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ABSTRACT 
 

Spatial and temporal variation of Chromophoric Dissolved Organic Matter 

(CDOM) absorption was studied in the course of diverse research cruises through the 

Caribbean region. CDOM absorption and spectral slopes showed marked seasonal and 

spatial variability. Temporal trends showed maximum mean surface CDOM absorption 

and spectral slopes during summer. The spatial analysis showed highest absorption 

values in the Gulf of Paria. Values remained relatively high along the Orinoco River 

Plume throughout the Eastern Caribbean.  High values were also found along the edges 

of a cyclonic eddy with entrained Orinoco River Plume waters. Values outside of the 

plume were found to be low. Differences found on spectral slopes point to spatial-

temporal differences in water mass sources in the Caribbean. Mesoscale eddies affect 

the spatial and temporal distribution of CDOM by advection of the Amazon and Orinoco 

River plumes into the Eastern Caribbean basin creating complex mosaics of optically 

clear and optically dense waters. 
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RESUMEN 

 
Se estudiaron las variaciones espaciotemporales de la absorción de materia 

orgánica disuelta coloreada (MODC) durante diversos cruceros de investigación a 

través de la región del Caribe.  Tanto la absorción como las pendientes espectrales 

mostraron marcada variabilidad estacional y espacial. Las tendencias temporales 

mostraron un máximo de absorción promedio de MODC durante el verano en 

superficie. El análisis espacial mostró valores máximos de absorción en el Golfo de 

Paria. Los valores se mantuvieron relativamente altos a lo largo de la pluma de 

descarga del Río Orinoco en todo el Caribe Oriental.  También se encontraron valores 

altos a lo largo de los bordes de un remolino ciclónico que arrastraba aguas de la 

pluma del río Orinoco.  Se encontraron valores bajos fuera de la pluma.  Diferencias 

encontradas en las pendientes espectrales apuntan a diferencias espaciotemporales en 

la naturaleza de las fuentes de masas de agua en el Caribe.  Los remolinos de 

mesoescala afectan la distribución especial y temporal de MODC por advección de las 

plumas de los ríos Amazonas y Orinoco a la cuenca del Caribe Oriental creando 

complejos mosaicos de aguas ópticamente claras con aguas ópticamente densas.    
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1. Introduction 

1.1 Motivation 

 

Chromophoric Dissolved Organic Matter (CDOM) is a chemically complex 

material which can be found in natural waters. It is produced by the decay of plant and 

algal matter and is frequently refractory to microbial decomposition. It is 

photochemically reactive, being destroyed when exposed to solar radiation, forming a 

variety of intermediates and products (Coble, 2007).  

In waters influenced by river input, CDOM can compromise the determination of 

phytoplankton biomass from satellite measurements (Blough and Del Vecchio, 2002).  It 

is frequently the major light absorbing constituent of the DOM pool in natural waters, 

absorbing not only visible light, but also UV-A and UV-B. Furthermore, it contributes 

significantly to the attenuation of photosynthetically available radiation (PAR).   

The profound effect of CDOM on the optical character of marine waters is 

especially important for remote sensing applications since it can affect the accuracy of 

chlorophyll determinations through satellite imagery. The objective of this study is to 

document the effect of CDOM on the optical properties of near-surface Caribbean 

waters. For this purpose we characterized range and spatial and temporal variability of 

its absorption spectrum in the visible range.   
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1.2 Background 

 

In order to determine the amount of CDOM in a sample, its optical properties or 

parameters derived from them are frequently used. One of the optical properties usually 

measured to characterize CDOM is its absorption. Absorption spectra typically decrease 

exponentially with increasing wavelength.  These spectra have been typically fit to the 

expression: 

aCDOM(λ) = aCDOM(λ0)exp
-S(λ−λ0)

                                            1.1 

 

Where aCDOM(λ) and aCDOM(λ0) represent the absorption coefficients at a given 

wavelength and a reference wavelength, respectively, and S represents the spectral 

slope.  The absorption coefficients are calculated by a relation between the absorbance, 

the pathlength and a conversion factor from log to natural log, which can be found on 

the Methods section (Eq. 2.1). As shown above, the spectral slope parameter is derived 

from absorption, which has proven to be useful in remote sensing applications of ocean 

color (Coble, 2007).   This parameter characterizes the spectral dependence of the 

CDOM absorption coefficient, providing information about the origin of the CDOM 

chromophores.  It can vary due to CDOM source, but can also be affected by alterations 

to the material (Blough and Del Vecchio, 2002).   Spectral slopes are usually lower for 

freshwater and coastal environments and higher in oligotrophic waters.  These 

differences might be due to the shift in CDOM source, but photobleaching could also 

play an important role (Coble, 2007).  Photochemical bleaching has been shown to 

account for spectral slope gradients observed from coastal to offshore waters (Vodacek 

et al., 1997; Blough and Del Vecchio, 2002). 
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1.3 Literature Review 

 

Transport by rivers of terrestrially derived chromophoric dissolved organic matter 

represents an important source of organic carbon to the oceans.  This injection of 

CDOM could alter the optical and photochemical properties of marine waters in the 

region of outflow (Blough et al., 1993). 

The magnitude of CDOM absorption varies considerably along salinity gradients, 

it can range from over 15 m-1 for some coastal and fresh waters to less than 0.1 m-1 for 

surface oligotrophic seawaters, when measured at 355 nm. (Blough and Del Vecchio, 

2002).  For coastal waters strongly influenced by river discharge, CDOM absorption 

frequently dominates the total light absorption not only in the UV region, but also in the 

blue wavelengths overlapping with a portion of the phytoplankton absorption spectrum 

(Blough and Del Vecchio, 2002).   

Significant levels of terrestrial CDOM can get transported beyond coastal areas, 

extending well offshore for regions experiencing large freshwater inputs (Blough and 

Del Vecchio, 2002). The eastern Caribbean is an example of such regions, presenting 

relatively high levels of CDOM absorption (aCDOM 355 ~ 0.6 m
-1) during the Orinoco 

River high flow period (Blough et al., 1993; Del Castillo et al., 1999).  Major rivers such 

as the Orinoco and Amazon can have a significant impact on the optical properties of 

ocean waters over extensive geographical areas, by seasonal injection of CDOM. 

(Müller-Karger et al., 1989; Blough et al., 1993; Hochman et al., 1994; Del Castillo et al., 

1999). 
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1.4 Objectives 

 

 The main objective of this study was to determine the spatial and temporal 

variation of CDOM abundance due to freshwater inputs in the NE Caribbean by the two 

major South American rivers, the Amazon and the Orinoco. The study was designed to 

characterize CDOM in these waters and to assess the effect of mixing and photoptical 

changes on the optical properties of this material. A further objective was to assess the 

contribution of CDOM absorption to the attenuation of photosynthetically active radiation 

kd (PAR).  

These goals were achieved by analyzing absorption and fluorescence of discreet 

water samples collected from monthly cruises to the Caribbean Time Series (CaTS) 

station and research cruises carried throughout the Caribbean basin.   
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2. Materials and Methods 

2.1 Sample Collection  

 

Water samples were collected from Niskin-type Ocean Test Equipment Teflon lined 

bottles mounted on an SBE 32 rosette at 0, 10, 25, 50, 75, 100, 125, 150 and 200 

meters.  Samples were drained to acid washed fluorinated polypropylene bottles and 

stored refrigerated until analysis.  Samples were filtered with pre-combusted and 

sample rinsed Whatman GF/F filters either before analysis or directly from the Niskin 

bottle. The definition of CDOM is operational, depending on the method used to 

separate between the dissolved and particulate fractions, usually regarded as organic 

substances that absorb light in the UV and visible portion that pass through a 

submicrometer filter (Nelson and Siegel, 2002).  Even though 0.2 µm filters are more 

commonly used for this purpose, GF/F filters (0.7 µm) are widely used for several 

oceanographic and optical measurements on pigment absorption (Ferrari, 2000).   

2.1.1 Caribbean Time Series (CaTS) 

 

The Caribbean Time Series (CaTS) station is located at 17°38' N, 67 °W, about 

23 nautical miles off the southwestern coast of Puerto Rico, and is occupied monthly 

by the Department of Marine Sciences of the University of Puerto Rico, Mayagüez 

Campus.  CaTS provides an observing station for researchers interested in the 

characterization of physical, chemical, and biological variability of upper ocean 

features and asses the optics and biogeochemistry of regional waters (Corredor and 

Morell, 2001).  Samples were collected during separate monthly cruises on board 



 6

the R/V Chapman coinciding with the Orinoco River different flow periods; the dates 

of the cruises can be seen below (Table 2.1).  

 

TABLE 2.1 Dates of samples taken on CaTS cruises. 

 

Year           Date Fl aCDOM 

2003  August 19 X X 
  September 9 X  
  November 4 X X 
  December 9 X X 
2004  April 13 X X 
  May 4  X 
  July 8 X X 
  August 3 X X 
  September 22 X X 
  October 29 X X 
  November 23 X X 
  December14  X 
2005  January 18 X X 
  February 16 

April 28 
June 9 

 X 
X 
X 

  August 15  X 
     

     

 

2.1.2 Caribbean Vorticity Experiment Cruises (CaVortEx) 

 

Four cruises were undertaken as part of an ONR funded project titled 

“Characterization of Caribbean Sea Mesoscale Eddies” in order to describe the 

structure of mesoscale eddies situated in the Caribbean Sea.  The first three cruises 

were performed on board of the R/V Chapman from the University of Puerto Rico 

and the last one on board the R/V Pelican from the Louisiana Universities Marine 

Consortium (LUMCON).  Table 2.2 presents a summary of CaVortEx stations where 

water samples for CDOM measurements were collected and their respective 

position. 
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TABLE 2.2 Coordinates of CaVortEx Cruises Stations 

 

 CaVortEx I CaVortEx II CaVortEx III CaVortEx IV 

Stations 
Latitude 

(N) 
Longitude 

 (W) 
Latitude 

(N) 
Longitude  

(W) 
Latitude 

(N) 
Longitude 

 (W) 
Latitude 

(N) 
Longitude  

(W) 

CAV 1 15.874 -67.920 16.176 -67.262 - - 15.566 -74.301 
CAV 2 13.834 -67.835 16.630 -66.387 17.340 -67.850 16.000 -74.292 
CAV 3 14.833 -67.833 16.420 -66.833 - - 16.105 -74.497 
CAV 4 16.083 -67.833 17.000 -65.667 17.000 -67.240 16.621 -74.512 
CAV 5 15.541 -68.847 16.801 -66.050 16.980 -67.480 17.068 -74.501 
CAV 6 15.302 -68.355 17.200 -65.300 17.000 -67.700 17.567 -74.500 
CAV 7 - - 17.417 -64.867 16.750 -67.700 17.842 -75.252 

CAV 8 - - - - 17.250 -67.700 - - 

 

2.2 Absorption spectroscopy 

 

          Absorption spectra were obtained using a Shimadzu UV 1601 double-beam 

spectrophotometer with 10 cm quartz cells.  Measurements were made against air 

between 280 to 700 nm at 0.5 nm intervals.  Each sample was scanned three times and 

the resulting spectra were averaged to reduce noise and yield a more robust spectrum 

(Conmy et al., 2004).  B & J Brand High Purity Water for Spectroscopy use was also 

scanned and subtracted from the averaged spectra.  Data were then corrected for 

baseline fluctuation and scattering by subtracting from each wavelength the measured 

absorption at 700 nm (Bricaud et al., 1981).  Figure 2.1 presents an example of the 

spectrum correction performed before the absorption coefficient calculation. 

          Absorbance values were converted to absorption coefficients using the equation: 

                                                         a(λ) = 2.303 A (λ) / r                                                          2.1 

          Where, A is the absorbance at a given wavelength, and r is the pathlength in 

meters.   
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          The absorption coefficients at 355, 412 and 443 nm were used as an index for 

CDOM abundance.  Spectral slope coefficients (S) were calculated for the range of 320-

650 by fitting each spectrum to the following equation: 

aCDOM(λ) = aCDOM(λ0)exp
-S(λ−λ0)                                              2.2 

 We used 412 nm as the reference wavelength (λ0). The non-linear regression 

was carried out in the Origin 6.0 software (Microcal Software, Inc. 1999) 

200 300 400 500 600 700

0.00
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             Figure 2.1 Example of absorbance spectrum correction. 
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2.3 Fluorescence spectroscopy 

 

 Fluorescence spectroscopy was performed with a Hitachi F-2000 fluorescence 

scanning spectrophotometer. Sample emission was scanned from 350-600 nm upon 

excitation at a wavelength of 350 nm.  The resulting spectra were normalized to the 

water-Raman intensity of the blank after being corrected by the sample Raman 

intensity. 

350 400 450 500 550 600
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         Figure 2.2 Example of a fluorescence spectrum correction 
The black line represents a raw spectrum, the red line represents a spectrum after being 
normalized to its Raman peak and the blue line represents the fluorescence intensity 
normalized to the Raman peak of the blank. 
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3. Results  

3.1 Temporal Variations at Caribbean Time Series Station 

3.1.1 CDOM range 

 

Temporal variability of CDOM absorption was characterized by quasi-monthly 

sampling at the Caribbean Time Series Station (CaTS) from August 2003-August 2005. 

For this sampling period, the value of the CDOM absorption coefficient at 355 nm in 

surface waters was found to vary from 0.037 to 0.27 m−1, with a mean value of 0.094 

m−1.   The variability of the CDOM absorption was found to decrease with depth, with an 

average range of 0.22 m−1 in the mixed layer.  Below the mixed layer, the average 

range was found to be 0.11 m−1, a two-fold decrease.  The highest mean and median 

CDOM absorption coefficients were found between 75 and 150 meters, not at the 

surface (Table 3.1).  

 
TABLE 3.1 Descriptive statistics of CDOM absorption at 355nm 

Depth (m) Mean Minimum Maximum Range Median St dev St Err 

0 0.0939 0.0368 0.2660 0.2291 0.0793 0.0562 0.0141 
10 0.0849 0.0073 0.2430 0.2357 0.0808 0.0534 0.0134 
25 0.0902 0.0361 0.2276 0.1915 0.0795 0.0481 0.0124 
50 0.0931 0.0407 0.1796 0.1389 0.0887 0.0390 0.0101 
75 0.0984 0.0560 0.1551 0.0990 0.1048 0.0310 0.0080 
100 0.0983 0.0599 0.1647 0.1048 0.0971 0.0277 0.0074 
125 0.1018 0.0553 0.1739 0.1186 0.1040 0.0314 0.0084 
150 0.1059 0.0576 0.1570 0.0994 0.1098 0.0310 0.0083 

200 0.0954 0.0507 0.1420 0.0914 0.0986 0.0271 0.0072 

 

The corresponding value of the spectral slope of the coefficient ranged from 

0.0127 to 0.0259 nm−1, and the mean value was 0.0182 nm−1.  The maximum range for 

the spectral slope was found at 50 m, and the minimum was found at 75 m.  The 
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highest mean and median slopes were found at the surface, and values tended to 

decrease with depth (Table 3.2).   

 
TABLE 3.2 Descriptive statistics of the spectral slope 

 

 

 

 

 

 

Although CaTS is located well offshore (23 nautical miles from the coast and 

3000m depth) the spectral slope values were generally similar to those found in coastal 

waters influenced by river input, which usually range from 0.013 to 0.018 nm-1 (Blough 

and Del Vecchio, 2002).  Odriozola et al. (2007) found that the range of S values 

increased at salinities above 30, indicating an alteration of the composition of the 

CDOM as the Orinoco River Plume underwent mixing with Caribbean surface water.   

 

 

   

   

   

   

   

   

   

   

   

   

   

  
 

Depth (m) Mean Minimum Maximum Range Median St dev St Err 

0 0.0182 0.0127 0.0259 0.0132 0.0184 0.0040 0.0010 
10 0.0171 0.0102 0.0297 0.0196 0.0158 0.0047 0.0012 
25 0.0164 0.0106 0.0225 0.0119 0.0154 0.0033 0.0008 
50 0.0173 0.0119 0.0405 0.0286 0.0150 0.0071 0.0018 
75 0.0146 0.0109 0.0194 0.0084 0.0152 0.0028 0.0007 
100 0.0135 0.0098 0.0227 0.0129 0.0122 0.0036 0.0010 
125 0.0126 0.0078 0.0178 0.0099 0.0123 0.0027 0.0007 
150 0.0130 0.0088 0.0248 0.0161 0.0119 0.0041 0.0011 
200 0.0119 0.0071 0.0208 0.0138 0.0112 0.0034 0.0009 
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3.1.2 Seasonal patterns of variability 

3.1.2.1 Surface 

 
CDOM absorption in the mixed layer (0-25m) at CaTS presents lower values 

during winter and spring, and higher values during summer and autumn (Fig. 3.1).  The 

maximum surface absorption for the sampling period was observed during July 2004.  

This maximum coincides with previous satellite observations of the CDOM absorption 

coefficient of the area covered by the Amazon River Plume, in which the peak of CDOM 

absorption was found to lag the Amazon’s hydrograph by one month (Hu et al., 2004).  

These results suggest that the Eastern Caribbean region is seasonally influenced by 

both the Amazon and Orinoco Rivers, since the high values in summer and autumn 

coincide with the rivers peak discharge seasons. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1 Mixed layer average of CDOM absorption coefficients at 355 nm at CaTS from 
August 2003-August 2005.
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Figure 3.2 Mixed layer average salinities at CaTS from August 2003-August 2005. 
 

 
 The near surface salinity at CaTS also presented a seasonal pattern, being 

higher during the first half of the year and lower on the latter half (Fig. 3.2).  These low 

salinity values coincide with the high CDOM absorption values, providing additional 

evidence for an allochtonous source of this material. 
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3.1.2.2 Subsurface 
 

 Vertical distribution of CDOM at CaTS tracks surface values, presenting also 

maximum values during summer and autumn, with decreasing values during winter and 

spring on the water column upper 75 m.  Below this depth, summer values remain 

higher, but the average absorption for autumn samples falls below the values found 

during winter (Fig. 3.3).  During spring we found the lowest CDOM values at most 

depths, only at the surface and 75m was this trend not followed. The lowest values were 

found during winter. 
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Figure 3.3 Mean CDOM absorption coefficient at 355nm by season 
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Figure 3.4 Mean CDOM slope by season 
 
 

Temporal variability of CDOM slope (S) displays a seasonal pattern, with lower 

surface (0m) values during autumn and winter, and higher values during summer and 

spring.  Below this depth down to 50m, autumn CDOM slopes are lower while summer 

values are generally above those of the other seasons.  Below 75m, the slopes for 

summer, winter and autumn samples follow a similar trend, generally decreasing with 

depth (Fig. 3.4). It is remarkable that around the same depths, values remain high 

during spring. 
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3.2 Spatial Variability 

 

Spatial variability of CDOM was characterized throughout the eastern Caribbean 

and extended into the northwestern Caribbean while characterizing mesoscale eddies. 

These data were also compared with previously obtained data (provided by Prof. Julio 

Morell) during cruises to the Orinoco River Plume. The value of the absorption 

coefficient of CDOM at 355 nm in surface waters was found to vary from 0.0353 to 

5.557 m−1, with a mean value of 0.77 m−1. The corresponding value of the spectral slope 

of the coefficient ranged from 0.00819 to 0.0235 nm−1, and the mean value was 0.0162 

nm−1.   

The highest values were found in the Gulf of Paria, near the mouth of the 

Orinoco River. Values remained relatively high along the Orinoco River Plume 

throughout the Eastern Caribbean (area marked as ORI 3 & 4).  High values were also 

found at the northern and southern edge of a cyclonic eddy that had entrained Orinoco 

River Plume waters (CAV I). Values outside of the plume were found to be low, 

sometimes below detection limits (aCDOM below 0.046 m
-1) (Fig. 3.5). 
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Figure 3.5 Spatial distributions of surface (0m) CDOM absorption coefficients at a) 355 nm and 
b) 412 nm  
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For analytical purposes, we assessed spatial variability of CDOM slopes along 

geographic coordinates comparing readings across the latitudinal range 12-18 ºN and 

the longitude range 63-76 ºW (Fig 3.6 and 3.7). CDOM slopes varied greatly with 

latitude, usually ranging from 0.008 to 0.024 nm−1.  This variability decreased at 

latitudes below 14 ºN, ranging from 0.008 to 0.016 nm−1(Fig. 3.6) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.6 Latitudinal plot of the CDOM slope at depths 0, 10 and 125m 
 

 
  In terms of longitude, slopes also showed high variation in the eastern 

Caribbean ranging from 0.008 to 0.023 nm−1.  Values west of 74 ºW showed also a 

decrease in variability, but in this case the slopes tended to be higher.  The CDOM 

slope range for the westernmost stations was 0.016 to 0.024 nm−1 (Fig. 3.7). 
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Figure 3.7 Longitudinal plot of the CDOM slope at depths 0, 10 and 125m 
 
 
 These differences in slope variability point to spatial-temporal differences in 

water mass sources in the Caribbean Sea.  We find lower slope values, indicative of 

terrestrial CDOM influence, at the southernmost stations and higher slope values, 

indicative of aged oceanic CDOM at the westernmost stations.   
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3.2.1. Variability due to mesoscale eddies 

 

At least 4-6 mesoscale eddies traverse the Eastern Caribbean basin each year 

(Murphy et al, 1999; Richardson, 2005), affecting the distribution of optical properties in 

the region. They can do so by promoting water mass mixing and also by advection of 

river plume waters (Corredor, et al., 2004; Canals Silander, 2005). Optical properties of 

Caribbean mesoscale eddies were characterized as part of the Caribbean Vorticity 

Experiment (CaVortEx) cruises.   

The first mesoscale eddy characterized had a cyclonic rotation and had entrained 

Orinoco River Plume waters.  This feature was studied during August 2003, which is the 

peak discharge period for the Orinoco River.  The edges of the eddy had high CDOM 

absorption concurrent with a riverine origin, whereas the eddy core had more oceanic 

characteristics (Fig. 3.8a).      

 The optical characteristics of a cyclonic-anticyclonic eddy pair were studied 

during June 2004.  There was evidence for upwelling and downwelling of CDOM, 

seemingly of autochthonous origin, on the cyclone and anticyclone side, respectively 

(Fig. 3.8b). 

 The third feature studied was not sufficiently coherent to be classified as an 

eddy, but later on developed into an anticyclonic eddy.  This anticyclone was studied in 

February 2005.  Low absorptions values were found throughout the eddy (Fig. 3.8c). 

 The fourth eddy was an anticyclonic eddy, which also presented low absorptions 

values (Fig. 3.8d).  This feature was studied during March 2005. The low absorption 

values of the last two features might be due to seasonal variation. 
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Figure 3.8 Contour plots showing a meridional cross-section of the CDOM absorption 
coefficient at 355 nm for: a) a cyclonic eddy, b) an eddy pair, c) a developing anticyclone and 
d) an anticyclonic eddy  
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Figure 3.9 Contour plots showing a meridional cross-section of the CDOM absorption 
coefficient at 412 nm for a) a cyclonic eddy, b) an eddy pair, c) a developing anticyclone and 
d) an anticyclonic eddy 
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4. Discussion 

4.1 Temporal Variation  

 

CDOM absorption and spectral slopes showed marked seasonal variability.  

These variations can be due to differences in CDOM sources and alteration of the 

material.  Carder et al. (1989) found that changes in the proportion of humic to fulvic 

acids can cause variation in spectral slopes. Other possible causes for these changes 

include alteration of CDOM by photobleaching (Del Castillo et al., 1999) and CDOM 

production through biological processes (Nelson and Siegel, 2002).  

The time series contour plot of CDOM absorption reveals what appears to be 

either vertical displacement through time of CDOM from surface waters to deeper 

waters down to 200 meters or subsurface CDOM production by the microbial 

community (Fig. 4.1). Since these high values are found below the deep chlorophyll 

maximum and no evidence is available for subduction of surface waters, the latter 

hypothesis is more likely. 

 

 

 

 

 

 

 
 
 
Figure 4.1 Contour plot of CDOM absorption coefficient at 355 nm for CaTS cruises May 2004-
August 2005 
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Figure 4.2 Seasonal variations of CDOM slope and absorption averaged by depth layers a) 0-
50 meters b) 75-100 meters and c) 125-200 meters. 
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Comparison of temporal trends of aCDOM and S shows that the maximum mean 

surface CDOM absorptions coincide with the highest mean surface slopes; both found 

during the summer (Fig 4.2a). The high aCDOM suggests an allochtonous source, and the 

high slope suggests photoxidative removal of the material (Vodacek et al., 1997). We 

hypothesize that this surface maximum during summer is due to the influence of the 

Amazon River Plume during this season.  

Chérubin and Richardson (2007) analyzed salinity maps for the Caribbean region 

and found seasonal variations of the freshwater plumes originated from the discharge of 

the Amazon and Orinoco Rivers.  They found that the Amazon plume extends towards 

the Caribbean during the first half of the year, during the latter half there appeared to be 

advection of the plume by the NBC retroflection.  Even after the advection, some 

remnant plume remained northwest of the retroflection.  This remnant of the Amazon 

plume merged with the Orinoco River plume during August, when the Orinoco presents 

its peak discharge.  This has been previously observed after analyzing ocean color 

imagery (Müller-Karger et al., 1988; Müller-Karger et al. 1989; Hu et al. 2004).   Also, 

the formation of NBC rings that detach from the retroflection with Amazon plume waters 

has been found to transport these waters to the Caribbean (Fratantoni and Glickson, 

2002).   

During autumn, the Orinoco River plume appears to dominate the region.  The 

Amazon River water must travel almost 2000 km in order to reach the Caribbean Sea 

(Chérubin and Richardson, 2007).  Therefore, the CDOM present in its plume would be 

exposed to solar radiation for a longer period of time. This would explain the high slopes 

observed during summer, which could indicate significant photodegradation of the 
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material.  On the other hand, the Orinoco River plume must travel only 200 km, arriving 

faster to the Caribbean region (Chérubin and Richardson, 2007).  Consequently, CDOM 

present on the plume would be less exposed to solar radiation so its spectral slope 

would be expected to be lower than CDOM that has undergone significant 

photobleaching.  These differences in residence time might explain why the surface 

spectral slopes are lower during autumn.   

In subsurface samples, the CDOM slopes values follow a similar trend during 

most seasons. It is remarkable that S values are higher in subsurface samples during 

spring, while the CDOM absorption is lowest during this season.  Oceanic samples 

usually have low CDOM absorption and high spectral slopes.  We chose two 

representative stations for oceanic sources to the east and to the north of CaTS.  The 

eastern station was station 2 (6.17 ºN, 40.41 ºW) during a cruise through the Atlantic 

Ocean (AEROSE), in which aCDOM 355 was found to be low (0.060 m
-1) and the slope 

was high (0.022 nm-1).  Similar trends have been observed to the north at the Bermuda 

Atlantic Time-series Study (31.67 ºN, 64.17 ºW), with average absorption values of 

0.088 m-1 and average spectral slopes of 0.025 nm-1 during spring (Nelson et al., 1998 

as cited in Blough and Del Vecchio, 2002).   

The seasonal differences observed in both absorption and spectral slopes at 

CaTS suggest diverse sources of CDOM for the Eastern Caribbean basin. This could be 

due to changes on circulation patterns and water mass formations.   
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4.2 Covariability of surface absorption to fluorescence 

 

A moderate correlation (r2=0.43) is observed when comparing near surface 

aCDOM to the normalized fluorescence intensity (plot not shown).  A strong correlation 

(r2=0.73) arises when comparing the fluorescence peak wavelengths with the 

absorption values for surface samples (Fig 4.3).  This strong correlation indicates a 

terrestrial origin of the higher absorption values. Marine humic-like materials present 

emission maxima towards the shorter wavelengths, whereas terrestrial humic-like 

materials display its emission maxima at longer wavelengths due to their increased 

aromatic chemical nature and higher molecular weight (Coble, 2007).   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.3 Plot of surface aCDOM 355 as a function of fluorescence peak wavelength 
  The relationship is expressed by the linear function  
   aCDOM 355  = 0.00972 (Peak λ) - 4.17233 (r

2= 0.73; n= 10)  
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4.3 Covariability of surface measurements to salinity 

 

The relationship between aCDOM and salinity at CaTS suggests non conservative 

behavior (Fig. 4.4). Since salinity is typically a conservative constituent of water, 

examining the relationship between this parameter and the CDOM absorption can help 

us assess whether it is behaving conservatively or not (Stedmond and Markager, 2003). 

When CDOM behaves conservatively there is a linear inverse correlation between 

absorption and salinity, which indicate that only dilution is important during the mixing of 

different water masses (Stedmond and Markager, 2003).  Deviations from this mixing 

line can occur as a result of in situ CDOM production and/or removal processes 

(Twardowski and Donaghay, 2001).  Such deviations have been previously reported for 

the Orinoco River Plume (Blough et al., 1993; Del Castillo et al., 1999; Morell and 

Corredor, 2001; Odriozola et al., 2007).   

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4 Plot of surface aCDOM 355 as a function of salinity at CaTS 
  The relationship is expressed by the linear function  
   aCDOM 355  = 1.52121 (Salinity) - 0.04085 (r

2= 0.24; n= 16)  
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This finding of non-conservative behavior combined with the observed slopes 

and fluorescence measurements is consistent with our hypothesis that the CDOM that 

reaches the Northeastern Caribbean region during summer has a terrestrial origin and 

goes through significant photodegradation.  

On the other hand, the samples around the Caribbean presented a trend similar 

to previous studies for the Orinoco River plume (Blough et al., 1993; Del Castillo et al., 

1999), with a linear relationship between aCDOM and salinity (Fig 4.5).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5 Plot of surface aCDOM 355 nm as function of salinity for the Caribbean  
The relationship is expressed by the linear function  
   aCDOM 355  = -0.22181 (Salinity) + 8.03955 (r

2= 0.78; n= 40)  
 
 

When comparing salinity and spectral slopes we find typical results for both the 

Caribbean and CaTS samples; presenting low and fairly constant slopes at lower 

salinity (Fig. 4.6).  At salinities above 30 spectral slopes increase rapidly and present 

higher variability, as concentration of marine CDOM begins to reach those of the diluted 
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freshwater CDOM (Coble, 2007).  Previous studies have found a similar relationship for 

areas influenced by freshwater inputs (Blough et al., 1993, Del Castillo et al., 1999, 

Conmy et al., 2004). 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 4.6 Plot of surface Salinity vs. CDOM slope for samples through out the Eastern 
Caribbean Basin (ECB) and CaTS 
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4.4 Spatial Variation 

4.4.1 North-South Variation 

 

The value of the absorption coefficient of CDOM at 355 nm in surface waters was 

found to vary from 0.0353 to 0.445 m−1 in the northern part of the Caribbean around 17º 

N.  To the south, the values ranged from 1.894 to 5.557 m−1 around 10º N.   

 There is a North-South gradient of CDOM with higher values on the 

southernmost samples indicating the influence of the Orinoco River Plume.  The lowest 

CDOM values were found above 16º N (Fig. 4.7).  
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Figure 4.7 Latitudinal plots of surface (0m) CDOM absorption coefficients at a) 355 nm and b) 
412 nm 
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4.4.2 East-West Variation 

 
The value of the absorption coefficient of CDOM at 355 nm at surface waters 

was found to vary from 0.0817 to 5.557 m−1 at the eastern part of the Caribbean around 

61º W.  At the west, the values ranged from 0.0668 to 0.0967 m−1 around 74º W. 

Variation of the CDOM absorption coefficient with longitude was high, except for 

the westernmost samples, in which the absorption was found to be below 0.1 m−1 (Fig. 

4.8).  This concurs with the variation observed on the spectral slopes.  The high spectral 

slopes and low CDOM suggest an oceanic origin for these waters. 
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Figure 4.8 Longitudinal plots of surface (0m) CDOM absorption coefficients at a) 355 nm and b) 
412 nm 
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4.5 Contribution to the attenuation of photosynthetically active 
radiation 

 

 There is a strong linear relationship (r2= 0.86) between CDOM absorption and 

the vertical attenuation coefficient at 412 nm (Fig. 4.9).  This provides further evidence 

that absorption at lower wavelengths is mainly due to CDOM, as has been previously 

stated (Blough et al., 1993, Del Castillo et al., 1999). 

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

   

  
 Figure 4.9 Plot of surface aCDOM 412 vs. Kd 412  
  The relationship between them is expressed by the linear function  
   Kd 412 = 0.9071 (aCDOM 412) + 0.00424 (r

2= 0.86; n= 35)  

 

 Assuming absorption of other substances to be negligible, we analyzed the 

percentage contribution of phytoplankton and CDOM to total light absorption in the 

water column.  We computed in vivo phytoplankton absorption using a formulation of 

the chlorophyll-specific absorption a φ(λ) (Bricaud et al., 2004): 
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CDOM dominates light absorption at most depths throughout the year, most 

notably during the summer.  Only during spring and winter does phytoplankton equals 

or dominates light absorption at certain depths (Fig 4.10).  This again denotes the 

significant role of South American Rivers in modulating the optical properties of Eastern 

Caribbean waters.   
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5. Conclusions 

 
1. In surface and near surface waters, light attenuation at shorter wavelengths is 

mainly due to absorption by chromophoric dissolved organic matter (CDOM) 

transported in the Orinoco and Amazon River plumes during autumn and summer. 

2. In subsurface waters CDOM still contributes significantly to the total absorption when 

contrasted with phytoplankton absorption. 

3. Mesoscale eddies affect the spatial and temporal distribution of CDOM by advection 

of the Amazon and Orinoco River plumes into the Eastern Caribbean basin creating 

complex mosaics of optically clear and optically dense waters. 

4.  CDOM that reaches the NE Caribbean during summer present higher absorption 

and spectral slopes than that found later in the year.  During autumn, CDOM 

absorptions are relatively high although lower than summer. The higher slopes 

indicate photodegradation of the material, pointing towards predominance of older, 

Amazon River plume waters in summer followed by the intrusion of Orinoco River 

plume water in the fall. 

5. Although we did not sample the western Caribbean as intensively, CDOM loads of 

surface waters in that region appear to be lower and less influenced by continental 

runoff. 
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