
LYNX: AN OPEN ARCHITECTURE FOR CATALYZING THE

DEPLOYMENT OF INTERACTIVE DIGITAL GOVERNMENT

WORKFLOW-BASED SYSTEMS

By

Iván P. Vélez-Ramı́rez

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
in

COMPUTER ENGINEERING

University of Puerto Rico
Mayagüez Campus

2006

Approved by:

Manuel Rodŕıguez, Ph.D. Date
Member, Graduate Committee

Jaime Seguel, Ph.D. Date
Member, Graduate Committee

Bienvenido Vélez, Ph.D. Date
President, Graduate Committee

Ana Carmen González, M.S. Date
Representative of Graduate Studies

Isidoro Couvertier, Ph.D. Date
Chairperson of the Department

ABSTRACT

LYNX: AN OPEN ARCHITECTURE FOR CATALYZING

THE DEPLOYMENT OF INTERACTIVE DIGITAL

GOVERNMENT WORKFLOW-BASED SYSTEMS

By

Iván P. Vélez-Ramı́rez

Web service based workflows provide support for aggregating web services into

new higher-level web services, but do not support direct interaction with people. On the

other hand, traditional collaboration tools like email or instant messaging do not provide

the necessary support for structured business processes. In addition, building or modifying

new workflow application with current software tools is expensive and time consuming since

it requires customized programming process for the presentation, validations, and required

business logic.

We introduce Lynx, a new architecture for workflow systems based on Web Services

that leverages on current standards and broadly known technologies such as XML, e-mail,

BPEL and XForms, to reduce the amount of code and thus the cost and time of developing

and maintaining a Web-based workflow application, and interact with human partners via

e-mail based forms without requiring a specialized client. We illustrate the usefulness Lynx

in a Digital Government scenario.

ii

RESUMEN

LYNX: UNA ARQUITECTURA ABIERTA PARA

CATALIZAR EL DESPLIEGUE DE SISTEMAS DE

FLUJOS DE TRABAJO DE GOBIERNO DIGITAL

Por

Iván P. Vélez-Ramı́rez

Flujos de trabajo basados en servicios Web proveen apoyo para agregar servicios

Web en servicios de más alto nivel, pero no apoyan interacción directa con personas. Por

otro lado, herramientas tradicionales de colaboración como correo electrónico o mensajes

instantáneos no proveen apoyo para procesos estructurados. Además, desarrollar o modificar

nuevas interfases de aplicaciones de flujos de trabajo con herramientas tradicionales es

costoso y requiere mucho tiempo por la programación para la presentación y validaciones,

y por la lógica del proceso requerida.

Introducimos Lynx, una arquitectura nueva para sistemas de manejos de flujo

basados en servicios Web que se basa en estándares ampliamente conocidos como XML,

email, BPEL y XForms, para reducir el costo y tiempo que toma desarrollar y mantener

una aplicación de flujo de trabajo, y comunicarse con personas a través correo electrónico

con una interfase basada en formularios sin requerir un cliente especializado. Mostramos la

utilidad de nuestro método en un escenario de Gobierno Digital.

iii

Copyright c© by

Iván P. Vélez-Ramı́rez

2006

iv

To my parents, for their unconditional support

v

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Bienvenido Vélez, for his support, and
for sharing his valuable time, comments, recommendations, and advice to carry out this
research. I also wish to thank the members of my committee, Dr. Manuel Rodŕıguez and
Dr. Jaime Seguel for their support, suggestions, comments and reviewing my work. Thanks
to the graduate studies representative, Prof. Ana Carmen Gonzalez, for her comments on
the thesis.

A special thanks to Prof. Rafael Fernández-Séın for his advice and originally
suggesting the idea of a workflow system for the Registry of Deeds that later became a
scenario for developing an application using Lynx, and for his continued support during my
years working at the Space Information Laboratory (SIL).

This work was supported by the UPRM Digital Government project, under the
NSF Grant EIA-0306791.

vi

TABLE OF CONTENTS

LIST OF FIGURES x

1 Introduction 1
1.1 Overview . 1
1.2 Problem Statement . 4
1.3 Proposed Solution . 5
1.4 Research Objectives . 6
1.5 Summary of Contributions . 7
1.6 Thesis Structure . 7

2 Related Work 9
2.1 Web Services . 9
2.2 Business Processes Using Web Services . 10
2.3 Web Forms . 14

2.3.1 HTML Forms and other Web Form technologies 14
2.3.2 XForms . 15

2.4 Native XML Databases . 21

3 Lynx Architecture 23
3.1 BPEL Execution Engine . 24
3.2 Outgoing Email Web Service . 25
3.3 Other Partner Web Services . 25
3.4 Incoming Email Gateway . 25
3.5 Email Client . 26
3.6 XForms Player . 26
3.7 Document Repository . 27
3.8 User, Role and Process Repository . 27
3.9 Workflow Querying Subsystem . 27
3.10 Chapter Summary . 28

4 Supporting Human Interaction through Email with Lynx 29

vii

5 Developing an Application using Lynx 37
5.1 Introduction . 37
5.2 Business Process Re-engineering . 39
5.3 XML Workflow Document Definition . 39
5.4 External Interface Description . 43
5.5 XForms Development . 46
5.6 Process Description . 47
5.7 Web-based Interface to the Workflow Application 53
5.8 XML Storage Subsystem . 60
5.9 Developing a New Application Using Lynx 61

6 A Workflow-based Application to Track the Flow of Legal Cases in the
Puerto Rico Judiciary 63
6.1 Introduction . 63
6.2 Supporting Software Substrate . 64
6.3 Document Definition . 67
6.4 External Interface Description . 71
6.5 XForms Development . 72
6.6 Process Description . 79
6.7 Web-based Interface . 80
6.8 XML Storage Subsystem . 82
6.9 Summary . 83

7 Experiments and Results 84
7.1 Introduction . 84
7.2 Deployment and Configuration . 84

7.2.1 Server Configuration . 84
7.2.2 Email Server . 85
7.2.3 Client Configuration . 85

7.3 Performance Evaluation . 85
7.3.1 Methodology . 86
7.3.2 Results . 87

7.4 Qualitative Analysis . 93

8 Conclusions and Future Work 103
8.1 Research Conclusion . 103
8.2 Future Work . 104

BIBLIOGRAPHY 105

viii

APPENDICES 109

A Experiment BPEL Tasks 110

ix

LIST OF FIGURES

1.1 Sample Registry of Deeds Scenario . 2
2.1 XForms Summary . 16
2.2 Sample XForms code . 17
2.3 XForms Model connecting to many possible user interfaces 18
3.1 System Architecture . 23
4.1 Lynx‘s Email Gateways . 30
4.2 XML Schema Diagram for Outgoing Email Web Service 31
4.3 The XFormsCreator Java Interface . 32
4.4 Email Client showing threaded Lynx messages 33
4.5 Sample XForms Email Submission Element 34
4.6 Sample WSDL Message Definitions . 35
5.1 Sample Registry of Deeds Scenario . 38
5.2 Microsoft Word Template of a PRRD Document 40
5.3 XML Schema Diagram for a Mortagage Cancellation Document 41
5.4 XML Schema Diagram Containing Common Types Used Among Documents 42
5.5 WSDL Message Definition for the PRRD Process 43
5.6 WSDL Operation Definitions for the PRRD Process 44
5.7 WSDL Correlation Definitions for the PRRD Process 45
5.8 WSDL PartnerLinkType Definitions for the Lawsuit Process 45
5.9 AnalystXForm Java Class Implementing XFormsCreator Interface 46
5.10 XForms for the Mortgage Cancelation Document 47
5.11 BPEL Components for the PRRD Process 48
5.12 Partner Links Definition in the BPEL Process 49
5.13 Partner Definition in the BPEL Process . 49
5.14 Variables in the BPEL Process . 50
5.15 Correlation set in the BPEL Process . 50
5.16 PRRD BPEL Process main activity . 51
5.17 Invoking the Outgoing Email Web Service to Interact with an Analyst . . . 52
5.18 Receiving the Document that Results from the Interaction with an Analyst 53
5.19 E-R Diagram for Lynx Database . 54
5.20 Log XML Schema . 55
5.21 Document Status Page . 56
5.22 Using JavaBeans with JSTL in the JSP web interface 57

x

5.23 Document Status Log View . 58
5.24 Document Status Attachments view . 58
5.25 Workflow Process Detail Graph . 59
5.26 Document Type Configuration . 61
6.1 Flowchart of a lawsuit case . 64
6.2 XML Schema Diagram for Schema Types Common among Documents . . . 68
6.3 XML Schema Diagram for a Lawsuit Document 69
6.4 XML Schema Diagram for an Answer Document 69
6.5 XML Schema Diagram for a Summons Document 70
6.6 XML Schema Diagram for a Motion Document 70
6.7 WSDL Message Definition for the Lawsuit Process 71
6.8 XForms for a Lawsuit Document . 73
6.9 XForms for a Summons Document . 74
6.10 XForms for an Answer Document . 75
6.11 XForms for a Motion Document . 76
6.12 XForms for a Preliminary Conference Report Document 77
6.13 XForms for Validating a Lawsuit Document 78
6.14 Lawsuits status web page . 80
6.15 Specific case status page . 81
6.16 Lawsuit Process Document Type Configuration 82
7.1 Average documents processed per minute 87
7.2 Average time taken by each task for 2 KB documents 88
7.3 Average time taken by each task for 70 KB documents 89
7.4 Average time taken by each task for 200 KB documents 90
7.5 Average time taken by each task for random-sized documents 91
7.6 Time each task takes as percentage of total time 92

xi

CHAPTER 1

Introduction

1.1 Overview

Digital Government information systems provide support for government officials

to satisfy their citizen’s needs. Such systems could go from simple information displays, to

systems that automatically canalize user requests throughout a government agency, main-

tain relevant document data and improving the overall quality of the services provided

to the citizen. Thus, workflow systems are sometimes adopted to automate government

processes by specifying how tasks are structured, who performs them, what their relative

order is, how they are synchronized, and how information flows through the process.

For example, a workflow system would be helpful for government agencies such

as the Puerto Rico Registry of Deeds. The Registry of Deeds holds a public archive that

contains all the documents about property transactions, wills, judicial orders and other legal

documents. The Registry of Deeds has a large backlog of documents pending for processing

due to the meticulous verifications and validations that are currently manually conducted by

several specialized human analysts. Many of these processing steps can be automated and

1

2

canalized by a workflow system. However, the required technical expertise is often not easily

available. A workflow system such as Lynx may significantly increase document throughput

while simultaneously reducing cost and increasing reliability and quality of service at a cost

more affordable by small and regional governments.

Figure 1.1: Sample Registry of Deeds Scenario

A simplified version of a process of registering the purchase of a property in Puerto

Rico is shown in Figure 1.1. The notary public, a lawyer in Puerto Rico’s system, writes a

3

property title deed document and submits it along with a summary called a presentation

minute. This document is received by a receptionist that makes some initial validations.

The document is then passed to a suitable analyst to verify that the information contained

in the document is correct and matches with the documents already in the Registry pertain-

ing to previous transactions on the same property. The document can be verified by several

analysts if necessary. The analysts generate a second summary of the document, called an

inscription minute, and can add annotations if there are minor errors that require clarifi-

cations or explanations. If there is a serious incongruence (registral fault) the document is

returned to the notary public. After validation, the document reaches the Registrar himself.

This person certifies that all the information is correct and officially adds the inscription

minute to the Registry.

A process like this may take several days or weeks through which the workflow

system must keep track of every step and provide a query interface to find out the status

of every running process at all times. This scenario is typical of many other governmen-

tal processes that require a long-running sequence of validations and approvals involving

multiple people and systems making decisions and providing information.

Our experience in regional and municipal Digital Government environments has

consistently demonstrated the need for familiar and broadly accessible interaction mecha-

nisms and user interfaces for the effective adoption of information technologies (IT) given

the relatively low level of exposure of personnel to IT in these settings. Email is familiar for

people, provides a simple means of communication for person to person interaction, allows

easy interconnectivity between all participants, and most importantly it allows mobility and

capability of working from a distant and weakly connected location through the Internet.

Email has the potential to free participants from the constraints of space and time allowing

senders and recipients to communicate at convenient times and places [37]. Studies have

consistently demonstrated the striking number of different uses for email: email can support

4

conversations, operate as a task manager, as a document delivery system, an archive, and

contact manager, to name a few [37]. Also, from a technical standpoint, email operates using

simple ubiquitous protocols available across links of widely varying qualities, firewalls and

other security membranes. For example, participants outside a firewall can easily interact

with workflows thanks to email without having to give them an access to the intranet.

Furthermore, workflow applications are expensive to build and maintain. Yet, for

either a business or a government agency, building a workflow is sometimes indispensable.

However, the business process expert who generally has little or no programming skills

must resort to a software vendor to customize the business application. This procedure is

expensive and time-consuming [43].

1.2 Problem Statement

Workflow systems allow the specification and evolution of complex business processes

without requiring complex programming skills. Ordinary business process workflows are ori-

ented towards interacting with human users directly via some interface that runs at their

workplace desktop [15]. This approach typically follows a pull-based model, where the user

is burdened with periodically logging in and inspecting the system to verify the status

of pending workflow transactions [17] requiring their attention. On the other hand, Web

service based business processes provide support for aggregating Web services into new

higher-level Web services by means of process composition [34]. This approach often pro-

vides insufficient support for direct or synchronous interaction with persons. Collaboration

tools like email or instant messaging by themselves do not provide the necessary support

for structured business processes.

Building a new workflow application user interface with current software develop-

ment tools, or modifying an existing one, is expensive and time consuming since it requires

5

a complex customized programming process to implement the graphical user interface docu-

ment validations, and to embed the business logic. Traditional approaches such as the usage

of HTML forms have limited features, require scripting to accomplish common tasks, and

integrate poorly with XML. In addition, traditional HTML forms introduce more complex-

ity in programming Web applications. This complexity originates from several main sources

[13]. First, dynamic web pages are often dynamically generated, which makes application

code harder to understand and makes troubleshooting more difficult. Second, even when

dynamic Web pages are a single source code entity, they are often composed of a mix of

markup languages, client-side scripting and server-side function calls, which makes them

difficult to read. In addition, the skills needed to understand such source code are contin-

uously expanding, which makes maintenance difficult. Third, the high number of software

technologies used in some Web applications makes those applications complicated to design

and maintain. These technologies can include JavaScript , JavaServer Pages with taglibs,

servlets, Struts, XSLT, DOM, SOAP, Web Services, Enterprise JavaBeans, etc., along with

related protocols and configuration data. Finally, traditional form technologies do not work

for interaction through Email because they need direct communication with a server that

provides the data and validations required through HTTP. Trying to simplify and reduce

all this complexity and overhead is of particular importance in Digital Government envi-

ronments where programming skills are severely scarce and difficult to hire.

1.3 Proposed Solution

We propose Lynx, a new architecture for workflow systems based on Web Services

that leverages on current standards and broadly known technologies, such as email, XML

and XForms, in order to reduce the amount of code and thus the cost of developing, de-

ploying and maintaining a Web-based workflow application. Lynx stores the information

in XML throughout the whole process. This is achieved using XForms, message-style Web

6

services, a BPEL engine, and a native XML database. Lynx also overcomes some of the lim-

itations of traditional workflow systems, collaboration tools, and graphical user interfaces

by providing a web service through which a Web services based workflow application can

interact with human partners via an email based forms interface without requiring a special-

ized (a.k.a. thick) client. Lynx can extend many Web service based workflow engines with

the ability to send transaction requests to human workflow partners using email not only as

the transport mechanism, but also as the interaction application. Using Lynx, users carry

out workflow transactions by processing electronic forms transported to/from their email

accounts. The email client implements part of the graphical user interface (GUI). Lynx

supports the XForms [28] standard and generates each form based on the type of document

being transported and the role of the user accessing it. The request for the transaction is

generated by a business processes typically specified using a language such as the Business

Process Execution Language (BPEL) [11]. In summary, our work should provide a general

purpose email messaging architecture to interact with human partners, reduce the amount

of custom code required to develop and maintain the application, and support email-based

access in order to allow government employees to interact with automated workflow engine

components using familiar interfaces and without requiring re-learning of new applications.

1.4 Research Objectives

The specific objectives of this research are:

• Design a general purpose email messaging architecture to allow human partners in-

teraction with the BPEL workflow processes.

• Develop a general purpose outgoing email Web service.

• Develop an incoming email gateway to the BPEL engine.

• Develop a prototype implementation of the Lynx architecture.

7

• Design and develop two Digital Government applications based on Lynx.

• Define and implement BPEL processes specifying the workflow of a subset of docu-

ments most widely used by each Digital Government application.

• Design and implement XForms user interfaces for all required documents.

• Conduct a series of analysis on the system’s performance in the experimental Digital

Government applications.

1.5 Summary of Contributions

The main contribution of this research is the design and development of Lynx, a

general purpose email messaging architecture to interact a Web-services based workflow with

human partners by leveraging on current standards and broadly known technologies such

as BPEL, Email, XML standards and XForms. Lynx also leverages on Email, XForms and

a Native XML Database to reduce de amount of custom code necessary to develop the user

interfaces of a document-based workflow application from scratch. We illustrate the useful-

ness of the Lynx architecture with the design and development of two Digital Government

applications. Also, a performance evaluation of the architecture was made to verify that

the architecture achieves acceptable performance for the type of applications supported. Fi-

nally, as a result of this research two papers were published and presented at the IEEE 2006

International Conference of Internet and Web Services Applications (ICIW/WEBSA 2006)

[23] and the ACM 7th International Conference on Digital Government Research (DG.O

2006) [22] conferences.

1.6 Thesis Structure

The remainder of this thesis is structured as follows. Chapter 2 discusses related

work that serves as basis for our research. Chapter 3 presents an overview of the Lynx

8

architecture and its components. In Chapters 4, 5 and 6 we present a detailed description

of Lynx implementation and integration with a Web services based workflow. Chapter 7

presents experimental results from an evaluation and analysis of Lynx. Finally, Chapter

8 presents a summary of our contributions, conclusions and suggests directions for future

work.

CHAPTER 2

Related Work

This chapter presents background information, previous work, and relevant publi-

cations related to this research. The topics include: Workflows, Web Services, Web forms

technologies, and native XML databases.

2.1 Web Services

A Web service is a software system designed to support interoperable machine-to-

machine interaction over a network. It has an interface described in a machine-processable

format. Other systems interact with the Web service in a manner prescribed using SOAP

messages, typically transported using HTTP with an XML serialization in conjunction

with other Web-related standards[42]. The eXtended Markup Language (XML) is used

to provide information about the data in a document to users of varying platforms. The

Simple Object Access Protocol (SOAP) [46] is used for cross-platform inter-application

communication. The Web Services Description Language (WSDL) [6] is used to describe

the online services.

9

10

2.2 Business Processes Using Web Services

Business Process Execution Language for Web Services (BPEL4WS, or BPEL) is

a standard language to specify how Web services are combined into higher-level business

processes by describing workflows or orchestrations of Web services invocations [34].

The BPEL data model is built on top of WSDL 1.1 messages and XML Schema 1.0

[44] types. All data used within a process model is defined using WSDL message definitions

and XML schema types and elements. XPath 1.0 is used for data manipulation. Expressions

used for the selection of data, for conditions, and for other purposes are specified as XPath

expressions.

Fundamentally, Web services can be modeled as stateless processors that accept

messages, process them in some way, and formulate a response to return to the requestor

[34]. Yet, in the real world a Web service is not just exposing simple and stateless services.

Web services can be reused and combined into more complex services that may provide

multiple interactions with a partner for a single business process.

Business processes may run for hours, days, or months, and they may invoke other

long-running services. A business process can contain steps that require waiting for external

events or human interaction. The aggregation of Web services to new, higher-level Web

services by means of process compositions provides increased flexibility. Such compositions

can adapt more quickly to changing business needs, compared to hard-coded applications

[34]. BPEL allows modularization and decomposition of structured activities by working

through well-defined interfaces.

However, human user interactions are currently not covered by BPEL, which is

primarily designed to support automated business processes based on Web services. In

11

practice, however, many business process scenarios require user interaction [50]. Yet, collab-

oration tools alone, like email or instant messaging, do not provide the necessary support for

structured business processes. Although Web services are designed for machine-to-machine

interaction, a service-oriented architecture with Web services could be applicable for in-

teractions involving humans. This could allow the creation of workflows where the service

invocations could be replaced by humans providing a requested information or requiring

skilled human validation. [50] discusses scenarios and outlines features that need to be

supported by BPEL for interactions with people. Our research helps to overcome some of

these limitations by enabling email as an alternative mechanism for interaction between a

Web service based workflow process and human users.

In addition to the common HTTP transport used for Web services, the Apache

Axis Mail Transport [8] allows the transmission of SOAP messages via email through SMTP.

Its intention is to send Web service messages between two Web services and not between

a Web service and a human user via email. The receiving application must be capable of

extracting the payload from the SOAP message which may require running a Web service

on the client side. Lynx acts as a gateway between a Web services based workflow process

and a human partner.

Chakraborty [15] proposes a system called PerCollab which allows convenient com-

munication and collaboration mechanisms (such as SMS, IM and email) to support the

activities of a workflow. However, they had to extend IBM’s BPWS4J [20] BPEL language

implementation to implement this functionality. Our goal is not to require modifications

to the workflow language. We made Lynx generic so that it doesnt even require a specific

BPEL execution engine.

GreenBSN [52] is a middleware architecture for supporting mobile business service

networks. Its main goal is to allow vendors to sell their software as a service, using mobile

12

wireless devices. GreenBSN’s service output adaptor module is similar to our proposed out-

going email server component because it delivers communication through a user’s preferred

channel, such as SMS or email. However it is mostly used for asynchronous notifications

that only deliver the result of a business process Web service invocation. Lynx allows com-

plete interaction with business processes by allowing human partners to both receive and

send information pertinent to the workflow through their emails.

Podgayetskaya [38] proposes an architecture and model for business process sup-

port for e-government using a workflow engine and Web services. However, it uses RMI

for the workflow enactment service, and a Web-based user interface instead of Web services

and email tools.

Ranganathan [3] proposes an architecture that integrates workflow into a pervasive

computing environment. This architecture provides a system that generates a customized

workflow that describes how various services should interact with one another. However it

lacks a mechanism for human interaction through email. Human interaction is allowed via

a custom Web interface generated by a user-interface Web service thus requiring significant

development effort and specialized user training.

Microsoft offers BizTalk Server 2004, an integration server that allows develop-

ment, deployment, and management of integrated business processes, and XML-based Web

services. However, BizTalk can only export its process definitions to BPEL. Also, although

BizTalk has different adapters that provide different communication mechanisms, its SMTP

adapter consists only of a send adapter [35] that is mainly used for notifications. Thus, it

cannot receive messages through email. Recently, BizTalk Server 2006 introduced a new

built-in adapter for POP3 protocol [30]. The POP3 adapter enables BizTalk applications

to retrieve e-mails and their attachments from a mailbox using the POP3 protocol.

The BEA WebLogic Integration Business Process Management [4] provides a work-

13

flow management system to automate business processes. BEA workflow interacts with

system users via a Worklist or a custom client application using the following methods:

directly through the Worklist or custom client, internal XML/JMS messaging with the

Worklist or a custom client application to perform additional operations, or e-mail. The

e-mail capabilities only allow sending e-mail to clients outside the WebLogic Integration

system.

Oracle Workflow [32] provides a complete business process management system

that supports business process definition, business process automation, and business process

integration. Oracle Workflow enables modeling, automation, and continuous improvement

of business processes, routing information of any type according to user-defined business

rules. Oracle Workflow has outgoing and incoming email notifications. However, the in-

coming responses that are submitted by email should either follow some specific syntax

carefully when formatting the reply, or provide links to external resources.

IBM WebSphere MQ Workflow supports long-running business process workflows

as they interact with systems and people. Communication is done using the MQ protocols

and the workflow worklist through web portals. It also features an email adapter [21] that

has both error notification and business object processing. The email adapter can receive

emails with business objects but they need to be in a specific format, and a handler must

be programmed for each different type of business object.

Similarly, many other existing applications do not include complete interaction

through email. Most only provide notifications through email or instant messaging. Both,

Bonita [5] and YAWL [51] feature a notification service through an instant messaging pro-

tocol. jBPM [27] specifies the business process using an ad-hoc language called jPDL, and

only supports simple notifications through Java Messaging Service.

14

2.3 Web Forms

On the Web, forms have become very common since nearly all user interaction is

done through some type of form. Although it is a very used technology, traditional Web

forms are showing its age. In this section several current Web form technologies will be

discussed.

2.3.1 HTML Forms and other Web Form technologies

According to the HTML specification [19], an HTML form is a section of an HTML

document that contains normal content, markup, and special elements called controls such

as checkboxes, buttons, text inputs, selection menus, hidden controls and labels on those

controls. Users generally ”complete” a form by modifying its controls, entering text or

selecting menu items, before submitting the form to an agent for processing (e.g., to a Web

server, to a mail server, etc.)

Yet, traditional HTML forms predate XML by more than 5 years. Thus, they have

several limitations:

• Poor integration with XML

• Limited features make even common tasks dependent on scripting

• Device dependent, running well only on desktop browsers

• Blending of logic and presentation

• Limited accessibility features

• Limited client side validation

Additionally, some frameworks like the Java Server Faces (JSF) [18] aim to bring

rapid user interface development with server-side Java by allowing to create user inter-

15

faces with drag-and-drop and providing much of the plumbing that JSP developers have

to implement by hand. JSF provides a set of extensible user interface components and an

event-driven programming model. These components are transformed into different con-

crete, client-side user interfaces through the use of render kits. JSF’s event model is strongly

typed and allows developers to write server-side handlers for events generated on clients.

More recently, technologies such as Ajax [24], or Asynchronous JavaScript + XML,

have been changing the way interaction is done on the Web. Ajax incorporates presenta-

tion using XHTML and CSS, dynamic display and interaction using the Document Object

Model, data interchange and manipulation using XML and XSLT, asynchronous data re-

trieval using XMLHttpRequest, and JavaScript binding everything together. However, Ajax

applications involve running complex JavaScript code on the client, thus it is technically

difficult to make that complex code efficient and bug-free.

2.3.2 XForms

XForms is an XML application that represents the next generation of forms for the

Web [28]. By splitting traditional XHTML forms into three parts, XForms model, instance

data, and user interface, it separates presentation from content, allows reuse and gives

strong typing, reducing the number of round-trips to the server, as well as offering device

independence and a reduced need for scripting. XForms is not a free-standing document

type, but is intended to be integrated into other markup languages, such as XHTML.

XForms have been designed to meet the limitations of HTML forms listed in Section

2.3.1:

• Excellent XML integration (including XML Schema)

• Provide commonly-requested features in a declarative way, including calculation and

validation

16

• Device independent, yet still useful on desktop browsers

• Strong separation of logic from presentation

• Universal accessibility

• Supports client-side validation

An XForms form consists of separate sections that describe what the form does,

and how the form looks. These are:

• XForms Model - the description of the form.

• Instance Data - initial form data that will be read and written during form inter-

action.

• XForms User Interface - standard set of visual controls.

• XForms Submission Protocol - defines parameters for serializing and submitting

instance data.

Figure 2.1 summarizes the main aspects of XForms.

Figure 2.1: XForms Summary

Figure 2.2 shows a sample XForms showing the model, the instance, the submission

17

mechanism and a small part of the user interface as a body element in an XHTML container.

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<html xmlns="http://www.w3.org/2002/06/xhtml2"

xmlns:ev="http://www.w3.org/2001/xml-events"
xmlns:xf="http://www.w3.org/2002/xforms"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<head>

<title>Demanda</title>
<xf:model id=’doc’>

<xf:instance xmlns=’’>
<Demanda>

. . .
</Demanda>

</xf:instance>
. . .
<xf:submission action="mailto:egov@localhost?server=
localhost&sender=i_velez@localhost&subject=
InitialSubmission" id="s01" replace="none" method="post" />

</xf:model>
</head>
<body>

. . .
Demandante: <xf:input ref="Header/Demandante/Name"/>
. . .
<xf:trigger>

<xf:label>Submit Document</xf:label>
<xf:action> <xf:send submission="s01"/> </xf:action>

</xf:trigger>
</body>

</html>

Figure 2.2: Sample XForms code

Figure 2.3 illustrates how a single device-independent XML form definition, called

the XForms Model, has the capability to work with a variety of standard or proprietary user

interfaces. Since XForms is just a specification for defining user interfaces in XML, one could

use XForms to define the user interface of a Java Swing-based form, or even Voice Browser

input form. The implementations would take care of the rendering and implementation

details.

18

The XForms User Interface provides a standard set of visual controls that are

targeted toward replacing today’s XHTML form controls. These form controls are directly

usable inside XHTML and other XML documents, like Scalable Vector Graphics. Other

user interface components for XForms may also be developed.

Figure 2.3: XForms Model connecting to many possible user interfaces

An important concept in XForms is that forms collect data, which is expressed as

XML instance data. Among other duties, the XForms Model describes the structure of the

instance data. This is important since, like XML, forms represent a structured interchange

of data. Workflow, auto-fill, and pre-fill form applications are supported through the use of

instance data [28].

Also, there needs to be a channel for instance data to flow to and from the XForms

Processor. For this, the XForms Submit Protocol defines how XForms send and receive

data. Data is usually submitted in XML.

Finally, the form controls need to be connected to the instance data elements. This

connection is called binding. The binding also establishes a set of conditions that are applied

19

to the instance data, such as the data type, if it should be read only, required, relevant, or

calculated.

All these features of XForms have the potential of dramatically reducing the

amount of custom GUI code necessary to implement client applications and improving the

user experience by giving immediate feedback of what is being filled in. Our work intends

to exploit these benefits and usage patterns of XForms to implement the user interfaces re-

quired by workflows using Lynx as a general purpose email messaging extension to interact

with human partners by using the Business Process Execution Language for Web Services.

We hypothesize that by exploiting XForms we will demonstrate the viability of implement-

ing complex distributed interactive applications with significantly less coding. Additionally,

simple modifications to the interaction screens will often not require re-programming of GUI

code, with resulting XML that can be fed directly into the workflow and database. This

is important in environments where programming skill are severely scarce and difficult to

hire, such as the government.

There are technologies competing against XForms. The most relevant is InfoPath

[31], an application bundled with Microsoft Office 2003. InfoPath, like XForms, converts

user input into a new or modified XML, which can then be fed into a back-end system. At

a high level, both seek to overcome a similar challenge: translating user interaction into

XML [29]. However, the two technologies have several essential differences.

The InfoPath application is focused on providing a visual environment of similar

quality to the rest of the Microsoft Office suite for creating and filling out forms. In contrast,

the XForms specification is designed to encourage implementations not to focus exclusively

on visual media, but rather to define only the intent behind various controls. The XForms

specification gives implementations the choice of specifying how a particular form control

can be implemented. Also, XForms encourages development using a defined declarative

20

XML syntax as mentioned above. On the other hand, InfoPath continues to encourage the

deployment of scripts just like HTML forms [29].

Moreover, the recommended system requirements for InfoPath demand a fairly

modern Intel-compatible computer: a Pentium III or greater as well as Microsoft Windows

2000 or greater. Furthermore, the software is bundled only in the Microsoft Office Enterprise

edition. On the other hand, the XForms specification was designed to work on the broadest

possible range of devices, from small PDAs to big servers. XForms software is being made

available in a variety of packages, for many platforms, and both open source and commercial.

Other previous work have also used XForms to simplify Web programming. C.

Richard, et. al. [13], describe a way to use XForms to simplify Web programming. They

define a simplified programming model for form-based Web applications using XForms.

However, on the server side they use a subset of J2EE, Java Beans and Struts as enabling

technologies. This introduces coding that Lynx tries to avoid by using BPEL, XML stan-

dards, and email interactions, using XForms.

The Orbeon Presentation Server (OPS) [33] is an open source platform that uses

XForms to make form-based web applications. Unlike other web application frameworks

based on Java objects or scripting languages, OPS is based on XML documents and XForms.

This leads to an architecture suited for the tasks of capturing, processing, and presenting

XML data, and does not require writing any Java or scripting code to implement a presen-

tation layer for a web application. OPS is built around an Ajax-based XForms engine, and

the XPL engine, a proprietary XML pipeline engine for processing XML data.

21

2.4 Native XML Databases

There are basically three approaches to store XML documents in a database. The

first is to store XML documents as text in a field within a record. The seconds is to map

the document’s schema to a database schema and transfer data according to that mapping.

The third is to use a set of structures that can store any XML document.

Databases that support the second method are called XML-enabled databases.

Databases that support the third method are called native XML databases. A native XML

database defines a (logical) model for an XML document, as opposed to the data in that

document, and stores and retrieves documents according to that model. A native XML

database has XML documents as its fundamental unit of (logical) storage [1]. Furthermore,

a native XML database system is built and designed for the handling of XML, and it is not

just a database system for an arbitrary data model with an XML layer on top [1].

The fundamental unit of storage in a native XML database is a document, equiv-

alent to a row in a relational database, while a collection is a set of related documents and

plays a role similar to that of a table in a relational database or a directory in a file sys-

tem. Thus, native XML databases store complete documents and can store any document,

regardless of the schema [39].

In a performance analysis between an XML-enabled and a native XML database,

[1] concludes that the native XML database has a better performance for handling large

XML documents. This is due to the conversion overhead needed by XML-enabled databases.

In contrast, native XML databases access the XML data directly. The only weaknesses

found in this analysis were the larger database size of the native XML database due to the

space required for the data and index, and the slower updates. [1] also suggests that if the

schema of the data is known, a relational database is more efficient, with the reconstruction

22

of the complete XML documents being its weak point.

Finally, in a very recent article from 2006, Dr. M. Kay [26], explores the role of

XML in workflow applications. He states that XML fits very well with workflow applica-

tions, because it’s natural to think of them in terms of documents. He states that, in fact,

XML is such a good fit that one should design an application as an XML-based workflow

where one might have adopted a completely different approach in the past. He describes

how specific XML technologies such as XML Schema, XSLT, XQuery, XForms and XML

databases fit into the picture. The use of a pipeline processor, such as Cocoon, for bind-

ing all these XML technologies together is suggested, although no concrete implementation

of such a system is described. Lynx has been in development for more than a year tak-

ing these technologies into consideration, but instead of a pipeline processor we have used

BPEL as the execution processor, and interact directly with persons through the use of

Email messages.

CHAPTER 3

Lynx Architecture

Figure 3.1: System Architecture

Figure 3.1 shows the different elements that comprise the Lynx architecture. The

execution engine exports a Web service interface that can be used to initiate and interact

with a business process. Each business process running in the BPEL execution engine may

interact with multiple business partners exporting their own WSDL Web service interfaces.

23

24

Lynx uses the outgoing email Web service to generate an email with an XForm that hu-

man partners use to interact with the process. The Incoming Email Gateway forwards

the processed document resulting from the human interaction through the XForms to the

appropriate step in the process. The documents are also stored in a native XML database.

This allows documents to be viewed through the workflow querying subsystem’s Web-based

interface as an alternative path of interaction, in addition to Email.

Essentially, Lynx includes two new modules: an outgoing email Web service and

an incoming email gateway. The following sections describe the role of each of these com-

ponents. The server side is composed of a BPEL execution engine, an outgoing email Web

service and other partner Web services, an incoming email gateway, an XML document

repository, a process repository, and a workflow querying subsystem. The client side is

composed of a standard email client application and an XForms player component required

to render and process the XForms.

3.1 BPEL Execution Engine

The BPEL Execution Engine provides the workflow management capabilities.

BPEL processes executed by this component interact with the external world through Web

services [34]. A workflow process is specified in an XML-based language. BPEL defines a

model and grammar that describes the behavior of a business process based on interactions

between the process and its partners. The interaction with each partner occurs through

Web service interfaces. The BPEL process defines how multiple concurrent service requests

from these partners are coordinated to achieve a business goal, as well as the state and

the logic necessary for this coordination. By composing services into new, more complex

Web services, BPEL allows creation of an heterogeneous distributed application [36]. The

BPEL engine can run business processes for hours, days or months, and may invoke other

25

long-running services. A BPEL process may contain steps that require waiting for external

events or human interaction by invoking a Web service that handles this type of interaction.

In this case, the BPEL process invokes the Lynx Web service as described in the following

section.

3.2 Outgoing Email Web Service

Lynx’s outgoing email Web service provides the necessary services to interact with

human partners through email. It dynamically generates the email message containing the

document sent when a process needs to interact with a human partner. The service accepts

documents to be processed by a human partner via its Web service interface. In response

the service automatically generates an electronic form for the document and sends it as an

attachment to the human partner via email. From the standpoint of the BPEL Engine, the

Outgoing Email Web Service looks just like any other partner Web service.

3.3 Other Partner Web Services

Other optional partner Web services may provide other services required by the

BPEL processes. These services can include document validation, external notifications,

transaction logging, document storage in an external database, and other external processes

such as transactions that need to be completed by a business process of another government

agency.

3.4 Incoming Email Gateway

An email server is periodically monitored by the Incoming Email Gateway that

listens for incoming email messages generated by interactions with human partners. It

26

forwards any received processed documents to the appropriate step within a running BPEL

process thus allowing it to continue its workflow.

3.5 Email Client

Any standard email client can be used to receive emails. The emails received by the

users have an attached document that are viewed with the XForms player component. The

MIME type of the attached document is defined as a custom application/type registered in

the client to be able to view it with the corresponding XForms player.

3.6 XForms Player

This component acts as a plug-in that renders the document received through

email as an electronic form with controls that allow more sophisticated interactions than

HTML forms. XForms allow data to be validated by the browser, such as types of fields

being filled in, that a particular field is required, or that one date is later than another.

XForms are device independent, meaning that the same form can be delivered without

change to a traditional browser, a PDA, a mobile phone, a voice browser, and even an email

client. Also, XForms are themselves XML documents that will be filled from other XML

documents called instance data.

Eventually we expect all Web browsers and email clients to directly support the

XForms standard. For instance, the Mozilla Firefox browser already supports part of the

standard through an extension, and several plugins exist for other browsers.

27

3.7 Document Repository

Lynx documents are stored and maintained in a native XML database. Thus,

documents can be inserted as XML, retrieved as XML using XQuery [48], and updated

through XUpdate [49]. This allows the insertion and extraction of documents in XML

without any conversion overhead.

3.8 User, Role and Process Repository

Any standard relational database enables persistent management of process infor-

mation for the BPEL execution engine. Authentication information for each user is also

kept in this database. Also the role and email address for each user allows the process to

send emails all persons that belongs to a given role.

The use of a relational database is not necessary since the user and role information

can be stored in the Native XML database. We use the relational database because the

BPEL execution engine requires one to store the processes state information.

3.9 Workflow Querying Subsystem

The Workflow Querying Subsystem is a web-based interface that allows monitor-

ing of the status of documents pending processing, awaiting action, and shows documents

successfully processed. It also serves as a redundant interaction mechanism in addition to

email by providing web-based access to the XForms sent to the persons through email. Only

users with appropriate access level depending on the role can submit, modify or view the

documents awaiting for a human reply or validation in a workflow.

28

3.10 Chapter Summary

In summary, using Lynx, workflow applications can be developed for the most

part by implementing a BPEL process and XForms user interfaces and without requiring

sophisticated Java code or scripting by leveraging on current standard and broadly known

technologies, such as email, XML and BPEL, in order to reduce the amount of code and thus

the cost of developing and maintaining a workflow application. In the following chapters,

we explain in detail the process involved in supporting human interaction through email,

and developing a real workflow-based application following the Lynx architecture.

CHAPTER 4

Supporting Human Interaction

through Email with Lynx

This chapter discusses the details concerning Lynx’s support for Web-service based

workflow human interaction through email. Adding Email support to a Web-services based

workflow is needed because human user interactions are currently not supported by BPEL,

which is primarily designed to support automated business processes based on Web services.

In practice, however, many business process scenarios require user interaction [50]. A BPEL

process can invoke Web services through Email. However, these Emails only serve as the

transport mechanism for the SOAP messages, and not as the interaction mechanism to

reach human partners. Emails used as transport are not designed to be human-readable.

Figure 4.1 shows Lynx‘s support for human interaction by providing an outgoing

email Web service to generate an email with an XForms document that human partners

use to interact with the process. After the user submits the form back, an incoming email

gateway receives, decapsulates, and forwards the document resulting from the human in-

teraction through the XForms to the appropriate step in the process.

29

30

Figure 4.1: Lynx‘s Email Gateways

In our design we chose to use message-style [34] over the alternative RPC-style

Web services to support sending email from a Web-services based workflow, such as one

defined by BPEL. RPC-style uses Remote Procedure Calls SOAP invocations. RPC-style

would be ideal when one is starting from Java code and is trying to expose methods as

Web services. Also, if there is the need to transmit object graphs, such as circular lists

or complex graphs, RPC provides an interoperable way to do it. On the other hand,

message-style is preferable if there are existing XML data formats where using RPC-style

and SOAP encodings would just get in the way. The problem with message-style is that

it does not use the standard SOAP encodings for arrays and structures. Therefore, the

benefit of referential integrity of objects referenced multiple times is lost. However, this

is not the case for Lynx. Therefore, message-style Web services are used in Lynx because

they allow the creation of more document-centric interactions and allow the data to be

expressed more naturally, when compared to XML-RPC. Also, message-style directly uses

industry standard schemas, provides maximum power and extensibility, avoids building

upon assumptions about implementation platform, and allows flexible mapping of platform

data structures to XML. This lets the web services work without the need to use any Java-

XML binding that would require SOAP encoding, and JavaBeans for each type of document,

31

reducing significantly the amount of Java code required.

Message-style Web services enable us to have a single outgoing email web service

with a generic operation instead of many web services or a web service with many overloaded

operations, one for each different type of emailed document. The outgoing email web service

is made generic by having a single Java method processing any XML that arrives at the

service by using a message-style provider. Therefore, the Web service would not need to

be recompiled nor redeployed in case that a new type of document is sent to the outgoing

email web service. Furthermore, our system is made extensible by allowing the addition of

new document types to be included in the workflow and be accepted by the Web services.

The only changes required would be in the BPEL description, including the processing of a

new data type, and adding importing of the new data types XML Schemas[44].

Figure 4.2: XML Schema Diagram for Outgoing Email Web Service

The Web services workflow process invokes the Lynx outgoing email Web service

by encapsulating the information necessary to communicate with a human partner inside a

message that follows the EmailInfo schema depicted in Figure 4.2. The above XML Schema

diagram shows the name of the XML type EmailInfoType containing all the elements to the

32

right. The schema contains the destination human partner role that refers to the specific

email addresses in element to, the subject, callback information, the name of the Java class

that implements the appropriate XForms in the class element, and the specific document

XML instance data payload in the body element. To achieve a generic web service the

document payload is defined as a schema element of standard XML type anyType, thus

accepting any document type.

Lynx‘s outgoing Web service accepts arbitrary XML documents of type EmailInfo

inside the body of received SOAP messages. This web service then extracts the encapsulated

information from the body element, and uses it to construct an email message. The Web

service needs to generate an XForms document specific to the type of document received and

the type of interaction desired from the human partner. The XForms documents can provide

multiple views of the same instance data. Lynx supports this flexibility by implementing

a Java interface (XFormsCreator) that includes an operation named setupXForms that

generates the desired form and returns it as a String (see Figure 4.3). The class that

implements this interface is specified in the class element of the EmailInfo message. This

will be explained in more detail in the next chapter.

public interface XFormsCreator {
public abstract String setupXform(Document instance,

String to,
String from,
String subject,
String callback);

}

Figure 4.3: The XFormsCreator Java Interface

This approach has the advantage of allowing the business process to choose the

appropriate view for a particular transaction within a process. Lynx dynamically loads the

class that implements the interface, instantiates it, and then invokes the method to create

33

the specific XForm using the body part of the EmailInfo message as instance data. This

newly generated XForms is sent as an attachment, with a custom MIME type, to the email

address specified in the To part of the EmailInfo message.

The outgoing email web service also keeps track of the specific correlation infor-

mation of a document. The correlation information serves as an ID for a specific instance

of a business process. For example, a social security number might be used to identify an

individual taxpayer in a long-running multiparty business process regarding a tax matter.

A social security number can appear in many different message types, but in the context

of a tax-related process it has a specific significance as a taxpayer ID [11]. The outgoing

email web service specifies this information in the subject of the email message sent to the

human partners. This feature helps the email clients organize received email messages by

thread so the human partners can easily locate all the documents referring to a specific case

and/or document type as illustrated in Figure 4.4.

Figure 4.4: Email Client showing threaded Lynx messages

At the client end, the XForms player component launches when a Lynx email

34

message containing an XForms document attachment is received and the user opens the

attached document. The email client knows it is a Lynx document that needs to be viewed

in the XForms player due to the attachments custom MIME application/type.

The location of the XForms document is then passed to the XForms player for

rendering. Then, after completing, validating, annotating or adding any necessary attach-

ments to the received document, the the document is returned back to the server side by

pressing the XForms’ Submit button. This submission element defined in the XForms has

an action pointing to a mailto: URL (see Figure 4.5). In response, the XForms player

submits via email the updated XML instance data of the corresponding document together

will all attachments.

<xf:submission
action="mailto:receiver@ece.uprm.edu?server=ece.uprm.edu&
sender=sender@ece.uprm.edu& subject=Property Registry Document
id=s01 replace=none method=post />

Figure 4.5: Sample XForms Email Submission Element

The Incoming Email Gateway, that is continuously monitoring an Email inbox

used by Lynx, will then retrieve the revised document submitted by the human partner.

All the information necessary to access the incoming email account can be found in a

configuration file since all the email messages will be addressed to the BPEL engine itself.

The incoming email gateway then invokes a callback web service exported by the business

process in order to allow it to continue. This invocation requires producing a SOAP message

of the correct operation within the BPEL process. However, what arrives in the email is

only the XML instance data. Furthermore, there is no place to specify which operation

to invoke in the SOAP message itself since the BPEL process is a message-style service.

We solve this problem by dispatching the correct operation based on the type of message.

We defined different SOAP message part names in the process’ WSDL interface definition

35

using the same schema type. This is also done for every variable that is accepted for each

different operation in the BPEL process definition. It can be seen in Figure 4.6 that both

messages have the same XML Schema type, but they have different names, depending on

which operation they are associated with.

<wsdl:message name="AnalystMessageName">
<wsdl:part name="CancelacionHipotecaDirectaAnalyst"

type="CHD:CancelacionHipotecaDirectaType"/>
</wsdl:message>
<wsdl:message name="RegistradorMessageName">

<wsdl:part name="CancelacionHipotecaDirectaRegistrador"
type="CHD:CancelacionHipotecaDirectaType"/>

</wsdl:message>

Figure 4.6: Sample WSDL Message Definitions

The type of message is specified by the callback part of the EmailInfo message

that was extracted by the outgoing email Web service when the XForms document was

created. The message type is used as the root element in the body of the SOAP message

returned to the BPEL process. Messages sent to a process need to be delivered not only

to the correct destination web service port, but also to the correct instance of the business

process. The process dispatches the message to the appropriate operation within the correct

process instance by using the BPEL correlations mechanism. One minor disadvantage of this

approach is that it requires any callback web service responding to email-based transactions

to use document-style invocations, and declare multiple variables of the same type.

There is no difference in Lynx between the initial submission of a document and

intermediate submissions made by any other human partner. In the case of an initial

document submission, the Incoming Email Gateway will automatically recognize a new

document in the inbox. The document type specifies that the first operation in the BPEL

process must be invoked and the BPEL execution engine starts a new instance of the process.

36

The next chapter will show how to use the Lynx’s support for human interaction

through email discussed in this chapter to build and deploy a Web-service based workflow

including human partners.

CHAPTER 5

Developing an Application using

Lynx

5.1 Introduction

This chapter describes implementation and integration details of Lynx in the spec-

ification of the sample Puerto Rico Registry of Deeds (PRRD) business process previously

explained in Section 1.1. For convenience we are repeating the graphical description of the

process in Figure 5.1.

A workflow application using Lynx uses BPEL to describe the process interactions

and service invocations. BPEL is layered on top of several XML specifications: WSDL,

XML Schema, and XPath. WSDL messages and XML Schema type definitions provide the

data model used by BPEL processes. XPath provides support for data manipulation. All

external resources and partners are represented as WSDL services. Therefore, the steps

involved in the implementation of a BPEL workflow-based application on top of Lynx

require a re-engineering of the original business process, defining the XML Schemas of the

37

38

messages exchanged, defining the WSDL interfaces of the process, using XPath inside the

process to refer to data, and calling Lynx’s Web services.

Figure 5.1: Sample Registry of Deeds Scenario

39

5.2 Business Process Re-engineering

The integration of Lynx in a workflow process involves a process reengineering.

This means that the processes by which the organization, the PRRD in this case, creates

value and does work should be thought again and redesigned, ridding it of operations that

have become antiquated. The process reengineering we propose involves the receipt of the

documents in electronic format instead of in paper. In the PRRD’s actual computer-based

system employees have to manually fill in the information from manuscript documents they

receive at their offices, or from document submissions they receive via fax. Instead of

increasing the throughput of transactions of the process, this current automation places

more responsibilities on the receptionist and the analyst. Conversely, if the documents were

received in an electronic format, the complete process could be automated beginning at

the notary public offices where the documents originate. This would make all the required

information available in electronic form from the start, facilitating a more agile business

processes and avoiding tedious and error prone manual data entry.

5.3 XML Workflow Document Definition

To develop an application on top of Lynx, we first define XML schemas for all

document types used by the organization workflow. Our document schemas were based on

several pre-designed Microsoft Word templates provided to us by the PRRD (see Figure

5.2).

These templates have common information used among different types of docu-

ments. For example, many PRRD inscription minute documents have the following features

that are common with over 160 different documents:

• Header. Property number, town, inscription number, description, obligations, and

40

Figure 5.2: Microsoft Word Template of a PRRD Document

title holders.

• Entities. The person or corporation that sells or buys involved in a transaction.

• Presentation information. Date and time presented, seat number, journal number,

town.

• Annotations, Log and Attachments.

These definitions common to all the documents are placed in a master XML schema

41

file that can be imported into any of the specialized XML schemas that implement the

definition of the Registry of Deeds documents (see Figure 5.4).

The imported schema is then assigned a namespace that identifies the set of ele-

ments and attributes of the data types to be used in another document. Figure 5.3 shows

the XML Schema for the Word template shown in Figure 5.2. In the current prototype, the

http://ece.uprm.edu/RegPropCommon namespace is used. Accordingly, these schemas will

be also imported into the BPEL process definition described in the following section.

Figure 5.3: XML Schema Diagram for a Mortagage Cancellation Document

42

Figure 5.4: XML Schema Diagram Containing Common Types Used Among Documents

43

5.4 External Interface Description

The next step after defining schemas for all workflow documents is the description

of the business process external interface in WSDL. This is done recalling what interactions

are going to take place, specifying the web service operations, and assigning different WSDL

part names for each corresponding operation (see Figure 5.5).

. . .
<wsdl:message name="cancelacionHipoteca">

<wsdl:part name="CancelacionHipotecaDirecta"
type="CHD:CancelacionHipotecaDirectaType"/>

</wsdl:message>
<wsdl:message name="cancelacionHipotecaAnalyst">

<wsdl:part name="CancelacionHipotecaDirectaAnalyst"
type="CHD:CancelacionHipotecaDirectaType"/>

</wsdl:message>
<wsdl:message name="cancelacionHipotecaRegistrador">

<wsdl:part name="CancelacionHipotecaDirectaRegistrador"
type="CHD:CancelacionHipotecaDirectaType"/>

</wsdl:message>
. . .

Figure 5.5: WSDL Message Definition for the PRRD Process

The operations exposed by the process are then defined in the WSDL as shown

in Figure 5.6. In this application, setDocument is the operation that receives the Mort-

gage Cancelation document message first generated by the incoming email gateway after

the notary public uses an XForms to submit the document. The other operations, analyst-

Completed and registradorCompleted, receive the messages corresponding to annotated and

revised versions of the document after the interaction with human Analysts and Registrar,

respectively. Although the names of the input messages are different for each operation,

what distinguishes each operation is the message’s WSDL part name as shown previously

in Figure 5.5 and explained in the previous Chapter 4.

44

. . .
<wsdl:portType name="RegistroPT">

<wsdl:operation name="setDocument">
<wsdl:input message="tns:cancelacionHipoteca"/>
<wsdl:output message="tns:acknowledgement"/>

</wsdl:operation>

<wsdl:operation name="analystCompleted">
<wsdl:input message="tns:cancelacionHipotecaAnalyst"/>

</wsdl:operation>

<wsdl:operation name="registradorCompleted">
<wsdl:input message="tns:cancelacionHipotecaRegistrador"/>

</wsdl:operation>
. . .

</wsdl:portType>
. . .

Figure 5.6: WSDL Operation Definitions for the PRRD Process

BPEL introduces two relevant extensions to the WSDL standard: property alias

definitions and partner link definitions. The correlation information is also defined in the

same WSDL interface as the messages and operations. Figure 5.7 depicts the definition

of a new property named ID, of type string. Also, a property alias definition is defined

for each message that must be uniquely identified by the corresponding property. For this

application every message is identified as pertaining to a specific PRRD document by the

ID property that points to the PRRD document’s Inscription number. This is specified in

the query attribute by using an XPath expression to the Inscription location in the XML

messages.

Partner link types contain the roles which define the responsibilities of each side

of the conversation in a BPEL process. Figure 5.8 shows an excerpt of two of the partner

links defined for the PRRD process. The RegistroPLT partner link type refers to the PRRD

process itself, while the Email partner link type refers to the Outgoing Email Web Service.

Each one is assigned a specific role, and the Web service’s port type.

45

. . .
<wsbp:property name="ID" type="xsd:string"/>

<wsbp:propertyAlias propertyName="tns:ID"
messageType="tns:cancelacionHipoteca"
part="CancelacionHipotecaDirecta"
query="/CancelacionHipotecaDirecta/Inscription" />

<wsbp:propertyAlias propertyName="tns:ID"
messageType="tns:cancelacionHipotecaAnalyst"
part="CancelacionHipotecaDirectaAnalyst"
query="/CancelacionHipotecaDirectaAnalyst/Inscription" />

<wsbp:propertyAlias propertyName="tns:ID"
messageType="tns:cancelacionHipotecaRegistrador"
part="CancelacionHipotecaDirectaRegistrador"
query="/CancelacionHipotecaDirectaRegistrador/Inscription" />

. . .

Figure 5.7: WSDL Correlation Definitions for the PRRD Process

. . .
<plnk:partnerLinkType name="RegistroPLT">

<plnk:role name="service">
<plnk:portType name="tns:RegistroPT"/>

</plnk:role>
</plnk:partnerLinkType>

<plnk:partnerLinkType name="Email">
<plnk:role name="email">

<plnk:portType name="eml:SendMail"/>
</plnk:role>

</plnk:partnerLinkType>
. . .

Figure 5.8: WSDL PartnerLinkType Definitions for the Lawsuit Process

46

5.5 XForms Development

The next step consists of the deign and development of the XForms used to display

workflow documents and interact with human partners. The XForm can be designed using

a GUI tool such as XFormation [47] or the IBM Alphaworks Visual XForms Designer [41].

A corresponding class that implements the XFormCreator Java interface is created for each

XForm view for each document. This class dynamically generates the desired form and

returns it as a String. The returned XForms can are used by both the Outgoing Email

Web Service and the Web-based Interface. The setupXform method that is implemented

in the class basically gets the instance data received and combines it with the XForms

model and the XForms user interface desired, and sets the correct callback information

and address of the email server to be used for submission. Figure 5.9 shows the general

layout of a class implementing the XFormsCreator interface. An XForms for the Mortgage

Cancelation document is shown in Figure 5.10.

public class AnalystXForm implements XFormsCreator {

public AnalystXForm(){
// Get SMTP host information from configuration file...

}

public String XFormsCreator {
public abstract String setupXform(Document instance,

String to,
String from,
String subject,
String callback){

// 1. Use callback as instance data’s root element name
// 2. Insert instance data into XForm model
// 3. If necessary, generate other temporary instance data
// 4. Customize Submission element with to, from and SMTP info.
// 5. Return XForms in a String

}
}

Figure 5.9: AnalystXForm Java Class Implementing XFormsCreator Interface

47

This step of the development process requires some non-trivial Java code to be

written. Such code should do the steps outlined inside Figure 5.9. We leave the research of

ways to further avoid Java programming as future work.

Figure 5.10: XForms for the Mortgage Cancelation Document

5.6 Process Description

Having specified the external interface of the process and the XForms in the pre-

vious sections, the BPEL process is specified to orchestrate all the steps necessary to deal

with the PRRD workflow. Figure 5.11 depicts the general structure of the BPEL business

process developed for the PRRD that will be explained in this section. We assume the

reader has some basic knowledge about the BPEL Specification [11] to understand this

section.

48

Figure 5.11: BPEL Components for the PRRD Process

First, the interactions between partners are expressed through partner links (see

Figure 5.12). Then, the partners section groups the partner links and expresses the capa-

bilities required from a business partner.

The interaction between partners in the process is based on exchanging messages.

The notary public sends a message to begin the process, and messages are exchanged with

the Analyst and Registrar. Variables are needed to store such messages. In addition, vari-

ables can also hold data that is only used for internal processing of the process. Figure

5.14 shows some of the variables used in the PRRD process. The inputDocument vari-

able stores the original submitted mortgage cancelation document. Likewise, the input-

49

<partnerLinks>
<partnerLink name="service" partnerLinkType="tns:RegistroPLT"

myRole="service"/>
. . .
<partnerLink name="email" partnerLinkType="tns:Email"

partnerRole="email"/>
</partnerLinks>

Figure 5.12: Partner Links Definition in the BPEL Process

<partners>
<partner name="service">

<partnerLink name="service"/>
</partner>
. . .
<partner name="email">

<partnerLink name="email"/>
</partner>

</partners>

Figure 5.13: Partner Definition in the BPEL Process

DocumentEmailResponse and inputDocumentEmailRegistradorResponse variables store the

annotated or revised document received from the Analyst or Registrar, respectively. The

emailInfo variable stores the information necessary to communicate with the outgoing email

Web service as described in Chapter 4.

Multiple interactions between partners might be involved in a specific instance of

a PRRD process that happens over a long period of time. This requires the use of the

BPEL correlation sets to be able of identifying a specific instance of a document case. The

correlation sets are defined using the properties already defined in the WSDL (see Figure

5.15).

Finally, a single activity specifies the implementation of the BPEL process. This

activity consists of nested activities that implement the business logic of the process. This

activity can be a sequence that groups activities to be done sequentially, a flow of activities

50

<variables>
<variable name="inputDocument" messageType="tns:cancelacionHipoteca"/>

<variable name="bitacoraDocument"
messageType="bit:StoreDocumentRequest"/>

<variable name="inputDocumentEmailResponse"
messageType="tns:cancelacionHipotecaAnalyst"/>

<variable name="inputDocumentEmailRegistradorResponse"
messageType="tns:cancelacionHipotecaRegistrador"/>

<variable name="emailInfo" messageType="eml:sendEmailRequest"/>
. . .

</variables>

Figure 5.14: Variables in the BPEL Process

<correlationSets>
<correlationSet name="registroCorrelation" properties="tns:ID" />

</correlationSets>

Figure 5.15: Correlation set in the BPEL Process

that can be done in parallel, or a scope that groups other activities. BPEL supports a

number of process definition statements to provide for activities such as assignment, loops,

decision making, receipt of messages from a partner, and invocation of web service operation.

The process begins with the creation of a new instance of a particular Registry of

Deeds case. The creation of a new instance always happens implicitly on the receipt of a

message. Thus, the process has to start with either a receive or pick activity. For example,

the submission of a Mortgage Cancelation document by the notary public results in the

creation of a process instance to handle this case.

For the PRRD process, a pick is used to be able to receive different types of

messages. The different messages correspond to the different types of documents handled

by the PRRD. Figure 5.16 shows two picks capable of initiating a PRRD process because

51

it has the createInstance attribute se to ”yes”. The first one starts a process instance when

it accepts a CancelacionHipotecaDirecta message since it is the type of the inputDocument

variable.

<sequence>
<pick createInstance="yes">

<onMessage partnerLink="service"
portType="tns:RegistroPT"
operation="setDocument"
variable="inputDocument">

HERE GOES THE PROCESS ACTIVITIES FOR
MORTGAGE CANCELATION DOCUMENTS

</onMessage>
<onMessage partnerLink="service"

portType="tns:RegistroPT"
operation="setViviendaDocument"
variable="inputViviendaDocument">
. . .

</onMessage>
</pick>

</sequence>

Figure 5.16: PRRD BPEL Process main activity

The rest of the process description essentially consists of a sequence containing

variable assignments, invocations of the outgoing email web service, receipt of the results

of human interaction, and decisions made based on the data. The BPEL process was

designed and developed so that it invokes the Lynx outgoing Web service by encapsulating

the information necessary to communicate with a human partner inside a message that

follows the EmailInfo schema as depicted in Figure 4.2 on Section 5.6, and taking into

consideration that the callback element of the EmailInfo message must match the WSDL

part name of the message received in the operation that waits for a response.

We show in Figure 5.17 an excerpt of the BPEL specification preparing and per-

52

<assign name="AnalystAssign">
<copy>

<from expression="’analysts’" />
<to variable="emailTempInfo" part="EmailInfo"

query="/EmailInfo/to" />
</copy>
. . .
<copy>

<from expression="’CancelacionHipotecaDirectaAnalyst’"/>
<to variable="emailTempInfo" part="EmailInfo"

query="/EmailInfo/callback" />
</copy>
<copy>

<from expression="’edu.uprm.ece.egov.registro.
xforms.CancelacionHipotecaDirectaAnalystXForm’" />

<to variable="emailTempInfo" part="EmailInfo"
query="/EmailInfo/class" />

</copy>
<copy>

<from variable="inputDocument"
part="CancelacionHipotecaDirecta"/>

<to variable="emailTempInfo" part="EmailInfo"
query="/EmailInfo/body" />

</copy>
</assign>
<invoke name="SendMail" partnerLink="email" portType="eml:SendMail"

operation="sendEmail" inputVariable="emailInfo" />

Figure 5.17: Invoking the Outgoing Email Web Service to Interact with an Analyst

forming the web service invocation that will ask the human analyst to validate the docu-

ments and return it with any annotations, recommendations or attachments. The invoke

operation only has one input variable, and has no output because the interaction with the

Analyst was specified asynchronous. This is a design choice for the business process that is

not required by Lynx. Nevertheless, asynchronous invocation is favored since an excessive

wait time could cause a timeout in the BPEL execution engine’s Web service operation.

Figure 5.18 shows the BPEL operation that waits for a response of the specific type

specified in the callback that will get invoked automatically. Note that the messsage part

53

<pick createInstance="no">
<onMessage partnerLink="service"

portType="tns:RegistroPT"
operation="analystCompleted"
variable="inputDocumentEmailResponse">

<correlations>
<correlation set="registroCorrelation" initiate="no"/>

</correlations>
<empty/>

</onMessage>
. . .

Figure 5.18: Receiving the Document that Results from the Interaction with an Analyst

name of the variable inputDocumentEmailResponse in the OnMessage activity was defined

as CancelacionHipotecaDirectaAnalyst in the process WSDL. CancelacionHipotecaDirecta-

Analyst matches the /EmailInfo/callback element used when the Outgoing Email Web

Service was invoked. In this way the process resumes at the right point and continues along

the process specification. Afterwards, it prepares the next human partner interaction, and

sends a request via the outgoing email web service as shown in Figure 5.17.

Also, in addition to interaction through email, the BPEL process invokes a web

service that stores and updates the documents in a Native XML database needed to enable

interaction with the workflow documents through the web-based interface. This is the

subject of the next section.

5.7 Web-based Interface to the Workflow Application

In addition to the main architectural components of Lynx, described in Chapter 3,

our current prototype contemplates additional functionality necessary to build a complete

system that can enable the deployment of a web-service based workflow application. We

are augmenting the basic Lynx Web service based workflows that can be constructed with

BPEL to support authentication and transaction logging. A web service based workflow has

54

no inherent concept of users. Thus, we store user information to provide for authentication

in a database. The Entity-Relationship (E-R) Diagram used for Lynx is shown in Figure

5.19.

Figure 5.19: E-R Diagram for Lynx Database

Properly authenticated users, such as supervisors, registrars, notary publics or

analysts, can inspect the status of a transaction and monitor the progress of a document

throughout the business process from within this interface. This transaction logging ca-

pability is implemented by having every XML document instance carry its own embedded

log that records which steps the specific document instance has gone through. A Bitaco-

raType XML schema type imported into every documents schema to store Log information

is showed in Figure 5.20. The BitacoraEntryType complex type includes the date, the

process step finished, and who did it. A similar pattern is used for the attachments and

annotations in a document. The attachments and a view of the document are accessible as

well.

The Log XML schema includes the same information as the EmailInfo schema type

presented previously in Figure 4.2. An element named nextAuth is needed to specify which

user or role has access to a view of a document through the web-based interface. This view

can be either a read-only view of the document, or the XForms view generated by the Java

class specified in the class element. This allows presentation of the correct XForms to the

user logged into the system and provides the information necessary to submit the validated

55

Figure 5.20: Log XML Schema

instance data back to the BPEL engine through the Incoming Email Gateway.

Figure 5.21 shows the initial prototype of a web-based interface to monitor the

status of documents pending processing, and shows documents successfully processed and

registered in the Registry of Deeds. The web-based interface was developed using Java

Server Pages (JSP). Three JavaBean classes (DocumentTypes, XMLDBQuery and XMLD-

BRowInfo) were also designed and developed to be able to get configuration information,

and connect and get information from the Native XML database. These JavaBeans were

then used from within the JSP, and with the use of the Java Standard Tag Library (JSTL)

the web interface was developed without the need for Java programming, except for the

initial work required to develop a reusable JavaBean capable of representing a Native XML

database connection. Figure 5.22 shows the use of these JavaBeans. The DocumentTypes

bean contains the different document types and correlation queries specified in the XML

configuration file, XMLDBQuery connect to the XML database and gets information using

the correlation and XPath query passed as parameters, and XMLDBRowInfo contains the

information about each document, useful for constructing the web interface.

56

Figure 5.21: Document Status Page

The documents displayed through the Web-based interface are rendered as XForms

using the Chiba XForms player. We pass as a parameter to Chiba the XForms that are

generated by the Java classes implemented earlier. The Chiba-web-1.0.0 distribution was

patched by modifying the source code of the org.chiba.adapter.servlet.ChibaServlet class and

recompiling it to allow the loading of XForms documents from locations other than Chiba’s

own application context.

The status web pages were done using JSP instead of XForms since we directed our

work towards using XForms only to display the documents requiring interaction. However,

XForms may also be used to render the status page of the Web-based interface. The

generation of an XML instance containing the status information for each document pending

processing would be needed. This instance data can then be rendered as an output repeat

element table in an XForms page.

57

<jsp:useBean id="dt"
class="edu.uprm.ece.egov.DocumentTypes"
scope="page"/>

<jsp:useBean id="xq"
class="edu.uprm.ece.egov.XMLDBQuery"
scope="page"/>

<c:forEach items=’${dt.documenttypes}’ var=’item’>
. . .

</c:forEach>

<jsp:setProperty name="xq" property="correlation"
value="${item.doccorr}"/>

<jsp:setProperty name="xq"
property="xpath"
value="${xpath}"/>

<c:forEach items=’${xq.rows}’ var=’results’>
. . .

</c:forEach>

Figure 5.22: Using JavaBeans with JSTL in the JSP web interface

Figure 5.23 and Figure 5.24 show the log and attachments view, respectively, from

the document status Web-based interface. Attachments are valuable since they can be used

to include important documents needed for the completion of a specific case regarding a doc-

ument, such as an image file of the property title deed, or any other relevant complementary

documents.

ActiveBPEL allows the monitoring of the deployed BPEL processes through a web-

based administration tool that shows a graphical view of the current state of the workflow,

including the process variables and step in the workflow. This is depicted in Figure 5.25.

58

Figure 5.23: Document Status Log View

Figure 5.24: Document Status Attachments view

59

Figure 5.25: Workflow Process Detail Graph

60

5.8 XML Storage Subsystem

A persistent copy of all workflow documents is maintained in both a database that

is used by ActiveBPEL for process persistence, and in an eXist [12] Native XML database

that is used by Lynx to store the current version of each document. This is necessary since

the ActiveBPEL engine requires a relational database for the persistence of the workflow

process state information, while the Native XML database stores the current version of each

document to be able to present them through the web-based interface. The benefit of a

native XML Database is that we don’t have to worry about mapping our XML documents

to some other data structure. While XML documents are organized as tree structures,

relational databases organize data in a tabular or grid-like fashion, and use relational linking

in order to expose hierarchical constraints on the data. Thus, a lot of flexibility is gained

through the semistructured nature of XML and the schema independent model used by a

native XML database such as eXist.

Data is just inserted as XML and retrieved as XML using XPath [45] and XQuery

[48] as the query languages and the XUpdate [49] language to insert and update XML

documents. This is particularly helpful since some complex XML document structures may

be very difficult to map to an intuitive relational database.

Lynx is made adaptable to any application requiring human interaction with a web

service based workflow by giving the option to customize and configure many aspects of its

functionality. Any BPEL process can call Lynxs web services to accomplish communication

with human partners. The configuration options are kept in XML files so that they can be

easily modified with the parameters that suit the specific application. The different types of

documents in use are specified along with their correlation information and relevant features

(see Figure 5.26). The correlations are specified as XPath queries of the desired values in

the document types XML Schema. The POP3 and SMTP server addresses to be used by

61

the incoming email gateway and outgoing email web service, respectively, are also specified

in other XML configuration files.

<config>
<type>

<docType>CancelacionHipotecaDirecta</docType>
<docCorrelation>header/inscription</docCorrelation>
<relevant>

<Section xpath=’header/section’/>
<Town xpath=’datosDePresentacion/municipio’/>

</relevant>
</type>
<type>

<docType>Vivienda</docType>
<docCorrelation>header/inscription</docCorrelation>
<relevant>

<Notary xpath=’DocumentoPresentado/NombreNotario’/>
</relevant>

</type>
</config>

Figure 5.26: Document Type Configuration

5.9 Developing a New Application Using Lynx

A similar approach as the one presented for the Registry of Deeds scenario us-

ing Lynx could be easily applied to other government applications. The steps needed to

integrate Lynx into a web services based workflow application are fairly straightforward:

1. Define XML schemas for the documents that will be handled by the process.

2. Specify WSDL interface for each of the partner web services the BPEL process will

invoke, including Lynx’s outgoing email web service.

3. Define the different operations that the BPEL process will expose in the WSDL of

the process.

4. Specify and implement the BPEL of the desired workflow process.

62

5. Customize the XML configuration files specifying the different types of documents,

correlation queries, and email servers. Specify users, roles and emails. If necessary,

customize the web-based document status and task list interface to suit the specific

application to be supported.

6. Implement the XForms for each view for each document. Create a Java class that

implements the interface to create the XForms for each document.

7. Deploy partner web services and the BPEL process itself.

The next chapter will show the deployment of another Web-service based workflow

application following the Lynx architecture using the approach described in this section.

CHAPTER 6

A Workflow-based Application to

Track the Flow of Legal Cases in

the Puerto Rico Judiciary

6.1 Introduction

As part of this research, Lynx was used to develop an application for another

government environment. While the development of the PRRD application described in

the previous chapter served to illustrate the application development process and concepts

required to facilitate the development of any application, this second application serves as

an experiment to measure the complexity of deploying a web-based workflow application

from scratch using Lynx, following the steps outlined in the previous Chapter 5. This

is usable as a roadmap for the development of different Lynx applications. Specifically,

we considered an application for the process of lawsuits between two private parts for the

Puerto Rico Courts shown in Figure 6.1.

63

64

Figure 6.1: Flowchart of a lawsuit case

The typical flow of lawsuit documents involves the plaintiff lawyer first submitting

a lawsuit document. The secretary then assigns a session room and judge. Next, the

defendant part must be summoned. If the plaintiff does not summons, the case is considered

abandoned. Else, the defendant part should answer the lawsuit or present some type of

motion within a predetermined time period. After the defendant response is received, the

proof discovery starts. Following the discovery, a conference between lawyers is conducted.

Later, the trial is carried on, and finally judgement is advised and the sentence assigned.

6.2 Supporting Software Substrate

Deploying a Lynx-based workflow application involves the integration of several

different supporting software components. This section describes the deployment configu-

ration details required to deploy an application using Lynx.

65

1. Java SDK 1.4.2. In the first place, the Java Software Development Kit version 1.4.2

or greater must be available.

2. Tomcat 5.0.28. Tomcat is the official reference for the Java Servlet and JavaServer

Pages technologies. Both Chiba and ActiveBPEL require a Tomcat 5.0 or greater

version. Tomcat 5.5 may be used, but it introduces some XML library conflicts that

must be solved by replacing some of the default jars, and forces the use of Java 5.

3. Chiba-web-1.0.0. Chiba serves as the XForms processor for Lynx. Chiba is installed

as a Web application in Tomcat. The Chiba-web-1.0.0 distribution was patched by

modifying the source code of the org.chiba.adapter.servlet.ChibaServlet class and re-

compiling it to allow the loading of XForms documents from locations other than

Chiba’s own application context inside Tomcat. As explained in Section 5.6, the Chiba

XForms processor implements XForms by rendering them as standard HTML through

a servlet. Although Chiba is a servlet-based implementation, it implements the whole

XForms standard unlike most current web browsers, and works with every browser

unlike other client-side XForms implementations. In the future, when mainstream

email and browser applications adopt and implement the complete XForms standard,

this XForms player component will be replaced with the email or web browser client,

or a native plug-in that supports the whole standard.

4. ActiveBPEL 1.1.6 server. The ActiveBPEL engine is an Open Source implementa-

tion of a BPEL engine, written in Java. The ActiveBPEL engine requires an installed

and properly configured servlet container such as Tomcat. The installation scripts that

come with the ActiveBPEL engine use the environment variable CATALINA HOME,

which defines the top-level Tomcat directory. ActiveBPEL is also configured to run

as a persistent engine capable of storing all process state information in a database.

This procedure, which involves creating several database tables and configuring a

Tomcat JNDI data source, is described in detail in the ActiveBPEL documentation.

ActiveBPEL’s embedded Axis server is used to host the Web services invoked.

66

5. MySQL 4.1 Database. A relational database, such as MySQL, should be available

for use by the Active BPEL engine, and also to store the authentication information

for the Lynx web-based interface. ActiveBPEL also supports Oracle, DB2 and SQL

Server databases to support process persistence.

6. eXist 1.0rc1-20060710 XML Database server. Exist XML DB was installed as

a Web application inside Tomcat. A collection named bitacora must be created to

store Lynx documents. Also, an index of the correlation information specific to the

application has to be defined for the collection to facilitate efficient querying of the

database.

7. Lynx Web Application. The Lynx web-based interface is a customized version

of the web application developed for the PRRD workflow application described in

Chapter 5. It is deployed as a Web application in Tomcat. Its customization is

described in Section 6.7. Also, a JNDI data source needs to be configured for the

Lynx web application in Tomcat.

8. Clients. For the Lynx prototype developed for this research, the clients must have

installed any standard web browser, such as Internet Explorer or Mozilla Firefox, to

be able to access Lynx’s web-based interface. However, in the current prototype, to

be capable of receiving Lynx emails with attached XForms the clients should have

installed at least the Java Runtime Environment 1.4.2, an Email client and the Chiba

XForms processor. Therefore, Tomcat 5.0 or later must also be running locally on the

client to support the XForms rendering. The custom Lynx attachment MIME type

must be associated with the XForms Processor invoker. The invoker can be a simple

script that calls a Web browser and passes the Chiba URL with XForms as parameter

(for example, firefox.exe http://localhost:8888/chiba-1.0.0/XFormsServlet?form=file:///%1).

67

6.3 Document Definition

After having configured the necessary components described in the previous sec-

tion, the XML Schema definitions need to be defined for each document that the application

must manage. For this specific application the following legal documents were taken into

consideration: Lawsuit, Summons, Answer, Deferment Motion, Rejection Motion, Better

Exhibition Motion, Preliminary Conference Report, and Judgement.

Common schema type information used among different types of documents is

placed on a separate schema. Most documents, including the lawsuit, motions and answers,

have the following features that are common:

• Header. City, case number, plaintiff, defendant, session room and topic.

• Person. Personal information about either plaintiff or defendant.

• Lawyer. Name, ID, address, telephone number, fax, email.

• Expositions. The text of the petitions, allegations, negations, affirmations or judge-

ment.

• Log and Attachments.

These definitions common to all the documents are placed in an XML Schema (de-

picted in Figure 6.2) file that can be imported into any of the specialized XML Schemas that

implement the definition of each required document. The imported schema was assigned a

namespace http://ece.uprm.edu/TribunalesCommon that identifies the set of elements and

attributes of the data types to be used in another document. Figure 6.3 shows the XML

Schema of a lawsuit document using the imported TribunalesCommon schema elements.

Figures 6.4, 6.5 and 6.6 show the XML Schemas for the Answer, Summons and Motion

documents, respectively. Accordingly, these schemas must be also imported into the BPEL

process definition.

68

Figure 6.2: XML Schema Diagram for Schema Types Common among Documents

69

Figure 6.3: XML Schema Diagram for a Lawsuit Document

Figure 6.4: XML Schema Diagram for an Answer Document

70

Figure 6.5: XML Schema Diagram for a Summons Document

Figure 6.6: XML Schema Diagram for a Motion Document

71

6.4 External Interface Description

The WSDL interface of the process is then defined after defining the document

schemas. This is done recalling what interactions are going to take place, assigning dif-

ferent WSDL part names for each corresponding operation, and specifying the web service

operations. Also, the partner links and properties are defined. Figure 6.7 shows an excerpt

of the WSDL definitions used for this new application.

<wsdl:message name="demanda">

<wsdl:part name="Demanda"

type="demanda:DemandaType"/>

</wsdl:message>

. . .

<wsdl:message name="contestacion">

<wsdl:part name="Contestacion"

type="contestacion:ContestacionType"/>

</wsdl:message>

<wsdl:message name="sentencia">

<wsdl:part name="Sentencia"

type="sentencia:SentenciaType"/>

</wsdl:message>

<wsdl:portType name="EGovTribunalesPT">

<wsdl:operation name="setDemandaCobroDinero">

<wsdl:input message="tns:demanda"/>

</wsdl:operation>

<wsdl:operation name="setMocion">

<wsdl:input message="tns:mocion"/>

</wsdl:operation>

<wsdl:operation name="setContestacion">

<wsdl:input message="tns:contestacion"/>

</wsdl:operation>

. . .

</wsdl:portType>

<wsbp:property name="ID" type="xsd:string"/>

<plnk:partnerLinkType name="EGovTribunalesPLT">

<plnk:role name="service">

<plnk:portType name="tns:EGovTribunalesPT"/>

</plnk:role>

</plnk:partnerLinkType>

<plnk:partnerLinkType name="Email">

<plnk:role name="email">

<plnk:portType name="eml:SendMail"/>

</plnk:role>

</plnk:partnerLinkType>

. . .

<wsbp:propertyAlias messageType="tns:demanda" part="Demanda"

propertyName="tns:ID" query="/Demanda/Header/CivilNum"/>

. . .

Figure 6.7: WSDL Message Definition for the Lawsuit Process

72

6.5 XForms Development

After all the software is installed and configured, and the document schemas and

process interfaces are defined, all the required XForms are designed and developed. A

corresponding class that implements the XFormsCreator Java interface must be created for

each XForm view for each document following the procedure described in Section 5.5.

The most relevant XForms developed for the Judicial application are shown here.

These correspond to the XML Schemas for the different documents presented earlier in

Section 6.3. Figure 6.8 shows the XForms for the Lawsuit documents following the Lawsuit

schema illustrated in Figure 6.3. Figure 6.9 shows the Summons for the Lawsuit documents.

Figure 6.10 shows the XForms for the Answer documents corresponding to schema shown

in Figure 6.4. Figure 6.11 shows the XForms for a Motion document to show documents

conforming to schema depicted in Figure 6.6. Figure 6.12 shows the XForms for a Conference

Report document.

Finally, the XForms shown in Figure 6.13 includes validation needed to accept or

reject a submitted Lawsuit document due to errors or missing information that the Court

Secretary must verify. The same concept is used for the validation of the other document

types. These XForms basically display a read-only version of the document and give the

user the option of confirming the document data by pressing a button that will send a

confirmation message via email back to the process.

73

Figure 6.8: XForms for a Lawsuit Document

74

Figure 6.9: XForms for a Summons Document

75

Figure 6.10: XForms for an Answer Document

76

Figure 6.11: XForms for a Motion Document

77

Figure 6.12: XForms for a Preliminary Conference Report Document

78

Figure 6.13: XForms for Validating a Lawsuit Document

79

6.6 Process Description

The BPEL process of a lawsuit case workflow between two private parts was de-

veloped following the same procedure as the one used to develop the sample process for the

PRRD. However, the freely available ActiveBPEL Designer [7] was used to facilitate the

construction of the BPEL process since it provides a highly visual environment for rapidly

developing process definitions that are BPEL-compliant. The ActiveBPEL Designer con-

tains all the features required to help quickly design, test, and deploy business processes

including drag and drop activity creation, WSDL categorization, visual representation of

all participant interactions, comprehensive static analysis (BPEL validation) and automatic

task creation, expression builders, simulation of process execution, deployment and pack-

aging to ActiveBPEL Engine, and remote debugging and analysis of processes executing in

the ActiveBPEL engine.

The BPEL process was designed and developed so that it invokes the Lynx outgoing

web service by encapsulating the information necessary to communicate with a human

partner inside a message that follows the EmailInfo schema as depicted in Figure 4.2 on

Chapter 4, and explained on Section 5.6, and taking into consideration that the callback

element of the EmailInfo message must match the WSDL part name of the message received

in the operation that waits for a response. Also, in addition to interaction through email,

the BPEL process invokes a web service that stores and updates the documents in a native

XML Database needed to enable interaction with the workflow documents through the

web-based interface, discussed in the next section.

Finally, the BPEL process is deployed as a message-style service into the Ac-

tiveBPEL server using the free ActiveBPEL Designer. Deploying a BPEL process involves

creating a deployment archive file (a JAR with an extension of ”.bpr”) and copying that to

the CATALINA HOME/bpr directory.

80

6.7 Web-based Interface

The web-based interface that was developed, using Java Server Pages, for the

PRRD application presented on the previous Chapter 5 was reused for this new application.

However, for this application, the JSP interface was customized to show all the documents,

such as motions, answers, and reports, related to a specific lawsuit case. Figure 6.14 shows

the status page demonstrating a lawsuit case in the main status page. After selecting a

particular case through its Civil Num. link, the specific case information web page, shown

in Figure 6.15, displays the status of all the documents related to the specific case, allowing

to see the Log, the status of each document, and to either view the document, or validate

it.

Figure 6.14: Lawsuits status web page

81

Figure 6.15: Specific case status page

82

The other required changes were customization of the XML configuration files

specifying the different types of documents, correlation queries, and relevant information

(shown in Figure 6.16).

<config>
<type>

<docType>Demanda</docType>
<docCorrelation>Header/CivilNum</docCorrelation>
<relevant>

<Demandado xpath=’Header/Demandado/Name’/>
<Demandante xpath=’Header/Demandante/Name’/>

</relevant>
</type>
<type>

<docType>Emplazamiento</docType>
<docCorrelation>Header/CivilNum</docCorrelation>
<relevant/>

</type>
<type>

<docType>Contestacion</docType>
<docCorrelation>Header/CivilNum</docCorrelation>
<relevant/>

</type>
. . .

</config>

Figure 6.16: Lawsuit Process Document Type Configuration

6.8 XML Storage Subsystem

The same eXist Native XML database used by Lynx to store the current version

of each document on the implementation of the PRRD workflow was used for the lawsuit

workflow application.

83

6.9 Summary

In summary, developing a completely different application requires very little code

to be programmed and in particular will reduce the amount of custom GUI code required.

Essentially, the only coding required is to create the Java classes that will generate the

XForms, and the use of HTML and JSTL tags to construct a web-based interface.

Thus, from this experience of developing and deploying two different workflow

applications using Lynx we can suggest that IDEs should provide additional support for

these type of applications.

CHAPTER 7

Experiments and Results

7.1 Introduction

This chapter presents a quantitative analysis with experimental results to evidence

the system’s performance. In addition, this chapter provides a qualitative analysis to as-

sess the advantages and disadvantages of the proposed architecture using the implemented

prototypes for the sample Digital Government scenarios.

7.2 Deployment and Configuration

This section describes the hardware and software configuration used to run our

experiments.

7.2.1 Server Configuration

The server configuration used to develop and carry out the experiments comprises

the following hardware and software:

84

85

• Pentium 4 2.4 GHz CPU, 1 GB RAM

• CentOS Linux 4.3.

• Java SDK 1.4.2.

• Tomcat 5.0.28.

• Chiba-web-1.0.0.

• ActiveBPEL 1.1.6 server.

• eXist 1.0rc1-20060710 XML Database server.

• MySQL 4.1 Database.

7.2.2 Email Server

Any standard SMTP and POP3 server can be used with Lynx. We are currently

using Apache Java Enterprise Mail Server (James) 2.2.0. This email server was installed

in another computer (Pentium D 2.8 Ghz CPU, 1 GB RAM, Windows XP Professional)

accessible through 100 Mb/s Ethernet.

7.2.3 Client Configuration

The clients were simulated by a Java application that sent lawsuit documents with

attachments through email according to the scenarios discussed in Section 7.3.1.

7.3 Performance Evaluation

We are worried that the Puerto Rico Judiciary considered over half million cases

in 2005 [16]. An experiment was developed and conducted to assess the performance of the

system in order to verify that the architecture achieves acceptable performance for the large

workload and type of applications supported.

86

7.3.1 Methodology

This experiment measures the throughput of the system in terms of documents

processed per minute. We simulated user behavior by programmatically submitting docu-

ments by email. Then, all the documents waiting in the email inbox were ingested by the

incoming email gateway.

Using the lawsuit workflow process as reference, we measure the time it takes

for the submission of the document, the process instantiation and the initial tasks of the

workflow. These initial tasks include assignments, decisions and invocation of Web services

to query the XML database, store a document in the XML database, and send a document

to a human partner through email. We measure the time it takes to complete the initial

tasks in the workflow for batches of 100 documents.

Time is measured for documents of different sizes by adding attachments of differ-

ent size to the documents. The document sizes used were 2 KB, 70 KB and 200 KB. A 2

KB document is a typical XML document with no attachments. The 70 KB documents had

a PDF file attachment that is representative of what a government application such as a

lawsuit, or a Registry of Deeds document, would have as a complementary document. The

200 KB documents had a JPG picture attached that represents common documents that

could be scanned and then attached. Finally, time was also measured for the submission of

random ordered 2 KB, 70 KB and 200 KB documents.

With this information, we computed the average documents per minute our proto-

type application can process. Finally, the tests were repeated three times and the averages

were computed.

87

Figure 7.1: Average documents processed per minute

7.3.2 Results

The results of the performance evaluation presented in Figure 7.1 show that, as

would be expected, smaller documents are processed faster than larger documents. This is

because small documents require less bandwidth to transfer to and from the BPEL engine,

and put a lower load on the BPEL execution engine’s memory requirements.

Figures 7.2, 7.3, 7.4 and 7.5 show the time taken to complete each task in the work-

flow for each experimental scenario of 2 KB, 70 KB, 200 KB, and random-sized documents,

respectively. It can be observed from the results that tasks 11, 29, 33 and 37 are the most

time-consuming (the complete list and description of the tasks is presented in Appendix

88

A.) The other tasks take a negligible amount of time since they are tasks internal to the

workflow. This is illustrated more clearly in Figure 7.6, which shows the average time each

task takes as percentage of total time for each experimental scenario.

Figure 7.2: Average time taken by each task for 2 KB documents

Task 11: Check if process for this case is already running. This task

invokes a Web Service that queries the Native XML database to find out if another document

with the same ID is already being processed by Lynx. Indexes were enabled in the XML

database for the IDs to improve the efficiency of the query that checks for an existing

document. However, for the 2 KB documents, this task takes 1596 ms, or 31.7% of the

total time as shown in Figure 7.6. For the 70 KB documents, this task takes 1616 ms, or

25.2% of the total time. For the 200 KB documents, this task takes 3871 ms, or 21.8.2% of

the total time. For the random documents, this task takes 2296 ms, or 25.4.2% of the total

time. This suggests that the Native XML database has low performance for queries where

89

Figure 7.3: Average time taken by each task for 70 KB documents

a specific text must be searched in every element of the XML documents in the database

no matter where it occurs (for example, //id .)

Task 29: Store Log in Native XML database. This task invokes a Web

Service that stores a Log entry in the XML database. For the 2 KB documents, this task

takes 970 ms, or 19.3% of the total time. For the 70 KB documents, this task takes 612

ms, or 9.5% of the total time. For the 200 KB documents, this task takes 1176 ms, or 6.6%

of the total time. For the random documents, this task takes 970 ms, or 10.7% of the total

time. It consumes less time than the ’StoreDemanda’ task (Task 33) because it only stores

the Header and Log information, since it does not need to send any large amount of data

such as the attachments.

Task 33: Store lawsuit document in Native XML database. This task

invokes a Web Service that stores the lawsuit document in the XML database. For the 2

90

Figure 7.4: Average time taken by each task for 200 KB documents

KB documents, this task takes 844 ms, or 16.8% of the total time. For the 70 KB documents,

this task takes 1968 ms, or 30.7% of the total time. For the 200 KB documents, this task

takes 7354 ms, or 41.5% of the total time. For the random documents, this task takes 2706

ms, or 30.0% of the total time. It consumes more time than the ’StoreBitacora’ task (Task

29) because it needs to store the whole document, including the attachments that can be

large. This is the task that takes the most time during the processes since the Native XML

database needs to insert the new XML document and also update the indexes. As expected,

the larger the attachments the more time this tasks takes as percentage of the total time.

This overhead introduced by the XML database may be optimized by using a new,

experimental, very recent version of the eXist Native XML database. According to the

developers, the new version introduces a new indexing mechanism that, when compared to

the previous, represents a major improvement when dealing with complex documents and

updates.

91

Figure 7.5: Average time taken by each task for random-sized documents

Task 37: Send lawsuit document to ’secretaria’ partner. This task invokes

the Outgoing Email Web Service to send the document through email to the secretary. For

the 2 KB documents, this task takes 868 ms, or 17.2% of the total time. For the 70 KB

documents, this task takes 1333 ms, or 20.8% of the total time. For the documents with a

200 KB attachment, this task takes 3482 ms, or 19.6% of the total time. For the random

documents, this task takes 1809 ms, or 20.0% of the total time. It consumes a considerable

amount of time because it needs to send the whole document including its attachments to

the Outgoing Email Web Service. Also, it communicates with an external SMTP server.

All these involves transforming the documents from a DOM to a String to be able to send

it through email. This may be optimized by using a more efficient XML framework such as

the Simple API for XML (SAX), instead of DOM4J, since SAX is more efficient although

more complex to use. However, the amount of time it consumes as percentage of the total

time remains almost constant.

92

Figure 7.6: Time each task takes as percentage of total time

Therefore, for larger documents it is observed that the tasks that take the most

time to execute, thus reducing the overall throughput, are essentially the tasks that involve

invocation of a Web service to query and to store the documents in the XML database.

This is evidenced in Figure 7.6 that shows that Task 33 is the one that takes more time

as percentage of the total time for every experimental scenario except for the very small 2

KB documents. However, the total time for the completion of the tasks for the submitted

documents does not equal the sum of the individual completion times for each document.

This is because the execution of the processes for each document is done concurrently by

the BPEL engine. This suggests that one of the limitations of workflow applications using

Lynx is the access to the Native XML database. This can be seen as a trade-off between

the simplicity when querying, storing and retrieving documents, as discussed in Sections

2.4 and 3.7, and performance.

93

We believe the throughput achieved with Lynx is sufficient for a Digital Govern-

ment application since the real bottleneck in these kind of applications are the human in-

teractions. For example, the Puerto Rico Department of Justice Courts considered 539,467

cases in 2005 [16]. This means that, on average, they considered only 1.44 cases per minute.

Given the average throughput measured on our experiment, we can estimate that if on the

worst case 12 documents are processed per minute, a system such the one implemented on

this research can process at least approximately 17,280 documents each day, even in such

a simple application infrastructure. This means that, on average, the system could process

more than six million documents each year. That would be sufficient for receiving cases,

leaving plenty of resources for the other steps in the process and queries regarding the cases.

However, we consider that better overall performance may be achieved if the BPEL

Engine, Axis Web Services server for partner web services, XML database and email servers

are all run on different computers. This would leave more resources for the memory con-

suming and disk intensive operations required by every server, the BPEL execution engine,

the XML database, and the email server.

7.4 Qualitative Analysis

We hypothesize that by exploiting a clever interaction of technologies such as

XForms, email and Web services we demonstrate the viability of implementing complex

interactive applications with significantly less custom coding.

The custom code required for the Puerto Rico Judiciary lawsuit workflow applica-

tion consisted essentially on the Java code required for the classes that dynamically generate

the XForms. This was approximately 200 lines of Java per XForms, most of it consisting on

XForms previously designed and then customized with a few lines of Java code as described

in Section 5.5.

94

This amount of custom code is minimal when compared to estimates of code re-

quired with that required by alternative architectures in order to test the hypothesis that

the Lynx architecture can reduce the amount of custom code needed for the user interface

validations, calculations, error handling, form fields initialization, form data submission,

logic and processing.

A summary of the steps required to develop an application is presented in order

to understand the complex deployment details of form-based architectures such as Struts,

JSF, Ajax, InfoPath, before comparing and contrasting them against the proposed Lynx

architecture. The steps needed to deploy an application using Struts can be summarized as

follows:

1. Create development directory structure

2. Write web.xml

3. Write struts-config.xml

• Identify required input forms and then define them as <form-bean> elements

• Identify required Action’s and then define them as <action> elements within

<actionmappings> elements

4. Write ActionForm classes

• Extend org.apache.struts.action.ActionForm class

• Decide set of properties that reflect the input form o Write getter and setter

methods for each property

• Write validate() method if input validation is desired

5. Write Action classes or extend org.apache.struts.action.Action class

• Handle the request

• Decide what kind of server-side Model objects (EJB, etc.) can be invoked

• Based on the outcome, select the next view

95

6. Create resource file

7. Write JSP pages

8. Build, deploy, and test the application

As observed from this procedure, an ActionForm bean class that contains the data

of the form along with validations, an Action class that processes the request from the form,

and a Model class are needed. This requires a lot of custom code for each form. Struts tries

to reduce or simplify the need of ActionForm by using DynaForms that only require the

form fields to be defined in a configuration file rather than in the form bean itself. Also,

validation code can be removed from the bean by using the Struts Validator framework.

The Validator framework includes several predefined commonly used validations such as

numbers, strings, dates and credit cards. However, the validations must be defined using

JavaScript if a custom validation is needed. Moreover, one can end writing more XML for

each form. In fact, a rough estimate showed that a 20-line Java class that implements a

validation in a FormAction might be replaced by more than 40 lines of XML and properties

to do the same thing [25], and still needs JavaScript for custom validations.

The problem with Struts is that it combines HTML, JSP, tags and JavaScript

to build dynamic pages. JSF, on the other hand, is more an architecture responsible for

interacting with client devices, and its scope focuses on the presentation tier. The steps

needed to deploy an application using JSF are:

1. Create development directory structure

2. Write web.xml

3. Create the Pages using the UI component and core tags

• Lay out UI components on the pages

• Map the components to backing beans (model object data)

• Add other JSF features (either as tags or attributes)

96

4. Define Page Navigation in the application configuration file

5. Develop the backing beans Model objects

• Model objects hold the data (JavaBeans, etc.)

• Validator, convertor, event handler, navigation logic

6. Add managed bean declarations to the application configuration file

7. Build, deploy, and test the application

A JSF form needs at least a Bean that manages the data, the JSF page that define

the screen, and navigation rules. Furthermore, for more complex forms data conversion,

validations and error handlers are also needed. Although JSF includes several standard

validators, custom validations require programming and configuration of these validation

rules. It would require a validator class, and a tag handler and descriptor for use them in

the JSF pages.

In XForms, validation is achieved through binding a control property to a node of

the instance data. The properties that can be associated with the instance data model are:

read only, required, relevant, calculate, constraint, and type. For example,

<xforms:bind id=’bind_attachment’ nodeset=’Attachments/attachment’

constraint=’count(attachments) $> 0’

required=’true()’

type=’base64Binary’ />

would force the XForms to have at least one binary attachment. Likewise,

<xforms:bind id="bind_attachment_date"

nodeset="Attachment/attachment/date"

required="true()"

97

type="xsd:date"/>

would force the attachment’s date to be required, and would force the XForms to display a

calendar because it has been assigned the XML Schema type date. More complex validations

are specified using XPath expressions.

In JSF most of the steps can be automated by a visual development environment

where the developer can lay out the controls of a form and the navigation rules with drag

ana drop. In this aspect, JSF is more like a Swing for web pages [18]. However, there are

also visual page designers for XForms that make it easy to construct the XForms and test

them.

However, the problem with these frameworks is that all the validation and logic

needs to be programmed in Java: the Actions, the validations, the Beans, etc. Essentially,

these are just Model-View-Controller frameworks for building HTML forms, validating their

values, invoking business logic, and displaying results in HTML.

Integrating a Web-services based workflow to allow human interaction using frame-

works such as JSF or Struts is not as straightforward as using XForms. One of the main

limitations of HTML forms, and of these frameworks, is the difficulty of initializing form

data. In order to process a blank form into a filled form, a new document needs to be

constructed piece by piece [29]. These frameworks require the beans to do this work. With

XForms, form data is provided from an initial XML file, the instance data, which can be ei-

ther embedded, as shown below, or external to the form definition. Thus, the instance data

can be provided directly by the workflow as shown below. Also, no additional programming

is needed to save each different type of document required in a workflow application using

Lynx. The documents are stored using the same Web service since they are stored and

retrieved as XML from the Native XML Database as explained in Section 5.8.

98

<xf:instance xmlns=’’>

<Demanda>

<Header>

<SalaSuperior>Mayaguez<SalaSuperior>

<CivilNum>JD-001</CivilNum>

<Demandante>

<Name>Ivan P. Velez</Name>

<SocialSecurityNumber>000-00-0000</SocialSecurityNumber>

<Address>Mayaguez, PR 00680</Address>

<Telephone>787-000-0000</Telephone>

<Email>email@ece.uprm.edu<Email>

</Demandante>

. . .

<Sobre>COBRO DE DINERO</Sobre>

</Header>

. . .

</Demanda>

</xf:instance>

In addition, other approaches such as Ajax and InfoPath require scripting that

manipulates the XML Document Object Model (DOM) document directly. XForms do

not require any JavaScript at all. XForms feature many declarative Actions that replace

scripts. Some of the XForms Actions are: message, setvalue, setfocus, reset, load, toggle,

insert, revalidate, recalculate, refresh, among others.

XForms also has the ability to respond to the XML DOM events from a browser

in a declarative way without resorting to scripts. XForms provides listeners, observers and

handlers for all XML events.

99

For example, to demonstrate this, using JavaScript an HTML form may have a

function that copies values from the plaintiff’s name and the current date to the attachment

description of the document:

<script type=’text/javascript’>

<!--

function copyValues(){

var frm=document.forms[0];

frm.attachmentBy.value=frm.plaintiffName.value;

frm.attachmentDate.value=now();

} -->

Then, somewhere in the page, the copyValues() function must be called, for example:

<input type="button" value="Copy Values" onclick="copyValues()" />

For a small example, this is a lot of script for just copying a value, and is hard to maintain

when the scripts get bigger. XForms allows the use of the XML Events and Actions to

simplify these kind of problems. The previous example could be done without scripts using

a set of setvalue actions like this:

<xforms:setvalue ref="/attachment/by" value="/Header/Demandante/Name"/>

<xforms:setvalue ref="/attachment/date" value="now()"/>

This is easier to understand, maintain, and allows the replacement of scripting languages

using a declarative syntax. Approximately six lines of scripting can be replaces by two lines

of XForms specification. Yet, scripts can also be used with XForms, but only through the

XML events mechanism since there is no built-in support, the script would be part of the

host language where the XForms is running, for example XHTML.

100

Summarizing, XForms can do everything that HTML forms can do, and more,

without needing client-side scripting or server side interaction. In particular XForms allows

to check data values while the user is typing them in, indicate that certain fields are required,

and that the form cannot be submitted without them, submit forms data as XML, submit

the same form to different servers, save and restore values to and from a file, use the result

of a submit as input to a further form, get the initial data for a form from an external

document, calculate submitted values from other values, constrain values in certain ways,

such as requiring them to be in a certain range, build dynamic forms without needing to

resort to scripting.

XForms stands out with its declarative event model which is extremely powerful in

spite of its relative simplicity. Many things can be done through the XForms XML events

model. Also, the XForms’ XML-based submission model suits well for service-oriented

applications. The XForms submission model allows achieving the best separation between

the user-facing interface and services underlying the user interface. It is a standard and

relies on other W3C standards (XML Events, XML Schema, XHTML, CSS, etc.), which

means that it integrates well with all Web technologies. Finally, XForms is cross-platform

and language-agnostic, unlike JSF, or even ASP.NET, etc. There is no need to learn Java

to program in XForms.

Thus, thanks to XForms, and BPEL, the steps needed to deploy an application

using Lynx require little or no scripting or Java code to be programmed:

1. Define XML schemas for the documents that will be handled by the process.

2. Specify WSDL interface for each of the partner web services the BPEL process will

invoke, including Lynx’s outgoing email web service.

3. Define the different operations that the BPEL process will expose in the WSDL of

the process.

101

4. Specify and implement the BPEL of the desired workflow process.

5. Customize the XML configuration files specifying the different types of documents,

correlation queries, and email servers. Specify users, roles and emails. If necessary,

customize the web-based document status and task list interface to suit the specific

application to be supported.

6. Implement the XForms for each view for each document. Create a Java class that

implements the interface to create the XForms for each document.

7. Deploy partner web services and the BPEL process itself.

Lynx provides an open architecture that extends web service based workflows with

human interaction using XForms. The development and deployment of an application using

Lynx requires very little code to be programmed. In particular, we have demonstrated Lynx

may dramatically reduce the amount of custom GUI code required since many common tasks

such as marking controls as required, performing validations and calculations, displaying

error messages, and managing dynamic layout can be done without the need of scripting, in

a declarative way. Also, Java-XML mapping overhead is not required since the documents

are kept in XML throughout the whole application since the instance data used in the

XForms is XML, the web services are message-style (not XML-RPC style), and document

data is stored as XML in a native XML database. Almost everything in Lynx is limited to

languages based in XML such as BPEL, XForms, XML Schema and WSDL.

Currently, Lynx has several limitations. Although no coding is necessary for vali-

dations, coding may be necessary for other logic that may be needed through web services.

Also, response may not be instantaneous if working through email. It may not replace a

traditional servlet for processing any incoming request if working through the web-based in-

terface given that it can only process a request for the specific message types that the BPEL

process is waiting for. In addition, Java classes that return the corresponding XForms are

102

still needed. They could be replaced by automatic XForms generation from XML Schemas

but this approach does not provide for the level of customization needed to deliver a specific

view of a document to certain person at a given time. Finally, there is also a steep learning

curve for BPEL, XForms, and other XML technologies.

CHAPTER 8

Conclusions and Future Work

We have presented the design and implementation of Lynx, a new architecture that

extends web service based workflow engines with human interaction via email. Lynx uses a

general purpose email messaging architecture to interact with human partners by using the

BPEL language for specifying business process workflow behavior based on web services.

Lynx uses XForms to reduce the amount of custom code required to implement the user

interfaces. Also, an evaluation of the architecture was made to assess that the architecture

is acceptable for the type of applications supported.

8.1 Research Conclusion

In our research we demonstrate the feasibility of developing Web services based

workflow applications with interaction through email, reducing the scripting and custom

coding needed through the use of XForms. Our analysis suggests that Lynx would be more

useful when it is used for a document-based application where the documents must be routed

from desk to desk, and a go through a number of steps as different people validate or add

content to the document. Lynx is also appropriate when work is directed to specific users,

103

104

when the application desired involves a long-running and complex business processes, rules,

steps, and forms. Lynx also allows complete interaction through email, and not only email-

based notifications. Finally, an architecture like Lynx would be useful when the application

also involves the invocation of different web services to complete a process.

We also illustrate the usefulness of the Lynx architecture with the design, devel-

opment and deployment of two Digital Government applications. The results of our perfor-

mance evaluation evidence that Lynx achieves acceptable performance by being capable of

processing a large amount of documents per minute.

8.2 Future Work

Future work effort can be dedicated towards:

• Implementing XForms e-mail client plugins, or use client-side XForms implementa-

tions when they support the whole standard, to eliminate Chiba’s server-side depen-

dency.

• Extending the BPEL language to support human endpoints natively as suggested by

an IBM and SAP white paper [50]. This could effectively eliminate the need for the

outgoing email Web service and the incoming email gateway.

• Implementing security for the Web services transactions and for the email messages.

• Taking advantage of the XQuery language’s features to implement the web-based

interface, instead of using JSP.

• Automation of the generation of Java classes that generate XForms.

• Testing Lynx with scenarios where workflow processes change frequently.

BIBLIOGRAPHY

[1] A. Chaudri, A. Rashid, R. Zicari. XML Data Management: Native XML and XML-
Enabled Database Systems. Addison Wesley Professional. March, 2003.

[2] A. Kristensen. Formsheets and the XML Forms Language. Eighth International World
Wide Web Conference. 1999.

[3] A. Ranganathan, S. McFadding. Using Workflows to Coordinate Web Services in Per-
vasive Computing Environments. IEEE International Conference on Web Services.
2004.

[4] BEA WebLogic Integration Business Process Management. http://edocs.bea.com/
wli/docs70/interm/bpmhome.htm

[5] Bonita Workflow Cooperative System. http://bonita.objectweb.org/.

[6] Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S., Web Services De-
scription Language (WSDL) Version 1.1, W3C Note, March 2001; www.w3.org/TR/
wsdl.html.

[7] ActiveBPEL, http://www.activebpel.org/.

[8] Axis, http://ws.apache.org/axis.

[9] Apache Tomcat. The Apache Jakarta Project. http://jakarta.apache.org/tomcat/

[10] Apache Xindice. http://xml.apache.org/xindice/

[11] Business Process Execution Language for Web Services Version 1.1, BEA, IBM and Mi-
crosoft, May 2003, http://www-106.ibm.com/developerworks/library/ws-bpel/

[12] eXist Open Source Native XML Database. http://exist.sourceforge.net/

[13] C. Richard, D. Soroker, A. Tawiri. Using XForms to Simplify Web Programming. In-
ternational World Wide Web Conference 2005. May 10-14, 2005. Chiba, Japan.

[14] Chiba. http://chiba.sourceforge.net/

[15] D. Chakraborty, H. Lei. Pervasive Enablement of Business Processes. Proceedings of
the Second IEEE Annual Conference on Pervasive Computing and Communications.
2004.

[16] Defiende la Administracion de Tribunales su presupuesto. El Nuevo Dia. Page 28. June
4, 2006.

105

106

[17] D. Ganesarajah, E. Lupu. Workflow-based composition of Web-services: a business
model or a programming paradigm? International Enterprise Distributed Object Com-
puting Conference. 2002.

[18] D. Geary, C. Hortsmann. Core JavaServer Faces. Sun Microsystems Press. Prentice
Hall. 2004.

[19] HTML 4.01 Specification. http://www.w3.org/TR/REC-html40/.

[20] IBM Business Process Execution Language for Web Services Java Run Time
(BPWS4J). http://www.alphaworks.ibm.com/tech/bpws4j.

[21] IBM MQ Workflow Email Adapter and Data Handler. http://publib.boulder.

ibm.com/infocenter/wbihelp/v6rxmx/topic/com.ibm.wbia adapters.doc/doc/

email/email34.htm

[22] I. Velez, B. Velez. Lynx: An Open Architecture For Catalyzing The Deployment Of
Interactive Digital Government Workflow-Based Systems. 7th Annual International
Conference on Digital Government Research. San Diego, California, May 2006.

[23] I. Velez, B. Velez. Lynx: An Open Email Extension for Workflow Systems Based on
Web Services and its Application to Digital Government. International Conference on
Internet and Web Applications and Services 2006. Guadeloupe, French Caribbean,
February 2006.

[24] J. Garret. Ajax: A New Approach to Web Applications. http://www.adaptivepath.
com/publications/essays/archives/000385.php

[25] J. Turner, K. Bedell. Struts Kick Start. Sams Publising. 2003.

[26] M. Kay. Building Workflow Applications with XML and XQuery. DataDirect Technolo-
gies, Inc. 2006.

[27] JBoss jBPM. http://www.jboss.com/products/jbpm.

[28] M. Dubinko, L. Klotz, R. Merrick, T. V. Raman. XForms, http://www.w3.org/TR/
xforms/

[29] M. Dubinko, XForms Essentials, O’Reilly, Sebastopol, CA, 2003

[30] Microsoft Biztalk 2006. http://www.microsoft.com/biztalk/techinfo/

whitepapers/adapterwp.mspx.

[31] Microsoft Office Online: InfoPath 2003. urlhttp://office.microsoft.com/infopath/.

[32] Oracle Workflow. http://www.oracle.com/technology/products/applications/

workflow/index.html

[33] Orbeon Presentation Server. http://www.orbeon.com/.

107

[34] S. Graham, D. Davis, S. Simeonov, et.al, Building Web Services with Java: Making
sense of XML, SOAP, WSDL, UDDI, Sam’s Publishing, Indianapolis, Indiana, 2004.

[35] SMTP Biztalk Adapter. http://msdn.microsoft.com/library/default.asp?url=

/library/en-us/operations/htm/ebiz ops adapt file xybi.asp. MSDN. 2004.

[36] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D. F. Ferguson, Web Services
Platform Architecture. Prentice Hall, Upper Saddle River, NJ, 2005

[37] S. Whitaker, V. Belloti, P. Moody, Revisiting and Reinventing Email. Human-
Computer Interaction, Volume 20, Numbers 1 and 2, 2005.

[38] T. Podgayetskaya, W. Stucky. A Model of Business Process Support System for E-
Government. International Workshop on Database and Expert Systems Applications.
2004.

[39] R. Bourret. XML and Databases. http://www.rpbourret.com/xml/

XMLAndDatabases.htm. 2005.

[40] Understanding BizTalk Server 2004.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

BTS 2004WP/html/c245a8af-9f01-410f-b1bc-c43e725bfc27.asp. MSDN. February
2004.

[41] Visual XForms Designer. IBM Alphaworks. http://www.alphaworks.ibm.com/tech/
vxd

[42] Web Services Activity. http://www.w3.org/2002/ws

[43] W. Tian, G. Yu, G. Wang, B. Sorig. Incorporate Components into Workflow Application
Systems. International Conference on High Performance Computing in the Asia-Pacific
Region Proceedings. 2000.

[44] XML Schema. http://www.w3.org/XML/Schema

[45] XPath. http://www.w3.org/TR/xpath.

[46] XML Protocol Working Group, Simple Object Access Protocol (SOAP) Version 1.2,
W3C Recommendation, June 2003; www.w3.org/TR/soap/.

[47] XFormation. http://www.xformation.com

[48] XQuery 1.0: An XML Query Language. http://www.w3.org/TR/xquery.

[49] XUpdate. http://xmldb-org.sourceforge.net/xupdate/.

[50] WS-BPEL For People. http://www-128.ibm.com/developerworks/webservices/

library/specification/ws-bpel4people/.

[51] YAWL: Yet Another Worflow Language. http://www.yawl.fit.qut.edu.au/.

108

[52] Z. Liang, R. Wong. A Lightweight Mobile Platform for Business Services Networks.
Proceedings of the IEEE EEE05 international workshop on Business services networks,
2005.

APPENDICES

109

APPENDIX A

Experiment BPEL Tasks

Table A.1: Experiment BPEL Tasks

Step Number Task Description

1 Executing [/process]

2 Executing [/process/pick]

3 Executing [/process/pick/onMessage]

4 Executing [/process/eventHandlers]

5 Executing [/process/eventHandlers/onMessage]

6 Executing [/process/pick/onMessage/sequence]

7 Executing [/process/pick/onMessage/sequence/assign[@name=’AssignMiscInit’]]

8 Completed normally [/process/pick/onMessage/sequence/assign[@name=’AssignMiscInit’]]

9 Executing [/process/pick/onMessage/sequence/assign[@name=’checkIsRunningAssign’]]

10 Completed normally [/process/pick/onMessage/sequence/assign[@name=’checkIsRunningAssign’]]

11 Executing [/process/pick/onMessage/sequence/invoke[@name=’InvokeIsDocumentDeployed’]]

12 Completed normally [/process/pick/onMessage/sequence/invoke[@name=’InvokeIsDocumentDeployed’]]

13 Executing [/process/pick/onMessage/sequence/switch]

14 Condition is false : [/process/pick/onMessage/sequence/switch/case]

15 Will not execute [/process/pick/onMessage/sequence/switch/case/sequence/assign[@name=’NotificationAssign’]] [d]

16 Will not execute [/process/pick/onMessage/sequence/switch/case/sequence/invoke] [d]

17 Will not execute [/process/pick/onMessage/sequence/switch/case/sequence/terminate] [d]

18 Will not execute [/process/pick/onMessage/sequence/switch/case/sequence] [d]

19 Will not execute [/process/pick/onMessage/sequence/switch/case] [d]

20 Executing [/process/pick/onMessage/sequence/switch/otherwise]

21 Executing [/process/pick/onMessage/sequence/switch/otherwise/sequence]

22 Executing [/process/pick/onMessage/sequence/switch/otherwise/sequence/empty[@name=’NotifyReceived’]]

23 Completed normally [/process/pick/onMessage/sequence/switch/otherwise/sequence/empty[@name=’NotifyReceived’]]

24 Completed normally [/process/pick/onMessage/sequence/switch/otherwise/sequence]

25 Completed normally [/process/pick/onMessage/sequence/switch/otherwise]

26 Completed normally [/process/pick/onMessage/sequence/switch]

27 Executing [/process/pick/onMessage/sequence/assign[@name=’BitacoraInitAssign’]]

28 Completed normally [/process/pick/onMessage/sequence/assign[@name=’BitacoraInitAssign’]]

29 Executing [/process/pick/onMessage/sequence/invoke[@name=’StoreBitacora’]]

30 Completed normally [/process/pick/onMessage/sequence/invoke[@name=’StoreBitacora’]]

110

111

31 Executing [/process/pick/onMessage/sequence/assign[@name=’DemandaBitacoraInitAssign’]]

32 Completed normally [/process/pick/onMessage/sequence/assign[@name=’DemandaBitacoraInitAssign’]]

33 Executing [/process/pick/onMessage/sequence/invoke[@name=’StoreDemanda’]]

34 Completed normally [/process/pick/onMessage/sequence/invoke[@name=’StoreDemanda’]]

35 Executing [/process/pick/onMessage/sequence/assign[@name=’SecretariaAssign’]]

36 Completed normally [/process/pick/onMessage/sequence/assign[@name=’SecretariaAssign’]]

37 Executing [/process/pick/onMessage/sequence/invoke[@name=’demandaASecretaria’]]

38 Completed normally [/process/pick/onMessage/sequence/invoke[@name=’demandaASecretaria’]]

39 Executing [/process/pick/onMessage/sequence/pick]

40 Executing [/process/pick/onMessage/sequence/pick/onMessage]

