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ABSTRACT 
 

In this study, the transport properties of poly(styrene-isobutylene-styrene) (SIBS) 

block copolymer were determined as a function of sulfonation level (0-94.9 %), counter 

ion substitution (Ba+2, Ca+2, Mg+2, Mn+2, Cu+2, K+1), single-walled carbon nanotubes 

(SWCNTs) functionalization (carboxylic groups, aminomethanesulfonic acid and           

p-aminobenzoic acid), SWCNT loading (0.01, 0.1 and 1.0 wt.%), and blends with radial 

poly(styrene-isoprene) for direct methanol fuel cell (DMFC) and chemical and biological 

protective clothing (CBPC) applications. Increasing the sulfonation level improved the 

ion exchange capacity (IEC) of the membranes up a maximum, suggesting a complex    

3-D network at high sulfonation levels. Results show that proton conductivity increases 

with IEC and is quite sensitive to hydration levels and the type of water (i.e., bound or 

bulk) inside these proton exchange membranes (PEM). Methanol permeability, although 

also sensitive to IEC, shows a different behavior than proton conductivity suggesting 

fundamental differences in their transport mechanism. The incorporation of counter ion 

substitution decreases both methanol and proton transport. Methanol permeability seems 

to be related to the size of the studied counter ions, while proton conductivity is more 

sensitive to water content, which is also reduced upon the incorporation of counter ions. 

Methanol permeability is sensitive to SWCNTs addition, since its transport mechanism 

seems to be controlled by their presence and loading. The addition of radial poly(styrene-

isoprene) creates unique morphologies that lead to high water uptake, poor 

interconnectivity of sulfonic groups and low methanol permeability. Selectivity (i.e., 

proton conductivity/methanol permeability) of the studied membranes was determined 

and compared to Nafion® 117 to complement the studies. Values suggest an optimum 

SWCNT loading (0.1 wt.%) for the highest sulfonation level studied with this 

functionalization (SIBS 89.7). Additionally, the SWCNT functionalization with sulfonic 

groups improves the transport properties of the sulfonated PEM. The efficiency of the 

membranes to separate dimethyl methylphosphonate (DMMP), the simulant of the 

chemical warfare agent Sarin, and water vapor also shows high values for the sulfonated 

and  nanocomposite membranes. Vapor permeability studies suggest that the combination 

of ionic domains with unique morphological arrangements can lead to high separation 

efficiencies for CBPC application. 
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RESUMEN 
 

En este estudio, se determinaron las propiedades de transporte del copolímero en 

bloques poli(estireno-isobutileno-estireno) (SIBS) en función de su nivel de sulfonación 

(desde 0 a 94.9 %); sustitución catiónica (Ba+2, Ca+2, Mg+2, Mn+2, Cu+2 , K+1), tipo de 

funcionalización (grupos carboxílicos, ácido aminometansulfónico, y ácido para-

aminobenzoico) realizada a nanotubos de carbono de pared única (SWCNT, por sus 

siglas en inglés); y concentración de dichos nanotubos (0.01, 0,1 y 1.0 % p/p);  además de 

la adición de poli(estireno-isopreno) radial para celdas de combustible de metanol y ropa 

de protección contra agentes químicos y biológicos. El aumento en el nivel de 

sulfonación mejoró la capacidad de intercambio iónico de las membranas (IEC, por sus 

siglas en inglés) hasta un máximo, lo que sugiere la formación de una red tridimensional 

compleja a niveles altos de sulfonación.  Los resultados muestran que la conductividad 

protónica aumenta con el IEC y es sensible a los niveles de hidratación y tipo de agua en 

la membrana (es decir, ligada o no ligada) dentro de estas membranas de intercambio 

protónico.  La permeabilidad al metanol, aunque también sensible a la IEC, muestra un 

comportamiento diferente lo cual sugiere diferencias fundamentales en el mecanismo de 

transporte.  La sustitución catiónica disminuye tanto el transporte de protones como el de 

metanol. La permeabilidad al metanol parece estar relacionada al tamaño del catión 

estudiado, mientras que la conductividad protónica es más sensible al contenido de agua, 

que también se reduce con la incorporación de cationes.  La permeabilidad de metanol es 

sensible a los nanotubos de carbono ya que el mecanismo de transporte parece estar 

controlado por la presencia y concentración de los mismos.  La adición de poli(estireno-

isopreno) radial crea morfologías únicas que conducen a alta absorción de agua, pobre 

interconexión de grupos sulfónicos y baja permeabilidad al metanol. Para complementar 

los estudios, se determinó la selectividad de las membranas estudiadas (es decir, 

conductividad protónica/permeabilidad al metanol) y se comparó con Nafion® 117 . Los 

valores sugieren una carga óptima de nanotubos de carbono (0.1% en peso) para el nivel 

de sulfonación más alto estudiado con esta funcionalización (SIBS 89.7).  Además 

indican que la funcionalización de nanotubos de carbono con grupos sulfónicos mejora 

las propiedades de transporte de la membrana de intercambio protónico.  La eficiencia de 

las membranas para separar metilfosfonato de dimetilo (DMMP, por sus siglas en inglés) 
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utilizado como simulador del agente químico químico Sarín, y vapor de agua, también 

muestran valores altos para las membranas sulfonadas y nanocompuestas.  Los estudios 

de permeabilidad de vapor sugieren que la combinación de dominios iónicos con arreglos 

morfológicos únicos puede conducir a altas eficiencias en la separación para aplicaciones 

de ropa protectora de protección de agentes biológicos y químicos. 
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CHAPTER 1 

INTRODUCTION 

 

1.1.  Fuel Cells 

Since 1960, fuel cells have been acquiring attention as an alternative power source, due to 

their high energy density and efficiency, low pollution and wide applications [1,2]. There are two 

main types of fuel cells, proton exchange membrane fuel cells (PEMFC) and direct methanol 

fuel cells (DMFC). In general a fuel cell is an electrochemical device that is fed of a fuel 

(hydrogen in PEMFC or methanol in DMFC) that is oxidized at the anode, and oxygen or air that 

is reduced at the cathode. The protons released during the oxidation of the fuel are conducted 

through a proton exchange membrane (PEM) to the cathode. Since the membrane is not 

electrically conductive, the electrons released from hydrogen travel along the electrical detour 

provided using a conductor and an electrical current is generated, as shown in the diagram of 

Figure 1.1. 

 

Figure 1.1. Schematic diagram of a PEMFC [3] 
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In the center of the fuel cell is the membrane electrode assembly (MEA). The MEA 

consists of the PEM, catalyst and gas diffusion layers (GDL). Typically, these components are 

individually fabricated. The conventional catalyst configuration consists of platinum (Pt) 

loadings of approximately 0.4 mg/cm2 and the GDL of carbon paper or carbon cloth [4], that 

ensures that reactants effectively diffuse to the catalyst layer. The electrochemical reaction 

occurs at the interface of the GDL with the catalyst, as shown in Figure 1.1 [5]. 

The membrane is a fundamental component in the efficiency of the fuel cell. The two 

primary measures of the membrane performance are the membrane permeability (i.e., 

productivity) of the desired penetrant (in the case of protons is called proton conductivity) and 

the membrane selectivity (i.e., separation effectiveness) between penetrants and undesired fuel 

permeation. In order to measure the selectivity of a PEM its transport properties, (i.e. proton 

conductivity and fuel permeability) have to be studied. Proton conductivity is the ability to 

conduct protons through the membrane and is intimately connected with both acid and water (i.e. 

ionomer hydration) content of the membrane. This conductivity is affected by the strength of the 

acid, the chemical structure and morphology of the membrane, as well as temperature [6]. Fuel 

permeability refers to the passage of unreacted fuel through the PEM. 

In the case of DMFC, current PEM have high methanol permeation rates. For this case, a 

membrane with the property of blocking a highly concentrated methanol solution is required [5]. 

Previous studies have found that a polymer that includes on its structure non-ionic blocks are 

highly potential, since the non-ionic domains could be designed to be effective barriers for 

methanol [7].  

Since the stability of membranes against thermo-mechanical and chemical stresses is also 

an important factor in determining both their short- and long-term performance, additional 

characterization is required. A combination of chemical, thermal and X-ray techniques are used 

to elucidate the nanostructure of the membranes and explain the transport properties and fuel 

mechanisms for an effective PEM performance. 
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1.2.  Specialty Separations 

The selective separations of some substances mixture are difficult to achieve due their 

similarity in thermal and molecular properties such as vapor pressure, boiling point and 

molecular size. For these separations, membrane technology is widely used. Membrane 

technology is a low energy consuming technology that offers process simplicity, effectiveness, 

efficiency and economic benefits for specific separations or removal of undesirable components 

[8]. Some membrane separation processes include gas separation, pervaporation, osmosis, 

electrodialysis, ultrafiltration and nanofiltration [9–12]. 

Among the gas separation processes an application that is receiving widely attention 

since the 911 and anthrax terrorist attacks to the US and the recently Syrian chemical weapon 

attack is the development of chemical and biological protective clothing (CBPC). The chemical 

warfare agents (CWA) most commonly used are nerve agents, as Agent Orange and Sarin, that 

operate by blocking neurochemical pathways in humans, can lead to loss of autonomic functions 

(e.g., breathing) and muscle control [13,14]. Since these chemical warfare agents are highly toxic 

and can penetrate the skin rapidly, effective individual protection against exposure is of great 

importance in the military and in civilian defense [15]. 

CBPC need to provide the necessary protection against threat agents, block their passage, 

but also be comfortable to wearers allowing water vapor breathability, as shown in Figure 1.2. 

Cross-linked butyl rubber or polyethylene with activated charcoal or carbon pellets were used for 

this application but the combination of heavy and impermeable protective materials negatively 

impacted the users’ performance [16–18]. CBPC increases the heat stress on the body and cause 

fatigue problems due to the heavy workload and with prolonged use because of the lack of water 

vapor evaporation for personal cooling reducing task efficiency and the individual’s range of 

motion [19]. The commonly accepted as the desired range for water vapor transport rate (VTR) 

in CBPC is 1500–2000 g/m2day1 [15].  

Many polymeric materials have been proposed for dealing with the challenges of 

increasing breathability while maintaining high levels of protection. Among them the study of 

hydrophilic membranes such as PEM with sulfonic groups attached to their backbone has gain 

attention. The hydrophilic region formed by sulfonic acid groups promotes water transport and 
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provides effective barrier to organic compounds, which are desirable for chemical protection 

application [16,20,21]. 

 

Figure 1.2. Schematic diagram of CBPC [22] 

 

1.3.  Proton Exchange Membranes (PEM) 

A PEM is a semipermeable solid polymer electrolyte made of ionomers, which has the 

ability of transferring protons in moist state, and is impermeable to some compounds (e.g. 

oxygen and methanol). PEMs contain negatively charged groups, such as –SO3
-, PO3

2- or -PO3H-

[23] fixed to the membrane backbone designed to work as a barrier that only allows the 

conduction of protons or compounds with high chemical affinity (i.e. water).  

The most commonly used PEM is Nafion® [7,24,25]. This perfluorosulfonic PEM has 

high proton conductivity and good mechanical and thermal stability [26–29], but it has several 

disadvantages, such as poor selectivity, high methanol permeation rates, limited processability 

due to the perfluorinated segments and high cost.  

A variety of polymers have been studied in order to develop membranes that overcome 

the disadvantages and limitations of current commercial PEMs. A list of some potential materials 

is shown in Table 1.1. 
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Table 1.1.Some PEM materials studied for fuel cell and separation applications. 

Material Reference 

poly(styrenesulfonic acid) (PSSA) [30] 
sulfonated tetrafluoroethylene (Nafion®) [31] 
sulfonated phenol-formaldehyde [30] 
sulfonated polyphosphazene [32] 
sulfonated poly(phenylene oxide) [33] 
sulfonated polyarylene ether sulfone [34] 
sulfonated polyetherketone [35] 
sulfonated poly[bis(3-methylphenoxy) phosphazene [32] 
acid-doped poly(benzimidazole) [36] 
sulfonated poly(4-vinylpyridinium-styrene-4-vinylpyridinim) [37] 
sulfonated poly(styrene-(ethylene-co-butylene)-styrene) [38] 
poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) [39] 
poly(ether ketone ketone) [40] 
sulfonated poly(ethylene-alt-tetrafluoro- ethylene) [41] 
poly(benzimida-zole) [41] 
poly (2,6-dimethyl-1,4-phenylene oxide) [23] 
phosphoric acid-doped polybenzimidazole (PBI/H3PO4) [23] 
polyethersulfone [42] 
sulfonated poly(styrene-isobutylene-styrene) [7] 
polystyrene-ethylene-butylene-polystyrene [43] 
poly(tetrafluoroethylene)-G-polystyrene sulfonic acid [44] 
poly(tetrafluoro-co-hexafluoropropylene)-G-polystyrene sulfonic acid [44] 
sulfonated phthalic polyimide [44] 
sulfonated poly(phenylqunoxaline) [44] 
sulfonated poly(2,6-diphenyl 1-4,phynylen oxide)  [44] 
benzylsulfonate-G-polybenzimidazoles [44] 
Pphosphoric acid doped poly(ethylene oxide)-(PEO/H3PO4) [44] 
poly(ethyleneimine)-(BPEI/H3PO4/H2SO4/HCl) [44] 
sulfonated polyethersulfone doped polybenzimidazoles (S-PSU/PBI) [44] 
poly(trifluorostyrene sulfonic acid) [44] 
poly(phenylene sulfide) [42] 
propane sulfonated poly(p-phenylene terephthalamide) (PPTA-PS) [44] 
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1.4.  Justification and Dissertation Overview 

Disadvantages of current PEM’s are one of the most important constrains that 

limit the industrial production and commercialization of fuel cells. While security and 

protection are two critical challenges for people in general and in particular for the 

military forces, the development and implementation of new and more efficient 

alternatives for chemical and biological protective clothing (CBPC) is of outmost 

importance. To develop an efficient PEM for these applications, some requirements like 

high proton transport, low methanol permeability, high selectivity and separation 

efficiency need special attention.  

PEM with hydrophilic groups are promising materials to meet these requirements. 

Among the variety of polymers that have been studied and characterized to explore their 

transport properties, block copolymers that combine ionic and non-ionic domains have 

gained our attention, especially the ones with a polystyrene block (PS). Polystyrene has 

been known for years as a commodity plastic with excellent chemical resistance, good 

environmental stress crack resistance, easy processability, and moderate cost [45]. PS has 

an aromatic ring on its backbone that can be easily functionalized with sulfonic groups 

(SO3
-) using aromatic electrophilic substitution to create an ionomeric polymer.  

Block copolymers composed of sulfonated polystyrene and a non-ionic 

elastomeric block like could present good transport and barrier properties. From the list in 

Table 1.1, the transport properties of sulfonated poly(styrene-isobutylene-styrene) (SIBS) 

have been widely studied at low sulfonation levels for fuel cells and CBPC applications 

giving good transport properties [24,46,47].  

SIBS is a tri-block copolymer that presents morphological changes at the 

nanoscale upon sulfonation. Its chemical structure after sulfonation using acetyl sulfate is 

shown in Figure 1.3, where the sulfonic acid groups bound to the para- configuration of 

the polystyrene aromatic ring. Since these hydrophilic groups promote the proton 

transport, high sulfonation levels and the addition of other hydrophilic functionalization 

were areas that required attention as they could lead to an improvement of the transport 

properties and an increase of the selectivity and efficiency of sulfonated SIBS.  
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Figure 1.3. Sulfonation reaction and chemical structure of sulfonated SIBS 

 

This research evaluated changes in poly(styrene-isobutylene-styrene) with respect 

to some major variables. First, the effect of sulfonation level and counter ion substitution 

was studied in Chapter 2 to determine the influence of increasing the ionic domains and 

hydration on the properties of SIBS. Then, Chapter 2 focuses on the incorporation of 

single-walled carbon nanotubes at different loadings and with different types of chemical 

functionalizations to understand the effect of physical and chemical modifications. 

Finally, in Chapter 4 blends of SIBS and another polymer, poly(styrene-isoprene) (SI), 

were studied to investigate the impact of morphology.  Since both applications require 

resistance to organics, while still providing high transport of protons (fuel cells) and 

water (breathable clothing), our research was focused on developing PEM’s with high 

selectivity to enhance the performance of current DMFC and increase the efficiency of 

specialty separations (i.e., chemical and biological protective clothing). The transport 

properties and the influence of water and morphology of the resulting PEM’s have been 

evaluated for each application and the results obtained have been explained using an in-

depth materials characterization approach.  
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CHAPTER 2 

TRANSPORT PROPERTIES OF SULFONATED  

POLY(STYRENE-ISOBUTYLENE-STYRENE) MEMBRANES WITH 

COUNTER-ION SUBSTITUTION 
 

2.1. Abstract 

In this study, the transport properties of poly(styrene-isobutylene-styrene) (SIBS) 

were determined as a function of sulfonation level (0-94.9%) and counter ion substitution 

(Ba+2, Ca+2, Mg+2, Mn+2, Cu+2, K+1) for fuel cell and chemical and biological protective 

clothing (CBPC) applications. Increasing the sulfonation level improved the ion 

exchange capacity (IEC) of the membranes up to a maximum (1.71 mequiv/g), 

suggesting a complex 3-D network at high sulfonation levels. Results show that proton 

conductivity increases with IEC and is very sensitive to hydration levels. Methanol 

permeability, although also sensitive to IEC, shows a different behavior than proton 

conductivity, suggesting fundamental differences in their transport mechanism. The 

incorporation of counter ion substitution decreases both methanol and proton transport. 

Methanol permeability seems to be related to the size of the counter-ion studied, while 

proton conductivity is more sensitive to water contents, which is also reduced upon the 

incorporation of counter-ions. To complement the studies, selectivity (i.e., proton 

conductivity/methanol permeability) of the studied membranes was determined and 

compared to Nafion® 117. The efficiency of the membranes to separate DMMP and 

water also show high selectivity values for the sulfonated membranes (up to 8.55). Gas 

phase permeability studies for CBPC applications also showed strong sensitivity to IEC. 
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2.2. Introduction 

Many applications for proton exchange membranes (PEM’s) are known, 

especially in the area of electrochemical and energy efficient devices such as fuel cells 

[1-6]. As mentioned in Chapter 1, the most commonly used PEM is Nafion® [1–6]. Even 

though it has a high proton conductivity and good mechanical and thermal properties [5–

8], it has several disadvantages limiting the performance of existing devices. 

To meet the requirements of high ionic conductivity with proper chemical, 

thermal and mechanical strength and to overcome the transport issues, a variety of block 

copolymers have been studied and characterized to explore their properties [9–11]. They 

can be grouped into: perfluorinated ionomeric membranes (e.g., Nafion®, Flemion®, 

polyvinylidene fluoride-hexafluoropropylene), non-fluorinated hydrocarbons (aliphatic 

and aromatic) ionomeric membranes (e.g., polystyrenesulfonic acid, sulfonated 

polystyrene-ethylene-butylene-polystyrene, sulfonated polyphenylene oxide, sulfonated 

polyetherketoneketone), and acid-base complexes (e.g., phosphoric acid-doped 

polybenzimidazole)) [1,4,9,10,12–16]. 

Hydrocarbon polymers containing polar groups, as sulfonic groups (-SO3-), which 

retain high amounts of water over a wide temperature range are particularly attractive and 

relatively cheaper to synthesize than perfluorinated polymers [16,17]. Sulfonic groups 

can be added to hydrocarbon polymers that have an aromatic ring on their backbone by 

post-sulfonation using aromatic electrophilic substitution. Incorporation of this sulfonic 

groups increases properties like strength, hydrophilicity, and proton conductivity [18,19]. 

Sulfonated copolymers, with an elastomeric block, have gained interest because they 

combine properties of two materials and have a highly ordered sequence of both ionic 

and non-ionic blocks, since only one of the blocks is sulfonated [20]. On the ionic blocks 

phase segregation can occur due to the electrostatic interaction among ion pairs forming 

ion clusters. As the ionic domains increase, due to the increment of sulfonic groups, these 

clusters connect forming ionic channels that facilitate the transport of protons [1,18]. On 

the other hand, the non-ionic domains could be designed to be effective barriers for 

methanol (MeOH) [1]. 
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Previous studies have characterized sulfonated poly(styrene-isobutylene-styrene) 

(SIBS) and evaluated their potential as a viable PEM for fuel cells and protective clothing 

applications [2,18,21]. SIBS is a tri-block thermoplastic elastomer which is composed of 

glassy outer blocks (polystyrene) and rubbery inner blocks (poly(isobutylene)) [22,23]. 

By sulfonating the polystyrene blocks, an ionomer that self assembles into a three-phase 

nanostructured morphology in the solid state and a polymer that combines ionic and non-

ionic properties can be produced [24]. To increase its selectivity ionic cross-linking is 

suggested. One approach is to exchange with cations some of the protons in the acidic 

membranes. The cation-substituted membrane produced by the exchange reaction should 

have low water solubility and form a stable crosslink that can enhance properties as 

transition temperatures, plateau modulus and tensile strength. Also, it can reduce the 

solvent swelling and methanol permeability [14]. This study presents the synthesis and 

characterization of poly(styrene-isobutylene-styrene) with respect to two major variables: 

sulfonation level and counter ion substitution. The transport properties of the resulting 

PEM’s have been evaluated and the results have been explained using an in-depth 

materials characterization approach. 

 

2.3. Experimental Methods 

2.3.1. Materials 

Poly(styrene-isobutylene-styrene) (SIBS) was purchased from Kaneka® with 

properties of 30 wt.% polystyrene and a molecular weight of 65,000 g/mol. Other 

chemicals used include: methylene chloride (Fisher Scientific, 99.8%), sulfuric acid 

(Sigma Aldrich, 95-98%), acetic anhydride (Aldrich Chemical, 99+%), toluene (Fisher 

Scientific, 99.8%), hexyl alcohol (Aldrich Chemical, 98%), methanol (Fisher Scientific, 

99.9%), barium chloride (Sigma–Aldrich, anhydrous, powder, 99.99%), calcium chloride 

(Sigma–Aldrich, anhydrous, powder, 99.99%), magnesium chloride (Sigma–Aldrich, 

anhydrous, powder, 99.99%), manganese chloride (MnCl2) (Acros Organics, 99+%), 

copper (II) chloride (CuCl2) (Across Organics, anhydrous, 99%), potassium chloride 

(KCl) (Fisher Scientific), and deionized water. All chemicals were used without further 

purification. 
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2.3.2. Polymer Sulfonation 

The sulfonation of SIBS was performed using the suggested procedure of Elabd 

and Napadensky [1,18]. Some modifications were considered, an example of the 

sulfonation procedure is as follows: a 10% (wt./v) solution of SIBS (30 g dried for 24 h at 

60 !C) in methylene chloride was prepared. The sulfonating agent, acetyl sulfate, in 

methylene chloride is prepared by cooling 200 ml of methylene chloride in an ice bath for 

10 min, and then acetic anhydride is added to the methylene chloride under stirring 

conditions. The cooling is to account for the exothermic heat of reaction, while avoiding 

solvent evaporation. Sulfuric acid is added 10 min after the acetic anhydride with an 

acetic anhydride mole ratio of 1:1. The sulfonating agent was slowly added to the 

polymer solution to begin the sulfonation reaction. The reaction was terminated after 24 h 

by adding 200 ml of methanol and the solvents were allowed to evaporate at room 

temperature for 5 days. The reacted polymer was washed several times with deionized 

water until the pH of the water was neutral. The used water with residual acetyl sulfate 

was neutralized with sodium hydroxide to minimize the waste produced in this process. 

Since the concentration of acetic acid produced after neutralization is lower than the 

allowed disposable limit, the neutralized water was safe to discard. The polymer was then 

dried at 60 !C for 48 h. The sulfonation procedure was repeated several times with 

different amounts of acetyl sulfate to obtain various sulfonating levels. Higher 

sulfonation levels require a larger excess of the sulfonation agent since, upon sulfonation, 

ionic nanochannels are formed and it is difficult to overcome the mass-transport 

limitations to reach the last unoccupied sites available for sulfonation. 

 

2.3.3. Membrane Casting 

Once sulfonated, SIBS was pH balanced and dry, it was dissolved in a solution 

(85/15) (v/v) of toluene and hexyl alcohol with a polymer concentration of 5 wt. %. SIBS 

membranes were solvent cast in Teflon® Petri dishes for one week at room temperature 

allowing for the membranes to thermodynamically self-assemble as the solvent 
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evaporated. They were then dried at 60 !C for 24 h to remove the final residual solvent. 

The unsulfonated polymer was cast similarly, but with pure toluene instead. 

 

2.3.4. Counter Ion Substitution 

The membranes were neutralized by immersing the sulfonated membranes in acid 

form in 1.0 M solution of the salts containing the desired cation (BaCl2, CaCl2, MgCl2, 

MnCl2, CuCl2, and KCl) for 24 h. The cation substitution takes place in a few minutes for 

thin membranes (e.g., 0.1 cm), but they were immersed for 24 h to allow for proper 

cation substitution. The cross-linked membranes were then washed using deionized water 

and dried in an oven at 60 !C for 24 h. 

 

2.3.5. Nomenclature 

The membranes were labeled SIBS-XX-YZ, indicating SIBS polymer followed by 

XX, which is the sulfonation mole percent obtained after elemental analysis (EA), Y, 

which is the cation substituted, and Z, which is the cation electrical charge before the 

substitution. 

 

2.3.6. Materials Characterization 

Elemental analysis was performed by Atlantic Microlab, Inc. in Norcross, GA to 

determine accurate sulfonation levels. Sulfonated membrane samples (1-3 mg) were 

analyzed for carbon, hydrogen and sulfur weight percent. Additional stoichiometric 

calculations were required to obtain the final mole percent of sulfonation for all the 

membranes studied. 

Elemental Analysis, Inc. (Lexington, KY) performed the instrumental neutron 

activation analysis (INAA) to determine the amount of cations substituted. Cross-linked 
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membrane samples of approximately 0.1 g were analyzed for sulfur and cation 

composition. Results are presented as the mole ratio between cation and sulfonic groups. 

Ion exchange capacity (IEC) was measured immersing 50 mg of the sulfonated 

membrane in a 1.0 M solution of NaCl for 24 hours. After removing the membrane, the 

solution was titrated using a 0.1 M solution of NaOH until the pH was neutral. The IEC 

was calculated from the moles of ion substituted divided by the initial dry mass of the 

membrane. 

Fourier transform infrared spectroscopy (FT-IR) was used to confirm the presence 

of sulfonic groups and determine their aromatic substitution configuration. Infrared 

spectra of the samples were collected using a Varian 800 FTIR Scimitar Series 

Spectrometer and a ZnSe ATR holder with a wavenumber range of 600-4000 cm-1 using 

100 scans at 8 cm-1 resolution. 

The thermal stability and degradation temperatures of the samples were 

determined using a TGA/SDTA 851 from Mettler Toledo by heating the samples to 

800 !C at a constant heating rate of 10 !C/min under a nitrogen atmosphere. 

To confirm the assignments of the degradation temperatures and determine the 

composition of the remaining mass, a TGA 2950 Thermogravimetrical Analyzer (TA 

Instruments) coupled to a Thermo Scientific TGA-FTIR interface was used under a 

helium atmosphere in a temperature range of 25 to 850 !C at a heating rate of 15 !C/min. 

The gas cell temperature was set to 220 !C and the transfer line to 210 !C. 

Structure-property relations for dry sulfonated and counter-ion substituted 

membranes were determined using small-angle X-ray scattering (SAXS). The 

experiments were performed in the Chemical Engineering Department of the University 

of Washington, Seattle, using a one dimension SAXSess mc2 and SAXSquanTM-

Software for the data analysis. 

Transmission Electron Microscopy (TEM) was used to obtain an image of the 

polymer membrane upon sulfonation. The experiments were performed in the 

Nanotechnology User Facility of the University of Washington, Seattle, using a FEI 
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Tecnai G2 F20 TEM. The samples were spin-coated at 4000 rpm for one minute onto 

Carbon B copper grits (Ted Pella, Inc.). 

Solvent swelling experiments were performed to determine absorption limitations 

and their effect on the membrane transport. For swelling measurements, square samples 

of the membranes were dried at 60 !C for 24 h, weighed and then immersed into vials 

containing deionized water. The weight of wet membranes was determined, after 

removing the surface solvent by blotting it with a tissue paper, at different times until 

equilibrium was reached. 

In-plane ion conductivity for each membrane was measured using electrochemical 

impedance spectroscopy (EIS) over a frequency range of 0.1 Hz and 1MHz with an 

applied voltage of 10 mV (AC Solartron impedance system: 1260 impedance analyzer, 

1287 electrochemical interface, Zplot software). Membranes were cut into 3 x 0.5 cm 

strips and submerged in deionized (DI) water for at least 24 h before the conductivity 

measurements were performed. The membrane strips were then loaded in hydrated form 

into an open cell consisting of four Pt parallel electrodes. Conductivities of the 

membranes were measured at room temperature (~25 °C), where the cell was filled with 

DI water to maintain full hydration of the membranes during the measurements. The real 

impedance was calculated from the x-intercept of the regression of Nyquist plot. In-plane 

conductivity, ! (S/cm), was calculated with Equation (2.1), where Le is the distance 

between electrodes, R is the real impedance or resistance ("), and A is the cross sectional 

area. Wet membrane thickness and width were measured directly after the membrane was 

removed from the conductivity cell. The membrane thickness and width changed upon 

hydration and the changes varied with sulfonation level and counter-ion substitution; 

however, changes in width were more significant than changes in thickness. Additional 

details concerning the apparatus and procedures can be found elsewhere [25,26]. 

! ! !!
!" !!!!!!!!!!!!!!! 

Methanol permeability was measured at room temperature using a side-by-side 

diffusion cell. Membranes were prior hydrated with deionized water for 24 h and then put 
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between both sides of the cell, each one with a compartment of 0.3215 cm2 of cross-

sectional area. The donor compartment was filled with a 2.0 M MeOH solution and the 

receptor with deionized water. Infrared spectra from the receptor compartment were 

recorded every 10 min using 100 scans and 8 cm-1 resolution. The concentration of 

methanol was obtained by monitoring the C-O stretching of 1014 cm-1. In addition, a GC-

TCD (Shimadzu, GC-8) was used to corroborate the accuracy of the FT-IR technique. 

Methanol permeability was determined using the rearranged approximate solution of the 

continuity equation (2.2) for diffusion in plane sheet geometry (constant concentration in 

one side) [1,27],  where CA and CB are the concentrations of methanol in the donor and 

receptor compartments, respectively, L is the membrane thickness (0.03 - 0.08 cm), VB 

the volume of the receptor compartment (0.37 cm3), A the cross-sectional area of the 

membrane (0.322 cm2), D is the methanol diffusion coefficient (cm2/s) and P the 

permeability (cm2/s). The permeability represents the product of the diffusion coefficient 

times the solubility [27]. Permeability values were determined from the slope of [(CB(t) 

VB L)/(CA A)] versus time. 

!! ! !!!
!!!

! ! ! ! !!
!! !!!!!!!!!!!!! 

Gas phase permeability experiments were performed using DMMP as a simulant 

of the chemical toxin Sarin, due to its similarity in chemical structure, physical properties 

and volatility [23]. The effective vapor permeability (Peff) of water and DMMP through 

the membranes was studied at 37.5 ºC under a nitrogen atmosphere. Vials with a volume 

of 12 mL and an open top cap with a cross-sectional area of 6.08E-5 m2 (hole diameter: 

8.8 mm) were filled with 10 mL of permeant (i.e., water or DMMP). The membranes 

were previously cut, with an equal shape and size to that of the cap, and dried in a 

convection oven at 60 ºC for 24 h. The thickness of each precut membrane was measured 

with a digital caliper before it was place under the open cap. Vials where sealed with the 

cap and parafilm®, and its weight was measured using an analytical balance. Afterward 

the vials were placed in an oven and were weighed every 6 hours for 3 days.  

Additional calculations were performed to obtain the effective vapor permeability 

for each permeant. First, the vapor transfer rate (VTR), which is the amount of permeant 
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that will flow through an area during a period of time, was obtained from the slope of the 

linear regression of the weight loss data vs. time. Using Fick’s law and calculating the 

change in concentration using the ideal gas equation, the VTR (Appendix A) can be used 

to calculate the effective permeability through the membrane (cm2/s) as shown in 

Equation (2.3): 

!!"" !
!!!!!"#

!! !"!!!"
!!!!!!!!!!!!!!!!!! 

where L is the thickness of the membrane (cm), VTR is the vapor transfer rate (g/cm2 s), 

Pi is the partial pressure of the permeant inside the vial (mm Hg) (for this experiment is 

equal to the permeant vapor pressure, Pvap), R is the universal gas constant (0.06236 m3 

mmHg / mol K), T is the experiment temperature (K) and MWi is the permeant molecular 

weight (g/mol). The vapor pressure of DMMP was calculated using the Antoine 

coefficients determined by Butrow et al. [28], while the vapor pressure of water was 

calculated using the Antoine coefficients reported by Smith et al. [29].  

 

2.4. Results and Discussion 

2.4.1. Elemental Analysis 

The sulfonation percent was calculated from the EA results of C H O S (Atlantic 

Microlab). The mole % sulfonation varied from 0 to 94.9% and as it will be explained 

ahead, FT-IR was used to confirm the location of the sulfonic groups in the polymer. 

INAA was used as an additional EA technique (Elemental Analysis Inc.) to confirm the 

consistency of the metal loading and to quantify the amount of cations in the polymer 

membranes. Table 2.1 shows the ratio of moles of metal per mole of sulfonic group in 

some of the polymer membranes studied. The results from Table 2.1 show two major 

effects: first, for each metal studied the mole ratio of metal to sulfonic group was very 

similar regardless of sulfonation level. Second, cations with a +2 charge have an average 

ratio of metal to sulfonic group that suggests one metal for every two sulfonic groups. For 
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the only cation with +1 charge studied (K+1), the ratio of metal to sulfonic group suggests 

one mole of metal for each mole of sulfonic group. 

 
Table 2.1. Counter-ion concentration in the crosslinked membranes by INNA. 

 
Cation mass fraction per sulfonic group 

Sample Ba+2 Ca+2 Mg+2 Mn+2 Cu+2 K+1 
SIBS 39 Ba 0.4235 0.4801 0.4900 0.4540 0.4100 0.8423 
SIBS 63 Ba 0.3759 0.5667 0.4915 0.4525 0.4428 0.7245 
SIBS 84 Ba 0.3595 0.5015 0.4947 0.4548 0.3657 0.9439 

 

2.4.2. Ion Exchange Capacity 

Ion exchange capacity (IEC) was measured for the sulfonated membranes and the 

results are presented in Table 2.2. The results suggest an optimum IEC with sulfonation 

level around 84.1% sulfonation. Beyond that sulfonation level the IEC is lower perhaps 

due to the formation of SO2 bridges in the complex three-dimensional structure of the 

highly sulfonated polymer membranes. 

 

Table 2.2. Sulfonation percentage and ion exchange capacity for sulfonated SIBS 
membranes. 

Sample Sulfonation level 
(mol %) 

IEC 
(mequiv./g) 

SIBS 29.7 29.7 0.77 
SIBS 39.8 39.8 1.06 
SIBS 63.1 63.1 1.69 
SIBS 84.1 84.1 1.71 
SIBS 92.0 92.0 1.57 

 

2.4.3. Infrared Spectroscopy 

Figure 2.1 shows the infrared spectra of sulfonated SIBS, where SIBS 0 

represents the unsulfonated polymer and SIBS 94.9 the highest sulfonation level studied. 

The spectra for the sulfonated polymers show four additional bands (marked with +) at 



! ""!

high wavenumbers: 1151, 1124, 1034, 1007 cm-1), representative of the stretching 

vibrations associated to the sulfonate group. The bands at 1034 and 1156 cm-1 represent 

the symmetric and asymmetric SO2 stretch, respectively. While at lower wavenumbers 

shows two bands at 698 and 756 cm-1 (marked with +), that correspond to the mono-

substitution of the aromatic ring, that move and lower their intensity as the sulfonation 

level increase and one at 830 cm-1 (also marked +), that confirms the para- substitution of 

the sulfonate group on the aromatic ring. Figure 2.2 shows the spectra of medium 

sulfonated counter-ion substituted membranes. The counter ion substitution increases the 

intensity of the bands and shifts the asymmetric S-O stretching vibrations bands towards 

a higher wavenumber suggesting that the cations are interacting with the sulfonic groups 

in a way that more energy is required to obtain this stretching vibration. This effect is the 

same for all cations although the shifts are unique for each cation, especially for the 

asymmetric S-O stretching at 1151 cm-1 (Table 2.3). 

 

 

Figure 2.1. Infrared spectra of SIBS at various sulfonation levels (0, 29.7, 62.8, 76.4, and 
94.9 mol%). The mark peaks represent stretching vibrations associated to sulfonated 
group (*) and the aromatic substitution (+). 
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Figure 2.2. Infrared spectra of SIBS 62.8 cross-linked with various cations: a) Ba+2, Ca+2, 
Mg+2 and b) Mn+2, Cu+2, K+1. 
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Table 2.3. FTIR stretching vibration bands for sulfonated and crosslinked SIBS 
membranes. 

Sample FTIR Stretching Bands (cm-1) 
SIBS 0 - - - - 

SIBS 29.7 1007 1034 1124 1151 
SIBS 62.8 1007 1034 1124 1153 
SIBS 76.4 1007 1034 1124 1159 
SIBS 94.9 1007 1034 1124 1153 

SIBS 29.7 Ba+2 1009 1038 1126 1169 
SIBS 62.8 Ba+2 1009 1038 1128 1171 
SIBS 94.9 Ba+2 1009 1038 1128 1169 
SIBS 29.7 Ca+2 1009 1038 1128 1177 
SIBS 62.8 Ca+2 1009 1038 1128 1177 
SIBS 94.9 Ca+2 1009 1038 1128 1175 
SIBS 29.7 Mg+2 1009 1036 1126 1165 
SIBS 62.8 Mg+2 1009 1036 1126 1171 
SIBS 94.9 Mg+2 1009 1036 1126 1171 
SIBS 29.7 Mn+2 1009 1036 1126 1155 
SIBS 62.8 Mn+2 1009 1036 1126 1165 
SIBS 94.9 Mn+2 1007 1036 1126 1165 
SIBS 29.7 Cu+2 1009 1036 1124 1161 
SIBS 62.8 Cu+2 1007 1036 1126 1163 
SIBS 94.9 Cu+2 1007 1036 1126 1163 
SIBS 29.7 K+1 1009 1038 1126 1180 
SIBS 62.8 K+1 1009 1038 1126 1180 
SIBS 94.9 K+1 1009 1036 1126 1180 

 

 

2.4.4. Thermogravimetrical Analysis 

The thermogravimetrical analysis (TGA) for unsulfonated and sulfonated SIBS is 

presented in Figure 2.3 and Table 2.4. Upon sulfonation the degradation temperature of 

the polymer backbone increases from 365 ± 1 to 422 ± 2 !C regardless of sulfonation 

level. The TGA curves for the sulfonated SIBS show three weight loss stages, as it was 

demonstrated in previous studies [2,30].The first region (50- 200 !C) is attributed to the 

atmospheric moisture absorbed by the hydroscopic ionic segments of the polymer and 

this region is left out of Table 2.4. The second (200-370 !C) and third (370-430 !C) are 
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attributed to the breakdown of the sulfonic groups attached to the styrene ring and the 

degradation of the polymer backbone, respectively (Table 2.4). In many studies of block 

copolymers the degradation of the polymer has two components, one for each block (one 

for polystyrene and another polyisobutylene). In this case only one band is observed for 

the degradation of the block copolymer. A previous study reports that these two bands 

may overlap and are indistinguishable from each other30. 

 

Figure 2.3. TGA curves for SIBS at various sulfonation levels. 

 

Table 2.4. Degradation temperatures for SIBS at various sulfonation levels. 

Sample 
Degradation temperatures (°C) 

Sulfonic Group Backbone 

SIBS 0 - 365.39 
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SIBS 29.7 - 422.96 
SIBS 62.8 276.31 422.71 
SIBS 76.4 277.45 425.4 
SIBS 83.4 251.64 421.08 
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SIBS 92.0 221.63 420.5 
SIBS 94.9 247.68 422.71 
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The degradation temperature of the cation-substituted membranes is slightly 

different from the membranes in their acidic form (Figure 2.4 and Table 2.5). The weight 

loss from 200-370 !C is absent, but in all curves new degradation regions are observed 

from 430-600 !C. These new stages can be attributed to the decomposition of the sulfonic 

groups that are ionically associated to the counter-ions. The membranes cross-linked with 

Cu+2 show two new stages from 300-385 !C that can also be associated to the sulfonic 

groups; however, the incorporation of this counter-ion makes the thermal stability of the 

ionic domains lower than the other counter-ions studied, perhaps because this atom has 

the highest electronegativity of all counter-ions studied. Detailed results for the 

degradation temperatures of the sulfonated and counter-ion substituted membranes are 

summarized in Tables 2.4-2.5 and Appendix C. 

 

 

Figure 2.4. TGA curves for counter-ion substituted membranes SIBS 92.0. 
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Table 2.5. Degradation temperatures for SIBS crosslinked membranes. 

Sample 
Degradation temperatures (°C) 

Sulfonic Group Backbone Cations 

SIBS  24.5 - 418.08 - 
SIBS  24.5 Ba+2 331 411.06 543.29 
SIBS  24.5 Ca+2 - 431.95 568.28 
SIBS  24.5 Mg+2 - 411.04 556.77 
SIBS  24.5 K+1 - 416.91 520.37 

SIBS  24.5 Mn+2 - 422.14 532.43 
SIBS  24.5 Cu+2 301.75 424.55 - 

SIBS  62.8 276.31 422.71 - 
SIBS  62.8 Ba+2 - 412.21 467.01/537.71 
SIBS  62.8 Ca+2 - 420.28 495.20/552.07 
SIBS  62.8 Mg+2 - 413.96 473.40/569.8 
SIBS  62.8 K+1 - 414.99 437.20/512.48 

SIBS  62.8 Mn+2 - 413.31 474.80/554/49 
SIBS  62.8 Cu+2 307.74/385.13 424.87 - 

SIBS  92.0 221.63 420.5 - 
SIBS  92.0 Ba+2 - 410.66 485.43/560.30 
SIBS  92.0 Ca+2 - 403.62 508.31/559.44 
SIBS  92.0 Mg+2 - 392.99 505.77/565.09 
SIBS  92.0 K+1 - 418.26 456.58/502.21 

SIBS  92.0 Mn+2 - 407.78 503.08/561.08 
SIBS  92.0 Cu+2 308.68/382.53 427.9 - 

 

2.4.5. TGA-FTIR 

Figure 2.5a shows the TGA curve and its corresponding derivative curve for SIBS 

92.0 substituted with Ba+2, while Figure 2.5b shows the FTIR spectrums of the outlet gas 

of the TGA for this run as a function of temperature. From here we can confirm that the 

weight loss region around 370-430 !C corresponds to the degradation of the polymer 

backbone chain. It is important to notice that for the Ba+2 - substituted membranes - 40% 

of the sample original weight remains thermally stable at 800 !C; this is not the case for 

other membranes. FTIR spectrum for the sample after the TGA-FTIR experiment was 

obtained and compared with a previous spectrum obtained before the experiment (Figure 

2.5c). It is clear that some of the sulfonic group bands (1124, 1034 cm-1) are missing and 
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others have lowered their intensity suggesting that the cations may be interacting in 

different ways with the sulfonic groups. 

 

Figure 2.5. TGA-FTIR results for SIBS 92.0 cross-linked with Ba+2: a) 
Thermogravimetrical analysis results b) Infrared spectra as function of temperature, and 
c) Infrared spectra before (dash line) and after (solid line) the thermogravimetrical 
analysis. 
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accessibility to the ionic domains. The incorporation of counter-ions shows significant 

differences between the sulfonated and cross-linked membranes (Figure 2.7 and Table 

2.6). As Figure 2.7 shows, cation substitution reduces the absorption of water and 

produces unique swelling for each one of the cations studied. 

 

Figure 2.6. Water swelling experiments for SIBS at various sulfonation levels. 

 

Figure 2.7. Water swelling experiments for counter-ion substituted membranes SIBS 
94.9. 
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Table 2.6. Water absorption limits (wt.%) for SIBS crosslinked membranes. 

Sample Sulfonated Ba+2 Ca+2 Mg+2 Mn+2 Cu+2 K+1 
SIBS 29.7 40.43 20.14 19.10 24.19 15.00 18.86 14.72 
SIBS 62.8 355.83 26.43 73.41 75.60 82.87 77.67 284.66 
SIBS 94.9 553.19 31.10 122.73 141.13 126.72 139.47 422.67 
 

2.4.7. Small Angle X-Ray Scattering 

Intensity profiles (I versus q) were obtained normal to the plane for the sulfonated 

and counter-ion substituted membranes through SAXS experiments. The values of 

scattering vectors and interstitial (Bragg) distances for the ionic domains are shown in 

Table 2.7.  

 

Table 2.7. Scattering vector and Bragg distance values for the sulfonated and crosslinked 
membranes. 

Sample q* (1/nm) dBragg (nm) 
SIBS 0 0.423 14.85 

SIBS 29.7 0.362 17.36 
SIBS 29.7 Ba+2 0.362 17.36 
SIBS 29.7 Ca+2 0.362 17.36 
SIBS 29.7 Mg+2 0.362 17.36 
SIBS 29.7 K+1 0.362 17.36 

SIBS 62.8 0.342 18.37 
SIBS 94.9 0.285 22.05 

 

The scattering vector, q, can be related to the interstitial distance between atoms 

using Bragg’s Law [22,23] 

!!"#$$ !
!!

!!"#$$
!!!!!!!!!!! 

where dBragg is the distance between aligned atoms and qBragg is the scattering vector. Due 

to the weak scattering no periodic pattern was obtained, but the slopes of the curves 

suggested the presence of different morphologies (Figure 2.8). It is important to mention 



! "#!

that as sulfonation increases, the Bragg distance between crystalline domains increases 

(Table 2.7). Counter-ion substituted SIBS 29.7 shows an increase in the intensity of the 

curve, but no significance difference in the interstitial distance for different cations, 

especially around the ionomer peak (Figure 2.9, Table 2.7). This suggests that the cations 

do not affect the size of the ionic nanochannels, but as it has been presented and will be 

presented ahead, they influence the equilibrium and transport properties through the 

membrane. 

 

Figure 2.8. Small-angle X-ray scattering profiles for SIBS at various sulfonation levels. 

 

 

Figure 2.9. Small-angle X-ray scattering profiles for cross-linked SIBS 29.7 membranes. 
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