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Recent development in the field of biomedical science has resulted in a prolifer-

ation of Brain Computer Interfaces (BCI), signals are acquired and processed more

efficiently. Using the Event-related de-synchronization (ERD) concept, where the µ

frequency appears in the motor and sensory cortex when a subject is doing or even

imagining a movement, a new method to extract features from this type of EEG

signals called Common Space Analytic Pattern (CSAP) is used. CSAP is based on

a spatial filter which recovers underlying source signals near the motor cortex which

are indicative of motor imagery and with the hidden Markov model (HMM) approach

as classifier, outstanding results are achieved for binary Motor Imagery EEG signals.

In this work, Support Vector Machine is used with CSAP to classify binary motor

imagery EEG signals, its performance is compared with Hidden Markov Model. Both

classifiers are used in a BCI called path speller that executes in real time. Experi-

ment shows that SVM has a very good accuracy, but HMM is more accurate, faster

and reaches higher confidence level (high probability of a trial to belong to a known

class).This also was the case with the path speller BCI, where HMM with CSAP was

more efficient than SVM.
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IMAGINACIÓN MOTRIZ
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Consejero: Dr. Vidya Manian
Departamento: Ingenieŕıa Eléctrica y Computadoras

Los recientes avances en el campo de la biomedicina ha dado lugar a una prolif-

eración de Interfaces cerebro-computador (BCI), las señales son adquiridas y proce-

sadas mas eficientemente. Usando el concepto de la desincronización basada en even-

tos (ERD), donde la frecuencia µ aparece en la corteza motora y sensorial cuando

una persona está haciendo o incluso imaginando un movimiento, un nuevo método

para extraer caracteŕısticas de este tipo de señales EEG llamado patrón anaĺıtico de

espacio común (CSAP) ha sido usado. CSAP se basa en un filtro espacial el cual

recupera las señales de origen subyacentes cerca de la corteza motora, que son in-

dicativos de la imaginación de movimientos y con el enfoque del modelo oculto de

Markov (HMM) como clasificador, excelentes resultados se lograron para las señales

EEG de imaginación de movimientos binarias. En este trabajo, el SVM se utiliza

con el CSAP para clasificar dicho tipo de señales, su desempeño es comparado con

los modelos ocultos de Markov. Ambos clasificadores se utilizan en un BCI llamado

“path speller” que se ejecuta en tiempo real. El experimento demuestra que SVM

tiene una muy buena precisión, pero HMM es más preciso, más rápido y alcanza un

mayor nivel de confianza (alta probabilidad de un intento de pertenecer a una clase
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conocida). Este también fue el caso del BCI, donde CSAP con HMM fue más eficaz

que SVM.
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Chapter 1

INTRODUCTION

1.1 Motivation

Brain signals are stochastic and complex non-stationary, therefore, extracting

features effectively by some simple analysis methods in time or frequency domain

becomes difficult. It is very necessary to have new tools that make the extraction of

information from these signals easier, accurate and faster. For example, using EEG

signals, with an optimum extraction of information allow new human-computer in-

terfaces to be developed for brain computer interfaces. This information can be very

useful to determine how the user is reacting in real-time. This can help people with

major physical disabilities by helping them with their basic activities such as com-

municating, by providing functional interfaces for non-verbal communication when

normal communication is defective.

EEG is a method to capture brain signals with an excellent temporal resolution,

non-invasiveness, usability and low cost. Using the ERD reflected in µ frequency

which appears in the motor and sensory cortex when a subject is only imagining a

movement, new methods to classify this signals were proposed with an outstanding

accuracy and speed. In this work, the SVM classifier using the Common Analytic

Space Patter approach proposed by [1] is used to classify motor imagery signals in

real time, its accuracy, timing and computational cost is compared with a classifier

based on Hidden Markov Model proposed by the same author.
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1.2 Outline

In order to understand many of the concepts dealt with in the present document

a brief description of the methods and algorithms is given in Chapter 2. The stages

required for the satisfactory completion of the objectives are described in Chapter

3. A study of some characteristics of the EEG signals, different feature extraction

algorithms and classifiers applied to EEG signals are given in Chapter 4. The

efficiency of SVM and HMM classifiers for real time application, the comparison,

the computational cost as well its accuracy are given in Chapter 5. Finally, the

conclusions and the direction for further development and improvement is given in

Chapter 6.

1.3 Objectives

1.3.1 General Objective

– Implement efficient feature extraction and classification methods for binary

Motor Imagery EEG signals.

1.3.2 Specific Objectives

– Compare the performance of the feature extraction and classification methods

in real-time.

– Implement the BCI with CSAP and SVM Classifier.

– Compare the performance of the BCI path speller using SVM classifier with

BCI using HMM Classifier.



Chapter 2

THEORETICAL BACKGROUND

In this chapter, the fundamental concepts, the signal types and the algorithms

description are presented. The algorithms of PCA, EMD and CSP are used for extract

information. HMM, SVM and Neural Networks algorithms are used in classification

stage.

2.1 EEG Signals

Electroencephalography or EEG, are signals representing the brain’s electrical

activity acquired by placing electrodes on a subject’s scalp. This electrical signals

are the result of the synaptic activity of millions of neurons summed, or nerve cells.

One example of this signal is show in figure 2.1 . EEG spectral content is divided

into five major frequency bands, called brain rhythms [2]. These brain waves are:

• Delta (δ) Waves: 0.5–3.5 Hz. Slowest and highest in amplitude of the brain

waves, delta waves are associated with deep sleep and unconsciousness and are

dominant in newborns and infants up to one year old [3]. Among many things,

deep sleep is important for the healing process, as its linked with deep healing

and regeneration.

• Theta (θ) Waves: 3.5–7.5 Hz. Theta waves appear dominant in light sleep,

deep relaxation and people with Attention Deficit Disorder, or ADD. It is the

3
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realm of the subconsciousness and only experienced momentarily as the sub-

ject drifts off to sleep from Alpha and wake from deep sleep (from Delta).

• Alpha (α) Waves: 7.5–12.9 Hz. Appear in normal adults during wakefulness

and mental inactiveness [3]. They are best seen with eyes closed and most

pronounced in occipital locations. It is the gateway to the subconscious mind

and lies at the base of your conscious awareness. The voice of Alpha is the

intuition, which becomes clearer and more profound the closer it gets to 7.5 Hz.

• Beta (β) Waves: 13–30 Hz. Characteristic in normal adults during mental

activity. Since this type of wave corresponds to mental engagement, they are

best seen in the frontal lobe, responsible for higher mental function [3].

• Gamma (γ) Waves: >30 Hz. This range is the most recently discovered and is

the fastest frequency at above 30 Hz. While little is known about this state of

mind, initial research shows Gamma waves are associated with bursts of insight

and high-level information processing [3].

The EEG Signals could be formalized as:

{En}
N

n=1 ∈ ℜch×time (2.1)

Where N is the number of trials, ch the number of channels and time is the range of

time domain. For electroencephalography based BCI, motor imagery is considered

as one of the most effective ways, Motor Imagery is a mental process of a motor

action. It includes preparation for movement, passive observations of action and

mental operations of motor representations implicitly or explicitly. The ability of an

individual to control his EEG through imaginary mental tasks enables him to control
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(a) In Frequency

(b) In Time

Figure 2.1 : Example of EEG Signal.

devices through a brain machine interface (BMI) or a brain computer interface (BCI).

In the imagination of limb movement, suppression of EEG signals happens in the

specific region of the motor and somatosensory cortex due to loss of synchrony in µ

and β bands, classically defined in the 12-16 Hz and 18-24 Hz respectively, is termed

event-related de-synchronization (ERD) [4].

The BMI/BCI is a direct communication pathway between the brain and an external
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device. BMI/BCI are often aimed at assisting, augmenting, or repairing human cog-

nitive or sensory-motor functions.The methodologies of BMI/BCI can be separated

into two approaches:

1. Invasive (or partially-invasive) BMI/BCI: Electrocorticography (ECoG).

2. Non-invasive BMI/BCI: EEG, MEG, MRI fMRI, etc.

Invasive and partially-invasive BCIs are accurate. However there are risks of the

infection and damage. Furthermore, it requires the operation to set the electrodes in

the head. On the other hand, non-invasive BCIs are inferior than invasive BCIs in

accuracy, but costs and risks are very low.

2.2 Empirical Mode Decomposition (EMD)

Empirical Mode Decomposition (EMD) is an algorithm designed for multiscale

decomposition and time-frequency analysis of Real-World Signals [5], whereby the

original signal is modeled as a linear combination of intrinsic oscillatory modes, called

intrinsic mode functions (IMFs), The IMFs are defined so as to exhibit locality in time

and to represent a single oscillatory mode; In other words, the EMD algorithm decom-

poses the original signal into a finite set of amplitude and/or frequency-modulated

components, termed IMFs. According to [6], a real signal can be expressed by :

x(t) =
N
∑

i=1

ci(t) + r(t). (2.2)

where r(t) is the monotonic residue signal and {ci(t)}
N
i=1 the IMFs, having symmetric

upper and lower envelopes, the number of zero crossing and vertices differing at most

by one defines IMFs ci(t); ensuring well-behaved intrinsic oscillations. The sifting al-

gorithm is an iterative process to extract the IMFs [6]. The standard EMD algorithm

is:
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Algorithm 1. The standard EMD Algorithm

1. Find the locations of all the extrema of x(t).

2. Interpolate between all the minima (respectively maxima) to ob-

tain the lower signal envelope, emin(t) (respectively emax(t)).

3. Compute the local mean m(t) = [emin(t) + emax(t)]/2.

4. Subtract the mean from the signal to obtain the ‘Oscillatory mode’

s(t) = x(t)−m(t).

5. If s(t) obeys the stopping criteria, then d(t) is defined as s(t) as

an IMF, otherwise set x(t) = s(t) and repeat the process from

step 1.

Once the first IMF is acquired, the remaining IMFs can be extracted by applying

the same process iteratively to the outstanding r(t) = x(t) − d(t). When the above

condition for an IMF is encountered for S successive times, that is when the standard

stopping criterion terminates the sifting.

In Figure 2.2 , an example of the EMD algorithm is shown. In figure 2.2 (a)

a cosine signal is shown with amplitude 1 and frequency 60 Hz, in fig. 2.2 (b)

the same signal with amplitude 2 and frequency 120 Hz. Then, to test the EMD

algorithm, signals A and B were added in fig. 2.2 (c). When the algorithm is

applied, the signal of fig. 2.2 (c) was divided into 2 IMFs (figure 2.2 (d) and

2.2 (e)) and a Residue (figure 2.2 (f)).

When the signal is multidimensional, the local minima and maxima may not be de-

fined directly because the fields of complex numbers and quaternions are not ordered

[7]. To deal with these problems, the multiple real-valued projections of the signals

was proposed in [8].
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Figure 2.2 : Example of EMD algorithm.

In EEG signals, EMD is very useful for removing some of the IMFs, the reconstructed

signal can carry more useful information than the original. The first complex exten-

sion of EMD was proposed in [9]. An extension of EMD to analyze complex/bivariate

data which operates fully in the complex domain was first proposed in [10], termed

rotation invariant EMD (RI-EMD). An other processing method which gives more
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accurate values of the local mean is the bivariate EMD (BEMD) [11], where the

envelopes corresponding to multiple directions in the complex plane are generated,

and then averaged to obtain the local mean.

2.3 Principal Component Analysis (PCA)

One of the most successful techniques that have been used in signal recognition

and compression is the Principal Component Analysis, known as PCA. It is a statis-

tical process also known as factor analysis. The need to describe data efficiently gives

direction to PCA, which is to minimize the large dimensionality of the data space

to smaller intrinsic dimensionality of feature space. This is the case when there is a

strong correlation between observed variables [12].

The goals of PCA are [13]:

• Extract the most important information from the data set.

• Compress the size of the data set by keeping only the important information.

• Simplify the description of the data set.

• Analyze the structure of the observations and the variables.

The first principal component is required to have the largest possible variance, the sec-

ond, is computed under the constraint of being orthogonal to the first component and

have the largest possible inertia. The other components are computed likewise [13].

2.4 Common Spatial Pattern (CSP)

The CSP is a spatial filter method, widely used in neuroscience as a linear trans-

formation to project the multi-channel EEG data into low-dimensional spatial sub-

space with a projection matrix; each row consists of weights for channels. This

transformation can maximize the variance of two-class signal matrices based on the
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simultaneous diagonalization of the covariance matrices of both classes (in this case,

Left and Right). The Common Spatial Patterns algorithm was firstly suggested for

classification of multi-channel EEG during imagined hand movements in [14]. The

CSP method has shown its efficacy in extracting topographic pattern of brain rhythm

modulations, also known as ERD. This spatial filter, according to [15], must only

be applied to the informative frequency bands (µ and β bands), which is specific to

each subject. In [16] the CSP has been extended to multi-class problems.

The details of the algorithm are described as follows [17] and [18]. Lets say Xl and

Xr are two preprocessed EEG matrices under two conditions with dimensions N × T,

where N is the number of channels and T is the number of samples in each channel.

The normalized covariance matrix of the EEG can be represented as:

Cl =
XlX

T
l

trace(XlXT
l )

Cr =
XrX

T
r

trace(XrXT
r )

(2.3)

XT is the transpose matrix of X and the function trace computes the sum of the

diagonal elements in the given input matrix. By averaging over all the trials of each

group, the averaged normalized covariance Xl and Xr are calculated

C = Xr +Xr (2.4)

The composite covariance matrix and its eigenvalue decomposition is given by

C = F0ΣF
T
0 (2.5)

Where F0 is the matrix of eigenvectors and Σ is the diagonal matrix of eigenvalues.

The whitening transformation

P = Σ− 1

2F T
0 (2.6)
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Equalizes the variances in the space spanned by the eigenvectors in F0. With the

simultaneous diagonalization of whitened covariance matrices the CSP can be ex-

tracted

Sl = PXlP
T Sr = PXrP

T (2.7)

Sl and Sr have common eigenvectors and the sum of corresponding eigenvalues for

the two matrices will always be one, then this resulting decomposition maximizes the

differentiation between two groups of data.

Sl = UλUT Sr = U(1− λ)UT (2.8)

The CSP projection matrix will then be Wcsp = (UTP ). An graphic example is shown

in Fig. 2.3 , where class 1 points are shown in blue and class 2 in red.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−20

−15

−10

−5

0

5

10

15

Figure 2.3 : CSP Example.

Other variations to CSP algorithm was proposed, like the Common Spatio-Spectral

Pattern (CSSP) algorithm [19]. In the CSSP algorithm simple filters (with one delay
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tap) are optimized together with the spatial filters. Recently, a further improve-

ment to the CSSP was presented and called Common Sparse Spectral Spatial Patern

(CSSSP) [20]. This method allows simultaneous optimization of an arbitrary FIR

filter within CSP analysis.

A new alternative method based on Sub-band CSP (SBCSP) and score fusion is pro-

posed in [17], where instead of temporal FIR filtering, the EEG signal is decomposed

into sub-bands using a filter bank, then CSP is performed in each sub-band and sub-

sequently a sub-band score is defined. The final decision is derived from fusion of the

scores from each sub-band.

2.5 Support Vector Machine (SVM)

Support Vector Machines are a very useful and popular technique for data classi-

fication, it is based on supervised learning models with associated learning algorithms

that analyze data and recognize patterns [21]. Usually, a classification task involves

separating data into training and testing sets. In the training set, each instance con-

tains one target value and several attributes. The goal of SVM is to produce a model

based on the training data which predicts the target values of the test data given only

the test data attributes [22]. In addition to performing linear classification, SVMs

can efficiently perform non-linear classification using the kernel trick by implicitly

mapping their inputs into high-dimensional feature spaces. In other words, SVM is

a supervised learning algorithm that classifies linear and nonlinear data based on

maximizing margin between support points and a nonlinear mapping to transform

the original training data into higher dimensions [23].

Given a training set of instance, label pairs (xi, yi), i = 1, ..., l where l is the number

of classes, the support vector machines, according to [24], require the solution of the

following optimization problem:
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min
αi

l
∑

i=1

αi −
1

2

l
∑

i=1

l
∑

j=1

αiαjyiyjK(xi, xj)

subject to
l

∑

i=1

αiyi = 0 and 0 ≤ αi ≤ C

(2.9)

where C is the penalty factor of the error term, αi are Lagrange multipliers which

represents the direction of the optimal hyperplane, and K(xi, xj) is the kernel func-

tion. Basically, there are four kernel functions:

• Linear: K(xi, xj) = xT
i xj.

• Polynomial: K(xi, xj) = (γxT
i xj + r)d, γ > 0.

• Radial Basis Function (RBF): K(xi, xj) = exp(−γ ‖xi − xj‖
2), γ > 0.

• Sigmoid: K(xi, xj) = tanh(γxT
i xj + r)

where γ, d, and r are kernel parameters. For implementing SVM, each data instance

should be represented as a vector of real numbers, this implies that if there are

categorical attributes, it has to be converted into numeric data. Then, a scaling

process before applying SVM is very important to avoid attributes in larger numeric

ranges dominating those in smaller numeric ranges. Another advantage is to avoid

numerical difficulties during the calculation, because kernel values depend on the

inner products of feature vectors [22]. Normally, each attribute is scaled linearly to

the range [-1,+1] or [0,1], of course, the same method for scale training and testing

data is required.

After successful data preprocessing has been done, the next step is to select a kernel.

In general, the RBF kernel is a reasonable first choice, because it can handle the

case when the relation between class labels and attributes is nonlinear, also, the RBF
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kernel has fewer numerical difficulties because it has less hyper parameters.

Figure 2.4 : SVM Mapping Example.

An example of SVM mapping is shown in Figure 2.4 , the blue crosses indicate data

points that belong to category 1 and the red circles that represent data points that

belong to category 2. Each of the individual data points has unique input 1 value

(x-axis) and a unique input 2 value (y-axis) and all of these points have been mapped

to the 2-dimensional space. The support vector machine observes the data in 2 di-

mensional space, and uses a regression algorithm to find a 1 dimensional hyperplane

that most accurately separate the data into its two categories. This separating line

is then used by the support vector machine to classify new data points into either

category 1 or category 2.

2.6 Naive-Bayes

The Naive Bayes is a classification method based on Bayes Theorem with strong

independence assumptions (Naive). In simple terms according to [25], a naive Bayes
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classifier assumes that the presence (or absence) of a particular feature of a class is

unrelated to the presence (or absence) of any other feature.

Depending on the precise nature of the probability model, naive Bayes classifiers

can be trained very efficiently in a supervised learning setting. In many practical

applications, parameter estimation for naive Bayes models uses the method of maxi-

mum likelihood; An advantage of the naive Bayes classifier is that it requires a small

amount of training data to estimate the parameters (means and variances of the vari-

ables) necessary for classification. Because independent variables are assumed, only

the variances of the variables for each class need to be determined and not the entire

covariance matrix [26].

To explain the algorithm according to [25], lets assume Cj the class of vector X

as belonging to the j − th class, j = 1, 2, . . . , J out of J possible classes. Let

P (CjX1, X2, . . . , XP ) denote the (posterior) probability of the sample vector belong-

ing in the j − th class given the individual characteristics X1, X2, . . . , XP . Further-

more, let P (X1, X2, . . . , XPCj) denote the probability of a sample with individual

characteristics X1, X2, . . . , XP belonging to the j − th class and P (Cj) denote the

unconditional (i.e. without regard to individual characteristics) prior probability of

belonging to the j− th class. For a total of J classes, Bayes theorem gives us the fol-

lowing probability rule for calculating the case-specific probability of a sample vector

falling in the j − th class:

P (Cj|X1, X2, . . . Xp) =
P (X1, X2, . . . , Xp|Cj)P (Cj)

P (X1, X2, . . . , Xp|C1)P (C1) + . . .+ P (X1, X2, . . . , Xp|Cj)P (Cj)

(2.10)

When applying a trained Bayes classifier to an independent data set it could likely

be the case that some of the cases (X1, X2, . . . , Xp) that occur in the independent

data set do not appear in the training data set. In this case the Naive concept is

applied to Equation 2.10, by assuming the inputs (X1, X2, . . . , Xp) independent to
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each other. This independence allow to calculate the case-specific class probabilities

as:

P (X1, X2, . . . , Xp|Cj) = P (X1|Cj)P (X1|Cj) . . . P (Xp|Cj) (2.11)

The terms on the right-hand-side of the above equation can be calculated simply as

the relative frequencies of the individual Xi in the class Cj

2.7 Neural Networks

A neural networks consists of a number of neurons, which are interconnected in

often complex ways and organized into layers. A commonly used model of a neuron is

called a sigmoidal. In figure 2.5 the structure of this neuronal mode is shown [27].

The model consist of two functional blocks:

1. A linear combiner, which itself consist of a set of weights connected to input

terminals. The linear combiner also includes a bias denoted by bi, which may

have a positive or negative value.

2. An activation function, which is the subsequent step to linear combiner. The

activation function, denoted by ϕ, is both nonlinear and memoryless.

Figure 2.5 : Model of a neuron.

The neural networks are used in three main ways [28]:
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• As models of biological nervous systems and intelligence.

• As real-time adaptive signal processors or controllers implemented in hardware

for applications such as robots.

• As data analytic methods.

The attempt to resemble biological nervous systems encouraged the development of

artificial neural networks by linking numerous simple elements into a highly intercon-

nected system and expecting that as result of self-organization or learning, complex

phenomena such as ”intelligence” would originate. Artificial neural networks learn in

much the same way that many statistical algorithms do estimation, but usually much

more slowly than statistical algorithms.

2.8 Hidden Markov Model

To explain the Hidden Markov Model, let us introduce the Markov process.

Consider a probability space (Ω, ζ, P ) where Ω is the set of all possible outcomes,

ζ is the set of all possible events, and P (A) is the probability of A ∈ ζ. Given a

random process X : Ω → ℜ and its collection of random variables indexed through

time: Xn = (X1, ..., Xn).

The chain rule of probability says that for n events A1, ..., An ∈ ζ [29]:

P (A1 ∩ A2) = P (A1)P (A2|A1)

P (A1 ∩ A2 ∩ A3) = P (A1 ∩ A2)P (A3|A2 ∩ A1) =P (A1)P (A2|A1)P (A3|A2 ∩ A1)

......

P (A1 ∩ A2... ∩ An) = P (A1)
n
∏

i=2

P (Ai|A
i−1)

(2.12)
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Where Ai−1 = A1 ∩ A2... ∩ Ai−1. If we let the event Ai pertain to the event Xi = ai,

then we have that [29]:

P (Xn = an) = P (X1 = a1)
n
∏

i=2

P (Xi = ai|X
i−1 = ai−1) (2.13)

The above equation shows a causal decomposition of the joint distribution on Xn

into a product of conditional distributions of the present value of X given the past

values. In conclusion Xn is a Markov Process if the future Xi+1 is independent of the

past X i−1 given the present Xi [29]:

P (Xi+1 = ai+1|Xi = ai, Xi−1 = ai−1) = P (Xi+1 = ai+1|Xi = ai) (2.14)

Now, suppose that Xn describes a process and it cannot be observed. Instead,

a random process Y n is observable and is statistically linked to Xn. This is the

Hidden Markov Model scenario. According to [29], the coupling of Y n to Xn can be

described according to the following definition:

P (Yi = bi|Y
i−1 = bi−1, Xn = an) = P (Yi = bi|Xi = ai) (2.15)

This is a fundamental assumption for hidden Markov models. It basically means

that ”Yi is a noisy version of only Xi”. HMM have found greatest use in problems

like speech or gesture recognition.



Chapter 3

METHODOLOGY

Signal classification can be described in a very broad way using a flow chart

detailing the digital signal processing steps and procedures needed to achieve sat-

isfactory results. In digital signal processing there is a generic flowchart, shown in

figure 3.1 , that describes the process of signal classification. The first step of the

process is signal acquisition, where the signals are to be recorded from the sensors; a

stage called preprocessing in which the irrelevant information, like noise, is removed

from the signals. Also in this step, the signal is transformed for easier manipulation

of the data. The next stage converts the signal to data that contains relevant infor-

mation which can be interpreted by the last stage called classification. In this last

step, a model or network is trained to allow the identification of specific signals.

For EEG signals the key-points are:

– Normally, these signals are very noisy, it is important to have good noise re-

duction.

– Since there will exist a best frequency band for classification, a good frequency

band selection is required.

– Depending on the EEG application, there are more important brain zones than

others so the channel selection (spatial filter) is important.

In the first stage, the signals from nature or artificial environments are recorded by

using sensors. For some kind of signals, this stage could be the most difficult stage in

all the digital signal process, principally when the signal has low SNR. This work is

19
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Figure 3.1 : Methodology Flowchart

focused in motor imagery EEG signals which is the electrical signal produced in the

subject’s brain during the imagination of motor actions.

3.1 Signal Acquisition

The method used for signal capture is non-invasive. Invasive methods provide

clearer more precise signals but require medical procedures that increase the level of

risk for the subjects. At this initial stage of research it is easier to test the broad

hypothesis before proceeding to more elaborate signal capture schemes. In the follow

sections the hardware, software and the experimental approach is described.

3.1.1 Hardware

Due to specifications of the hardware used in chapter 4 (Emotivs EPOC Neuro-

headset). which limited the quality of the captured signal, a different hardware was

used to capture the EEG signals for the final testing stages. The selected hardware

system consists of: BrainAmp and Easycap from Brain Products. Easycap is an EEG

Recording Cap, which is worn on the head by the subject and captures 32 channels

through ring-shaped electrodes with highly efficient impedance minimization. The
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position of the electrodes in the subjects scalp is shown in Figure 3.2 , the elec-

trodes in the sensorimotor cortex area (black highlighted) are used in the experiment

to measure the ERD.

One of the main advantages of the Brain Products system is that instead of us-

ing a wireless communication interface to send the signals from the headset to the

computer, it uses twin fiber optics, making the communication more robust against

noise. It also has a higher sampling frequency and therefore better resolution in the

signal acquisition. The number of electrodes is 32, which translates in greater cranial

coverage so more brain zones can be monitored.
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Figure 3.2 : Brain Map and channel selection.

The signal captured by Easycaps electrodes is handed to BrainAmp which is an

electronic device in charge of amplifying, treating and digitalizing the data acquired
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by the EEG cap, see Figure 3.3 . BrainAmp includes a sequential 16 bit analog

to digital converter, with a 5 Khz sample rate per channel, and a filter bank that

limits the signals to those with frequencies between 0.016 Hz and 1 Khz. Its technical

specification is given in Table 3.1 .

Figure 3.3 : BrainAmp and Powerpack

To reduce the electrode impedance and obtain more accurate signals, it is necessary

to use electrode gel and neurodiagnostic electrode paste; signa and uprep gels were

applied in the individual electrodes and Ten20 was used to stick the IO electrode to

subjects cheek. A photo of all this product are show in Figure 3.4 .

For the experiments, 8 channels which are positioned near the motor cortex were

chosen (F3, F4, FC1, FC2, FC5, FC6, C3, and C4). The signals were sampled at 400

Hz and low pass filtered to 100Hz.

3.1.2 Software

Brain Products provides a software suite called BrainVision with 2 applications

as a part of the EEG system. These are BrainRecorder and BrainAnalyzer. The first

one provides an interface that allows the user to visualize the state of the impedance

of the electrodes as well as monitoring and storing of the EEG signals acquired from

the scalp. BrainAnalyzer contains a series of tools and functions that did not offer

much use for the research presented, so it was only used to export the EEG signals,
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Table 3.1 : BrainAmp’s Technical Specifications

Specification Value

Number of Channels per unit 32
Max. Number of Channels 256
Channel Type / Reference One electrode as reference

Integrated Impedance Measurement Including ref. and ground electrode
Input Impedance for DC 10MΩ

Input Noise ≤ 2µvpp
CMR ≥ 90dB

High Pass 0.016 Hz (10s)
Low Pass 1000 Hz

Operating Range ±3.28mV
Resolution 0.1µV perbit

Sampling Rate 5 kHz per channel
A/D-Conversion 16 bit

DC Offset Compatibility ±300mV
Signal Transmission Optical (via twin fiber optics)

Power Supply Rechargeable Battery
Power Consumption ≤ 150mA, typical7mAinstandby
Computer Interface USB-Adapter (BUA, dualBUA)
TTL Trigger Input 16 bit

Dimensions H x W x D 68mm× 160mm× 187mm
Weight 1.1 kg

converting them from a native .eeg file extension to .dat, which allows the signals to

be processed and analyzed in Matlab.

The data acquisition, processing and classification of the motor imagery signals was

done by using an application written in C++ called EEGClassifier. A more deeply

description of this program is covered in the subsection 3.5.

3.2 Signal Preprocessing

Signals in nature are corrupted by noise and signals from other sources apart

from the targeted one. These additional components can be seen as irrelevant data

mixed in with the desired information, and cleaning the signal in order to remove the

excess data can simplify and speed up the following processing stages.
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Figure 3.4 : Kit to reduce electrodes impedance

According to [30], brain rhythms -which reflects functional states of different neuronal

cortical networks- are blocked by movements, independent of their active, passive or

reflexive origin; which are visible bilaterally but pronounced contralaterally in the

cortical area that corresponds to the moved limb [20]. This attenuation of the brain

rhythms is called ERD, this can be observed over sensorimotor cortex as µ-rhythm

which can be measured in the subject’s scalp. Since the focal ERD in the motor and

sensory cortex can be observed even when a subject is only imagining a movement

or sensation in the specific limb, it is important for the BCI to find the topography

of the attenuation of the µ-rhythm.

The easycap contains electrodes that measure a voltage, each at a specific site of

the subject’s scalp. The maximum frequency in which the voltage is sampled at

each electrode is 5 Khz. By using an application coded in C++ (EEGClassifier), the

sampling frequency was fixed to 400 Hz. The voltage measured by the electrodes are
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amplified by a low noise amplifier, low-pass filtered to 100 Hz and quadrature down-

converted from a center frequency known to have a narrow-band activity during motor

imagery called (µ-frequency). This process is represented in a flowchart shown in the

Figure 3.5 .

LPF

e-j2πμt

LPF D CSP
v(t)

EEG Cap Classifier
(100 Hz) (2 Hz)

Figure 3.5 : Methodology Diagram.

3.3 Signal Feature Extraction

After cleaning and extracting relevant information from signals, a transformation

of the input data into a set of features that can be understandable to the following

stages is required. Such transformation should be a reduced representation of data

with discriminative information from the input in order to perform a desired task.

For each subject, an initial calibration is required before the feature extraction process

since the strength of the sensorimotor idle rhythms is known to vary strongly between

the subjects. The calibration consist in finding the µ-rhythm which is near to 12 Hz,

by collecting EEG data from a subject and looking for the maximum peak of energy

between 5 and 25 Hz.

To extract relevant information from Motor Imagery EEG signals, a modified version

of CSP, called Common Analytic Spatial Pattern from [1] was used. To understand

the concept, let’s consider an independent set of electrical signals sources coming from

the brain during an EEG activity, which are primarily synchronized spiking among

many neurons in specific brain areas with intensities, ~y(t) = [y1(t), y2(t), y3(t), ..., yN (t)]
T .

These source regions are superimposed by passing through a linear mixing channel,
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A ∈ RN×N -where N is the number of sources-, composed of surface and volume

conduction to create a set of voltages, ~v(t), recorded by the electrodes. Each source

oscillates at the same frequency (µHz) but has independent random walk phase,

~θ(t) = [θ1(t), θ2(t), ..., θN (t)]
T so that:

~v(t) = A



















s1(t) = ey1(t)+j(2πµ)t+θ1(t)

s2(t) = ey2(t)+j(2πµ)t+θ2(t)

...

sN(t) = eyN (t)+j(2πµ)t+θN (t)



















(3.1)

~v(t) is the voltage measured by the electrodes, it is shown in the figure 3.5 . After

filtering, sampling (to convert the analog signal in time domain to a discrete signal)

and applying a method called digital down-converted, which converts a digitized real

signal centered at an intermediate frequency, in this case µ Hz, to a basebanded

complex signal centered at zero frequency, we have:

~wi = A



















ey1i+jθ1i

ey2i+jθ2i

...

eyNi+jθNi



















(3.2)

where wi is the sampled signal which feeds the CSP algorithm. The following weighted

moving average model was proposed to relate the intensities ~yi with the type of subject

motor imagery performed by a subject over the last J samples times.

~yi =
J−1
∑

j=0

~αjxi−j + ~ni (3.3)

Where xi−j denotes the ideal subject motor imagery at time i − j (-1 or 1 for Left

and Right class respectively) relative to current time i, αj are the weight coefficients,

and ~ni is a vector of additive Gaussian noise. The goal is then to retrieve the class of
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motor imagery, xi, using the values of ~wi. To achieve this goal, the matrix A must

be estimated. The equation 3.2 can be factored into a diagonal intensity matrix (Φi)

and a phase vector (~pi):

~wi = AΦi~pi = A













ey1i . . . 0

...
. . .

...

0 . . . eyNi













(3.4)

The source intensities are considered constant when ~wi is recorded during training

and the type of motor imagery is known and consistent for more than J samples.

This implies a constant Φi. This diagonal matrix is named ΦL for constant left motor

imagery and ΦR for constant right motor imagery. Then ~wi can be written as:

WL = AΦLP (3.5)

WR = AΦRP (3.6)

The objective is to find A since P is made up of random phase vectors that are

statistically equal in either case. Now, by using the ESPRIT method [31], a matrix

T ∈ CN×N is found such that:

TWL = WR (3.7)

Because P has full row rank, and using the equations 3.5 and 3.6:

TA = A
ΦR

ΦL

(3.8)

The fraction ΦR

ΦL

is a diagonal matrix of elements eykR−ykL . Clearly, an element that

is very small or very large because source intensities are large (yk > 0) during right

motor imagery (xi = 1) and small (yk < 0) during left motor imagery (xi = −1). T is

easily computed as T = WRW
′
L for which eigenvectors and eigenvalues can be found.
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Using the Common Space Pattern (CSP) concept. Let’s consider the covariance

matrix of ~wi made up of r(m,n) = 〈wm, wn〉E:

R~w = E[~wi ~w
H
i ]

R~w = E[(AΦ~pi + ~n)(AΦ~pi + ~n)H ]

R~w = AΦR~pΦ
HAH +R~n

R~w = AΦ2AH +R~n

where the terms of the form E[~pi~ni] are zero because they are uncorrelated between

them, R~p = I because r(m,n) = 〈pm, pn〉E = 0∀m 6= n from independence. For each

motor imagery class, the equation becomes:

R~wL
= AΦ2

LA
H +R~n (3.9)

R~wR
= AΦ2

RA
H +R~n (3.10)

Multiplying by an inverse matrix, A−1, on both right-hand sides of each equation,

the two combine to form:

R~wL
A−1 = R~wR

A−1(
Φ2

L

Φ2
R

) (3.11)

Now the columns of A−1 are the eigenvectors and the diagonal matrix
Φ2

L

Φ2

R

the eigen-

values of this problem and can be solved directly. This method is called Common

Space Analytic Pattern, which recovers the intensities yi given a voltage ~v(t) mea-

sured from the electrodes in the sensorimotor cortex. This method is called to be

analytical because it uses the topographical properties of the ERD to calculate the

matrix channel A, which is composed of surface and volume conduction.
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3.4 Classification

In the final stage, a network was created by specifying a training dataset, the

objective of the network is to differentiate between the different classes that it was

trained.

Since the inverse matrix, A−1, is found using the method proposed by [1], the sources

intensities, in equation 3.2 can be recovered by:

~yi = log
∥

∥A−1 ~wi

∥

∥ (3.12)

The two largest and smallest eigenvector corresponding to the most discriminative

intensities of ~yi are used. The final step is to estimate xi at each sample time.

Let’s denote the subject’s unobservable motor imagery intents during the time interval

k by Hk = L,R. For the next model, a micro-classification [1] has been made at each

sample time i and a classification at each time k. The joint probability distribution

can be decomposed into

PHk,Xi,Y i(hk, xi, yi) =
k
∏

τ=1

PH(hτ )PXi|Hk(xi|hk)PY i|Hk,Xi(yi|hk, xi) (3.13)

where the conditional probability of motor imagery given the intent [1] is

PXi|Hk(xi|hk) =
i

∏

i′=1

1x
i′
=γ(hk) (3.14)

3.4.1 Hidden Markov Model

Hidden Markov Models (HMM) are dynamic classifiers used in a variety of fields,

most widely in the field of speech recognition. A HMM is a kind of probabilistic

automaton that can provide the probability of observing a given sequence of feature

vectors. A HMM involves probabilities for transition between the states, as well as
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conditional probability densities. HMM have been applied to the classification of

2-class temporal sequences of BCI features.

The goal with HMM is to calculate the posteriori probability of a subject’s intent

to be the left motor imagery class given an intensity yi (P (Hk = L|Y i = yi)) by

computing the likelihood of seeing the provisional CSAP output given the underlying

subject’s intent, PY i|Hk,Xi(yi|hk, xi). In [1], a HMM assumption is proposed:

PY i|Hk,Xi(yi|hk, xi) =
i

∏

i′=1

fw(yi′ −
J−1
∑

j=0

~αjxi′ − j) (3.15)

Where fw(ξ) = (0,Σ2; ξ), are calculated using the maximum-likelihood estimation

of the parameters (~α1, ..., ~αJ ,Σ
2), J is based on training data sets and is chosen

according to the minimum description length criterion [32].

The Forney factor graph [33] to decompose the joint probability distribution in a

graph is used in [1] in order to optimize the classification process. At every step i, a

level for yi and hkwill be added onto the graph. Using the method described before

the posterior probability P (H = L|Y ) is estimated, a decision is made when its value

crosses some threshold τ and a new hypothesis node P (Hk+1) is added to the graph.

Before any decision is made, it is assumed that the graph depends on recent history

of yi and xi = xi−1 = . . . = xTk−1
.

The HMMmodel proposed by [1] uses eigenvalue calculation to compute a new CSAP

A−1 matrix and an updated Least Squares solution to find the ~α and Σ2 parameters

for each cycle using the last as training. The threshold τ used was 0.99999.

3.4.2 Support Vector Machine

Since the intensities yk can be retrieved using the equation 3.12, knowing the

user’s intents Hk and the fact that some sources intensities are small during left motor

imagery and large during right motor imagery, a support vector machine method could

exploit statistically the intensity changes. According to previous works based on the
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comparison of efficiency between different kernels applied to EEG signals, the kernel

chosen was Radial Basis Function which is:

RBF = K(xi, xj) = exp(−γ ‖xi − xj‖
2) (3.16)

Where γ = 5 and the stopping criteria ǫ = 0.00001 .The C++ library used for SVM

classifier is called LIBSVM [34].

3.5 Implementation

In order to integrate the data acquisition, preprocessing, the CSAP algorithm

and the classifiers, a program in C++ called ‘EEGClassifier’ was developed. This

application has the following responsibilities:

• Read the configuration file (conf.ini) with the parameters for hardware, protocol

and Classifier.

• Generate randomly visual stimuli (left or right) to guide the subject through

the training process.

• Synchronize the visual stimuli with the data acquisition.

• Preprocess and filter EEG data.

• Communicate with Matlab for high level math operations.

• Send data to a python graphical user interface to make the application friendly

to the user.

• Train and save the classifier.

• Load classifier for posterior use.

• Classify motor imagery data in real time

A general schematic diagram of EEGClassifier is shown in the Figure 3.6 . Three

main stages are visible. The first, pretrain, where the µ frequency is calculated for

each subject in the DSP training method. The second stage, the spatial filter w
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is calculated and used to filter the data to recover the intensities dW and feed the

classifier algorithms. The HMM algorithm used was proposed by [1] and its output

are basically three parameters: alpha, J and sigmaInv ; For SVM algorithm [34], the

output is a data structure called model. In the last stage, called process or validation,

the µ frequency, the filter w is used to extract information for a single trial signal

and using a classifier, estimate its probability to belong to the left class, pleft.

Figure 3.6 : EEGClassifier Schematic diagram.

EEGClassifier does not have a Graphical User Interface, instead of this, the applica-

tion sends data via socket to a Python code which contains a graphical interface that

shows information necessary to guide the subject through the training phase using

arrows, and another one to test the classifier by using a path speller concept [35].

3.5.1 Ball display

Ball display is a graphical user interface implemented in Python which principal

objective is to guide a subject through the training process. This interface receives

data from EEGClassifier using data socket UDP. The graphical interface for subject’s

training phase is shown in figure 3.7 (a), a posterior stage tests the classifiers using

a visual feedback in the same GUI in Fig. 3.7 (b), where an arrow displays a

direction proposed and the ball shows the user’s intent.
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(a) Python’s GUI for training phase

(b) Python’s GUI with visual feedback

Figure 3.7 : Visual stimuli used in Training phase

3.5.2 Brain-Computer Interface: Pathspeller

Path speller is basically an interface for tracing smooth planar curves, where

input is taken from a EEG cap during left and right motor imagery. This BCI was

based on [35] and its model proposed is shown in figure 3.8 , which waits until the

user’s intent is clear before taking any action; this made the BCI accuracy higher but

not necessarily faster.

Neural Activity Binary Classifier

Delay

User

Display

Z Xk

Yk-1

Yk

Figure 3.8 : BCI Model.

The importance of this visual interface lies in the feedback, because it allows the

user to correct errors made by the BCI in the classification of motor imagery and to
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avoid needless redundancy. The knowledge of previous channel outputs y1, y2, . . . , yk

provides sufficient information to choose the next channel input xk+1.

During a path specification task, the subject traces a smooth curve using an alpha-

bet composed of 11 symbols, Σ = σ1, σ2, . . . , σ11, where σi corresponds to a circular

arc, this graphical interface is shown in figure 3.9 , there are two curves, one was

proposed by the application and the other (green curve) is the user’s intent. The

statistical language model was a fixed zeroth-order Markov model given by a dis-

crete Gaussian kernel centered on the symbol σ6, corresponding to the notion that a

straight arc has the highest probability.

Figure 3.9 : Pathspeller BCI.
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3.6 Experiment

In order to familiarize the subjects with the dynamics of the experiment they

were handed a tennis ball to hold in each hand. A direction (left or right) was shown

on a screen and they were asked to squeeze the tennis ball in the corresponding hand.

The direction was changed every second, working through a predetermined list of ten

directions unknown to the subject.

The experiment begins with the pre-training phase, where µ−rhythm is calculated

using 30 trials. For signal acquisition, subjects were shown a direction on a screen

(5 trials for left and 5 for right generated randomly) and asked to concentrate on the

thought of squeezing the tennis ball from the conditioning part of the experiments

without squeezing the tennis ball in their hand. They are asked not to squeeze in

order to avoid a motor component to the signal and try to guarantee that it is purely

brain activity. In the training phase, EEG signal is recorded using arrows as visual

stimulus (Figure 3.7 (a)) in a synchronized fashion. Each trial in this stage lasts

1 second, 10 seconds in total. Using the same interface, it is possible to test the

accuracy of the classifier in a posterior stage, using the ball display, Figure 3.7 (b).

Finally, according to the classifier chosen, some parameters are saved into a DAT file

for a posterior use. After trained and tested the chosen classifier, the Pathspeller BCI

can be used.



Chapter 4

EXPERIMENTAL RESULTS

In this chapter, time-frequency analysis for feature extraction and classifier meth-

ods are used to classify EEG signals. The data used is previously saved (prewritten

data) instead of real time data. Two devices were used to capture EEG signals:

Emotiv’s EPOC Neuroheadset and BrainAmp By Brain Products GmbH.

4.1 Emotiv’s EPOC Neuroheadset Experiments

In this experiment the signal were recorded using the Emotivs EPOC Neuro-

headset, Research Edition. The headset consists of 14 electrodes following the Inter-

national 10-20 Location System, including two CMS/DRL references. Figure 4.1

shows the locations covered by the Emotiv Neuroheadset, the letters corresponds

to the lobe (frontal, temporal, occipital, etc..), while the number corresponds to the

hemisphere; Odd numbers for the left hemisphere and even numbers for the right

hemisphere.

Figure 4.1 : Emotivs EPOC Neuroheadset electrode placement illustration

36
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All subjects were male between the ages of 20 and 30 years. The study consisted

of recording the subjects brain activity while performing predefined mental tasks.

The recording time was limited to approximately 8 seconds to prevent changes in

the frequency content of the signals due to fluctuations in the attention level of the

subject. Each task involves the manipulation of the cube showed in figure 4.2 ,

included in Emotivs software package. The tasks were: Neutral (no manipulation),

Pushing and Lifting. During the recording trials, no other visual, auditory or physical

stimulus was delivered. The subjects were asked to relax and concentrate only on the

mental tasks.

Figure 4.2 : Emotivs Cognitive Suite Cube

In order to successfully analyze and interpret complex multi-dimensional data, dimen-

sionality reduction is done. The purpose of Principal Component Analysis (PCA) is

to reduce the number of dimensions, originally 14, to a number that would simplify

the pattern recognition process, without significant loss of information. This is ac-

complished by finding the projections that maximize the variance of the data. The

component scores, also called loadings was used in the proposed clustering analysis

focusing on the first two component scores.
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4.1.1 EEG Classification using SOM

Seven subjects were used to collect data from the EEG, an experiment with a

virtual cube was used, and the subjects had to move it (push, lift and leave static).

Each subject had two attempts on each activity, and each attempt was recorded.

There are two kinds of subjects for this experiment: subjects that had interaction

with the virtual cube before (3 subjects), and the beginners (4 subjects). For the

neural network training, the data of one subject was chosen, for each activity, prin-

cipal component analysis were calculated and the first two components were used for

training the self-organized map. Then, the input for training has dimensions 2000x3

(3 activities, 1000 samples each principal component). The number of iteration was

100,000; the algorithm takes about 5 minutes for training.

At the start of the classification process all the subjects were treated the same way,

the general accuracy for the classification algorithm was 57%, to improve the accu-

racy, it was necessary to separate the experienced subjects from the beginners. The

confusion matrix for the experienced subjects is shown in Table 4.1 . In general,

for experienced subjects in this experiment, the classification of EEG signals for the

mental task, using SOM was 78%.

In Table 4.2 the confusion matrix for the beginner subjects is shown. The best

accuracy was registered for the subject D and E with 67%, Table 4.2 (d) indicates

the total accuracy of SOM classification for beginner subject as 61%. Which can be

improved by better experimental procedure.
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Table 4.1 : SOM Classification Results for experienced subjects

(a) Subject A

Lift Neutral Push Total Accuracy
Lift 2 0 0 2 1

Neutral 1 1 0 2 0.5
Push 0 0 2 2 1
Total 3 1 2 6 0.83

Accuracy 0.67 1 1

(b) Subject B

Lift Neutral Push Total Accuracy
Lift 2 0 0 2 1

Neutral 1 1 0 2 0.5
Push 0 0 2 2 1
Total 3 1 2 6 0.83

Accuracy 0.67 1 1

(c) Subject C

Lift Neutral Push Total Accuracy
Lift 2 0 0 2 1

Neutral 0 2 0 2 1
Push 1 1 0 2 0
Total 3 3 0 6 0.67

Accuracy 0.67 0.67 0

(d) Average for experienced subjects

Lift Neutral Push Total Accuracy
Lift 6 0 0 6 1

Neutral 2 4 0 6 0.67
Push 1 1 4 6 0.67
Total 9 5 4 18 0.78

Accuracy 0.67 0.8 1

4.1.2 EEG Classification using SVM

To test Support Vector Machine classification of EEG Signals, the same subjects

and data of the previous section was used, the kernel chosen for SVM was RBF. In the

training process, the data of one subject was chosen, for each activity, the principal

components were calculated and the first two components were used.

As an example for clustering, a data from experienced subject was chosen, by graphing
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Table 4.2 : SOM Classification Results for beginner subjects

(a) Subject D

Lift Neutral Push Total Accuracy
Lift 2 0 0 2 1

Neutral 1 1 0 2 0.5
Push 0 1 1 2 0.5
Total 3 2 1 6 0.67

Accuracy 0.67 0.5 1

(b) Subject E

Lift Neutral Push Total Accuracy
Lift 1 0 1 2 0.5

Neutral 1 1 0 2 0.5
Push 0 0 2 2 1
Total 2 1 3 6 0.67

Accuracy 0.5 1 0.67

(c) Subject F

Lift Neutral Push Total Accuracy
Lift 1 1 0 2 0.5

Neutral 1 1 0 2 0.5
Push 1 0 1 2 0.5
Total 3 2 1 6 0.5

Accuracy 0.33 0.5 1

(d) Average for beginner subjects

Lift Neutral Push Total Accuracy
Lift 4 1 1 6 0.67

Neutral 3 3 0 6 0.5
Push 1 1 4 6 0.67
Total 8 5 5 18 0.61

Accuracy 0.5 0.6 1

the two first PCA of all the mental task (fig. 4.3 ), we can see two clusters, a group

with blue spots representing non activity and the red, representing the activity.

In table 4.3 the results using SVM Classification for experienced subjects is shown,

the best accuracy was 67% for subject A. In total, for experienced subjects, the

accuracy of this classification algorithm was 61%.
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Figure 4.3 : Clustering using PCA

In table 4.4 the results using SVM Classification for beginner subjects is shown,

the best accuracy is 67% for subject A. In total, for beginners subjects, the accuracy

of this classification algorithm was 50%.

In general, for an optimum classification of the EEG signals recorded in the exper-

iment, it is necessary that the subjects understand the experimental procedure and

be acquainted with it before recording the data. By using the SVM algorithm for

classification, the general accuracy for mixed subjects was 40%, separating each kind

of subject, the classifier improves its accuracy to 61% for experience subjects and

50% for beginners.

In the same way, the accuracy for mixed subjects using the SOM algorithm for clas-

sification was 57%, by separating each kind of subject, the classifier improves its

accuracy 78% for experienced subjects and 61% for beginners. For this experiment,
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Table 4.3 : SVM Classification Results for experienced subjects

(a) Subject A

Lift Neutral Push Total Accuracy

Lift 2 0 0 2 1

Neutral 1 1 0 2 0.5

Push 1 0 1 2 0.5

Total 4 1 1 6 0.67

Accuracy 0.5 1 1

(b) Subject B

Lift Neutral Push Total Accuracy

Lift 2 0 0 2 1

Neutral 1 1 0 2 0.5

Push 1 0 1 2 0.5

Total 4 1 1 6 0.67

Accuracy 0.5 1 1

(c) Subject C

Lift Neutral Push Total Accuracy

Lift 2 0 0 2 1

Neutral 1 1 0 2 0.5

Push 1 1 0 2 0

Total 4 2 0 6 0.5

Accuracy 0.5 0.5 0

(d) Average for experienced subjects

Lift Neutral Push Total Accuracy

Lift 6 0 0 6 1

Neutral 3 3 0 6 0.5

Push 3 1 2 6 0.33

Total 12 4 2 18 0.61

Accuracy 0.5 0.75 1

in conclusion, the Neural Network works better than SVM reaching an accuracy of

78% for experienced subjects.
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Table 4.4 : SVM Classification Results for beginner subjects

(a) Subject D

Lift Neutral Push Total Accuracy

Lift 2 0 0 2 1

Neutral 1 1 0 2 0.5

Push 1 0 1 2 0.5

Total 4 1 1 6 0.67

Accuracy 0.5 1 1

(b) Subject E

Lift Neutral Push Total Accuracy

Lift 2 0 0 2 1

Neutral 2 0 0 2 0

Push 2 0 0 2 0

Total 6 0 0 6 0.33

Accuracy 0.33 0 0

(c) Subject F

Lift Neutral Push Total Accuracy

Lift 1 1 0 2 0.5

Neutral 1 1 0 2 0.5

Push 1 0 1 2 0.5

Total 3 2 1 6 0.5

Accuracy 0.33 0.5 1

(d) Average for beginner subjects

Lift Neutral Push Total Accuracy

Lift 5 1 0 6 0.83

Neutral 4 2 0 6 0.33

Push 4 0 2 6 0.33

Total 13 3 2 18 0.5

Accuracy 0.38 0.67 1
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4.2 BrainAmp By Brain Products GmbH experiments

4.2.1 Data acquisition and Processing

A graphical interface that generates visual stimuli for the experiments and syn-

chronizes them with the brainamp was used. The application was developed in C++.

The application receives an username, number of markers and the time between them

as input parameters all given in a text file; there are only two markers, left and right

and they are shown randomly and same times each. After showing the directions the

application saves separately in text files each channel of the brainamp (from 0 to 31),

timestamps and the sequence of markers. Being timestamps the time marker appears

in the graphical user interface.

Signals in nature are corrupted by noise and signals from sources aside from the tar-

geted one. These additional components can be seen as irrelevant data mixed in with

the desired information, and cleaning the signal in order to remove the excess data

can simplify and speed up the following processing stages.

Each electrode measures a voltage at a specific site on the scalp and is sampled at

5 kHz. In figure 4.4 (a) the Fourier transform of electrode C3 for motor imagery

from Right hand recorded from a single subject is shown as well its spectrogram,

shown in Figure 4.4 (b). From these figures, due to high sampling frequency,

non-desirable components are shown, to focus on lower frequencies without losing

resolution, downsampling was applied. The EEG signals spectrum and spectrogram

resulting are shown in figures 4.4 (c) and 4.4 (d) respectively.

ERD between the most relevant motor imagery information according to [4] are lying

µ- and the β- rhythm (12-16 Hz and 18-24 Hz). The EEG signal is easily overwhelmed

by activity from artifacts such as muscles or eyes; this presents itself as an excessive

level of power on some channels. If the artifact activity is unevenly distributed in

the experiments, the CSP will capture it with a high eigenvalue because the CSP
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Figure 4.4 : Spectrum and Spectrogram of C3 Electrode using Motor Imagery for
Right Hand.

filter pools together the covariance matrix from the trials. This distorts the CSP

spatial filter and can be corrected by removing the non-linear contribution from the

artifact through empirical mode decomposition. This technique has been used in [36]

[37]. Using the Multivariate Empirical Mode Decomposition (MEMD) the ERD from

downsampled signals was extracted, the spectrum and spectrogram for channel C3
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using right motor imagery are shown in figures 4.4 (e) and 4.4 (f) where filtering

can be seen, the resulting signal has frequency components inside the range between

µ- and the β- rhythm. This can be done by finding the IMFS corresponding to the

desirable frequency range. This is possible due to the fact that each Intrinsic Mode

Function has a frequency peak which is found by calculating the maximum amplitude

of its spectrum, then an output is created with the sum of those IMFS.

After cleaning and extracting relevant information from signals, a transforming of the

input data into a set of features that can be understandable to the following stages

is required. Such transformation should be a reduced representation of data with

relevant content and discriminative information from the input in order to perform a

desired task.

The Common Space Pattern (CSP) is a spatial filter widely used as feature extraction

in binary class motor Imagery, An example can be seen in figure 4.5 (a), where red

points represents data equivalent to left Motor Imagery and blue for the right Class.

As can be appreciated, the outputs from the spatial filter are practically orthogonal

between them; this can be used as advantage for the classification stage. Filtering

(cleaning) the signal before performing the CSP improves the results, figures 4.5

show the output of the CSP stage for both cases (filtered and un-filtered signal). The

cleaned signal produces a more concentrated image than that of the original signal.

More importantly, the results from the cleaned signals are centered on x and y axis

as shown on various tests with other different samples. Thus by filtering the signal

the classifier can reach higher levels of accuracy by priming the signal at each stage.

In order to obtain homogeneous CSP data that is easier to classify, larger regions are

split to separate the data. The CSP method implemented in Matlab was based on

the algorithm from [17] and [18].
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Figure 4.5 : CSP applied to original and cleaned EEG data.

4.2.2 Experimental Results

The application Neurolab was developed in Matlab in order to make signal clas-

sification easier and more user friendly. It allows uploading text files containing the

EEG data; these text files should have the same format of the output from BCIApp

application. When the data is uploaded, the CSP filter is applied automatically and

results are shown in a table. The data to train and test the desired classifier can be

selected using the information on the table. The application also plots the CSP filter

results of the dataset selected by the user.

Neurolab has the following options for classifiers:

• SVM

• Naive-Bayes
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For each classifier Neurolab shows the accuracy, predicted labels, confusion matrix

and its ROC curve. Because larger signals take the feature extraction algorithm

longer to finish, Neurolab saves and loads *.mat files with the results of this stage.

This allows users to bypass the feature extraction stage for a signal once its *.mat

file has been generated and saved. In figure 4.6 the Neurolab Graphical Interface

is shown.

Figure 4.6 : NeuroLab Graphical User Interface

Three subjects (A,B and C) participated in the experiment. The results for SVM

classifier are shown in Table 4.5 , where the lowest accuracy (92.4%) was achieved

for subject A. The highest accuracy was reached for the subject C (96.3%).

To evaluate the sensibility of the SVM classifier, the ROC curves shown in Figure

4.7 , were drawn using gamma variable from the RBF kernel function as variable

threshold.
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Table 4.5 : Results using CSP-SVM classifier

(a) Subject A

Left Right Total Accuracy(%)
Left 72 0 72 100
Right 11 61 72 84.7
Total 83 61 144

Accuracy(%) 86.7 100 92.4

(b) Subject B

Left Right Total Accuracy(%)
Left 90 0 90 100
Right 10 80 90 84.7
Total 100 80 180

Accuracy(%) 90 100 94.4

(c) Subject C

Left Right Total Accuracy(%)
Left 40 0 40 100
Right 3 37 40 92.5
Total 43 37 80

Accuracy(%) 93 100 96.3

The Naive-Bayes algorithm from Matlab were used to obtain the results shows in

Table 4.6 , where the lowest accuracy was achieved by subject A (95.8%). The

highest accuracy was reached by the subject B (97.2%).

Using the posterior probabilities, the ROC curves were calculated and are shown in

Fig. 4.8 .

The overall accuracies for SVM and Bayes classifiers are shown in Table 4.7 , where

the highest accuracy was reached by Bayes classifier (97.2%) against (93.9%) by SVM

classifier.

The ROC curves for SVM and Bayes classifiers are shown in Fig. 4.9 , where an

improvement from Naive-Bayes over the SVM can be seen.

In conclusion of this study using prewritten data, the classifier based on Naive-Bayes

method is more accurate than Support Vector Machine with the modified version of

the CSP algorithm applied to binary motor imagery EEG signals.
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(c) Subject C

Figure 4.7 : ROC Curves for SVM Classifier.
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Table 4.6 : Results using Naive-Bayes classifier

(a) Subject A

Left Right Total Accuracy(%)
Left 69 3 72 95.8
Right 3 69 72 95.8
Total 72 72 144

Accuracy(%) 95.8 95.8 95.8

(b) Subject B

Left Right Total Accuracy(%)
Left 90 0 90 100
Right 5 85 90 94.4
Total 95 85 180

Accuracy(%) 94.7 100 97.2

(c) Subject C

Left Right Total Accuracy(%)
Left 37 3 40 92.5
Right 0 40 40 100
Total 37 43 80

Accuracy(%) 100 93 96.3

Table 4.7 : Results for all the classifiers

(a) Results using SVM

Left Right Total Accuracy(%)
Left 442 2 444 99.5
Right 52 392 444 88.3
Total 494 394 888

Accuracy(%) 89.5 99.5 93.9

(b) Results using Naive-Bayes

Left Right Total Accuracy(%)
Left 442 2 444 99.5
Right 20 424 444 94.4
Total 462 446 888

Accuracy(%) 95.7 99.5 97.2
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(c) Subject C

Figure 4.8 : ROC Curves for Naive-Bayes Classifier.
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(a) SVM Classifier
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(b) Naive-Bayes Classifier

Figure 4.9 : ROC Curves comparison for both Classifiers.



Chapter 5

PATH SPELLER RESULTS

After explore different methods for feature extraction and classification for EEG

Signals, the Common Space Analytical pattern, Hidden Markov Model and Support

Vector Machine were implemented to run a BCI (Pathspeller) in real time due to its

low computation time and high accuracy.

5.1 Accuracy

Two subjects, A and B were sitting in a comfortable armchair in front of a

computer screen, two sessions on different days were recorded for each subject until

they were totally trained with the experiment. The results for subject A is shown in

Table 5.1 , where an accuracy of 92.5% was obtained for HMM algorithm, with

only 3 error in 40 trials. For SVM algorithm the confusion matrix is shown in table

5.1 (b), where the total accuracy was 87.5%, with 5 errors in 40 trials.

For subject B, the results are shown in Table 5.2 . The confusion matrix for HMM

classifier, Table 5.2 (a), shows a total accuracy of 90%, which means 4 errors in 40

trials. For SVM algorithm, the results can be seen in Table 5.2 (b), where the total

accuracy was 85% 6 errors in 40 trials.

5.2 Processing time

The objective of the classifiers used in this work is to reach the probability that

a trial belonging to the left class is above a threshold (τ) or the probability of being

the right class to be below (1− τ). The threshold (τ) for HMM method was fixed to

be 0.9999, and for SVM algorithm 0.7. The threshold for SVM is lower than HMM

53
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Table 5.1 : Results for Subject A

(a) HMM results in real time

Left Right Total Accuracy(%)
Left 20 0 20 100
Right 3 17 20 85
Total 23 17 40

Accuracy(%) 87 100 92.5

(b) SVM results in real time

Left Right Total Accuracy(%)
Left 20 0 20 100
Right 5 15 20 75
Total 25 15 40

Accuracy(%) 80 100 87.5

Table 5.2 : Results for Subject B

(a) HMM results in real time

Left Right Total Accuracy(%)
Left 19 1 20 95
Right 3 17 20 85
Total 22 18 40

Accuracy(%) 86.3 94.4 90

(b) SVM results in real time

Left Right Total Accuracy(%)
Left 20 0 20 100
Right 6 14 20 70
Total 26 14 40

Accuracy(%) 0.77 100 85

because the SVM classifier tries to match an incoming data with a trained data, while

the HMM is a dynamic classifier. After several experiments, the highest threshold

reached for SVM classifier is 0.7, this means the highest probability of a trial to match

the left class trained is 70%.

When the output of the classifiers are inside the range [1− τ, τ ], the result is ignored

this makes both classifiers more accurate but with a time cost. For both classifiers,

the time spent since the data is taken to the output, no matter if the probability is
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inside or outside the range, is between 1 and 3 milliseconds. The time cost for each

classifier depends on how quick the confidence level is reached by using the range. In

Table 5.3 , the timing cost for each classifier in both subjects were measured. In

both cases, the HMM algorithm converges faster than SVM to the confidence zone

desired.

Table 5.3 : Classification time in milliseconds

(a) Subject A

Class HMM SVM
Left 29 1040
Right 35 1066

(b) Subject B

Class HMM SVM
Left 32 1022
Right 34 1048

The technical specifications of the computer where experiments have been done are

shown in Table 5.4 .

Table 5.4 : Computer characteristic

Item Description
Processor Intel(R) Xeon(R) x5450
Sockets 2
Cores 8

Logical Processor 8
L1 Cache 512KB
L2 Cache 24MB

Maximum Speed 3 GHz
RAM Memory 8 GB

Operative System Windows 8 Enterprise (64 Bits)

5.3 Path Speller

A BCI, called path speller [35], was used in order to test the classifiers. Basically

the path speller is a graphical interface coded in python which draws a curve, the

objective is to follow it by using points. The subject can move the points, one at a
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time, until the application decides the final position of the current point based on

probability and continuing with the next point. The user can move the point using

left or right motor imagery signals, depending on the point’s orientation the input

could be interpreted as up or down. In figure 5.1 the curve draw for subject A and

subject B is shown using HMM classifier.

(a) Subject A (b) Subject B

Figure 5.1 : Results of HMM classifier in the Pathspeller BCI.

Figure 5.2 shows the curve drawn by subject A and Subject B using SVM classifier.

An improvement of HMM over SVM method can be seen.
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(a) Subject A (b) Subject B

Figure 5.2 : Results of SVM classifier in the Pathspeller BCI.



Chapter 6

CONCLUSIONS

6.1 Contributions

The Common Analytic Space Pattern method was proven to be an efficient algo-

rithm to extract features from EEG signals in experiments based on motor imagery.

The source intensities were successfully calculated using this method, which are the

basis for the performance of the classifiers.

The SVM algorithm with the approach of the CSAP method was used with outstand-

ing results in binary motor imagery EEG signals and included into the path speller

BCI.The HMM classifier reach a very good confidence level with a very good timing.

Due to last processing a delay of 1 second was needed before each classification to

avoid drawing circles in the Path speller.

The Support Vector Machine was compared with the classifier based on Hidden

Markov model in real time using binary motor imagery EEG signals. The HMM

performed better than SVM, it was more accurate and faster.

The path speller BCI provides visual feedback which is helpful because it allows the

user to correct errors made by the BCI in the classification of motor imagery and to

avoid needless redundancy if errors were not made.

6.2 Future Work

The methods presented in this work would provide promising outcomes in the

EEG classification area. Future work can examine the possibility of using the meth-

ods in the application of the EEG signal classification. To facilitate the further

58
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development of these proposed methods, a few key highlighted issues are addressed

below.

• It is possible to extend the proposed binary motor imagery classification to a fourth

class version by using the CSAP approach. Since the source intensities can be

recovered, a spatial filter could work to distinguish between different classes.

• Exploit the efficiency of the CSAP-HMM algorithm in other BCIs. Its accuracy and

speed tested in real time process could be a great contribution in other applications.
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