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MAYAGÜEZ CAMPUS

2012

Approved by:

Jun-Qiang LU, Ph.D. Date
President, Graduate Committee
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Intrinsic graphene is the first atomic monolayer structure produced experimentally.

Its unique two dimensional geometric structure along with its electronic structure (Dirac

cone) make it an ideal system for the fundamental exploration of novel physics as well

as a promising candidate for nanoelectronic applications. In this thesis, we present

theoretical studies on electronic transport properties of different graphene structures,

including monolayers, bilayers, mono-bilayers and junctions between mono-bilayers and

monolayers. These structures can be viewed as a graphene monolayer covered by another

layer of different width. Their transport properties are calculated by the Landauer-

Buttiker formalism combined with density functional theory. Our results show that, in

such a structure, the electronic transport property of the graphene monolayer can be

changed considerably if the other layer is a nanoribbon with finite width; however the

change is less significant if the other layer is infinite or even semi-infinite. We further show

that the difference of the effects between infinite and finite coverage can be attributed to

antiresonance in the electronic transmission, which is caused by interlayer interference

between the wavefunctions.
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Grafeno es de lejos la primera structura mono-atomica fabricada en el laboratorio.

Esta unica structura bidimensional pose una structura electronica (Cono de Dirac) que

hace de esta un sistema, ideal para exploracion en fisica basica y un prominente candidato

para aplicaciones en nano electronica. En esta tesis se hizo un estudio teorico de las

propiedades de transporte electronico para diferentes structuras de grafeno como grafeno

monocapa, bicapa y aleaciones de grafeno mono -bicapa. Estas estructuras pueden ser

consideradas como configuraciones de monocapas de grafeno con un recubrimiento de

otra capa de diferentes anchos. En nuestro estudio las propiedad de transporte fueron

calculada combinando el formalismo de Landauer-Buttiker con “Density Functional The-

ory”. Nuestros resultados muestran que las propiedades electronicas de transporte en

una monocapa de grafeno pueden ser cambiadas considerablemente cuando se anade una

capa de ancho finito; sin embargo el efecto es menor cuando el recubriniento es infinito or

semi infinitamento. Este reducion en la transmision electronica es atribuido a fenomenos

de antiresonancia entre las funciones de onda de ambas capas.
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CHAPTER 1

INTRODUCTION

1.1 QUANTUM TRANSPORT: SMALL IS DIFFERENT

Electron flow through a material has been one of the most important topics in

condensed matter physics. One of the first and most well known theories is the Drude

model, in which electron flow in a material is considered to be a gas of moving electrons.

This theory considers electrons as identical solid spheres that move in straight lines until

they collide with one other or with fixed nuclei. The time taken up by a single collision is

assumed to be negligible and except for the forces coming momentarily into play during

each collision, no other forces are assumed to act on the particles [1]. In general we can

say that electrons flow in a random walk through a material with width W and length

L. This kind of electron transport is called diffusive transport figure 1–1. in which the

conductance G is given by:

G =
σW

L
(1.1)

where σ is the electric conductivity that depends on the material and is indepen-

dent of the dimensions, and W and L the width and length of the sample respectively.

However, if the length is reduced to zero, the conductance cannot be modelled by the

expression 1.1. This is exactly the case for the nano-transistors on which we will focus

in this work.

Figure 1–1: Diffusive electronic transport [2].
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The field effect transistor was discovered by William Shockley at Bell Labs in 1947.

It has opened a new human age called the “Transistor Age” in which the transistor has

been the base for the construction of all our electronic devices that have impacted many

fields of our society. We constantly want smaller, more powerful and faster electronic

devices which implies that transistors have to be miniaturized to fit more into less space.

In general, electrons in a transistor flow from the source to the drain through a channel

as shown in the figure below, and can be controlled by a potential gate that allows or

restricts the electron flow. If the potential difference between the source and the drain

is greater than that of the gate potential, electrons flow from source to drain. However,

if the potential between the source and drain is less than gate potential, the electrons

cannot flow from the source to the drain.

Figure 1–2: Transistor schematic.

High-tech devices have millions of transistors which may be switched on and off in bil-

lionths of a second [2]. Twenty years ago computers were less powerful because there

were only a million transistors in each. In additional, they switched more slowly . In a

few short years, transistors have been reduced to sizes less than 1µm, and at these sizes

electron flow cannot be considered as diffusive because the free path from the source

to the drain is on the order of the electron path. Therefore equation 1.1 cannot apply

to these situations. On such a small scale, electrons flow directly without experiencing

scattering (“ballistic flow”) and quantum effects that may be neglected in macroscopic

models must be considered. The tool introduced to understand ballistic flow is “Quan-

tum Transport Theory” in which quantum phenomena are taken into account using a

ballistic electron flow model.
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Figure 1–3: Scales of electrons flow [2].

Quantum transport theory was first introduced in the middle of the last century

Since R. Landauer proposed the subtle concept of reservoir, it was named the Landauer

formula[3]. Later in 1980s, M. Buttiker developed the Landauer-Buttiker approach [4],

which views “conductance as transmission”[5]. This has been very successful and is now

the standard approach to quantum transport. The details of the Landauer-Buttiker ap-

proach will be discussed in Chapter 3.

1.2 GRAPHENE: THE 2-D MATERIAL THAT SHOULD NOT EXIST

One of the most important elements for life on earth is carbon. Pure carbon only ex-

ists naturally in three forms: diamond, carbon black, and graphite. Fortunately carbon

is one of the most abundant elements. All life forms are constantly reusing it, creating

an infinite cycle that allows life on earth to continue. Carbon has an atomic number

of 6, and atomic weight of 12.11 u. Carbon is usually found in combination with other

elements in substances such as carbon dioxide, limestone, coal, and petroleum.

Graphite has two crystalline structures alpha (hexagonal) and beta (rhombohedral),

both of them with very similar physical properties [6]. The hexagonal graphite may
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be either flat or buckled. The alpha form can be converted to the beta form through

mechanical treatment, and the beta form reverts to the alpha form when it is heated

above 1300 C [7]. Graphite alpha is formed in planar layers, which contributes to its

lower density. This material is frequently considered a semimetal. In each layer, the

carbon atoms are arranged in a hexagonal lattice with a separation of 142 pm, and a

distance between planes of 335 pm [8] (see figure 1–3).

Figure 1–4: Graphite structure.

Our work will focus on a two dimensional, one-atom-thick planar sheet of graphite called

“Graphene”, a configuration that theoretical physicists believed to be impossible for

many years.

Peirles and Landau argued 70 years ago that two dimensional structures cannot

exist because they would be thermodynamically unstable [9, 10]. Their theory pre-

dicted that thermal fluctuations in low dimensional crystal lattices would generate a

displacement of the lattice’s atoms comparable to inter-atomic distances at any finite

temperature thereby inducing a unstable configuration. Moreover experimental obser-

vation confirmed that the melting temperature of thin films decreases with decreasing

thickness, making them unstable and so that they segregate into islands or decompose

at a thickness of dozens of atomic layers [11].

For those reasons, the physics community rejected the idea of finding 2D structures.

Therefore, isolated structures that are one atom thick were considered impossible un-

til 2004, when a curious 2D structure called graphene was observed in Manchester and
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Chernobologka. Professor Geim and his postdoc Novoselov made one of the the biggest

discoveries of the decade [12]. From England and Russian institutions, they reported

their observation of “monocrystalline graphitic films, which are a few atoms thick but are

nonetheless stable under ambient conditions, metallic, and of remarkably high quality.

The two-dimensional structure found presented a semimetal configuration with a tiny

overlap between valence and conductance bands.”

Some images of the first reported graphene structure are shown in Figure 1–5.

Geim and his group made this material by mechanical exfoliation of small mesas of

highly oriented pyrolytic graphite. By this process they could prepare few-layer graphene

films which were placed on top of an oxidized material, generally a silicon oxide sub-

strate (SiO2). Silicon dioxide has a bandgap larger than 9 ev, so it electrically isolates

the graphene and interacted weakly with the graphene, providing nearly charge-neutral

graphene layers.

Figure 1–5: Graphene films. (A) Photograph (in normal white light) of a relatively large
multilayer graphene flake with thickness 3 nm, (B) Atomic force microscope (AFM)
image of 2µm by 2µm area of this flake near its edge, (C) AFM image of single-layer
graphene [15].

The existence of two dimensional structures can be reconciled with the theory due

to strong interatomic bonds in graphene atoms which avoid the thermal fluctuations

leading to the generation of dislocations or other crystal defects even at elevated tem-

perature. Futhermore 2D crystals are intrinsically stable under weak crumpling in the
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third dimension. This three dimensional warping permits the whole system to gain elas-

tic energy and suppress part of the energy of thermal vibrations, making the existence

our two dimensional structure possible[13, 14].

In general, electrons may flow through graphene in two different directions (armchair

and zigzag) as seen in figure 1–6. Where one is a 90 degree rotation from the other. It is

important to mention that both direction have different electronic transport properties

that we are going to study in this work.

Figure 1–6: Graphene a) armchair and b) zigzag direction
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1.2.1 Band Structure of graphene

The unit cell of graphene contains two atoms A and B separated by a distance a

and a reciprocal lattice of magnitude 2/(
√

3a). The vector from A to B is constructed

from the base vectors ~a1 and ~a2: ~a1 = a(
√

3/2,−1/2) y ~a2 = a(
√

3/2, 1/2).

Figure 1–7: a) Graphene structure, b) Unit Cell, and c) reciprocal lattice.

The bloch wave function in the atoms A and B is defined as:

Φj =
1√
N

∑
Rα

ei
~k·~Rαϕj(~r − ~Rα), (α = A,B) (1.2)

where N is a normalizing constant, ϕj is the isolated wave function of each carbon

atom, ~Rα is the vector position of each carbon atom, and ~r is any point in space. In tight

binding approximation, the interaction is only considered for the nearest-neighbors. In

that case the wave function can be approximated as:

ψ = ΦA + λΦB (1.3)

We know that the wave function ψ must satisfy the Schrödinger equation Hψ = Eψ.

Therefore substituing 1.2 and 1.3 into the Schrödinger equation we get:

HAA + λHAB = ES

HBA + λHBB = ES (1.4)
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where HAA, HBB, HAB are equal to:

HAA =
1

N

∑
RR′

eik(
~R−~R′)〈ϕA(~r − ~R′)|H|ϕA(~r − ~R′)〉

≈ 1

N

∑
R=R′

ε2p +
1

N

∑
R=R′±a

eik(
~R−~R′)〈ϕA(~r − ~R′)|H|ϕA(~r − ~R′)〉

≈ ε2p + term equal or more distant (1.5)

Similarly for HBB, making use of the same order approximation we get HBB = ε2p.

For the case HAB = H∗BA, considering only the three nearest-neighbors of atom B, we

get:

HAB =
1

N

∑
RR′

eik(
~R−~R′)〈ϕA(~r − ~R′)|H|ϕB(~r − ~R′)〉

≈ t(e
~k·~R1 + e

~k·~R2 + e
~k·~R3)

≈ t f(k) (1.6)

with f(k) = eikxa/
√
3 + 2e−ikxa/2

√
3 cos(kya

2
) and finally the term S that is usually

called the overlapping between the wave function is equal to:

S = 〈ϕA(~r − ~R)|ϕB(~r − ~R′)〉 (1.7)

Eliminating λ from 1.3 a secular equation is obtained as:∣∣∣∣∣∣∣
HAA − ES HAB

HBA HBB − ES

∣∣∣∣∣∣∣ = 0 (1.8)

Setting the overlapping equal to zero S = 0, the energy relation will be [15]:

E = ε2p ±

{
1 + 4cos

(√
3kxa

2

)
cos

(
kya

2

)
+ 4cos2

(
kya

2

)}
(1.9)

where the symbol ± refers to the conduction (+) and the valence (-) band respec-

tively. Since both bands are symmetric over the point ε2p it may be neglected, and the
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bands can approximated as:

E± ≈ 3t′ ± ~ vf |q| −
(

9t′a2

4
± 3ta2

8
sin(3θq)

)
|q|2 (1.10)

where q =
√
k2x + k2y, vf = 3ta/2 is the fermi velocity, and θq = arctan−1[qx/qy] and

t, t′ are the nearest neighbor between lattice A-B and next nearest neighbor interlattice

A-A and B-B respectively. Experimentally, the values of t, t′ are approximately equal to

2.5 eV and 0.1 eV . In long wave approximation, t′ is set equal to zero and for small q,

the band structure will be:

E± = ~vfq + δ(q/k)2 (1.11)

This implies that in the regions around the Fermi energy, the band structure is

linear (see figure 1–8) and depends on the Fermi velocity. For t ≈ 2.5eV and a =

0.142nm, the Fermi velocity vf ≈ 108cm/s. The experimental and theoretical results

imply that electrons in graphene can be described as massless quasiparticles known as

“Dirac-Fermions” .

The band structures were calculated many years ago, but were not experimentally

confirmed until 2005 when Geim and Novoselov measured the electron rest mass at the

Dirac points to be 0.06 times the rest mass. Experimentally, discovery of graphene

has provided physicists with a new way to understand quantum electrodynamic (QED)

phenomena by measuring graphenes electronic properties . [16]

Figure 1–8: a) Graphene band structure, b) Enlargement of the band structure around
the points k and k’ equal to zero [12].
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1.2.2 Some experimental measurements on electronic transport properties
of graphene

Graphene has a unique ambipolar electric field effect, which means that it carries

electrons and holes in almost the same proportions. For this reason the electric con-

ductivity σ increases linearly with the gate voltage Vg (see figure 1–9) in almost the

same proportions for both polarities. Also in regions close to Vg = 0, the Hall coefficient

(RH = 1/ne) changes its sign due to concentrations of electrons (holes) that are are

induced by positive (negative) gate voltages.

Away from the transition region V g ≈ 0, the Hall coefficient varies as 1/Vg and car-

ries a density of n = α ·Vg where the value α ≈ 7.3 ·1010cm−2/V is in agreement with the

theoretical estimation n/Vg ≈ 7.2 · 1010cm−2/V [17]. In a similar process, the induced

carrier mobility µ = σ/ne was found to be up to 5000 cm2/V s for both electrons and

holes. These measurement also showed a constant mobility for temperatures between 10

and 100K.

Figure 1–9: Ambipolar electric field effect in single-layer graphene and the Hall effect
for different gate voltages [15].

Another interesting result found for the conductivity of graphene (σ) is that it re-

mains finite even as the charge carrier concentration n tends to zero; moreover, its value
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approaches quantum conductivity 4e2/~. Furthermore, most theories predict a mini-

mum conductivity which is lower than the experimentally observed value by a factor of

π. This contradiction is known as the mystery of the missing π and it is still unclear if

this is a consequence of theoretical approximations or stems from the limited parameters

of experimental procedures.



CHAPTER 2

MOTIVATION

As we mentioned in the section 1.2; graphene is a two-dimensional, one-atom-thick

structure that has emerged as an exotic material and received a great deal of scientific

attention due to its exceptional physical properties. This material and its derivatives

are being studied in nearly every field of science and engineering in applications such as

electronic devices, chemical sensors, nanocomposites, and energy storage [18]. The enor-

mous research interest generated by graphene has brought the exploration of different

methods of synthesis such as mechanical exfoliation [19], thermal CVD [20], and thermal

descomposition on different substrates [21, 22].

In this thesis, our attention will be focused on the electronic transport properties of

graphene for applications in nanoelectronic devices. The ability to make graphene-based

devices depends on our ability to change or manipulate electronic transport properties

of graphene. Unfortunately, a recent study showed that a graphene monolayer will have

prefect transmission of charge carriers near the Fermi energy which cannot be changed

or controlled by a local electrostatic barrier applied by a gate.[23] This phenomenon

is called as Klein paradox or Klein tunneling, which is theoretically interesting as it is

related to the chiral nature of the Dirac cone band structures; however it creates applica-

tion disadvantage as the perfect tunneling may limit the performance of graphene-based

electronic devices like diodes and transistors [24]. Recently, a change the electron flow in

graphene bilayers has been observed when a gate voltage perpendicular to the structure

is introduced [23]. Furthermore, it has been demonstrated that applying an electric field

along transverse direction of a bilayer can break symmetry between the two layers and

hence change its electronic transport properties.[25]

12
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2.1 Klein tunneling in graphene monolayer

From quantum mechanics, it is well known that electron transmission through a

barrier potential V0 decays exponentially as the potential is increased. However, in

1929 Klein showed that if the barrier potential is higher than the electron rest energy

V0 > mc2, the electron reflection is almost zero and that when the potential V0 approaches

infinity, the barrier becomes totally transparent [26]. The origin of this pheneomena is

the fact that the electron and the positron are highly correlated particles and are de-

scribed by different components of the same spinor wavefunction.

Figure 2–1: Electrons penetrating through barrier potential V0

This effect has never been observed experimentally because of the huge electronic

field required (V0 > 1016V/cm). Nevertheless, graphene provides an adequate medium in

which the perfect transmission postulated by the Klein paradox can be tested, because

at low energies graphene has a linear dispersion energy E = ~kvf and relativistic quasi-

particles called Dirac Fermions with rest mass equal to zero (Section 1.2.2). Moreover,

since quasiparticles are massless, they can directly penetrate the barrier potential in any

electric field.[23]

2.2 Graphene bilayer with applied voltages or fields

Similar to a monolayer, a graphene bilayer is a gapless semi-metal, the difference

being a parabolic energy dispersion and charge carriers described by an off-diagonal

Hamiltonian given by

Ĥ0 = − ~2

2m

 0 (kx − iky)2

(kx + iky)
2 0

 (2.1)
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where m is the effective mass for electrons and holes in graphene.

Now applying a potential barrier by an electric field V0 perpendicular to the graphene

bilayer, a perfect electron reflection is achieved with less energy than the potential bar-

rier E < V0. This effect is completely different from the massless Dirac Fermions in the

graphene monolayer, which are completely transmitted through the barrier potential[23]

and normal quasiparticles, which have a probability greater than zero of tunneling

through barrier. Furthermore, in 2009, Feng Wang and his group in Berkeley [25] exper-

imentally obtained that an electric field perpendicular (E⊥) to a graphene bilayer can

continuously control a tunable bandgap up to 250 meV (see figure 2–2 ).

Figure 2–2: Breaking the symmetry at Dirac point in a graphene bilayer [23].

In this thesis, we demonstrate a method to change the electronic transport property

of a graphene monolayer by depositing another layer with finite size on top of it. We

illustrate our idea by calculating electronic transport property of a graphene monolayer

when it is covered by another layer with infinite or finite size. Our results show that,

though change of electronic transport property of a monolayer is insignificant when cov-

ered by an infinitely large layer or even a semi-infinite one; the change can be more

considerable when covered by a nanoribbon of finite width. Furthermore, we show that
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the different effects from infinite and finite coverage can be attributed to antiresonance

in electron transmission due to interference between the wavefunctions in the two lay-

ers. The novel method described in this thesis has not been reported before and no

experimental work has explored this possibility. Therefore the spirit of this thesis work

gives a new approach to allow experimental physicists to use graphene in nanodevice

applications.



CHAPTER 3

THEORETICAL BACKGROUND AND

METHODOLOGY

3.1 TRANSMISSION SPECTRUM

The transmission spectrum in nanodevices is a direct measurement of how easily

electrons can flow in a two contact system. In order to get an expression for the trans-

mission, a relation for the electric current in the system must be found first, after which

we can easily calculate the transmission.

In this work a nanodevice will be formed by two electrodes (a source and a drain)

and a central region or channel in which electron scattering is present (see figure 3–1). If

this system is connected to a battery, the chemical differential creates an electron flow.

Figure 3–1: Nano-device at a voltage V [2].

If the contact is considered infinitely large and isolated (see figure 3–2 a)), the

electrons cannot flow into the channel. From a quantum point of view, the contact is

described by the Schrödinger equation [27] as:

[EIR −HR]{ΦR} = 0 (3.1)

16
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where HR is the Hamiltonian for the contact that is represented by a matrix of

(R × R) terms and IR is the identity matrix. Now if the electrode is connected to the

channel (see figure 3–2 b)) a term (iη{ΦR}) that models the extraction of electrons

from the contact should be introduced. Similarly, it is necessary to introduce a second

term to model the reinjection of electrons from external sources(SR). In this case,the

channel and contact wave function will be coupled, giving a Hamiltonian with electrons

transmitted and reflected from the contact to the channel : EIR −HR + iη −τ+

−τ EI −H


 ΦR + χ

ψ

 =

 SR

0

 (3.2)

where {ψ} and {ΦR} are the wave functions of electrons in the channel and the

contact respectively, H is the Hamiltonian of the channel and is represented by a matrix

of (d× d) terms, {χ} is the excitation in the contact when electrons flow from it, and τ

is the coupling between the contact and the reservoir.

Assuming that the coupling is known and the reinjection of electrons from the

external source remains unchanged ({SR} = 0), we can derive the following expression

from equation 3.2

(EIR −HR + iη){χ} − τ+{ψ} = 0 (3.3)

(EI −H){ψ} − τ{χ} = τ{ΦR} (3.4)

where the matrix {χ} can be expressed in terms of {ψ} as:

{χ} ≡ GRτ
+{ψ} (3.5)
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Figure 3–2: a) The contact and channel are not coupled b) The channel and the contact
are connected giving rise to an electron flow from the contact to the channel, generating
a scattered wave {χ} in the contact [25].

where GR = (EIR −HR + iη)−1 is the Green function of the reservoir represented

by a matrix of (R×R) terms. Substituting this term into the equation 3.4 we get

(EI −H − Σ){ψ} = {S} (3.6)

where Σ ≡ τ GR τ
+ and S ≡ τ ΦR. Since GR is expressed as an infinitely large

matrix (R×R) it is almost impossible to calculate. However, this may be truncated by

only taking into account the interaction of the nearest neighbors between the contacts

and the channels. This gives a smaller matrix of r terms which is renamed the compact

Green function. It is also important to mention that the matrix Σ, called self-energy

matrix, represents the boundary effect between the contact and the channel. This is

expressed as a matrix of (d× d) terms as:

Σ ≡ τ Gr τ+

(d× d) = (d× r) (r × r) (r × d) (3.7)

In general, a nanodevice is composed by a channel and two contacts (a source and

a drain) at different chemical potentials µ1 and µ2 (see figure 3–3). This system is

quite similar to case described before 3.2, but this time it includes the effects of the two

contacts by the self energy terms Σ1 and Σ2 and the two different couplings τ1 and τ2



19

as: 
EIR −H1 + iη −τ+1 0

−τ1 EI −H −τ2

0 −τ+2 EIR −H2 + iη




Φ1 + χ1

ψ

Φ2 + χ2

 =


S1

0

S2

 (3.8)

Making use of the same argument presented for one contact channel, we get:

{χ1} = G1τ
+
1 {ψ} with G1 = (EI −H1 + iη)−1 and (3.9)

{χ2} = G2τ
+
1 {ψ} with G2 = (EI −H2 + iη)−1 (3.10)

Figure 3–3: Two contact system and a channel [25].

If these expressions are used in the second line of the equation 3.8, the wave function

of electrons in the channel including the boundary effect of the contacts is written as:

(EI −H − Σ1 − Σ2){ψ} = {S} (3.11)

where Σi = τ+i Giτi is the self-energy matrix for each contact, S is the additive

effect of the excitation in the contacts when electrons flow from contacts to channel

S = S1 + S2, and Si = τi{Φi}.

The equation 3.11 is perhaps the most important equation in our system, because
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it allows us to calculate the wave function of electrons in the channel ({ψ}) as:

{ψ} = G{S} with G defined as G ≡ (EI −H − Σ1 − Σ2)
−1 (3.12)

Here G corresponds to the Green function of the whole system and will allow us to

calculate the transmission spectrum in our system. As we commented before, we will

first find the current I1 and I2 in the two contact system, considering that current can

be calculated by the Trace of the matrix elements of the electrons wave function in the

channel ψ as:

I ≡ Trace

[
d

dt
(ψ+ψ)

]
(3.13)

where i~ d{ψ}/dt = H {ψ}. In the time independent case, {ψ(t)} = e−iĤt/~{ψ0} hence

the current will be equal to

I = Trace

[
1

i~
d

dt
[ψ+(t)ψ(t)]

]
= Trace

[
1

i~

(
d

dt
ψ+ψ + ψ+ d

dt
ψ

)]
= Trace

[
1

i~
(Ĥψ+ψ − ψ+Ĥψ)

]
= Trace

[
1

i~
(Eψ+ − φ+τ+)ψ

]
− Trace

[
1

i~
ψ+(Eψ − τφ)

]
= Trace

[
1

i~
(ψ+τφ− φ+τ+ψ)

]
(3.14)

But the wave function in the contacts is excited when it is connected to the channel

as {φ} = {φR}+ {χ} therefore the current will be equal to:

I =
Trace[ψ+τφR − φ+

Rτ
+ψ]

i~︸ ︷︷ ︸
Inflow

− Trace[χ
+τψ − ψ+τ+χ]

i~︸ ︷︷ ︸
Outflow

(3.15)

In our case, the total current is the sum of each contact current I = I1 + I2, but

each current is the outcome of a inflow and outflow given by:

Ii =
Trace[ψ+τiφi − φ+

i τ
+
i ψ]

i~︸ ︷︷ ︸
Inflow

− Trace[χ
+
i τiψ − ψ+τ+i χi]

i~︸ ︷︷ ︸
Outflow

(3.16)

Replacing the relation 3.12 and {S1} = τ1{φ1} into the inflow at I1 we get

Inflow =
1

i~
Trace[S+G+τ1 ∗

1

τ1
S1 −

1

τ+1
S+
1 τ

+
1 GS] (3.17)
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since S = S1 + S2 and S+
1 S2 = S+

2 S1 = 0. Making use of this result, the inflow will be

equal to:

Inflow =
1

~
Trace[S+

1 AS1] =
1

~
Trace[S+

1 S1A] =
1

~
Trace[τ+1 (E)φ+

1 (E)τ1(E)φ1(E)A(E)]

(3.18)

where A ≡ i[G − G+], and S1(E) = τ1(E)φ1(E). The total amplitude of the wave

function ({φ+}) should be summed over the whole energy and weighted by the occupancy

density distribution f0 as:

{φ}{φ+} =

∫
dE

2π
f0(E)

(∑
α

δ(E − εα){φ(E)}{φ+(E)}

)
(3.19)

where the delta Dirac functional can be contructed as the limit of the expression as

n approaches 0

2πδ(EI −H) =

[
2η

(E − εα)2 + η2

]
η→0+

= i lim
η→0

[
1

E − εα + η
− 1

E − εα − η

]
= i[G(E)−G+(E)] (3.20)

Making use of the relationships 3.19 and 3.20, the inflow will be:

Inflow =
1

h

∫
dE f1(E)Trace[Γ1A] (3.21)

since the term Γ1 = τ1 (i[G1 − G+
1 ])τ+1 = τ1A1τ

+
1 is the imaginary part of the

self energy term in equation 3.11 and f1(E) is the occupancy function of electrons in

contact 1. In a manner analagous to that for inflow current, the outflow current I1 with

{χ1} = G1τ
+
1 {ψ} and 3.12 is given by

Outflow =
1

i~
Trace[ψ+τ1G

+
1 τ1ψ − ψ+τ+1 G1τ1ψ]

=
1

i~
ψ+[τ1G

+
1 τ1 − τ+1 G1τ

+
1 ]ψ =

1

h
Trace[ψ+Γ1ψ] (3.22)
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From the expression 3.12 we have {ψ} = G{S}, therefore {ψ}{ψ+} = G({S}{S})G+

with {S}{S+} = τ1φ1φ
+
1 τ

+
1 + τ2φ2φ

+
2 τ

+
2 + τ1φ1φ

+
2 τ

+
2 + τ2φ2φ

+
1 τ

+
1 for a two contact sys-

tem. We also assume that the wave functions of each isolated contact φi are orthonormal

(φ1φ
+
2 = φ2φ

+
1 = 0). Using this expression, the amplitude wave function of the channel

(ψ) is equal to:

ψ ψ+ = (GS)(S+G+) = G(SS+)G+

=

{∫
dE

2π
Gτ1 f1(E)

(∑
α

δ(E − εα){φ(E)}{φ+(E)}

)
τ+1 G

+

}

+

{∫
dE

2π
Gτ2 f2(E)

(∑
α

δ(E − εα){φ(E)}{φ+(E)}

)
τ+2 G

+

}

=

∫
dE

2π

(
f1(E)A1(E) + f2(E)A2(E)

)
≡
∫
dE

2π
[G(n)(E)] (3.23)

Replacing 3.22 in 3.23, the outflow current is given by equation

Outflow =
1

h

∫
dE Trace[Γ1G

(n)(E)] (3.24)

Combining the expressions 3.21 and 3.24, the current I1 is finally equal to:

I1 =
1

h

∫
dE

(
f1(E)Trace[Γ1A]− [G(n)(E)]

)
=

1

h

∫
dE Trace[Γ1 GΓ2G

+](f1(E)− f2(E)) (3.25)

The current I2 need not be calculated, because by physical arguments it is known

that I1 = −I2, therefore the total current in the system will be

I =
1

h

∫
dE T (E) (f1(E)− f2(E)) (3.26)

Lastly we find the transmission spectrum for nanodevices is given by

T (E) = Trace[Γ1GΓ2G
+] (3.27)
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This term is interpreted in the single electron figure by Kohn and Sham as the

amplitude for one electron incident in contact one in a subband or mode m to transmit

to a subband n in contact two after the scattering process in the channel (see figure 3–4).

This kind of interpretation is usually called the Landauer-Buttiker approach in which

transmission is calculated by the transmitted wave function in the system as:

T (E) =
∑
m

∑
n

|tnm|2 = Trace[tt+] (3.28)

Figure 3–4: Two contact system and a channel [25].

In our specific case the transmission spectrum calculations were carried out following

the algorithm given below:

Algorithm

1. Consider the channel and the contacts as isolated systems and calculate the wave

functions φ1, φ2 and ψ by DFT (Section 3.2).

2. Identify the nearest neighbors between the contacts and the channel, then calculate

the interaction coupling τ1 and τ2 as:

τi =

∫
Ψi(r)H Ψ+

ch(r) dr with i = 1, 2 (3.29)

where Ψi(r) is the wave function of each contact, Ψch is the wave function of the

channel, and they are all found via DFT (step 1)

3. Obtain the Green matrices Gi and Γi for i = 1, 2 given by the equations 3.9 and 3.21.



24

4. Calculate the Σ1 and Σ2 matrices given by 3.11 and the reduced Green function G(E)

by equation 3.12.

5. Compute the transmission spectrum at each energy T (E) given by the trace of [Γ1GΓ2G
+]
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3.2 DENSITY FUNCTIONAL THEORY

Several approaches may be used to understand the electronic configuration in a

material and all of them depend on the scale and the application of the model. The

methods most used for these purposes are: ab initio, semi-empirical and classical force

field. In this work, we are going to use the first principles theory or “ab-initio“ which

has been widely use in recently. Under this consideration, the system will be studied

from a fundamental viewpoint seeking to understand the interactions and constraints

involved in a quantum physics context.

As we know, the laws that rule our universe at small dimensions are modelled by

quantum mechanic physics. In that context, the formulation that every system must

satisfy is the time independent schrödinger equation.

H|ψ〉 = E|ψ〉 (3.30)

where H is the Hamiltonian of the system and |ψ〉 is the set of solutions or the

eigenstate that solves the Hamiltonian. Each function |ψ〉 has an associated eigenvalue

E (a real number) that satisfies the Schrödinger equation. In the case presented here,

the Schrödinger equation is described by:

H = −1

2

N∑
i=1

∇2
i −

1

2

M∑
A=1

1

MA

∇2
A −

N∑
i=1

M∑
A=1

ZA
ri A

+
N∑
i=1

N∑
j>i

1

ri j
+

M∑
A=1

M∑
B>A

ZAZB
RAB

(3.31)

where A and B run over M nuclei, while i and j denote the N electrons in the

system. The two first terms in the equation correspond to the kinetic energy of the

electrons and the nuclei respectively, and MA is the mass of the nucleus in terms of the

mass an electron (in atomic units me = 1). The remaining terms represent the attractive

electrostatic interaction between the electrons and nuclei, and the repulsive interaction

between electron-electron and nucleus-nucleus respectively. Also for this system the wave

function ψ will be dependent of electrons and nucleus coordinates ψ(~r; ~R). It is important
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to mention that equation 3.31 was defined in atomic units to make the notation easier.

This equation can be simplified by making use of the physics argument that the

nuclei mass is one thousand times the electron mass. In consequence, the electrons can

be considered with high accuracy as charge particles moving in a positive background of

statically charged nuclei. Therefore the Hamiltonian can be written as:

H = −1

2

N∑
i=1

∇2
i −

N∑
i=1

M∑
A=1

ZA
ri A

+
N∑
i=1

N∑
j>i

1

ri j
= T̂ + V̂Ne + V̂ee (3.32)

which imply at the same time that the wave function of the whole system can be

approached as the wave function of all N electrons coordinates ψ(~r; ~R) ≈ ψ(~r).

Until today, this wave function (ψ(~r)) which is a function of all N electrons co-

ordinates ψ = ψ(~r, ~r2 . . . , ~rN) is impossible to solve for real problems. Therefore it is

simplified even more by approximating it as a product of individual electron wave func-

tions ψ ≈ ψ1(~r)ψ2(~r) . . . , ψN(~r) [28]. This last approximation of the wave function is

known as the Hartree product. To this point, no restriction has been fixed on the ex-

pression ψi(~r) with i = 1, 2 . . . , N . Notice also that N is the number of electrons and is

considerably larger than the number of nuclei M . For example, the electron wave func-

tions of a simple molecule of CO2 has twenty two electrons; taking into account three

dimension for each electrons, the full wave function is composed of sixty six components.

In our case the eigenfunction |ψi〉 of the Hamiltonian matrix H itself is not observ-

able, but a physical interpretation can be associated with the electron density ρ(r) which

is the probability of finding a electron at a position r which may be expressed as:

ρ(~r) = 2
∑
i

ψ∗i (~r)ψi(~r) (3.33)

The number 2 in this last expression is due to the fact that different spins (up or

down) might occupy the same state |ψi〉. In spite of previous approximations, the wave

function for a system of 3N components role by schödinger equation 3.32 still remains
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unsolved. However, in 1960, Kohn and Sham made it possible to solve the electronic

wave function for a system of 3N components by postulating two mathematics theorems

on which density functional theory (DFT) rests.

The first theorem proved by Hohenberg and Kohn was “The external potential

Vext(~r) is (to with a constant) a unique function of ρ(~r); since in turn Vext(~r) fixes

Ĥ we see that the full many particles ground state is a unique functional of ρ(~r)”. This

theorem affirms that a one-to-one mapping between the ground state wave function and

the ground electron density exists [29].

The second Hohenberg and Kohn theorem postulates an important property of the

energy “ The electron density that minimizes the energy of the overall functional is the

true electron density corresponding to the full solution of the Schrödinger equation.”

Making use of this postulate, the ground state of the energy can rewritten as:

E0[ρ0] = T [ρ0] + Eee[ρ0] + ENe[ρ0] (3.34)

This equation can arranged into two terms as follows:

E0[ρ0] =

∫
ρ0(~r)VNed~r︸ ︷︷ ︸

system dependent

+T [ρ0] + Eee[ρ0]︸ ︷︷ ︸
Universally valid

(3.35)

This last term is independent of the system at hand, which means that it applies

equally well to hydrogen atoms as to complex molecules such as DNA. The only issue

is that an explicit form of this term is completely unknown. Therefore, finding an

approximation of this term is currently one of the most active research areas. In the

literature, this universal term is called the Hohenberg-Kohn functional and the expected

value is given by:

FKH [ρ] = 〈ψ|T̂ + V̂ee|ψ〉 = T [ρ] + Eee[ρ] (3.36)
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where the electron-electron interaction Eee can be expressed as:

Eee[ρ] =
1

2

∫ ∫
ρ(~r1) ρ(~r2)

r12
d~r1d~r2 + Enc[ρ] = J [ρ] + Enc[ρ] (3.37)

where Enc[ρ] is the non-classical contribution to the electron-electron interaction that

contains the self-interaction correction and all of the quantum effects. Assuming that Enc

is well known, the ground state of the system can be found by the second Hohenberg

and Kohn theorem which postulates that the ground state φ0 of the system must be

generated by the electron density ρ that minimize the energy E[ρ0]

E0 = min
ρ →N

(
min
ψ →ρ
〈ψ|T̂ + V̂Ne + V̂ee|ψ〉

)
(3.38)

where the energy due to the external potential VNe is determined by the density ρ,

and is thus independent of the wave function so that

E0 = min
ρ →N

(
min
ψ →ρ

〈ψ|T̂ + V̂ee|ψ〉+

∫
ρ(~r)VNe d~r

)
(3.39)

or compactly

E0 = min
ρ →N

(
F [ρ] +

∫
ρ(~r)VNe d~r

)
= min

ρ →N

(
T [ρ(~r)] + J [ρ(~r)] + Enc[ρ(~r)] +

∫
ρ(~r)VNe d~r

)
(3.40)

In principle, to solve this equation we would need to use a variational principle in

order to get the ground state for the whole system, however this is not possible due to the

large number of unknown terms. Nevertheless, if we are less ambitious and approximate

the real kinetic energy as the kinetic energy T [ρ] of a non interacting system of particles,

we obtain:

Tni = −1

2

N∑
i

〈ϕ|∇2|ϕ〉 (3.41)

Clearly the non-interacting kinetic energy is not equal to the true kinetic energy of

the interacting system, even if the system shares the same density Tni 6= T , because in
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the case of non-interacting electrons, the coulomb potential vanishes. Nonetheless, the

quantum effects still present in the system generate a change in the kinetic energy of

a non interacting system. Under this assumption, the Hohenberg and Kohn functional

presented in the equation 3.36 will be equal to:

F [ρ(~r)] = Ts[ρ(~r)] + J [ρ(~r)] + EXC [ρ(~r)] (3.42)

where EXC is called the exchange-correlation energy defined by equation 3.42 as:

EXC [ρ] ≡ (T [ρ]− Tni[ρ]) + (Eee[ρ]− J [ρ]) = Tc[ρ] + Enc (3.43)

The first term in parentheses is the effect neglected when the kinetic energy is cal-

culated by the non-interacting particles. The second term is the quantum effect and

self-interaction not considering the coulomb potential (J). Consequently the complete

expression EXC expresses all unknown elements in the system. Replacing this expression

3.43 in the Hamiltonian 3.40 we get:

E[ρ(~r)] = TS[ρ] + J [ρ] + EXC [ρ] +

∫
VNeρ(~r) d~r

= TS[ρ] +
1

2

∫ ∫
ρ(~r1)ρ(~r2)

r12
d~r1d~r2 + EXC [ρ] +

∫
VNeρ(~r) d~r

= −1

2

N∑
i

〈ϕi|∇2|ϕi〉+
1

2

N∑
i

N∑
j

∫ ∫
|ϕi(~r1)|2

1

r12
|ϕj(~r2)|2 d~r1d~r2

+ EXC [ρ(~r)]−
N∑
i

∫ M∑
A

ZA
r1A
|ϕi(~r1)|2 d~r1 (3.44)

We apply the equation before the variational principle in order to find the ground

state that minimizes the energy using the following constraint: 〈ϕi|ϕj〉 = δij getting [30]:(
−1

2
∇2 +

[∫
ρ(~r2)

r12
d~r2 + VXC(~r1)−

M∑
A

ZA
r1A

])
ϕi = εiϕi(

−1

2
∇2 + Veff (~r1)

)
ϕi = εiϕi (3.45)
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This last expression is a single set of equations originally proposed by Kohn and

Sham, in which each equation involves a single electron system. The enormous power

of this equation lies in that we move from a many-body problem to a single system of

independent equations with an effective potential (the term in square brackets). The

potential VXC in this equation is simply defined as the functional derivative of EXC with

respect to ρ as a result of the variational principle:

VXC =
δEXC
δρ(~r)

(3.46)

In conclusion, the Schrödinger equation can be solved approximately by the equation

3.45. To obtain a solution to Kohn-Sham equation, we must know the electron density

ρ(~r) 3.33, but electron density is calculated by the wave function ϕi which in turn

is the solution to the Kohn-Sham equation. Therefore an infinite loop exists in the

solution of the Kohn-Sham equation. This loop can broken by treating the problem in

a self-consisted way by following the next algorithm:

1. Define an educated guess ϕi(~r).

2. Calculate the trial electron density ρ(~r).

3. Solve the Kohn-Sham equations using the trial electron density to find the single par-

ticle wave function ϕi(~r).

4. Calculate the electron density ρ(~r) = 2
∑

i ϕ
∗
i (~r)ϕi(~r).

5. Compare the computed ρ(~r) with the electron density proposed ρ(~r) in step two. If

both expressions are the same, the algorithm stops and calculates the energy of the

ground state. However if the two densities are different, we start the process again

from the step 3 making use of the computed wave function.

At this time the question of how to calculate the exchange correlation function remains

unsolved, but in the next section we will show some models to compute it.
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3.2.1 Exchange correlation functional

Before introducing a model to calculate the exchange correlation function in our

system we need to use the concept of electron density. In general this quantity provides

information of how likely is to find one electron with spin σ within a volume element d~r

while all of the electrons may be anywhere. For two electrons, the probability of finding

both with spin σ1 and σ2 simultaneously within two volume elements d~r1 and d~r2 is given

by [31]:

ρ2(~r1, ~r2) = N(N − 1)

∫
· · ·
∫
|Ψ(~r1, ~r2, . . . )|2 d~r3 . . . d~rN (3.47)

In the literature, this probability is called the pair density probability, which con-

tains all the directions of electron correlation. In an unambiguous manner the pair

density considers electrons in a classical way so that probability of finding one of them

is independent of the other. In that case, the pair probability would reduce to a simple

product of individual probabilities.

ρ(~r1, ~r2) =
N − 1

N
ρ(~r1)ρ(~r2) (3.48)

The N−1
N

factor enters, because the particles considered up to this point are identical

and not distinguishable. Therefore the total pair probability will be equal to:∫ ∫
ρ(~r1, ~r2) d~r1d~r2 =

N − 1

N

(∫
ρ(~r1) d~r1

)(∫
ρ(~r2) d~r2

)
= N(N − 1) (3.49)

Althought we know that electrons are fermions that satisfy Pauli exclusion principle, the

electrons interact through Coulomb repulsion and stay away from each other as much as

possible. The Coulomb and Pauli exclusion effects might be included in the pair density

in two ways. The first one is by an exchange or “Fermi correlation” that restricts the

pair density in the case of two electrons with the same spins being localized in the same

place (~r1 = ~r2) to zero ρ2(~r1, ~r2 = ~r1) = 0. In this way, the Pauli exclusion principle is

satisfied.
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The second effect is the “Coulomb correlation” that models the electrostatic repul-

sion between electrons, which manifests itself through the 1
r12

which prevents electrons

from being quite close to each other. “Fermi correlation” and “Coulomb correlation”’.

are included in the pair density ρ(~r1, ~r2) by the exchange correlation hole hXC as:

ρ(~r1, ~r2) = ρ(~r1)ρ(~r2) + ρ(~r1)hXC(~r1, ~r2) (3.50)

In the case that the electrons are completely uncorrelated, hXC(~r1, ~r2) = 0; but if a

correlation exists between electrons (hXC(~r1, ~r2) 6= 0) the total pair density will be equal

to:∫ ∫
ρ(~r1, ~r2) d~r1 d~r2 =

∫ ∫
ρ(~r1)ρ(~r2)d~r1 d~r2 +

∫ ∫
ρ(~r1)hXC(~r1, ~r2) d~r1 d~r2

=

(∫
ρ(~r1) d~r1

)(∫
ρ(~r2) d~r2

)
+

∫
ρ(~r1)

[∫
hXC(~r1, ~r2) d~r2

]
d~r1

= N2 −N (3.51)

In order to get a result similar to equation 3.49
∫
hXC(~r1, ~r2)d~r2 = −1. This implies

that the exchange correlation hole contains the exact charge of one electron. Under this

consideration, the energy of interaction Eee will be equal to

Eee =
1

2

∫ ∫
ρ(~r1, ~r2)

r12
d~r1d~r2

=
1

2

∫ ∫
ρ(~r1)ρ(~r2)

r12
d~r1d~r2 +

1

2

∫ ∫
ρ(~r1)hXC(~r1, ~r2)

r12
d~r1d~r2

= J [ρ] + EXC [ρ] (3.52)

The first term corresponding to the Coulomb interaction J [ρ] contains a nonphysical

term of self-interaction. To observe this effect, assume that the system encloses only one

charge. In this case the Coulomb energy should be zero, but the previous expression is

obviously not zero.
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The second term of the expression corresponds to the exchange correlation function

EXC that includes the correction for the self interaction in addition to all the quantum

effects such as the Pauli exclusion principle that must be satisfied by electrons. An exact

form for this expression is not available, but an accurate result can be obtained if the

hole exchange correlation is split into the Fermi hole hσ1=σ2f and Coulomb hole hσ1,σ2c as:

hXC(~r1, ~r2) = hσ1=σ2f (~r1, ~r2) + hσ1,σ2c (~r1, ~r2) (3.53)

Fermi Hole

The Fermi hole models the fact that electrons must satisfy the Pauli exclusion

principle. For that reason hf must be negative everywhere (hf < 0) preventing two

atoms from being in the same quantum state. For example, if two atoms with the same

spin σ fixed at a position r1 and r2 approach each other r2 → r1, the Fermi hole will be

equal to the negative of density at r1 :

hf (r2 → r1) = −ρ(~r1) (3.54)

Another example of how is described the Coulomb and Fermi holes is the model

of the molecule of H2 presented by Baerends and Gritsenko [32] (see figure 3–5 ). This

work shows clearly that in regions close to the hydrogen’s electrons, the Fermi hole (hf )

increases, and that it tends to zero far away from electrons. Also when the distance

between the electrons is relatively small, the Fermi hole correlation is more uniform;

when the electron distance is large, the Fermi hole exhibits large peaks.

Coulomb Hole

The Coulomb hole has the role of correcting the self-interaction for electrons with

different spins: ∫
hc(~r1, ~r2)d~r2 = 0 (3.55)
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As we explained before for the fermi hole, the H2 molecule displays Coulomb hole

behavior. When the electrodes are separated ree → ∞ the Coulomb hole cancels the

effect of half an electron from the nucleus where the reference electron is positioned and

builds a charge of half an electron in the other nucleus. For short distance, the electrodes

are less localized and the Coulomb hole slightly reduces the effect of the Fermi hole at

the reference electrode and builds up the same quantity at the other nucleus.

It is important to mention that Coulomb and Fermi holes do not have any physical

meaning independently, but together the expressions accurately model the quantum

effects and self interaction correction [31].

Figure 3–5: Exchange correlation hole for H2 molecule [30].
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3.2.2 Local Density Approximation.

Now we know how the exchange correlation function (EXC) is represented, but an

analytical expression for hXC is still unknown. In the sixties, Kohn and Sham used the

old Thomas-Fermi-Dirac method to formulate an exchange correlation functional that is

the base of all correlational functional in DFT.

The Thomas-Fermi-Dirac model simplified all electrons to one hypothetical uniform

electron gas, and assumed that electrons are moving in a positive charge distribution

background, so that the whole composition in the system is kept neutral. It also assumed

that the number of electrons N is on the order of Avogadros number N →∞ within a

volume V →∞ such that N/V = n remains finite and has a constant value everywhere.

This model is called the local density approximation and can physically model a

simple metal crystal such as sodium in which the nucleus and electrons are regularly

distributed over the entire space. However this assumption is quite far from typical

structures where the electrons density is usually characterized by irregular and rapid

variations. Despite this, the local density approximation has been good enough for

a wide range of molecular studies. In general the exchange correlation functions is

expressed as:

ELDA
XC [ρ] =

∫
ρ(~r)hXC(ρ(~r))dr (3.56)

where hXC is the exchange-correlation energy per particle in a uniform electron gas

with electron density ρ(~r) and where hXC can be split into Fermi and Coulomb holes.

For the particular case of an uniform electron gas, the fermi hole [33] is given by

hf = −3

4

3

√
3ρ(~r)

π
(3.57)

This factor was found by Slater in his approximation of the Hartree-Fock exchange,

but was originally derived by Bloch and Dirac in the late 1920s. Inserting this factor

into 3.56 yields a factor of ρ4/3 dependent on the Fermi hole.
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In the case of the Coulomb hole, hc is not known by an explicit expression, however it

has been simulated numerically with high accuracy by quantum Monte-Carlo methods.

The most referenced has been the work of Ceperly and Alder, 1980. Making use of

these results, an analytical expression for the Coulomb hole has been proposed based on

sophisticated interpolation schemes. The most widely used representation of hc is the

expression presented by Vosko, Wilk, and Nusair, 1980, but perhaps one of the most

accurate representations was presented by Perdew and Wang in 1992.

Unquestionably the local density approximation (LDA) is a better approximation

for systems with a homogeneous density (as some metals) than for systems with an

inhomogeneous density of atoms. The effect produced in the latter type of system is that

the exchange energy becomes too negative, causing a dramatic overbending. However,

a homogeneous electron gas does in fact provide a reasonable first approximation to

spherically average exchange correlation holes of real systems. Clearly, in a real system

this assumption will deteriorate at larger distances between the reference electron at ~r1

and another ~r2 where the variation of ρ is considerable. In recently years, new functionals

have been proposed, nevertheless in our study the exchange correlation used GGA, which

has a better accuracy than LDA. In the next section we will describe GGA.

3.2.3 The Generalized Gradient Approximation (GGA)

As previously described, the local density approximation is certainly insufficient for

most applications since it overestimates the bonding energy. However, in 1985 Perdew

proposed a model that he and Yue later simplified in 1986, where the exchange correlation

function EXC{ρ(~r)} expands as a Fourier approximation of the density ρ(~r) as powers

of ρ(~r) , ∇ρ(~r), and ∇2ρ(~r) as [34]:

EGGA
XC [ρ] = −3

4

(
3

π

)1/3 ∫
ρ4/3F (s) dr (3.58)
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with

s =
|∇ρ(~r)|
2kf ρ

(3.59)

kf = (3π2ρ)1/3 (3.60)

(3.61)

and

F (s) = (1 + 1.296s2 + 14s4 + 0.2s6)1/15 (3.62)

Based on this approximation, the density is not uniform but very slowly varying.

Unfortunately GGA does not lead to the desired improved accuracy for real systems, for

this reason a second class of GGA exchange functionals was implemented by Perdew,

Burke, and Ernzerhof in 1996 (PBE). [31] This functional is a hybrid functional in which

most of the parameters are obtained experimentally.



CHAPTER 4

RESULTS AND DISCUSSIONS

As mentioned in the chapter 2, we present in this chapter our results of the electronic

transport properties of a graphene monolayer covered by another layer with infinite or

finite widths. We will first study three structures shown in figure 4–1 (a)-(c). Figure

4–1 a) is a graphene monolayer; Figure 4–1 b) is a monolayer covered by another infinite

layer or a bilayer; and Figure 4–1 c) is a monolayer covered by a semi-infinite layer. To

carry out all our calculations, we use an “ab initio” simulation package Atomistix [35]

with the following parameters: a double zeta polarized basic set, an exchange-correlation

potential of the generalized gradient approximation with the Perdew-Burke-Ernzerhof

parameterization [36] , an energy mess cutoff of 70.0 Ry, and a convergence threshold of

10−5 eV. All calculations use room temperature.

Figure 4–1: Graphene Structures

38
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The first step in our work was the geometric optimization of the graphene bilayer.

For that purpose, in addition to the aforementioned parameters, a k point sampling of

(1,1,30) and a maximum force accepted between bulk atoms of 10−2 eV/Å were used. The

results obtained by our ab initio simulator were aAB = 3.383Å and acc = 1.4151Å, respec-

tively, which are very close to the experimental results of aAB = 3.34Å and acc = 1.42Å

[37].

4.1 Band structures of graphene monolayer and bilayer

Once the interplanar spacing and lattice constant were determined, the band struc-

ture for a monolayer and bilayer in the armchair and zigzag arrangements were calculated

using the aforementioned parameters but with a k point sampling of (1, 1, 81). The re-

sults of those calculations between the directions Γ (0, 0, 0) and Z (0, 0, 1) are presented

below.

Figure 4–2: Band structure for mono and bilayer graphene in the a) armchair and b)
zigzag directions
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where Ef is the system’s Fermi energy, Kz is the wave vector in the z axis, and

am and az are the unit cell distances for armchair and zigzag respectively. The band

structure gives information about how the electrons are arranged in the material. In

this specific case, the structure of the graphene monolayar and bilayer in the armchair

direction figure 4–2 a) shows a direct gap between the conduction and valence bands.

However, when the band structure is calculated in the zigzag direction, a zero band

gap is obtained figure 4–2 b). At the Fermi energy, the valence and conduction bands

overlap. As was previously explained, this implies that this band structure is similar to

massless particles (photons) modelled by the Dirac equation [17]. We can also conclude

from these results that mono and bilayer band structure in the armchair and zigzag di-

rections are quite similar. The reason for this effect is that interaction between the layers

is weak. To confirm this argument, the coupling between the intralayer and interlayer

nearest neighbor was calculated; the energies were found to be 2.661 eV and 0.256 eV

respectively, which is in agreement with both experimental and theoretical results [38–

40]. This means that the energy between orbitals (Pz) of different layers is less than

the interaction between interlayer orbitals (Px and Py) by a factor of ten. These results

are better demonstrated when the local density of states (LDOS) at the Fermi energy is

calculated (see figure 4–3)

Figure 4–3: LDOS for a bilayer at the Fermi energy Ef

In this figure we observe that orbitals Pz (light green surfaces) of the top and bottom

layers do not overlap at the Fermi energy, which confirms the weak interaction between

layers.
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4.2 Transmission spectra of different graphene structures

In order to understand how electrons flow in a mesoscopic device as defined in figure

4–1, the transmission spectrum was calculated based on the Landauer-Buttiker formal-

ism combined with density functional theory (DFT) as explained in Chapter 3. To carry

out the computations, we defined the system as being formed by two infinite contacts

(a source and a drain), and a channel or scattering region, as shown in figure 4–4.

Figure 4–4: Graphene device in a) armchair and b) zigzag directions.

We calculate both electronic transport properties along armchair or zigzag direction.

Please note that transport along the armchair direction means we deposit source and

drain electrodes in the zigzag direction and transport along the zigzag direction means

the electrodes are in the armchair direction, as shown in figure 4–4. In our transmission

calculations, we use the parameters expressed before and a k point sampling of (1,81,81).

Figure 4–5: Transmission spectrum for armchair and zigzag configuration for a) mono-
layer, b) bilayer, and c) mono-bilayer junctions
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Figure 4–5 a) plots the transmission spectrum of a monolayer, along armchair or zigzag

directions. Since the structures in our calculations are periodic along the transverse di-

rection (y-direction), the transmissions calculated are averaged and plotted per unit cell

(u.c.) in figure 4–5 (a) are transmissions . The insert of figure 4–5 (a) shows a unit cell

of a monolayer along the armchair direction. The transmission along zigzag direction

has been multiplied by a factor of (1/
√

3), since the width of one unit cell along zigzag

direction is
√

3 times of that along armchair direction. From figure 4–5 (a), we can see

that both transmissions agree very well with each other . They present a linear relation-

ship with the energy near the Fermi energy, which reflects the electronic structure of the

Dirac cone.

The transmission spectra of a bilayer and a monolayer-bilayer junction are plotted

in figure 4–5 (b) and 4–5 (c) respectively. In figure 4–5 (b), the transmissions have been

multiplied by (1/2) in order to get the contribution from one layer. We can see that

the transmission spectra from both figure 4–5 (b) and 4–5 (c) are very close to those

in figure 4–5 (a), which indicates the transmission of a monolayer will not be changed

significantly when covered by another layer with infinite or semi-infinite size. According

to the transmissions, the two layers are coupled weakly and almost independent of each

other.

The weak interlayer coupling leads to relative independence between the two layers

in the electronic transmission, which implies that covering a monolayer will not sig-

nificantly change its electronic transport property. However, we can construct a new

configuration in which the electronic properties of graphene monolayer is changed. In

this configuration a graphene monolayer is connected to the contacts, while the ribbon

is detached from the contacts as shown in figure 4–6.
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Figure 4–6: Monolayer covered by a nanoribbon (mbnr).

Figure 4–7 presents the transmission spectra of a monolayer covered by a nanoribbon

with different widths. In figure 4–7 (a), the electron transport is along the armchair

direction, while that in 4–7 (b) is along the zigzag direction. In both 4–7 (a) and (b),

increasing of the nanoribbon width from one unit cell to four unit cells reduces the

transmission of the monolayer. The changes are more significant than that of an infinite

cover. Thus, electronic transport property of a monolayer can be changed by depositing

a nanoribbon with finite width on top of it.

In figure 4–7 (a), though the transmission is referred to as the armchair direction, it

includes contributions from all possible channels from the source electrode to the drain

electrode. The same is true for the transmission in figure 4–7 (b). Different transmission

channels can be identified by different wave vectors along the transverse direction (ky).

Figure 4–7: Transmission spectrum for (mbnr) structure in a) armchair and b) zigzag
arrangement.
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To understand the effect of a finite-width ribbon on the transmission of a monolayer,

it is necessary to study the effect on individual transmission channels. Here we take the

channel with ky = 0 as an example. Figure 4–8 presents transmission spectra of a

monolayer covered by a nanoribbon with different widths, for ky = 0 only. Figure 4–8

(a) shows the transmission along armchair direction, and figure 4–8 (b) shows that along

the zigzag direction. They show that the transmission for ky = 0 only is reduced when

presenting the finite-width nanoribbons. Moreover, the transmission is reduced to zero

at certain energies. With an increase in the width of nanoribbon, the number of zeros

in transmission increases and their positions are changed.

Figure 4–8: Transmission spectrum for mbnr structure to one channel (ky = 0) a)
armchair and b) zigzag arrangement.

The zeros in the transmission due to the presence of finite-width nanoribbons can

be understood by interference between electron wavefunctions. An electron with ky = 0

only has one transmission channel in a monolayer before reaching the region covered by

the nanoribbon. After it reaches the covered region, the electron can go through another

channel in the nanoribbon due to interlayer coupling (nonzero though small). Thus the

covered region is a two-channel region for electron transmission, as shown in figure 4–

9 (a). Because electron wavefunctions exist in both channels, destructive interference



45

between them occurs at certain wave vectors (kz). This is the so-called antiresonance,

which leads to the zeros in the transmission.

4.3 Antiresonance

The antiresonance in transmission occurs when the change of phase in the wave-

function is equal to 2nπ. In that case, the electron travels in one closed loop through

the two-channel region. Therefore

kz(2l + 2l0) = 2nπ (4.1)

where l is the width of nanoribbon and l0 is an effective length used to represent

interlayer hopping distance as shown in figure 4–9

Figure 4–9: Antiresonance effect between layers.

Thus in antiresonance, the inverse of the wave vector kz should have a linear rela-

tionship with the width of nanoribbon. This may be calculated from 4.1 as:

1

kz
=

1

nπ
(l + l0) (4.2)

Now we plot the inverse of wave vector kz at zero transmission as function of width

l of nanoribbon with kz in units of π/u.c. and l in unit of u.c. If we do a fit with these

points we get the linear relation expressed in figure 4–10 when lo is set equal to 0.5 and

1 u.c. for the armchair and zigzag configurations, respectively. The slope for armchair

ranges between 1/2 and 1/4 when n is equal to 1, 2, 3 and 4; the slope for zigzag ranges

between 1/4 and 1/11 when n ranges from 4 to 11. It is important to note that n is

an integer, therefore the linear relation may be clearly observed for the armchair and

zigzag arrangements. This confirms our hypothesis that antiresonance creates the zero
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observed in the transmission for one channel.

Figure 4–10: Linear relationship between 1/kz and l.

Although we have described these results only for ky = 0, the linear relation and the

antiresonance mechanism are general for all ky channels. Thus, we may state that

antiresonance reduces the transmission of the monolayer when covered by a finite-width

nanoribbon as shown in figure 4–7. In the case of infinite coverage, antiresonance will

not happen since l =∞.



CHAPTER 5

CONCLUSIONS

In this thesis, we studied the electronic transport properties of different graphene

structures, including monolayers, bilayers, mono-bilayers and junctions between mono-

bilayers and monolayers, using the Landauer-Buttiker formalism combined with density

functional theory. The structures under study can be viewed as a graphene monolayer

covered by another layer of varying width. The main conclusions of this study are as

follows:

1) The band structure calculations show weak interlayer coupling in the graphene bilayer.

2) The change in the electronic transport properties of a monolayer is insignificant when

it is covered by an infinitely large layer or even a semi-infinite one.

3) The change in the electronic transport properties of a monolayer can be considerable

when covered by a nanoribbon with finite width. This change is due to antiresonance in

the electron transmission caused by interference between the wavefunctions in the two

layers.

4) The results presented in this thesis introduce a new method to control electron flow

in graphene monolayers for future applications in nanoelectronic devices.
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