
 



Abstract 
In this research, an interactive software tool has been developed for creating 3D 

models of anatomical organs and other body structures from 2D medical imaging data. 

3D models are generated by using the Marching Cubes algorithm and Planar Contour 

method by SolidWorks developed in Visual Basic Language. The research includes 

transferring CT and MRI images into digital binary matrixes, entering digital binary 

matrixes into SolidWorks environment, building feature library for 3D reconstruction, 

creating medical rapid prototyping models, and performing biomedical rapid design and 

manufacturing. CT and MRI images processing is obtained by capturing the patient scan 

data, converting the image format, extracting the gray scale of bone image, and 

transferring CT and MRI image into digital binary matrixes. 3D reconstruction is created 

by edge configuration generation and triangulated cube configuration generation in 

Marching Cubes algorithm and by capturing section contour points from medical image 

per slice, creating B-spline curve with the control points in each layer, producing solid 

model construction in Planar Contours method. Medical rapid prototyping models are 

performed in SolidWorks, including three views or any combination of views, for 

biomedical rapid designing and manufacturing according to the biomedical needs. 

Layered manufacturing techniques are used for producing parts of arbitrary complexity. 

The results of this research are the first to develop image processing 3D 

visualization in SolidWorks Application Programming Interface (API) using Visual Basic 

Language. The system performance is tested using truth CT and MRI data, and 3D 

physical models teeth and knee joint for MRP are created directly from SolidWorks. The 

results reveal that the accuracy of 3D reconstruction is acceptable.  

        Keywords: 3D Reconstruction, Image Processing, Computer Aided Surgery, 

Medical Rapid Prototyping, SolidWorks 
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Sumario 
En esta investigación, la herramienta de un software interactivo ha sido desarrollado 

para crear modelos tridimensionales de órganos anatómicos y otras estructuras del cuerpo 

humano partiendo de datos obtenidos en  imágenes medicas de dos dimensiones.  Los 

modelos tridimensionales son generados por medio de la utilización del  algoritmo 

“Marching Cubes” o cubos marchantes  y el método de  perfiles de contornos planos del 

programa SolidWorks desarrollado en lenguaje Visual Basic. La investigación incluye la 

transferencia de  imágenes CT y MRI en matrices digitales binarias ingresándolas al 

ambiente SolidWorks, y creando una librería de representaciones claves para la 

reconstrucción tridimensional; de esta forma se generan modelos de RP para aplicaciones 

medicas y se desarrollan  diseños biomédicos rápidos para su fabricación. 

El procesamiento de las imágenes de CT o MRI son obtenidas capturando los datos 

del escaner de un paciente, y convirtiendo el formato de la imagen  desde la extracción de 

datos de la escala de tonalidades grises de las imágenes de huesos y transfiriendo dichas 

imágenes CT y MRI en matrices digitales binarias. La reconstrucción 3D por medio de la 

generación de configuración de bordes y la generación de configuración de cubos 

triangulados en algoritmos de cubos marchantes; de esta manera se capturan los puntos 

de contorno de cada sección de la imagen medica por capas. De esta forma se van 

creando curvas tipo B-s  por tiras con los puntos de control de cada capa, produciendo así 

un modelo sólido de construcción por el método ya mencionado de perfiles de contorno 

planos.  Los modelos médicos de estereolitografía o RP son previamente desarrollados en 

SolidWorks,  con las cuales se pueden ver los modelos desde sus tres diferentes vistas o 

la combinación de las mismas, siendo de gran ventaja para el diseño y fabricación rápido 

de modelos anatómicos de acuerdo con necesidades biomédicas. 

Las técnicas de manufactura por capas o laminados son usadas para producir partes 

de complejidad arbitraria. El principal objetivo de este proyecto es  desarrollar el 

procesamiento de visualización de imágenes 3D en SolidWorks mediante Interfase de 

 III



Aplicación Programada (API) usando lenguaje Visual Basic.  Los datos para generar los 

modelos en 3D para la estereolitografía o prototipado rápido (RP) son creados 

simultáneamente.  El desarrollo del sistema es probado usando  datos reales de CT y MRI 

y un ejemplo de modelo de RP de dientes o articulaciones de rodilla fueron 

manufacturados. Los resultados revelan que la exactitud de la reconstrucción 3D es 

bastante aceptable. 

Palabras Claves: Reconstrucción Tridimensional, Procesamiento de imágenes, 

Cirugía asistida por computador, Estereolitografía  Medica, SolidWorks 
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Chapter 1 Introduction 

 

1.1 Introduction 

        The three-dimensional (3D) reconstruction of human anatomical organs and 

structures from a series of cross section image has been an intriguing problem in recent 

decades. New challenges have been created in the field of image analysis and pattern 

recognition by the introduction of modern image data collection techniques such as 

Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). With the 

development of advanced bio-medical techniques, 3D geometric representations of 

human anatomical organs rather than the two-dimensional (2D) photographic images 

using CT or MRI are frequently required. These 3D geometric models, either simulation 

generated by computer or 3D Rapid Prototyping (RP), can be used for diagnosis of 

physical disorders, visualization of anatomical organs for surgical planning, and the 

implantation of human organs and other structures. RP is the process of converting a 3D 

Computer Aided Design (CAD) file into a 3D physical model “rapidly”. Medical Rapid 

Prototyping (MRP) is the production of the medical models using rapid prototyping 

methods [1-3]. The application of RP techniques is an invaluable contribution of 

engineering technology to the field of medicine [4]. For example, if a patient requires 

multi surgeries to repair severely fractured skull, a 3D physical model of the patient’s 

skull could be constructed pro to surgery using RP technology in order to visualize the 

trauma and make informal decisions on how to proceed into repair. 

The MRP process contains three stages. First, a medical image dataset is obtained 

using a CT or MRI on other medical scanner. Second, this dataset is processed to obtain a 

polygonal surface model. Third, the polygonal surface model is imported into a rapid 

prototyping machine using the STL format. Producing 3D model consists of two steps: 

segmentation and extraction. A medical image always contains multiple tissues and bones. 
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Segmentation is the name given to the algorithms used to isolate the desired bones from 

the tissues in the image. After the bones are isolated, the extraction technique constructs 

3D representations of the bones. Most extractions are based on the concept of the 

isosurface [5-8]. An isosurface is a surface passing through a medical image volume that 

corresponds to a given integer value. The location of this surface can be computed in 

many ways, but the simplest and most common method is called the Marching Cubes 

algorithm.  

        Applications do currently exist for 3D reconstruction of organs and other structures 

from CT images. Fabien Vivodtzev, et al [9] provided an approach to describe the 

characteristics of a surface, which is to segment it into regions of uniform curvature 

behavior and to construct an abstract representation given by a topology graph for human 

brain. Armin Kanitsar et al [10] presented the visualization of tubular structures, such as 

blood vessels, by using CPR (Curved Planar Reformation). Yongjie Zhang et al [11] gave 

an algorithm to extract adaptive and quality 3D meshes directly from volumetric CT and 

MRI imaging data. Kunio Nakamura [12] uses Marching Cubes surface construction 

algorithm to render the volumetric image to lead to faster image registration refinement 

for the human brain. In 1989, the National Library of Medicine (NLM) began an 

ambitious project to create a digital atlas of human anatomy using Marching Cubes 

algorithm. The extracted tetrahedral and hexahedral meshes are extensively used in finite 

element simulations. Stefan Futterling et al [13] generate a 3D finite element model of an 

individual patient’s mandible inserted with dental implants. These geometric models are 

converted to finite element models using adaptive tetrahedral meshing [14]. Several 

research institutions and commercial organizations integrate CAD and RP systems with 

medical imaging systems to fabricate medical devices or generate 3D hard copies of these 

objects for uses in surgical rehearsal, custom implant design, and casting [15, 16].  

        Very few medical researchers, however, are interested in Medical Rapid Prototyping 

(MRP) because this technology is useful only in product design and manufacturing, not 
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as a surgical tool. Moreover, correctly converting and visualizing the 3D geometry of 

anatomical organs on structures from 2D medical images for MRP manufacturing is 

difficult.       

 

1.2 Backgrounds and Related Work 

        Over the last twenty years, the techniques of CT and MRI have developed rapidly. 

Researchers have reported many different methods to visualize the 3D geometry of such 

structures. 3D reconstruction includes two main approaches: Iso-surfacing 

Reconstruction and Direct Volume Rendering [17-19]. Iso-surfacing Reconstruction 

consists of two major classes: (1) Planar Contour and (2) Marching Cubes and 

Double-Time Cubes. Direct Volume Rendering includes Shear-Warp, 3D Texture 

Mapping, and Ray Casting. 

 

1.2.1 Iso-surfacing Reconstruction 

The majority of the reconstruction techniques produce planar approximations of the 

data set. There are primarily two classes of surface reconstruction techniques.  

(1) Planar Contours  

The first class of surface reconstruction methods initially constructs planar contours 

in each CT/MRI data slice and then connects these contours by a triangulation in three-

dimensional space. The triangulation process is complicated by the occurrence of 

multiple contours on a data slice. 

Figure 1.1 shows the approximation method. The method consists of joining points 

of neighboring contour lines to triangles in such a manner that one obtains triangular 

planar elements, which delimit a polyhedron approximating the surface of interest. 
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Fig. 1.1 Method of Planar Contours 

Early contributions to this method were made by E. Keppel [20] and Fuchs et al [21], 

Christiansen and Sederberg [22] and F. Preparata [23]. The optimal algorithms due to the 

work by Keppel [20] and Fuches et al [21] computes a graph in which each node 

represents a spanning arc and each edge in the graph represents a triangle defined 

uniquely by two spanning arcs that share a point. A shortest path algorithm is used to find 

the path that corresponds to the triangulation of minimum weight. Another algorithm of a 

heuristic nature, due to Christiansen and Sederberg [22], performs a seeking walk around 

each adjacent pair of contours selecting segments. A segment on one contour and a point 

on the other define the triangle. The choice of the new segment is determined by the 

triangle with the shorter edge length. 

The algorithm of Buissonnat computes a 2D Delaunay triangulation [24] of the 

planar contours and then a 3D Delaunay triangulation of the entire collection of triangles 

lying in parallel planes. However, a major complaint about Delaunay-based methods is 

that they are slow and cannot handle amounts of data. Tamal K. Dey, Joachim Giesen, 

and James Hudson [25] adjusted this criticism by extending the algorithm to handle 

supersize data. This modification is the first Delaunay-based surface reconstruction 

algorithm that can handle data containing more than a million sample points on a model 

machine.  
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        The limitation of Planar Contours is that the connected contour algorithms throw 

away the inter-slice connectivity that exists in the original data. The triangulation 

problem resides in the fact that contour lines do not contain sufficient information 

regarding the system of gradients associated with the surface they describe. Moreover, 

the combinatorial aspect of the problem becomes apparent when one considers how many 

different triangular arrangements can be constructed for a fixed number of contour points. 

 

(2) The second class of surface reconstruct methods mostly includes the follows 

algorithms: 

Marching Cubes algorithm --- William E. Lorensen, Harvey E. Cline, 1987 [26] 

        The algorithm, which is one of the most famous volume visualization techniques, 

creates a representation that consists of triangles of an isovalue surface. The triangles are 

then rendered to produce an image. Marching Cubes consists of eight sample points, 

known as voxels (volume elements). An octuple of neighboring voxels represents a cube, 

which from a sub-cube are used to create triangles at one time. Depending on whether the 

voxels are within or outside the object, a surface of up to four triangles is placed inside 

the cube. Then the algorithm “marches” on to the next sub cube in scan-line order (See 

Figure 1.2) 

 
Fig. 1.2 Marching Cube 

        The original Marching Cubes algorithm identified 256 configurations for the cube, 

depending on whether each of the eight vertices is inside or outside the object. Figure 1.3, 
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for example, shows a triangle for a sub cube. The large point in the figure is included in 

the isovalue surface forming the triangle surface because it is inside the object. The 

voxels at other corners do not participate in the isovalue surface. Marching Cubes uses 

linear interpolation between voxel values to compute the location of the triangles’ 

vertices. The result of considering all sub-cube in this way is a collection of triangles, 

which approximate the location of an isovalue surface. 

 

Fig. 1.3 March Cube with Triangle Isovalue Surface 

Since its original conception, the Marching Cubes algorithm has been the subject of 

much further research to improve the quality of its surface representation and 

performance on large data sets [27-30]. Adriano Lopes and Ken Brodlie were concerned 

with the quality of representation of the trilinear interpolating surface [31]. 

         The advantage of the Marching Cubes algorithm is that the resulting triangle model 

can be displayed on conventional graphics systems using standard rendering algorithms 

because it uses information from the original 3D data to derive inter-slice connectivity, 

surface location, and surface gradient. In addition, because the algorithm uses a case table 

of the edge intersections to describe how a surface cuts through each cube in a 3D data 

set, programming is convenient and performance is fast. 

Double-Time Cubes --- Dennis J. Bouvier, 1992 [32] 

        The Double-Time Cubes algorithm creates a representation of an iso-value surface 

from volume data. As with Marching Cubes the algorithm considers sub-cube of eight 

voxels at a time, in scan-line order. The Double-Time Cube algorithm differs from 

Marching Cubes, however, in that it places the triangle’s vertices at voxel locations. Thus, 

interpolation is not necessary. Figure 1.4 shows the representative case for triangulation 
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in Double-Time Cubes 

                                               
Fig. 1.4 Representative Case for Triangular in Double-Time Cubes 

        Although arching 

1.2.2 Direct Volume Rendering 

s have emerged in the last decade and 

the Double-Time Cubes algorithm is a faster alternative to M

Cubes for generating an estimated isovalue surface from volumetric data, it is limited in 

that it computes a less detailed representation compared to Marching Cubes, resulting 

representations that are rougher approximations composed of fewer triangles.  

 

        Three main direct volume rending algorithm

are widely used: the Shear-Warp method, the 3D Texture Mapping technique, and the Ray 

Casting algorithm. 

Shear-Warp --- P. Lacroute and M. Levoy, 1994 [33] and Shin Yi Yen, 1996 [34] 

      of    Shear-Warp considers the volume as a stack of 2D slices that parallel to the face

the volum. The algorithm factors the viewing transformation into three components: a 3D 

shear parallel to the data slices, a projection to form an intermediate but distorted image, 

and a 2D warp to form the undistorted final image. 3D shear transforms the volume into 

an intermediate coordinate system, for which there is a simple mapping from the object 

coordinate system that allows for efficient projection. In the intermediate coordinate 

system, called the sheared object space, all viewing rays are parallel to the principal 

viewing axis, which is defined as the main axis in object space. This axis is the most 

parallel to the viewing direction. The volume data is projected in the sheared-object space, 

forming a distorted intermediate image. It is efficient to project in the sheared-object 

space because the transformation applied to each slice for parallel projections consists of 
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only a translation. The final 2D warp to produce the undistorted image is accomplished 

by using a general purpose affined image warp with a bilinear filter. This part of the 

computation is relatively inexpensive because the 2D image is small compared to the size 

of the volume. 

        Figure 1.5 illustrates the transformation of the parallel projection from object space 

to sheared object space. The volume is sampled on a rectilinear grid. The horizontal lines 

in the figure represent slices of the volume data viewed in cross-section. After 

transformation, the volume data have been sheared parallel to the set of slices that is most 

perpendicular to the viewing direction, and the viewing rays are perpendicular to the 

slices. The term “perspective transformation” implies that each slice must be scaled as 

well as sheared, as shown schematically in Figure 1.6. 

 
Fig. 1.5 Transformation from Object Space to Sheared Object Space  

 
Fig. 1.6 Transformation from Object Space to Sheared Object Space  

        Shin ing, thin-

imitations. First, the sampling rate on the z-axis is 

Yi Yen [34] extended the shear warp method by presenting a fast-slid

slab volume visualization method. This method renders only those portions of the data 

within the acquired volume that lie between a set of parallel clipping planes oriented 

perpendicular to the viewing direction. 

        The Shear-Warp algorithm has its l
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between 1 mm and 1.73 mm according to viewpoint, which is inadequate for observing 

thin volume structures. Second, the pre-classification partially blurs the intermediate 

image, which is increased by the final re-sampling step. Finally, artifacts due to the 

bilinear interpolation occur when the viewing angle is close to 45°. Thus, the global 

quality provided by the original implementation is poor. 

3D Texture Mapping ---- Frank D. et al, 1998 [35] and Allen Van Gelder, et al, 1996 

      3D Texture Mapping first computes the quantized gradient index and material 

ts are initially 

 is 

conv

[36] 

   The

classification of each voxel in volume. A voxel may be classified as either reflecting or 

ambient, depending on the client-supplied gradient-magnitude threshold. The result of 

this step is an index for each voxel into the lookup table. With the pre-assigned look-up 

table index of each voxel, 3D texture maps are filled with pre-computed color values. 

These texture maps are then processed in the back-to-front visibility order of the 

partitions of the volume that they represent. In 3D texture mapping, each polygon vertex 

is given a point in the texture space, and the graphics system maps values from the 

texture map onto the polygon surface by interpolating texture coordinates. 

        Figure 1.7 shows the current architecture in which density and gradien

loaded into the texture memory and then re-sampled by the texture hardware along rays 

cast through the volume. The sample data for each ray (or slice) is then transferred to a 

buffer in main memory and shaded by the CPU. The shaded samples along a ray are 

composed and the final pixels are moved to the frame buffer for display. Alternatively, 

within the same architecture, the shaded voxels can be composed by the frame buffer. 

The major advantage of the 3D Texture Mapping is that after the original data

erted into 3D texture maps, the texture hardware can perform the rendering and 

composing of squares very quickly. The approach is limited, however, to binary 

classification and diffuse shading. Although real-time rendering rates can be implemented, 

they do not exceed 2 frames per second for 3256  volume due to the required high 
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Data Gradient
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Software Texture LUT Texture Memory 

Main Memory and CPU 

 
Fig. 1.7 the Architecture for 3D Texture Mapping based Vo

Frame Buffer 

lume Rendering 

memory b iss andwidth. Furthermore, the large distance between the extracted slices can m

small details or produce artifacts. 

Ray Casting method - B. M. et al [37], Farrell, E. J. [38] and Hohne, K. H. et al [39] 

     

 strategies when scanning the volume. The first 

class

   The volumetric Ray Casting algorithm sends a ray into the scene for each pixel on 

the object (See (a) in Figure 1.8). Starting at the point where the ray enters the volume 

(See (b) in Figure 1.8), the ray is followed while sampling the volume at constant 

distances (See (d) in Figure 1.8). It accumulates (composites) the colors and opacities of 

these sample values. The ray is no longer followed when the value cannot change 

significantly. That is, when it has accumulated an opaque color or when it is no longer 

inside the volume (See (c) in Figure1.8).  

There are two classes of Ray Casting

 consists of object-space oriented methods, which scan along lines or columns of the 

 

Fig. 1.8 the Principles of Ray Casting 
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       3D-array and project a the direction of view 

than shade the image 

g is a good way to produce quality images because trilinear interpolation 

ur algorithms 

chosen aspect onto an image plane in 

when a pure surface display of a single object is required. The second class consist of 

image- space oriented methods, which scan the image volume along the viewing 

direction to visualize translucency and other volumetric properties. 

        Farrel [38] used Ray Casting to find the 3D surface. Rather 

with a gray scale, however, be used hue lightness to display the surface. In another Ray 

Casting method used after the surface along a ray is located, Hohne et al [39] calculated 

the gradient along the surface, scale by an “appropriate” value and generated gray scales 

for the image. 

        Ray Castin

can easily be implemented [40, 41]. In addition, the incoherency between the rays 

reduces greatly the staircase artifacts visible in algorithms extracting 2D planes. The 

limitation of this algorithm, however, is that, because it is a pixel-by-pixel approach, it is 

naturally slow. Every time the ray steps forward within the volume, eight samples have to 

be loaded before performing trilinear interpolation. This creates cache misses because the 

samples cannot be stored in memory order. Furthermore, other rays rerunning the same 

cell may not take advantage of the preloaded data in the cache because the cache lines are 

often replaced by other data. The second drawback is the difficulty in skipping empty 

regions of the volume, especially when interactive classification is needed.  

        In short, the limitation of Planar Contours is that the connected conto

throw away the inter-slice connectivity that exists in the original data. Although a faster 

alternative to the Marching Cubes algorithm for the generation of an estimated iso-value 

surface in volumetric data, the Double-Time Cubes algorithm is limited in that it 

computes a less-detailed representation, resulting in a rougher approximation composed 

of fewer triangles. Regarding quality, Shear-Warp algorithm also has its drawbacks; the 

sampling rate on the z-axis is definitely not enough for the observation of thin volume 

structures, and the global quality provided by the original implementation is poor. Ray 
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Casting algorithm is naturally slow because it is a pixel-by-pixel approach. Every time 

the ray steps forward within the volume, eight samples have to be loaded before 

performing trilinear interpolation. Although Direct Volume Rendering can use volumetric 

data directly, it does not build a 3D model of the surface. Marching Cubes, however, 

exploits the property of simple rending, manipulation. Planar Contour has high resolution. 

 

1.3 SolidWorks 

ing applications fields, SolidWorks software, which is developed by 

         

        In the engineer

SolidWorks Corporation for fully 3D integrated mechanical design software, has the best-

in-class capability to re-recognize different types of features, combine multiple features 

inside the new feature tree, and recognize draft and rib features.  Figure 1.9 shows two 

SolidWorks 3D models in mechanical design applications.  

10  11

Example of Example of SolidworksSolidworks ExExamample of ple of SolidworksSolidworks

Hydrodynamic Power Generator

 
Fig. 1.9 Examples of olidWorks 3D Models 

SolidWorks can output C vice design: step, 

 S

AD files in a format suitable for medical de

iges, sldprt, stl, fea, cfd, obj … etc. There are 3 basic types of 3D files: the first, 

surface/graphics files, like stl, can be visualized and used for rapid prototyping 

manufacturing. Second, solid files, like iges and step, are made of curves and surfaces. 

These files can be imported into CAD and manipulated. The third, parametric files are 

composed of solid geometric shapes such as spheres, cones, cubes, etc. These files are 

native to CAD packages and provide more maneuverability than any of the other file 

types. 
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SolidWorks has a drive into the medical device technology market. Its aim is to 

unde

.4 Motivation 

d 3D visualization techniques have already had a large impact on the 

, in either 3D biomedical image 

proc

ed on design, which streamlines the entire design process. 

rline the considerable advantages that medical equipment manufacturers can derive 

by building their design strategy around advanced 3D modeling technology from initial 

product development to data management, stress analysis on new designs, and 3D printer 

for creating rapid prototypes manufacturing. 

 

1

        Computer-base

field of medicine. The generation of 3D human anatomical organ from CT or MRI 

images has many applications in biomedical field. At present, 3D-DOCTOR is an 

advanced 3D imaging software for visualization, surface modeling and volume rendering, 

3D measurement of CT, MRI, microscopy and other 3D images, which exports 3D 

models to STL for rapid prototyping machines. 

Relatively little research has been done, however

essing or computation biomechanical modeling in SolidWorks environment where 

the 3D physical model of MRP is created from CT or MRI images for biomedical rapid 

design and manufacturing. SolidWorks possesses 3D image segmentation, feature 

extraction, surface generation, and volume rendering. The 3D display and image handling 

requirements are handled very efficiently in SolidWorks and interactive 3D graphics 

display and animation requirements become not only possible, but also practical. For 

example, medical doctors will be able to do all their visualization and analysis from their 

own desktop computer and eventually from remote locations with just a laptop and on-

line access to the Internet.  

SolidWorks is fully focus

Change dimensions, relationships, and geometry at any time or roll back and reorder 

features easily. Full constraint of biomedical models and assemblies is unnecessary. 

Design data is 100% editable, and relationships between biomedical models, assemblies, 
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and drawings always stay up-to-date. With SolidWorks, Designer can reference other 

biomedical models directly and maintain relationships when creating new biomedical 

model.  

SolidWorks provides not only ease of use, powerful contact modeling, speed, 

accu

.5 Objective 

es of this project are three-field. The first objective is to develop an 

inter

racy, and reliability, but also enables immediate access to the most effective rapid 

prototyping technologies in the industry, such as Print3D, including stereolithography 

(SLA), fused deposition modeling (FDM), selective laser sintering, and rapid injection 

molding. With the development of MRP science and technology, surgeons worldwide are 

using these models to enhance preoperative planning for complex reconstructive 

surgeries and custom implant design. Applying RP technologies to the medical field, 

however, differs radically from its application in manufacturing environments. In 

manufacturing, models are planned and conceived entirely on the computer screen, and 

then converted to physical reality. In bio-medical applications, by contrast of interest the 

objects usually already exist physically. Therefore, building medical models essentially 

involves reverse engineering, starting with acquiring data, such as a stack of CT or MRI 

cross-sectional images. Prior to model building, these highly complex data need 

extensive preprocessing to provide a format that a CAD program can utilize. It is difficult 

and complex process to transfer CT or MRI data to a RP system directly. Therefore, the 

challenge is to create a 3D model of human anatomical organs and structure from CT or 

MRI data that is both accurate and beneficial for biomedical applications. This research, 

in which 3D reconstruction is created and rapid prototyping is built from CT and MRI 

image in SolidWorks, is put forward for biomedical rapid design and manufacturing. 

 

1

The objectiv

active software tool that can create 3D anatomical models from the original cross-

sectional CT scan or MRI data, based on Marching Cubes algorithm and Planar Contour 
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method. Visual Basic computer language in the SolidWorks environment will be used to 

develop the software tool. The second objective is to convert 3D images into RP data. 

The third filed objective is to evaluate the systems performance companion with the 

actual set of CT or MRI scans shown with the 3D reconstruction and MRP.  

 

1.6 Frame of Thesis 

ed as follows: 

parts. Firstly, 3D reconstruction techniques are 

sformation CT and MRI image 

omponent of the thesis. The discussion is 

bes the actual program development with the CT and MRI image. 

ction by using Planar 

ciple and application in 

nes of the thesis.  

ate 3D models of 

        The thesis is organiz

        This chapter is divided into three 

surveyed. Two basic approaches are discussed: iso-surfacing reconstruction and direct 

volume rendering. In the second part, SolidWorks is surveyed. In third section, 

motivation, objective, and frame of thesis are performed. 

         Chapter two discusses CT and MRI images and tran

into digital binary matrix by image processing.  

         Chapter three and four constitute a major c

Marching Cubes algorithm and strategy of 3D reconstruction, library feature 

establishment, and the software programming in SolidWorks environment developed by 

Visual Basic language. 

        Chapter five descri

Then, it provides the 3D model observer study, test and discussion. 

        Chapter six is divided into two parts to present 3D reconstru

Contours method and the results of knee and teeth solid models. 

        Chapter seven begin with a general discussion of the prin

medical rapid prototyping. It then uses SolidWorks interface to convert 3D model data 

into the medical rapid prototyping and manufacturing. Final, the chapter finishes the 

discussion of the result of MRP application and test. 

Figure 1.10 shows the produce and main milesto

In this thesis, an interactive software tool has been developed to cre
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anato

 first to develop image processing 3D visualization in SolidWorks 

Appl

mical organs or other structures from 2D medical data (CT or MRI). Marching 

Cubes algorithm and Planar Contour method in SolidWorks® environment were used in 

which a 3D model is converted into STL file data for MRP manufacturing. The research 

includes transferring CT and MRI images into digital binary matrixes, entering digital 

binary matrixes into SolidWorks environment, building feature library for 3D 

reconstruction, creating medical rapid prototyping models, and providing biomedical 

rapid design and manufacturing. CT and MRI images processing is obtained by capturing 

the patient scan data, converting the image format, extracting the gray scale of bone 

image, and transferring CT and MRI image into digital binary matrixes. 3D 

reconstruction is created by edge configuration generation and triangulated cube 

configuration generation in Marching Cubes algorithm and by capturing section contour 

points from medical image per slice, creating B-spline curve with the control points in 

each layer, producing solid model construction in Planar Contours method. Medical rapid 

prototyping models are performed in SolidWorks, including three views or any 

combination of views, for biomedical rapid designing and manufacturing according to the 

biomedical needs. Layered manufacturing techniques are used for producing parts of 

arbitrary complexity. 

This effort is the

ication Programming Interface (API) using Visual Basic Language. Rapid 

Prototyping data from 3D models is created simultaneously. The system performance is 

tested using truth CT and MRI data, and RP example models of teeth and knee joint were 

manufactured for MRP manufacturing, which helps the surgeon to prepare the operations 

in close detail, produce biomedical implants for organs replacement, provide engineering 

testing, and perform various bio-mechanic simulations. 
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Scan Image 

Data Processing 
1) Convert the image format 

2) Obtain the patient scan data. 

3) Invert the colors. 

4) Extract the bone image  

5) Convert the image to a digital binary image matrix  

3D Representation (Marching Cubes) 
1) Cube intersections.  

2) Edge configuration generation ( linear 

interpolation) 

3) Triangulated Cube configuration generation 

4) Cube Index 

5) Combination

Implementation 
1) Database- File List, Feature Library, 

Library Feature Type List, Part list 

2) Create the Macro File 

3) Read the data from the digital binary image 

matrix txt-file for data input 

4) Calculate Cube Index for recognizing 

which kind of triangulated cube    

configurations joins the 3D model 

5) Extract the triangulated cube 

configurations selected for 3D 

reconstruction 

3D Representation (Planar Contour) 
1) Capturing section contour points 

2) Creating B-spline curve  

3) producing solid model construction 

 

MRP Manufacturing 
1)    Output 3D STL file by SolidWorks 

2)  Rapid Prototyping manufacturing  
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3D Model by Marching Cubes                                                                    3D Model by Planar Contour 

 

 
3D STL File for Rapid Prototyping 

Fig. 1.10 the Produce and Main Milestones of the Thesis 
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Chapter 2 CT and MRI Digital Image Processing 
         

        Since the amount of data is too large to be understood in its raw form, it is essential 

for the algorithm to use image-processing techniques to filter the original data for 3D 

reconstruction. In addition, because scan image data that are image model cannot be read 

directly in SolidWorks, the image data must be processed as the digital binary matrix for 

3D modeling. This chapter discusses CT and MRI image and performs image processing 

from CT and MRI image to digital binary matrixes. 

 

2.1 CT and MRI Image  

        In medical imaging, the two most common systems used in acquiring detailed 

anatomical information are Computer Tomography (CT) and Magnetic Resonance 

Imaging (MRI). The key feature of the imaging technologies is their ability to provide 

detailed information about the anatomical structure and abnormalities. 

        CT uses a number of thin, rotation X-ray beams and computer technology to slice 

2D images or slice planes to create detailed cross-sectional images of objects. It is fast, 

patient friendly, and has the unique ability to image a combination of bone and soft tissue. 

On the other hand, MRI images are obtained by varying the number and sequence of 

pulsed radio frequency field in order to take advantage of magnetic relaxation properties 

of hard and soft tissues. Specifically a strong magnetic field is generated to cause atoms 

inside the body to become aligned. After alignment, a radio wave is issued to “excite” the 

atoms. Once the radio signal is turned off, the atoms give off a small characteristic signal. 

Those signals are then measured with a sensitive antenna called an MRI coil. This 

process is repeated many times until enough measurements are detected to create a series 

of detailed images. MRI does not use any ionizing radiation, and can create images of 

almost any body part oriented in any direction. Figure 2.1 shows a MRI example of a 
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head. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1    Medical Image of Skull 

        CTs and MRIs differ in at lease two key aspects: (1) CT data are most suitable for 

modeling bone structures. MRI data are best suited for modeling of soft tissues. (2) CTs 

sequentially records 20 slices within the measurement volume. MRIs measure the density 

of a specific nucleus and is volumetric (i. e. interrogation of the entire body within the 

measurement volume is done simultaneously). 

CT and MRI represent the finest resolution capability available in diagnostic 

systems achieving volumetric resolutions. The information from each plane can be put 

together to provide a volumetric image of the structure as well as the size and location of 

anatomical structures [42, 43]. In order to minimize the patient’s exposure to radiation, in 

most real data sets, the distance between two layers is greater. Typical resolutions of the 

2D-slices are , or256256× 512512× 10241024× . Each pixel possesses an information 

depth of eight-bits. 
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In this thesis, CT-Scan data consist of axial scan images of the entire anatomical 

organs taken at 1 mm intervals at a resolution of 512 x 512 pixels, in which each pixel is 

made up of 8-bits, 12-bits, or 16-bits of 256gray scale. 

 

2.2 Image Processing  

The slice data of original medical imaging are structured point data for which the 

topology and geometry of the data are implicitly known, and only require dimensions, an 

origin, and aspect ratio. An image may be defined as a 2D function, , where ),( yxf x  and 

are spatial coordinates, and the amplitude of  at any pair of coordinates is 

called the gray level ( ) of the image at that point. That is

y f ),( 00 yx

),( 00 yxf= , lies in the 

range . The interval minmin LL ≤≤ [ ]minmax , LL  is called the gray scale. Common practice 

is to shift this interval numerically to the interval [ ]1,0 −L , where  is considered 

black and  is considered white on the gray scale. All intermediate values are 

shades of gray varying from black to white. When

0=

1−= L

yx, , and the amplitude values of  

are all finite and discrete quantities, the image is called a digital image. A digital image is 

composed of a finite number of elements, each of which has a particular location and 

value. These elements are referred to as pixels.   

f

Spatial domain processes will be denoted by the expression , 

where  is the input image,  is the processed image. 

[ ]),(),( yxfTyxg =

),( yxf ),( yxg T is an operator on , 

defined over some neighborhood of . When the neighborhood is size (that is a 

single pixel), depends on the value of , and 

f

),( yx 11×

),( yxg ),( yxf T  becomes a gray-level 

transformation function of the form )(rTs = . The effect of this transformation would be 

to produce an image of higher contrast than the original by darkening the levels below 
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m and brightening the levels above m in the original image. In the limiting case, 

produces a two-level (binary) image. A mapping of this form is called a thresholding 

function (see Figure 2.2).  

)(rT

T(r) 

m
Dark Light 

r

s=T(r) 

D
ar

k 
Li

gh
t 

 

Fig. 2.2 Gray-level Thresholding functions  

A pixel p at coordinates  has four horizontal and vertical neighbors whose 

coordinates are given by

),( yx

)1,(),1,(),(),,1( ,1− ++ yxyxxyx y − . This set of pixels, called 

the 4-neighbors of p , is denoted by . Each pixel is a unit distance from , and 

some of the neighbors of 

)(4 pN ),( yx

p  lie outside the digital image if is on the border of the 

image. The four diagonal neighbors of 

),( yx

p have coordinates 

)1,1(),1,1(),1,1(),1,1( + − −−−+++ yxyxyyx x and are denoted by . These 

points, together with the 4-neighbors, are called 8-neighbors of

)( pN D

p , denoted by . )(8 pN

To establish if two pixels are connected, it must be determined if they are neighbors 

and if their gray levels satisfy a specified criterion of similarity. In a binary image with 

values 0 and 1, two pixels may be 4-neighbors, but they are said to be connected only if 

they have the same value. Let V  be the set of gray-level values used to define adjacency. 

In a binary image, if we are referring to adjacency of pixels with value 1. We { }1=V
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consider three types of adjacency: (a) 4-adjacency. Two pixels p and with values from 

 are 4-adjacent if q is in the set . (b) 8-adjacency. Two pixels 

q

V )(4 pN p and with 

values from V  are 8-adjacent if is in the set . (c) m-adjacency (mixed adjacency). 

Two pixels 

q

q )(8 pN

p and with values from V  are m-adjacent if (1) q is in the set , or (2) 

is in the set and the set N

q )(4 pN

q )( pN D )()(4 p 4 qN∩ has no pixels whose values are from 

[44, 45] (see Figure 2.3). V

0 
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         (a) 4-adjacency                               (b) 8-adjacency                          (c) m-adjacent 

orks cannot read , the image data must be 

proc

tured and scanned. The model 

age format. If the images are not in jpg format, use XnViewer to 

        

Fig. 2.3 Arrangement of pixels 

Because SolidW  Scan image data directly

essed as the digital binary matrix. In this research, Scan data are stored as each slice 

per file. Firstly, Scan image data is converted into scan.jpg file format by using XnViewer, 

software that both handles images and reduces the image storage and handling size. The 

scan.jpg file, then, is inputted into Matlab. In Matlab the Scan image is processed into 

digital binary matrixes by identifying the image’s pixel color numbers, given the color 

map, picking exact locations of the images, and picking exact points corresponding to the 

component material. The detailed steps are as the follows: 

        1. Obtain the patient scan data. The images are cap

will be more accurate if the images are taken directly from the CT or MRI machine as 

data file in computer. 

        2. Convert the im
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convert them. 

        3. Invert the colors. The original image shown in Figure 2.4 (a) is with black 

background and the scanned image is represented in white and gray tones. If the colors 

are inverted in Microsoft Paint, the image is clearer because white and gray tones are 

changed into black. For more specific properties of the image, it is better to leave the 

image with its original colors and making a very specific image processing. To improve 

the process, the inverted image (see Figure 2.4 (b)) is used. 

                       

 

) Original Image                                             (b) Inverted Image 

        4. Open a numeric matrix s, the jpg image is 

developed in 

. Convert image into digital binary matrix. The objective of this step is to make a 

“bo

(a

Fig. 2.4 CT Scan Image of a Head 

of the image in Matlab. To do thi

imported into Matlab. Matlab will import the jpg image as a matrix with the same 

dimensions as the image’s number of pixels; Matlab identifies each pixel by its 

corresponding number in the given color map. The Figure 2.4 (b) shows the inverted 

image imported by Matlab with more specific details than the original one. 

        5. Clean the image from the unwanted parts. A program has been 

Matlab to scan the matrix pixel by pixel. A gray-scale map is assigned in Matlab, in 

which 0 is black that is wanted colors and 255 is white. The image colors that are smaller 

than 0.005 are captured, the other are deleted. The cleaned image is created (see Figure 

2.5). 

 6

ss” that will tell SolidWorks where to draw, and where not to draw. This program 
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Fig. 2.5 Inverted Cleaned Image 

 converts every pixel that is . In contrast, all remaining  not in part of the solid model to 0

pixels are created and identified as 1. Thus, SolidWorks sketches a “keypoint” when it 

finds a value of 1, and nothing when it finds a value of 0. The resulting matrix is saved as 

digital binary matrix file (See Figure 2.6). 

 

Fig. 2.6 Digital Binary Matrix File 

         A digital binary matrix lso called the characteristic is defined by the function f(V), a
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function, whose domain is the set of all voxels V and whose range is the set {0, 1}. The 

set of voxels S= {V | f(V) = 1} is referred to as the object and the set S={V |f(V) = 0} is 

referred to as the background. In applications such as space planning, the characteristic 

function f is specified by a 3D binary array with value 1 representing full and value 0 

representing void. If Q is a point set in 3D Euclidean space, then f(V) = 1 if the points of 

V have a nonempty intersection with the points of Q, and f(V) = 0 otherwise [44, 45]. 

If characteristic function represents the value of the image at V, and D is the range 

of f(

 f(V) = otherwise                               (2.1) 

Thresholding is effective when there is high contrast between th

  

V), then the thresholding operation is defined by the characteristic function  

,')(,1 DDVf ⊆∈
,0{

e object and background 

values, and little clutter. The digital binary matrixes, finally, are saved in Matlab as 

scan.txt file so that the SolidWorks developed in Visual Basic language reads the input 

data.  
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Chapter 3 Marching Cubes Algorithm 
 

Transferring the Digital Binary Matrixes to the 3D model will require the 

application of a 3D image-handling algorithm. In the comparison of the known 

approaches, the Marching Cubes algorithm is chosen because its triangle model it 

produces can be displayed on the SolidWorks graphics systems by using standard 

rendering algorithms. In addition, data information from the digital binary matrixes can 

be used to derive inter-slice connectivity. The algorithm can use the table of the edge 

intersections to describe how a surface is cut through each cube, and the Library Feature 

to display how the 3D model is created. These procedures are achieved with ease, 

convenience and rapidity with SolidWorks. 
 

3.1 Marching Cubes Algorithm 

        Marching Cubes algorithm is to subdivide space into a series of small cubes created 

from eight pixels and four each from two adjacent slices, to march through each of the 

cubes, to test the corner points, and to replace the cube with appropriate set of polygons 

[26]. Major components of this algorithm are deciding how to define the edge 

configuration in 2D and triangulated cube configuration in 3D. There are some basic 

conceptions need to be defined before determining them.   

         

Cube (Voxel) --- the volume defined by eight neighboring vertexes  

        Vertex --- the pixel values at the eight corner points of the cube 

        Isosurface --- all points within the cube with equal property  

Face --- one of the six sides of a cube 

        Edge--- one of the four rims of a face 

(See Figure 3.1) 
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Fig. 3.1 Definitions in Marching Cubes Algorithm 

Each vertex is classified as either being inside or outside the isosurface. 0 in the 

digital binary matrixes indicates that the vertex values are outside the isosurface; 1 in the 

digital binary matrixes, by contrast, indicates for the vertex values are inside the 

isosurface (See Figure 3.2). 

 
Fig. 3.2 Vertex Classifications 

Vertex Index of eight (0-7) vertices and Edge Index of twelve (0-11) edges of each 

cube are indexed as Figure 3.3. 

          

                                        Vertex Index                               Edge Index 

Outside 

Inside 

0  3 1 
2

4 5 67

8 9 
10 11

0  
3 

1
2

4 5
67 

Vertex 

 
Isosurface 

 

 

Cube (Voxel)

Face 

Edge 
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 Fig. 3.3 Vertex Index and Edge Index 

        Whether a vertex value is inside or outside the isosurface is determined by the 8-bit 

Cube Index (See Figure 3.4). If only the 0 bit value of eight-bit number is 1, which 

means only vertex 0 is inside the isosurface, then the cube index equals  02 1=  

(00000001). Similarly, if only 1 bit value of eight-bit number is 1, which means only 

vertex 1 is inside the isosurface, and then the cube index equals 12 2=  (00000010). The 

largest number of possible combination is 256 because there 

are 25622222222 76543210 =+++++++ .  

 
Fig. 3.4 Cube Index 

The algorithm determines how the Edge Configuration and the Triangulated Cube 

Configuration are generated, and then moves to the next cube until the whole object is 

marched through to create the 3D model. 

 

3.2 Edge Configuration Generation 

        There are six faces in each cube. Using the follow criteria decides where the 

isocontour intersects each face. With four vertices and two states in each face, inside and 

outside each isosurface, 16 cases of edge configuration ( 1624 = ) occur when the 

isocontour intersects the face. The binary “1” indicates insider isocontour and “0” shows 

01011011=C91 10101100=C172 

Inside =1 Outside =0 
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outside the isocontour. 16 cases can be reduced to 6 cases by the rotation and mirror of 

each face (See Figure 3.5). 

 
Fig. 3.5 Edge Configuration Generation 

When no intersections occur, the edge configuration that no edge is cut generates 

(configuration 0 and 5). 

0 
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        When one intersection occurs, the edge configuration is produced where two edges 

are cut (configuration 1, 2, 4). The yellow shaded part is the inside isocontour. 

        When two intersections occur (See configuration 3 (a) and (b)), the edge 

configuration in which four edges are cut appears and the face ambiguity arises, which 

will be expounded in section 3.3. 

          The fractional distance from the vertex is computed using linear interpolation. If a 

function is defined at integer parameter values, one can define it for intermediate 

parameter values using linear interpolation, (i.e. connecting the values at integers with 

straight line segments) [46]. Figure 3.6 shows the interpolation in the1D case between thi  

and thi )1( +  point. The line segments of the line between thi  and thi )1( +  point can be 

expressed by linear interpolation as
)()1(

)1(
)()( ifif

ii
ifuf

iu
−+
−+

=
−
− , 

then ))(1())(1)(()( iuifiuifuf −++−−= , for 1+<≤ iui . By summing these equations 

for all i  the equation of the complete interpolating linear function is: 

))(1())(1)(()( iuifiuifuf −++−−=                      (3.1) 

Where )(if only influences the intervals ],1[ ii −  and ]1,[ +ii . The equation is written as: 

∑ −=
i

iuBifuf )()()(                                    (3.2) 

where uuBi −= 1)( ,  for 11 <<− u , and zero otherwise. The functions )()( iuBuBi −=  

can be regarded as the basis functions; the complete interpolation is the sum of basis 

functions weighted by function values at integers. 

 

 

 

Fig. 3.6 Interpolation in 1D Case between thi and thi )1( +  Point 
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In 2D case, the values are defined at points ),( ji  in the plane with integer 

coordinates. The simplest way to extend linear interpolation to 2D is to use 

)()( jvBiuB −− as the bases functions: 

)()(),(),(
,

jvBiuBjifvuf
ji

−−= ∑                      (3.3) 

This is also known as bilinear interpolation [47]. 

 

3.3 Triangulated Cube Configuration Generation 

After creating Edge Configuration, Triangulated Cube Configuration is generated by 

utilizing trilinear interpolation, where the isosurface can intersect the cube according to 

the above criteria of edge configuration generation. Similarly, 3D is the product of three 

1D basis functions: 

∑ −−−=
kji

kwBjvBiuBkjifwvuf
,,

)()()(),,(),,(           (3.4) 

Usually ),,(,, wvuB kji replaces )()()( kwBjvBiuB −−− .  

        It is important to note that the level set of ),,( wvuf is not a piece-wise linear surface: 

the equation 0),,( =wvuf is not linear (it includes terms vwuwuv ,,  anduvw ). Marching 

Cubes algorithm can compute a piece-wise linear approximation to this set of the trilinear 

interpolation. The resulting meshes are usually of somewhat better quality and have lower 

triangle count [47]. 

Because there are eight vertices and two states, (inside and outside isosurface), in 

each cube there are only 25628 =  ways of triangulated cube configuration that the 

isosurface can intersect the cube, according to the above criteria of the edge configuration 

generation. To simplify the algorithm, these 256 cases can be reduced to 15 patterns by 

rotation, mirroring, and inversion. Table 3.1 shows the triangulation for the 15 patterns. 
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Table 3.1 Triangulated Cube Configuration 
Triangulated Cube 

Configuration 

Pattern Cube Index 

(Number) 

 

 

 

0 

 

C0 

 (1) 

 

 

 

1 

Rotation: C1, C2, C4, C8, C16, C32, C64, C128 

(8) 

Inverse: C127, C223, C239, C191, C247, C251, C253, C254 

(8) 

 

 

 

2 

Rotation: C12, C9, C3,C6,  C192, C144, C48, C96, C17, C34, 

C68, C136 

(12) 

Inverse: C63, C111, C119, C187, C159, C207, C221, C238, 

C243, C246, C249, C252 

(12) 

 

 

 

3(a) 

 

 

 

3(b) 

Rotation: C72, C36, C18, C129, C132, C66, C33, C24, C5, 

C10, C80, C160 

(12) 
 

 

 

Rotation: C95, C126, C175, C183, C189, C219, C222, C231, 

C123, C237, C245, C250 

(12) 
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4 

Rotation: C40, C65, C130, C20 

(4) 

Inverse: C190, C215, C235, C125 

(4) 

 

 

 

5 

Rotation: C164, C88, C161, C82, C26, C37, C74, C133 

 (8) 

 

Inverse: C173, C181, C218, C229, C91, C94, C122, C167 

(8) 
 

 

 

 

6 

Rotation: C7, C11, C14, C13, C112, C176, C224, C208, C98, 

C196, C152, C49, C19, C25, C35, C38, C50, C70, C76, C100, 

C137, C140, C145, C200 

(24) 

Inverse: C31, C47, C55, C59, C79, C103, C115, C110, C118, 

C143, C155, C157, C179, C185, C205, C206, C217, C220, C230, 

C236, C241, C242, C244, C248 

(24) 

 

 

 

7(a) 

 

 

 

7(b) 

 

Rotation: C44, C73, C131, C22, C194, C148, C56, C97, C81, 

C162, C84, C168, C52, C67, C69, C104, C134, C138, C146, C193 

(24) 
 

 

 

Rotation: C61, C62, C87, C93, C107, C109, C117, C121, 

C124, C151, C158, C171, C174, C182, C186, C188, C199, C203, 

C211, C233, C234, C213, C214, C227 

(24) 
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8 

Rotation: C15, C102, C51 

(3) 

Inverse: C153, C204, C240 

(3) 

 

 

 

9 

Rotation: C90, C165 

(2) 

 

 

 

10 

Rotation: C27, C39, C78, C141 

(4) 

Inverse: C114, C177, C216, C228 

(4) 

 

 

 

11 

Rotation: C170, C60, C105 

(3) 

Inverse: C85, C195, C150 

(3) 

 

 

 

 

 

12 

Rotation/Inverse: C135, C75, C30, C45, C120, C180, 

C225, C210, C53, C58, C83, C86, C89, 92, C101, C106, C149, 

C154, C163, C166, C169, C172, C197, C202 

(24) 



 36

 

 

 

13 

Rotation: C23, C46, C29, C54, C57, C71, C77, C99, C108, 

C116, C113, C43 

(12) 

Inverse: CC232, C209, C226, C201, C198, C184, C178, C156, 

C147, C142, C139, C212 

(12) 

 

 

 

14 

 

 

C255 

(1) 

       

        The arrow denotes the surface normal of the relevant triangles and points to the 

outside triangulated cube configuration. The green vertex means it is inside the isosurface 

and its value is 1. The simple Pattern 0 occurs if all vertex values are outside the 

isosurface and produces no triangulated cube configuration. By contrast, Pattern 15 

occurs if all vertex values are inside the selected object and produce a cube. The Pattern 

1 occurs if the surface separates one vertex from the other seven, resulting in one of the 

triangulated cube configurations defined by the three edge intersections. Other patterns 

produce multiple triangulated cube configurations. Permutation of these 15 basic patterns, 

using complementary and rotational symmetry, produces the 256 triangulated cube 

configurations.       

        In some cases, there is more than one topologically distinct way to construct 

triangulated configurations from the points on edges. In 2D, when two intersections occur, 

the edge configuration appears in which four edges are cut and the face 2D ambiguity 

arises (See Figure 3.7: configuration (a) and (b) in 2D). This problem is resolved by 

deciding between different cases, and depending on whether the center of the cube in 3D 

is inside or outside the triangulated configuration cube determines configuration (a) or (b). 
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If the center of the cube is outside the triangulated configuration cube, the face’s center in 

2D is not connected to the inside isocontour (See Figure 3.7: configuration (a)), which 

produces the triangulated configuration cube (a) in 3D.  By contrast, the face’s center in 

2D is connected inside it (See Figure 3.7 configuration (b)), which causes   the 

triangulated configuration cube (b) in 3D [47].                                                                                         

                                                                                                      

 

 

2D                                                                                3D 

Fig. 3.7 2D and 3D Ambiguity         

The transformation progress for 3D reconstruction requires Edge configuration 

generation and Triangulated Cube configuration generation. Edge configuration 

generation is based on the isosurface and cube intersections. Triangulated cube 

configuration generation is based on Edge configuration. The Cube Index values 

represent 256 cases of Triangulated cube configuration combinations. By connecting 

triangulated cubes from all cubes, a 3D model is represented. 

(a)

(b) 
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Chapter 4 Feature Library and Database Library 
 

3D model is reconstructed in SolidWorks Application Programming Interface (API) 

and the programs are developed by Visual Basic. In 3D reconstruction, the first technical 

problem to be solved is what kinds of database are stored in memory. For research, there 

are two types of library: Feature Library and Database for data exchange. Building 

feature library is to speed up process rates of 3D models, where170 library features are 

created in SolidWorks depending on the different types. Database creation is to organize 

the program reasonably for highly running rates, in which there are three types such as 

List of Files, List of Library Features, and List of Parts. 

 

4.1 Feature Library 

 Feature elements are the smallest elements that are used to reconstruct 3D models. 

Feature Library is in charge of the 256 triangulated cube configurations that are saved in 

Feature Library of SolidWorks. They are matched by Cube Index to join the 3D 

reconstruction. 

 

4.1.1 Building Feature Library  

       To create a feature library, a base feature, which is either the first solid feature, is 

first created. The triangulated cube configuration features included in the library feature 

on the base are then produced separately. Feature Library file has the *.sldlfp extension. 

Building feature library includes following three steps: 

 Open a new part, sketch a profile, and create a base feature. 

 Create the features of 256 cases in the feature library separately (See Appendix B). 

 From the Save as type list, select Lib Feat Part (*.sldlfp). Enter a name and save 

it. 
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        Figure 4.1 show the Base Feature, Library Feature of C1, and C25 

 
Figure 4.1 Establishment of Base Feature and Feature Library 

 

Base Feature 

Base Feature and  
Library Feature of C1  

Base Feature and  
Library Feature of C25 
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4.1.2 Type of Feature Library  

Because SolidWorks software requires that the library feature must touch the Base 

Feature when creating the feature library, the triangulated cube configurations are 

classified as three types signed as “-7”, “-66”, and “-8”and the numbers are used to 

indicate types of feature library. Those integers represent only marks, which may are 

arbitrary value. “-7” describes the triangulated cube configurations that cannot attach the 

base features. During 3D reconstruction, they return to the right position. “-66” expresses 

the triangulated cube configurations that are individual bodies and touch the base feature 

directly. The library features are picked up directly without any processing. Type “-8” is 

the combination of “-7”and “-66”. The library features are combined depending on the 

triangulated cube configurations in 3D representation (See Table 4.1). 

 

Table 4.1 Feature Library 
Type Triangulated 

Cube 

Configurations 

Library Feature Cube Index 

(Number) 

 

 

 

-7 

 

 

 

 

 

 

C192, C144, C48, C96, C240, C112, C176, C224, C208, C16, 

C32, C64, C128 

(13) 

1st slice 

C64 

2nd slice 
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-66 

 

 

 

 

 

 

 

All of them except Cube Indexes of -7 and -8 

(157) 

 

 

 

 

 

 

 

-8  

 

 

C5(C1+C4) C10(C8+C2) C18(C2+C16) 

C20(C4+C16) C21(C17+C4) C22(C6+C16) 

C24(C8+C16) C26(C10+C16) C28(C12+C16) 

C30(C14+C16) C33(C1+C32) C36(C32+C4) 

C37(C5+C32) C40(C8+C32) C41(C9+C32) 

C42(C34+C8) C44(C12+C32) C45(C13+C32) 

C52(C4+C48) C53(C49+C4) C56(C8+C48) 

C58(C50+C8) C60(C12+C48) C65(C1+C64) 

C66(C2+C64) C67(C3+C64) C69(C68+C1) 

C72(C8+C64) C73(C9+C64) C74(C10+C64) 

C75(C11+C64) C80(C16+C64) C81(C17+C64) 

C82(C2+C80) C83(C19+C64) C84(C68+C16) 

C86(C70+C16) C88(C8+C80) C89(C25+C64) 

C90(C10+C80) C91(C27+C64) C92(C76+C16) 

C94(C78+C16 C97(C1+C96) C101(C100+C1) 

C104(C8+C96) C105(C9+C96) C106(C98+C8) 

C120(C8+C112) C122(C114+C8) C129(C1+C128) 

C130(C2+C128) C131(C3+C128) C132(C4+C128) 

C133(C5+C128) C134(C6+C128) C135(C7+C128) 

C138(C136+C2) C146(C2+C144) C148(C4+C144) 

C149(C145+C4) C150(C6+C144) C154(C152+C2) 

C160(C128+C32) C161(C1+C160) C162(C34+C128)

C163(C35+C128) C164(C4+C160) C165(C5+C160) 

C166(C38+C128) C167(C39+C128) C168(C136+C32)

C169(C137+C32) C172(C140+C32) C173(C141+C32)

C180(C4+C176) C181(C177+C4) C193(C1+C192) 

C194(C2+C192) C195(C3+C192) C197(C196+C1) 

C202(C200+C2) C210(C2+C208) C218(C216+C2) 

C225(C1+C224) C229(C228+C1)  

(86) 

 

1st slice 

    C65=C1+C64 

2nd slice 

1st slice 

C7 

2nd slice 
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4.2 Database 

Database is built for organizing the program reasonably in order to have a fast 

running rate. Database consists of List of Files, List of Library Features, and List of Parts 

that join the data exchange in programming. 

List of Files --- including the CT scan data files. CT scan data are saved slice by slice as 

“CT*.txt” where the data structure is the digital binary matrixes.  The file component is 

as the follow: 
File name: filelist.txt 

C:\Documents and Settings\My Documents\Solidapplication\CT1.txt 
C:\Documents and Settings\My Documents\Solidapplication\CT2.txt 
C:\Documents and Settings\My Documents\Solidapplication\CT3.txt 
C:\Documents and Settings\My Documents\Solidapplication\CT4.txt 
C:\Documents and Settings\My Documents\Solidapplication\CT5.txt 
C:\Documents and Settings\My Documents\Solidapplication\CT6.txt 
C:\Documents and Settings\My Documents\Solidapplication\CT7.txt 

…… 

C:\Documents and Settings\My Documents\Solidapplication\CT256.txt 

List of Library Features--- showing an array (13-column, 256-row) where each column 

represents one type of three types in feature library and each row shows the different 

cases following the different Cube Index values. Integer after -8 expresses which 

triangulated cube configuration of “-7” and “-66” consists of the library feature. -1 shows 

that no library feature is used for 3D reconstruction. List of Library Features is shown in 

follow: 
File name: triLFCtable.txt 

-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1 
-66,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1 
-66,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1 
-66,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1 
-66,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1 
-8,1,-66,-8,4,-66,-1,-1,-1,-1,-1,-1,-1 
-66,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1 
-66,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1 
-66,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1 
-66,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1 
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-8,8,-66,-8,2,-66,-1,-1,-1,-1,-1,-1,-1 
-66,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1 
-66,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1 
-66,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1 
-66,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1 
-66,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1 
-7,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1 

List of Parts --- describing 256 triangulated cube configurations in feature library in 

order to match the Cube Index for extracting the relative library feature. The format is as 

follows, where “*-cube li.sldlfp” file stands for each Library Feature saved in SolidWorks 

as Library Feature format.   
File name: partlist.txt 

"C:\Documents and Settings\My Documents\Solidapplication\LFC\0-cube li.sldlfp" 
"C:\Documents and Settings\My Documents\Solidapplication\LFC\1-cube li.sldlfp" 
"C:\Documents and Settings\My Documents\Solidapplication\LFC\2-cube li.sldlfp" 
"C:\Documents and Settings\My Documents\Solidapplication\LFC\3-cube li.sldlfp" 
"C:\Documents and Settings\My Documents\Solidapplication\LFC\4-cube li.sldlfp" 
"C:\Documents and Settings\My Documents\Solidapplication\LFC\5-cube li.sldlfp" 
"C:\Documents and Settings\My Documents\Solidapplication\LFC\6-cube li.sldlfp" 

…… 

"C:\Documents and Settings\My Documents\Solidapplication\LFC\256-cube li.sldlfp" 
  

 



Chapter 5 3D Reconstruction by Marching Cubes 
 

To evaluate the performance of the Marching Cubes algorithm, programming 

implementation is developed in SolidWorks by using Visual Basic language.  The flow 

chart of program is shown in the follow section.  The program flows mainly include 

creation of macro file that is main program for activating the link between SolidWorks 

and Visual Basic, image input that is to transfer CT and MRI image into digital binary 

matrixes, data capture where digital binary matrixes are read into SolidWorks, and 3D 

modeling that are created by calculating Cube Index to pick up triangulated cube 

configuration from feature library.    

 

5.1 Programming Development 

5.1.1 Flow Chart 

In programming, firstly, a CT image is input and converted into digital binary 

matrixes. The Library and Cube Index are set up to achieve the database exchange. The 

Cube Index then matches the data that are extracted from the library to find the edge 

intersection by interpolation, and Library Feature is inserted into the 3D model as this 

process continue to build each individual feature. Finally, the 3D model is created. 

Further, the reconstructed models can be imported into RP software for biomechanical 

manufacturing. In each step, two CT slices are kept in memory. Each cube is processed 

through two slices. The following Figure 5.1 shows the flow chart for 3D reconstruction.  

5.1.2 Creation of Macro File 

The SolidWorks application environment is activated with Visual Basic language by 

creating macro file. The purpose of creating a Macro file is to activate the link between 

SolidWorks and Visual Basic automatically and correctly. Creation of Macro File 

includes the follow steps: 
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Convert Image into Binary Matrix

Image Input 

Insert Feature 

Get Vertex/ Linear Interpolation  

Find the Edge Intersection 

Searching for Cubes Index  

Calculate a Cube Index 

Scan two Slices/Create a Cube 

Next Neighbor Slice 

3D Models 

Database: 

Cube Index, 

File List  

Part List 

Feature Library

Complete?

Complete/ Slice?

N 

N 

Y 

Y 

 

Fig. 5.1 Flow Chart of 3D Reconstruction 

(1) Open Visual Basic, click the New/Project to create the Project, build a new Form, 

and then save the scan.vbp Project file, the scan.frm Form file, and scan.exe Active 

file 

(2) Enter SolidWorks environment, select Tool/Macro to record the Project to be created 

by Visual Basic language, and save scan.swp Macro file 
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(3) Write the Macro code in Edit by selecting the Tool/Marco/Edit: 
 
File name: list1.swp 
Sub main() 

      MyAppID=Shell (“C:\my…..\scan.exe”, 1) 
      AppActivate MyAppID 

End Sub 

(4) Build the Macro Button in SolidWorks by opening the 

Tool/Custom/Command/Macro to drag the picture to main menu, then click Ok 

 

5.1.3 Image Transformation 

Matlab will import the image as a matrix with the same dimensions as the image’s 

number of pixels and run the following program to test the procedure. The following 

program removes all that is not bone from the image, and save the cleaned image as 

CLA51.jpeg . 
 
File name: kk.msn 
figure; 
colormap (gray); 
image; 
pause 
for I = 1:512 
  for j = 1:512 
    for k = 1:3 
     A = A51(i,j,k); 
     B = (double(A))/255; 
       if (b<.5098) 
       CLA51(i,j,k) =B; 
      else 
      CLA51 (i,j,k) =1; 
     end 
  end 
end 
end 
figure; 
colormap(gray); 
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image(CLA51); 
saveas (gcf, ‘CLA51’,’jpeg); 

 

The program will then leave only the bones in the image. The resulting matrix is saved as 

CL_A51.txt file. 
 
File name: kk1.msn 

for I=1:512 
    for J=1:512 
            A=A51(I,J,1); 
            B=A51(I,J,2); 
            C=A51(I,J,3); 
            if(A==B==C) 
                CL_A51(I,J)=B; 
            elseif((A<B)&(A<C)) 
                CL_A51(I,J)=A; 
            elseif((B<A)&(B<C)) 
                CL_A51(I,J)=B;               
            else 
                CL_A51(I,J)=C; 
            end 
     end 
end 
     
for I=1:512 
    for J=1:512 
        CL=CL_A51(I,J); 
        if(CL<128) 
            CW(I,J)=1; 
        else 
            CW(I,J)=0; 
        end 
    end 
end 
 
csvwrite('CL_A51.txt',CW); 
 

5.1.4 Reading Database 
        The aim is to enhance the running speed where the CT-Scan binary digital image 
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matrix database is read into SolidWorks by Visual Basic language to achieve the data 
input.  
        To read data from a sequential file, first open the file using: 

                  Open SeqFileName For Input As #N 

where N is an integer file number and SeqFileName is a complete file path.  The file is 

closed using: 

                  Close N 

The Input statement is used to read in data from a sequential file.  The format is: 

                Input #N, [data list] 

The data names in the list are separated by commas.  If no data are listed, the current line 

in the file N is skipped. 

Note data must be read in exactly the same manner as they were written.  So, using 

the data A, B, C, and D, the appropriate statements are: 

                Input #1, A, B, C 

               Input #1, D 

These two lines read the data A, B, and C from the first line in the file and D from the 

second line.  It doesn’t matter whether the data was originally written to the file using 

Write or Print (i.e. commas are ignored) [ VB help function]. 

        The programming shows the file data input in SolidWorks developed by Visual 

Basic 
  
File name: list1.frm 
 filename = "C:\Documents and Settings\jiman\My Documents\Solidapplication\filelist26.txt" 
           Open filename For Input As #1 
           Do While Not EOF(1) 
           For i = 1 To 7 
               Line Input #1, AA 

    filenamee(i) = AA 
   Next i 

         Loop 
        Close #1 
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5.1.5 Determining Cube Index  

       The goal is to recognize which triangulated cube configurations join the 3D model by 

calculating the Cube Index value for searching/matching the File List, Part list, and 

Library Feature Type List for 3D reconstruction. Creating cube index number by Visual 

Basic language is the follow program that has been developed. 
 
File name: list1.frm 

If grid(0)=1 Then Cubeindex0=1 
Else Cubeindex0=0 

      End If 
     If grid(1)=1 Then Cubeindex1=2 

Else Cubeindex1=0 
     End If 

…… 
    If grid(7)=1 Then Cubeindex7=128 

Else Cubeindex7=0 
    End If 

Cubeindex00=0 
Cubeindex=Cubeindex0+ Cubeindex1+……+ Cubeindex7+ Cubeindex00  

 

5.1.6 Display of 3D Reconstruction Model 

        With the Cube Index value matching File List, Part list, and Library Feature Type 

List, the searched triangulated cube configurations is extracted from Feature Library and 

displayed in SolidWorks for 3D reconstruction. 3D representation undergoes different 

processes, depending on the different styles of library feature “-7”, “-66”, and “-8”. If 

the value from Library Feature Type List that is matched by Cube Index value is -66, the 

library feature is extracted directly and inserted into the reference plane of Base Feature 

by using Part.InsertLibraryFeature (partdrawname) function of SolidWorks API. If the 

value is -7, the library feature is extracted and inserted the reference plane that is located 

in the middle of two slices. For -8, the image processing experiences the combination of 

library features, then these are extracted and inserted into the related reference plane. 
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File name: list1.frm 
 If triLFCTable(cubeindex)(i1) <> -1 And triLFCTable(cubeindex)(i1) = -66 Then 

    partdrawname = partname(cubeindex) 
    Part.SelectByID newPlaneName, "PLANE", 0, 0, 0 
    Part.InsertLibraryFeature (partdrawname)  
…… 

        If triLFCTable(cubeindex)(i1) <> -1 And triLFCTable(cubeindex)(i1) = -7 Then 
    partdrawname = partname(cubeindex) 
   Part.SelectByID newPlaneName0, "PLANE", 0, 0, 0 

    Part.InsertLibraryFeature (partdrawname)  
Else 
…… 

      If triLFCTable(cubeindex)(i1) <> -1 And triLFCTable(cubeindex)(i1) = -8 Then 
      i1 = i1 + 1 
     cubeindex1 = triLFCTable(cubeindex)(i1) 
     i1 = i1 + 1 
    If triLFCTable(cubeindex)(i1) = -66 Then 
             …… 
 Else 

End If 
 If triLFCTable(cubeindex)(i1) = -7 Then 
           …… 
Else 

      End If 

3D reconstruction is displayed in SolidWorks by repeating this process recursively. 

Table 5.1 shows file names and functions of program development. 

 

Table5.1 File Names and Functions 
Image Processing Library 3D Reconstruction 

Cleaning image kk.msn List of files filelist.txt Macro file list1.swp

List of parts partlist.txt Active file List1.exe

List of Feature Library triLFCtable.txt Project list1.vbp 

Digital Binary 

Matrix 

kk1.msn 

Feature Library *-cube li.sldlfp Form list1.frm 

 

5.2 Results and Discussions 

        In order to evaluate the performance of the interface software tool in medical 
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situations, a set of actual clinical data is used. The test sample is a “tooth” dataset 

generated from CT scan of a human head. The image is grayscale color and 

contains  pixels and 18 slices with 1mm interval. Figure 5.2 shows the results of 

the transition from CT scans to 3D model the tooth. Figure 5.3 shows the result of 3D 

reconstruction of the knee joint and describe the original CT scan information, such as 18 

slices and 512 x 512 pixels per slice. The processes cover conversion of the CT scan 

image to the digital binary matrixes (including: inverted image and cleared image), 3D 

reconstruction from edge configuration generation to triangulated cube configuration 

generation. All 3D models are visualized on the computer screen in lateral, frontal, 

oblique lateral and axial views with SolidWorks.  

512512×

As described previously, the digital binary matrixes can be created from a CT scan 

image. Obtaining the digital binary matrixes is three-step processes. In the first step, the 

CT scan image must be converted to a JPG format and inverted in XnView. Then, the 

inverted image must be converted to an eight-bit gray scale image using a conversion 

method to compute each eight-bit gray pixel to replace each old pixel. Finally, these 

eight-bit pixels are transformed into the digital binary matrixes by computing 

thresholding function in Matlab. The test is conducted to evaluate feasibility of the 

conversion technique. On the other hand, the results of 3D reconstruction in SolidWorks 

and Rapid Prototyping from the digital binary matrixes are important to the success of the 

software. The process undergoes edge configuration generation and triangulated cube 

configuration generation. In the edge configuration generation, each face is constructed 

from four corner points and interpolated to produce one or two intersections. There are 

six unique cases. All of the interpolated lines can be used to define an isosurface 

representing the locations of the isovalue in the image plane.  The triangulated cube 

configuration is obtained using the Marching Cubes algorithm, which can be used to 

create a 3D model in SolidWorks.  
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Fig. 5.2 Result from CT Scan to 3D Model for Teeth 
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Digital Binary matrixes  

3D Reconstruction 

Triangulated Cube configuration generation  Edge configuration generation  

Fig. 5.3 Result from CT Scan to 3D Model for Knee 
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From the result, it can be observed that the program developed in this research 

project can be used to construct 3D model based on 2D CT scan images, which can then 

be used to machine a physical model. The pixels of this CT scan image are converted 

directly to the digital binary matrixes. The vertices-based data are interpolated by means 

of the Marching Cube algorithm, which converts the cube model into the triangulated 

cube configuration model by piecewise linear approximation. The linear interpolation 

techniques are considered as the most suitable, since the triangulated cube configuration 

representation is a kind of linear approximation. 

On other hand, stair-casing effect is highly evidenced in the models and this could be 

explained by the fact that large layer thickness was required to reduce the time for 

producing such large models. The surface is rough and lacks fine details, particularly 

around the models region. The tests are initial steps and the results are very limited. In 

future, the results will need to be improved further.  
 

        In short, the results illustrate that:  

1) The software tool can produce solid geometric models from CT scan data and MRP 

manufacturing. 

2) Cube size has an impact on 3D reconstruction. The smaller the object is divided, the 

higher the solution of 3D reconstruction could is built. 

3) Using the library feature in SolidWorks increases the program performance speed. 

4) In the real working environment, the surgeon can rotate, zoom in/out, or change the 

3D models, manipulation that can assist in pre-surgical planning. 

 

The following some problems have been raised: 

1) The cube size cannot be changed, which affects the quality of 3D reconstruction. 

2) The exact isosurface has a staircase appearance which is preserved by use of face 

shoulder and interior points. Therefore, the 3D model is not smooth and the resolution 

is too slow. 
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3) The 3D model resolution needs to be improved by using interpolate method for 

obtaining smaller size of cubes. 
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Chapter 6 3D Reconstruction by Planar Contours 
 

As mentioned above, 3D reconstruction models are very rough and limited, which 

takes time to improve the quality of 3D models. To get better 3D medical models in 

SolidWorks, Planar Contours, which use contour lines to approximate complex surfaces, 

will be employed for computer modeling and rapid prototyping. The initial planar 

contours method is to connect these contours by a triangulation in 3D space. The 

triangulation process is complicated by the occurrence of multiple contours on a data 

slice. In this research, planar contours method constructs 3D models by using loft 

command in SolidWorks, which saves the time and improves the quality.  

The key steps in Planar Contours approach include capturing section contour points 

from medical image per slice, creating B-spline curve with the control points in each 

layer, and producing solid model construction.  

 

6.1 Section Contour points Capture 

        Digital binary matrixes, slice by slice, were got by image processing in chapter 2, 

which were then brought into the SolidWorks environment for digitizing the section 

contour points using input and searching function. Figure 6.1 shows the reasoning flow 

chart.  

Note that each section image was imported into SolidWorks and placed on 

corresponding sketch plane. A set of sketch planes parallel to a reference plane was 

created in SolidWorks. The distance between two adjacent sketch planes was set to be 

identical to the distance between two corresponding sections obtained from adjacent CT 

or MRI slices. These section contour points for teeth per slice from CT scan of a head 

were created along reasoning flow chart, as shown in Figure 6.2.  
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Fig. 6.1 Section Contour Points Capture Flow Chart 
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Fig. 6.2 Section Contour Points Capture in SolidWorks 

 

6.2 B-Spline Curve Creation 

The second step was to creation of splines, with the fit spline command in 

SolidWorks. This digitization was conducted by properly marking points along the 

exterior contours and using the point option of the spline mode in SolidWorks. Handles 

appeared at each spline point with arrows that controlled the vector leaving that point. 

Technically known as Bezier (B-spline) handles, these little arrows shape the B-spline 

curve. B-spline curves were formed in SolidWorks using the curve fitting technique, 

which employed the least square fitting for discrete points measured on a pre-selected 

section of an object. The best fitting curve can be obtained by minimizing the distance 

sum between the curve and the geometric points, as shown in Figure 6.3. The shape of 

the B-spline curve depends on the directions of tangent vectors. Spline can have as few as 

two points and can specify tangency at the end points. B-spline curves are used to provide 
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accurate interpolation of the intersection data points. To achieve higher accuracy, a larger 

number of linear segments are needed for the approximation. 

 

Fig. 6.3 B-spline Curve Creation 

 

6.3 Solid Model Construction 

        After B-spline creation, the solid model was created using the loft features in 

SolidWorks. The loft feature created a solid model (see Figure 6.5) by connecting 

multiple closed curves on parallel planes (see Figure 6.4). The guide curves were selected 

along the loft direction to enhance the smoothness of the loft features. Solid Model was 

rendered using shade command in SolidWorks (see Figure 6.6). Consequently, 3D 

reconstruction model created by Planar Contour method is better than that produced by 

Marching Cube algorithm. The loft solid model created in SolidWorks is smoother and 

finer surface, which was helpful and convenient for further biomedical rapid design and 

manufacture (see section 6.3). 
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Fig. 6.4 18 Layers Closed Curves Selected for a Loft Feature  

 

Fig. 6.5 Solid Model by Planar Contours Method 
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Fig. 6.6 Solid Model rendered in SolidWorks 

 

6.4 Solid Model Result of Knee Joint 

        Solid model of knee joint was created along Planar Contours method. Figure 6.7 (a-e) 

shows  the result through capturing contour points, creating B-spline curves, lofting 

features, building solid models, and rendering solid model.    The result shows the better 

resolution for solid models. 
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Fig. 6.7 (a) Capturing Contour Points 

 

Fig. 6.7 (b) Creating B-spline Curves 
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Fig. 6.7 (c) lofting features 

 

Fig. 6.7 (d) Building Solid Models 
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Fig. 6.7 (e) Rendering Solid Models   
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Chapter 7 Biomedical Rapid Prototyping 
 

In medical industry, the use of Rapid Prototyping (RP) technology can improve 

services to patients such as surgical planning and implant designs. A precise of RP model 

facilitates the pre-operative planning of an optimal surgical approach. The reliability and 

accuracy of an RP model in surgical application allow surgeons to evaluate and select 

correct or appropriate implant approaches prior to operating the patient. In chapter, RP 

technique is based on layered manufacturing described in the following section. The 

second section discusses application of biomedical RP such as surgical planning and 

implant. The last section in chapter performs biomedical rapid design and manufacturing. 

 

7.1 Rapid Prototyping Technologies 

RP is the technique of manufacturing prototypes from complex 3D datasets, where 

all are based on layered manufacturing. The concept of layered manufacturing is the basis 

of all mainstream rapid prototyping processes. The idea behind layered manufacturing is 

that it is easier to build a series of 2D models then it is to build a single 3D model. Any 

solid or surface geometry can be interpolated to generate a series of 2D cross sections 

called “slices”. These slices are generated at evenly spaced intervals along the z-axis 

direction of the geometry. Each layer is then constructed sequentially to produce a model. 

This technology is fast developing and is more than competitive with traditional model 

building techniques, considering time and degree of detail. 

Designing an interface to import the 3D images into RP format for manufacturing 

will include the following: 

        1. The RP interface accepts data in a format that accurately describes the surface of 

the anatomical organs. 

        2. The RP interface software “slices” the model data into very thin sections. 
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        3. The RP system then builds the model slice upon slice. 

To enable the slicing procedure, the Stereolithography (STL) geometry file of the 3D 

model has to be generated that is surface-mesh created with triangular elements. This 

process is done directly through SolidWorks. The STL format is standard for RP 

technology. The STL file contains an array of independent 3D triangles representing the 

model surface. Each triangle contains 3D points and one 3D normal vector. The STL file 

is an approximate representation. Only flat surfaces can be represented perfectly. All 

curved surfaces are approximated using a chord height criterion [49, 50]. Figure 7.1 (a) 

and (b) shows the teeth and knee STL files created by 3D reconstruction models in 

SolidWorks. 

 

 

(a) Teeth STL File 

 68



 

(b) Knee STL File 

Fig. 7.1 RP Models  

Some of most commonly available systems are: Fused Deposition Modeling (FDM) 

[51], Stereolithography (SLA) [52], Selective Laser Sintering (SLS) [53], Sanders 

Prototyping Technology, and Z Corporation Fabrication Machine [54].  The FDM process 

from Stratasys constructs each layer with a path of heated extruded plastic [55]. The SLA 

process from 3D systems traces each cross section in a shallow pool of photocuring 

polymer using a laser [56, 57]. The SLS process from DTM constructs each layer by 

fusing powder along a path with a high powered laser. Z Corporation Fabrication 

Machine constructs layers using a modified inkjet print head to spray binder in powder 

such as starch or plaster [58-60].   

Material development lagged behind other aspects of the industry. It has the 

following basic requirements: 1) exist in both liquid and solid state; 2) have a low 

viscosity in the liquid state; 3) and adhere strongly in the solid state. A phase or chemical 

change is used to change from a liquid state to the solid state. The resultant energy, 
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however, cannot be enough to melt or warp either material in its solid state. A high 

viscosity liquid will not fill small cavities, but will trap air bubbles within it. Poor surface 

quality will result in if the machined surface intersects a bubble. 

Medical Rapid Prototyping is the production of medical models using rapid 

prototyping methods. The selection of a particular process will depend on the medical 

model application. With SLA, any anatomical object, regardless of its complexity, can be 

built automatically from its “CAD” file without the need for tools or manual interference.  

A brief overview of the major RP technologies available today is given below. 

Stereolithography (SLA) 

Depending on the technology used, the 2D files are used to guide a laser beam in 

cutting sheets into the equivalent solid layers used in the SLA technique. The SLA system 

consists of an Ultra-violet Laser, a vat of photo-curable liquid resin, and a controlling 

system. A platform is lowered into the resin (via an elevator system), such that the surface 

of the platform is a layer-thickness below the surface of the resin. The laser beam 

receives its path instructions for each slice to trace the boundaries and fill in a 2D cross 

section of the model, solidifying the resin wherever it touches. Once a layer is complete, 

the platform descends a layer thickness, resin flows over the first layer, and the next layer 

is built. This process continues until the model is complete [56]. Figure 7.2 shows the 

sequence of steps for producing a SLA layer. 

 
Figure 7.2 Process of RP for SLA Technique 
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The materials used by SLA equipment are epoxy-based resins that offer strong, 

durable, and accurate models. It is ideal for form, fit, and function testing, as well as for 

visual aids and patterns for tooling. In many cases, SLA is capable of reproducing snap 

fits. In general SLA materials have a low heat tolerance with typical heat deflection 

temperatures are around F. Standard tolerances are°−120110 005.0± ” for the first inch, 

and ” in most parts and features. These characteristics make SLA an excellent all 

round choice for prototypes. The advantages of SLA process are high accuracy , very 

good surface finish, semi-transparent material and moderate strength. 

002.0±

 

Selective Laser Sintering (SLS) 

Laser Sintering uses fine powders of a wide range of materials to be treated in 

nitrogen atmosphere. The powder is heated up to a temperature just below the melting 

point of the specific material, which usually will take a couple of hours. A roller spreads 

the powder on the building platform. The laser beam then selectively melts the powder 

and bonds it. As the power is already heated, the laser needs to elevate the temperature 

slightly to cause sintering. The temperature gradients in the part remain small. The 

platform moves down incrementally and the process starts again, until the prototype is 

finished. Subsequently the building chamber piston raises completely to deliver the part. 

Excess powder is brushed away and final manual finishing may be carried out. Figure 7.3 

shows the process of selective laser sintering. No supports are required with this method 

because overhangs and undercuts are supported by the solid powder bed. The advantages 

of SLS process are that it produces a large model, which is durable, functional, fast, and 

can be finished and painted [54, 57].  

SLA vs. SLS: A Summarized Comparison 

Material Properties: The SLA (stereolithography) process is limited to 

photosensitive resins which are typically brittle. The SLS process can utilize polymer 

powders that, when sintered, approximate thermoplastics quite well.  
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Fig. 7.3 the Process of Selective Laser Sintering 

Surface Finish: The surface of an SLS part is powdery, like the base material whose 

particles are fused together without complete melting. The smoother surface of an SLA 

part typically wins over SLS when an appearance model is desired. In addition, if the 

temperature of uncured SLS powder gets too high, excess fused material can collect on 

the part surface. This can be difficult to control since there are so many variables in the 

SLS process. In general, SLA is a better process where fine, accurate detail is required. 

However, a varnish-like coating can be applied to SLS parts to seal and strengthen them.  

Dimensional Accuracy: SLA is more accurate immediately after completion of the 

model, but SLS is less prone to residual stresses that are caused by long-term curing and 

environmental factors. Both SLS and SLA suffer from inaccuracy in the z-direction 

(neither has a milling step), but SLS is less predictable because of the variety of materials 

and process parameters. The temperature dependence of the SLS process can sometimes 

result in excess material fusing to the surface of the model, and the thicker layers and 
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variation in the process can result in more z inaccuracy. SLA parts suffer from the 

"trapped volume" problem in which cups in the structure that hold fluid cause 

inaccuracies. SLS parts do not have this problem.  

Support Structures: SLA parts typically need support structures during the build. 

SLS parts, because of the supporting powder, sometimes do not need any support, but this 

depends upon part configuration. Marks left after removal of support structures for parts 

cause dimensional inaccuracies and cosmetic blemishes.  

Machining Properties: In general, SLA materials are brittle and difficult to machine. 

SLS thermoplastic-like materials are easily machined.  

Size: SLS and SLA parts can be made the same size, but if sectioning of a part is 

required, SLS parts are easier to bond.  

 

Fused Deposition Modeling (FDM) 

In FDM, the material is prepared in filament form, available on spools and in many 

different colors. This filament is heated in a nozzle, which moves in the X and Y 

directions according to the CAD data. The molten material is thus added layer by layer. A 

second filament is used equally to build up the necessary supports (See Figure 7.4). The 

supports are easily removable using a water-based solution that dissolves them and leaves 

the model with smooth surfaces. FDM is a free-form fabrication technology. Because it 

uses high strength ABS plastic, it is the favored technology for prototyping plastic parts 

requiring strength. The advantages of FDM process are that it is high strength, cost-

effective, and waterproof, and that it can accommodate ABS material and multiple 

material colors [54, 61].  

Z Corporation 3D Printing  

Z Corporation 3D Printing uses inkjet printer technology to print fine patterns of glue 

onto a smooth bed of plaster powder. First, the 3D Printer spreads a thin layer of powder. 

Second, an ink-jet print head prints a binder in the cross-section of the part being created. 
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Fig. 7.4 the Process Fused Deposition Modeling 

 

Third, the build piston drops down, making room for the next layer, and the process is 

repeated. Once the part is finished, it is surrounded and supported by loose powder, 

which is then shaken loose from the finished part. It is especially good at making parts 

that have hard-to-reach cavities, as the scrap can be poured and vacuumed out. Figure 7.5 

shows how the Z-Corp 3D Printer fabricates solid parts from layers of powder [58, 60]. 

No support structure in   Z Corporation 3D Printer means that parts can be made 

with very complex geometries, and when complete, simply “blow out” the powder. Inkjet 

technology makes this a very high-speed option. Z Corporation 3D Printers enable 

surgeons to rapidly produce inexpensive 3D models to obtain better case information to 

reduce operating time, enhance patient and physician communication, and improve 

patient outcomes. The ability to use models for pre-surgical planning reduces operating 

room time, lowers cost, and enhances patient outcomes by minimizing incision sizes, 

reducing recovery time and allowing for procedure rehearsals. Z Corporation models  
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Fig. 7.5 Z Corp. 3D Printer 

permit the world’s leading implant manufacturers to fabricate custom implants rapidly 

and cost effectively for the ultimate in performance. Therefore, Z Corporation 3D Printer 

is used in this study to enable the slicing procedure. Figure 7.6 shows the Z Corporation 

3D Printer in making a 3D solid model.  

   
Fig. 7.6 Z Corporation 3D Printer in Making 3D Solid Model  
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7.2 RP Application in Biomedical Field 

        The application of RP processes to medicine appears very promising. A direct 

interface between the three dimensional reconstruction models and RP allows the 

development of physical, real 3D models of any anatomical structures [61, 62]. Such 

models are used for purposes of visualization and communication, surgical rehearsal, and 

custom implant preparation.  

 

7.2.1 Surgical Planning 

         3D models are used by surgeons for more accurate surgical planning and better 

diagnostic methods. This planning reduces the risk to the patient, owing to the shortened 

time of surgical procedures, and is less expensive than the alternatives. For example, the 

human spine needs to be created from CT and MRI-data in other to correct a deformity. 

The surgeon needs 3D models to plan and rehearse the procedures, because sensitive 

areas are involved, that take susceptible to severe damage. The case is Torticollis, which 

involves the cervical portion of the spine where a vertebra is out of alignment. This 

causes the neck to be mis-aligned and can result in damage to the spinal cord. The 

surgeon needs to know the exact location of the spinal cord compared to the vertebrae 

and how far the vertebra has to be moved. By using information obtained only from the 

CT-and MRI-images, planning the procedure is difficult and the risk is substantial. 

Providing a physical model of the actual case will ease the pre-surgical planning and 

decrease the risks involved in such a delicate procedure. Another case is Scoliosis, which 

involves lateral curvature of the vertebrae portion of the column due to uneven growth of 

the vertebrae. The surgery, which involves partial removal of the vertebra, involves high 

risk to the spinal cord. A 3D physical model of the patient’s anatomy will help the 

surgeon to plan the procedure and minimize the risk involved (See Figure 7.7). 
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Fig. 7.7 RP model for Surgery Planning 

7.2.2 Anatomical Implants 

        The implant would be made to fit exactly the patient’s requirements in terms of 

shape, performance, and integration into existing structures within the body, using data 

collected by non-intrusive scans. RP is well suited to produce biomedical implants for 

bone replacement. 3D printing is an especially appropriate technique to generate complex 

porous ceramic matrices directly for biomedical applications. Anatomical information 

obtained from the patient is used to design and optimize the implant for a target defect. 

The use of RP allows 3D physical model to be created immediately, directly, and 

automatically from a 3D model. It works by breaking down a 3D model into 2D sections, 

which are built up layer by layer by high tech machines.   

        For example, the reason for customizing a knee implant is that the current procedure 

uses standard size implants, which cause the implant to loosen over time due lack of 

perfect fitting. However, using the 3D model created from CT-data to design a 

customized knee implant will fit perfect. Moreover, a stress analysis of the knee 

components can be conducted at different, angles, positions, and load distributions, which 

can vary due to different activities such as walking or running. Once the design is 

completed, the CT data for the subject can be used to prototype the femur, tibia and the 

corresponding customized implants, which would enable the precise manufacture of 

customized implant components (See Figure 7.8). 

        Therefore, the application of 3D reconstruction and RP techniques to medicine is an 
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invaluable contribution by engineering technology. The ability to produce 3D physical 

models directly from the scanned data promises to be the way of the future in medicine. 

4

Image Guided Surgery Using Rapid Image Guided Surgery Using Rapid 
Prototyping ModelsPrototyping Models

 
Fig. 7.8 RP model for Implant 

 

7.3 Biomedical Rapid Design and Manufacturing 

Biomedical design work is closely related to sculptural work. The human body does 

not have sharp corners or edges, making it were necessary to select CAD software that is 

versatile enough to give the model an irregular shape. The wide variety of modeling 

capability offered by SolidWorks software makes it suitable for biomedical design. 

SolidWorks software can provide an interface of the widest number of data translation 

formats of any CAD solution. It provides easy use of the CAD data, such as the above 3D 

reconstruction model data (see chapter 6), for maintaining in the original drawing while 

designing the medical model according to the biomedical needs. It allows the file to be 

checked and repaired for conceptual design, detailed design, and analysis. Using such an 

interface, image-based medical design becomes a reality. 

SolidWorks capabilities provide for standard view drawings, including three views 

or any combination of views, which are automatically generated from the model or 

assembly with bill-of-materials included. Figure 7.9 shows the design of 3D medical 
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model created by planar contour method (see chapter 6) in SolidWorks. Figure 7.10 

displays the 2D view of 3D model. 

 

  
 

Fig. 7.9 Medical Design of 3D Reconstruction Model 

 

Fig. 7.10 2D View of 3D Model 
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3-D models of medical images are helpful tools used in surgical planning and as 

eaching aids. Currently, there is no cost-effective method of constructing these 3-D 

models from CT or MRI scans because scans are not homogenous. Creating biomedical 

models of human organs and regions can help surgeons to plan their surgeries. Implants 

and cut placements can be made and planned before cutting performing surgery. This 

minimizes both surgery time and cost. Biomedical rapid design, together with medical 

images, could be used to build accurate composite models of human organs and other 

structure in SolidWorks. This mechanically accurate model will allow for testing the 

efficiency of surgical devices on a more realistic model. The ability to model mechanical 

properties of complex structures could have many important implications. Specifically in 

the medical field, accurate models could assist in biomedical product testing and research.  

Additional views can be easily added, including new breakout section views to 

display the detail drawing, such as the layer structures, the connection section, and the 

size value. Thus, it is convenient for medical manufacturing. Rapid prototyping is a 

manufacturing technique that creates various 3-D geometries by means of layer-by-layer 

construction. These layered manufacturing techniques can reduce the need for costly 

tooling, it is clear that it will make more sense in some situations than in others. The 

complex geometry cannot easily be made by conventional manufacturing techniques. 

Because layered manufacturing processes can produce parts of arbitrary complexity 

without the use of any fixed tooling, the processes will have a significant impact on the 

way product manufacturing. These manufacturing processes will actually allow designers 

to merge multiple parts together, thus requiring considerably less assembly. In the case of 

extremely small assemblies, it will even be possible to fabricate pre-assembled devices 

that require no assembly at all. For example, more knee joint replacement surgeries are 

performed than any other joint, so the joint component of the implant design is displayed 

in the section views for accurate biomedical manufacturing. 

Many of rapid prototyping techniques such as SLA and FDM are primarily designed 
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to manufacture plastic parts. Using biomedical rapid design layer by layer, layered 

manufacturing can be modified for direct production of functional metal and ceramic 

parts. Figure 7.11 shows the knee implant manufactured with 3D model by layer by layer 

(a), bolt joint (b), and joint holes (c). Figure 7.12 (a), (b), and (c) show the results of 3D 

MRP manufacturing. 

 

 

 
 

Fig.7.11 (a) 3D Model in Layer by Layer  
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Figure 7.11(b) Biomedical Manufacturing with Bolt Joint         

 

Figure 7.11(c) Biomedical Manufacturing with Joint Hole 
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Fig. 7.12 (a) 3D Physical Model of Knee Joint 
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(b) 3D Physical Model of Knee Joint layer by layer 
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(c) 3D Physical Model of Teeth  
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For biomedical design, full associative assemblies are critical for effectively using 

bottom-up and top-down assembly design techniques. In SolidWorks, associative 

assemblies guarantee that all elements of a model are electronically associated or 

connected, including assembly models, components, drawings, details, and bills of 

materials. Thus, when a change is made to any SolidWorks file, the change is 

automatically made in all associated files. Therefore, the 3D reconstruction model 

generated by SolidWorks software can be designed and managed concurrently. This 

integration of technologies, such as biomedical imaging, design, and manufacturing, 

plays an important role in medicine. Layered manufacturing techniques can further be 

used to build electromechanical components for sensor application. 
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Chapter 8 Conclusions and Future Works 

 

8.1 Conclusions 

The ability to produce physical models from the scanned data in SolidWorks is an 

important contribution from engineering technology to the medicine. Biomedical rapid 

design and manufacturing in SolidWorks could help surgery to plan, manage, and 

manufacture concurrently. Because 3D reconstruction is performed in SolidWorks, the 

fields of Finite Element Analysis, MENS, and Mechanical Engineering can be combined 

with the areas of surgical planning and implantation. The combination of 3D 

reconstruction and Rapid Prototyping will have a significant impact on biomedical 

engineering and surgery. 

        The results of this research are the first step towards 3D reconstruction from original 

CT scan data. The manufacturing of Medical Rapid Prototyping will serve as the initial 

clinical study. The true advantages of 3D reconstruction in SolidWorks have yet to be 

determined through long-term study and clinic application. It is my opinion that 3D 

reconstruction in SolidWorks can provide STL format data for Medical Rapid 

Prototyping manufacturing to help plan implant surgeries because SolidWorks can export 

STL files for direct reading by Rapid Prototyping machine.  The digital binary matrixes 

which are created are chosen to lie on the real CT scan or MRI image data and to be 

optimal in terms of interpolation accuracy. The dimension of 3D physical model can be 

proved to be correct depending on whether or not the scale is 1 comparing with the real 

sizes of CT scan or MRI image. 

        This thesis has certain key features: 

• It uses the color gray level to process CT scan images into the digital binary 

matrix using MATLAB. 

• Because all data are built in a database that is outside of main memory, the data 

 87



feature can be changed depending on the real requirement. The processing time 

can also be reduced. 

• It uses the Library Feature for 3D reconstruction in SolidWorks for increasing the 

running speed. 

• Cube processing takes place with linear interpolation in 3D. 

• Higher accuracy in rendering produces for application such as MRP 

manufacturing by use of loft in SolidWorks with Planar contours. 

• A 3D physical model for Medical Rapid Prototyping can be created directly from 

SolidWorks. 

 

8.2 Future Works 
This research has the limitations:  

• Cube size cannot be changed automatically according to the real requirement in 

Marching Cubes.  

• The surface of 3D model exist the staircase and is very rough. 

• Resolution of 3D model is very slow. 
 
        Further refinements will be necessary in the follows respects: 

1) To enhance the quality of 3D models, the cube size should be automatically 

changeable, depending on the organ to be modeled, by using the driving 

dimension. 

2) 3D models that are created by using Marching Cubes algorithm need to be 

smoothed further using rendering technologies because the result of 3D models 

are rough. 

3) Because size of 3D models are large, resolution of 3D models should be improved 

according to the interpolation that is most closely approximates the exact value, 

such as bilinear or trilinear interpolation. 
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Appendix A: Feature Library (File name: *-cube li.sldlfp) 

Feature elements are the smallest elements that are used to reconstruct 3D models. 

Feature Library is in charge of the 256 triangulated cube configurations that are saved in 

Feature Library of SolidWorks. They are matched by Cube Index to join the 3D 

reconstruction. 

To create a feature library, a base feature, which is either the first solid feature, is 

first created. The triangulated cube configuration features included in the library feature 

on the base are then produced separately. Feature Library file has the *.sldlfp extension. 

 
             c1                                          c2                                   c3                                         c4 

 

             c6                                    c7                                              c8                                     c9 

 
             c11                                      c12                                        c13                                  c14 

 
             c15                                     c16                                       c17                                  c19 
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             c23                                     c25                                       c27                                  c29 

 

              c31                                     c32                                      c34                                  c35 

 

                c38                                    c39                                     c43                                  c46 

 

                c47                                     c48                                   c49                                    c50 

 
                 c51                                   c54                                    c55                                  c57 

 

                 c59                                    c61                                   c62                                 c63 
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                  c64                                  c68                                    c70                                 c71 

 

                  c76                                   c77                                     c78                                   c79  

 

                 c85                                   c87                                      c93                                  c95 

 
               c96                                      c98                                     c99                                c100 

 

              c102                                     c103                                 c107                               c108 

 
              c109                                     c110                                 c111                                 c112 
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              c113                                  c114                                    c115                                 c116 

 
              c117                                      c118                                c119                                 c121 

 

              c123                                     c124                                  c125                                 c126 

 

             c127                                      c128                                  c136                                c137 

 

              c139                                    c140                                   c141                               c142 

 
             c143                                    c144                                   c145                                c147 
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             c151                                c152                                      c153                                c155 

 

             c156                                    c157                                   c158                               c159 

 
               c170                                    c171                                c174                               c175 

 
              c176                                    c177                                c178                                c179 

 

              c182                                   c183                                  c184                                c185 

 

             c186                                   c187                                   c188                                 c189 
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              c190                                 c191                                    c192                                 c196 

 

              c198                                c199                                     c200                                  c201 

 
              c203                                    c204                                  c205                                 c206 

 

              c207                                    c208                                  c209                                c211 

 

              c212                                   c213                                  c214                                 c215 

 
              c216                                  c217                                   c219                                c220 
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              c221                                c222                                    c223                                  c224 

 

              c226                                 c227                                   c228                                   c230 

 
              c231                                c232                                      c233                                c234 

 

              c235                                c236                                     c237                                 c238 

 

              c239                                c240                                    c241                                 c243 

 
              c245                                c246                                    c249                               c250 
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             c251                                c252                                     c253                               c254 

 
c255 

 102



 Appendix B: Programming Code 
File name: 3D model 
Option Explicit 
Private Type POINTAPI 
X As Double 
Y As Double 
Z As Double 
End Type 
 
‘Definitions in programming 
Private Sub Command_Click() 
Dim i As Integer, j As Integer, k As Integer 
Dim II As Integer 
 
 
Static MatrixF1(1 To 21, 1 To 21, 0 To 20) As Double 
Static MatrixF2(1 To 21, 1 To 21, 0 To 21) As Double 
 
Static triLFCTable(0 To 255) As Variant 
Static partlistTable(0 To 255) As Variant 
 
Dim grid(0 To 7) As Variant 
Dim cubeindex0 As Integer 
Dim cubeindex1 As Integer 
Dim cubeindex2 As Integer 
Dim cubeindex3 As Integer 
Dim cubeindex4 As Integer 
Dim cubeindex5 As Integer 
Dim cubeindex6 As Integer 
Dim cubeindex7 As Integer 
Dim cubeindex00 As Integer 
Dim cubeindex As Integer 
 
Dim i1 As Integer 
Dim swApp As Object 
Dim filename As String 
Dim filename1 As String 
Dim filename2 As String 
Dim filenamee(1 To 20) As String 
Dim partlistname As String 
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Dim partdrawname As String 
 
Dim A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12 As Long 
Dim Part As Object 
Dim V(0 To 7) As POINTAPI 
Dim VV(0 To 11) As POINTAPI 
Dim RR(1 To 2) As POINTAPI 
 
Dim selMgr As Object 
Dim Feature As Object 
Dim theDispDimen As Object 
Dim theDimen As Object 
Dim thevalue As Variant 
Dim pp As Long 
Dim kk As Long 
Dim planeName, newPlaneName, newPlaneName0  As String 
Dim planeFeature As Object 
Dim planeCount As Integer 
Dim partdrawname0 As Variant 
Dim partname(0 To 255) As String 
Dim Sketch As Variant 
Dim size As Long 
Dim retval As Long 
 
 
Set swApp = CreateObject("SldWorks.Application") 
Set Part = swApp.Newpart() 
Set selMgr = Part.SelectionManager 
'size = 0 
'retval = Part.SetFeatureManagerWidth(size) 
    
 
 
'read CT file to produce MatrixF1, MatrixF2... 
 
filename = "C:\Documents and Settings\jiman\My Documents\Solidapplication\LFC\filelist.txt" 
Open filename For Input As #1 
Do While Not EOF(1) 
 For i = 1 To 20 
 Line Input #1, AA 
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  filenamee(i) = AA 
   
   
 Next i 
Loop 
Close #1 
 
 
For II = 1 To 19 
 
filename1 = filenamee(II) 
Open filename1 For Input As #2 
Do While Not EOF(2) 
 
  For i = 1 To 20 
    For j = 1 To 20 
      Input #2, A 
      MatrixF1(i, j, II - 1) = A 
       
    Next j 
 Next i 
 
Loop 
Close #2 
 
 
filename2 = filenamee(II + 1) 
 
 
Open filename2 For Input As #3 
Do While Not EOF(3) 
  For i = 1 To 20 
    For j = 1 To 20 
      Input #3, A 
      MatrixF2(i, j, II) = A 
      'swApp.SendMsgToUser I 
      'swApp.SendMsgToUser J 
    Next j 
 Next i 
Loop 
Close #3 

 105



 
Next II 
 
 
' Build Feature Library 
partdrawname0 = "C:\Documents and Settings\jiman\My Documents\Solidapplication\partlist.txt" 
Open partdrawname0 For Input As #1 
Do While Not EOF(1) 
 For i = 0 To 255 
  Line Input #1, AA 
  partname(i) = AA 
 Next i 
Loop 
Close #1 
 
  
 Part.SketchRectangle -0.003, 0, 0, 0, 0.003, 0, 1 
 Part.FeatureExtrusion 1, 0, 0, 0, 0, 0.003, 0, 0, 0, 0, 0, 0.01745329251994, 0.01745329251994, 0, 0 
  
 Part.AndSelectByID "", "SKECTCHPOINT", 0, 0.003, 0.003 
 Part.AndSelectByID "", "SKECTCHPOINT", -0.003, 0.003, 0.003 
 Part.AndSelectByID "", "SKECTCHPOINT", -0.003, 0, 0.003 
 Part.CreatePlaneThru3Points 
 Part.BlankRefGeom 
 kk = 2 
 pp = 0 
newPlaneName = "Plane1" 
Sketch = "Sketch2" 
 
  
 
 
'read vetex of cube to setup grid0=..., grid1=..., grid7=... 
For k = 0 To 14 
 Part.SelectByID newPlaneName, "PLANE", 0, 0, 0 
 Part.CreatePlaneAtOffset 0.0005, 0 
 Part.BlankRefGeom 
 newPlaneName0 = "Plane" & kk 
 kk = kk + 1 
For i = 1 To 19 
For j = 1 To 19 
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grid(0) = MatrixF1(i, j, k) 
grid(1) = MatrixF1(i, j + 1, k) 
grid(2) = MatrixF1(i + 1, j + 1, k) 
grid(3) = MatrixF1(i + 1, j, k) 
grid(4) = MatrixF2(i, j, k + 1) 
grid(5) = MatrixF2(i, j + 1, k + 1) 
grid(6) = MatrixF2(i + 1, j + 1, k + 1) 
grid(7) = MatrixF2(i + 1, j, k + 1) 
 
 
 
V(0).X = i: V(0).Y = j: V(0).Z = k 
V(1).X = i: V(1).Y = j + 0.01: V(1).Z = k 
V(2).X = i + 0.01: V(2).Y = j + 0.01: V(2).Z = k 
V(3).X = i + 0.01: V(3).Y = j: V(3).Z = k 
V(4).X = i: V(4).Y = j: V(4).Z = k + 0.01 
V(5).X = i: V(5).Y = j + 0.01: V(5).Z = k + 0.01 
V(6).X = i + 0.01: V(6).Y = j + 0.01: V(6).Z = k + 0.01 
V(7).X = i + 0.01: V(7).Y = j: V(7).Z = k + 0.01 
 
  
'create cubeindex number 
 
If grid(0) = 1 Then 
cubeindex0 = 1 
Else: cubeindex0 = 0 
End If 
 
If grid(1) = 1 Then 
cubeindex1 = 2 
Else: cubeindex1 = 0 
End If 
  
If grid(2) = 1 Then 
cubeindex2 = 4 
Else: cubeindex2 = 0 
End If 
 
If grid(3) = 1 Then 
cubeindex3 = 8 

 107



Else: cubeindex3 = 0 
End If 
 
If grid(4) = 1 Then 
cubeindex4 = 16 
Else: cubeindex4 = 0 
End If 
 
If grid(5) = 1 Then 
cubeindex5 = 32 
Else: cubeindex5 = 0 
End If 
 
If grid(6) = 1 Then 
cubeindex6 = 64 
Else: cubeindex6 = 0 
End If 
 
If grid(7) = 1 Then 
cubeindex7 = 128 
Else: cubeindex7 = 0 
End If 
 
cubeindex00 = 0 
 
cubeindex = cubeindex0 + cubeindex1 + cubeindex2 + cubeindex3 + cubeindex4 + cubeindex5 + 
cubeindex6 + cubeindex7 + cubeindex00 
 
filename = "C:\Documents and Settings\jiman\My Documents\Solidapplication\LFCt\typelist.txt" 
Open filename For Input As #1   ' Open file for input. 
N = 0 
Do While Not EOF(1)   ' Loop until end of file. 
    
    Input #1, A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12 ' Read data into two variables. 
   
   triLFCTablee1(0) = A0 
   triLFCTablee1(1) = A1 
   triLFCTablee1(2) = A2 
   triLFCTablee1(3) = A3 
   triLFCTablee1(4) = A4 
   triLFCTablee1(5) = A5 
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   triLFCTablee1(6) = A6 
   triLFCTablee1(7) = A7 
   triLFCTablee1(8) = A8 
   triLFCTablee1(9) = A9 
   triLFCTablee1(10) = A10 
   triLFCTablee1(11) = A11 
   triLFCTablee1(12) = A12 
       
  triLFCTable(N) = triLFCTablee1() 
   N = N + 1 
Loop 
Close #1   ' Close file. 
    
'create triangulated cube configuration 
If cubeindex <> 0 Then 
    i1 = 0 
 Do While i1 <= 9 
      
   If triLFCTable(cubeindex)(i1) <> -1 And triLFCTable(cubeindex)(i1) = -66 Then 
    partdrawname = partname(cubeindex) 
     
    Part.SelectByID newPlaneName, "PLANE", 0, 0, 0 
    Part.InsertLibraryFeature (partdrawname) 
    Part.DissolveLibraryFeature 
    Part.SelectByID Sketch, "SKETCH", 0, 0, 0 
     
      Set Feature = Part.SelectionManager.GetSelectedObject3(1) 
      If (Feature Is Nothing) Then 
      Exit Sub 
      End If 
      Set theDispDimen = Feature.GetFirstDisplayDimension 
       
      While (Not theDispDimen Is Nothing) 
      Set theDimen = theDispDimen.GetDimension 
       
      If theDimen.Name = "D1" Then 
      thevalue = theDimen.Value 
        If thevalue = 0.5 Then 
         theDimen.SetValue2 thevalue + V(0).X + 0.001, 0 
        Else 
         If thevalue = 0.01 Then 
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         theDimen.SetValue2 thevalue + 0.99 + V(0).X + 0.001, 0 
        Else 
         If thevalue = 0.98 Then 
         theDimen.SetValue2 thevalue - 0.48 + V(0).X + 0.001, 0 
        Else 
        If thevalue = 0.02 Then 
         theDimen.SetValue2 thevalue + 0.48 + V(0).X + 0.001, 0 
        Else 
         theDimen.SetValue2 thevalue - thevalue + V(0).X + 0.001, 0 
        End If 
        End If 
        End If 
        End If 
      theDimen.Name = "DDD1" 
      Else 
      If theDimen.Name = "D2" Then 
      thevalue = theDimen.Value 
        If thevalue = 0.5 Then 
         theDimen.SetValue2 thevalue + V(0).Y + 0.001, 0 
        Else 
          If thevalue = 0.01 Then 
         theDimen.SetValue2 thevalue + 0.99 + V(0).Y + 0.001, 0 
        Else 
         If thevalue = 0.98 Then 
         theDimen.SetValue2 thevalue - 0.48 + V(0).Y + 0.001, 0 
        Else 
        If thevalue = 0.02 Then 
         theDimen.SetValue2 thevalue + 0.48 + V(0).Y + 0.001, 0 
        Else 
         theDimen.SetValue2 thevalue - thevalue + V(0).Y + 0.001, 0 
        End If 
        End If 
        End If 
        End If 
      theDimen.Name = "DDD2" 
      End If 
      End If 
      Set theDispDimen = Feature.GetNextDisplayDimension(theDispDimen) 
      Part.ClearSelection 
      Wend 
      Part.EditRebuild 
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      pp = pp + 1 
      Sketch = "Sketch2" & pp 
   Else 
   End If 
    
   If triLFCTable(cubeindex)(i1) <> -1 And triLFCTable(cubeindex)(i1) = -7 Then 
    partdrawname = partname(cubeindex) 
    Part.SelectByID newPlaneName0, "PLANE", 0, 0, 0 
    Part.InsertLibraryFeature (partdrawname) 
    Part.DissolveLibraryFeature 
    Part.SelectByID Sketch, "SKETCH", 0, 0, 0 
     
      Set Feature = Part.SelectionManager.GetSelectedObject3(1) 
      If (Feature Is Nothing) Then 
      Exit Sub 
      End If 
      Set theDispDimen = Feature.GetFirstDisplayDimension 
       
      While (Not theDispDimen Is Nothing) 
      Set theDimen = theDispDimen.GetDimension 
       
      If theDimen.Name = "D1" Then 
      thevalue = theDimen.Value 
        If thevalue = 0.5 Then 
         theDimen.SetValue2 thevalue + V(0).X + 0.001, 0 
        Else 
         If thevalue = 0.01 Then 
         theDimen.SetValue2 thevalue + 0.99 + V(0).X + 0.001, 0 
        Else 
         If thevalue = 0.98 Then 
         theDimen.SetValue2 thevalue - 0.48 + V(0).X + 0.001, 0 
        Else 
        If thevalue = 0.02 Then 
         theDimen.SetValue2 thevalue + 0.48 + V(0).X + 0.001, 0 
        Else 
         theDimen.SetValue2 thevalue - thevalue + V(0).X + 0.001, 0 
        End If 
        End If 
        End If 
        End If 
      theDimen.Name = "DDD1" 
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      Else 
      If theDimen.Name = "D2" Then 
      thevalue = theDimen.Value 
        If thevalue = 0.5 Then 
         theDimen.SetValue2 thevalue + V(0).Y + 0.001, 0 
        Else 
          If thevalue = 0.01 Then 
         theDimen.SetValue2 thevalue + 0.99 + V(0).Y + 0.001, 0 
        Else 
         If thevalue = 0.98 Then 
         theDimen.SetValue2 thevalue - 0.48 + V(0).Y + 0.001, 0 
        Else 
        If thevalue = 0.02 Then 
         theDimen.SetValue2 thevalue + 0.48 + V(0).Y + 0.001, 0 
        Else 
         theDimen.SetValue2 thevalue - thevalue + V(0).Y + 0.001, 0 
        End If 
        End If 
        End If 
        End If 
      theDimen.Name = "DDD2" 
      End If 
      End If 
      Set theDispDimen = Feature.GetNextDisplayDimension(theDispDimen) 
      Part.ClearSelection 
      Wend 
      Part.EditRebuild 
      pp = pp + 1 
      Sketch = "Sketch2" & pp 
                   
     
   Else 
   End If 
    
    
    
   If triLFCTable(cubeindex)(i1) <> -1 And triLFCTable(cubeindex)(i1) = -8 Then 
     i1 = i1 + 1 
     cubeindex1 = triLFCTable(cubeindex)(i1) 
     i1 = i1 + 1 
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   If triLFCTable(cubeindex)(i1) = -66 Then 
       
    partdrawname = partname(cubeindex1) 
     
    Part.SelectByID newPlaneName, "PLANE", 0, 0, 0 
    Part.InsertLibraryFeature (partdrawname) 
    Part.DissolveLibraryFeature 
    Part.SelectByID Sketch, "SKETCH", 0, 0, 0 
     
      Set Feature = Part.SelectionManager.GetSelectedObject3(1) 
      If (Feature Is Nothing) Then 
      Exit Sub 
      End If 
      Set theDispDimen = Feature.GetFirstDisplayDimension 
       
      While (Not theDispDimen Is Nothing) 
      Set theDimen = theDispDimen.GetDimension 
       
      If theDimen.Name = "D1" Then 
      thevalue = theDimen.Value 
        If thevalue = 0.5 Then 
         theDimen.SetValue2 thevalue + V(0).X + 0.001, 0 
        Else 
         If thevalue = 0.01 Then 
         theDimen.SetValue2 thevalue + 0.99 + V(0).X + 0.001, 0 
        Else 
         If thevalue = 0.98 Then 
         theDimen.SetValue2 thevalue - 0.48 + V(0).X + 0.001, 0 
        Else 
        If thevalue = 0.02 Then 
         theDimen.SetValue2 thevalue + 0.48 + V(0).X + 0.001, 0 
        Else 
         theDimen.SetValue2 thevalue - thevalue + V(0).X + 0.001, 0 
        End If 
        End If 
        End If 
        End If 
      theDimen.Name = "DDD1" 
      Else 
      If theDimen.Name = "D2" Then 
      thevalue = theDimen.Value 
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        If thevalue = 0.5 Then 
         theDimen.SetValue2 thevalue + V(0).Y + 0.001, 0 
        Else 
          If thevalue = 0.01 Then 
         theDimen.SetValue2 thevalue + 0.99 + V(0).Y + 0.001, 0 
        Else 
         If thevalue = 0.98 Then 
         theDimen.SetValue2 thevalue - 0.48 + V(0).Y + 0.001, 0 
        Else 
        If thevalue = 0.02 Then 
         theDimen.SetValue2 thevalue + 0.48 + V(0).Y + 0.001, 0 
        Else 
         theDimen.SetValue2 thevalue - thevalue + V(0).Y + 0.001, 0 
        End If 
        End If 
        End If 
        End If 
      theDimen.Name = "DDD2" 
      End If 
      End If 
      Set theDispDimen = Feature.GetNextDisplayDimension(theDispDimen) 
      Part.ClearSelection 
      Wend 
      Part.EditRebuild 
      pp = pp + 1 
      Sketch = "Sketch2" & pp 
   Else 
   End If 
    
   If triLFCTable(cubeindex)(i1) = -7 Then 
      
    partdrawname = partname(cubeindex1) 
    Part.SelectByID newPlaneName0, "PLANE", 0, 0, 0 
    Part.InsertLibraryFeature (partdrawname) 
    Part.DissolveLibraryFeature 
    Part.SelectByID Sketch, "SKETCH", 0, 0, 0 
     
      Set Feature = Part.SelectionManager.GetSelectedObject3(1) 
      If (Feature Is Nothing) Then 
      Exit Sub 
      End If 
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      Set theDispDimen = Feature.GetFirstDisplayDimension 
       
      While (Not theDispDimen Is Nothing) 
      Set theDimen = theDispDimen.GetDimension 
       
      If theDimen.Name = "D1" Then 
      thevalue = theDimen.Value 
        If thevalue = 0.5 Then 
         theDimen.SetValue2 thevalue + V(0).X + 0.001, 0 
        Else 
         If thevalue = 0.01 Then 
         theDimen.SetValue2 thevalue + 0.99 + V(0).X + 0.001, 0 
        Else 
         If thevalue = 0.98 Then 
         theDimen.SetValue2 thevalue - 0.48 + V(0).X + 0.001, 0 
        Else 
        If thevalue = 0.02 Then 
         theDimen.SetValue2 thevalue + 0.48 + V(0).X + 0.001, 0 
        Else 
         theDimen.SetValue2 thevalue - thevalue + V(0).X + 0.001, 0 
        End If 
        End If 
        End If 
        End If 
      theDimen.Name = "DDD1" 
      Else 
      If theDimen.Name = "D2" Then 
      thevalue = theDimen.Value 
        If thevalue = 0.5 Then 
         theDimen.SetValue2 thevalue + V(0).Y + 0.001, 0 
        Else 
          If thevalue = 0.01 Then 
         theDimen.SetValue2 thevalue + 0.99 + V(0).Y + 0.001, 0 
        Else 
         If thevalue = 0.98 Then 
         theDimen.SetValue2 thevalue - 0.48 + V(0).Y + 0.001, 0 
        Else 
        If thevalue = 0.02 Then 
         theDimen.SetValue2 thevalue + 0.48 + V(0).Y + 0.001, 0 
        Else 
         theDimen.SetValue2 thevalue - thevalue + V(0).Y + 0.001, 0 
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        End If 
        End If 
        End If 
        End If 
      theDimen.Name = "DDD2" 
      End If 
      End If 
      Set theDispDimen = Feature.GetNextDisplayDimension(theDispDimen) 
      Part.ClearSelection 
      Wend 
      Part.EditRebuild 
      pp = pp + 1 
      Sketch = "Sketch2" & pp 
          
     
   Else 
   End If 
    
    
   Else 
   End If 
    
    
    
i1 = i1 + 1 
 
Loop 
Else 
End If 
Next j 
Next i 
 
Part.SelectByID newPlaneName, "PLANE", 0, 0, 0 
      Set Feature = Part.SelectionManager.GetSelectedObject3(1) 
      If (Feature Is Nothing) Then 
      Exit Sub 
      End If 
      Set theDispDimen = Feature.GetFirstDisplayDimension 
      While (Not theDispDimen Is Nothing) 
      Set theDimen = theDispDimen.GetDimension 
      Part.ClearSelection 

 116



      thevalue = theDimen.Value 
      Part.ClearSelection 
      theDimen.SetValue2 1, 0 
      Set theDispDimen = Feature.GetNextDisplayDimension(theDispDimen) 
      Part.ClearSelection 
      Wend 
      Part.EditRebuild 
       
 Part.SelectByID newPlaneName0, "PLANE", 0, 0, 0 
      Set Feature = Part.SelectionManager.GetSelectedObject3(1) 
      If (Feature Is Nothing) Then 
      Exit Sub 
      End If 
      Set theDispDimen = Feature.GetFirstDisplayDimension 
      While (Not theDispDimen Is Nothing) 
      Set theDimen = theDispDimen.GetDimension 
      Part.ClearSelection 
      thevalue = theDimen.Value 
      Part.ClearSelection 
      theDimen.SetValue2 0.5, 0 
      Set theDispDimen = Feature.GetNextDisplayDimension(theDispDimen) 
      Part.ClearSelection 
      Wend 
      Part.EditRebuild 
 
   Part.SelectByID newPlaneName, "PLANE", 0, 0, 0 
      Part.CreatePlaneAtOffset 0.001, 0 
      Part.BlankRefGeom 
      newPlaneName = "Plane" & kk 
      kk = kk + 1 
     
   Next k 
   Part.ViewZoomtofit2 
End Sub 
 
Planar Contour Points Creation  
Private Sub Command_Click() 
  Dim swApp As Object 
  Dim part As Object 
  Dim A As Integer 
  Dim B As Integer 
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  Dim X As Integer 
  Dim Y As Integer 
   
  Dim filename As String 
  Dim V(1 To 3) As POINTAPI 
  Set swApp = CreateObject("SldWorks.Application") 
  Set part = swApp.Newpart() 
   
  filename = "E:\Solidapplication\LFC\test.txt" 
  Open filename For Input As #1 
    Y = 1 
    Do While Y <= 256 
    X = 0 
    B = 0 
    Do While X + 1 <= 256 
    Input #1, A 
    If A = 1 And B <> A Then 
      V(1).X = X: V(1).Y = Y 
      part.CreatePoint2 V(1).X, V(1).Y, 0# 
      B = A 
    Else 
      If A = 0 And B <> A Then 
       V(2).X = X - 1: V(2).Y = Y 
       part.CreatePoint2 V(2).X, V(2).Y, 0# 
       part.ViewZoomtofit2 
       B = A 
      Else 
       B = A 
      End If 
    End If 
    X = X + 1 
    Loop 
    Y = Y + 1 
    Loop 
    Close 1 
  part.SaveAs2 "E:\LFC\Solidapplication\test01.sldprt", 0, False, False 

End Sub 
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