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Abstract

There are two general problems related to finite dynamical systems (FDS): the analy-
sis and the synthesis (also known as the reverse engineering) problems. In the former,
we are interested in uncovering the sequential structure of a given FDS. In the latter,
given a prescribed structure, we have to find an appropriate FDS that accomplishes
the intended behavior. In this work we reverse engineer FDSs related to two recent
applications. One is the problem of finding an optimal linear (i.e., a matrix) FDS
over the integers mod a prime p to efficiently compute FFTs with linear symmetries.
For this, we propose O(p?logp) and O(p®logp) time algorithms for the two and
three dimensional cases as opposed to O(p®) and O(p'?) time of exhaustive searchs,
respectively. Also, we characterize those important cases for which the symmetric
FFT with prime edge-length can be computed through a single cyclic convolution.
For the second problem, the reverse engineering problem in bioinformatics, we study
and compare two finite field models for genetic networks and provide algorithms for
converting one model into the other via a DF'T. Also, we develop efficient methods for
performing arithmetic over finite fields. We propose a new efficient parallel algorithm
based on the Chinese remaindering theorem to interpolate over finite fields.
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Resumen

Con respecto a sistemas dindmicos finitos (SDF), se consideran dos problemas ge-
nerales: el problema del andlisis y el problema de sintesis (también conocido como
“reverse engineering”). En el primero, dado un SDF, el interés es descubrir la estruc-
tura secuencial del mismo. Para el segundo problema, dada una estructura secuen-
cial, se requiere hallar un SDF que cumpla con todos los requisitos previamente im-
puestos. Esta investigacion trata el problema del “reverse engineering” relacionado a
dos aplicaciones recientes. La primera aplicacion consiste en encontrar un SDF lineal
sobre los enteros moédulo un primo p que optimice el computo de una transformada
rapida de Fourier (FFT, por sus siglas en inglés) con simetrias lineales. Para resolver
este problema en dos y tres dimensiones, las buisquedas exaustivas usadas anterior-
mente tenian complejidades del tipo O(p®) y O(p'?). Este trabajo desarrolla algo-
ritmos cuyas complejidades son del tipo O(p*logp) y O(p®logp), respectivamente.
Ademés, este trabajo caracteriza aquellos casos donde la FF'T simétrica de longitud
prima puede ser computada a través de una sola convolucién ciclica. Para el segundo
problema, conocido como el problema del “reverse engineering” en bioinformaética,
este trabajo estudia y compara dos modelos de redes genéticas sobre cuerpos finitos
y da algoritmos que convierten un modelo al otro usando una transformada discreta
de Fourier. Ademads, este trabajo desarrolla métodos eficientes para llevar a cabo
aritmética sobre cuerpos finitos y propone un algoritmo paralelo nuevo y eficiente
para interpolar sobre cuerpos finitos el cual estd basado en el teorema del residuo
chino.
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Chapter 1

Introduction

The idea of a finite dynamical system (FDS) is a very general concept that plays an
important role in a variety of relevant applications. In this work we define such a
system to be a triple S = (V, f, F') where V is a set of n—tuples over a finite field F’
and f:V = V.

An FDS can be interpreted as a (deterministic) finite automaton (without inputs
and outputs) where V is the set of states and f can be regarded as the transition func-
tion from state to state. The state diagram for an FDS is a directed graph where the
nodes are the states and there is an arc from state z to state y if and only if f(z) = y.

There are two general problems associated with FDSs. The problem of analysis
is the problem of given an FDS, determine its sequential structure. The synthesis
problem is the problem of given some representation of the structure, determine a
FDS having the given structure. In more modern parlance this last problem is called
the “reverse engineering problem.”

The analysis and synthesis problems for FDSs have been studied for various spe-
cial cases. In turn, these cases correspond to problems in diverse applications.

One of the most widely studied cases is when V' is a vector space over Z,, p
a prime, and f is linear. Such a system, called an “autonomous linear sequential
machine” (ALSM), or simply “linear modular system” (LMS), can be realized by a
sequential circuit with mod p logic and unit delay elements [4, 12, 25]. Important
special cases of such circuits are shift registers, which in turn have implications in
radar and digital communication systems and error correction.



In this work we concentrate on two recent applications. These arise from the
use of FDSs of vectors over GF(p™) to model genetic networks [23, 24, 27] and the
use of FDSs of equivalence classes of vectors over Z, to efficiently compute prime
edge—length fast Fourier transforms (FFTs) with linear symmetries [42].

We have completely solved the M S—orbits problem for the two and three di-
mensional cases, thus providing the theory for optimizing the computation of prime
edge-length symmetric FFTs. For these cases, given a nonsingular matrix S over Z,,
p prime, we propose, as opposed to exhaustive searchs which yield O(p°) and O(p'?)
algorithms, more efficient O(p?log p) and O(p? log p) algorithms to compute matrices
M that minimize the number of cyclic convolutions (i.e., minimize the number of
M S-orbits), respectively. For n dimensions, we characterize those important cases
where there is only a single cyclic convolution, called the M —minimal case, and pro-
vide a general procedure to compute a maximal matrix which gives one nontrivial
M S-orbit. Also, for the n dimensional cases, we propose a general procedure to
compute the optimal matrix M when the characteristic polynomial of the nonsingu-
lar matrix S factors as the product of two distinct irreducible polynomials.

On the other hand, we have studied and compared two finite field models for ge-
netic networks and provided algorithms for converting one model into the other via a
discrete Fourier transform. We have developed efficient methods for performing arith-
metic over finite fields and proposed a new efficient parallel algorithm based on the
Chinese remaindering theorem to interpolate over finite fields and have C/openMP
implementations of these methods.

1.1 Justification

We consider two types of FDSs (V, f, F'): those with V equal to a set of n—tuples
(x1,Z2, "+, xy), from F = GF(p"), p prime, and those with V equal to a set of
equivalence classes of vectors over F' = Z, modulo a nonsingular matrix S. In each
case we seek algorithms to solve associated reverse engineering problems.

Solutions to these two problems will have important implications for the well
known reverse engineering problem in bioinformatics, as well as the problem of op-
timally computing symmetric FFTs in terms of cyclic convolutions.

The reverse engineering problem in bioinformatics is an important problem of
current interest. That is, given some experimental data from a set of genes of a
living organism, determine the intrinsic relations among them; that is, which genes
influence which. The set of genes and their interactions is called a genetic network.



In essence, the reverse engineering in bioinformatics consists of finding the genetic
network that satisfies all interactions between the underlying genes. The solution to
this problem is of great importance in the treatment of a variety of diseases rang-
ing from cancer to schizophrenia. An adequate mathematical model for a genetic
network together with the appropriate algorithms would permit one to simulate the
network, thus yielding insight into the dynamics of the network and eliminating un-
necessary direct experimentation.

The fast Fourier transform is one of the most widely used and important al-
gorithms in scientific computing. For some data intensive problems, such as x-ray
atomic structure determination or the computation of cyclic convolutions with multi-
dimesional Volterra kernels, a reduction in the amount of data can make a significant
difference, even though the computational complexity remains the same. It is thus
of great interest to take advantage of structured redundancy patterns, called symme-
tries, in the inputs. In [42], it is shown that for prime edge length multidimensional
FFTs, redundant data can be eliminated and computations induced by linear sym-
metries can be eliminated by an optimal choice of a certain matrix M that depends
on the symmetry matrix S. Presently, the only method known to determine such
an M is by exhaustion. We propose to find an algorithm to completely determine
M S —orbits structure, thus greatly reducing computing time.



Chapter 2

Mathematical background

In this chapter we give some preliminaries in algebra, linear algebra, and number
theory that we need in the rest of the work. We give proofs of all results that, to the
best of our knowledge, have not been published elsewhere. Unless otherwise noted,
all other proofs can be found in standard textbooks in finite fields (e.g., [25], [4]),
abstract algebra (e.g., [19], [28]), linear algebra (e.g., [14], [21], [37]), number theory
(e.g., [29]), or algorithms (e.g., [1], [8])-

2.1 Algebraic structures and finite fields

Definition 2.1.1 A group is a set G together with a binary operation * on G such
that the following three properties hold:

1. * 1s associative, that is, for any a,b,c € G,

ax(bxc)=(axb)*c.

2. There is an identity (or unity) element e in G such that for all a € G,

ax€=€exa=a.

3. For each a € G, there exists an inverse element a=' € G such that



If, for all a,b € G, a*xb = bx*a, then G is called an abelian group (i.e., G is a
commutative group). If G is finite, we denote its number of elements by |G|. For our
purposes, we are interested only in finite sets. Hence, from now on when we mention
groups, rings, or fields we refer only to those having a finite number of elements.

Definition 2.1.2 A group G is said to be cyclic if there is an element a € G such
that for any b € G, there is some integer j with b= a’. Such an element a is called

a generator of the cyclic group.

Definition 2.1.3 If a is a generator of a cyclic group G and b € G, the index of

b with respect to a is the smallest positive integer m, denoted by Ind,(b), or simply

Ind(b), for which a™ = b.

Definition 2.1.4 The order of an element a in a group G with identity e is defined

to be the least positive integer k such that a* = e.

Definition 2.1.5 Let S be a set and R be a subset of S x S. R is an equivalence

relation on S if it has the following three properties:
1. (s,8) € R for all s € S (reflexivity ).
2. If (s,t) € R, then (t,s) € R (symmetry).
3. If (s,t), (t,u) € R, then (s,u) € R (transitivity ).

Definition 2.1.6 A ring (R,+,*) is a set R, together with two binary operations
+ and *, such that:

1. R s an abelian group with respect to +.
2. % 1s associative.

3. The distributive laws hold:

ax(b+c)=axb+axcand (b+c)xa=bxa-+cx*a for all a,b,c € F.



Definition 2.1.7 A ring R is said to be commutative if axb = bxa for alla,b € R.
If a ring R contains an element e with the property that a xe = e x a = a for all

a € R, we say that R is a ring with identity.

Definition 2.1.8 A ring R is said to be a division ring if its nonzero elements

form a group under multiplication.

Definition 2.1.9 A field (F,+,*) is a set F, together with two binary operations
+ and * such that

1. F is an abelian group with respect to + having 0 as the identity for addition.
2. F*=F — {0} is an abelian group with identity 1 with respect to *.

3. The distributive laws hold:

ax(b+c)=axb+axc forala,b,ceF.

Theorem 2.1.1 (Wedderburn) Every finite division ring is a field.
Let F[z] be the ring of polynomials over the field F.
Definition 2.1.10 A polynomial p(x) € F[z] is said to be irreducible over F if p(x)

has positive degree and p(x) = q(z)t(z) with q(z),t(xz) € Flz| implies that either q(x)

or t(z) is a constant polynomial.

Definition 2.1.11 A subset S of a ring R is called a subring of R provided S is

closed under + and - and forms a ring under these operations.

Definition 2.1.12 A subset J of a ring R is called an ideal provided J is a subring
of R and for alla € J and r € R we have ar € J and ra € J.

Definition 2.1.13 Let R be a commutative ring. An ideal J of R is said to be
principal if there is an a € R such that J = (a) = {ra|r € R}.



Definition 2.1.14 Let R be a ring and J be an ideal of R. The set
R/J={a+ J|a € R}
is called the residue class ring of R modulo J.

Theorem 2.1.2 For f(z) € F[z], the residue class ring F|x]/(f(x)) is a field if and

only if f(x) is irreducible over F.

Theorem 2.1.3 Let F be a finite field. Then F has p™ elements, where p is a prime

and n is the degree of some irreducible polinomial over Z,.

Corollary 2.1.1 Z,, the integers mod a prime p, is a field with p elements.

If F is a finite field of p" elements, it is customary to call it a Galois field of p™
elements and denote it by GF'(p").

Lemma 2.1.1 Every element a € GF(p") satisfies a?" = a.

Let GF(p"™) be a Galois field of p™ elements and let GF (p™)* denote the multi-
plicative group of nonzero elements of GF(p").

Theorem 2.1.4 For every Galois field GF(p™) the multiplicative group GF (p™)* is

a cyclic group.

Definition 2.1.15 A generator of the cyclic group GF(p™)* is called a primitive
element of GF(p").

Definition 2.1.16 A primitive polynomial of positive degree n over Z, is a monic
irreducible polynomial that has a primitive element of GF (p™) as a root. As a con-

sequence, all its roots are primitive elements of GF(p™).

Lemma 2.1.2 For any polynomial q(x) over Z, of positive degree, with q(0) # 0,

there is a positive integer k for which q(z) divides z* — 1.



The smallest such £ is called the period or order of g(x).

Lemma 2.1.3 For each irreducible polynomial q(x) of degree n over Z,, q(z) divides

n__
Pl — 1.

Lemma 2.1.4 The period of a primitive polynomial of degree n is p" — 1.

In this work, mazimal polynomial and primitive polynomial are the same concept.

Lemma 2.1.5 The number of mazimal polynomials of degree n over Z, is o(p™ —

1)/n, where ¢ denotes the Euler’s p—function.

2.2 DMatrices and vector spaces

Definition 2.2.1 A nonempty set (V,F,+,-) is a vector space if (V,+) is an

abelian group and if a € F, x € V there is defined an element ax € V' subject to
1. a(x+y) = ax + ay;
2. (a+b)x = ax + ax;
3. a-(bx) = (a-b)x;

4. 1x = x;

for all a,b € F, x,y € V (where the 1 represents the unit element of F under -).

Definition 2.2.2 A subset W of a vector space V' over a field F is called a subspace
of V if W is a vector space over F' under the operations of addition (+) and scalar
multiplication (-) defined on V.

There are two important polynomials related to an n x n matrix S. On the one

hand, the characteristic polynomial ¢s(x) of a square matrix S is defined by the de-
terminant |S — zI|. The Cayley Hamilton Theorem states that every square matrix



satisfies its own characteristic equation, i.e., ¢5(S) = 0.

On the other hand, if m(z) is a monic polynomial such that m(S) = 0 with the
property that m(z) divides any ¢(z) for which ¢(S) = 0, then, m(z) is called the
minimal polynomial of S and we denote it by mg(x).

Similarly, for any nonsingular square matrix S over Z,, there is a least positive
integer k such that S* = I, where I denotes an identity matrix of appropriate size.
This k is called the period of S. Matrix S is maximal if its period is p” — 1. Thus,
S is maximal if and only if the smallest positive integer k for which mg(z) divides
¥ —1lisk=p" - 1.

For a monic polynomial ¢(z) = 2" + a, 12" " + - - - + a1z + ag over Z, of degree

n, its companion matriz is given by

00 --- 0 =—ao
1 0 --- 0 —aq
D
0 0 «--- 0 —ap—2
00 --- 1 —ap1

Then, ¢(x) is the characteristic polynomial and the minimal polynomial of C,.
Definition 2.2.3 M, (Z,), abbreviated M, is the set of all n X n matrices over Z,.
Lemma 2.2.1 M, is a finite ring.

Definition 2.2.4 Let S € M,,. The normalizer of S is the set
N(S)={M € M,|MS =SM}.

Theorem 2.2.1 Let S € M,,. Then, N(S) is a commutative ring with identity I,

the n x n identity matriz.

Lemma 2.2.2 Let S € M,, and q(z) be any polynomial over Z,. The set

V, = {x € Zlq(S)x = 0}
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is a subspace of Z}. Vi is called the null space of q(S) sometimes denoted by
N(q(S)).

There are various representations of a finite field GF(p™). In our work it is useful
to consider the following three:

1. Ki(p") = {an1&™ ' +ap_oa™ 2+ -+ a1+ agla; € Z,}, where « is a root of
an irreducible polynomial of degree n over Z,.

2. Ky(p") = {0} U {ca’li = 0,1,---,p" — 1} where « is a root of a primitive
polynomial of degree n over Z,.

3. K3(pn) == {an—lsnil + an_QS"’2 + -t a15 + a01n|ai - Zp} where S € Mn
with ¢g(x) irreducible.

These three representations are isomorphic to each other and it is useful to ex-
amine the mappings that give these isomorphisms.

Theorem 2.2.2 Let P(x) be a primitive polynomial of degree n over Z, and let 3 be
a root of P(x) in GF(p"). Also, let € GF(p") be a root of an irreducible polynomial
R(z) of degree n over Z,. Then there exists a polynomial
Q@) =cp 12" '+ +az+o
over Z, such that
P(Q(a)) = 0.

The coefficients cq,c1,- -, cn_1 constitute a solution of the system of equations ob-
tained by setting each coefficient of P(co+c1x+ -+ -+ cp12™ ') mod R(z) to 0. Now
define

h(f) = Q) and

he(BY) = Q(S")
foreachi=0,1,...,p" — 1. Then

hy: Ko(p™) — Ki(p") and

hQZKQ(pn) — Kg(pn)

are isomorphisms, where S € M,, is nonsingular with ¢s(x) irreducible.
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Corollary 2.2.1 Let S € M, be nonsingular with ¢s(x) irreducible. Then Q(S) €

N (S) is a mazimal matriz (i.e., period p" —1).

Proof

Let P be a primitive polynomial of degree n and S € M,, be nonsingular with ¢g(z)
irreducible. By Theorem 2.2.2, there is a polynomial Q(x) such that P(Q(S)) = 0,
hence, Q(S) is a primitive element of GF(p"), i.e., order of Q(S) is p" — 1.$

Another concept that plays an important role in this work is matrix similarity.

Definition 2.2.5 Let S, 5" € M,,. We say that S is similar to S’, if there exists a
nonsingular A € M,, such that A=1SA =9,

Theorem 2.2.3 Let S,S" € M,,. Then the following properties hold:
1. Similarity between matrices is an equivalence relation.
it. If S and S’ are similar, then they share the same characteristic polynomial.

iii. If S and S’ are similar, then for any polynomial q(z), q(S) and q(S’) are

stmilar.
v. For any polynomial q(x), S commutes with q(S).

Definition 2.2.6 A Jordan matrix of size n associated with A € Z, is a matric
of the form

A1 o 0

0 A 0
Ju(X) = '

0 0 1

o0 --- X

Proof of the following theorem can be found in [14].

Theorem 2.2.4 (Jordan canonical form) Let S € M, be a given matriz such

that ¢s(x) factors into a product of factors of degree 1. Suppose that A1, Ag, ..., A
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are the distinct eigenvalues of ¢s(x) and that the multiplicity of \; is m;, i =

1,2,...,k. Then, S is similar to the matriz
Ji(\) 0
Ja(A2)
0 Je(Ak)

where J.(A) = Iy, (M) B Iny, (M) B --- D In, (Ar), Ny + No+---+ Ny =m,, and

mip+ Mg+ -+ mg =n.

Corollary 2.2.2 Let S € M3 such that ¢s(z) factors into a product of factors of

degree 1. Then, matriz S is similar to one and only one of the following:

~

CI(A) @ Ni(N2) @ Ti(Ng), N # A, i # 5

2. LA ® (N @ Ji(N) @. That is, S = M.
3. J3(A).

4o BN @ (V).

5. Jo(A) @ J1(Aa), Ay # Mg

6. (M) D Ji(A) B Ji(A), At # Ao

Definition 2.2.7 Let S € M,,. A subspace V' of Z}' is said to be S-invariant if
Sx eV, forallxeV.

Definition 2.2.8 Let S € M, be nonsingular. A subspace W of Z} is called a

S-cyclic subspace of Z}} if there exists a vector x € W such that

W = span({x, Sx, S*x,...}).

For a proof of the following theorem, see for instance, [37].
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Theorem 2.2.5 (Rational canonical form) Let V be a finite dimensional vector
space, and suppose that T is a linear transformation of V to V that has minimal

polynomial

m.(z) = pi*(z) - - p (z)
where the monic polynomials p;(x) are distinct and irreducible. Then we can write

V=(<vii>0 @< Vi >)B B (<Vn1>B D < Vpi, >)
where < vij > is a T cyclic subspace of V.. The minimal polynomials for 7;; = 7| <y, ;>
are the elementary divisors
min(r;;) = p; (x)

of V, where

€ = €1 > €io > > €Cp,

These elementary divisors are uniquely determined by 7. Furthermore, if deg(p;™ (x)) =

d; i, then

1,57
dij—1
Bij = (Vig, Tij(Vig), Ty (Vig))

is an oredered basis for vij, and the matriz of T with respect to the ordered basis

B=(Bris-- - Baka)

15 the block diagonal matrix

Cott

[T]s =

C

€
P " (@)

The matriz on the right is called the rational canonical form of 7.
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The following corollary will be used later in section 4.2.1.

Corollary 2.2.3 Let S € M,, with mg(z) = q(x), where q(x) is a monic irreducible
polynomial. Then, there exists a nonsingular matriz A such that
Cy
AT'SA =
Cy
Lemma 2.2.3 Let S € M, be nonsingular with ¢s(x) irreducible and let M €
N(S). Then, my(x) is irreducible.

Proof
By Corollary 2.2.1, there exists a polynomial Q(z) = ¢,_12" 1 + + -+ + ¢11 + ¢y over
Z, such that N = Q(S) is a maximal matrix.

Thus, MS = SM implies that M commutes with any polynomial combination
of S, in particular with N = Q(5).

Now, by way of contradiction, suppose that my,(z) is reducible and let ¢;(x) and
¢2(x) be polynomials of positive degree such that my(z) = ¢1(x)ge(z) with

ged(qi(x), g2(z)) = 1.

Then, V,, i = 1,2 are nontrivial disjoint proper subspaces of Z}. Thus, |V,,| < p"—1.
Let 0 # x € V,,. Note that the set

< Nx >= {x,Nx,...,N?"7*x}
contains p" — 1 vectors since N is maximal and x # 0. Also, note that

Hence, Nx € V,,. Thus, < Nx >C V,,, which is a contradiction. The only possibility
left is that mas(x) = ¢%(x), for some irreducible polynomial ¢(z) and some positive
integer e. Assume e > 1. Then, Ve —V; is nonempty and Vj is a nontrivial subspace
of Z). Let x € Vye —Vyand 0 # y € V. Thus, < Nx >C Ve =V, and < Ny >C V.
Which cannot be the case since | < Nx > | = | < Ny > | = p” — 1. Hence,

muy(z) = q(x).

Corollary 2.2.4 Let S € M,, be nonsingular with ¢s(z) irreducible and let M €
N (S). Then, det(M) = 0 if and only if M = 0, the n X n zero matriz.
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Corollary 2.2.5 Let S € M,, be a nonsingular with ¢s(z) irreducible. Then, N(S)
is a finite division ring.
The following definition appears in [37].

Definition 2.2.9 S € M,, is nonderogatory if ¢s(z) = ms(x).

The following theorem is a consequence of exercise 19 of section 7.2 in [20].

Theorem 2.2.6 Let S € M,, be nonsingular. Then,

N(S) = {cn1S" 4+ cnoS" 2+ - + 12 + olc; € Z,}
if and only if S is nonderogatory.
Corollary 2.2.6 Let S € M, be nonsingular with ¢g(x) irreducible. Then N (S) is
the finite field GF(p").
Proof
By Corollary 2.2.5, N/(S) is a finite division ring. Hence, by the Wedderburn Theo-
rem (Theorem 2.1.1), N'(S) is a finite field of p" elements. Note that

{en 18"+ 28" 2+ -+ 1S + el € Z,}

contains p" elements and that it is a subset of A/ (S). Therefore,

N(S) = {Cnflsn_1 + Cn72Sn_2 +---+ Cls + CoIn‘Ci € Zp}o

Corollary 2.2.7 Let S € M, be nonsingular such that ¢s(zx) is the product of n
distinct factors of degree 1. Then, M € N(S) implies that

M=c, 18" '+ 1S+ ol

for somec; € Z,,1=0,1,...,n— 1.
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2.2.1 Special constructions

Construction I

Let S be a nonsingular matrix over Z, with characteristic and minimal polynomials
given by

ds(z) = (x—A)*(@— X2) and
ms(z) = (z— M)z — A).

Let A be a nonsingular matrix of Theorem 2.2.5 for which

M 0 0
A71SA=S"=[0 XN 0
0 0 X\

We can show, by direct calculation, that if N commutes with S’, then N =

(g g) , where C' is any 2 x 2 matrix and 8 € Z,. Let P(z) = 2 + az + b be

a primitive polynomial over Z, and let Cp = <(1) :2) be the companion matrix
]
associated to P(z). Therefore, in particular, S’ commutes with N = (%P g) , for

any integer t. However, in general, if M commutes with this type of matrices S, it
is not always the case that M = Q(S), for some polynomial Q(x).

5 0 14
Example 2.2.1 Let S = [0 1 0 | be defined over Zy;. Then ¢g(x) = (x —
4 0 15
1)%(z — 2), and ms(z) = (x — 1)(z — 2). Thus, there exists a nonsingular matriz A
1 0 0 1 0 1
such that A71SA=10 1 0. Matriz M= | 0 1 0| commutes with S.
0 0 2 10 0 9

By the Cayley—Hamilton Theorem, if N is an n X n matriz and t > n s an
integer, then N* = f(N), for some polynomial f(x) of degree less than n. Let us
assume there is a polynomial Q(x) for which M = Q(S). Thus, for our example,

we can think of this polynomial as Q(x) = cez® + 12 + ¢q, for some ¢y, c1,c0 € Z,.
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In order to find coefficients ¢y, ¢1, and co we have to solve Q(S) = M, which is

equivalent to

5 0 14\2 5 0 14 1 0 0 1 0 1
|0 1 0| +e,/0 1 0]+el0 1 0f=[0 10
4 0 15 4 0 15 0 0 1 10 0 9

Which is equivalent to solving the system of linear equations

1302 + 561 + ¢ = 1
1262 + 401 = 10
862 + 1401 =1 (21)
902 + 1501 + Chy = 9
cy + cp + ¢ =1
Which s equivalent to solving
1401 + 400 =

6
Tcr 4+ 2¢g = 3

12¢; + ¢ = 3
Which is equivalent to

1ld¢y + 4cg = 6

l4e; + 4¢p = 12
Which is equivalent to

0 = 16.

Therefore, system (2.1) is inconsistent and, hence, there is no such polynomial Q(x)

for which M = Q(S).

The following lemma is a standard result in linear algebra and its proof can be
found, for instance, in [14].

Lemma 2.2.4 Let S € Mj be nonsingular with ¢s(z) = (z — A\)*(z — A2) and
mg(z) = (x — A1) (z — A2), where \; # g, respectively. Let N(S — \I3) = {x €
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Z;’\(S —NI3)x =0}, i =1,2. Then, A7'SA = diag(\i, A1, \o), where the first two
columns of A form a basis for N(S — A\I3) and the last column forms a basis for
N(S — M\o13).

An important fact that derives from Lemma 2.2.4 is that matrix S — A\;I3 has at
least one nonzero row. Let [ag a1 a3] be a nonzero row corresponding to S — Ay Is.
The remaining two rows are simply scalar multiples of [ay a; as]. Thus, equation

(S - )\1]3)X =0

is equivalent to
oLy + A1T1 + AoTo = 0, (22)

which is the equation of a plane that goes through the origin (0,0,0). Thus, a
basis for N(S — A\;I3) consists of two linearly independent vectors x, y which lay on
the plane described by (2.2). Let j be the index of the first nonzero component of
lap a1 ap] (i.e., a; # 0.) Also, let x[j] be the j —th component of vector x and define

x[7] = _aglaj+1 mod 3>
X[j+1mod3] = 1,
X[j +2 mod 3] = 0,

and
ylil = _aflaj+2 mod 3>
y[j+1mod3] = 0,
y[j+2mod3] = 1.

It is easy to see that both, x and y, are nonzero linearly independent vectors that
satisfy equation (2.2) and, hence, {x,y} is a basis for N(S — A1 I3).

Using similar arguments as before, matrix S — A\yI3 has at least two nonzero
independent rows [by by be] and [cy ¢; c]. Thus, equation

(S - )\1[3)X =0
is equivalent to
bol‘() + bl.’lfl + bg.’EQ = 0, (23)
CoTo + C1T1 + CoTo = 0 (24)

which are the equations of two non parallel planes crossing the origin (0,0, 0). Thus,
a basis for N (S — Ay13) is any nonzero vector z laying in the line which is the inter-
section of the two planes described by equations (2.3) and (2.4).
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Let b = (b, b1, by) and ¢ = (¢, ¢1, ¢2) and define the cross product of b and ¢ by
bxc= (b162 — becy, bacy — bpca, bocy — blco).

It is a well known fact that if b and ¢ are nonzero indepedent vectors, then b x c is
a nonzero vector perpendicular to b and c. Furthermore,

z=bxc

satisfies equations (2.3) and (2.4). Therefore, z = b X c serves as a basis for
N(S = AoIy).

The following lemma summarizes the construction of matrix A of Lemma 2.2.4.

Lemma 2.2.5 Let S € Mj be nonsingular with ¢s(z) = (z — A\)*(z — \2) and
ms(xz) = (x — Ap)(xz — Ag), where Ay # Ao, respectively. Let [ay a1 as] be a nonzero
row of S — A\13, and [by by bs], and [cy ¢1 co] be two nonzero independent rows of
S — XoI3. Let j be the index of the first nonzero component of [ag a1 as]. Then, a

matriz A for which A7'SA = diag(\, A1, \2), is A = (x y z), where

x[j] = _aj_laj+1 mod 3> yl7] = _aj_laj+2 mod 3»
x[j+1 mod3] = 1, y[j+1 mod3] = 0,
X[j+2 mod3] = 0, y[j+2mod3] = 1,

and

Z[O] = blcg—bgcl,
Z[l] = bQCO—b()CQ,

z[2] = boCl—blco.

It is straightforward to see that the computational cost for constructing matrix
A in Lemma 2.2.5 is constant.

5 0 14
Example 2.2.2 Let S = [0 1 0 | be defined over Zi; (see Example 2.2.1.)
4 0 15

The characteristic and minimal polynomials of S are ¢ps(z) = (x — 1)*(z — 2), and

mg(z) = (z — 1)(z — 2), respectively. Thus, \y = 1, and Ay = 2. Hence, S — A\ I3 =
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4 0 14 3 0 14
0 0 0 |,andS—XI3=10 16 0 |. A nonzerorow of S— A15 is[40 14]
4 0 14 4 0 13
and the index of its first nonzero component is 7 = 0. Hence,
x[0] = —47'%0=0, y[0] = —47'x14=05,
x[1] = 1, yll] = 0,
x2] = 0, vzl = 1,

Two nonzero independent rows of S — XoI3 are [3 0 14] and [0 16 0]. Thus,

0x0—14%16 14
z=| 3%x0—-14%0 [ =10
316 —-0=%0 14
0 5 14 1 0 0

Hence, A= |1 0 0 |. It is easy to verify that, indeed, A='SA=[0 1 0

0 1 14 0 0 2
Lemma 2.2.6 Let S € Mj be nonsingular with ¢s(z) = (z — \)*(z — A2) and
ms(z) = (£ — A1) (z— N\o), where Ay # No. Also, let M € N'(S) be nonsingular. Then
om () = —q(z)(x—B), for some monic quadratic polynomial q(x) for which g(0) # 0
and some 3 # 0.
Proof

0 0 X
M € N(S) be nonsingularM be any nonsingular. Thus, MS = SM is equivalent to

M(AS'A™)) = (AS'A™HM

A 000
Let A be a nonsingular matrix for which A71S4 = §' = ( 0 A O ) Let

if and only if
(AT'MA)S = S'(AT'MA).

Now, since S’ is a diagonal matrix and A~*MA commutes with S’, we can easily

show that A=!MA = (B 0

0 g
Therefore, ¢pr(x) = pa-11a(x) = —dp(z)(x — §).O

) for some nonsingular 2 x 2 matrix B and some [ # 0.
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Construction I1

Let S € M3 be nonsingular with characteristic and minimal polynomials ¢g(z) =
(x — A)? and mg(z) = (x — \)?, respectively. Then, by Theorem 2.2.4, there is a
nonsingular matrix A for which

A1 0
A7SA=10 X 0.
0 0 A

This matrix A can be computed as follows.

Lemma 2.2.7 Let S € M3 be nonsingular with ¢s(z) = (z — N)? and mg(z) =
(z — X)?, respectively. Let N(S — A3) = {x € Z}|(S — Ms)x = 0}, and x; and
X2 be nonzero vectors such that x; ¢ N(S — Al3) and xa € N(S — \3) is linearly
independent of (S — Al3)xy. Also, let A be the matriz whose columns are the vectors

(S — AM3)x1, x1, and xa, respectively. Then,

A1 0
AT1SA=10 X O
0 0 A

Proof

First, let us see that x; and (S — Al3)x; are linearly independent. Assume the con-
trary. Suppose there is a ¢ € Z, for which (S — Al3)x; = cx1. Then, ¢ must not
be 0 since x1 ¢ N(S — Al3). But, (S — Al3)x1 = cxy implies that Sx3 = (¢ + A)x3.
Which implies that ¢ + X is an eigenvalue of S. That is, A = ¢ + A, since the only
eigenvalue of S is X\. Hence, ¢ = 0. A contradiction. A similar argument shows that
x; and xg are linearly independent. Hence, the columns of A forms a basis for Z;’,
and, in particular, A is invertible.

Second, note that

(S—A3)A = (S—A3)((S—A3)x1 x1 X2)
( (S — )\Ig)le (S — )\Ig)xl (S - )\13)X2 ) .

Now, since mg(S) = (S — M3)? = 03«3 (i-e., the zero 3 x 3 matrix) and x2 €
N(S — ML), then

(S - )\Ig)A = (03><3X1 (S - )\Ig)xl O)
(0 (S—=A3)x; 0).
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Third, note that

o O O
O O =
o O O

d

Henceforth,

which implies that

0
AN S = A)A=AT'SA -\ = (0
0

ATISA = (

2 0 0

Therefore,

o O
S > =
> O O
SN————
<>

Example 2.2.3 Let S = | 13 2 4 | over Zy;. The characteristic and minimal

0 0 2
polynomials of S are ¢s(x) = (x — 2)3, and ms(x) = (z — 2)?, respectively. Now,

0 0 0
S—2I;=|13 0 4

o
|

7

and
To 0 0 0 To 0
NS —-2) = {|z|||13 0 4 z1 | =101}
To 0 0 0 To 0
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Zo
= { T |13.’E0 + 4.1'1 = 0}

T2
Zo

= {| z1 | |z0, 1 € Z17}.

To
1 0 1
Let x; = | 0 . Thus, (S — 2I3)x; = | 13 |. Neuat, let us choose x9 = | 0 | €
0 0 1
N(S — 21I3), which is linearly independent of (S — 213)xy. Finally, form the matriz
0 1 1 2 1 0
A . A=113 0 0 |. We can easily verify that A1 SA=10 2 0
0 0 1 0 0 2

2.3 Number theory

Definition 2.3.1 The integer d is a common divisor of a and b in case d|a and d|b.
Since there is only a finite number of divisors of any nonzero integer, there is only
a finite number of common divisors of a and b, except in the case a = b = 0. If at
least one of a and b is not 0, the greatest among their common divisors is called the

greatest common divisor of a and b and is denoted by ged(a, b).

Note that the greatest common divisor is defined for every pair of integers a and
b not both 0 and that ged(a, b) > 1.

Theorem 2.3.1 If d = ged(a, b), then there exist integers xo and yo such that
axg + byy = d.
Theorem 2.3.2 For any positive integer t,

ged(ta, th) = tged(a, b).



Theorem 2.3.3 Iftla and t|b and t > 0, then
a b ged(a,b)
d - )=

If d = ged(a, b), then
a b
d(=,-) =1
gC (d’d)

Theorem 2.3.4 For any integer x,

ged(a, b) = ged(b, a) = ged(a, —b) = ged(a, b+ ax).
Theorem 2.3.5 If t|lab and ged(b,t) = 1, then t|a.
Theorem 2.3.6 ged(a, b, c) = ged(ged(a, b), c) = ged(a, ged (b, ¢)).
Theorem 2.3.7 For any positive integers a, b, x,y,

ged(a, b)| ged(az, by).

Proof
Let b
azx
L= )
ged(z, ged(a, b)) ng(gcd(ax, b)’ v)
Thus,
ax
ged(a.b)L = ged(ged(a, )z, b) ged (g v)
az
= gcd(az,bx,b)ng(m’y)
ax

= ged(ax, b) gcd(may)
= ng ax,gcd(aﬂ% b)y)

= ged(az, axy, by)

(
(
(
= ged(ax, by).
Corollary 2.3.1 If ged(a,y) =1 and ged(b,x) = 1. Then,

ged(ax, by) = ged(a, b) ged(z,y).

24
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Theorem 2.3.8 Let a and b be given integers not both 0. If gcd(a,b) = 1, then for

each positive integer m, there erist integers x and y for which ged(az + by, m) = 1.

Proof
Since ged(a,b) = 1, by Theorem 2.3.1, there exist integers z, and yo such that
axo+byy = 1. Thus, ged(azy + byy, m) = ged(1,m) = 1 for any positive integer m.$

The following theorem can be found in [25].

Theorem 2.3.9 (Dirichlet’s on primes in arithmetic progressions) Letb and

n > 0 be integers with ged(b,n) = 1, then there exist infinitely many primes in
{bb+n,b+2n,....,b+kn,...}.

Corollary 2.3.2 Let m be any positive integer, then there are infinitely many inte-

gers k for which ged(b+ kn,m) = 1.

Definition 2.3.2 The nonzero integers a and b have a common multiple t if alt and
blt. The least of the common multiples is called the least common multiple, and its

denoted by lem(a, b).

Theorem 2.3.10 Ift > 0, lem(ta,tb) = tlem(a,b). Also, lcm(a,b) ged(a,b) = |abl,

where | | stands for the absolut value function.

Theorem 2.3.11 Let a,b, and m > 0 be given integers, and put d = ged(a, m). The
congruence equation

ax =b (mod m)
has a solution if and only if d|b. If this condition is met, then the solutions form the

arithmetic progression

{rd',rt + %,rb’—l—Q%,...,rb'—i— (d—1)

e E

2

where r is such that 7% =1 (mod ) and b/ = 5.
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Theorem 2.3.12 Let a,b, and m > 0 be integers a and b not both 0 and suppose
that ged(a,b,m) = 1. Then, the set of solutions of ax = by (mod m) is

(bt + Dt dt) [t = 0,1,..., 2 1,4 =0,1,...,d—1},

d d
where d = ged(a, m), and r§ =1 (mod 7).
Proof
Let m
To = bt} + Etg
and
Yo = dtll

for some ¢ € {0,1,...,2 —1} and t, € {0,1,...,d — 1}.

Now, since 7% =1 (mod %), then ar = d (mod m). Thus,

ary = arbt) +a%t'2

a

d

= dbt, + misbt; + mg
b(dt}) (mod m)

= by (mod m)

= (d + mts)bt} + m—t;, for some integer t3

t

Therefore (zg,yo) is a solution of axz = by (mod m).

On the other hand, let (z1,y;) be any solution of ax = by (mod m). Thus,
axy = by; (mod m) (2.5)

Note that, by Theorem 2.3.11, d = ged(a, m)|by;. But d does not divide b since, by
assumption, ged(d,b) = 1. Thus, y, = dt] for some ¢ € {0,1,...,"% — 1} and

az; = bdt] (mod m).

Which is equivalent to
a m
S0 = bt! (mod E)

Thus 2, = rbt] (mod %), where r§ =1 (mod m). Or, equivalently, z; = rbt] + %13,
for some t§ € {0,1,...,d —1}.$
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Theorem 2.3.13 Let a,b, and m > 0 be integers and d = ged(a,b,m). Also, let

a = (e V=2 m= wed(amy ond d = %j’m). Then, the set of solutions of

the congruence

ax = by (mod m) (2.6)

18
m

{(’l"bltl + mltg, dltl)‘tl = 0, 1, ceey d

—1;t,=0,1,...,gcd(a,m) — 1},

where ra' =1 (mod m').

Proof

Let us transform equation (2.6) into the equivalent equation
Zo = 2y (mod 7) @)
-z = -y (mod — .
a* = a’ d”

and apply Theorem 2.3.12 to (2.7).$

Remark 2.3.1 Note that
_ ged(a,m)
- ged(a, b,m)
is the smallest positive integer for which (x,y) is a solution of ax = by (mod m), for

some .

Lemma 2.3.1 and Theorem 2.3.14 can be found in [29] (in particular, Lemma 2.3.1
is suggested as an exercise in page 72).

Lemma 2.3.1 Let m; and my be arbitrary positive integers, and let a; and as be

arbitrary integers. Then the congruences

x =a; (mod my)

x = as (mod my)

have a simultaneous solution if and only if a; = ay (mod ged(my, my)). If this con-

dition is met, the solution is unique mod lem(my, my).
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Theorem 2.3.14 Let p be a prime. Then > +1 = 0 (mod p) has solutions if and
onlyifp=2 orp=1 (mod 4).

Lemma 2.3.2 Let ay # ag, b1, be, and m > 0 be integers. Also, let

= gedlem)
ng(a'ia bia m)
and let (xo, yo) be a simultaneous solution of
amxr = by
(mod m) (2.8)
asxr = boy
Then, lem(dy,dy) divides yq.
Proof
(%0, yo) is a solution of (2.8) implies that
a1zy = biyo
oy = botg } (mod m) (2.9)
Let n; = ged(a;, bj,m), i = 1,2. Thus,
a; bz m

— 2o = —1 (mod —).

Then, by Theorem 2.3.11, ged (7, %)|%y0. Which implies that %ﬁ’m‘%%- But,
ng(aiam) bz

d(=——72 ) =
8¢ ( n; ,ni) ng(aiabiam)

_ ng(aiabiam) =1

Hence, d; = %j’m)wo. Now, since both d; and dy divide g, it is straightforward to
see that lem(dy, d) divides yo.<

Theorem 2.3.15 Let a; # ag, by, ba, and m > 0 be integers. Also, let e; = M,

a;
d; = Edwm) =19 | =

aed(ai bim)’ and lg = e by — eaby. Then, the smallest

m
lcm(dl,dQ) ’
positive integer Ymin, for some x', for which (', Ymin) is a solution of

—b
GEEN edm) (2.10)

asr = byy

18
o m
ymm gcd(lo’ll)‘
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Proof

First, let us show that there exists z’ for which (', Ymin) is a simultaneous solution of
(2.10). It is easy to see that d; = ged(a;, m) divides Y. Thus, by Theorem 2.3.11,
there exist integers 2} and z, such that

oty = bYmin (mod m) (2.11)
asty = boYmin (mod m). (2.12)
Congruences (2.11) and (2.12) are equivalent to
b
rI, = ﬂc/lmm (mod m,) (2.13)
1
botro s
ToTy = Qme (mod my), (2.14)
2
where r; = g and m; = 3, 7 = 1,2. Note that ged(r;, m;) = 1. Thus, there exist
integers 77+ mod m; such that
bt
o = 7t IZTW (mod my) (2.15)
botos
vy, = 1t QZZ”" (mod my). (2.16)
Hence,
’ r -1 blymin —1 bemin
1 2
b1 Yrmi boYmi
_ ’f';l 1Ymin o 7';1 2Ymin (mod gcd(ml,m2))
dy do

4 o1 .
_ (ry bimy ;2 b21m12)Yrmin (mod ged(my,my))

(ry 'bymy — 75 bymny)
ged(lo, Iy) (mod ged(m, m2))
since d; = n% and Y = m'
17 (P qrmeby — 1y | rr——by) ged (ma, my)
Ty —xy = S T1T2 gcdg(lo( 113 ) o gedlmmz)
(gcd(r7‘21 2) gcd(;’:ll,mz) b - ng(TTll 2) ng(;’:imz) b) ged(m1, ma)

= lom(ry, 72) ged(lo, 1) (mod ged(my, ms)).

Let 7 = L and m; = —2—. We can show that e; = 7ym; and that
ged(ma,m2)

L gcd&:l,rz) o
ey = 7My. Thus, ly = romiby — r1mMisby. Therefore,

(fzmlbl —_ 7"_17)’_L2b2) gcd(ml, mg)

N
1 T2 ICIH(Tl,T'Q) gcd(/fTlebl — flmgbg,ll)

(mod ged(mq, m3))
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tl gcd(m1 y mg)

lem(rr, 12) (mod ged(mq, ma)),

since ged(ly, 1) divides (7o, by —7mgbe). Recall that ged(r;, m;) = 1, thus lem(ry, r2)
does not divide ged(my, ms)). Henceforth,

1
-1, = Tom(ror) ged(my, mo) (mod ged(my, my))
= 0 (mod ged(my, mg)).
Therefore, by Lemma 2.3.1, there exists an integer z’ for which (z', ymin) is a simul-
taneous solution of (2.10).

Finally, let (zo,y0) be any other simulteneous solution of (2.10). In this part
we will show that ¥, < y. By Lemma 2.3.2, yo = lem(dy, do)ro, for some positive
integer ry, Now, multiply each equation in (2.10) by e; and ey, respectively.

era1ry = e1biyo (mod m) (2.17)

eaa2Ty = exboyy (mod m) (2.18)
Subtracting equation (2.18) from (2.17) to eliminate xy, we endup with
(e1by — e2b2)yy = 0 (mod m) (2.19)
and replacing yo by lem(dy, d)ro in (2.19),
(e1by — egbo)lem(dy, do)rg = 0 (mod m). (2.20)
Or,

m t
lem(dy, d) ged (lo, 1)

ro = (2.21)

for some positive t; since y is positive. Therefore

Yo = lcm(dl,dg)ro

= lcm(dl, d2) m

i
lem(dy, do) ged(lo, 11)

Let us recall from section 2.1 that GF(p™)*, n > 0, is a cyclic group of order
p" — 1. Let g be a generator of G(p")*. Then, for each a € G(p")*, there is a
unique nonnegative integer Ind,(a), (or simply Ind(a), if it can be understood from
the context), called the index of a with respect to g, such that a = gInd(“). Also,
let k, be the order (i.e., period) of a € G(p™)*. Note that the identity of G(p™)*,
denoted by 1, has index p" — 1.
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Lemma 2.3.3 Let a € GF(p")* and k, be the order of a. Then, the order of a* is

ﬁ, for any nonnegative integer t.
as

Lemma 2.3.4 Let a € GF(p")* and k, be its order. Then, there exists a positive

pr—=1

integer T4, such that ged(rq, ko) = 1 for which Ind(a) = rqpe, where g, = o

Proof

Let k, be the order of a € G(p")* and g be a primitive of G(p")*. Thus, a* =
1 (mod p"). Or, equivalently, k,Ind,(a) = Indy(1) = p" —1 = 0 (mod p™ —1). Then,
Indy(a) = 0 (mod ”nk—;l = W,), since the order of an element always divides the or-

der of its group. Hence, Ind,(a) = ra’% for some positive integer r,. Note that
1 <rg < kg, since 1 <Indy(a) <p" —1.

Now, let us show that r, and k, are relatively prime. Assume the contrary.
Suppose that ged(ry, k) = d > 1. Then, there exist relatively prime positive integers

_ n_1 n_1
P 1 P dtz D t2

t1 and ¢, with k, = dt; and r, = dts. So,a =g %« '* =g @1 "2 =g
Thus, applying Lemma 2.3.3,

p"—1

ged(pr — 1, B t)

(p" — Dty
(pn — 1) ng(tQ, tl)
t

= T:tl<kaa

which is a contradiction and the proof is completed.$

ky, =

Lemma 2.3.5 Let a € GF(p")*, k, be the order of a and p, = % Then

gcd([nd(a),p" - 1) = HUa-

Proof
Note that, by means of Lemma 2.3.4, there exists a positive integer r, < k,, such
that ged(r,, k) = 1. Hence,

n1
ged(Ind(a),p” — 1) = gcd(rap

kq
no1
= P k ged(ry, kq)

a

= fgx1
M-

’pn - 1)
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Theorem 2.3.16 Let a1, a; € G(p™)* and g be a primitive of G(p™)*. Also, for
t=1,2, let k,,, be the order of a;. Define p,, = ’%. Then, the smallest positive
at

integer 1 that solves

al = dal (mod p"), (2.22)
for some 7, is
PR S
e ng(kalﬂ kd?) '
Proof
The index form of equation (2.22) is

Indy(a1)j = Indy(az)i (mod p™ — 1) (2.23)

By Theorem 2.3.13, the smallest positive integer i, that solves (2.23), for some j
is

P ged(Indg(aq), p™ — 1)

e ged(Indy(ar), p* — 1,Indy(as))’

Applying Lemma 2.3.5,

P Hay
gcd(ptay, Indg(as))
Now, by Lemma 2.3.4, there exists a positive integer r,, for which Ind,(as) =
ayTa, and ged(kq,, 74,) = 1. Thus,
pn —1 ka2

Imin = o o = .
' Ka, ng(kalla ka;Taz) ged(kay, ko, Tay)

Finally, since ged(kq,,7q,) = 1 and applying Lemma 2.3.1, we endup with

i = —o2
™ ged(kay, kay)

Theorem 2.3.17 Let ay # ag,b1,ba, g € G(p™)*, g a primitive of G(p™)*. Also, let

k; be the order of a; and define n; = gcd(’ﬁk—;l,fndg(bi)), i = 1,2. Also, let Ymin,

<

be the smallest positive integer for which (&}, Ymin,) s a simultaneous solution of

equations (2.24) and (2.25), for some z}, i = 1,2

ai =b¢ (mod p") (2.24)

ajy = b4 (mod p") (2.25)
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Then, the smallest positive integer Ypyin, for some ', for which (&', Ymin) is a solution

of equations (2.24) and (2.25) is

no1
Ymin = ged(er Ind, (b)) — e;}ndg(bQ), ged(kiny, kans))’
where
0 — lcm([ndz(bzz,aj)ndg(%)), i=1,2.
Proof
Let i) = lcm(y:t:,ymm)' Then,

(pn - 1) ng(ymima ymznz)

Ymini * Ymins
pt—1p"—1
= ng( ’ )
Yming Ymins
p"—1 p"—1
B0 g2 )
ni1 no
pr—1p*—1
= ged(Zr= =)
kini kamnsa

= ng(lﬁnl, kgng) .

l1:

= ged(

System of equations (2.24) and (2.25), in index form, is equivalent to

Ind(ai)z = Ind(b1)y (mod p" — 1) } (2.26)

Ind(az)z = Ind(be)y (mod p™ — 1)

Finally, apply Theorem 2.3.15 to (2.26) and replace [; by previous value.<.
Our next result is a generalization of Theorem 2.3.17.

Theorem 2.3.18 Let ai,b € G(pl)*, and az, by € G(pY)*, a1 # ay, and g1, go be
primitives of G(pYY)* and G(pl')*, respectively. Let k; be the order of a; and Ymn,
be the smallest positive integer for which (L}, Ymin,) s a solution of equations (2.27)

and (2.28), for some x}, i = 1,2,

af = by (mod p™) (2.27)

at = by (mod p?) (2.28)
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Then, the smallest positive integer Ymin, for some ', for which (', Ymin) is a simul-

taneous solution of (2.27) and (2.28) is

where, fori1=1,2,

Hi

hL

€;

o m
Ymin ng(lo,ll)’

lcm(pN1 —1,p — 1),

exm’ Ind,, (b1) — eamyInd,, (bs),
m
pri -1
kZ ’
Hi
Ymin; ’

ged(kymyng, kamonsg)

lem(m/ Indy, (ay1), m4yInd,, (as))
mj;Indy, (a;)




Chapter 3

Previous work

In this chapter we give a synopsis of the work on reverse engineering M S—orbits, as
well as genetic networks, with particular emphasis on those results which we use in
this work.

3.1 Linear modular systems

One of the classical and most important works in linear modular systems is the work
of B. Elspas [12] whose main interest was to study sequential circuits. However, this
same theory describes the orbital structure of the symmetry matrix for symmetric
FFTs with prime edge-length, which in turn affects the structure of the M S—orbits
that we wish to study. In this section we present the most relevant ideas and results
of Elspas’ work. Proofs of the theorems stated here can be found in [12].

Definition 3.1.1 A linear modular system, abbreviated LMS, is a finite dynamical

system (27, S, Z,) where S : Z} — Z7' is linear.

Given a linear modular system (LMS), it is of interest for many applications to
know its orbit (cycle or sequential) structure. In particular, the structure of LMSs
over Z,, the integers modulo a prime p, is of considerable importance in areas such as
finite—state machines, linear sequential networks, symmetric fast Fourier transforms,
digital communication, error correction codes, etc.

Let S be a nonsingular n X n matrix over Z, representing an LMS. Also, let x
be a particular initial state of the system. State x can be regarded as a n-tuple

35
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(%1, 29, - .., x,) where each z; is an element from Z,. Since any LMS is a determinis-
tic finite system, each state x can be reached in only one way and from a particular
state, the system can move to only one next state. In other words, if an LMS starts
in x, it will run through the sequence of states x, Sx, S?x, S®x, ..., which is
represented by Og(x). In fact, Og(x) is a finite sequence of states having, at most,
k states, where k is the period of S.

Given a nontrivial state x (i.e., x # 0) and a nonsingular n X n matrix S, there
exists a nonnegative integer ¢t < k such that S'x = x. Assume that ¢ is the smallest
such an integer. Hence, Og(x) = {x, Sx, S*x, ..., S*"!x}. That is, the state
diagram of the entire system consists only of orbits (or cycles). In particular, if
x = (0,0,...,0) = O (i.e., the zero state), then the orbit for x, Og(x), contains
only the zero state. This orbit is sometimes called the ¢rivial orbit. In general, the
number of states in Og(x) is called the orbit length or cycle length.

The entire orbit structure of any LMS can be completely derived from the alge-
braic properties of the matrix S.

The following two theorems illustrate two important cases when the characteristic
polynomial is irreducible. The first one is known as a mazimal system.

Theorem 3.1.1 Let S € M,, with ¢s(zx) irreducible and mazimal. Then, the LMS
associated with S has only two orbits; one orbit of length one, the trivial orbit, and

the other of length p™ — 1 that accounts for all the nonzero states.

Theorem 3.1.2 Let S € M, be such that ¢s(x) is irreducible but not mazimal.
Then, the LMS associted with S has p nontrivial orbits of length k, where k is the

period of ¢s(x) and p = ’%.
It is customary to use the notation (1, 4(k)) to indicate that the orbit structure
of a LMS has i orbits of length &, besides the trivial orbit of length one.

From the theoretical and computational points of view, the orbit structure of lin-
ear systems with reducible characteristic polynomials are, in general, more difficult
to determine.

Let S be an n x n matrix over Z, such that ¢g(z) = P;(z)P2(z), where Pi(z)
and P»(z) are distinct irreducible polynomials of degree d; and ds, respectively. Let
Vp, be the null space associated to P;(S), i = 1,2. The restriction of S to Vp, yields
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pli—1
kPi .
Let us represent (1, up,(kp,)) by the formal sum 1+ up,(kp,). The formal product of

1+ pp, (kp,) and 1 + pp,(kp,) is defined by the rule

the orbit structure (1, up,(kp,)), where kp, is the period of P;(z) and pp, =

(1 + up (kPI))(l + Up, (kpz)) =1+ 2727 (kpl) + Up, (kpz) + Upy,py (kP17P2)’
where
KUpy,p, = P P, ng(kPI? sz)
and
kPl,Pz = lcm(kPu sz)'
Theorem 3.1.3 Let S € M,, be nonsingular with ¢s(z) = Py (z)Py(z), where Py(x)
and Py(z) are distinct irreducible polynomials of degree dy and ds, respectively. Then,

the orbit structure of (7', S, Z,) is

(1a 222 (kPI )7 Knp, (kP2)7 upy,p, (kPI P2 ) ) :

The following theorem summarizes the case when the characteristic and minimal
polynomials are equal to a power of an irreducible polynomial.

Theorem 3.1.4 Let S € M,, with characteristic and minimal polynomials equal to

(P(x))¢, where P(x) is an irreducible polynomial of degree d and e > 1. Then,

1. There is a nested sequence of subspaces Upo C Upr C ++- C Upj C +++ C Upe,

where Up; 1s the null space of (P(S))’ and its dimension is jd.

2. The number of states in Up; is p’®, of which pU=1? states are in Upj—1 and

hence, pi® — plU=bd = pdi=1(pd — 1) are in Up; — Upj-1.

3. All the orbits in Up; —Upj-1 are of length kpp™i, where kp is the period of P(x)

and r; is the smallest nonnegative integer for which p™ > j.
4. The orbit structure of (2,5, Z,) is

(1, pp(kpp™), pwp2(kpp™), . . ., tpe (kpp™)),

d(i—1) (pd _1
where pp; = pik”gfj )
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For the general case where the characteristic polynomial ¢g(z) of S contains irre-
ducible factors with multiplicities greater than one, the orbit structure of (Z;}, S, Zp)
depends on what are known as the elementary divisors of S; irreducible factors of
¢s(z) having the form (P;(z))%/, where e;1 > €0 > -+ > €y, 1 = 1,2,..., 1.

Two important properties of elementary divisors are the following. First, the
product of all elementary divisors is ¢s(z). Second, the minimal polynomial, mg(z),
is the product of the highest degree elementary divisors.

Theorem 3.1.5 The orbit structure of (Zg, S, Z) is the formal product of the orbits

of the elementary divisors of S.

Let S € M,, be nonsingular and let £ be the period of S. For any x,y € ZJ,
define x ~g y if and only if y = S’/x for some integer j. It is readily verified that ~g
is an equivalence relation. The equivalence class containing x € Z7,

Og(x) = {Sx mod p: j integer }, (3.1)

is called the orbit of the action of S on x. A set of representatives of equivalence
classes is called a fundamental set, denoted by Fs. The number of elements in Og(x),
denoted |Os(x)|, is called its orbit length. The orbit length is always a divisor of k.
Thus, the set of all orbits for the action of S constitutes a partition of Z} and there

exists a non—unique collection of elements {x1,...,x;} such that
zy = U_0s(x;) (3.2)
0 = Og(xi) NOgs(x;), for i # j. (3.3)

Let M be a nonsingular matrix that commutes with S. The action of M induces
a relation =5 on the set of S—orbits, or equivalently on Fg, defined by

Os(x) ~us Os(y) if and only if M*x = S’y for some integers i and j.

Lemma 3.1.1 Let S € M,, and M € N (S) be nonsingular. Then, the relation =g

15 an equivalence relation on the set of S—orbits.
Proof
Let x € Fs. Then, M%x = S%%. Thus, Os(x) ~us Os(x) (reflexive).

Let x,y € Fs with Og(x) ~ys Os(y). Let 4; and j; be the integers for which
M¥x = Si'y. Also, let kj; and kg be the periods of M and S, respectively. We can
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assume without loose of generality that i; < kj; and that j; < kg. Thus, by the
commutativity of M and S

MFm—i1 Gks—j1 (Milx) = Mkv—i gks—i1 (Sjly)

if and only if
Sks—i1 kv —iy pringe — prhm—ia Sks—j1+j1y

if and only if
Sks—j1MkMX — MkM—ilsksy

if and only if ' ‘
Sks—iix = Mkm—iry

I

which implies that Og(y) ~us Os(x) (symmetric).

Let x,y,z € Fs with Og(x) ~ys Os(y) and Og(y) ~ys Os(z). Let iy, ji,
is, and jo be the integers for which Mx = Sty and M2y = S72z. Note that
Mutex = M2Sky = Sii(M2y) = S92z, Therefore, Og(x) ~ys Os(z) (transi-
tivity). Therefore, a3r5 is an equivalence relation on the set of S—orbits.<

We call the equivalence classes induced by a;,¢ M S—orbits and denote them by
Ours- The number of such classes is denoted by |Ojys].

3.2 Symmetric prime edge—length FFTs

For some data intensive problems, for instance, x-ray crystal diffraction intensity
analysis, reductions in the amount of data can make a significant difference even
though the arithmetic complexity remains the same. These reductions are induced
by structured redundancy patterns in the input, which in turn induce redundancies
patterns in the output. Such a problem, which has recently received attention [42],
[43], [44], is the problem of making more efficient the computation of multidimen-
sional discrete Fourier transforms (DFT) with linear symmetries.

For an n—dimensional prime edge-length DF'T such a symmetry can be expressed
as a n X n nonsingular matrix S over Z, where p is the prime edge-length. Auslander
and Shenefelt [3] have shown that by reordering Fs under the action of a generator g
of the cyclic group Z;, the arithmetic complexity of the DF'T can be reduced through
the use of cyclic convolutions. Seguel et al [42] has shown that a further reduction in
arithmetic count is possible if instead of reordering Fg by the action of a generator
of Z; we reorder Fs by the action of an n X n nonsingular matrix M that commutes
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with S.

In the rest of this section we explain the problem more fully and outline the ap-
proach given in [42].

For the purposes of this work it suffices to think of the d-dimensional discrete
Fourier transform (DFT) with edge-length N as simply a function

FN : .Ad’N(C) — .Ad,N(C)
defined by

A

1
f=Fn(f)=—7= > fOuwy', ke Z} (3.4)
\/N 15}% N N
where C' denotes the set of complex (or real) numbers, A4 n(C) denotes the
set of d-dimensional arrays with edge-length N over C, wy = exp(%), 1=+—1,
- denotes the dot product, and f is a real- or complex—valued function defined on Z%.

The time required to compute the d-dimensional DFT with edge-length N using
the definition is O(N?¢). However, the fast Fourier transform (“FFT”) can be com-
puted in time O(N%og N). A fast Fourier transform (FFT) for d = 1 reduces the
number of operations from O(N?) to O(N log(N)). The usual method for computing
an FFT for d > 2 consists of applying N%~! one-dimensional FFTs along each of the
d dimensions.

This yields O(N?%log(N)) operations, a complexity estimate that cannot be im-
proved.

As was stated above, the input of a DFT (or FFT) is a complex—valued mapping
f defined on Z¢%,. A linear symmetry on such a function f is defined as a d x d non-
singular matrix S over Zy such that f(k) = f(Sk) for all k € Z¢. In the case that
det(S) = +1 mod N, S is called unimodular. Of particular interest are the linear
symmetries in two— and three-dimensional crystallographic FFTs.

Let S, = (S71)t, where A? denotes the transpose of matrix A. It is well known in
linear algebra that Sk-1=k- S'. Thus, if S is unimodular and f is S—symmetric,
f(S.ik) = f(k). Then, f is S,—symmetric.

We call an orbit determined by the symmetry matrix S a symmetry orbit. Values
of f are constant on each symmetry orbit. Let Fs and Fg, be fundamental sets
corresponding to ~g and =g, respectively. The set f(Fs) = {f(k)|k € Fs} is called
a fundamental input set, while the set f(Fs,) = {f(k)|k € Fg,} is called a funda-
mental output set.
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Let N = p be any prime. A prime edge—length symmetric DFT is thus a linear
transformation defined by the equations

f(k) = Z Kp(k’ a)f(a), ke Fs, (3.5)

acFg

where for each k € Fs,_ and each 1 € Fg,

Kyka)= Y wy' (3.6)
1eOs(a)

Since the output is S,—symmetric, the DFT is completely determined by ( 3.5).
However, equation ( 3.5) involves

o Y losM= Y pt<p™

kE]:S* leFs kE}'s*

or O(p*?) arithmetic operations. That is, computing a DFT by simply taking into
account linear symmetries may not, in general, be enough for reducing the total
arithmetic count and, hence, it is justified the search for more economical methods.

Example 3.2.1 Let us consider a two—dimensional example. The mapping [ defined

on Z2 by the matriz
29 23 15 15 23

1.2 6.0 43 46 2.8
f=1|14 33 51 42 1.7 (3.7)
14 1.7 42 51 3.3
1.2 2.8 46 4.3 6.0

(—1 o) (4 0)
S = - (3.8)
0 —1 0 4

(We assume that rows and columns are numbered 0, 1, 2, 3, 4.) For instance, if we

let k = (2,1), then Sk = (—2,—1) = (3,4). Thus, f(k) = f(Sk) = 3.3.

1s S—symmetric where

For instance, a fundamental set for the S—orbits induced by the symmetry matriz

S over Zs given by ( 3.8) is

Fs ={(0,0),(0,1),(0,2), (1,0), (1,1),(1,2), (1,3), (1,4),(2,0),(2,1), (2,2),(2,3), (2, 4)}.
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An matrix of the form

Qg ai (5] cee (7%
a ) as *tr Qp Qp4a
) as Ap 42
H = .
Qnp,
Gp  Qp41 Qp42 Gon

is called a Hankel matriz. If matrix H has the form

Qo ay Q9 e (2%
a a2 as R ¢ 7 Qo
a2 as a
H =
a'n
Qp  Opy1 Qpy2 - Qp—1

it is called Hankel circulant. A product of the form Y = HX, where H isan N x N
Hankel—circulant matrix and X and Y are N-point vectors, is called an N—point
cyclic convolution. Cyclic convolutions can be performed in O(N log N) operations
by using the fast cyclic convolution algorithm [42].

An S-symmetric function f is constant on each S—orbit and is thus completely
determined by its values on a fundamental set. Auslander and Shenefelt [3] have
shown that, for prime edge-length symmetric DFTs, a fundamental set can be re-
ordered by a generator g of the multiplicative cyclic group of Z, in such a way that
the DFT can be computed solely in terms of cyclic convolutions. This approach
presents a method in which the complexity is reduced to O(p*~1).

Efficiency increases with decreasing the number of cyclic convolutions. In [42]
it is shown that the number of cyclic convolutions can be decreased if, instead of
reordering Fs, by a generator of the cyclic group Z;, we reorder it via an n X n
nonsingular matrix M that commutes with S* (equivalently, M S, = S,M). This
method is sometimes called the M -method. By Lemma 3.1.1, such a matrix M
induces an equivalence relation ~,;¢ on the set of S—orbits, or equivalently on Fgs.
Then ( 3.5) can be written as

[f(Fs.)] = [Weaw) (5, Dkl @p)Lf (Fs))], (3.9)

where the nested brakets denote a block matrix, a € Fjys, and b € Fies, and each
block Wia ) is Hankel. Thus, we can compute f solely in terms of cyclic convolu-
tions. In the method of Auslander—Shenefelt, which we call the generator method,
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the S—orbits are reordered under the action of a generator g of Z7. This can be con-
sidered as a special case of our procedure in which M is the scalar matrix g/.

The arithmetic complexity of computing f by means of (3.9) is
O(| Fus.

arithmetic operations. The goal is to minimize the number |Fys| of M S—orbits in
order to reduce the arithmetic complexity. In general, a nonsingular matrix M gives
fewer segments than the action of gI. The best case is when |Fy,5| = 1. The following
result is proved in [42].

Theorem 3.2.1 Let S € M, be nonsingular with ¢s(x) irreducible and let M €

N (S) be mazimal. Then there is ezactly one MS—orbit and ils size is iy = ’%,
S

where kqg 15 the size of the S—orbits.

Example 3.2.2 Let us consider an example in which we compare the generator

method with the M—method discussed in the previous section. Let d = 2, p = 7,

0 1 0 1
S = = mod 7.
-1 0 6 0

Matriz S partitions Z? into thirteen S-—orbits: the trivial S-orbit, Os(0), plus

and

twelve S—orbits of length 4, as shown below.

0s((0,0)) = {(0,0)}

Os((0,1)) = {(0,1),(1,0),(0,6),(6,0)}
0s((0,2)) = {(0,2),(2,0),(0,5),(5,0)}
Os((0,3)) = {(0,3),(3,0),(0,4),(4,0)}
Os((1,1)) = {(1,1),(1,6),(6,6),(6,1)}
Os((1,2)) = {(1,2),(2,6),(6,5),(5,1)}
Os((1,3)) = {(1,3),(3,6),(6,4),(4,1)}
Os((1,4)) = {(1,4),(4,6),(6,3),(3,1)}
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Os((1,5)) = {(1,5),(5,6),(6,2),(2,1)}
0s((2,2)) = {(2,2),(2,5),(5,5),(5,2)}
Os((2,3)) = {(2,3),(3,5),(5,4), (4,2)}
Os((2,4)) = {(2,4),(4,5),(5,3),(3,2)}
Os((3,:3)) = {(3,3),(3,4),(4,4),(4,3)}

An S—fundamental set consists of, for example,

Fs =1(0,0),(0,1),(0,2),(0,3),(1,1),(1,2), (1,3), (1,4), (1,5), (2,2),(2,3),(2,4), (3,3)}.

Let us reorder Fs through a generator for the cyclic group of Z;. For this
case, take g = 5 (i.e., set M = 5I). Note that, for instance, 5(0,1) = (0,5) €
05((0,2)), 5(0,5) = (0,4) € Og((0,3)), and 5(0,4) = (0,6) € Os((0,1)). Hence,
0s5((0,1)) =~us O5((0,2)) ~ps Os((0,3)). And so on, for the the remaining S—
orbits. The following is the list of M S—orbits:

Owms,((0,0)) = {(0,0)},
Owms, ((0,1)) = {(0,1),(0,2),(0,3)},
Owms,((1,1)) = {(1,1),(2,2),(3,3)},
Owms;((1,2)) = {(1,2),(2,4),(1,3)},
Owmsi((1,4)) = {(1,4),(1,5),(2,3)}.
The computation of f reduces to computing
1 € et et et fo

e Wi Wi Wi Wiy fi
e Wy Wy Wiy Wy f2
e Wi Wi Wiy Wy fs
e Wu Wi Wi Wu/ \fi

where each W;; is a 3 X 3 Hankel circulant matriz, each e denotes a column vec-

tor of ones of size 3, and each f; is determined by MS-orbit Opg,. For instance,
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f((0,1))
fo=(f((0,0))), fi=1 f((0,2)) | and similarly for fs, f3, and fs. Thus, by using
f((0,3))

the generator method, the computation off can be done by means of 16 cyclic con-

volutions.

However, the number of MS-orbits can be reduced even further if instead of
reordering the fundamental set Fs under the action of a generator g of Z;, we reorder

under the action of a nonsingular 2 X 2 matrix over Z7. For instance, if Fs is reorder

1 2
by M = ( ) , we observe that
5 1

() - (oo
() - (o
1) - (oo
- (?) _ (g) € 0s((0,1)).

Hence, through this M, we obtain only one nontrivial M S—orbit of length 12:
OMS((O7 1)) = {(07 1)7 (17 5)7 (37 3)7 (274)7 (07 3)7 (174)7 (27 2)7 (17 2)7 (07 2)7 (27 3)7 (17 1)7 (17 3)}
Therefore, f can be computed by only one cyclic convolution of size 12.

Given nonsingular commuting matrices S and M, we say that M induces the
M S—-orbit structure (1 [i1], m2[ia], - . ., mr[2r]) if in addition to the trivial orbit Oss(0)
of length one, M induces n; M S-orbits of length1;, 7 = 1,2,...,r. In such a case, the
DFT can be computed in terms of njz- cyclic convolutions of length i;, j =1,2,...,7.

For instance, in Example (3.2.2), the generator method and M-method induce the
M S—orbit structures (4[3]) and (1[12]), respectively. The goal is, given nonsingular
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matrix S, find a nonsingular matrix M with M'S = SM that minimizes

Ngs =M + 12+ -+ 1.

To date, the only known method for choosing such a matrix M is by exhaustion
(i.e., a brute—force search of all possible matrices M that commute with S that min-
imize the number of cyclic convolutions without taking into account any algebraic
property of S). However, this is very costly. For instance, the time for computing
M by exhaustion is O(p®) in the two dimensional case and is O(p'?) in the three
dimensional case. In this work we study methods for computing M directly.

3.3 Some discrete models of genetic networks

Identification of a gene regulatory network from experimental data (e.g., gathered
by microarray technologies) is a very important area of current research due to its
potential applications to biological and biomedical sciences; for instance, in drug
design and cancer research, among others.

This problem is receiving a considerable amount of attention and many re-
searchers from different disciplines have approached this problem in many different
ways ranging from continuous models like differential equation models [7] to discrete
models like Boolean networks models [2, 22|, probabilistic Boolean networks models
[40], multivariable polynomials over finite field models [16, 23], and single-variable
polynomial models over finite fields [27].

In general, a genetic network is represented by a directed graph G(V, f), where
V ={ay,aq,...,a,} is a set of n genes and f = {f1, fo,..., fn} represents the rela-
tionship among the n genes.

Section 3.3.1 presents a formalization of the Boolean model proposed by Ideker
et al [22]. Section 3.3.2 presents two finite field polynomial generalizations of the
Boolean model. On the one hand, the multivariable polynomial proposed by Lauben-
bacher et al [23], and, on the other hand, the one that concerns this work, the
single—variable polynomial, proposed by Moreno et al [27].

3.3.1 Boolean models

In [22], Ideker and Karp describe a genetic network model based on Boolean net-
works, the deterministic Boolean network model or dBnm. In their model, gene level
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expression can be either 1 (On) or 0 (Off). Despite the simplicity of this model, it
gives important information about the rough logic (gene z either activates or inhibits
gene y) governing the regulatory network.

In any genetic network G(V, f) each gene a; has an expression level w; which is
a function of the expression levels of a subset of genes in V. If the expression level
w; of each gene a; is regarded as high or low, then w; is a binary function of the
expression levels (1/0) of a subset of V. In this case, the genetic network is called a
deterministic Boolean network or dBn.

Example 3.3.1 (Ideker [22] ) Consider the following network of four genes ay,
ai, Qg, a’nd as 'LUhere fO(x07x17x27x3) = 17 fl(x0a$17m27x3) = 1’ f2(f1:0,$1,.’1)2,f173) =

zoNz1, and f3(zo,T1,%e, 3) = 1 N Ta.

In this example, expression level of gene ay and ay do not depend on any other
gene. Gene ay expresses if gene ay 1s expressed and gene ay s not expressed. Gene

ag expresses if ay is expressed and gene ao is not erpressed.

3.3.2 Polynomial models over finite fields

In the Boolean model, either a gene can affect another gene or not. An alternative
model that has been studied by several researchers [16], [23], [24], [27] is the finite
field genetic network. In this model, one is able to capture graded differences in gene
expression. Another advantage of the finite field model approach is that it can be
considered as a generalization of the Boolean model since each Boolean operation
can be expressed in terms of the sum and product in Zs. In particular,

zNy = -y (3.11)
xUy = z+y+zx-y (3.12)
i o= z+1 (3.13)

It is natural to generalize the Boolean model as follows.

Definition 3.3.1 A finite field genetic network over GF(q) consists of a directed

graph G having n numbered nodes such that for each node i there is an associated
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function

fi :GF(q)" — GF(q).

We denote such a network by

(G, {fo, f1s- -5 fa—1}, GF(q)).

FEach such f; can be expressed as a polynomial in n variables. For this reason, we
refer to a network of the type defined above as a multivariable finite field genetic

network (“MFFGN”).

Clearly, every BGN is also a MFFGN over GF'(2). Each of the f; can be expressed
as a polynomila over GF'(2) by replacing each Boolean operation by one of the ex-
pressions given in equations (3.11)— (3.13).

Example 3.3.2 The BGN of Example 1 can be expressed as a MFFGN over GF(2)

where the functions f; are given by

f0($0,$1,$2,$3)
f1(20, 21, 22, 23)
fo(0, 21,20, 23) = T - 71,
( )

f3 = .’E1($2+1)

Multivariable polynomial interpolation over GF(q)?

Let f: GF(q)* — GF(q)¢. For each i = 1,2, ...,d, define
fi : GF(q)* — GF(q)®

to be the function such that for any = in GF(q)?, fi(x) = z;, where f(z) =
(z1, T2, - - -, Ta). We write f = (f1, fo, ..., fa).

Given a function f : GF(q) — GF(q)¢ and n + 1 values a;, k =0,1,...,n, in
GF(q)¢, there exist polynomials P;, i = 1,2,...,d of degree at most n such that

Pi(ax) = fi(ax)
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foralli=1,2,...,d and for all £k =0,1,...,n. Such P,(z) can be defined by

P) =3 filar) [ et (3.14)

= §=0, j£k (akljk - a’jljk)’

where each [;; is the index (numbered 1,2...,d) of the first coordinate where a; and
a; differ.

Example 3.3.3 Let d =3, n =2, and g = 3. Also, let ag = (0,1,0), a; = (0,2,1),
as = (0,2,2), and suppose that

£(0,1,0) = (0,2,1)
f(0,2,1) = (0,2,2)

f(0,2,2) = (2,0,0)

Then,
P ($) — f’(ao) (xlw allm) (xbo a2lzo) (mlso - a3l30)
' ' (a'0l10 - a'lllo) (aOlzo - a2l20) (aOlso a'2l30)
+ f(al) (37[01 a0l01) (xlm a’2121) (xl:il a3l31)
' (a’llm a'0l01) (a1l21 a2l21) (a'll31 a'3131)
+ f(a2) (xl02 a’Oloz) (Illz a’1112) (Ilsz a3l31)
’ (anoz - a0l02) (a2l12 - a’lllz) (a2l32 a3l32)
Thus,
,’1')2—2372—2371—2
b= fle) T 5750
1‘2—1I3—2$1—2
RGN v e iy
.’E2—1$3—1$1—2
RGO vy
Hence,

P(z) = filao)(ws — 2)*(z1 — 2) + 2fi(a1) (w2 — 1) (23 — 2) (21 — 2)
+filaz) (w2 — 1) (x5 — 1) (21 — 2).
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Therefore,

P(z) = 04+0+2(zg—1)(z3—1)(z1 —2)

= —X1To%3 + 2To%3 + T1X3 — 2x3 + 1Ty — 229 — X1 + 2
Py(z) = 2(x0—2)* (21 — 2) + (22 — 1)(23 — 2)(21 — 2)

= 2:1:1:5% + 21129 + X1 + T1X2T3 + 221273 + 233% + 219 + Tox3 + 213 + 1
Py(z) = (22—2)%(x1 —2) + (22 — 1) (23 — 2)(z1 — 2) + 0

= xlxg + 21 + 212273 + 22173 + 271 + :1:3 + xox3 + 223

The polynomial produced by formula (3.14) is not unique. For instance, one could
define [;;; to be the index of the highest numbered coordinate in which a; and a; differ.
For example, in the previous example we would have g = lyg = l91 = l31 = I35 = 3,
l30 = 2, and so

T3 —1x3—229—0
0-10-21-0
.’E3—0$3—2$3—0
1-01-21-0
.733—0333—1333—0
2—-02-12-0

Pi(z) = fi(ao)

+  fila)

+  fi(ag)

Thus,
PZ(.’IT) = Zfi(ao)(xg — 1)(1’3 — 2).’1?2 + 2fz(a1)33§(x3 — 2) + fi(ag)xg(l'g — 1)

Hence, another triple of polynomials having the desired property (i.e., Pi(ax) =
fi(ag)) is given by

P(x) = 04+0+2z3(x3—1)
215 + 75
= 2x3+73
Py(r) = (v3—1)(w3—2)29 +235(13 —2)+0
= ximy + 21y + 25 + 13
= x%xz + 229 + 23 + x§
Ps(r) = 2(z3—1)(z3 —2)1y +25(x3—2) +0
= 21975 + 79 + T3 + 25

= 2x2$§ + 29 + 23 +x§
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Single—variable finite field model

Another approach taken by Moreno et al [27] is to replace the n functions f; defined
on GF(q) by a single function f that maps GF(¢") to GF(¢™). We justify this idea
in what follows.

Let « be a root of an irreducible polynomial over GF'(q). We define
¢:GF(¢") » GF(q")
by
A(an_1,...,01,00) = Ap_10" " + -+ a1 + ag, a; € GF(q).
Now, every MFFGN (G, {fo, f1,- -, fu—1}, GF(q)) defines a function

[ (GF(g)" — (GF(q))"
where

f(a'nfla e 'aa'laa'O) = (fO(a'nfla .. 'aa'laGO)a .. 'afnfl(anfla e 'aa'laa'O))-

We define ¢ : GF(¢") — GF(q") by

qzﬁf(an_la"_l +---ta o+ CL()) = (ﬁ(f()(an_l, ey CL()), PN fn_l(an_l, ey ao))

The function ¢; essentially does the work of the functions f;. This motivates

Definition 3.3.2 A univariable finite field genetic network (“UFFGN”) over GF(q)
consists of a directed graph having n numbered nodes and a function f : GF(q") —

GF(q"). We denote such a network by (G, f,GF(q)).

Moreno et al [27] propose solving the reverse engineering problem by regarding
each tuple of the time series data as an element of a Galois field through a lifting
method. This framework finds an interpolating single-variable polynomial over an
appropriate finite field. This polynomial model can be expressed by the following

equation.
,

£(&) = P() + o(a) [T(= — 50,
i=1
where P(x) is a polynomial that interpolates the given r time points from the time
seris data and ¢(z)[I;_,(z — s;) is a polynomial that vanishes at all interpolating
points. That is, g(z) [1}_, (z—s;) belongs to the ideal generated by the linear functions
{r—s1,2—89,...,2 — S}



Chapter 4

A Solution to reverse engineering

M S—orbits

In this chapter we solve the problem of reverse engineering M S—orbits. In section
4.1 we give some preliminaries that are needed in the rest of the chapter. In section
4.2 we give some results that hold for arbitrary dimension n and, in particular, we
characterize those symmetry matrices S for which there exists exactly one nontrivial
M S—orbit. Then, in section 4.3 and 4.4 we give solutions to the M S—orbit problem
for n = 2 and n = 3, respectively.

4.1 Preliminaries

Let us first briefly review some important terms introduced in Chapter 3. Any n X n
nonsingular matrix S partitions Z into equivalence classes called S—orbits. A set
of representatives of these classes is called a fundamental set Fg. Any nonsingular
matrix M over Z, that commutes with S partitions Fg into equivalence classes
called M S—-orbits. The M S—orbit containing x € Fg is denoted by Oprs(x) and the
number of elements in Oyrs(x), denoted by |Oars(x)|, is called its length. Our aim
is as follows: Given S, determine an M that minimizes the number of M S—orbits.
This motivates the following definitions.

Definition 4.1.1 A reduced linear modular system (RLMS) is a finite dynam-
ical system R = (Fg, M, Z,,) where Fg is a fundamental set of vectors in Zy corre-

sponding to an n X n nonsingular matriz S over Z, and M is an n X n nonsingular
52
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matriz over Z, that commutes with S.

Just as the state diagram of an LMS consist entirely of S—orbits, so does the
state diagram of an RLMS consist entirely of M S—-orbits. The reverse engineering
problem for RLMSs is the problem of determining an M that commutes with S that
minimizes the number of M S-orbits in (Fg, M, Z,). A solution M to this problem
is called optimal.

Lemma 4.1.1 Let S € M,, and M € N(S) be nonsingular and let x € Fs. Then,
the M S—orbit length of x, |Ons(X)|, is the smallest positive integer i for which

M'x = S’ (mod p) for some j.

Proof

Note that the number of elements in Oysg(x) is equal to, at most, the period of M,
i.e., Oprs(x) is finite. It is straightforward to see that there is a one-to—one correspon-
dence between Oj5(x) and the set {x, Mx, M?x, ..., M*~1x}, where i is the smallest
positive integer for which M’x € Og(M'x), for some integer 0 < [ < i — 1. Now, it
will be shown that M'x € Og(x). Assume the contrary. Then, M’x € Og(M'x) for
some 0 < | < i. Thus, there is an integer ¢ such that M‘x = S*M'x = M'S'x. Which
implies that M* 'x = S*x. Which implies that M* 'x € Og(x). Which is a contra-
diction. Finally, since M*x € Og(x), there exists an integer j such that M’x = S7x.{

Lemma 4.1.2 If A € M,, then Ax = 0 mod p for all x € Z if and only if A= 0.

Proof
Ax =0 for all x € Z} if and only if Ae = 0 for each vector e in the standard basis
for 7, i.e. if and only if A = AT = 0.

Corollary 4.1.1
M'x = 57x (mod p) for allx € Z7' (4.1)
18 equivalent to

M' =S’ (mod p). (4.2)
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Given nonsingular commuting matrices S and M, for the purpose of computing
the M S-orbit structure it is convenient to replace S and M by some equivalent
similar commuting matrices S’ and M’, for S and M, respectively. Thus, equation
(4.2) becomes B'M"B = A~1S" A, for some nonsingular matrices A and B. If
A = B, then (4.2) becomes

S = M" (mod p) (4.3)
which gives us all possible M S—orbit lengths.

The following lemma is a standard result in basic linear algebra (see, for instance,

[28].)

Lemma 4.1.3 Let A € M,, with det(A) = 0.
1. If A is nonzero, then the equation AX = 0 has a nontrivial solution.

2. If A™ is nonzero with r > 1, then there is x # 0 which is a solution of A”x =0

but Ax # 0.

The proof of the following is immediate.

Lemma 4.1.4 Let S € M,, and M € N(S). Then, Mq(S) = q(S)M for any
polynomial q(z).
Notation: Let S € M, be nonsingular with characteristic polynomial
¢s(x) = Pi(z)Pa(),
where P, and P, are relatively prime polynomials. Then,
Zy =Vp, @© Vp,,

where
Ve, ={x € Z;|Pt(S)x = 0}.

Let
VP1,P2 = VP1P2 - VPI U VPz'

Each Vp, as well as Vp, p, is invariant under any matrix M that commutes with S.
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Let Op, and Op, p, be the set of MS-orbits contained in Vp, and Vp, p,, respec-
tively. Also, let Oy, be the set of all MS—orbits in ZJ.

In the case that P(x)", r > 1, is a factor of mg(z), define

VPt2,Pt1 = VPt2 — thl, for tl < tQ S r,

and Opt, pt; be the set of MS-orbits in Vpi, pi;. This notation might create some
ambiguity with Vp p,. However, it will be clear from the context which one we are
refering to.

Let S € M,, be nonsingular.
Properties of Oy,

1. If ¢s(x) = (—1)"P(z) is irreducible and M € N(S) is nonsingular, then all
M S-orbits in Op are of the same length say ip. Denote the M S—orbit structure

of Op by

1+ UP[iP],
where 1 stands for the trivial M S—orbit and np is the number of the M S—orbits
in Op.

2. If ¢s(z) = (=1)"P"(z), r > 1, then for any nonsingular M € N(S), there
are at least » M S—orbits not necessarily the same length and the M S—orbit
structure in Op- is

1 + ZOP,PO + ZOP2,P + e + ZOP’V‘,P’V‘—I

3. If ¢ps(z) = (—1)"Pi(x)P2(z), where P, and P, are relatively prime polynomials,
then, the M S—orbit structure in Oy is

Z Op, + Z O¢S/P1 + Z OP1:¢S/P2'

Proof

Part1: Let S € M,, with ¢g(z) = (—1)"P(x) irreducible. Then, by Corollary 2.2.5,
N(S) is a finite division ring with p" — 1 elements. Let M, N € N(S), where M is
nonsingular and /N is maximal.

Let x,y be any two distinct nonzero vectors from Z;. We will show that

Oums(x)] = [Oms(y)l-

Let ix = |Oms(x)| and iy = |Ons(y)|- By Lemma 4.1.1 iy and 4, are the smallest
positive integers such that

Sixx M*>x mod p
Sy = M%y mod p

I
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for some integers jx and jy, if and only if

(8% — M™)x = 0mod p

(S% — M)y = 0 modp
Now, since N(9) is a field, det(S’* — M%) # 0 or S — M = 0, the zero n x n
matrix. If det(S% — M®) = 0, then S — M* = () is invertible, which implies that

x = 0; a contradiction. The only possibility left is that S/ — M* = 0, which implies
that

S M*™ mod p" (4.4)
S = M%™ mod p". (4.5)

Let t; and t5 be the indexes of S and M with respect to N, respectively. Then,
equations (4.4) and (4.5) become

tijx = taix mod p" —1 (4.6)
tljy = t27;y mod pn — 1. (47)

Hence, both (jx, ix) and (jy, iy) are solutions of
tlj = tzi mod pn - 1.
Now, by Theorem 2.3.16, the smallest positive integer 2p that solves ¢ = t2¢ mod

p" — 1 for some integer jp is
kq

P ecd(kp, ky)

where ¢(x) is the minimal polynomial of M, kp and k, are the orders of P and g,
respectively. Thus, ix = 7y, = ip.

By Theorem 3.1.1, the number of nontrivial S—orbits in Vp is up.

Hence, the number of M S—orbits in Op is

Hp
np=—-
ip
Therefore the M S-orbit structure is
1+ nplip].&

Part 2 : Let ¢ = (—=1)"P"(z), » > 1. The sets Vpo, Vp, Vp2,..., Vpr form a
nested sequence of subspaces of Vpr. That is,

Vo CVp CVp2 C--- C Vpr.
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Observe that
VPO, VP,PO; sz,P, ceey VPr’PT—l

is a pairwise disjoint family of vectors such that
VPT == VPO U VP,PO U VPZ,P u---u Vpr,Pr—l.

Let M € N(S) be nonsingular. Then, each Vp: pi-1 is non empty and invariant
under M since, if x € Vpe pi-1, P(S)(Mx) = MP(S)'x = 0 and P(S)" '(Mx) =
MP(S)"'x # 0. Therefore,

Op'r = OPO U Opjpo U 0P2,P U---u Opr,Prfl

and
ZOP’I‘ = 1 + ZOP,PO + ZOPZ,P + R + ZOPT,PT—I.O

Part 3 : Let ¢g(x) = (—1)"Pi(x)P2(x), where P, and P, are relatively prime
polynomials. Then,

Vos = Vi @ Vpg/p,
= VP1 U V¢S/P1 U VP1,¢S/P1

Let M € N(S) be nonsingular. It is straigthforward to see that each Vp,, Vy,/p,, as
well as Vp, 4¢/p, are all M invariant sets. Then

O¢s =0p U O¢S/P1 U OP1,¢S/P1-

Therefore,

Z O¢s = ZOH + ZO¢S/P1 + ZOP1,¢S/P1'<>

Theorem 4.1.1 (Primary Decomposition Theorem) Let S € M, be nonsingular
with minimal polynomial mg(x) = Py(x)Ps(x), where P, and P, have positive degree

and ged(Py(z), Po(x)) = 1. Then,

Zy =Vp, @ Vp,
where Vp, = {x € Z} : P;(S)x = 0} fori=1,2.
For a proof of this theorem, see for example, [14].

Let us make the following five important remarks about Theorem 4.1.1 that will
be used later on.
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1. Each Vp, is S-invariant since if x € Vp,, then

P(S)™(Sx) = SP(S)™x
= SO0
0.

Thus, Sx € Vp,. Which means that if x € Vp,, then Og(x) C Vp,.

2. Since P;(S)™x = 0 has a nontrivial solution, then Vp, contains at least two
distinct vectors.

3. Since ged(Py(z), Py(z)) = 1, there exist polynomials @, (z) and Qo (z) for which
Pl(x)Ql(fI:) + PQ(.T)QQ(ﬁU) = 1. Then, Pl(S)Ql(S) + PQ(S)QQ(S) = In Let
x € Vp, N Vp,. Thus, P;(S)x = 0 and P,(S)x = 0. But

x = I,x

I
S
&
O

1(5) + P2(5)Q2(5))x
= Pl(S)Ql(S)X + PQ(S)QQ(S)X

I
o
&
=]
+
&
=
o

Therefore Vp, N Vp, consists only of the zero vector.

4. Let M € N(S) and let 0 # x € Vp,. Then, P;(S)(Mx) = MP;(S)x = M0 = 0.
Thus, Mx € Vp,. Therefore, Op C Vp..

5. Let z € Vp, p,. It is easy to see that Sz € Vp, p,. Which implies that Og(z) C
VP1,P2 and, if M e N(S), then OMS(Z) - Vpl’p2. Hence, (9131,132 - VPl,Pz-

We have just shown the following

Lemma 4.1.5 Let S € M,, be nonsingular with mg(z) = Py(z)Py(x), where Py(x)
and Py () have positive degree and ged(Py(z), Py(x)) = 1. Then, for any nonsingular
M € N(S) the number of nontrivial M S—orbits, Ny, is not less than 3.

Lemma 4.1.6 Let S € M, be nonsingular with mg(x) = P"(x), where P(z) is
irreducible and r > 2. Also, let M € N(S) be nonsingular. Then, the number of

nontrivial MS—-orbits, Ny, is not less than 2.
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Proof

The idea of the proof is as follows. First, construct two disjoint nonempty subsets
Vp and Vp: of vectors from Zg. Each such subset contains at least one nontrivial
vector. Next, those subsets will be shown to be invariants under S and M. Which
implies that there are at least two nontrivial M S—orbits.

Let us define

Ve = {xeZ}:p(S)x =0},
Ve = {xe€Z}:p(S)’x =0}, and
Vprp = Vp2 —Vp.

Let M € N(S) be nonsingular. Note that

i.

ii.

Ve N Vp2 p = O, and that, by Lemma 4.1.3, both, Vp and Vpz p contain non-
trivial vectors;

Vp an Vp2 p are S— and M- invariant sets.
Let 0 # x1 € Vp, and x3 € Vp2 p. Thus,

P(S)(5x1) = S(P(S)x1)
= 5(0)

Hence, Sx; € Vp and so, Ogs(x3) € Vp. Similarly, Mx; € Vp. Hence,
Oms(x1) € Vp.
On the other hand,

P(S)*(Sx2) = S(P(5)*z2)

and

P(S)(Sx2) = S(P(S)x2)
£ 0

since X € Vpz2 p and S is nonsingular. Thus, Sxg € Vpz2 p. Which means that
Os(x2) C Vpz2 p. The same argument also shows that Oprs(x2) C Vpe p.

We have found two distinct nontrivial M S—orbits and the proof is done.{
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4.2 (General cases

4.2.1 An exhaustive algorithm for finding optimal matrices

Given that there is a finite number of n x n matrices over Z,, one way to find an
optimal M for a given S is by determining all M over Z, that commutes with S
and determining which of these gives the minimal number of M S-orbits. This is
summarized in Algorithm 4.2.1.

Algorithm 4.2.1
Inputs: prime p and nonsingular n x n matriz S over Z,.
Output: pair (M, 1), where M is a n X n nonsingular
matriz over Z, that commutes with S and minimizes
Nms, the number of nonzero MS—orbits.
initialize Ny to p™ //Just a large number
compute the S—orbit structure.

compute a fundamental set of S.

L =D

for ( each matriz M' over Z,) do

3.1 if(det(M') > 0 and M'S = SM')

3.1.2 compute the M'S—orbit structure and nj,..
3.1.3 i, < Nms)
3.1.4 (M, i) <= (M, )

return (M, 7,,)

The complexity of Algorithm 4.2.1 is as follows. The cost of step 1 is O(p") time,
since there are p™ — 1 products of S and vectors in Z}. Step 2 also costs O(p") time,
since a fundamental set of S—orbits is constructed by sequentially searching an n—
dimensional table whose edge-length is p—1. Now, step 3.1.2 costs O(p") time, since
in the worst case, a fundamental set of S contains p” —1 elements. Steps 0, 3.1, 3.1.3,
and 3.1.4 cost constant time. Thus, the cost of steps 3.1, 3.1.2, 3.1.3, and 3.1.4 is
ng”) time. Therefore, entire step 3 costs O(p"2 *p") = O(p”2+”) time, since there are
p™ m X n matrices over Z,. In particular, for the two— and three-dimensional cases
the complexity is O(p®) or O(p'?) time in the worst case, respectively. We will show
that these complexities can be reduced to O(p?logp) and O(p?logp), respectively.
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4.2.2 M-minimal cases

The ideal symmetry is one for which the DFT can be computed via just one cyclic
convolution. We call an n x n matrix S over Z, M -minimal if there exists an n x n
matrix M over Z, for which there is exactly one nontrivial M S—orbit. M-minimal
matrices are characterized by the following

Theorem 4.2.1 Let S € M,, be nonsingular. Then, S is M—minimal if and only if

the minimal polynomial of S is irreducible over Z,.

Proof

First, we will prove the if part. Let us assume that S is M-minimal and let
M € N(S) be nonsingular such that n,,, = 1. Assume that mg(z) = Pi(z)Py(x),
where ged(Py(z), Po(z)) = 1. Then, by Lemma 4.1.5, n,,, > 3, which cannot occur.
Hence, mg(z) cannot contain more than one irreducible factor. So, mg(z) = P"(x)
for some irreducible polynomial P(z) and some positive integer r. However, if r > 1,
then, by Lemma 4.1.6, 1, > 2, which is not the case. Therefore, the only possibility
left is r = 1, and, henceforth, mg(z) = P(x).

The converse will be shown by construction. Assume mg(x) = ¢(x) is irreducible
of degree t over Z, and let C,; be its companion matrix. Then, by Corollary 2.2.3,

Cq
ATISA=5" =
Cq

for some nonsingular matrix A. Now, since ¢(z) is irreducible, the set
N(Cy) = {thlcé_l + -+ cC,+ colylci € Z,}

is isomorphic to the Galois field GF(p'). Next, we will make use of the fact that
GF(p") is isomorphic to GF(p!)*, for any positive divisor ¢ of n (see [27]). Let

r(z) = 2+ Bzt o+ Bz + By

n

be an irreducible polynomial over N (C,), where d = The companion matrix of

|

r(z) is
0 0 0 -5
I, 0 0 -5
c.=|0 I 0

8 |

0 0 ... I, —B4.
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and
N(C,) = {vd,lc;f‘l + -+ G +vllvi € (Cp)}

is isomorphic to GF(p!)*. Note that S’ € N(C,), and hence it commutes with any el-
ement in A(C;). In particular, S’ commutes with any maximal matrix M" in N (C,).

Thus, by Theorem 2.3.16, the length of the M'S'-orbits is i, = dlﬁ% = Hg;
ged(kg,p™—1) g
where p, = % and k, is the order of g(z). Therefore, the number of M S-orbits is

Nms = Z—Z =1, and an optimal M for S'is M = AM'A.$

In particular, any scalar matrix S, i.e., S = al, for some a € Z,, and any S
with irreducible characteristic polynomial are M -minimal. Theorems 4.2.2 and 4.2.3
show how to find an optimal M in each of these two cases.

Theorem 4.2.2 For any a € Z,, S = al, is M -minimal and the companion matriz
M of any primitive polynomial s optimal for S.

Let S be an n X n matrix over Z, with irreducible characteristic polynomial and
let P(z) be a primitive polynomial of degree n. Then, by Corollary 2.2.1, there exists
a polynomial Q(z) = ¢,_12" "t + - -+ + 12 + ¢o such that Q(S) is a maximal matrix.
Theorem 4.2.3 Every nonsingular S € M,, with irreducible characteristic polyno-

mial is M-minimal and the matriz M = Q(S) is optimal for S.

Let S € M,, be nonsingular with ¢g(x) = (—1)"P(x), where P(x) is irreducible and
let M, N € N(S) be such that N is maximal. Let ¢5; be the index of M with respect
to N. By Remark 2.3.1,

_ ged(Indy (Cp), p" — 1)
ged(Indy (Cp), Indy (M), p — 1)’

ip

and by Lemma 2.3.4, Indy(Cp) = ppr for some positive integer r such that

ged(kp,r) = 1.
Then,
i — Hp _ Hp
p= = .
ged(upr,tar,p® — 1) ged(up, tar)
Thus,
e =2 = ged(up, tur).
ip

We have just shown
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Lemma 4.2.1 Let S € M,, be nonsingular with ¢s(z) = (—1)"P(z), where P(z) is
irreducible and let M, N € N (S) be such that N is mazimal. Let tys be the index of

M with respect to N. Then, Ny, = ged(p, tar)-

4.2.3 Some non—minimal n—dimensional cases

In this subsection we solve the M S—orbits problem for the important n—dimensional
case when the characteristic polynomial of matrix S decomposes as the product of
two distinct irreducible factors. Given a nonsingular matrix S that commutes with
S, Theorem 4.2.4 computes the M S—orbit structure.

Theorem 4.2.4 Let S € M,, be nonsingular with ¢g(z) = (—1)"Pi(x)Py(x), where
Pi(z) and Py(x) are distinct irreducible monic polynomials of degree di and ds, re-
spectively. Also, let M € N(S) be nonsingular. Then, ma(z) = q1(x)go(z) for some

wrreducible polynomials q; and qo, and the MS—-orbit structure is

1+ np, [iP1] + NP, [’ip2] + e, P2 [ipl,Pz]a

where, fort=1,2

N, mazimal matriz in N'(Cp,),
up, index of Cp, respect to Ny,
Ug, index of Cy, respect to Ny,
m = lem(p™ —1,p® — 1),
! _ m

mt - pdt -1
e . lcm(m’l UC, ,MYUC,)

t - m;upt )
ip length of the M S—orbits in Op

t t)
ne, number of the MS-orbits in Op,,
7; m

P1,P, ged(e1rmug, —e2m’2uq2,gcd(kp1 np, m’l,kpznpzmg)) )

1Py Py

npy,p, Py, Py

Proof
Recall that Vp, = {x € Z|P;(S)x = 0} and that Vp, p, = Vp,p, — Vp, UVp,. Observe
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that
Z;L = Vpl U VP2 U Vp17p2.

Hence, the S—orbit structure is the formal sum of S—orbits in Vp,, Vp,, and Vp, p,.
Let >~ O be the formal sum of S—orbits in V. Thus, the formal sum of S—orbits in
Z, can be expressed as

1+ ZOPI + ZOP? + ZOPl,Pza

where, by Theorem 3.1.3,

EOP1 = Up (kPl)?
> Op, = Hp (kP2)’
> OPl,Pz = Hp,p (kPI P2 ) .

Let A be a nonsingular matrix for which A71SA = (0631 CO ) and let M €
Py

N (S) be nonsingular. By Theorem 2.2.6, M = Q(S) for some polynomial Q(z) of
degree at most n — 1, since S' is nonderogatory. Hence,

- waesou sy (900 o8 )

We already know that Vp,, Vp,, as well as Vp, p, are M—invariant since M = Q(S5).
Thus, the MS-orbit structure in Z;' can be expressed as

1+> Op +> Op,+> Op p,

By Corollary 2.2.6 N (Cp,) is a finite field of p% elements. Let N; be a maximal matrix
in N (Cp,). Also, let up, and u,, be the indexes of Cp, and Q:(Cp,) with respect to
N;. Now, since P;(x) is irreducible, the M S—orbit structure in Op, is np,[ip,], where
ip,, the length of the M S—orbits in Op,, is the smallest positive integer that solves

(NI = (N7 mod pf
for some integer j;. By Theorem 2.3.16,

iP — k‘]t
' ng(th’ k(h)

and the number of MS-orbits in Op, is

_ ke _p" 1

np, F—
2 P k P 2 P
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On the other hand, the smallest positive integer ip, p, that simultaneously solves

(N = (N mod g 19
(Ny )P = (N,9?)P17 mod p® (4.9)

for some integer jp, p, is the length of the M S-orbits in Op, p,. By Theorem 2.3.18,
m

ng(elmlluQ1 - eZmIQUQza ng(kP1 nP1mlla sznP2m12)) ’

tp,py, =

where, for t =1, 2,

m = lem(p®™ —1,p% — 1),

, m
m =
t pdt _ 17
! !
o lem(m)ug,, mhuc,)
t —_ -

mQU'Pt
Henceforth, the number of M S-orbits in Op, p, is

_ Mp,Py
npy,p, = .
ipy,py

Therefore, the entire M S—orbit structure in Z is

Oms =1+np [iP1] + Np, [iPz] + Npy,py [iPI,P2]'Q

0 3 00

1 4 0 ..
Example 4.2.1 Let S = 0 0 0 o be defined over Zs. The characteristic poly-

0 01 3

nomial of S is ¢s(z) = Pi(z)Pe(z) = 2*+323+ 222+ 22 +1, where P (z) = 22 +x+2
and Py(z) = 2% + 2z + 3. A simple inspection shows us that P, and P, are irre-

ducible over Zs and, furthermore, they are primitive. Thus, kp, = kp, = 24. Hence,

p, = pp, = 522—21 =1 and pp, p, = 1-1gcd(24,24) = 24. Since both Cp, and Cp, are

mazimal matrices, up, = up, = 1. Hence e; = es = 1.

Let M = . It is straightforward to see that M € M, and that

o O O W
N W O O

0
0
4
4

S O ==

mu(7) = q1(7)g2(2),
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where q,(z) = z° + 4z + 2, and q2(v) = 2? + 3z + 4. By direct computation,

kp = 24, ke = 12,
Uy = 17, u, = 14

Thus, applying Theorem 4.2.4, we have that

m = lem(24,24) = 24, m} = mgy = 1,

and
. _ k _ _ kP _
tpp = gcd(k;;ll,kql) - 17 np = ﬁ -
. _ k _ . bkpy
ip, = gcd(k;ij,k@) - la np, = i -
m 24
/L' = = = 8,
b ng(elmllu(h - eQmIQU’llza ng(kﬂ np mlla k'P277P2m,2)) ng(17 - 14, 24)
and
Hpy, Py 24
= 2 = — = 3_
’r’PI,PZ /L'PI,PZ 8

Therefore, the M .S—orbit structure in Zg is
14+ 1[1] + 1[1] + 3[8] = 1 + 2[1] + 3]8].

Remark 4.2.1 Recall from the proof of Theorem 4.2.4 that, given S € M, with

ods(z) = (=1)"Py(z)Pa(x), where Pi(x) and Py(x) are irreducible polynomials, S is

. C1Pl 0 . L Q(CPI) 0
stmalar to and any matriz M € N (S) is similar to
0 Q(CP2)

0 Chp
for some polynomial Q(x). Also, by Corollary 2.2.1, there exist mazimal matrices
N, € N(Cp,) such that Q(Cp,) = N} for some positive integers t., r = 1,2. Thus,

t1

M=A ' AL for some nonsingular A € M,,. Hence, Ny, depends on t;

0 N2
and to and for this reason we denote Ny bY Nmg (t1,t2).

Let S € M, be nonsingular with ¢g(z) = (—1)"pi(x)pe(z), where p;(z) and
po(z) are irreducible polynomials of degrees d; and dy, respectively.

Algorithm 4.2.2 examines all possible pairs (#},%,) € Z 4, X Za, and returns a
pair (ty,t2) for which 7, (t1,%2) is minimal.
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Algorithm 4.2.2
Inputs: prime p, primitive polynomials Pi(z), Py(x),
irreducible polynomials p,(z) and py(x).
Output: (t1,t2) such that Ny, (t1,t2) is minimal.
1. compute ¢y, c1,...,¢4,—1 € Zp such that
P (X%,! ¢iCh ) = 0, the zero dy x dy matriz;
2. compute ¢, ¢y, ..., Cy,_1 € Z, such that
Py(f25" dCL) = 0, the zero dy X dy matriz;
. set Ny = z;?;gl c,-C;;I.
. set Ny = Y20t ¢Cl,.
. compute €1, €z, kp,, kp,, kp, p,; Py, 4Py, 1Py, Py
. Initialize t; to p™ and ty to p®:
. Initialize np,, Np,, NP,,Py> Mmg 10 P;

for(th =1 tot) =p» —1) do

co I O Ot B~ 0w

compute Np,;
for(t) =1 tot, = p® —1) do
compute 77}327 77931,P2;
Nms <= Mpy + 1, + 1Py, p, -
f(1rg < Tms)
(Pys MPys MPLPy) <= (Mg My My Ry)-
(t1, t2) < (81, 13)-

return (t1,1s)

Let P, P, p1, and py be the primitive and irreducible polynomials, respectively,
in the input of Algorithm 4.2.2. By Corollary 2.2.1, N, = E?;gl c;-C’;,T is a maximal
matrix that commutes with C, . Let u,, be the index of C,, with respect to N;.

The remaining quantities in Algorithm 4.2.2 are computed according to the for-
mulas given in Theorem 4.2.4 as follows:
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kpr = gcd(;,,pdirijll’uma kpl,pz = lcm(kpl’ kpz)a
Wy, = prp:l , Porps = Moy Hpy 86 (Kpy s Ky, ),
m = lem(ph —1,p2 —-1), m. = per_la
/ ,
e, _ lcm(mr;zqz:;mﬂpz) ’ M, = ng(Hpr ’ tlr)a

and

Neey = PP god(eymiyt, — eamiyth, god (kg Ty, Fipyipy 1123))-

Assuming we have a table of primitive polynomials as well as logs and antilogs
tables for Z}, the complexity of Algorithm 4.2.2 is as follows.

The cost of steps 1, 2, 3, and 4 is O(p?) where d = max{d;, d»}, since when d, > 2,
an exhaustive search is performed. Now, in order to compute quantities in step 5 we
need the index of C,, with respect to N,. For this, we make succesive multiplications
of N, by itself. Thus, step 5 also costs O(p?) time. Steps 6 and 7 are of constant time.

The cost of the inner for loop is O(p® logp) time since some ged operations

are executed p® — 1 times. Thus, step 8 costs O(p¥p?®2logp) = O(p"logp) time.
Therefore, the complexity of the overall algorithm is O(p™ logp).

4.3 Two dimensional cases

The question remains of how to choose an optimal M for a symmetry matrix S that
is not necessarily M—minimal. In this section we completely solve the problem for
two dimensions. We characterize the various cases according to the factorability of
the minimal polynomial of S.

Theorem 4.3.1 Let S € My be nonsingular. Then mg(x) can be factored according

to one, and only one of the following cases.
I. mg(z) = 2% + bz + ¢ is irreducible over Z,,
II. mg(z) =z — A,

IIT. mg(x) = (z — N\)?,
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IV. mg(z) = (x — A1) (2 — A2), A1 # Ao

Proof

Let S € M; be nonsingular. Also, let ¢g(x) and mg(z) be the characteristic and
minimal polynomials of S, respectively. On the one hand, recall that mg(z) contains
all distinct factors of ¢g(x). Thus, if ¢g(x) is the product of distinct irreducible fac-
tors, so is mg(x). So, if mg(x) is quadratic and irreducible, or mg(z) is the product
of two distinct linear factors. This covers cases I and IV. On the other hand, if
ds(x) = (x — N\)?, then mg(x) = (x — \)? or mg(z) = z — ), which covers cases IT
and I11.$

The next theorem deals with the identification of matrices M that commute with
a 2 x 2 nonsingular matrix S.

Theorem 4.3.2 Let S € My be nonsingular. If mg(z) =z — X, then N (S) = M.
Otherwise, N'(S) = {c1S + colz|co, 1 € Z,}.

Proof
According to Theorem 4.3.1, mg(z) can be factor in four cases. If S is as in case I1,
S — A = 0. Hence, S is a scalar matrix. Thus, S commutes with any 2 X 2 matrix

in Mj. On the other hand, if mg(x) is as in cases I, 111, or IV, S is nonderogatory.
Hence, by Theorem 2.2.6, N'(S) = {¢1S + cola|co, 1 € Zp}.$

4.3.1 M-minimal two dimensional cases: cases [ and [/

Theorem 4.3.4 gives us the results for finding optimal matrices M for symmetries S
that fall into cases I and II of Theorem 4.3.1, respectively. In this subsection we
give necessary and sufficient conditions in order for a 2 x 2 matrix S over Z, to be
M-minimal and we show how to find such an M.

Theorem 4.3.3 Let S € My be nonsingular. Then S is M —minimal if and only if

S is scalar or ¢g(x) is irreducible.

Proof

Let us assume S is M—minimal and that M is an optimal matrix for S. Thus, by
Lemma 4.1.6, mg(x) = g(z), where ¢(z) is irreducible over Z,. Hence, ¢(z) is either
a linear or a second degree polynomial. If g(z) is linear, mg(z) = x — A, for some
A # 0 € Z,. Hence, S — Al =0, which implies that S = AL,. If, on the other hand,
¢(z) is a quadratic polynomial, then mg(z) = ¢g(z).
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Now, let us show the converse of the theorem. Assume S = Ay, A # 0. Thus,
mg(z) = q(z) = z — X\. Let P(z) = 2% 4+ az + b be a primitive polynomial over
Zp,. The companion matrix of P, Cp is a maximal matrix and, since S is scalar, Cp
commutes with S.

On the other hand, by Theorem 3.1.5, there are y, = ”2,6—;1 S—orbits of length k,.
By Theorem 2.3.16, the length of the M S-orbits is

P kp . p?—1 -1
! ged(kq, kp)  ged(kg, p* — 1) kq

= Mq‘

Hence, n, = l;_qq =1

Finally, assume that ¢g(x) = ¢(x) is irreducible, then, by Corollary 2.2.1, there
exists a polynomial Q(z) = 1S + ¢olo such that M = Q(S) is a maximal matrix
that commutes with S. Thus, by Theorem 2.3.16, the length of the M S-orbits is

i, = Hq = Hq
T ged(pg, Indar (M) ged(pg, 1)

= HUgq,
and 1, = ’;—;’ =1.¢

In the two dimensional case, Theorem 4.3.4 describes the solution of the system of
congruences that gives the coefficients of the polynomial Q(z) from Corollary 2.2.1.

Theorem 4.3.4 Let S € M,y be nonsingular and let P(x) = x° + ax + b be any
primitive polynomial over Z,. If S is a scalar matriz, then an optimal matriz M

for S is M = Cp. On the other hand, if mg(x) = 2 + cx + d is irreducible, then

a’>—4b
c2—4d

15 a quadratic residue c; mod p, and M = ¢S + coly 1s optimal for S, where
co =27 (crc — a).

Proof
If S is scalar, it was already shown in the proof of Theorem 4.3.3 that the companion
matrix of P(x), Cp, is optimal for S.

Now, suppose mg(z) = x? + cx + d is irreducible. Then, by Corollary 2.2.1, there
exist cg, ¢; € Z, such that M = ¢;S + ¢l is a maximal matrix and that P(M) = 0.
In fact, since P(z) is an irreducible quadratic polynomial, there must be two such
pairs (co, ¢1). Since mg(S) = 0, we have to find ¢y and ¢; such that

P(c1S + ¢ply) = 0 mod S + ¢S +dI, (4.10)
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Note that P(cylz) # 0 for any ¢y € Z,. Hence ¢; # 0. Also note that 2 —4d # 0,
since if it were the case, mg(—271¢) = 0, which contradicts the irreduciblity of mg(z).
Equation (4.10) is equivalent to

(—cc? + 2coct +ac1)S + (c2 +aco +b—de), =0
if and only if

—ccf+20001+acl = 0
co+acg+b—dcd = 0

if and only if

—cci+2co+a = 0
o+ acy + b —dct 0
if and only if
2 a® — 4b
Lo @2—4d
co = 27'(cer —a).
23 65
Example 4.3.1 Let S = over Zg;. A quadratic primitive polynomial
84 10

over Zgr is P(z) = 2> —x+5 and the minimal polynomial of S is ms(z) = 2°+641+8.
By direct computation we verify that mg(x) is irreducible. Applyng Theorem 4.3.4,
we find that ¢2 = 31 mod 97 and so ¢; = 15 or ¢; = 82. Thus, ¢y = 44 or ¢y = 54.
Thus, two optimal matrices for S are

1 5 0 92
M =155 + 441, = and M = 825 + 541, = .
96 0 1 1

0

1
Example 4.3.2 Let S = ( ) be defined over Z,, where p is a prime less
0

p—1
than 100. The minimal polynomial of S is mg(x) = 2*> + 1. By Theorem 2.3.14,
ms(x) is irreducible mod p if and only if p =3 mod 4, i.e., p is of the form 4t + 3.
By Theorem 4.3.4, one such family of matrices is given by

1 C1
M:clS—i-Ig: .

—C1 1
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Table 4.3.1 lists all primes p between 5 and 100 of the form 4t + 3 and values of

¢y that satisfy Theorem 4.3.4.

M S—orbits M S —orbits

c M=cS+1, M = gl,

7 2 1+ 1[12] 1+ 4[3]
11 4 1+ 1[30] 1+ 6[5]
19 3 1+ 1[90] 1+ 10[9]
23 2 1+ 1[132] 1+ 12[11]
31 4 1+ 1[240] 1+ 16[15]
43 2 1+ 1[462] 1+ 22[21]
47 2 1+ 1[552] 1+ 24[23]
59 3 1+ 1[870] 1+ 30[29]
67 7 1+ 1[1122] 1+ 34[33]
71 7 1+ 1[1260] 1+ 36[35]
79 6 1+ 1[1560] 1+ 40[39]
83 10 1+ 1[1722] 1+ 42[41]

Table 4.3.1 : M —minimal cases

4.3.2 Optimal two dimensional matrices for case I/

In this subsection we give a specific formula to compute optimal matrices for case 1T
of Theorem 4.3.1.

Theorem 4.3.5 Let S € My be nonsingular with mg(z) = P(x)?, where P(z) =
z — \. Also, let M € N(S) be nonsingular. Then my(x) has a factor of the form

q(z) =z — B and the M S-orbit structure is 1 4+ 2np|ip|, where ip, np are the length
and the number of the M S—-orbits in Op, respectively.
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Proof
Let S € My be nonsingular with mg(z) = (x — \)%. Recall that
Ve = {xe€Z|P(S)x =0}
= {x€ Z}|(S - \)x =0},
V= {xeZP(S)Px =0},

Vpep = Vp2 —Vp.

Note that if M is any nonsingular matrix that commutes with S, then Vp as well
as Vpz p are M—invariant. Therefore, the M S—orbit structure is given by the union
of the M S—orbit structures of Op and Op2 p. Now, since P(x) = x — A is irreducible,
then the M S—orbit structure in Op is nplip|, where, by Theorem 2.3.16,

-1
M gpp=tE_PT
ng(kp, kq) ancnp ’ip kpip

ip
We will show that the MS-orbit structure in Op2 p is np|ip].

Note that, by the Jordan canonical decomposition theorem (Theorem 2.2.4), there
exists a nonsingular matrix A such that

e (A1
A SA_(O A).

Also, by Theorem 4.3.2, if M € N(S), there exist cg,c; € Z, such that M =
1S + cglo. Hence,

A_lMA = (8\ /1\) + 60[2 (411)
Cl)\ + Co C1

( 0 Cl)\ + C()) (412)

_ (B 7)
_ (0 1) (4.13)
where 8 = c;A+c¢p and v = ¢;. Thus, ip2 p is the smallest positive integer that solves

A1 jP2,P _ ﬁ v iP2,P

(0 )\) = (0 5) (mod p) (4.14)

for some integer jp: p, if and only if

)\jPQ,P = ﬂiPz,P

. Jp2p—1 _ ips p—1
Jp2,pN'P%P = ip2,pffPr Ty

} (mod p) (4.15)
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if and only if

Ind(A)jp2p = Ind(B)ip2p (mod p—1) (4.16)
jpep = B 'A\yipzp (mod p) (4.17)

Making equations (4.16) and (4.17) have the common modulo p(p — 1) and elim-
inating jp2 p from both equations we endup with

Ind(ﬂ)ipsz =0 (mod ,LLP)
Thus, by Theorem 2.3.11,

’[:P2P: MP = kq
" ged(pp,Ind(B))  ged(kp, kq)

which is the same as solving M» = 3?7 (mod p). Thus, the number of M S—orbits in
Op2p is np2p = Errp — ’;—If = np. Therefore, the M S-orbit structure in O,,, is

=1p,

p2 p

1+ nplip] + nplir] = 1+ 2nplip].{

Remark 4.3.1 Note that, in this particular case, the MS—orbit structure does not
depend on the value of v. Thus, any nonsingular M', M" € N(S) impose the same

MS—orbit structure as long as ¢y = Gppr.

Given any 2 X 2 nonsingular matrix S with mg(z) = (x—\)? and M = gl,, apply
Theorem 4.3.5 and we have
Corollary 4.3.1 Let S € My be nonsingular with ms(z) = P%(z), where P(x) =
x — A. Then, an optimal matriz M for S is M = gl, and the M S-orbit structure is
given by 1+ 2[up], where g is a primitive of Z.

4.3.3 Optimal two dimensional matrices for case IV

In this subsection we find an optimal matrix M when matrix S has two distinct

nonzero eigenvalues. Theorem 4.3.7 outlines the procedure to compute such an op-
timal M for S.

The following theorem is a restatement of Theorem 4.2.4 for the case when matrix
S has two distinct eigenvalues (i.e., the two irreducible polynomials have degree 1.)
Algorithm 4.3.1 is a specialized version of Algorithm 4.2.2 for this particular case.



75

Theorem 4.3.6 Let S € My be nonsingular with mg(z) = Py(z)Py(z), where for
t=1,2, P(z) =z — N\, A\ # Xa. Then for any nonsingular M € N (S), oum(z) =
¢1(7)go(z), where ¢(x) = x — By and the M S—-orbit structure induced by M is

1+ np, [iP1] + np, [Z'Pz] + e P2 [iP17P2]a

where ip,, ip, p,, Np,, and Np, p, are the length and the number of the MS-orbits in

Op, and Op, p,, respectively.

Example 4.3.3 Let S be a 2 x 2 matriz over Zy; with mg(z) = (z —13)(x — 4). A
primitive element of Z}, is g = 3, and a table of indezxes with respect to g, together

with the order of each element a € Z7;, k,, 13

a 123|456 |7|8|9[10]11|12[13]14|15]16
Inds(a) |16 |14 | 1 |12 | 5 |15 |11 |10|2| 3 | 7 |13|4 | 9|6 | 8

ke | 1|8 |16] 4 |16|16|16| 8 8|16 |16|16| 4 [16| 8 | 2
Table 4.3.2 : Index table with respect to primitive g = 3 for Z3.

In this example, \y = 13 and Ay = 4 (i.e., Pi(z) = x — 13 and Py(z) = z — 4) and,
from Table 1,

Inds(\y) = 4, kp, =4, Inds(\) =12, and kp, = 4.

Thus,

16 16
ppo= = 4, pp, = 1= 4, kp, p, = lem(4,4) =4, and pp, p, =4 x4+ 4 =64.

Also, compute e; and ey:

lem(Inds(Xy), Inds(X2))  lem(4,12)

), _
“ Inds(\) >
o — lem(Inds(M1), Inds(X2))  lem(4,12) .
2 Inds(\o) 12
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There are three types of nontrivial S—orbits: the ones in Vp, and Vp,, which, in

this case, are of length 4, and the ones in Vp, p, of length 64. By Theorem 3.1.3, the

S—orbit structure is

14 4(4) + 4(4) + 64(4).

Now, we will consider two different diagonal matrices and apply Theorem 4.3.6

to compute the M S—orbit structure for each of these matrices.

3 0
(0,) Let M1 = 3[2 = ( ) . ThUS, 51 = ﬂg = 3, and Indg(ﬂl) = I’ﬂdg(ﬁQ) =1.
0 3

(b)

Then,
np, = ng(NPl’ ]ndg(al)) = ng(4’ 1) =1,

and

np, = ged(pp,, Indg(a)) = ged(4,1) = 1.

Therefore, M, yields one MS—orbit of size four in each Vp, and Vp,. The

length of the MS—orbits in Op, p, 1S ip p, = gcd(3*lfl*ll,gcd(4*1,4*1)) = 8. Thus,
the number of MS-orbits in Op, p, s Np, . p, = Zfl—? = % = 8. The owverall
1,572

MS—orbit structure in Op,, imposed by M, = 315 is
1+ 1[4] + 1[4] + 8[8],

which gives a total of Nmg = np, +1p, + Np,p, = 1+ 1+ 8 = 10 nontrivial
M S —orbits.
0

3
LetM2=
0 9

)- Thus, By =3, By = 3> =9, and Inds(B1) = 1, Inds(B2) =

Then,

np, = ng(uPlaIndg(ﬂl)) = ng(4a 1) =1,

np, = ng(,qu Indg(l@Q)) = ng(47 2) = 2’
ip, = By
np
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Therefore, with matriz My there are np, = 1, and np, = 2 nontrivial M.S—

orbits of sizes 4 and 2 in Op, and Op,, respectively. The length of M S—orbits

. . . o 16 . B .
in Op, p, 1S ip,,p, = el Trogd(@idD) = 16, and the number of MS—orbits
. . _ MP,Py, _ 64 __ _ . .

in Op,.p, 18 NPy, p, = e T 16 = 4. Therefore, the MS—orbit structure in

Ong tmposed by M is
1+ 1[4] +2[2] + 4[16],

and the total number of nontrivial M S—orbits is

Nms =Np, + 1, +0pp, =1+2+4=1T.

Remark 4.3.2 It is worth noting that, in part (a) of Example 4.3.3, matriz M,
yields the lowest possible number of M S—orbits in Op, and Op, (i.e., one for each
Op, and Op,). However, the number of MS—-orbits in Op, p,, np,p, = 8, is larger

than the lowest possible value which is uglf’fz = % = 4. On the other hand, matriz

M, in part (b), achieves the largest possible MS-orbit in Op, p,, nonetheless, the
number of M S—orbits in Op, is not one, which is the smallest possible value; but the

overall number of MS—orbits Ny, is less than that of part (a).

Example 4.3.3 shows that it is not always the case that, given a nonsingular ma-
trix S with two distinct eigenvalues, the matrix M = g¢l,, g a primitive of Z,, is
optimal for S (this is the Auslander’s method.) This justifies the search for optimal
matrices for which the total number of nontrivial M S-orbits, 7, = np, +1p, +1p,,P,,
is minimal.

Recall that by Corollary 2.2.7, given S with two distinct eigenvalues, any matrix

M that commutes with S can be written as A (% 60
2

matrix A, where g is a generator of Z; and ; = g for some integer t;. Hence, 7y,
depends on ?; and ¢, and for this reason we denote 7,5 by g (t1, t2)-

) A~! for some nonsingular
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Given two distinct nonzero values A\; and A, from Z,, Algorithm 4.3.1 examines
all possible pairs (t),%,) € Zy x Z» and returns a pair (t1,%,) such that 7, (¢, 1) is
minimal, where mg(z) = Pi(z)Py(x), Pi(x) =z — N, i = 1,2.

All quantities in Algorithm 4.3.1 are computed according to one of the following
formulas. For r =1, 2,

_ p—1 _
ke, = ged(p—1,Ind, (1)) kpop, = lem(key, k),
pe = g ppop, = pp e, ged(kpy, kp,),
lemInd,(),Ind,x
e = ORI o = sed(en 1),
and i
Py ,P
n}l,PZ = i 12 ng(eltll - thIQ’ng(kpln;:ﬁ?kP2’r’;32))'

Algorithm 4.3.1
Inputs: (A1, \2), prime p, and generator g of Z;.
Output: (t1,t2) such that Ny, (t1,t2), is minimal.
Assumption: Precomputed log and antilog tables with respect
to a primitive element g € Z; are available.
compute kp,, kpy, kp, py;
compute ey, es;
compute [p,, fipy, Ly, Py

initialize t1,ty to p — 1,

A

initialize Np,, NPy, NPy Pys s 10 D?;
for(tfy =1toti =p—1) do
compute Mp,;
for(ty=1toth=p—1) do

compute Np,, Mp, p,;

Mg < NMpy + e, + e, Py

if (1 < 7 )

(1, 12) = (21, 13);

(an NPy, NPy, Py nms) — (77}’1 ) 77}’27 77}31,P27 n;ns)a
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iy =2+ ’L;’lf’f? ) //Best case
STOP
return (t1,1s)
The complexity of Algorithm 4.3.1 is as follows. Steps 1, 2, and 3 cost O(logp)

since a constant number of greatest common divisor operations are performed. Steps
4 and 5 cost constant time.

On the other hand, the two nested for loops contain several greatest common
divisor mod p operations inside them, which can be computed in logp arithmetic
operations. Hence, this part of the algorithm costs O(p?logp). Therefore, the com-
plexity of Algorithm 4.3.1 is O(p?logp).

Theorem 4.3.7 Let S € M,y be nonsingular with mg(x) = Pi(x)Py(zx), where
P (z) =2 — A and Py(x) = & — Ao, A1 # Ao. Let (t1,t2) be such that Ny (t1,t2) is

.. . . . t1 _gt2
minimal. Then, an optimal matriz M for S is M = ¢S + cols, where ¢ = 9A1_§2

and ¢y = g1 — c1 ).

Proof
Clearly, Algorithm 4.3.1 examines all pairs (#},%;) € Z; x Z; and selects one pair
t1
(t1,19) for which M’ = (g() 9(22) is optimal for S’ = ()(\)1 )(\) ) . On the other
1
hand, by Corollary 2.2.7, there is a polynomial Q(x) = ¢;z+c¢o such that Q(S') = M’
(equivalently, Q(S) = M). Hence,

Cl)\1+CO 0 ) _ (gtl 0 )
( 0 Cl)\g + Co o 0 gt2 (418)

if and only if

cihi+c = g"

alt+c = g~

Solving this last system of equations we arrive at ¢; = 9;11:‘)’;2 and ¢y = ¢t — 1 \1.$

We summarize the results for, given a nonsingular matrix .S, choosing an optimal
matrix M in the two—dimensional cases in the following
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Algorithm 4.3.2

Inputs: prime p, nonsingular S € My, and primitive polynomial

P(z) = 22 + ax + b over Z,.

Output: optimal matriz M

1.

11.

I1I7.

1V.

end

compute ds(x) = x? + cx + d;
compute the roots of ¢s(x);
compute ms(fv);

If ps(x) is irreducible,

a®—4b
c2—4d

1. compute ¢, and co such that ¢ = (mod p)

and cy = 27 (c1c — a) (mod p);
2. set M = 018 + 00]2.

—b
If ms(z) =2 — A, set M =
1 —a

If ms(z) = (x — \)?, set M = gls.
Ifmg(x) = (33 - /\1)((E - /\2), /\1 7é )\2,

1. compute (t1,1t2) such that Ny, (t1,t2) is minimal;

2. compute
.o 9yt
1 )\1 _ A2 )
Co = gtl — C1 A

3. set M = 1S + cols.
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In order to implement Algorithm 4.3.2, we make use of a precomputed table of
quadratic primitive polynomials. It is well known [25] that for any n—degree primitive
polynomial P(z) over Z,, the constant (—1)"P(0) is a generator g of the multiplica-
tive cyclic group of Z,. Thus, having a precomputed table of primitive polynomials
also gives us generators for the cyclic group Z;. Now it is easy to show that, assuming
the availability of primitive polynomials as well as a log and anti-log tables for Z7,
each step of the algorithm takes either constant or O(p) time, except for step IV
which is of O(p?logp).

The characteristic polynomial ¢s(z) can be computed in constant time and its
roots can be determined in time O(p). The computation of mg(z) cost constant time
since we already have the roots of ¢g(x).

The primitive polynomial in steps I and II can be found by table lookup and
thus, it requires time O(p) (or O(logp) time using binary search for tables with a
very large number of primitive polynomials).

The calculation of ¢?, ¢y, and M in step I can be done in constant time. Now,

- _ Indy(d) - -
since Indg(c;) = =, substep 2 also requires constant time. Hence the overall

complexity for step I is constant.

The calculation of M in step I'V requires time O(p*(log(p)) according to the time
complexity of Algorithm 4.3.1.

82 77
Example 4.3.4 Let S = over Zsrg. The minimal polynomial of S
296 316

is mg(x) = Pi(x)Py(x), where Pi(x) = z — 11 and Py(z) = = — 8. A primitive
element for Z3,4 is g = 2. Assume we have a table of indexes with respect to g = 2.
Hence, Indy(11) = 217 and Indy(8) = 3. By Lemma 2.3.3, the orders of P, and Py

respectively, are

— 378 —

kpo = apmam = 94 and
— 378 —

kp, = apmy = 126

Thus, kp, p, = lem(54,126) = 378, up, = 35% =7, and up, = %2 =3, up,p, =

wp, fip, ged(kp,, kp,) = 7- 3 - ged(54,126) = 378. Also,

_ lem(Ind,(11),Indy(8)) _
er = I;dQ( ) 2 = 3, and
_lem(Ind.(11) Indy(8)
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A pair (ty,t2), which is the result of running Algorithm 4.3.1 on the input A, = 11,
Ay = 8, and prime p = 379, that minimizes Ny = Np, +Np, +0py.p, 45 (1, 12) = (1,2).
Then, qi(z) =z—B1 =1-2' =2-2, qo(x) = 2— 2 = @2(7) = 122 = qo(z) = 4,
ko = seatsrsmy = 378, and kg, = goatesy = 189.

gcd(378,1) d(378,2)

Now, let us apply Theorem 4.3.6 to compute the MS—orbit structure in Op,.

s 378 _ s 189 _ _ 7 _ — 3 _
ZPI_M_,?’ZPQ_M_B. Thus, 77p1—7—1,77pz—§—1, and
378
P, P = 378,
PPy ged(3-1— 2172, ged(54- 1,126 - 1))
_ Hpupy 378
np,p, =

in.p, 378

Then, the optimal MS-orbit structure in O, s
1+ 1[7] + 1[3] + 1[378].

Finally, let us apply Theorem 4.3.7 to find an optimal matriz M for S. Such

optimal matriz is M = eS + fI,, where e = g;\i:f’\? = ((1211455)) = 252 and f =

gt — e\ =2 —252-11 = 262. Therefore, an optimal matriz for S is

81 75
M = 2525 + 2621, =
308 304
0 1
Example 4.3.5 Let S = be defined over Z,. The minimal polynomial of
-1 0

S is mg(x) = x? + 1, which, by Theorem 2.3.14, is factorable if and only if p= 2 or
p is of the form 4t + 1, for some positive integer t. Applying Algorithm 4.3.2, Table
4.3.3 shows, for each prime p of the form 4t+1 between 5 and 100, the corresponding
optimal M for S. The M S—orbit structure is computed using Theorem 4.53.6 and ma-
triz M is computed according to Theorem 4.3.7. As can be seen, the total number of
nontrivial MS—orbits via M, 1y, is nearly half the number of nontrivial MS—orbits

Nms induced by the scalar matriz gly, where g is a generator of Z.
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optimal MS—orbit gly—orbit
p M structure Nms structure Nims
3 2
5 (3 3) 1+ 2[1] + 1[4] 3 1+ 2[1] + 2[2] 4
3 5
13 - 1+ 2[3] + 3[12] 5 1+ 2[3] + 6[6] 8
6 12
17 s 6 1+ 1[4] + 2[2] + 4[16] 7 1+ 2[4] + 8[8] 10
3 12
29 1+ 2[7] + 7[28] 9 1+2[7) +14[14] | 16
17 3
3 6
37 a1 3 1+ 2[9] + 9[36] 11 | 1+2[9]+ 18[18] | 20
21 12
41 1+ 1[10] + 2[5] + 10[40] | 13 | 1+ 2[10] + 20[20] | 22
29 21
3 23
53 50 3 1+ 2[13] + 13[52] 15 | 1+ 2[13] 4 26[26] | 28
3 11
61 0 3 1+ 2[15] + 15[60] 17 | 14 2[15] + 30[30] | 32
15 51
73 1+ 1[18] +2[9] + 18[72] | 21 | 1+ 2[18]+ 36[36] | 38
22 15
6 13
89 6 6 1+ 1[22] + 2[11] + 22[88] | 25 | 1+ 2[22] + 44[44] | 46
15 26
97 115 1+ 1[24] + 2[12] + 24[96] | 27 | 1+ 2[24] + 48[48] | 50
Table 4.3.3 : Non optimal scalar matrices.
-1 0
Example 4.3.6 Let S = 0 1 be defined over Z,. The minimal polynomial of
S is mg(x) = Py(z)Pe(z), where Pi(z) =x 4+ 1 and Py(x) = x — 1. Then,
)\1 = p— 1, )\2 = 1, kpl = 2, kp2 = 1,
pp, = B pp, = p—1, Ind\) = 53, Ind(d) = p—1,
_ lem(22,p — 1) lcm(’%l,p -1)

€1 = 1 :2,62: =1.

2
p—1 p—1

N
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Thus, np, =1, mp, =1, ip,p, =p—1, and np, p, = p%l. In this case, M = gl, is

optimal for S for any prime p and the MS—orbit structure is

1+1[p;1]+ —lp—1]

Table 4.3 shows the optimal M, the M S-orbit structure and the optimal number

of nontrivial M S—orbits for primes between 17 and 53.

p | optimal M O Mg
17 31, 14 1[8] +9[16] | 10
19 21, 1+ 1[9]+1018] | 11
23 71, 1+ 1[11]+12[22] | 13
29 31, 1+ 1[14] +15[28] | 16

[ [
[ [
31| 12L, | 1+1[15]+16[30] | 17
37| 5L 1+ 1[18] +19[36] | 20
[ [
[ [
[ [

41| 120, | 1+1[20] + 21[40] | 22

43 31, 1+ 1[21] 4 22[42] | 23
A7 | 131, | 1+1]23] + 24[46] | 25
53 51, 1+ 1[26] +27[52] | 28

Table 4.3.4 : Optimal scalar matrices.

4.3.4 Conjecture for an O(plogp) algorithm

As we have seen, the major expense in computing an optimal M in the two dimen-
sional case is when mg(z) = (x — A1)(z — A2), A1 # A2, which in turn is due to the
search required by Algorithm 4.3.1.

The following lemma will serve as a support for our Conjecture.

Lemma 4.3.1 Let S € My be nonsingular with mg(x) = Pi(x)Py(x), where Py(z) =
x—A1 and Py(x) = x— X2, A1 # \o. Then, there exists a pair (t1,1ts) for whichnp, = 1

and ipl,P2 =p— 1.
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Proof
Let g be a primitive of Z} and let ¢, = 1. Thus, by Lemma 4.2.1,

np, = ng(,U,pl,IIldg(g)) = ng(MPU 1) =1

and

: p—1 . p—1

“PuPy ged(ey - 1 — egty, ged(kp, - 1, kpynp,))  ged(ey — egty, ged(kp,, kp,np,))’
where

_ lem(Indy(A1), Indg(A2))

= Ind,()\,) ’

Note that ged(ei,ez) = ged(e;, —es) = 1. Hence, by Dirichlet’s Theorem (Theo-

rem 2.3.9), there exist infinitely many integers ¢ for which e; + eyt is a prime. Let ¢/

be such that |e; — eot’| is a prime not dividing kp, and let to = ¢’ mod kp,. It is easy
to see that ged(eq — esth, ged(kp,, kp,mp,)) = 1. Therefore, ip, p, =p — 1.

r=1,2.

Conjecture 4.3.1 is based on a very simple greedy strategy that has worked very
well for all examples and runs we have made so far.

Conjecture 4.3.1 Let S € My be nonsingular with mg(z) = Pi(x)Py(x), where
Pi(x) =2 — )\ and Py(x) = © — Ao, M # Xo. Also, let kp, and kp, be the orders

of P1 and Py, respectively, and assume that kp, < kp,. Then, there exists a positive

integert such that (1,t) minimizes Ny and the the matriz defined by M = ¢1.S +coly

. . _ ot
is optimal for S, where ¢; = /\gl_g)\z and cg = g — 1 \1.

First, note that kp, < kp, implies that up, < pp,. Thus, pp, < pp, < pp, p,- The
strategy of Conjecture 4.3.1 can be explained as follows. Minimize the number of
M S-orbits by getting the minimal number of M S-orbits in the two sets containing
the largest number of S—orbits, Vp, and Vp, p,, and, at the same time, minimize the
number of M S—orbits in Vp, which contains the smallest number of M S-orbits.

That is, minimize n,,, = np, + 1Np, + Np,,p, by fixing np, to be 1 and np, p, to
be 2222 "and at the same time, minimize the value of np,. By Lemma 4.3.1, it can
always be achieved.

Under the assumption that Conjecture 4.3.1 is true, the complexity of Algo-
rithm 4.3.1 would be O(plogp) since only the second for loop is required. In this
case the complexity of Algorithm 4.3.2 would also be reduced to O(plogp).
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This conjecture is also valid for the general case when the characteristic poly-
nomial of the nonsingular n x n matrix S is the product of two distinct irreducible
polynomials of degree d; and d,. In this case, the complexity of Algorithm 4.2.2
would be reduced from O(p™logp) to O(p®logp), where d = max{d;,ds}.

4.4 Three dimensional cases

The proof of Theorem 4.4.1 is similar to the one for Theorem 4.3.1 in the two di-
mensional cases.

Theorem 4.4.1 Let S € Mjs be nonsingular. Then, the minimal polynomial of S,

ms(x) can be factored according to one, and only one of the following cases:
I. mg(z) = 2® + dz® + ex + [ is irreducible over Z,,
II. mg(z) =2 — )\,
III. mg(z) = Pi(z)(x — \), Pi(z) = 22 + cx + d is irreducible over Z,,
IV. mg(z) = (x — M) (z = Xo), ds(x) = (x — A\1)% (T — A2), AL # Ao,
V. mg(x) = (x — \)3,
VI mg(z) = (z — X\)2%(x — A2), A1 # Ao,
VIL. ms(z) = (z — )2,
VIII. mg(z) = (x — A)(x — A2) (@ — A3), Ai #Aji# 7.

4.4.1 Three dimensional M—minimal cases: cases [ and I/

In this subsection we give necessary and sufficient conditions in order for a 3 x 3
matrix S over Z, to be M-minimal and we show how to find such an M.

Theorem 4.4.2 Any nonsingular S € Mjs is M -minimal if and only if S is scalar

or has irreducible characteristic polynomial.
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Proof

Suppose S is M—minimal. Then, by Theorem 4.2.1, mg(x) is irreducible. Then,
mgs(x) cannot be quadratic since otherwise ¢g(z) would not be irreducible. Hence,
mg(x) is either linear or cubic, i.e., either S is scalar or ¢g(z) is irreducible. Con-
versely, if S is scalar or ¢5(x) is irreducible and hence M—minimal.<

In general, given an n x n matrix S with irreducible characteristic polynomial,
where n > 3, the construction of a maximal matrix M that commutes with S is more
elusive than in the two dimensional cases. However, in the three dimensional cases
we can show that, given a primitive polynomial P(z) = z®+ax?+bz+c over Z,, and
a 3 x 3 matrix S with irreducible characteristic polynomial ¢5(z) = 23 +dz? +ex+ f,
then a matrix M that is M—minimal for S is

M = CQS2 + clS + 00]3,

where ¢y, c1, co is the solution of the system of congruences 4.19.

c+adfci+dfc3 — 2defc3 + frey+ )
—2afcyc) — 3d?fcaer + 3efcier + 3df coc? — fi+
+bco + 3df caco — 6 feacicy +acd + 3 =0

adecs — afci + d*ec3 — 2de*c3 — d* fc3+

+2efc3 + bey — 2aecoc; — 3d%ecic; — eci+

+3e%cke; + 3dfcie; + 3defeact — 3feac? + 3decieo+ b (mod p) (4.19)
—3fc3co + 2acicy — Becgeicy + 3eicd =0

bca + ad?c3 — aecd + d*c3 — 3d%ec3+

+e%cs + 2dfc3 — 2adcye; — 3d3cie; + 6decie; +
—3fcicr + ac? + 3d%cac? — 3ecoct — dcd+

+2acycy + 3d*c3cy — 3ecicy — 6deyeicy + 3¢ + 30208 =0 |

We know of no method to solve this system of polynomial congruences. However,
because of the isomorphism between representation K (p®) and representation Ky (p®)
of a Galois field GF'(p") (see Theorem 2.2.2), we are guaranteed that a solution exists.
Indeed, since ¢y, ¢1, ¢y is a solution of (4.19) if and only if

P(6252 + 615 + 00]3) =0

and P(z) is of degree 3, there are exactly three solutions. One idea is to simply use
trial and error to determine one such solution cy, c1, co. We have written a program
in C for this purpose. The time required for this method is O(p?).
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Example 4.4.1 The matrixz

S=]1 0 -1 0 (4.20)

is M -minimal over Z, for any p since mg(x) = x + 1, which is irreducible over Z,.

If, for instance, p = 47, then

0 0 43
M=]10 46 (4.21)
01 0

is optimal for S since P(x) = z3 + x + 4 = 2° — 46z — 43 (mod 47) is primitive

over Zyz.

Example 4.4.2 Let a symmetry be defined over Zy; by the matriz

86 36 87
S=143 8 90
78 43 8

The characteristic polynomial of S is ¢s(x) = 2°+922%+3x+96 and this polynomial

happens to be irreducible. Running our program with the primitive polynomial
Px)=2"+z+T7,
we find three solutions to the system of congruences (4.19):

{Co,Cl,CQ} = {14,62,7},
{co,c1,c0} = {38,13,11}, and

{C(), Cy, C2} = {45, 22, 79}
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Using the first solution, we find that a matrix M that makes S M—-minimal is

26 18 57
M=75%2+62S+14;=| 75 84 40
39 75 84

4.4.2 Optimal three dimensional matrices for case /]

In this subsection we find an optimal matrix M when nonsingular matrix S has
minimal polynomial mg(z) = Pi(x)(z — A), where Pj(z) is a quadratic irreducible
polynomial. Theorem 4.4.3 outlines the procedure to compute such an optimal M
for S, which in turn depends on the output of Algorithm 4.4.1.

Let S € M3 be such that mg(z) = Py(z)(z — )\), where Pi(z) = 22 + cx + d is
irreducible and A € Z;. Recall from Remark 4.2.1 that the minimal number of M S—
orbits 7,,, depends on some positive integers ¢; and ¢, and that we write 7y, (t1, t2).

Algorithm 4.4.1 examines all possible pairs (#},15) € Z» X Z; and returns a pair
(t1,t9) for which 7y, (t1,t2) is minimal.
Algorithm 4.4.1
Inputs: prime p, primitive polynomial P(x) = 2% + ax + b over Z,,
irreducible polynomial Pi(z) = 2° + cx + d and
Pyz)=2— X A#0€ Z,
Output: (t1,t2) such that Ny, (t1,t2) is minimal.
1. compute cy, c1;
2. set N = c1Cp, + cols.
. compute e1, €2, kp,, kpy, kp, Py [LP,, 4Py [Py, Py
. Initialize 11, ty to p%;
. Initialize Np,, NPy, NP, Pys s 10 P

for(t) =1tot) =p*>—1) do

S Ot s W

compute Np,;
for(ty=1toth=p—1) do

! !/ .
comPUte 77P2 ’ /r]Pl,Pg ’
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s < Mp, T Np, + 1, p,-

(Mg < M)
(Pys My ML Py) <= (Mg My My Py)-
(t1,t2) = (81, 13).

return (t1,1s)

Let P(z) = z° + ax + b be the primitive polynomial of Algorithm 4.4.1. By
Theorem 4.3.4 N = ¢S + ¢yl5 is a maximal matrix that commutes with S, where

= 322:;13 and ¢y = 27 (cic — a). Hence, Ind,(c;) = Ldg(c%) and so ¢; = gds(er),

The remaining quantities in Algorithm 4.4.1 are computed according to the for-
mulas given in Theorem 4.2.4 as follows:

= p2-1 - _ _pl
kp, T ged(p>—1,Indy(Cp)))’ kp, - ggd(p—l,Indg()\)) ’
kPl,PQ = lcm(kpl, kP2), Kpy = pk;ll’
up, = I;C;PJ, Hp,p, = HPHEP, ng(kPI’ kP2)ﬂ
. _lemdndy(cp)),(p+1)Ind,(0) . _lemdndy(cp)),(p+1)Indy (1)

L = Indy(Indy (Cp,)) ’ 2 - (r+1)(Indy (1) ’
77331 = ng(NPl ’ tll)a 775’2 = ng(MP?’ tIZ)’
and
_ Hpy,P,

Mp, P, = 2o ged(enty — (p + L)eaty, ged(kp7p, s kp,nlp, (p + 1))

Assuming we have a table of primitive polynomials as well as logs and antilogs
tables for ZJ, the complexity of Algorithm 4.4.1 is as follows. The cost of Steps
1, 2, 4, and 5 is constant. Now, in order to compute quantities in step 3 we need
the index of Cp, with respect to N. For this, we make succesive multiplications
of N by itself. Thus, step 3 costs O(p?) time. The cost of the inner for loop is
O(plogp) time since some ged operations are executed p — 1 times. Thus, step 6
costs O(p? - plogp) = O(p®logp) time. Therefore, the complexity of the overall
algorithm is O(p®logp).

Theorem 4.4.3 Let S € Mj be nonsingular with mg(x) = Pi(x)Pa(z), where
Pi(z) = 2% + cx + d is irreducible and Py(z) = x — ). Let (t1,t2) be such that

Nmg (t1,12) is minimal. Then, there exists a mazimal matric N € N (Cp,) such that

M= (3252 + 015 + C()I3
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1s optimal for S, where

Co = (dil)\UIQ + gt2 — UH)Pl (/\)71,
C1 = cCy — d_lulz,
Co = Ui + CQd,
U1 Ui2
Nb = ,
(U21 U22 )
g is a generator of Z.
Proof
Let P(x) = 2*4+ax+band N (511 le> be the primitive polynomial and the max-
21 U2

imal matrix from Algorithm 4.4.1, respectively. Now, since 7, (t1,%2) is minimal,

Nt 0. : Cp 0
I __ [ 1
then M' = ( 0 gtz) is optimal for S’ = ( 0 /\> .

On the other hand, by Theorem 2.2.6, there is a polynomial Q(r) = cyx®+c, 2+,
for which Q(S') = M, since S’ is nonderogatory. Hence,

0201231 + chpl + 60]2 = Ntl
62/\2 + Cl)\ + 60[2 = gt2.

Recalling that P;(Cp,) = 0, the 2 x 2 zero matrix, and solving for ¢y, ¢;, and ¢,
we endup with

Cy = (d_l)\ulz + gtz - Ull)Pl()\)_la
a = cc—d tuy,

Co = Ui+ ng.
Finally, let A be the nonsingular matrix of Theorem 2.2.5, for which A71SA = &'
and set M = AQ(S")A™' = Q(9).¢
Example 4.4.3 Let us consider the symmetry S over Z, defined by the unimodular

matrix
-1 1 0

S=| -100
0 01
The whole action of S in Z2 = Z, X Z, X Z, is given by

(Jf,y,Z) - (y -, —JT,Z) - (y -, —.CE,Z).



92

This particular transformation is known as the point group Pz, according to the
terminology and notation used by crystallographers. The minimal polynomial of S is

mg(x) = Pi(z)Pa(x), where Pi(z) = 2? +z + 1 and Py(x) = (z — 1). Moreover, S is

Cpl 0 0 -1
stmilar to , where Cp, =
1

) 1s the companion matriz associated
0 1

-1
to Pl(ﬂﬁ)

Let us assume that r = p is a prime. Table 1 shows the values of p < 359 for

which Py(x) is irreducible.

2 ) 11 | 17 | 23 | 29 | 41 | 47 | 53 | 59 | 71 | &9
107 | 113 | 131 | 137 | 149 | 167 | 173 | 179 | 191 | 197 | 227 | 233

239 | 251 | 257 | 263 | 269 | 281 | 293 | 311 | 317 | 347 | 353 | 359
Table 4.4.1 : Primes for which P;(x) = 2? + z + 1 is irreducible.

For instance, P(z) = 2* + x + 1 is irreducible over Zs (i.e., r =5). In order to
find a mazimal matriz N that commutes with Cp,, we need a primitive polynomial

over Zs. Such primitive polynomial is P(x) = x? + z + 2. By Theorem 4.3.4,

2— —
N = ¢,Cp, + coly, where & = 5= and ¢y = 27 (c1c — a). Then,

12 — 4 %2 3
2l TOFS_ 0 1y 4.22
= A 1 3 (mod 5) (4.22)

Hence, c; =2 or ¢y = —2 =3 mod 5. Let us take c; = 2. Thus, co =271(2%x1—1) =
3x1 =23 and so,

3 3
N = 20p +3L = .
2 1

By repeated multiplication of N by itself, we find that Indy(Cp,) = 8. Now, since

A =1, Indy(\) = p—1 = 4. Hence, by Lemma 2.3.3, kp, = % = 3,

_ 51 _ _ _ _op=1 _ 5-1 _
and kp, = el = 1. Also, pup, = T T 3 8, up, = T T = 4,



93

wpy py, = pp fip, ged(kp,, kp,) =8 %4 %1 =32, and

l 8,6%x4
e — cm(8 *4) -3
_ lem(8,6%4) .
€2 - 6x4 =1

np, = ged(pp,t1) = ged(8,t)
np, = ng(ﬂPzatQ) :ng(4’t2)'

Thus,
(p—l) ng(eltl _(p+1)e2t2!ng(kP1 s 1(p+1)kP2 NPy ))
lcm(kpl ,kpz)
4 ged(3t1—6t2,gcd(3np, ,6np, ))
lem(s,)
= 4 ng(tl - 2t27 ng(nPu 277P2))

Algorithm 4.4.1 will return a pair (t1,t3) € Zys X ZZ such that

NPy,

Mg (tla t2) = 7p, T NP, T7P,P,
= ged(8,11) + ged(4, t2) + 4 ged(ty — 2to, ged(ged(8,t1), 2 ged(4, t2)))

= ng(S, tl) + ng(4, t2) -+ 4 ng(tl — 2t2, 8, tl, 2t2)

is minimal. One such a pair (t1,19) is (1,1). Thus, the minimal number of nontrivial

M S—-orbits is g (t1,t2) =1+ 1+ 4 =6.

Now, applying Theorem 4.4.3, we compute co = 4, ¢y = 1, and cg = 2. Therefore,
an optimal matrix M for S is

1 20
M=4S8?’+S+2I;,=| 3 3 0
0 0 2

and the optimal M S—orbit structure is

Nms = 1+ 1[8] + 1[4] + 4[8] = 1 + 1[4] + 5[8].

4.4.3 Optimal three dimensional matrices for case IV

Let S be a nonsingular 3 X 3 matrix over Z, with two distinct eigenvalues A; and A,
and minimal polynomial mg(z) = Py(z)?Ps(z), where P (z) = x— A1, Po(z) = 21— ),
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and \; has multiplicity two (this is equivalent to saying that ¢g(z) = Pi(z)?Py(x)).
By Lemma 2.2.6, if M € N(S) is nonsingular, then ¢p(x) = —q1(x)q2(z), where
q1(7) is some monic quadratic polynomial and go(z) = = — 3, for some 3 € Z;. Since
¢:1(z) has degree two, it falls into one and only one of the following cases:

L qi(z) = (z — )’

2. qu(x) is irreducible,

3. qi(z) = (. — ar)(z — a2), a1 # o,
4 q(z) =

Theorems 4.4.4 and 4.4.5 determine the M S—orbit structure for cases 1 and 2,
respectively. Remark 4.4.1, at the end of this section, will show that cases 3 and 4
cannot yield optimal matrices for this type of matrices S. Henceforth, we will not
compute M S—orbit structure for this cases.

Theorem 4.4.4 Let S € Mj be nonsingular with ¢s(z) = Pi(x)*Pe(z) and ms(z) =
P (z)Py(z), where Pi(x) = x — Ay and Py(z) = x — Ay. Then there exists a non-
singular matriz M € N(S) such that my(z) = q1(2)?qe(x), where ¢i(z) = v — «
and ¢x(z) = =z — . Also, let - Op, and Y- Op, p, be the formal sums of nontrivial
MS-orbits in Op, and Op, p,, respectively. Then, the MS-orbit structure is

1+ ZOPI + ZOPl,Pz + T’P2[iP2]7

where

> 0P1 = 77P1,0[7;P1 ,0] + 77P1,0[p : iPl;O]’

Y Op.p, = NpLPylEP,Py1] + NP Po 1 [P ey P

. . kql

P, T ged(kpy skgy)?
_ p—1

MP1,0 T kpyipg 0’

. _ kq2

Ly T ged(kpy hay)’
_ p—1

P, © kpyipy’

0 = —

Pr,Pys1 ged(e1Indg (o) —ezIndg(B),gcd(kp, npy 0,kPy1P,))
_ (p—1)2

77P1,P2,1 - lcm(kpl ,kP2 )ipl,Pz‘l )
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Proof
First, let us show that such matrix M does exist. Now, since ¢g(x) = (x — \;)?(z —
Xo) and mg(z) = (x — A)(z — Ag), with Ay # Ao, then matrix S is similar to
A0 0
0 A O [.Let N be any nonsingular matrix that commutes with S. Thus,
0 0 X
by Lemma 2.2.6, ¢y (x) = —q(x)(xz — 3), for some monic quadratic polynomial ¢(z)
and some nonzero B € Z,. Thus, the M of the theorem is simply a special case of
this result. In order to compute the M S—orbit structure we compute the M'S'—orbit
structure, where M and S are similar to M’ and S’, respectively, and M'S" = S'M’.

A0 0 a 1 0
For thiscase, S =10 XA O |andM' =]0 o O
0 0 X 0o 0 g

Second, let us define

Zo
VP1 = {X € Zg‘Pl(SI)X = 0} = {(331) |.’E0,.T1 € Zp},
0
0
Vp, = {xe Zg\PQ(S’)x =0} = {( 0 ) |zy € Z,},
X2
Ve, = Vpp, — Ve UVp,
Zo
Upl,() = { 0 |$0 € Zp},
0
Up,p = Vp —Up,
Up.p,o = Vp,p,— (Up1® Vp,),
Up,p,i = Vp,p, —Up, pso-

A Venn diagram shows that, indeed, they are pairwise disjoint sets and that
Zy = Up, o UUp, 1 UUp, p,0 U Up, p,1 U Vp,.

Next, let us proceed to verify that each of this sets is M'~invariant.

0
i. Let x € Vp,. Then, M'x = | 0 | € Vp,. Moreover, there are up, S'-orbits
po
in this set.
(6%
ii. Let x € Up,g. Then, M'x = | 0 | € Up,o. Moreover, there are yup, S'~orbits
0

in this set.
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Zo
iii. Let x € Up,;. Then, x = | 21 |, 1 # 0, since x € Vp, but x ¢ Up, ,.
0
axy + T
Therefore, M'x = oy € Up,1- We can show that there are pup,
0
S'-orbits in Up, ;.
o
iv. Let x € Up, p,o- Then, x = | 0 | with 2o # 0 and 25 # 0 since x € Up,
T2
axo
and x € Vp, but x ¢ Up, ;. Therefore, M'x = 0 € Up, p,o- There are
By
HpUP, ng(lfpl, kp2) SI—OI‘bitS in Upl,p2’0.
Zo
v. Let x € Up, p,1. Then, x = | x; | with z; # 0 and z3 # 0 since x € Up, ; and
)
ary + axry
x € Vp, but x ¢ Up, o. Therefore, M'x = or € Up, p,1. There are
By

P Up Up, ng(kpl, kPQ) S’*OI"bitS in Upl,p2’1.

In what follows, we will find the length as well as the number of M'S'—orbits for
each Up, o, Up, 1, Up,,p, 0, and Up, p, 1. In order to do so, we find the smallest positive
integer ¢ which solves

Sx = M"x (4.23)
for some 7 and all x in each of the underlying sets.
0
i. If x € Vp,. Thus, x = | 0 | with x5 # 0. Hence, equation (4.23) becomes
X2
N, =B (4.24)
Thus, the length of the M'S’—orbits in Vp, is ip, = W, and the number
217vq2
1Q! : : _ kP _ p—1
of M'S'—orbits is np, = Z.P: = Finy”
Zo
ii. If x € Up,p. Thus, x = | 0 |. For this case, equation (4.23) is equivalent to
0

M =al (4.25)
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. _ k _ kP -1
SO; tpo = ng(k;i,kql)’ and NP0 = iPI,lo - kpzljipl,o'
o
If x € Up, 1, x= | z; | with z; # 0. Equation (4.23) is equivalent to
0
=1 (4.26)
N o= ol (4.27)

Thus, equation (4.26) implies that ip,; is a multiple of p. Also, equation
(4.27) implies that ip, ; is a multiple of ip o. Hence, the smallest positive
integer is ip, 1 = lem(p, ip, o) = p-ip o. Then, the number of M'S-orbits is

p-ip 1
Np1 = iPl,ll = kPI;iPl,O'
To
If x € Up, p0, x=| 0 | with ; # 0. Equation (4.23) is equivalent to
)
N o= o (4.28)
N, = B (4.29)
Thus,
p—1

7 = ,
PP28 ™ ged(eiIndy (o) eaInd, (8), ged(kp, e, 05 ki ip,))
and the number of M'S'—orbits is

_ UpHp, ng(kP17 kP2) _ (p - 1)2
np,P0 = . = - .
LP1ipy 0 lcm(kpla sz)ZPth,O
Zo
If x € Up, p1, x = | o1 | with 21 # 0, 22 # 0. Equation (4.23) is equivalent
U]
to
0 = 1 (4.30)
N o= o (4.31)
A= B (4.32)

Equation (4.30) implies that ip, p, 1 is a multiple of p. Equations (4.31) and (4.32)
imply that ¢p, p, o is a multiple of ip, p, o. Therefore,

LP,Py1 = P 0Py Py 0-
The number of M'S"-orbits is

__ Db-pplp, ng(ka sz)
nPI;P211 - .
P ipiip,,

= Npy,Py,0-0
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The following theorem determines the M S—orbit structure for case 2.

Theorem 4.4.5 Let S € Mj be nonsingular with ¢s(x) = Py(x)*Py(z) and mg(z) =
Pi(z)Py(z), where Pi(x) =z — A\ and Py(x) = x — Xo. Then there exists a nonsin-
gular matriz M € N(S) such that muy(z) = q1(7)g2(x), where ¢i(x) = 2% + cx +d
is irreducible and qo(x) = x — B. Further, assume N is a 2 X 2 mazimal matriz that
commutes with Cy,, the companion matriz of ¢:(x), t1 = Indy(Cy,) and ty = Indy(B),
g a generator of Z;. Also, let 3°Op,, 3 Op,, and 3 Op, p, be the formal sums of
nontrivial MS-orbits in Op,, Op,, and Op, p,, respectively. Then, the MS-orbit

structure 18

14> Op 4+ Op,+ > Op, p,

where
> 0P1 = Np [ZP1]7
> OPz = Np, [le]a
> OP1,P2 = MNp.,p, [ZPl,Pz]a
,[: P kQI
Py T ged(kpy kg )’
2
— p—1
np, - kPl iPl J
) . kg,
Ly = ged(kp, Fay)’
_ p—1
1P, T kpyip,’
i = Pl
Pr,P —  ged(erti—(p+1)eatz,ged(kpy npy (pH1)kpyp,))’
_ (p+1)(p—1)*
Py, P = ; .
ME1 Py lemukp, kp,)ip, P,
Proof

By Lemma 2.2.6, such a matrix M does exist. Moreover, since ¢;(x) is irreducible,
there exist integers ¢y and ¢; for which N = ¢,Cy ;) + colz is a maximal matrix.
Thus, the existence of t; is also assured. Similarly for 5. Thus, M is similar to

A0 0
M = (Cgl g) We already know that S is similar to " = | 0 Ay 0
0 0 X

Hence, the M S—orbit structure is equivalent to the M’S’-orbit structure, which can
be determined by solving

S"x = M"x, for all x € Z,. (4.33)
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which is equivalent to

M o0 0 :
Y _ ((Nm) 0
(8 o ) = ("% o) (4.34)

if and only if

NI, = (Nh) (4.35)
No= (9" (4.36)
Let kp, and k4, t = 1,2, be the orders of P, and ¢, respectively. Also, let

p, = 1’]:711, p, = %21, and up, p, = pip, ip, gcd(kp,, kp,). Thus, by Theorem 2.3.16,

the smallest positive integers ip, and ip, that solves equations (4.35) and (4.36), for
some integers j; and jy, are

. kq
ip, = ———=—— and
Pl ng(kPN k(h)

k(h
ng(kH ; k(h) ’

and the number of M S-orbits in Op, and Op,, respectively, are

ip,

_opp pP-1
GO iPl B kPlipl’
np, = /.LP2 = p—'l'
ip, kp,ip,
Now, let
o — lem(Indy (A1 12), (p + 1)Indgy(A2)) and
Indy (A1 12)

lem(Indy (A1 12), (p + 1)Indy(A2))
(p+ 1)Indy(A2) '

Applying Theorem 2.3.18, the smallest positive integer ip, p,, for some j, that
simultaneously solves equations (4.35) and (4.36) is

2

p*—1
ged(ets — (p + )eats, ged(kpy ey, (90 + 1)kp,np,))
Therefore, the number of M S-orbits in Op, p, is

€y =

tp,, P,

Up [P, ng(kPI’ kP2)
LPy,Py
P+DE-1)°
lem(kp,, kp,)ip,p,

Npy,P,
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Remark 4.4.1 It is worth noting that if t; = to = 1, i.e., the companion matrizc
of qi(x) in Theorem 4.4.5 is a mazimal matriz and [ is a generator of Z}, then
nNp, = 1Np, = 1, and

-1
ged(er — (p + 1)eg, ged(kp,, (p + 1)kp,))

= (p+1) p—1
PV acd(er — (p+ 1)ea, ged(kpy, (p + Dkny))
> p+1.

P,y

Then,

npop, < 1414 20D

p+1
-1
= 24(p-1)—2

lem(kp,, kp,)’

On the other hand, if M is as in cases 3 and 4, then the order of M, ky, s
at most p — 1. Thus, since ip, p, divides kyr, then ip p, < p—1. Let np, p, be the
number of MS-orbits in Op, p, for cases 3 and 4. Thus,

/ > 1 1 Upy Py
Np,p, = +1+ p+1
(p + 1):uP1 Up, ng(kP17 sz)
p+1
p—1
lcm(kpl, k‘pz))

v

2+

> 24+ (p+1)
> npy,p;-

Therefore, if mp(x) = (x — ) (z —ag)(x — B), a1 # ag, ormy(z) = (x—a)(z—

B), then M cannot be optimal for S.

As a consequence of Remark 4.4.1, we have

Theorem 4.4.6 Let S € Mj be nonsingular with ¢s(x) = Pi(x)?Py(x) and mg(z) =
Py (z)Py(x), where Pi(x) =z — A\ and Py(z) = x — Xy. Then any M € N(S) with
my(z) = (x—aq)(x —ag)(x — B), a1 # ag, or with my(z) = (x — o) (x — ) cannot

be optimal for S. In particular, M = gls cannot be optimal for S.
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Up to now, given a matrix S as described in this section, we have not been able to
prove that an optimal matrix M for S should have either characteristic polynomial
du(z) = (x — a)?(x — B), as in case 1, or ¢dp(x) = q(z)(x — B), where ¢(z) is a
quadratic irreducible polynomial, as in case 2. This is the reason why Algorithm 4.4.2

Ct1 0 gtl 1 0
examines all 3 x 3 matrices of the form ( OP e ) and | 0 ¢ 0 | and selects
0 0 gt2

the one which minimizes 7, (t1, t2).

Algorithm 4.4.2
Inputs: prime p, primitive polynomial P(x) = 2* + ax + b over Z,,
Pi(z) =2 — A, Poy(x) =2 — Ay, where 0 # Ay # Xy #0
Output: (t1,t2, TAG) such that nyg(t1,t2) is minimal.

if TAG = 1, the optimal M 1is of the form e (22)
991 ? 0

if TAG # 1, the optimal M is of the form | 0 gt 0
0 0 g"”

compute: Indc, (A1), Indy()2), where g = P(0)
compute: kp,, kp,

compute: ey, ey

compute: [ip;, lpy, PP,

Initialize: t1,t2, 110,120 to p?

Initialize: np,, NPy, NP, Pys Nhmg t0 P°

Initialize: Np, 0, MPy,05 NPy, P20 Thms,0 10 D°

for(t)=1tot) =p*—1) do

P R D e e~

compute: 1p,
if(t], < p) compute: np, 4
for(th,=1tot), =p—1) do
compute: 1p,, Mp, p,
s < N, T by + Ty, py

if(t}< p)
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compute: Np,, Np, p, 1
Tms <= 21p, 0 + Np, + 21p, p, 1
(05 < Nms.0)
(171,05 1P2,05 P2, P2,05 T 0) 4= (111,05 1y TPy Py 15 T )
(t1,0,t20) = (1, 15)
if(n),5 < Thms)
(MPy 1Py NP1 Py Thns) <= (Tpys ey Py, Py Thins)
(t1,t2) = (21, 13)
if (Mms < Mmg,0)
return (¢,%,1)
else

return (t1,t2,,0)

Given a matrix S as described in this section, Theorem 4.4.7 shows how to com-
pute an optimal matrix M.
Theorem 4.4.7 Let S € Mj be nonsingular with ¢s(x) = Py (x)*Py(z) and mg(x) =
P (z)Py(z), where Pi(x) = z — A\ and Py(x) = z — Xo. Let (t1,12,TAG) be
such that nyg(ti,t2) is minimal. Let P(x) = 2% + ax + b be a primitive polyno-

mial, Cp be the companion matriz of P(x), and A be a nonsingular matriz such

. — 2_
that A~'SA = diag(Ai, A1, A2). Also, let kq, , = m, ky = W—ll,tl)’ ky, =
gcd(l;,__ll,h), i = lcm(Inj_i;L((;;()),\{;zdg(,\m’ 1=1,2. Then, if TAG = 1, the optimal matriz
ch
for S is M =A ( r . ) A~ and the MS-orbit structure is
0 g

1+ np [ipl] + np, [iPz] + np, [iP1,P2];

otherwise, TAG # 1, the optimal matriz for S is M =A| 0 g 0 [A ! and
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the M S—orbit structure is

L+ npyolip 0] + npo[p - ipyo] + NPy poilip i) + 1P Pt [P - iy Pot] + MR [iR, ],

where
; ka0 p—1
P10 —  ged(kp, ka10)’ T1P1,0 ~ kpyrip 0’
; — kqy — p—1
Lp, = gcd(kp, k)’ NPy = Fmyin,’
) . kg, g2
tp, = gcd(kp, kay)’ NP = Tpin
ipop = p?—1 npop, = (p+1)(p—1)°
1,52 ng(eltl _(p+1)e2t2ag(:d(kp1 npy a(p+1)kP2 NPy )) ’ 1,52 lcm(kpl ’kPZ)iPI Py ?
Py P — Npy,Py1 = (p—1)°
1,P2,1 ged(erts—eata,ged(kp Py 0,(p+1)kp,nP,))’ 1,21 lemkp, kp, )i, Py
Proof

Let S € Mj3 be nonsingular with mg(z) = P2(z)P:(z) and ¢5(x) = P3(x)Py(x),
where Pi(z) = 2 — A\ and Py(z) = x — Ay. Let M € N(S) be nonsingular. By
Lemma 2.2.6, ¢p(z) = —¢(z)(z — B) for some quadratic polynomial ¢(x) and some
nonzero 3 € Z,.

It was already shown in Theorem 4.4.6 that if my(z) = (x — 1) (z — ae) (z — B)
a1 # —ag, or my(z) = (x — a)(z — B), then M cannot be optimal for S. We can
see that g(z) is quadratic and irreducible or g(z) = (z — «)?, for some a # 0.

Let P(z) = 2? + ax + b be a primitive polynomial over Z,. In order to consider
all possible matrices M with ¢p(x) = —q(z)(x — §) where g(z) is quadratic irre-
ducible, it is only necessary to consider all powers of any 2 x 2 maximal matrix. In
particular, Algorithm 4.4.2 considers all powers of Cp, the companion matrix of P(x).

Let (t1,ts, TAG) be the output of Algorithm 4.4.2 in the inputs P(x),  — Ay,
and x — Ag. Clearly this algorithm examines all matrices of the form

t1
t1 g 1 0
(CP 92) and [ 0 ¢ 0 |,
0 9 0 0 g~
and selects the one that is optimal for
A0 0
0 N O

0 0 X



104

Now, let A be the matrix of Lemma 2.2.5 for which A™'SA = diag(\;, A, Ag). If
TAG =1, then an optimal matrix for S is

cp 0\ ,_
M:A( ) g”)A ;

0
otherwise
gtl 1 0
M=A| 0 ¢t 0 |4A7N0
0 0 gt2

4.4.4 Optimal three dimensional matrices for case V

In this section we compute an optimal matrix M when the nonsingular 3 x 3 matrix
S over Z, has minimal polynomial mg(z) = (z — A)*. Theorem 4.4.8 gives a direct
formula to compute such an M.

The following lemma states that the number of M S—orbits is not less than 3, for
any matrix M that commutes with S.

Lemma 4.4.1 Let S € M3 be nonsingular with ms(z) = P(x)3, where P(z) = z—),
and let M € N(S) be nonsingular. Then, the number of nontrivial M S—orbits, Ny,

18 not less than 3.

Proof
Recall that

Up = {x€ Z;’\P(S) x = 0},

Up» = {x€ Z}|P(S)*x =0},

Ups = {x¢€ Z;’\P(S)3x = 0}.
By Theorem 3.1.4, Up; = Up, Up2 p = Up2 — Up, and Ups p» = Ups — Up2 are all
S—invariant sets. This is also true for any polynomial combination of S. Thus, since
M commutes with S if and only if there is a polynomial Q(x) such that M = Q(S)
(Theorem 2.2.6), then it is true that the three sets Up;, Up2 p, and Ups p2 are all
M—invariant.

Next theorem shows that this case is one in which the M-method is definitely
much better than the generator method of Auslander.

Theorem 4.4.8 Let S € Mj be nonsingular with ms(z) = P(z)?, where P(x) =
x — \. Let kp be the order of P(z) and pp = pk;Pl. Then, an optimal matriz M for S
is M = (S — \3)? + gl3, where g is a primitive of Zy, and the MS—-orbit structure
is 1+ 2[pup] + 1[p- pp]
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Proof
Recall that
Up = {xeZ})|P(5)x=0},
Up» = {x€ Z}|P(S)*x =0},
Ups = {xe€ Z}|P(S)*x =0}.
Also, define Upr pr-1 = Upr —Upr-1, 7 = 1,2, 3. Our proof will show that matrix M
so defined will yield a single M S—orbit in each Opr pr-1, r =1,2,3.

First, note that by Theorem 3.1.4, the number of nontrivial S—orbits in Up;,
Up2.p, and Ups p2 is pup, pp, and p - pp, respectively.

It is straightforward to see that M = (S — Al3)? 4+ gI3 commutes with S. Let A
A1 0
be a matrix for which A7'SA = (0 A 1) and see that
0 A

0
AT'MA = ATN(S = M3)* +gI;)A

X

o O

1
)\ ) — )\13)2 -+ gI3
0

0
1
A

2
) + 913

oSO ok O O C

S o oo
o o~ OO

Thus, S/ = M* mod p is equivalent to

A1 o0)?
0 A 1 =
0 0 X

if and only if

Noojait LD yi-2 g 0 gt

0o N Nt =10 ¢ O (mod p)
0 0 N 0 0

if and only if

N o= ¢ (4.37)
JNTH =0 (mod p) (4.38)
J(j — 1))\]'—2 _ ,L-gi—l (4.39)

2
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The smallest positive integer ip; that solves (4.37), for some ji, is the length
of the M S-orbits in Op;. By Theorem 2.3.16, ip; = ﬁlp—l) = up. Hence, the
number of M S—orbits in Op; is Np; = Z—i =1.

On the other hand, since Upy C Up2 p, ip2 p must be a multiple of ip; = up.
Thus, ip2 p = ppt for some positive integer t. However, ip2 p|pp, which says that
tp2,p = pp. Thus, the number of nontrivial M S-orbits in Op2 p is Np2 p = l’j—i =1.

The smallest positive integer ips p2 that solves (4.39), for some js, is the length of
the M S—orbits in Ops p2. Now, from equation (4.38), js = 0 mod p. Thus, replacing
Js by 0 mod p in (4.39), we endup with

ips p2g'P* P21 = 0 (mod p).

Thus, ips p> = 0 mod p. But, since ips p2 is a positive multiple of ¢p2 p, it must
happen that ips p» = p- up. Hence, the number of M S—orbits in Ops p2 is
pb-up _ b-up
i?’a P2 p-up

77P3,P2 =

=1.

Therefore, the M S—orbit structure is

1+ 1pp] + pp| + 1p- pp] =1+ 2[pp] + 1[p - pp]-&

Theorem 4.4.9 computes the M S—orbit structure when we assume that M is the
scalar matrix g/3.

Theorem 4.4.9 Let S € Mj be nonsingular with mg(z) = P(z)3, where P(z) =
x — A, kp be the order of P(x), up = ”k;Pl. Also, let M = gl3, g a generator of Z.
Then, the M S—orbit structure is 1 + (p + 2)[up]-

Proof

Let A be a matrix for which A71SA = . Hence, the smallest positive

integer 7 that solves S/ = M", for some j, is equivalent to A 'S74 = A 1(gl3)'A =
¢‘I;. if and only if
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if and only if

N o= ¢ (4.40)
jNM1 = 0 (mod p) (4.41)
MV‘Z =0 (4.42)

2

The smallest positive integer ip; that solves (4.40), for some j;, is ip1 = pp.
This is the length of the M S-orbits in Op;. Hence, the number of M S-orbits in
Op1is np1 = f— = 1. Furthermore, it is straightforward to see that i = up is the

smallest positive value that simultaneously solves equations (4.40) — (4.42). Thus, the
number of M S-orbits in Op2 p and Ops p2 is Np2 p = ’“‘i =1, and nps p» = p‘“’ =p,
respectively. Therefore, the M S—orbit structure is

L+ 1pp] + pp] + plpp] = 1+ (p + 2)[up]-O
-1 1 1
Example 4.4.4 Let S = -1 1 be defined over Z,. The minimal poly-

0
0 0 -1
3

nomial of S is mg(x) = P(x)°, where P(xz) = x+ 1. The order of P(x) is kp = 2 for
any prime p. Thus, up = & 1. By Theorem 4.4.8, an optimal matriz for S is
01 1\’ g 0 1
M=(S+EL?*+glz=|0 0 1| +glz3=|0 g 0
0 0 O 0 0 g

and the optimal M S—orbit structure is

p—1

p(p—l)]
5 —.

1+ 2[—— 5

[+1]

Table 4.4.2 shows matrices M together with the MS—-orbit structure when we
apply Theorems 4.4.8 and 4.4.9 for primes p between 809 and 859 for matrices S as
in BExample 4.4.4. As expected, the optimal number of MS-orbits remains constant
while the number of M S—-orbits computed through a scalar matriz grows linearly with

prime p.
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optimal MS-orbit gS -orbit
P M structure Nms structure | Nmg
3 01
809 0 30 1+ 2[404] +1[326836] | 3 | 14 811[404] | 811
0 0 3
3 01
811 0 30 1+ 2[405] + 1[328455] | 3 | 14 813[405] | 813
0 0 3
2 01
821 0 20 1+ 2[410] +1[336610] | 3 | 1+ 823[410] | 823
0 0 2
3 01
823 0 30 1+2[411] +1[338253] | 3 | 1+825[411] | 825
0 0 3
2 01
827 0 20 1+2[413] +1[341551] | 3 | 1+829[413] | 829
0 0 2
2 01
829 0 20 14 2[414] 4+ 1[343206] | 3 1+831[414] | 831
0 0 2
1 0 1
839 0 11 0 1+2[419] +1[351541] | 3 | 1+ 841[419] | 841
0 0 11
2 01
853 0 20 1+ 2[426] +1[363378] | 3 | 14 855[426] | 855
0 0 2
3 01
857 0 30 14 2[428] +1[366796] | 3 | 14 859[428] | 859
0 0 3
2 01
859 0 20 1+2[429] +1[368511] | 3 | 1+861[429] | 861
0 0 2

Table 4.4.2 : A family of matrices S for which an optimal M is not gls.

4.4.5 Optimal three dimensional matrices for case V[

Let S be a 3 x 3 matrix with mg(z) = (x — A1)?(z — X2), where \; and )\, are distinct
nonzero eigenvalues of S. Theorem 4.4.10 shows a procedure to compute an optimal
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matrix M for this S. It is worth noting that this case reduces to the two dimensional
case with two distinct eigenvalues (section 4.3.3).

Theorem 4.4.10 Let S € Mj be nonsingular with ms(z) = Pi(x)?Py(x), where
Pi(z) = x— X, Po(x) = 2 — Ao, A1 # Ao, Also, let (t1,12) be such that npp, is
minimal, ¢ (x) = x — g™, g2(x) = x — ¢, kp,, ky, be the orders of Pi(z) and ¢(z),

respectively, for t = 1,2. Then, an optimal matrix M for S is
M = 0252 —+ 615' + C()I3
and the M S—-orbit structure is

1+ 277P1 [iP1] + 277P1,P2 [Z.PlgPQ] + NP, [iPz]a

where
Co = (g2 —g")(Aa— A1)72
C1 = —202)\1,
Co = gtl - (Cz)\% + 01)\1),
) k
P = e )
-1
np, = kﬁl ipy
) - kas
tpy = gcd(kpykey)’
_ 1
np, - kﬁziPz ’
. p—1
PPy ged(ert1 —eata,ged(kpy npy kpynp,))?
(p—1)*
’r’PI’PZ lcm(kpl ,kp2 )’ipl,p2 ?
_Alemdnd,(0),Ind,(00)
et — Indg()\t) 9 t — ]., 2.
Proof \ Lo
1
Let A be a nonsingular matrix for which A=!SA=S8"=|[ 0 A, 0 |. Also, let
g
0 0 X

M € N(S) be nonsingular. By Theorem 2.2.6, M = Q(S) for some polynomial
Q(x) = 22 + 12 + ¢. Thus,

QM) QM) 0
ATTMA = AT'Q(S) A= Q(A7'SA) = Q") = 0 QM) 0 |,
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where Q'(A\1) = 2¢oA\1 + ¢1. Hence, M is similar either to

g 0 0
)y M{=10 B 0 [,ifQ(\)=0, where 5, =Q(\),t=1,2. Or
0 0 B
B 1 0
(I) My=|{ 0 B 0 |,ifQ(\)#0, where 8, = Q(\)Q' (M), t =1,2.
0 0 B

Note that both M| and M)} commute with S’. Our aim is to show that no matter
which of these matrices we choose, they yield the same M S—orbit structure.

Define,
Ve, = {x € Z}|Pi(S)x =0},
Vez = {x€Z)|P(5)*x =0},
Ve, = {x€ Z}|P,(S)x =0},
Vp12, Py = VP12 P, — VP1 U VPQ.
Also, define
VPf,Pl = VPf - VPU
Viezpyp, = {x+ylxe Vb2 py and y # 0 € Vp,},
Vp,.p, = {x+ylx#0€ Vp and y # 0 € Vp,},

Observe that Vp2 p, = V(pz p,),p, U VP, p,- Thus,
ZS =Vp, UVp2p UVp, UVp p, UV(p2 p) p,-
By Theorems 3.1.4 and 3.1.5, the S—orbit structure is
1+ Kp (kpl) + Hp (p ) kPl) + 1P, (sz) + KPPy (kpl,Pz) + HPy,P (p ) kPl,Pz)’

where Hp, = %7 Hpy, = p—1’ Hp P, = WP Py ng(kPla sz), and kP1,P2 = ]cm(kpl, kPQ)‘

kp,

Each set Ve, Vpz p,, Vp,, VP p,; and V(pz p,) p, is M—invariant since M is a poly-
nomial combination of S. First, let x € Vp,. Thus, P, (S)Mx = MP;(S)x = 0. Then,
Mx € Vp,. Similarly for Vp,. Now, let x € Vpz p,. Thus, Py(S)*?Mx = M P;(5)*x = 0.
Then, Mx € Vplz,Pl. Let, x € Vp, p,. Then, x = x; + x2 for some x; # 0 € Vp, and
some xg 7# 0 € Vp,. We already know that Mx; € Vp, and that Mxa € Vp,. Hence,
Mxy + Mxo = M(x1 + x2) = Mx € Vp, p,. Similarly for Vip2,p),p-

Therefore, the set of M S—orbits is

Oms = OPI U OPIZ,Pl U OPz U OPl,P2 U 0(Pf,P1),P2'
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B 0 0
Case (I), assume M to be similar to the matrix | 0 8, 0 |. Thus, S/ = M
0 0 5

is equivalent to

Moo B0 0)°

0 M Of =10 B 0] (modp) (4.43)
O O )\2 O 0 132
if and only if
N o= 4 (4.44)
N =0 (4.45)
N o= B (4.46)

The length of the M S—orbits in Op,, t = 1,2, is the smallest positive integer ip,
that solves equations (4.44) and (4.46), for some j;, respectively. By Theorem 2.3.16,
ip, = m, and the number of M S-orbits in Op, is np, = ’;ﬁt = ﬁ.

t? t t 4t

The smallest positive integer ip2 p, that simultaneously solves equations (4.44)
and (4.45) for some j, is the length of the M S—orbits in Opz2,p,- Observe that equa-
tion (4.45) holds for any integer ip2 p,. Thus, ipz p, = ip,. Hence, npz p, = 7—2 =np,.

The smallest positive integer ip, p, that simultaneously solves equations (4.44)
and (4.46) is the length of the M S-orbits in Op, p,. By Theorem 2.3.15,

. p—1
VA = )
i fe ng(elIndg (ﬂl) - e2Indg (ﬂ?)a ng(kP1 ne,, k'Pz’r’Pz))
T ) _ wBpLPy, (p—1)2
and the number of M S-orbits in Op, p, is Np, p, = 'iPll,P; = TcMer, forYire

The smallest positive integer i(p2 p,) p, that simultaneously solves equations (4.44)
— (4.46), for some j, is the length of the M S—orbits in O(p2,p,),p,- Note that equa-
tion (4.45) holds for any value of i. Therefore, ip2 p,) p, = ip,p, and np2 p) p, =

£ = np, p,. Thus, for case (I), the M S-orbit structure is
1.572

1+ 277131 [iP1] + 277P1,P2 [iPl,Pg] + np, [ipz].

pr 1 0
For case (II), we assume M is similar to | 0 B, 0 |. Thus, S = M®is
0 0 5

equivalent to ' .
M1 0 6 1 0\
0 A O =0 B 0] (modp) (4.47)
0 0 X 0 0 pB
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if and only if

M o= 4 (4.48)
N7 = st (4.49)
N, = (4.50)
if and only if
Moo= B (4.51)
B =ik (4.52)
N, = B (4.53)

As before, observe that equation (4.52) holds for any integer i. Therefore, the M S—
orbit structure is the same as in case (I).

Finally, we want to find a matrix M (i.e., a polynomial Q(z) = cz? + c17 + ¢
such that M = Q(S)) that minimizes

ms = 277P1 + 277P1,P2 + Np,-
We apply Algorithm 4.3.1 on the input A;, g, p and get a pair (¢1,t5) that

t1
g 0 0
minimizes np,p, = Np, + Np,,p, + Np,- Which yield matrix M’ = | 0 ¢ 0
0 0 g*
Thus,
Q\) = ¢"
Q) = g¢"”
Q) =0

if and only if

CQA% + Cl)\l + Ch = gtl
02/\3 + C1)\2 + Chy = gt2
202)\1 +c = 0

if and only if

CQ(/\% — /\%) + Cl(/\g — /\1) = th — gtl
cCT = —202)\1

if and only if
CQ()\Q + )\%) — 202)\1 = (gt2 - gtl)()\Q — /\1)_1
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if and only if

2 (9" = g") (A2 — M) 72

C1 —262/\1
Ch = gtl — (Cz/\% + Cl/\l)-<>

4.4.6 Optimal three dimensional matrices for case VII

Let S be a nonsingular 3 x 3 matrix over Z, with characteristic and minimal poly-
nomials ¢g(z) = (z — A)? and mg(z) = (z — \)?, respectively. Theorem 4.4.12 gives
a direct formula to compute an optimal matrix M for S.

A1 0
Let S = (0 A 0), A # 0. Then, S decomposes V = Z;’ as a direct sum of

0 0 X
two S—invariant subspaces U and W, where

U = {(u,v,0)"|u,v € Z,} and
W = {(0,0,w)"|ue Z,}.
An useful decomposition of U is
U=U-U)\ulU',

where U’ = {(u,0,0)"|u € Z,}. Let kp be the order of P(z) = 2 — X and pup = 2=1.
By Theorem 3.1.4, there are two types of S—orbits in U; up of length p-kp in U — U’
and pp of length kp in U’. Also, there are up S—orbits of length kp in W. Thus, by
Theorem 3.1.5, the S—orbit structure is

(L + pp(kp) + pp(kp))(1 + pp(kp))
1+ pp(kp) + pp(p - kp) + pp(kp) + p?kp(kp) + ppkp(p - kp)
1+ pp(kp) + (up + pupkp)(kp) + (up + ppke)(p - kp)

= 14 pp(kp) + p(1 + ppkp)(kp) + pp(l + prke)(p - kp)

= 1+ pp(ke) + pp(L+p—1)(kp) + pp(l+p—1)(p- kp)

= 1+ up(kp) +ppup(kp) +ppp(p - kp)

Lemma 4.4.2 Let S € M3 be nonsingular with ¢s(z) = —P3*(z) and ms(z) =
P?(x), where P(z) = x — \. M = gl3, kp is the order of P(z), up = pk;Pl, and g a
primitive of Z,. Then, the MS-orbit structure is

14+ (2p + 1)[up].
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Proof
S7 = M' is equivalent to

o o o
N~

S O

if and only if
N =g
GNTI =0

The smallest positive ¢ solving last system is ¢ = up. Thus, since all the M S—orbits
are of length ¢ = up, the M S—orbit structure is

1+H_P[] pMP[]+pMP]
_ Hp p,UP p,UP
= 1 ] P+ P )]

= 1+ 1{up] +p[MP] + plpp]
= 1+ (2p+1)[up]-¢

Let us define

Vi = {x+ylxeU-U"andy #0€ W}, and
Vo = {x+ylxeU andy #0€ W}.

We can show that
V = UUVUV,.

The number of S—orbits in U’, V1, and V5, is up, pup, and pup, respectively.

A1 0
Let S = ( A 0) and M € Mj be nonsingular. Then, by direct calcu-
0 A

0
0
) , for some

Remark 4.4.2 U’ is M -invariant. Let x € U'. Thus, Mx = (u,0,0)T, for some
u € Z,. Then Mx € U'.

o O Q
QL o
o OO0

lation we can show that M € N(S) if and only if M = (

a#0,b,c,d,e#0 € Z,
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Remark 4.4.3 (U —U")U V] is M —invariant. Lety € (U —U")UV,. Thus, y =
(u,v,w)T, v # 0. Hence, My = (au + bv + cw, av,dv + ew)T. Thus, since av # 0,
My ¢ U UW UVy. Therefore, My € (U —U') U V1.

Remark 4.4.4 WUV, is M —invariant. A similar argument as in 4.4.3, can be used
to prove it.

By Remarks 4.4.2, 4.4.3, and 4.4.4, the number of nontrivial M S—orbits is at least
three.

g 0 1
The following Theorem shows that if we choose M = [ 0 ¢ 0 |, we indeed
01 ¢

endup with a single M S—orbit in each U’, Vi, and V5, whose lengths are up, pup,
and pup, respectively.

A1 0
Theorem 4.4.11 Let S= | 0 A 0 [, A #0 € Z,, and g be a generator of Z;.
0 0 A

g 0 1
Then, an optimal matriz for S s M = | 0 g 0| and its MS—orbit structure is
0 1 g¢g
1+ 1{up] + 2[ppr].

roof
1 0 0
Letxy=|[0]|,x2=|[1],and x3 = | 0 |. Note that x; € U’, xo € V;, and that
0 1 1
x3 € W.

It is easy to see that the smallest 4, that solves S7ix; = M'ixy, for some j;, is
i = pp- Which means that the number of nontrivial M S-orbits in U'is jp = ££ =1

On the other hand, let i, be the length of Oyg(x2). Thus, iy is the smallest
positive integer for which S$72x, = M®x,, for some j,. Whence, $2x, = M®x, if
and only if

)\jz j/\jz.—l 0 0 gi2 i2(i22—1? giQ—l ,L'2gi272 0
o A o |[1]=]0 pt 0 1 (4.54)

0 0 A\ 1 0 iggt? 2 g” 1
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if and only if

. 1)
JoXTL = 712(”2 ) gio-1 (4.55)
)\J = gi‘{ | (4.56)
N2o= g 4 g (4.57)
if and only if
1
JoATh = 7”(222 )g_1 (4.58)
N2 = gif (4.59)
0 = ig2? (4.60)
if and only if
1
jQ/\il = 722(7/22 )gil (461)
MN2o= gP (4.62)
0 = i (4.63)

By Theorem 2.3.16, the smallest positive integer i, that solves (4.62), for some 7y, is

i — up —u
2= ————~ = [lp.
ng(MPa 1)

On the other hand, from equation (4.62), io = 0 mod p implies that i, is a multi-
ple of p. Hence, the smallest iy that simultaneously solves (4.61), (4.62), and (4.63)
is a multiple of lem(up,p) = p - pp. But, this i, must be smaller or equal to the
number of S—orbits in Vi, which is p - up. Therefore, 7o = p - pp. Thus, the number
of M S—orbits in V] is np = % =

Finally, let i3 be the length of Opg(x3). The same type of argument used for
i9, shows that i3 = p - pp. Thus, the number of M S—orbits in V, is n}, = % =1
Hence, the M S—orbit structure is

1+ np[ip] + nplip] + nplip
1+ 1{pp] +1[p- pp] + 1p - pp]

= 1+ 1up]+2[p- ppl-¢

Theorem 4.4.12 Let S € Mj be nonsingular with ¢s(x) = P(x)® and ms(z) =
P(z)?, wher P(x) = x — \. Also, let kp be the order of P(x), up = pk;Pl, g be a
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generator of Z;, and A be a nonsingular matriz for which ATISA=10 X O

Then, an optimal matriz M for S s ’
g 0 1
M=A|0 ¢g 0[A",
0 1 g¢g

and the optimal M S—orbit structure is

1+ 1[pp| +2[p - pp).

Proof
A1 0 g 0 1

Let =10 XA O]Jand M =[0 g 0 |. Observe that M'S’ = S'M'. Hence,
0 0 A 0 1 ¢

SM = (AS'A™HAM'A™!
= AS'M'A7!
= AM'S'A™!
= AM'ATAS'AT!
MS.

By Theorem 4.4.11, M’ is optimal for S’ and since similarity preserves M S—orbit
structures, then M = AM'A~! is optimal for S = AS’A~! with M S-orbit structure

1+ 1pp] +2[p - pp]-¢

Note that the cost of computing A and its inverse is O(p®) time in the worse case.

11 2 0
Example 4.4.5 Let S=| 2 10 0 | be defined over Zi7; and let us find an op-

12 14 2
timal matriz M for S. First, see that the characteristic polynomial of S is ¢ps(x) =

P(x)3, where P(z) =2a: 1— 2(,) and that P(S)? = 0, but P(S) # 0. Thus, mg(z) =

P(z)?. Let S" = [0 2 0 |. By Theorem 4.4.11, an optimal matriz for S' is
0 0 2
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3 0 1
M =10 3 0]. It remains to compute A. Let
01 3
N(S -2L) = {xeZ)|(S-2L)x =0}
9 2 0
= {xeZ¥| 2 8 0]|x=0}

12 14 0
9 2 0

= {xeZ)|0 0 0|x=0},
000

since the last two rows of S — 213 are simply multiples of the first one. Hence,
Zo
N(S—QI:;) = { T ‘9.’L‘0+2$1 :0}

T2
Zo

= { 4370 |.T0,.’131€Z13}.

‘o
0 2
Let x; = | 1| and see that x; ¢ N(S — 2I3). Thus, (S —2I3)x; = | 8
0 14

Now, let xo = | 0 | € N(S — 2I3) and observe that xo is linearly independent with

1
2 00
(S — 2I3)xy. Then, applying Lemma 2.2.7, matric A= | 8 1 0 |. The charac-
14 0 1
teristic polynomial of A is ¢pa(x) = —2® + 42 + 12z + 2. Thus, using the fact that

9 0 0
$a(A) =0, A1 =9(A> +134+5I;)= {13 1 0
10 0 1
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Therefore, an optimal matriz for S is

2 00 3 0 1 9 0 0 6 0 2
M=|8 1 0 0 3 0 13 1 0|=112 3 8
14 0 1 0 1 3 10 0 1 0 1 0
The order of P(x) is kp = 8. Thus, up = pk;Pl = 2. Therefore, the optimal M S—orbit

structure 18

1+ 1[2] + 2[34].

4.4.7 Optimal three dimensional matrices for case VIII

In this section we find an optimal matrix M for a 3 x 3 nonsingular matrix S over
Z, with three distinct eigenvalues. Algorithm 4.4.3 and Theorem 4.4.14 outline the
steps to compute such an optimal matrix M.

Theorem 4.4.13 Let S € M3 be nonsingular with three distinct eigenvalues Aq,

Ao, and A3 and mg(x) = Pi(x)Py(z)Ps(z), where for t = 1,2,3, P(z) = x — Ay,

Cty = lcm([”?fg;())’\g‘dg()‘“)), t # u, t,u = 1,2,3, and g a generator of Zy. Then

for any nonsingular M € N(S), du(x) = q1(x)q2(z)g3(x), where for t = 1,2,3
qi(z) = x — B; and the M S—orbit structure induced by M is given by

1+ np [iPI] + Z OP2P3 + Z OP1,P2P3,

where kp,, kq, are the orders of Py, q;, respectively, and for t # u, t,u=1,2,3

Y Opp, = nplip,] +np[ip,] + 10y, pilip,, Pl

> Op.,pps = NPy,p3[iP1,Ps] + NPy R [IPyPy) + TPy, Py, Ps 0Py Py Py
7 =

np, = L

lem(kp, kq;)’

. . p—1
ip,P =
ot ged(eru Iy (B1) —ews INdy (Bu).ged(kp,np, kpy1p,)
_ (p—1)2
Py, P, - -
N o lcm(kpt,kpu)'LPt,pu’
Lpy,Ps,P3 = lcm(ZPl,Pw ip,Ps; ZP2,P3)>
_ (p—1)*
NPy ,P;,P3 -

lcm(kP1 skpy kP )iy, Py, Py '
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Proof
Let S be a nonsingular 3 x 3 matrix over Z, with three distinct eigenvalues and
Mg = Pi(x)Py(z)Ps(x), where P(x) = = — A Let kp, be the order of P

and define kp, p, = lem(kp,, kp,), kpy,p,p, = lem(kp, kp,p,), i = 525 ppp, =
1 u

Huplp, ng(tha kPu)’ KPPy, P3 = KPPy, P3 ng(kPU sz,Ps))ﬂ and Ctu = Cm(m?zsi):()/\{)ndg()\ ))’
t#u, t,u=1,2,3, g a generator of Z;. Also, let

Vb, = {x¢€ Z;’|Pt(S)x = 0},

Vp.p, = {x € Z}|P(S)P,(S)x = 0},

Vb, P, = Vpp, — VP, UVp,,

VP1,P2P3 = VP1P2P3 - VP1 U VP2P3>

Veipps = Veipsps — Uisi Ve, U Ve p, UV, p, U Vp, ;.

Observe that
Z;' = Vp, UVp,p, U Vp, pyps,

hence the S—orbit structure is the formal sum of S—orbits in Vp,, Vp,p,, and Vp, p,p,.
Let > O7 be the formal sum of S—orbits in V. Thus, the formal sum of S—orbits in
Z;’ can be expressed as

1+ ZOPl + ZOP2P3 + ZOPl,PzPaa

where, by Theorem 3.1.3,

> Op, = pp (kp,),
YXOpp, = (1+pp(kp))d + pp,(kp,))
= Up (kP2) + ppy (sz) + 1py,Ps (kP2,P3)’
> OP1 PPy = Hp P (kPl,P2) + Hp,Ps (kPl,Ps) + Upy,Py,Ps (kPl,P2,P3)'

Let M be any nonsingular matrix that commutes with S. Thus, by Corol-
lary 2.2.7, M = Q(S), for some quadratic polynomial Q(z). Let A be the nonsingular
matrix for which

A_ISA = diag()\l, )\2, )\3)

Thus,
ATMA = A7 Q(S)A = Q(AT'SA) = diag(Q(A), Q(A), Q(Ns)).

Let 8, = Q(\). Hence, ¢rr(7) = ¢1(2)qa(2)g3(x), where g(z) = x — ;. Also, let
kq, be the order of ¢;. It is straightforward to see that Vp,, Vp,p, as well as Vp, p,p,
are M—invariant sets. Thus, the formal sum of M S—orbits in Z;’ can be expressed as

Omg =1+ Z OP1 + z OP2P3 + Z 0P1,P2P3'
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Furthermore,
Op,p, = Op,UO0p, UOp, p,,
Op,ppy = Op,p, UOp, p, U Op,p, Py
Whence,
> Op,p, = YOp,+>X0p,+>0p,p,

Z 0P1,P2P3 = Z OP1,P2 + E OPl,Pa + Z OPl,P2,P3'

On the one hand, since Py(z) is irreducible, the M S—orbit structure in Op, is

np,[ip,], where ip, is the smallest positive integer that solves ¢ = zpt (mod p), for
. . . kq _ kP p—1
some integer j;. By Theorem 2.3.16, ip, = —t—gcd(kpt,kqt) and np, = —tipt = Temkn, e )in,

On the other hand, the smallest positive integer ¢p, p, that simultaneously solves

)\zpt,Pu — /BZPt,Pu (mod p) (464)
NPePe = BT (mod p) (4.65)

for some jp, p, is the length of the M S—orbits in Op, p,. By Theorem 2.3.18,

. p—1
7 = .
Pl ng(etuIndg (/Bt) - eutIndg (Bu)a ng(kPJIP“ kPu nPu))

The number of M S-orbits in Op, p, is

pp.p, _ brfip, 8d(kp, kp,) (p—1)°
PP, ip,,P, lem(kp,, kp,)ip, P,

T,Pt;Pu

Finally, the smallest positive integer ip, p, p, that simultaneously solves

A{Pl,P2,P3 — IBiPl,Pis (mod p) (4.66)
A;PI,PQ,PS — IBSPpstPs (mod p) (4.67)
)\.;Pl,Pz,PS — ﬁ;Pl ,Po,Pg (mod p)’ (4.68)

for some jp, p, p, is the length of the MS-orbits in Op, p, p,. That is, the pair
(P, Py, Py JP1,Py,P;) Must satisfy the following three pair of congruences

A{PI,PQ,P;; — ﬁiP17P2aP3 (mod p) (4.69)
A;PI,PQ:PS — ﬁ;PI)P%PS (mod p) (4.70)
)\{Pl,Pg,Pg — IB;'PLPQ'PS (mod p) (4.71)

NPrePs g (mod p), (4.72)
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Xperer IR (mod p) (4.74)
That is,
ip,P,Py = ip,Pt1 (4.75)
iPl,P27P3 = IiPl,P3t2 (4-76)
Z.P17P2,P3 = Z‘P2’P3t3’ (4.77)

for some positive integers ¢, t9, and t3. Then,
ip,.pyps = lcm(ip, p,,ip, Py, ip, Py )ta for some positive integer t4.

It is easy to see that ip, p, p, = lcm(ip, p,, ip, ps, ip, p;) is the smallest positive integer
fulfilling (4.66) — (4.77). The number of M S-orbits in Op, p, p, is

Np Py Py = Hpy,P,,Ps _ Up Up,,Ps ng(kPlakPmP:s) _ (p B 1)3 <>
e Z'131,1’2,1:'3 Z'1’1,1’2,133 lcm(ka kPw kPS)iPt;Pu
2 0 0

Example 4.4.6 Assume matriz S = | 0 6 0 | is defined over Z13. We want to

0 0 7
B 0 0
find another matrix M =1 0 (B, 0 |,
0 0 5

M =2, A =06, \3=7. In this case, \;, 1 = 1,2,3, are generators of Z13. Hence,
k1:k2:k3:12.

Recall that by Corollary 2.2.7, given S with three distinct eigenvalues, any matrix

B 0 0
M that commutes with S can be writtenas A| 0 By 0 | A~! for some nonsin-
0 0 B

gular matrix A, where g is a generator of Z; and §; = ¢’ for some integer t;. Hence,
Nms depends on t1, t9, and t3, and for this reason we denote 7,4 by N (t1, t2, t3).

Given three distinct nonzero values A, A9, and A3 from Z,, p prime, Algo-
rithm 4.4.3 examines all possible triplets (t},15,13) € Z; X Zy x Z> and returns a
triplet (¢4, ta, t3) for which 7y, (¢1, 2, t3) is minimal, where mg(z) = Pi(z) Py (x) P3(z)

and Py(z) =2 — N\, 1=1,2,3.
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Algorithm 4.4.3
Inputs: (A1, Ag, A3), prime p.
Output: (t1,t2,t3) such that Ny, (t1,te,t3) is minimal.
Assumption: Precomputed log and antilog tables with respect
to a primitive element g € Z, are available.
compute: ki, ko, ks, k12,k13,k23,k123
compute: e, €1, €13, €31, €23, €32
compute: i1, fa, [43, [1,25 [41,35 [42,3, 41,2,3
initialize: ty,ta,t3 top—1
inatialize: M1, M2, M3, M2, M3, 12,3, M1,2,3, 1) L0 P
for(ty =1toti=p—1) do
compute: 1]
for(t, =1tot, =p—1) do
compute: ), ¥ 1
for(ty =1toty =p—1) do

compute: 13, 13, U3, Mhz: Mo3:01,23) M23

M=+ 7B+ e+ Mg+ s+ Mo

if(n <n)

(1, ta, t3) = (11, 15, 15)
(715 2, M3, M01,25 11,35 2,3, M1,2,3) <= (M1 M2 M3 M5 M35 o35 M 2,3)
return (t1,1s,t3)
The complexity of Algorithm 4.4.3 is as follows. There are three nested for loops
and several greatest common divisor mod p operations inside them, which can be

computed in log(p) arithmetic operations. Hence, the complexity of the overall al-
gorithm is O(p?® log(p)).

Theorem 4.4.14 Let S be a nonsingular matriz over Z, with three distinct eigen-

values and mg(z) = Pi(z)Po(z) Ps(x), where Py(x) = x—X;, i = 1,2,3. Let (t1,to,13)
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be a triplet for which Ny, (t1,te,t3) is minimal. Also, let

dl = )\2 - )\35
d2 - /\3 - )‘17
d3 = )\1 - )\2;

d = (—(Mada( A1 + A3) + Aidi (A + A3) + Asds(A + X)) 7Y,
cp = d(dlgtl + dag"” + d39t3);
cT = d(—dl (/\2 + )\3)gt1 + dg(/\l + /\3)gt2 — dg()\l + /\Q)gts),

Chp = gt3 — (02)\3 + 01)\3).
Then, an optimal matriz for S is

M = 6252 + clS + 00[3.

Proof

Let S’ = diag(\1, A2, A3). It is clear that M' = diag(g", g2, ¢**) is optimal for S’
since Algorithm 4.4.3 examines all possible triplets (1, 2,t3) from Z3 x Z5 x Z5 and
selects one that minimizes 7,,.

On the other hand, let A be a nonsingular matrix for which A=1SA = S'. Let
M = AM'A7!. Tt is clear that M and S commute. Now, by Corollary 2.2.7, there
exists a polynomial Q(z) = cox? + c1x + cp, such that M = Q(S). Thus,

M = A*IQ(S)A = Q(AflSA) = Q(S").
Hence,

gtl = CQA% + cl)\l + Co,
gt2 = 02)\3 + 01)\2 + Co,
gt3 = CQ/\?) + Cl)\3 + Co,

)\% /\1 1 Co gt1
)\% /\2 1 C1 = gt2 (478)
)\% /\3 1 Co gt3

System (4.78) has a unique solution since we can show that the columns of the
underlying matrix, say V known as a Vandermonde matrix, are linearly independent.

which is equivalent to
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The inverse of V is

d; dy d3
\/-_1 == d —d1 ()\2 + )\3) dQ()\l + /\3) —dg()\l + )\2) (479)
—dodo(A1 + A3) —diAi (A2 + A3)  —dsAs(A1 + A2)),

where

d=det(V)™" = (=(Aada( A1 + A3) + Aidi (N2 + Az) + Aads (A1 + X2))) 7

Co gt1
a | =V g2 |.0 (4.80)
Co g’

4.4.8 General algorithm for computing three-dimensional

Finally,

optimal matrices

We summarize the results for, given a nonsingular matrix S, choosing an optimal
matrix M in the three—-dimensional cases in the following

Algorithm 4.4.4

Inputs: prime p, nonsingular 3 X 3 matriz S over Z,, primitive polynomials
P(z) =23+ az® + bz + ¢, R(x) = 2*> + agrz + g
Output: optimal matric M

1. compute ¢s(x);

2. compute the roots of ¢ps(x);
3. compute mg(x);

I. if ¢pg(x) is irreducible,

1 compute cy, c1, ¢y such that P(cyS?+c1S+col3) = 0, the 3 x 3 zero matriz;

2 set M = c3S8? + ¢S + ¢pls.

II. if ps(z) = Py(x)(z—N), where Pi(z) = 22+dyz+ f1 is quadratic and irreducible,
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1 compute (t1,t2) such that Ny (t1,t2) is minimal;

2 compute N = eCp, + fI,, where e* = ap 1o f=2Yed, — ag);

d3—4f
. Uy1p U2
3 compute N"' = ;
U1 U2

4 compute
e = (fi Mg+ ¢ —un)Pi(N)

-1
i = d102—f1 U2,

co = un +cafi;

5 set M = c38? + 1S + cols.

0 0 —c
I1I. if mg(z)=ax— A\, set M=| 1 0 —b
01 —a

IV. if ¢5(x) = P (2)?Py(z) and ms(z) = Pi(z)Py(z), where Pi(z) = x — Ay,
P2($) =T — Ay, A1 # Ay,

1 compute A such that A™'SA = diag(\i, M1, Xo);
2 compute (t1,t2, TAG) such that 0,y is minimal;
3.1 if (TAG =1) set N = C4;

3.2 else set N = diag(g", g");
N 0
4 set M= A1 A.
0 g"
V. if mg(z) = (x — \)3, then set M = (S — \3)* + gls.
VI. If mg(x) = Pi(x)?Py(x), where Pi(x) =x — A1, Py(x) = — Ao, A\ # Ao,

1 compute (t1,t3) such that np,p, is minimal;
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2 compute

cy = (9t2 - gtl)()\2 — )\1)727
¢ = —2c),
Chp = gtl — (02)\% -+ 01/\1);

3 set M = c358? + 1S + ¢ols.

VII. if ¢5(z) = Pi(z)® and mgs(z) = Py(x)?, where Pi(x) =z — A,

A1 0
1 compute A such that A7'1SA=10 X 0|;
0 0 A
g 0 1
2set M=A110 g 0]A.
0 1 g¢g
VIII. if mg(z) = Py(z)Pa(x)Ps(x), where for i = 1,2,3, Py(z) = — X\i, \i # A,

L7 7,
1 compute (t1,t9,t3) such that Ny (t1,te,t3) is minimal;
2 compute
di = d—A3, do=A3— A1, d3= A — Ao,
d = (—(Nada(A1 + A3) + Midi(A2 + A3) + Aadz(A1 + A2))) 7,
c; = d(dig" +dag” + dsg®),
c1 = d(—di(Aa+ A3)g" + da(M + A3)g” — da(M + X2)g™),

Cp = gt?’ — (02)\§ =+ Cl)\3);

3 set M = 5% +¢1S + ¢pls.

end



Chapter 5

A Solution to reverse engineering

genetic networks

We are in the genome era. After decoding the human genome, the next stumbling
block is to understand the function of genes and how they interact with each other,
so that drugs can be created to cure diseases. Researchers in the area have proposed
Boolean networks to describe the logic of the genes, in a manner similar to the way
boolean functions describe the logic of computers. But it is useful to generalize the
Boolean model to finite field models and thus take advantage of a number of efficient
algorithms that have recently been developed for applications in error—correcting
codes and public—key cryptography.

The reverse engineering problem can be described roughly as follows: Given a
set of biological measurements, determine the function that fits the data. Lauben-
bacher et al [23], [24] and Green [16] have addressed the reverse engineering problem
for genetic networks using multivariable polynomials over finite fields and Groebner
bases.

In this chapter we consider another approach which can be computationally very
efficient. We consider a “lifting” method, described in more detail in section 77,
that consists of lifting a multivariable polynomial to a univariable polynomial over a
large finite field. There are very efficient algorithms available for the univariable case.

In section 5.1 we review the multivariable and single variable models for genetic
networks introduced in section 3.3 and discuss their relationship between them in
section 5.2. In section 5.3 we define the reverse engineering problem. In section 5.4

128
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we discuss methods for fast arithmetic over finite fields and in section 5.5 we give a
parallel solution to reverse engineering genetic networks.

5.1 Boolean and finite field genetic networks

Various researchers have described genetic regulatory networks using Boolean vari-
ables to represent gene expression levels or stimuli. For example, Ideker et al [22]
give the following definition:

Definition 5.1.1 A Boolean genetic network (BGN) consists of a directed graph

G having n, numbered nodes 0,1, ...,n—1, such that for each node v there is an asso-

ciated n—ary Boolean function f;. We denote such a BGN by (G, {fo, f1i,---, fa_1})-

An expression matrix is a set of measurements (such as those which result from
microarray experiments) made by disrupting or overexpressing especific genes from a
genetic network. From this expression data, the challenge is to reconstruct or reverse
engineer the genetic network.

In the Boolean model, either a gene can affect another gene or not. An alternative
model that has been studied by several researchers [23], [27] is the finite field genetic
network. In this model, one is able to capture graded differences in gene expression.
Another advantage of the finite field model is that, as noted in section 3.3.2, it can
be considered as a generalization of the Boolean model since each Boolean operation
can be expressed in terms of the sum and product in Zs. In particular,

xNy = Ty (5.1)
rUy = z+y+zx-y
z = x+1 (5.3)

It is thus natural to generalize the Boolean model as follows.

Definition 5.1.2 A multivariable finite field genetic network (MFFGN) is a
finite dynamical system (GF(q)", f,GF(q)), where functions f; are defined by f; :
GF(q)" — GF(q),i=0,1,...,n—1. The function f : GF(q)" — GF(q)™ is defined
by

f(iCo,ﬂ?l, T ;xn—l) = (fo(QTO; " ';%—1), T '7fn—1($07$17 .- ',%-1))-
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Each f; can be expressed as a polynomial in n variables. For this reason, we refer

to a network of the type defined above as a multivariable finite field genetic network
(“MFFGN”).

Clearly, every BGN is also a MFFGN over GF'(2). Each of the f; can be expressed
as a polynomial over GF'(2) by replacing each Boolean operation by one of the ex-
pressions given in equations (5.1) — (5.3).

Another approach taken by Moreno et al is to replace the n functions f; defined
on GF(q) by a single function f that maps GF(¢") to GF(q").

Definition 5.1.3 A univariable finite field genetic network (UFFGN) is a fi-
nite dynamical system (GF(q™),9,GF(q)), where GF(q") is represented by the vector

space {a, 10" 1+ -+ aja+ap} and « is a zero of an irreducible polynomial over

GF(qg).

5.2 Equivalence of the multivariable

and single variable models

The two types of models given in the previous section can be viewed in some sense as
equivalent. In order to make this idea more precise, we first note that for any zero a of
an irreducible polynomial of degree n over GF'(q), there is a natural correspondence
between GF'(¢q)" and GF(¢") given by

— n—1
@a(xo,ﬁl,"',fﬂn_l)—.T0+.1'1(X+"'+-7)n_1(1 .

Definition 5.2.1 We say that a« MFFGN M = (GF(q)", f,GF(q)) is isomorphic
to a UFFGN U = (GF(q™),9,GF(q)), if there exists « € GF(q") such that for all
(an Ty, xnfl) € GF(q)na

QOa(f(.’L'o, A PR xn—l)) = g(gOa(.’II(), A PR 7$n—1))-

Given a MFFGN M = (GF(q)", f,GF(q)), it is easily seen that there is an
isomorphic UFFGN U = (GF(¢"), g, GF(q)) since we need only to define

9(330,351, .- ‘,33n—1) = QOa(f(JJO,l"l, te ,l'n—1))
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for all (zg,z1,---,2n—1). Thus,

Theorem 5.2.1 For every MFFGN M = (GF(q)", f,GF(q)) there is an UFFGN
U= (GF(q"),g,GF(q)) that is isomorphic to M.

Since every function defined on a finite field GF(g) can be expressed as a univariant
polynomial over GF(q), it is natural to ask how one can determine the polynomial
corresponding to the function g of Theorem 5.2.1. The answer is given by the dis-
crete Fourier transform over GF(q), which we now define.

Let w be a primitive root in GF(q), i.e., w is a generator of the multiplicative
cyclic group of GF(q) —{0}. A discrete Fourier transform (“DFT”) over GF(q) is a
linear transformation on the vector space {(ao, a1, - -, a,—2)|a; € GF(q)} defined by
the matrix

Fq,w:[wij]a Z:jzoalaaq_Q (54)

Corollary 5.2.1 Let By = ¢(f(0,0,---,0)) and for each i = 1,2,---,¢q" — 1, let
B; = oo(f(an—1:--,a0,:)) where o € GF(q") is a root of an irreducible polynomial
over GF(q) and where a,_1,;,6" 1 4+ -+ a1; + ap; = &’~. Then g is given by the

polynomial
Aqn_lanfl + Aqn_Q:an*Q + o Agx® + Ajz + A (5.5)

where Ay = By and

Aqn_1 Bl - AO
Aqn_g 1 By — AO
= | (5.6)
i A1 | i Bqn,1 — AO ]

Example 5.2.1 Recall the MFFGN equivalent of Ideker’s Boolean network given in
Ezxample 3.5.1:

fo(fro, Z1,T2, 1153) = 1,
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fi(zo, 21,22, 23) = 1,
fo(zo, 1,29, 23) = moNxy,
fs(xo, 21,9, 23) = 21N Zo.

To compute an equivalent UFFGN over GF(2%), take P(x) = z* + x + 1 to be the

irreducible polynomial over GF(2).

In order to carry out the necessary computations, it is convenient to construct a

table of of, 1 =10,1,2,---,2*—2 = 14, in terms of polynomials aso®+aya® + a0+ ay.

1 a3 G2 a1 Qg

00 0 0 1
170 0 1 0
210 1 0 O
311 0 0 0
410 0 1 1
510 1 1 0
6|11 1 0 0
711 0 1 1
810 1 0 1
911 0 1 0

—_
]
]
—
—
—

—_
—_
—_
—_
—_
o

—
DN
—
—
—
—

—
w
—_
—_
o
—_

1471 0 0 1

Table 5.2.1 : o in GF(2%) in terms of aza® + aza® + a1a + ay



133

Such a table can also be regarded as a table for ¢ where images are expressed as

powers of a.

Now we have

By = o(f(0, ,0)) (5.7)
= ¢(£0(0,0,0,0), f1(0,0,0,0), f»(0,0,0,0), f3(0,0,0,0))
= ¢(1,1,0,0)
By = ¢(f(0,0,0,1)) = ©(1,1,0,0) = af (5.8)
By = ¢(f(0,0,1,0)) = ¢(1,1,0,0) = a® (5.9)

Similarly, we have Bs = o', By = of, Bs = o, Bs = of, B; = o'?, By = af,

Bg = a13, BlO = OJG, B11 = OAG, 312 = Otn, 313 = 0412, B14 = oz12, Bl5 = 046. ThUS,
[A15a A14a A13a T AI]T = FIS,Q[O: 0) 1, Oa Oa Oa 044, 07 1: 07 0: a, o, (X4, O]T (510)
and so M s isomorphic to the UFFGN

= (G, + 2" + a'%2% + a2® + af2® + a?2° + a2 + aMa® + a2 + ax + b, GF(2Y)).

In this example, we have computed the Fourier transform from its definition,
which, in general, would require time O(¢*") for the conversion of an MFFGN to

an UFFGN. If instead we use a fast Fourier transform, the time can be reduced to

O(ng™).

It is easy to prove the converse of Theorem 5.2.1.

Theorem 5.2.2 For every UFFGN U = (GF(q"),9,GF(q)), there is an equivalent
MFFGN, M = (GF(q)", f, GF(q)).
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Proof
The functions f; are defined by

[fO(x()vxla T xn—l)v T fn—l(an e ’xl)]T = 90;1(9(9004(1.0"%‘1’ o '7xﬂ—1)) (5'11)

It follows from ( 5.2.1) that

B
B; Apn A
. =Fpao| =+ |+ (5.12)
' A A
Bqn_1 1 0

and the values of the f; can be calculated by applying this DF'T and then calculating
f(an—l,i: Ty aO,i) = @;l(BZ)

In order to express each f; algebraically we can express g(q (%o, -, Zn_1)) as a
polynomial in «. Then the coefficient of each o is the value of f;(zg, -, Tp_1).{

Example 5.2.2 Let U = (G(3)%,9 = a''z? + a8z +a'', GF(3)), where « € GF(3?)
is a root of x3 + 2x + 1. Then

9(pa(z2,11,70)) = o (wo0® + 2100+ 30)? + ¥ (2202 + T100 + 1) + ™
= 220 + 211 190™ + (27 4 22072) 0™ + 2207102 + 220 +
aczoz20 + xlalg + xoals + ot
= (225 + 2z071 + xf + 229 + 271 + 29 + 1)a® +
(z179 + 25 + 29 + 231 + 229 + 1) +

23:% + zox2 + Tox1 + 2:53 + 29 + 221 + 29 + 2

Hence

fi(ze, x1, 1) = 222 4 22071 + xg + 229+ 221 + a0+ 1
fo(@2,m1,80) = BTy + 35 + Ty + 221 + 2230 + 1

f3(za, 21,20) = 22° + W2 + Tow1 + 275 + Ty + 271 + To + 2.



135

5.3 Reverse engineering

Given specific experimental data, how do we fit it to a specific model (either MFFGN
or UFFGN)? This is known as the reverse engineering problem. More precisely, bor-
rowing from Laubenbacher [23], we define this problem as follows: Given a time series
S1, 82, -+, S of measurements of gene expressions and a set of conditions x, find all
functions f - either f : GF(q)" — GF(q)", i.e., a set of functions f;, i =0,1,---,n—1
such that each f; : GF(¢)" — GF(q), or f: GF(q") — GF(q") - with the property
that s; 1 = f(s;), where s; = (ag, a1, -, a,_1), and which satisfy the conditions in
X- Determining an f : GF(¢") — GF(q"), i.e., an UFFGN, gives global information
about the network, whereas determining a set of functions f; : GF(¢)" — GF(q),
i.e., an MFFGN;, gives local information at each node of the network.

If Kk = ¢"™ — 1, then we already know how to determine the above f, i.e., by a
DFT. If k£ < p™ — 1, we can use interpolation for either type of model. This gives

fi($0axla T 7$n71) = fil(a:Oaxla o 'axnfl) + hi($0:xla o 'axnfl)a 1= O) ]-7 e, n— 1

in the MFFGN case and
g9(z) = ¢'(x) + h(z),

in the UFFGN case, where f/, ¢ =0,1,---,n — 1 and g/ are polynomials that inter-
polate the given k points and where the h; and h are polynomials that vanish on the
interpolated points.

The interpolation described by Laubenbacher [23] for the MFFGN case is essen-
tially Lagrange interpolation. The computational complexity for Lagrange interpo-
lation is O(k?), where k is the number of interpolated points and thus, the total time
to interpolate at each of the n nodes is O(nk?).

In the UFFGN case it is necessary to interpolate only once. Furthermore, other
interpolation methods are more efficient than Lagrange. For example, the time
required to interpolate k points with Lipson’s [26] method is O(k log? k). Another
advantage of Lipson’s algorithm is that it can be parallelized, which is very useful
for very large genetic networks [5].

5.4 Fast finite field arithmetic

In order to adapt either Lagrange or Lipson interpolation to finite fields, we need ef-
ficient algorithms for finite field arithmetic of polynomials over arbitrary finite fields.
In the last few years there has been considerable progress in developing just such
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algorithms, particularly for applications in cryptography [38, 39, 18, 17, 41].

We assume that the coefficients of all polynomials over GF(p™) are written in
the form of where « is a generator of the multiplicative cyclic group of GF(p™). The
addition of two such polynomials then requires us to determine for a given a and b
a number ¢ such that o = a® + o®. For the multiplication of two such polynomials
we need to both add and multiply powers of a.. This latter operation can be effected
by simply adding the exponents modulo p™ — 1.

To add powers of a we use a table of Zech logarithms (also known as Jacobi
logarithms). Every element of GF(p™) can be written in the form 1+ o' = o*® for
some 2(i), 0 < 2(i) < p™ — 1. We note that a® + a® = a®(1 + ®=® medP™~1) Hence,
to add two powers of a@ we need only to compute a Zech log and add exponents. It is
useful to also note that, if p is odd, —1 = a?™~1/2 and so a* — &’ can be computed
by a® + a®"D/2 . b = o8 4 (@™ -1)/2+b) mod pm-1.

To construct a table of Zech logs, we first determine a primitive element « so that
each field element x can be expressed as # = o*. We then construct an auxiliary table
Ali],1=1,2,---,p™ — 1 such that each A[i] = o'. The table Z[i] of Zech logs is then
constructed by setting each Z[i] = j where j is the index for which A[j] = A[i] + 1.

The following table gives the Zech logs for GF(2?) using the primitive polynomial
2 +z+1.

¢ |12 (34|56 |78]9]10(11 12|13
2(i) |9]21 1|18 17|11 [4|15|3| 6 |10| 2 | *

1 1411516 | 17|18 |19 |20 | 21 |22 |23 |24 | 25 | 26
z(1) |16 [ 2522 |20 | 7 |23 | 5 |12 (14|24 |19 | 8 |13
Table 5.4.1 : Zech Logs for GF(33).

5.5 Solution to the reverse engineering problem

for genetic networks

Given a time series si, So, -+, s of measurements of gene expressions and a set of
conditions x, we want to find all functions f : GF(¢") — GF(¢") with the property
that s;1 = f(s;), where s; = (ag, a1, - -, a,—1), and which satisfy the conditions in

X- In order to do this we want to determine a polynomial f'(x) that interpolates the
given k points and such that f(z) = f'(x) + h(z), where h(z) is determined by the
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conditions in x.

An efficient algorithm for interpolation and one which can readily be parallelized
is Lipson’s algorithm [26]. This algorithm is based on the Chinese remainder theorem
for polynomials, which says that given a set of n pairwise relatively prime polynomials

(), pi(x), - Pai(T)

and a set of residues
fo(@), fi(z), ...y far(2),
there exists a unique polynomial f(x) of degree less than the degree of
P(z) = po(z)p1(2) - - po1(2)
which solves the set of congruences
f(z) = fi(z) mod p;(x), 1 =0,1,---,n—1
Polynomial f(z) is given by:
n—1
f(z) =) edif; mod P(z),
i=0

where ¢; = P'(z;) (i.e., € is the formal derivative of P(z) evaluated at x = x;.)

In the special case of polynomial interpolation, the polynomials p;(x) are of the
form p;(x) = x — x;, which are relatively prime since the z; are distinct.

The sequential interpolation algorithm of Lipson can be depicted as follows:

Algorithm 5.5.1 (Lipson)

Input: {(zo,Y0), (T1,%1), - - - (Tk—1, Y1) }, k = 2.
Output: Interpolating polynomial f(z), 0 < deg(f(z)) < k, such that f(z;) = y;.
1. Compute g; ; = Hi;ﬁ;_lpm(x), 0<j<t,iamultiple of 2 and 0 < i < k.

2. Compute d; = (P'(z;))"!, where P' is the derivative of

P(z) =qos = (x —zo) (@ — 1) -+ - (. — Tp_1).
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3. Compute S;o = d; - y;, for 0 < i <k and i a multiple of 29 and
Sij = Sij—1-Givoi-1 -1+ Sitoi-1_1- ¢ j—1 for 0 < j <1.

It is easily shown that the arithmetic complexity of the above Algorithm 5.5.1 is
O(k log?k), which is superior to the O(k?) interpolation of Lagrange.

Let us examine the possibility of parallelizing Lipson’s algorithm. We first note
that ¢; ; and S; ; can be defined recursively:

Gij = Qij—1-Git2i-15-1 (5.13)
(5.14)
Sij = Sij-1 Qivoi1 -1t Siyai1-1" Gij-1 (5.15)

Thus, each of the ¢; ; and S;; from (5.13) and (5.15) can be computed in parallel.
The S, ; depend on the g; ; and in fact, the initial values S;, depend on the values
of d; = (P'(x;))~", which in turn depend on the last computed value of g; j, i.e., go-

We note that
P'zi)= J[ (zi—1y)

0<j£i<n—1

and so the d; can be computed independently of P(x) at no extra cost. We thus have
the following parallel version of Lipson’s algorithm:

Algorithm 5.5.2 (Parallel Lipson)
Input: {(0, %), (T1,91),- -5 (Te-1,Y6-1)}, k = 2"

Output: Interpolating polynomial f(x), 0 < deg(f(z)) < k, such that f(x;) = y;.

for (i =0 toi=n) do in parallel
d; = Hogj;éign—1($i — Z5);
Sip = di - Yi;

qi0 = T — Zy;

for (j=1toj=t—-1)do



for i=0toi=k—1 step 2) do in parallel

Sij = Sijj-1° Qivai-1,j—1 T Siyoi-1,j-1 Gij1

Qij = Qij—1 " Qiv2i-1 515
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The entire computation carried out by Algorithm 5.5.2 can be represented by a
complete binary tree with height log k. Load balancing is achieved by assigning a
processor to every node. The only communications necessary are between parent

nodes and their children.

We have implemented this algorithm in C/openMP on an SGI 3000 with 32

Processors.

Example 5.5.1 Let {(a, a'%), (!, a??), (a2, '),

(a!?,02)} be a set of four points in GF(3%) x GF(3%), where o is a primitive

element of GF(3%). Find a polynomial f(x) of degree at most 3 that interpolates this

set of points using Algorithm 5.5.2.

e First, compute the d;, Sio, and g;p.

do

)

40,0

di

[(zo — 21) (20 — 2) (w0 — 3)] "

(o = a"®)(a — a®)(a — )]

(a22a16a10)71

(a22)—1

«

[(z1 — o) (21 — 22) (21 — 23)]

[(0416 o a)(alﬁ o a22)(a16 o alS)]fl

(a9a13a18)—1



140

— (0614)_1
— a12
Sio = alZa?®
= of
dip = T — a'f
dy = [(z9 — @) (z9 — 1) (20 — 23)]

— [(0422 _ a)(a22 _ alG)(aQZ _ alS)]fl

= (Ba®a7)!

— (OJIO)fl — 0516

512’0 — a16a15
= o
20 = T — o
ds = [(x3 — o)(x5 — 1) (w3 — 22)] ™"

= (a®a’a?)!
= (@) =a
S0 = a'a?
= a6
430 = T — al®

o Second, compute the S;1 and g;,

Soi = 50,0 * g0+ S1,0 * oo

= @ x(r—a'%) +a’(z - q)

= o% + a’®
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Soq = Sa0*q30+ S30* 20
= o’ *(z —a'®) +abx (z — a®)
= oMz +o*
Gop = qo0*q10
= (z—-a)(z—a')
= 22+ a2z +a"
2,1 = G20 *G3p0
15)

= (z-ao®)(z -«

= 224 oz + ot

o Third, compute Sp2

So2 = Soa*qeq + 521 %qo;
— (ozlox—i-ozs) * ($2+056$+C¥11)+(C¥14$+0422) *(x2+oz13x+0417)

= o2’ + alz? + o’z + alt

Finally, the third—degree polynomial over GF(3%) that interpolates the four given

points is

f(z) = o2 + o®2? + o’z + o™

5.5.1 Composite finite field arithmetic

The log table method for carring out arithmetic in GF(2™) is very efficient for small
values of m. In fact, experiments have shown that m must be smaller than half
the word size of the underlying architecture [13]. To overcome this limitation we
approach the problem through composite finite field arithmetic, which is based on
the following theorem [27].
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Theorem 5.5.1 For any fized basis ai,0y,...,0n for GF(q)" there is a natural

one—one correspondence between GF(q)" and GF(q").

For large composite m, say m = rs, we have that GF(2™) can be taken to be
a finite extension of the smaller Galois field GF(2") and we choose an irreducible
polynomial of degree s over the “ground” field GF(2"). The numbers r and s should
be chosen to both localize memory access for table lookup in the ground field as well
as speeding up the mod reduction following the operation of polynomial multiplica-
tion. In particular, if p(x) is an irreducible polynomial of degree r over GF(q) then
it remains irreducible over GF(¢®) if and only if r and s are relatively prime [25].

Example 5.5.2 (Composite field multiplication for GF(2%)*) Let a be a root
of the irreducible polynomial q(t) = t* +t + 1 over GF(2). Moreover, q(t) is is
primitive over GF(2).

i | ot | 2(4)
01001 | =
1(010| 3
21100 6
31011 1
41110 5
5111 | 4
6101 | 2

Table 5.5.1 : o in GF(23) in terms of axa® + a1a + ag
The elements of GF(23)* can be regarded as polynomials of the form

Bst® + Bt + Bit + Bo,

where 3; € GF(2%). The polynomial p(t) = t* +t + 1 is irreducible over GF(2),
hence it is also irreducible over GF(2%)*. Let fi(t) = at® + a*t + o® and fo(t) =
a3 4+ o?t? + at + 1. We want to perform the multiplication of fi and fy mod p(t).
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a2 o> a o
o ot af
o? a® o
o 0 |ab af
ot al | o?

at 0 |a* ot
0 & 0 o o 0
0 a0 ab af
0 0 0]a® 0

Hence,

fl(t) * f2(t) mod p(t) = oS+t

= (101)#* + (000)#* + (001)¢ + (000),

which s equivalent to 101000001000 as a string of bits.



Chapter 6

Some ethical concerns

Ethics consists of rules and standards that govern the conduct of a person or the
members of a profession [45]. We apply ethics to different activities. These include
our dealings with each other, with animals, the environment and scientific research.
They should govern our interactions not only in conducting research but also in
commerce, employment and politics. Ethics serves to identify desirable acceptable
conduct, correct unacceptable conduct, and provides reasons for moral judgments.
Projects without scientific merit waste resources and needlessly subject participants
to risks. Accordingly, an essential condition of the ethical validity of research consists
of determining that the scientific quality of the research as well as the skill and
experience of the researchers guarantees achieving the objectives of the project.

6.1 Ethics in research

6.1.1 Scientific integrity and misconduct

Ethical scientific research requires integrity, an essential component of which is hon-
esty. Integrity can be defined as freedom from corrupting influences or motives [45].
Integrity is vital to the scientific process while honesty is a necessary condition to
truthful research. Dishonesty in science can take several forms. It is important to
distinguish error and intentional dishonesty which is also called misconduct. Miscon-
duct in science takes several forms including fabrication (making up data or results),
plagiarism (using another’s idea or research without appropriate credit), falsification
(manipulating the data to make it appear more convincing), or selectively choosing
only the data that fits the researchers preconceptions. Misconduct does not include
honest errors or differences on interpretation of data.
144



145

6.1.2 Conflict of interest — responsible conduct in research

“A person has a conflict of interest if (a) he/she is an a relationship with another
requiring him/her to exercise judgment in that other’s service and (b) he/she has
an interest tending to interfere with the proper exercise of judgment” [10]. In addi-
tion, you should be objective in research and researchers should be independent and
impartial in their investigation. Research should not be determined, influenced or
biased by the researcher or by a competing external interest.

6.1.3 Allocation of credits/recognition

Intellectual property refers to creations of the mind: inventions, literary and artistic
works, and symbols, names, images, and designs used in commerce [46]. Intellec-
tual property can be divided into two categories. The first one, industrial property,
includes trade marks, patents, etc. Copyright is a second category that includes
literary works such as computer programs, newspapers, compositions, etc.

Along these lines recognition or allocation of credit is crucial to sound scientific
research. We can credit others in scientific research through acknowledgment, cita-
tion and inclusion in a list of authors. In particular, citation explicitly acknowledges
the work of other scientists and its influence on ones own results. It is important to
recognize the work done by others, this will help to validate research.

6.2 Integrating ethics into this research project

6.2.1 Validating as ethical research

When selecting a research problem, it is important to focus on an unsolved, open
problem. In addition, the research and its result must demonstrate scientific merit.
Research requires activities such as clarifying, defining and understanding the prob-
lem. Ways to do this include numerical simulations, examples and counter examples.
Once the problem is understood, an appropriate theoretical formulation is proposed
that includes assumptions alongside the conditions in which a solution will be sought.
The next step consists of a meticulous revision of relevant literature that includes
recent articles, books, previous researches etc. After this literature review, credit or
recognition is assigned to the appropriate scientists and researchers.

An important component in this project consists of the design of algorithms that
can be used in software production. In this work, all the proposed algorithms are
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sustained by theorems accompanied by their proofs. In those cases where we do not
have rigorous proofs for the results, we make conjectures which are based on the
numerical experiment we performed. Conjectures are labeled as such and carefully
distinguished from rigorously proven theorems.

It is also important to acknowledge the sponsorship given by any institution
committed to the developing and divulging of science. In this work we give explicit
acknowledgement to PRECISE, National Science Foundation (NSF) and Alliance for
Graduate Education and the Professoriate (AGEP).

6.2.2 Potential application in bioinformatics

The reverse engineering problem in bioinformatics is related to several ethical issues
that have positive societal impacts. For instance, to reverse engineer a genetic net-
work, biologists need to experiment with living organisms. This is a controversial
issue that deserves careful attention. The mathematical models proposed in this
research are intended to represent real life phenomena. Thus, having an appropri-
ate model for the reverse engineering problem in bioinformatics will help biologists
to reduce the use of living organisms in biological research. Also, this will help to
decrease the cost of technological resources used to carry out the given experiments.

With the investigation that has been made, we hope that the results are useful to
understand better the phenomena that are under study. In particular, we hope that
results of reverse engineering for M S—orbits could be applied for the code production
to compute symmetric FFTs. Also, we recommend that this knowledge and code
be made available to the scientific community as well as the community in general.
Additionally, the algorithms that we have developed to compute on large finite fields
promise to be a useful tool in the study of finite dynamical systems.



Chapter 7

Summary and future work

We have completely solved the M S—orbits problem for the two and three dimensional
cases, thus providing the theory for optimizing the computation of prime edge—length
symmetric FFTs. For these cases, given a nonsingular matrix S over Z,, p prime,
we propose, as opposed to exhaustive searchs which yield O(p®) and O(p'?) algo-
rithms, more efficient O(p*logp) and O(p®logp) algorithms to compute matrices M
that minimize the number of cyclic convolutions (i.e., minimize the number of M S—
orbits), respectively. For n dimensions, we characterize those important cases where
there is only a single cyclic convolution, called the AM-minimal case, and provide
a general procedure to compute a maximal matrix which gives one nontrivial MS—
orbit. Also, for the n dimensional cases, we propose a general procedure to compute
the optimal matrix M when the characteristic polynomial of the nonsingular matrix
S factors as the product of two distinct irreducible polynomials.

On the other hand, we have studied and compared two finite field models for
genetic networks and provided algorithms for converting one model into the other
via a discrete Fourier transform. We have developed efficient methods for performing
arithmetic over finite fields and proposed a new efficient parallel algorithm based on
the Chinese remindering theorem to interpolate over finite fields and have C/openMP
implementations of these methods. These methods and their implementations pro-
vide valuable tools to reverse engineering large finite field genetic networks.

This work has also led to an important result that is interesting in its own right:
if S is a nonsingular matrix with irreducible characteristic polynomial, then the set
of all matrices that commute with S constitute a finite field.

In future work we plan to extend and enhance our results in both applications.

147
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Regarding the application to the computation of symmetric FFTs with prime edge-
length, we plan to extend the two and three dimensional cases to n dimensions and
simplify the M S—orbits theory. With regard to the application to reverse engineering
finite field genetic networks, we plan to extend our single variable parallel interpo-
lating algorithm to the multivariable finite field model.
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