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ABSTRACT

An Energy-Efficient MAC Protocol for Wireless Sensor Networks for Wide
Area Large Scale Environmental Monitoring

(May 2006)

Technical improvements in sensor networks have resulted in low cost sensor nodes that are
suitable for a large number of applications. Environment monitoring, target tracking and
border surveillance are just some of the many applications for today’s sensor networks. For
different application areas, there are different technical issues that researchers are currently

solving.

Sensor nodes have various energy and computational constraints because of their inexpensive
nature and ad-hoc method of deployment. Considerable research has been focused at
overcoming these deficiencies through more energy efficient routing, localization algorithms
and system design. Even though many issues of old sensor networks have been already
solved, high energy consumption continues to be a hot topic in research papers. This is
because it is hard and impractical to charge or replace exhausted batteries of nodes. Protocols
that save more energy than its predecessors and at the same time comply with its

computation and communication functions are desirable for wireless sensor networks.

This Thesis presents a proposal for the development of a Medium Access Control (MAC)
protocol for wireless sensor networks that is appropriate for environmental monitoring
purposes. An energy aware MAC protocol is proposed for wireless sensor networks. This
protocol saves energy by substantially reducing idle-listening. It is a reactive protocol which
permits nodes to transmit packets every time they wake-up but at the same time proposes a

i



mechanism to transmit packets that contain interesting data when nodes should not normally

be awake.

The proposed protocol uses two techniques to reduce energy consumption for wide area large
scale environmental monitoring applications. First, it uses a sleep/listen schedule in which
nodes awake when a sample from the environment is taken. Second, it uses a mechanism
through which a node that has urgent packets to send wakes up other nodes to convey data to
Base Station fur further processing. This Thesis presents simulation results comparing
proposed protocol against another existing protocol. Results show that proposed protocol

achieves less energy consumption than the other protocol.
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1. INTRODUCTION

1.1 Wireless Sensor Networks

Wireless sensor networks are dense networks of small, low-cost sensors, which collect and
disseminate data. Wireless sensor networks facilitate monitoring and controlling of physical
environments from remote locations [1]. A sensor network is composed of a large number of
sensor nodes that are densely deployed either inside the phenomenon or very close to it. The
position of sensor nodes need not be engineered or predetermined. This allows random
deployment in inaccessible terrains or disaster relief operations. On the other hand, this also
means that sensor network protocols and algorithms must possess self-organizing
capabilities. Another unique feature of sensor networks is the cooperative effort of sensor
nodes. Sensor nodes are fitted with an onboard processor. Instead of sending the raw data to
the nodes responsible for the fusion, they use their processing abilities to locally carry out

simple computations and transmit only the required and partially processed data.

1.2 MAC protocols for wireless sensor networks

The MAC is a sublayer of the Data Link Layer of the Open Systems Interconnection (OSI)
model. Among other things, this layer is responsible for controlling the access of nodes to the
medium to transmit or receive data. In traditional wireless voice or data networks, each user
desires equal opportunity and time to access the medium, i.e., sending or receiving packets
for their own applications. Per-hop MAC level fairness is, thus, an important issue. However,
in sensor networks, all nodes cooperate for a single common task. At any particular time, one
node may have dramatically more data to send than some other nodes. In this case fairness is

not important as long as application-level performance is not degraded [5].



In wireless sensor networks, MAC protocols control how sensor nodes access a shared radio
channel to communicate with neighbors. Traditionally, this problem is known as the channel
allocation or multiple access problem. Though MAC protocols have been extensively studied
in traditional areas of wireless voice and data communications (e.g. Time division multiple
access (TDMA), frequency division multiple access (FDMA) and code division multiple
access (CDMA) [8], ALOHA and carrier sense multiple access (CSMA) [9]), sensor
networks require a MAC protocol that differs from those of traditional wireless voice or data
networks in several ways. First of all, most nodes in sensor networks are likely to be battery
powered and it is often very difficult to change batteries for all the nodes. Second, nodes are
often deployed in an ad-hoc fashion rather than with careful pre-planning. Hence, after
deployment the sensor nodes must quickly organize themselves into a communication
network. Third, many applications employ large numbers of nodes. Finally, most traffic in
the network is triggered by sensing events, and it can be extremely bursty. All these
characteristics suggest that traditional MAC protocols employed in the past wireless

networks are not suitable for wireless sensor networks without modifications.

Since our protocol is designed to detect extreme events (e.g. natural disasters like flooding),
the system thus has to remain operational for months or years. Once a flooding is detected,

this information must be forwarded to the system management quickly and accurately.

Contention based MAC protocols are suitable for wireless sensor networks because the
required synchronization allows higher clock drifts; while TDMA requires a tight
synchronization. Nodes do not have assigned a particular time or frequency to transmit so a

node could sleep until a particular event happens that triggers nodes to active state.



1.3 Literature Review

Rappaport [8] provides a survey of MAC protocols for traditional and contention based
networks. Though MAC protocols have been extensively studied in traditional areas of
wireless voice and data communications (e.g. Time division multiple access (TDMA),
frequency division multiple access (FDMA) and code division multiple access (CDMA),
ALOHA and carrier sense multiple access (CSMA)), sensor networks require MAC protocols
that differ from those used in traditional wireless voice or data networks in several ways [1].
First of all, most nodes in sensor networks are likely to be battery powered and it is often
very difficult to change batteries for all the nodes. Second, nodes are often deployed in an ad-
hoc fashion rather than with careful pre-planning. Hence, after deployment the sensor nodes
must quickly organize themselves into a communication network. Third, many applications
employ large numbers of nodes. Finally, most traffic in the network is triggered by sensing
events, and it can be extremely bursty. All these characteristics suggest that traditional MAC
protocols employed in the past wireless networks are not suitable for wireless sensor

networks without modifications.

Recent advances in wireless communications and electronics have enabled the development
of low-cost, low-power, multifunctional sensor nodes that are small in size and communicate
in short distances. These tiny sensor nodes, which consist of sensing, data processing, and
communicating components, leverage the idea of sensor networks. Sensor networks represent
a significant improvement over traditional networks. A sensor network is composed of a
large number of sensor nodes that are densely deployed either inside the phenomenon or very
close to it. The position of sensor nodes need not be engineered or predetermined. This
allows random deployment in inaccessible terrains or disaster relief operations. On the other
hand, this also means that sensor network protocols and algorithms must possess self-
organizing capabilities. Another unique feature of sensor networks is the cooperative effort
of sensor nodes. Sensor nodes are fitted with an onboard processor. Instead of sending the

raw data to the nodes responsible for the fusion, they use their processing abilities to locally



carry out simple computations and transmit only the required and partially processed data.

[1].

Wireless sensor networks are dense wireless networks of small, low-cost sensors, which
collect and disseminate data. Wireless sensor networks facilitate monitoring and controlling
of physical environments from remote locations with better accuracy. They have applications
in a variety of fields such as environmental monitoring, military purposes and gathering
sensing information in inhospitable locations. Sensor nodes have various energy and
computational constraints because of their inexpensive nature and ad hoc method of
deployment. Considerable research has been focused at overcoming these deficiencies
through more energy efficient routing, localization algorithms and system design. Our survey
attempts to provide an overview of these issues as well as the solutions proposed in recent

research literature [2].

Wireless sensor networks are appealing to researchers due to their wide range of application
potential in areas such as target detection and tracking, environmental monitoring, industrial
process monitoring, and tactical systems. However, lower sensing ranges result in dense
networks, which bring the necessity to achieve an efficient medium access protocol subject to
power constraints. Various MAC protocols with different objectives were proposed for
wireless sensor networks. Demirkol et al. [3] outlines the sensor network properties that are
crucial for the design of MAC layer protocols. Then, they describe several MAC protocols
for sensor networks emphasizing their strengths and weaknesses. Finally, they point out open

research issues on MAC layer design.

Dam et al. [4] proposed T-MAC, a contention-based Medium Access Control protocol for
wireless sensor networks. Applications for these networks have some characteristics (low
message rate, insensitivity to latency) that can be exploited to reduce energy consumption.
To handle load variations in time and location, T-MAC introduces an adaptive duty cycle in a
novel way: by dynamically ending the active part of it. This reduces the amount of energy

wasted on idle listening, in which nodes wait for potentially incoming messages, while still



maintaining a reasonable throughput. They discuss the design of T-MAC, and provide a
head-to-head comparison with classic CSMA (no duty cycle) and S-MAC (fixed duty cycle)
through extensive simulations. Under homogeneous load, T-MAC and S-MAC achieve
similar reductions in energy consumption (up to 98 %) compared to CSMA. In a sample
scenario with variable load, however, T-MAC outperforms S-MAC by a factor of 5.
Preliminary energy-consumption measurements provide insight into the internal workings of

the T-MAC protocol.

Ye et al. [5] proposed S-MAC, a MAC protocol designed for wireless sensor networks.
Wireless sensor networks use battery-operated computing and sensing devices. A network of
these devices will collaborate for a common application such as environmental monitoring.
These characteristics of sensor networks and applications motivate a MAC that is different
from traditional wireless MAC such as IEEE 802.11 in several ways: energy conservation
and self-configuration are primary goals, while per-node fairness and latency are less
important. S-MAC uses a few novel techniques to reduce energy consumption and support
self-configuration. It enables low-duty-cycle operation in a multihop network. Nodes form
virtual clusters based on common sleep schedules to reduce control overhead and enable
traffic-adaptive wake-up. S-MAC wuses in-channel signaling to avoid overhearing
unnecessary traffic. Finally, S-MAC applies message passing to reduce contention latency
for applications that require in-network data processing. [5] presents measurement results of
S-MAC performance on a sample sensor node, the UC Berkeley Mote, and reveals
fundamental tradeoffs on energy, latency and throughput. Results show that S-MAC obtains
significant energy savings compared with an 802.11-like MAC without sleeping.

Mainwaring et al. [7] provides an in-depth study of applying wireless sensor networks to
real-world habitat monitoring. A set of system design requirements are developed that cover
the hardware design of the nodes, the design of the sensor network, and the capabilities for
remote data access and management. A system architecture is proposed to address these
requirements for habitat monitoring in general, and an instance of the architecture for

monitoring seabird nesting environment and behavior is presented. The deployed network



consisted of 32 nodes on a small island off the coast of Maine streaming useful live data onto

the web.

1.4 Summary of Following Chapters

We first give a brief introduction and literature survey in Chapter 1. Chapter 2 gives a
overview of most related MAC protocols for sensor networks. Then, our Energy-Efficient
MAC Protocol for Wireless Sensor Networks for Wide Area Large Scale Environmental
Monitoring is presented in detail in Chapter 3. Chapter 4 gives simulation study and analysis
of the proposed protocol, and compares it with previous protocols. Conclusions are presented

in Chapter 5.



2. THE BACKGROUND

2.1 Wireless Sensor networks for environmental monitoring

Researchers in the Life Sciences are becoming increasingly concerned about the potential
impacts of human presence in monitoring plants and animals in field conditions. At best it is
possible that chronic human disturbance may distort results by changing behavioral patterns
or distributions [7]. Disturbance effects are of particular concern in small island situations,
where it may be physically impossible for researchers to avoid some impact on an entire
population. In addition, islands often serve as refuge for species that cannot adapt to the
presence of terrestrial mammals, or may hold fragments of once widespread populations that
have been extirpated from much of their former range. These considerations are of particular
importance for projects like Wide Area Large Scale Automated Information Processing
(WALSAIP) which will be deployed in the island of Puerto Rico because of the sensitive
existing flora and fauna. For purposes of automation of data collection and reduction of
human intervention in areas of interest, sensor networks have been considered. It is expected

that deployed sensor networks in Puerto Rico do not interfere with existing life.

Recent developments in wireless network technology and miniaturization now make it
possible to realistically monitor the natural environment. These systems can provide new
data for environmental science, such as climate models, as well as vital hazard warnings such
as flood alerts [13]. Instrumenting natural spaces with numerous networked microsensors can
enable long-term data collection at scales and resolutions that are difficult, if not impossible,
to obtain otherwise [7]. The intimate connection with its immediate physical environment
allows each sensor to provide localized measurements and detailed information that is hard to
obtain through traditional instrumentation. The combination of storage and in-node
processing enable them to perform triggering functions suitable for some applications and

protocols.



2.1.1 Generic Architecture

Sensor networks are designed to transmit data from an array of sensors to a data repository or
server that will store it for further analysis. Figure 1 shows a generic architecture for an
environmental sensor network. Sensor nodes gather data autonomously, and the network
passes this data to one or more base stations, which forward the data to a server. The wireless
sensor networks which have sensing, computation and communication functions to move

packets from sensor nodes to final servers, consume quantities of energy that must be taken

into account to forecast the life cycle of a network and maximize it.
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Figure 1: Illustration of sensor network and backbone infrastructure
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Sensor nodes are the network components that will be sensing and delivering the data.
According to the system application requirements, nodes may do some computations. After
computations, it transmits its data to its neighboring nodes or simply passes the data as it is to
the Task Manager. Sensor nodes can act as a source or sink in the sensor field. The function
of a source is to sense and deliver the desired information (see Figure 1). Thus, a source
reports the state of the environment. On the other hand, a sink is a node that is interested in

some information a sensor in the network might be able to deliver.

Gateways allow the scientists and system managers to access nodes through personal
computers (PCs), personal digital assistants (PDA) and Internet. In a nutshell, gateways act
as a proxy for the sensor network on the Internet. Gateways could be classified as active,
passive, and hybrid. Active gateway allows the sensor nodes to actively send its data to the
gateway server. Passive gateway operates by sending a request to sensor nodes. Hybrid

gateway combines capabilities of the active and passive gateways.

The Task Manager will connect to the gateways via some media like Internet or satellite.
Task Managers comprise of data service and client data browsing and processing. These Task
Managers can be visualized as the information retrieval and processing platform. All
information (raw, filtered, processed) data coming from sensor nodes is stored in the task
managers for analysis. Users can use any display interface (i.e. PDA, computers) to retrieve

or analyze data either locally or remotely (see Figure 1).

2.1.2 Habitat monitoring applications

Habitat-monitoring applications consist of multiple software components implementing core
system services. Because they require ways to specify and deliver data of interest, they need
a routing and tasking service [14]. Besides, long-term operation dictates that the system

operate in low-power mode; current applications achieve this goal via duty cycling, or
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changing the amount of time the subsystem is active during any given period, at several

levels.

The routing service in habitat-monitoring networks delivers the queries to the sensor nodes
and reports the data of interest; that data is either sampled (such as humidity sampled every
certain time) or triggered (such as when an animal enters the area of interest). The service
copes with poor-quality links and dynamic topology changes; all these features need to be
robust and consume only minimal resources on the constrained nodes. Fortunately, in many
cases the actual deployment simplifies the general routing problem. For example, on Great
Duck Island [7], it was sufficient to provide tree-based routing for data collection and simple
flooding for parameter dissemination. The data to be gathered was specified ahead of time;
sensor motes self-organized into a tree rooted at the patch gateway. A set of commands

setting sampling rates, reporting immediate status, and invoking calibration procedures was

flooded through the network, and the acknowledgements flowed using the tree-based routing.

2.1.3 Design Factors

The following factors are important as a guideline to design a protocol for wireless sensor

networks [1]:

» Fault tolerance. The failure of some sensor nodes must not affect the overall task of

the network.

» Scalability. The protocol must be able to work in dense wireless sensor networks.

» Production costs. The cost of producing a node must be kept low.

11



» Hardware constraints. A sensor node is made up of four basic components: a sensing
unit, a processing unit, a transceiver unit, and a power unit. Apart from size, there are
some other stringent constraints for sensor nodes. These nodes must consume
extremely low power, operate in high volumetric densities, have low production cost,
be dispensable and autonomous, operate unattended, and be adaptive to the

environment [1].

» Sensor network topology. Wireless sensor network protocol must be able to maintain

network topology so the network can accomplish its objectives.

» Power consumption. In a multihop wireless sensor network, each node plays the dual
role of data originator and data router. The malfunctioning of a few nodes can cause
significant topological changes and might require rerouting of packets and
reorganization of the network. Hence, power conservation and power management
take on additional importance. Our protocol will focus on reducing network energy

consumption.

2.2 Related MAC protocols for Wireless Sensor Networks

In the following paragraph S-MAC and T-MAC are presented. It is important to describe
protocol that will serve as base for ours. Our new MAC protocol is developed based on many

S-MAC characteristics.

2.2.1 S-MAC

2.2.1.1 Basic characteristics

A wireless sensor network MAC protocol must have the characteristics described below in

order to be suitable for applications on these sorts of networks [5]:
12



» Energy efficient in such a way that nodes spend the least amount possible of energy
in their communication and computation functions. Communication procedures
consume much more energy than those of computation, so this protocol concentrated
on communication issues;

» Scalable to allow the network which is running it to grow without compromising too
much its performance;

» Adaptable to changes not only due to new nodes that enter the network but also due to

nodes that fail in their normal operation;

Major sources of energy wastage are identified in [3] and [5] and described below:

» Collisions: packets discarded have to be retransmitted, which increase energy
consumption;

» Overhearing: a node listens to packets destined to other nodes;

» Control packet overhead: transmission and reception of control packets consumes
energy,

» Idle listening: Listening to receive possible packets that are not sent;

» Overemitting: Transmission of a packet when destination node is not ready.

S-MAC takes into account characteristics described above taking more emphasis on reducing
energy consumption by reducing idle listening and control packet overhead. This protocol
trades off energy consumption with latency. Low latency is a desirable feature for traditional

networks that do not have the constraint of energy.
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2.2.1.2 Synchronization

To minimize the idle listening energy consumption, S-MAC uses a sleep-listen schedule
where a node remains inactive for a long time and them wakes up to transmit or receive
packets. When slept, a node turns off its radio saving a lot of energy. Figure 2 shows S-MAC
sleep-listen schedule. A frame is a complete cycle of listen and sleep times. The duty cycle is

defined as the ratio of the listen interval to the frame length.

Listen Sleep Listen Sleep

Tirme

Figure 2. Basic Sleep-Listen schedule

Nodes synchronize each other by periodically broadcasting Synchronization (SYNC) packets.
A node could follow more than one schedule if received more than one SYNC packet when
synchronizing for the first time. In such case, the node follows both schedules. SYNC
packets are very short and include the address of the sender and the time of its next sleep.
The time of the next sleep is relative to the moment that the sender starts to send its SYNC
packet rather than absolute. SYNC packets and data ones are sent on different time slots as

shown in Figure 3.

Listen slot Sleep slot

SYNC pachets Data packets

Figure 3. The Listen slot is divided
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2.2.1.3 Collision avoidance

To avoid collisions, S-MAC uses the 802.11 mechanism: RTS/CTS/DATA/ACK. Only
broadcast packets do not follow RTS/CTS/DATA/ACK sequence. A second mechanism that
S-MAC uses to avoid collision is the vector called Network Allocation Vector (NAV). In
such vector, it keeps the duration of transmission of node’s neighbors. In this way, the node
knows when the medium will be most likely idle to transmit a data packet. This mechanism
is called virtual carrier sense. Furthermore, S-MAC uses Carrier Sense (CS) before
transmitting a SYNC or data packet to verify if there are current transmissions or not, this

mechanism is a physical sense.
Within a frame, a node can transmit only a SYNC packet, only a data packet or both. This is

shown in Figure 4. The figure highlights the procedure RTS/CTS/DATA that S-MAC uses to

send a data packet avoiding collisions.
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Figure 4. Ways to send a data packet and synchronize other nodes.

2.2.1.4 Adaptive Listening

Adaptive listening is a mechanism to turn nodes from low-duty cycle to a more active state to
reduce latency trading it off with more energy consumption. The basic idea is to let the node
who overhears its neighbor’s transmissions (ideally only RTS or CTS) wake up for a short
period of time at the end of the transmission. In this way, if the node is the next-hop node, its
neighbor is able to immediately pass the data to it instead of waiting for its scheduled listen
time. If the node does not receive anything during the adaptive listening, it will go back to

sleep until its next scheduled listen time. If the next-hop node is a neighbor of the sender, it
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will receive the RTS packet. If it is only a neighbor of the receiver, it will receive the CTS
packet from the receiver. Thus, both the neighbors of the sender and receiver will learn about
how long the transmission is from the duration field in the Request-to-Send (RTS) and Clear-
to-Send (CTS) packets. In this way, they are able to adaptively wake up when the

transmission is over.

It should be noted that not all next-hop nodes can overhear a packet from the previous
transmission, especially when the previous transmission starts adaptively, i.e., not at the
scheduled listen time. So if a sender starts a transmission by sending out an RTS packet
during the adaptive listening, it might not get a CTS reply. In this case, it just goes back to

sleep and will try again at the next normal listen time.

2.2.1.5 Overhearing avoidance

Inspired by PAMAS [10], S-MAC tries to avoid overhearing by letting interfering nodes go
to sleep after they hear an RTS or CTS packet. Since DATA packets are normally much
longer than control packets, the approach prevents neighboring nodes from overhearing long
DATA packets and following ACKs. All immediate neighbors of both the sender (node C)
and receiver (node D) should sleep after they hear the RTS or CTS until the current

transmission is over, as indicated by “X ” in Figure 5.
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Figure 5. Nodes that should go to sleep when C transmits to D
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As stated in section 2.2.1.3, every node when overhears a transmission updates its NAV. To
avoid overhearing, a node goes to sleep when NAV is not zero (indicating transmission in

progress). Node awakes again as normally when its NAV is zero.

2.2.1.6 Message Passing

Message Passing consists in fragmenting the long message into many small fragments, and
transmitting them in a burst. Only one RTS and one CTS are used. They reserve the medium
for transmitting all the fragments. Every time a data fragment is transmitted, the sender waits
for an ACK from the receiver. If it fails to receive the ACK, it will extend the reserved
transmission time for one more fragment, and re-transmit the current fragment immediately.
If a neighboring node hears an RTS or CTS packet, it will go to sleep for the time that is
needed to transmit all the fragments. Each data fragment or ACK also has the duration field.
In this way, if a node wakes up or a new node joins in the middle of a transmission, it can
properly go to sleep no matter if it is the neighbor of the sender or the receiver. If the sender
extends the transmission time due to fragment losses or errors, the sleeping neighbors will
not be aware of the extension immediately. However, they will learn it from the extended

fragments or ACKs when they wake up.

2.2.1.7 Comparison of Proposed Protocol with S-MAC

S-MAC was chosen as the base for our Proposed Protocol because of the following reasons:

» First, S-MAC focus on energy savings while other protocols like D-MAC
concentrates more on reducing latency, which is not our objective. Second, S-MAC
achieves better throughput that T-MAC [4], which is very important for us since it is
expected that no packets are lost, especially in event-triggered situations. Finally,

although no direct comparisons have been made between S-MAC with adaptive
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listening and T-MAC, S-MAC with adaptive listening has greatly improved energy
efficiency compared to the first version. In this way, it is expected that S-MAC in its
final version have similar energy consumption that T-MAC. However, S-MAC has
other advantages as described below. In the future, our protocol could adopt

characteristics of any other protocols as long as they leverage more energy savings.

Availability of code for ns-2. S-MAC code is widely used in the ns-2 community.
Furthermore, authors of this protocol provide users quick support for it. These two

factors shortened the development of our protocol.

TinyOS, in its different versions, provides code for S-MAC. Additionally, application
layer code is also provided that facilitates the development of applications that use S-

MAC characteristics.

2.2.2 IEEE 802.11 MAC protocol

IEEE 802.11, the Wi-Fi standard, denotes a set of Wireless LAN/WLAN standards
developed by working group 11 of the IEEE LAN/MAN Standards Committee (IEEE 802)

This section describes most important characteristics of the standard 802.11 that are also used

in S-MAC protocol and in our proposed protocol.

2.2.2.1 Medium Access

The basic medium access protocol of IEEE 802.11 is a Distributed Coordination Function

(DCF) that allows for automatic medium sharing between compatible Physical layers (PHY)
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through the use of CSMA/CA and a random backoff time following a busy medium

condition.

For medium reservation, nodes involved in communication, exchange RTS and CTS frames
prior to the actual data frame. The RTS and CTS frames contain a Duration/ID field that
defines the period of time that the medium is to be reserved to transmit the actual data frame
and the returning Acknowledge (ACK) frame. All nodes within the range of the originating
or the receiving node shall learn of the medium reservation. Another means of distributing
the medium reservation information is the Duration/ID field in Directed frames. This field

gives the time that the medium is reserved.

2.2.2.2 Carrier sense mechanism

Physical and virtual carrier sense functions are used to determine the state of the medium.
When either function indicates a busy medium, the medium shall be considered busy;

otherwise, it should be considered idle.

The physical carrier sense shall be provided by the PHY while virtual carrier sense shall be
provided by the MAC. The NAV maintains a prediction of future traffic on the medium
based on duration information that is announced in RTS/CTS frames prior to the actual
exchange of data. The carrier sense mechanism combines the NAV state and the node’s
transmitter status with physical carrier sense to determine the busy/idle state of the medium.
The NAV may be thought of as a counter, which counts down to zero at a uniform rate.
When the counter is zero, the virtual carrier sense indication is that the medium is idle; when
nonzero, that it is busy. The medium shall be determined to be busy whenever the node is

transmitting.
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223 T-MAC

Timeout-MAC (T-MAC) [4] is proposed to enhance the performance results of S-MAC
protocol under variable traffic load. In T-MAC, listen period ends when no activation event
has occurred for a time threshold (TA). This operation makes T-MAC’s schedule variable
instead of the fixed schedule proposed in S-MAC. Figure 6 depicts the basic operation of T-
MAC.

listen

N L

T by ey

—- —- —-
TA TA TA

Figure 6. T-MAC basic operation

T-MAC synchronization is similar to that of S-MAC [5]. SYNC packets are exchanged
between nodes to form virtual clusters that share the same synchronization. A node can run

more than one synchronization scheme.

The scheme used to contend for the medium is the well known RTS/CTS/DATA/ACK.
However, T-MAC proposes a change in this scheme that is used to avoid the early sleep
problem [4]. The early sleep problem is the excessive contention for a node that wants to
transmit to its neighbors. To avoid this problem T-MAC proposes two solutions: Future

request to send and priority on full buffers [4].

Simulations have shown that the T-MAC protocol introduces a way of decreasing energy
consumption in a volatile environment where the message rate fluctuates, either in time or in
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location. Implementation of the T-MAC protocol has shown that, during a high load, nodes
communicate without sleeping, but during a very low load, nodes will use their radios for as
little as 2.5% of the time, saving as much as 96% of the energy compared to a traditional

protocol.

2.2.4 D-MAC

The main objective of DMAC [12] is to achieve very low latency and still be energy efficient.
For that purpose it is designed to overcome S-MAC problems: increased delivery latency
because a packet can not reach the sink in a single listen period, fixed duty cycles that do not
adapt to traffic changes and the increased possibility of collisions due to synchronous duty

cycle.

Lu et al. [12], identifies a problem that exists in implicit sleep delay reducing protocols: S-
MAC [5] and T-MAC [4]. Sleep delay refers to the time that a packet suffers since it is
transmitted from originating node to the sink (Base Station). This delay refers to the time that
transmitting node has to wait for intended receiving node to wake up and receive the packet.
It is shown in [12] that S-MAC and T-MAC only solve this problem for a two-hop path. If a
network is a multi-hop one with more than 2 hops, the solutions provided by S-MAC and T-
MAC are not appropriate [12]. This problem is identified as Data forwarding Interruption
(DFI). Lu et al. [12] identified that the limited overhearing range due to radio sensitivity is
the origin of this DFI problem.

The solution proposed is a staggered active/sleep schedule shown in Figure 7. Low latency is
achieved by assigning subsequent slots to nodes that are successive in the data transmission
path. With this scheme it is expected that a packets do not suffer from sleep delay at all
because the next intended receiving node must always be awake when transmitting node

wants to transmit a packet to it.
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Figure 7. Staggered active/sleep schedule in D-MAC

DMAC staggers the active/sleep schedule of the nodes in the data gathering tree according to
its depth in the tree. This allows continuous packet forwarding flow in which all nodes on the
multi-hop path can be notified of the data delivery in progress as well as any duty-cycle
adjustments. Simulation results have shown that DMAC achieves both energy savings and

low latency when used with data gathering trees in wireless sensor networks.
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3. THE PROPOSED ENERGY-EFFICIENT MAC
PROTOCOL

3.1 Protocol operation

As explained in section 2.1.2, there are two types of data: sampling and triggered. Sampling
data is obtained by sampling a certain parameter a given number of times every day while
triggered data is disseminated after a certain event has happened. For energy saving

purposes, it is important to differentiate between these two types of data.

The proposed energy-efficient MAC protocol is proposed to exploit the advantages that
sampling data has from an energy saving perspective and, at the same time, cope with latency

requirements of triggered data.

Sampling data has two great advantages: first, the number of samples to take in a given
period of time is known in advance and second, instants to take the samples are also known.
This fact leads us to the idea that between two consecutive sample instants, the
communication functions of two nodes is almost null. In this way, the proposed protocol
exploits this fact to save energy turning off its radio between two consecutive sample instants
for data transmissions. Significant energy savings can be achieved by this operation if we
take into account that idle listening is the most energy consuming operation of all [3][5].
However, if the radio is simply turned off, no triggered packets can be transmitted from
originating nodes to the base station in a reasonable time. In such situation, triggered packets
would be queued up and would also wait for the next available active time slot to be
transmitted; what would create a long delay for triggered data, which would ideally have to
be transmitted without delay. Furthermore, collisions would increase dramatically because all

nodes in the network would content for the medium when the next time slot started.
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Proposed energy-efficient MAC protocol meets inherent requirements of triggered packets by
creating a mechanism to wake-up nodes so they are able to move the packet through the
network. Specifically, it is proposed a third time slot inside the listen interval within a frame
[5]. This time slot must be large enough to permit nodes to transmit and receive a very small
packet and much smaller than data slot times. This time slot will be useful to signal other

nodes to wake up at instants they are supposed to be sleeping to avoid idle listening.

The proposed energy-efficient MAC protocol inherits some characteristics of S-MAC with
coordinated adaptive sleeping. The RTS/CTS/ACK mechanism is used for exchange of
packets between nodes. In the following paragraphs, the proposed energy-efficient MAC
protocol is explained step by step.

3.2 Basic listen/sleep schedule to avoid idle listening

To have an energy-efficient protocol that transmits packets only every certain period of time,
the radio should be turned off between two consecutive samples. It is therefore conceived a
sleep/listen schedule whose listen periods coincide with specific instants of time when
samples are taken. Figure 8 shows the most basic intended sleep/listen schedule to save great

amounts of energy in idle listening.

Listen Listen
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Figure 8. Basic sleep/listen schedule.
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For remote management purposes and to satisfy the flexible requirements, it is desirable to
change listen/sleep schedule anytime. Such operation must not be traumatic for network
operation since useful samples could be lost due to long synchronization intervals of time.
Our protocol proposes that initial synchronization between nodes continues to run but at a

lower level than actual synchronization (Figure 9).
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Figure 9. Two schedules in each node

1

Sleep/listen schedule can be easily changed to meet scientists’ requirements by the
dissemination of appropriate control packets through the network. Such control packets ought

to contain, al least, information of:

» Time between Consecutive sets of Active Listen Periods (TCALP). Parameter
defined by the desired granularity in samples and strongly dependent on the

variable sampled from environment.

» Number of S-MAC Listen Periods in a set (NSLP). A single listen period may
not be enough if large quantities of data are expected. This parameter is
subject to the type of environmental variable being measured. For example,

temperature sampling contains much less data and originates less
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correspondent packets than a video sensor network for environmental

monitoring [15].

With information provided as those described above, the synchronization can be configured
as desired by network administrators as required by scientists to fulfill their needs to study
the environment. Figure 10 shows a typical synchronization scheme for our proposed

protocol for sampling packets and at the same time avoid idle listening.
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Figure 10. Proposed protocol synchronization

3.3 Tone Time

In the following sections, the issues of the proposed sleep/listen schedule are described as
well as the challenges of managing triggered packets. Later, improvements made to the

sleep/listen schedule to meet requirements of triggered packets are described.

3.1.1 Basic listen/sleep schedule drawbacks

The proposed sleep/listen schedule presented shown in Figure 10 and described in above

paragraphs is appropriate to avoid idle listening. The nodes of the wireless sensor network
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awake when a sample is going to be taken and then they sleep until the next sample. Much
energy is saved with this operation but this schedule is not the most efficient for triggered

packets because of the following reasons:

» High Latency. If triggered packets are generated between two consecutive sets of
active listen periods, they would have to wait an interval of time between an S-MAC
frame and a TCALP to be transmitted. If the granularity of sampling is not high, then
TCALP would be large and therefore triggered packets would have to wait too long to
be disseminated through the network. It is a basic objective of wireless sensor
networks that latency for triggered packets be minimized since they contain crucial

information that must be analyzed as soon as possible.

> Queue overflow. Triggered packets not transmitted are queued up and expect for next
active available listen slot to be transmitted. A massive event like a sudden flooding
would generate large number of triggered packets that would be put in the queue. If
so many packets are generated, the queue limit can be exceeded with the consequent
loss of crucial packets. A whole analysis of a sudden event can be damaged because

of a chunk of packets lost.

» Collisions. Even if queued up packets do not overflow the queue of a node, they will
wait for the next available listen time slot to contend with other node’s packets to be
transmitted. This situation is even worse if it is considered that all nodes will try to
gain the medium at the same time when they awake in the next listen period. Thus, it
is important that all triggered packets be transmitted as soon as possible to decrease

latency, decrease use of queue and avoid collisions.

It is concluded that the sleep/listen schedule presented in previous paragraphs is indeed

useful to lower idle listening wastage of energy but neither is it appropriate to decrease
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latency nor to avoid collisions. It is needed a sleep/listen schedule to address, at the same

time: idle listening, latency, queue overflowing and collisions.

3.1.2 Modified sleep/listen schedule

As explained on above paragraphs, the initially proposed sleep/listen schedule is indeed
effective to avoid idle listening; however the schedule proposed does not address the
requirements of triggered packets. This section describes the additions made to initially
proposed sleep/listen schedule to meet the requirements of triggered packets and at the same

time avoid idle listening.

As stated in Section 2.2.1.3, S-MAC sleep/listen schedule contains two intervals: SYNC and
DATA. SYNC interval is a time slot used to send synchronization information and DATA is
used for RTS/CTS/DATA sequence. In the proposed protocol, between two sets of active
listen periods the radio is turned off since the very beginning of the SYNC interval.
Therefore, there is no way to signal other nodes to wake up is a sudden event occurs. Our
approach will use the in-channel signaling and not a two-radio approach as other protocols do

[10] [16].

The proposed energy efficient MAC protocol introduces a new time interval that will be used
for a node that has detected an extraordinary event and generated its correspondent packets to
signal other nodes in the wireless sensor network that there are triggered packets that need to
be disseminated through the network as soon as possible. With this scheme, triggered packets
will be sent in the next active listen period of the underlying S-MAC synchronization (see

Figure 9). The proposed approach is depicted if Figure 11.
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Figure 11. Proposed energy-efficient protocol vs. SMAC listen- time structure

The proposed energy efficient MAC protocol novel listen-time structure will overcome

initially proposed sleep/listen schedule drawbacks in the following ways:

> Decreased latency. Triggered packets will not wait a time between a Time Frame (Ty)
and TCALP-NLSP*T¢ (Figure 12).

30



FTe

Basic Proposed
protocol listen/slesp
schedule
b NLSP * T +—— TCALP - NLSP * Tf —
'r TCALP :
Where:
T;: Time Frame
MLSP : Mumber of Sleep/Listen Periods within a set
TCALP: Time between Consecutive sets of Active Listen Periods
TCALP - NLSP * Tx Maximum time a triggered packet has to wait to be transmitted in basic
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Figure 12. Time intervals in basic proposed listen/sleep schedule

» Decreased queue length. Since triggered packets will be sent in the next active listen
period of the underlying S-MAC synchronization, nodes will not queue up triggered

packets for more than a T and therefore queue length is lowered.

» Less number of collisions. The number of packets to transmit are much less than if
they were accumulated in the TCALP-NLSP*T; time. Thus, the probability of

collisions decreases dramatically.

3.1.3 Tone Time signaling mechanism

As stated in previous section, the Tone Time interval will be used by nodes which have

sensed an interesting event and thus generated triggered packets that need to reach the Task
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Manager for urgent analysis (see Figure 1). Figure 13 depicts how this approach works for

the proposed energy efficient MAC protocol.
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Figure 13. Energy efficient MAC protocol listen/sleep schedule optimized to
avoid idle listening and decrease latency, collisions and queue length for
triggered packets.
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The proposed sleep/listen mechanism depicted in the Figure above is explained in the

following paragraphs:

» The proposed energy efficient protocol sleep/listen schedule is based on the
underlying schedule that resulted from initial synchronization between nodes. This
underlying synchronization is based on the most simple sleep/listen schedule of S-
MAC. The important parameters here are Duty Cycle, Sync Time duration and Data

Time Duration [5].

» We met the requirements of sampling packets to schedule behaves as explained in

section 3.2. Two important parameters TCALP and NLSP are introduced.

» Within the TCALP-NLSP*Ty, radio is turned off in Data and SYNC times. However.

All nodes turn on its radio at Tone Time to listen for possible requests from other
nodes, to wake up and transmit triggered packets. Since all nodes have its radio
turned on in Tone Time, some energy is consumed in idle listening. Therefore, it is
crucial to design the Tone Time as small as possible compared to SYNC and DATA

times; but large enough to allow a node to transmit/receive a very small Tone-packet.

» Whenever a interesting event is sensed, e.g. a sudden raise in temperature or another
monitored phenomenon, the node generates a corresponding triggered packet that

must reach the Task Manager with minimum latency.
» Once a node has generated a triggered packet it broadcasts a Tone-packet indicating

that it needs the next-hop node to wake up so the packet can be disseminated though

the network until it reaches the Base Station.
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» Neighboring nodes receive Tone-packet and check its destination address. If the

packet is intended for it, they do not go to sleep when the Tone Time is over.
» The node that originated the Tone packet sends the triggered packet. After sending
the packet it goes to sleep following the original schedule to accommodate the

sampled packets.

» The process is repeated as many times as number of nodes are in packet’s route to the

nearest Base Station.

3.4 Latency analysis

In this section, the latency that a triggered packet suffers for the proposed energy efficient
MAC protocol is analyzed.

3.4.1 Triggered packets latency

We will use Figure 14 to derive the latency analysis for triggered packets.
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Where:
T;=  Duration of a frame tsyne = Sync Time delay
tsm=  Sleep delay in node ‘n’ trx = Transmission delay
trone = Tone Time delay tesin.y = Carrier sense delay at node n-1

Figure 14. Identification of existing delays to transmit triggered packets

The delay experienced in node n since the reception of a packet to the time it is forwarded is:

D(n) = ts (n) + tTONE + tcs (n) + th + tSYNC (1)

There is an exception for delay at hop number 1 because a packet can be generated at any
time within a frame. Therefore, the sleep delay at node 1 is a random variable whose value

lies in (0,Ty) with mean Ty/2.

D) =t (1) + trone +tes (D +ry +Egyne ()

According to Figure 14, T¢ can be expressed as:
T =t,(N) + e +lone + iy +les(N=1) 3)

From (3), the sleep delay at hop n is:

ts(n) = Tf _tstc _tTONE _th _tcs (n _1) (4)
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The total delay Dy:

D(n)=D(1)+ > D(n)

M=

D, =

I
—_

n

Where:

N : number of hops from the node that originated the triggered packet to the nearest Base Station

Substituting (1) and (2) into the last expression:
N
DN =1 1)+ trone +Lcs 1+ o +loyne + anzts (n)+ trone +Lcs (n)+ L +toyne
Replacing (4) into the last expression:
N
DN = ts (1) +tTONE +tcs (1) +th +tSYNC +Z:2 ((Tf _tSYNC _tTONE _th _tcs (n _l))+tTONE +tcs (n) "‘th +tSYNC)
N
Dy =ts (D) +trone +tes (D) + by + e + anz ((Tf —tes(n— 1))+ tes (n)>

Dy =ts(D+trone+tes D+t +tSYNc+2\I=2 Tf +(tcs D+ +.. A1 (n))_(tcs (D +tes (D) +... 41 (N _l))

Eliminating some terms:

N
Dy =ts () +trone +tes (D + 1y + gy + Zn=2 (Tf ) +ies(N) =t (D)

Simplifying:

N
Dy =trone +ts (D +ty +lgyne + Zﬂ=2 (Tf ) +tes(N)
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Dy =trone s (D + 1ty +gye +(N=DXT; +t5(N) ®)
Taking averages:
E[D,]=E [tTONE Hig (D) + by e H(N =D xT, +1g (N)J

Let’s identify the distributions of each one:

> 1o 1S a constant for triggered packets because no matter what happens, each packet
has to wait the entire t;y,; to be transmitted.
> t¢(1) is a uniformly distributed variable between 0 and Tr because the packet in node

1 can be generated at any time

>t as well as tg,. are constants
» T, is constant as well as N
» 1.(N) is not constant and depends on parameters defined in the 802.11 protocol.

However, its average is constant [11] and we called it t.

Then:
E[Dy]=tone + Elts D]+t +tgne + (N =D XT; +E[tes (N)]

T
E[Dy I=tone +7f+th e (N =D xT; +1

T
E[DN ] =N ><Tf _é +tTX +tSYNC +tTONE +tCS (6)

Equations (5) and (6) predict the delay that a triggered packet will experience for the
proposed energy efficient MAC protocol. It is import to notice that the delay and the mean

delay are proportional to the number of hops.
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3.5 Energy consumption analysis

3.5.1 S-MAC energy analysis

Following are the assumptions made for energy analysis:

Sampled packets are small enough to be transmitted in a single listen interval.
Only one node in the network generates sampled packets.

Single route to Base Station.

Each node has only two neighbors.

There are no collisions.

YV V. V V V V

There are no retransmissions.

Figure 15 shows the configuration used for analysis (see section 4 for details):
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Node N receives packets but
transmits no packets

A O Node N-1

Flow direction

Q Node 2

MNode 1 generates triggered
O packets and receives no

packets from any other node
Figure 15. Configuration used for analysis

The parameters used are the following:

> p(n)[M]:Rate of packets sampled by second in node n

» E, (n)[joules]: Energy spent in idle listening in a T, in node n
» E. (n)[joules]: Energy spent in transmitting a packet in node n
» Egc(n)[joules]: Energy spent in receiving a packet in node n

> Egy[joules]: Energy spent to turn on radio

» T,(n):Period of observation

> Eg(n)[joules]: Energy spent on sleep time within a T, in node n
» N :Number of nodes in the network

» E(n):Energy consumed in node n in the period of observation T,
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Now that the parameters and assumptions have been identified, we can calculate the energy

consumed by S-MAC:

E(n) =

Energy-transmit-packets + Energy-idle-listening + Energy-turn-on-radio + Energy-

receive-packets + Energy-sleeping

More specifically:

E(n) =

Where:

T T
(M) xT, x Eqy + E'L(n)(T_O_zx'D(n)XTOJ + Egy ><_I_—°+,o(n)><T0 x Egy (N) +

f f

+_-II_-—°>< E.(n) (7)

f

p(N)xT, = Number of packets received or transmitted by node n

I—O: number of listen periods in Ty
f

T
T—°—2>< p(N)xT, = Number of listen periods in which the node is not in idle listening state
f

The total energy consumed by the network is:

E, = i E(n)

The energy expressions for initial node 1 and final node N are different, so:

40



N-1

Ey=ED+ E(N)+ZE(n) (8)
n=2

Grouping common terms from (7):

E(n) = Top(n)(ETx (N)—2E, (n) + Egy (n))+ .l-I:_O(ElL (N)+Eqy +Es (n)) )

f

Using (9) and taking into consideration the assumptions listed in the beginning of this

section:

E) =To,p()(Eqy () - E.L(1>)+I—°(E.L<1> +Eoy +Es(1) (10)
T

E(N)=T,o(N)(- E.L(N>+ERX<N))+T—°(E.L<N)+EON +E5(N)) (11)

f

Replacing (9), (10) and (11) into (8):

By =ToEr (0~ ()1 B+ Eoy +E DT AN (N +E ()42 (B (N)+E +Es ()¢

f

=

=1

+ Top(n)(ETx (N)—2E,; (n) + Egy (n))+ .l-I:_O(ElL (n)+Eoy + Es (n)) (12)

n= f

i8]

Equation (12) can be used to calculate the total energy consumed by the network. We can get

the average energy consumed by taking averages on both sides of equation (12):
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E[EN]=E[Top(D(ETxa)—EL(D)+T0p(N)(—EL(N>+ERX<N>)]+EF<EL<1)+EON+Es(1>)+$(EL<N>+EON+ES<N>)}+

N=I

+ {E[Topm)(ETx (N) = 2E, (N) + Egy (M)]+ EE—‘)(E.L(m +Eoy + Es (n))} (13)

n=2 f

We can identify in equation (13):

Erx(n) is constant since it is intended that all packets have the same length
Eon IS a constant
Erx(N) is a constant

To IS a constant

YV V. V VYV V

o(Nn)is constant since it is assumed that there are no retransmissions or collisions, so

the packets that a node generates are the same the other node receives
» Ew(n) is a random variable since the energy spent on idle listening is not constant

because a node may overhear a transmission not intended for it so it may go to sleep

early. In this way, E,_(n) can be expressed as:

Ew(n) = p, xt,

Where:

p,. : Density of energy spent on idle listening [JOUIGS}

S

ti.: time on idle listening on a Tf. t,_ is identically distributed in the range of
[0, Tp] (see Figure 16). Idle listening can last the complete Tp period in case

the node does not overhear any transmission or it could be zero. Thus, its
. Th
average is 5
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Thus, E[E;L(n)] = pIL(TTDj

~— T -

Where:
T: = Time of the frame
Tp= Time of data Interval
Tewmc = Time of Synchronization
Ty = Listen Time
Tg = Sleep Time

Figure 16. S-MAC schedule parameters

e Eg(n) is a random variable which can be expressed as:
Es(n) = Ps x5 ()

Where:

ps - Density of energy sent on sleeping [JOUIGS}

ts(n) : Time that a node sleeps. According to equation (4),

t.(N)=T; —tsne —Lrone —trx —les(N—1), but for S-MAC analysis we do not

consider trone and tsync, S0, t,(n) =T; —t; —t(N-1)
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In this way, E[t,(n)]=E[T; —tr —tes(N=1)]|=T, —t5; —te
Finally, E[ Es(n)] = ps x[T; —try —tes
However, because of practical considerations in simulations, pg is not considered

because it is too small compared to idle listening so we will take into consideration
the energy consumed when node is sleeping.

Equation (13) is modified taking into account all considerations made above:

T, T, T, T T
E[EN ] =T, B —TopaL ?D -TopaL ?D +To By +2T_0 Eon +2T_0 Pi ?D +

f f

N=

T T T T
+ 2{TOPETX +ToPErx — 2T, 0o, 7D+ﬁplL7D+%EON}

—_

>
|

T T
E[EN]:TOP(ETX + ERX)_ToppILTD +2T_0 Eon +T_0pILTD +

f f

T T T
+(N _2)X{TOPETX +TopErx —Tooo Th +T_Op|L7D+T_0E0N}
f f

T NT
E[EN]:TOP(N _1)(ETX + ERX)_(N _l)TopmeD +N T_O Eon +3T_0pILTD (14)
f f

3.5.2 Proposed protocol energy analysis

In this section the energy consumed by the proposed protocol is analyzed.
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The energy consumed in each node is similar to that of S-MAC as well as the assumptions
made in section 3.5.1. However a new term is added in idle listening that is the energy
consumed in the tone-time. We have:

E(n) = Energy-transmit-packets + Energy-idle-listening + Energy-turn-on-radio + Energy-

receive-packets + Energy-sleeping

Expressing each term and discarding the Energy-sleeping term because it is much smaller

than other terms:

T T T
E(n)=pT By + EIL(n)(TC;LP NLSP _2,0Toj +% Erone +TC$ Eon +oToErx  (15)

Where:
TCALP : Time between Consecutive sets of Active Listen Periods (see Figure 12)
NLSP : Number of Listen Periods within a TCALP (see Figure 12)

Erone : Energy consumed by a node in idle listening in a Tone Time (see Figure 13)

T NLSP : Number of active listen periods on Ty
TCALP
T R o .
TCA(\)LP NLSP —2pT, : Number of active listen periods in which the node does not

overhear a transmission

It is important to observe that in equation (15) of the proposed protocol schedule, nodes are
always listening for incoming transmissions in the Tone-Time, therefore the number of Tone-
Time time slots is the same as the number of listen periods in S-MAC protocol within the
period of observation Ty. Different is the number of activations a node suffers because a node

sleeps more time than S-MAC, it changes from OFF status to ON less times.
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As explained in section 3.5.1, nodes 1 and N have slightly different expressions for the

energy consumed:

E() :TOIO(ETX - ElL(l))+ ° P NLSP(E, (1) + Eqy) +.I-I_-_0 Erone (16)

f

E(N)=T0p(—E”_(N)+ERX) T NLSP(E, (N)+E, N)+_-I_I—0 Erone (17)

TCALP f

Replacing equations (15), (16) and (17) in (8) we get the total energy consumed:

T, T
NLSP(E, (D+E, [ (N)+2E,, )+ 2_|_° Erone +

E,. =T polE., —E,(D)-E, (N)+E
N op( > (D L (N) RX) TCALP f

T, T
SNLSP- 2pT] = Erone + 7o s NLSPX Egy | (18)

N-1
+ 3| pTy(Ery +Egy )+ E (n)(
ZZ: X RX IL ; TCALP

Where:

. . : T .
EiL(n) is a random variable whose average is p, XTD (see section 3.5.1)

Equation (18) is the general expression to calculate the energy spent in a sensor network that
runs the proposed MAC protocol. In order to compare to SMAC energy consumption, it is

necessary to derive the expected values of (18):

-
NLSP(p, Ty +2Eqy) + 2_|_—0 Erone +

f

T
E[EN ]:TOp(ETX —PuTp + Egx )+ TCAO\LP
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TO
TCALP

T
NBP—%%j+FQEWE

f

T
+(N _2)[pT0(ETX + Epx )+pIL XTD(

Finally:
E[EN ]:(N _l)Top(ETx + ERX)_(N _l)Toppn_TD + NxT, NLSPx E
TCALP
s Ty ygpPulo Ny Tog o
TCALP 2 T,

TO

+
TCALP

If we compare equations (18) and (14) we can get the following conclusions:

NLSPxEON}

(18)

v' The energy consumed in transmitting and receiving the packets is the same:

(N _l)Top(ETx + Epx )

v' The energy saved by overhearing a packet and sleeping early is the same:

- (N - l)TOlOpILTD

v' The proposed protocol saves energy by making less transitions than S-MAC:

N xT,
TCALP

NLSP x E,,

v The energy consumed in idle listening is considerably less than that of S-MAC:

N xT, NLSP Aulp
TCALP 2
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v' A small amount of energy is added to proposed protocol because of the idle listening

in the Tone Time: N T—° Erone
f

It can be seen that for the proposed protocol to consume less energy than that of S-MAC the
following inequality must be complied:

NLSP 1 19)
TCALP T,
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4. SIMULATIONS AND PERFORMANCE ANALYSIS

First, this section describes the algorithms and the implementations of the protocol. Then,
simulation scenario used in the network simulator ns-2 to test the proposed protocol features

is described. Finally, the results obtained from simulations are analyzed.
4.1 Algorithms

In this section, the algorithms and the implementations of the proposed protocol are

explained here. The corresponding code for these algorithms is described in Appendix B.

4.1.1 Algorithm for proposed sleep/listen schedule

Figures 17 and 18 depict the algorithms that are used for the implementation of proposed
protocol schedule. The algorithm to implement the listen/sleep schedule works as described
below:
» When a node is created it sets its parameters to:
e Status = 1. This means that the node will follow at the beginning the
original S-MAC schedule.
e NLSP = 0. Since the node is following the S-MAC schedule at the
beginning, it does not need to set NLSP to any value because the node will

wake up periodically anyway (see Figure 12).

» Status is a variable that will control the number of periods a node stays slept once
the node follows the proposed protocol schedule. Thus, every time a new cycle
(Tone->Sync->Data.>Sleep) begins with a Tone Time, this variable’s value must

be decreased by one.
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» A node stops to follow the S-MAC protocol schedule and starts to follow the
proposed protocol one when it receives the first ACK packet from its neighbor
indicating that it successfully received the data packet (see Appendix B for ACK
synchronization). After receiving the first ACK packet the node sets its
parameters to:

e Status = X. Status is set to a specific value so the node will not turn its
radio on in the next period because the sampling packet has already been
sent (due to ACK packet received). Status variable is decreased on each
iteration.

e NLSP =Y. Independently of the value of Status variable, NLSP will make

the node turn its radio on when different than zero.

Every time an ACK packet is received, the node sets these values again. Status
and NLSP are the variables that determine the configuration of the new schedule

(Figure 12).

» If Status = 0 then that node is either following the S-MAC schedule or ending its
configured number of periods to sleep, so it must turn on its radio in the Tone
Time. Otherwise, the node must sleep to satisfy the number of periods to sleep set

on the Status variable (Figure 18).

» If NSLP is different than zero then that node has already synchronized with an
ACK packet and must turn its radio on for NLSP number of periods before it goes
to sleep (see subsection B.4 for ACK synchronization). In each iteration NLSP is

decreased (Figure 18).

» After a node ‘decides’ to turn on its radio on or not, it must follow the natural

cycle: Sync->Data.>Sleep->Tone.
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- ACK packel received

- Status = X
-NLSP =Y

Figure 17. When An ACK packet is received the node sets new values

-Node created

-Status = 1 (following S-MAC schedule)
=NLSP = 0 (Number of periods to turn on radio
when following proposed protocol schedule)
-Go to Tone Time

Y

-Node in Tone Time
-Status = Status -1

- Turn on radio
- Status = 1
=-NLSP =0

- Turn on radio

-NLSP = NLSP -1 = Turn off radio

Y

Go to Sync Time when Tone Time is over

- Sync Time

- Go to Data Time when Sync Time is over

- Data Time

- Go to sleep when Data Time is over
- Sleep Time

- Tum off radio
- Go to Tone Time when Sleep Time is
over

Figure 18. Proposed protocol scheme to create and use a second schedule in top of
existing one




4.1.2 Algorithms for Tone packets mechanism

Figures 19 and 20 depict the algorithms that are used for the implementation of proposed
protocol Tone packets scheme. The algorithm to implement the sleep/listen schedule works

as described below:

» When a node is created there is no need to send Tone packets since nothing has been

sensed yet.

» A node follows its normal cycle (Tone->Sync->Data->Sleep) when there is no need

to transmit Tone packets.

» 1If an interesting event is sensed at any time, a corresponding triggered packet is

generated and then, the node knows it must send Tone packets.
» If there is a need to transmit a Tone packet, the node turns on its radio no matter the
values of variables Status or NLSP described in previous subsection. It contents for

the medium and after it has gained the medium, it broadcasts the packet.

» After broadcasting Tone packets the node supposes the other nodes received it and

than is ready to send its triggered packets.

» Triggered packets are sent in Data time.
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Interesting event sensed so a
correspondent triggered packet is

generated

Meed to transmit Tone packet

Figure 19. A need to transmit a Tone packet is generated when an interesting event is
sensed.

- Mode created
- Mo need to transmit Tone packets

—= - Tone Time

- Turn on radio
- Start carrier sense to contend
for the medium

Need to transmit
Tone packets?

MNo
Time to contend expires

Y
- 3ync Time - Send Tone packet
- Go to Data Time when Sync Time |- - Mo need to transmit more Tone
is over packets
Y
- Data Time

- Bend triggered packet
- Go to sleep when Data Time is
aver

- Sleep Time

- Turn off radio

- Go to Tone Time when Sleep Time is
over

Figure 20. Mechanism to send a triggered packet by sending Tone packets.
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4.2 Simulation scenario

The simulation was designed to test both the new proposed schedule and the mechanism of
sending tone packets to disseminate triggered packets when generated in a time between two

consecutive samples.

Network configuration for both tests is shown in Figure 21.

e A
i A
I AY
/ \
/ \
' v
f - - *I Node 3
i - S | (Base Station) _T_
| e ~ 1
3\ 4
150m
Node 2
Direction
of flow 150m
Node 1
150m

Node 0 —L—

Figure 21. Network configuration of simulation

Network configuration shown in Figure 21 has the following characteristics:

» The four nodes (0,1,2,3) are on a straight line with 150m in apart.
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>

>

Node 0 can reach only node 1, 1 can reach 0 and 2, 2 can reach 1 and 3 and 3 only 2.

The objective of each node is to transmit its data packets to node 3 (Base Station).

The synchronization and control information is also exchanged between neighbors.

Parameters used in the simulation are the following:

YV V VYV V¥V

vV VY

A\

YV V Vv VvV V V

Simulation time (Ty): Time to send 100 packets[s], max 100000][s]

Duty cycle (DC): variable

idlePower(Eyy,): 1.0
rxPower(Erx): 1.0
txPower(Erx): 1.0
sleepPower(Es): 0.001

transitionPower(Eon):0.2

transitionTime: 0.005

Routing Protocol: AODV

Queue type: Queue/DropTail/PriQueue
ns-2 energy model:  EnergyModel

Propagation model:  Propagation/TwoRayGround

Initial energy of each node: 100,000 [mJ]
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Simulation in ns-2 is described in the following paragraphs:

» Nodes delay 50 seconds approximately in synchronizing themselves. Due to the
number of nodes used in the simulation, all nodes must have the same listen/sleep

schedule, forming a single virtual cluster.

» At 100 second, node O starts sending 10-byte data packets with a Poisson traffic
generator at a mean sending rate. This rate of transmission can also be expressed as
the mean time between consecutive packets that we call message inter-arrival time. If
the radio of node 0 is on when the packet is generated the node supposes all nodes are
awake as well so transmits the packet immediately. Otherwise, node 0 uses the tone

packet technique described in Chapter 3 to signal other nodes to wake up.

» Nodes internally follow the proposed second schedule of the protocol with the

following parameters:

e NLSP=5
o StatusModifiedProtocolTimer = 20
e syncTime = difs + slotTime * SYNC_CW + durSyncPkt + guardTime;

e toneTime = 0.6*syncTime;

» All logs are saved in the trace file. The total energy consumed is computed adding the

energy consumed by all four nodes.

» Energy consumed includes all types of energy consumption described in chapter 3.
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Each simulation is run at constant DC. For each given constant rate the duty cycle is changed
from 10% to 50%. At the end of each simulation, the remaining energy in each node is saved
for further computations. Then, to compute the total energy consumed in each simulation, the
remaining energy is subtracted from initial energy configured to get the energy consumed in
each node. Then, the energy consumed in each node is added to get total energy consumed in

the network.

4.3 Results and analysis

The results obtained are organized into Tables 1 to 4. In such tables, for each message inter-
arrival time (I) five simulations results are listed. The remaining energy in [mJ] in each node
for S-MAC and for the proposed protocol is depicted in Tables 1 and 2 respectively. Tables 3
and 4 depict the energy consumed in each node for S-MAC and for the proposed protocol
respectively. To compute the energy consumed in each simulation, the energy consumed by

each node is added.

Table 1. Remaining energy in each node at the end of simulation after 100 packets have
been disseminated through the network using the SMAC protocol

Remaining energy in each node with S-MAC protocol
Message
inter- DC=10% | DC=20% | DC=30% | DC=40% | DC=50%
arrival time
node 0 =1
=100
Node 0 98339 97407 96533 95530 94563
Node 1 98185 97352 96544 95571 94619
Node 2 98169 97357 96541 95554 94613
Node 3 98348 97399 96531 95522 94556
1=200
Node 0 97093 95143 93214 91316 89239
Node 1 96899 95091 93232 91379 89345

57



Node 2 96898 95087 93231 91363 89338
Node 3 97101 95140 93211 91302 89233
I1=300

Node 0 95748 92851 90244 87241 83372
Node 1 95537 92792 90270 87337 83530
Node 2 95550 92788 90277 87322 83524
Node 3 95782 92855 90250 87230 83367
1=400

Node 0 94476 90297 86692 82328 78587
Node 1 94217 90225 86733 82457 78788
Node 2 94220 90225 86726 82442 78780
Node 3 94478 90294 86681 82317 78580
1=500

Node 0 93160 87966 83265 77871 72483
Node 1 92285 87879 83314 78027 72738
Node 2 92881 87880 83305 78016 72734
Node 3 93170 87961 83251 77861 72476

Table 2. Remaining energy in each node at the end of simulation after 100 packets have
been disseminated through the network using the Proposed Protocol

Remaining energy in each node with Proposed Protocol
Message
inter-arrival | DC=10% | DC=20% | DC=30% | DC=40% | DC=50%
time node 0
=1=100
Node 0 98854 98120 97247 96\276 95660
Node 1 98605 98056 97217 96276 95683
Node 2 98630 98044 97203 96261 95652
Node 3 98855 98094 97211 96225 95606
1=200
Node 0 97798 96022 94693 93063 91586
Node 1 97560 95957 94676 93069 91643
Node 2 97534 95856 94625 93060 91605
Node 3 97832 96026 94662 92995 91531
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1=300

Node 0 97022 94556 91973 89623 87287
Node 1 96786 94472 91911 89642 87369
Node 2 96842 94497 91901 89614 87328
Node 3 96994 94571 91943 89579 87228
1=400

Node 0 95846 93148 89406 86543 82734
Node 1 95696 93030 89441 86623 82829
Node 2 95622 92937 89424 86599 82805
Node 3 96010 93050 89409 86531 82684
I=500

Node 0 95260 91271 87302 82334 78481
Node 1 95071 91128 87306 82424 78605
Node 2 95052 91163 87228 82406 78593
Node 3 95282 91252 87219 82321 78437

Table 3. Energy consumed in each node at the end of simulation after 100 packets have
been disseminated through the network using the SMAC protocol

Energy consumed in each node with S-MAC protocol
Message
inter- DC=10% | DC=20% | DC=30% | DC=40% | DC=50%
arrival time
node 0 =1
=100
Node 0 1661 2593 3467 4470 5437
Node 1 1815 2648 3456 4429 5381
Node 2 1831 2643 3459 4446 5387
Node 3 1652 2601 3469 4478 5444
TOTAL 6959 10485 13851 17823 21649
1=200
Node 0 2907 4857 6786 8684 10761
Node 1 3101 4909 6768 8621 10655
Node 2 3102 4913 6769 8637 10662
Node 3 2899 4860 6789 8698 10767
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TOTAL 12009 19539 27112 34640 42845
I=300

Node 0 4252 7149 9756 12759 16628
Node 1 4463 7208 9730 12663 16470
Node 2 4450 7212 9723 12678 16476
Node 3 4218 7145 9750 12770 16633
TOTAL 17383 28714 38959 50870 66207
1=400

Node 0 5524 9703 13308 17672 21413
Node 1 5783 9775 13267 17543 21212
Node 2 5780 9775 13274 17558 21220
Node 3 5522 9706 13319 17683 21420
TOTAL 22609 38959 53168 70456 85265
I1=500

Node 0 6840 12034 16735 22129 27517
Node 1 7715 12121 16686 21973 27262
Node 2 7119 12120 16695 21984 27266
Node 3 6830 12039 16749 22139 27524
TOTAL 28504 48314 66865 88225 109569

Table 4. Energy consumed in each node at the end of simulation after 100 packets have
been disseminated through the network using the Proposed Protocol

Energy consumed in each node with Proposed Protocol
Message
inter-arrival | DC=10% | DC=20% | DC=30% | DC=40% | DC=50%
time node 0
=1=100
Node 0 1146 1880 2753 3724 4340
Node 1 1395 1944 2783 3724 4317
Node 2 1370 1956 2797 3739 4348
Node 3 1145 1906 2789 3775 4394
TOTAL 5056 7686 11122 14962 17399
1=200
Node 0 2202 3978 5307 6937 8414
Node 1 2440 4043 5324 6931 8357
Node 2 2466 4144 5375 6940 8395
Node 3 2168 3974 5338 7005 8469
TOTAL 9276 16139 21344 27813 33635
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I=300

Node 0 2978 5444 8027 10377 12713
Node 1 3214 5528 8089 10358 12631
Node 2 3158 5503 8099 10386 12672
Node 3 3006 5429 8057 10421 12772
TOTAL 12356 21904 32272 41542 50788
I=400

Node 0 4154 6852 10594 13457 17266
Node 1 4304 6970 10559 13377 17171
Node 2 4378 7063 10576 13401 17195
Node 3 3990 6950 10591 13469 17316
TOTAL 16826 27835 42320 53704 68948
I=500

Node 0 4740 8729 12698 17666 21519
Node 1 4929 8872 12694 17576 21395
Node 2 4948 8837 12772 17594 21407
Node 3 4718 8748 12781 17679 21563
TOTAL 19335 35186 50945 70515 85884

The plots shown in Figures 22-26 correspond to the data in Tables 3 and 4.
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Figure 22. Energy consumed at a DC of 10%
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Energy consumed at 40% DC
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Figure 25. Energy consumed at a DC of 40%
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Figure 26. Energy consumed at a DC of 50%

The message inter-arrival period can help us calculate the mean sending rate at which node
0 sends its 10-byte packets:

Rate {b'ts} - 1 {packet} 80 bits

X =
S message inter - arrival period S 1 packet
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80 y bits
message inter —arrival period S

Figure 27 is obtained by converting each message inter-arrival time to mean sending rate in
Tables 3 a 4 and plotting the data. In this, PP stands for Proposed Protocol.
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Figure 27. Energy consumption vs. rate of transmission
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As it 1s shown in Figures 22-26 , proposed protocol outperforms SMAC at every duty cycle

at every message inter-arrival rate delivering the same throughput.
The following obervations can be made from the figures and results shown above:

v' In Figure 27 it is observed that the higher the rate of transmission of packets
(sampling packets) the less the consumption of energy. This may be a contradiction
because the higher the rate the more energy consumed in transmitting and receiving
packets. Equation (18) in subsection 3.5.2 is helpful to analyze this result. According

to this equation, if rate of transmission increases ( p ), the first term of the equation
(N=1)T,p(E;y +Egy ) increases. However, the protocol has an anti-overhearing

mechanism in which a node goes to sleep if listens a transmission not intended for it
and also a node that transmit a packet simply goes to sleep before the end of the cycle

so the higher O the less energy is consumed in idle listening, this fact is expressed

in the second term of the equation: — (N —1JT, pp, Ty -

Thus, the reason why the higher the mean long term rate of transmission the less

energy is consumed is because the term p, T is more dominant than(ETX-l-ERX).

Remember that the majority of energy is consumed in idle listening and not in

transmission or reception of packets.

Conversely, if the rate increases dramatically, there will appear some other
phenomena in the network such as retransmissions due to collisions which have not
been included in the analysis. In this case the energy consumption may increase

instead of reduce.
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v At a fixed Duty Cycle (DC), the higher the message inter-arrival period the greater
the difference between Proposed Protocol and SMAC (the better the proposed
protocol is). Figures 22 to 26 show clearly this fact.

In Figure 12 it is observed that, the higher the message-inter-arrival period, the higher
the Time between Consecutive sets of Active Listen Periods (TCALP), and
remembering that Tf is constant and so is NLSP, the “better” the inequality (19)
satisfies. Inequality (19) is the most basic requisite for energy savings. In fact, the
more the difference between the two sides of the inequality the more energy savings

will result in the wireless sensor network.
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5. CONCLUSIONS AND FUTURE WORK

We proposed an energy aware MAC protocol for wireless sensor networks that gathers
data for wide-area large scale environmental monitoring. The scheme saves energy by
organizing the networks usage changing the running synchronization. Specifically, the

proposed protocol uses:

» A sleep/listen schedule running in top of a previously negotiated one. In this schedule,
nodes wake up only when a sample is to be taken. This schedule is intended to save

more energy by avoiding idle listening.

» A mechanism to wake-up nodes when a node has the urgency to transmit a triggered
packet. We called this mechanism Tone-Time; which met the requirements of

triggered packets of low latency.

According to simulation results, the proposed scheme is observed to perform better in
terms of achievable network lifetime as compared to similar existing schemes like S-

MAC. Furthermore, simulations show that:

» The higher the rate of transmission of packets (sampling packets) the less the

consumption of energy.

» At a fixed Duty Cycle (DC), the higher the message inter-arrival period the greater

the difference of consumed energy between Proposed Protocol and SMAC.

In our future work, we will implement this proposed protocol on a Mote-based sensor
network platform and evaluate its performance through real experiments. Then, we will

add more features to the sleep/listen schedule in order to make it more energy efficient.
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We also plan to define a specific interface between the MAC and Network layers to use
some crucial features of the latter. We believe that a MAC protocol can be more efficient

is it has some information available in Network layer such as number of hops to the Base

Station.
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APPENDIX A. TCL SCRIPT FOR ns-2 SIMULATIONS

set val(chan)
set val(prop)
set val(netif)
set val(mac)
set val(ifq)
#set val(ifq)
set val(ll)

set val(ant)

set val(x)
set val(y)
set val(cp)

set val(sc)

set val(ifglen)
set val(nn)
set val(seed)
set val(stop)
set val(tr)

set val(nam)

set val(lm)

set val(energymodel)
set val(radiomodel)

set val(initialenergy)

Channel/WirelessChannel
Propagation/TwoRayGround
Phy/WirelessPhy

Mac/SMAC # MAC type
Queue/DropTail/PriQueue
CMUPriQueue

LL

Antenna/OmniAntenna

600 ;# X dimension of the topography

600 ;#Y dimension of the topography
"../mobility/scene/cbr-50-10-4-512"
"../mobility/scene/scen-670x670-50-600-20-0"

500 ;# max packet in ifq
4 ;# number of nodes
0.0
10000;#65.0 ;# simulation time
MyTest.tr ;# trace file
MyTest.nam ;# animation file
"off" ;# log movement
EnergyModel ;
RadioModel
100000 ;# Initial energy in Joules

Mac/SMAC set syncFlag 1

Mac/SMAC set dutyCycle 10
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#POINTERS ARE PASSED TO THE FILES OPENED TO CONTAIN NAM-TRACE AND WIRELESS
TRACE

set ns [new Simulator]
set tracefd [open Ejemplo-para-todas-las-simulaciones.tr w]
set windowVsTime2 [open Ejemplo-para-todas-las-simulaciones.tr w]

set namtrace [open Ejemplo-para-todas-las-simulaciones.nam w]

$ns trace-all $tracefd

$ns namtrace-all-wireless $namtrace $val(x) $val(y)

#CREATES AN AREA SPECIFIED BY THE 'load_flatgrid' method
set topo [new Topography]
$topo load_flatgrid $val(x) $val(y)

create-god $val(nn)

#PARAMETERS ALREADY DEFINED ARE USED HERE IN ORDER TO CONFIGURE EACH NODE

$ns node-config -adhocRouting AODV \  ;#Routing protocol
-lIType $val(ll) \
-macType $val(mac) \
-ifqType $val(ifq) \
-ifqLen $val(ifglen) \
-antType $val(ant) \
-propType $val(prop) \
-phyType $val(netif) \
-channel [new $val(chan)] \
-topoInstance $topo \
-agentTrace ON \
-routerTrace ON \
-macTrace ON \
-energyModel $val(energymodel) \
-idlePower 1.0\
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-rxPower 1.0\
-txPower 1.0\
-sleepPower 0.001 \
-transitionPower 0.2 \
-transitionTime 0.005 \

-initialEnergy $val(initialenergy)

$ns set WirelessNewTrace  ON

#EACH NODE IS CREATED ACCORDING TO THE ABOVE SPECS AND PASSED A POINTER

for {seti O} { $i<$val(nn) } {incri} {
set node_($i) [$ns node]

#INITIAL POSITION FOR EACH NODE IS SET

$node (0) set X_300.0
$node (0)setY_ 10.0
$node (0)setZ 0.0

$node (1) set X_300.0
$node (1)setY_160.0
$node (1)setZ 0.0

$node (2) set X_300.0
$node (2)setY 310.0
$node (2)setZ 0.0

$node (3) set X_300.0
$node (3)set’Y_460.0
$node (3)setZ 0.0

set tcp [new Agent/UDP]
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$tep set class 2

set tcp2 [new Agent/UDP]
$tep2 set class 2

set tcp3 [new Agent/UDP]
$tcp3 set class_ 2

set sink [new Agent/Null]

$ns attach-agent $node (0) $tcp
$ns attach-agent $node (1) $tcp2
$ns attach-agent $node (3) $sink

set cbr_(0) [new Application/Traffic/Poisson]
$cbr_(0) set packetSize 10

$cbr_(0) set interval 300;

$cbr_(0) set random_ 100000;

$cbr_(0) set maxpkts 20000

$cbr_(0) attach-agent $tcp

$ns connect $tcp $sink

$ns at 100.00 "$cbr_(0) start"

#INITIAL POSITION FOR NAM: IT IS REALLY THE SIZE OF EACH NODE IN THE SIMULATION

for {seti0} {$i < $val(nn)} {incri} {

$ns initial node pos $node (8$i) 30

#TELL THE NODES WHEN SIMULATION IS GOING TO END:

for {seti0} {$i<$val(nn) } {incri} {
$ns at $val(stop) "$node ($i) reset"”;
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set b [$node (0) set mac_(0)]

set d [Mac/SMAC set syncFlag ]

set c [Mac/SMAC set dutyCycle ]

$ns at $val(stop) "$ns nam-end-wireless $val(stop)"

$ns at $val(stop) "stop"

proc stop {} {

global ns tracefd namtrace
$ns flush-trace
close $tracefd

close $namtrace

$ns run
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APPENDIX B. IMPLEMENTATION OF PROPOSED
PROTOCOL

The implementation of the protocol was made in the ns-2 network simulator version 2.8. In
the remainder of this section, the most relevant parts of the implementation are explained
step by step and after the complete operation of the whole protocol is explained. All

descriptions and diagrams are shown as written in the code.

B.1 Construction of packets sent in the Tone Time

In order for the nodes must be able to recognize the packets sent in the Tone Time, which we
have called tone packets, they must be identified with a number different from those that

identify other packets:

#define DATA PKT 0
#define RTS PKT 1
#define CTS _PKT 2
#define ACK_PKT 3
#define SYNC PKT 4
/

#define TONE_PKT 5 // —tone packets are 5™ type of packets in the network
/1

Furthermore, the size of the packet, header plus payload (3 bytes), must be indicated:

#define SIZEOF_SMAC_DATAPKT 50
#define SIZEOF_SMAC_CTRLPKT 10
#define SIZEOF_SMAC_SYNCPKT 9

#define SIZEOF_SMAC_TONEPKT 3; //<—Tone packets are 3 bytes long
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As shown above the tone packets are three bytes long. The tone packet structure is shown

Type of packet | Length of packet -

|-l 3-byte packets l-{

below:

Figure 28. Tone Packets 3-byte structure.

The correspondent block of code to create a structure for tone packets is:

struct smac_tone_frame {
int type;
int length;
int srcAddr; // «—Source address

}s

Tone packets do not have a destination address in it because any node that hears this packets

will wake up. It is intended for the future that a node that sends Tone packets have route

information and includes a destination address in the packet so neighbor nodes that are not in

the route of the packet do not consume energy in overhearing such packets.

B.2 Control variables

The variables shown in bold in code below will be used to control the decisions the code will

make. All of them are class variables, so each node will have different versions of them.
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Variable declarations are followed by a brief explanation of their major characteristics, also

in bold.

class SMAC : public Mac {

int StatusModifiedProtocol Timer //—Variable used to decide when to
wake up or not according to the desired schedule for environmental monitoring

int Periods_Listen_Tone_Packets /[—Variable used in case a Tone packet
has been received so the node must awake no matter its status

int NPProtocoloActivado; s | if proposed protocol
synchronization has already been activated

int NPActiveStatus; //<1 if in Listen Time

int NPRemainingSleepPeriods; //<0 if no remaining sleep periods

exist, !=0 if it still has some periods to sleep

int NPRemainingListenPeriods; //—0 if no listen periods exist, !=0 if
still has to listen

int Transmission_Control, /<1 if a tone packet has been received

int envio_paquetes_urgentes; //1 if the node has a triggered
packets that needs to be sent

The class SMAC shown in the code above is the class that has implemented some functions
of the layer 2 of the OSI model. The other functions are common to other layer 2 protocols

such as 802.11 and are inherited from superclass Mac.

B.3 Timers

Timers in the code control the whole operation of the proposed protocol. Among the many

functions are the following:
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» Control the schedule: the start or finish of the listen time and the sleep time
» Control the time for back-off procedures
» Maintain the synchronization

> Carrier sense mechanisms

Even though timer classes have different methods, they all have some common methods.

These methods are explained below:

> sched(double number) method: It is used to initiate a timer with a given number that
represents the time that will pass until the timer expires

> resched(double time) method: Used when function sched fails to schedule a timer

> expire() method: Called immediately after the timer has expired in order to schedule

the desired operations

The base class to create timers is Timerhandler. Class SmacTimer inherits from
Timerhandler part of its functionality and adds some functions as expire and busy methods.
Function expire will be called when the timer has expired so some functions must be
performed and function busy will be invoked to check if the timer is busy or can be invoked

again.

class SmacTimer : public TimerHandler { //«<Functions inherited from Timerhandler
public:
SmacTimer(SMAC *a) : TimerHandler() {a_=a;} //<—Each timer “belongs” to a specific
node
virtual void expire(Event *¢) =0 ;
int busy() ;
SMAC *a_;
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The proposed protocol main timer is ModifiedProtocolTimer that inherits its functionality

from SmacTimer class. Also has its own expire method.

class ModifiedProtocolTimer : public SmacTimer {
public:
ModifiedProtocol Timer(SMAC *a) : SmacTimer(a) {}

void expire(Event *¢);

The most important timer will be an instance of the class SmacCounterTimer (inherited from
S-MAC functionality to maintain the listen/sleep schedule); which inherits characteristics
from SmacTimer class. An instance of this class will control the whole schedule of the

protocol with the values of the variables declared in the body of the class.

class SmacCounterTimer : public SmacTimer {
public:
friend class SMAC;

SmacCounterTimer(SMAC *a, int i) : SmacTimer(a) {index =1i;}

void sched(double t);

void expire(Event *e);
protected:
double syncTime ~—SYNC Time
double dataTime ; «—Data Time
double sleepTime_; —Sleep Time
double cycleTime ;// ~Tf
double toneTime ; / «~Tone Time
¥
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B.4 Relevant methods

Methods of the SMAC class are explained in the paragraphs below. Only the most relevant

lines of code are show in the method to highlight the purpose and operation of each one.

» The handleTone method will be called as soon as a Tone Packet has been received by a
node. Once the packet has been received, the node starts another broadcast so the
complete route from the originating node to the Base Station is available to disseminate

the packet.

void SMAC::handleTone(Packet *p)

{
struct hdr_cmn *ch = HDR_CMN(p); // <—Pointers to the packet received

struct hdr_smac * sh=HDR SMAC(p);
Periods Listen Tone Packets = 30;

if((state. == SLEEP || state. == IDLE) && (radioState == RADIO _SLP || radioState ==
RADIO IDLE)){ //<If radio is not being utilized

if(state._ == SLEEP){
wakeup(); //<If node is sleeping, wake up
H
howToSend =BCAST TONE PACKET; //—Type of packet to transmit
state = CR_SENSE; //«—Start carrier sense
double cw = (Random::random() % SYNC_CW) * slotTime_sec_;
mhCS_.sched(CLKTICK2SEC(difs ) + cw);  //«<Wait a random time before sending
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» A function must be created that permits to send the tone packets when needed, which is

the function sendTONE, shown below:

bool SMAC::sendTONE(){
Packet *p = Packet::alloc();
struct smac_tone_frame *cf = (struct smac_tone frame *)p->access(hdr_mac::offset );

struct hdr_cmn *ch = HDR_CMN(p);

//THE CONSTRUCTION ON THE LAYER 2 PACKET TAKES PLACE HERE BEFORE

SENDING PACKET

cf->size() = SIZEOF_TONEPKT; /[<Size of layer-2 packet
cf->direction() = hdr cmn::DOWN; //«~-Transmission

cf->type = TONE_PKT; //—Type of packet

cf->srcAddr = index_; //—Layer 2 address of sending node

if (chkRadio()) {
transmit(p); /[<—Transmit packet
return 1;

} else

return O;

» The method handleCsTimer as called as soon as the contention time has finished. Once

finished, the node can send a packet because it has not sensed any other transmission.

void SMAC::handleCsTimer() {

// carrier sense successful
switch(howToSend ) { /[«<—Check what kind of packet is
about to be sent

case BCAST TONE_PACKET: /[—Case a triggered packet
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if (sendTONE()){
state_ =IDLE;

break;

» handleCounterTimer is the method that controls the schedule of the protocol in each node
through the timer called mhCounter_; that is an instance of the SmacCounterTimer class.
This mhCounter  is invoked when the schedule is in a new state (e.g. Sleep Time), the
timer decreases the value passed and when it is zero it changes the state of the schedule
(e.g. Tone Time). In this way the schedule goes from Sleep Time to Tone Time to Sync
Time to Data Time and again to Sleep Time. Only a small part of code of the method is

shown here for simplicity purpose.

void SMAC::handleCounterTimer(int id) {

if (mhCounter_[id]->value == sleepTime ) { //<~The timer has the value of

sleepTime , so it is coming from sleep are now in Tone Time

if((state_ == SLEEP || state_ == IDLE) && (radioState. == RADIO_SLP || radioState ==
RADIO_IDLE)){
if(Transmission_Control == 1){ //«<There is the need to transmit a
Tone packet
if(state == SLEEP){
wakeup(); //—Wake up is sleeping
H
howToSend = BCAST URGENT PACKET; //—Broadcast packet
state. = CR_SENSE; //<Start carrier sense

double cw = (Random::random() % SYNC_CW) * slotTime sec ;/<Wait a random

time before sending
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mhCS_.sched(CLKTICK2SEC(difs ) + cw); /

mhCounter_[id]->sched(CLKTICK2SEC(toneTime ));/<—Prepare to go to Sync Time

after Tone Time
b

Until now we have seen methods that entirely deal with deciding when to send a tone packet,
transmit the packet or what to do when a node receives a tone packet. In the remainder of this

section, methods that change the underlying synchronization are shown.

» The constructor of the SMAC class initializes the variable StatusModifiedProtocolTimer
with a value of 1. With this value, the schedule on top of the underlying one is the same.

Furthermore, the constructor fixes the values of the schedule.

SMAC::SMAC() : Mac{

StatusModifiedProtocol Timer=1; //l—Underlying schedule unchanged
ListenPeriod = 1; //«<~NLSP
toneTime_ = 0.6*syncTime _; //—Tone Time fixed to have a length of

0.6 that of the SYNC Time

listenTime = toneTime + syncTime + dataTime ;/<As seen on Figure 11, the Listen

Time is comprised of three subintervals

cycleTime = listenTime * 100/ dutyCycle +1; //«<~CycleTime = Tf or Time Frame

sleepTime = cycleTime - listenTime_; /[« Tf = Sleep Time + Listen Time
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» If the proposed protocol schedule, working on top of the underlying S-MAC schedule,
remained the same as the underlying one, there would not be energy savings, but as seen
on the chunk of code below, the variables StatusModifiedProtocolTimer and ListenPeriod

are changed to other values to configure a different schedule.

For simulation purposes, the nodes synchronize to a second schedule (proposed protocol
schedule) with received acknowledge (ACK) packets after sending data packets. As seen
below, Node 0 will set its variable StatusModifiedProtocolTimer to Value_Sleeping. This
variable StatusModifiedProtocolTimer is analogous to TCALP shown in Figure 12;
however not expressed in time units but in number of cycles (Ty).
StatusModifiedProtocolTimer is set to a value that is decreased continuously with each
Tr. While this value is different than zero the node sleeps, when zero the node awakes
again. ListenPeriod variable is analogous to NLSP (see Figure 12). While this variable is
different than zero, the node wakes. It is interesting to highlight that the value of
StatusModifiedProtocol Timer decreases as the number of the node that receives the ACK
packets increases. This is because (see Figure 15), node 1 that is the one that generates
triggered packets, receives the ACK packet one period before than node 2 and node 2
receives ACK packet one period before than node 3 and so forth. So to have all nodes
awake at the same time, a node must sleep one more period than its immediate neighbor
that is nearer to the Base Station. The proposed of synchronization schemeis shown in

Figure 29.

void SMAC::handleACK(Packet *p) {
if (index_ == 0){
StatusModifiedProtocolTimer = Value_Sleeping;
ListenPeriod = NLSP;
i
if (index_ == 1){
StatusModifiedProtocol Timer = Value Sleeping-1;
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ListenPeriod = NLSP;

H

if (index_ == 2){
StatusModifiedProtocolTimer = Value Sleeping-2;
ListenPeriod = NLSP;

H

if (index_ == 3){
StatusModifiedProtocolTimer = Value_Sleeping-3;
ListenPeriod = NLSP;

MNode 3 [—| |_| |_||_] r_}_lr_! |_| [_||_| |_|

- |
Sleep X-3 periods

i [1[] 1

Node 2
e — 1
Sleep X-2 periods "]
r— rp r—jp r—i Fr— =i
Node 1 N N IS T [ S — 1y
Sleep X-1periods
r— = r— = r— r— r— =
Node 0 I!I!I!I!I! |:|!|!
Sleep X periods
Whera:

f Data packet

v ACK packet

Figure 29. Proposed protocol synchronization

» Some of handleCounterTimer method functionalities were explained before. Now other

functionalities are explained that pertain to the schedule of the proposed protocol. This
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method “decides” when a node awakes or goes to sleep to comply with the desired new

schedule.

void SMAC::handleCounterTimer(int id) {

if (mhCounter [id]->value == toneTime ) { //—Coming from tone time, now on
Sync Time
StatusModifiedProtocol Timer--; //<Variable decreased with each new
Sync Time

if(StatusModifiedProtocol Timer == 0 || envio_paquetes urgentes == 1){

wakeup(); /l—Wakeup if
//StatusModifiedProtocolTimer ==

StatusModifiedProtocol Timer = 1; //<Set StatusModifiedProtocolTimer
/Ito 1 to sleep one period

ListenPeriod = 0; //—NLSP=0

else if(ListenPeriod !=0){

wakeup(); //[—Wake-up if NLSP is different than
110
ListenPeriod--; //—Decrease NLSP

H
else if (StatusModifiedProtocol Timer != 0){

sleep(); /1<—Go to sleep if
//StatusModifiedProtocolTimer is different than 0

H
if(Periods Listen Tone Packets !=0) {

wakeup(); //—Wakeup because the node has
/Ireceived a Tone packet

Periods_Listen_Tone Packets--;
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B.5 Operation of proposed protocol implementation

Figure 30 explains the basic operation of proposed protocol when an interesting event is
sensed. The node generates a Tone packet and will broadcast it. The diagram uses the

methods, variables and timers already and briefly explained in section 4.1.4.

/INode created .
Transmission Contral=0 Hinteresting event sensed so a
— correspondent triggered packet is
generated
Y
/hwake up, go to Tone Time ¥
=~ SMAC:handleCounterTimer(}

mhCounter_[id]-=sched(toneTime_)} Transmission_Control ==

fMeed to transmit a Tone packet
Iistart carrier sense
mhCS_sched{difs+ow);

Transmission_Control ==

mhCounter_[id]_ expires mhCs_ expires
Y B

/IGo to sync Time SMAC::handleCsTimer()

SMAGC -handleCounterTimen(}
mhCounter_[id]->sched(syncTime_)}

A

L 4
mhCounter_[id]_ expires SMAC::sendTone()

Y

/IGo to data Time v
SMAC :handleCounterTimer(}

mhCounter_[id]->sched(dataTime_)} HMransmit the packet
transmit (p)

mhCounter_[id]_ expires

1Go to sleep
SMAC::handleCounterTimer(){
mhCounter_[id]-=sched(sleepTime_}}

mhCounter_[id]_ expires

Figure 30. Code for proposed protocol operation when an interesting event is sensed
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Figure 31 below shows the proposed protocol operation when a Tone packet is received. As
explained in chapter 3, the node that receives a Tone packet will broadcast another Tone

packet to make other nodes in the route to wake up.

fTone packet received
SMAC recv()
flwakeup

wakeup():

/{Broadcast packet
SMAC:handleTone(}

/Meed to transmit a Tone packet
/start carrier sense
mhCS_sched(difs+cw);

i mhCs_ expires

SMAC::handleCsTimer{}

'

SMAC: :sendTane()

'

HTransmit the packet
transmit (p)

Figure 31. Code for proposed protocol operation when a Tone packet is received
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Figure 32 shows the operation correspondent for ACK synchronization explained in previous
paragraphs. The procedure to create a second schedule on top of existing one in shown in

Figure 33.

IIACK packet received

v
SMAC::handle(p){
StatusMaodifiedProtocolTimer = Value_Sleeping — X
% depends on the node position
ListenPeriod = NLSP

}

Figure 32. Code for synchronization with ACK packets
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iNode created

SMAC:SMAC{
StatusModifiedProtocol Timer=1
ListenPeriod=0

H

[Tone Time
= wakeup(); ffwake up
mhCounter_[id]->sched(toneTime_})

StatusModifiedProtoc
olTimer==0

StatusModifiedProtoc
olTimer!=0

ListenPeriod!=0

wakeup()
StatusModifiedProtocolTi wakeup()
mer = 1 ListenPeriod-- sleep()iiGo to sleep

ListenPeriod = 0

JF |

I1Sync Time
mhCounter_[id]->sched(syncTime_)

/[Data Time
mhCounter_[id]->sched{dataTime_)

/[Sleep Time
mhCounter_[id]->sched(sleepTime_)

Figure 33. Code for proposed protocol procedure to create and use a second schedule
on top of existing one

92




	 
	 Abstract 
	ACKNOWLEDGEMENTS 
	TABLE OF CONTENTS 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	TABLE LIST 
	 FIGURE LIST 
	1. INTRODUCTION 
	1.1  Wireless Sensor Networks 
	1.2  MAC protocols for wireless sensor networks 
	1.3  Literature Review 
	1.4  Summary of Following Chapters 
	2.  THE BACKGROUND 
	2.1 Wireless Sensor networks for environmental monitoring 
	2.1.1 Generic Architecture 
	2.1.2 Habitat monitoring applications 
	2.1.3 Design Factors 
	2.2 Related MAC protocols for Wireless Sensor Networks 
	2.2.1 S-MAC 
	2.2.1.1 Basic characteristics 
	2.2.1.2 Synchronization  

	 
	2.2.1.3 Collision avoidance 
	2.2.1.4 Adaptive Listening 
	2.2.1.5 Overhearing avoidance  
	2.2.1.7 Comparison of Proposed Protocol with S-MAC 
	2.2.2 IEEE 802.11 MAC protocol 
	 
	2.2.2.1 Medium Access  
	2.2.2.2 Carrier sense mechanism 
	2.2.3 T-MAC  
	2.2.4 D-MAC 

	3. THE PROPOSED ENERGY-EFFICIENT MAC PROTOCOL  
	3.1 Protocol operation 

	 
	3.2 Basic listen/sleep schedule to avoid idle listening 

	 
	3.3 Tone Time 

	 
	3.1.1 Basic listen/sleep schedule drawbacks 
	3.1.2 Modified sleep/listen schedule  
	 
	3.1.3 Tone Time signaling mechanism 
	3.4 Latency analysis 
	3.4.1 Triggered packets latency 
	3.5 Energy consumption analysis 
	3.5.1 S-MAC energy analysis 
	3.5.2 Proposed protocol energy analysis 
	 

	4. SIMULATIONS AND PERFORMANCE ANALYSIS 
	4.1 Algorithms 
	4.1.1 Algorithm for proposed sleep/listen schedule  
	4.1.2 Algorithms for Tone packets mechanism  
	4.2 Simulation scenario 
	4.3 Results and analysis 

	5. CONCLUSIONS AND FUTURE WORK 
	REFERENCES 
	 
	 
	APPENDIX A. TCL SCRIPT FOR ns-2 SIMULATIONS   
	APPENDIX B. IMPLEMENTATION OF PROPOSED PROTOCOL    
	B.1 Construction of packets sent in the Tone Time 
	B.2 Control variables 
	 
	B.3 Timers 
	B.4 Relevant methods  
	B.5 Operation of proposed protocol implementation 
	 
	  
	 
	  
	 



