

Abstract
In this research, an interactive software tool has been developed for creating 3D

models of anatomical organs and other body structures from 2D medical imaging data.

3D models are generated by using the Marching Cubes algorithm and Planar Contour

method by SolidWorks developed in Visual Basic Language. The research includes

transferring CT and MRI images into digital binary matrixes, entering digital binary

matrixes into SolidWorks environment, building feature library for 3D reconstruction,

creating medical rapid prototyping models, and performing biomedical rapid design and

manufacturing. CT and MRI images processing is obtained by capturing the patient scan

data, converting the image format, extracting the gray scale of bone image, and

transferring CT and MRI image into digital binary matrixes. 3D reconstruction is created

by edge configuration generation and triangulated cube configuration generation in

Marching Cubes algorithm and by capturing section contour points from medical image

per slice, creating B-spline curve with the control points in each layer, producing solid

model construction in Planar Contours method. Medical rapid prototyping models are

performed in SolidWorks, including three views or any combination of views, for

biomedical rapid designing and manufacturing according to the biomedical needs.

Layered manufacturing techniques are used for producing parts of arbitrary complexity.

The results of this research are the first to develop image processing 3D

visualization in SolidWorks Application Programming Interface (API) using Visual Basic

Language. The system performance is tested using truth CT and MRI data, and 3D

physical models teeth and knee joint for MRP are created directly from SolidWorks. The

results reveal that the accuracy of 3D reconstruction is acceptable.

 Keywords: 3D Reconstruction, Image Processing, Computer Aided Surgery,

Medical Rapid Prototyping, SolidWorks

 II

Sumario
En esta investigación, la herramienta de un software interactivo ha sido desarrollado

para crear modelos tridimensionales de órganos anatómicos y otras estructuras del cuerpo

humano partiendo de datos obtenidos en imágenes medicas de dos dimensiones. Los

modelos tridimensionales son generados por medio de la utilización del algoritmo

“Marching Cubes” o cubos marchantes y el método de perfiles de contornos planos del

programa SolidWorks desarrollado en lenguaje Visual Basic. La investigación incluye la

transferencia de imágenes CT y MRI en matrices digitales binarias ingresándolas al

ambiente SolidWorks, y creando una librería de representaciones claves para la

reconstrucción tridimensional; de esta forma se generan modelos de RP para aplicaciones

medicas y se desarrollan diseños biomédicos rápidos para su fabricación.

El procesamiento de las imágenes de CT o MRI son obtenidas capturando los datos

del escaner de un paciente, y convirtiendo el formato de la imagen desde la extracción de

datos de la escala de tonalidades grises de las imágenes de huesos y transfiriendo dichas

imágenes CT y MRI en matrices digitales binarias. La reconstrucción 3D por medio de la

generación de configuración de bordes y la generación de configuración de cubos

triangulados en algoritmos de cubos marchantes; de esta manera se capturan los puntos

de contorno de cada sección de la imagen medica por capas. De esta forma se van

creando curvas tipo B-s por tiras con los puntos de control de cada capa, produciendo así

un modelo sólido de construcción por el método ya mencionado de perfiles de contorno

planos. Los modelos médicos de estereolitografía o RP son previamente desarrollados en

SolidWorks, con las cuales se pueden ver los modelos desde sus tres diferentes vistas o

la combinación de las mismas, siendo de gran ventaja para el diseño y fabricación rápido

de modelos anatómicos de acuerdo con necesidades biomédicas.

Las técnicas de manufactura por capas o laminados son usadas para producir partes

de complejidad arbitraria. El principal objetivo de este proyecto es desarrollar el

procesamiento de visualización de imágenes 3D en SolidWorks mediante Interfase de

 III

Aplicación Programada (API) usando lenguaje Visual Basic. Los datos para generar los

modelos en 3D para la estereolitografía o prototipado rápido (RP) son creados

simultáneamente. El desarrollo del sistema es probado usando datos reales de CT y MRI

y un ejemplo de modelo de RP de dientes o articulaciones de rodilla fueron

manufacturados. Los resultados revelan que la exactitud de la reconstrucción 3D es

bastante aceptable.

Palabras Claves: Reconstrucción Tridimensional, Procesamiento de imágenes,

Cirugía asistida por computador, Estereolitografía Medica, SolidWorks

 IV

Acknowledgments

 First of all, I would like to express my gratitude towards my advisor, Dr. Yi, Jia, who

was an excellent mentor and who supported and guided me over the years. He provided

an ideal research environment for exploring new ideas and every discussion with him was

a learning experience.

 I would also like to thank Dr. Miguel Velez-Reyes, Dr. Frederick A. Just-Agosto,

and Dr. Donald C. Dunbar for serving on my advisory committee and giving me

invaluable comments and suggestions about my research. I deeply thank Alexander

Pulliza for his Rapid Prototyping manufacturing in 3D physical models, Luvina Reyes for

her translation abstract from English to Spanish, and Ke Sun for his help in my

presentation. I appreciate their time and insights.

 Most of all, I thank my husband Tian Yu and my daughter Jenny Han Yu. The

tremendous efforts involved in conducting my research thesis would not have been

possible without their love, support and endless patience.

 This research has been supported in part by the NIH-MBRS SCORE Program,

University of Puerto Rico, Mayaguez campus.

To my husband Tian Yu and my daughter Han Yu (Jenny)

 V

Table of Contents
Abstract………………………………………………………………………….........II

Sumario……………………………………………………………………………….III

Acknowledgments..V

Table of Contents………………………………………………………………….....VI

List of Figures………………………………………………………………………..VIII

List of Tables…………………………………………………………………………XI

Chapter 1 Introduction

1.1 Introduction……………………………………………………………………...1

1.2 Backgrounds and Related Work………………………………………………....3

1.2.1 Iso-surfacing Reconstruction……………………………………………..3

1.2.2 Direct Volume Rendering…………………………………………………7

1.3 SolidWorks……………………………………………………………………...12

1.4 Motivation…………………..…………………………………………………..13

1.5 Objective………………………………………………………………………..14

1.6 Frame of Thesis…………………………………………………………………15

Chapter 2 CT and MRI Digital Image Processing

 2.1 CT and MRI Image……………………………………………………………..19

 2.2 Image Processing…………………………………………………………….....21

Chapter 3 Marching Cubes Algorithm

 3.1 Marching Cubes Algorithm……………………………………………………..27

 3.2 Edge Configuration Generation………………………………………………...29

 3.3 Triangulated Cube Configuration Generation………………………………….32

Chapter 4 Feature Library and Database Library

4.1 Feature Library…………………………………………………………………38

4.1.1 Building Feature Library ………………………………………………….38

4.1.2 Type of Feature Library………………………………………………........40

 VI

 4.2 Database………………………………………………………………………..42

Chapter 5 3D Reconstruction by Marching Cubes

 5.1Programming Development…………………………………………….……....44

5.1.1 Flow Chart…………………………………………………………….…44

5.1.2 Creation of Macro File…………………………………………………..44

5.1.3 Image Transformation……………………………………………...........46

5.1.4 Reading Database………………………………………………………..47

5.1.5 Determining Cube Index………………………………………………...49

5.1.6 Display of 3D Reconstruction Model…………………………………...49

5.2 Results and Discussions……………………………………………………….50

Chapter 6 3D Reconstruction by Planar Contours

 6.1 Section Contour Points ………..………………………………………………58

6.2 B-spline Curve Creation……………..……………………………………….. 60

 6.3 Solid Model Construction…….……..…………………………………………61

6.4 Results of Knee Joint Solid Models……………………………………………63

Chapter 7 Biomedical Rapid Prototyping

 7.1 Rapid Prototyping Technologies……………………………………………….67

 7.2 RP Application in Biomedical Field……………………………………………76

 7.2.1 Surgical Planning ………………………………………………………..76

 7.2.2 Anatomical Implants……….…………………………………………….77

 7.3 Biomedical Rapid Design and Manufacturing…………………………………78

Chapter 8 Conclusions and Future Works

 8.1 Conclusions ……………………………………………………………...…….87

 8.2 Future Works………………………………………………………….…..........88

References …………………………………………………………………………….89

Appendix A: Feature Library ……………………………………………………….95

Appendix B: Programming Codes ………………………………………………….103

 VII

List of Figures

Figure 1.1 Method of Planar Contours………………………………………………...4
Figure 1.2 Marching Cube…………………………………………………………......5
Figure 1.3 March Cube with Triangle Isovalue Surface…………………………….....6

Figure 1.4 Representative Case for Triangular in Double-Time Cubes…………….....7

Figure 1.5 Transformations from Object Space to Sheared Object Space……….........8

Figure 1.6 Transformations from Object Space to Sheared Object Space……….........8

Figure 1.7 the Architecture for 3D Texture Mapping based Volume Rendering……...10

Figure 1.8 the Principles of Ray Casting………………………………………...........10

Figure 1.9 Examples of SolidWorks 3D Models……………………………………...12
Figure 1.10 the Produce and Main Milestones of the Thesis ……..……….………….17
Figure 2.1 Medical Image of Skull……………………………………………………20

Figure 2.2 Gray-level Thresholding Functions.……………………………………….22

Figure 2.3 Arrangement of Pixels………………….………………………………….23

Figure 2.4 CT Scan Image of a Head………………………………………………….24

Figure 2.5 Inverted Cleaned Image…………………………………………………....25

Figure 2.6 Digital Binary Matrixes File …………………...………………………….25

Figure 3.1 Definitions in Marching Cubes Algorithm …………….………………….28

Figure 3.2 Vertex Classifications……………………………………………………...28

Figure 3.3 Vertex Index and Edge Index……………………………………………....28

Figure 3.4 Cube Index ………………………………………………………..……….29

Figure 3.5 Edge Configuration Generation…………………………………………....30

Figure 3.6 Interpolation in 1D Case between and Point …………………..31 thi thi)1(+

Figure 3.7 2D and 3D Ambiguity….…………………………………………..............37

Figure 4.1 Establishment of Base Feature and Feature Library……………………….39

Figure 5.1 Flow Chart of 3D Reconstruction………………………………………….45

Figure 5.2 Result from CT Scan to 3D model for Teeth………………………………53

 VIII

Figure 5.3 Result from CT Scan to 3D model for Knee………………………….…...55

Figure 6.1 Section Contour Points Capture Flow Chart………………………………59

Figure 6.2 Section Contour Points Capture in SolidWorks…………………………...60

Figure 6.3 B-spline Curve Creation…………………………………………………...61

Figure 6.4 18 Layers Closed Curves Selected for a Loft Feature …………………….62

Figure 6.5 Solid Model by Planar Contours Method………………………………….62

Figure 6.6 Solid Model rendered in SolidWorks………………………………………63

Figure 6.7 (a) Capturing Contour Points………………………………………………64

Figure 6.7 (b) Creating B-spline Curves………………………………………………64

Figure 6.7 (c) Lofting Features………………………………………………………..65

Figure 6.7 (d) Building Solid Models…………………………………………………65

Figure 6.7 (e) Rendering Solid Models……………………………………………….66

Figure 7.1 RP Model ……………………….………………………………………...69

Figure 7.2 Process of RP for SLA Technique…………………………………………70

Figure 7.3 the Process of Selective Laser Sintering…………………………………..72

Figure 7.4 the Process Fused Deposition Modeling…………………………………..74

Figure 7.5 Z Corp. 3D Printer…………………………………………………………75

Figure 7.6 Z Corp. 3D Printer in Making 3D Solid Model Processes………………...75

Figure 7.7 RP model for Surgery Planning……………………………………………77

Figure 7.8 RP model for Implant………………………………………………………78

Figure 7.9 Medical Design of 3D Reconstruction Model……………………………..79

Figure 7.10 2D View of 3D Model……………………………………………………79

Figure 7.11 (a) 3D Model in Layer by Layer……………….…………………………81

Figure 7.11 (b) Biomedical Manufacturing with Bolt Joint…………………………...82

Figure 7.11 (c) Biomedical Manufacturing with Joint Hole…………………………..82

Figure 7.12 (a) 3D Physical Model of Knee Joint .…………………………………...83

Figure 7.12 (b) D Physical Model of Knee Joint Layer by Layer…………………….84

 IX

Figure 7.12 (c) D Physical Model of Teeth…...………………………………………84

 X

List of Tables

Table 3.1 Triangulated Cube Configuration…………………………………………….33

Table 4.1 Feature Library……………………………………………………………….40

Table 5.1 File Names and Functions……………………………………………………50

 XI

Chapter 1 Introduction

1.1 Introduction

 The three-dimensional (3D) reconstruction of human anatomical organs and

structures from a series of cross section image has been an intriguing problem in recent

decades. New challenges have been created in the field of image analysis and pattern

recognition by the introduction of modern image data collection techniques such as

Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). With the

development of advanced bio-medical techniques, 3D geometric representations of

human anatomical organs rather than the two-dimensional (2D) photographic images

using CT or MRI are frequently required. These 3D geometric models, either simulation

generated by computer or 3D Rapid Prototyping (RP), can be used for diagnosis of

physical disorders, visualization of anatomical organs for surgical planning, and the

implantation of human organs and other structures. RP is the process of converting a 3D

Computer Aided Design (CAD) file into a 3D physical model “rapidly”. Medical Rapid

Prototyping (MRP) is the production of the medical models using rapid prototyping

methods [1-3]. The application of RP techniques is an invaluable contribution of

engineering technology to the field of medicine [4]. For example, if a patient requires

multi surgeries to repair severely fractured skull, a 3D physical model of the patient’s

skull could be constructed pro to surgery using RP technology in order to visualize the

trauma and make informal decisions on how to proceed into repair.

The MRP process contains three stages. First, a medical image dataset is obtained

using a CT or MRI on other medical scanner. Second, this dataset is processed to obtain a

polygonal surface model. Third, the polygonal surface model is imported into a rapid

prototyping machine using the STL format. Producing 3D model consists of two steps:

segmentation and extraction. A medical image always contains multiple tissues and bones.

 1

Segmentation is the name given to the algorithms used to isolate the desired bones from

the tissues in the image. After the bones are isolated, the extraction technique constructs

3D representations of the bones. Most extractions are based on the concept of the

isosurface [5-8]. An isosurface is a surface passing through a medical image volume that

corresponds to a given integer value. The location of this surface can be computed in

many ways, but the simplest and most common method is called the Marching Cubes

algorithm.

 Applications do currently exist for 3D reconstruction of organs and other structures

from CT images. Fabien Vivodtzev, et al [9] provided an approach to describe the

characteristics of a surface, which is to segment it into regions of uniform curvature

behavior and to construct an abstract representation given by a topology graph for human

brain. Armin Kanitsar et al [10] presented the visualization of tubular structures, such as

blood vessels, by using CPR (Curved Planar Reformation). Yongjie Zhang et al [11] gave

an algorithm to extract adaptive and quality 3D meshes directly from volumetric CT and

MRI imaging data. Kunio Nakamura [12] uses Marching Cubes surface construction

algorithm to render the volumetric image to lead to faster image registration refinement

for the human brain. In 1989, the National Library of Medicine (NLM) began an

ambitious project to create a digital atlas of human anatomy using Marching Cubes

algorithm. The extracted tetrahedral and hexahedral meshes are extensively used in finite

element simulations. Stefan Futterling et al [13] generate a 3D finite element model of an

individual patient’s mandible inserted with dental implants. These geometric models are

converted to finite element models using adaptive tetrahedral meshing [14]. Several

research institutions and commercial organizations integrate CAD and RP systems with

medical imaging systems to fabricate medical devices or generate 3D hard copies of these

objects for uses in surgical rehearsal, custom implant design, and casting [15, 16].

 Very few medical researchers, however, are interested in Medical Rapid Prototyping

(MRP) because this technology is useful only in product design and manufacturing, not

 2

as a surgical tool. Moreover, correctly converting and visualizing the 3D geometry of

anatomical organs on structures from 2D medical images for MRP manufacturing is

difficult.

1.2 Backgrounds and Related Work

 Over the last twenty years, the techniques of CT and MRI have developed rapidly.

Researchers have reported many different methods to visualize the 3D geometry of such

structures. 3D reconstruction includes two main approaches: Iso-surfacing

Reconstruction and Direct Volume Rendering [17-19]. Iso-surfacing Reconstruction

consists of two major classes: (1) Planar Contour and (2) Marching Cubes and

Double-Time Cubes. Direct Volume Rendering includes Shear-Warp, 3D Texture

Mapping, and Ray Casting.

1.2.1 Iso-surfacing Reconstruction

The majority of the reconstruction techniques produce planar approximations of the

data set. There are primarily two classes of surface reconstruction techniques.

(1) Planar Contours

The first class of surface reconstruction methods initially constructs planar contours

in each CT/MRI data slice and then connects these contours by a triangulation in three-

dimensional space. The triangulation process is complicated by the occurrence of

multiple contours on a data slice.

Figure 1.1 shows the approximation method. The method consists of joining points

of neighboring contour lines to triangles in such a manner that one obtains triangular

planar elements, which delimit a polyhedron approximating the surface of interest.

 3

Fig. 1.1 Method of Planar Contours

Early contributions to this method were made by E. Keppel [20] and Fuchs et al [21],

Christiansen and Sederberg [22] and F. Preparata [23]. The optimal algorithms due to the

work by Keppel [20] and Fuches et al [21] computes a graph in which each node

represents a spanning arc and each edge in the graph represents a triangle defined

uniquely by two spanning arcs that share a point. A shortest path algorithm is used to find

the path that corresponds to the triangulation of minimum weight. Another algorithm of a

heuristic nature, due to Christiansen and Sederberg [22], performs a seeking walk around

each adjacent pair of contours selecting segments. A segment on one contour and a point

on the other define the triangle. The choice of the new segment is determined by the

triangle with the shorter edge length.

The algorithm of Buissonnat computes a 2D Delaunay triangulation [24] of the

planar contours and then a 3D Delaunay triangulation of the entire collection of triangles

lying in parallel planes. However, a major complaint about Delaunay-based methods is

that they are slow and cannot handle amounts of data. Tamal K. Dey, Joachim Giesen,

and James Hudson [25] adjusted this criticism by extending the algorithm to handle

supersize data. This modification is the first Delaunay-based surface reconstruction

algorithm that can handle data containing more than a million sample points on a model

machine.

 4

 The limitation of Planar Contours is that the connected contour algorithms throw

away the inter-slice connectivity that exists in the original data. The triangulation

problem resides in the fact that contour lines do not contain sufficient information

regarding the system of gradients associated with the surface they describe. Moreover,

the combinatorial aspect of the problem becomes apparent when one considers how many

different triangular arrangements can be constructed for a fixed number of contour points.

(2) The second class of surface reconstruct methods mostly includes the follows

algorithms:

Marching Cubes algorithm --- William E. Lorensen, Harvey E. Cline, 1987 [26]

 The algorithm, which is one of the most famous volume visualization techniques,

creates a representation that consists of triangles of an isovalue surface. The triangles are

then rendered to produce an image. Marching Cubes consists of eight sample points,

known as voxels (volume elements). An octuple of neighboring voxels represents a cube,

which from a sub-cube are used to create triangles at one time. Depending on whether the

voxels are within or outside the object, a surface of up to four triangles is placed inside

the cube. Then the algorithm “marches” on to the next sub cube in scan-line order (See

Figure 1.2)

Fig. 1.2 Marching Cube

 The original Marching Cubes algorithm identified 256 configurations for the cube,

depending on whether each of the eight vertices is inside or outside the object. Figure 1.3,

 5

for example, shows a triangle for a sub cube. The large point in the figure is included in

the isovalue surface forming the triangle surface because it is inside the object. The

voxels at other corners do not participate in the isovalue surface. Marching Cubes uses

linear interpolation between voxel values to compute the location of the triangles’

vertices. The result of considering all sub-cube in this way is a collection of triangles,

which approximate the location of an isovalue surface.

Fig. 1.3 March Cube with Triangle Isovalue Surface

Since its original conception, the Marching Cubes algorithm has been the subject of

much further research to improve the quality of its surface representation and

performance on large data sets [27-30]. Adriano Lopes and Ken Brodlie were concerned

with the quality of representation of the trilinear interpolating surface [31].

 The advantage of the Marching Cubes algorithm is that the resulting triangle model

can be displayed on conventional graphics systems using standard rendering algorithms

because it uses information from the original 3D data to derive inter-slice connectivity,

surface location, and surface gradient. In addition, because the algorithm uses a case table

of the edge intersections to describe how a surface cuts through each cube in a 3D data

set, programming is convenient and performance is fast.

Double-Time Cubes --- Dennis J. Bouvier, 1992 [32]

 The Double-Time Cubes algorithm creates a representation of an iso-value surface

from volume data. As with Marching Cubes the algorithm considers sub-cube of eight

voxels at a time, in scan-line order. The Double-Time Cube algorithm differs from

Marching Cubes, however, in that it places the triangle’s vertices at voxel locations. Thus,

interpolation is not necessary. Figure 1.4 shows the representative case for triangulation

 6

in Double-Time Cubes

Fig. 1.4 Representative Case for Triangular in Double-Time Cubes

 Although arching

1.2.2 Direct Volume Rendering

s have emerged in the last decade and

the Double-Time Cubes algorithm is a faster alternative to M

Cubes for generating an estimated isovalue surface from volumetric data, it is limited in

that it computes a less detailed representation compared to Marching Cubes, resulting

representations that are rougher approximations composed of fewer triangles.

 Three main direct volume rending algorithm

are widely used: the Shear-Warp method, the 3D Texture Mapping technique, and the Ray

Casting algorithm.

Shear-Warp --- P. Lacroute and M. Levoy, 1994 [33] and Shin Yi Yen, 1996 [34]

 of Shear-Warp considers the volume as a stack of 2D slices that parallel to the face

the volum. The algorithm factors the viewing transformation into three components: a 3D

shear parallel to the data slices, a projection to form an intermediate but distorted image,

and a 2D warp to form the undistorted final image. 3D shear transforms the volume into

an intermediate coordinate system, for which there is a simple mapping from the object

coordinate system that allows for efficient projection. In the intermediate coordinate

system, called the sheared object space, all viewing rays are parallel to the principal

viewing axis, which is defined as the main axis in object space. This axis is the most

parallel to the viewing direction. The volume data is projected in the sheared-object space,

forming a distorted intermediate image. It is efficient to project in the sheared-object

space because the transformation applied to each slice for parallel projections consists of

 7

only a translation. The final 2D warp to produce the undistorted image is accomplished

by using a general purpose affined image warp with a bilinear filter. This part of the

computation is relatively inexpensive because the 2D image is small compared to the size

of the volume.

 Figure 1.5 illustrates the transformation of the parallel projection from object space

to sheared object space. The volume is sampled on a rectilinear grid. The horizontal lines

in the figure represent slices of the volume data viewed in cross-section. After

transformation, the volume data have been sheared parallel to the set of slices that is most

perpendicular to the viewing direction, and the viewing rays are perpendicular to the

slices. The term “perspective transformation” implies that each slice must be scaled as

well as sheared, as shown schematically in Figure 1.6.

Fig. 1.5 Transformation from Object Space to Sheared Object Space

Fig. 1.6 Transformation from Object Space to Sheared Object Space

 Shin ing, thin-

imitations. First, the sampling rate on the z-axis is

Yi Yen [34] extended the shear warp method by presenting a fast-slid

slab volume visualization method. This method renders only those portions of the data

within the acquired volume that lie between a set of parallel clipping planes oriented

perpendicular to the viewing direction.

 The Shear-Warp algorithm has its l

 8

between 1 mm and 1.73 mm according to viewpoint, which is inadequate for observing

thin volume structures. Second, the pre-classification partially blurs the intermediate

image, which is increased by the final re-sampling step. Finally, artifacts due to the

bilinear interpolation occur when the viewing angle is close to 45°. Thus, the global

quality provided by the original implementation is poor.

3D Texture Mapping ---- Frank D. et al, 1998 [35] and Allen Van Gelder, et al, 1996

 3D Texture Mapping first computes the quantized gradient index and material

ts are initially

 is

conv

[36]

 The

classification of each voxel in volume. A voxel may be classified as either reflecting or

ambient, depending on the client-supplied gradient-magnitude threshold. The result of

this step is an index for each voxel into the lookup table. With the pre-assigned look-up

table index of each voxel, 3D texture maps are filled with pre-computed color values.

These texture maps are then processed in the back-to-front visibility order of the

partitions of the volume that they represent. In 3D texture mapping, each polygon vertex

is given a point in the texture space, and the graphics system maps values from the

texture map onto the polygon surface by interpolating texture coordinates.

 Figure 1.7 shows the current architecture in which density and gradien

loaded into the texture memory and then re-sampled by the texture hardware along rays

cast through the volume. The sample data for each ray (or slice) is then transferred to a

buffer in main memory and shaded by the CPU. The shaded samples along a ray are

composed and the final pixels are moved to the frame buffer for display. Alternatively,

within the same architecture, the shaded voxels can be composed by the frame buffer.

The major advantage of the 3D Texture Mapping is that after the original data

erted into 3D texture maps, the texture hardware can perform the rendering and

composing of squares very quickly. The approach is limited, however, to binary

classification and diffuse shading. Although real-time rendering rates can be implemented,

they do not exceed 2 frames per second for 3256 volume due to the required high

 9

Classification Map to Color
Data Gradient

3-4 Parameter
Software Texture LUT Texture Memory

Main Memory and CPU

Fig. 1.7 the Architecture for 3D Texture Mapping based Vo

Frame Buffer

lume Rendering

memory b iss andwidth. Furthermore, the large distance between the extracted slices can m

small details or produce artifacts.

Ray Casting method - B. M. et al [37], Farrell, E. J. [38] and Hohne, K. H. et al [39]

 strategies when scanning the volume. The first

class

 The volumetric Ray Casting algorithm sends a ray into the scene for each pixel on

the object (See (a) in Figure 1.8). Starting at the point where the ray enters the volume

(See (b) in Figure 1.8), the ray is followed while sampling the volume at constant

distances (See (d) in Figure 1.8). It accumulates (composites) the colors and opacities of

these sample values. The ray is no longer followed when the value cannot change

significantly. That is, when it has accumulated an opaque color or when it is no longer

inside the volume (See (c) in Figure1.8).

There are two classes of Ray Casting

 consists of object-space oriented methods, which scan along lines or columns of the

Fig. 1.8 the Principles of Ray Casting

 10

 3D-array and project a the direction of view

than shade the image

g is a good way to produce quality images because trilinear interpolation

ur algorithms

chosen aspect onto an image plane in

when a pure surface display of a single object is required. The second class consist of

image- space oriented methods, which scan the image volume along the viewing

direction to visualize translucency and other volumetric properties.

 Farrel [38] used Ray Casting to find the 3D surface. Rather

with a gray scale, however, be used hue lightness to display the surface. In another Ray

Casting method used after the surface along a ray is located, Hohne et al [39] calculated

the gradient along the surface, scale by an “appropriate” value and generated gray scales

for the image.

 Ray Castin

can easily be implemented [40, 41]. In addition, the incoherency between the rays

reduces greatly the staircase artifacts visible in algorithms extracting 2D planes. The

limitation of this algorithm, however, is that, because it is a pixel-by-pixel approach, it is

naturally slow. Every time the ray steps forward within the volume, eight samples have to

be loaded before performing trilinear interpolation. This creates cache misses because the

samples cannot be stored in memory order. Furthermore, other rays rerunning the same

cell may not take advantage of the preloaded data in the cache because the cache lines are

often replaced by other data. The second drawback is the difficulty in skipping empty

regions of the volume, especially when interactive classification is needed.

 In short, the limitation of Planar Contours is that the connected conto

throw away the inter-slice connectivity that exists in the original data. Although a faster

alternative to the Marching Cubes algorithm for the generation of an estimated iso-value

surface in volumetric data, the Double-Time Cubes algorithm is limited in that it

computes a less-detailed representation, resulting in a rougher approximation composed

of fewer triangles. Regarding quality, Shear-Warp algorithm also has its drawbacks; the

sampling rate on the z-axis is definitely not enough for the observation of thin volume

structures, and the global quality provided by the original implementation is poor. Ray

 11

Casting algorithm is naturally slow because it is a pixel-by-pixel approach. Every time

the ray steps forward within the volume, eight samples have to be loaded before

performing trilinear interpolation. Although Direct Volume Rendering can use volumetric

data directly, it does not build a 3D model of the surface. Marching Cubes, however,

exploits the property of simple rending, manipulation. Planar Contour has high resolution.

1.3 SolidWorks

ing applications fields, SolidWorks software, which is developed by

 In the engineer

SolidWorks Corporation for fully 3D integrated mechanical design software, has the best-

in-class capability to re-recognize different types of features, combine multiple features

inside the new feature tree, and recognize draft and rib features. Figure 1.9 shows two

SolidWorks 3D models in mechanical design applications.

10 11

Example of Example of SolidworksSolidworks ExExamample of ple of SolidworksSolidworks

Hydrodynamic Power Generator

Fig. 1.9 Examples of olidWorks 3D Models

SolidWorks can output C vice design: step,

 S

AD files in a format suitable for medical de

iges, sldprt, stl, fea, cfd, obj … etc. There are 3 basic types of 3D files: the first,

surface/graphics files, like stl, can be visualized and used for rapid prototyping

manufacturing. Second, solid files, like iges and step, are made of curves and surfaces.

These files can be imported into CAD and manipulated. The third, parametric files are

composed of solid geometric shapes such as spheres, cones, cubes, etc. These files are

native to CAD packages and provide more maneuverability than any of the other file

types.

 12

SolidWorks has a drive into the medical device technology market. Its aim is to

unde

.4 Motivation

d 3D visualization techniques have already had a large impact on the

, in either 3D biomedical image

proc

ed on design, which streamlines the entire design process.

rline the considerable advantages that medical equipment manufacturers can derive

by building their design strategy around advanced 3D modeling technology from initial

product development to data management, stress analysis on new designs, and 3D printer

for creating rapid prototypes manufacturing.

1

 Computer-base

field of medicine. The generation of 3D human anatomical organ from CT or MRI

images has many applications in biomedical field. At present, 3D-DOCTOR is an

advanced 3D imaging software for visualization, surface modeling and volume rendering,

3D measurement of CT, MRI, microscopy and other 3D images, which exports 3D

models to STL for rapid prototyping machines.

Relatively little research has been done, however

essing or computation biomechanical modeling in SolidWorks environment where

the 3D physical model of MRP is created from CT or MRI images for biomedical rapid

design and manufacturing. SolidWorks possesses 3D image segmentation, feature

extraction, surface generation, and volume rendering. The 3D display and image handling

requirements are handled very efficiently in SolidWorks and interactive 3D graphics

display and animation requirements become not only possible, but also practical. For

example, medical doctors will be able to do all their visualization and analysis from their

own desktop computer and eventually from remote locations with just a laptop and on-

line access to the Internet.

SolidWorks is fully focus

Change dimensions, relationships, and geometry at any time or roll back and reorder

features easily. Full constraint of biomedical models and assemblies is unnecessary.

Design data is 100% editable, and relationships between biomedical models, assemblies,

 13

and drawings always stay up-to-date. With SolidWorks, Designer can reference other

biomedical models directly and maintain relationships when creating new biomedical

model.

SolidWorks provides not only ease of use, powerful contact modeling, speed,

accu

.5 Objective

es of this project are three-field. The first objective is to develop an

inter

racy, and reliability, but also enables immediate access to the most effective rapid

prototyping technologies in the industry, such as Print3D, including stereolithography

(SLA), fused deposition modeling (FDM), selective laser sintering, and rapid injection

molding. With the development of MRP science and technology, surgeons worldwide are

using these models to enhance preoperative planning for complex reconstructive

surgeries and custom implant design. Applying RP technologies to the medical field,

however, differs radically from its application in manufacturing environments. In

manufacturing, models are planned and conceived entirely on the computer screen, and

then converted to physical reality. In bio-medical applications, by contrast of interest the

objects usually already exist physically. Therefore, building medical models essentially

involves reverse engineering, starting with acquiring data, such as a stack of CT or MRI

cross-sectional images. Prior to model building, these highly complex data need

extensive preprocessing to provide a format that a CAD program can utilize. It is difficult

and complex process to transfer CT or MRI data to a RP system directly. Therefore, the

challenge is to create a 3D model of human anatomical organs and structure from CT or

MRI data that is both accurate and beneficial for biomedical applications. This research,

in which 3D reconstruction is created and rapid prototyping is built from CT and MRI

image in SolidWorks, is put forward for biomedical rapid design and manufacturing.

1

The objectiv

active software tool that can create 3D anatomical models from the original cross-

sectional CT scan or MRI data, based on Marching Cubes algorithm and Planar Contour

 14

method. Visual Basic computer language in the SolidWorks environment will be used to

develop the software tool. The second objective is to convert 3D images into RP data.

The third filed objective is to evaluate the systems performance companion with the

actual set of CT or MRI scans shown with the 3D reconstruction and MRP.

1.6 Frame of Thesis

ed as follows:

parts. Firstly, 3D reconstruction techniques are

sformation CT and MRI image

omponent of the thesis. The discussion is

bes the actual program development with the CT and MRI image.

ction by using Planar

ciple and application in

nes of the thesis.

ate 3D models of

 The thesis is organiz

 This chapter is divided into three

surveyed. Two basic approaches are discussed: iso-surfacing reconstruction and direct

volume rendering. In the second part, SolidWorks is surveyed. In third section,

motivation, objective, and frame of thesis are performed.

 Chapter two discusses CT and MRI images and tran

into digital binary matrix by image processing.

 Chapter three and four constitute a major c

Marching Cubes algorithm and strategy of 3D reconstruction, library feature

establishment, and the software programming in SolidWorks environment developed by

Visual Basic language.

 Chapter five descri

Then, it provides the 3D model observer study, test and discussion.

 Chapter six is divided into two parts to present 3D reconstru

Contours method and the results of knee and teeth solid models.

 Chapter seven begin with a general discussion of the prin

medical rapid prototyping. It then uses SolidWorks interface to convert 3D model data

into the medical rapid prototyping and manufacturing. Final, the chapter finishes the

discussion of the result of MRP application and test.

Figure 1.10 shows the produce and main milesto

In this thesis, an interactive software tool has been developed to cre

 15

anato

 first to develop image processing 3D visualization in SolidWorks

Appl

mical organs or other structures from 2D medical data (CT or MRI). Marching

Cubes algorithm and Planar Contour method in SolidWorks® environment were used in

which a 3D model is converted into STL file data for MRP manufacturing. The research

includes transferring CT and MRI images into digital binary matrixes, entering digital

binary matrixes into SolidWorks environment, building feature library for 3D

reconstruction, creating medical rapid prototyping models, and providing biomedical

rapid design and manufacturing. CT and MRI images processing is obtained by capturing

the patient scan data, converting the image format, extracting the gray scale of bone

image, and transferring CT and MRI image into digital binary matrixes. 3D

reconstruction is created by edge configuration generation and triangulated cube

configuration generation in Marching Cubes algorithm and by capturing section contour

points from medical image per slice, creating B-spline curve with the control points in

each layer, producing solid model construction in Planar Contours method. Medical rapid

prototyping models are performed in SolidWorks, including three views or any

combination of views, for biomedical rapid designing and manufacturing according to the

biomedical needs. Layered manufacturing techniques are used for producing parts of

arbitrary complexity.

This effort is the

ication Programming Interface (API) using Visual Basic Language. Rapid

Prototyping data from 3D models is created simultaneously. The system performance is

tested using truth CT and MRI data, and RP example models of teeth and knee joint were

manufactured for MRP manufacturing, which helps the surgeon to prepare the operations

in close detail, produce biomedical implants for organs replacement, provide engineering

testing, and perform various bio-mechanic simulations.

 16

Scan Image

Data Processing
1) Convert the image format

2) Obtain the patient scan data.

3) Invert the colors.

4) Extract the bone image

5) Convert the image to a digital binary image matrix

3D Representation (Marching Cubes)
1) Cube intersections.

2) Edge configuration generation (linear

interpolation)

3) Triangulated Cube configuration generation

4) Cube Index

5) Combination

Implementation
1) Database- File List, Feature Library,

Library Feature Type List, Part list

2) Create the Macro File

3) Read the data from the digital binary image

matrix txt-file for data input

4) Calculate Cube Index for recognizing

which kind of triangulated cube

configurations joins the 3D model

5) Extract the triangulated cube

configurations selected for 3D

reconstruction

3D Representation (Planar Contour)
1) Capturing section contour points

2) Creating B-spline curve

3) producing solid model construction

MRP Manufacturing
1) Output 3D STL file by SolidWorks

2) Rapid Prototyping manufacturing

 17

3D Model by Marching Cubes 3D Model by Planar Contour

3D STL File for Rapid Prototyping

Fig. 1.10 the Produce and Main Milestones of the Thesis

 18

Chapter 2 CT and MRI Digital Image Processing

 Since the amount of data is too large to be understood in its raw form, it is essential

for the algorithm to use image-processing techniques to filter the original data for 3D

reconstruction. In addition, because scan image data that are image model cannot be read

directly in SolidWorks, the image data must be processed as the digital binary matrix for

3D modeling. This chapter discusses CT and MRI image and performs image processing

from CT and MRI image to digital binary matrixes.

2.1 CT and MRI Image

 In medical imaging, the two most common systems used in acquiring detailed

anatomical information are Computer Tomography (CT) and Magnetic Resonance

Imaging (MRI). The key feature of the imaging technologies is their ability to provide

detailed information about the anatomical structure and abnormalities.

 CT uses a number of thin, rotation X-ray beams and computer technology to slice

2D images or slice planes to create detailed cross-sectional images of objects. It is fast,

patient friendly, and has the unique ability to image a combination of bone and soft tissue.

On the other hand, MRI images are obtained by varying the number and sequence of

pulsed radio frequency field in order to take advantage of magnetic relaxation properties

of hard and soft tissues. Specifically a strong magnetic field is generated to cause atoms

inside the body to become aligned. After alignment, a radio wave is issued to “excite” the

atoms. Once the radio signal is turned off, the atoms give off a small characteristic signal.

Those signals are then measured with a sensitive antenna called an MRI coil. This

process is repeated many times until enough measurements are detected to create a series

of detailed images. MRI does not use any ionizing radiation, and can create images of

almost any body part oriented in any direction. Figure 2.1 shows a MRI example of a

 19

head.

Fig. 2.1 Medical Image of Skull

 CTs and MRIs differ in at lease two key aspects: (1) CT data are most suitable for

modeling bone structures. MRI data are best suited for modeling of soft tissues. (2) CTs

sequentially records 20 slices within the measurement volume. MRIs measure the density

of a specific nucleus and is volumetric (i. e. interrogation of the entire body within the

measurement volume is done simultaneously).

CT and MRI represent the finest resolution capability available in diagnostic

systems achieving volumetric resolutions. The information from each plane can be put

together to provide a volumetric image of the structure as well as the size and location of

anatomical structures [42, 43]. In order to minimize the patient’s exposure to radiation, in

most real data sets, the distance between two layers is greater. Typical resolutions of the

2D-slices are , or256256× 512512× 10241024× . Each pixel possesses an information

depth of eight-bits.

 20

In this thesis, CT-Scan data consist of axial scan images of the entire anatomical

organs taken at 1 mm intervals at a resolution of 512 x 512 pixels, in which each pixel is

made up of 8-bits, 12-bits, or 16-bits of 256gray scale.

2.2 Image Processing

The slice data of original medical imaging are structured point data for which the

topology and geometry of the data are implicitly known, and only require dimensions, an

origin, and aspect ratio. An image may be defined as a 2D function, , where),(yxf x and

are spatial coordinates, and the amplitude of at any pair of coordinates is

called the gray level () of the image at that point. That is

y f),(00 yx

),(00 yxf= , lies in the

range . The interval minmin LL ≤≤ []minmax , LL is called the gray scale. Common practice

is to shift this interval numerically to the interval []1,0 −L , where is considered

black and is considered white on the gray scale. All intermediate values are

shades of gray varying from black to white. When

0=

1−= L

yx, , and the amplitude values of

are all finite and discrete quantities, the image is called a digital image. A digital image is

composed of a finite number of elements, each of which has a particular location and

value. These elements are referred to as pixels.

f

Spatial domain processes will be denoted by the expression ,

where is the input image, is the processed image.

[]),(),(yxfTyxg =

),(yxf),(yxg T is an operator on ,

defined over some neighborhood of . When the neighborhood is size (that is a

single pixel), depends on the value of , and

f

),(yx 11×

),(yxg),(yxf T becomes a gray-level

transformation function of the form)(rTs = . The effect of this transformation would be

to produce an image of higher contrast than the original by darkening the levels below

 21

m and brightening the levels above m in the original image. In the limiting case,

produces a two-level (binary) image. A mapping of this form is called a thresholding

function (see Figure 2.2).

)(rT

T(r)

m
Dark Light

r

s=T(r)

D
ar

k
Li

gh
t

Fig. 2.2 Gray-level Thresholding functions

A pixel p at coordinates has four horizontal and vertical neighbors whose

coordinates are given by

),(yx

)1,(),1,(),(),,1(,1− ++ yxyxxyx y − . This set of pixels, called

the 4-neighbors of p , is denoted by . Each pixel is a unit distance from , and

some of the neighbors of

)(4 pN),(yx

p lie outside the digital image if is on the border of the

image. The four diagonal neighbors of

),(yx

p have coordinates

)1,1(),1,1(),1,1(),1,1(+ − −−−+++ yxyxyyx x and are denoted by . These

points, together with the 4-neighbors, are called 8-neighbors of

)(pN D

p , denoted by .)(8 pN

To establish if two pixels are connected, it must be determined if they are neighbors

and if their gray levels satisfy a specified criterion of similarity. In a binary image with

values 0 and 1, two pixels may be 4-neighbors, but they are said to be connected only if

they have the same value. Let V be the set of gray-level values used to define adjacency.

In a binary image, if we are referring to adjacency of pixels with value 1. We { }1=V

 22

consider three types of adjacency: (a) 4-adjacency. Two pixels p and with values from

 are 4-adjacent if q is in the set . (b) 8-adjacency. Two pixels

q

V)(4 pN p and with

values from V are 8-adjacent if is in the set . (c) m-adjacency (mixed adjacency).

Two pixels

q

q)(8 pN

p and with values from V are m-adjacent if (1) q is in the set , or (2)

is in the set and the set N

q)(4 pN

q)(pN D)()(4 p 4 qN∩ has no pixels whose values are from

[44, 45] (see Figure 2.3). V

0

10

0

10

0

1

1

1

11

1

11

1

1

1

0

0 0

1

0 1

1

1

1

 (a) 4-adjacency (b) 8-adjacency (c) m-adjacent

orks cannot read , the image data must be

proc

tured and scanned. The model

age format. If the images are not in jpg format, use XnViewer to

Fig. 2.3 Arrangement of pixels

Because SolidW Scan image data directly

essed as the digital binary matrix. In this research, Scan data are stored as each slice

per file. Firstly, Scan image data is converted into scan.jpg file format by using XnViewer,

software that both handles images and reduces the image storage and handling size. The

scan.jpg file, then, is inputted into Matlab. In Matlab the Scan image is processed into

digital binary matrixes by identifying the image’s pixel color numbers, given the color

map, picking exact locations of the images, and picking exact points corresponding to the

component material. The detailed steps are as the follows:

 1. Obtain the patient scan data. The images are cap

will be more accurate if the images are taken directly from the CT or MRI machine as

data file in computer.

 2. Convert the im

 23

convert them.

 3. Invert the colors. The original image shown in Figure 2.4 (a) is with black

background and the scanned image is represented in white and gray tones. If the colors

are inverted in Microsoft Paint, the image is clearer because white and gray tones are

changed into black. For more specific properties of the image, it is better to leave the

image with its original colors and making a very specific image processing. To improve

the process, the inverted image (see Figure 2.4 (b)) is used.

) Original Image (b) Inverted Image

 4. Open a numeric matrix s, the jpg image is

developed in

. Convert image into digital binary matrix. The objective of this step is to make a

“bo

(a

Fig. 2.4 CT Scan Image of a Head

of the image in Matlab. To do thi

imported into Matlab. Matlab will import the jpg image as a matrix with the same

dimensions as the image’s number of pixels; Matlab identifies each pixel by its

corresponding number in the given color map. The Figure 2.4 (b) shows the inverted

image imported by Matlab with more specific details than the original one.

 5. Clean the image from the unwanted parts. A program has been

Matlab to scan the matrix pixel by pixel. A gray-scale map is assigned in Matlab, in

which 0 is black that is wanted colors and 255 is white. The image colors that are smaller

than 0.005 are captured, the other are deleted. The cleaned image is created (see Figure

2.5).

 6

ss” that will tell SolidWorks where to draw, and where not to draw. This program

 24

Fig. 2.5 Inverted Cleaned Image

 converts every pixel that is . In contrast, all remaining not in part of the solid model to 0

pixels are created and identified as 1. Thus, SolidWorks sketches a “keypoint” when it

finds a value of 1, and nothing when it finds a value of 0. The resulting matrix is saved as

digital binary matrix file (See Figure 2.6).

Fig. 2.6 Digital Binary Matrix File

 A digital binary matrix lso called the characteristic is defined by the function f(V), a

 25

function, whose domain is the set of all voxels V and whose range is the set {0, 1}. The

set of voxels S= {V | f(V) = 1} is referred to as the object and the set S={V |f(V) = 0} is

referred to as the background. In applications such as space planning, the characteristic

function f is specified by a 3D binary array with value 1 representing full and value 0

representing void. If Q is a point set in 3D Euclidean space, then f(V) = 1 if the points of

V have a nonempty intersection with the points of Q, and f(V) = 0 otherwise [44, 45].

If characteristic function represents the value of the image at V, and D is the range

of f(

 f(V) = otherwise (2.1)

Thresholding is effective when there is high contrast between th

V), then the thresholding operation is defined by the characteristic function

,')(,1 DDVf ⊆∈
,0{

e object and background

values, and little clutter. The digital binary matrixes, finally, are saved in Matlab as

scan.txt file so that the SolidWorks developed in Visual Basic language reads the input

data.

 26

 27

Chapter 3 Marching Cubes Algorithm

Transferring the Digital Binary Matrixes to the 3D model will require the

application of a 3D image-handling algorithm. In the comparison of the known

approaches, the Marching Cubes algorithm is chosen because its triangle model it

produces can be displayed on the SolidWorks graphics systems by using standard

rendering algorithms. In addition, data information from the digital binary matrixes can

be used to derive inter-slice connectivity. The algorithm can use the table of the edge

intersections to describe how a surface is cut through each cube, and the Library Feature

to display how the 3D model is created. These procedures are achieved with ease,

convenience and rapidity with SolidWorks.

3.1 Marching Cubes Algorithm

 Marching Cubes algorithm is to subdivide space into a series of small cubes created

from eight pixels and four each from two adjacent slices, to march through each of the

cubes, to test the corner points, and to replace the cube with appropriate set of polygons

[26]. Major components of this algorithm are deciding how to define the edge

configuration in 2D and triangulated cube configuration in 3D. There are some basic

conceptions need to be defined before determining them.

Cube (Voxel) --- the volume defined by eight neighboring vertexes

 Vertex --- the pixel values at the eight corner points of the cube

 Isosurface --- all points within the cube with equal property

Face --- one of the six sides of a cube

 Edge--- one of the four rims of a face

(See Figure 3.1)

 28

Fig. 3.1 Definitions in Marching Cubes Algorithm

Each vertex is classified as either being inside or outside the isosurface. 0 in the

digital binary matrixes indicates that the vertex values are outside the isosurface; 1 in the

digital binary matrixes, by contrast, indicates for the vertex values are inside the

isosurface (See Figure 3.2).

Fig. 3.2 Vertex Classifications

Vertex Index of eight (0-7) vertices and Edge Index of twelve (0-11) edges of each

cube are indexed as Figure 3.3.

 Vertex Index Edge Index

Outside

Inside

0 3 1
2

4 5 67

8 9
10 11

0
3

1
2

4 5
67

Vertex

Isosurface

Cube (Voxel)

Face

Edge

 29

 Fig. 3.3 Vertex Index and Edge Index

 Whether a vertex value is inside or outside the isosurface is determined by the 8-bit

Cube Index (See Figure 3.4). If only the 0 bit value of eight-bit number is 1, which

means only vertex 0 is inside the isosurface, then the cube index equals 02 1=

(00000001). Similarly, if only 1 bit value of eight-bit number is 1, which means only

vertex 1 is inside the isosurface, and then the cube index equals 12 2= (00000010). The

largest number of possible combination is 256 because there

are 25622222222 76543210 =+++++++ .

Fig. 3.4 Cube Index

The algorithm determines how the Edge Configuration and the Triangulated Cube

Configuration are generated, and then moves to the next cube until the whole object is

marched through to create the 3D model.

3.2 Edge Configuration Generation

 There are six faces in each cube. Using the follow criteria decides where the

isocontour intersects each face. With four vertices and two states in each face, inside and

outside each isosurface, 16 cases of edge configuration (1624 =) occur when the

isocontour intersects the face. The binary “1” indicates insider isocontour and “0” shows

01011011=C91 10101100=C172

Inside =1 Outside =0

 30

outside the isocontour. 16 cases can be reduced to 6 cases by the rotation and mirror of

each face (See Figure 3.5).

Fig. 3.5 Edge Configuration Generation

When no intersections occur, the edge configuration that no edge is cut generates

(configuration 0 and 5).

0

5 4

3(b) 3(a) 2

1

0 0

0 0

0 0

0

0 0

0

0

1

1 1 1 1

1

1

1 1

1 1

1 1

0 0

0

1

 31

 When one intersection occurs, the edge configuration is produced where two edges

are cut (configuration 1, 2, 4). The yellow shaded part is the inside isocontour.

 When two intersections occur (See configuration 3 (a) and (b)), the edge

configuration in which four edges are cut appears and the face ambiguity arises, which

will be expounded in section 3.3.

 The fractional distance from the vertex is computed using linear interpolation. If a

function is defined at integer parameter values, one can define it for intermediate

parameter values using linear interpolation, (i.e. connecting the values at integers with

straight line segments) [46]. Figure 3.6 shows the interpolation in the1D case between thi

and thi)1(+ point. The line segments of the line between thi and thi)1(+ point can be

expressed by linear interpolation as
)()1(

)1(
)()(ifif

ii
ifuf

iu
−+
−+

=
−
− ,

then))(1())(1)(()(iuifiuifuf −++−−= , for 1+<≤ iui . By summing these equations

for all i the equation of the complete interpolating linear function is:

))(1())(1)(()(iuifiuifuf −++−−= (3.1)

Where)(if only influences the intervals],1[ii − and]1,[+ii . The equation is written as:

∑ −=
i

iuBifuf)()()((3.2)

where uuBi −= 1)(, for 11 <<− u , and zero otherwise. The functions)()(iuBuBi −=

can be regarded as the basis functions; the complete interpolation is the sum of basis

functions weighted by function values at integers.

Fig. 3.6 Interpolation in 1D Case between thi and thi)1(+ Point

i

u

i+1

f(i)

f(u)

f(i+1)
O

 32

In 2D case, the values are defined at points),(ji in the plane with integer

coordinates. The simplest way to extend linear interpolation to 2D is to use

)()(jvBiuB −− as the bases functions:

)()(),(),(
,

jvBiuBjifvuf
ji

−−= ∑ (3.3)

This is also known as bilinear interpolation [47].

3.3 Triangulated Cube Configuration Generation

After creating Edge Configuration, Triangulated Cube Configuration is generated by

utilizing trilinear interpolation, where the isosurface can intersect the cube according to

the above criteria of edge configuration generation. Similarly, 3D is the product of three

1D basis functions:

∑ −−−=
kji

kwBjvBiuBkjifwvuf
,,

)()()(),,(),,((3.4)

Usually),,(,, wvuB kji replaces)()()(kwBjvBiuB −−− .

 It is important to note that the level set of),,(wvuf is not a piece-wise linear surface:

the equation 0),,(=wvuf is not linear (it includes terms vwuwuv ,, anduvw). Marching

Cubes algorithm can compute a piece-wise linear approximation to this set of the trilinear

interpolation. The resulting meshes are usually of somewhat better quality and have lower

triangle count [47].

Because there are eight vertices and two states, (inside and outside isosurface), in

each cube there are only 25628 = ways of triangulated cube configuration that the

isosurface can intersect the cube, according to the above criteria of the edge configuration

generation. To simplify the algorithm, these 256 cases can be reduced to 15 patterns by

rotation, mirroring, and inversion. Table 3.1 shows the triangulation for the 15 patterns.

 33

Table 3.1 Triangulated Cube Configuration
Triangulated Cube

Configuration

Pattern Cube Index

(Number)

0

C0

 (1)

1

Rotation: C1, C2, C4, C8, C16, C32, C64, C128

(8)

Inverse: C127, C223, C239, C191, C247, C251, C253, C254

(8)

2

Rotation: C12, C9, C3,C6, C192, C144, C48, C96, C17, C34,

C68, C136

(12)

Inverse: C63, C111, C119, C187, C159, C207, C221, C238,

C243, C246, C249, C252

(12)

3(a)

3(b)

Rotation: C72, C36, C18, C129, C132, C66, C33, C24, C5,

C10, C80, C160

(12)

Rotation: C95, C126, C175, C183, C189, C219, C222, C231,

C123, C237, C245, C250

(12)

 34

4

Rotation: C40, C65, C130, C20

(4)

Inverse: C190, C215, C235, C125

(4)

5

Rotation: C164, C88, C161, C82, C26, C37, C74, C133

 (8)

Inverse: C173, C181, C218, C229, C91, C94, C122, C167

(8)

6

Rotation: C7, C11, C14, C13, C112, C176, C224, C208, C98,

C196, C152, C49, C19, C25, C35, C38, C50, C70, C76, C100,

C137, C140, C145, C200

(24)

Inverse: C31, C47, C55, C59, C79, C103, C115, C110, C118,

C143, C155, C157, C179, C185, C205, C206, C217, C220, C230,

C236, C241, C242, C244, C248

(24)

7(a)

7(b)

Rotation: C44, C73, C131, C22, C194, C148, C56, C97, C81,

C162, C84, C168, C52, C67, C69, C104, C134, C138, C146, C193

(24)

Rotation: C61, C62, C87, C93, C107, C109, C117, C121,

C124, C151, C158, C171, C174, C182, C186, C188, C199, C203,

C211, C233, C234, C213, C214, C227

(24)

 35

8

Rotation: C15, C102, C51

(3)

Inverse: C153, C204, C240

(3)

9

Rotation: C90, C165

(2)

10

Rotation: C27, C39, C78, C141

(4)

Inverse: C114, C177, C216, C228

(4)

11

Rotation: C170, C60, C105

(3)

Inverse: C85, C195, C150

(3)

12

Rotation/Inverse: C135, C75, C30, C45, C120, C180,

C225, C210, C53, C58, C83, C86, C89, 92, C101, C106, C149,

C154, C163, C166, C169, C172, C197, C202

(24)

 36

13

Rotation: C23, C46, C29, C54, C57, C71, C77, C99, C108,

C116, C113, C43

(12)

Inverse: CC232, C209, C226, C201, C198, C184, C178, C156,

C147, C142, C139, C212

(12)

14

C255

(1)

 The arrow denotes the surface normal of the relevant triangles and points to the

outside triangulated cube configuration. The green vertex means it is inside the isosurface

and its value is 1. The simple Pattern 0 occurs if all vertex values are outside the

isosurface and produces no triangulated cube configuration. By contrast, Pattern 15

occurs if all vertex values are inside the selected object and produce a cube. The Pattern

1 occurs if the surface separates one vertex from the other seven, resulting in one of the

triangulated cube configurations defined by the three edge intersections. Other patterns

produce multiple triangulated cube configurations. Permutation of these 15 basic patterns,

using complementary and rotational symmetry, produces the 256 triangulated cube

configurations.

 In some cases, there is more than one topologically distinct way to construct

triangulated configurations from the points on edges. In 2D, when two intersections occur,

the edge configuration appears in which four edges are cut and the face 2D ambiguity

arises (See Figure 3.7: configuration (a) and (b) in 2D). This problem is resolved by

deciding between different cases, and depending on whether the center of the cube in 3D

is inside or outside the triangulated configuration cube determines configuration (a) or (b).

 37

If the center of the cube is outside the triangulated configuration cube, the face’s center in

2D is not connected to the inside isocontour (See Figure 3.7: configuration (a)), which

produces the triangulated configuration cube (a) in 3D. By contrast, the face’s center in

2D is connected inside it (See Figure 3.7 configuration (b)), which causes the

triangulated configuration cube (b) in 3D [47].

2D 3D

Fig. 3.7 2D and 3D Ambiguity

The transformation progress for 3D reconstruction requires Edge configuration

generation and Triangulated Cube configuration generation. Edge configuration

generation is based on the isosurface and cube intersections. Triangulated cube

configuration generation is based on Edge configuration. The Cube Index values

represent 256 cases of Triangulated cube configuration combinations. By connecting

triangulated cubes from all cubes, a 3D model is represented.

(a)

(b)

 38

Chapter 4 Feature Library and Database Library

3D model is reconstructed in SolidWorks Application Programming Interface (API)

and the programs are developed by Visual Basic. In 3D reconstruction, the first technical

problem to be solved is what kinds of database are stored in memory. For research, there

are two types of library: Feature Library and Database for data exchange. Building

feature library is to speed up process rates of 3D models, where170 library features are

created in SolidWorks depending on the different types. Database creation is to organize

the program reasonably for highly running rates, in which there are three types such as

List of Files, List of Library Features, and List of Parts.

4.1 Feature Library

 Feature elements are the smallest elements that are used to reconstruct 3D models.

Feature Library is in charge of the 256 triangulated cube configurations that are saved in

Feature Library of SolidWorks. They are matched by Cube Index to join the 3D

reconstruction.

4.1.1 Building Feature Library

 To create a feature library, a base feature, which is either the first solid feature, is

first created. The triangulated cube configuration features included in the library feature

on the base are then produced separately. Feature Library file has the *.sldlfp extension.

Building feature library includes following three steps:

 Open a new part, sketch a profile, and create a base feature.

 Create the features of 256 cases in the feature library separately (See Appendix B).

 From the Save as type list, select Lib Feat Part (*.sldlfp). Enter a name and save

it.

 39

 Figure 4.1 show the Base Feature, Library Feature of C1, and C25

Figure 4.1 Establishment of Base Feature and Feature Library

Base Feature

Base Feature and
Library Feature of C1

Base Feature and
Library Feature of C25

 40

4.1.2 Type of Feature Library

Because SolidWorks software requires that the library feature must touch the Base

Feature when creating the feature library, the triangulated cube configurations are

classified as three types signed as “-7”, “-66”, and “-8”and the numbers are used to

indicate types of feature library. Those integers represent only marks, which may are

arbitrary value. “-7” describes the triangulated cube configurations that cannot attach the

base features. During 3D reconstruction, they return to the right position. “-66” expresses

the triangulated cube configurations that are individual bodies and touch the base feature

directly. The library features are picked up directly without any processing. Type “-8” is

the combination of “-7”and “-66”. The library features are combined depending on the

triangulated cube configurations in 3D representation (See Table 4.1).

Table 4.1 Feature Library
Type Triangulated

Cube

Configurations

Library Feature Cube Index

(Number)

-7

C192, C144, C48, C96, C240, C112, C176, C224, C208, C16,

C32, C64, C128

(13)

1st slice

C64

2nd slice

 41

-66

All of them except Cube Indexes of -7 and -8

(157)

-8

C5(C1+C4) C10(C8+C2) C18(C2+C16)

C20(C4+C16) C21(C17+C4) C22(C6+C16)

C24(C8+C16) C26(C10+C16) C28(C12+C16)

C30(C14+C16) C33(C1+C32) C36(C32+C4)

C37(C5+C32) C40(C8+C32) C41(C9+C32)

C42(C34+C8) C44(C12+C32) C45(C13+C32)

C52(C4+C48) C53(C49+C4) C56(C8+C48)

C58(C50+C8) C60(C12+C48) C65(C1+C64)

C66(C2+C64) C67(C3+C64) C69(C68+C1)

C72(C8+C64) C73(C9+C64) C74(C10+C64)

C75(C11+C64) C80(C16+C64) C81(C17+C64)

C82(C2+C80) C83(C19+C64) C84(C68+C16)

C86(C70+C16) C88(C8+C80) C89(C25+C64)

C90(C10+C80) C91(C27+C64) C92(C76+C16)

C94(C78+C16 C97(C1+C96) C101(C100+C1)

C104(C8+C96) C105(C9+C96) C106(C98+C8)

C120(C8+C112) C122(C114+C8) C129(C1+C128)

C130(C2+C128) C131(C3+C128) C132(C4+C128)

C133(C5+C128) C134(C6+C128) C135(C7+C128)

C138(C136+C2) C146(C2+C144) C148(C4+C144)

C149(C145+C4) C150(C6+C144) C154(C152+C2)

C160(C128+C32) C161(C1+C160) C162(C34+C128)

C163(C35+C128) C164(C4+C160) C165(C5+C160)

C166(C38+C128) C167(C39+C128) C168(C136+C32)

C169(C137+C32) C172(C140+C32) C173(C141+C32)

C180(C4+C176) C181(C177+C4) C193(C1+C192)

C194(C2+C192) C195(C3+C192) C197(C196+C1)

C202(C200+C2) C210(C2+C208) C218(C216+C2)

C225(C1+C224) C229(C228+C1)

(86)

1st slice

 C65=C1+C64

2nd slice

1st slice

C7

2nd slice

 42

4.2 Database

Database is built for organizing the program reasonably in order to have a fast

running rate. Database consists of List of Files, List of Library Features, and List of Parts

that join the data exchange in programming.

List of Files --- including the CT scan data files. CT scan data are saved slice by slice as

“CT*.txt” where the data structure is the digital binary matrixes. The file component is

as the follow:
File name: filelist.txt

C:\Documents and Settings\My Documents\Solidapplication\CT1.txt
C:\Documents and Settings\My Documents\Solidapplication\CT2.txt
C:\Documents and Settings\My Documents\Solidapplication\CT3.txt
C:\Documents and Settings\My Documents\Solidapplication\CT4.txt
C:\Documents and Settings\My Documents\Solidapplication\CT5.txt
C:\Documents and Settings\My Documents\Solidapplication\CT6.txt
C:\Documents and Settings\My Documents\Solidapplication\CT7.txt

……

C:\Documents and Settings\My Documents\Solidapplication\CT256.txt

List of Library Features--- showing an array (13-column, 256-row) where each column

represents one type of three types in feature library and each row shows the different

cases following the different Cube Index values. Integer after -8 expresses which

triangulated cube configuration of “-7” and “-66” consists of the library feature. -1 shows

that no library feature is used for 3D reconstruction. List of Library Features is shown in

follow:
File name: triLFCtable.txt

-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
-66,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
-66,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
-66,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
-66,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
-8,1,-66,-8,4,-66,-1,-1,-1,-1,-1,-1,-1
-66,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
-66,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
-66,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
-66,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1

 43

-8,8,-66,-8,2,-66,-1,-1,-1,-1,-1,-1,-1
-66,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
-66,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
-66,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
-66,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
-66,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
-7,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1

List of Parts --- describing 256 triangulated cube configurations in feature library in

order to match the Cube Index for extracting the relative library feature. The format is as

follows, where “*-cube li.sldlfp” file stands for each Library Feature saved in SolidWorks

as Library Feature format.
File name: partlist.txt

"C:\Documents and Settings\My Documents\Solidapplication\LFC\0-cube li.sldlfp"
"C:\Documents and Settings\My Documents\Solidapplication\LFC\1-cube li.sldlfp"
"C:\Documents and Settings\My Documents\Solidapplication\LFC\2-cube li.sldlfp"
"C:\Documents and Settings\My Documents\Solidapplication\LFC\3-cube li.sldlfp"
"C:\Documents and Settings\My Documents\Solidapplication\LFC\4-cube li.sldlfp"
"C:\Documents and Settings\My Documents\Solidapplication\LFC\5-cube li.sldlfp"
"C:\Documents and Settings\My Documents\Solidapplication\LFC\6-cube li.sldlfp"

……

"C:\Documents and Settings\My Documents\Solidapplication\LFC\256-cube li.sldlfp"

Chapter 5 3D Reconstruction by Marching Cubes

To evaluate the performance of the Marching Cubes algorithm, programming

implementation is developed in SolidWorks by using Visual Basic language. The flow

chart of program is shown in the follow section. The program flows mainly include

creation of macro file that is main program for activating the link between SolidWorks

and Visual Basic, image input that is to transfer CT and MRI image into digital binary

matrixes, data capture where digital binary matrixes are read into SolidWorks, and 3D

modeling that are created by calculating Cube Index to pick up triangulated cube

configuration from feature library.

5.1 Programming Development

5.1.1 Flow Chart

In programming, firstly, a CT image is input and converted into digital binary

matrixes. The Library and Cube Index are set up to achieve the database exchange. The

Cube Index then matches the data that are extracted from the library to find the edge

intersection by interpolation, and Library Feature is inserted into the 3D model as this

process continue to build each individual feature. Finally, the 3D model is created.

Further, the reconstructed models can be imported into RP software for biomechanical

manufacturing. In each step, two CT slices are kept in memory. Each cube is processed

through two slices. The following Figure 5.1 shows the flow chart for 3D reconstruction.

5.1.2 Creation of Macro File

The SolidWorks application environment is activated with Visual Basic language by

creating macro file. The purpose of creating a Macro file is to activate the link between

SolidWorks and Visual Basic automatically and correctly. Creation of Macro File

includes the follow steps:

 44

Convert Image into Binary Matrix

Image Input

Insert Feature

Get Vertex/ Linear Interpolation

Find the Edge Intersection

Searching for Cubes Index

Calculate a Cube Index

Scan two Slices/Create a Cube

Next Neighbor Slice

3D Models

Database:

Cube Index,

File List

Part List

Feature Library

Complete?

Complete/ Slice?

N

N

Y

Y

Fig. 5.1 Flow Chart of 3D Reconstruction

(1) Open Visual Basic, click the New/Project to create the Project, build a new Form,

and then save the scan.vbp Project file, the scan.frm Form file, and scan.exe Active

file

(2) Enter SolidWorks environment, select Tool/Macro to record the Project to be created

by Visual Basic language, and save scan.swp Macro file

 45

(3) Write the Macro code in Edit by selecting the Tool/Marco/Edit:

File name: list1.swp
Sub main()

 MyAppID=Shell (“C:\my…..\scan.exe”, 1)
 AppActivate MyAppID

End Sub

(4) Build the Macro Button in SolidWorks by opening the

Tool/Custom/Command/Macro to drag the picture to main menu, then click Ok

5.1.3 Image Transformation

Matlab will import the image as a matrix with the same dimensions as the image’s

number of pixels and run the following program to test the procedure. The following

program removes all that is not bone from the image, and save the cleaned image as

CLA51.jpeg .

File name: kk.msn
figure;
colormap (gray);
image;
pause
for I = 1:512
 for j = 1:512
 for k = 1:3
 A = A51(i,j,k);
 B = (double(A))/255;
 if (b<.5098)
 CLA51(i,j,k) =B;
 else
 CLA51 (i,j,k) =1;
 end
 end
end
end
figure;
colormap(gray);

 46

image(CLA51);
saveas (gcf, ‘CLA51’,’jpeg);

The program will then leave only the bones in the image. The resulting matrix is saved as

CL_A51.txt file.

File name: kk1.msn

for I=1:512
 for J=1:512
 A=A51(I,J,1);
 B=A51(I,J,2);
 C=A51(I,J,3);
 if(A==B==C)
 CL_A51(I,J)=B;
 elseif((A<B)&(A<C))
 CL_A51(I,J)=A;
 elseif((B<A)&(B<C))
 CL_A51(I,J)=B;
 else
 CL_A51(I,J)=C;
 end
 end
end

for I=1:512
 for J=1:512
 CL=CL_A51(I,J);
 if(CL<128)
 CW(I,J)=1;
 else
 CW(I,J)=0;
 end
 end
end

csvwrite('CL_A51.txt',CW);

5.1.4 Reading Database
 The aim is to enhance the running speed where the CT-Scan binary digital image

 47

matrix database is read into SolidWorks by Visual Basic language to achieve the data
input.
 To read data from a sequential file, first open the file using:

 Open SeqFileName For Input As #N

where N is an integer file number and SeqFileName is a complete file path. The file is

closed using:

 Close N

The Input statement is used to read in data from a sequential file. The format is:

 Input #N, [data list]

The data names in the list are separated by commas. If no data are listed, the current line

in the file N is skipped.

Note data must be read in exactly the same manner as they were written. So, using

the data A, B, C, and D, the appropriate statements are:

 Input #1, A, B, C

 Input #1, D

These two lines read the data A, B, and C from the first line in the file and D from the

second line. It doesn’t matter whether the data was originally written to the file using

Write or Print (i.e. commas are ignored) [VB help function].

 The programming shows the file data input in SolidWorks developed by Visual

Basic

File name: list1.frm
 filename = "C:\Documents and Settings\jiman\My Documents\Solidapplication\filelist26.txt"
 Open filename For Input As #1
 Do While Not EOF(1)
 For i = 1 To 7
 Line Input #1, AA

 filenamee(i) = AA
 Next i

 Loop
 Close #1

 48

5.1.5 Determining Cube Index

 The goal is to recognize which triangulated cube configurations join the 3D model by

calculating the Cube Index value for searching/matching the File List, Part list, and

Library Feature Type List for 3D reconstruction. Creating cube index number by Visual

Basic language is the follow program that has been developed.

File name: list1.frm

If grid(0)=1 Then Cubeindex0=1
Else Cubeindex0=0

 End If
 If grid(1)=1 Then Cubeindex1=2

Else Cubeindex1=0
 End If

……
 If grid(7)=1 Then Cubeindex7=128

Else Cubeindex7=0
 End If

Cubeindex00=0
Cubeindex=Cubeindex0+ Cubeindex1+……+ Cubeindex7+ Cubeindex00

5.1.6 Display of 3D Reconstruction Model

 With the Cube Index value matching File List, Part list, and Library Feature Type

List, the searched triangulated cube configurations is extracted from Feature Library and

displayed in SolidWorks for 3D reconstruction. 3D representation undergoes different

processes, depending on the different styles of library feature “-7”, “-66”, and “-8”. If

the value from Library Feature Type List that is matched by Cube Index value is -66, the

library feature is extracted directly and inserted into the reference plane of Base Feature

by using Part.InsertLibraryFeature (partdrawname) function of SolidWorks API. If the

value is -7, the library feature is extracted and inserted the reference plane that is located

in the middle of two slices. For -8, the image processing experiences the combination of

library features, then these are extracted and inserted into the related reference plane.

 49

File name: list1.frm
 If triLFCTable(cubeindex)(i1) <> -1 And triLFCTable(cubeindex)(i1) = -66 Then

 partdrawname = partname(cubeindex)
 Part.SelectByID newPlaneName, "PLANE", 0, 0, 0
 Part.InsertLibraryFeature (partdrawname)
……

 If triLFCTable(cubeindex)(i1) <> -1 And triLFCTable(cubeindex)(i1) = -7 Then
 partdrawname = partname(cubeindex)
 Part.SelectByID newPlaneName0, "PLANE", 0, 0, 0

 Part.InsertLibraryFeature (partdrawname)
Else
……

 If triLFCTable(cubeindex)(i1) <> -1 And triLFCTable(cubeindex)(i1) = -8 Then
 i1 = i1 + 1
 cubeindex1 = triLFCTable(cubeindex)(i1)
 i1 = i1 + 1
 If triLFCTable(cubeindex)(i1) = -66 Then
 ……
 Else

End If
 If triLFCTable(cubeindex)(i1) = -7 Then
 ……
Else

 End If

3D reconstruction is displayed in SolidWorks by repeating this process recursively.

Table 5.1 shows file names and functions of program development.

Table5.1 File Names and Functions
Image Processing Library 3D Reconstruction

Cleaning image kk.msn List of files filelist.txt Macro file list1.swp

List of parts partlist.txt Active file List1.exe

List of Feature Library triLFCtable.txt Project list1.vbp

Digital Binary

Matrix

kk1.msn

Feature Library *-cube li.sldlfp Form list1.frm

5.2 Results and Discussions

 In order to evaluate the performance of the interface software tool in medical

 50

situations, a set of actual clinical data is used. The test sample is a “tooth” dataset

generated from CT scan of a human head. The image is grayscale color and

contains pixels and 18 slices with 1mm interval. Figure 5.2 shows the results of

the transition from CT scans to 3D model the tooth. Figure 5.3 shows the result of 3D

reconstruction of the knee joint and describe the original CT scan information, such as 18

slices and 512 x 512 pixels per slice. The processes cover conversion of the CT scan

image to the digital binary matrixes (including: inverted image and cleared image), 3D

reconstruction from edge configuration generation to triangulated cube configuration

generation. All 3D models are visualized on the computer screen in lateral, frontal,

oblique lateral and axial views with SolidWorks.

512512×

As described previously, the digital binary matrixes can be created from a CT scan

image. Obtaining the digital binary matrixes is three-step processes. In the first step, the

CT scan image must be converted to a JPG format and inverted in XnView. Then, the

inverted image must be converted to an eight-bit gray scale image using a conversion

method to compute each eight-bit gray pixel to replace each old pixel. Finally, these

eight-bit pixels are transformed into the digital binary matrixes by computing

thresholding function in Matlab. The test is conducted to evaluate feasibility of the

conversion technique. On the other hand, the results of 3D reconstruction in SolidWorks

and Rapid Prototyping from the digital binary matrixes are important to the success of the

software. The process undergoes edge configuration generation and triangulated cube

configuration generation. In the edge configuration generation, each face is constructed

from four corner points and interpolated to produce one or two intersections. There are

six unique cases. All of the interpolated lines can be used to define an isosurface

representing the locations of the isovalue in the image plane. The triangulated cube

configuration is obtained using the Marching Cubes algorithm, which can be used to

create a 3D model in SolidWorks.

 51

Original Image

 Inverted Image

Cleaned Image

 52

Digital Binary Matrixes

Edge configuration generation Triangulated Cube configuration generation

3D Reconstruction

Fig. 5.2 Result from CT Scan to 3D Model for Teeth

 53

Original Image

 Inverted Image

50 100 150 200 250

50

100

150

200

250

Cleaned Image

 54

Digital Binary matrixes

3D Reconstruction

Triangulated Cube configuration generation Edge configuration generation

Fig. 5.3 Result from CT Scan to 3D Model for Knee

 55

From the result, it can be observed that the program developed in this research

project can be used to construct 3D model based on 2D CT scan images, which can then

be used to machine a physical model. The pixels of this CT scan image are converted

directly to the digital binary matrixes. The vertices-based data are interpolated by means

of the Marching Cube algorithm, which converts the cube model into the triangulated

cube configuration model by piecewise linear approximation. The linear interpolation

techniques are considered as the most suitable, since the triangulated cube configuration

representation is a kind of linear approximation.

On other hand, stair-casing effect is highly evidenced in the models and this could be

explained by the fact that large layer thickness was required to reduce the time for

producing such large models. The surface is rough and lacks fine details, particularly

around the models region. The tests are initial steps and the results are very limited. In

future, the results will need to be improved further.

 In short, the results illustrate that:

1) The software tool can produce solid geometric models from CT scan data and MRP

manufacturing.

2) Cube size has an impact on 3D reconstruction. The smaller the object is divided, the

higher the solution of 3D reconstruction could is built.

3) Using the library feature in SolidWorks increases the program performance speed.

4) In the real working environment, the surgeon can rotate, zoom in/out, or change the

3D models, manipulation that can assist in pre-surgical planning.

The following some problems have been raised:

1) The cube size cannot be changed, which affects the quality of 3D reconstruction.

2) The exact isosurface has a staircase appearance which is preserved by use of face

shoulder and interior points. Therefore, the 3D model is not smooth and the resolution

is too slow.

 56

3) The 3D model resolution needs to be improved by using interpolate method for

obtaining smaller size of cubes.

 57

Chapter 6 3D Reconstruction by Planar Contours

As mentioned above, 3D reconstruction models are very rough and limited, which

takes time to improve the quality of 3D models. To get better 3D medical models in

SolidWorks, Planar Contours, which use contour lines to approximate complex surfaces,

will be employed for computer modeling and rapid prototyping. The initial planar

contours method is to connect these contours by a triangulation in 3D space. The

triangulation process is complicated by the occurrence of multiple contours on a data

slice. In this research, planar contours method constructs 3D models by using loft

command in SolidWorks, which saves the time and improves the quality.

The key steps in Planar Contours approach include capturing section contour points

from medical image per slice, creating B-spline curve with the control points in each

layer, and producing solid model construction.

6.1 Section Contour points Capture

 Digital binary matrixes, slice by slice, were got by image processing in chapter 2,

which were then brought into the SolidWorks environment for digitizing the section

contour points using input and searching function. Figure 6.1 shows the reasoning flow

chart.

Note that each section image was imported into SolidWorks and placed on

corresponding sketch plane. A set of sketch planes parallel to a reference plane was

created in SolidWorks. The distance between two adjacent sketch planes was set to be

identical to the distance between two corresponding sections obtained from adjacent CT

or MRI slices. These section contour points for teeth per slice from CT scan of a head

were created along reasoning flow chart, as shown in Figure 6.2.

 58

Input digital binary matrixes into A

Set up row data of matrixes (Y=1)

Set up column data of matrixes (X=0)

Set up test data of matrixes (B=0)

Y<=256 ?

Y

N

X<=256 ?
N

Y

V(1).X=X &V(1).Y=Y

Create contour point

A=1 & B<>A?
Y N

A=0 & B<>A?
Y N

V(2).X=X-1 &V(2).Y=Y

Create contour point

B=A B=A

X=X+1

Y=Y+1

Start

End

B=A

Fig. 6.1 Section Contour Points Capture Flow Chart

 59

Fig. 6.2 Section Contour Points Capture in SolidWorks

6.2 B-Spline Curve Creation

The second step was to creation of splines, with the fit spline command in

SolidWorks. This digitization was conducted by properly marking points along the

exterior contours and using the point option of the spline mode in SolidWorks. Handles

appeared at each spline point with arrows that controlled the vector leaving that point.

Technically known as Bezier (B-spline) handles, these little arrows shape the B-spline

curve. B-spline curves were formed in SolidWorks using the curve fitting technique,

which employed the least square fitting for discrete points measured on a pre-selected

section of an object. The best fitting curve can be obtained by minimizing the distance

sum between the curve and the geometric points, as shown in Figure 6.3. The shape of

the B-spline curve depends on the directions of tangent vectors. Spline can have as few as

two points and can specify tangency at the end points. B-spline curves are used to provide

 60

accurate interpolation of the intersection data points. To achieve higher accuracy, a larger

number of linear segments are needed for the approximation.

Fig. 6.3 B-spline Curve Creation

6.3 Solid Model Construction

 After B-spline creation, the solid model was created using the loft features in

SolidWorks. The loft feature created a solid model (see Figure 6.5) by connecting

multiple closed curves on parallel planes (see Figure 6.4). The guide curves were selected

along the loft direction to enhance the smoothness of the loft features. Solid Model was

rendered using shade command in SolidWorks (see Figure 6.6). Consequently, 3D

reconstruction model created by Planar Contour method is better than that produced by

Marching Cube algorithm. The loft solid model created in SolidWorks is smoother and

finer surface, which was helpful and convenient for further biomedical rapid design and

manufacture (see section 6.3).

 61

Fig. 6.4 18 Layers Closed Curves Selected for a Loft Feature

Fig. 6.5 Solid Model by Planar Contours Method

 62

Fig. 6.6 Solid Model rendered in SolidWorks

6.4 Solid Model Result of Knee Joint

 Solid model of knee joint was created along Planar Contours method. Figure 6.7 (a-e)

shows the result through capturing contour points, creating B-spline curves, lofting

features, building solid models, and rendering solid model. The result shows the better

resolution for solid models.

 63

Fig. 6.7 (a) Capturing Contour Points

Fig. 6.7 (b) Creating B-spline Curves

 64

Fig. 6.7 (c) lofting features

Fig. 6.7 (d) Building Solid Models

 65

Fig. 6.7 (e) Rendering Solid Models

 66

Chapter 7 Biomedical Rapid Prototyping

In medical industry, the use of Rapid Prototyping (RP) technology can improve

services to patients such as surgical planning and implant designs. A precise of RP model

facilitates the pre-operative planning of an optimal surgical approach. The reliability and

accuracy of an RP model in surgical application allow surgeons to evaluate and select

correct or appropriate implant approaches prior to operating the patient. In chapter, RP

technique is based on layered manufacturing described in the following section. The

second section discusses application of biomedical RP such as surgical planning and

implant. The last section in chapter performs biomedical rapid design and manufacturing.

7.1 Rapid Prototyping Technologies

RP is the technique of manufacturing prototypes from complex 3D datasets, where

all are based on layered manufacturing. The concept of layered manufacturing is the basis

of all mainstream rapid prototyping processes. The idea behind layered manufacturing is

that it is easier to build a series of 2D models then it is to build a single 3D model. Any

solid or surface geometry can be interpolated to generate a series of 2D cross sections

called “slices”. These slices are generated at evenly spaced intervals along the z-axis

direction of the geometry. Each layer is then constructed sequentially to produce a model.

This technology is fast developing and is more than competitive with traditional model

building techniques, considering time and degree of detail.

Designing an interface to import the 3D images into RP format for manufacturing

will include the following:

 1. The RP interface accepts data in a format that accurately describes the surface of

the anatomical organs.

 2. The RP interface software “slices” the model data into very thin sections.

 67

 3. The RP system then builds the model slice upon slice.

To enable the slicing procedure, the Stereolithography (STL) geometry file of the 3D

model has to be generated that is surface-mesh created with triangular elements. This

process is done directly through SolidWorks. The STL format is standard for RP

technology. The STL file contains an array of independent 3D triangles representing the

model surface. Each triangle contains 3D points and one 3D normal vector. The STL file

is an approximate representation. Only flat surfaces can be represented perfectly. All

curved surfaces are approximated using a chord height criterion [49, 50]. Figure 7.1 (a)

and (b) shows the teeth and knee STL files created by 3D reconstruction models in

SolidWorks.

(a) Teeth STL File

 68

(b) Knee STL File

Fig. 7.1 RP Models

Some of most commonly available systems are: Fused Deposition Modeling (FDM)

[51], Stereolithography (SLA) [52], Selective Laser Sintering (SLS) [53], Sanders

Prototyping Technology, and Z Corporation Fabrication Machine [54]. The FDM process

from Stratasys constructs each layer with a path of heated extruded plastic [55]. The SLA

process from 3D systems traces each cross section in a shallow pool of photocuring

polymer using a laser [56, 57]. The SLS process from DTM constructs each layer by

fusing powder along a path with a high powered laser. Z Corporation Fabrication

Machine constructs layers using a modified inkjet print head to spray binder in powder

such as starch or plaster [58-60].

Material development lagged behind other aspects of the industry. It has the

following basic requirements: 1) exist in both liquid and solid state; 2) have a low

viscosity in the liquid state; 3) and adhere strongly in the solid state. A phase or chemical

change is used to change from a liquid state to the solid state. The resultant energy,

 69

however, cannot be enough to melt or warp either material in its solid state. A high

viscosity liquid will not fill small cavities, but will trap air bubbles within it. Poor surface

quality will result in if the machined surface intersects a bubble.

Medical Rapid Prototyping is the production of medical models using rapid

prototyping methods. The selection of a particular process will depend on the medical

model application. With SLA, any anatomical object, regardless of its complexity, can be

built automatically from its “CAD” file without the need for tools or manual interference.

A brief overview of the major RP technologies available today is given below.

Stereolithography (SLA)

Depending on the technology used, the 2D files are used to guide a laser beam in

cutting sheets into the equivalent solid layers used in the SLA technique. The SLA system

consists of an Ultra-violet Laser, a vat of photo-curable liquid resin, and a controlling

system. A platform is lowered into the resin (via an elevator system), such that the surface

of the platform is a layer-thickness below the surface of the resin. The laser beam

receives its path instructions for each slice to trace the boundaries and fill in a 2D cross

section of the model, solidifying the resin wherever it touches. Once a layer is complete,

the platform descends a layer thickness, resin flows over the first layer, and the next layer

is built. This process continues until the model is complete [56]. Figure 7.2 shows the

sequence of steps for producing a SLA layer.

Figure 7.2 Process of RP for SLA Technique

 70

The materials used by SLA equipment are epoxy-based resins that offer strong,

durable, and accurate models. It is ideal for form, fit, and function testing, as well as for

visual aids and patterns for tooling. In many cases, SLA is capable of reproducing snap

fits. In general SLA materials have a low heat tolerance with typical heat deflection

temperatures are around F. Standard tolerances are°−120110 005.0± ” for the first inch,

and ” in most parts and features. These characteristics make SLA an excellent all

round choice for prototypes. The advantages of SLA process are high accuracy , very

good surface finish, semi-transparent material and moderate strength.

002.0±

Selective Laser Sintering (SLS)

Laser Sintering uses fine powders of a wide range of materials to be treated in

nitrogen atmosphere. The powder is heated up to a temperature just below the melting

point of the specific material, which usually will take a couple of hours. A roller spreads

the powder on the building platform. The laser beam then selectively melts the powder

and bonds it. As the power is already heated, the laser needs to elevate the temperature

slightly to cause sintering. The temperature gradients in the part remain small. The

platform moves down incrementally and the process starts again, until the prototype is

finished. Subsequently the building chamber piston raises completely to deliver the part.

Excess powder is brushed away and final manual finishing may be carried out. Figure 7.3

shows the process of selective laser sintering. No supports are required with this method

because overhangs and undercuts are supported by the solid powder bed. The advantages

of SLS process are that it produces a large model, which is durable, functional, fast, and

can be finished and painted [54, 57].

SLA vs. SLS: A Summarized Comparison

Material Properties: The SLA (stereolithography) process is limited to

photosensitive resins which are typically brittle. The SLS process can utilize polymer

powders that, when sintered, approximate thermoplastics quite well.

 71

http://www.efunda.com/processes/rapid_prototyping/sla.cfm

Fig. 7.3 the Process of Selective Laser Sintering

Surface Finish: The surface of an SLS part is powdery, like the base material whose

particles are fused together without complete melting. The smoother surface of an SLA

part typically wins over SLS when an appearance model is desired. In addition, if the

temperature of uncured SLS powder gets too high, excess fused material can collect on

the part surface. This can be difficult to control since there are so many variables in the

SLS process. In general, SLA is a better process where fine, accurate detail is required.

However, a varnish-like coating can be applied to SLS parts to seal and strengthen them.

Dimensional Accuracy: SLA is more accurate immediately after completion of the

model, but SLS is less prone to residual stresses that are caused by long-term curing and

environmental factors. Both SLS and SLA suffer from inaccuracy in the z-direction

(neither has a milling step), but SLS is less predictable because of the variety of materials

and process parameters. The temperature dependence of the SLS process can sometimes

result in excess material fusing to the surface of the model, and the thicker layers and

 72

variation in the process can result in more z inaccuracy. SLA parts suffer from the

"trapped volume" problem in which cups in the structure that hold fluid cause

inaccuracies. SLS parts do not have this problem.

Support Structures: SLA parts typically need support structures during the build.

SLS parts, because of the supporting powder, sometimes do not need any support, but this

depends upon part configuration. Marks left after removal of support structures for parts

cause dimensional inaccuracies and cosmetic blemishes.

Machining Properties: In general, SLA materials are brittle and difficult to machine.

SLS thermoplastic-like materials are easily machined.

Size: SLS and SLA parts can be made the same size, but if sectioning of a part is

required, SLS parts are easier to bond.

Fused Deposition Modeling (FDM)

In FDM, the material is prepared in filament form, available on spools and in many

different colors. This filament is heated in a nozzle, which moves in the X and Y

directions according to the CAD data. The molten material is thus added layer by layer. A

second filament is used equally to build up the necessary supports (See Figure 7.4). The

supports are easily removable using a water-based solution that dissolves them and leaves

the model with smooth surfaces. FDM is a free-form fabrication technology. Because it

uses high strength ABS plastic, it is the favored technology for prototyping plastic parts

requiring strength. The advantages of FDM process are that it is high strength, cost-

effective, and waterproof, and that it can accommodate ABS material and multiple

material colors [54, 61].

Z Corporation 3D Printing

Z Corporation 3D Printing uses inkjet printer technology to print fine patterns of glue

onto a smooth bed of plaster powder. First, the 3D Printer spreads a thin layer of powder.

Second, an ink-jet print head prints a binder in the cross-section of the part being created.

 73

Fig. 7.4 the Process Fused Deposition Modeling

Third, the build piston drops down, making room for the next layer, and the process is

repeated. Once the part is finished, it is surrounded and supported by loose powder,

which is then shaken loose from the finished part. It is especially good at making parts

that have hard-to-reach cavities, as the scrap can be poured and vacuumed out. Figure 7.5

shows how the Z-Corp 3D Printer fabricates solid parts from layers of powder [58, 60].

No support structure in Z Corporation 3D Printer means that parts can be made

with very complex geometries, and when complete, simply “blow out” the powder. Inkjet

technology makes this a very high-speed option. Z Corporation 3D Printers enable

surgeons to rapidly produce inexpensive 3D models to obtain better case information to

reduce operating time, enhance patient and physician communication, and improve

patient outcomes. The ability to use models for pre-surgical planning reduces operating

room time, lowers cost, and enhances patient outcomes by minimizing incision sizes,

reducing recovery time and allowing for procedure rehearsals. Z Corporation models

 74

Fig. 7.5 Z Corp. 3D Printer

permit the world’s leading implant manufacturers to fabricate custom implants rapidly

and cost effectively for the ultimate in performance. Therefore, Z Corporation 3D Printer

is used in this study to enable the slicing procedure. Figure 7.6 shows the Z Corporation

3D Printer in making a 3D solid model.

Fig. 7.6 Z Corporation 3D Printer in Making 3D Solid Model

 75

7.2 RP Application in Biomedical Field

 The application of RP processes to medicine appears very promising. A direct

interface between the three dimensional reconstruction models and RP allows the

development of physical, real 3D models of any anatomical structures [61, 62]. Such

models are used for purposes of visualization and communication, surgical rehearsal, and

custom implant preparation.

7.2.1 Surgical Planning

 3D models are used by surgeons for more accurate surgical planning and better

diagnostic methods. This planning reduces the risk to the patient, owing to the shortened

time of surgical procedures, and is less expensive than the alternatives. For example, the

human spine needs to be created from CT and MRI-data in other to correct a deformity.

The surgeon needs 3D models to plan and rehearse the procedures, because sensitive

areas are involved, that take susceptible to severe damage. The case is Torticollis, which

involves the cervical portion of the spine where a vertebra is out of alignment. This

causes the neck to be mis-aligned and can result in damage to the spinal cord. The

surgeon needs to know the exact location of the spinal cord compared to the vertebrae

and how far the vertebra has to be moved. By using information obtained only from the

CT-and MRI-images, planning the procedure is difficult and the risk is substantial.

Providing a physical model of the actual case will ease the pre-surgical planning and

decrease the risks involved in such a delicate procedure. Another case is Scoliosis, which

involves lateral curvature of the vertebrae portion of the column due to uneven growth of

the vertebrae. The surgery, which involves partial removal of the vertebra, involves high

risk to the spinal cord. A 3D physical model of the patient’s anatomy will help the

surgeon to plan the procedure and minimize the risk involved (See Figure 7.7).

 76

5

Image Guided Surgery Using Rapid Image Guided Surgery Using Rapid
Prototyping ModelsPrototyping Models

Fig. 7.7 RP model for Surgery Planning

7.2.2 Anatomical Implants

 The implant would be made to fit exactly the patient’s requirements in terms of

shape, performance, and integration into existing structures within the body, using data

collected by non-intrusive scans. RP is well suited to produce biomedical implants for

bone replacement. 3D printing is an especially appropriate technique to generate complex

porous ceramic matrices directly for biomedical applications. Anatomical information

obtained from the patient is used to design and optimize the implant for a target defect.

The use of RP allows 3D physical model to be created immediately, directly, and

automatically from a 3D model. It works by breaking down a 3D model into 2D sections,

which are built up layer by layer by high tech machines.

 For example, the reason for customizing a knee implant is that the current procedure

uses standard size implants, which cause the implant to loosen over time due lack of

perfect fitting. However, using the 3D model created from CT-data to design a

customized knee implant will fit perfect. Moreover, a stress analysis of the knee

components can be conducted at different, angles, positions, and load distributions, which

can vary due to different activities such as walking or running. Once the design is

completed, the CT data for the subject can be used to prototype the femur, tibia and the

corresponding customized implants, which would enable the precise manufacture of

customized implant components (See Figure 7.8).

 Therefore, the application of 3D reconstruction and RP techniques to medicine is an

 77

invaluable contribution by engineering technology. The ability to produce 3D physical

models directly from the scanned data promises to be the way of the future in medicine.

4

Image Guided Surgery Using Rapid Image Guided Surgery Using Rapid
Prototyping ModelsPrototyping Models

Fig. 7.8 RP model for Implant

7.3 Biomedical Rapid Design and Manufacturing

Biomedical design work is closely related to sculptural work. The human body does

not have sharp corners or edges, making it were necessary to select CAD software that is

versatile enough to give the model an irregular shape. The wide variety of modeling

capability offered by SolidWorks software makes it suitable for biomedical design.

SolidWorks software can provide an interface of the widest number of data translation

formats of any CAD solution. It provides easy use of the CAD data, such as the above 3D

reconstruction model data (see chapter 6), for maintaining in the original drawing while

designing the medical model according to the biomedical needs. It allows the file to be

checked and repaired for conceptual design, detailed design, and analysis. Using such an

interface, image-based medical design becomes a reality.

SolidWorks capabilities provide for standard view drawings, including three views

or any combination of views, which are automatically generated from the model or

assembly with bill-of-materials included. Figure 7.9 shows the design of 3D medical

 78

model created by planar contour method (see chapter 6) in SolidWorks. Figure 7.10

displays the 2D view of 3D model.

Fig. 7.9 Medical Design of 3D Reconstruction Model

Fig. 7.10 2D View of 3D Model

 79

3-D models of medical images are helpful tools used in surgical planning and as

eaching aids. Currently, there is no cost-effective method of constructing these 3-D

models from CT or MRI scans because scans are not homogenous. Creating biomedical

models of human organs and regions can help surgeons to plan their surgeries. Implants

and cut placements can be made and planned before cutting performing surgery. This

minimizes both surgery time and cost. Biomedical rapid design, together with medical

images, could be used to build accurate composite models of human organs and other

structure in SolidWorks. This mechanically accurate model will allow for testing the

efficiency of surgical devices on a more realistic model. The ability to model mechanical

properties of complex structures could have many important implications. Specifically in

the medical field, accurate models could assist in biomedical product testing and research.

Additional views can be easily added, including new breakout section views to

display the detail drawing, such as the layer structures, the connection section, and the

size value. Thus, it is convenient for medical manufacturing. Rapid prototyping is a

manufacturing technique that creates various 3-D geometries by means of layer-by-layer

construction. These layered manufacturing techniques can reduce the need for costly

tooling, it is clear that it will make more sense in some situations than in others. The

complex geometry cannot easily be made by conventional manufacturing techniques.

Because layered manufacturing processes can produce parts of arbitrary complexity

without the use of any fixed tooling, the processes will have a significant impact on the

way product manufacturing. These manufacturing processes will actually allow designers

to merge multiple parts together, thus requiring considerably less assembly. In the case of

extremely small assemblies, it will even be possible to fabricate pre-assembled devices

that require no assembly at all. For example, more knee joint replacement surgeries are

performed than any other joint, so the joint component of the implant design is displayed

in the section views for accurate biomedical manufacturing.

Many of rapid prototyping techniques such as SLA and FDM are primarily designed

 80

to manufacture plastic parts. Using biomedical rapid design layer by layer, layered

manufacturing can be modified for direct production of functional metal and ceramic

parts. Figure 7.11 shows the knee implant manufactured with 3D model by layer by layer

(a), bolt joint (b), and joint holes (c). Figure 7.12 (a), (b), and (c) show the results of 3D

MRP manufacturing.

Fig.7.11 (a) 3D Model in Layer by Layer

 81

Figure 7.11(b) Biomedical Manufacturing with Bolt Joint

Figure 7.11(c) Biomedical Manufacturing with Joint Hole

 82

Fig. 7.12 (a) 3D Physical Model of Knee Joint

 83

(b) 3D Physical Model of Knee Joint layer by layer

 84

(c) 3D Physical Model of Teeth

 85

For biomedical design, full associative assemblies are critical for effectively using

bottom-up and top-down assembly design techniques. In SolidWorks, associative

assemblies guarantee that all elements of a model are electronically associated or

connected, including assembly models, components, drawings, details, and bills of

materials. Thus, when a change is made to any SolidWorks file, the change is

automatically made in all associated files. Therefore, the 3D reconstruction model

generated by SolidWorks software can be designed and managed concurrently. This

integration of technologies, such as biomedical imaging, design, and manufacturing,

plays an important role in medicine. Layered manufacturing techniques can further be

used to build electromechanical components for sensor application.

 86

Chapter 8 Conclusions and Future Works

8.1 Conclusions

The ability to produce physical models from the scanned data in SolidWorks is an

important contribution from engineering technology to the medicine. Biomedical rapid

design and manufacturing in SolidWorks could help surgery to plan, manage, and

manufacture concurrently. Because 3D reconstruction is performed in SolidWorks, the

fields of Finite Element Analysis, MENS, and Mechanical Engineering can be combined

with the areas of surgical planning and implantation. The combination of 3D

reconstruction and Rapid Prototyping will have a significant impact on biomedical

engineering and surgery.

 The results of this research are the first step towards 3D reconstruction from original

CT scan data. The manufacturing of Medical Rapid Prototyping will serve as the initial

clinical study. The true advantages of 3D reconstruction in SolidWorks have yet to be

determined through long-term study and clinic application. It is my opinion that 3D

reconstruction in SolidWorks can provide STL format data for Medical Rapid

Prototyping manufacturing to help plan implant surgeries because SolidWorks can export

STL files for direct reading by Rapid Prototyping machine. The digital binary matrixes

which are created are chosen to lie on the real CT scan or MRI image data and to be

optimal in terms of interpolation accuracy. The dimension of 3D physical model can be

proved to be correct depending on whether or not the scale is 1 comparing with the real

sizes of CT scan or MRI image.

 This thesis has certain key features:

• It uses the color gray level to process CT scan images into the digital binary

matrix using MATLAB.

• Because all data are built in a database that is outside of main memory, the data

 87

feature can be changed depending on the real requirement. The processing time

can also be reduced.

• It uses the Library Feature for 3D reconstruction in SolidWorks for increasing the

running speed.

• Cube processing takes place with linear interpolation in 3D.

• Higher accuracy in rendering produces for application such as MRP

manufacturing by use of loft in SolidWorks with Planar contours.

• A 3D physical model for Medical Rapid Prototyping can be created directly from

SolidWorks.

8.2 Future Works
This research has the limitations:

• Cube size cannot be changed automatically according to the real requirement in

Marching Cubes.

• The surface of 3D model exist the staircase and is very rough.

• Resolution of 3D model is very slow.

 Further refinements will be necessary in the follows respects:

1) To enhance the quality of 3D models, the cube size should be automatically

changeable, depending on the organ to be modeled, by using the driving

dimension.

2) 3D models that are created by using Marching Cubes algorithm need to be

smoothed further using rendering technologies because the result of 3D models

are rough.

3) Because size of 3D models are large, resolution of 3D models should be improved

according to the interpolation that is most closely approximates the exact value,

such as bilinear or trilinear interpolation.

 88

Reference
[1] Ashley, S., “Rapid Prototyping is Coming of Age”, Mechanical Engineering, 1995,

117(7): 62-68.

[2] McGurk, M., Potamianos, P., Amis, A. A., and Goodger, N. M., “Rapid Prototyping

Techniques for Anatomical Modeling in Medicine”, Annals of the Royal College of

Surgeons of England, 1997, 79: 169-174.

[3] Zonneveld, F. W., “Progress in Clinical Radiology: Decade of Clinical Three-

Dimensional Imaging: A Review, Part III, Image Analysis and Interaction, Display

Optoions, and Physical Models”, Investigative Radiology, 1994, 29(7): 716-725.

[4] R. M. Koch, et, al. “A Framework for Facial Surgery Simulation”, ETH Zurich, CS

Technical Report #326, Institute of Scientific Computing, June 18, 1999

[5] Jianping Li, Pan Agthoklis, “a Case Study of Isosurface Generation in 3D

Visualization”, IEEE Pac. Rim’93: 622-625

[6] Musik Kwon, Chang-Su Kim, Kyoung Mu Lee, and Sang Uk Lee, “Progressive

encoding of bibary voxel models using pyramidal decomposition”, J. Vis. Commun.

Image R.,15 (2004):44-64

[7] Carsten Maple, “Geometric Designing and Space Planning Using the Marching

Squares and Marching Cube Algorithms”, Proceedings of the 2003 International

Conference on Geometric Modeling and Graphics (GMAG’03)

[8] Gregory M. Nielson, Adam Huang, Steve Sylvester, “Approximating Normals for

Marching Cubes applied to Locally Supported Isosurfaces”, IEEE Visualization,

2002, Oct, 27-Nov, 1: 459-466

[9] Fabien Vivodtzev, Lars Linsen, Georges-Pierre Bonneau, Bernd Hamann, Kenneth I.

Joy, and Bruno A. Olshausen. “Hierarchical Isosurface Segmentation Based on

Discrete Curvature”, Proceedings of the Symposium on Data Visualization, May

2003, 249-303

[10] Armin Kanitsar, Dominik Fleschmann, Rainer Wegenkittl, and Petr Felkel. “CPR-

 89

Curved Planar Reformation”, Proceedings of the Conference on Visualization,

October 2002

[11] Yongjie Zhang, Chandrajit Bajaj, Bong-Soo Sohn. “Adaptive and Quality 3D

Meshing from Imaging Data”, Proceedings of the Eighth ACM Symposium on Solid

Modeling and Applications, June 2003: 286-291

[12] Kunio Nakamura. “Manual Registration of 3D Rendered Magnetic Resonance

Images by Marching Cube Surface Construction Algorithm”, The Cleveland Clinic

Foundation and Case Western Reserve University

[13] Stefan Futterling, Reinhard Klein, Wolfgang Straber, and Heiner Weber. “Automated

Finite Element Modeling of a Human Mandible with Dental Implants”, University

Tubingen, Germany

[14] Erwin Keeve, et. al., “Deformable Modeling of Facial Tissue for Craniofacial

Surgery Simulation”, Computer Aided Surgery, 1998:34-45

[15] Mcgurk, M., Aimis, A. A., Potamianos, P., and Goodger, N. M., “Rapid Prototyping

 Techniques For Anatomical Modeling In Medical”, Ann. Royal Coll. Surgery Engl.

1997, 79: 167-174.

[16] Ashley, S., “Rapid Prototyping For Artificial Body Parts”, Mechanical Engineering,

May 1993, 155(5): 50-53.

[17] Artzy, E., Frieder, G., and Herman, G. T. “The Theory, Design, Implementation and

Evaluation of a Three-Dimensional Surface Detection Algorithm”, Computer

Graphics and Image Processing 15, 1 (January 1981), 1-24.

[18] Ye Duan, Liu Yang, Hong Qin, and Dimitris Samaras. “Shape Reconstruction from

3D and 2D Data Using PDE-Based Deformable Surfaces”.

[19] Natraj Lyer, et al. “A Reconfigurable 3D Engineering Shape Search System Part I:

Shape Representation”, Proceedings of DETC’03 ASME 2003 Design Engineering

Technical Conferences and Computers and Information in Engineering Conference

Chicago, Illinois, USA, September 2-6, 2003, DETC2003/CIE-48180.

 90

[20] E. Keppel, “Approximating Complex Surfaces by Triangulation of Contour Lines”,

IBM J.Research and Development, 1975, 19: 2-11

[21] H. Funchs, Z. M. Kedem, and S. P. Uselton, “Optimal Surface Reconstruction from

Planar Contours”, Communications of the ACM, 1977, 20: 693-702

[22] H. Christiansen and T. Sederberg, “Conversion of Complex Contour Line

Definitions into Polygonal Element Mosaics”, Computer Graphics, 1978, 13: 187-

192

[23] F. Preparata and M. Shamos, “Computational Geometry”, An Introduction. Springer

Verlag, 1985

[24] J. Boissonnat, “Shape Reconstruction from Planar Cross Sections”, Computer Vision,

Graphics and Image Processing, 1988, 44: 1-29

[25] Tamal K. Dey, Joachim Giesen, and James Hudson. Delaunay Based Shape

Reconstruction from Large Data. Proceedings of the IEEE 2001 symposium on

parallel and large-data visualization and graphics, October 2001

[26] William E. Lorensen, Harvey E. Cline. “Marching Cubes: a High Resolution 3D

Surface Construction Algorithm”, Computer Graphics, July 1987, v21, Number 4:

163-169

[27] Raj Shekhar, Elias Fayyad, Roni Yagel, J. Fredrick Cornhill, “Octree-Based

Deximation of Marching Cubes Surfaces”, IEEE, 1996: 335-499

[28] Chin-Feng Lin, Don-Lin Yang, and Yeh-Ching Chung, “a Marching Voxels Method

for Surface Rendering of Volume Data”, IEEE, 2001: 306-313

[29] David C. Banks, Stephen Linton, “Counting Cases in Marchign Cubes: Toward a

Generic Algorithm for Producing Substitopes”, IEE Visualization, 2003: 51-58

[30] Denis Dion Jr., Denis Laurendeau, Louis Borgeat, “3D Triangular Mesh Matching

Through a Sequence of Registered 2D and 3D Images”, IEEE, 2000: 977-980

[31] Adriano Lopes and Ken Brodlie. “Improving the Robustness and Accuracy of the

Marching Cubes Algorithm for Isosurfacing”, IEEE Transactions on Visualization

 91

and Computer Graphics, January- March 2003 vol. 9, No. 1; 16-29

[32] Dennis J. Bouvier. “Double-Time Cubes: a Fast 3D Surface Construction Algorithm

for Volume Visualization”, University of Arkansas

[33] P. Lacroute and M.Levoy. “Fast Volume Rendering Using a Shear-warp

Factorization of the Viewing Transform”, Computer Graphics Proceedings, Annual

Conference Series (SIGGRAPH’94), Orlando, 1994, 451-459

[34] Shin Yi Yen. “Fast Sliding Thin Slab Volume Visualization” Proceedings of the 1996

Symposium on Volume Visulization, October 1996, 79-86

[35] Frank Dachille, Kevin Kreeger, Baoquan Chen, Ingmar Bitter and Arie Kaufman.

“High-Quality Volume Rendering Using Texture Mapping Hardware” Workshop on

Graphics Hardware Lisbon Portugal, 1998, 1-58113-097-x/98/8: 69-76

[36] Allen Van Gelder and Kwansik Kim. “Direct Volume Rending with Shading via

Three-Dimensional Textures”, 1996 IEEE, 0-7803-3708-5/96: 23-98

[37] Benjamain Mora, Jean-Pierre Jessel, and Rene Caubet. “A New Object-Order Ray-

Casting Algorithm”, University Paul Sabatier, 31062 Toulouse, France

[38] Farrell, E. J. “Color Display and Interactive Interpretation of Three-Dimensional

Data”, IBM J. Res. Develop, July 1983, 27, 4: 356-366

[39] Hohne, K. H. and Bernstein, R. Shading 3D Images from CT Using Gray-Level

Gradients. IEEE Trans. On Medical Imaging, March 1986, M 1-5: 45-47

[40] J. Wang, V. M. Gharpuray, and R. L. Dooley. “Automated 3D Reconstruction of 2D

Medical Images: Application to Biomecical Modeling”, Presented at the Twenty-

First Annual Meeting of the American Society of Biomechanics

[41] MGP Cavalcanti, A Ruprech, and MW Vannier. “3D Volume Rendering Using

Multislice CT for Dental Implant”, Dentomaxillofacial Radiology, 2002, 31: 218-

228

[42] Pommert, J.K. et al., “Three Dimensional Imaging In Medicine: Method And

Applications”, Computer Integrated Surgery (Eds R. H. Taylor et al.), 1996, Ch. 9:

 92

155-174.

[43] Udupa, J. K., and Goncalves, R. J., “Imaging Transforms For Volume Visualisation”,

Computer Integrated Surgery (Eds R. H. Taylor et al.), 1996, Ch. 3: 33-57.

[44] Gonzalez Woods, “Digital Image Processing”, Addison Wesley, 2002

[45] M. Sonka, “Image Processing, Analysis and Machine Vision”, Ed. PWS Publishing,

1999

[46] Ritter L., Lievin M., Sader R., Zeilhofer H-F., Keeve E., “Fast Generation of 3D

Bone Model for Craniofacial Surgical Planning: an Interactive Approach”,

CARS/Springer, 2002:1-6

[47] G22.3033-002: Topics in Computer Graphics: Lecture #10, Geometric Modeling,

New York University

[48] Gokul Varadhan, et, al. “Topology Preserving Surface Extraction Using Adaptive

Subdivision”, Eurographics Symposium on Geometry Processing, 2004

[49] Fadel, G.M., and Kirschman, C., “Accuracy Issues in CAD to RP Translations,”

Rapid Prototyping Journal, 1996, 2(2), pp.4-17.

[50] Dolenc, A., and Makela, I., “Rapid Prototyping from a Computer Scientist’s Point of

View,” Rapid Prototyping Journal, 1996, 2(2), PP.18-25

[51] Taha, F. and Wouters, K., “First French Workshop on Medical AppliCATION OF

Prototyping Techniques”, Phidias, 1998, December: No. 1, 2-3.

[52] Thoms, S. W., “Optimising Composite Part Design and Manufacturing Using

Stereolithography Tooling, E-Systems”, Third International Conference on Rapid

Prototyping, 1992, June 7-10: 267-279.

[53] Jacobs, P. M., “Research Developments in Rapid Prototyping”, Proc inst. Mech.

Engrs , 1995, Vol. 209: 261-266.

[54] Sara McMains, et, al. “The Evolution of a Layered Manufacturing Interchange

Format”, Proceedings of DETC’02 ASME 2002 Design Engineering Technical

Conferences and Computers and Information in Engineering Conference Chicago,

 93

Illinois, USA, September 29, 2002, Montreal, Quebec, Canada, DETC2003/DAC -

34136

[55] Stratasys, Inc., “Stratasys Web Site,” http://www.stratasys.com, Accessed

September 15, 2003, Stratasys, Inc., Eden Prairie, MN.

[56] Kulkarni, R.B., and Manners, C. R., “Stereolithographic Process of Making a Three-

Dimensional Object,” United States Patent Number 6558606, 2003,United Ststes

Patent Office, Alexandria, VA.

[57] 3D Systems, Inc., “3D Systems Web Site,” http:// www.3dsystems.com, Accessed

September 15, 2003, 3D Systems, Inc., Valencia, CA.

[58] Huffman, R. W., “3-D Prnting: Solid Model Fabrication with at Touch of a Button,”

The Technology Teacher, November, 2001, pp.18-22

[59] Bredt, J. F., Anderson, T. C., and Russel, D. B., “Three Dimensional Material System

and Method”, United States Patent Number 6610429, 2003, United States Patent

Office, Alexandria, VA.

[60] Z Corporation, “Z Corporation Web Site,” http:// www.zcorp.com, Accessed

September 15, 2003, Z Corporation, Burlington, MA.

[61] Yasser A. Hosni. “Advances in the Mechanical Application of Rapid Prototyping”,

University of Central Florida.

[62] P. Hering, E. Keeve, H. Seitz, C. Tille, “Ergonomics in Communications”, Computer

Aided Surgery, 2_3_1-9

 94

http://www.stratasys.com/
http://www.3dsystems.com/
http://www.zcorp.com/

Appendix A: Feature Library (File name: *-cube li.sldlfp)

Feature elements are the smallest elements that are used to reconstruct 3D models.

Feature Library is in charge of the 256 triangulated cube configurations that are saved in

Feature Library of SolidWorks. They are matched by Cube Index to join the 3D

reconstruction.

To create a feature library, a base feature, which is either the first solid feature, is

first created. The triangulated cube configuration features included in the library feature

on the base are then produced separately. Feature Library file has the *.sldlfp extension.

 c1 c2 c3 c4

 c6 c7 c8 c9

 c11 c12 c13 c14

 c15 c16 c17 c19

 95

 c23 c25 c27 c29

 c31 c32 c34 c35

 c38 c39 c43 c46

 c47 c48 c49 c50

 c51 c54 c55 c57

 c59 c61 c62 c63

 96

 c64 c68 c70 c71

 c76 c77 c78 c79

 c85 c87 c93 c95

 c96 c98 c99 c100

 c102 c103 c107 c108

 c109 c110 c111 c112

 97

 c113 c114 c115 c116

 c117 c118 c119 c121

 c123 c124 c125 c126

 c127 c128 c136 c137

 c139 c140 c141 c142

 c143 c144 c145 c147

 98

 c151 c152 c153 c155

 c156 c157 c158 c159

 c170 c171 c174 c175

 c176 c177 c178 c179

 c182 c183 c184 c185

 c186 c187 c188 c189

 99

 c190 c191 c192 c196

 c198 c199 c200 c201

 c203 c204 c205 c206

 c207 c208 c209 c211

 c212 c213 c214 c215

 c216 c217 c219 c220

 100

 c221 c222 c223 c224

 c226 c227 c228 c230

 c231 c232 c233 c234

 c235 c236 c237 c238

 c239 c240 c241 c243

 c245 c246 c249 c250

 101

 c251 c252 c253 c254

c255

 102

 Appendix B: Programming Code
File name: 3D model
Option Explicit
Private Type POINTAPI
X As Double
Y As Double
Z As Double
End Type

‘Definitions in programming
Private Sub Command_Click()
Dim i As Integer, j As Integer, k As Integer
Dim II As Integer

Static MatrixF1(1 To 21, 1 To 21, 0 To 20) As Double
Static MatrixF2(1 To 21, 1 To 21, 0 To 21) As Double

Static triLFCTable(0 To 255) As Variant
Static partlistTable(0 To 255) As Variant

Dim grid(0 To 7) As Variant
Dim cubeindex0 As Integer
Dim cubeindex1 As Integer
Dim cubeindex2 As Integer
Dim cubeindex3 As Integer
Dim cubeindex4 As Integer
Dim cubeindex5 As Integer
Dim cubeindex6 As Integer
Dim cubeindex7 As Integer
Dim cubeindex00 As Integer
Dim cubeindex As Integer

Dim i1 As Integer
Dim swApp As Object
Dim filename As String
Dim filename1 As String
Dim filename2 As String
Dim filenamee(1 To 20) As String
Dim partlistname As String

 103

Dim partdrawname As String

Dim A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12 As Long
Dim Part As Object
Dim V(0 To 7) As POINTAPI
Dim VV(0 To 11) As POINTAPI
Dim RR(1 To 2) As POINTAPI

Dim selMgr As Object
Dim Feature As Object
Dim theDispDimen As Object
Dim theDimen As Object
Dim thevalue As Variant
Dim pp As Long
Dim kk As Long
Dim planeName, newPlaneName, newPlaneName0 As String
Dim planeFeature As Object
Dim planeCount As Integer
Dim partdrawname0 As Variant
Dim partname(0 To 255) As String
Dim Sketch As Variant
Dim size As Long
Dim retval As Long

Set swApp = CreateObject("SldWorks.Application")
Set Part = swApp.Newpart()
Set selMgr = Part.SelectionManager
'size = 0
'retval = Part.SetFeatureManagerWidth(size)

'read CT file to produce MatrixF1, MatrixF2...

filename = "C:\Documents and Settings\jiman\My Documents\Solidapplication\LFC\filelist.txt"
Open filename For Input As #1
Do While Not EOF(1)
 For i = 1 To 20
 Line Input #1, AA

 104

 filenamee(i) = AA

 Next i
Loop
Close #1

For II = 1 To 19

filename1 = filenamee(II)
Open filename1 For Input As #2
Do While Not EOF(2)

 For i = 1 To 20
 For j = 1 To 20
 Input #2, A
 MatrixF1(i, j, II - 1) = A

 Next j
 Next i

Loop
Close #2

filename2 = filenamee(II + 1)

Open filename2 For Input As #3
Do While Not EOF(3)
 For i = 1 To 20
 For j = 1 To 20
 Input #3, A
 MatrixF2(i, j, II) = A
 'swApp.SendMsgToUser I
 'swApp.SendMsgToUser J
 Next j
 Next i
Loop
Close #3

 105

Next II

' Build Feature Library
partdrawname0 = "C:\Documents and Settings\jiman\My Documents\Solidapplication\partlist.txt"
Open partdrawname0 For Input As #1
Do While Not EOF(1)
 For i = 0 To 255
 Line Input #1, AA
 partname(i) = AA
 Next i
Loop
Close #1

 Part.SketchRectangle -0.003, 0, 0, 0, 0.003, 0, 1
 Part.FeatureExtrusion 1, 0, 0, 0, 0, 0.003, 0, 0, 0, 0, 0, 0.01745329251994, 0.01745329251994, 0, 0

 Part.AndSelectByID "", "SKECTCHPOINT", 0, 0.003, 0.003
 Part.AndSelectByID "", "SKECTCHPOINT", -0.003, 0.003, 0.003
 Part.AndSelectByID "", "SKECTCHPOINT", -0.003, 0, 0.003
 Part.CreatePlaneThru3Points
 Part.BlankRefGeom
 kk = 2
 pp = 0
newPlaneName = "Plane1"
Sketch = "Sketch2"

'read vetex of cube to setup grid0=..., grid1=..., grid7=...
For k = 0 To 14
 Part.SelectByID newPlaneName, "PLANE", 0, 0, 0
 Part.CreatePlaneAtOffset 0.0005, 0
 Part.BlankRefGeom
 newPlaneName0 = "Plane" & kk
 kk = kk + 1
For i = 1 To 19
For j = 1 To 19

 106

grid(0) = MatrixF1(i, j, k)
grid(1) = MatrixF1(i, j + 1, k)
grid(2) = MatrixF1(i + 1, j + 1, k)
grid(3) = MatrixF1(i + 1, j, k)
grid(4) = MatrixF2(i, j, k + 1)
grid(5) = MatrixF2(i, j + 1, k + 1)
grid(6) = MatrixF2(i + 1, j + 1, k + 1)
grid(7) = MatrixF2(i + 1, j, k + 1)

V(0).X = i: V(0).Y = j: V(0).Z = k
V(1).X = i: V(1).Y = j + 0.01: V(1).Z = k
V(2).X = i + 0.01: V(2).Y = j + 0.01: V(2).Z = k
V(3).X = i + 0.01: V(3).Y = j: V(3).Z = k
V(4).X = i: V(4).Y = j: V(4).Z = k + 0.01
V(5).X = i: V(5).Y = j + 0.01: V(5).Z = k + 0.01
V(6).X = i + 0.01: V(6).Y = j + 0.01: V(6).Z = k + 0.01
V(7).X = i + 0.01: V(7).Y = j: V(7).Z = k + 0.01

'create cubeindex number

If grid(0) = 1 Then
cubeindex0 = 1
Else: cubeindex0 = 0
End If

If grid(1) = 1 Then
cubeindex1 = 2
Else: cubeindex1 = 0
End If

If grid(2) = 1 Then
cubeindex2 = 4
Else: cubeindex2 = 0
End If

If grid(3) = 1 Then
cubeindex3 = 8

 107

Else: cubeindex3 = 0
End If

If grid(4) = 1 Then
cubeindex4 = 16
Else: cubeindex4 = 0
End If

If grid(5) = 1 Then
cubeindex5 = 32
Else: cubeindex5 = 0
End If

If grid(6) = 1 Then
cubeindex6 = 64
Else: cubeindex6 = 0
End If

If grid(7) = 1 Then
cubeindex7 = 128
Else: cubeindex7 = 0
End If

cubeindex00 = 0

cubeindex = cubeindex0 + cubeindex1 + cubeindex2 + cubeindex3 + cubeindex4 + cubeindex5 +
cubeindex6 + cubeindex7 + cubeindex00

filename = "C:\Documents and Settings\jiman\My Documents\Solidapplication\LFCt\typelist.txt"
Open filename For Input As #1 ' Open file for input.
N = 0
Do While Not EOF(1) ' Loop until end of file.

 Input #1, A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12 ' Read data into two variables.

 triLFCTablee1(0) = A0
 triLFCTablee1(1) = A1
 triLFCTablee1(2) = A2
 triLFCTablee1(3) = A3
 triLFCTablee1(4) = A4
 triLFCTablee1(5) = A5

 108

 triLFCTablee1(6) = A6
 triLFCTablee1(7) = A7
 triLFCTablee1(8) = A8
 triLFCTablee1(9) = A9
 triLFCTablee1(10) = A10
 triLFCTablee1(11) = A11
 triLFCTablee1(12) = A12

 triLFCTable(N) = triLFCTablee1()
 N = N + 1
Loop
Close #1 ' Close file.

'create triangulated cube configuration
If cubeindex <> 0 Then
 i1 = 0
 Do While i1 <= 9

 If triLFCTable(cubeindex)(i1) <> -1 And triLFCTable(cubeindex)(i1) = -66 Then
 partdrawname = partname(cubeindex)

 Part.SelectByID newPlaneName, "PLANE", 0, 0, 0
 Part.InsertLibraryFeature (partdrawname)
 Part.DissolveLibraryFeature
 Part.SelectByID Sketch, "SKETCH", 0, 0, 0

 Set Feature = Part.SelectionManager.GetSelectedObject3(1)
 If (Feature Is Nothing) Then
 Exit Sub
 End If
 Set theDispDimen = Feature.GetFirstDisplayDimension

 While (Not theDispDimen Is Nothing)
 Set theDimen = theDispDimen.GetDimension

 If theDimen.Name = "D1" Then
 thevalue = theDimen.Value
 If thevalue = 0.5 Then
 theDimen.SetValue2 thevalue + V(0).X + 0.001, 0
 Else
 If thevalue = 0.01 Then

 109

 theDimen.SetValue2 thevalue + 0.99 + V(0).X + 0.001, 0
 Else
 If thevalue = 0.98 Then
 theDimen.SetValue2 thevalue - 0.48 + V(0).X + 0.001, 0
 Else
 If thevalue = 0.02 Then
 theDimen.SetValue2 thevalue + 0.48 + V(0).X + 0.001, 0
 Else
 theDimen.SetValue2 thevalue - thevalue + V(0).X + 0.001, 0
 End If
 End If
 End If
 End If
 theDimen.Name = "DDD1"
 Else
 If theDimen.Name = "D2" Then
 thevalue = theDimen.Value
 If thevalue = 0.5 Then
 theDimen.SetValue2 thevalue + V(0).Y + 0.001, 0
 Else
 If thevalue = 0.01 Then
 theDimen.SetValue2 thevalue + 0.99 + V(0).Y + 0.001, 0
 Else
 If thevalue = 0.98 Then
 theDimen.SetValue2 thevalue - 0.48 + V(0).Y + 0.001, 0
 Else
 If thevalue = 0.02 Then
 theDimen.SetValue2 thevalue + 0.48 + V(0).Y + 0.001, 0
 Else
 theDimen.SetValue2 thevalue - thevalue + V(0).Y + 0.001, 0
 End If
 End If
 End If
 End If
 theDimen.Name = "DDD2"
 End If
 End If
 Set theDispDimen = Feature.GetNextDisplayDimension(theDispDimen)
 Part.ClearSelection
 Wend
 Part.EditRebuild

 110

 pp = pp + 1
 Sketch = "Sketch2" & pp
 Else
 End If

 If triLFCTable(cubeindex)(i1) <> -1 And triLFCTable(cubeindex)(i1) = -7 Then
 partdrawname = partname(cubeindex)
 Part.SelectByID newPlaneName0, "PLANE", 0, 0, 0
 Part.InsertLibraryFeature (partdrawname)
 Part.DissolveLibraryFeature
 Part.SelectByID Sketch, "SKETCH", 0, 0, 0

 Set Feature = Part.SelectionManager.GetSelectedObject3(1)
 If (Feature Is Nothing) Then
 Exit Sub
 End If
 Set theDispDimen = Feature.GetFirstDisplayDimension

 While (Not theDispDimen Is Nothing)
 Set theDimen = theDispDimen.GetDimension

 If theDimen.Name = "D1" Then
 thevalue = theDimen.Value
 If thevalue = 0.5 Then
 theDimen.SetValue2 thevalue + V(0).X + 0.001, 0
 Else
 If thevalue = 0.01 Then
 theDimen.SetValue2 thevalue + 0.99 + V(0).X + 0.001, 0
 Else
 If thevalue = 0.98 Then
 theDimen.SetValue2 thevalue - 0.48 + V(0).X + 0.001, 0
 Else
 If thevalue = 0.02 Then
 theDimen.SetValue2 thevalue + 0.48 + V(0).X + 0.001, 0
 Else
 theDimen.SetValue2 thevalue - thevalue + V(0).X + 0.001, 0
 End If
 End If
 End If
 End If
 theDimen.Name = "DDD1"

 111

 Else
 If theDimen.Name = "D2" Then
 thevalue = theDimen.Value
 If thevalue = 0.5 Then
 theDimen.SetValue2 thevalue + V(0).Y + 0.001, 0
 Else
 If thevalue = 0.01 Then
 theDimen.SetValue2 thevalue + 0.99 + V(0).Y + 0.001, 0
 Else
 If thevalue = 0.98 Then
 theDimen.SetValue2 thevalue - 0.48 + V(0).Y + 0.001, 0
 Else
 If thevalue = 0.02 Then
 theDimen.SetValue2 thevalue + 0.48 + V(0).Y + 0.001, 0
 Else
 theDimen.SetValue2 thevalue - thevalue + V(0).Y + 0.001, 0
 End If
 End If
 End If
 End If
 theDimen.Name = "DDD2"
 End If
 End If
 Set theDispDimen = Feature.GetNextDisplayDimension(theDispDimen)
 Part.ClearSelection
 Wend
 Part.EditRebuild
 pp = pp + 1
 Sketch = "Sketch2" & pp

 Else
 End If

 If triLFCTable(cubeindex)(i1) <> -1 And triLFCTable(cubeindex)(i1) = -8 Then
 i1 = i1 + 1
 cubeindex1 = triLFCTable(cubeindex)(i1)
 i1 = i1 + 1

 112

 If triLFCTable(cubeindex)(i1) = -66 Then

 partdrawname = partname(cubeindex1)

 Part.SelectByID newPlaneName, "PLANE", 0, 0, 0
 Part.InsertLibraryFeature (partdrawname)
 Part.DissolveLibraryFeature
 Part.SelectByID Sketch, "SKETCH", 0, 0, 0

 Set Feature = Part.SelectionManager.GetSelectedObject3(1)
 If (Feature Is Nothing) Then
 Exit Sub
 End If
 Set theDispDimen = Feature.GetFirstDisplayDimension

 While (Not theDispDimen Is Nothing)
 Set theDimen = theDispDimen.GetDimension

 If theDimen.Name = "D1" Then
 thevalue = theDimen.Value
 If thevalue = 0.5 Then
 theDimen.SetValue2 thevalue + V(0).X + 0.001, 0
 Else
 If thevalue = 0.01 Then
 theDimen.SetValue2 thevalue + 0.99 + V(0).X + 0.001, 0
 Else
 If thevalue = 0.98 Then
 theDimen.SetValue2 thevalue - 0.48 + V(0).X + 0.001, 0
 Else
 If thevalue = 0.02 Then
 theDimen.SetValue2 thevalue + 0.48 + V(0).X + 0.001, 0
 Else
 theDimen.SetValue2 thevalue - thevalue + V(0).X + 0.001, 0
 End If
 End If
 End If
 End If
 theDimen.Name = "DDD1"
 Else
 If theDimen.Name = "D2" Then
 thevalue = theDimen.Value

 113

 If thevalue = 0.5 Then
 theDimen.SetValue2 thevalue + V(0).Y + 0.001, 0
 Else
 If thevalue = 0.01 Then
 theDimen.SetValue2 thevalue + 0.99 + V(0).Y + 0.001, 0
 Else
 If thevalue = 0.98 Then
 theDimen.SetValue2 thevalue - 0.48 + V(0).Y + 0.001, 0
 Else
 If thevalue = 0.02 Then
 theDimen.SetValue2 thevalue + 0.48 + V(0).Y + 0.001, 0
 Else
 theDimen.SetValue2 thevalue - thevalue + V(0).Y + 0.001, 0
 End If
 End If
 End If
 End If
 theDimen.Name = "DDD2"
 End If
 End If
 Set theDispDimen = Feature.GetNextDisplayDimension(theDispDimen)
 Part.ClearSelection
 Wend
 Part.EditRebuild
 pp = pp + 1
 Sketch = "Sketch2" & pp
 Else
 End If

 If triLFCTable(cubeindex)(i1) = -7 Then

 partdrawname = partname(cubeindex1)
 Part.SelectByID newPlaneName0, "PLANE", 0, 0, 0
 Part.InsertLibraryFeature (partdrawname)
 Part.DissolveLibraryFeature
 Part.SelectByID Sketch, "SKETCH", 0, 0, 0

 Set Feature = Part.SelectionManager.GetSelectedObject3(1)
 If (Feature Is Nothing) Then
 Exit Sub
 End If

 114

 Set theDispDimen = Feature.GetFirstDisplayDimension

 While (Not theDispDimen Is Nothing)
 Set theDimen = theDispDimen.GetDimension

 If theDimen.Name = "D1" Then
 thevalue = theDimen.Value
 If thevalue = 0.5 Then
 theDimen.SetValue2 thevalue + V(0).X + 0.001, 0
 Else
 If thevalue = 0.01 Then
 theDimen.SetValue2 thevalue + 0.99 + V(0).X + 0.001, 0
 Else
 If thevalue = 0.98 Then
 theDimen.SetValue2 thevalue - 0.48 + V(0).X + 0.001, 0
 Else
 If thevalue = 0.02 Then
 theDimen.SetValue2 thevalue + 0.48 + V(0).X + 0.001, 0
 Else
 theDimen.SetValue2 thevalue - thevalue + V(0).X + 0.001, 0
 End If
 End If
 End If
 End If
 theDimen.Name = "DDD1"
 Else
 If theDimen.Name = "D2" Then
 thevalue = theDimen.Value
 If thevalue = 0.5 Then
 theDimen.SetValue2 thevalue + V(0).Y + 0.001, 0
 Else
 If thevalue = 0.01 Then
 theDimen.SetValue2 thevalue + 0.99 + V(0).Y + 0.001, 0
 Else
 If thevalue = 0.98 Then
 theDimen.SetValue2 thevalue - 0.48 + V(0).Y + 0.001, 0
 Else
 If thevalue = 0.02 Then
 theDimen.SetValue2 thevalue + 0.48 + V(0).Y + 0.001, 0
 Else
 theDimen.SetValue2 thevalue - thevalue + V(0).Y + 0.001, 0

 115

 End If
 End If
 End If
 End If
 theDimen.Name = "DDD2"
 End If
 End If
 Set theDispDimen = Feature.GetNextDisplayDimension(theDispDimen)
 Part.ClearSelection
 Wend
 Part.EditRebuild
 pp = pp + 1
 Sketch = "Sketch2" & pp

 Else
 End If

 Else
 End If

i1 = i1 + 1

Loop
Else
End If
Next j
Next i

Part.SelectByID newPlaneName, "PLANE", 0, 0, 0
 Set Feature = Part.SelectionManager.GetSelectedObject3(1)
 If (Feature Is Nothing) Then
 Exit Sub
 End If
 Set theDispDimen = Feature.GetFirstDisplayDimension
 While (Not theDispDimen Is Nothing)
 Set theDimen = theDispDimen.GetDimension
 Part.ClearSelection

 116

 thevalue = theDimen.Value
 Part.ClearSelection
 theDimen.SetValue2 1, 0
 Set theDispDimen = Feature.GetNextDisplayDimension(theDispDimen)
 Part.ClearSelection
 Wend
 Part.EditRebuild

 Part.SelectByID newPlaneName0, "PLANE", 0, 0, 0
 Set Feature = Part.SelectionManager.GetSelectedObject3(1)
 If (Feature Is Nothing) Then
 Exit Sub
 End If
 Set theDispDimen = Feature.GetFirstDisplayDimension
 While (Not theDispDimen Is Nothing)
 Set theDimen = theDispDimen.GetDimension
 Part.ClearSelection
 thevalue = theDimen.Value
 Part.ClearSelection
 theDimen.SetValue2 0.5, 0
 Set theDispDimen = Feature.GetNextDisplayDimension(theDispDimen)
 Part.ClearSelection
 Wend
 Part.EditRebuild

 Part.SelectByID newPlaneName, "PLANE", 0, 0, 0
 Part.CreatePlaneAtOffset 0.001, 0
 Part.BlankRefGeom
 newPlaneName = "Plane" & kk
 kk = kk + 1

 Next k
 Part.ViewZoomtofit2
End Sub

Planar Contour Points Creation
Private Sub Command_Click()
 Dim swApp As Object
 Dim part As Object
 Dim A As Integer
 Dim B As Integer

 117

 Dim X As Integer
 Dim Y As Integer

 Dim filename As String
 Dim V(1 To 3) As POINTAPI
 Set swApp = CreateObject("SldWorks.Application")
 Set part = swApp.Newpart()

 filename = "E:\Solidapplication\LFC\test.txt"
 Open filename For Input As #1
 Y = 1
 Do While Y <= 256
 X = 0
 B = 0
 Do While X + 1 <= 256
 Input #1, A
 If A = 1 And B <> A Then
 V(1).X = X: V(1).Y = Y
 part.CreatePoint2 V(1).X, V(1).Y, 0#
 B = A
 Else
 If A = 0 And B <> A Then
 V(2).X = X - 1: V(2).Y = Y
 part.CreatePoint2 V(2).X, V(2).Y, 0#
 part.ViewZoomtofit2
 B = A
 Else
 B = A
 End If
 End If
 X = X + 1
 Loop
 Y = Y + 1
 Loop
 Close 1
 part.SaveAs2 "E:\LFC\Solidapplication\test01.sldprt", 0, False, False

End Sub

 118

	paper-title.pdf
	
	 Abstract
	 Sumario
	 Acknowledgments
	Table of Contents
	 List of Figures
	Figure 1.1 Method of Planar Contours………………………………………………...4
	Figure 1.3 March Cube with Triangle Isovalue Surface…………………………….....6
	Figure 7.8 RP model for Implant………………………………………………………78
	 List of Tables
	

	paper-chapter1-2.pdf
	Chapter 1 Introduction
	1.1 Introduction
	
	1.2 Backgrounds and Related Work
	1.2.1 Iso-surfacing Reconstruction
	Fig. 1.1 Method of Planar Contours
	Fig. 1.3 March Cube with Triangle Isovalue Surface

	1.2.2 Direct Volume Rendering

	
	1.3 SolidWorks
	
	1.4 Motivation
	1.5 Objective
	
	1.6 Frame of Thesis
	 Chapter 2 CT and MRI Digital Image Processing
	
	2.1 CT and MRI Image
	
	2.2 Image Processing
	
	

	paper-chapter3-4.pdf
	paper-chapter5-6.pdf
	
	5.1 Programming Development
	5.1.1 Flow Chart
	5.1.2 Creation of Macro File
	
	5.1.3 Image Transformation
	5.1.4 Reading Database
	5.1.5 Determining Cube Index
	5.1.6 Display of 3D Reconstruction Model
	 Chapter 6 3D Reconstruction by Planar Contours
	
	6.1 Section Contour points Capture
	
	6.2 B-Spline Curve Creation
	
	6.3 Solid Model Construction
	
	6.4 Solid Model Result of Knee Joint

	paper-chapter7-8-01.pdf
	
	7.1 Rapid Prototyping Technologies

	paper-chapter7-8-02.pdf
	7.2 RP Application in Biomedical Field
	
	7.2.1 Surgical Planning
	7.2.2 Anatomical Implants
	Fig. 7.8 RP model for Implant
	7.3 Biomedical Rapid Design and Manufacturing

	paper-chapter7-8-03.pdf
	 Chapter 8 Conclusions and Future Works
	
	8.1 Conclusions
	8.2 Future Works
	 Reference

	paper-APP.pdf

