerning a physiological or pathological state, or 

 concerning a congenital abnormality, or 

 to determine the safety and compatibility of a tissue receiver, or 

 to monitor therapeutic measures of a condition.  

These types of products are used as a system with the purpose of performing a test 

that could measure some kind of response signal for a specific substance found in a 
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biological source (e.g. an analyte in blood).  These of tests are known as immunoassays 

and are related to the biomedical science branch of diagnostic immunology.  

2.2.2 Immunoassay 

An immunoassay is a biochemical test that measures the level of a substance in a 

biological liquid, typically serum or urine.  This is done using the reaction of an antibody 

or antibodies to its antigen. An antibody-antigen binding is also known as an immuno-

complex. “Immuno” refers to an immune response that causes the body to generate 

antibodies, and “assay” refers to a test.  Thus, an immunoassay is a test that utilizes 

immunocomplexing when antibodies and antigens are brought together [7].  The antibody 

is a protein that is produced by the body to protect itself in response to an “invading” 

(foreign) substance. The antigen is the substance that the body is trying to “fight off” 

(eliminate or reduce) by mounting an immune response [8].   

The presence of antigen and antibodies can both be measured.  For instance, when 

detecting cancer, some immunoassays test for the presence of antibodies rather than the 

cancer molecules (antigen). Therefore, if the antibodies are present, this means that 

invading cancer cells are also present [9].  Other immunoassays test for antigens directly, 

rather than looking for the antibodies.  For example, in a test to measure the 

concentration of a therapeutic drug, the drug is the antigen that binds to the antibody [7].   

Antibodies possess high specificity and affinity for a specific antigen. It is the 

specific binding of an antibody to an antigen that allows the detection of analytes by a 

variety of immunoassay methods. An analyte is anything measured by a laboratory test.  

In immunoassay testing, the analyte may be either an antibody or an antigen.  Detecting 

the quantity of antibody or antigen can be achieved by a variety of methods, which are 

described in the next section [10]. 

2.2.3 Immunoassay Detection technology 

In the world of immunoassay procedures there are several types of technologies that 

can be used for analyte detection.  These types of technologies included in the AxSYM 

instrument system developed by Abbott and used in this project are the following:  

 Microparticle Enzyme Immunoassay (MEIA) 

 Fluorescent Polarization Immunoassay (FPIA), and  
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 Radiative Energy Attenuation (REA) 

For the purpose of this project, only the MEIA technology is explained since this is the 

technology that is applied in the testing of the product selected for experimentation.    

2.2.4 MEIA Reaction Principles 

Microparticle Enzyme Immunoassay (MEIA) technology uses a solution of 

suspended sumicron sized latex microparticles to measure analytes. The particles are 

coated with a capture molecule specific for the analyte being measured.  The effective 

surface area of microparticles increases assay kinetics and decreases assay incubation 

time.  This permits MEIA assays to be completed in less time than other immunoassays. 

The components (reactants) necessary for MEIA assays [11] are the following: 

 Microparticles coated with a capture molecule (antigen, antibody or viral 

particle) 

 Fluorescent Enzyme Substrate, which is composed of a 4-Methyl Umbelliferone 

Phosphate (MUP) in solution that is available for a reaction with the enzyme on 

the antibody. 

 Antibody-Enzyme Conjugate, which is an Alkaline Phosphatase enzyme 

conjugated to the antibody 
 

Figure 1: Components of the MEIA Procedure 
1
 

 

 

 

 

 

                                                 
1
 Taken from reference [11] 
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A typical MEIA reaction [11] would occur in the following steps: 

1) Sample and microparticles are combined and incubated at reaction temperature.  

During the incubation period, analytes bind to the microparticle creating an 

immune complex. 

2) The reaction mixture created is aspirated from the incubation well and 

dispensed into a matrix cell.  The immune complex binds irreversible to the 

glass fiber of the matrix cell.  A matrix cell wash removes unbound material.  

The immune complex is retained by the glass fibers while the excess reaction 

mixture flows rapidly through the large pores of the matrix. 

3) The Alkaline Phosphatase conjugate is added in the matrix cell to complete the 

antibody-analyte-conjugate “sandwhich”.  The matrix is washed again.  

4) The 4-Methyl Umbelliferone Phosphate (MUP) is then added to the glass fiber 

matrix.  The Alkaline Phosphatase conjugate catalyzes the hydrolysis of the 

MUP to a 4-Methyl Umbelliferone (MU). 

5) Finally, the MEIA optics of the AxSYM instrument measures the rate at which 

MUP is converted to MU by detecting fluorescent light intensity signals.  Up to 

15 fluorescent intensity readings are taken immediately after the MUP is added 

to the glass fiber matrix.  A plot of the Intensity (Y-axis) versus Time (X-axis) 

is created and a linear regression model is fitted as illustrated in Figure 2.  The 

slope of the line (the rate at which MUP is converted to MU on the matrix cell 

surface) is calculated and the rate value is used to determine the concentration 

of the analyte in the sample through the use of a calibration curve. 

 

 

Figure 2: MEIA Rate Determination 
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A summary of how the components work in combination with the sample to produce a 

signal and corresponding test result is shown in Figure 3.   Notice how the glass fiber 

matrix serves to anchor the complexes.  

Figure 3: Process of the MEIA Method 
2
 

 

                                                 
2
 Taken from reference [11] 
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2.3 Accelerated Test 

Accelerated tests (AT’s) have been used in the manufacturing industries to monitor 

and achieve highly reliable products.  These types of tests have demonstrated to be very 

useful to identify design and manufacturing deficiencies that have resulted in product and 

process improvements. These improvements have provided a more robust and reliable 

product.  The main reason for performing an accelerated test is to obtain performance 

data of devices or components of a product faster, by exposing the product at higher 

stress levels of one or more accelerating variable (e.g. temperature, use-rate).  This 

procedure will shorten the life of the product or speed up the degradation of its 

performance. The resulting data is then extrapolated to obtain information of products life 

or performance at a future time (t), and at normal storage or usage condition [12].  This 

type of testing saves time and money not only in the early stages of product design or 

component certification, but also in the investigation procedure when a product 

demonstrates to have performance issues (e.g. degradation is below specifications before 

shelf-life) and it’s already in the market.  Accelerated tests have been used with food, 

drugs, chemicals, as well as with pharmaceutical and biological components.  

Accelerated variables include temperature, humidity, load, oxygen, and many others.  As 

Meeker [13] states: “AT’s have become increasingly important because of rapidly 

changing technologies, more complicated products with more components, higher 

customer expectations for better reliability, and the need for rapid product development“. 

In general, accelerated tests are divided in two classes of reliability experiments: 

Accelerated Life Tests (ALT’s) and Accelerated Degradation Tests (ADT’s). The main 

common characteristic between these types of AT’s is that they usually extrapolate 

outside the range of the data obtained by the acceleration conditions, to determine an 

estimate at the use conditions.  The following definitions establish the main differences 

between these two types of AT’s [12]. 
 

 Accelerated Life Test (ALT) – In this type of test, the failure and/or censoring 

times of a device subject to an elevated stress is recorded. Then, this data is used 

to estimate the failure time distribution at the stress conditions, and 

extrapolation is performed to estimate the failure time distribution at the use 

conditions.  A disadvantage of this type of test is that if a highly reliable device 
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is being tested, the ALT will probably provide little information to the person 

performing the experiment since very few or no failures will occur at the design 

stress levels and the duration for failure may be quite long  [14].  
 

 Accelerated Degradation Test (ADT) – In this type of test, degradation in the 

performance of a device subject to an elevated stress is recorded.  This data is 

then used to obtain specific information of the physical mechanism that causes 

the degradation on the performance of the characteristic investigated and to 

make suggestions on the behavior of the device at low levels of stress (use or 

storage conditions).  In contrast to the ALT, for a highly reliable product, 

ADT’s can provide information on performance degradation for the 

characteristic investigated long before a failure actually occurs.  This type of 

data may be considered very valuable since it uncovers information on the 

failure modes of the device used in the test [15].  The following four major 

inputs are required when designing and Accelerated Degradation Test.  

1. Determine the accelerated variable to use in the test.   

2. Select the stress levels to be used for the accelerated variable. 

3. Determine the proportions of devices to be put in each stress level. 

4. Select the time period (intervals) to measure the devices.   

All of these input decisions can be justified by using previous publications that 

incorporate test characteristics similar to the test environment to be used or by 

consulting scientists or engineers that have very good knowledge on the 

physical, and chemical behavior of the devices to be used in the test.  

 

It is very important to clarify that many of the fundamental physical model assumptions, 

concepts and procedures are equal for the ALT’s and the ADT’s.  The particular thing 

that differs is the type of model fitted to the data and the methods of analysis used [16].   
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2.4 Methods for Test Acceleration 

In general there are three types of methods for accelerating a test. All of these 

methods have a common objective, which is to perform a test at stress or accelerated 

condition for then to extrapolate outside the range of the available data.  These types of 

acceleration test methods are summarized in the following sections. 

2.4.1    Use–Rate Increase 

In this type of method, the use-rate of the product is increased to accelerate product 

failure or to cause wear or degradation, which could provide useful information of 

product performance.  As indicated by Meeker and Escobar [13], there is a basic 

assumption that is fundamental for this type of acceleration method, which is that the 

useful life of the test units must be adequately modeled by the cycles of operation and 

cycling rate, and they should not affect the cycles-to-failure distribution.  This is obtained 

when the test is performed using cycles that simulate the actual use and when the 

frequency of these cycles is low enough to permit the units to return to a steady state after 

each stress cycle.  

2.4.2    Aging–Rate Increase 

In this type of acceleration method, the aging rate of the product is augmented by 

increasing the level of the experimental variables (e.g. temperature or humidity). These 

types of modifications accelerate certain failure modes such as chemical degradation, 

which can reduce product performance or can even develop system failures [12].  For 

example, exposing an in-vitro diagnostic product like a reagent kit to increase levels of 

temperatures causes the chemical structure of the antibody component to weaken and 

degradation of the drug concentration to increase.  As it has been illustrated in so many 

publications that assess the study of reliability ADT’s, increasing the temperature is the 

most common method used to accelerate the chemical degradation process and to obtain 

degradation data more rapidly.  The Arrhenius relationship has been widely used to 

model product life as a function of temperature.  The Arrhenius Law is used for simple 

chemical reaction rates and its relation is used to describe many products that fail as a 

result of degradation due to chemical reactions or metal diffusion [12]. 
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2.4.2.1    Arrhenius Life-Temperature Relationship 

The Arrhenius equation is a simple but exceptionally accurate expression that 

explains the dependence of the rate constant (k) of a chemical reaction on the 

temperature. The equation was provided with a physical justification and 

interpretation in 1889 by the Swedish chemist Svante Arrhenius.   According to the 

Arrhenius Law, the rate constant (k) of a chemical reaction is given by the 

following expression:    

                                                  














 

TR

Ea

eAk                                                        (1) 

where  k   is the reaction (degradation) rate or rate constant. 

         Ea   is the activation energy of the reaction. 

          R   can be defined as the gas or the Boltzmann constant (depending the units 

used).  

        T   is the absolute Kelvin temperature.  It equals 
o
C + 273.16 

       A   is the Arrhenius constant.  This factor is characteristic of the product. 

failure mechanism and test conditions. 

In this equation, the activation energy is defined as the minimum energy 

necessary for a specific chemical reaction to occur. When the activation energy is 

given in molecular units instead of molar units (e.g. joules per molecule instead of 

joules per mol), the Boltzmann constant is used instead of the gas constant.  It can 

be seen from the Arrhenius equation that either increasing the temperature or 

decreasing the activation energy, the result is an increase in the reaction rate [17]. 

They are three necessary requirements for a reaction to occur, which are known as 

the “collision model” requirements: 

1) the molecules must collide to react 

2) there must be enough energy (energy of activation) for the molecules to react 

3) the molecules must be orientated with respect to each other correctly 

The higher the temperature, the more likely the reaction overcomes the energy of 

activation.  The constant A is the frequency factor for the reaction and it expresses 

the probability that the molecules contain a favorable orientation and will be able to 
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proceed in a collision [18].  The units of this constant are the same as the units of 

the rate constant (k) and will vary depending the order of the reaction.  Based on the 

statements established, for a reaction to take place and overcome the activating 

energy; the temperature, orientation, and energy of the molecules must be 

considerable. Therefore, the Arrhenius equation manages to relate all these things 

[17].  

 

Given the small temperatures ranges in which kinetic studies are performed, it is 

rational to approximate the activation energy as being independent of the 

temperature.  Taking the natural logarithm to the Arrhenius expression in equation 

(1) the following equation is obtained: 

                                                      
TR

E
Ak a


 lnln                                            (2) 

Therefore, when a reaction has a rate constant that obeys the Arrhenius equation, a 

plot of ln(k) versus T
-1

 gives straight line whose intercept and slope can be used to 

determine the Arrhenius constant  (A) and the activation energy (Ea). 

Since equation (1) is dependent of temperature, it can also be written as follows: 
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From equation (3), an accelerated factor (AF) is calculated as the ratio of the 

degradation rate at an elevated temperature k(Te), to the degradation rate at the 

storage temperature k(Ts).  The following expression is obtained after taking the 

ratio of the reaction rates: 
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where Te and Ts correspond to the elevated and storage Kelvin temperatures, 

respectively.  As observed in equation (3), the ratio gives an Accelerating Factor 

that only depends on two temperature levels and the activation energy [14,  19].    
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2.4.2.2    Chemical Kinetic Reaction and Orders 

It is evident from studies of chemicals kinetics that different chemical correspond to 

different order of reactions [20].  If a reaction of two components is driven as 

illustrated below: 

A + B → C 

then, the reaction rate is given by the following differential equation between 

concentration and time 

                                           
 

    BA

BA

rr

rr BAk
dt

tdC
                                         (5) 

In this equation, C(t) is the content of the product being studied at time t, [A] and 

[B] represents the concentrations of components A and B, and k is the rate constant 

as previously described in Section 2.4.2.1 

In the studies of accelerating testing, it is often common to see the use of one 

of the following three reaction orders to describe the chemical effect been studied 

(i.e. zero, first and second reaction). The main difference between each order is 

mainly the number of reactants been considered.  Therefore, a zero-order reaction is 

one in which the reaction rate does not depend on the concentrations or activities of 

the reactants.  In contrast, in a first and second order reaction rate, the reaction rate 

is dependent of one or two reactants, respectively.  Each of these reaction orders is 

mathematically determined following the procedure presented subsequently [20]. 

For a zero-order reaction, the differential equation is given by 

                                                 
 

0k
dt

tdC
                                                    (6) 

Integrating both sides of the equation (6) we obtain 

                                             
 

  dtk
dt

tdC
 0                                               (7) 

Solving these integrals gives the following expression 

                                               tkCC 00                                                      (8) 

where C0 and C are the product contents at time zero and time t, respectively.  It can 

be observed in equation (8) that a product following a zero-order reaction will 
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degrade at a constant rate over time independently of the concentrations at time 

zero (t0) and time t.  

In contrast, the amount of degradation is proportional to the concentration at 

time t for a first-order reaction.  The corresponding differential equation for a first-

order reaction is given by 

                                                     
 

 tCk
dt

tdC
1                                                   (9) 

Integrating both sides as done previously, we obtain 

 
    dtkdt
tC

tdC
 1                                              (10) 

Solving these integrals gives the following expression 

                                                      tkCC 1ln                                                     (11) 

Therefore if the initial concentration at time zero is represented by ln C0, then 

equation (11) can be re-written as follows: 

                                                    tkCC 10ln ln                                                  (12) 

Many literature books [12, 20] use the following exponential format of equation 

(12) to describe a first-order reaction.   

                                                     
 tk

eCC 1

0 


                                                   (13) 

In a second-order relation, the reaction occurs at a constant rate that is 

proportional to the square of the concentrations.  The differential equation for this 

reaction is given by    

                                                  
 

 tCk
dt

tdC 2

2                                                 (14) 

Integrating as previously, we obtain  

                                               
 
    dtkdt
tC

tdC
 22

                                               (15) 

Solving equation (15) yields the following expression 

                                                     tk
CC

2

0

11
                                                     (16)  

In the overall, the subscript numbers used for the rate constant k in all the equations 

previously presented were used to distinguish the order applicable to each reaction 
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but this is actually not needed since each reaction order has a unique expression. 

Therefore, for simplification purposes, equations (8), (13) and (16) will be re-

written as follows:    

Zero order:       ktCC  0
                                                     (17) 

First order:      
 kteCC  0                                                   (18) 

Second order:       kt
CC


0

11
                                                   (19) 

where k is the rate constant as previously described in Section 2.4.2.1;  C0 and C are 

the product contents at time zero and time t, respectively.  The first-order reaction is 

probably the most common model used in the pharmaceutical industry to describe 

the degradation of a product.  The zero-order is used in some occasions but is 

uncommon to see the use of the second order reaction.   

The loss of biological function is the result of a chemical or biochemical 

reaction, which should be described by one of the above equations.   In most cases, 

the loss of catalytic or other functional activity follows a true first-order process.  

This means that it is a single molecular incident or “strike” that results in loss of 

activity, or that there is a constant probability per unit time that any intact molecule 

will become inactivated. 

It is easy to determine whether the activity loss with time at a particular 

temperature in time is first order.  Fitting the experimental data obtained at the 

specific temperature to a first order exponential equation does this verification.  

Visual observation of the graphic fit and inspection of parameters such as standard 

errors and chi-square will show if the data is first-order.  First order exponentials, in 

which the rate constant has units or reciprocal time, have the additional useful 

property that a semi-logarithmic transformation of the data provides a linear plot.  

That is, if log(y) or ln(y) is plotted against time, a straight line is obtained as 

illustrated in Figure 5.  This property is not shared by second or higher order 

exponentials [4, 12]. 
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Figure 4: Example of a First-order Degradation Curve 
 

 

 

 

 
 

Figure 5: Example of Linear Plot by Semi-log Transformation 

 

If the activity loss with time proves to be first-order reaction, then the 

Arrhenius equation may be used to analyze the experimental data obtained at 

different temperatures.   As indicated before, this equation relates the activation 

energy for a particular reaction (i.e. the energy difference between the reactant and 

the transition state-activated complex) to the temperature and to the first-order rate 

constant (k).  It can be seen from equation (2) that a reaction obeying the Arrhenius 

equation will yield a linear plot of ln(k) versus T
-1

, and the slope of this line 

represents the term -Ea/R.  Therefore, the Arrhenius plot provides a basis for 

determining the activation energy of the chemical reaction since R is a constant 

already known.  In this plot, the natural logarithm of the first-order rate constants 
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determined at different temperatures is related to the reciprocal of the absolute 

temperature.  The resulting linear plot can be extrapolated to determine the value of 

the rate constant (k) at the temperature of interest (e.g. 281 Kelvin).  Therefore, 

from the rate constant determined by extrapolation, the shelf-life of a product can 

be determined by a simple calculation once a suitable lower limit of acceptability 

has been defined (e.g. 80% of staring activity).  Refer to Figure 6 for an illustration 

of this plot [21]. 

 
 

 

  Figure 6: Example of an Arrhenius Plot with 4 different temperatures 
 

 

2.4.3 Stress Level Increase 

In this type of acceleration method, the stress level in which the units operate is 

increased until failure occurs.  In this type of method, failure occurs only when the 

applied stress goes over the strength level.  Therefore, an increase frequency of unit 

failures is observed as the stress levels increases.  Stress loading is a common method 

used in accelerated tests for investigating physical properties of a material.   Types of 

stress loading include constant, cyclic, step, progressive and random.  The most common 

type of stress loading accelerated method applied is the constant stress since such testing 

is simple to performed and can be verified empirical for some materials and products 

[14]. 
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2.5 Acceleration Models 

As indicated previously, when performing an accelerated test for some specific 

variable that will be accelerated, some type of model can be fitted to the data obtained 

with the purpose of describing the effect that this variable has on the performance on the 

response variable.  Since the final objective is to extrapolate at the lower levels of the 

accelerated variable, it may be justifiable to use a physical or an empirical acceleration 

model to perform this extrapolation.  These types of models are defined below. 

2.5.1 Physical Acceleration Model 

Physical acceleration models are based on the physical and chemical aspects of the 

product being tested.  They describe the failure mechanisms of the product by using the 

range of data obtained from an accelerated test, for then, to extrapolate at use conditions.  

Since the relationship between the accelerating variables and the failure modes may be 

complicated to determined, previous feedback from scientists and engineers may be 

needed to apply this type of model.  The main reason to obtain information from these 

professionals is because they should have very good knowledge of the physical and 

chemical mechanisms that can affect the performance of the product and which variables 

may be accelerated to obtain the necessary data to perform the extrapolation.  As 

indicated by Escobar and Meeker [13]:  “…failure may result from a complicated 

chemical process with many steps, but there may be one rate-limiting (or dominant) step 

and a good understanding of this part of the process that may provide a model that is 

adequate for extrapolation”. 

2.5.2 Empirical Acceleration Model 

Empirical methods of analysis are also referred to as nonparametric methods or 

distribution-free methods.  The objective when using this type of method is to derive a 

function or distribution that fits the data when there is very little knowledge of the 

physical and chemical mechanisms of the product that may cause degradation or failure 

[12].  Therefore, this type of model is used only when it may be impossible to apply a 

model based on the physical and chemical aspects that describe the failure mechanisms. It 

is important to clarify that in some cases this type of model may fit very well the data 

obtained by the accelerated test but it may result in a model that provides terrible 
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extrapolation estimates.  This is one of the mayor deficiencies for empirical acceleration 

models. Sensitivity analysis is used in the majority of times to assess the effect of 

uncertain inputs like inputs related to model assumption.  Evans [22] establishes that 

since accelerated tests may be the only method available to perform fast reliability 

assessments, the justification to use this type of method may be base only on physical or 

empirical evidence. Sensitivity analysis should be performed when confronting 

difficulties with accelerated testing. 

 

2.6 Product Stability Monitoring 

2.6.1 General Principles 

The purpose for stability monitoring is to provide evidence on how the quality of a 

drug substance or drug product varies with time under the influence of certain 

environmental factors such as temperature, humidity or light, and to establish a retest 

period or shelf-life, as well as the recommended storage conditions.  It is important to 

clarify the difference between retest period and shelf life.  The term retest period is used 

when the stability study is performed on a drug substance, which is a component of the 

final drug product.   A retest period is defined as the period of time during which the drug 

substance is expected to remain within its specifications, and therefore, can be used in the 

manufacture of a given drug product, provided that the drug substance has been stored 

under the defined conditions [1].  The term shelf-life (also referred to as expiration dating 

period) is used when the stability is performed on the final drug product, and it is defined 

as the time period during which a product characteristic is expected to remain within the 

specifications established by the manufacturer [1].  The change of this characteristic is 

usually called degradation. A product is considered to be degrading when the 

characteristic(s) of interest (e.g. concentration, potency, polarization, etc) decreases as 

time increases [23]. This engineering project will be focus on the principles for stability 

monitoring of shelf-life since the device that will be used for test is a final drug product. 

2.6.2 Real Time Stability vs. Accelerated Stability 

Before discussing the regulations established by the Food and Drug Administration 

(FDA) for medical devices and the guidelines that this agency has for designing and 

performing a stability test, it is important to clarify the major difference between real-
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time (long term) and accelerated stability tests, since any of these two models can be 

used.  In a real-time test, the product is stored at the normal storage conditions and 

monitored for a period of time.  It is expected to observed degradation as time increase, 

but in the majority of products manufactured by sites regulated by the FDA, this behavior 

is not observed until months after the shelf-life (expiration date) indicated in the label of 

the product.  The reason for this is because manufacturers have a tendency to establish 

expiration periods shorter than the actual time in which true degradation occurs to 

provide product assurance to the customer. By contrast, in the accelerated test, the 

product is subjected to elevated stress conditions in order to increase the rate of 

degradation and to obtain valuable data that will be used to fit a statistical model capable 

of performing extrapolation at normal storage or used conditions.    

Both methods are equal in that the main purpose is to monitor the performance of a 

product through time.  In addition, when considering lot-to-lot variability, both models 

are equal in that this variability is considered as random, and is attributed to two sources; 

variability at time zero and variability of degradation rate.  The main difference is that for 

drug shelf-life, real-time stability test is modeled as a function of time while accelerated 

stability test is modeled as a function of time and temperature [19].  

2.6.3 FDA Regulations and Stability Guidelines 

The Food and Drug Administration (FDA) is a federal science-based law 

enforcement agency mandated to protect public health and safety.  FDA accomplishes its 

mission by establishing and enforcing high product standards and other regulatory 

requirements authorized or mandated by the Federal Food, Drug and Cosmetic Act 

(FD&C Act), its amendments, and other public health laws.   

2.6.3.1 FDA Regulations 

Medical devices are classified and regulated according to their degree of risk to the 

public. The FDA [1] establishes three different regulatory classes to ensure that each 

device is subject to regulations that are appropriate: 

 Class I – General Controls.  These are devices that are subject to a set of general 

regulations that apply to all devices. General controls include the registration of 

manufacturers, general record keeping requirements, and compliance with Good 

Manufacturing Practice (GMP) regulations.  Class I devices include clinical 
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chemistry and clinical toxicology test devices, cell and tissue culture products, 

as well as immunology (diagnostics) and microbiology test devices. 

 Class II – Special Controls.  These are devices for which general regulations are 

not enough to guarantee its safety. A class two device may be subject to specific 

regulations in order to provide assurance of the product’s safety. These specific 

regulations may include requirements for meeting performance standards 

recognized by the FDA, post-market surveillance, patient registries, and other 

appropriate requirements.  Class II devices include the same classification of 

tests devices mentioned for Class I. 

 Class III – Pre-market Approval. Devices that are life-supporting or life-

sustaining, or is important in preventing impairment of human health. For a 

Class III device, general controls may be insufficient to provide reasonable 

assurance of its safety and effectiveness. Under Class III regulations, devices 

such as heart valves, breast implants, and cranial electrotherapy stimulators 

must be reviewed for safety and effectiveness, and receive FDA pre-approval 

before they are marketed  

FDA further assures the safety and effectiveness of medical devices by regulating 

their manufacture and regularly inspecting manufacturing sites to assure they comply 

with these regulations.  The work of this agency does not end when a medical device 

has been approved since it continuously analyzes reports to ensure that products are 

safe and to watch for dangerous events related to the use of medical devices. 

2.6.3.2 FDA Stability Guidelines for a Drug Product 

The stability guidelines established by the FDA [1] are mainly focus on the stability 

data package of new drug substances and products, but leaves sufficient flexibility to 

consider the variety of different practical situations that may be encountered due to 

specific scientific considerations of the materials being evaluated.  Other alternative 

approaches can be used when there are scientifically justifiable reasons.  A design of 

a formal stability study for a drug product should be based on knowledge of the 

behavior and properties of the drug substances that compose the final drug product 

and the experience gained from the clinical formulation studies.  To perform a 

stability study the following guidance should be consider: 
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2.6.3.2.1 Selection of Batches 

Data from the stability study should be characterized by testing at least three 

primary batches of the product.  The primary batches should be of the same 

formulation and packaged in the same container as proposed for marketing.  The 

manufacturing process used for the primary batches should simulate the one to be 

applied to production batches and should provide product of the same quality and 

meeting the same specification as that intended for marketing.  Where possible, 

batches of the product should be manufactured by using different batches of raw 

material or bulk components to capture lot-to-lot variability [1].    

Lot-to-lot variability at the time a stability study starts (time zero) can affect the 

expiration date of the product since a lot with lower product content at this time 

can reach the failure point more rapidly than a lot with higher product content at 

time zero, even though they may have the same degradation rate.  This is 

controlled by the manufacturing specifications and is also considered in the 

specifications of the shelf-life.       

2.6.3.2.2 Container Closure System  

A container closure system is defined as the sum of packaging components that 

together contain and protect the final drug product.  Stability testing should be 

conducted on the final drug product packaged in the container closure system for 

market distribution.  This can include any secondary packaging components and 

labeling [1]. 

2.6.3.2.3 Specification 

Specification is defined as a list of tests that evaluate those product attributes of 

interest by using one or more analytical procedures.  Stability studies should 

include testing of those attributes that are vulnerable to change during storage and 

will probably affect product quality, safety and/or efficacy.  The testing should 

cover (as appropriate), the physical, chemical, biological, and microbiological 

attributes.  Analytical procedures (e.g. instruments) used for testing should be 

fully validated and stability indicating [1].   
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2.6.3.2.4 Testing Frequency 

For real-time (long term) stability study, frequency of testing should be sufficient 

to establish the stability behavior of the drug product. This time interval for 

testing will depend on the shelf life of the product.  The frequency of testing at the 

long term storage condition should normally be every 3 months over the first year, 

every 6 months over the second year, and annually thereafter through the 

proposed shelf life.  For a 6-month accelerated stability study, a minimum of three 

time points, including the baseline and final time points is recommended (e.g. 0, 3 

and 6 months).  If expectation exists that the drug product put into the accelerated 

test is likely to approach its specification limits, then increased testing should be 

conducted either by adding samples at the final time point or by including a fourth 

time point in the study design.  For a 12-month study, a minimum of four time 

points (e.g. 0, 6, 9, 12 months) is recommended.  It is important to clarify that 

these are general guidelines established by the FDA [1], but that other designs can 

be also applied, if justified. 

2.6.3.2.5 Storage Conditions 

In general, a drug product should be evaluated under storage conditions that test 

its thermal stability, and if applicable, its sensitivity to moisture.  The FDA 

established guidelines [1] for six different product storage environments that can 

be followed for stability testing.  When performing a stability study, the user has 

the freedom of using the type of environment that most likely applies to the kind 

of product put into test. The six drug storage environments covered by FDA 

guidelines are listed below: 

a. General Case 

b. Drug products packaged in impermeable containers 

c. Drug products packaged in semi-permeable containers 

d. Drug products intended for storage in a refrigerator 

e. Drug products intended for storage in a freezer 

f. Drug products intended for storage below –20°C 

Based on the type of product (e.g. in-vitro reagent) that will be used in this 

engineering project, the accelerated stability test proposed will focus on cases (b) 
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and (d) of the guidelines, since the product is packaged in impermeable containers 

and recommended to be stored in a refrigerator. For products packaged in 

impermeable containers that provide a permanent barrier to passage of moisture 

or solvent, the guidelines establish that sensitivity to moisture or potential solvent 

loss is not a concern. Therefore, stability studies for product stored in 

impermeable containers can be conducted under any controlled or ambient 

humidity condition.  

2.6.3.2.6 Evaluation 

As indicated before, the purpose of the stability study based on testing a minimum 

of three batches of the product is to establish a shelf-life applicable to all of the 

future batches manufactured and packaged under similar conditions.  The degree 

of variability of the individual batches used in the stability study affects the 

confidence that a future production batch will remain within specifications 

through the shelf life proposed.  

The FDA [1] indicates that an approach for analyzing data of quantitative attribute 

that is expected to change with time is to determine the time at which the 95 

percent confidence limit (for the mean curve) intersects the acceptance criterion.  

The nature of the degradation relationship is going to determine whether the data 

should be transformed for linear regression analysis.  The relation can be 

presented by a linear, quadratic or cubic function on an arithmetic or logarithmic 

scale.  The guidelines also establish that statistical methods should be used to test 

the goodness of fit on all batches and combined batches (where appropriate) to the 

assumed degradation line or curve. 

For extrapolation purposes the FDA comments that limited extrapolation of data 

from the real-time study beyond the observed range can be done to extend the 

shelf-life at the approval time of the product, if this can be justified. The 

justification has to be based on what is known of the degradation mechanisms, the 

results obtained by testing at accelerated conditions, the goodness of fit of any 

mathematical model and/or existence of stability supporting data. 
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2.6.4 Principles of Design for an Accelerated Stability Test 

As indicated by Kirkwood [3, 4], there are three principal reasons why accelerated 

degradations tests for biological products (e.g. In-Vitro Reagent kits) need to be planned 

carefully.  These reasons are: 

1) The experimenter has to ensure that the size of the study is adequate to have 

results with acceptable statistical precision, without the need of wasting time by 

repeating experimental runs and increasing the cost of the experiment by wasting 

expensive material.  

2) A second consideration is that in most of the cases, a biological product is 

improbable to degrade very fast even at moderate temperatures (e.g. 20°C). 

Therefore, the measurable loss of activity may be small in comparison with the 

experimental error.  If the error is random, this results in low statistical precision 

of the degradation rate that is being estimated, but if the error is systematic; then, 

this could cause serious bias in the estimates.  The study design should aim to 

eliminate any cause of systematic error, as well as to minimize pure random error. 

3) A satisfactory design should have tests of the two major assumptions used in 

accelerated degradation tests.  These assumptions are that 

(i) degradation follows a first order kinetic reaction, 

(ii) degradation rates obey the Arrhenius equation.  

Violation of either of these assumptions can put into question the validity of the 

accelerated degradation test results. 

Using the assumption that the reaction for degradation follows a first order process, the 

results from the accelerated test are used to calculate the relative degradation rate at each 

elevated temperature.  These degradation rates are then used to fit the Arrhenius equation 

by the statistical technique of maximum likelihood. 

2.6.4.1 Degradation Model  

The degradation of particular product, D, as a function of time for a first order 

reaction is given by  

                                                         
 tkeD                                                  (20) 

In this relation,  is the product performance at time zero, k is the degradation rate 

and t is the time (t >0).  In general, the observed sample degradation (Yij) of lot i at 
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time j is the actual degradation of the lot plus a measurement error (ij), which is 

given as 

                                         
 

ij

tk

iijijij
ijieDY  


                                  (21) 

Lots of the same product should perform within the manufacturing specifications and 

lot-to-lot variability is assumed random for a process under control, therefore i is 

assumed to random and independent for most applications.  The degradation rate (ki), 

depends on the characteristics of the lot, therefore this parameter is also consider 

random and independent for most applications. The time (t) is fixed, and does not 

need to be the same for all lots. The experimental error (ij) is also random, 

independent and distributed as ij ~ NOR (0,).  In the majority of the problems 

where degradation models have been applied it can be observed that the models 

obtained use a bivariate normal distribution for the intercept and the degradation rate 

parameters [19].  

An accelerated model can be obtained by inserting the accelerating factor (AF) 

equation that was previously presented in equation (4), since this equation relates 

temperature and time by the means of the Arrhenius equation.  The degradation as a 

function of time and temperatures is given by 

                                                      
 tAFkD  e                                               (22) 

Therefore, the observed sample degradation (Y) of lot i at time j and temperature k is 

                                                      ijkijkijk DY                                                 (23) 

As it can be observed, equation (22) is similar to equation (20), with the exception of 

the added acceleration factor (AF). The acceleration factor equation adds the 

activation energy (Ea) in equation (22) as another parameter to be determined. It is 

important to clarify that Ea is considered a fixed effect since it is a material property 

that does not depend on temperature and that is considered constant from lot-to- lot.  

Therefore, AF is also fixed [13, 19]. 

 

2.6.5 Parameter Estimation 

For estimating the parameters of an accelerated degradation model, the maximum 

likelihood method (ML) can be used.  Evaluation of the likelihood functions requires 

computation of integrals of multi-dimensions and maximization with respect to the 
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parameters of the accelerated model.  In general, this procedure require numerical 

approximation of n integrals of dimension k, where n is the number of sample paths and k 

is the number of random parameters in each path [13,  19].  A simplified maximum 

likelihood representation for the accelerated model can be expressed as follows: 

                                                        )|,(L Yμ ββ           (24) 

In this expression, , is the mean vector and  is the covariance matrix of the 1, …k 

parameters, and Y is the vector of the observations.  Therefore, the parameters to be 

estimated are , R, 
2
, 

2
R, Ea and 

2
.   The approach developed by Pinheiro and 

Bates [24] can be used to determine the ML estimates of these parameters.  The 

computational program of Pinheiro and Bates has been already implemented in several 

software statistic applications.    

 Another procedure for estimating the parameters of an accelerated model is the 

use of least squares procedures.  The procedure can be applied when using linear or 

nonlinear models.  The main difference between linear and non-linear models will be 

briefly discussed in the following sub-sections but the explanation will be focused on 

nonlinear least squares since this project is focused on determining nonlinear models to 

estimate degradation by means of the Arrhenius Life-Temperature relationship. 

2.6.5.1 Linear and Non-linear Regression models 

Linear regression models include first order relationships, polynomial and other more 

complex models.  They are called linear regression models since they are linear in the 

unknown parameters (j).  In general, a linear regression model is expressed as 

follows:  

                                                  βxβx ,' fy                                              (25) 

where x is an n x p matrix of the observations,  is a p x 1 vector of the regression 

coefficients and  is a n x 1 vector of uncorrelated random error [25]. 

In contrast, any model that is not linear in the unknown parameters is called a 

nonlinear regression model.  The symbol   is used to represent a parameter in a 

nonlinear model to highlight the difference between the linear and nonlinear 

parameter.  In general, a linear regression model is expressed as follows: 

                                                       θx,fy                                                       (26) 
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where  is a p x 1 vector of unknown parameters and  is also an uncorrelated 

random error term with E() = 0 and Var() = 
2
.  In nonlinear regression it is also 

assumed that errors are normally distributed like in linear regression [26].  The main 

difference between linear and nonlinear regression is that in nonlinear regression the 

derivatives of the expected function f(x, ) are function of the unknown parameters j.   

2.6.5.2 Non-linear least squares 

The standard procedure for estimating parameters in nonlinear regression is least 

squares.  For the general expected function f(x, ), the estimator ̂  is chosen to be the 

value of   that minimizes the following residual sum of square function: 

                                                  



n

i

ii fyRSS
1

2 
, x                                       (27)   

Finding least squares estimates generally requires an iterative function minimization 

routine.  Convergence of an algorithm to the least squares estimate may be sensitive 

to the selection of the starting values and to the parameterization of the model.  Many 

algorithms require the calculation of the first and possibly second derivatives of the 

expected function f(x, ) with respect to each of the parameters in the model.  

Computer programs that do not require formulas for derivatives will often 

approximate them numerically [27].  

2.6.5.2.1 Inferential Statements and Diagnostic Methods 

Inferential statements for nonlinear regression depend heavily on normality 

assumptions and are accurate only for very large samples.  In smaller samples, the 

accuracy of results will vary greatly from problem to problem and can also 

depend on the selection of parameterization.  Standard errors produced using 

small samples of data can understate or overstate the precision of an estimate.  

Procedures for studying assumptions like normality, constant variance, etc, are yet 

not well developed for nonlinear models.  However, graphical methods like a 

normal probability plot of residuals can help in the study of these kinds of 

assumptions [27]. 
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3  Methodology 
 

The following steps summarize the methodology applied in this engineering project 

to design and to analyze the accelerated stability test for an In-Vitro diagnostic product 

manufactured in Abbott’s Diagnostic plant in Barceloneta Puerto Rico.  

3.1 Selection of Product for Accelerated Stability Testing 

Because this project needed to be completed in a time frame that provided 

beneficial results to Abbott, a product with the smallest shelf life (expiration date) was 

selected.  The product selected for testing is an immunoassay regent kit (an in-vitro 

product) that has an expiration date of six months.  It is important to clarify that most 

expiration dates established by the manufacturer provide some customer assurance, but 

there is actual knowledge of Abbott scientists that if the product is stored at the 

recommended conditions, it can still be within the acceptance specifications for more 

than the shelf life granted for use.  

3.2 Selection of Batches  

To capture the contribution of lot-to-lot variability in the results of the accelerated 

model and following the guidelines established by the FDA [1], samples from three (3) 

different batches (or lots) of the product were put into test. The FDA stability guideline 

indicates that a single lot does not permit assessment of lot-to-lot variability and that two 

lots provide an unreliable estimate.  Therefore, to provide a more precise estimate of the 

product degradation, it is preferred to use as many lots as possible to perform stability 

testing.  However, there are some practical considerations for the pharmaceutical industry 

like costs, resources, and product capacity that may prevent to perform stability testing 

for more lots. 

In addition to satisfying the minimum requirement of 3 lots, the samples used in this 

project came from batches manufactured with different lots of raw material or bulk 

components to comply with an optional requirement that is established in the FDA 

guidelines.  The accelerated stability study was conducted with samples of the product 

packaged in the same container closure system that is used for market distribution.  This 

complies with the second FDA guideline requirement previously discussed in section 

2.6.3.2.1. 
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3.3 Selection of the Accelerated Variable   

Temperature will be the accelerated variable used in test.  The selection of this 

variable was based on previous knowledge of Abbott scientists of the physical and 

chemical aspects of the product failure modes.  In general, a reagent kit (the product 

used) is composed of three components that in combination are used to diagnose a 

condition or a disease.  These components are (1) a solution with latex microparticles that 

are coated with antibody to bind the specific analyte being measured,  (2) a solution of 

antibody-enzime conjugate, which binds to the microparticle and (3) a specimen diluent 

solution that reacts with the enzyme on the antibody.  Increasing the temperature will 

most affect the second component (the antibody-enzime conjugate) by breaking its 

molecular structure and deteriorating the antibody agents, which causes degradation in 

product content.  On this report, only general information about the product components 

will be given to protect proprietary information of the company. 

3.4 Selection of Stress Levels   

For the purpose of testing at accelerated conditions, four temperatures (45, 37, 30 

and 17 °C) were selected based on feedback given by the scientist. As indicated by 

Nelson [12], the temperatures selected need to be sufficiently high to provide a more 

accurate estimate of the parameter for the effect of temperature, but at the same time, it is 

also necessary to consider that the temperatures needed to provide the necessary quantity 

of degradation data (test points) to performed an appropriate model fit. In this 

experiment, a temperature range of 30 to 45°C is expected to provide the necessary 

degradation data, based on the scientific knowledge of the physical and chemical 

properties of the product.  In addition, the product was also exposed to a room 

temperature of 17°C to have data near the product storage temperature (2 to 8°C).  

Having data near the storage condition minimizes the amount of extrapolation required; 

therefore, the extrapolation estimates are expected to be more accurate.  

3.5 Proportion of Devices Exposed to Stress Levels   

For each lot, twelve units of product were exposed to each of the high temperatures 

(30, 37 and 45 °C) and 10 units were exposed to the temperature of 17°C.  Fewer units 

were run at the lowest temperature for limitations of time to complete the project since 
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units at low temperature degrade more slowly, therefore, they have to be run for a longer 

period of time to observe desirable degradation patterns.  The number of units to be tested 

was determined based on previous knowledge of the failure mechanisms of the product, 

the cost of each unit, and by considering previous publication on accelerated degradation 

test planning. As justified by Kirkwood using Monte Carlo simulation studies on 

accelerated degradation test for biological standards [4], a minimum of 10 units (for each 

stress temperature) put on accelerated test is reasonable to have a test that provides 

estimates with good precision. The cost of product was also considered in the number of 

units to be tested for the reason that a total of 138 units at a cost of $37.27 each (the total 

cost of testing material only is $5,143.26) were used and destroyed once tested.  Units 

were destroyed once tested since a biological product that has been exposed to a high 

temperature in an incubator and then is taken out of the incubator to perform the test in 

normal room temperature can develop microbial contamination if is continually exposed 

to frequent cycles of heating and cooling during the complete time range of the 

accelerated stability study. Therefore, to eliminate the possibility of adding another 

variable to the experiment, the product was discarded once used for testing.        

3.6 Determination of Testing Frequency   

The following table illustrates the testing time intervals that were used in the 

accelerated test.  

Table 1: Testing Scheme for the Accelerated Stability Test 

Testing Device 
Temperature Stress 

Levels 

Number of Units per Lot 

located at Stress Levels 
Testing frequency 

Reagent kits from 

Lot #1, Lot #2 and 

Lot #3 

45°C 12 units Every 2 days 

37°C 12 units Every 6 days 

30°C 12 units Every 10 days 

17°C 10 units Every 30 days 

The testing frequency in Table 1 was established based on recommendations from Abbott 

scientists and the literature review on previous Monte Carlo simulation studies on 

accelerated degradation test for biological standards [3, 4].   In addition, units exposed to 

the lowest stress temperature (17°C) were tested beyond the indicated shelf-life of the 

product (180 days) to verify if the products continues to degrade slowly without failure 

until it converges to a constant value.  This would indicate that the actual shelf-life of the 
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product could be extended to a value inside the time range covered by the accelerated 

stability study, where the product demonstrated to provide acceptable results.        

3.7 Model Building and Estimation of Parameters  

As the complete data was obtained from the accelerated stability study, it was used 

to develop several mathematical models that would best fit all the data gathered.  The 

models used included the Arrhenius classical approach, which involves a two-step 

sequential procedure of linear regressions, as well as several nonlinear models.  The 

reason of using nonlinear models instead of the classical approach is because we were 

interested in finding a one-step procedure that could relate product content, time and 

temperature in only one equation by means of a nonlinear mixed-effects approach.  Two 

softwares (S-Plus & Table Cure 3-D) were initially selected for the development of 

nonlinear models but after comparing software efficiency in the estimation of models 

parameters, Table Curve 3-D was the software selected because it was faster than S-Plus.  

These approaches will be discussed in detail in Chapter 4.    

3.8 Statistical Analyses and Test of Underlying Assumptions 

Statistical tests are performed to assess the significance of the estimated parameters 

in the model.  An F test is applied to validate the significance of the regression 

coefficients at each level of the signal factor.  The procedure is used to test the following 

hypothesis: 

  oneleast at for    0:

0...:

1

210

jH

H

j

k








 

The statistical test is 

   
MSE

MSR
F 0                                                        (28) 

In this expression, MSE is the mean squares due to the residuals and MSR is the mean 

squares due to the regression. H0 is rejected if F0 > F,p-1,n-p.   Rejection of the null 

hypothesis indicates that at least one of the regressor variables contribute significantly in 

the model.     

Once it is determined that at least one of the regressors is important to the model, 

then the coefficients of the regression are examined to identified which ones contribute to 
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the model.  This verification is important since the coefficients of the regression are 

associated with a factor or the combination of factors in the experiment.  The statistic t 

test is used to perform this verification.  This statistics is given by: 

           
jj

j

CMSE
t




̂
0                                                   (29) 

where Cjj is the diagonal element of (X’X)
-1

 corresponding to j̂ .  The null hypothesis is 

rejected if  1,2/0  kntt   

Other important statistics used to assess the overall adequacy of the model are the 

coefficient of determination (R
2
) and the adjusted R

2
.   The coefficient of determination is 

a measure of the total variability of the data explained by the model.  This statistic is 

represented by the following expression: 

                                                      
SST

SSE

SST

SSR
R  12

                                                (30) 

Since there could be misleading conclusions when using R
2
 for the reason that this 

statistic always increases as more regressor variables are included in the model, then, the 

adjusted R
2 

it is preferred.  This statistic is defined as follows: 
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pnSSE
RAdj                                              (31) 

It is important to clarify that exact statistical test based on the t and F distributions 

are always obtainable in linear regression when the errors are normally and independently 

distributed.  Nevertheless, this is not case for nonlinear regression, even when the errors 

are normally and independently distributed, for the reason that nonlinear least squares (or 

maximum likelihood) estimates of the models do not necessary provide unbiased-ness 

and minimum variances like in linear regression models.  Adequacy of statistical 

estimates in nonlinear regression depends on large-sample or asymptotic results [24].  

The key asymptotic results can be summarized as follows; when the sample size of the 

experimental results is large, the expected value of θ̂  is approximately equal to the true 

vector of parameters θ .  The covariance matrix of θ̂  is approximately 

'


, where  

is the matrix of partial derivates evaluated at the final iteration least square estimate θ̂ .  

Therefore, statistical inference for nonlinear regression when the sample size is large is 
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similar to inferences for linear regression.  In our study, we have 1,233 observations to 

estimate the vector parameters θ̂ , consequently it is reasonable to assume that large- 

sample results can be applied.    

In addition to the previous statistical tests discussed, other tests are performed to 

verify the assumptions of the Arrhenius theory since there is no absolute guarantee that 

degradation follows a first order kinetic reaction and that degradation rates obey the 

Arrhenius equation.  The first assumption is verified by testing for linearity in the ln(k) 

versus T
-1 

plot that was done in the model developed with the Arrhenius classical 

approach.  The second assumption is verified by testing the goodness of fit of the data to 

the Arrhenius model. 

3.9 Validation of Model Selected  

Once a statistical model to estimate degradation by an accelerated stability test was 

selected, it was validated using the following procedure. 

3.9.1 Identifying a lot without stability issues: 

Prediction intervals were determined for some specific times and temperatures 

considered in the accelerated stability test, after selecting the model that most 

adequate fitted the data from the three lots used for stability testing based on 

relevant statistics and compliance with underlying assumptions previously 

discussed.  The types of statistical intervals determined are prediction intervals to 

contain all of m individual future observations.  These intervals are different from 

the usual intervals given by statistical softwares, which contain the mean of future 

observations.   

Additional accelerated stability test points were obtained to validate if the 

statistical model developed with the accelerated stability data, could be used to 

discriminate a good lot.  The lot used to gather additional accelerated stability test 

points was a new approved lot from market different from the three previous lots 

used to create the model.  Reagent kits of this new lot were exposed to the same 

temperatures used with the previous three lots (45, 37, 30 and 17 °C) to accelerate 

degradation and test at some of the time intervals that were considered for the 

previous lots. If all the replicates of the new lot are within the prediction intervals 
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calculated from the most adequate model that fitted the data from the initial three 

lots, then it can be concluded that this new lot has similar degradation patterns (at 

the four elevated temperatures) as the previous three good lots used in the 

developmental phase of this study.  Thus, it is expected that it will degrade similarly 

at the storage temperature until the expiration date. 

3.9.2 Identifying a lot with stability issues: 

Using the same approach presented in Section 3.9.1, it was also desirable to 

verify if the prediction intervals developed with the model that best fitted the 

accelerated stability data of the initial three lots, were going to be capable of 

discriminating a lot with a bad stability performance.  Therefore, reagent kits of a 

bad performance lot were also exposed to the same stress temperatures 

experimented with the three good lots of the initial accelerated study, and also 

tested at some time intervals previously considered. Assessing the prediction 

intervals of the temperatures and time intervals considered, it was expected to 

observe some replicates out of the prediction intervals calculated from the most 

adequate model that fitted the data from the initial three lots. This would 

demonstrate that the lot does not exhibit the same degradation patterns at elevated 

temperatures that were characterized with the previous three good lots used in the 

developmental phase of the accelerated stability study.   Therefore, this lot would be 

expected to behave unstable and with high probability of being out of the 

specification limits much earlier than its expiration date.         
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4  Accelerated Stability Models 
 

4.1 Introduction 

The shelf-life of a product is usually determined based on primary stability data that 

it is obtained from long-term stability studies under approved stability protocols with 

ambient storage conditions.  However, these types of studies usually take too much time 

to complete since products under ambient storage conditions degrade very slowly and it 

make take more than one year to observe significant degradation.  Accelerated stability 

tests have been recently applied to provide stress conditions that could increase the rate of 

chemical or physical degradation of the product so that the kinetic parameters of the 

reaction rate could be estimated, and then to estimate the shelf life under normal storage 

condition of the product by extrapolation.       

The use of accelerated models to monitor the stability of a product and to determine 

its shelf life has been widely applied and documented in the manufacture of electronics 

and pharmaceutical products, but it has not been applied and documented for biological 

products in the diagnostic business, specifically for an in-vitro diagnostic product like a 

reagent kit.  Taking this need in consideration, this chapter will focus in the development 

of mathematical models that could be used to fit the data obtained from the accelerated 

stability test that was designed and presented in Chapter 3 for an in-vitro diagnostic 

reagent kit. 

Four (4) models were developed and evaluated based on statistical analyzes and test 

of underlying assumptions previously discussed in Chapters 2 and 3.  The first model 

built was the Arrhenius Classical Approach model, which is based on a two-step 

sequential procedure of linear regressions. After the Arrhenius Classical Approach was 

applied, it was decided to find a way of fitting all the data (1,233 values) by relating 

product content, time and temperature in only one equation by means of nonlinear 

models which include a polynomial function model as well as nonlinear approach of the 

Arrhenius equations for a zero and first order degradation. These models were compared 

on advantages and disadvantages to facilitate the decision of selecting the most adequate 

model to be used for validation procedures.   
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4.2 Arrhenius Classical Approach Model 

The Arrhenius equation is often used in pharmaceutical industries when performing 

accelerated stability test procedures since it provides a mechanism to relate degradation 

reaction rates of the product and temperature for estimating product shelf-life.  The first 

model assessed to fit the data from the accelerated stability study was the Arrhenius 

model with the classical approach. This approach consists on performing two sequential 

steps of linear regressions.  In the first step, it is required to select a proper order (zero, 

first or second) for the degradation reactions that best describes the behavior of the data 

by relating the product content (rate values) versus time at several elevated temperatures.  

Then the rate constant (k) at all elevated temperatures is determined from the equations of 

the degradation order fitted.  In the second step, the mean rate constants (k) are used to 

apply linear regression using the modified Arrhenius equation previously presented in 

Equation 2, which relates ln k versus T
-1

.  This regression is then used to predict 

(extrapolate) the rate constant k at the usage condition of the product. 

4.2.1 Results for the Arrhenius Classical Approach 

 A first order reaction was used to relate the product content (rate values) versus 

time for the four elevated temperatures considered in the accelerated stability study 

performed.  Three response variables (control low, medium and high) of product content 

were used to monitor the degradation of the reagent kits for the three lots used in the 

experiment. The reason to use these three response variables is that they are the actual 

components that are evaluated against customer specifications when a reagent kit is used 

inside an AxSYM laboratory instrument to determine the rate and concentration of the 

analyte
3
 in a patient sample through the use of a calibration curve as described in Section 

2.2.4.   If control levels are within specifications, then it is concluded that the calibration 

curve is good to monitor patient samples.  Figures 7, 8 and 9 illustrate the execution of 

the first step of the Arrhenius classical approach for the three response variables 

considered.  As it can be observed in these figures, the application of a first order reaction 

is well fitted for the highest temperatures but fitting adequacy is lost as the temperature is 

near the normal or storage condition of the product (8°C or 281°K).   

                                                 
3
 An analyte is anything measured by a laboratory test.  It can be either an antibody or an antigen. 
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Figure 7: First Order Degradation Curves for Control Low 

 

Figure 8: First Order Degradation Curves for Control Medium 
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 Figure 9: First Order Degradation Curves for Control High   

 

The second step of the Arrhenius classical approach was then applied using the mean rate 

constants obtained in Figures 7 to 9.  The following tables contain the parameters used to 

apply linear regression using the modified Arrhenius equation previously presented in 

equation (4), which relates ln k versus T
-1

. 

Table 2: Control Low Parameters for the Arrhenius Plot 

  Control Low 

T (°C) 
Mean rate constant 

(k) 
ln k T (°K) 1/T (°K) 

45 0.0597 -2.8184233 318 0.0031 

37 0.0089 -4.721704 310 0.0032 

30 0.0045 -5.4036779 303 0.0033 

17 0.0009 -7.0131158 290 0.0034 

 
Table 3: Control Medium Parameters for the Arrhenius Plot 

Control Medium 

T (°C) 
Mean rate constant 

(k) 
ln k T (°K) 1/T (°K) 

45 0.0608 -2.8001655 318 0.0031 

37 0.0094 -4.6670456 310 0.0032 

30 0.0049 -5.3185201 303 0.0033 

17 0.0011 -6.8124451 290 0.0034 
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Table 4: Control High Parameters for the Arrhenius Plot 

Control High 

T (°C) 
Mean rate constant 

(k) 
ln k T (°K) 1/T (°K) 

45 0.0586 -2.8370206 318 0.0031 

37 0.0091 -4.6994809 310 0.0032 

30 0.0046 -5.381699 303 0.0033 

17 0.0011 -6.8124451 290 0.0034 

 

Figures 10 to 12 illustrate the Arrhenius Plots that are obtained for each of the response 

variables (Control Low, Medium and High) considered in the study as a result of fitting a 

linear model to describe the relationship between ln k and 1/T.     

 

 

 

 

 

 

 

 

 

 

Figure 10: Classical Arrhenius Plot for Control Low  

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Classical Arrhenius Plot for Control Medium 

 

Arrhenius Plot for Control Medium

ln k  = 36.251 - 12547(1/T)

R
2
 = 0.9485

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037

1/T (°K)

ln
 (

k
)

Arrhenius Plot for Control Low

ln k  = 38.14 - 13150(1/T)

R
2
 = 0.9549

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037

1/T (°K)

ln
 (

k
)



 

42 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Classical Arrhenius Plot for Control High 

 

Based on these plots, it is established that the equations of the fitted models for each of 

the response variables are the following: 

   Control Low:                    Tk 1 1315014.38 ln                                            (32) 

   Control Medium:              Tk 1 12547251.36 ln                                          (33) 

   Control High:                   Tk 1 12438862.35 ln                                          (34) 

It can be noticed that the Arrhenius constant A and the activation energy of the reaction 

Ea can be easily determined from the equations that were fitted.  In these equations, the 

intercept represents the value ln A and the slope of the regressor variable 1/T, represents the 

relation Ea/R of the Arrhenius equation.  Therefore, using the gas constant (R) value of 

0.00199 (kcal mol-1 K-1), then, we can determine the activation energy of the reaction (Ea).  

Table 5 provides a summary of the Arrhenius equation parameters that were obtained for 

each of the response variables (control levels) considered in the study. 

Table 5: Arrhenius Equation Parameters for the Classical Approach 

Control Level ln A A Ea/R Ea 

Low 38.140 3.6627E+16 13150 26.168 

Medium 36.251 5.5412E+15 12547 24.968 

High 35.862 3.7538E+15 12438 24.752 

 

In addition, once the Arrhenius Plot has been developed, the equation that describes this 

plot can be then used to predict (extrapolate) the mean rate constant (k) at the storage 

condition (8°C or 281°K), and consequently the rate value of each control level at 
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expiration day.  This prediction is determined by using the same equation of reaction 

order previously used when applying the Arrhenius classical approach.  In this case, 

Equation 18 was used since a first-order reaction was selected to describe the degradation 

rate of each control level used in the study.  Table 6 contains the predicted rate value of 

each control level at the expiration date of the product. 

Table 6: Prediction of Controls Rate Values using the Arrhenius Classical Approach 

Control 

Level 

Mean rate 

value at 

t=0  

Predicted mean 

rate constant (k) 

at 281°K 

Expiration 

Date 

(days) 

Predicted 

rate value at 

Exp. Date 

95% Prediction 

Interval 

Low 36.75 0.00017 180 35.62     16.31 - 36.71 

Medium 201.38 0.00022 180 193.39 64.80 - 201.09 

High 1007.60 0.00022 180 967.72 447.05 - 1006.39 

Predictions in Table 6 appeared to be a little suspicious since it is previously known 

by Abbott scientists that the product content loss, measured as a percent difference of rate 

values between t=180 and t=0, must be between 10 and 15 percent for the specific 

product that was used in the accelerated stability test.   In contrast, the predicted results 

obtained with the Arrhenius classical approach appear to indicate that the product had a 

lag of degradation in 180 days since after calculating a percent difference of rate values 

between t=180 and t=0, only a 3.08%, 3.97% and 3.96% difference is obtained for 

control low, medium and high, respectively.  The 15% limit was establish as a mode of 

control to assure the product to be within the rate specifications of each control level 

during the time is in the customers hands since it is known that the product can degrade a 

little more than this value and maintain its functionality.  Table 7 contains the stability 

specifications in rate values of the product as measured by each control level. 

Table 7: Stability Specifications in Rate Values for each Control Level 

Control Level Specifications 

Low 26.52  –  40.33 

Medium 140.85 – 219.17 

High   692.44 – 1150.94 

Is important to highlight that the predictions that were done at the storage condition 

(8°C or 281°K) can be considered of less value since the 95% prediction intervals 

obtained are significantly wide, and at the same time, they are unsymmetrical to the mean 

predicted value.  This is one of the big problems that the Arrhenius classical approach 

has, which has been documented in the literature.  In addition, when comparing the 

results of the prediction intervals with the specifications in Table 7, it can be observed 
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that the lower limits of the prediction intervals are outside of the product specifications. 

Therefore, this is something that is not appropriate for extrapolation purposes since it 

indicates that Arrhenius model with the classical approach is capable of predicting rate 

values outside the specification limits, even when it was previously known that the lots 

used in the study behave inside the product specification until their expiration date. This 

is a major disadvantage provided by the model.             

4.2.2 Statistical Analyzes and Test of Underlying Assumptions 

As indicated previously, statistical tests are performed to provide significance of the 

estimated parameters in the model.  The following figures contain the output of the 

statistical tests done in for the Arrhenius classical approach models that were fitted to the 

accelerated stability data of each control level.  These statistical test outputs were 

obtained using STATGRAPHICS Plus software, version 4.1. 

 

Regression Analysis - Linear model: Y = a + b*X 

----------------------------------------------------------------------------- 

Dependent variable: ln_k 

Independent variable: 1/T 

----------------------------------------------------------------------------- 

                               Standard          T 

Parameter       Estimate         Error       Statistic        P-Value 

----------------------------------------------------------------------------- 

Intercept        38.1396        6.63223        5.75064         0.0289 

Slope           -13150.0        2020.99       -6.50669         0.0228 

----------------------------------------------------------------------------- 

 

 

                           Analysis of Variance 

----------------------------------------------------------------------------- 

Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value 

----------------------------------------------------------------------------- 

Model                     8.64353      1      8.64353      42.34       0.0228 

Residual                  0.40832      2      0.20416 

----------------------------------------------------------------------------- 

Total (Corr.)             9.05185      3 

 

Correlation Coefficient = -0.977185 

R-squared = 95.4891 percent 

R-squared Adj. = 93.2336 percent 

Standard Error of Est. = 0.451841 

Figure 13: Statistical Analysis for the Classical Arrhenius Model fitted to Control Low Data 

 

 

 

 

 



 

45 

 

 

 

 
Regression Analysis - Linear model: Y = a + b*X 

----------------------------------------------------------------------------- 

Dependent variable: ln_k 

Independent variable: 1/T 

----------------------------------------------------------------------------- 

                               Standard          T 

Parameter       Estimate         Error       Statistic        P-Value 

----------------------------------------------------------------------------- 

Intercept         36.251        6.78538        5.34252         0.0333 

Slope           -12546.8        2067.66       -6.06811         0.0261 

----------------------------------------------------------------------------- 

 

 

                           Analysis of Variance 

----------------------------------------------------------------------------- 

Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value 

----------------------------------------------------------------------------- 

Model                     7.86878      1      7.86878      36.82       0.0261 

Residual                 0.427396      2     0.213698 

----------------------------------------------------------------------------- 

Total (Corr.)             8.29618      3 

 

Correlation Coefficient = -0.973901 

R-squared = 94.8483 percent 

R-squared Adj. = 92.2724 percent 

Standard Error of Est. = 0.462275 

 

Figure 14: Statistical Analysis for the Classical Arrhenius Model fitted to Control Medium Data 
 

 
Regression Analysis - Linear model: Y = a + b*X 

----------------------------------------------------------------------------- 

Dependent variable: ln_k 

Independent variable: 1/T 

----------------------------------------------------------------------------- 

                               Standard          T 

Parameter       Estimate         Error       Statistic        P-Value 

----------------------------------------------------------------------------- 

Intercept        35.8615        6.94862        5.16096         0.0356 

Slope           -12438.1         2117.4       -5.87425         0.0278 

----------------------------------------------------------------------------- 

 

 

                           Analysis of Variance 

----------------------------------------------------------------------------- 

Source             Sum of Squares     Df  Mean Square    F-Ratio      P-Value 

----------------------------------------------------------------------------- 

Model                      7.7331      1       7.7331      34.51       0.0278 

Residual                 0.448208      2     0.224104 

----------------------------------------------------------------------------- 

Total (Corr.)             8.18131      3 

 

Correlation Coefficient = -0.972222 

R-squared = 94.5216 percent 

R-squared Adj. = 91.7823 percent 

Standard Error of Est. = 0.473396 

Figure 15: Statistical Analysis for the Classical Arrhenius Model fitted to Control High Data 
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As it can be observed in Figures 13 to 15, the statistical analyses of the fitted linear 

regressions indicate that all models provide statistically significant relationships between 

ln k and 1/T at the 95% confidence level since the p-value in the ANOVA table is less 

than 0.05.  In addition, when verifying significance of the regression coefficients verified 

in order to identify which ones are making a genuine contribution to the model, it is 

concluded that all coefficients are significant to the model since the results of the statistic 

t test indicate that p-values are less than 0.05. 

   Another important factor used to assess the overall adequacy of the model is the 

adjusted R
2
.  As it can be observed in Figures 13 to 15, the 

2

AdjR  statistic indicates that the 

variability in the response variable (ln k) is very well explained by the models fitted since 

the lowest value obtained for the three models was a 
2

AdjR  value equal to
 
91.78%.  Model 

adequacy is also demonstrated by the examination of the results for the correlation 

coefficient (r) since all values obtained are very close to a value of 1.0, which indicates 

that there is a very strong relationship between the variables used in the models.  

In addition to the previous statistical tests discussed, this project pursued a 

verification of compliance of the assumptions established by the Arrhenius Life-

Temperature Law by using the data obtained from the accelerated stability test (refer to 

Section 3.8).  This verification will guarantee that degradation follows a first order 

kinetic reaction and that degradation rates obey the Arrhenius equation.  The first 

assumption is verified by testing for linearity in the ln (k) versus T
-1 

plot that was done for 

the Arrhenius model with classical approach.  Compliance with this assumption is clearly 

demonstrated by examining the correlation coefficient (r) values of the Arrhenius plots, 

since all results of the r statistic are very close to 1.0, which indicate that there is a strong 

linear relationship between ln (k) and T
-1

.   The second assumption is verified by testing 

the goodness of fit of the data to the Arrhenius equation. Compliance to this assumption 

is provided by the examination of results for the 
2

AdjR  statistic since as previously 

mentioned, all models demonstrated to fit well the accelerated data.  Therefore, it is 

concluded that all models fitted by the Arrhenius classical approach demonstrated to be 

in compliance with both assumptions of the Arrhenius theory.    
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4.2.3 Advantages and Disadvantages of the Arrhenius Classical Approach Model 

With the purpose of illustrating the relevance and limitations of the regression 

models developed to fit the accelerated stability data, all models presented in chapter will 

be assessed in terms of their relative merits and disadvantages.  In the case of the 

Arrhenius model with the classical approach, the advantage that the methodology has is 

that this approach has been used many times in the past.  Therefore, a lot of literature and 

case studies can be found, which can significantly help the user to understand the 

chemical kinetics theory in which the procedure is based and the principal requirements 

that surrounds the application of the Arrhenius equation.  In addition, this approach tends 

to be more attractive to people with little knowledge on mathematical methods since it is 

applied using simple linear regressions, which can be performed using a scientific 

calculator or an Excel spreadsheet.  

In contrast, for the more skilled mathematical person, the Arrhenius classical 

approach has several disadvantages that make the procedure not so attractive.  These 

drawbacks are summarized in the following bullets: 

 Since this approach uses the mean rate constants (k) of each elevated temperature 

used in the study, the prediction of the final model is also a mean rate estimate of 

the shelf-life. Therefore, the total variability contributed by the individual 

observations of the accelerated study is totally lost in the final model. 

 If someone would like to use this model for evaluating m future observations, 

then, prediction intervals would not be possible to be determined since the 

model was developed to evaluate the mean rate constant (k) and not individual 

observations as they are naturally obtained from the study. 

 The methodology cannot use the data in the natural form at it is gathered to relate 

product degradation, time and temperature in only one equation and to provide a 

direct estimation of the shelf-life with relevant statistics. 

 The two-step procedure of the classical approach was feasible in the past 

when there was absence of computer programs capable of solving complex 

mathematical problems with large data sets in minimal time. 
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 The approach provides wide and unsymmetrical statistical intervals as illustrated in 

Table 6 since the fitting procedure distorts the error structure of the data and 

degrees of freedom are severely reduced in the final model.    

4.3 Polynomial Function Model 

Based on the disadvantages of the Arrhenius classical approach mentioned before, it 

was decided to find a way of fitting the complete set of data (1,233 values) obtained from 

the accelerated stability study by relating product content (rate values of each control 

level), time and temperature in only one equation.  Therefore, the mathematical 

expression of the model developed would be as follows:  

                                                   YXfZ ,                                                      (35) 

where  

X = independent variable related to time (in days) 

Y = independent variable related to temperature (in Kelvin units) 

Z = dependent variable related to the rate values on each control level 

 = experimental error 

Three-dimensional scatter plots of the XYZ accelerated stability data to be fitted are 

presented in Figures 16 to 18. 

 
Figure 16: Accelerated Stability Data Scatter Plot for Control Low 
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Figure 17: Accelerated Stability Data Scatter Plot for Control Medium 

 

 

 

 
Figure 18: Accelerated Stability Data Scatter Plot for Control High 
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Table Curve 3D was the software selected to provide a one step approach that 

would relate all variables considered in the accelerated stability study since it provides 

thousands of built-in equations to describe empirical data, including a wide array of linear 

and nonlinear models, as well as user defined functions that can be manually entered by 

the user.  Using the software, 349 built-in equations were fitted for the stability data of 

each control level but only equations that provided R
2
 values higher than 90% were 

reported.  Appendix 2 contains the list of equations fitted and reported by the software for 

each control level.   Since the goal was to provide a model that would best fit all the data 

gathered in the study, the adjusted R
2
 was the first statistical criteria used to sort and 

select the best built-in equation provided by the software.  Then, the lowest fitted 

Standard Error was also used as second criteria for selection.      

4.3.1 Results for the Polynomial Function Model 

From the list of equations provided by Table Curve 3D, a polynomial function was 

selected as the best model that fitted the data based since it provided the highest 
2

AdjR  

value and smallest fitted Standard Error.  Figures 19 to 21 illustrate the surface plots that 

were obtained for each of the response variables (Control Low, Medium and High) 

considered in the study as a result of fitting a polynomial function model to describe the 

relationship between product content (rate values of each control level), time and 

temperature in a single equation.  Based on these surface plots, it is established that the 

equations of the polynomial models fitted to each response variables are the following: 

 For Control Low              (36) 

YX

YxYXYX

YXYXZ

ln)ln(6929107.8      

)(lnln111.1807)(ln45.136087)(ln0011025523.0lnln586.20573      

)(ln2335395)(ln2539.48ln13358880ln927.5854925471081

2

233

22







 

 For Control Medium             (37) 

YX

YxYXYX

YXYXZ

ln)ln22.985864(      

)(lnln3904.7665)(ln94.691774)(ln0086169269.0lnln674.87054      

)(ln11864697)(ln68613.123ln67828997ln25.247129129253300

2

233

22







 

 For Control High              (38) 

YX

YxYXYX

YXYXZ

ln)ln87.07018( -      

)(lnln758.40430)(ln5.3385019)(ln045605305.0lnln56.459273      

)(ln58066122)(ln60233.459ln32010200.3ln13040906327724400

2

233

22




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Figure 19: Surface Plot of Polynomial Function Model for Control Low 
 

 

Figure 20: Surface Plot of Polynomial Function Model for Control Medium 
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Figure 21: Surface Plot of Polynomial Function Model for Control High 

 

The equations that describe these plots can be then used to predict (extrapolate) the rate 

value of each control level at the expiration date and at the storage temperature (8°C or 

281°K) of the product.   Table 8 contains the results of the predicted rate value of each 

control level at the expiration date. 

Table 8: Prediction of Controls Rate Values using the Polynomial Function Model 

Control 

Level 

Mean rate 

value at 

t=0 

Storage 

Temp.       

(°K) 

Expiration 

Date       

(days) 

Predicted 

rate value at 

Exp. Date 

95% Prediction 

Interval 

Low 36.75 281 180 61.44 57.62 – 65.26 

Medium 201.38 281 180 327.20 304.63 – 349.77 

High 1007.60 281 180 1588.64 1456.71 – 1720.57 

Examining the results obtained from the extrapolation it is observed that polynomial 

function model does not provide reliable prediction results even though the adjusted R
2
 

statistics indicates that each model fits very well the accelerated stability data.  Results 

should demonstrate that the product suffers some kind of degradation from the date the 

accelerated stability study started (t0) until the expiration date (texp) of the product.  

Therefore, the product content (rate values) of each control level at time texp should be 
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lower than the product content at t0.  Based on this, we can establish that the actual 

predicted results provided by the polynomial function model at lower temperatures are 

incongruent with the chemical-physical behavior that is expected.  The reason for this 

incongruence behavior will be further discussed in details in Section 4.3.3   

4.3.2 Statistical Analyzes for the Polynomial Function Model 

Statistical tests were used similarly as it was applied for the Arrhenius classical approach 

model to verify statistical significance of the polynomial function model that was fitted to 

the accelerated stability data.  The following figures contain the output of the statistical 

tests done for each response variable.  These statistical test outputs were obtained from 

the output menu of Table Curve 3D software, version 4.0 

 
Figure 22: Statistical Analysis for the Polynomial Model fitted to Control Low Data  

 

Regression Analysis 

 

Rank 1   z = a+blnx+clny+d(lnx)2+e(lny)2+flnxlny+g(lnx)3+h(lny)3+ilnx(lny)2+j(lnx)2lny 
 

               x = time   y = temp 
----------------------------------------------------------------------------------------------------------------------------------------------- 
 Parameter Value         Std Error     t-value       95.00% Confidence Limits   P>|t| 

 a    2.54711e+07   888258.3818   28.67530666   2.37284e+07   2.72138e+07   0.00000 
   b    -58549.9268   5488.478244   -10.6677888   -69317.8029   -47782.0507   0.00000 
   c    -1.3359e+07   463795.0459   -28.8034123   -1.4269e+07   -1.2449e+07   0.00000 
   d    48.25390833   15.17418012   3.180001024   18.48359955   78.0242171    0.00151 
   e    2.3354e+06    80723.4915    28.930804     2.17702e+06   2.49377e+06   0.00000 
   f    20573.58645   1903.621696   10.80760242   16838.8604    24308.31249   0.00000 
   g    -0.00110255   0.000360836   -3.05554563   -0.00181048   -0.00039463   0.00230 
   h    -136087.448   4683.395605   -29.0574317   -145275.828   -126899.068   0.00000 
   i    -1807.11098   165.0566668   -10.9484277   -2130.93658   -1483.28538   0.00000 
   j    -8.69291068   2.650236212   -3.28005128   -13.8924239   -3.49339744   0.00107 
----------------------------------------------------------------------------------------------------------------------------------------------- 
Procedure                    
GaussElim                    
 

r2 Coef Det     DF Adj r2       Fit Std Err      
0.9505808325    0.9501764203    1.5850245261         

-----------------------------------------------------------------------------------------------------------------------------------------------  
 
Analysis of Variance 

 
Source    Sum of Squares     DF Mean Square F Statistic       P>F 
Regr      59100.623          9        6566.7359           2613.83           0.00000 
Error     3072.5463          1223     2.5123027       
Total     62173.169          1232 
 
Lack Fit  191.14261          38       5.0300688           2.06866           0.00017 
Pure Err  2881.4036          1185     2.4315643       
-----------------------------------------------------------------------------------------------------------------------------------------------  
Description:  Accelerated Stability XYZ Data: Time(days), Temp(°K), Control Low(rate) 
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Figure 23: Statistical Analysis for the Polynomial Model fitted to Control Medium Data 

 

 

 

 

 

 

 

 

 

 

 

Regression Analysis 

 

Rank 1   z = a+blnx+clny+d(lnx)2+e(lny)2+flnxlny+g(lnx)3+h(lny)3+ilnx(lny)2+j(lnx)2lny 
 

               x = time   y = temp 
-----------------------------------------------------------------------------------------------------------------------------------------------  
 Parameter Value         Std Error     t-value       95.00% Confidence Limits   P>|t| 

   a    1.29253e+08   5.25013e+06   24.61904658   1.18953e+08   1.39554e+08   0.00000 
   b    -247129.25    32440.16481   -7.61800229   -310773.79    -183484.709   0.00000 
   c    -6.7829e+07   2.7413e+06    -24.7433323   -7.3207e+07   -6.2451e+07   0.00000 
   d    123.6861281   89.68841309   1.37906474    -52.2740707   299.6463269   0.16813 
   e    1.18647e+07   477123.7585   24.86712619   1.09286e+07   1.28008e+07   0.00000 
   f    87054.67407   11251.53436   7.737138      64980.22593   109129.1222   0.00000 
   g    -0.00861693   0.002132758   -4.04027451   -0.0128012    -0.00443266   0.00006 
   h    -691774.937   27681.64845   -24.9903808   -746083.718   -637466.156   0.00000 
   i    -7665.39039   975.5828912   -7.85724151   -9579.39192   -5751.38887   0.00000 
  j    -22.9858639   15.6644694    -1.4673886    -53.7180739   7.746346162   0.14253 
-----------------------------------------------------------------------------------------------------------------------------------------------  
Procedure                    
GaussElim                    
 

r2 Coef Det     DF Adj r2       Fit Std Err      

0.9452677795    0.9448198889    9.3684359427        
--------------------------------------------------------------------------------------------------------------------------------------- -------- 
 
Analysis of Variance 

 
Source    Sum of Squares     DF Mean Square F Statistic       P>F 
Regr      1853840.8          9        205982.31           2346.91           0.00000 
Error     107339.77          1223     87.767592       
Total     1961180.5          1232 
 
Lack Fit  6086.6309          38       160.1745            1.87458           0.00113 
Pure Err  101253.13          1185     85.445683       
----------------------------------------------------------------------------------------------------------------------------------------------- 
Description:  Accelerated Stability XYZ Data: Time(days), Temp(°K), Control Med(rate) 
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Figure 24: Statistical Analysis for the Polynomial Model Fitted to Control High Data 

 

As it can be observed in Figures 22 to 24, the statistical analyses of the fitted linear 

regressions indicate that all models appear to provide statistically significant relationships 

between product content (rate values of each control level), time and temperature at the 

90% confidence level since the p-value in the ANOVA table for the regression model is 

less than 0.10.  In addition, when verifying significance of the regression coefficients to 

identified which ones are making a genuine contribution to the model, it is concluded that 

all coefficients are significant for the model fitted to control low data, since the results of 

the statistic t test indicate that p-values are less than 0.10.   This is not the case for the 

polynomial models fitted to control medium and control high data since it is observed in 

Figures 23 and 24, that parameters (d) and (j) have p-values higher than 0.10. These 

regression coefficients are related to the square natural logarithm of the time  2ln X .  In 

Regression Analysis 

 

Rank 1   z = a+blnx+clny+d(lnx)2+e(lny)2+flnxlny+g(lnx)3+h(lny)3+ilnx(lny)2+j(lnx)2lny 
 

               x = time   y = temp 
-----------------------------------------------------------------------------------------------------------------------------------------------  
Parameter Value         Std Error     t-value       95.00% Confidence Limits   P>|t| 

   a    6.32772e+08   3.06867e+07   20.62044023   5.72568e+08   6.92977e+08   0.00000 
   b    -1.3041e+06   189610.4447   -6.87773313   -1.6761e+06   -932092.247   0.00000 
   c    -3.3201e+08   1.60227e+07   -20.7212053   -3.6345e+08   -3.0058e+08   0.00000 
   d    459.6023327   524.2223643   0.876731639   -568.872453   1488.077119   0.38080 
   e    5.80661e+07   2.78875e+06   20.82152693   5.25948e+07   6.35374e+07   0.00000 
   f    459273.555    65764.41417   6.983618128   330249.9833   588297.1267   0.00000 
   g    -0.04560531   0.012465817   -3.65842896   -0.07006206   -0.02114855   0.00026 
   h    -3.385e+06    161797.2567   -20.9213653   -3.7025e+06   -3.0676e+06   0.00000 
   i    -40430.7584   5702.212272   -7.0903636    -51617.9605   -29243.5562   0.00000 
   j    -87.0700183   91.55770407   -0.95098516   -266.69759    92.55755295   0.34180 
-----------------------------------------------------------------------------------------------------------------------------------------------  
Procedure                    
GaussElim                    
 

r2 Coef Det     DF Adj r2       Fit Std Err      

0.9241547484    0.9235340835    54.757838502        
-----------------------------------------------------------------------------------------------------------------------------------------------  
 
Analysis of Variance 

 
Source    Sum of Squares     DF Mean Square F Statistic       P>F 
Regr      44682283           9        4964698.1           1655.77           0.00000 
Error     3667068.7          1223     2998.4209       
Total     48349352           1232 
 
Lack Fit  174660.54          38       4596.33             1.55957           0.01712 
Pure Err  3492408.2          1185     2947.1799       
----------------------------------------------------------------------------------------------------------------------------------------------- 
Description:  Accelerated Stability XYZ Data: Time(days), Temp(°K), Control High(rate) 
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this case, we could end up eliminating these parameters from the model but this is not a 

subject of interest for the objectives of this project since it is known that the test of 

individual regression coefficients is really a partial or marginal test because the 

regression coefficient ( j̂ ) depends on all the other regressor variables ix  ( )ji  that are 

in the model.  Thus, this is a test of the contribution of jx  given the other regressor in the 

model.       

   Other ways to assess the overall adequacy of the model is the coefficient of 

determination (R
2
) and the adjusted R

2
, which is denoted as (

2

AdjR ).  The equations that 

describe these statistics were previously defined in Section 3.8.  Most model builder 

statisticians preferred to use the 
2

AdjR  statistic for polynomial models since, in general, the 

R
2 

statistic always increases when a regressor is added to the model, regardless of the 

value of the contribution of the variable.  In contrasts, the 
2

AdjR  statistic will only increase 

when adding a variable to the model, if the variable added reduces the residual mean 

square (MSE) of the model.  Therefore, the 
2

AdjR  will penalize for adding parameters that 

are not helpful.   

Reviewing Figures 22 to 24, it is observed that the lowest value obtained for the 

three polynomial models was a 
2

AdjR  value equal to
 
92.3%, which will indicate that the 

variability in the response variable (Z) is very well explained by the models fitted.   It is 

important o clarify that even though results of statistical analyses indicate that these 

polynomial models have good capabilities to explain the variability of the response 

variable as measured by large 
2

AdjR  values, this not necessarily means that they are good 

regression models for extrapolation of the response variable as previously discussed in 

Section 4.3.1. 

4.3.3 Advantages and Disadvantages of the Polynomial Function Model 

Using the same approach used previously with the Arrhenius classical approach in 

section 4.2.3, the polynomial function model will also be addressed in terms of their 

relative advantages and disadvantages to illustrate its relevance and limitations to fit the 

accelerated stability data.  In the case of the Polynomial Function Model, it is of interest 
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to highlight that these regression models demonstrated capability to handle the 1,233 

results obtained from the accelerated test and to relate all the variables of interest into 

equations that provided 
2

AdjR  values higher than 92% and with almost all of the regression 

coefficients demonstrating to be significant to the model.    

In the other hand, the polynomial function model has several disadvantages that 

strongly affect its capability to provide accurate predictions for all control levels 

considered in the accelerated stability test as previously mentioned in Section 4.3.1.  

These disadvantages are summarized as follows: 

 Even though the accelerated that the stability study done provided data of the 

response variables at time zero (t0), the polynomial model was not able to consider 

these values since the regressor variables of the model include the ln( ) of time and 

temperature, and the ln(0) is not defined. 

 A model considering values at time zero would provide much better 

extrapolation estimates since it will contain the baseline from which the product 

content of each lot of the study initiated there degradation patterns and from 

which it was measured.  In addition, it is know from Abbot scientists, that the 

behavior of the product should provide a lag of degradation behavior at 

temperatures closer to the storage condition (281 °K).  Therefore, a plateau 

behavior should be observed for the temperatures closer to the storage condition 

in the surface response plots, but this was not the behavior observed in any of 

the Figures 19 to 21.  In contrast, these figures illustrate significant degradation 

response at temperatures near the storage condition.    

 It is observed in Figures 19 to 21 that most of the observed rate values (the response 

variable Z) at the highest temperature experimented in the accelerated test (45°C or 

318°K) are not well fitted by the surface response plots since they are clearly seen 

far-off from the shape of the curvature obtained for this temperature.  This indicates 

that the Polynomial Function model is not adequate for performing interpolations at 

the highest temperatures of the experiment.   

 Finally, if we investigate the surface plots of the partial derivatives of the response 

variable with respect to the regressor variables (time and temperature), it is found 
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that there is no simple interpretation to the behavior of the degradation rate 

observed in these plots.  Figures 25 to 27 illustrate the partial derivative surface 

plots on the performance of control levels with respect to changes in time  XZ  /  

and Figures 28 to 30 illustrate the partial derivative surface plots on the 

performance of control levels with respect to changes in temperature  YZ  / .  

The vertical axes in these plots correspond to the derivative of the degradation rate 

for each respective control level (Low. Medium or High) with respect to the 

regressor variable of interest.  A negative partial derivative means that the 

performance of the product (i.e. as measure by the rate values of each control level), 

is decreasing since an actual degradation is occurring as time and temperature 

increases.  Therefore, the expected behavior of these plots is to have a surface 

intercepting the vertical axis ( XZ   or YZ  ) at a value equal to zero, and then 

to have a downward orientation of the curve as degradation rate increases. 

 

 
Figure 25: Partial Derivative Plot of Control Low with respect to changes in time for the Polynomial 

Function Model 
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Figure 26: Partial Derivative Plot of Control Medium with respect to changes in time for the Polynomial 

Function Model 

 

 

 
Figure 27: Partial Derivative Plot of Control High with respect to changes in time for the Polynomial 

Function Model 
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Figure 28: Partial Derivative Plot of Control Low with respect to changes in temperature for the 

Polynomial Function Model 

 

 

 
Figure 29: Partial Derivative Plot of Control Medium with respect to changes in temperature for the 

Polynomial Function Model 
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Figure 30: Partial Derivative Plot of Control High with respect to changes in temperature for the 

Polynomial Function Model  
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(the antibody-enzime conjugate) suffers a reaction that breaks its molecular structure and 

deteriorates the antibody agents, causing degradation in product content.  Therefore, these 

plots should had presented a change in rate values that starts at a value equal to zero and 

then significantly increases in negative values as it moves further away from the lowest 

values of temperature and time that were considered in the accelerated test.     

This incongruence of the partial derivative plot with the true chemical-physical 

behavior expected is the main cause why the Polynomial Function Model has significant 

problems to predict the rate value of each control level at expiration day.  Hence, it is 

preliminary concluded that even though the Polynomial Function Model was able to 

provide attractive values of the 
2

AdjR  statistic, it also demonstrated to be not appropriate 

for predicting the stability of the product at the normal conditions of use.  Therefore, 

another statistical model will be developed, that will provide the same attractive results as 

the Polynomial model in terms of the regression statistical analyses, but in addition, it 

will provide appropriate prediction estimates that are more congruent with the expected 

product performance.  

4.4 Nonlinear Arrhenius Models  

Although the Arrhenius classical linear approach has been widely used in the past, 

the methodology demonstrated to suffer significant drawbacks since it only employs the 

mean rate constants obtained at elevated temperatures to predict a future value of product 

content (rate values of each control level) at the shelf-life or expiration date.   Therefore, 

the experimental errors associated with the total number of values (n) obtained from the 

accelerated stability test are not included in the two-step procedure of the Arrhenius 

classical approach.   In addition, several literature reports of people that have used this 

approach, indicated that the methodology had another problem related with the statistical 

interval that is obtained for the prediction at the storage or room temperature, since the 

statistical interval obtained from the fitted linear regression can be so wide that it could 

make the estimated shelf-life of little or no value.       

Because of these intrinsic problems of the Arrhenius classical approach as well as 

the disadvantages that demonstrated the Polynomial Function Model, it was decided to 

develop alternate models that could relate product content, time and temperature of the 
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accelerated stability study in a nonlinear approach.  A model is considered non-linear 

when the partial derivatives of one of the unknown parameters, is a function of one of 

more of the other unknown parameters.  Therefore, a single step matrix solution as 

applied by linear least squares procedure is not possible.  Non-linear model fitting 

consists of an iterative procedure that begins with an initial set of estimates for the 

parameters until it converges to the optimization objective.        

These models had the advantages that they were based on the applicable reaction 

orders of the Arrhenius life-temperature relationship, and contrary to the classical 

approach, they were able to consider the experimental errors associated with the total 

number of values obtained from the accelerated stability test (n = 1233).   Only the zero 

and first order of reactions were used to relate temperature by the Arrhenius equation in a 

nonlinear way since the degradation of the product that was used is caused by the 

interaction of one molecule of interest (the antibody-enzime).  Second order reactions are 

related to pharmaceutical or biological products that have interactions of two or more 

molecules and the stress factor has a cumulative effect on degradation.            

These nonlinear equations were derived by substituting the Arrhenius equation 

(Eq.1) presented in Section 2.4.2.1 into the equations of a zero and first order reaction 

(Eq.17 and 18) established in Section 2.4.2.2 of this report.  Hence, the corresponding 

nonlinear Arrhenius equation for a zero-order reaction is given by  

                                                       













 TR
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etACC 0                                              (39)   

and for a first-order reaction is given by: 
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In general, the true degradation of product content (C) at any temperature and as a 

function of time can be expressed as follows: 

                                                               βt,fC                                                          (41) 

where, t is the vector of observed time points and β  is the vector of the parameters.  

Therefore, the observed response as a function of time and temperature for the zero and 

first reaction orders are respectively: 

                                               
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
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
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etACCZ 0                                  (42) 
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                                               
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eCCZ 0                                    (43) 

where, 

0C  =  is the intercept of the surface (performance at time zero)  

A   =  the Arrhenius constant   

  t  =  time (in days) 

aE  =  the activation energy (kcal mol 
-1

) 

 R  =  the gas constant, equal to 0.00199 (kcal mol 
–1

 K
–1

) 

  T  =  temperature in Kelvin (K) 

    =  the experimental error 

All of these parameters are considered to be fixed except for the experimental error, 

which are considered to be random, independent, and normally distributed with   0E   

and constant variance.  

4.4.1 User Defined Functions  

For the purpose of fitting the nonlinear Arrhenius equations for zero and first order 

reactions, we used the “User-Defined Function” (UDF) option that is available in Table 

Curve 3D software.  This option contains all the necessary information to fit the equation, 

including the function name, the parameter count, the function’s formula, and the starting 

estimates and constraints for each parameter.  A special “Adjust” item allows you to 

graphically adjust the starting estimates to better assure a successfully converged fit.  In 

addition, it enables you to inspect the partial derivatives of the UDF to find instances of 

multiple constants, insignificant parameters, and to expose conditions would be likely to 

fail.  To enter a UDF in Table Curve 3D, you must perform the following steps: 

1) Enter the Function Name: 

This is the name that will be used to represent the function in the surface fit 

graphs. 

2) Enter the Coefficient Count: 

This is the number of parameters in the UDF model.  For example, if you enter 

4 as the coefficient count, the UDF must contain parameters #A, #B, #C, #D (or 
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A0, A1, A2, A3).  These are the only letter formats recognized by the program 

to enter coefficient parameters.  

3) Enter the Mathematical Function or UDF: 

The program uses a simple ASCII multi-line editor for entering a mathematical 

function.  You may define as many constants as needed.  These constants are 

evaluated once and the numeric result is stored.  Variables must be assigned to a 

F1-F9 (or #F1-#F9) or Z expression because if not, they will be assumed to be a 

constant.  Any expression containing X, Y or any of the function parameters 

#A-#H (or A0-A7) must be assigned to an F1-F9 expression or to Z.  The Z 

expression must always be last line in the UDF     

Taking in consideration the requirements previously mentioned to create UDF 

models into Table Curve 3D, it was needed to modify the nonlinear Arrhenius equations 

(Eq.42 and Eq.43) established in Section 4.4 to a format that would be understood by the 

software.  The following equations are re-written formats of the nonlinear Arrhenius 

equations for zero and first order reactions, respectively: 

                                                     
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eXbaZ                                            (44) 

                                                     
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where, 

Z  =  rate values of each respective control level (Low, Medium or High)   

a   =  is the intercept of the surface (performance at time zero)  

b =  the constant A of the Arrhenius equation   

 X  =  time (in days) 

Y   =  temperature in Kelvin (K) 

c =  the relation Ea /R of the Arrhenius equation   

 

The specific UDF entries that was done in Table Curve 3D for these nonlinear equations 

will be presented in Sections 4.4.3 and 4.4.4  
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4.4.2 Parameter Estimation 

The parameters for the nonlinear equations (Eq.44 and Eq.45) were estimated using 

the nonlinear least-squares approach.  This approach requires an iterative function 

minimization routine.   Therefore, the Levenburg-Marquardt algorithm provided by Table 

Curve 3D was used for fitting these nonlinear Arrhenius equations.  This algorithm 

provides a numerical solution to minimize nonlinear functions and its mainly applied in 

the least-squares curve fitting problems.  Therefore, given a set of empirical data pairs of 

independent and dependent variables (xi, yi), the algorithm optimizes the parameters of 

the model f(x, ) to minimize the following residual sum of squares  function: 

                                                 



n

i

ii fyRSS
1

2 
, x                                        (46)   

The rate of convergence of the Levenberg-Marquardt algorithm is among the best of 

available methods and it is considered more robust than the Gauss-Newton algorithm, 

since in many cases it finds a solution even if the iteration procedure starts very distantly 

from the final minimum.      

4.4.3 Results for the Arrhenius Zero-Order Nonlinear Model  

The third model developed was an Arrhenius zero-order reaction model which 

related product content, time and temperature of the accelerated stability study in a 

nonlinear approach as illustrated in Eq.44.   The model was included as a nonlinear User 

Defined Function (UDF) into Table Curve 3D software.  Figures 31 to 33 illustrate the 

function formula with the format required by the software as well as the parameters 

starting points and constraints used in the UDF for each of the response variable (Control 

Low, Medium and High) considered in the accelerated study.  Parameters a, b and c in 

Eq.44 are related to important factors of the Arrhenius equation, therefore, their starting 

points were determined by using the estimates obtained for the Arrhenius models 

developed with the classical approach (Model 1) as reference values. 
  



 

67 

 

 

 

Figure 31: UDF of the Arrhenius Zero-Order Nonlinear Model for Control Low 
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Figure 32: UDF of the Arrhenius Zero-Order Nonlinear Model for Control Medium 
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Figure 33: UDF of the Arrhenius Zero-Order Nonlinear Model for Control High 

 

The following equations were obtained as a result of fitting a nonlinear Arrhenius 

UDF for each of the response variable (Control Low, Medium and High) considered in 

the accelerated study. 

 For Control Low               









 

TetZ

32673.15574

211080867.190585.32                                          (47) 

 

 For Control Medium              









 

TetZ

73317.15457

211093593.61744.178                                          (48) 
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 For Control High              









 

TetZ

80923.15281

221093637.194847.890                                       (49) 

 

Using some algebra modifications, the equations can be re-written as follows: 

  For Control Low              












TetZ

32673.15574
    94688.48

90585.32                                                         (50) 

 

 For Control Medium              












TetZ

73317.15457
     50.2910

1744.178                                                          (51) 

 

 For Control High              












TetZ

80923.15281
     51.31769

94847.890                                                      (52) 

 

Figures 34 to 36 illustrate the surface fit plots that correspond to these nonlinear 

Arrhenius equations for a zero-order reaction. 

 

 

Figure 34: Surface Plot of the Arrhenius Zero-Order Nonlinear Model for Control Low  
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Figure 35: Surface Plot of the Arrhenius Zero-Order Nonlinear Model for Control Medium 
 

 

 

Figure 36: Surface Plot of the Arrhenius Zero-Order Nonlinear Model for Control High 
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Since the Arrhenius Zero-Order nonlinear model is capable of considering the 

product content at time zero (t0) for each of the lots considered in the study, then it is 

clearly observed that the surface plots for each of the control levels follow the 

degradation patterns that was expected by Abbott scientists.  The product should provide 

a lag of degradation at the beginning of the study and at temperatures close to the storage 

condition (281 °K), forming a kind of a plateau at these temperatures.  Then, it should 

start to degrade significantly as temperature and time increases.   In our case, this was the 

exact behavior that was obtained in the surface plots of the accelerated stability data that 

was fitted for all control levels.          

   In addition, since these nonlinear models considered values at time zero, it was 

expected that they would provide much better extrapolation estimates since they were 

considering the baseline from which the product content of each lot of the study initiated 

there degradation pattern.  Therefore, the equations that described these plots (Eq.50 to 

Eq.52) were used to predict the rate values of each control level at the expiration date 

(180 days) and at the storage temperature (8°C or 281°K).  Table 9 contains the results of 

the predicted rate value of each control level at the expiration date. 

Table 9: Prediction of Controls Rate Values using the Arrhenius Zero-Order Model 

Control 

Level 

Mean rate 

value at 

t=0 

Storage 

Temp.       

(°K) 

Expiration 

Date       

(days) 

Predicted 

rate value at 

Exp. Date 

95% Prediction 

Interval 

Low 36.75 281 180 32.63 27.15 – 38.11 

Medium 201.38 281 180 176.57 143.66 – 209.47 

High 1007.60 281 180 882.56   705.91 – 1059.21 

 

Examining the results obtained for the prediction of product content (rate values) at the 

expiration date we can establish that the Arrhenius Zero-Order Nonlinear Model is 

congruent with the chemical-physical behavior that is expected since the predicted rate 

values of each control level is lower than the mean rate value of the product at time zero. 

If these values are compared in terms of percent difference, it is determined that the 

product had a product content loss of 11.2%, 12.3%, and 12.4% at the 180 days.  These 

percents of degradation were the results expected by Abbott scientist since at 180 days, a 

product content loss between 10 and 15% should be observed for the specific product that 

was used in the accelerate stability test.  Table 7 in Section 4.2.1 contains the rate 

specifications that were established to monitor the stability of the product (a reagent kit) 
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as measured by each control level.   As presented in Table 9, the predicted rate values of 

each control level are within the specifications.  Therefore, these predictions are also in 

congruence with the behavior of the three lots used to perform the accelerated stability 

study since these were lots that passed the internal manufacturing specifications for 

selling them in to the market, and once in the customer hands they were within the 

stability specifications until they expired.        

4.4.3.1 Statistical Analyzes for the Arrhenius Zero-Order Nonlinear Model 

Using the statistical tests in a similar way as it was done with the two previous models, it 

can be establish that the Arrhenius zero-order nonlinear model is capable of providing 

significant statistical results when relating product content, time and temperature since a 

p-value = 0.00000 was obtained for the regression models of each control level (refer to 

the ANOVA table in Figures 37 to 39).   In addition, when testing the significance of 

individual regression coefficient, it is found that all parameters of the Arrhenius zero-

order nonlinear model are significant to the model since the results of the statistic t test 

indicate that p-values are less than 0.10. 

 

 

Figure 37: Statistical Analysis for Arrhenius Zero-Order Nonlinear Model Fitted to Control Low Data 

 

Rank 1    z=Arrhenius-Zero Order 
 
-----------------------------------------------------------------------------------------------------------------------------------------------  
Parameter Value         Std Error     t-value       95.00% Confidence Limits   P>|t| 

   a 32.90585296   0.140858876   233.6086572   32.6295027    33.18220322   0.00000 
  b    1.80867e+21   9.20629e+20   1.964604127   2.49454e+18   3.61485e+21   0.04968 
  c    15574.32673   161.0252993   96.71975028   15258.41208   15890.24139   0.00000 
-----------------------------------------------------------------------------------------------------------------------------------------------  
Procedure       Minimization    Iterations 
Lev-Marq        Least Squares   100          
 

r2 Coef Det     DF Adj r2       Fit Std Err      
0.845782901     0.8454064557    2.7919986991      
-----------------------------------------------------------------------------------------------------------------------------------------------  
 
Analysis of Variance 

  
Source    Sum of Squares     DF Mean Square F Statistic       P>F 

Regr      52585.003          2        26292.502           3372.88           0.00000 
Error     9588.1658          1230     7.7952567 
Total     62173.169          1232 
 
Lack Fit  6706.7621          45       149.03916           61.2935           0.00000 
Pure Error  2881.4036          1185     2.4315643       
-----------------------------------------------------------------------------------------------------------------------------------------------  
Description: Accelerated Stability XYZ Data, Time(days), Temp(°K), Control Low(rate) 
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Figure 38: Statistical Analysis for Arrhenius Zero-Order Nonlinear Model Fitted to Control Medium Data 

 

 

Figure 39: Statistical Analysis of Arrhenius Zero-Order Nonlinear Model Fitted to Control High Data 

 

Rank 1    z=Arrhenius-Zero Order 
 
-----------------------------------------------------------------------------------------------------------------------------------------------  
Parameter Value         Std Error     t-value       95.00% Confidence Limits   P>|t| 
   a 178.1744037   0.84754122    210.2250598   176.5116172   179.8371901   0.00000 
  b    6.93593e+21   3.77925e+21   1.835263792   4.7857e+20   1.43504e+22   0.06671 
  c    15457.73317   172.3491871   89.68845998   15119.60224   15795.8641    0.00000 
-----------------------------------------------------------------------------------------------------------------------------------------------  
Procedure       Minimization    Iterations 
Lev-Marq        Least Squares   100          
 

r2 Coef Det     DF Adj r2       Fit Std Err      
0.8239451062    0.8235153546    16.754454066      
-----------------------------------------------------------------------------------------------------------------------------------------------  
 
Analysis of Variance 

  
Source    Sum of Squares     DF Mean Square F Statistic       P>F 
Regr      1615905.1          2        807952.55           2878.23           0.00000 
Error     345275.43          1230     280.71173 
Total     1961180.5          1232 
 
Lack Fit  244022.3           45       5422.7177           63.4639           0.00000 
Pure Error  101253.13          1185     85.445683       
-----------------------------------------------------------------------------------------------------------------------------------------------  
Description: Accelerated Stability XYZ Data, Time(days), Temp(°K), Control Med(rate) 

Rank 1    z=Arrhenius-Zero Order 
 
-----------------------------------------------------------------------------------------------------------------------------------------------  
Parameter Value         Std Error     t-value       95.00% Confidence Limits   P>|t| 
   a 890.9484679   4.568178378   195.0336424   881.9861838   899.9107521   0.00000 
  b    1.93637e+22   1.14373e+22   1.693025569   3.0751e+21   4.18025e+22   0.09070 
  c    15281.80923   186.7879319   81.8136861    14915.351     15648.26745   0.00000 
-----------------------------------------------------------------------------------------------------------------------------------------------  
Procedure       Minimization    Iterations 
Lev-Marq        Least Squares   100          
 

r2 Coef Det     DF Adj r2       Fit Std Err      
0.7942089159    0.793706578     89.940655553         
-----------------------------------------------------------------------------------------------------------------------------------------------  
 
Analysis of Variance 

  
Source    Sum of Squares     DF Mean Square F Statistic       P>F 
Regr      38399486           2        19199743            2373.47           0.00000 
Error     9949865.5          1230     8089.3215       
Total     48349352           1232 
 
Lack Fit  6457457.3          45       143499.05           48.6903           0.00000 
Pure Error  3492408.2          1185     2947.1799       
------------------------------------------------------------------------------------------------------------------------------------------- ---- 
Description: Accelerated Stability XYZ Data, Time(days), Temp(°K), Control High(rate) 
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 In addition, when reviewing the 
2

AdjR  statistic as other ways the assess the adequacy 

of the model, it is observed in Figures 37 to 39 that the Arrhenius Zero-Order Models 

appear to explain well the variability of the response variable Z since the lowest value 

obtained for all the models fitted was an 
2

AdjR  value equal to
 
79.37% 

4.4.3.2 Advantages and Disadvantages of the Arhenius Zero-Order Nonlinear Model 

Addressing the nonlinear approach of the model developed for an Arrehnius zero-

order reaction it can preliminary conclude that this model demonstrated to have 

significant advantages when compared with the other two models that were discussed 

previously.  The following bullets summarize the advantages that presented this model 

when it was analyzed in detail.       

 The model is obtained by a one step nonlinear approach that relates product content, 

time, and temperature for the treatment of the accelerated stability data that was 

experimentally gathered. 

 The regression equations that were fitted provided good results in the statistical test 

that were done since a p-value of 0.00000 was obtained for the surface fit of all 

control levels.  In addition, all of the individual regression coefficients 

demonstrated to have a significant contribution in the model since their p-value 

where less than 0.10.     

 The model considers data of the response variable at time zero (t0) and it is also 

capable of considering the experimental error (variability) associated with the total 

number of observations obtained from the accelerated stability test (n = 1233).  

Therefore an improvement was observed in the prediction of the product content at 

the expiration date, when compared with the Arrhenius classical approach and the 

Polynomial Function Model.  

 Using the predictions performed at the expiration date (180 days) and at the storage 

temperature (8°C or 281°K), it was observed that the Arhenius zero-order nonlinear 

model provided much smaller and symmetrical 95% prediction intervals, when 

compared with the Arrhenius classical approach. 
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 Finally and most important, is that the partial derivative plots of the response 

variable with respect to the regressor variables (time and temperature) are aligned 

with the expected chemical-physical behavior of the type of product that was used 

since all surface plots intercept the vertical axis ( XZ   or YZ  ) at a value 

equal to zero, and then show a continuous downward orientation as time and 

temperature increases.   Refer to Figures 40 to 42 for the partial derivative surface 

plots on the performance of control levels with respect to changes in time  XZ  /  

and Figures 43 to 45 for the partial derivative surface plots on the performance of 

control levels with respect to changes in temperature  YZ  / . 

   

 
Figure 40: Partial Derivative Plot of Control Low with respect to changes in time for the Arrhenius Zero-

Order Nonlinear Model 
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Figure 41: Partial Derivative Plot of Control Medium with respect to changes in time for the Arrhenius Zero-

Order Nonlinear Model 

 

 

 
Figure 42: Partial Derivative Plot of Control High with respect to changes in time for the Arrhenius Zero-

Order Nonlinear Model 
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Figure 43: Partial Derivative Plot of Control Low with respect to changes in temperature for the Arrhenius 

Zero-Order Nonlinear Model 

 
 

 
Figure 44: Partial Derivative Plot of Control Medium with respect to changes in temperature for the Arrhenius 

Zero-Order Nonlinear Model 
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Figure 45: Partial Derivative Plot of Control High with respect to changes in temperature for the Arrhenius 

Zero-Order Nonlinear Model 

 

 

4.4.4 Results for the Arrhenius First-Order Nonlinear Model  

The fourth and final model developed to relate product content, time and 

temperature of the accelerated stability test was an Arrhenius first-order nonlinear model.  

This type of reaction order was considered since it is well known by the literature of the 

Arrhenius Law that zero and first order reactions can explain chemical reactions that 

involve only one molecule.  The exponential degradation pattern of the first order 

reaction is one of the most used and presented in the literature.  In our specific case, we 

could apply this type of reaction order to fit a model since the degradation of the product 

that was used is caused by the interaction of one molecule of interest (the antibody-

enzime).  

The nonlinear first-order expression presented in Eq.45 was included as a nonlinear 

User Defined Function (UDF) into Table Curve 3D in the same manner as it was done for 

the nonlinear zero-order expression.  Figures 46 to 48 illustrate the function formula that 

was included in the software to represent a nonlinear first-order expression as well as the 
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starting points and constraints that were used for the parameters.  The starting points 

values used in this approach were very similar, and in some cases, equal to the values 

used with the nonlinear zero-order expression. 

 

 

Figure 46: UDF of the Arrhenius First-Order Nonlinear Model for Control Low 
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Figure 47: UDF of the Arrhenius First-Order Nonlinear Model for Control Medium  
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Figure 48: UDF of the Arrhenius First-Order Nonlinear Model for Control High 

 
The following equations were obtained as a result of fitting an Arrhenius first-order 

nonlinear UDF for each of the response variable (Control Low, Medium and High) 

considered in the accelerated study. 

 For Control Low               


























 

Tet

eZ

42554 .  15631

19    10   68489.9

208396.34                                                   (53) 

 

 For Control Medium              


























 

Tet

eZ

92866 .  15533

19    10   42522.7

97304.185                                                   (54) 
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 For Control High              


























 

Tet

eZ

54007 . 15632

19     10   81331.9 

73156.924                                                  (55) 

 

Using some algebra modifications, the equations can be re-written as follows: 

 For Control Low               





























Tet

eZ

42554 .  15631
     01968 . 46

  

208396.34                                                          (56) 

 

 For Control Medium              





























Tet

eZ

92866 .  15533
     7540 . 45

  

97304.185                                                           (57) 

 

 For Control High              





























Tet

eZ

54007 .  15632
      03286 . 46

   

73156.924                                                         (58) 

 

Verifying the influence of different orders of reaction to the final parameters of the model 

it is observed in Table 10 that all parameters in the first order equation had a little 

increase in there final estimates when compared to the parameters of the zero-order 

reaction.  If we verify the 95% confidence intervals of the parameters per control level, it 

can be concluded that there is no statistical difference between reactions orders for 

parameter c since these intervals overlap between each other.  This is not the case for 

parameters a and b, since the majority of the confidence intervals do not overlap between 

each other.  Parameter c is strictly related to the relation Ea /R of the Arrhenius equation, 

where Ea is the activation energy of the reaction and R is the gas constant.  Therefore, since 

R is a constant, it can be preliminary concluded that the activation energy needed for 

degradation to occur in our product is going be practically the same in a zero and first 

order nonlinear model.   
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Table 10: Influence of Reaction Orders on Final Parameters of the Nonlinear Models 

   Control Low   

  Zero-Order   First-Order  

Parameter a b c a b c 

Final Estimate 32.91 1.81x1021 15574.33 34.21 9.68x1019 15631.43 

95% Confidence 

Interval 
32.63 – 33.18 2.49x1018–  3.61x1021 15258.4 – 15890.2 33.88 – 34.54 7.2x1018–  2.0x1020 15293.3 – 15969.6 

   Control Medium   

  Zero-Order   First-Order  

Parameter a b c a b c 

Final Estimate 178.17 6.94x1021 15457.73 185.97 7.42x1019 15533.92 

95% Confidence 

Interval 
176.51– 179.83 4.78x1020 – 1.43x1022 15119.6 – 15795.9 184.00 – 187.94 1.01x1019–  1.59x1020 15176.6 – 15891.2 

   Control High   

  Zero-Order   First-Order  

Parameter a b c a b c 

Final Estimate 890.95 1.94 x1022 15281.81 924.73 9.81x1019 15632.5 

95% Confidence 

Interval 
881.98 – 899.91 3.07x1021–  4.18x1022 14915.4 – 15648.3 914.29 – 935.17 2.51x1019–  2.21x1020 15237.4 – 16027.7 

 

Figures 49 to 51 illustrate the surface fit plots that correspond to the nonlinear Arrhenius 

equations previously presented for a first-order reaction. 

 
Figure 49: Surface Plot of the Arrhenius First-Order Nonlinear Model for Control Low 
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Figure 50: Surface Plot of the Arrhenius First-Order Nonlinear Model for Control Medium 

 

 
Figure 51: Surface Plot of the Arrhenius First-Order Nonlinear Model for Control High 
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As with the zero order models, these nonlinear first-order models were capable of 

considering results of product content at time zero (t0).   Therefore, they also provided the 

behavior that was expected in there surface plots since a lag of degradation was observed 

at the beginning of the study and at temperatures close to the storage condition (281 °K), 

then, a significant continuous degradation was observed as temperature and time 

increased. 

Predictions of the rate values of each control were made at the expiration date (180 

days) and at the storage temperature (8°C or 281°K) by using the equations that described 

these plots.  Table 11 illustrates the results obtained for the predicted rate value of each 

control level at the expiration date.  

Table 11: Prediction of Controls Rate Values using the Arrhenius First-Order Model 

Control 

Level 

Mean rate 

value at 

t=0 

Storage 

Temp.       

(°K) 

Expiration 

Date       

(days) 

Predicted 

rate value at 

Exp. Date 

95% Prediction 

Interval 

Low 36.75 281 180 33.80 28.41 – 39.18 

Medium 201.38 281 180 183.55 151.59 – 215.51 

High 1007.60 281 180 913.52   742.49 – 1084.54 

 

Even though the predictions of the product content (rate values) at the expiration date 

indicated to be within the stability specifications established in Table 7, these predictions 

not necessarily represented the expected behavior of the product used for the accelerated 

stability study since it is previously known that the product content loss of the product, 

measured as a percent difference of rate values between t=180 and t=0, must be between 

10 and 15 percent.  In this case, the predictions provided by the Arrhenius first-order 

nonlinear model indicated a product content loss of 8.0, 8.9 and 9.3 percent for controls 

low, medium and high, respectively.  This incongruence with the expected behavior 

highlights a possible problem with the partial derivatives plots of the model as it was 

previously observed with the Polynomial Function Model.  The verification of these 

partial derivatives plots will be performed in Section 4.4.4.2.    

4.4.4.1 Statistical Analyzes for the Arrhenius First-Order Nonlinear Model 

Significance of statistical test results provided by the Arrhenius first-order nonlinear 

model were addressed in the same way it was done for the previous three models for the 

purpose of having a comparative analysis for the selection of the most appropriate model.  

Verifying the results in Figures 52 to 54 it can be said that all models appeared to be 
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significant to relate product content, time and temperature since a p-value = 0.0000 was 

obtained for all control levels.  In contrast, when testing the significance of individual 

regression coefficients, it is observed that there is an increase in the p-values for 

parameter b of the equation.  In specific, this parameter appears to be significant at the 

90% confidence level for the models fitted to control low and control medium data, but 

not in the case of the model fitted to control high data.   Since the nonlinear equation for 

an Arrhenius first-order reaction is an expression that has all the parameters multiplied 

with each order, then accepting the hypothesis test that the coefficient is equal to zero, 

would delete the complete expression for the Arrhenius first-order reaction.  Therefore, 

this was not an option for reducing the model.        

In addition, even though the models for each control level provided a little increase 

in the result of the 
2

AdjR  statistic, the predictions obtained with them were incongruent 

with the expected degradation making the model suspicious and not attractive.    

 

Figure 52: Statistical Analysis for Arrhenius First-Order Nonlinear Model Fitted to Control Low Data 

 

Rank 1    z=Arrhenius-First Order 
 
-----------------------------------------------------------------------------------------------------------------------------------------------  
Parameter Value         Std Error     t-value       95.00% Confidence Limits   P>|t| 

   a 34.20839564   0.167302231   204.4706485   33.88016631   34.53662498   0.00000 
  b    9.68489e+19   5.30505e+19   1.825596262   7.2307e+18   2.00928e+20   0.06815 
  c    15631.42554   172.3693414   90.6856487    15293.25507   15969.59601   0.00000 
-----------------------------------------------------------------------------------------------------------------------------------------------  
Procedure       Minimization    Iterations 
Lev-Marq        Least Squares   100          
 

r2 Coef Det     DF Adj r2       Fit Std Err      
0.8513066489    0.850943687     2.7415408516      
-----------------------------------------------------------------------------------------------------------------------------------------------  
 
Analysis of Variance 

  
Source    Sum of Squares     DF Mean Square F Statistic       P>F 

Regr      52928.432          2        26464.216           3521.03           0.00000 
Error     9244.7369          1230     7.5160462       
Total     62173.169          1232 
 
Lack Fit  6363.3332          45       141.40741           58.1549           0.00000 
Pure Error  2881.4036          1185     2.4315643       
--------------------------------------------------------------------------------------------------------------------------------------------- -- 
Description: Accelerated Stability XYZ Data: Time(days), Temp(°K), Control Low(rate) 



 

88 

 

 

Figure 53: Statistical Analysis for Arrhenius First-Order Nonlinear Model Fitted to Control Medium Data 

 

 

Figure 54: Statistical Analysis for Arrhenius First-Order Nonlinear Model Fitted to Control High Data 

 

Rank 1    z=Arrhenius-First Order 
 
-----------------------------------------------------------------------------------------------------------------------------------------------  
Parameter Value         Std Error     t-value       95.00% Confidence Limits   P>|t| 
   a 185.9730389   1.004179687   185.1989651   184.0029443   187.9431335   0.00000 
  b    7.42522e+19   4.29858e+19   1.727367977   1.0081e+19   1.58586e+20   0.08435 
  c    15533.92866   182.115185    85.29727303   15176.63787   15891.21944   0.00000 
-----------------------------------------------------------------------------------------------------------------------------------------------  
Procedure       Minimization    Iterations 
Lev-Marq        Least Squares   100          
 

r2 Coef Det     DF Adj r2       Fit Std Err      
0.8340723304    0.8336672994    16.265433303      
-----------------------------------------------------------------------------------------------------------------------------------------------  
 
Analysis of Variance 

  
Source    Sum of Squares     DF Mean Square F Statistic       P>F 
Regr      1635766.4          2        817883.21           3091.43           0.00000 
Error     325414.11          1230     264.56432 
Total     1961180.5          1232 
 
Lack Fit  224160.98          45       4981.3551           58.2985           0.00000 
Pure Error  101253.13          1185     85.445683 
-----------------------------------------------------------------------------------------------------------------------------------------------  
Description: Accelerated Stability XYZ Data: Time(days), Temp(°K), Control Med(rate) 

Rank 1    z=Arrhenius-First Order 
 
-----------------------------------------------------------------------------------------------------------------------------------------------  
Parameter Value         Std Error     t-value       95.00% Confidence Limits   P>|t| 
   a 924.7315551   5.320622313   173.8013903   914.2930553   935.1700549   0.00000 
  b    9.81331e+19   6.28105e+19   1.562367304   -2.5095e+19   2.21361e+20   0.11846 
  c    15632.54007   201.4001651   77.61930118   15237.41419   16027.66595   0.00000 
-----------------------------------------------------------------------------------------------------------------------------------------------  
Procedure       Minimization    Iterations 
Lev-Marq        Least Squares   100          
 

r2 Coef Det     DF Adj r2       Fit Std Err      
0.8072489672    0.8067784602    87.044458536            
-----------------------------------------------------------------------------------------------------------------------------------------------  
 
Analysis of Variance 

  
Source    Sum of Squares     DF Mean Square F Statistic       P>F 
Regr      39029964           2        19514982            2575.64           0.00000 
Error     9319387.4          1230     7576.7378       
Total     48349352           1232 
 
Lack Fit  5826979.3          45       129488.43           43.9364           0.00000 
Pure Error  3492408.2          1185     2947.1799       
-------------------------------------------------------------------------------------------------------------------------------------- --------- 
Description: Accelerated Stability XYZ Data: Time(days), Temp(°K), Control High(rate) 
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4.4.4.2 Advantages and Disadvantages of the Arrhenius First-Order Nonlinear Model 

After reviewing the results obtained for the Arrhenius first-order nonlinear model 

and comparing them with the results of the other models previously discussed, we can 

say that this model shares a lot of the advantages presented by the nonlinear model for a 

zero-order reaction.  These similarities can be summarized in the following bullets: 

 The specific Arrhenius kinetic relation is employed in a one-step nonlinear 

approach that fits the accelerated stability data obtained.  

 The regression equations demonstrated to be significant to relate product content, 

time, and temperature since a p-value = 0.00000 was obtained for the surface fit of 

all control levels.   

 It is capable of considering data of the response variable at time zero (t0) and the 

experimental error associated with the total number of values obtained from the 

accelerated stability test (n = 1233).   

 In terms of parameters, is much simpler than the Polynomial Function Model and 

still provide good results for the 
2

AdjR  statistic.  

 The 95% prediction intervals of the estimations performed at the expiration date 

where much smaller and symmetrical, than the intervals provided by the Arrhenius 

classical approach.   

 

In the other hand, the Arrhenius first-order nonlinear model had several 

disadvantages that make it less attractive than the nonlinear model for a zero-order 

reaction.   These disadvantages are summarized as follows:     

 An increase in the result of the p-values was observed when testing significance of 

the individual regression coefficients at the 90% confidence level.  In specific, 

parameter b resulted to be not significant for the model fitted to control high data 

since a p-value higher than 0.10 was obtained.  Therefore, if this parameter was 

eliminated from the equation, then, the Arrhenius approach would no longer applied 

since we will be eliminating a parameter that is characteristic of the product failure 

mechanism in the Arrhenius Law for chemical reactions (known as A). 
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 The model was not able to provide predictions that were aligned with the expected 

behavior of product content loss at the expiration date since the percent difference 

of rate values between t=180 and t=0 was not between the range of 10 and 15 

percent. Abbott scientists previously characterized this range by using real-time 

stability monitoring procedures.  Therefore, these prediction did not match the 

degradation rate that was expected for the product been used. 

 There is no simple interpretation to the behavior observed in the partial derivatives 

plots of the response variable with respect to the regressor variables, since the 

expected behavior of these plots is to have a surface intercepting the vertical 

XZ   or YZ   axis at a value equal to zero, and then to have a continuous 

downward orientation of the curve as degradation rate increase.  Therefore, 

considering once again the partial derivative plot for Control Low with respect to 

changes in temperature (Figures 58) as an example, it is observed that even though 

the surface intersects the YZ   axis at a value equal to zero, the curve has a 

downward cone shape that do not match the chemical-physical behavior expected.     

This same strange behavior is also observed in the other partial derivative plots of 

the model.  Refer to Figures 55 to 57 for the partial derivative surface plots on the 

performance of control levels with respect to changes in time  XZ  /  and Figures 

58 to 60 for the partial derivative surface plots on the performance of control levels 

with respect to changes in temperature  YZ  / .   This dissimilarities of the partial 

derivative plots with the true chemical-physical behavior expected by Abbott 

scientists may probably be the main cause why the nonlinear model for a first-order 

reaction provided estimates of the shelf-life with less degradation than what it was it 

obtained with the nonlinear model for a zero-order reaction. 
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Figure 55: Partial Derivative Plot of Control Low with respect to changes in time for the Arrhenius First-

Order Nonlinear Model 

 

 
Figure 56: Partial Derivative Plot of Control Medium with respect to changes in time for the Arrhenius 

First-Order Nonlinear Model 
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Figure 57: Partial Derivative Plot of Control High with respect to changes in time for the Arrhenius First-

Order Nonlinear Model 

 

 
Figure 58: Partial Derivative Plot of Control Low with respect to changes in temperature for the Arrhenius 

First-Order Nonlinear Model 
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Figure 59: Partial Derivative Plot of Control Medium with respect to changes in temperature for the 

Arrhenius First-Order Nonlinear Model 

 

 
Figure 60: Partial Derivative Plot of Control High with respect to changes in temperature for the Arrhenius 

First-Order Nonlinear Model 
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4.5 Model Selection 

Based on the relative merits and limitations that were discussed in detail for all the 

models developed to fit the accelerated stability data it was concluded that the Arrhenius 

nonlinear model for a zero-order reaction was the most appropriate to estimate 

degradation by means of an accelerated stability test since it provided relevant statistics 

and compliance with the underlying assumptions of the Arrhenius Life-Temperature 

relationship because the degradation of the product that was used, is caused by the 

interaction of one molecule of interest.  Therefore, a zero-order reaction applies to this 

type of interaction.  The major advantages provided by the model were: 

 The model provides a well fit of the complete accelerated stability data by relating 

product content, time and temperature in one equation. 

 The regression model as well as all individual regression coefficients 

demonstrated to be statistically significant at a 90% confidence level. 

 The model demonstrated to provide adequate predictions of the product content at 

the expiration date. 

 The behaviors of the partial derivative plots were compatible with the chemical-

physical behavior expected by Abbott scientists. 

Therefore, Chapter 5 will present a validation procedure that was developed for the 

purpose of further evaluating the benefits that this model could provide.    
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5  Validation 
 

5.1 Introduction 

Chapter 5 will focus on the development of a procedure that would validate the 

statistical model selected in Chapter 4 as the most appropriate model to estimate 

degradation by means of an accelerated stability test.  This validation procedure will use 

the lot-to-lot variability characterized in the accelerated test to develop prediction 

intervals that could be used routinely to compare degradation patterns of future lots at 

elevated temperatures and conclude if these future lots have similar degradation patterns 

as the previous three good lots that were used to gather the accelerated stability data.  Is 

important to clarify that the three lots used to gather the data were released for sell in the 

market and demonstrated good performance in the customer hands until their expiration 

date.  Therefore, if any future lot exposed to the same elevated temperatures provide 

results within the prediction intervals developed with the variability of the previous three 

good lots, then, it is expected that the future lot will degrade similar at the storage 

temperature until the shelf-life (expiration date).  Section 5.2 will discuss the type of 

prediction intervals used for the validation procedure and how they were developed.   

Sections 5.3 and 5.4 provide the results obtained when applying the validation procedure 

to identify lots with and without stability issues.      

5.2 Intervals to Compare Degradation Patterns  

The types of statistical intervals used to compare degradation patterns are prediction 

intervals to contain all of m individual future observations. These intervals are different 

from the usual given by statistical softwares, which contain the mean of future 

observations.  As indicated by Hahn and Meeker [28], “these types of prediction intervals 

are often referred as simultaneous prediction intervals, because we are concerned with 

simultaneously containing all of the m observations within the calculated interval (with 

the associated level of confidence)”.   Therefore, a two sided 100(1-)% simultaneous 

prediction interval to contain the values of all of m future observation from a previously 

sample population is given by 

                                                 srx nm   ) , ;1(                                                         (59) 

 



 

96 

 

 

where: 

     x  =  sample mean 

  s =  sample standard deviation 

1 -   =  confidence level 

     m =  number of future observations 

     n  =  number of previous observations 

 

These prediction intervals were determined using the degradation data obtained 

from the accelerated stability test of three lots (n = 1233), which was best fitted by an 

Arrhenius zero-order nonlinear model.  They were determined for the same stress 

temperatures considered in the accelerated study (45, 37, 30 and 17 °C) and for some 

specific time points distributed across the time range experimented for each stress 

temperature.  The reason for only using some specific time points of the accelerated study 

was because it would take more than one year to repeat the complete study for any future 

lot.   Therefore, it was decided to determined prediction intervals for four time points 

distributed across the time range previously experimented for the temperatures of 45, 37, 

and 30°C.   

Fewer units were tested at the temperature of 17°C since the product degrades more 

slowly at this temperature level.  For this reason, it was decided only to use prediction 

intervals for the first three time points of this temperature condition (17°C) since they 

will cover the degradation pattern of 90 days for the future lot.   Each of the future lots 

exposed to the stress temperatures and time points considered in the validation procedure 

will provide nine replicates of the rate values for each of the response variable (Control 

Low, Medium and High) considered in the study and tested at these conditions. 

The biggest concern with these prediction intervals was the selection of the 

appropriate confidence level, since it was required to have an interval capable of 

discriminating between a lot with and without stability issues.  Therefore, we did not 

wanted to have an interval wide enough that it would indicate that a lot is good, even 

when the lot truly has performance issues, or vice versa; to have an stringent interval that 

would end up flagging good lots as if they would have stability issues.  After gathering 

the date of the future lots in the validation procedure, it was decided to use predictions 

intervals at the 90% confidence level since they demonstrated to discriminate a lot with 
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stability issues better than prediction intervals at the 95% confidence level.  This will be 

discussed in detail in Section 5.4.      

The 90 and 95% prediction intervals to contain the rate values of all m = 9 

replicates of each control level, were determined using the following expressions: 

                                                            srx  )  ,9  ;90.0(                                                     (60) 

                                                            srx  )  ,9  ;95.0(                                                     (61) 

The sample mean and sample standard deviation in Equations 60 and 61 are obtained 

from the outputs predicted by Table Curve 3D for each specific time and temperature 

condition experimented with the previous three good lots, which were fitted by an 

Arrhenius nonlinear model for a zero-order reaction.  The factor  n  ,  ;1 mr  can be obtained 

using Table A.13 in Hahn and Meeker’s book [28].   Is important to clarify that since n is 

a large number, in our case (n = 1233), this parameter can be considered infinite (∞) in 

the factor  n  ,  ;1 mr  .   Therefore, using Table A.13, it is obtained that .523.2)  ,9  ;90.0( r  

and .766.2)  ,9  ;95.0( r  

Tables 12 and 13 contain the time points for which prediction intervals were 

calculated at 90 and 95% confidence level to compare degradation patterns at the stress 

temperatures considered and to discriminate a future lot with or without stability issues.   

Even though Tables 12 and 13 only contains prediction intervals for the specific time 

points that were used for discriminating a lot in the validation procedure, Appendixes 3 

and 4 illustrates the Excel spreadsheet tables that were developed to determine 90 and 

95% prediction intervals to contain m = 9 future observations for all of the combinations 

of time and temperature conditions used in the accelerated stability study with the initial 

three good lots.  Each of these appendixes contains three tables that are related to each of 

the response variable (Control Low, Medium and High) considered in the study. 
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Table 12:  90% Prediction Intervals to Contain all m=9 Future Observations 
 

Control 

level 

Temperature Condition 

45°C 37°C 30°C 17°C 

Low 

Day 4 

90% Pred. Interval: 

21.97 – 36.07 

Day 6 

90% Pred. Interval: 

24.21 – 38.31 

Day 10 

90% Pred. Interval: 

24.99 – 39.09 

Day 30 

90% Pred. Interval: 

25.60 – 39.70 

Day 10 

90% Pred. Interval: 

16.14 – 30.24 

Day 18 

90% Pred. Interval: 

20.92 – 35.01 

Day 20 

90% Pred. Interval: 

24.13 – 38.24 

Day 60 

90% Pred. Interval: 

25.34 – 39.44 

Day 12 

90% Pred. Interval: 

14.20 – 28.30 

Day 30 

90% Pred. Interval: 

17.62 – 31.72 

Day 30 

90% Pred. Interval: 

23.28 – 37.38 

Day 90 

90% Pred. Interval: 

25.08 – 39.18 

Day 18 

90% Pred. Interval: 

8.36 – 22.48 

Day 42 

90% Pred. Interval: 

14.33 – 28.43 

Day 40 

90% Pred. Interval: 

22.42 – 36.51 

N/A 

 

Medium 

Day 4 

90% Pred. Interval: 

114.36 – 198.99 

Day 6 

90% Pred. Interval: 

126.66 – 211.29 

Day 10 

90% Pred. Interval: 

131.01 – 215.64 

Day 30 

90% Pred. Interval: 

134.38 – 219.02 

Day 10 

90% Pred. Interval: 

82.11 – 166.74 

Day 18 

90% Pred. Interval: 

108.28 – 192.87 

Day 20 

90% Pred. Interval: 

126.18 – 210.79 

Day 60 

90% Pred. Interval: 

132.91 – 217.54 

Day 12 

90% Pred. Interval: 

71.35 – 155.99 

Day 30 

90% Pred. Interval: 

89.89 – 174.47 

Day 30 

90% Pred. Interval: 

121.34 – 205.94 

Day 90 

90% Pred. Interval: 

131.43 – 216.06 

Day 18 

90% Pred. Interval: 

39.06 – 123.78 

Day 42 

90% Pred. Interval: 

71.48 – 156.08 

Day 40 

90% Pred. Interval: 

116.50 – 201.09 

N/A 

 

High 

Day 4 

90% Pred. Interval: 

559.44 – 1013.71 

Day 6 

90% Pred. Interval: 

618.52 – 1072.78 

Day 10 

90% Pred. Interval: 

639.62 – 1093.93 

Day 30 

95% Pred. Interval: 

656.21 – 1110.57 

Day 10 

90% Pred. Interval: 

402.87 – 857.16 

Day 18 

90% Pred. Interval: 

528.02 – 982.09 

Day 20 

90% Pred. Interval: 

615.50 – 1069.71 

Day 60 

95% Pred. Interval: 

648.67 – 1102.98 

Day 12 

90% Pred. Interval: 

350.65 – 805.01 

Day 30 

90% Pred. Interval: 

437.44 – 891.47 

Day 30 

90% Pred. Interval: 

591.36 – 1045.50 

Day 90 

95% Pred. Interval: 

641.13 – 1095.40 

Day 18 

90% Pred. Interval: 

193.87 – 648.66 

Day 42 

90% Pred. Interval: 

346.77 – 800.94 

Day 40 

90% Pred. Interval: 

567.20 – 1021.31 

N/A 
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Table 13:  95% Prediction Intervals to Contain all m=9 Future Observations 
 

Control 

level 

Temperature Condition 

45°C 37°C 30°C 17°C 

Low 

Day 4 

95% Pred. Interval: 

21.29 – 36.75 

Day 6 

95% Pred. Interval: 

23.53 – 38.99 

Day 10 

95% Pred. Interval: 

24.32 – 39.78 

Day 30 

95% Pred. Interval: 

24.92 – 40.38 

Day 10 

95% Pred. Interval: 

15.46 – 30.92 

Day 18 

95% Pred. Interval: 

20.24 – 35.69 

Day 20 

95% Pred. Interval: 

23.46 – 38.91 

Day 60 

95% Pred. Interval: 

24.66 – 40.12 

Day 12 

95% Pred. Interval: 

13.52 – 28.98 

Day 30 

95% Pred. Interval: 

16.95 – 32.40 

Day 30 

95% Pred. Interval: 

22.60 – 38.05 

Day 90 

95% Pred. Interval: 

24.40 – 39.86 

Day 18 

95% Pred. Interval: 

7.68 – 23.16 

Day 42 

95% Pred. Interval: 

13.65 – 29.11 

Day 40 

95% Pred. Interval: 

21.74 – 37.19 

N/A 

 

Medium 

Day 4 

95% Pred. Interval: 

110.29 – 203.06 

Day 6 

95% Pred. Interval: 

122.59 – 215.36 

Day 10 

95% Pred. Interval: 

126.94 – 219.72 

Day 30 

95% Pred. Interval: 

130.30 – 223.09 

Day 10 

95% Pred. Interval: 

78.03 – 170.81 

Day 18 

95% Pred. Interval: 

104.21 – 196.94 

Day 20 

95% Pred. Interval: 

122.10 – 214.86 

Day 60 

95% Pred. Interval: 

128.83 – 221.61 

Day 12 

95% Pred. Interval: 

67.28 – 160.07 

Day 30 

95% Pred. Interval: 

85.82 – 178.54 

Day 30 

95% Pred. Interval: 

117.27 – 210.01 

Day 90 

95% Pred. Interval: 

127.36 – 220.13 

Day 18 

95% Pred. Interval: 

34.98 – 127.86 

Day 42 

95% Pred. Interval: 

67.40 – 160.16 

Day 40 

95% Pred. Interval: 

112.42 – 205.16 

N/A 

 

High 

Day 4 

95% Pred. Interval: 

537.56 – 1035.59 

Day 6 

95% Pred. Interval: 

596.64 – 1094.66 

Day 10 

95% Pred. Interval: 

617.75 – 1115.80 

Day 30 

95% Pred. Interval: 

634.33 – 1132.45 

Day 10 

95% Pred. Interval: 

380.99 – 879.04 

Day 18 

95% Pred. Interval: 

506.15 – 1003.95 

Day 20 

95% Pred. Interval: 

593.62 – 1091.58 

Day 60 

95% Pred. Interval: 

626.79 – 1124.86 

Day 12 

95% Pred. Interval: 

328.77 – 826.89 

Day 30 

95% Pred. Interval: 

415.57 – 913.34 

Day 30 

95% Pred. Interval: 

569.49 – 1067.37 

Day 90 

95% Pred. Interval: 

619.26 – 1117.27 

Day 18 

95% Pred. Interval: 

171.97 – 670.56 

Day 42 

95% Pred. Interval: 

324.90 – 822.81 

Day 40 

95% Pred. Interval: 

545.33 – 1043.18 

N/A 
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5.3 Results for a lot without stability issues  

Once completed the data gathering of additional accelerated stability test point of a 

new reagent lot approved for market, the information was tabulated in an Excel 

spreadsheet for the purpose of comparing the data against the prediction intervals 

determined from the most adequate model that fitted the data from the initial three lots. 

As mentioned previously in Section 5.2, these statistical intervals were determined for all 

the stress temperatures used with the previous three lots (45, 37, 30 and 17 °C) to 

accelerate degradation and for some specific time points distributed across the time range 

experimented for each of these stress temperatures.   

Figures 61 to 63 illustrate the results obtained for each of the response variables 

considered in the study (Control Low, Medium and High) against 90% prediction 

intervals for the four stress temperatures considered in the accelerated study.  Verifying 

the results for Control Low in Figure 61 it is observed that all of the m = 9 individual 

observations for each of the specific time points considered in the validation procedure 

are within the 90% prediction intervals that were determined from the initial three lots.  

The same results are observed in Figures 62 and 63 for the response variable Control 

Medium and High.  

In addition to the prediction intervals determined at the 90% confidence level, we 

also determined prediction intervals at the 95% confidence level since preliminary when 

these statistical intervals were calculated, we did not know if the 90% prediction intervals 

would be to stringent to fail a lot that is truly good, or vice versa, to accept a lot that is 

truly bad as it will be shown in Section 5.4.   Therefore, in the case of assessing a true 

good lot, if the 90% prediction intervals where capable of this discrimination, then the 

95% prediction intervals will also be, as it is demonstrated in Figures 64 to 66 for each of 

the response variables considered. 

Therefore, since all of the replicates of the new lot are within the prediction 

intervals calculated from the most adequate model that fitted the data from the initial 

three lots, then it can be concluded that this new lot has similar degradation patterns (at 

the four elevated temperatures) as the previous three good lots used in the developmental 

phase of the study.  Thus, we are at most 95% confidence that it will degrade similar at 

the storage temperature until its expiration date. 
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Figure 61: Control Low Degradation Patterns of Lot with Good Performance against 90% Pred. Intervals at Different Stress Temperatures  
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Figure 62: Control Medium Degradation Patterns of Lot with Good Performance against 90% Pred. Intervals at Different Stress Temperatures 
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Figure 63: Control High Degradation Patterns of Lot with Good Performance against 90% Pred. Intervals at Different Stress Temperatures 
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Figure 64: Control Low Degradation Patterns of Lot with Good Performance against 95% Pred. Intervals at Different Stress Temperatures 
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Figure 65: Control Medium Degradation Patterns of Lot with Good Performance against 95% Pred. Intervals at Different Stress Temperatures 
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Figure 66: Control High Degradation Patterns of Lot with Good Performance against 95% Pred. Intervals at Different Stress Temperatures 
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5.4 Results for a lot with stability issues  

During the execution of the initial accelerated stability study used to gather the data 

and develop a most appropriate model, we had the unexpected event that the third lot 

used in the experiment provided extremely high rate values at t = 30 days, for all of the 

instruments used to measure the product.  This event was only observed at the lowest 

temperature used in the accelerated study (T = 17°C).  Therefore, since this lot was been 

also monitored at the storage condition (2 to 8°C) in the real time stability program of the 

company, a failure of the product was also observed at t = 30 days.  Is important to clarify 

that even though we keep monitoring this lot as it was originally scheduled (refer to 

Table A.1.4 in Appendix 1) for temperatures at 45, 37 and 30 °C, no more results were 

capable to be gathered at 17°C after t > 30 days, since the instruments used to measure 

the product started to present error codes that unable them to provide results.  

Since this project focused on capturing the variability of three good lots and then 

fitting a statistical model capable of estimating the normal degradation behavior of a 

future lot, the data of this bad performance lot was not used for the purpose of developing 

the most appropriate statistical model. The data of this bad performance lot was 

substituted with another good lot to develop the most appropriate statistical model, but it 

was used in the validation procedure to verify if the predictions limits determined with 

the fitted model could discriminate this lot with stability issues.   

Using the same approach presented in Section 5.3, we plotted the rate values of this 

lot against the prediction limits established in Tables 12 and 13.   Verifying the results of 

Control Low against 90% prediction intervals in Figure 67 it is observed that the intervals 

for the highest temperature of 45°C are not able to discriminate the bad performance lot, 

but we see that some of the nine replicates begin to fall out the prediction intervals as 

temperature decreases.  Specifically it is observed all of the m = 9 replicates of the lot 

monitored at T = 17°C and t = 30 days, are outside the prediction limits.   Table 14 

summarizes the temperature and time conditions for Control Low where results are 

observed outside the prediction limits.  Verifying the results in this table we could 

establish the question; why we see a lot of observations out of the prediction limits at the 

lowest temperature and then this observable fact decreases as temperature increases?                
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Table 14:  Results Out of 90% Prediction Limits for Control Low 
 

 Temperature and Time Condition 

37°C 30°C 30°C 17°C 

Day 30 Day 10 Day 20 Day 30 

90% 

Pred. Interval 
(17.62 – 31.72) (24.99 – 39.09) (24.13 – 38.24) (25.60 – 39.70) 

Results Out   

of Limits 
31.74 39.76,  39.13 38.38,  38.80 

49.42,  52.01,  52.55, 

46.22,  46.65,  46.05,  

 50.81,  50.14,  49.09  

 

The answer to this question is supported by an investigation that was done by 

Abbott scientists, since the nonconformance report for the lot in issue indicated that one 

of the raw materials supplied by a vendor and used to manufacture the lot, was 

contaminated with high molecular weight proteins (cryoglobulins) that were insoluble in 

the product used for the study at the lower temperatures.  Therefore, when the product 

was measured with Abbott’s immunoassay instruments, the cryoglobulins were masked 

as if there was much more analyte present in the product.  This caused high results of rate 

values for the Control Low response variable, which were significantly observed at the 

lowest temperature of the study (T = 17°C).  In contrast, when verifying the plot of rate 

values at 45°C, it is observed that all results are within the expected degradation pattern 

of the prediction intervals, since at this temperature the cryoglobulins are dissolved in the 

product solution and makes it behave in its normal degradation pattern.           

Verifying the plots for Control Medium and Control High in Figures 68 and 69 it is 

observed that the problem provided by the cryoglobulins is not as noticeable in these 

response variables in comparison to the behavior seen with the Control Low.  

Particularly, it is seen for Control Medium in Figure 68 that the lot appears to behave 

normally at the temperatures of 45, 37 and 30 °C since all of the results are within the 

90% prediction intervals, and it is only at the temperature of 17°C that the interval is 

capable of discriminating the bad performance lot.  Lastly, when the results for Control 

High are verified in Figure 69, it is observed that the rate values in all of the temperature 

and time conditions monitored are within the 90% prediction limits.   

These results provide us with helpful information on what type of response variable 

is most effective to measure changes of rate signals for the type of product that was used 

(an immunoassay regent kit) and for demonstrating equivalency in degradation patterns 

of an experimental lot when compared against previous lots well known to be acceptable.  
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In addition, we could establish the question; why more results are seen out of prediction 

limits for Control Low than for the other control levels?   The answer to this question is 

based on the purpose that each control level has on the product that was used in this 

project.  In our case, controls are solutions that contain known concentrations of analyte 

and are used to monitor the accuracy and precision performance of the product (reagent 

kit) and the analyzer (instrument).   The usually are divided in three levels since each of 

them is supposed to mimic the levels of signal (e.g. rate or concentration) that a patient 

sample can be measured in the range of values that the product it is used for categorizing 

the levels of a condition.  In addition, the results of one of these control levels will always 

going to be designed to be near the region where the product is more sensitive to changes 

in assay signal.   In the specific product that we used, the Control Low is the level more 

sensitive to changes in assay signal and it is the reason why more results were seen out of 

prediction limits at different temperature conditions.       

The final step in this validation procedure was to verify what would be the most 

appropriate confidence level (90% 95% or other) to use in the prediction intervals to 

discriminate m=9 individual observations of a future lot with a good or a bad stability 

performance.  Verifying the same results of the lot with bad performance against the 

prediction intervals determined at the 95% confidence level, it is observed in Figure 70 

that results out of limits are only seen for Control Low at the temperature and time 

conditions of T = 17°C and t = 30 days.   In addition, fewer observations are seen out of 

the limits for Control Medium at this same time and temperature condition, than what it 

was seen with the 90% prediction intervals (refer to Figures 68 and 71 for this 

comparison).  This clearly indicates that prediction intervals that were determined at the 

95% confidence level are less perceptive to discriminate a lot with true stability issues 

than prediction intervals determined at the 90% confidence level.   Therefore, uniting all 

the facts presented in Section 5.3, as well as in this section, we can conclude that the 90% 

prediction intervals determined with the lot-to-lot variability characterized in the 

accelerated test can be used routinely as a validation procedure to compare degradation 

patterns of future experimental lots at elevated temperatures and conclude if these lots 

have similar degradation patterns as the previous control lots from where the accelerated 

stability data was gathered to develop the prediction intervals.   
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Figure 67: Control Low Degradation Patterns of Lot with Performance Issues against 90% Pred. Intervals at Different Stress Temperatures 
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Figure 68: Control Medium Degradation Patterns of Lot with Performance Issues against 90% Pred. Intervals at Different Stress Temperature 
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Figure 69: Control High Degradation Patterns of Lot with Performance Issues against 90% Pred. Intervals at Different Stress Temperatures 
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Figure 70: Control Low Degradation Patterns of Lot with Performance Issues against 95% Pred. Intervals at Different Stress Temperatures 
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Figure 71: Control Medium Degradation Patterns of Lot with Performance Issues against 95% Pred. Intervals at Different Stress Temperatures 
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Figure 72: Control High Degradation Patterns of Lot with Performance Issues against 95% Pred. Intervals at Different Stress Temperatures 
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6  Conclusions and Future Work 
 

6.1 Conclusions 

This research project is a significant contribution to the scientific world of in-vitro 

diagnostics products since it provides an empirical example to design an accelerated 

stability test for an immunoassay reagent kit and to fit a mathematical model that relates 

product content, time and temperature in a superior way than it was done in the past with 

the Arrhenius classical approach.  Based on the relative merits and limitations that were 

discussed in detail for all the models developed to fit the accelerated stability data, it was 

concluded that the Arrhenius nonlinear model for a zero-order reaction was the most 

appropriate to estimate product degradation for the product under study since it provided 

relevant statistics and compliance with the underlying assumptions of the Arrhenius Life-

Temperature. In contrast to the two step procedure of the Arrhenius classical approach, 

this nonlinear model was able to provide a one step approach that accounts all of the 

variability provided by the accelerates stability data of three lots and provides a direct 

estimation of product degradation at the storage condition with significant reliability.  

The major advantages provided by the model can be summarized as follows: 

 The model provides a well fit of the complete accelerated stability data by relating 

product content, time and temperature in one equation. 

 The regression model as well as all individual regression coefficients 

demonstrated to be statistically significant at a 90% confidence level. 

 The model demonstrated to provide adequate predictions of the product content at 

the expiration date. 

 The behaviors of the partial derivative plots ( XZ   and YZ  ) were 

compatible with the chemical-physical degradation behavior that was observed 

for the product under study 

Finally, with the lot-to-lot variability characterized in the accelerated test and the best 

fitted model, we were able to provide a validation procedure that could be used routinely 

to compare degradation patterns of future lots at elevated temperatures and conclude if 

these future lots have similar degradation patterns as the previous control lots that had 

good stability performance until their expiration date and from where the best fitted 
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model was developed.  The validation procedure was based on prediction intervals to 

contain all of m individual observations at specific time and temperature conditions. Its 

suitability to discriminate a lot with and without stability issues was confirmed by 

comparing the results of two future lots at elevated temperatures.  In our case, the 

validation procedure demonstrated suitability for use since the 90% prediction intervals 

determined at the elevated temperatures where very perceptive for identifying a lot with 

good stability performance as well as for discriminating a lot previously known to have 

true stability issues.  Additional uses of the nonlinear model and the validation procedure 

developed could include: 

1. Predicting the long term stability or expiration dating for new or re-formulated 

products at the intended storage condition. 

2. Showing product behavior equivalency of an experimental and control material 

that has similar raw materials used for manufacturing or that pertain to the same 

family of products. 

3. Demonstrating product stability performance similarity when a raw material has 

been supplied by a new vendor. 

 

6.2 Future Work 

Even though this research project is a good contribution in the study of the 

mechanisms of degradation for an in-vitro diagnostic product, there still a lot of work to 

be done since only a few studies of biological products have been reported in the 

literature.  In our specific case, it would be beneficial to make a future study to determine 

the minimum time range of data that is needed for each stress temperature condition 

which could still provide a fitted model capable of provide meaningful predictions of the 

product content at the storage condition.   In addition, it would be interesting to see how 

the predictions of the model fitted to the accelerated stability data would have improved 

if we had used the storage condition of the product (2-8°C) as an experimental condition. 

Further work will also be needed to develop models and estimate parameters for cases in 

which a significant lot-to-lot variability is present in the data and the average response 

cannot represent the degradation of individual lots. 
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Appendix 1: Testing Schedule of Lots Used in the Accelerated Stability Study 
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Table A.1. 1:  Accelerated Stability Schedule for Lot #1 

Test Point No. 
Test Date 

 45ºC 

Test Date 

 37ºC 

Test Date 

 30ºC 

Test Date  

17ºC 

1 01/19/05 01/22/05 01/25/05 01/22/05 

2 01/21/05 01/28/05 02/03/05 02/21/05 

3 01/23/05 02/03/05 02/13/05 03/23/05 

4 01/25/05 02/09/05 02/23/05 04/22/05 

5 01/27/05 02/15/05 03/05/05 05/22/05 

6 01/29/05 02/21/05 03/15/05 06/21/05 

7 01/31/05 02/27/05 03/24/05 07/21/05 

8 02/02/05 03/05/05 04/04/05 08/20/05 

9 02/04/05 03/11/05 04/14/05 09/19/05 

10 02/06/05 03/17/05 04/24/05 10/19/05 

11 02/08/05 03/23/05 05/04/05 N/A 

12 02/10/05 03/29/05 05/14/05 N/A 

 

Table A.1. 2:  Accelerated Stability Schedule for Lot #2 

Test Point No. 
Test Date 

 45ºC 

Test Date 

 37ºC 

Test Date 

 30ºC 

Test Date 

17ºC 

1 02/11/05 02/15/05 02/19/05 02/14/05 

2 02/13/05 02/21/05 03/01/05 03/16/05 

3 02/15/05 02/27/05 03/11/05 04/15/05 

4 02/17/05 03/05/05 03/21/05 05/15/05 

5 02/19/05 03/11/05 03/31/05 06/14/05 

6 02/21/05 03/17/05 04/10/05 07/14/05 

7 02/23/05 03/23/05 04/20/05 08/13/05 

8 02/25/05 03/29/05 04/30/05 09/12/05 

9 02/27/05 04/04/05 05/10/05 10/12/05 

10 03/01/05 04/10/05 05/20/05 11/11/05 

11 03/03/05 04/16/05 05/30/05 N/A 

12 03/05/05 04/22/05 06/09/05 N/A 

 

Table A.1. 3:  Accelerated Stability Schedule for Lot #3 

Test Point No. 
Test Date 

 45ºC 

Test Date 

37ºC 

Test Date 

30ºC 

Test Date 

17ºC 

1 05/18/05 05/22/05 05/26/05 06/15/05 

2 05/20/05 05/28/05 06/05/05 07/15/05 

3 05/22/05 06/03/05 06/15/05 08/14/05 

4 05/24/05 06/09/05 06/25/05 09/13/05 

5 05/26/05 06/15/05 07/05/05 10/13/05 

6 05/28/05 06/21/05 07/15/05 11/12/05 

7 05/30/05 06/27/05 07/25/05 12/12/05 

8 06/01/05 07/03/05 08/04/05 01/11/06 

9 06/03/05 07/09/05 08/14/05 02/10/06 

10 06/05/05 07/15/05 08/24/05 03/12/06 

11 06/07/05 07/21/05 09/03/05 N/A 

12 06/09/05 07/27/05 09/13/05 N/A 
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Table A.1.4:  Accelerated Stability Schedule for Lot #3A 

(Lot with stability issues used for validation purposes) 

Test Point No. 
Test Date 

45ºC 

Test Date 

37ºC 

Test Date 

30ºC 

Test Date 

17ºC 

1 03/03/05 03/07/05 03/11/05 03/18/05 

2 03/05/05 03/13/05 03/21/05 04/17/05 * 

3 03/07/05 03/19/05 03/31/05 05/17/05 * 

4 03/09/05 03/24/05 04/10/05 06/16/05 * 

5 03/11/05 03/31/05 04/20/05 07/16/05 * 

6 03/13/05 04/06/05 04/30/05 08/15/05 * 

7 03/15/05 04/12/05 05/10/05 09/14/05 * 

8 03/17/05 04/18/05 05/20/05 10/14/05 * 

9 03/19/05 04/24/05 05/30/05 11/13/05 * 

10 03/21/05 04/30/05 06/09/05 12/13/05 * 

11 03/23/05 05/06/05 06/19/05 N/A 

12 03/24/05 05/12/05 06/29/05 N/A 

      * Note:  No data was obtained for these days since at 3/18/05, the lot demonstrated to have true 

stability issues at temperatures near the storage condition (2-8 °C) 

 

 
Table A.1.5:  Accelerated Stability Schedule for Lot #4               

(Additional lot with good performance used for validation purposes) 

Test Point No. 
Test Date  

8ºC 

Test Date 

45ºC 

Test Date 

37ºC 

Test Date 

30ºC 

Test Date 

17ºC 

0 03/31/06     

1 04/15/06 04/04/06 04/06/06 04/10/06 04/30/06 

2 04/30/06 04/10/06 04/18/06 04/20/06 05/30/06 

3 05/15/06 04/12/06 04/30/06 04/30/06 06/29/06 

4 05/30/06 04/18/06 05/12/06 05/10/06 N/A 
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Appendix 2: List of Table Curve 3D Built-in Equations Fitted to Control Levels 
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Appendix 2 presents the list of built-in equations from Table Curve 3D software, which were 

fitted to the data of each control level.  Equations are ranked in decreasing order of the 
2

AdjR  

statistic result.  Only the equations that provided 
2

AdjR  values greater than 90% were listed.  

 

Table A.2. 1: Table Curve 3D Built-in Equations Fitted to Control Low Accelerated Stability Data 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Rank R
2

Adj R
2 Fitted Std. 

Error
F-statistic Built-in Equation Fitted from Table Curve 3D Software

1 0.950581 0.950176 1.5850245 2613.8314 z=a+blnx+clny+d(lnx)2+e(lny)2+flnxlny+g(lnx)3+h(lny)3+ilnx(lny)2+j(lnx)2lny

2 0.946639 0.946203 1.6470218 2410.7173 z=a+blnx+cy+d(lnx)2+ey2+fylnx+g(lnx)3+hy3+iy2lnx+jy(lnx)2

3 0.946124 0.945683 1.6549586 2386.35 z=a+blnx+c/y+d(lnx)2+e/y2+f(lnx)/y+g(lnx)3+h/y3+i(lnx)/y2+j(lnx)2/y

4 0.945066 0.944389 1.6745518 1496.7177 Chebyshev X,Y Bivariate Polynomial Order 4

5 0.944978 0.9443 1.6758965 1494.1773 Chebyshev X,LnY Bivariate Polynomial Order 4

6 0.94221 0.941498 1.7175318 1418.4468 Sigmoid Series Bivariate Order 4

7 0.940176 0.939538 1.7460568 1597.7702 Fourier Series Bivariate Order 2x2

8 0.934966 0.934541 1.8167798 2515.9175 z=a+LORCUMX(b,c,d)+LORCUMY(e,f,g)+LORCUMX(h,c,d)*LORCUMY(1,f,g)

9 0.925464 0.924977 1.9449864 2172.858 z=a+LORX(b,c,d)+LORY(e,f,g)+LORX(h,c,d)*LORY(1,f,g)

10 0.919082 0.918553 2.0265438 1987.6836 z=a+LDRX(b,c,d)+LDRY(e,f,g)+LDRX(h,c,d)*LDRY(1,f,g)

11 0.913249 0.912682 2.0983137 1842.2705 z=a+LNCUMX(b,c,d)+LNCUMY(e,f,g)+LNCUMX(h,c,d)*LNCUMY(1,f,g)

12 0.912928 0.912359 2.1021901 1834.8376 z=a+SIGX(b,c,d)+SIGY(e,f,g)+SIGX(h,c,d)*SIGY(1,f,g)

13 0.911333 0.910681 2.1222217 1572.5658 z=a+bx+cxlnx+dx0.5lnx+ex0.5+fylny+gy1.5+hy2.5+iy3

14 0.911229 0.910429 2.1252114 1254.3714 Chebyshev X,Y Rational Order 2/3

15 0.91042 0.909834 2.1322585 1778.5533 z=a+EXVCUMX(b,c,d)+EXVCUMY(e,f,g)+EXVCUMX(h,c,d)*EXVCUMY(1,f,g)

16 0.909506 0.90884 2.143979 1537.7211 z=a+bx+cxlnx+dx/lnx+ex0.5+f/lnx+gy2+hy2.5+iy3

17 0.909502 0.908836 2.1440332 1537.6356 z=a+bx+cxlnx+dx/lnx+ex0.5+f/lnx+gy1.5+hy2.5+iy3

18 0.909498 0.908832 2.1440703 1537.5771 z=a+bx+cxlnx+dx/lnx+ex0.5+f/lnx+gylny+hy2.5+iy3

19 0.909497 0.908831 2.1440915 1537.5436 z=a+bx+cxlnx+dx/lnx+ex0.5+f/lnx+gy1.5+hy2+iy3

20 0.909497 0.908831 2.1440919 1537.543 z=a+bx+cxlnx+dx/lnx+ex0.5+f/lnx+gy+hy2.5+iy3

21 0.909493 0.908827 2.1441292 1537.4842 z=a+bx+cxlnx+dx/lnx+ex0.5+f/lnx+gylny+hy2+iy3

22 0.909491 0.908825 2.1441532 1537.4464 z=a+bx+cxlnx+dx/lnx+ex0.5+f/lnx+gy+hy2+iy3

23 0.909491 0.908825 2.1441542 1537.4448 z=a+bx+cxlnx+dx/lnx+ex0.5+f/lnx+gy1.5+hy2+iy2.5

24 0.909489 0.908823 2.1441857 1537.3951 z=a+bx+cxlnx+dx/lnx+ex0.5+f/lnx+gylny+hy1.5+iy3

25 0.908087 0.907259 2.1624868 1207.3237 Chebyshev X,LnY Rational Order 2/3

26 0.906256 0.905644 2.1812446 1691.7934 z=a+bxlnx+cx/lnx+dx0.5+ey+fy1.5+gy2.5+hy3

27 0.906176 0.905563 2.1821794 1690.1943 z=a+LOGNORMX(b,c,d)+GAUSSY(e,f,g)+LOGNORMX(h,c,d)*GAUSSY(1,f,g)

28 0.904783 0.90416 2.1983224 1662.9013 z=a+bx+cx/lnx+dx0.5+eylny+fy1.5+gy2.5+hy3

29 0.904508 0.904041 2.1996944 2324.453 z=a+blnx+cy+d(lnx)2+ey2+fylnx

30 0.904508 0.903883 2.2014961 1657.6061 z=a+LOGISTICX(b,c,d)+LOGISTICY(e,f,g)+LOGISTICX(h,c,d)*LOGISTICY(1,f,g)

31 0.904379 0.903754 2.202975 1655.1463 z=a+bx+cx/lnx+dx0.5+ey+fy1.5+gy2.5+hy3

32 0.904103 0.903476 2.2061572 1649.8706 z=a+bx+cx/lnx+dx0.5+ey+fy1.5+gy2+hy3

33 0.903888 0.90326 2.2086216 1645.8004 z=a+bx+cx/lnx+dx0.5+ey+fy2+gy2.5+hy3

34 0.903601 0.902413 2.2182677 815.49968 Cosine Series Bivariate Order 4

35 0.903472 0.902842 2.2133965 1637.953 z=a+bx+cx/lnx+dx0.5+eylny+fy2+gy2.5+hy3

36 0.902074 0.901595 2.2275514 2260.5797 z=a+blnx+clny+d(lnx)2+e(lny)2+flnxlny

37 0.902031 0.901391 2.2298636 1611.2752 z=a+GCUMX(b,c,d)+GCUMY(e,f,g)+GCUMX(h,c,d)*GCUMY(1,f,g)

38 0.900926 0.900279 2.242399 1591.3598 z=a+bx+cxlnx+dx0.5+ey+fy1.5+gy2.5+hy3
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Table A.2. 2:  Table Curve 3D Built-in Equations Fitted to Control Med Accelerated Stability Data 

 

 

Table A.2. 3: Table Curve 3D Built-in Equations Fitted to Control High Accelerated Stability Data 

 

 

 

 

 

 

 

 

 

 

 

Rank R
2

Adj R
2 Fitted Std. 

Error
F-statistic Built-in Equation Fitted from Table Curve 3D Software

1 0.945268 0.94482 9.3684359 2346.9062 z=a+blnx+clny+d(lnx)2+e(lny)2+flnxlny+g(lnx)3+h(lny)3+ilnx(lny)2+j(lnx)2lny

2 0.942016 0.941541 9.6427469 2207.6573 z=a+blnx+cy+d(lnx)2+ey2+fylnx+g(lnx)3+hy3+iy2lnx+jy(lnx)2

3 0.941635 0.941157 9.674359 2192.3668 z=a+blnx+c/y+d(lnx)2+e/y2+f(lnx)/y+g(lnx)3+h/y3+i(lnx)/y2+j(lnx)2/y

4 0.93836 0.9376 9.9624869 1324.4127 Chebyshev X,Y Bivariate Polynomial Order 4

5 0.938277 0.937517 9.9691269 1322.5331 Chebyshev X,LnY Bivariate Polynomial Order 4

6 0.935631 0.934838 10.180608 1264.5811 Sigmoid Series Bivariate Order 4

7 0.933693 0.932986 10.32427 1431.5998 Fourier Series Bivariate Order 2x2

8 0.928517 0.92805 10.69773 2273.1403 z=a+LORCUMX(b,c,d)+LORCUMY(e,f,g)+LORCUMX(h,c,d)*LORCUMY(1,f,g)

9 0.919084 0.918555 11.381742 1987.7287 z=a+LORX(b,c,d)+LORY(e,f,g)+LORX(h,c,d)*LORY(1,f,g)

10 0.914337 0.913777 11.710821 1867.8892 z=a+LDRX(b,c,d)+LDRY(e,f,g)+LDRX(h,c,d)*LDRY(1,f,g)

11 0.914278 0.913647 11.719661 1631.8326 z=a+bx+cxlnx+dx0.5lnx+ex0.5+fylny+gy1.5+hy2.5+iy3

12 0.912375 0.91173 11.849005 1593.0787 z=a+bx+cxlnx+dx0.5lnx+ex0.5+fy+gy1.5+hy2.5+iy3

13 0.912301 0.911655 11.854037 1591.5965 z=a+bx+cxlnx+dx0.5lnx+ex0.5+fy+gylny+hy2.5+iy3

14 0.911985 0.911337 11.875375 1585.3327 z=a+bx+cxlnx+dx/lnx+ex0.5+f/lnx+gy2+hy2.5+iy3

15 0.911972 0.911324 11.876221 1585.0851 z=a+bx+cxlnx+dx/lnx+ex0.5+f/lnx+gy1.5+hy2.5+iy3

16 0.911964 0.911316 11.876779 1584.922 z=a+bx+cxlnx+dx/lnx+ex0.5+f/lnx+gylny+hy2.5+iy3

17 0.911959 0.911311 11.877096 1584.8291 z=a+bx+cxlnx+dx/lnx+ex0.5+f/lnx+gy1.5+hy2+iy3

18 0.911959 0.911311 11.877099 1584.8283 z=a+bx+cxlnx+dx/lnx+ex0.5+f/lnx+gy+hy2.5+iy3

19 0.911951 0.911303 11.877648 1584.6675 z=a+bx+cxlnx+dx/lnx+ex0.5+f/lnx+gylny+hy2+iy3

20 0.911946 0.911298 11.877997 1584.5655 z=a+bx+cxlnx+dx/lnx+ex0.5+f/lnx+gy+hy2+iy3

21 0.910787 0.910204 11.950993 1786.6048 z=a+bxlnx+cx/lnx+dx0.5+ey+fy1.5+gy2.5+hy3

22 0.909523 0.908932 12.035383 1759.1924 z=a+bx+cx/lnx+dx0.5+eylny+fy1.5+gy2.5+hy3

23 0.909123 0.908529 12.061974 1750.674 z=a+bx+cx/lnx+dx0.5+ey+fy1.5+gy2.5+hy3

24 0.908636 0.908039 12.094228 1740.4166 z=a+bx+cx/lnx+dx0.5+ey+fy2+gy2.5+hy3

25 0.908539 0.907942 12.100626 1738.3917 z=a+LNCUMX(b,c,d)+LNCUMY(e,f,g)+LNCUMX(h,c,d)*LNCUMY(1,f,g)

26 0.908377 0.907778 12.111365 1734.9999 z=a+SIGX(b,c,d)+SIGY(e,f,g)+SIGX(h,c,d)*SIGY(1,f,g)

27 0.908223 0.907624 12.121509 1731.8043 z=a+bx+cx/lnx+dx0.5+eylny+fy2+gy2.5+hy3

28 0.90609 0.905476 12.261596 1688.4833 z=a+bx+cxlnx+dx0.5+ey+fy1.5+gy2.5+hy3

29 0.905664 0.905047 12.289365 1680.0715 z=a+EXVCUMX(b,c,d)+EXVCUMY(e,f,g)+EXVCUMX(h,c,d)*EXVCUMY(1,f,g)

30 0.905069 0.904604 12.318021 2339.6305 z=a+blnx+cy+d(lnx)2+ey2+fylnx

31 0.905054 0.904434 12.329011 1668.1601 z=a+bx+cxlnx+dx0.5+ey+fy2+gy2.5+hy3

32 0.903115 0.902482 12.454302 1631.2619 z=a+bx+cxlnx+dx0.5lnx+ex/lnx+fy2+gy2.5+hy3

33 0.903031 0.902397 12.459676 1629.7043 z=a+bx+cxlnx+dx0.5lnx+ex/lnx+fy1.5+gy2.5+hy3

34 0.902977 0.902343 12.463153 1628.6975 z=a+bx+cxlnx+dx0.5lnx+ex/lnx+fylny+gy2.5+hy3

35 0.90284 0.902364 12.461802 2280.3239 z=a+blnx+clny+d(lnx)2+e(lny)2+flnxlny

36 0.902172 0.901533 12.514731 1613.8605 z=a+LOGISTICX(b,c,d)+LOGISTICY(e,f,g)+LOGISTICX(h,c,d)*LOGISTICY(1,f,g)

Rank R2 Adj R2
Fitted Std. 

Error
F-statistic Built-in Equation Fitted from Table Curve 3D Software

1 0.924155 0.923534 54.757839 1655.7709 z=a+blnx+clny+d(lnx)2+e(lny)2+flnxlny+g(lnx)3+h(lny)3+ilnx(lny)2+j(lnx)2lny

2 0.921008 0.920362 55.882135 1584.4031 z=a+blnx+cy+d(lnx)2+ey2+fylnx+g(lnx)3+hy3+iy2lnx+jy(lnx)2

3 0.92061 0.919961 56.02268 1575.7824 z=a+blnx+c/y+d(lnx)2+e/y2+f(lnx)/y+g(lnx)3+h/y3+i(lnx)/y2+j(lnx)2/y

4 0.916646 0.915619 57.522139 956.74058 Chebyshev X,Y Bivariate Polynomial Order 4

5 0.916553 0.915525 57.554139 955.58027 Chebyshev X,LnY Bivariate Polynomial Order 4

6 0.91378 0.912717 58.502656 922.04712 Sigmoid Series Bivariate Order 4

7 0.912339 0.911404 58.941331 1058.0971 Fourier Series Bivariate Order 2x2

8 0.907578 0.906974 60.396879 1718.4926 z=a+LORCUMX(b,c,d)+LORCUMY(e,f,g)+LORCUMX(h,c,d)*LORCUMY(1,f,g)
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Appendix 3:  90% Prediction Intervals to Contain all of m Future Observations 
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Appendix 3 presents Excel spreadsheet tables that were developed to calculate 90% 

prediction intervals that could contain all of m=9 future observations for each time and 

temperature conditions considered in the accelerated stability study.  Each table is related to a 

response variable (Control Low, Medium or High) considered in the study.   
 

Table A.3. 1:  90% Prediction Interval to contain all m=9 future observations for Control Low 

X = time  

(day)

Y = Temp  

(°K)

Z Predicted   

(rate)
r (0.90; 9,)  = b-a s

90% Pred Limits for 

all m=9  observations

0 281 32.905853 27.421279 38.390427 2.523 10.9691 2.7956 25.8527 39.9590

2 318 30.963002 25.479571 36.446433 10.9669 2.7950 23.9113 38.0147

4 318 29.020151 23.53745 34.502852 10.9654 2.7946 21.9694 36.0709

6 318 27.0773 21.594917 32.559683 10.9648 2.7944 20.0269 34.1277

8 318 25.134449 19.651972 30.616927 10.9650 2.7945 18.0840 32.1849

10 318 23.191598 17.708614 28.674583 10.9660 2.7947 16.1405 30.2427

12 318 21.248747 15.764844 26.732651 10.9678 2.7952 14.1964 28.3011

14 318 19.305896 13.820661 24.791131 10.9705 2.7959 12.2519 26.3599

16 318 17.363045 11.876067 22.850023 10.9740 2.7968 10.3068 24.4193

18 318 15.420194 9.9310619 20.909327 10.9783 2.7979 8.3611 22.4792

20 318 13.477343 7.9856456 18.969041 10.9834 2.7992 6.4150 20.5397

22 318 11.534492 6.0398189 17.029166 10.9893 2.8007 4.4683 18.6007

24 318 9.5916414 4.0935826 15.0897 10.9961 2.8024 2.5211 16.6622

6 310 31.258985 25.776324 36.741646 10.9653 2.7946 24.2083 38.3097

12 310 29.612117 24.130873 35.093361 10.9625 2.7939 22.5632 36.6610

18 310 27.965249 22.484925 33.445573 10.9606 2.7934 20.9175 35.0130

24 310 26.318381 20.83848 31.798281 10.9598 2.7932 19.2712 33.3656

30 310 24.671513 19.191538 30.151487 10.9599 2.7932 17.6242 31.7188

36 310 23.024645 17.544099 28.50519 10.9611 2.7935 15.9766 30.0727

42 310 21.377777 15.896164 26.85939 10.9632 2.7940 14.3284 28.4272

48 310 19.730909 14.247732 25.214086 10.9664 2.7948 12.6795 26.7823

54 310 18.084041 12.598803 23.569278 10.9705 2.7959 11.0300 25.1381

60 310 16.437173 10.949379 21.924966 10.9756 2.7972 9.3798 23.4945

66 310 14.790305 9.2994606 20.281149 10.9817 2.7988 7.7291 21.8516

72 310 13.143437 7.6490477 18.637825 10.9888 2.8006 6.0776 20.2093

10 303 32.045965 26.562838 37.529093 10.9663 2.7948 24.9946 39.0973

20 303 31.186078 25.704054 36.668101 10.9640 2.7943 24.1362 38.2360

30 303 30.32619 24.84493 35.807451 10.9625 2.7939 23.2773 37.3751

40 303 29.466303 23.985463 34.947143 10.9617 2.7937 22.4179 36.5147

50 303 28.606415 23.125654 34.087176 10.9615 2.7936 21.5581 35.6547

60 303 27.746528 22.265504 33.227551 10.9620 2.7937 20.6979 34.7952

70 303 26.88664 21.405012 32.368268 10.9633 2.7941 19.8372 33.9360

80 303 26.026753 20.544178 31.509327 10.9651 2.7945 18.9761 33.0774

90 303 25.166865 19.683003 30.650727 10.9677 2.7952 18.1146 32.2191

100 303 24.306977 18.821486 29.792469 10.9710 2.7960 17.2526 31.3613

110 303 23.44709 17.959628 28.934551 10.9749 2.7970 16.3902 30.5040

120 303 22.587202 17.09743 28.076975 10.9795 2.7982 15.5273 29.6471

30 290 32.648292 27.164439 38.132145 10.9677 2.7952 25.60 39.70

60 290 32.390731 26.907492 37.87397 10.9665 2.7949 25.34 39.44

90 290 32.133169 26.650437 37.615902 10.9655 2.7946 25.08 39.18

120 290 31.875608 26.393276 37.357941 10.9647 2.7944 24.8253 38.9259

150 290 31.618047 26.136007 37.100087 10.9641 2.7943 24.5681 38.6680

180 290 31.360486 25.878631 36.842341 10.9637 2.7942 24.3108 38.4102

210 290 31.102925 25.621148 36.584701 10.9636 2.7941 24.0533 38.1525

240 290 30.845364 25.363558 36.327169 10.9636 2.7941 23.7957 37.8950

270 290 30.587802 25.105861 36.069744 10.9639 2.7942 23.5380 37.6376

300 290 30.330241 24.848056 35.812426 10.9644 2.7943 23.2801 37.3804

95% Pred Limits for     

the mean
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Table A.3. 2:  90% Prediction Interval to contain all m=9 future observations for Control Medium 

 

 

X = time  

(day)

Y = Temp  

(°K)

Z Predicted   

(rate)
r (0.90; 9,)  = b-a s

90% Pred Limits for 

all m=9  observations

0 281 178.1744 145.2619 211.08691 2.523 65.8250 16.7759 135.8487 220.5001

2 318 167.42419 134.51858 200.32981 65.8112 16.7724 125.1074 209.7410

4 318 156.674 123.77278 189.57519 65.8024 16.7702 114.3629 198.9851

6 318 145.92378 113.02452 178.82303 65.7985 16.7692 103.6152 188.2324

8 318 135.17357 102.27379 168.07334 65.7996 16.7694 92.8643 177.4829

10 318 124.42336 91.520588 157.32613 65.8055 16.7710 82.1102 166.7365

12 318 113.67315 80.76492 146.58138 65.8165 16.7737 71.3530 155.9933

14 318 102.92294 70.006784 135.83909 65.8323 16.7778 60.5926 145.2533

16 318 92.172729 59.246184 125.09927 65.8531 16.7831 49.8290 134.5164

18 318 81.42252 48.48312 114.36192 65.8788 16.7896 39.0623 123.7828

20 318 70.672311 37.717597 103.62702 65.9094 16.7974 28.2924 113.0522

22 318 59.922101 26.949617 92.894586 65.9450 16.8065 17.5193 102.3249

24 318 49.171892 16.179184 82.1646 65.9854 16.8168 6.7431 91.6007

6 310 168.9753 136.07434 201.87627 65.8019 16.7700 126.6645 211.2861

12 310 159.7762 126.88379 192.6686 65.7848 16.7657 117.4764 202.0760

18 310 150.5771 117.69027 183.46392 65.7737 16.7628 108.2845 192.8697

24 310 141.37799 108.49376 174.26222 65.7685 16.7615 99.0887 183.6673

30 310 132.17889 99.294275 165.06351 65.7692 16.7617 89.8891 174.4687

36 310 122.97979 90.091803 155.86777 65.7760 16.7634 80.6857 165.2739

42 310 113.78069 80.886349 146.67502 65.7887 16.7667 71.4784 156.0830

48 310 104.58158 71.677916 137.48525 65.8073 16.7714 62.2673 146.8959

54 310 95.382481 62.466504 128.29846 65.8320 16.7777 53.0524 137.7126

60 310 86.183378 53.252118 119.11464 65.8625 16.7855 43.8336 128.5332

66 310 76.984276 44.034763 109.93379 65.8990 16.7948 34.6110 119.3575

72 310 67.785173 34.814441 100.7559 65.9415 16.8056 25.3846 110.1857

10 303 173.32931 140.42558 206.23305 65.8075 16.7715 131.0149 215.6437

20 303 168.48422 135.58718 201.38126 65.7941 16.7680 126.1785 210.7900

30 303 163.63913 130.74672 196.53155 65.7848 16.7657 121.3393 205.9390

40 303 158.79404 125.90418 191.6839 65.7797 16.7644 116.4975 201.0906

50 303 153.94895 121.05957 186.83833 65.7788 16.7641 111.6530 196.2449

60 303 149.10386 116.21289 181.99484 65.7820 16.7650 106.8059 191.4018

70 303 144.25877 111.36413 177.15341 65.7893 16.7668 101.9561 186.5615

80 303 139.41368 106.5133 172.31406 65.8008 16.7697 97.1036 181.7237

90 303 134.56859 101.6604 167.47678 65.8164 16.7737 92.2485 176.8887

100 303 129.7235 96.805432 162.64157 65.8361 16.7788 87.3907 172.0563

110 303 124.87841 91.948395 157.80842 65.8600 16.7848 82.5302 167.2266

120 303 120.03332 87.089292 152.97734 65.8880 16.7920 77.6671 162.3995

30 290 176.69791 143.78984 209.60598 65.8161 16.7737 134.3780 219.0179

60 290 175.22141 142.3171 208.12572 65.8086 16.7717 132.9063 217.5365

90 290 173.74492 140.8437 206.64614 65.8024 16.7702 131.4338 216.0561

120 290 172.26842 139.36962 205.16723 65.7976 16.7689 129.9604 214.5765

150 290 170.79193 137.89487 203.68898 65.7941 16.7680 128.4861 213.0977

180 290 169.31543 136.41945 202.21141 65.7920 16.7675 127.0110 211.6198

210 290 167.83894 134.94336 200.73451 65.7912 16.7673 125.5351 210.1428

240 290 166.36244 133.4666 199.25829 65.7917 16.7674 124.0582 208.6667

270 290 164.88595 131.98917 197.78273 65.7936 16.7679 122.5805 207.1914

300 290 163.40945 130.51106 196.30785 65.7968 16.7687 121.1019 205.7170

95% Pred Limits for     

the mean
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Table A.3.3:  90% Prediction Interval to contain all m=9 future observations for Control High 

 

 

X = time  

(day)

Y = Temp  

(°K)

Z Predicted   

(rate)
r (0.90; 9,)  = b-a s

90% Pred Limits for 

all m=9  observations

0 281 890.94847 714.26693 1067.63 2.523 353.3631 90.0568 663.7351 1118.1619

2 318 838.76167 662.11731 1015.406 353.2887 90.0379 611.5961 1065.9272

4 318 786.57488 609.95449 963.19526 353.2408 90.0257 559.4401 1013.7096

6 318 734.38808 557.77848 910.99769 353.2192 90.0202 507.2672 961.5090

8 318 682.20129 505.58925 858.81332 353.2241 90.0214 455.0773 909.3253

10 318 630.01449 453.38682 806.64216 353.2553 90.0294 402.8704 857.1586

12 318 577.8277 401.1712 754.48419 353.3130 90.0441 350.6465 805.0089

14 318 525.6409 348.94238 702.33942 353.3970 90.0655 298.4057 752.8761

16 318 473.45411 296.70037 650.20784 353.5075 90.0936 246.1479 700.7604

18 318 421.26731 244.4452 598.08942 353.6442 90.1285 193.8731 648.6615

20 318 369.08051 192.17686 545.98417 353.8073 90.1701 141.5815 596.5796

22 318 316.89372 139.89539 493.89205 353.9967 90.2183 89.2729 544.5145

24 318 264.70692 87.600802 441.81305 354.2122 90.2733 36.9475 492.4663

6 310 845.64938 669.03025 1022.2685 353.2383 90.0250 618.5162 1072.7825

12 310 800.3503 623.77758 976.92301 353.1454 90.0014 573.2768 1027.4238

18 310 755.05121 578.50891 931.59352 353.0846 89.9859 528.0169 982.0856

24 310 709.75212 533.22422 886.28003 353.0558 89.9785 482.7363 936.7679

30 310 664.45304 487.92352 840.98256 353.0590 89.9794 437.4351 891.4709

36 310 619.15395 442.6068 795.70111 353.0943 89.9883 392.1134 846.1945

42 310 573.85487 397.27407 750.43566 353.1616 90.0055 346.7710 800.9387

48 310 528.55578 351.92534 705.18622 353.2609 90.0308 301.4081 755.7035

54 310 483.2567 306.56063 659.95277 353.3921 90.0642 256.0246 710.4888

60 310 437.95761 261.17994 614.73528 353.5553 90.1058 210.6206 665.2946

66 310 392.65852 215.7833 569.53374 353.7504 90.1556 165.1960 620.1210

72 310 347.35944 170.37075 524.34813 353.9774 90.2134 119.7510 574.9678

10 303 866.77496 690.14123 1043.4087 353.2675 90.0325 639.6230 1093.9269

20 303 842.60145 666.00424 1019.1987 353.1945 90.0139 615.4965 1069.7064

30 303 818.42794 641.85596 994.99993 353.1440 90.0010 591.3554 1045.5005

40 303 794.25444 617.69637 970.8125 353.1161 89.9939 567.1998 1021.3091

50 303 770.08093 593.52549 946.63637 353.1109 89.9926 543.0297 997.1322

60 303 745.90742 569.34331 922.47153 353.1282 89.9970 518.8450 972.9698

70 303 721.73391 545.14982 898.318 353.1682 90.0072 494.6458 948.8220

80 303 697.5604 520.94504 874.17576 353.2307 90.0231 470.4321 924.6887

90 303 673.3869 496.72898 850.04482 353.3158 90.0448 446.2039 900.5699

100 303 649.21339 472.50163 825.92515 353.4235 90.0722 421.9611 876.4657

110 303 625.03988 448.263 801.81676 353.5538 90.1054 397.7039 852.3759

120 303 600.86637 424.01312 777.71962 353.7065 90.1444 373.4321 828.3006

30 290 883.38757 706.73069 1060.0445 353.3138 90.0443 656.2058 1110.5693

60 290 875.82668 699.19061 1052.4627 353.2721 90.0336 648.6718 1102.9816

90 290 868.26578 691.64669 1044.8849 353.2382 90.0250 641.1327 1095.3989

120 290 860.70488 684.09892 1037.3108 353.2119 90.0183 633.5887 1087.8211

150 290 853.14399 676.54731 1029.7407 353.1934 90.0136 626.0397 1080.2483

180 290 845.58309 668.99186 1022.1743 353.1824 90.0108 618.4858 1072.6803

210 290 838.0222 661.43256 1014.6118 353.1792 90.0100 610.9270 1065.1174

240 290 830.4613 653.86941 1007.0532 353.1838 90.0111 603.3632 1057.5594

270 290 822.90041 646.30242 999.49839 353.1960 90.0142 595.7945 1050.0064

300 290 815.33951 638.73159 991.94743 353.2158 90.0193 588.2208 1042.4582

95% Pred Limits for     

the mean
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Appendix 4:  95% Prediction Intervals to Contain all of m Future Observations 
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Appendix 4 presents Excel spreadsheet tables that were developed to calculate 95% 

prediction intervals that could contain all of m=9 future observations for each time and 

temperature conditions considered in the accelerated stability study.  Each table is related to a 

response variable (Control Low, Medium or High) considered in the study. 

 
Table A.4. 1:  95% Prediction Interval to contain all m=9 future observations for Control Low 

X = time  

(day)

Y = Temp  

(°K)

Z Predicted   

(rate)
r (0.95; 9,)  = b-a s

90% Pred Limits for 

all m=9  observations

0 281 32.905853 27.421279 38.390427 2.766 10.9691 2.7956 25.1733 40.6384

2 318 30.963002 25.479571 36.446433 10.9669 2.7950 23.2321 38.6939

4 318 29.020151 23.53745 34.502852 10.9654 2.7946 21.2903 36.7500

6 318 27.0773 21.594917 32.559683 10.9648 2.7944 19.3479 34.8067

8 318 25.134449 19.651972 30.616927 10.9650 2.7945 17.4049 32.8640

10 318 23.191598 17.708614 28.674583 10.9660 2.7947 15.4613 30.9219

12 318 21.248747 15.764844 26.732651 10.9678 2.7952 13.5172 28.9803

14 318 19.305896 13.820661 24.791131 10.9705 2.7959 11.5725 27.0393

16 318 17.363045 11.876067 22.850023 10.9740 2.7968 9.6271 25.0989

18 318 15.420194 9.9310619 20.909327 10.9783 2.7979 7.6813 23.1591

20 318 13.477343 7.9856456 18.969041 10.9834 2.7992 5.7348 21.2199

22 318 11.534492 6.0398189 17.029166 10.9893 2.8007 3.7877 19.2812

24 318 9.5916414 4.0935826 15.0897 10.9961 2.8024 1.8401 17.3432

6 310 31.258985 25.776324 36.741646 10.9653 2.7946 23.5292 38.9888

12 310 29.612117 24.130873 35.093361 10.9625 2.7939 21.8843 37.3399

18 310 27.965249 22.484925 33.445573 10.9606 2.7934 20.2387 35.6918

24 310 26.318381 20.83848 31.798281 10.9598 2.7932 18.5925 34.0443

30 310 24.671513 19.191538 30.151487 10.9599 2.7932 16.9455 32.3975

36 310 23.024645 17.544099 28.50519 10.9611 2.7935 15.2978 30.7515

42 310 21.377777 15.896164 26.85939 10.9632 2.7940 13.6494 29.1061

48 310 19.730909 14.247732 25.214086 10.9664 2.7948 12.0004 27.4615

54 310 18.084041 12.598803 23.569278 10.9705 2.7959 10.3506 25.8175

60 310 16.437173 10.949379 21.924966 10.9756 2.7972 8.7001 24.1742

66 310 14.790305 9.2994606 20.281149 10.9817 2.7988 7.0490 22.5317

72 310 13.143437 7.6490477 18.637825 10.9888 2.8006 5.3971 20.8898

10 303 32.045965 26.562838 37.529093 10.9663 2.7948 24.3155 39.7764

20 303 31.186078 25.704054 36.668101 10.9640 2.7943 23.4572 38.9150

30 303 30.32619 24.84493 35.807451 10.9625 2.7939 22.5983 38.0540

40 303 29.466303 23.985463 34.947143 10.9617 2.7937 21.7391 37.1936

50 303 28.606415 23.125654 34.087176 10.9615 2.7936 20.8793 36.3336

60 303 27.746528 22.265504 33.227551 10.9620 2.7937 20.0190 35.4740

70 303 26.88664 21.405012 32.368268 10.9633 2.7941 19.1583 34.6150

80 303 26.026753 20.544178 31.509327 10.9651 2.7945 18.2971 33.7564

90 303 25.166865 19.683003 30.650727 10.9677 2.7952 17.4354 32.8984

100 303 24.306977 18.821486 29.792469 10.9710 2.7960 16.5732 32.0408

110 303 23.44709 17.959628 28.934551 10.9749 2.7970 15.7105 31.1837

120 303 22.587202 17.09743 28.076975 10.9795 2.7982 14.8474 30.3270

30 290 32.648292 27.164439 38.132145 10.9677 2.7952 24.9168 40.3798

60 290 32.390731 26.907492 37.87397 10.9665 2.7949 24.6601 40.1214

90 290 32.133169 26.650437 37.615902 10.9655 2.7946 24.4033 39.8631

120 290 31.875608 26.393276 37.357941 10.9647 2.7944 24.1463 39.6050

150 290 31.618047 26.136007 37.100087 10.9641 2.7943 23.8891 39.3470

180 290 31.360486 25.878631 36.842341 10.9637 2.7942 23.6318 39.0892

210 290 31.102925 25.621148 36.584701 10.9636 2.7941 23.3744 38.8315

240 290 30.845364 25.363558 36.327169 10.9636 2.7941 23.1168 38.5740

270 290 30.587802 25.105861 36.069744 10.9639 2.7942 22.8590 38.3166

300 290 30.330241 24.848056 35.812426 10.9644 2.7943 22.6011 38.0594

95% Pred Limits for     

the mean
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Table A.4. 2:  95% Prediction Interval to contain all m=9 future observations for Control Medium 

 

 

X = time  

(day)

Y = Temp  

(°K)

Z Predicted   

(rate)
r (0.95; 9,)  = b-a s

95% Pred Limits for 

all m=9  observations

0 281 178.1744 145.2619 211.08691 2.766 65.8250 16.7759 131.7722 224.5766

2 318 167.42419 134.51858 200.32981 65.8112 16.7724 121.0317 213.8167

4 318 156.674 123.77278 189.57519 65.8024 16.7702 110.2877 203.0603

6 318 145.92378 113.02452 178.82303 65.7985 16.7692 99.5403 192.3073

8 318 135.17357 102.27379 168.07334 65.7996 16.7694 88.7893 181.5578

10 318 124.42336 91.520588 157.32613 65.8055 16.7710 78.0349 170.8118

12 318 113.67315 80.76492 146.58138 65.8165 16.7737 67.2770 160.0693

14 318 102.92294 70.006784 135.83909 65.8323 16.7778 56.5156 149.3303

16 318 92.172729 59.246184 125.09927 65.8531 16.7831 45.7507 138.5947

18 318 81.42252 48.48312 114.36192 65.8788 16.7896 34.9824 127.8626

20 318 70.672311 37.717597 103.62702 65.9094 16.7974 24.2106 117.1340

22 318 59.922101 26.949617 92.894586 65.9450 16.8065 13.4353 106.4089

24 318 49.171892 16.179184 82.1646 65.9854 16.8168 2.6566 95.6872

6 310 168.9753 136.07434 201.87627 65.8019 16.7700 122.5894 215.3612

12 310 159.7762 126.88379 192.6686 65.7848 16.7657 113.4023 206.1501

18 310 150.5771 117.69027 183.46392 65.7737 16.7628 104.2111 196.9431

24 310 141.37799 108.49376 174.26222 65.7685 16.7615 95.0156 187.7403

30 310 132.17889 99.294275 165.06351 65.7692 16.7617 85.8160 178.5418

36 310 122.97979 90.091803 155.86777 65.7760 16.7634 76.6122 169.3474

42 310 113.78069 80.886349 146.67502 65.7887 16.7667 67.4041 160.1573

48 310 104.58158 71.677916 137.48525 65.8073 16.7714 58.1918 150.9713

54 310 95.382481 62.466504 128.29846 65.8320 16.7777 48.9754 141.7896

60 310 86.183378 53.252118 119.11464 65.8625 16.7855 39.7547 132.6120

66 310 76.984276 44.034763 109.93379 65.8990 16.7948 30.5299 123.4387

72 310 67.785173 34.814441 100.7559 65.9415 16.8056 21.3009 114.2695

10 303 173.32931 140.42558 206.23305 65.8075 16.7715 126.9395 219.7192

20 303 168.48422 135.58718 201.38126 65.7941 16.7680 122.1038 214.8646

30 303 163.63913 130.74672 196.53155 65.7848 16.7657 117.2652 210.0130

40 303 158.79404 125.90418 191.6839 65.7797 16.7644 112.4238 205.1643

50 303 153.94895 121.05957 186.83833 65.7788 16.7641 107.5793 200.3186

60 303 149.10386 116.21289 181.99484 65.7820 16.7650 102.7320 195.4757

70 303 144.25877 111.36413 177.15341 65.7893 16.7668 97.8818 190.6358

80 303 139.41368 106.5133 172.31406 65.8008 16.7697 93.0286 185.7988

90 303 134.56859 101.6604 167.47678 65.8164 16.7737 88.1725 180.9647

100 303 129.7235 96.805432 162.64157 65.8361 16.7788 83.3134 176.1336

110 303 124.87841 91.948395 157.80842 65.8600 16.7848 78.4515 171.3053

120 303 120.03332 87.089292 152.97734 65.8880 16.7920 73.5867 166.4800

30 290 176.69791 143.78984 209.60598 65.8161 16.7737 130.3020 223.0939

60 290 175.22141 142.3171 208.12572 65.8086 16.7717 128.8308 221.6121

90 290 173.74492 140.8437 206.64614 65.8024 16.7702 127.3586 220.1312

120 290 172.26842 139.36962 205.16723 65.7976 16.7689 125.8855 218.6513

150 290 170.79193 137.89487 203.68898 65.7941 16.7680 124.4115 217.1724

180 290 169.31543 136.41945 202.21141 65.7920 16.7675 122.9365 215.6943

210 290 167.83894 134.94336 200.73451 65.7912 16.7673 121.4606 214.2173

240 290 166.36244 133.4666 199.25829 65.7917 16.7674 119.9837 212.7412

270 290 164.88595 131.98917 197.78273 65.7936 16.7679 118.5059 211.2660

300 290 163.40945 130.51106 196.30785 65.7968 16.7687 117.0271 209.7918

95% Pred Limits for     

the mean
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Table A.4. 3:  95% Prediction Interval to contain all m=9 future observations for Control High 

 

X = time  

(day)

Y = Temp  

(°K)

Z Predicted   

(rate)
r (0.95; 9,)  = b-a s

95% Pred Limits for 

all m=9  observations

0 281 890.94847 714.26693 1067.63 2.766 353.3631 90.0568 641.8513 1140.0457

2 318 838.76167 662.11731 1015.406 353.2887 90.0379 589.7169 1087.8064

4 318 786.57488 609.95449 963.19526 353.2408 90.0257 537.5639 1035.5859

6 318 734.38808 557.77848 910.99769 353.2192 90.0202 485.3923 983.3839

8 318 682.20129 505.58925 858.81332 353.2241 90.0214 433.2021 931.2005

10 318 630.01449 453.38682 806.64216 353.2553 90.0294 380.9932 879.0358

12 318 577.8277 401.1712 754.48419 353.3130 90.0441 328.7658 826.8896

14 318 525.6409 348.94238 702.33942 353.3970 90.0655 276.5197 774.7621

16 318 473.45411 296.70037 650.20784 353.5075 90.0936 224.2551 722.6531

18 318 421.26731 244.4452 598.08942 353.6442 90.1285 171.9719 670.5627

20 318 369.08051 192.17686 545.98417 353.8073 90.1701 119.6701 618.4909

22 318 316.89372 139.89539 493.89205 353.9967 90.2183 67.3499 566.4376

24 318 264.70692 87.600802 441.81305 354.2122 90.2733 15.0111 514.4027

6 310 845.64938 669.03025 1022.2685 353.2383 90.0250 596.6402 1094.6586

12 310 800.3503 623.77758 976.92301 353.1454 90.0014 551.4065 1049.2941

18 310 755.05121 578.50891 931.59352 353.0846 89.9859 506.1503 1003.9521

24 310 709.75212 533.22422 886.28003 353.0558 89.9785 460.8715 958.6327

30 310 664.45304 487.92352 840.98256 353.0590 89.9794 415.5702 913.3359

36 310 619.15395 442.6068 795.70111 353.0943 89.9883 370.2462 868.0617

42 310 573.85487 397.27407 750.43566 353.1616 90.0055 324.8997 822.8100

48 310 528.55578 351.92534 705.18622 353.2609 90.0308 279.5306 777.5810

54 310 483.2567 306.56063 659.95277 353.3921 90.0642 234.1390 732.3744

60 310 437.95761 261.17994 614.73528 353.5553 90.1058 188.7249 687.1904

66 310 392.65852 215.7833 569.53374 353.7504 90.1556 143.2882 642.0288

72 310 347.35944 170.37075 524.34813 353.9774 90.2134 97.8292 596.8897

10 303 866.77496 690.14123 1043.4087 353.2675 90.0325 617.7451 1115.8048

20 303 842.60145 666.00424 1019.1987 353.1945 90.0139 593.6231 1091.5798

30 303 818.42794 641.85596 994.99993 353.1440 90.0010 569.4852 1067.3707

40 303 794.25444 617.69637 970.8125 353.1161 89.9939 545.3313 1043.1776

50 303 770.08093 593.52549 946.63637 353.1109 89.9926 521.1615 1019.0004

60 303 745.90742 569.34331 922.47153 353.1282 89.9970 496.9758 994.8391

70 303 721.73391 545.14982 898.318 353.1682 90.0072 472.7741 970.6937

80 303 697.5604 520.94504 874.17576 353.2307 90.0231 448.5565 946.5643

90 303 673.3869 496.72898 850.04482 353.3158 90.0448 424.3230 922.4508

100 303 649.21339 472.50163 825.92515 353.4235 90.0722 400.0736 898.3532

110 303 625.03988 448.263 801.81676 353.5538 90.1054 375.8082 874.2715

120 303 600.86637 424.01312 777.71962 353.7065 90.1444 351.5271 850.2057

30 290 883.38757 706.73069 1060.0445 353.3138 90.0443 634.3251 1132.4501

60 290 875.82668 699.19061 1052.4627 353.2721 90.0336 626.7936 1124.8598

90 290 868.26578 691.64669 1044.8849 353.2382 90.0250 619.2566 1117.2750

120 290 860.70488 684.09892 1037.3108 353.2119 90.0183 611.7143 1109.6955

150 290 853.14399 676.54731 1029.7407 353.1934 90.0136 604.1664 1102.1216

180 290 845.58309 668.99186 1022.1743 353.1824 90.0108 596.6132 1094.5530

210 290 838.0222 661.43256 1014.6118 353.1792 90.0100 589.0546 1086.9898

240 290 830.4613 653.86941 1007.0532 353.1838 90.0111 581.4905 1079.4321

270 290 822.90041 646.30242 999.49839 353.1960 90.0142 573.9210 1071.8798

300 290 815.33951 638.73159 991.94743 353.2158 90.0193 566.3461 1064.3329

95% Pred Limits for     

the mean
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