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MAYAGÜEZ CAMPUS

2015

Approved by:
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A previously introduced notion of categorical interior operator is studied in the category of

groups. The main purpose of this research is to try to find out how many of the general results that

hold for a categorical interior operator in topology can be proved in the category of groups, paying

particular attention to the notions of connectedness and disconnectedness.

Some general properties of interior operators in groups are studied and the notions of discrete,

indiscrete, connected and disconnected groups with respect to an interior operator are introduced.

The main objective of this work is to discover whether by means of the above notions, a commu-

tative diagram of Galois connections previously presented in the category of topological spaces,

can be reconstructed in the group environment. However, unlike the topological case, the lack of

commutativity between inverse images and suprema created a big obstacle that, for the time being,

could be overcome only by means of two conjectures. Examples are provided.
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Por
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Una noción introducida previamente de operador de interior de categorı́as es estudiado en la

categorı́a de grupos. El propósito principal de esta investigación es intentar hallar cuántos de los

resultados generales que se tienen para un operador de interior de categorı́as en topologı́a pueden

ser demostrados en la categorı́a de grupos, prestando especial atención a las nociones de conexidad

y desconexidad.

Algunas propiedades generales de los operadores de interior en grupos son estudiadas y las

nociones de grupos discretos, indiscretos, conexos y desconexos son introducidas con respecto

a un operador de interior. El objetivo principal de este trabajo es descubrir si por medio de las

nociones mencionadas, un diagrama conmutativo de conexiones de Galois previamente presentado

en la categorı́a de espacios topológicos, puede reconstruirse en el entorno de los grupos. Sin

embargo, a diferencia del caso topológico, la falta de conmutatividad entre las imágenes inversas y

supremos creó un gran obstáculo que, por el momento, podrı́a ser superado sólo por medio de dos

conjeturas. Se proporcionan ejemplos.
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1 Introduction

A topological space is a set X together with a topology, that is a family of subsets of X that

include X , /0 and that is closed under arbitrary unions and finite intersections. These subsets are

normally called open (cf. [M], [W]). Every topology yields the concepts of interior and closure.

Given a subset M of X , the interior of M is defined as the union of all open subsets of X contained

in M. By setting a subset closed if its complement is open one can define the closure of a subset M

as the intersection of all closed subsets of X containing M. Finally, the topology of the set X can

be reconstructed in an equivalent way either via its associated interior or via its associated closure.

Due to this equivalence, in topology one is normally free to choose either of the two concepts

according to which one is more convenient to use for a specific problem.

In the early 80’s an attempt to introduce a more general version of the above mentioned clo-

sure in topology appeared in [DG1] and it was followed by [DG2], where a generalization to an

arbitrary category was presented. This generalization was called Categorical Closure Operator.

The aim of this new notion was to introduce notions of topological nature in categories that do not

have a topology, like for instance the category of Groups. This approach was very successful and

produced a fairly high number of papers. Most of the theory of Categorical Closure Operators can

be found in [C1], [DT].

At a certain point the following questions arose. Why was the notion of closure used for

the above mentioned generalization and not the notion of interior? Since they are equivalent in

topology would they also be equivalent in an arbitrary category? Is there any chance that one of the

two would outperform the other in an arbitrary category? In order to answer all these questions, the

study of a general notion of interior operator was started. A categorical notion of interior operator

was introduced in [V]. Subsequently, a few papers have been published in topology ([CR], [CM])

and in an arbitrary category ([C2−3], [HS], [RH]). After these early works on the subject, it became

clear that unlike the topological case, the behavior of interior operators was quite different form

the one of closure operator in an arbitrary category. Consequently, in order to gain more insight

into this aspect, we decided to approach in the category of groups, the same kind of problem that
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was successfully approached in [CR] in the category of topological spaces. In other words, our

main aim is to introduce notions of connectedness and disconnectedness with respect to an interior

operator in the category of groups and trying to see how far the theory developed in [CR] can be

reconstructed in this different setting.
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2 Preliminaries

In this section we will include all the basic definitions and some results of group theory that

will be used throughout this work.

Definition 2.1. A group, denoted by (G, ·), is an algebraic structure that consists of a set and a

binary operation (·) which satisfies the following four conditions:

(a) ∀a,b ∈ G,a ·b ∈ G

(b) ∀a,b,c ∈ G,a · (b · c) = (a ·b) · c

(c) ∃e ∈ G : ∀a ∈ G,e ·a = a = a · e

(d) ∀a ∈ G,∃b ∈ G : a ·b = e = b ·a

The group (G, ·) is usually simply denoted as G and the product of two elements a ·b is often

denoted by ab, when no confusion is possible. The unit or identity element of a group G will be

denoted by eG whenever necessary to avoid confusion.

Definition 2.2. Let (G, ·) be a group. Then the algebraic structure (H, ·) is a subgroup of G if and

only if (H, ·) is a group and H is a subset of G. This is denoted as H ≤ G.

Definition 2.3. Let (G, ·) and (H,∗) be groups. Let φ : G→ H be a function such that for all

a, b ∈ G, φ(a ·b) = φ(a)∗φ(b). Then φ : (G, ·)→ (H,∗) is called a homomorphism and

φ−1({eH}) = {g ∈ G|φ(g) = eH} is called the kernel of φ . It is denoted as Kerφ .

Definition 2.4. Let (G, ·) and (H,∗) be groups, and let φ : (G, ·)→ (H,∗) be a homomorphism.

(a) If φ is injective, that is for all a, b ∈ G, φ(a) = φ(b) implies that a = b, then φ is called

a monomorphism.

(b) If φ is surjective, that is for all a ∈H, there exists b ∈G such that φ(b) = a, then φ is called

an epimorphism.

In what follows, Grp is used to denote the class that consists of all groups. Ab is used to

denote the subclass of Grp that consists of all abelian groups, that is groups whose operation is

commutative.
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Definition 2.5. Let X ∈Grp and let A be a subset of X . Then the subgroup generated by A, denoted

by 〈A〉, is the smallest subgroup of X containing every element of A, that is

〈A〉= ∩
j∈J
{H j : A⊆ H j ≤ X}

Proposition 2.6. Let G ∈Grp and S⊆ G. Then 〈S〉= {sε1
1 sε2

2 ... sεn
n : n ∈ N,si ∈ S, and εi =±1 for

all 1≤ i≤ n}, that is 〈S〉 consists of all finite products of elements of S and their inverses.

Proof: Let G ∈ Grp and S ⊆ G. From Definition 2.5 we have that 〈S〉 = ∩
j∈J
{H j : S ⊆ H j ≤ G}.

Let
−
S = {sε1

1 sε2
2 ... sεn

n : n ∈ N,si ∈ S, and εi = ±1 for all 1 ≤ i ≤ n}. Since eG can be considered

as an empty product or as ss−1 for some s ∈ S, then eG ∈
−
S and

−
S is not empty. Let x, y ∈

−
S

and elements bi, c j ∈ S, εi, δ j ∈ {±1} such that x = bε1
1 bε2

2 ...bεk
k , and y = cδ1

1 cδ2
2 ...cδl

l . Note that

y−1 = c−δl
l ...c−δ2

2 c−δ1
1 . Thus xy−1 = bε1

1 bε2
2 ...bεk

k c−δl
l ...c−δ2

2 c−δ1
1 , which has the form of an element

of
−
S. Thus, by the subgroup criterion (c.f. [DF]), we have that

−
S is a subgroup of G. Since

S⊆
−
S ≤G, then

−
S ∈ {H j : ∀ j ∈ J,S⊆H j ≤G}. Then 〈S〉= ∩

j∈J
{H j : S⊆H j ≤G}⊆

−
S. Since every

subgroup of G containing S must contain all finite products of elements of S and their inverses, then
−
S ⊆ H j for every j ∈ J such that S ⊆ H j ≤ G. Then

−
S ⊆ ∩

j∈J
{H j : S ⊆ H j ≤ G} = 〈S〉. Hence we

conclude that 〈S〉= {sε1
1 sε2

2 ... sεn
n : n ∈ N,si ∈ S, and εi =±1 for all 1≤ i≤ n}.

For any group X , the set S(X) that consists of all subgroups of X ordered by inclusion is a

complete lattice. This implies that any family {Hi}i∈I of subgroups of X has a supremum (which

is the subgroup generated by the union of the Hi’s) denoted by
∨

and an infimum (which is the

intersection of the Hi’s) denoted by
∧

.

Definition 2.7. Let G be a group. Let N be a subgroup of G. N is called a normal subgroup of G if

∀g ∈ G : gNg−1 = N. By gNg−1 we mean the set {gng−1 : n ∈ N}. It is denoted as NEG.

To clarify some terminology that will be used throughout the thesis, we say that a trivial group,

usually denoted by {e}, is a group with only one element, a simple group is a group that has only

itself and the trivial group as normal subgroups, a Dedekind group is a group X such that every

subgroup of X is normal, and a torsion group is a group such that every element has finite order.
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Definition 2.8. Let G be a group, and H ≤ G. The set aH = {y ∈ G : ∃h ∈ H : y = ah} is called a

left coset of H.

If H is a normal subgroup of G, every left coset is also a right coset and in this case is simply

called a coset. It can then be proved that for a normal subgroup H, the set that consists of every

coset of H, denoted as G/H, is a group (cf. [DF]). The group operation is defined as (aH)(bH) =

(ab)H. G/H is called the quotient group of G by H. The associated homomorphism q: G→ G/H

defined by q(x) = xH is called the quotient homomorphism.

Lemma 2.9. Let {H j} j∈J be an indexed family of subgroups of the group G. Then for a given

g ∈ G we have that ∩
j∈J

gH jg−1 = g( ∩
j∈J

H j)g−1.

Proof : Let {H j} j∈J be an indexed family of subgroups of the group G, where J is an arbitrary

index set and let g ∈ G. Let x ∈ ∩
j∈J

gH jg−1 be arbitrary. Then x ∈ gH jg−1 for every j ∈ J. Then

x = gh jg−1, where h j ∈ H j for every j ∈ J. Then gh jg−1 = ghig−1, where h j ∈ H j and hi ∈ Hi for

every j, i ∈ J. By the Cancellation Laws, h j = hi, where h j ∈ H j and hi ∈ Hi for every j, i ∈ J.

Let h = h j for every j ∈ J. Then x = ghg−1, where h ∈ H j for all j ∈ J. Then x = ghg−1, where

h ∈ ∩
j∈J

H j, that is x ∈ g( ∩
j∈J

H j)g−1. Hence we conclude that ∩
j∈J

gH jg−1 ⊆ g( ∩
j∈J

H j)g−1. Now let

x ∈ g( ∩
j∈J

H j)g−1 be arbitrary. Then x = ghg−1, where h ∈ ∩
j∈J

H j and so x = ghg−1, where h ∈ H j

for all j ∈ J. Then x ∈ gH jg−1 for every j ∈ J and so x ∈ ∩
j∈J

gH jg−1. Hence we conclude that

∩
j∈J

gH jg−1 ⊇ g( ∩
j∈J

H j)g−1. This proves that ∩
j∈J

gH jg−1 = g( ∩
j∈J

H j)g−1.

Proposition 2.10. Let G ∈ Grp. For an indexing set I, if {Ni}i∈I is a set of normal subgroups of

G, then
∨
{Ni}i∈I = 〈

⋃
{Ni : i ∈ I}〉 is a normal subgroup of G.

Proof : Let {Ni}i∈I be a set of normal subgroups of the group G. By Definition 2.5,

〈
⋃
{Ni : i ∈ I}〉 ≤ G, and 〈

⋃
{Ni : i ∈ I}〉= ∩{H j : j ∈ J and ∀i ∈ I,Ni ⊆ H j ≤ G}. Let g be a fixed

element of G. Let H j ∈ {H j : j ∈ J and ∀i∈ I,Ni⊆H j ≤G}. Since all the Ni’s are normal in G, then

Ni = gNig−1 ⊆ gH jg−1 for all i ∈ I. Thus gH jg−1 ∈ {H j : j ∈ J and ∀i ∈ I,Ni ⊆ H j ≤ G}. Hence

we have that {H j : j ∈ J and ∀i∈ I,Ni⊆H j ≤G}⊇ {gH jg−1 : j ∈ J and ∀i∈ I,Ni⊆H j ≤G}. Now

5



consider the set g−1H jg. Since all the Ni’s are normal in G, then Ni = g−1Nig⊆ g−1H jg for all i∈ I.

Thus g(g−1H jg)g−1 ∈ {gH jg−1 : j ∈ J and ∀i ∈ I,Ni ⊆H j ≤G}, and so H j ∈ {gH jg−1 : j ∈ J and

∀i ∈ I,Ni ⊆ H j ≤ G}. Hence we have that {H j : j ∈ J and ∀i ∈ I,Ni ⊆ H j ≤ G} ⊆ {gH jg−1 : j ∈ J

and ∀i ∈ I,Ni ⊆ H j ≤ G}. Then we obtain that {H j : j ∈ J and ∀i ∈ I, Ni ⊆ H j ≤ G}= {gH jg−1 :

j ∈ J and ∀i ∈ I,Ni ⊆ H j ≤ G}. This implies that ∩{H j : j ∈ J and ∀i ∈ I,Ni ⊆ H j ≤ G} =

∩{gH jg−1 : j ∈ J and ∀i ∈ I,Ni ⊆ H j ≤ G} = g(∩{H j : j ∈ J and ∀i ∈ I,Ni ⊆ H j ≤ G})g−1, as

shown in the previous lemma. Hence we conclude that 〈{Ni : i ∈ I}〉= ∩{H j : j ∈ J and

∀i ∈ I,Ni ⊆ H j ≤ G} is a normal subgroup of G.

Proposition 2.11. Let f : G→ H be a group homomorphism and let PEH. Then f−1(P) is a

normal subgroup of G.

Proof : Let f : G→ H be a group homomorphism and let PEH. Let F = f−1(P). Since P is a

subgroup, eH ∈ P and thus eG ∈ F . Then F is not empty. Suppose that a, b∈ F and let x, y∈ P such

that f (a) = x and f (b) = y. Since P ≤ H, we have that f (ab−1) = f (a) f (b−1) = f (a) f (b)−1 =

xy−1 ∈ P. Then ab−1 ∈ F . By the subgroup criterion (c.f. [DF]), we conclude that F ≤ G. Since

PEH, by Definition 2.7, hPh−1 ⊆ P for all h ∈H. Let k ∈ F and g ∈G be arbitrary. Then we have

f (gkg−1) = f (g) f (k) f (g)−1 ∈ P, since f is a homomorphism and PEH. Then gkg−1 ∈ F . Since

k and g are arbitrary, then gFg−1 ⊆ F . Hence we conclude that F = f−1(P)EG.

Lemma 2.12. Let X ,Y ∈Grp and let KEY . Let f : X → Y be a homomorphism. Let

ϕ : X/ f−1(K)→Y/K be a function defined by ϕ(x f−1(K)) = f (x)K. Then ϕ is a monomorphism.

Proof: Let X ,Y ∈ Grp and let KEY . Let f : X → Y be a homomorphism. By Proposition 2.11 it

follows that f−1(K)EX . Consider the function ϕ : X/ f−1(K)→ Y/K defined by ϕ(x f−1(K)) =

f (x)K. Let x f−1(K), y f−1(K) ∈ X/ f−1(K) be such that x f−1(K) = y f−1(K). Then y−1x ∈

f−1(K), and so f (y−1x) ∈ K. Consequently ( f (y))−1 f (x) ∈ K, that is, f (x)K = f (y)K, also

ϕ(x f−1(K)) = ϕ(y f−1(K)). Hence, we conclude that ϕ is well defined.

Now let x f−1(K), y f−1(K) ∈ X/ f−1(K) be arbitrary. Then ϕ(x f−1(K) · y f−1(K)) =

6



ϕ(xy f−1(K)) = f (xy)K = f (x) f (y)K = f (x)K · f (y)K = ϕ (x f−1(K)) · ϕ(y f−1(K)). Hence, we

conclude that ϕ is a homomorphism.

Notice that Kerϕ = {x f−1(K) : ϕ(x f−1(K)) = K}. Since ϕ(x f−1(K)) = K⇔ f (x)K = K⇔

f (x) ∈ K⇔ x ∈ f−1(K)⇔ x f−1(K) = f−1(K), then Kerϕ = { f−1(K)}. Hence, we conclude that

ϕ is a monomorphism.

Lemma 2.13. Let X ∈Grp and let H, K ≤ X be two normal subgroups of X such that H ≤ K. Let

ψ : X/H→ X/K be a function defined by ψ(xH) = xK. Then ψ is an epimorphism.

Proof: Let X ∈Grp and let H,K ≤ X be such that H ≤ K. Consider the function

ψ : X/H → X/K defined by ψ(xH) = xK. Let xH, yH ∈ X/H be such that xH = yH. Then,

y−1x ∈ H ≤ K. Consequently, xK = yK, and so ψ(xH) = ψ(yH). Hence, we conclude that ψ is

well defined.

Let xH, yH ∈ X/H be arbitrary. Then ψ(xH · yH) = ψ(xyH) = xyK = xK · yK =

ψ(xH) ·ψ(yH). Hence we conclude that ψ is a homomorphism.

Let xK ∈ X/K be arbitrary. Then there exists xH ∈ X/K and ψ(xH) = xK. Hence we conclude

that ψ is an epimorphism.

The concept of Galois connection plays a crucial role in this work, as a consequence we include

its definition and some relevant results here.

Definition 2.14. For partially ordered classes X = (X ,v) and Y = (Y,v), a Galois connection

X
F
�
G

Y consists of order preserving functions F and G that satisfy x v G(F(x)) for every x ∈ X

and F(G(y)) v y for every y ∈ Y . If x ∈ X and y ∈ Y are such that F(x) = y and G(y) = x, then x

and y are said to be corresponding fixed points of the Galois connection (X,F,G,Y).

Proposition 2.15. Let X and Y be two partially ordered classes and assume that suprema exist in

X. Let f : X→ Y be an order preserving function that preserves suprema. Define g: Y→ X as

follows: for every y ∈ Y , g(y) =
∨
{x ∈ X : f (x)v y}. Then, X

f
�
g

Y is a Galois connection.

7



Proof: Let x1 v x2 ∈ X . Since f is an order preserving function, we have that f (x1)v f (x2). Let

y1 v y2 ∈ Y . Clearly we have that {x ∈ X : f (x) v y1} ⊆ {x ∈ X : f (x) v y2}. Thus, by taking

the supremum we obtain that g(y1) v g(y2), that is g is an order preserving function. Now, let

x′ ∈ X . By applying the definition of g we obtain that g( f (x′)) =
∨
{x ∈ X : f (x) v f (x′)}. Since

x′ ∈ {x∈ X : f (x)v f (x′)}, then g( f (x′)) =
∨
{x∈ X : f (x)v f (x′)} w x′. Finally, let y′ ∈Y . Since

f preserves suprema, we have that f (g(y′))= f (
∨
{x∈X : f (x)v y′})=

∨
{ f (x)∈Y : f (x)v y′}v

y′. Hence we conclude that X
f
�
g

Y is a Galois connection.

The proof of the following result is symmetric to the previous one, so we omit it.

Proposition 2.16. Let X and Y be two partially ordered classes and assume that infima exist in Y.

Let g: Y→ X be an order preserving function that preserves infima. Define f : X→ Y as follows:

for every x ∈ X , f (x) =
∧
{y ∈ Y : g(y)w x}. Then, X

f
�
g

Y is a Galois connection.

A classical example of Galois connection arises as follows. Let f : X → Y be a function

between sets and let S(X) and S(Y) denote the powersets of X and Y, respectively. Consider the

functions F : S(X)→ S(Y) and G : S(Y)→ S(X) defined by F(A) = f (A) for A⊆ X and G(B) =

f−1(B) for B⊆ Y, respectively. Let U1,U2 ∈ X and V1,V2 ∈ Y. Since U1 ⊆U2⇒ f (U1)⊆ f (U2)

and V1 ⊆ V2 ⇒ f−1(V1) ⊆ f−1(V2), then F and G are order preserving functions. Since f is a

function, we have that U ⊆ f−1( f (U)) for every U ⊆ X and f ( f−1(V )) ⊆ V for every V ⊆ Y.

Hence, it follows that the diagram S(X)
F
�
G

S(Y) is a Galois connection.

Proposition 2.17. The composition of two Galois connections is a Galois connection.

Proof: Let X
f
�
g

Y and Y
h
�
k

Z be two Galois connections. Since the composition of order preserv-

ing functions is order preserving, we have that h◦ f and g◦k are order preserving. Let x ∈ X . Then

f (x) v k(h( f (x))) and so x v g( f (x)) v g(k(h( f (x)))) = (g ◦ k)((h ◦ f )(x)). Now, let z ∈ Z. We

have that f (g(k(z)))v k(z) and so h( f (g(k(z))))v h(k(z))v z. Hence, X
h◦ f
�
g◦k

Z is a

Galois connection.

8



Proposition 2.18. Let X
f
�
g

Y be a Galois connection between partially ordered classes X and Y.

Then, the functions f and g uniquely determine each other.

Proof: Let g′: Y→ X be a function such that X
f
�
g′

Y is also a Galois connection. Let y ∈ Y . By

applying g′ to f (g(y))v y, we obtain that g(y)v g′( f (g(y)))v g′(y). Moreover, by applying g to

f (g′(y))v y, we obtain that g′(y)v g( f (g′(y)))v g(y). Hence we conclude that g(y) = g′(y), for

every y ∈ Y . The proof of the uniqueness of f is similar.

To clarify some terminology used throughout the thesis, we include the following.

Definition 2.19. Let H ⊆Grp, that is H is a subclass of Grp.

(a) H is closed under subgroups if and only if ∀P ∈H , Q≤ P⇒ Q ∈H .

(b) H is closed under suprema if and only if ∀S ⊆H ,
∨

S ∈H .

(c) H is closed under quotients if and only if ∀P∈H , QEP⇒P/Q∈H . Equivalently, H is

closed under quotients if and only if for all quotient homomorphisms f : P→Q, P∈H ⇒Q∈H .

(d) H is closed under inverse images via homomorphisms if and only if for all group homo-

morphisms f : G→ G′ and P≤ G′, P ∈H ⇒ f−1(P) ∈H .

(e) H is closed under products if and only if given a family of groups {Ai}i∈I , if each Ai ∈H ,

then also the product of the Ai’s belongs to H .
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3 Basic definitions and results

The following definition was introduced by S.J.R. Vorster in an arbitrary category ([V]). We

specialize it here to the category Grp of groups.

Definition 3.1. An interior operator I on Grp is a family {iX}X∈Grp of functions on the subgroup

lattices of Grp with the following properties that hold for each X ∈Grp:

(a) [contractiveness] iX (M)≤M, for every subgroup M ≤ X ;

(b) [order-preservation] M ≤ N implies that iX (M) ≤ iX (N) for every pair of subgroups M,N

of X ;

(c) [continuity] For every homomorphism f : X → Y and subgroup N ≤ Y ,

f−1(iY (N)) ≤ iX ( f−1(N)), i.e., the inverse image of the interior of N is less than or equal to the

interior of the inverse image of N.

Definition 3.2. Given an interior operator I, we say that a subgroup M of a group X is I-open if

M = iX(M). M is called I-isolated if iX(M) = {eX}. We call I idempotent provided that iX(M) is

I-open for every M ≤ X .

Notice that the subscript in the symbol iX(M) could be omitted whenever no confusion is

possible.

Consider two subgroups N, M of X ∈Grp such that N ≤M ≤ X . Then for the subgroup N we

can consider its interior with respect to M (iM(N)) and its interior with respect to X (iX(N)). The

following result clarifies the relationship between iM(N) and iX(N).

Proposition 3.3. Let I be an interior operator and let N ≤ M ≤ X ∈ Grp. Then we have that

iX(N)≤ iX(M)∩ iM(N). In particular, iX(N)≤ iM(N).

Proof: Let m: M → X denote the inclusion of M into X . By Definition 3.1(c), we have that

iM(m−1(N))≥ m−1(iX(N)). Then iX(M)∩ iM(N) = iX(M)∩ iM(m−1(N))≥ iX(M)∩m−1(iX(N))

= iX(M)∩ iX(N) = iX(N). This implies as a consequence that iX(N)≤ iM(N).
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Proposition 3.4.

(a) Let f : X →Y be a group homomorphism and let I be an interior operator on Grp. If N ≤Y

is I-open, then so is f−1(N).

(b) Let X be a group and let I be an interior operator. Consider the subgroup H of X defined by

H =
∨
{M ≤ X : iX(M) = M}= 〈∪{M ≤ X : iX(M) = M}〉. Then H is I-open, in other words, the

supremum of the family of I-open subgroups of X is I-open.

(c) Let X be a group and let I be an interior operator. Consider the subgroup H of X defined by

H = ∩{M ≤ X : iX(M) = {eX}}. Then H is I-isolated, in other words, the infimum of a family of

I-isolated subgroups is I-isolated.

Proof: (a). Since N is I-open, by Definition 3.1(c), we have that f−1(N) = f−1(iY (N)) ≤

iX( f−1(N)). Let M = f−1(N), so M ≤ iX(M). By Definition 3.1(a), iX(M) ≤ M. Hence we

conclude that M = iX(M), that is M = f−1(N) is I-open.

(b). Let A = {M ≤ X : iX(M) = M}, that is the class of I-open subgroups of X . Then H =

〈∪A 〉. For every M j ∈ A ( j ∈ J), M j ≤ H because M j ⊆ H,M j ≤ X , and H ≤ X . Then by

Definition 3.1(b), (∀ j ∈ J), iX(M j) ≤ iX(H). Then (∀ j ∈ J),M j ≤ iX(H) because M j = iX(M j).

Since ∪ j∈JM j ⊆ iX(H), iX(H) ≤ X , and 〈∪ j∈JM j〉 is the smallest subgroup of X that contains

∪ j∈JM j, then H = 〈∪ j∈JM j〉 ≤ iX(H). By Definition 3.1(a), iX(H)≤ H. Hence we conclude that

H = iX(H), that is H is I-open.

(c). Let B = {M≤ X : iX(M) = {eX}}, that is the class of I-isolated subgroups of X . Then H =

∩B. Since H is the intersection of subgroups of X , then H ≤ X . For every M j ∈B ( j ∈ J), M j ≥H

because M j ⊇H,M j ≤ X , and H ≤ X . Then by Definition 3.1(b), (∀ j ∈ J), iX(H)≤ iX(M j). Then

(∀ j ∈ J), iX(H)≤ {eX} because iX(M j) = {eX}. Hence we conclude that iX(H) = {eX}, that is H

is I-isolated.

Examples 3.5.

(a) The assignment D defined by dX (M) = M for every M ≤ X , X ∈Grp is an interior operator

on Grp called the discrete operator.
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(b) The assignment T defined by tX (M) = {eX} for every M ≤ X , X ∈ Grp is an interior

operator on Grp called the trivial operator.

(c) Consider the assignment P defined by pX (M) =
∨
{K ≤M : K E X}, for every M ≤ X and

every X ∈Grp. We want to show that P is an interior operator. Let X ∈Grp and let M ≤ X

be arbitrary.

(i) By definition of P, pX (M) =
∨
{K ≤M : K E X} ≤M.

(ii) Let N ≤ X be such that M ≤ N. Then pX (M) ≤ M and pX (N) ≤ N. Then pX (M) ≤ N.

Since pX (M) is normal in X (cf. Proposition 2.10), then pX (M) ∈ {K ≤ N : K E X }. Then

pX (M)≤
∨
{K ≤ N : K E X }= pX (N)≤ N.

(iii) Let Y ∈Grp. Let N ≤Y be arbitrary and let f : X→Y be a homomorphism. Since iY (N)E

Y , then f−1(iY (N))EX (cf. Proposition 2.11). Since f−1(iY (N))EX and f−1(iY (N))≤ f−1(N),

then f−1(iY (N)) ∈ {K ≤ f−1(N) : KEX }. It follows that f−1(iY (N))≤
∨
{K ≤ f−1(N) : K E X}

= iX( f−1(N)). Hence, we conclude that f−1(iY (N))≤ iX( f−1(N)).

This operator will be called the normal interior operator.

(d) Consider the assignment IAb defined by iAb(M) =
∨
{K ≤M : K E X and X/K ∈ Ab}, for

every M ≤ X and every X ∈ Grp. We want to show that IAb is an interior operator. Let X ∈ Grp

and let M ≤ X be arbitrary.

(i) By definition of IAb, iAb(M) =
∨
{K ≤M : K E X and X/K ∈ Ab} ≤M.

(ii) Let N ≤ X be such that M ≤ N. We observe that K ≤M that occurs in the construction of

iAb(M) satisfies K ≤M, K is normal in X and X/K ∈ Ab. Due to the fact that K ≤M ≤ N, K also

occurs in the construction of iAb(N). Consequently, we have that iAb(M)≤ iAb(N).

(iii) Let Y ∈Grp and N ≤ Y be arbitrary. Let f : X → Y be a homomorphism. Since iY (N)EY

as a supremum of normal subgroups (cf. Proposition 2.10), then by Proposition 2.11 it follows

that f−1(iY (N))EX . Let K ∈ {K ≤ iY (N) : KEY and Y/K is abelian}. Since KEY , then by

Proposition 2.11 it follows that f−1(K)E X . Let ϕ : X/ f−1(K)→ Y/K be a map defined by
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ϕ(x f−1(K)) = f (x)K. Since Y/K is abelian and ϕ is a monomorphism (cf. Lemma 2.12), then

X/ f−1(K) is isomorfic to a subgroup of Y/K. Hence, X/ f−1(K) is abelian. Let H = f−1(K)

and P = f−1(iY (N)). Then H ≤ P. Let ψ : X/H → X/P defined by ψ(xH) = xP. Since ψ is an

epimorphism (cf. Lemma 2.13) and X/ f−1(K) is abelian, then X/ f−1(iY (N)) is abelian. Since

f−1(iY (N))EX , f−1(iY (N)) ≤ f−1(N), and X/ f−1(iY (N)) is abelian, then f−1(iY (N)) ∈ {K ≤

f−1(N) : KEX and X/K is abelian}. Consequently, f−1(iY (N)) ≤
∨
{K ≤ f−1(N) : K E X and

X/K is an abelian group}= iX( f−1(N)). Hence, we conclude that f−1(iY (N))≤ iX( f−1(N)).

(e) Since in part (d) the crucial properties of Ab that are used are that subgroups and quotients

of abelian groups are also abelian, the interior operator construction in part (d) can be generalized

to any subclass C of groups that is closed under subgroups and quotients. Precisely, for every

M ≤ X ∈ Grp, the assignment iC (M) =
∨
{K ≤ M : KEX and X/K ∈ C } defines an interior

operator on Grp. Examples of subclasses of groups closed under subgroups and quotients are for

instance, torsion groups, finite groups, and Dedekind groups.

The following result provides a way to construct an interior operator by means of a subclass of

subgroups satisfying certain conditions.

Proposition 3.6. Let H be a class of subgroups closed under suprema and inverse images under

homomorphisms. Let M ≤ X ∈ Grp. Then the expression iH (M) =
∨
{F ≤ M : F ∈ H } =

〈
⋃
{F ≤M : F ∈H }〉 is an interior operator. Moreover, IH is idempotent.

Proof:

(i) Since iH (M) is defined by the supremum of some subgroups of M, then iH (M)≤M.

(ii) Let N ≤ X be such that M ≤ N. Then iH (M)≤M ≤ N. Since H is a class of subgroups

closed under suprema, then iH (M)=
∨
{F ≤M : F ∈H }∈H . Since iH (M)∈H and iH (M)≤

N, then iH (M)≤
∨
{F ≤ N : F ∈H }= iH (N).

(iii) Let f : X →Y be a homomorphism and N ≤Y . Since H is closed under suprema,
∨
{F ≤

N : F ∈H } ∈H . Since H is closed under inverse images via homomorphism, f−1(
∨
{F ≤ N :
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F ∈H }) ∈H . Then f−1(
∨
{F ≤ N : F ∈H }) ∈ {F ≤ f−1(N)|F ∈H }. Then f−1(

∨
{F ≤

N : F ∈H }) ≤
∨
{F ≤ f−1(N)|F ∈H }. Hence we conclude that f−1(iH (N)) = f−1(

∨
{F ≤

N|F ∈H })≤
∨
{F ≤ f−1(N)|F ∈H }= iH ( f−1(N)).

To show that IH is idempotent it suffices to show that for all X ∈ Grp and M ≤ X , iH (M)≤

iH (iH (M)). Let X ∈ Grp and M ≤ X be arbitrary. Since iH (M) =
∨
{N ∈H : N ≤ M}, then

iH (iH (M)) =
∨
{N ∈H : N ≤ iH (M)}. Since H is closed under suprema, then iH (M) ∈H .

Since iH (M) ∈H and iH (M) ≤ iH (M), then iH (M) ∈ {N ∈H : N ≤ iH (M)}. Hence we

conclude that iH (M)≤
∨
{N ∈H : N ≤ iH (M)}= iH (iH (M)).

Proposition 3.7. Let I be an interior operator, let X ∈Grp, and let H = {F ≤ X : i(F) = F}.

(a) iH (M)≤ i(M), for every M ≤ X ∈Grp.

(b) If I is idempotent, then I = IH .

Proof : Since H is closed under inverse images and suprema (cf. Proposition 3.4(b)), then by

Proposition 3.6 we have that IH defines an interior operator.

(a) We have that iH (M) =
∨
{F ≤ X : F ≤ M and i(F) = F} ≤

∨
{F ≤ X : i(F) ≤ i(M) and

i(F) = F}= i(M).

(b) Suppose that I is idempotent. By definition of idempotent interior operator, we have that

i(M) = i(i(M)), ∀M ≤ X . Then i(M) ∈ {F ≤M : i(F) = F}, ∀M ≤ X . Thus i(M) ≤
∨
{F ≤M :

F ∈H }= iH (M), ∀M ≤ X . Hence we have that I = IH .

We denote the collection of all the interior operators on Grp by IN(Grp) ordered as follows:

for I,J ∈ IN(Grp), I v J if iX(M)≤ jX(M) for all M ≤ X ∈Grp.

Proposition 3.8. Let (Ik)k∈K ⊆ IN(Grp).

(a) For every subgroup M of X ∈ Grp, define ∧KIk as follows: i∧Ik(M) = ∩k∈Kik(M). Then

∧KIk belongs to IN(Grp) and is the infimum of the family (Ik)k∈K .

(b) There exists an interior operator ∨KIk in Grp that is the supremum of the family (Ik)k∈K .

Moreover, for every M ≤ X ,
∨

ik(M)≤ i∨Ik(M).
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Proof:

(a)Let M ≤ X . Since ik(M)≤M for each k ∈ K, then we also have that

i∧Ik(M) = ∩k∈Kik(M)≤M.

Let M,N ≤ X such that M≤N, then ik(M)≤ ik(N) for every k ∈K. Thus i∧Ik(M) = ∩k∈Kik(M)

≤ ik(M)≤ ik(N) for every k ∈ K and so i∧Ik(M) = ∩k∈Kik(M)≤ ∩k∈Kik(N) = i∧Ik(N).

Let f : X → Y be a group homomorphism and let N be a subgroup of Y . Then f−1(i∧Ik(N)) =

f−1(∩k∈Kik(N)) = ∩k∈K f−1(ik(N)) ≤∩k∈Kik( f−1(N)) = i∧Ik( f−1(N)). Notice that here we have

used the fact that each Ik satisfies condition (c) of Definition 3.1 and that inverse images and

intersections commute. Thus all the conditions of Definition 3.1 are satisfied and so ∧KIk belongs

to IN(Grp)

Notice that i∧Ik(M) = ∩k∈Kik(M) ≤ ik(M) for every k ∈ K. Hence ∧KIk v Ik for every k ∈ K.

Moreover, if I ∈ IN(Grp) satisfies that i(M) ≤ ik(M) for every k ∈ K, then i(M) ≤ ∩k∈Kik(N) =

i∧Ik(M). Hence I v ∧KIk. We conclude that ∧KIk is the infimum of the family (Ik)k∈K .

(b) Let U ⊆ IN(Grp) be the set of every upper bound of (Ik)k∈K . Then by part (a) there

exists the infimum, I∧U , of U . Then I∧U is an upper bound of (Ik)k∈K , since if Ik ≤ I for each

I ∈ U , then Ik ≤ I∧U . Moreover, for every upper bound, I ∈ U , of (Ik)k∈K , we have that ∀M ≤

X , i∧U (M)≤ i(M) Hence we conclude that I∧U = I∨KIk .

Notice that by definition of ∨KIk for every M ≤ X and k ∈ K, ik(M) ≤ i∨Ik(M). Then by

Definition 2.5, for every M ≤ X ,
∨

ik(M)≤ i∨Ik(M).

Remark 3.9. It is important to observe that even though in the above proposition the existence

of ∨KIk is proved, we do not have a practical description of it. However, if inverse images and

suprema would commute in Grp, then an expression for ∨KIk similar to the one of ∧KIk could

be found.

Lemma 3.10. Let (Ik)k∈K ⊆ IN(Grp). For every subgroup M of X we have:

(a) M is ∧KIk-open if and only if M is Ik-open for every k ∈ K;

(b) M is ∨KIk-isolated implies that M is Ik-isolated for every k ∈ K.
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Proof:

(a) If each subgroup M of X is Ik-open for each k ∈ K, then ik(M) = M for every k ∈ K and

consequently, i∧Ik(M) = ∩k∈Kik(M) = ∩k∈KM = M. Hence, M is ∧KIk-open. Now, let M be

∧KIk-open. Then, since for every k ∈ K we have that i∧Ik(M) ≤ ik(M) ≤ M, we conclude that

ik(M) = M for every k ∈ K. Hence, M is Ik-open for every k ∈ K.

(b) Let M≤ X be ∨KIk-isolated. Then i∨Ik(M) = {eX}. Since {eX}≤ ik(M)≤ i∨Ik(M) for every

k ∈ K, then ik(M) = {eX} for every k ∈ K. Hence, M is Ik-isolated for every k ∈ K.

Definition 3.11. Given an interior operator I, we say that

(a) X ∈Grp is I-discrete if every subgroup M of X is I-open.

(b) X ∈Grp is I-indiscrete if every proper subgroup M of X is I-isolated.

Proposition 3.12. Let I be an interior operator. Let X be the subclass of Grp that consists of all

I-discrete groups and let Y be the subclass of Grp that consists of all I-indiscrete groups. Then

we have that:

(a) X is closed under subgroups.

(b) Y is closed under quotients.

Proof:

(a) Let G ∈X , that is H is I-discrete, and let H ≤ G. Then iG(M) = M for every M ≤ G.

Let Q ≤ H arbitrary. From Proposition 3.3, iG(Q) ≤ iH (Q) ≤ Q and so iG(Q) = Q implies that

iH (Q) = Q. Then H ∈X , that is H is I-discrete. Hence, we conclude that X is closed

under subgroups.

(b) Let G ∈ Y , that is G is I-indiscrete, and let q: G→ Q be a quotient homomorphism. If

M � Q, then the continuity condition of interior operator implies that q−1(iQ(M))≤ iG(q−1(M)).

Since G is I-indiscrete and q−1(M) 6= G, then iG(q−1(M)) = {eG}. Consequently, q−1(iQ(M)) =

{eG}. This implies that iQ(M) = {eQ}, that is Q ∈ Y . Hence, we conclude that Y is closed

under quotients.
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Examples 3.13.

(a) For the interior operator D every group is D-discrete by the definition of the discrete opera-

tor. We also have that the groups that do not have nontrivial proper subgroups are D-indiscrete, for

example, the trivial group and the groups of prime order.

(b) For the interior operator T every group is T -indiscrete by the definition of the indiscrete

operator and the trivial group is the only one that is T -discrete.

(c) For the normal interior operator P we have that X is P-discrete⇔ ∀M ≤ X , i(M) = M⇔

∀M ≤ X , ME X ⇔ X is a Dedekind group. We also have that X is P-indiscrete ⇔ ∀M � X ,

i(M) = {eX}⇔ ∀M � X , @K ≤M such that K 6= {eX} and KEX ⇔ X is a simple group.

(d) Consider the interior operator IAb defined for every M ≤ X ∈Grp by iAb(M) =
∨
{K ≤M :

KEX and X/K ∈Ab}. Then X ∈Grp is IAb-discrete⇔∀M≤ X , iAb(M) = M⇔∀M≤ X , MEX

and X/M ∈ Ab. Notice that the class of IAb-discrete groups is contained in the class of Dedekind

groups and contains all abelian groups. We also have that X ∈ Grp is IAb-indiscrete⇔ ∀M � X ,

iC (M) = {eX} ⇔ ∀M � X , @K ≤ M such that K 6= {eX}, KEX and X/K ∈ Ab, in other words,

X does not have any non-trivial proper normal subgroup K such that X/K is abelian. Notice that

groups of prime order and simple groups are IAb-indiscrete.

(e) Consider the interior operator IC defined by iC (M) =
∨
{K ≤M : KEX and X/K ∈C }, for

every M ≤ X ∈Grp, where C is a subclass of groups that is closed under subgroups and quotients.

Then X is IC -discrete⇔ ∀M ≤ X , iC (M) = M⇔ ∀M ≤ X , MEX and X/M ∈ C . Notice that if

C is the class of finite groups, then the class of IC -discrete contains the class of Dedekind finite

groups. We also have that Z is an IC -discrete group if C is the class of finite groups. If C is

the class of Dedekind groups, then the class of IC -discrete is the class of Dedekind groups (cf.

Proposition 3.28). If C is the class of torsion groups, then the class of IC -discrete contains the

class of Dedekind torsion groups.

A homomorphism f : X → Y is constant if and only if f (x) = eY , for all x ∈ X .
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Definition 3.14. Given an interior operator I, we say that

(a) X ∈Grp is I-connected if every homomorphism from X into any I-discrete group Y

is constant.

(b) X ∈Grp is I-disconnected if every homomorphism from any I-indiscrete group Y into X

is constant.

Examples 3.15.

(a) For the operator D the groups that do not have any subgroup of prime order are

D-disconnected and the trivial group is the only one that is D-connected.

(b) For the operator T every group is T -connected and the trivial group is the only one that

is T -disconnected.

(c) For the normal operator P we have:

X is P-connected⇔∀ f : X→Y , where f is a homomorphism and Y is an P-discrete group, f is

a constant function⇔∀ homomorphism f : X →Y , where Y is Dedekind, we have that f (x) = eY ,

∀x ∈ X .

Any simple group that is not of prime order is P-connected.

Let X be a simple group that is not of prime order. Let Y be a Dedekind group, and let f : X→Y

be a group homomorphism. Consider f−1({eY })≤ X . Then, by Proposition 2.11, since {eY }EY ,

we have that f−1({eY })EX . Since X has only X and {eX} as normal subgroups, then f−1({eY }) =

X or f−1({eY })= {eX}. Suppose that f−1({eY })= {eX}. Then f is a monomorphism. This implies

that X is isomorphic to a subgroup of Y . Since Y is a Dedekind group and X is isomorphic to a

subgroup of Y , by Proposition 3.28, we have that X is a Dedekind subgroup. Since X is Dedekind

and simple, then X has no proper subgroup. Then X is of prime order (c.f. [DF]), which is a

contradiction. Then f−1({eY }) = X , that is, f is a constant function. Hence, we conclude that X

is P-connected.
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X is P-disconnected ⇔ ∀ f : Y → X , where f is a homomorphism and Y is an P-indiscrete

group, f is a constant function ⇔ ∀ homomorphism f : Y → X , where Y is a simple group, we

have that f (y) = eX , ∀y ∈ Y .

Any group that is not simple and that does not have any non-trivial simple subgroup

is P-disconnected.

Let X be a group that is not simple and that does not have any non-trivial simple subgroup. Let

Y be a simple group, and let f : Y → X be a group homomorphism. Since simple groups are closed

under quotients (c.f. [DF]), then f (Y ) is a simple subgroup of X . By assumption on X , f (Y ) 6= X

and so f (Y ) = {eX}, that is, f is a constant function.

Next we provide some properties of I-connected and I-disconnected groups.

Proposition 3.16. Let (Mi)i∈I be a family of subgroups of X ∈ Grp. If each Mi is I-connected,

then so is
∨

Mi = 〈∪i∈IMi〉.

Proof: Let f : 〈∪i∈IMi〉 → Y be a homomorphims with Y I-discrete. Since each Mi is I-connected,

the restriction of f to each Mi is constant, i.e. f (x) = eY ,∀x ∈ Mi,∀i ∈ I. Then f (x) = eY , ∀x ∈

∪i∈IMi. We want to prove that f (x) = eY , ∀x ∈ 〈∪i∈IMi〉. Y is I-discrete implies that iY (N) =

N, ∀N ≤ Y . Let a ∈ 〈∪i∈IMi〉 − ∪i∈IMi. We want to prove that f (a) = eY . Notice that a =

x1x2x3...xn, where x j ∈ ∪i∈IMi for j ∈ {1,2,3, ...,n}. Then f (a) = f (x1x2x3...xn) = f (x1) f (x2)

f (x3)... f (xn) = eY eY eY ...eY = eY because f is a homomorphism from 〈∪i∈IMi〉 to Y . Then f (a) =

eY , ∀a ∈ 〈∪i∈IMi〉−∪i∈IMi. Consequently, we have that f (x) = eY , ∀x ∈ 〈∪i∈IMi〉, that is f is

constant. Hence, we conclude that
∨

Mi = 〈∪i∈IMi〉 is I-connected.

Proposition 3.17. Let X , Y ∈Grp and let f : X →Y be an epimorphism. If X is I-connected, then

Y is I-connected.

Proof: Let X , Y ∈ Grp such that X is I-connected and let Z ∈ Grp be I-discrete. Since X is

I-connected, g(x) = eZ , ∀x ∈ X for every homomorphism g: X → Z. Let f : X → Y be an epimor-
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phism and let h: Y → Z be an arbitrary homomorphism. Then h◦ f is constant, i.e. h( f (x)) = eZ ,

∀x∈ X . Since f is surjective, ∀y∈Y , ∃x∈ X such that f (x) = y. Then h(y) = h( f (x)) = eZ , ∀y∈Y .

Then h is constant. Hence, we conclude that Y is I-connected.

Proposition 3.18. Let M be a subgroup of X ∈Grp. If X is I-disconnected, then so is M.

Proof: Let m: M → X denote the inclusion homomorphism of M into X . Let f : Y → M be a

homomorphism with Y I-indiscrete. The fact that m◦ f is constant (since X is I-disconnected) and

that m is injective implies that f is constant. Hence, we conclude that M is I-disconnected.

Proposition 3.19. The product of a family of I-disconnected groups is I-disconnected.

Proof: Let (Xi)i∈I be a family of I-disconnected groups. Let f : Y → Πi∈IXi be a homomorphism

with Y I-indiscrete and let (πi)i∈I denote the usual projections. Since the Xi’s are I-disconnected

groups, then πi ◦ f is constant for every i ∈ I, that is πi( f (y)) = {eXi} for all y ∈ Y and i ∈ I. Then

f (y) = (eXi)i∈I , ∀y ∈ Y , that is f is constant. Hence, we conclude that Πi∈IXi is I-disconnected.

Let S(Grp) denote the conglomerate of all subclasses of objects of Grp, ordered by inclusion.

S(Grp)op will denote the same conglomerate with the order reversed.

Proposition 3.20. The function D : IN(Grp) → S(Grp) defined by D(I) = {X ∈ Grp: X is

I-discrete}= {X ∈Grp : every subgroup of X is I-open} preserves infima.

Proof: Let (Ik)k∈K ⊆ IN(Grp). We wish to show that D(∧KIk) = ∩k∈KD(Ik). Let M ⊆ X ∈ Grp.

From Lemma 3.10(a) we have that M is
∧

k∈K Ik-open if and only if M is Ik-open for every k ∈ K.

Consequently, X ∈D(
∧

K Ik) if and only if X ∈D(Ik) for every k ∈K if and only if X ∈
⋂

k∈K D(Ik).

This proves our assertion.

Thus, as a direct consequence of Proposition 2.16 we obtain the following:

Theorem 3.21. Consider the function D: IN(Grp)→ S(Grp) defined for any interior operator I

by: D(I) = {X ∈Grp: X is I-discrete}. Then, there is a function T : S(Grp)→ IN(Grp) defined

for any subclass A of groups by T (A ) =
∧
{I ∈ IN(Grp) : D(I)⊇A } such that
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S(Grp)
T
�
D

IN(Grp) is a Galois connection.

The following result is a direct consequence of the fact that S(Grp)
T
�
D

IN(Grp) is a Galois

connection but for reference purposes we state it as a separate lemma.

Lemma 3.22. T (A ) satisfies that D(T (A ))⊇A .

Our next aim is to try to obtain a more practical description of the function T . We first observe

that for every homomorphism f : X → Y with Y I-discrete, one has that any subgroup N ≤ Y is

I-open and consequently, so is f−1(N). As a consequence we make the following. Let A be any

subclass of groups.

Conjecture 3.23. For any subgroup M ≤ X ∈Grp, iT (A )(M) =
∨
{ f−1(N)| f : X → Y is a homo-

morphism, Y ∈A , N ≤ Y , and f−1(N)≤M}.

In what follows we provide a reason for such a conjecture. Consider the assignment I(A )

defined by i(A )(M) =
∨
{ f−1(N)| f : X → Y is a homomorphism, Y ∈A , N ≤ Y , and f−1(N) ≤

M}, for any subgroup M ≤ X ∈Grp. Then we have the following result.

Proposition 3.24. For every X ∈Grp and M ≤ X , we have that iT (A )(M)≥ i(A )(M).

Proof: Since, from Lemma 3.22, every Y ∈ A is T (A )-discrete, it follows that any N ≤ Y is

T (A )-open and so, from Proposition 3.4a, f−1(N) is also T (A )-open. Since f−1(N) is

T (A )-open and f−1(N) ≤ M, by Definition 3.1c, it follows that f−1(N) = iT (A )( f−1(N)) ≤

iT (A )(M). Since this is true for every N ≤ Y ∈A , we have that i(A )(M) =
∨
{ f−1(N)| f : X → Y

is a homomorphism, Y ∈A , N ≤ Y , and f−1(N)≤M} ≤ iT (A )(M).

Remark 3.25. We would like to show that I(A ) is an interior operator. For this let M ≤ X ∈Grp.

Contractiveness of I(A ) is clear since, by construction, i(A )(M) is a supremum of subgroups of

M and so i(A )(M)≤M.
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Next we would like to show order-preservation of I(A ). For this let Q ≤ X such that M ≤ Q.

Then we have that i(A )(M)≤ Q. We want to show that i(A )(M)≤ i(A )(Q). Let K ∈ { f−1(N)|

f : X → Y is a homomorphism, Y ∈A , N ≤ Y , and f−1(N)≤M}. Then K = f−1(N), where

f : X→Y is a homomorphism, Y ∈A , N ≤Y , and K ≤M. Since K ≤M ≤Q, then K ∈ { f−1(N)|

f : X → Y is a homomorphism, Y ∈ A , N ≤ Y , and f−1(N) ≤ Q}. Consequently, { f−1(N)|

f : X → Y is a homomorphism, Y ∈ A , N ≤ Y , and f−1(N) ≤ M} ⊆ { f−1(N)| f : X → Y is a

homomorphism, Y ∈A , N ≤Y , and f−1(N)≤Q}. Hence we conclude that i(A )(M)=
∨
{ f−1(N)|

f : X → Y is a homomorphism, Y ∈ A , N ≤ Y , and f−1(N) ≤M} ≤
∨
{ f−1(N)| f : X → Y is a

homomorphism, Y ∈A , N ≤ Y , and f−1(N)≤ Q}= i(A )(Q).

Now, let g: Z→ X be a continuous function. If we could show that

g−1(i(A )(M)) = g−1(
∨
{ f−1 (N)| f : X → Y is a homomorphism, Y ∈A , N ≤ Y , and f−1(N) ≤

M}) =
∨
({g−1( f−1(N))| f : X → Y is a homomorphism, Y ∈ A , N ≤ Y , and f−1(N) ≤ M})

=
∨
{( f ◦g)−1(N)| f : X→Y is a homomorphism, Y ∈A , N ≤Y , and f−1(N)≤M}, then it could

be shown that g−1(i(A )(M)) ≤
∨
{h−1(N)| h: Z → Y is a homomorphism, Y ∈ A , N ≤ Y , and

h−1(N)≤ g−1(M)}= i(A )(g−1(M)).

Unfortunately, this could not be proved because it is not a fact that inverse images and suprema

do necessarily commute in Grp and we could not find a way to go around this problem.

Even though proving that I(A ) is an interior operator for every A ∈ S(Grp) could not be

accomplished, for some specific examples of the subclass A of groups, I(A ) yields an interior

operator, as it will be shown later. Consequently, we give the following.

Proposition 3.26. If the assignment I(A ) defined for M ≤ X ∈ Grp by i(A )(M) =
∨
{ f−1(N)|

f : X → Y is a homomorphism, Y ∈ A , and f−1(N) ≤ M} defines an interior operator, then

I(A ) = IT (A ).

Proof: In the previous proposition it was proved that I(A ) v IT (A ). Now let M ≤ X ∈ A . The

existence of the identity function of X , idX implies that i(A )(M) = M that is X is I(A )-discrete.
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Hence I(A ) satisfies that D(I(A ))⊇A . By definition of IT (A ) we conclude that IT (A ) v I(A ), that

is IT (A ) = I(A ).

Next we show that if A = Ab, then I(Ab) defines an interior operator.

Proposition 3.27. For A = Ab, the assignment defined for M ≤ X ∈Grp by

i(Ab)(M) =
∨
{ f−1(N)| f : X → Y is a homomorphism, Y ∈ Ab, N ≤ Y , and f−1(N)≤M}

defines an interior operator.

Proof: We will prove our statement by showing that i(Ab)(M) = iAb(M) =
∨
{K ≤M: KEX and

X/K ∈ Ab} and this last expression defines an interior operator as shown in Examples 3.5(d).

First we observe that every subgroup K ≤M such that KEX and X/K ∈Ab satisfies K = q−1(0),

where q: X→ X/K is the quotient homomorphism and 0 is the identity of X/K (or the equivalence

class of the subgroup K). Hence any subgroup K that occurs in the construction of iAb(M) can

be seen as a subgroup f−1(N) that occurs in the construction of i(Ab)(M). Consequently, we have

that iAb(M)≤ i(Ab)(M). Now, take a subgroup f−1(N) that occurs in the construction of i(Ab)(M).

Since Y ∈ Ab, then N EY (cf. [DF]) and so, by Proposition 2.11, we have that f−1(N)E X .

From Lemma 2.12, the function ϕ: X/ f−1(N)→ Y/N is a monomorphism. Since Ab is closed

under subgroups and quotients, X/ f−1(N) ∈ Ab as a subgroup of Y/N. Since f−1(N) satisfies

f−1(N)≤M, f−1(N)EX , and X/ f−1(N)∈Ab, then f−1(N) occurs in the construction of iAb(M).

This implies that i(Ab)(M)≤ iAb(M). Finally we conclude that i(Ab)(M) = iAb(M).

If we look carefully at the proof of Proposition 3.27, we conclude that the crucial properties

used were the facts that every subgroup of an abelian group is normal and that abelian groups are

closed under subgroups and quotients. This suggests that the above result can be obtained for any

class of groups that has the above mentioned properties. A further example is provided by the class

of Dedekind groups, as the following result shows.

Proposition 3.28. Dedekind groups are closed under subgroups and quotients.
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Proof: Let X be a Dedekind group. Then, by definition, MEX for all M ≤ X . Let N ≤ X and let

Q ≤ N. Then Q ≤ X . Since X is a Dedekind group, then QEX . Since Q ≤ N ≤ X and QEX ,

then QEN. Consequently, N is a Dedekind group. Hence we conclude that Dedekind groups are

closed under subgroups.

Let PEX . Consider the quotient homomorphism q: X → X/P. Let A≤ X/P. Then q−1(A)≤

X . Since X is a Dedekind group, then q−1(A)EX . Then, since q is a surjective function, A =

q(q−1(A))EX/P, that is X/P is a Dedekind group. Hence we conclude that Dedekind groups are

closed under quotients.

As a consequence of the above proposition and Example 3.5(e) we obtain the

following corollary.

Corollary 3.29. If B is the class of Dedekind groups, then ∀M ≤ X ∈Grp, i(B)(M) = iB(M) and

so IB defines an interior operator.

Remark 3.30. The results in Proposition 3.27 and Corollary 3.29 show that for A consisting of

either Ab or all Dedekind groups, I(A ) is an interior operator and from Proposition 3.26 for these

two cases i(A ) = iT (A ). This shows that at least for A = Ab or A = Dedekind groups, Conjecture

3.23 is correct.

Our next aim is to try to build a new Galois connection similar to the one in Theorem 3.21, but

by means of the notion of I-indiscrete groups.

Consider the function C: IN(Grp)→ S(Grp)op defined by C(I) = {X ∈ Grp such that X is

I-indiscrete}. We would like to show that there is a function G: S(Grp)op→ IN(Grp) such that

IN(Grp)
C
�
G

S(Grp)op is a Galois connection.

Conjecture 3.31. For every class B of groups the assignment IG(B) that to each subgroup M≤Y ∈

Grp associates iG(B)(M) =
∨
{N ≤M : ∀ homomorphism f : X→Y with X ∈B and f−1(M) 6= X

we have that N∩ f (X) = {eY }} is an interior operator.
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Remark 3.32. The reason for this conjecture will be made clear later. Unfortunately, we can only

prove two of the three conditions of Definition 3.1. We include their proofs here.

(a) Since iG(B)(M) is defined as the group generated by some subgroups of M, then clearly

iG(B)(M)≤M.

(b) Let H ≤ Y ∈ Grp be such that M ≤ H. Let N0 ≤M be such that N0 ∈ {N ≤M : ∀ homo-

morphism f : X→Y with X ∈B and f−1(M) 6= X we have that N∩ f (X) = {eY }}. Then N0 ≤H.

Let f0: X → Y be a homomorphism that satisfies that X ∈B and f−1
0 (H) 6= X . Then f−1

0 (M) 6= X

and so N0∩ f (X) = {eY }. Consequently, N0 ∈ {N ≤H : ∀ homomorphism f : X → Y with X ∈B

and f−1(H) 6= X we have that N∩ f (X) = {eY }}. Hence we conclude that iG(B)(M)≤ iG(B)(H).

(c) Let g: Y → Z be a homomorphism and let M ≤ Z. We have that iG(B)(g−1(M)) =
∨
{H ≤

g−1(M): ∀ homomorphism h: X → Y with X ∈B and h−1(g−1(M))) 6= X , H ∩h(X) = {eY}} ≥∨
{g−1(N): N ≤M and ∀ homomorphism h: X→Y with X ∈B and h−1(g−1(M)) 6= X , g−1(N)∩

h(X) = {eY }}. Again, as in previous occasions, the fact it has not been proved that inverse images

and suprema commute in Grp prevents to carry on with the proof.

Theorem 3.33. Under Conjecture 3.31 the diagram IN(Grp)
C
�
G

S(Grp)op is a Galois connection.

Proof: Let B ⊆ Grp. We need to show that C(G(B)) �B in S(Grp)op, that is C(G(B)) ⊇B

in S(Grp). Let Y ∈ B and let M be a proper subgroup of Y . Consider idY : Y → Y . Clearly

id−1
Y

(M) 6= Y . Now, the only N ≤ M that satisfies N ∩ f (Y ) = {eY } for f = idY is {eY }. Hence,

iG(B)(M) = {eY }, that is Y is G(B)-indiscrete. Consequently, B ⊆C(G(B)), that is C(G(B))�

B in S(Grp)op.

Let M ≤ Y , let X ∈C(I) and let f : X → Y be a homomorphism such that f−1(M) 6= X . Then

f−1(iY (M)) ≤ iX( f−1(M)) by Definition 3.1(c). Since f−1(M) � X , then iX( f−1(M)) = {eX}.

Then f−1(iY (M)) = {eX}. Now, let z ∈ iY (M)∩ f (X). Then ∃x ∈ X such that z = f (x) and x ∈

f−1(iY (M)) = {eX}. Then x= eX and so z= f (x) = f (eX ) = eY . Thus we have that iY (M)∩ f (X) =

{eY }. Hence we conclude that iY (M) is one of the subgroups N’s in the construction of G(C(I))

and so iY (M)≤ iG(C(I))(M), that is I v G(C(I)).
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To show that C: IN(Grp)→ S(Grp)op is order-preserving let I, J ∈ IN(Grp) such that I v J.

Let X ∈C(J). Then ∀K � X , jX(K) = {eX} and so iX(K)≤ jX(K) = {eX} for every K � X . Thus

iX(K) = {eX} for every K � X , that is X ∈C(I). We conclude that C(J)⊆C(I), that is C(I)�C(J).

To show that G: S(Grp)op → IN(Grp) is order-preserving let A , B ∈ S(Grp)op such that

A �B, that is A ⊇B and let M ≤ X ∈Grp. It is easily seen that if N occurs in the construction

of iG(A )(M), then it also occurs in the construction of iG(B)(M). Then iG(A )(M)≤ iG(B)(M), that

is G(A )v G(B).

Hence we proved that IN(Grp)
C
�
G

S(Grp)op is a Galois connection.

Let consider the functions S(Grp)
F∗
�
F∗

S(Grp)op defined for every A , B ⊆ Grp by F∗(B) =

{Y ∈ Grp : every homomorphism h : X → Y with X ∈B is constant} and F∗(A ) = {X ∈ Grp :

every homomorphism h : X → Y with Y ∈A is constant}. It is easy to verify that

S(Grp)
F∗
�
F∗

S(Grp)op forms a Galois connection and since it is a special case of a more general one

that appeared in [H], we omit its proof. We observe that in Topology a similar Galois connection

was used to define notions of connectedness and disconnectedness with respect to subclasses of

topological spaces (cf. [AW]) and in Algebra was used to define torsion theories (cf. [L]).

Under Conjectures 3.23 and 3.31 we can prove that the Galois connection S(Grp)
F∗
�
F∗

S(Grp)op

factors via the two Galois connections S(Grp)
G
�
C

IN(Grp)op and IN(Grp)op
D
�
T

S(Grp)op. This

is shown in the following.
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Theorem 3.34. Under Conjectures 3.23 and 3.31 we have the following commutative diagram of

Galois connections:

Figure 1: Commutative Diagram of Galois Connections

Proof: We start by showing that F∗ =C◦T . Let A ⊆Grp and let X ∈ F∗(A ). If X does not have

any proper subgroup M 6= {eX} then X trivially belongs to C(T (A )). Now, let M � X . Since every

homomorphism f : X → Y with Y ∈ A is constant, from Conjecture 3.23, the family { f−1(N)|

f : X → Y homomorphism, Y ∈ A , N ≤ Y and f−1(N) ≤ M} is empty and so its supremum

iT (A )(M) = {eX}. Hence, X ∈C(T (A )) and so F∗(A )⊆C(T (A )).

Conversely, let X ∈C(T (A )) and let f : X→Y be a homomorphism with Y ∈A . If X does not

have any proper subgroup M � X , then X = {eX} and so f is constant, that is X ∈ F∗(A ). Now,

let M � X . Since X ∈C(T (A )), iT (A )(M) = {eX}. This implies that the family U = { f−1(N)|

f : X → Y homomorphism, Y ∈A , N ≤ Y and f−1(N)≤M} is either empty or not.

Case 1: U = /0. For M = Ker f we have that iT (A )(Ker f ) = Ker f . This is a contradiction with

U = /0 unless Ker f = X , that is f is constant and so X ∈ F∗(A ).

Case 2: U is not empty. Since iT (A )(M) =
∨

U = {eX}, then for every N ≤ Y , Y ∈ A we

have that f−1(N) = {eX}. This implies that f−1({eY }) = {eX}, that is f is a monomorphism.

Consequently M = f−1( f (M)) and so iT (A )(M) = M, that is a contradiction with iT (A )(M) =

{eX}. Hence C(T (A ))⊆ F∗(A ). This together with the previous inclusion yields F∗ =C ◦T .

To prove that F∗ = 4◦G, it is enough to observe that since the composition of two Galois

connections is a Galois connection (cf. Proposition 2.17) and we already proved that F∗ =C ◦T ,

then from Proposition 2.18 we conclude that F∗ =4◦G. This completes the proof.
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4 Conclusions and Future Work

The main aim of this work was to apply to the category of groups the notion of interior operator

introduced in [V] with the purpose of trying to assess how this notion performs in this specific

environment compared to the one of closure operator. Particular emphasis was given to the notions

of connectedness and disconnectedness introduced in [CR]. Our main research project was to see

how much of the theory presented in [CR] could be exported to the group environment.

The notion of interior operator in groups was introduced and a few examples presented. The

existence of infima and suprema of interior operators was proved. Notions of indiscrete and dis-

crete groups of an interior operator were introduced, followed by the notions of connected and

disconnected groups with respect to an interior operator. Finally, three Galois connections were

presented, even though the existence of one of them was only guaranteed through an assumption.

Under two assumptions, a commutative diagram of Galois connections was constructed.

The conclusion we can draw from this work is the following. We have had a certain degree

of difficulty while trying to recreate in the group environment the work already done in topology

in [CR]. In particular, a specific expression for the supremum of a family of interior operators

could not be found (cf. Proposition 3.8 and Remark 3.9). A practical description of the interior

operator T (A ) in Theorem 3.21 could not be found and, as a consequence, Assumption 3.23 was

made. Furthermore, we were forced to make the further Assumption 3.31 that would guarantee

the existence of the Galois connection in Theorem 3.33. After these considerations we feel like

concluding that the notion of interior operator in groups does not seem to perform as well as the

same notion in topology and it does not perform as well as the notion of closure operator in groups

either (cf. [C1]).

We have been able to identify one of the main reasons for the lack of performance of interior

operators in algebra. Precisely, in topology inverse images and suprema commute since the supre-

mum of a family of subsets is just their union. Unfortunately, in algebra this does not seem to be

true due to the fact that the supremum of a family of subgroups is not just the union of them but

it is the subgroup generated by their union. This is a main inconvenience that prevented us to find
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a concrete description of the supremum of a family of interior operators and as a consequence,

forced us to make Assumptions 3.23 and 3.31. So, based on the above considerations, possible

future work on this subject would be to analyze in more details this apparent lack of commutativity

between inverse images and suprema. In other words one should either try to prove that they do

commute or find a counterexample that would show the opposite. The first scenario would allow

to transform the two assumptions made in this work into actual results. However, we are more

inclined to think that the second option is more likely to be true.
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