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ABSTRACT 

 

 

 This thesis presents design and planning methods for the development of microgrids 

in remote communities using renewable energy resources. The analysis is not only limited 

to the economic point of view, but also covers the social and regulatory impacts. Literature 

shows that the optimal sizing and location of distributed energy resources (DER) is critical 

for the correct operation of a microgrid. A multi-objective evolutionary optimization 

algorithm (MOEA) was developed for these purposes. In order to show the flexibility and 

applicability of the algorithm, a case study is presented. The development of microgrid 

brings a new paradigm in energy consumption of end-users, thus it is required to build a 

strong social agreement between the microgrids’ stakeholders. Consequences and possible 

scenarios for stakeholder engagement are discussed. This thesis has two main contributions, 

first, the incorporation of optimization models based in MOEA to solve microgrids’ 

planning and design problems. A second contribution is a link between the technical and 

the social aspects using a sustainability framework.  
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RESUMEN 

 

 Esta tesis presenta métodos de diseño y planificación para el desarrollo de micro-

redes en comunidades remotas usando recursos de energía renovable. El análisis no 

solamente se limita al punto de vista económico, sino que también cubre los impactos 

sociales y regulatorios. La literatura indica que la óptima localización y dimensionamiento 

de recursos distribuidos es crítica para la correcta operación de un micro-red. Un algoritmo 

evolutivo de optimización multi-objetivo (MOEA) fue desarrollado para estos propósitos. 

Con los fines de mostrar la flexibilidad y aplicación del algoritmo, un caso de estudio es 

presentado. El desarrollo de micro-redes trae un nuevo paradigma en el consumo de energía 

para usuarios finales, por lo tanto, para su correcto funcionamiento es necesario crear un 

fuerte acuerdo social entre estos. Consecuencias y posibles escenarios para la 

compenetración de estos actores son discutidos. Esta trabajo tiene dos contribuciones 

principales, primero, la incorporación de métodos de optimización basados en MOEA para 

resolver problemas de planificación y diseño de micro-redes. Una segunda contribución es 

la construcción de un vínculo entre aspectos técnicos y sociales bajo el concepto de 

sostenibilidad. 
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1 INTRODUCTION 
 

 

 

 

 

 

 

 

1.1 Overview 

According to the World Bank, millions of people around the world do not have 

access to electricity because of their distance from the central grid [1]. Also, there are many 

communities which have the electric energy service, but transportation costs are high and 

consumption is low, making the operation of these systems not viable for the utilities. This 

creates low incentives for new investments, which turns into poor service quality, reduced 

reliability and higher prices for the customers in those isolated areas. 

An affordable and adequate energy service would be a key enabler for the 

sustainable development of these communities. Therefore, it will be necessary to renovate 

existing electric delivery schemes. Considering the recent development of energy 

management systems and electric generation technologies, an attractive alternative 
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nowadays is the production of electricity under the smart-grid concept, which in this case 

would cover generation close to the consumers, the use of local resources, modern 

communications, control systems and network topologies such as microgrids [2] [3]. 

However, for the massive penetration of this combined set of solutions it will be 

indispensable to first develop tools and applications that aid system designers and investors 

to assess how much resources should be allocated and where to invest [4]. The analysis is 

complex, considering that every location represents a different situation because of 

geographical conditions, resource availability, environmental factors and social 

repercussions of the adopted solutions. 

This work focuses on the integration of renewable technologies to microgrids 

located on isolated areas. Nonetheless, for maximum penetration of renewable resources, 

which are mostly intermittent, it is vital to include distributed energy storage (DES) for 

balancing the power and energy requirements for the system. To address this issue, a 

multiobjective evolutionary algorithm (MOEA) is proposed. The algorithm is able to 

determine the optimum size and location of the DES resources on microgrids. The 

algorithm deals with objectives such as energy losses, installation costs of the storage units, 

and introduces customers with different service level requirements. The latter is based on a 

social and regulatory analysis which addresses the motivation of residential customers to 

participate in demand side management (DSM) strategies and how these strategies fit into 

the current regulation. 

This thesis is the first work on microgrids at UPRM, it has a broad scope, covering 

both technical and economical topics as well as their related social and regulatory 



3 
 

implications. This work is intended to become an enabler for future research in microgrids 

and smart-grid topics at UPRM and other institutions. 

1.2 Topic of the Thesis 

 The topic of the thesis is “Renewable-Driven Microgrids on Isolated Areas”. The 

research covers the problem of optimum sizing and sitting of DES resources on isolated 

microgrids and its related social and regulatory repercussions. The optimization problem is 

solved by using a multiobjective evolutionary algorithm (MOEA). 

1.3 Objectives and Contributions of the Thesis 

The main purpose of this thesis is to design an optimization algorithm for 

distributed energy storage (DES) resources on isolated microgrids, maximizing the 

integration of intermittent renewable resources onto these networks. Another purpose is to 

addresses the motivation of residential customers to participate in demand side 

management (DSM) strategies and how these strategies fit into current regulations. 

The specific objectives of this work are the following: 

1. Compare the differences between renewable-driven microgrids and classical 

distribution networks. 

2. Solve the optimum DES sizing and sitting problem on isolated microgrids, while 

maximizing renewable source integration. 

3. Demonstrate the trade-offs over the customers’ electric service of the proposed 

algorithm. 

4. Identify the sustainability dimensions on implicated communities. 

5. Study the related regulatory implications of the proposed algorithm. 
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6. Give recommendations regarding the performance and control of the proposed 

algorithm. 

7. Serve as a base for future research in microgrid and smart-grid topics at UPRM.  

1.4 Thesis Outline 

 The present work is organized as follows: An introduction as well as the thesis 

contributions and scope are given in Chapter 1.  In Chapter 2 an overview of microgrids 

and the characteristics behind this concept is given. Chapter 2 describes the optimization 

method to be used in this thesis (Multiobjective Evolutionary Algorithms). Chapters 3-4 are 

dedicated to show the general description of the DES optimum sizing/sitting problem, their 

general formulation, and the results and discussion of different case studies. Chapter 5 

presents the social and regulatory analysis attached to the methods proposed in the thesis. 

Finally, Chapter 6 presents general conclusions and future work. 
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2 MICROGRIDS 
 

 

 

 

 

 

 

 

 

 

 

2.1 Introduction 

 Traditionally, electric distribution networks have been used to deliver electricity to 

consumers. The development of new generation technologies, increased concern on 

environmental issues and the interest of moving the electrical network towards a more 

efficient ‘smart-grid’ have opened the possibility and created the incentive for transforming 

the distribution grids from passive to active networks, where the decision making and 

control is distributed among different stakeholders. As a result, an attractive alternative 

would be the creation of small networks ‘independent’ from the backbone grid, or 

microgrids. A microgrid is a combination of different types of loads and distributed energy 

resources (DER) which can autonomously meet the power, energy and quality requirements 

of the customers in its area. DERs could be utility or community-owned (Photovoltaic/wind 

farms, storage), or customer-owned (PV, wind turbines, CHP turbines, etc) [5]. Loads can 
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participate in local demand side energy management strategies interacting with 

grid/microgrid operators through smart-metering systems. Also, the microgrid can import 

or export power with a main grid or between other microgrids, if connections are available.  

Depending on DER penetration level, resource availability, load behavior, service 

quality constraints and the market structure of the microgrid, the design and planning 

process vary significantly compared to conventional power systems, making the problem 

very complex for traditional methods and tools [6] and urging the development of new tools 

for systems planners. In this section the structure and characteristics of microgrids will be 

studied. Also the problems in the design and planning of microgrids are formally proposed. 

2.2 The Potential of Microgrids for the Smart Grid Development 

 The Energy Independence and Security Act of 2007 (EISA) [7] defines the smart 

grid as “a modernization of the Nation’s electricity transmission and distribution system to 

maintain a reliable and secure electricity infrastructure that can meet future demand 

growth”. This law mandates federal and state agencies to implement programs that help the 

development of the ‘Smart Grid’.  

 EISA states that simply adding more generators and transmission lines would not 

solve the energy needs of USA, but the existing grid infrastructure could be made more 

efficient by the use of intelligent systems, demand response strategies and new legislation 

that provide incentives for the efficient production, transport, and consumption of 

electricity [8]. This was corroborated by the National Electric Manufacturers Association 

(NEMA) and the Congressional Research Service[9] [10].  
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 Microgrids are both part and beneficiaries of the smart-grid concept. Looking at the 

microgrids’ benefits cited further in this Section, it is evident that there are objectives 

shared between microgrids and the smart-grid concept:  reduce the costs of energy and the 

reliability, efficiency and security improvement. Also, there are benefits which are linked to 

the use of smart-grid technologies: the deployment of green technologies, different levels of 

quality and the use of demand response strategies. Figure 2.2.1 show multiple links 

between microgrids and the smart-grid concept. 

 

Figure 2.2.1: Conceptual Framework of Smart Grid Alternatives. Adapted from [11] . 
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2.3 Microgrids Value 

 According to another study made by the DOE [13], microgrid systems could be 

implemented in a wide range of facilities and installations, which include: 

• Urban development.  

• Critical facilities (hospitals, military installations, police, fire, EMT, water 

treatment, communications). 

• Services of emergency response and restoration for events such as hurricanes, 

terrorist attacks and earthquakes. 

• Supply of remote areas: geographical islands, rural areas, villages, and Native 

American reservations. 

 It is important to note the importance of remote area supply in the list of microgrid 

applications. Another recent research work found that if technical and regulatory barriers 

were removed, microgrids could potentially offer six complementary benefits [8]: 

1. Reduce the cost of energy and manage price volatility 

2. Improve customer and system reliability 

3. Increase the power systems’ security 

4. Promote the deployment and integration of green technologies 

5. Make more efficient the power delivery system 

6. Provide different levels and quality of service to customer  

 Apart from these benefits, microgrids could also bring remuneration to utilities in 

terms of efficiency, power quality, environment conservation and community development. 

Benefits for both customers and utilities are enumerated with more detail in Table 2.3.1. 
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Table 2.3.1: Benefits of Distributed Energy Resources. 

Benefits for the Customers: Benefits for Utilities: 

 

• Increased reliability 

• Increased power quality. 

• Reduced outages. 

• More efficient use of energy 

• Lower energy cost. 

• Incentive the use of renewable 

energy. 

• Reduction of greenhouse gases. 

 

• Loss reduction. 

• Increased system capacity. 

• Can provide reactive control. 

• Improves voltage profile. 

• Reduces investments on expansions. 

• Fault reduction. 

• Improves the customer-utility 

relation. 

 

 Recent studies [11] have shown that installation costs for communication and 

measurement equipment necessary for the microgrid operation at the customer side are 

largely inferior compared with the benefits that could bring microgrid operation. Equipment 

costs range between $200 per year while benefits could be ranging between $2000 per year 

or even more if energy and homeland security considerations are taken into account. 

2.4 Microgrid Structure 

 In a typical distribution network the consumers are fed through a primary feeder, 

which is supplied by means of a distribution substation from the transmission network [14]. 

Normally, these feeders are connected radially, with lateral derivations reaching consumers. 

In contrast, with microgrids the distribution feeders no longer maintain their radial 

characteristics. In turn, the system is transformed into a meshed network. In the next 

sections the general structure and elements of microgrids are described. 
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2.4.1 General Characteristics 

 In general, a microgrid comprises the medium-voltage (MV) and low-voltage (LV) 

portion of a power distribution system. In the cases where a main-grid connection is exists, 

the microgrid encloses the secondary side of the substation transformer (called point of 

common connection or PCC) to the rest of the MV and LV system. This will include loads, 

and consumer- or utility-owned distributed generators, which could be of different types 

and technologies. The microgrid also includes all the communication equipment necessary 

for the operation and real-time energy management of the system. Figure 2.4.1 illustrates 

the general structure of a microgrid. 

 

Figure 2.4.1: Typical Microgrid Structure 
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2.4.2 Distributed Energy Resources Types and Control Strategies 

 Distributed energy resources (DERs) are generation or storage units capable of 

supplying energy to the microgrid. In respect of their nature, DERs could be divided in 

distributed generators (DG), which are units that exclusively produce energy harnessed 

from a primary energy resource; distributed energy storage units (DES), which store energy 

at surplus times for later use; or hybrid units, which combine the characteristics of DG and 

DES. In terms of their interface with the grid they can be of two types; the ones which use a 

power electronics converter interface and the ones that use conventional rotating machines. 

• Power electronic converters:  

 These types of generators make use of switching power electronic converters for 

transforming harnessed/stored energy. The efficiencies of these devices range between 90% 

and 98% depending on technology used and operating conditions. Common applications 

are for renewable energy technologies (RETs) and battery storages, photovoltaic inverters, 

or anywhere a power conversion is needed. Figure 2.4.2 shows the general structure of a 

hybrid power electronics inverter connected to a microgrid. 

 

Figure 2.4.2: Power electronics interface for a hybrid system: PV inverter plus 
battery storage. 
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• Rotating machines:  

 These are the classical rotating machines used in traditional power systems. The 

general scheme consists in a prime mover that could be a combustion engine or turbine, 

coupled with a synchronous generator. The prime mover could be fossil fueled (gas or 

diesel), or could be renewable like mini-hydro. Also some wind technologies use rotating 

interfaces. Efficiency of these devices vary depending on the technology and combustible 

used. 

 Depending on the power and energy control strategy, DERs could be grid-forming, 

grid-supporting and grid-following DERs [15]. Each one of these units has a different role 

in the operation of the microgrid. Figure 2.4.3 illustrate these three types of DERs in a 

typical microgrid and Table 2.4.1 summarizes common DER types, technologies and 

interfaces on microgrids. 

• Grid forming DERs: these units are the backbone of the microgrids, Being 

responsible of maintain stable power system conditions, these units constantly 

control frequency and voltage by matching the systems’ generation and demand. 

These units could be conventional synchronous generators or Voltage Source 

Inverters (VSI) with battery storage. 

 

• Grid supporting DERs: controllable (dispatchable) units which are dependant of bus 

voltage and frequency. These units could be either storage (flywheels, batteries, heat 

storage) or generators whose main resource is dispatchable (fuel cells, micro 

turbine, etc). 

 



14 
 

• Grid following units: uncontrollable (grid-type) generators. These units are often 

designed to maximize their output by means of a Maximum Power Point Tracker 

(MPPT). They do not control voltage or frequency at their PCC, instead, they 

‘follow’ the voltage and frequency signal and act as current source. The main driver 

for this control strategy is the uncertainty of the primary energy source of these 

technologies. Some examples are Photovoltaic cells and small wind turbines. 

 

 

 

 

Figure 2.4.3: DERs with different control strategies. 
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Table 2.4.1: Common DER types, technologies and interfaces. 

Type Control Technology Interface 

 

Grid-Forming 

Control voltage 

and frequency 

balancing 

generation and 

demand 

Reciprocating Engines 

Gas Turbines 

Battery Storage 

Synchronous Generator 

Synchronous Generator 

Power Electronics 

Grid-Support 

Support grid-

forming DERs in 

steady state and 

transient events 

Fuel Cell 

Micro turbines 

Super Capacitor 

Storage 

Flywheel Storage 

Power Electronics 

“ 

“ 

“ 

Grid-Following 

Maximize the 

energy exports 

Grid-tied Solar PV 

Wind Turbine 

Power Electronics 

“ 

 Being microgrids autonomous systems, it is necessary to control grid forming and 

grid supporting units in order to balance the active and reactive power of generators and 

loads, while maximizing the output of non-dispatchable units. There are mainly two types 

of control methods for microgrids: The ones that require communication between 
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generators, -or a centralized control, and the ones that set the required active and reactive 

power autonomously.  

• Microgrids with Centralized Control: Generation control, dispatch, load shedding 

and management of ancilliary services are acheived through a centralized controller. 

Means of communication needs to be provided between sources either wired or 

wireless. This control scheme is more aligned with the ‘smart-grid’ concept. 

 
• Microgrids with Autonomous Control: Under this control scheme, the demand is 

shared between generators in proportion to their respective ‘droops’ of active and 

reactive power, just as in traditional power systems. 

 
 Recent research on microgrid control and smart-grids has shown that microgrids 

controlled via a central controller are capable of accommodating a wider range of load and 

generation output scenarios [8]. Also the study states that microgrids must integrate with 

the utility’s or ISO’s communications infrastructure. 

2.4.3 Loads and Demand Response 

 In a microgrid loads are no longer passive elements, instead, loads can participate in 

demand response and shedding strategies. In isolated areas where power balance has hard 

limits, load control strategies play a critical role, since they have the potential of 

significantly reducing installation costs on additional units serving loads in peak intervals. 

However, these strategies should ensure that critical loads in the microgrid receive energy 

when needed (see Figure 2.4.3). Additional strategies include customer service 

differentiation, power quality and reliability enhancement of specific loads [5]. Demand 

response is covered in more detail in Section 3.1 of this work. 
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2.4.4 Microgrid Architectures 

 Depending in the interaction level between a microgrid and the main grid, a 

microgrid could be classified as autonomous or grid-connected. In an autonomous 

microgrid a connection to the main-grid is nonexistent, requiring the microgrid to be self-

sustaing. In these types of microgrids the role of DES units is critical. In the other hand, 

grid-connected microgrids have the main grid as backup, but could also operate 

autonomously at certain times of the day, or when a scheduled maintenance is being 

performed at main-grid equipment. 

• Grid Connected Microgrids:  

 These microgrid architectures could be used in utility systems to prevent outage and 

to maximize the integration of renewable energy sources. They also have the benefits of 

reducing systems’ losses, expand the supply mix, manage congestion and cut the 

greenhouse gases emissions. Also, the grid-connected architecture is suitable for industrial 

or commercial facilities (university campus, industrial zones, shopping centers, buildings). 

In these cases the main drivers are power quality and reliability enhancement and energy 

independence. Other advantages include demand response management, and the possibility 

to operate grid-independent in response to energy prices from the main grid. Viewed from 

the main-grid perspective, grid-connected microgrids represent a constant or controllable 

load with a controllable demand profile. 

• Autonomous Microgrids: 

  In this architecture the microgrid operate in isolated mode, having to self-suffice 

energy demand and power quality and reliability needs of local customers. This mode of 
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operation is envisioned for systems located in geographical remote areas where access to 

backbone grid is difficult or too expensive. The design and planning process of an 

autonomous microgrid is more complex than the grid-connected counterpart because the 

sustainability dimensions of isolated operation. Sustainability is not limited to the energy 

equilibrium of the system, it extends to social and environmental balance of the 

communities where the microgrid is installed. It is important to note, this type of microgrid 

is more likely to be constructed in rural and remote areas. More details on social impact of 

autonomous microgrids is given in Section 3.2. 

 The main drivers of autonomous operation are the availability of local energy 

resources, energy independence and reliability. Depending on the conditions of the 

location, the autonomous microgrids could use different type of DGs such as small-hydro, 

PV panels, wind turbines and even diesel or low-emission gas turbines could also be used.  

 Table 2.4.2 presents the most salient differences between grid-connected and 

autonomous microgrids. 

Table 2.4.2: Differences between grid-connected and autonomous microgrids. 

Characteristic Grid Connected Autonomous 

Mode of Operation Isolated/Grid connected Isolated 

Main Drivers Power quality/reliability 

enhancement, efficiency, costs 

Sustainability of remote and 

rural areas, efficiency 

Use of demand response 

strategies 

Desirable Critical 

Use of Energy Storage  For responding to price signals For self-reliance 
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3 SUSTAINABILITY IN MICROGRIDS 
 

 

 

 

 

 

 

 

 

 Many authors have proposed that renewable energy technologies, distributed 

generation (DG), and novel network topologies like microgrids could play an important 

role in the development of an integrated sustainability model, especially in developing 

countries and emerging economies [16] [17].  

Sustainability is a multi-dimensional concept, it is difficult to define it in terms of 

money, tons, people, or other indexes. In 1987 the Brundtland Report defined sustainable 

development as “the development that meets the needs of the present without compromising 

the ability of future generation to meet their own needs” [18]. This term considers the 

social, economic and environmental aspects of development. In this aim, one of the 

requirements for preserving the world for future generations is the creation of a new 
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sustainable energy model. If particularities of electrical systems are combined with the 

characteristics of sustainable development, a sustainable electrical system could be roughly 

defined as one that meets the following minimum conditions (Figure 2.4.1):  

1. Technically sustainable: construction is possible within the limits of current 

technology; operation of critical elements of the system is not compromised. 

2. Economically sustainable: the project is economically feasible considering 

environmental and social aspects. 

3. Socially sustainable: the community accepts the system and is willing to cooperate 

with its development; the project promotes the social development of its users. 

4. Environmentally sustainable: the project brings benefits to the environment in 

comparison with traditional power systems. 

 

 

Figure 2.4.1: Components of a Sustainable Energy Model. 

Energy

Sustainability

Economics

Society

Environment

Technical

Aspects
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 This section presents the different dimensions of microgrids sustainability, and the 

opportunities that the microgrid concept holds for both developed and developing countries. 

First, energy management strategies aimed at cost-diminution are described, and then social 

implications and environmental aspects are studied. 

3.1 Energy Sustainability 

One of the biggest issues that prevent massive penetration of renewable energy 

technologies is the variability of the primary sources of energy, mainly sun irradiance and 

wind [19]. Figure 3.1.1 depicts the numerous variations that solar irradiance could make in 

a period of just two hours, giving a general insight of the problem.  

Several strategies have been studied for minimizing the uncertainty effects, each 

one having different trade-offs between costs, environmental impact and easiness of 

implementation. Three popular ways for overcoming intermittence and achieving energy 

balance in a microgrid are using fossil fuels/grid support, distributed energy storage (DES) 

units, or demand response strategies. 

 

Figure 3.1.1: Typical sun irradiance profile in 2 hours. Adapted from [20]. 

 

 

100%

Average Value

2 hours 
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1. Using fossil fuels or main grid support:  

 This approach is similar to the distribution system with distributed generation 

scheme. In these systems, fossil fuels from the main grid and renewable distributed 

generators are used to supply local energy demand.  

 For microgrids, several fuels could be used, the most common for this type of 

applications are diesel or natural gas.  

• Diesel, because of the ample availability of diesel and the technological maturity of 

small-scale diesel generators.  

• Natural Gas, because of the existent gas infrastructure in many countries and the 

high levels of efficiency and low emissions achieved by micro-turbines. The 

problems of this mode of operation are well documented in the literature [2] [21], 

being the most important the energy inefficiency and emissions of some fuel cycles, 

and the dependence on foreign resources. 

 

2. Adding distributed energy storage (DES) units:  

 This approach consists of installing Grid-Forming and Grid-Support long-term 

storage units along the microgrid like the ones depicted in Section 2.4.2. These units should 

be strategically located and sized in order to meet the desired levels of energy demand and 

for achieving maximum efficiency of the system. Table 3.1.1 shows recent types of DES 

units and their related efficiency, power/energy rating and most common use.  
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Table 3.1.1: Recent distributed storage resources. Adapted from [22]. 

Type Size Efficiency Use 

Fuel Cells 200kW – 5MW 40-65% 
Grid forming, power 

quality control 

Battery Storage 500 – 5000 kWh 70-75% 

Grid forming, power 

quality and voltage 

control. 

Flywheels 2 – 20 kWh 70-80% 

Transient/short-term 

voltage and power 

quality regulation 

 

 DES units tend to be very expensive, thus increasing dramatically the equipment 

installation costs. This makes the use of these resources very constrained by economical 

reasons. Also, the environmental impact of the manufacturing and disposal is significant, 

especially lead-acid batteries. 

3. Demand Response Strategies (DRS):  

 Demand response is a new paradigm in the planning and operation of power 

systems. Present energy consumption patterns are leading to the unsustainability of the 

current energy model. The traditional power systems planning approach consists on 

forecasting energy demand and adjusting supply-side equipment based on these projections. 

This model completely ignores the possibilities that energy conservation has, i.e., control of 

energy demand in the consumer side, in terms of quantity and quality. 
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 In the DRS philosophy, instead of matching the limited energy resources to the 

consumers’ needs, the consumers’ demand is adapted in the higher possible degree to the 

resources available, without compromising any critical activity performed by this particular 

user (e.g., hospitals). These energy resources could be controlled by limiting their quality, 

i.e. offering different power quality levels adapted to the consumers’ needs, or by limiting 

the amount of energy flowing to the customer at certain times of the day, i.e. offering 

different service levels and rates to different customers.  

 Service differentiation could have various levels, but the most significant is between 

sensitive (critical) and non-sensitive customers. A sensitive customer is defined as one 

whose energy service should not be interrupted. This is the case of healthcare facilities, 

communal service buildings, communication infrastructure, and others. Non-sensitive 

customers could be seen as ‘controllable’ loads, having an interruptible nature in their total 

or partial demand at certain times of the day/week/month/etc. The length of the interruption 

intervals as well as the energy interrupted could be defined in service contracts with local 

microgrid operators. Table 3.1.2 summarizes the strategies of customer service 

differentiation DRS. 

Table 3.1.2: Customer service differentiation strategies. 

Load Type Strategy 

Sensitive Not-Controllable 

Non-sensitive 
Controllable – when needed 

Controllable - scheduled 

Application of demand response strategies may seem appealing and straight-

forward, however it is complex and requires a strong social agreement among the 
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microgrids’ stakeholders. Before the application of such strategies, it is fundamental to 

evaluate the knowledge, ideas and aptitudes that the communities have about the 

implementation, with the objective of taking decisions that guarantee its success. The most 

important social indicators to study are [23]: 

− Level of energy culture that makes people aware of the different energy options 

available. 

− The level of conscience about energy conservation. 

− The consumption behavior of the individuals. 

− The willing of the individual to change its habits. 

Depending on the results of this analysis, the weaknesses that the community 

presents must be dealt with before the implementation of the demand response strategies. 

Possible methods to handle this usually include the creation of campaigns, training 

programs, and other educational methods. Reducing the energy consumption patterns of 

people is linked with a change of lifestyle which is very difficult to achieve. These 

strategies could be aided by government regulations like pricing or taxation of inefficient 

equipment, discourage of the use of energy-intensive device, or encouraging the use of 

energy-saving devices and the implementation of DSR strategies. These strategies must be 

backed with technology capable of regulating and controlling these consumption patterns. 

This is being done nowadays by the introduction of the smart-grid concept and their related 

communications and control infrastructure [8]. In the other hand, these strategies must also 

be translated into policies and regulations controlled by the government energy agencies 

and international energy conservation institutions. These strategies are what is usually done 

to deal with power system planning and also other public-related services. Nevertheless, in 
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order to be truly sustainable, these processes need a broader and more inclusive 

participation from all stakeholders. Otherwise, these strategies could be seen as imposed by 

a government, with very little ownership from stakeholders; top-down strategies usually 

face strong opposition from stakeholders that might feel left out of the decision-making 

process on ideas and plans that directly affect them. There are various participatory options 

for stakeholder engagement available in literature. Although this approach is less common 

than top-down options, it is more likely to get support from those affected and will be more 

sustainable in all dimensions [24] [25]. 

3.2 Microgrids as Tools for Sustainable Development 

Energy is a crucial actor in the evolution of society, and its accessibility is 

indispensable for the socio-economic development of a nation. Due to the wide availability 

of energy resources, developed countries enjoy a lifestyle unattainable if these resources 

were not available. However, the reality is that this lifestyle is only accesible by a small 

fraction of the human population.  

The energy dimension of poverty is defined as ‘energy poverty’, or the absence of 

sufficient choice in accessing an adequate, affordable, reliable, high-quality, safe, and 

environmental benign energy service that serves as a support for the economic and human 

development [26]. The reasons for this energy poverty are diverse, in many cases 

controversial, and are beyond the scope of this work. Many international forums have tried 

to address this issue, being the most important the 1992 United Nations Conference on 

Environment and Development in Rio de Janeiro, or the ‘Earth Summit’. In this conference, 

178 heads of state gathered to make a consensus in policies aimed at sustainability and 

world conservation, named Agenda 21. Agenda 21 dictates courses of actions for 
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governments and major groups aimed at the creation of sustainable, secure, socially 

harmonious and environmental safe societies. For meeting these goals, A. Reddy [26] 

identifies five crucial components: 

1. Economic efficiency 

2. Equity for the poor, women, ethnic minorities and remote areas inhabitants 

3. Empowerment of self-reliance 

4. Environmental soundness 

5. Peace 

 Because of the linkages between social issues and energy, the latter could serve as 

an enabler for the development of solutions aimed at dealing with poverty and other social 

realities in an integrated way. But an increased access to energy resources will not by itself 

bring economical and social benefits to communities, which is the way that current 

governments deal with the poverty problems. They do not directly address the energy and 

poverty linkage. Traditional policy-making or increased education would not effectively 

alleviate poverty problems because the main problem – lack of adequate energy resources 

is still there. People still have to use biomass and expensive fuels for satisfying energy 

needs. In contrast, developing new energy strategies and technologies that directly improve 

the energy consumption patterns of communities – like microgrids – in combination with 

new, more inclusive policymaking would allow wider access to short and long term 

benefits of new energy sources, technologies and strategies. There are poor people in both 

industrialized and developing countries, but the reality is very different for the two types of 

economies because the nature of the energetic problems is also different: 
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Industrialized Economies: 

 In industrialized countries the problem of poor citizens is not the lack of access to 

energy resources, the problem is that energy is too expensive and therefore a large 

proportion of the monthly income has to be spent on fulfilling energy needs. In contrast 

with developing countries, the problem in industrialized and mid-income countries is not 

having access to energy resources, but maintaining the service. This makes the choice of 

citizens limited to expensive energy or no energy at all.  

 In these economies, microgrids could help by reducing the costs of electricity in 

parts of the electric system where infrastructure or geographical conditions make the 

system operation not feasible for utilities or consumers. Also, with the implementation of 

demand response strategies within the microgrid, consumers have different choices of 

energy services and can find one that they can afford while fulfilling entirely or most of 

their energy needs.  

 A good example of this type of microgrids is being tested since summer 1997 in 

Sendai City, Japan. This purpose of this project is to evaluate the possibility that the 

microgrid can create “value” to the consumers, by using different customer service levels in 

the area. The microgrid is comprised of two 350 kW gas engines and one 250 kW molten-

carbonate fuel cells. The different service levels include interruption, voltage-drop, and 

wave differentiation. Although this microgrid is still in the testing phase, developers say it 

has improved the power quality of the consumers at the site [27].  
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Developing Economies 

 Four out of five people without electricity live in areas of the developing world, 

especially in peripheral urban and isolated rural areas. Thus, the principal challenge of 

developing countries in energy matters is the expansion of the electric service to the rural 

and remote areas. Table 3.2.1 and Figure 3.2.1 presents data of the International Energy 

Agency (IEA) electricity access for developing countries in year 2005. It could be clearly 

seen the extremely low level of electrification in rural areas, in special in Africa. Although 

Latin America has the highest level of rural and urban electrification in all developing 

countries, numbers like 34.4% of the rural population without energy access are still too 

elevated and a source of concern for countries in the 21st century. 

Table 3.2.1: Electricity Access in Developing Countries, 2005. Adapted from [28]. 

    Africa  Asia  Latin 
America 

Middle 
East 
 

 
Total Population (million)  891  3418  449  186 

Total  Population in Urban Areas (million)  343  1063  338  121 

  Population in Rural Areas (million)  548  2355  111  65 

Rural 

With Access (%)  19  65.1  65.6  56.4 

Without Access  (%)  81  34.9  34.4  43.6 

Urban 

With Access  (%)  67.9  86.4  98  86.7 

Without Access  (%)  32.1  13.6  2  13.3 
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Figure 3.2.1: Electricity Access for Developing Countries in Absolute Values, Year 
2005. Adapted from [28]. 

  

 The rural electrification problem is linked to rural-urban migrations, which are one 

of the principal causes of cities overpopulation. Rural-urban migration is a complex 

problem which is out of the scope of this work; however, there is a potential contribution of 

rural microgrids in improving the life quality in rural areas, including the creation of local 

economies that could help to reduce migration to cities. Perhaps an increment of urbanized 

areas is inevitable, it could be of less impact if innovative energy policies are implemented 

in rural areas. 

 On the other hand, the financial implications of lack of proper energy access are 

high in developing countries. Some countries spend up to 50% of their trade surpluses on 

energy imports [28]. In others, as much as 10% of the country’s GDP is spent on 

subsidizing the electric sector. Of the 47 countries with per capita incomes of less than 2 

dollars a day, 80% are net importers of oil, while 53% import all of their oil. The situation 

33%

62%

3%
2%

Africa 

Asia

Latin America

Middle East
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is expected to worsen in the future since electrical demand is expected to double for year 

2030, the biggest share occurring in developing countries [29]. 

Another interesting effect of microgrids is their ability of becoming vehicles for 

economic development. It is understood that under the sustainability concept, when the 

economic viability of a project is studied the whole global and macro economical 

repercussions must also be included into the analysis. In contrast to conventional generation 

technologies where jobs are too specialized and concentrated, distributed generation and 

microgrids have a great potential for local job creation, as well as the expected expansion of 

the economic activity in the places where they are installed. Also, children and women of 

villages in developing countries could have access to media and modern methods of 

education. In general, the installation of these technologies could be a vehicle for solidarity 

for communities where some of today’s modern equipment is not accessible.  

Electricity in remote areas enables the use of electric tools and equipment, 

increasing the productivity of workers and creating more and diverse types of occupations 

in communities. Increasing productivity could result in more economic activity, which is 

equivalent to an increase in business revenues. Today, many projects in Africa serve as 

examples of the impact of microgrids in remote zones. This is the case of the community of 

Mpeketoni in sub-Saharan Africa, where electricity has contributed to the mechanization of 

agriculture, facilitated trade and commerce, and most important, has created more jobs and 

added more value to the goods produced in the community. Field data gathered from the 

village artisans and carpenters shows that the productivity of the workers increased between 

50 to 200% with the use of electricity, and gross revenues per day between 20 to 70% [30]. 

Also, access to electricity brings other unexpected benefits, as is the case of the 
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introduction of diesel tractors for agricultural use, that apparently do not relate to electricity 

but the villagers explain in very clear words [30]: 

‘‘Without electricity, very few people would dare bring their tractors out 

here because in the event of a major breakdown, welding repair services 

could only be obtained in Witu or Mombasa (100 km and 450 km away, 

respectively)”  

 Also, children of Mpeketoni are now able to compete with students of more 

developed all thanks to the benefits of electricity. Better education methods, more flexible 

schedules, and less time spent on energy-gathering (biomass) have translated into a 

considerable increase in the education of Mpeketoni villagers [30]. 

3.3 Financial Models and Market Development 

While developments like distributed generation, microgrid, and net-metering aim to 

make renewable energies more competitive, government incentives are still required for 

matching against the unbalances introduced by unpaid externalities of conventional 

generation technologies. In general, a microgrid project based on renewable energy could 

be an economical sustainable project if it is backed with an adequate financial model and 

with correct government support. However, even a renewable energy project could not be 

sustainable if it does not address environmental or social issues related to the project. 

Many people use much higher discount rates when making energy-related decisions 

[31]. This means that people usually think in terms of initial costs of equipment rather than 

the whole life cycle costs, preferring inefficient energy sources which initial prices are 

lower. The reasons for this behavior are diverse and out of the scope of this work. Market 
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entry in remote, rural or isolated microgrid markets is still considered of ‘high risk’, 

opening the need for the creation of market rules that allow investors to make profits 

beyond the short term [32]. There are other alternatives that could be generated inside 

governments for the promotion of microgrids, like subsidies, tax credits, carbon taxes, 

among others. Apart from government aid, there are other service delivery mechanisms that 

support the development of microgrids and renewable energies, being the most important 

[33]: 

1. Electric Utilities: In cases where electric service is available at the locations, this is 

one of the best alternatives. Utilities already have a close relationship with 

customers, and have numerous incentives with the system conversion. The utility 

option could be combined with other financial alternatives. 

 
2. Commercial Banks: DER technologies like biomass, mini-hydro, wind and in some 

cases solar photovoltaic are considered as low-risk investment by commercial 

banks. One of the principal obstacles for obtaining these loans is the valuing of the 

system revenues. The reason is that since the output of renewable resources is 

intermittent, a constant project cash flow could not be established. Despite all of 

these issues, bank loans are a possible financing alternative that should be studied. 

 
3. External Financing: This is one of the most suited alternatives for remote 

communities in developing countries. International institutions like the Inter-

American Development Bank (IDB), The United Nations Development Programme 

(UNDP), World Bank, and others support and finance projects aimed at energy 

efficiency and renewable energy. Examples of rural off-grid electrifications in the 
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World Bank portfolio include solar home system projects in India and Indonesia, 

various projects in Argentina, rural electrifications in Uganda and Sri-Lanka, and a 

number of small loans to PV companies [32]. Despite the financial support these 

institutions offer, their contribution is not enough for the demand of the rural 

electrification market. 

 Successful microgrids projects will have to develop viable business plans for both 

consumers and service suppliers. The World Bank has experimented with different service 

delivery mechanisms through the world, identifying the principal types [32] [34]  : 

• Decentralized virtual utilities: This approach consists on charging fixed month 

payments to consumers, or through pre-paid cards. This approach is convenient 

because of the structure is similar to the popular mobile communication structure, 

that the majority of the people are used to. 

• Local electricity retailers: Cooperatives establish an electricity retail business. The 

driver of this model is the capability that gives a formal institution like a 

cooperative to obtain financing, institutional help, or backing from stronger partner. 

• Concessions: This is one of the most promising alternatives for service delivery. 

Bidders are invited to concessions to supply electricity in remote areas The 

concessionary obtains the monopoly of a determined area in turn for the duty to 

serve customers, and to maintain its continuity over the duration of the concession. 

An interesting aspect is that contracts are awarded through a competitive bidding 

process, minimizing the subsidies from the government. The same approach is 

currently being tested in South Africa, Benin, Bolivia Cape Verde and Togo. 

Although this scheme separates of the ‘free-market’ theory, believed to bring 
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efficiency in power systems, there are benefits such a risk reduction, creation of 

sufficient customer base, and scale economies that make this approach more suited 

for remote applications. The experience with concessions is still limited, so there is 

still a long path to go in the evolution of these mechanisms.  
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4 MULTIOBJECTIVE OPTIMIZATION 
 

 

 

 

 

 

 

 

 

 

4.1 Introduction 

 Optimization is the procedure in which a decision maker seeks to obtain the best 

value (either minimum or maximum) of an objective. A general multiobjective optimization 

problem could be proposed as: 

 Optimize  ܼሺݔሻ ൌ  Optimize ሺሾݖଵሺݔሻ, ሻݔଶሺݖ , … .  ሻሿ்ሻݔ௡ሺݖ
 Ω ߳ ݔ

Subject to: 
݄ሺݔሻ ൌ 0 
ܿሺݔሻ ൑ 0 

(4.1.1)

where Z is the vector of objective functions to optimize (minimize or maximize), n is the 

number of objectives, x is the decision vector, Ω is the domain of solutions (search space), h 

and x are equality and inequality constraints, respectively. 

 The objective to optimize could be an economic cost, a weight, a length, or any 

other factor or index. However, most problems in engineering and science involve more 
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than one conflictive objective, which translates into more than one optimal solution to the 

problem. Classically, these kinds of problems have been treated as single-objective 

problems, requiring the decision maker to make early preferences on one objective over 

another before seeing the full range of alternatives -or trade-off- between them. With 

classical methods, for visualizing the full range of trade-offs it was necessary to iteratively 

change the preference information, thus, obtaining a different point of the trade-off curve in 

each run.  

 The classical working principle was motivated by the reality that early optimization 

methods only allowed to find a single solution (or point in the trade-off curve) at a time. 

However, with the recent evolution in the field of optimization there are numerous methods 

available which make it possible to obtain a population of solutions in each run, allowing 

capturing multiple optimum solutions of a multiobjective problem in a single run. Of these 

novel methods, the Evolutionary Algorithms (EA’s) stands out. It imitates the Darwinian 

natural selection and natural genetics. The use of EAs will allow the decision maker to 

make more accurate choices without the need of any a-priori preference information about 

objectives. 

 In this section the salient features and fundamentals of Evolutionary Algorithms and 

Multiobjective Evolutionary Algorithms Optimization (MOEA) are discussed. Next, the 

concepts behind “Elitist MOEAs” are discussed as well as different methods of achieving 

elitism in Multiobjective Optimization (MOO). Lastly, the different methods for 

representing the output data of MOEAs will be described. 
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4.2 Single-objective vs. Multiobjective Optimization 

 Traditionally, optimization problems have been treated as single objective problems, 

even though most optimization problems in science and engineering consist on different 

conflicting objectives. These problems are solved by ‘combining’ all objective functions 

into a representative set of weight factors or constraints. This approach is simple and useful 

when the decision-maker knows the preferences between conflicting objectives, or at least 

know certain ranges where these objectives are acceptable.  

 However, there are other cases where the decision-maker does not clearly know 

what the preferences are, and reaching an ‘optimal decision’ accounting for all objectives 

requires evaluation of different trade-offs among objectives could be clearly seen. For these 

cases, multiobjective optimization is the best alternative. In multiobjective optimization all 

objectives are treated equally, and the different correlations and trade-offs between them 

are shown to the decision maker before making preferences over objectives.  

 Multiobjective optimization methods should be used when information about 

objectives is not known by the decision maker. In the case this information is available, it is 

always simpler to rely on single optimization and classical methods. Section 4.3.3 discuss 

in more detail classical methods and their principal drawbacks. Further, in Section 4.5, 

multiobjective optimization methods using evolutionary algorithms are presented. 

4.3 Multiobjective Optimization 

 When multiple objectives are optimized, there is no single solution which satisfies 

all objectives; instead the result is a “trade-off” curve, or a set of optimal solutions which 



39 
 

are better or worse depending of the objective. The goal of MOO is to find all of these 

solutions.  

4.3.1 Dominance and Pareto Optimality 

 To compare candidate solutions in MOO problems, the concepts of dominance and 

Pareto Optimality [35] are frequently used [36]. A solution ݔଵ is said to dominate other 

solution ݔଶ if the following conditions hold true [37]: 

 

1. The solution ݔଵ is no worse than ݔଶ in all objectives. 

2. The solution ݔଵ is strictly better than ݔଶ in at least one objective. 

 

 If any of the above conditions is violated it means that solution ݔଵ  does not 

dominate solutionݔଶ. If the opposite, solution ݔଵ dominates solutionݔଶ, or (ݔଵ ع  ଶ). It isݔ 

good to clarify that if ݔଵ ع ଶݔ ଶ does not means thatݔ  ع  ଵ, thus the dominance relation isݔ 

not symmetric. 

 

 Figure 4.3.1 shows the trade-off curve for two conflicting objectives: the Maximum 

Travel Distance and the Minimum Cost of a mean of transport. From the graph it can be 

seen that traveling by foot is cheaper than by scooter, and longer distances could be 

achieved. The ‘foot’ alternative is said to dominate the ‘scooter’ alternative. The same can 

be said about bicycle-horse case. The group of all dominant solutions (foot, bicycle and car) 

form the pareto optimal front of this problem. The second front is represented by the horse, 

which is worse than the members of the first front but at the same time better than the 

scooter solution, which forms the third front. 
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Figure 4.3.1: Trade-off curve between two objectives: Maximum Travel Distance and Cost 
of transportation means. 

 When all solutions are compared for dominance, and dominated results are 

eliminated, the result will be a set of solutions which are not dominated in respect to each 

other, and constitute the ‘non-dominated’ set. This set has the property of dominating all 

solutions which are outside of it, thus, the elements of this set are said to be “better” than all 

the others. When a non-dominated set is obtained for all the solutions of the search space, 

this set is referred as the Pareto-optimal set, and the corresponding objective vectors are 

said to be in the Pareto Optimal Front (POF)[36]. Figure 4.3.2 shows different POF for 

different two objective minimization and maximization problems. Because nearly all 

problems in power systems optimization are minimization problems, optimize will refer to 

minimize for now on, unless otherwise stated. 

4.3.2 Goals of MOO 

 After having defined the concepts of dominance and Pareto Optimality, it is possible 

to formally define the goals of MOO. Kalyanmoy Deb [37] mentions the following as the 

principal goals in MOO: 

Cost
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1. To find a set of solutions as close as possible to the Pareto-optimal front. 

2. To find a set of solutions as diverse as possible. 

 The first goal is required for any optimization algorithm: it is strictly necessary that 

the solutions obtained are close to the true solutions of a problem. It is important to note 

that in single objective optimization this is the only goal to achieve. 

 Patrick Ngatchou et al [36] divided the second goal into two sub-objectives: 

2b. Ensure a good distribution of solutions along the approximation set  

2c. Maximize the range covered by solutions along each of the objectives. 

 In general, this goal ensures that the solutions in the POF are diverse enough for 

getting a good set of trade-off solutions between objectives.  

 

Figure 4.3.2: Different Pareto Optimal Fronts for two objective minimization and 
maximization problems. Adapted from [37]. 
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4.3.3 Classic Methods of MOO 

 Classic methods aim at solving the MOO problem by converting it into a SO 

problem, and then, solving it by one of the numerous traditional methods available. It is 

important to note that these methods are intended to find a single point of the POF, based 

on a-priori preference information over objectives. Although many classical methods exist, 

the weighted sum and the E-constraint are the more popular and simple. 

Weighted Sum Method 

 This is the most popular method for solving MOO. It consists of aggregating all the 

objectives and applying a ‘weight’ to each one, which resembles the importance of an 

objective over another. The sum of all weights should be equal to one, that is: 

 
ܼ ݁ݖ݅݉݅݊݅ܯ ൌ෍ݓ௜ · ሻݔ௜ሺݖ

ே

௜ୀଵ

 

௜ݓ  ݁ݎ݄݁ݓ ൐ 0 

ܽ݊݀  ෍ݓ௜ ൌ 1
௡

௜ୀଵ

 

(4.3.1)

where ݓ is the weight vector and n is the number of objectives of the problem. To obtain a 

full POF using this method it would be necessary to repeat the process with different 

weight vectors ݓ. This method faces difficulties, mainly because in nonlinear MOO a set of 

uniformly distributed weight vectors may not produce a uniformly distributed POF. Also, 

the weighted sum method is not compatible with non-convex problems [37]. 

E-Constraint Method 

 The E-constraint method alleviates the issues with non-convex problems of the 

weighted sum approach. The method consists on optimizing for one objective while 
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treating the remaining objectives as constraints in a range defined by E. Formally, it was 

proposed by Haynes et al. [38] as: 

ܼ ݁ݖ݅݉݅݊݅ܯ  ൌ  ሻݔ௔ሺݖ

:݋ݐ ݐ݆ܾܿ݁ݑݏ ሻݔ௠ሺݖ   ൑ א௠  (4.3.2)

where za is the optimized objective, zm is the vector of constrained objectives, and Ɛ is the 

vector of objective constraints. The value Ɛ is repeatedly changed for getting the problems’ 

POF. Again, the problem of this method is the need of a-priori information from the 

decision maker. 

Limitations of Classical Methods 

 While classical methods are simple and facilitate the use of traditional optimization 

techniques for solving the problems, they have a number of difficulties when the user is 

interested in finding the POF. Kalyanmoy Deb summarizes them as follow [37]: 

1. Only one Pareto-optimal solution can be expected to be found in one simulation run 

of a classical algorithm. – This makes the methods computational expensive. 

 
2. Not all Pareto-optimal solutions can be found by some algorithms in nonconvex 

MOO problems. – This makes some methods not compatible with all problems. 

 
3. All algorithms require some problem knowledge, such as suitable weights or E 

values. – This makes the methods entirely dependent of the chosen weight or E 

values. 
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4.4 Evolutionary Algorithms 

 EA imitate the Darwinian natural selection and natural genetics process, in which 

individuals of a population go through stochastic operations such as selection, mutation, 

and crossover in order to achieve a better objective value, called ‘fitness’ value in genetic 

terms.  Different types of EA exist, such as Genetic Algorithms (GA), Evolutionary 

Programming (EP), Differential Evolution (DE), Simulated Annealing (SA), and others. Of 

these, GA are the ones that have been more extensively used over the last decade as search 

and optimization tools for MOO problems [37]. The primary reasons for their success are 

their broad applicability, ease of use and global perspective [39].  

4.4.1 Genetic Algorithms 

 Genetic Algorithms were first introduced by John Holland of the University of 

Michigan, Ann Arbor. Subsequently he and his student have continued the work on the 

field and developed the initial concept to what it is nowadays.  In the next sub-chapters the 

operation of GA will be explained. 

Encoding 

 The first step to apply GA is to select a correct encoding for the faced problem. The 

encoding refers to the way that the decision variables of the problem are mapped into a 

string of symbols, which could be binary numbers, characters, real numbers, or any other 

alphabet (Figure 4.4.1).  

 
Figure 4.4.1: Different encodings for a box sizing problem. 
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 At the early stages of GA the binary encoding was the most popular encoding 

because of its highest degree of implicit parallelism. However, new studies have found 

problems with binary-encoding when handling problems having continuous search spaces 

and where high precision is required [37]. Also other studies have found that real-encoding 

could be more effective when handling crossover operations [40]. Since real decision 

variable parameters could be used directly for the calculation of fitness function values, the 

real-encoding approach is easier when compared with binary-encoding. However, 

difficulties arise when using the genetic operators and special methods need to be applied 

(such as ‘blending’ operators instead of crossover). In this work the real encoding will be 

used for representing decision variables, thus operators discussed will be aimed at real-

encoding problems. 

Fitness 

 The fitness function is the one that models and characterizes the problem to be 

solved. The fitness of an individual population is the result of its evaluation on the fitness 

function of the problem. The fitness function of GA is different from the objective function 

of traditional optimization methods in the fact that the fitness of an individual is defined 

with respect to the other members of current population, while the objective function is a 

measure of performance of a particular individual [40].   

Constraint Handling  

 GA has to face the constraints that most real-world problems have. The GA 

operators (crossover, mutation) in their basic form do not take into account the feasibility of 

the solutions they generate. Therefore, there is a high probability of generating offspring 
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that is not feasible for the problem. There are basically two different techniques for 

constraint handling: 

1. Restricting the problems’ search space: These methods modify the crossover and 

mutation operators in order to make them only produce offspring in the feasible 

region of the problem. 

2. Using penalty functions: This approach allows the exploration of the entire search 

space, and if an unfeasible solution is found the algorithm penalizes it. The penalty 

can be applied in two ways: 

1. By a multiplication factor: ݃ሺݔሻ ൌ ݂ሺݔሻ כ  .ሻݔሺ݌

2. By an addition factor: ݃ሺݔሻ ൌ ݂ሺݔሻ ൅  .ሻݔሺ݌

where g(x) is the penalty factor, f(x) the constraint violation and p(x) the penalty 

term. Also, it is desirable that the penalty function varies with the constraint 

violation and with the GA iteration count. 

 It has been suggested [40] that the use of penalty functions is better suited for 

constraint handling in power systems problems, where the optimal solution are usually on 

the boundaries of feasible regions. The reason is that an unfeasible point close to the 

optimum solution contains more information than a feasible point far from the optimum, in 

terms of the GA.  

GA Operators 

 In this section the selection, crossover and mutation operators are discussed. These 

operators have the responsibility of maintaining the population in good fitness, and creating 

diversity within it. 
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Selection 

 The selection operator is the responsible of creating new populations by preserving 

fitted individuals from the old population and eliminating those whose fitness is inferior. 

Since the selection operator deals with the objectives’ fitness function, there is no 

difference between selection operators for binary- or real-encoded decision variables. There 

are different selection methods, the tournament selection and the roulette wheel selection 

being the most popular. 

Proportional Selection or Roulette Wheel Selection 

 In Roulette Wheel Selection (RWS) the probability that an individual is selected to 

be in the mating pool is proportional to its fitness. Recent investigations have shown that 

the RWS method, despite its popularity inside the power system research community, is 

usually an inferior approach [40]. However, there exists many workarounds for improving 

the RWS methods such as Linear Scaling, Sigma Truncation, Power Scaling, and with 

major modifications the Stochastic Universal Sampling (SUS). 

Tournament Selection 

 In this selection method, ‘tournaments’ are played between individuals and the 

better ones are placed in the ‘mating pool’, where other operators are then applied. The 

process is illustrated in Figure 4.4.2, and is as follow: 

1. Pairs of solutions are randomly selected and the better solutions are placed in the 

mating pool. 

2. A different pair of solutions is chosen, better solutions are placed in mating pool. 

3. In this way, the better solution will have at least two occurrences in the mating pool, 

and the worst solutions will be eliminated from the tournament.  
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Figure 4.4.2: Two tournaments are played with population members, the winning 
individuals are placed in the mating pool. Adapted from [37]. 

 The tournament selection process could be made either with or without replacement. 

In the tournament with replacement (TWR) the candidates selected for a tournament are 

eligible for participating in further tournaments. In the other hand, in tournament without 

replacement (TWOR), individuals could not participate in more than one tournament [41]. 

Crossover 

 The crossover operator could be seen as an interchange of information between 

individuals. Crossover methods used for binary- and real-encoding are different. Because in 

real-encoding the ‘crossover’ action is not evident as in binary-encoding (where two bits 

are exchanged), the term ‘blending’ is often used to describe the crossover operator in real-

encoded problems. However, because most blending operators are known as crossover 

operators we will continue using that notation in this work. More information about 

crossover operators can be found in [42] and [37]. 
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A Binary-like Crossover 

 This crossover operator is similar to the crossover operators used in binary-encoded 

GAs. A position ݅ א ሼ1, 2,  :ሽ is randomly chosen, producing two new offspringݏݎܽݒ݊…3

Parent 1:  1݌ ൌ ሾ ,ଵଵݒ ,ଶଵݒ ,ଷଵݒ ସଵݒ ,  ௡ଵሿݒ     …

Parent 2:  2݌ ൌ ሾ ,ଵଶݒ ,ଶଶݒ ,ଷଶݒ ସଶݒ ,  ௡ଶሿݒ     …

Offspring 1:  1݋ ൌ ሾ ,ଵଵݒ ,ଶଵݒ … ,௜ଵݒ ௜ାଵଶݒ ,  ௡ଶሿݒ     …

Offspring 2:  1݋ ൌ ሾ ,ଵଶݒ ,ଶଶݒ … ,௜ଶݒ ௜ାଵଵݒ ,  ௡ଵሿݒ     …

 Single-point, two-point, n-point or uniform crossover operators could also be built 

in this manner, just with minor modifications of the i vector. In real-encoding this operator 

does not have sufficient search power, thus its use is not adequate for real-encoded 

variables [37]. 

Simulated Binary Crossover (SBX) 

 The simulated binary crossover (SBX) was developed by Kalyanmoy Deb and his 

student in 1995 [43]. The purpose of SBX, as it name implies, is to translate the concept of 

single-point crossover operator of binary strings to the continuous search spaces. SBX 

works as follows [43][37]:  

1. A probability density function (PDF) with distribution index ߟ௖  is defined. This 

probability function is also a function of the “spread factor” ߚ௜, which is defined as 

the ratio of the absolute difference in offspring values to that of the parents: 

 
௜ߚ ൌ อ

௜ݔ
ሺଶ,௧ାଵሻ െ ௜ݔ

ሺଵ,௧ାଵሻ

௜ݔ
ሺଶ,௧ሻ െ ௜ݔ

ሺଶ,௧ሻ อ (4.4.1)
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and the PDF is: 

 

Եሺߚ௜ሻ ൌ ൞
0.5ሺߟ௖ ൅ 1ሻ כ ௜ߚ

௡೎, ݂݅ ௜ߚ ൑ 1;

0.5ሺߟ௖ ൅ 1ሻ כ
1

௜ߚ
௡೎ାଶ , (4.4.2) .݁ݏ݅ݓݎ݄݁ݐ݋

A large value of ߟ௖  will produce a higher probability for creating near-parent 

solution, while a small value of ߟ௖ will  more likely produce solutions distant to the 

parents. 

2. A random number ݑ௜ א ሾ0,1ሻ is generated. 

3. The ordinate ߚ௤௜ is found so that the area under the PDF curve from 0 to ߚ௤௜ = ݑ௜, 

or: 

 

௤௜ߚ ൌ  

ە
ۖ
۔

ۖ
 ۓ ሺ2ݑ௜ሻ

ଵ
௡೎ାଵ, ݂݅ ௜ݑ ൑ 0.5;

൬
1

2ሺ1 െ ௜ሻݑ
൰

ଵ
௡೎ାଵ

, .݁ݏ݅ݓݎ݄݁ݐ݋
 (4.4.3)

4. Next offspring is computed by: 

௜ݔ 
ሺଵ,௧ାଵሻ ൌ    0.5  ቂ൫1 ൅ ௤௜൯ߚ ௜ݔ

ሺଵ,௧ሻ ൅ ൫1 െ ௤௜൯ߚ ௜ݔ
ሺଶ,௧ሻቃ, 

௜ݔ
ሺଶ,௧ାଵሻ ൌ    0.5  ቂ൫1 െ ௤௜൯ߚ ௜ݔ

ሺଵ,௧ሻ ൅ ൫1 ൅ ௤௜൯ߚ ௜ݔ
ሺଶ,௧ሻቃ. 

(4.4.4)

(4.4.5)

 This method will produce two offspring which are symmetric about the parent 

solutions. Also, for a fixed ߟ௖ the offspring will have a spread proportional to that of the 

original parents, introduced by the ߚ௤௜ factor. This has an advantage: for initial populations 

(where solutions are distant - randomly placed) the offspring can get virtually any value, 

but for near-parents (when problem is converging) the offspring is not allowed to separate 

too much from them (Figure 4.4.3). 
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Figure 4.4.3: PDF of offspring with distant and with closely spaced parents. Also 

offspring symmetry and proportional spread is shown. Adapted from [37]. 

Mutation 

 The mutation operator introduces perturbations to create a more diverse offspring. 

While the crossover operator adaptively introduces perturbations within the diversity of the 

parent individuals, the mutation operator create perturbations within a predefined range 

using one parent. 

Uniform (Selective) Mutation 

 An offspring is created randomly from the entire search space: 

௜ݕ 
ሺଵ,௧ାଵሻ ൌ ௜ݔ௜ሺݎ

ሺ௎ሻ െ ௜ݔ
ሺ௅ሻሻ (4.4.6)

where ݅ݎ ൌ ሾ0,1ሿ  and  ݅ݔ
ሺܷሻ ݅ݔ ,

ሺܮሻ  are the upper and lower bounds of the search space, 

respectively.  

PD
F
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Area = 1
Area = 1PDF depends on 
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Gaussian Mutation 

 A random offspring is generated, taken from a zero-mean Gaussian probability 

distribution: 

௜ݕ 
ሺଵ,௧ାଵሻ ൌ ௜ݔ

ሺଵ,௧ାଵሻ ൅ ܰሺ0, ௜ሻ (4.4.7)ߪ
where ݅ߪ  is the standard deviation of the distribution. ݅ߪ  can be either user-specified or 

adaptively changed as generations advance. 

Polynomial Mutation 

 The probability distribution is a polynomial function instead of a normal 

distribution, like in SBX: 

௜ݕ 
ሺଵ,௧ାଵሻ ൌ ௜ݔ

ሺଵ,௧ାଵሻ ൅ ቀݔ௜
ሺ௎ሻ െ ௜ݔ

ሺ௅ሻቁ ҧ௜ (4.4.8)ߜ

where ߜഥ݅ is calculated from the polynomial probability distribution: 

 
Եሺߜሻ ൌ 0.5ሺߟ௠ ൅ 1ሻሺ1 െ ሻ௡೘|ߜ|  

ҧ௜ߜ ൌ  ൞
ሺ2ݎ௜

   ଵ
ሺ௡೘ାଵሻ െ ௜ݎ ݂݅                     ,1 ൏ 0.5

1 െ ሾ2ሺ1 െ ௜ሻሿݎ
ଵ

ሺ௡೘ାଵሻ, ݂݅ ௜ݎ ൒ 0.5
 

(4.4.9) 

(4.4.10) 

 

A fixed value of the parameter ݊݉ is suggested by [37]. 

4.5 Multiobjective Evolutionary Algorithms 

 The greatest advantage of EA as a method for MOO is its capability of processing 

an entire population per iteration. Because of this characteristic, EAs with minor 

modifications are capable of capturing a population of Pareto-optimal solutions in a single 

run. This will also eliminate the need of any a-priori information such as weight vector or ߳ 

vectors.  
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 There are two types of multiobjective evolutionary algorithms (MOEA), the ones 

which use an elite-preserving operator (Elitist MOEA), and the ones which do not (Non-

Elitist MOEA). An elite-preserving operator works by favoring the elites (best individuals) 

of a population by giving them an opportunity to be directly carried as new offspring to the 

next generation. This ensures that a good solution found early in the run does not 

deteriorate due to the effect of the crossover and mutation operators. 

 Because of the proven importance of elitism to the EA [37], this work will only 

focus on Elitist MOEA. There are a number of Elitist MOEA, namely NSGA-II [44], 

Strength Pareto EA, and others. However, for the simulations in this work NSGA-II was 

chosen, for the following reasons: 

1. Proven strength and performance of the algorithm [44]. 

2. Vast documentation and support available in the literature. 

3. Availability of a number of free and paid toolboxes and programs in MATLAB and 

C [45] [46] [47]. 

4.5.1 Non-dominated Sorting Genetic Algorithm II (NSGA-II) 

 NSGA-II was developed in the 2000 by Kalyanmoy Deb and his students [44]. 

NSGA-II features an elite-preservation strategy as well as an explicit diversity-preserving 

mechanism.  

 NSGA-II works by creating a population ܴ௧ of size 2N result of a combination of 

the parent ( ௧ܲ) and offspring (ܳ௧) populations. This population ܴ௧ is then non-dominated 

sorted, i.e. non-dominated solutions are put first, creating various non-dominated ‘fronts’ 

(groups of solutions which are non-dominated between each other). Once this sorting is 
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over, a new population is created by filling it with the individuals of the sorting, starting 

with the best non-dominated ones, one at a time. However, because the new population size 

is N and ܴ௧ is 2N a part of the population could not be accommodated. Instead of arbitrarily 

deleting these remaining solutions, a crowding strategy is used where more sparse solutions 

are preferred over niched solutions. The NSGA process is illustrated in Figure 4.5.1. 

 

Figure 4.5.1: The procedure of NSGA-II. Adapted from [37] 

 Formally, the NSGA-II works as follows [37]: 

1. Parent ( ௧ܲ) and offspring (ܳ௧) population are combined, creating ܴ௧ ൌ ௧ܲ ׫  ܳ௧. A 

non-dominated sorting is performed to vector ܴ௧ , making possible to identify 

different ‘fronts’. 

2. A new population ௧ܲାଵ ൌ 0 is set, and a counter is initialized at ݅ ൌ 1,  and until 

| ௧ܲାଵ| ൅  | ௜࣠| ൏  ܰ ; ௧ܲାଵ ൌ ௧ܲାଵ ׫ ௜࣠ and ݅ ൌ ݅ ൅ 1 is performed. 
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The Scatter-Plot Matrix 

This plot method consists of plotting all ቀ݂2ቁ pairs of plots among, if f objective functions 

are optimized. The diagonal sub-plots mark the axis for the off-diagonal plots (Figure 

4.5.3). Also, in the diagonal sub-plots the user could observe objective range and 

discontinuities. Depending on the simulation several fronts could be plotted in a single 

graph. Scatter-plot matrix is useful for analyzing the correlations between objectives. 

 

Figure 4.5.3: Scatter-Plot for a MOO with 3 objective functions. 
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5  METHOD 
 

 

 

 

 

 

 

 

 

 

5.1 Introduction: Optimum DER Sizing and Sitting Using MOEA 

 The DER sizing is a critical issue in the design process of autonomous microgrids. 

Of special importance is the correct sizing of storage (DES) units, which will serve to 

compensate for the variability of renewable DGs. The DER sizing problem has two 

dimensions: the energy balance and the power balance. In general, the DERs should be 

sized to fulfill the entire systems’ power demand and energy consumption. Because of the 

variability of renewable DGs, load pattern changes or other contingencies, is also desirable 

to have good levels of reserve capacity. Formally, the DERs size should satisfy: 

 ෍ܲݐܴܧܦ ൌ ෍ܲݐܦ െ ෍ܲݐܴܵܦ  (5.1.1)

And under normal operation: 

 ෍ܴܧܦܧ
ሺݐ,ݐ൅ܶሻ െ෍ܦܧ

ሺݐ,ݐ൅ܶሻ ൒ (5.1.2) ܴܧ
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where ஽ܲாோ
௧  is the power produced by DER units at instant t, ஽ܲ

௧  is the power demanded by 

the system at instant t, and ஽ܲோௌ
௧  is the demand that could be reduced at instant t result of 

demand response strategies. ܧ஽ாோ
ሺ௧,௧ା்ሻ is the net energy contribution from DGs in the interval 

(t,t+T), ܧ஽
ሺ௧,௧ା்ሻ is the energy consumed by customers and losses in the interval (t,t+T), and  

 .ோ could varyܧ ோ is the systems’ reserve capacity. Under abnormal situationsܧ

 Additional to the DER sizing problem lays the DER sitting problem. Load 

dispersion and high impedance lines, -very common in remote locations- could affect the 

efficiency of the DERs, making some locations better than others for the resource sitting. 

Driesen and Katiraei have suggested in [48] design guidelines to overcome the sizing and 

sitting problems: 

• Advanced power sharing and unit commitment among a set of multiple-size 

generation sources to select appropriate combination of DER based on load change. 

• Utilization of optimal-sized energy storage units. 

• Prioritization and advanced control of load. 

 The DER sizing/sitting problem is a mixed integer, mixed discrete-continuous, non-

convex optimization. An optimal configuration should not only fulfill economical 

objectives but also others related to the energy independence and sustainability of the 

microgrid. In the case of electrification of remote and rural areas, decisions regarding 

financial costs are more difficult to assess because of parameters like: willingness to pay 

(WTP) and tariffs for different customer service levels, demand growth rate, generation 

technologies used and availability of resources and potential integration of productive use 

into the microgrid (industries, commerce).  Because of these reasons, a general 
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recommendation for the optimal microgrid topology cannot be given. Solutions will vary 

significantly depending on the remote zone location and their interest over specific 

objectives.  

 In [49] authors developed a methodology for the optimum sizing and sitting of 

distributed generators in a distribution feeder using the Pareto-Strength MOEA approach. 

This work tackles the planning problem for intermittent resources such as solar-

photovoltaic and combined heat and power (CHP) generators. The method gives good 

results for the minimization of losses, grid exports and installation costs on distribution 

feeders, but do not have tools for the microgrid analysis, where multi-dimensional problems 

such as storage scheduling and demand response management play important roles in the 

resource allocation process. In another work [50] the authors tried to overcome the problem 

of power system planning in presence of intermittent distributed by nesting Montecarlo 

simulations in a multiobjective evolutionary algorithm. Other approaches [51] have 

included energy storage, but have focused in the market interactions of the system leaving 

apart other objectives necessary for microgrid sustainability. In [52] and [53] the authors 

studied the effects of distributed energy storage, designing an optimization algorithm for 

the optimum resource allocation on distribution feeders. This work also concentrated in the 

response of storage units to price signals and economic performance, not in energy 

sustainability.  

 In summary, it could be seen that almost all literature available and methods 

developed for the optimum sizing and sitting of distributed generators on distribution 

feeders’ do not effectively comply with their objectives when the microgrids scenario is 

considered. These methods lack the necessary tools for assessing optimal resource 
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allocation in microgrids, where self-reliance, social and environmental aspects play 

important roles in the decision making process. 

 The algorithm proposed in this thesis tackles the DER sizing and sitting problem in 

microgrids, with special attention to the sustainability of the system. The algorithm uses a 

multi-objective evolutionary approach, following the guidelines for a microgrid design 

benchmark suggested by Driesen and Katiraei [48]. Renewable generators, storage units 

and demand response strategies are included in the multiobjective algorithm, which uses 

the de facto standard in elitist multiobjective optimization, NSGA-II. System constraints 

such as voltage and thermal limits of equipment are also considered. As output, the decision 

maker will have numerous different network topologies each one representing objective 

preferences in different levels. With this information, the decision maker is capable of 

making more accurate choices based on the particular characteristics of communities and 

locations. 

 

5.2 Assumptions and Limitations 

 The problem worked in this thesis is deterministic, i.e., system parameters such as 

load profiles, resource availability and equipment efficiency are known a priori for the 

period of study. Instead of using probabilistic deviations, typical operation cases are used 

for the simulations. These cases represent common operation conditions for the system in 

specified time intervals. For the simulations it is assumed that the contributions from 

conventional generators (diesel, gas) occur at a single node of the system, which is 

previously identified as an input. Possible locations for renewable generation must also be 
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specified as inputs. After these locations are defined the algorithm always considers these 

nodes for DES sitting even if their specific contribution is determined to be small. 

 Distributed energy resources are modeled as hybrid units (Section 2.4.2), 

consequently renewable generation is connected directly to the storage (i.e., not injecting 

energy directly to the microgrid).  

 Current injections from distributed sources and load demand at each node n are 

modeled as constant power: 

 
௡ܫ ൌ ൬ ௡ܲ

௡ܸ
൰
כ
 (5.2.1)

 Since the main objective of the algorithm is the long-term assessment of resource 

allocation, reactive power is not considered. Similar approaches have been used in the 

literature [52] [53]. However, is important to note that power electronic converters are 

capable of supplying reactive power within the limits of their capability curve. Liu and 

Bebic have shown that by increasing inverter size by 10% the reactive power can be 

increased from zero to nearly 46% at maximum capacity [54].  

 Another important assumption is that non-renewable energy has zero impact on 

costs, and renewable energy zero impact on pollutants. It would be unfair for some 

renewable energy sources like solar photovoltaic to use non-renewable generation prices 

without internalizing the costs associated with the environmental impact of these 

technologies. The approach used was to consider installation costs and environmental 

impact as two separated objectives. Since renewable energy sources have a larger impact on 

costs rather than on environmental impact, these technologies were modeled as full cost, 
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zero emissions. The opposite was done to the non-renewable energies, because of their 

significantly lower costs (compared to renewables) and larger environmental impact. 

However, by using this assumption the algorithm is unable to include technologies which 

do not fit with this supposition, such as CHP turbines and solar thermal generators. The 

algorithm was tested with good results for solar photovoltaic and wind generators. To 

include other generation technologies it would be necessary to assess if the assumption 

holds, or develop a method that overcomes this limitation. The latter is mentioned in the 

future work section of this thesis. 

 The algorithm only considers installation costs of technologies, not including all 

costs and benefits associated with the microgrid operation. Future additions should not be 

limited to fuel and maintenance costs. All economical, environmental and social benefits in 

the microgrid life cycle must also be included (see Section 3). The life cycle analysis was 

out of the scope of this work, and is left as future work. 

5.3 Steps of the Optimization Process 

 The algorithm starts by generating a number of random solutions (decision vectors) 

which are evaluated and then introduced into the NSGA-II algorithm. After NSGA-II, 

crossover and mutation operators are applied to the offspring, forming a new generation of 

solutions. In the case that some of the solutions violate the defined constraints, these are 

eliminated from the solution pool. The process is repeated iteratively until a number of 

generations have passed or after a pre-determined goal (objective value) is achieved. 

Because of the heuristic nature of MOEA, a global optimum cannot be guaranteed. The 

algorithm flowchart is illustrated in  
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Figure 5.3.1. 

5.3.1 Time Model 

 The time period is divided into t=1,2,3…, T discrete time intervals. These intervals 

must be pre-defined as inputs to the algorithm. Lengths of time intervals depend on the 

availability of accurate data and could range between 15 minutes to one hour. All variables 

are assumed constant during each time interval.  
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Figure 5.3.1: Flowchart of the Optimization Algorithm.  
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5.3.2 Distributed Energy Storage Model 

 The power output of each DES at time interval t is defined by its rated power and 

stored energy. Because energy storage could only be charged by renewable energy (see 

assumptions, Section 5.2), the level of stored energy is defined by the quantity of energy 

flowing from renewable resources to the unit at previous intervals. Figure 5.3.2 illustrates 

two architectures of DES unit. In the first, a renewable energy generator is connected in 

hybrid mode to a battery inverter, which converts the DC voltage into AC and injects it to 

the system. This configuration eliminates the problem of intermittence and sudden variation 

of renewable sources. The second configuration shows a storage unit connected to the 

system, and a renewable generator connected at the same point. In both configurations the 

stored energy at the end of interval t will be the result of the net sum of storage and 

renewable contributions, minus power conversion losses. The hybrid scheme used through 

this work is the one in the left part of the figure (hybrid). From now on, the terms DES and 

hybrid DES units will have the same meaning. 

 

Figure 5.3.2: Two types of Architectures for a hybrid DES unit. 
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For each DES unit n=1,2,…,N, we define: 

EnR =  nominal energy storage rating of DES unit n. It is defined as the electrical 

capacity in megawatt-hour (MWh) of the battery bank. 

En0 =  initial energy stored at time t=0 (MWh). 

En(t)= stored energy in DES unit n at the end of time interval t (MWh).  

PnR = nominal power rating of DES unit n. It is defined as the capacity of the DC-AC 

inverter in megawatts (MW). 

Pn(t)= power output of DES unit n at time interval t (MW). 

RETnR= nominal power rating of renewable energy generator connected at DES unit n 

(MW).  

RETn(t)= power output of renewable energy connected at DES unit n at time interval t 

(MW). 

 Let ER, PR and RETR be the vector of DES energy, power, and renewable energy 

ratings, respectively; W the vector of power outputs, S the vector of stored energy and R the 

vector of renewable energy outputs, then: 

 0 ൑ ܹሺݐሻ ൑ ோܲ (5.3.1)

 ܹሺݐ ൅ 1ሻ ൑ ܵሺݐሻ (5.3.2)

 0 ൑ ܵሺݐሻ ൑ ோ (5.3.3)ܧ

 0 ൑ ܴሺݐሻ ൑ ܧܴ ோܶ (5.3.4)

  Equations 5.3.1 to 5.3.4 ensure that the power outputs of DES units and 

renewable energy, and the energy stored at battery banks at each time interval lies within 

the nominal ratings specified for the manufacturers. For simplicity, Equations 4.3.1 to 4.3.4 

are defined for one-hour intervals; however they could be adapted for other time intervals 

by properly adjusting the time increment. 
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 Each interval gets the information of stored energy at the previous interval E(t-1) as 

an input and calculates the appropriate power output of DES units for this time frame 

according to load sharing equations 4.3.5 and 4.3.6. With these power outputs relevant 

parameters for the objective functions calculation are stored for each interval. These values 

are DES unit outputs, total system losses, non-renewable energy contributions, reserve 

status. Then, this information is processed for the evaluation of the objectives functions. 

The process is illustrated in Figure 5.3.3. 

 

Figure 5.3.3: Calculation of Objective Functions. 
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ܲ݊ሺݐሻ ൌ ஽ܲሺݐሻ כ

ܲ݊௠௔௫ሺݐሻ
∑ ௠ܲ௔௫ ሺݐሻ

 (5.3.5)

where ܲ݉ܽݔሺݐሻ is the vector of ܲ݊݉ܽݔሺݐሻ: 

 
ܲ݊௠௔௫ሺݐሻ ൌ   ൝

ܲ݊ோ ݂݅ ሻݐ௡ሺܧ ൐ ܲ݊ோ

ሻݐ௡ሺܧ ݁ݏ݅ݓݎ݄݁ݐ݋
 (5.3.6) 

5.3.3 Demand Response Model 

 The algorithm is capable of distinguishing between different types of customers and 

apply demand response strategies based on this information. Three different service levels 

could be defined: 

A – Sensitive Customers: These types of costumers need to have a continuous energy 

supply. 

B – Interruptible Customers: These customers could lack of part or their total electricity 

demand during certain hours of the day. 

C – Controllable Customers: These customers could lack of part or their total electricity 

demand when the system requires it. The maximum interruption time must be specified. 

 The demand response strategy works as follow: 

1. If the systems demand  ܲܮሺݐሻ is greater than the maximum possible output of DES 

units ܲ݉ܽݔሺݐሻ at time t, the system is eligible for demand response. 

2. The algorithm evaluates all possible load curtailments ஽ܲோௌ from Interruptible and 

Controllable Customers who have not completed their daily interruption quota. 

3. The alternative that makes ܲܮሺݐሻ െ ሻݐሺݔܽ݉ܲ െ  .closer to zero is selected ܴܵܦܲ
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4. Customers selected in step -2- are partially or fully disconnected for time interval t, 

depending on their contracts with microgrid operator. 

5.3.4 The Decision Variable Vector 

 The possible placement alternatives are represented as a vector of values of fixed 

length, called the decision variable vector. This vector is comprised of the rated power, 

rated energy and rated distributed generation connected at each DES (PR, ER and RETR). 

Figure 5.3.4 shows the structure of the decision vector. 

 

Figure 5.3.4: Decision Vector for the optimum DER sizing/sitting problem. 

The length of the decision vector is 3*n + 1 

 Each parameter on the decision vector is pre-defined with an upper and a lower 

bound. These numbers define the range of values the MOEA will consider in the 

optimization process. The selection of reasonable upper and lower bounds is essential for 

the algorithm convergence and speed. For example, when selecting the limits of the power 

rating PR, the maximum intervals should be between zero and a value slightly higher than 

the total system demand, in case all generation is desired at one node. The energy ratings 

should be sized in accordance with the desired hours of reserve, and so on. 
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5.3.5 Objective Functions 

 The main goal of the algorithm developed in this thesis is to determine good 

location and capacities for DES units for achieving a ‘sustainable’ microgrid. This is 

accomplished by minimizing different objective functions aimed at the sustainability of the 

mcirogrid. However, the mathematical formulation of objectives aimed at sustainability is 

not an easy task, and requires the representation of these objectives as indexes or other 

factors. In this work, three objective functions are defined: the first, Minimize Installation 

Costs, which takes into account the economical aspects of the microgrid sizing and sitting. 

The second, Minimize Particulate Emissions, is a representation of the environmental 

impact of the project. The third, Minimize Average Hours of System Reserve optimizes the 

quantity of distributed energy storage in the system, and the fourth, Minimize Non-

Renewable Energy Penetration, minimizes the penetration of non-renewable generators in 

the microgrid (the last two address both social and economical impacts). Although these 

indexes are a good approach for optimizing the desired objectives, the algorithm is flexible 

for upgrading or incorporating new ones. In the following, each objective function is 

described in more detail. 

Minimize Installation Costs 

 This objective takes into account investments necessary for the installation of DES 

equipment in the microgrid. The DES units have two cost dimensions: the power rating and 

energy capacity. The power rating cost ௖ܲ ܧܴ+  ௖ܶ  is represented by the DC-AC inverter 

interface plus the size of the RET generators feeding the DES units. The energy cost  ܧ௖ is 

represented by the size of the battery arrays. There is also a fixed cost  ܨ௖ associated with 
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the construction and conditioning of the power plant site, legal and administrative work, 

and other miscellaneous activities which are independent of the size of the power plant.  

ݐݏ݋ܥ  ൌ ௖ܨ ൅ ௖ܲ ൅ ܧܴ ௖ܶ ൅ ௖ܧ ሺ$ሻ (5.3.7) 

 
௖ܲ ൌ ෍ܲ݊ோ כ ௖ܲ௙

௡

௜ୀଵ

 (5.3.8) 

 
௖ܧ ൌ෍݊ܧோ כ ௖௙ܧ

௡

௜ୀଵ

 (5.3.9) 

 
ܧܴ ௖ܶ ൌ෍ܴ݊ܶܧோ כ ܧܴ ௖ܶ௙

௡

௜ୀଵ

 (5.3.10)

 ௖ܲ௙ ௖௙ܧ ,  and ܴܧ ௖ܶ௙  represent the incremental power and energy costs. ௖ܲ௙  and 

ܧܴ ௖ܶ௙ are defined in $/MW, while ܧ௖௙ in $/MWh. 

Minimize Particulate Emissions 

 This objective accounts for the environmental impact of the thermal generation in 

the microgrid for the period of study. Emissions are represented in proportion of the total 

energy from non-renewable sources. The total emissions are calculated by: 

ܯܧ ൌ ேோܧ כ ݂݁݉ܽܿ (5.3.11) 

where ܧ௠  is the total system emissions, and Emfac is the emission factor for the used 

combustible. A piecewise emission curve could also be specified for this Emfac. 

Minimize Average Hours of Energy Reserve 

 This objective is defined as the average hours of supply that energy storage units 

have in reserve at each time interval. The energy reserve is important for achieving 
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sustainability in microgrids with large penetration of intermittent resources. The objective 

is defined as: 

ோܪ ൌ ሾ݁݃ܽݎ݁ݒܽ
ܵ

஽ܲሺ௕௔௦௘ሻ
ሿ (5.3.12) 

where ܪோ is the average hours of system reserve, and S and PD were previously defined as 

the vector of energy stored and system demand, respectively. 

Non-renewable Energy Penetration 

 Although renewable generation brings many environmental, quality and security 

benefits, non-renewable generation is also required for keeping sustainability in economic-

constrained microgrids. The visualization of this objective is useful because allows the 

decision maker to watch the effects of different levels of non-renewable generation (ܴܰܧሻ.  

 In another perspective, this objective could be seen as the energy injections from a 

main grid, or the potential loss of load (PLL) of the system, defined as the demand that 

cannot be satisfied by the microgrid. 

ேோܧ ൌ෍ ஽ܲሺݐሻ െܹሺݐሻ
஽ܲሺݐሻ

்

௧ୀ଴

 (5.3.13) 

 While a set of objective functions is defined in this thesis, the algorithm proposed is 

easily expandable for handling others. Some interesting objectives that could be integrated 

are mentioned in the Future Work chapter.  
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5.3.6 Constraints 

 The MOEA objective space is restricted by a set of constraints. These constraints 

ensure that the system work under acceptable operation ranges. Also, by constraining the 

objective space these constraints help the algorithm to achieve better results in less time. 

While a set of constraints is defined in this thesis, the algorithm proposed is easily 

expandable for handling others.  

Consider only long-term storage 

 This constraint ensure that the algorithm only consider solutions that aim for long-

term storage. For this purpose, solutions with an energy rating smaller than its 

corresponding power rating are eliminated: 

ோ݊ܧ ൒ ܲ݊ோ (5.3.14) 

DER integrity 

 This constraint ensures that the algorithm does not consider solutions that involve 

only storage, or only distributed generation. This is done to ensure the presence of hybrid 

DES units throughout the system. The following two conditions satisfy the constraint: 

ە
ۖ
۔

ۖ
ۓ

ோܲ ൐ 0
ܴܧ ൐ 0
ܴܶܧܴ ൐ 0

     or     

ە
ۖ
۔

ۖ
ۓ

ோܲ ൌ 0
ܴܧ ൌ 0
ܴܶܧܴ ൌ 0

 (5.3.15) 

Exploit Renewable Resources 

 This constraint prevents the creation of configurations where renewable energy 

could not be fully harnessed. This could occur, for example, when batteries are full at peak 

hours of sun irradiance, in case of solar photovoltaic generation. 
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෍ܴ
்

௧ୀଵ

൑ ෍ܵ
்

௧ୀଵ

 (5.3.16) 

System Constraints 

1 Voltage Constraint: The voltage at all nodes is kept under normal range. 

௠ܸ௜௡ ൑ ௡ܸ ൑ ௠ܸ௔௫ (5.3.17) 

2 Line Thermal Limits: Line flows are kept under nominal range. 

ܵ௠௜௡ ൑ ܵ௡ ൑ ܵ௠௔௫ (5.3.18) 

5.3.7 Mathematical Formulation of the Problem 

 If optimization objectives and constraints are substituted in Equation 3.1.1 the 

optimization problem could be expressed mathematically as: 

 
 ܍ܢܑܕܑܖܑۻ ሻ࢞ሺࡲ ൌ ܍ܢܑܕܑܖܑۻ ሺሾࢌ૚ሺ࢞ሻ, ,ሻ࢞૛ሺࢌ ,ሻ࢞૜ሺࢌ  ሻࢀሻ ሿ࢞૝ሺࢌ
 ષ ࣕ ࢞
 
Installation Costs: 
 ݁ݖ݅݉݅݊݅݉ ଵ݂ሺݔሻ

ൌ  ෍ܲ݊ோ כ ௖ܲ௙

௡

௜ୀଵ

൅ ෍݊ܧோ כ ௖௙ܧ

௡

௜ୀଵ

൅ ෍ܴ݊ܶܧோ כ ܧܴ ௖ܶ௙

௡

௜ୀଵ

   

 
Particulate Emissions: 

 ݁ݖ݅݉݅݊݅݉ ଶ݂ሺݔሻ ൌ ܴܰܧ  כ ݂݁݉ܽܿ  

Average Hours of Reserve: 

 ݁ݖ݅݉݅݊݅݉ ଷ݂ሺݔሻ ൌ  ሾ݁݃ܽݎ݁ݒܽ  ܵ
ሻ݁ݏሺܾܽܦܲ

 ሿ 

Non-Renewable Energy Penetration: 

 ݁ݖ݅݉݅݊݅݉ ସ݂ሺݔሻ ൌ ෍
ሻݐሺܦܲ െܹሺݐሻ

ሻݐሺܦܲ

ܶ

ൌ0ݐ
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Subject to: 

ோ݊ܧ  ൒  ܲ݊ோ 

 

ە
ۖ
۔

ۖ
ۓ

ோܲ ൐ 0
ோܧ ൐ 0
ܧܴ ோܶ ൐ 0

     or     

ە
ۖ
۔

ۖ
ۓ

ோܲ ൌ 0
ோܧ ൌ 0
ܧܴ ோܶ ൌ 0

 

 

෍ܴ
்

௧ୀଵ

൑  ෍ܵ
்

௧ୀଵ

 

 

௠ܸ௜௡ ൑ ௡ܸ ൑ ௠ܸ௔௫ 

 

ܵ௠௜௡ ൑ ܵ௡ ൑ ܵ௠௔௫ 
 

5.3.8 Solutions 

 The solution of the MOEA is a set of pareto-optimal solutions with respect to each 

objective. This set of solutions is obtained after the algorithm achieves a pre-specified 

number of generations or after a number of individuals achieve acceptable objective values. 

Each solution is represented as a Decision Variable Vector (see Section 5.3.4), which must 

satisfy the following conditions: 

• The solution must be a member of the pareto-optimal front. 

• The solution must be in the range within the Decision Variable Vector limits. 

• The solution must not violate any of the problem constraints (Section 5.3.6). 
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5.4 Case Study: 6-bus Remote Village 

 The following case study consists on a hypothetical remote village, consisting in 

one radial feeder. More details are given next. 

− Time Model: The system is modeled for a time period of one year. The data is 

sampled in intervals of one hour. 

 

− Characteristics: The system modeled is a village separated from the main electric 

system. It is located in a region where a vast solar resource is available. Non-

renewable generation is acceptable, but the use of renewable energy is desired. The 

network is a portion of a distribution feeder [55], and consists of 6 nodes, in which 

4 loads with different characteristics are present. DES units of any size could be 

placed in the shown locations. There is one location where non-renewable 

generation (a diesel engine or gas turbine) could be installed.  The system is 

illustrated in Figure 5.4.1. 

 

 

Figure 5.4.1: 6 Bus System for Case Study I. 
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− Line Data: The system is radial and is comprised of 5 branches. Nominal voltage is 

6.6kV and base power is 10MVA. Line data is shown in Table 5.4.1. 

Table 5.4.1: Line Data. 

Sending 
Node 

Receiving 
Node 

R 
(p.u.) 

X 
(p.u.) 

1  2  0.003145  0.075207
2  3  0.000330  0.001849
3  4  0.006667  0.030808
4  5  0.005785  0.014949
5  6  0.014141  0.036547

Base Voltage=6.6kV  ; BaseMVA = 10MVA

 

− Load Data: The system has 4 loads with different characteristics of size and 

sensitivity. Also, three levels hours of load control in demand response strategies 

will be considered. Since the system is predominantly residential, loads are 

considered with power factor equal to unity. Information is shown in Table 5.4.2. 

Table 5.4.2: Load Data. 

Node 
 
 

Type Power 
(kW) 

Controlled 
Hours/day 

2 Sensitive 49.5 0 

3 Non-Sensitive 95.8 3 

4 Non-Sensitive 44.2 3 

5 Non-Sensitive 11.3 3 

A typical load shape for residential customers is considered in the study (Figure 

5.4.2). This daily pattern is fixed for all the time of analysis; this means that neither 

demand growth nor seasonality is considered. 
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Figure 5.4.2: Daily Load Shape. 

− Solar Resource: The solar resource is very abundant in the area. For the modeling, 

the Typical Meteorological Year 3 of the National Solar Radiation Database for the 

western Puerto Rican area (TMY3) was used [56]. TMY3 is a data set of typical 

hourly values of solar radiation for a 1-year period. While this data set represent 

typical rather than extreme conditions, it is still useful for the quantification of the 

resource availability. Figure 5.4.3 shows four typical days in TMY3. 

     

     
Figure 5.4.3: Four typical days in TMY3: High irradiance (left) and Low irradiance (right). 
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− Costs: Costs for this case study are typical incremental costs per MW or MWh 
found in the industry. Table 5.4.3 summarizes these costs. 

Table 5.4.3: Unitary Costs. 

Cost Description Value 

FC Fixed Cost for installing a DES unit at node n. ($) 500,000.00 

PC Cost for power rating of DES unit. ($/W) 0.60 

EC Cost for energy rating of DES unit. ($/Wh) 0.15 

RETC Cost for renewable energy equipment  ($/W) 4.50 

− MOEA Parameters: The parameters for the Multiobjective Evolutionary Algorithm 
are summarized in Table 5.4.4. The decision variable vector is in Table 5.4.5. 

Table 5.4.4: MOEA Parameters. 

Setting Type Parameters 

GA Type NSGA-II - 

Population Size - Size = 150 

Maximum Generations - Max Gen = 2000 

Selection Tournament w/o 
Replacement Size = 2 

Crossover SBX 
Crossover probability = 0.9 

Swap probability = 0.7 
Order of polynomial = 10 

Mutation Polynomial Mutation probability = 12% 
Order of polynomial = 20 

Table 5.4.5: Decision Variable Vector for Values at Each Node. 

Variable Type Lower Bound Upper Bound 

PR Integer 0 200 kW 

ER Integer 0 3,800 kWh 

RETR Integer 0 800 kW 
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6 RESULTS AND DISCUSSION 
 

 

 

 

 

 

 

 

 

6.1 Introduction 

 Figure 6.2.1 shows the optimization algorithm results for a run of 1600 generations. 

MOEA parameters for this case study are presented in Appendix A, and the output data for 

the last population is presented in Appendix B. Line losses were neglected in this case 

study for the sake of computational burden. A worst-case power flow (all energy flowing 

from one node) shows that losses for this system account for less than 0.5% of total energy 

consumption, making the assumption realistic.  

6.2 Analysis of Correlations 

 The scatter-plot matrix shows important information about the characteristics of the 

problem. Each optimal solution in respect to each objective is represented as a red dot in 

the scatter-plot. Also, the black line gives more clear information about the trend of the 

graphic. It is important to note that all incremental cost factors associated with the power 

and energy rating of equipment are linear, thus the non-linear characteristic observed in the 

graphs are a result of the correlation between these objectives. 
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Figure 6.2.1: Scatter-Plot Matrix. 

         Each point represents a solution. 
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 In the case of Installation Costs and Storage Reserve Capacity (SRC), both 

objectives are said to be ‘positively correlated’, because as one rises the other does as well. 

In this case, the correlation is present since the expansion of the SRC requires capital 

investments accounted in the Installation Costs (IC). However, it could be seen that the 

relationship is not linear. This behavior occurs because of two reasons: first, SRC does not 

represent all the system costs, and second, for small configurations expansion of SRC also 

requires expansion of other system elements, making the impact of SRC on costs less 

significant as the capacity rises. The penetration of Non-Renewable Energy (NRE) is 

strongly positively correlated with Particulate Emissions (PE). This is because Diesel 

engines accounts for all emissions in the microgrid. The linear relationship between these 

objectives is linear because of the nature of the emission factors.  

 In the other hand, IC and NRE penetration are strongly negative correlated. If a 

system with higher energy losses is considered, the correlation would be less linear. IC and 

PE are also negatively correlated. This relation could be justified because of the positive 

relation between PE-NRE and the characteristics of the emission factors. 

 Although the previous relationships are at some degree conceivable, there are others 

that are not evident by the simple inspection of the trade-off curves. This is the case of the 

SRE and the penetration of NRE, for example. For the analysis of this scenario, more 

information between the two objectives is needed. For this purpose, in Figure 5.2.2 

solutions with NRE penetration lower than 20% are highlighted with blue dots in all 

graphics. In this range of solutions, the NRE is very low (meaning high penetration of 

renewables) and the Storage Reserve Capacity is very sparsed ranging from 5 to 30 hours 

of independence.  
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 Observing the different scenarios for PE in Figure 6.3.1 is clear that this objective 

occurs fully in accordance with the non-renewable penetration, product of the strong 

correlation between these objectives. If the SRC vs. IC plot is observed, it is evident that the 

costs for this range vary from medium-high to high, despite the contribution from non-

renewable resources is kept very low. This information tells that energy storage is needed 

when the renewable energy dominates the systems’ supply. In addition, it could be seen that 

at this penetration level increasing SRC do not dramatically increase the IC of the system. It 

should be noted that the higher cost for the system occurs because of a large reserve 

capacity. In summary, the relationship between Non-Renewable Energy and Storage 

Reserve Capacity is product of their different correlation with the Installation Costs 

objective: negative for the first and positive for the latter. 

 The same analysis could be performed between remaining objectives and other 

interesting relationships could be discovered. This exercise is beneficial for the decision 

maker because valuable insight into the problem is gained. It is important to note at this 

point that this type of analysis is not possible with classical optimization techniques. 

6.3  Decision-making Process 

 After having a deep understanding about the relationship and trade-offs between 

objectives, the next step consists in selecting the best solution in accordance with the 

decision maker preferences. For this purpose, 4 topologies from the solutions population 

are chosen in Table 6.3.2. The selection of these topologies was made by choosing different 

levels of IC; however, other criteria could be used for this purpose. This includes de use of 

decision-making methods and other techniques. 
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Figure 6.3.1: Scatter-Plot Matrix with Highlighted Solutions. 

Each point represents a solution. Blue dots represent solutions with Non-Renewable Energy penetration lower than 20%.
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 All objective values are normalized in respect of solutions considered ‘good’ for 

each objective. This is done in order to make comparisons in consistent units. With this 

conversion, a high normalized value represents a good solution in respect to that objective. 

The normalized objectives are in  

Table 6.3.1 and illustrated in Figure 6.3.2. The decision maker should be cautious when 

making comparisons between topologies expressed in relative terms, because the 

normalizations are made in terms of the importance of objectives in the same topology. 

Table 6.3.1: Normalized Topologies. 

  Topologies 
Objectives  1

Ref: 1 
2

Ref: 12 
3

Ref: 31 
4 

Ref: 75 
Installation Costs (MM$)  1.0000  0.1972  0.4500  0.0000 

Particulate Emissions (Tons/yr) 0.0000  0.9461  0.5914  1.0000 

Storage Reserve Capacity (Hours) 1.0000  0.5839  0.8894  0.0000 

Non‐Renewable Energy (%)  0.0000  0.9461  0.5914  1.0000 

 
Table 6.3.2: Selected Topologies. 

  Topologies 
Objectives  1

Ref: 1 
2

Ref: 12 
3

Ref: 31 
4 

Ref: 75 
Installation Costs (MM$)  10.9078  8.7572  5.9988  0.0000 

Particulate Emissions (Tons/yr) 0.0000  0.2149  1.6283  3.9849 

Storage Reserve Capacity (Hours) 25.3828  10.5624  2.8062  0.0000 

Non‐Renewable Energy (%)  0.0000  5.3934  40.8621  100.0000 
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Figure 6.3.2: Graphic Representation of the 4 Chosen Topologies. 

 Topology 1 is a system high NRE and low SRC, much the same as a normal 

distribution feeder in the classical representation of power systems. This low renewable 

penetration is reflected by the low IC and insignificant SRC through the year. NRE is very 

high because it is used for supplying base and peak demand. PE is at its peak because of the 

large quantity of energy supplied by the diesel generator. This topology must be considered 

if the concern for environmental aspects is not an important issue, and if energy 

sustainability of the microgrid is not pursued. The detriment of these objectives will 

translate into minimum (good) IC. It is important to note that this analysis does not take 

into consideration the costs associated to greenhouse gas emissions. 

 Topology 2 represents a system with still a large dependence on NRE, but with a 

small portion of its demand supplied by renewable resources. Also, SRC is available in 
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case of any contingencies. This topology should be chosen if the decision maker is 

interested in small penetration of renewable resources with high-reliance on non-renewable 

generators. It should be noted that installation costs are low for this system because of the 

low penetration of renewables. 

 In Topology 3 the system is largely dominated by renewable resources and high 

levels of storage are present. Because of this, IC has also risen. As could be seen in the pie-

charts, the importance of NRE of Topology 2 is now diminished by the presence of more 

SRC. It is evident that the hours of reserve for this topology are far more than in Topology 

2. Since NRE is present at a medium level, PE behaves accordingly. This solution should 

be chosen if the decision maker wishes to have a system with renewable generation but 

does not want to make investments in a large SRC, serving part of the demand by the use of 

fossil generation. 

 In Topology 4 installation costs are elevated as well as SRC. This system is entirely 

supplied by renewable energy, making PE and NRE zero for this case. This topology 

should be chosen if the decision maker wishes to have a system with large renewable 

penetration, vast storage from DES resources, and large interest on environment 

conservation or energy independence. The decision making process now translates into 

defining the importance of each objective and selecting an appropriate solution from the 

population generated by the optimization algorithm. If the decision maker wishes to have a 

considerable penetration of renewable resources, but does not want to incur into large 

capital costs associated with installing vast SRC, the topology that best suited is Topology 

3, illustrated in Figure 6.3.3.  
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Figure 6.3.3: Power and Energy Ratings for Topology 3 
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 Figure 6.3.4 and Figure 6.3.5 show power flows of Topology 3 for two days of 

simulation. The first, is a day which happens after various days of good solar irradiance, 

hence the stored energy is at its peak. The second is a day with poor irradiance during 

previous days. In the first it could be seen that the hybrid DES are capable of supplying the 

base demand of the system while NRE serves as support for peak periods of demand. In the 

latter, the need for NRE is larger because of the lack of stored energy. 

 
Figure 6.3.4: One-Day Power Flow for Topology 3 – high storage level 

 

Figure 6.3.5: One-Day Power Flow for Topology 3 – low storage level 
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6.4 Impact of Demand Response Strategies 

 Demand response introduced by different customer differentiation levels in the 

network are an additional resource for the diminution of microgrid installation costs and 

use of non-renewable generation. The shaded area in Figure 6.4.1 represents the energy 

involved in demand response strategies for Topology 3 in a typical day. It could be clearly 

seen that with this energy diminution at peak hours, the energy necessary from non-

renewable resources is decreased, thus, also decreasing particulate emissions. 

 

Figure 6.4.1: One-Day Power Flow for Topology 3 - effects of Demand Response 

 Figure 6.4.2 shows the diminutions in NRE by increasing the levels of demand 

response in the network. This figure illustrates the effects of different levels of demand 

response in the NRE and PE necessary for the energy sustainability of the system. While 

demand response may bring benefits in terms of these two objectives (plus expected 

diminutions on IC),  when analyzing the maximum level of energy that could be involved 

on these strategies the decision maker should bear in mind the social impacts and the 
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peoples’ will to accept and promote these measures. Consequences of failing in the 

assessment of social repercussions could compromise the long-term sustainability of the 

microgrid. For example, if a system is planned and dimensioned counting on the 

contributions of demand response, and then the people reject the strategies, the system 

would not be sustainable from the social and technical point of view and is likely to 

collapse. 

 

 

Figure 6.4.2: Effects of Demand Response in One Day for Topology 3 

  

 An extra two-objective simulation was made for finding the optimal level of 

demand response in the system. For demonstration purposes, the simulations were made for 

a time interval of 5 days. An extended time interval would be far more accurate and is 

needed for making planning decisions, the results obtained are still useful for watching 
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 Figure 6.4.3 show the trade-off curve between the Energy in DRS and Non-

Renewable energy penetration.  The solutions with larger quantity of energy curtailed in 

DRS are highlighted. The negative correlation of these two objectives could be easily 

appreciated. It demonstrates that for higher levels of demand response, the dependence on 

non-renewable energy is diminished. The relation between the two objectives is obscured 

by the energy ratings of DES units, which are forced to diminish because of the pressure of 

the installation costs objective. This effect makes the system more dependent on non-

renewable energy for some cases. 

 

Figure 6.4.3: Non-renewable Energy vs. DRS. 
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bigger than 150 members. However, the computational time is dramatically increased by 

large populations.   

 Another important parameter is the constraint-handling technique used in the 

algorithm. Three different approaches for constraint handling were tested:  

1. Constraints in Section 5.3.6 were defined for each node and introduced into the 

MOEA as penalty functions – Good results but large computational time. 

2. Constraint violations for all nodes were added into a global constraint factor (for 

each constraint at all nodes). This approach yield bad results. The algorithm got 

stalled numerous times in non-feasible regions. 

3. The search space was restricted of achieving prohibited zones delimited by the 

constraints. This approach was used with the ‘DER integrity’ constraint defined in 

Section 5.3.6, achieving average results. Sometimes the algorithm got stalled in the 

PR=ER=RETR=0 alternative for a large number of generations, but in general the 

results were fair good. Another advantage was the decreased computational time in 

comparison with method 1. Improvements for this method are suggested in the 

Future Work section. 
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7 CONCLUSIONS AND FUTURE WORK 
 

 

 

 

 

 

 

 

 

 

 

7.1 Conclusions 

 Governments in developing countries require solutions to provide electricity access 

for more than 1.5 billion of people that currently do not have. The largest portion of these 

people live in rural and isolated areas, making off-grid energy solutions like microgrids 

ideal for these zones. The microgrid concept could also be applied in rural and isolated 

areas of developed countries. A microgrid is a combination of different types of loads and 

distributed energy resources (DER) which can autonomously meet the power, energy and 

quality requirements of the customers in its area. Microgrids have proven to give benefits to 

both customers and utilities in terms of efficiency, power quality, environment conservation 

and community development. Current challenges for the development of microgrids 

include the design of solutions that combine demand side and supply side alternatives 

aimed at the achievement of sustainability for particular locations. 
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 In this work a method for the optimal sizing and location of distributed generators in 

usually isolated or stand-alone microgrids was presented. The proposed algorithm tackles 

the resource allocation problem in microgrids with special interest in the microgrid 

sustainability and self-reliance. These two aspects are very important in the microgrid 

planning process, especially for isolated areas. Various strategies for the achievement of 

sustainability and self-reliance have been analyzed in this work and incorporated into the 

algorithm, including the use of non-renewable energy, installation of distributed storage 

units, and application of consumption reduction strategies at the customer side. All of the 

previous sustainability strategies have related social, economical and environmental issues 

that are also presented. 

 For the optimization process, The Non-dominated Sorting Genetic Algorithm II 

(NSGA-II) was selected. NSGA-II is one of the leader methods in the field of elitist 

multiobjective evolutionary algorithms (MOEAs). MOEAs imitate the Darwinian natural 

selection and natural genetics process, in which individuals of a population go through 

stochastic operations such as selection, mutation, and crossover in order to achieve better 

objective values. The greatest advantage of MOEA for the proposed method is the 

capability of processing entire populations on a single iteration. Because of this 

characteristic, different system topologies could be optimized in a single run of the 

algorithm, eliminating the need of any a-priori information about objectives such as 

weights or ߳-constraint vectors. A drawback of MOEAs is that an optimal solution could 

not be guaranteed because of its stochastic nature; however, with the accurate tuning of its 

control parameters very successful results can be obtained.  
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 The algorithm was successful when finding different optimal system topologies 

with respect to different pre-defined objectives. A case study of a microgrid in a remote 

village was presented in which the algorithm was tested with four different objectives 

aimed at the assessment of microgrid sustainability: Installation costs, energy involved in 

demand response strategies, average system reserve, and contributions of non-renewable 

energy. Results showed that total installation costs are largely dominated by the storage 

reserve capacity making this alternative expensive from the economic point of view. In the 

other hand, alternatives which relied on the use of non-renewable energy showed the lowest 

installation costs but caused large quantities of particulate emissions, elevating the 

environmental impact of the project. The relationship between non-renewable energy 

penetration and storage reserve capacity was also analyzed. An interesting association 

between these two objectives is produced by the different correlation between the two and 

their respective installation costs. After analyzing different relationships between 

objectives, the decision-making process was continued until an ‘optimal’ configuration was 

selected, based on the objectives’ preferences of an imaginary decision maker. Lastly, the 

importance of demand response strategies in cost reduction and non-renewable dependence 

was demonstrated by simulating the case study for different demand response levels and 

watching the effects on the aforementioned objectives. 

 Regarding to the MOEA performance, different simulations were performed until a 

good set of control parameters was found. It was found that population size is important for 

the convergence and diversity of the algorithm results. Large populations are more likely to 

find optimal solutions since the search space is better covered. However, these benefits are 

at the expense of computational time, which is dramatically increased by large populations 
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especially when power flow calculations are needed for the quantification of losses, 

voltage, and thermal constraints. Another important parameter is the constraint handling 

technique used in the algorithm. Different constraint strategies were studied, first, different 

constraints were defined for each node and introduced into the MOEA as dynamic penalty 

functions, second, constraint violations for all nodes were added into a global constraint 

factor (for each constraint); and third, the search space of restricted of achieving prohibited 

zones delimited by the constraints. Using the first approach computational time for each 

generation increased significantly because of the augmented number computations. 

However, the algorithm achieved better solutions in fewer generations, compared with the 

other approaches. Using the second approach the algorithm did not presented good 

convergence characteristics because a clear understanding of the violation is not given to 

the algorithm. Using the third approach computational time decreased significantly because 

fewer calculations were needed, but at the expense of a larger number of generations 

needed for the algorithm to achieve good results. 

 According to the successful implementation of the developed models for the 

microgrid planning problem, we can summarize that the method developed in this work 

represents a valuable contribution to the modern heuristics research applied to new 

tendencies in energy technologies, and constitutes an additional tool for the promotion of 

energy sustainability and social development in isolated areas. 

7.2  Future Work 

 In this thesis a method for the optimal allocation of distributed generation resources 

in isolated microgrids is developed. The proposed algorithm deals with the optimization 

problem with special interest on the sustainability and self-reliance of the microgrid. As a 
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general recommendation, it is suggested to further study other implementations of MOEAs 

in the field of microgrids and smart-grid technologies. Future upgrades should include the 

construction of better mutation and crossover operators that could distinguish connections 

between energy storage, inverter capacity and renewable generation connected at each 

node. This addition will improve convergence of the algorithm and would significantly 

lower the execution time of the program. 

 The developed algorithm tackles the microgrid long term planning problem, but 

there are still much work to do in methods for assessing optimal operation and unit 

scheduling of microgrids with distributed energy storage, considering resource availability, 

price signals from main grids and interconnections with other microgrids.  

 A good addition would be the incorporation of other demand response strategies 

into another objective function in the optimization algorithm, either as an index, or 

parameter. Also, it would be important to enhance the current work with different objective 

functions that deal with more robust environmental indicators, such as the ecological 

footprint of the project. Another useful improvement would be the inclusion of life cycle 

analysis of the proposed solutions taking into account more detailed information about 

hidden revenues, costs and externalities of renewable and non-renewable technologies.  

 For the case of rural projects in developing countries, an interesting addition will 

include ways of comparing installation costs with the willingness to pay (WTP) of the 

customers in the service area and other methods for assessing optimal rate structures that 

promote social development as well as capital recovery.  
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APPENDIX A: INPUT FILE FOR THE MOEA 

 
 
# Input file for the GA Toolbox 
# Author: Kumara Sastry 
# Date: April, 2006 
# 
 
# 
# GA type: SGA or NSGA 
# 
NSGA 
 
# 
# Number of decision variables 
# 
15 
 
# 
# For each decision variable, enter:  
#  decision variable type, Lower bound, Upper bound   
# Decision variable type can be double or int 
# 
double 0 20 
double 0 20 
double 0 20 
double 0 20 
double 0 20 
int 0 3800 
int 0 3800 
int 0 3800 
int 0 3800 
int 0 3800 
int 0 80 
int 0 80 
int 0 80 
int 0 80 
int 0 80 
 
 
 
# 
# Objectives:  
# Number of objectives 
# For each objective enter the optimization type: Max or Min 
# 
4 
Min 
Min 
Min 
Min 
 
# 
# Constraints: 
# Number of constraints 
# For each constraint enter a penalty weight  
# 
2 
1.0 
1.0 
 
# 
# General parameters: If these parameters are not entered default 
#                     values will be chosen. However you must enter  
#                     "default" in the place of the parameter. 
# [population size] 
# [maximum generations] 
# [replace proportion] 
# 
150 
2000 
default 
 
# 
# Niching (for maintaining multiple solutions) 
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# To use default setting type "default" 
#  Usage: Niching type, [parameter(s)...] 
#  Valid Niching types and optional parameters are: 
# NoNiching 
# Sharing [niching radius] [scaling factor] 
# RTS [Window size] 
# DeterministicCrowding 
# 
#  When using NSGA, it must be NoNiching (OFF). 
# 
NoNiching 
 
# 
# Selection 
#  Usage: Selection type, [parameter(s)...] 
#  To use the default setting type "default" 
# 
#  Valid selection types and optional parameters are: 
# RouletteWheel 
# SUS 
# TournamentWOR [tournament size] 
# TournamentWR [tournament size] 
# Truncation [# copies] 
# 
#  When using NSGA, it can be neither SUS nor RouletteWheel. 
# 
TournamentWOR 2 
 
# 
# Crossover 
#  Crossover probability 
#  To use the default setting type "default" 
# 
#  Usage: Crossover type, [parameter(s)...] 
#  To use the default crossover method type "default" 
#  Valid crossover types and optional parameters are 
# OnePoint 
# TwoPoint 
# Uniform [genewise swap probability] 
# SBX [genewise swap probability][order of the polynomial] 
# 
0.9 
SBX 0.7 10 
 
# 
# Mutation 
#  Mutation probability 
#  To use the default setting type "default" 
# 
#  Usage: Mutation type, [parameter(s)...] 
#  Valid mutation types and the optional parameters are: 
# Selective 
# Polynomial [order of the polynomial] 
# Genewise [sigma for gene #1][sigma for gene #2]...[sigma for gene #ell] 
# 
0.15 
Polynomial 20 
 
# 
# Scaling method 
#  To use the default setting type "default" 
# 
#  Usage: Scaling method, [parameter(s)...] 
#  Valid scaling methods and optional parameters are: 
# NoScaling 
# Ranking 
# SigmaScaling [scaling parameter] 
# 
NoScaling 
 
# 
# Constraint-handling method 
# To use the default setting type "default" 
# 
# Usage: Constraint handling method, [parameters(s)...] 
# Valid constraint handling methods and optional parameters are 
# NoConstraints 
# Tournament 
# Penalty [Linear|Quadratic] 
# 
Tournament 
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# 
# Local search method 
# To use the default setting type "default" 
# 
# Usage: localSearchMethod, [maxLocalTolerance], [maxLocalEvaluations],  
#  [initialLocalPenaltyParameter], [localUpdateParameter],  
#  [lamarckianProbability], [localSearchProbability] 
# 
# Valid local search methods are: NoLocalSearch and SimplexSearch 
# 
# For example, SimplexSearch 0.001000 20 0.500000 2.000000 0.000000 0.000000 
default 
 
# 
# Stopping criteria 
# To use the default setting type "default" 
# 
# Number of stopping criterias 
# 
# If the number is greater than zero 
#    Number of generation window 
#    Stopping criterion, Criterion parameter 
# 
# Valid stopping criterias and the associated parameters are 
# NoOfEvaluations, Maximum number of function evaluations 
# FitnessVariance, Minimum fitness variance 
# AverageFitness, Maximum value 
# AverageObjective, Max/Min value 
# ChangeInBestFitness, Minimum change 
# ChangeInAvgFitness, Minimum change 
# ChangeInFitnessVar, Minimum change 
# ChangeInBestObjective, Minimum change 
# ChangeInAvgObjective, Minimum change 
# NoOfFronts (NSGA only), Minimum number 
# NoOfGuysInFirstFront (NSGA only), Minimum number 
# ChangeInNoOfFronts (NSGA only), Minimum change 
# BestFitness (SGA with NoNiching only), Maximum value 
# 
default 
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APPENDIX B: TABULATED RESULTS FOR THE MOEA 
*Solutons with constraint violations not included 

* Highlighted solutions belong to topologies analyzed in Section 6.3 
 

DECISION VARIABLES  OBJECTIVES 

PR  ER  RETR 

Instalation 
Costs 
($) 

Particulate 
Emissions 
(Tons/yr) 

Energy 
Reserve 
(hours) 

Non‐renewable 
Energy 
(%) REF  2  3  4  5  6  2  3  4  5  6  2  3  4  5  6 

1  9.8  4.4  8.7  1.9  4.8  2725  1116  2582  1523  1082  52  22  45  7  27  10.907834  0  25.382794  0 

2  9.8  4  8.6  2.1  4.8  2725  601  2135  1524  880  52  18  45  7  27  10.551675  0.063107  19.131783  1.583676 

3  13  8.2  0  0  8.2  3794  2505  0  0  1341  66  41  0  0  43  9.563718  0.039159  21.278424  0.982695 

4  12  8.1  0  0  8.9  3262  2849  0  0  1651  68  38  0  0  42  9.49072  0.076218  19.193509  1.912692 

5  13  8.1  0  0  8.3  3218  2868  0  0  1634  68  39  0  0  40  9.441048  0.064793  19.988507  1.625974 

6  13  8.1  0  0  7.4  3444  1675  0  0  1343  66  38  0  0  42  9.202094  0.130108  16.052877  3.265048 

7  13  8.1  0  0  8.2  3374  1757  0  0  1141  63  42  0  0  41  9.177092  0.112318  16.178317  2.818606 

8  13  8.1  0  0  8.2  2709  1628  0  0  1343  69  38  0  0  40  9.134729  0.118604  14.754082  2.97636 

9  13  8.6  0  0  7.5  3252  1762  0  0  1341  67  41  0  0  35  9.054613  0.143487  16.011442  3.600791 

10  13  8.1  0  0  8.4  3398  2692  0  0  1195  68  40  0  0  31  9.015616  0.198477  15.992546  4.980764 

11  12  8.2  0  0  8.1  3366  1465  0  0  923  61  38  0  0  45  9.005832  0.208846  12.891144  5.240984 

12  13  8.5  0  0  7.1  1900  1458  0  0  1051  65  41  0  0  37  8.757188  0.214918  10.562448  5.393351 

13  12  8.1  0  0  8.4  3387  410  0  0  1608  66  29  0  0  44  8.730569  0.304768  11.239133  7.648126 

14  13  9.8  0  0  6.3  3561  1762  0  0  1138  70  42  0  0  23  8.709291  0.346993  13.373334  8.707763 

15  13  8.3  0  0  8.2  1891  1803  0  0  1128  63  39  0  0  38  8.691337  0.220372  10.899142  5.530212 

16  13  8.6  0  0  7.5  1825  1631  0  0  1045  62  41  0  0  35  8.550847  0.263589  10.043338  6.614752 

17  13  8.4  0  0  7.4  1729  1512  0  0  949  63  40  0  0  34  8.454999  0.301192  9.078488  7.558383 

18  13  8.2  0  0  6.5  1839  1269  0  0  913  63  40  0  0  28  8.155225  0.418959  7.933903  10.513743 

19  13  8.2  0  0  7.7  1715  786  0  0  861  61  31  0  0  37  7.972136  0.52886  6.659267  13.271692 

20  13  8  0  0  8.4  3363  2906  0  0  1654  68  40  0  0  5  7.940565  0.794233  8.333019  19.931217 

21  12  8.3  0  0  7.9  1526  1040  0  0  933  57  30  0  0  32  7.541207  0.736014  5.60445  18.470203 

22  12  8.1  0  0  7.4  1667  410  0  0  625  66  29  0  0  26  7.509718  0.876034  5.143391  21.984005 

23  13  9.2  0  0  7.8  1724  1224  0  0  1098  51  37  0  0  28  7.494903  0.792765  5.324569  19.894361 

24  13  7.5  0  0  8.3  1971  914  0  0  872  62  22  0  0  31  7.402388  0.830981  5.265172  20.853393 

25  8.5  4.3  0  0  9.1  3004  1278  0  0  1104  50  25  0  0  35  7.382431  0.968295  11.373502  24.299296 

26  12  9.2  0  0  7.8  1504  570  0  0  871  47  30  0  0  30  6.923399  1.092838  4.030775  27.424676 

27  11  7.8  0  0  7.5  1742  425  0  0  629  48  29  0  0  27  6.746991  1.25751  3.80189  31.557116 

28  14  8.2  0  0  0.5  1884  1314  0  0  846  54  41  0  0  1  6.553418  1.326795  4.864628  33.295806 

29  13  8.3  0  0  8  989  720  0  0  991  38  30  0  0  26  6.300357  1.414376  2.948577  35.493656 

30  13  8.3  0  0  8  1312  893  0  0  1124  33  30  0  0  26  6.169707  1.530396  2.683839  38.405173 

31  9.9  8  0  0  7.2  971  866  0  0  1101  43  29  0  0  15  5.998766  1.628302  2.806212  40.862119 

32  12  8.2  0  0  7.5  1040  802  0  0  959  36  29  0  0  16  5.723016  1.756477  2.093533  44.07866 

33  13  8.5  0  0  0  1308  973  0  0  0  55  38  0  0  0  5.649677  1.472386  3.607186  36.949406 

34  12  8.5  0  0  0  1320  844  0  0  0  55  38  0  0  0  5.628963  1.517168  3.545197  38.0732 

35  12  8.9  0  0  0  1308  909  0  0  0  55  36  0  0  0  5.547039  1.536571  3.482549  38.560113 

36  12  8  0  0  0  1600  1231  0  0  0  51  37  0  0  0  5.499379  1.568956  3.617823  39.372831 

37  12  8.3  0  0  6.7  974  839  0  0  646  39  20  0  0  16  5.398051  1.924751  1.688111  48.301466 

38  11  8.5  0  0  0  1224  909  0  0  0  47  36  0  0  0  5.168555  1.72308  3.051333  43.240561 

39  12  8.2  0  0  7.4  974  413  0  0  947  38  15  0  0  16  5.112351  2.08785  1.373307  52.394437 

40  12  7.1  0  0  0  1511  1178  0  0  0  41  33  0  0  0  4.842889  1.945954  2.63987  48.83355 

41  6.8  8.1  0  0  0  3366  1732  0  0  0  28  38  0  0  0  4.819398  2.102011  4.266119  52.749784 

42  14  8.1  0  0  0  1176  860  0  0  0  43  26  0  0  0  4.534094  2.094955  1.684413  52.572735 

43  14  8.7  0  0  0  1014  860  0  0  0  42  27  0  0  0  4.514026  2.098818  1.592041  52.669663 

44  13  4.7  1.6  0  0.1  1931  1325  1954  0  922  10  3  2  0  6  3.976487  3.435121  5.951073  86.204077 

45  6.6  9.3  0  0  0  946  854  0  0  0  28  30  0  0  0  3.970514  2.394134  1.832695  60.080605 

46  11  5.5  0  0  0  1263  398  0  0  0  45  12  0  0  0  3.906078  2.424135  1.864955  60.833468 

47  6.8  6.3  0  0  0  1054  766  0  0  0  29  24  0  0  0  3.732835  2.52709  1.945164  63.417124 

48  7.2  7  0  0  0  1308  78  0  0  0  41  11  0  0  0  3.628926  2.63981  2.769074  66.245812 

49  14  5.3  0  0  0  1028  286  0  0  0  39  11  0  0  0  3.555034  2.619214  0.878336  65.728963 

50  7.2  6.5  0  0  0  857  510  0  0  0  27  23  0  0  0  3.533381  2.621886  1.489891  65.796017 

51  7.2  6.5  0  0  0  761  650  0  0  0  27  20  0  0  0  3.404887  2.696961  1.302355  67.680017 

52  0  0  0  18  2.2  0  0  0  438  3123  0  0  0  36  1  3.31332  2.939662  2.012541  73.770587 

53  7.2  6.5  0  0  0  761  650  0  0  0  22  20  0  0  0  3.179887  2.830394  0.953036  71.028502 

54  13  0  0  0  4.5  621  0  0  0  281  32  0  0  0  11  3.167647  2.815862  0.648286  70.66384 

55  10  4.7  0  0  0  154  280  0  0  0  16  6  0  0  0  2.757234  3.365054  0.176173  84.445758 

56  12  5.1  0  0  0  1171  763  0  0  0  29  1  0  0  0  2.735465  3.138163  0.510777  78.751947 

57  10  0  6.5  0  3.5  198  0  423  0  165  18  0  2  0  1  2.678742  3.419049  0.166738  85.800768 

58  13  0  0  0  4.4  761  0  0  0  228  20  0  0  0  11  2.639832  3.134007  0.330416  78.647658 
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59  0  0  0  20  0  0  0  0  438  0  0  0  0  43  0  2.613124  2.928623  0.346841  73.493563 

60  10  5.8  0  0  3.8  198  406  0  0  165  17  1  0  0  1  2.583234  3.465019  0.153802  86.954377 

61  0  0  0  19  0  0  0  0  651  0  0  0  0  39  0  2.459434  2.928573  0.41668  73.492313 

62  0  0  0  19  0  0  0  0  448  0  0  0  0  36  0  2.293984  3.028366  0.315942  75.996592 

63  8.4  4.7  0  0  0.3  130  62  0  0  28  6  3  0  0  1  2.059262  3.71276  0.101366  93.1714 

64  11  0  0  0  0  755  0  0  0  0  29  0  0  0  0  1.980441  3.192959  0.48944  80.127058 

65  11  0  0  0  2.2  1747  0  0  0  37  9  0  0  0  4  1.925924  3.605181  0.199787  90.471722 

66  12  0  0  0  0  300  0  0  0  0  24  0  0  0  0  1.694562  3.349082  0.216412  84.044945 

67  6.8  3.2  0  0  0  437  144  0  0  0  2  6  0  0  0  1.504104  3.757526  0.078281  94.294803 

68  7.2  6.5  0  0  0  343  134  0  0  0  3  4  0  0  0  1.464838  3.786692  0.057615  95.026724 

69  14  0  0  0  2.8  201  0  0  0  46  2  0  0  0  1  1.267665  3.898922  0.023063  97.843125 

70  0  0  0  19  0  0  0  0  495  0  0  0  0  13  0  1.266034  3.626143  0.100452  90.997773 

71  0  5.1  0  0  3.7  0  159  0  0  46  0  3  0  0  1  1.26083  3.873237  0.03128  97.198557 

72  0  6  0  0  0  0  979  0  0  0  0  5  0  0  0  0.905836  3.828096  0.096237  96.065764 

73  7.6  0  0  0  0  362  0  0  0  0  3  0  0  0  0  0.732705  3.89618  0.027329  97.774319 

74  0  0  7.9  0  0  0  0  113  0  0  0  0  2  0  0  0.651812  3.928803  0.01524  98.592996 

75  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  3.98487  0  100 

 


