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Different classification methods have been applied to hyperspectral images dur-

ing the last decade. Many of these methods have so far used pixel spectral signatures.

Methods that include spatial information in the analysis achieve a better classifi-

cation accuracy than those that only account for spectral signature of pixels. In

this research, an algorithm that extracts regional texture information by computing

spectral difference histograms over window extents in hyperspectral images was de-

veloped. The spectral angle distance was used as the spectral metric and different

window sizes were explored for compute the histogram. The histograms were used

in a semi-supervised learning framework that uses both labeled and unlabeled sam-

ples for training the Support Vector Machine classifier. Algorithm validation and

comparisons are done with real and synthetic hyperspectral images. The method

performs well with high spatial resolution images. The algorithm performs well

under different Gaussian noise levels.
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Diferentes métodos de clasificación han sido aplicados a imágenes hiperespec-

trales durante la década pasada. Muchos de estos métodos toman en cuenta la firma

espectral de los ṕıxeles. Métodos que incluyen información espacial en su análisis

obtienen un mejor rendimiento del clasificador en comparación con aquellos métodos

que solo toman en cuenta la firma espectral de los ṕıxeles. En ésta investigación,

se desarrolló un algoŕıtmo para imágenes hiperespectrales que extrae información

de textura por medio de ventanas mediante el cómputo de histogramas de difer-

encia espectral. Como métrica espectral se utilizó la distancia de ángulo espectral

y se exploraron diferentes tamaños de ventana para el cómputo del histograma.

Los histogramas fueron utilizados en un entrenamiento semi-supervisado que utiliza

muestras etiquetadas y no etiquetadas para entrenar las máquinas de vectores de

soporte (“Support Vector Machines”, SVMs por sus siglas en inglés). Validaciones

y comparaciones del algoŕıtmo son realizadas con imágenes hiperespectrales reales y

sintéticas. El algoŕıtmo produce buenos resultados cuando imágenes hiperespectrales
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de alta resolución espacial son utilizadas. El algoŕıtmo fue a su vez validado con

data hiperespectral bajo diferentes niveles de ruido Gausiano produciendo también

buenos resultados.
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CHAPTER 1

INTRODUCTION

Hyperspectral imagery (HSI) plays an important role in many remote sensing

applications. They are characterized by large amounts of data taken at narrow

and contiguous spectral bands [1],[2] providing us important information about the

spectral characteristics of the materials that are present in the scene. HSI sensors

have high spectral resolution and some of them also have high spatial resolution.

Both, the spectral and spatial information are important in image analysis; while

the spectral resolution helps us to discriminate between different materials, the spa-

tial resolution measure the spatial detail in an image. A high quality, portable

and easy-to-use spectral imaging system is the SOC-700 hyperspectral Imager. It

has a spectral resolution of 4nm with 120 spectral bands in a range of 400 to 900

nm. Another example of a sensor with high spectral and spatial resolution is the

Hyperspectral Data Imagery Collection Experiment (HYDICE), which captures the

information in 210 contiguous bandwidths from the visible to shortwave infrared

(400-2500 nm) with a spatial resolution that varies between 1 to 4 meters depend-

ing on the aircraft’s altitude above ground level [2], [3]. Table 1–1 summarizes the

capabilities of the sensors mentioned above.

Recently, interest in HSI has increased. This type of data is frequently used in

land cover classification, detection and target recognition, search and rescue opera-

tions, and also in biomedical applications such as cancer diagnosis. Therefore, it is

1
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Table 1–1: HSI Sensor Characteristics

Sensor Spectral Resolution Spatial Resolution No. of Bands Spectral Range
SOC-700 4nm higha 120 400-900nm
HYDICE 10nm 1-4m 210 400-2500nm

a Depends on the IFOV of the camera and on the distance from the ground to the sensor (H).
The IFOV of the SOC-700 camera is 0.0078125. spatialRes = IFOV ×H

very important that the accuracy of the classification methods used to classify and

analyze this type of data be as high as possible.

1.1 Problem Statement
Different classification methods have been applied to hyperspectral images dur-

ing the last decade. Many of these methods have so far used pixel spectral signatures

(see Figure 1–1). With the increasing spatial resolution of sensors and cameras,

pixel based methods perform poorly. Methods that include spatial information in

the analysis achieve a better classification accuracy than those that only accounts

the spectral signature of pixels [1], [4], [5], [10] . Hence, spatial information has to

be exploited to improve the performance of the classifier.

Figure 1–1: Block diagram of a general pixel-based classification.
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The integration of spatial and spectral information in hyperspectral image anal-

ysis has been identified as a highly desirable objective by the remote sensing commu-

nity. In this thesis, joint distribution of pixels rather than single pixel distribution

is used to develop an algorithm for spatial-spectral feature extraction. This al-

gorithm will extract regional texture information by computing spectral difference

histograms over window extents. A general block diagram of the proposed Spectral

Difference Histogram (SDH) based classification is shown in Figure 1–2.

Figure 1–2: Block diagram of the SDH-based classification.

1.2 Objectives

The main objective of this work is to develop an algorithm for spatial-spectral

feature extraction for hyperspectral image classification. The specific objectives of

this research are as follows:

• Develop a joint pixel histogram method integrating spatial and spectral informa-

tion for hyperspectral image classification based on spectral difference histograms

computed over window extents.

• Apply the method using a semi-supervised learning algorithm for classification.
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• Experiment with different parameters such as spatial extents (window sizes) for

improving classification.

• Validate the algorithm with real and synthetic hyperspectral datasets with different

noise levels.

1.3 Contributions of this work

The most important contribution of this algorithm will be better integration of

spatial and spectral information for feature extraction and classification of hyper-

spectral images.

1.4 Thesis Outline

The thesis is organized as follows: Chapter 2 provides an overview of remote

sensing and different classification methods. Chapter 3 describes the spectral dif-

ference histogram algorithm. Chapter 4 presents different experiments and the ob-

tained results . Finally, the conclusions and recommendations for future work are

presented in Chapter 5.



CHAPTER 2

THEORETICAL BACKGROUND
AND LITERATURE REVIEW

This chapter presents an overview of remote sensing and hyperspectral images.

Different image classification methods are discussed. A literature review of different

feature extraction and classification methods that currently exists is presented.

2.1 Remote Sensing

The term “remote sensing” is commonly used to describe the science and art of

identifying, observing and measuring an object without coming into direct contact

with it [6]. It was first used in the early 1960s in the United States by Ms. Evelyn

Pruitt of the U.S. Office of Naval Research. It is dated from 1858 when Gaspard

Felix Tournachon took the first-known aerial photograph from a balloon near Paris,

France [6]. In the following years, other platforms such as kites, rockets and pigeons

were experimented, but the great step forward was the invention of the airplane,

a much stable and reliable platform. Finally, remote sensing moved to outer space

with the invention of satellites.

5
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2.1.1 Data Collection

Remote sensing instruments measured reflected and/or emitted electromagnetic

radiation using aerial and satellite platforms. Figure 2–1 shows the electromagnetic

spectrum. Remotely sensed data are collected using passive or active remote sens-

ing systems [6]. Passive sensors record electromagnetic radiation that is reflected

or emitted from the surface of Earth. On the other hand, active sensors are inde-

pendent of the Sun’s electromagnetic energy or the thermal properties of the Earth.

They measure the backscatter energy that is produced by the interaction of the

electromagnetic energy and the terrain.

Figure 2–1: The electromagnetic spectrum.

The remote sensing process involves an interaction between incident radiation

and the target of interest. It involves the following seven elements (see Figure 2–2):

• (A) Energy source or illumination

• (B) Radiation and the atmosphere
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• (C) Interaction with the target

• (D) Recording of energy by the sensor

• (E) Transmission, reception and processing

• (F) Interpretation and analysis

• (G) Application

Figure 2–2: The Remote Sensing process [8].

2.1.2 Spectral Resolution

Spectral resolution is defined as the number and dimension (size) of specific

wavelength intervals, referred to as bands or channels, in the electromagnetic spec-

trum to which a remote sensing instrument is sensitive [6]. Data generated by

sensors may consist of one spectral band (panchromatic image), few spectral bands

(multispectral images) or many narrow and contiguous spectral bands (hyperspec-

tral images) [7]. Spectral resolution provides us important information about the
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spectral characteristics of the materials that are present in the scene. Different ma-

terials can be discriminated by means of its spectral signature (see Figure 2–5). An

example of a hyperspectral data cube is shown in Figure 2–3 to understand the

concept of spectral resolution.

Figure 2–3: A three-dimensional data cube. It can be treated as a stack of two-
dimensional spatial images, each corresponding to a particular narrow spectral band.
Image Courtesy of [9].

2.1.3 Spatial Resolution

Spatial resolution is a measure of the spatial detail in an image, which is a func-

tion of the design of the sensor and its operating altitude above the surface [7], [8]. In

other words, how much of the earth’s surface a single pixel covers (see Figure 2–4(a)

and (b)). High spatial resolution provides more information about the area under

study as shown in Figure 2–4(b). Spatial resolution of passive sensors depends pri-

marily on their instantaneous field of view (IFOV) as shown in Figure 2–4(c) [8].

The IFOV is the angular cone of visibility of the sensor (B) and determines the area

on the Earth’s surface which is seen from a given altitude at one particular moment

in time. The size of the area viewed is determined by multiplying the IFOV by the

distance from the ground to the sensor (H) [6], [8].
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Figure 2–4: (a) Spatial resolution - the size of the field of view, e.g. 1m× 1m. (b)
An example of different spatial resolution images taken by SPOT (upper) and CASI
(lower) sensors of Enrique Reef at Lajas, PR. (c) A remote sensing measurement.
The remote sensing instrument collects information of an object within the IFOV of
the sensor system without coming into direct contact with it (Figure reprinted from
[6]).

2.2 Hyperspectral Imagery (HSI)

Hyperspectral images are characterized by large amounts of data taken at nar-

row and contiguous spectral bands [1], [2]. This type of data is frequently used in

land cover classification, detection and target recognition, search and rescue opera-

tions, and also in biomedical applications such as cancer diagnosis [1], [2]. Recently,

interest in hyperspectral images has increased. The reason is principally the detailed

information provided by the high spectral resolution which helps to discriminate

better between different objects in an image. To see this contribution, Figure 2–5
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illustrates the concept of HSI. It illustrates the spectral variation of three different

components: Soil, Water and Vegetation. With the spectra of each one we can dis-

criminate between them.

Figure 2–5: The hyperspectral imaging concept. It illustrates the spectral variation
of three different components: Soil, Water and Vegetation. Image Courtesy of [9].

Due to the high dimensionality of the HSI, methods for reducing the image

dimensionality are often applied. This reduction must be done in such a way that

the data redundancy is minimized without losing relevant information about objects

of interest.
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2.2.1 Dimensionality Reduction

Dimensionality reduction is the general problem of projecting a data set into a

lower dimensional space. One of the most widely used dimension reduction methods

in remote sensing is the principal component analysis (PCA) [10]. Vélez et. al [11]

proposed an unsupervised mechanism of selecting spectral bands based on Singular

Value Decomposition (SVDSS) that approximates PCA dimensionality reduction

[12]. Band subset selection, and discriminant and independent component analysis

methods are also used to reduce the dimensionality of the data before the classifi-

cation process [1], [10], [13]. PCA and SVDSS methods are discussed next.

2.2.1.1 PCA

PCA uses a linear transformation , the principal-component transform (y =

Ax) [14], to rotate and translate multiband spectral data into a new set of coordinate

system [15]. It is used to decorrelate data and maximize the information content in

a reduced number of features [15]. The covariance matrix is first computed over the

pixel spectra contained in the hyperspectral data cube of interest. Eigenvalues and

eigenvectors are then obtained for the covariance matrix [15]:

Σx = E
{

(x− µx)(x− µx)T
}

= VΛVT (2.1)

where x is the spectral vector data , µx is the mean spectral vector over the data

cube, V is a matrix consisting of columns of eigenvectors and Λ is a diagonal matrix

of eigenvalues.

We use the eigenvectors as a new coordinate system to transform the hyper-

spectral data cube into principal components [15]. If the transformed spectral data

x is represented as y in the new coordinate system, then the principal-component
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transformation is a linear transformation VT of the original coordinates such that

y = VTx (2.2)

In y space the covariance matrix is given as

Σy = E
{

(y − µy)(y − µy)T
}

(2.3)

where µy is the mean vector expressed in terms of the y coordinates [15]. A property

of the transform is that

µy = VTµx (2.4)

As a result, Σy is the diagonal matrix of eigenvalues of Σx such that

Σy = E
{

(VTx−VTµx)(VTx−VTµx)T
}

= VTE
{

(x− µx)(x− µx)T
}

V

= Λ (2.5)

Because Σy is a covariance matrix and is diagonal, its elements represents the

variances of a set of orthogonal images in the transformed coordinate space [15]. The

eigenvectors are arranged in descending order of the eigenvalues so that the data

exhibit maximum variance in the first component, and so on, with the minimum

variance in the last component. In other words, the new set of uncorrelated images

are ordered in terms of decreasing information or equivalently decreasing variance

[16].

In some circumstances the projections produced by this method are accepted

due to the fact that some classes are distributed along the largest eigenvector which

provides the direction that maximizes the data variance. In this case, PCA finds

good class separability in its projections as shown in Figure 2–6(a). Unfortunately,
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Figure 2–6: First Principal Axis of Class -1 and Class +1. (a) Optimal Separability
Projection. (b) Poor Separability Projection.

information content in hyperspectral images does not always match these projec-

tions [10], [17]. PCA obtains a poor separability projection when the classes are

not distributed along the largest eigenvector or the first principal axis as shown in

Figure 2–6(b). Also it does not work properly in the detection and classification of

small size objects relative to the scene. Methods that perform a dimensionality re-

duction of HSI using wavelets, yields a better or comparable classification accuracy

compared to PCA, and also reduce the computational time requirements [17].

2.2.1.2 SVDSS

Vélez et.al [11] proposed an unsupervided mechanism for selecting spectral

bands based on SVDSS that approximates PCA. The subset selection problem re-

stricts the projection matrix A as follows:

A = P

 Ip

0

 (2.6)
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where P is a permutation matrix1 . The net effect of this constraint is that the

dimension-reducing transformation A now selects a subset of the original variables

x as follows [11], [12]:

y = ATx =
[

Ip 0
]
PTx =



xi1

xi2
...

xip


(2.7)

An important advantage of the selection of a subset of bands is the retention

of the physical meaning of the data, that is, there are no data transformations [12].

The SVDSS algorithm is summarized in the following steps2 :

1. Compute the covariance matrix Σdata of the HSI.

2. Compute the QR factorization with pivoting of the matrix VT
1 , where V1 is formed

by the first p eigenvectors of Σdata.

3. Compute x̄ = Px.

4. Take the first p elements of x̄ as the selected bands.

2.3 Image Classification

Image classification is the process of assigning all pixels in a digital image to

particular classes according to their characteristics [8]. As a result we obtained a the-

matic map in which each pixel belongs to a particular class. Two main classification

schemes are the Unsupervised and Supervised Classification. A halfway between the

1 A matrix P is called a permutation matrix if exactly one entry in each row and column is
equal to 1, and all other entries are 0. Multiplication by such matrices results in a permutation of
the rows or columns of the object multiplied [11].

2 Refer to [11].
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unsupervised and supervised learning is known as Semi-Supervised Learning.

2.3.1 Unsupervised Classification

Unsupervised classification can be defined as the identification of natural groups

or structures within the data. It clusters pixels in a data set based only on their

statistics without using previous knowledge about the spectral classes present in the

image. Some of the mostly used unsupervised classification methods are: Isodata

and k-Means [18].

2.3.2 Supervised Classification

Supervised classification can be defined as the process of using samples of known

identity (training data) to classify pixels of unknown identity. The training data are

used to train the classifier which is tested with testing samples to evaluate the ac-

curacy of the classifier. Some of the most commonly used supervised classification

methods are: Maximum Likelihood, Minimum Distance, Mahalanobis Distance, and

Neural Networks. Recently, support vector machines (SVMs) have been successfully

used for hyperspectral data classification [13].

2.3.2.1 SVMs

SVM tries to find an optimal separating hyperplane that discriminate between

two classes of interest. On each side of the hyperplane that separates the data,

two parallel hyperplanes that passes through at least one vector of the two classes

are constructed. These vectors are known as support vectors. The hyperplane that

maximizes the distance between these two hyperplanes is called the optimal separat-

ing hyperplane [19]. A special property of SVMs is that they minimize the empirical
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classification error and maximize the geometric margin.

2.3.2.2 SVM - the linearly separable case

Consider first the case of a binary classification problem where we have a lin-

early separable training set Z. Assume that the training dataset consists of n training

samples characterized by Z = {(x1, y1), (x2, y2), · · · , (xn, yn)}, where x ∈ RN is a

N-dimensional data vector, and yi ∈ {−1,+1}, 1 ≤ i ≤ n, is a constant that denotes

the class to which the sample xi belongs. The objective of SVMs is to find a linear

decision function defined by f(x) = sign(wT · x + b), where w ∈ RN determines

the orientation of the optimal hyperplane and b ∈ R is a bias [20]. There can be

infinitely many linear classifiers that separate the training set without errors and,

consequently our task is to choose the best one [21].

If the the samples in the training set Z are linearly separable, then there exists

a N-vector w and a scalar b such that:

wT · xi + b ≥ +1 if yi = +1, and

wT · xi + b ≥ −1 if yi = −1,

for 1 ≤ i ≤ n (2.8)

These can be combined into one set of inequalities, so the hyperplanes for the two

classes are represented by:

yi[w
T · xi + b] ≥ +1 (2.9)

Given that the data is linearly separable, the two hyperplanes of the margin

can be selected in a way that there are no samples between them. The optimal

separating hyperplane, wT ·x + b = 0, is located where the margin between the two

classes is maximized. Margin can be defined as the sum of the smallest distance

from the separating hyperplane to the closest sample of class +1 and the smallest
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distance from the separating hyperplane to the closest sample of class -1. The eu-

clidean distance between these two hyperplanes is 2
‖w‖ , where ‖w‖ is the Euclidean

norm of w. So maximizing the margin reduces now to minimizing the norm of the

weigth vector w subject to the constraints in Equation (2.9). The optimal separat-

ing hyperplane can be obtained by solving the following constrained optimization

problem [19], [21]:

minw,b

{
1

2
‖w‖2

}
s.t. yi[w

T · xi + b] ≥ 1, for 1 ≤ i ≤ n

(2.10)

The vector w is perpendicular to the separating hyperplane. The perpendicu-

lar distance from the separating hyperplane to the origin can be expressed as b
‖w‖ .

Figure 2–7(a) shows the optimal hyperplane for a two class separable case.

2.3.2.3 SVM - the linearly non-separable case

In general, the classes will not be separable. Figure 2–7(b) shows the optimal

hyperplane for a two class non-separable case. In this case, we assume that one

cannot separate the data without a misclassification error using the class of linear

classifiers. Now, it is necessary to introduce slack variables, ξi > 0, to reduce the

weighting of the misclassified vectors. The hyperplanes for the two classes become:

yi[w
T · xi + b] + ξi ≥ 1, for1 ≤ i ≤ n (2.11)

Equation (2.10) now transforms to Equation (2.12), where C > 0 is a fixed

penalty parameter [22].

minw,b,ξ

{
1

2
‖w‖2 + C

n∑
i=1

ξi

}
s.t. yi[w

T · xi − b] ≥ 1− ξi, for ξi > 0, 1 ≤ i ≤ n

(2.12)



18

Figure 2–7: Linear optimal separating hyperplane for (a) the two class separable
case, (b) the two class non-separable case. The support vectors are the colored
samples.

2.3.2.4 The SVM for multiclass classification

In general, in real-life situations it is often necessary to separate more than

two classes at the same time [21]. The simplest extension of the SVM to a k-class

problem is to separate the observations from class c from the rest of c = 1, · · · , k

classes. Here the “rest” means that all the observations from other classes than c are

combined to form one class. The optimal separating hyperplane that discriminate

the class c and the combined class is denoted by [21]:

xTwc + bc, c = 1, · · · , k

where the superscript c stands for the class which would be separated from the other

observations. The decision rule f c that assigns the vector x to the class c or to the

combined class is [21]:

f c(x) = sgn
(
gc(x)

)
, (2.13)

where gc(x) = xTwc + bc. After all the k optimal separating hyperplanes have been

found the final classifier fk is [21]:

fk(x) = argmaxc
(
f c(x)

)
. (2.14)
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2.3.3 Semi-Supervised Classification

Semi-supervised learning is halfway between supervised and unsupervised learn-

ing [23]. It makes use of both labeled and unlabeled data for training the classifier.

Typically a small amount of labeled data and a large amount of unlabeled data are

used. Semi-supervised algorithms that learn from both label and unlabeled samples

have been used in the last few years. In [21], [24] this approach of considering also

the test dataset is called overall risk minimization (ORM). The approach where

the ORM principle is applied to the SVM methodology is called in [22] the semi-

supervised SVM.

2.3.3.1 Semi-Supervised SVM

The semi-supervised SVM selects the optimal hyperplane that separates the

input data based not only on the labeled samples but also in the unlabeled sam-

ples. As in Section 2.3.2.2, here we are considering the binary classification case.

But now in addition to the labeled set Z, we need to include the unlabeled dataset.

Suppose that we are given a labeled dataset Z (defined as in Section 2.3.2.2) and

a unlabeled dataset X∗ that consists of m unlabeled samples characterized by

X∗ ={x∗1,x∗2, · · · ,x∗m} where x∗ ∈ RN is a N-dimensional data vector corresponding

to the unlabeled samples.

In the semi-supervised SVM case the constrained optimization problem for the

linearly separable case is:

minw,b

{
1

2
‖w‖2

}
s.t. yi[w

T · xi − b] ≥ 1, for 1 ≤ i ≤ n

y∗j [w
T · x∗j − b] ≥ 1, for 1 ≤ j ≤ m

(2.15)
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where y∗j is the unknown label of x∗j .

In the linearly non-separable case an additional term is added to Equation

(2.12) that drives the outputs of the unlabeled samples away from zero. Therefore,

the optimization problem for a linearly non-separable data in the semi-supervised

SVM is given by: [26],[27]

minw,b,ξ,ξ∗

{
1

2
‖w‖2 + C

n∑
i=1

ξi + C∗
m∑
j=1

ξj
∗
}

s.t. yi[w
T · xi − b] ≥ 1− ξi, 1 ≤ i ≤ n

y∗j [w
T · x∗j − b] ≥ 1− ξ∗j , 1 ≤ j ≤ m

(2.16)

Equation (2.16) can be rewritten without the constraint as: [27]

minw,b,ξ,ξ∗

{
1

2
wTw + C

n∑
i=1

L
(
yi[w

T · xi − b]
)

+ C∗
m∑
j=1

L∗
(
y∗j [w

T · x∗j − b]
)

(2.17)

with L(t) = max(0, 1− t). As it is explained in [26], the last term of equation 2.17

makes the problem non-convex and difficult to solve.

2.4 Literature Review

A literature review of different classification methods is presented in this sec-

tion. Spectral and spatial based classification methods are considered.

2.4.1 Spectral based Classification

Several unsupervised and supervised algorithms have been developed for clas-

sification of multispectral images. Recently, support vector machines (SVMs) have
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been successfully used for hyperspectral data classification [13]. Independent Com-

ponent Analysis mixture model (ICAMM) and SVMs algorithms have been devel-

oped explicitly in [20] for classifying HSI. Shah et. al. [20], showed that the SVM

is a superior classification algorithm for classifying HSI than other two widely used

supervised classifiers: Maximum Likelihood (ML) and back propagation Neural Net-

works (NN). Also the ICAMM classification algorithm produced significantly higher

accuracy as compared to the K-means unsupervised algorithm.

Recently there has been an interest in kernel-based methods. A performance

assessment between SVMs, regularized radial basis function neural networks (Reg-

RBFNN), kernel Fisher discriminant (KFD) and regularized AdaBoost (Reg-AB) is

presented in [13]. Camps-Valls et. al. [13], showed that SVMs yield better results

than the other kernel-based methods. A semi-supervised graph-based method for

the classification of hyperspectral images is presented in [28]. The proposed method

was compared with the SVM method. It was shown that the semi-supervised graph-

based method produces better classification maps compared to those obtained with

SVM method. Another semi-supervised method was introduced in [22]. A compar-

ison between semi-supervised SVM method and the traditional SVM approach was

done. In every case, semi-supervised SVM either improved or showed no significant

difference compared to standard approach.

The methods discussed above make use only of the spectral information of each

pixel. Methods that use spatial information in the analysis are discussed below.
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2.4.2 Spatial based Classification

Methods that include spatial information in the analysis achieve a better clas-

sification accuracy than those that accounts for only the spectral signature of pixels

[1], [4], [5].

2.4.2.1 Spatial Histograms

Textures are sometimes described using co-occurrences matrices. They are usu-

ally derived from gray scale images but also from color images [29], [30]. The co-

occurrence matrix is a square matrix with elements corresponding to the relative

frequency of pairs of gray level pixels separated by a certain distance and for a

given direction. Figure 2–8 shows an example of how the co-occurrence matrix is

computed.

Figure 2–8: (a) Example of a digital image. (b) An example of a direction used to
create the co-occurrence matrix. (c) Co-occurrence matrix using 45◦ direction.

A color co-occurrence histogram (CH) used for object recognition is presented

in [29]. Color CH holds the number of occurrences of pairs of certain color pixels

that occur in certain separation distances in image space. Color CHs are also used
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in [30] for object detection. A reduced multidimensional CH method in texture

classification is presented in [31]. An efficient way of generating a co-occurrence

matrix from irregularly shaped tessellation elements was presented in [32]. These

approaches give good results for gray scale images, but the adaptation to hyperspec-

tral images is computationally expensive.

2.4.2.2 Other Spatial Methods

Texture feature methods found in the literature are efficiently used for hyper-

spectral and multispectral image classification. A land cover and benthic habitat

classification using texture features from hyperspectral and multispectral images are

presented in [1]. Manian and Jimenez, demonstrated the efficacy of using spatial

features for classification when compared to using only spectral features. For the

classification they used the minimum distance classifier using texture features se-

lected from a feature selection process, and the maximum likelihood classifier using

the spectral features. For all the experiments performed, they obtain a better overall

performance when using texture features. In conclusion, texture features provides a

high discriminatory power and provide greater separability between classes.

A method for appending texture information to existing hyperspectral data to

increase classification accuracy is presented in [5]. The octave-band directional fil-

ter bank (OBDFB) was used to extract texture features. Texture features are local

energy estimates of the coefficients of the sub-bands of the decomposition feature

vectors. They used ML classifier. It can be shown that the classification accu-

racy generally increased when texture feature information are taken into account.

Hyperspectral texture characterization is studied in [33] by extending the wavelet

transform to HSI.
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A probabilistic vector texture model using a Gauss-Markov random field (MRF)

which takes into account texture from a spatial and spectral point of view is pro-

posed in [4]. The application of their work is in classification of urban areas. The

covariance matrix parameter was their texture feature. The texture feature extrac-

tion algorithm used is based on the Bhattacharya distance between the distributions

of the training samples. The classification criterion is the ML using an approxima-

tion of the probability distribution of the texture features. The proposed method

yield better results than the other tested methods.

A morphological method that is based on making use of both spectral and

spatial information for classification of HSI was proposed in [34]. They were investi-

gating hyperspectral data with high spatial resolution from urban areas. They used

a NN classifier with and without feature extraction, and the results were compared

with those of the Gaussian ML classifier. The proposed method performed well in

terms of accuracy and was comparable in accuracy to the ML classifier, especially

when decision boundary feature extraction was applied on the extended morpho-

logical profile [34]. Plaza et al. presented in [35], an automated method based

on mathematical morphology that performs unsupervised pixel purity determina-

tion and endmember extraction from multi/hyper-dimensional datasets. The idea

of using endmembers derived from the data for classification and unmixing has been

considered before, but few methods have exploited the spatial information exist-

ing between neighboring pixels. The method uses spectral and spatial information

simultaneously. Results are comparable to those obtained with other methodologies.

The integration of spatial and spectral information in hyperspectral image anal-

ysis has been identified as a highly desirable objective by the remote sensing com-

munity. Methods that explored the relationship between neighbor pixel vectors will
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be developed in our work. This work focuses on using pixels relationship at different

distances/angles.

2.5 Conclusions

In this chapter important information about HSI commencing from data col-

lection, the importance of the spectral and spatial information, to application of

different classification methods were summarized. The SVMs based on for the su-

pervised and semi-supervised learning was explained. Spectral and spatial based

classification methods were presented.



CHAPTER 3

SPATIAL-SPECTRAL FEATURE
EXTRACTION

The integration of spatial and spectral information in hyperspectral image anal-

ysis has been identified as a highly desirable objective by the remote sensing com-

munity. Joint distribution of pixels rather than single pixel distribution is used to

develop an algorithm for spatial-spectral feature extraction. The spectral difference

histogram algorithm extracts regional texture information by computing spectral

difference histograms over window extents. The methods that we used to develop

the algorithm will be discussed in this chapter. Figure 3–1 shows a diagram that

presents the classification methodology to be used.

3.1 Hyperspectral data

Real and synthetic hyperspectral datasets with different noise levels are used to

test the algorithm. The datasets are obtained from (1) the SOC-700 hyperspectral

camera, and (2) the Hyperspectral Digital Imagery Collection Experiment (HY-

DICE).

26
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Figure 3–1: Block diagram for the classification methodology.

3.1.1 SOC-700 hyperspectral camera

Hyperspectral images of different textures are collected using the SOC-700 hy-

perspectral camera. This camera has a spectral resolution of 4 nm with 120 bands

and a spectral range from 400 to 900 nm. It is available at the Laboratory for

Applied Remote Sensing and Image Processing (LARSIP). Figure 3–2 shows the

SOC-700 hyperspectral camera used to take the images. Mosaics of the different

textures were made. The main reason why we used different hyperspectral textures

to validate the algorithm is because they are used in literature [4],[36] to get an idea

of the quality of the results. Different mosaics with different textures to validate

the results of the algorithm have been used as they have precise ground truth of the

data.
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Figure 3–2: SOC-700 hyperspectral camera.

3.1.2 HYDICE sensor

The HYDICE sensor is a second generation, “state-of-the-art”, nadir-viewing,

push broom, high resolution airborne imaging spectroradiometer [3]. This sensor

system was developed by the Hughes Danbury Optical Systems in coordination

with the Naval Research Laboratory and funded by the U.S. Government. It is

mounted on a CV-580 aircraft. The sensor was intended for various purposes such

as evaluations of vegetation, water quality, bathymetry, and minerals. The spatial

resolution varies from 1 to 4 m depending on the aircraft’s altitude above ground

level, and the spectral resolution includes 210 contiguous bandwidths from the visible

to shortwave infrared (400-2500 nm).

Figure 3–3: HYDICE sensor.



29

3.1.3 Airborne Visible/Infrared Imaging Spectrom-

eter (AVIRIS) sensor

The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is a proven in-

strument in the realm of Earth Remote Sensing [37]. It is a unique optical sensor

that delivers calibrated images of the upwelling spectral radiance in 224 contigu-

ous spectral channels (bands) with wavelengths from 400 to 2500 nanometers [37].

AVIRIS has been flown on four aircraft platforms: NASA’s ER-2 jet, Twin Otter

International’s turboprop, Scaled Composites’ Proteus, and NASA’s WB-57. The

ER-2 flies at approximately 20 km above sea level, at about 730 km/hr [37]. The

Twin Otter aircraft flies at 4km above ground level at 130km/hr [37].

AVIRIS uses a scanning mirror to sweep back and forth (“whisk broom” fashion)

producing 614 pixels for the 224 detectors each scan. The pixel size and swath

width of the AVIRIS data depend on the altitude from which the data is collected.

When collected by the ER-2 20km above the ground each pixel produced by the

instrument covers an area approximately 20 meters square on the ground with some

overlap between pixels, thus yielding a ground swath about 11 kilometers wide.

When collected by the Twin Otter (4km above the ground), each ground pixel is

4m square, and the swath is 2km wide.

Figure 3–4: AVIRIS sensor [38].
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3.2 Algorithm Development

Joint distribution of pixels rather than single pixel distribution is used to de-

velop an algorithm for spatial-spectral feature extraction. The methods used to

obtain the final classification result are discussed in this section (see Figure 3–1).

3.2.1 Dimensionality Reduction

In this work, dimensionality reduction is only applied to the hyperspectral

datasets (not to multispectral datasets). So, once we have the hyperspectral data

that we will use, the next stage consists of reducing the dimension of the origi-

nal data. There are different methods used for dimensionality reduction, here the

SVDSS has been used (see Section 2.2.1.2). It is available in the Hyperspectral Im-

age Analysis Toolbox (HIAT). With this method the data was reduced based on the

largest eigenvalues of the covariance matrix. Each eigenvalue is equal to the variance

of the corresponding band and the sum of all eigenvalues must equal to the sum of

all the band variances of the original image, thus preserving the total variance of

the data. The percentage of each eigenvalue relative to all eigenvalues is calculated

until the sum of each percentage reach a predefined threshold. Percentages above

90% are appropriate to be chosen as the threshold since most of the data variance

is in the selected bands.

3.2.2 Spectral Difference Histogram (SDH)

The SDH algorithm will extract regional texture information by computing

SDHs over window extents. Figure 3–5 presents a block diagram for the SDH al-

gorithm methodology. Before starting to compute the histograms some parameters

are to be set. Some of these parameters are the window size and the spectral metric
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to be used. Different spectral metrics are used to compute distance between pixels.

One way to make this is using the spectral angle distance (SAD).

3.2.2.1 SAD distance metric

Suppose we have two N-dimensional vectors, say ai and bj for example, defined

as ai = (ai1, ai2, · · · , aiN)T and bj = (bj1, bj2, · · · , bjN)T . The SAD between these

two vectors can be calculated as:

SAD = arccos

(
ai · bj

‖ai‖ · ‖bj‖

)
= arccos

( ∑N
l=1 ail · bjl[∑N

l=1 a
2
il

] 1
2 ·
[∑N

l=1 b
2
jl

] 1
2

)
(3.1)

The interesting property of the SAD is that the cosine of the angle is equivalent

to the correlation coefficient of the observations ai and bj. It means that the SAD

is a statistical method for expressing similarity or dissimilarity between two pixel

vectors ai and bj. The correlation coefficient ranges from −1 to +1. Therefore, the

SAD values range between 0 and π. The closer the correlation coefficient is to −1

or +1, or in other words, the closer the SAD value is to 0 and π, the more the

observations ai and bj are said to be correlated.

3.2.2.2 SDHs Computation

Suppose that we have an input image I of size M×N×P , and a square window

W of size mw×nw×pw and center in
(
mw−1

2
, nw−1

2

)
. The center of W is moved from

pixel to pixel starting at the top left corner of I. For each W , Equation 3.2 is applied

to compute distances between pixels in it at four different angles, α = 0, 45, 90, 135:

Sα(i, j) = SAD
(
W (i, j, :),W (i+ ∆x, j + ∆y, :)

)
(3.2)

for i = xi, xi + 1, · · · ,mw and j = yi, yi + 1, · · · , nw − yf , where xi and yi are the

start row and column of the window for computing the SDH, and yf specify the final
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column of the window that accounts in the SAD calculation. ∆x and ∆y specify the

row and column of the neigboring pixel, respectively. All these variables depends

on α.

Figure 3–5: Spectral difference histogram algorithm methodology.

The SAD values obtained from angle α are assigned to a specific bin b to make

a histogram Hα. For each bin, the number of SAD values that fall into are counted:

Hα(bα) =
mw∑
i=1

nw∑
j=1


1 if min(vb) ≤ Sα(i, j) < max(vb)

0 otherwise

(3.3)

where b = 1, 2, · · · , nb, nb is the number of bins of the histogram Hα, min(vb) and

max(vb) are the minimum and maximum SAD values of the specified bin b, respec-

tively. Equation 3.3 is applied for each angle α and then the resulting histograms:
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H0◦ , H45◦ , H90◦ and H135◦ are combined to finally obtain the SDH represented by:

H(b) =
1

M

∑
α

Hα(b) (3.4)

where M = 2
(
2mwnw − 2mw − nw + 1

)
is the total number of SAD values for the

window W. As the number of rows and columns of W is the same: mw = nw = m

we can express M in terms of m as: M = 2
(
2m2 − 3m+ 1

)
.

3.2.2.3 SDH - Number of bins and bin size

The histogram bins are the numerical ranges where you are going to group the

data into [39]. They should have the same size and should encompass all of the

data. When you make a histogram, you need to choose a bin size. If you choose too

small bin size, the bar height at each bin suffers from significantly large statistical

fluctuation due to the paucity of samples in each bin [40]. But, if you choose too

large bin size, the histogram can not represent the shape of the underlying distribu-

tion because the resolution isn’t good enough [40]. Generally you should never have

fewer than 5 or 6 bins [39]. The more data you have the more bins you should have,

and some people recommend using the square root of the number of data points as

your bin size [39].

In the literature, we found a method (Matlab code) for selecting the bin size of

a histogram [40]. It is computed as follows:

1. Divide the data range into N bins of width ∆. Count the number of events ki that

enter the i’th bin.

2. Calculate the mean and variance of the number of events as k = 1
N

∑N
i=1 ki and

v = 1
N

∑N
i=1 ki − k

2.

3. Compute a formula, C(∆) = 2k−v
∆2 .
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4. Repeat 1-3 while changing ∆. Find ∆∗ that minimizes Cn(∆). ∆∗ will be the

optimum bin size.

The number of bins, nb can be calculated by : nb = max(SADvalue)−min(SADvalue)
∆∗

.

3.2.3 Feature Extraction

Joint distribution of pixels rather than single pixels distribution is used to de-

velop the SDH algorithm for spatial-spectral feature extraction. The SDHs are

selected as features to be used in the semi-supervised learning.

3.2.4 Semi-Supervised Learning and Classification

Process

The classifier used in our work is the semi-supervised SVMs. The concept of

how it works is explained in details in Section 2.3.3. The semi-supervised learning

framework used both labeled and unlabeled samples for training the SVM classi-

fier1 . The classifier performance measured by the labeled and unlabeled samples

were calculated and finally the HSI is classified.

3.2.5 Post-processing

After the HSI is classified, it is smoothed for edge correction using a majority

filter of different sizes. Suppose we select an odd window (or filter) Ws of size

ms × ns with center
(
ms−1

2
, ns−1

2

)
. The center of the window is moved from pixel to

pixel starting at the left corner of the thematic map obtained from the classification

1 The semi-supervised SVM Matlab code used in our work was obtained from
http://www.kyb.tuebingen.mpg.de/bs/people/chapelle/lds/.
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process, say F . The majority filters (or windows) replaces the center pixel of Ws

with the class of the majority of the neigboring pixels. Figure 3–6 shows an example

that illustrates this concept. In Figure 3–6 (top left) the center pixel of Ws belongs

to class 1. When the majority filter is applied it is replaced by class 3 (top right)

since it is the class with majority of votes (21) in Ws (compared with class 1 and 2

that have 15 and 12 votes,respectively). The same occurs in the window of Figure

3–6 (down) where the center pixel is replaced by class 2 (20 votes).

Figure 3–6: Example of a 7× 7 majority filter.

3.3 Algorithm Extension to
Multispectral Images

For multispectral images, the algorithm is similar to that of co-occurrence ma-

trix computation for RGB images [29], [30], [31]. The histogram of occurrence of
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pixel pairs with the spectral values is constructed. This histogram is computed at

different angles and pixel spacing as for the SDH. The pixel values may have to be

quantized due to the large size and sparseness of the histogram.

3.4 Algorithm Validation and
Performance Evaluation

Validation of the algorithm was performed using:

• Different texture types (natural and man made) such as iron, asphalt, concrete

and coins.

• Synthetic images with different noise levels.

• Remote sensing hyperspectral images.

The main reason why we used different hyperspectral textures to validate the

algorithm is because they are used in literature [4],[36] to get an idea of the quality

of the results. Synthetic images were constructed from hyperspectral images using

different classes of it and adding noise.

3.5 Conclusions
The proposed method for spatial-spectral feature extraction based on SDHs

was explained in this chapter. The SVDSS method was used for reducing the di-

mensionality of the original data. The SAD was used as spectral metric to compute

distance between pixels in the selected window. Majority filters are used to smooth

the thematic map obtained from the classification process.



CHAPTER 4

DATA ANALYSIS AND
VALIDATION

Real and synthetic hyperspectral datasets are used to test the algorithm. The

datasets are obtained from (1) the SOC-700 camera, (2) HYDICE sensor, and (3)

AVIRIS sensor. The algorithm was tested under noise.

4.1 Classification Results for SOC-700
camera data sets

In this section we present the classification results for the datasets that are

collected using the SOC-700 hyperspectral camera.

4.1.1 Dataset 1 - Asphalt, Concrete, Iron and Coins

Mosaic

Hyperspectral images of different textures are collected using the SOC-700 hy-

perspectral camera. Figure 4–1 shows the RGB color-composite of the original image

of the first dataset that we used. It was created using bands 49, 32 and 18, and has

dimensions of 128 × 128 × 120. The HSI consists of four classes: iron (upper left),

concrete (upper right), coins (lower left) and asphalt (lower right). Figure 4–5(a)

shows the ground truth of the data in Figure 4–1.

37
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Figure 4–1: SOC-700 hyperspectral image with dimensions 128× 128× 120.

The dimensionality of the data was reduced based on the largest eigenvalues of

the covariance matrix. For our experiments we selected the threshold to be greater

than 92.0%. Most of the variability of the data is represented in the selected bands.

Based on the obtained eigenvalues, we reduce the data to 60 bands since with these

bands we have the 93.2% of the data variance. The selected bands were: 2, 8, 15,

18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,

42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,

66, 67, 69, 70, 72, 74, 77, 79, 81, 86 and 113.

4.1.1.1 Select bin size and the number of bins to compute
the histogram

We start computing the histogram using the complete range of the SAD metric,

that is from 0 to π, and using 32 bins of width 0.1. Since the data that we used

do not have negative values, the range of the SAD metric is reduced from 0 to π/2.

For all the experiments, we noticed that almost all the SAD values were assigned to

the first bin, which is the one that corresponds to the values from (0, 0.1], and the
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Figure 4–2: (a)Labeled (15 7× 7 windows) and (b) unlabeled (175 7× 7 windows)
samples used to train and test the semi-supervised SVM classifier.

rest were assigned in the second bin (0.1 to 0.2]. Therefore, the histograms can not

represent the shape of the underlying distribution because the resolution isn’t good

enough. Then, we experiment with different number of bins and bin sizes, and finally

select 30 bins equally spaced by 0.005. It works well for all the experiments that we

performed. When we use these values for the bin and bin size parameters (30 and

0.005 respectively), the histograms were representative of the classes to which they

belongs, in other words we can discriminate between them. The optimal bin width

calculated using the method found in [40] was 0.003 (for dataset 1). This value is

near to the one we selected (0.005).

4.1.1.2 Select Window Size

The window size is an important factor for computing the SDH. The window

can not be too large covering a large part of the data, considering that the spatial

information is concentrated in the nearest neighbors. It should be neither too small

as we lose important information for extracting the features. As explained in section

3.2.2, the SAD distance metric is computed between pixels in the window. Smaller
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windows does not give us too many numbers of SAD values to construct the his-

togram. It can be overcome if larger windows are used, but not too large. While

the window size increase the number of SAD values also increase, therefore we can

discriminate better between the classes. For example, for a 3 × 3 window we have

only 20 SAD values to compute the histogram. On the other hand for windows of

size 7×7 and 9×9 we have 156 and 272 SAD values, respectively. Some experiments

were made to see the effect of the window size and to choose the most appropiate

one. The SDH computed for the same training and testing samples shown in Figure

4–2 using windows of size 3×3, 7×7 and 9×9 are shown in Figure 4–3 and in Figure

4–4 respectively. The overall class performance for the three cases is summarized in

Table 4–1. There was an improvement in the performance of the classifier when 7×7

windows are used compared with the 3× 3 windows. If the window size is increase

to 9× 9 there was also an improvement in the performance but the obtained results

for both cases were comparable. Since the computational time for 7× 7 windows is

lower, we select it to be the appropiate window size for our experiments.

Table 4–1: Overall Class Performance for different window sizes.

Window Size No. errors Lab-Unlab Performance(%) Lab-Unlab
3× 3 2 - 15 92 - 91.4
7× 7 0 - 1 100 - 99.4
9× 9 0 - 0 100 - 100
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Figure 4–3: The histogram features computed for the labeled samples using windows
of size (a) 3× 3, (b) 7× 7 and (c) 9× 9.
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Figure 4–4: The histogram features computed for the unlabeled samples using win-
dows of size (a) 3× 3, (b) 7× 7 and (c) 9× 9.

4.1.1.3 Classification Process

To train the semi-supervised SVM, 25 windows of size 7 × 7 with known la-

bels and 175 windows of size 7× 7 with unknown labels are selected. The windows

selected as labeled and unlabeled samples are shown in 4–2 (a) and 4–2 (b), respec-

tively. The spectral difference histogram was computed and the obtained histogram

features for labeled and unlabeled samples are shown in Figure 4–3 (b) and Fig-

ure 4–4 (b) respectively. The performance of both set of samples is calculated and
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shown in Table 4–2 and Table 4–3, respectively. It is seen from the Tables that all

classes are fairly accurately classified with an overall class performance of 100% for

labeled and 99% for unlabeled samples. Note that the unlabeled set contains 175

samples, seven times the labeled set. The image is classified and then smoothed for

edge correction using windows of different sizes based on majority of votes. The

thematic map obtained after the post-processing stage using 11 × 11 windows is

shown in Figure 4–5(b). Figure 4–5(c) shows the wrongly classified pixels of Figure

4–5(a). Looking at the results we can see that the misclassified pixels are found in

the boundaries between the classes.

Table 4–2: Classifier performance as measured by the labeled samples for the 128×
128× 60 SOC-700 mosaic shown in Figure 4–1.

Class No.of Number of Samples in the Class Accur.+

Name Samples Iron Concrete Coins Asphalt (%)

Iron 7 7 0 0 0 100

Concrete 7 0 7 0 0 100

Coins 4 0 0 4 0 100

Asphalt 7 0 0 0 7 100

TOTAL 25 4 4 3 4

Reliability Accuracy (%)∗ 100 100 100 100

OVERALL CLASS PERFORMANCE 100%

+(100 - percent omission error); also called producer’s accuracy

∗(100 - percent commission error); also called user’s accuracy
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Table 4–3: Classifier performance as measured by the unlabeled samples for the
128× 128× 60 SOC-700 mosaic shown in Figure 4–1.

Class No.of Number of Samples in the Class Accur.+

Name Samples Iron Concrete Coins Asphalt (%)

Iron 43 43 0 0 0 100

Concrete 43 0 43 0 0 100

Coins 46 0 0 46 0 100

Asphalt 43 1 0 0 42 98

TOTAL 175 44 43 46 42

Reliability Accuracy (%)∗ 98 100 100 100

OVERALL CLASS PERFORMANCE 99.4%

+(100 - percent omission error); also called producer’s accuracy

∗(100 - percent commission error); also called user’s accuracy

Figure 4–5: (a) Ground truth of the hyperspectral image in Figure 4–1. (b) The-
matic map produced by the semi-supervised SVM classifier using spectral difference
histograms, 25 labeled 7× 7 windows and smoothing with 11× 11 windows for the
60 spectral bands. (c) Misclassified pixels of (b), represented in white with respect
to the ground truth.
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4.1.2 Dataset 2 - Copper, Carton and Cell Phone

HSI

Different textures are used to test the algorithm. In this case we used the

SOC-700 hyperspectral camera to take an image of a scene that had three different

textures: copper, carton and a cell phone. A true color composite of this HSI is

shown in Figure 4–6. A subset with dimensions 400 × 240 × 120 was made from

Figure 4–6, and the true color composite of this subset is shown in Figure 4–7. Re-

ducing the data to 100 bands gave us 97.8% of the eigenvalues. The selected bands

using the SVDSS were: 1, 8, 19, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,

37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,

59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,

81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,

102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118,

119 and 120. Twelve (12) labeled and 580 unlabeled samples were used to train

the semi-supervised SVM classiffier. Figure 4–8(a) and Figure 4–8(b) shows the se-

lected windows for labeled and unlabeled samples, respectively. The computed SDH

of these samples are shown in Figure 4–9 for the labeled samples and in Figure 4–10

for the unlabeled samples. The overall class performance measured by both set of

samples was 100% and 94.8% and is shown in Table 4–6 and Table 4–7, respectively.

It is seen from these tables that all the classes were reasonably accurately classified

except there was confusion between copper and carton. It is noticed in Figure 4–10

where the SDH of both classes overlap.

A small subset of the HSI shown in Figure 4–7 with dimensions 72× 72× 100

was made for classification purposes. Figure 4–13(a) shows an approximate ground

truth of the data. The image was classified using the same labeled samples shown in
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Figure 4–8(a) that are now viewed closely in Figure 4–12. The result of the classifi-

cation is presented in Figure 4–13(b) after smoothing using 7× 7 windows. Figure

4–13(c) shows the misclassified pixels of Figure 4–13(b) with respect to the ground

truth. From the results we can see that the misclassified pixels are found in the

boundary between the classes.

Figure 4–6: SOC-700 hyperspectral image with dimensions 640× 640× 120.
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Figure 4–7: A subset of Figure 4–6 with dimensions 400× 240× 120.
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Figure 4–8: (a) Labeled and (b) unlabeled window samples of Figure 4–7.
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Figure 4–9: The SDH features for the labeled samples shown in Figure 4–8 (a).

Figure 4–10: The SDH features for the unlabeled samples shown in Figure 4–8 (b).
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Table 4–4: Classifier performance as measured by the labeled samples for the 400×
240× 120 SOC-700 mosaic shown in Figure 4–7.

Class No.of Number of Samples in the Class Accur.+

Name Samples Copper Phone Carton (%)

Copper 5 5 0 0 100

Phone 3 0 3 0 100

Carton 4 0 0 4 100

TOTAL 12 5 3 4

Reliability Accuracy (%)∗ 100 100 100

OVERALL CLASS PERFORMANCE 100%

+(100 - percent omission error); also called producer’s accuracy

∗(100 - percent commission error); also called user’s accuracy

Table 4–5: Classifier performance as measured by the unlabeled samples for the
400× 240× 120 SOC-700 mosaic shown in Figure 4–7.

Class No.of Number of Samples in the Class Accur.+

Name Samples Copper Phone Carton (%)

Copper 300 279 0 21 93

Phone 30 0 30 0 100

Carton 250 9 0 241 96

TOTAL 580 288 30 262

Reliability Accuracy (%)∗ 97 100 92

OVERALL CLASS PERFORMANCE 94.8%

+(100 - percent omission error); also called producer’s accuracy

∗(100 - percent commission error); also called user’s accuracy
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Figure 4–11: A subset of Figure 4–7 with dimensions 72× 72× 100.

Figure 4–12: The labeled samples of the SOC-700 hyperspectral image with dimen-
sions 72× 72× 100.
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Figure 4–13: (a) Ground truth of the hyperspectral image subset of Figure 4–11.
(b) Thematic map produced by the semi-supervised SVM classifier using spectral
difference histograms, 12 labeled 7× 7 windows and smoothing with 7× 7 windows
for the 100 spectral bands. (c) Misclassified pixels of (b).
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4.1.3 Dataset 3 - Concrete, Leaf and Aluminum

HSI

Another experiment consists of three different classes: concrete, leaf and alu-

minum. The true color-composite of the HSI using bands 49, 32 and 18 is shown

in Figure 4–14. The dimensionality of it was reduced to 70 bands after apply the

SVDSS. The selected bands were: 2, 8, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26,

27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,

50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73,

75, 76, 78, 79, 81, 82, 85, 87, 90 and 110. These bands represent 95% of the eigen-

values. A subset of the original HSI was made and is shown in Figure 4–15. Fifteen

(15) labeled and 350 unlabeled samples were selected from Figure 4–15 to calculate

the performance of the semi-supervised SVM classifier. The selected samples are

shown in Figure 4–16(a) and Figure 4–16(b) respectively. The SDH is computed

over these samples and the results are shown in Figure 4–17 for the labeled and in

Figure 4–18 for the unlabeled samples.

Figure 4–14: True color-composite of the original HSI of three different classes:
concrete, leaf and aluminium. The dimensions of it are 640× 640× 120.
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Figure 4–15: True color-composite of a 250× 90× 120 subset of Figure 4–14.
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Figure 4–16: (a) The selected labeled (15) and (b) unlabeled samples (325) of Figure
4–15.
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Figure 4–17: The SDH features for the labeled samples shown in Figure 4–16(a).

Figure 4–18: The SDH features for the unmlabeled samples shown in Figure 4–16(b).



57

Table 4–6: Classifier performance as measured by the labeled samples for the 250×
90× 100 SOC-700 subset shown in Figure 4–15.

Class No.of Number of Samples in the Class Accur.+

Name Samples Concrete Leaf Aluminum (%)

Concrete 5 5 0 0 100

Leaf 5 0 5 0 100

Aluminum 5 0 0 5 100

TOTAL 15 5 5 5

Reliability Accuracy (%)∗ 100 100 100

OVERALL CLASS PERFORMANCE 100%

+(100 - percent omission error); also called producer’s accuracy

∗(100 - percent commission error); also called user’s accuracy

Table 4–7: Classifier performance as measured by the unlabeled samples for the
250× 90× 100 SOC-700 subset shown in Figure 4–15.

Class No.of Number of Samples in the Class Accur.+

Name Samples Concrete Leaf Aluminum (%)

Concrete 75 73 2 0 97

Leaf 100 6 94 0 94

Aluminum 150 0 0 150 100

TOTAL 325 79 96 150

Reliability Accuracy (%)∗ 92 98 100

OVERALL CLASS PERFORMANCE 97.5%

+(100 - percent omission error); also called producer’s accuracy

∗(100 - percent commission error); also called user’s accuracy
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4.2 Classification Results HYDICE
sensor data sets

HYDICE airborne hyperspectral data of the Washington, DC Mall was also

used in our experiments. Two hundred and ten bands were collected in the 400 to

2400 nm region of the visible and infrared spectrum. The water absorption bands

were deleted, resulting in an image with 191 spectral bands. This dataset is avail-

able in the student CD-ROM of [41]. This hyperspectral image is used to construct

a synthetic image with different class spectra and is shown in Figure 4–19 (left).

Figure 4–19(right) shows the band 37 of the synthetic hyperspectral image mosaic

constructed from the Washington DC Mall data. Its respective ground truth is

shown in Figure 4–23(a). The selected classes are: Roofs, Grass, Trees, and Water

[34]. The dimensionality of the original data was reduced to 40 bands since with

those bands we obtained 96.7% of the data variance. The selected bands are: 1, 2,

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 19, 23, 24, 35, 37, 40, 41, 42, 52, 55, 58, 61,

62, 63, 64, 65, 67, 68, 69, 70, 73, 77, 80, 84 and 112.

Ten (10) labeled samples of size 7x7 and 70 unlabeled samples are selected

to train the semi-supervised SVM classifier. The selected windows are shown in

4–20(a) and 4–20(b) respectively. The SDH was computed for those windows to be

the features used by the classifier. The SDHs for labeled and unlabeled samples are

shown in Figure 4–21 and Figure 4–22. The information of the labeled and unlabeled

samples are presented in Table 4–8 and Table 4–9 respectively. As we can see from

these Tables all classes were accurately classified. The result of the classification is

shown in Figure 4–23(b). The classification error is shown in Figure 4–23(c). We

can see from the results that misclassified pixels are found in the class boundaries.
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Figure 4–19: Color-composite of the HYDICE HSI of the Washington DC Mall
(left). Band 37 of the original synthetic HSI of the Washington DC Mall (rigth).

Figure 4–20: (a)Labeled (10 7 × 7 windows) and (b) unlabeled (70 7 × 7 win-
dows)samples used to train the semi-supervised SVM classifier.
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Figure 4–21: The histogram features computed for the labeled samples shown in
Figure 4–20(a).

Figure 4–22: The histogram features computed for the unlabeled samples shown in
Figure 4–20(b).
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Table 4–8: Classifier performance as measured by the labeled samples for the 72×
72× 40 HYDICE synthetic image shown in Figure 4–19.

Class No.of Number of Samples in the Class Accur.+

Name Samples Roofs Trees Grass Water (%)

Roofs 3 3 0 0 0 100

Trees 2 0 2 0 0 100

Grass 3 0 0 3 0 100

Water 2 0 0 0 2 100

TOTAL 10 3 2 3 2

Reliability Accuracy (%)∗ 100 100 100 100

OVERALL CLASS PERFORMANCE 100%

+(100 - percent omission error); also called producer’s accuracy

∗(100 - percent commission error); also called user’s accuracy

Table 4–9: Classifier performance as measured by the unlabeled samples for the
72× 72× 40 HYDICE synthetic image shown in Figure 4–19.

Class No.of Number of Samples in the Class Accur.+

Name Samples Roofs Trees Grass Water (%)

Roofs 18 18 0 0 0 100

Trees 18 0 18 0 0 100

Grass 17 0 0 17 0 100

Water 17 0 0 0 17 100

TOTAL 70 18 18 17 17

Reliability Accuracy (%)∗ 100 100 100 100

OVERALL CLASS PERFORMANCE 100%

+(100 - percent omission error); also called producer’s accuracy

∗(100 - percent commission error); also called user’s accuracy
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Figure 4–23: (a) Ground truth of the hyperspectral image of Figure 4–19. (b) The-
matic map produced by the semi-supervised SVM classifier using spectral difference
histograms, 10 labeled 7× 7 windows and smoothing with 9× 9 windows for the 40
spectral bands. (c) Misclassified pixels of (b), represented in white with respect to
the ground truth.
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4.3 Classification Results for 7-Classes
Experiment

In this experiment we select 7 classes of the previous experiments and input

them to the semi-supervised SVM classifier. The results are summarized in Table

4–10 for the labeled samples and in Table 4–11 for the case of the unlabeled samples.

Table 4–10: Classifier performance as measured by the labeled samples for the 7-class
experiment.
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Table 4–11: Classifier performance as measured by the un6labeled samples for the
7-class experiment.

4.4 Comparisons between SDH,
PCA-FE and None-FE Methods

The performance obtained by the SDH algorithm was compared with the per-

formance of the semi-supervised SVM when:

• PCA feature extraction method is applied.

• None feature extraction method is applied (pixel-based classification).

The labeled and unlabeled samples was selected as the center pixel of each window

used by the SDH training process. The overall performance for the SDH, PCA-

FE and none-FE algorithms is sumarized in Figure 4–24. As we can see from this

graph, our method improves or is comparable to the other two methods. The the-

matic maps for the case of none-FE are shown from Figure 4–25 to Figure 4–27. For
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the case of dataset 3 of SOC-700 the results are summarized in Table 4–12.

Figure 4–24: Comparison between SDH and pixel-based method for Semi-SVM
classifier

Table 4–12: Comparison between the training and testing accuracy of the semi-
supervised SVM using SDH, PCA-FE and none-FE method for dataset 3.

Dataset Acc.(%) - SDH Acc.(%) - PCA-FE Acc.(%) - none-FE

3 100 - 97.5 100 - 99.69 100 - 98.77
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Figure 4–25: (a)Themathic map produced by the semi-supervised SVM using the
data of Figure 4–1 and the pixel spectra as feature. (b)Misclassified pixels of (a)
represented in white with repect to the ground truth.

Figure 4–26: (a)Themathic map produced by the semi-supervised SVM using the
data of Figure 4–11 and the pixel spectra as feature. (b)Misclassified pixels of (a)
represented in white with repect to the ground truth.

Figure 4–27: (a)Themathic map produced by the semi-supervised SVM using the
data of Figure 4–19(rigth) and the pixel spectra as feature. (b)Misclassified pixels
of (a) represented in white with repect to the ground truth.
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For the case of the data set 1, which is the case in where our method improves

significantly the other two methods, we looked the class spectral signatures. As a

result we found that the spectral signatures of iron and asphalt are very similar (see

Figure 4–28). It could be the reason why the PCA-FE and None-FE methods failed

to discriminate between these two classes.

Figure 4–28: Spectral signatures of the classes of data set 1. Iron (red) and Asphalt
(magenta) have a very similar spectral signature. PCA-FE and None-FE methods
failed to discriminate between them.
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4.5 Classification Results for AVIRIS
Sensor data set

Real data taken with the AVIRIS sensor over the Enrique Reef in La Parguera

Puerto Rico is also used in our experiments. The Enrique Reef is part of the “La

Parguera” in the southwest coast of Puerto Rico in the Municipality of Lajas. Fig-

ure 4–29 shows the location of the Enrique reef.

Figure 4–29: Location of the Enrique Reef.

The Enrique Reef data used in this experiment consist of 224 bands from 400

- 2500 nm with a spatial resolution of 17 m. Figure 4–30 shows a color-composite

of the Enrique Reef data. For the case of our experiment we take only 3 classes:

Water, Reef flat and Sand. Since we have not enough pixels of Mangrove class to

compute the SDH, we did not take it in our analysis. To select the labeled samples

we use the benthic map (map 158) provided by NOAA (see Figure 4–32). Due to

the spatial resolution of the data we selected only one label sample for each class.

Figure ?? shows the labeled samples that we used in this experiment. The results
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of the classification were shown in Figure 4–33 after post-processing using windows

of size 3× 3, 5× 5 and 7× 7.

Figure 4–30: Color-composite of the AVIRIS data of the Enrique Reef.

Figure 4–31: Labeled samples used in this experiment.
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Figure 4–32: NOAA bentic Map of “La Parguera” at lajas Puerto Rico [42].
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Figure 4–33: Themathic map obtained using the semi-SVM classifier after using
majority filters of size 3× 3 (top), 5× 5 (middle) and 7× 7 (bottom).
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4.6 Classification Results when
Gaussian Noise is Added

Another experiment to validate the performance of the algorithm was con-

ducted. It consists of adding noise to the original image to see how sensitive the

proposed algorithm is to the added noise. Mathematically it can be expressed as:

y = x + w, where x is the original image and w is the noise. The noise added is

Gaussian noise with zero mean and variance σ2, N(0, σ2), where σ2 is one percent

(1%) of the maximum value of bands [2]. We use the 128× 128× 120 data of Figure

4–1 reduced to 60 bands by the SVD band subset selection method. Figures 4–34

to 4–37 shows the class spectra before and after adding Gaussian noise. The same

labeled and unlabeled samples used in the previous experiment are selected, and

the accuracy of both datasets was computed again but now under noise. The SDH

for labeled and unlabeled is shown in Figure 4–38 and Figure 4–39.The overall class

performance measured by the labeled and unlabeled samples was 100% and 99%

respectively. It represents no change in the accuracy measured by the unlabeled

samples indicating that the proposed algorithm is not sensitive to Gaussian noise

for the HSI that we used. Figure 4–40(a) shows the results of the classification for

the data in Figure 4–1 plus Gaussian noise. Figure 4–40(b) shows the misclassified

pixels relative to the ground truth.



73

Figure 4–34: The spectra of iron with(black) and without(red) Gaussian noise.

Figure 4–35: The spectra of concrete with(black) and without(green) Gaussian noise.
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Figure 4–36: The spectra of coins with(black) and without(blue) Gaussian noise.

Figure 4–37: The spectra of asphalt with(black) and without(magenta) Gaussian
noise.
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Figure 4–38: The histogram features computed for the labeled samples shown in
Figure 4–2(a).

Figure 4–39: The histogram features computed for the unlabeled samples shown in
Figure 4–2(b).
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Figure 4–40: (a) Thematic map produced by the semi-supervised SVM classifier
using spectral difference histograms, 25 labeled 7× 7 windows and smoothing with
11 × 11 windows for the 40 spectral bands when Gaussian noise is added. (b)
Misclassified pixels of (a), represented in white with respect to the ground truth.



CHAPTER 5

CONCLUSIONS AND FUTURE
WORK

This chapter summarizes the conclusions obtained from experimental results,

the limitations of the SDH and semi-supervised SVM public implementation, and

also presents recommendations for future work.

5.1 Conclusions
In this research we developed a new feature extraction method that accounts

both the spatial and spectral information. It extracts regional texture information

by computing spectral difference histograms over window extents. This algorithm

represents an important advantage to the feature extraction field because based on

our literature review there is not another method that extract features using the

SDHs.

A semi-supervised learning algorithm was used for classification. The classifier

that we used is the semi-supervised SVM. The algorithm was tested with HSI ob-

tained from the SOC-700 hyperspectral camera and from HYDICE sensor, and it

was able to classify those with accuracies above 91%. The algorithm performs well

when the spatial resolution is higher.

77
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The SVD band subset selection method available in the HIAT was used to re-

duce the dimensions of the input HSI data. The data was reduced to the number of

bands that achieved more than 92% of the data variance.

Different window sizes were tested to construct the SDHs under the assumption

that all pixels in the window were from the same class. Smaller window sizes were

not sufficient to characterize the texture using the SDH. Therefore, larger window

sizes were necessary to compute the SDH, but the window could not be too large

considering that the spatial information is found in the nearest neighbors. The ex-

perimental results show that the misclassified pixels were found principally in the

class boundaries. This occurs when the pixels in the window are not highly corre-

lated, or in other words when there are pixels of more than one class in the window.

Hence, there is a trade-off between the window size and the size of the objects that

we want to study.

The proposed algorithm was tested under a noisy environment. The obtained

results exhibited no change in the accuracy measured by the unlabeled samples,

indicating that it is not sensitive to small levels of Gaussian noise for the HSI that

we used, and that it works well when we have variability in the data.

Our method improved or is comparable with the PCA-FE and none-FE methods

with overall accuracies grater than 91%. PCA-FE and None-FE methods failed to

discriminate between Iron and Asphalt (for dataset 1) due to the similarity of their

spectral signatures. Considering the spatial information in the analysis help us

to discriminate between these classes. The errors produced by our method were

founded principally between the class boundaries.
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5.2 Limitations
The computation of the SDHs is limited to the following conditions:

• Data with high spatial resolution.

• Classes may contain more pixels than those contained inside the window.

• The assumption that all pixels in the window belongs to the same class.

The semi-supervised SVM public implementation used in our work has the

following limitations:

• Not designed to work with more than a few thousand points (labeled+unlabeled).

5.3 Future Work
As future work we want to:

• Test the algorithm using data from other sensors with high spatial resolution.

• Experiment different pre-processing methods to improve the accuracy of the clas-

sifier.

• Improve the speed of the algorithm.

• Implement the algorithm in C++ software, parallel and distributed hardware.



REFERENCE LIST
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[11] Vélez M. and Jiménez L.O., “Subset Selection Analysis for the Reduction of Hy-

perspectral Imagery”,Proceedings IEEE Intl. Geosciences and Remote Sensing

Symposium IGARSS ’98, vol. 3, pp. 1577-1581, July 1998.
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