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Abstract 

 

This investigation seeks to develop a dynamic model capable of predicting the 

dynamic behavior of a sandwich composite beam.  This work is based on the previous 

works of Lancaster, Pilkey and Ortiz.  A vibration-based methodology is presented to 

calculate and update both the damping and stiffness matrices of the model.  Initially a 

Finite Element Model (FEM) of the beam is developed.  Along with this model, modal 

properties of the beam system are obtained from Frequency Response Functions (FRF).  

With this information, an iterative computational algorithm is used to identify the 

damping matrix of the system and update the stiffness matrix.  These two updated 

matrices, along with the mass matrix obtained from the FEM, make up the analytical 

model of the structure.  This analytical model is used to generate FRF’s, which are in turn 

compared to their experimental counterparts. 

Damage was induced in the beams and studied.  The results showed that the 

analytical models could be adjusted to the damaged beams.  The dynamic behavior of the 

beam system could be predicted with the analytical model.  Therefore, the damping and 

stiffness matrices identified and updated by the algorithm adequately represent the 

structure’s damping and stiffness characteristics. 
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Resumen 

 

Esta investigación propone desarrollar un modelo dinámico capaz de predecir el 

comportamiento dinámico de una viga de material compuesto en capas.  Este trabajo está 

basado en los trabajos anteriores de Lancaster, Pilkey y Ortiz.  Se presenta una 

metodología, basada en ensayos de vibración, con el fin de calcular y actualizar las 

matrices de amortiguamiento y rigidez del modelo.  Se desarrolla inicialmente un modelo 

de elemento finito de la viga.  En conjunto con el modelo, las propiedades modales del 

sistema de viga se obtienen de las funciones de respuesta de frecuencias.  Con esta 

información, se utiliza un algoritmo de iteración computacional para identificar la matriz 

de amortiguamiento del sistema y actualizar la matriz de rigidez.  Estas dos matrices 

actualizadas, en conjunto con la matriz de masa obtenida por medio del método de 

elementos finitos, forman el modelo analítico de la estructura.  Este modelo analítico es 

utilizado para generar funciones de respuestas de frecuencias, que a su vez se comparan 

con sus contrapartes experimentales. 

Se indujo y estudio daño en las vigas.  Los resultados demuestran que los modelos 

analíticos pueden ser ajustados adecuadamente a vigas con presencia de daño.  El 

comportamiento dinámico del sistema de viga puede ser predicho por el modelo analítico.  

Esto nos confirma que las matrices obtenidas por el método presentado, las matrices de 

amortiguamiento y rigidez, pueden ser identificadas y actualizadas adecuadamente por el 

algoritmo y representan de manera fiel las características de amortiguamiento y rigidez 

del sistema. 
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Chapter One: 

Introduction 

 

Model updating is the process where an initial theoretical representation of the 

dynamical behavior of a structure can be refined, corrected or updated using experimental 

data acquired from tests performed on the actual structure.  This area of research has 

attracted a lot of attention and acquired importance lately.  The need for these updating 

procedures is due to the ever presence of errors associated with constructing a theoretical 

model of the structure.  Another important aspect of model updating comes from the need 

for improved performance of engineering designs and the materials used in those designs. 

Modeling real life structures can be a difficult and strenuous task.  Structures may 

incorporate different elements.  The variety of these elements and their interaction 

contributes to the structure’s complexity.  Certain modeling techniques enable engineers 

to understand complex systems by breaking them into smaller, simpler systems which 

can be easily studied.  These smaller systems facilitate the task at hand while accurately 

portraying the larger, more complex system. 

Damage detection is currently an area under extensive research.  Obviously, the 

importance of damage detection is the added capability of a system to be diagnosed prior 

to the failure of such system.  To accurately anticipate failure or damage of a design 

equates into more safe, efficient, and economical designs.  Damage detection is a field 

that automatically benefits from model updating techniques.  The scope of this study is to 

create a model that will enable a neural network to detect presence of damage on the 

structures. 

The general procedure for damage detection is: 

1. Perform a modal analysis on the undamaged structure, 

2. Perform the same analysis on the damaged structure and 

3. Relate the changes exhibited by the undamaged and the damaged structure 

to the damage to which the structure was subjected. 

Extensive research has been conducted in this field, (references [1-6]) with little 

attention paid to composite materials.  These materials have become very popular and 
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provide the engineer with an alternative to traditional materials used in certain 

application.  Their attractiveness resides in that they can practically be tailored for a 

specific applications.  An example of their benefits is the fact that they can provide high 

stiffness, high strength and exhibit little weight.  These characteristics make them 

attractive for a wide range of applications, including the fields of aerospace, marine, 

automotives, general transportation and structures, to name a few. 

The specific composite category dealt with in this investigation is a sandwich 

composite.  A sandwich composite structure is a special form of a laminated composite 

comprising a combination of different materials that are bonded to each other so as to 

utilize the properties of each separate component to the structural advantage of the whole 

assembly.  Typically a sandwich composite consists of three main parts; two thin, stiff 

and strong faces separated by a thick, light and weaker core.  The faces are adhesively 

bonded to the core to obtain a load transfer between the components.  The faces of the 

composite give the material its strength and stiffness while the core provides absorption 

of impacts by load transfer between adjacent cells within the core.  The primary 

advantage of a sandwich composite is very high stiffness-to-weight ratio and high 

bending strength-to-weight ratio.  The sandwich enhances the flexural rigidity of the 

structure without adding substantial weight.  Sandwich composites also have great impact 

resistance, wear resistance, fatigue resistance and high energy absorbing capabilities. 

Diagnostics of structural health, using vibration response, is of great importance 

and has immense potential in areas such as aerospace, mechanical and civil engineering.  

It is important to study composite materials and their behavior under vibrations in order 

to extent their usage and applications for structural purposes.  The study of sandwich 

composites and their dynamic behavior will provide us with the necessary tools to 

accurately predict changes and damage in the structure.  If we are able to accurately 

predict changes in the structural behavior of a system, the reliability of the system 

increases due to the fact that adjustments are made to the structure and structural failure 

can be prevented. 

In this research we will update a finite element model using vibration response.  

This research will apply specifically to sandwich composites, an area that has not been 



 

 

3

extensively studied using vibration response methods.  The model updating will be done 

utilizing an iterative method (Lancaster [7-8] & Pilkey [9-10]) that will establish a 

damping matrix which will in turn be used to determine the stiffness matrix directly.  The 

procedure will be performed for both the undamaged and damaged cases.  Frequency 

responses functions (FRF’s) will be generated to confirm the behavior of our model with 

that of the experimental case.  The procedure will make use of the mass properties of the 

system and the modal data (damping ratios, eigenvalues and mode shapes) which is 

extracted from the experimental Frequency Response Functions (FRF’s). 
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Chapter Two: 

Literature Review 

 

Extensive research has been done in the area of damage detection.  Different types 

of techniques are available that address this purpose.  In trying to limit the scope 

concerning the topic of this thesis, only works concerning frequency response methods 

will be reviewed. 

Tran et al. [5] utilized changes in stiffness in order to characterize the damage and 

detect its presence.  A simple cantilever thin plate was used in this study.  Here frequency 

response function (FRF) data was used to find the structural damage.  The method rests 

on the assumption that the damages affected mainly the stiffness of the specimen, while 

mass and damping properties remained largely unchanged. 

This article was based on the observation that the dynamic stiffness matrix ( )[ ]ωZ  

and FRF receptance matrix ( )[ ]ωα  of a dynamic structure are orthogonal to each other, 

( )[ ] ( )[ ] [ ] [ ]( ) ( )[ ] [ ]IMKZ =−= ωαωωαω 2 .   (1.1) 

Damage was identified by locating the coordinates where stiffness changes took 

place.  A receptance difference vector, ( )[ ]ωd , was assembled and indicated which 

coordinates displayed changes in stiffness due to damage.  These vectors were plotted 

against the frequencies of interest in a 3D Damage Location Plot.  The approach used in 

this investigation, regarding the incompleteness of FRF data, was to simply eliminate the 

rows and columns corresponding to the unmeasured degrees of freedom (DOF).  A finite 

element analysis of an undamaged homogeneous steel plate was conducted.  The mass, 

M, and stiffness, K, matrices were generated.  A crack was introduced in the model by 

reducing the Young’s Modulus by 30% in a selected element.  The mass and stiffness 

matrices were again generated with the simulated damage.  Comparing the FRF data for 

both models did not detect the damage.  However the 3D Plot was able to identify the 

damage location. 

Capecchi et al. [11] studied three different geometries in which damage was 

represented by a linear decrement of stiffness.  Here, the stiffness was unchanged 

throughout the structure except in a few damaged locations.  The cases investigated were 
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a simply supported beam, a three span continuous beam and a ten-story shear frame.  The 

method used an optimization approach with objective function ( )αl given by: 

( )
2

det∑


















 ∇
=

i
i
i

H
l

α

λ
α     (1.2) 

where λi is the set of ( )1+n  eigenvalues and iHα  is the eigen-function matrix.  The 

damage was located where the objective function was minimized or equal to 0.  Here, 

only frequencies are assumed as modal characteristics and the damaged identification is 

based on the minimization of the objective function that accounts for the discrepancies 

between analytical and experimental quantities. 

Kosmatka et al. [1] detected damages with a non destructive methodology.  The 

procedure made use of measured modes and frequencies along with residual forces and a 

weighted sensitivity analysis to estimate mass and stiffness variation.  Determination of 

the residual forces and the weighted sensitivity analysis required the use of a model 

correlated to the experimental baseline data from the undamaged structural state, which 

was used as the reference state. 

This method used measured data to locate potentially damaged regions, using the 

residual modal force vectors, and conducted a sensitivity analysis to account for 

variations in mass and/or stiffness where damage was represented by a stiffness 

reduction.  Other advantages of the method is that it accounts for variations in the 

system’s mass, stiffness and center of mass locations, perturbations of natural frequencies 

and modal vectors, and confidence factors for structural parameters and instrumentation 

error. 

Other techniques employ the use of damage indices as damage indicators.  Kim et 

al. [2] developed vibration based algorithms to locate and estimate the severity of damage 

in structures.  A series of algorithms were developed to improve the accuracy of the 

method.  An equation for the damage index, Bj, was derived.  It was defined as the 

fraction of modal energy of the ith mode and the jth member.  These methods give 

information regarding the location and the severity of damage from changes in the mode 



 

 

6

shapes of the structure and use stiffness changes in order to detect damage.  Damping 

characteristics were not taken in consideration. 

Ratcliffe et al. [4] used non destructive vibration based techniques for locating 

delamination damage in a composite beam.  Here the method makes use of the 

displacement eigenvector and converts it into a curvature mode shape.  A damage 

detection index locates the delamination, irrespective of its position along the beam or 

depth within the beam. 

This technique was demonstrated with a finite element model of a composite 

beam, where the damage was represented by a relaxation of the connectivity between 

elements at a desired position.  The gapped smoothing damage detection method was 

validated experimentally. 

Wang et al. [6] developed a detection algorithm that uses FRF data measured 

prior and posterior to structural damage.  From this data, a damage vector was extracted 

indication both magnitude and location of damage.  In order to account for model 

incompleteness an iterative version of the algorithm was introduced. 

Baruch et al. [12-13] proposed a direct method for stiffness updating.  The 

method utilizes modal data in order to update the stiffness matrix of the model.  The 

mode shapes are corrected to satisfy the orthogonality requirement.  The method includes 

the treatment of weighted orthonormal conditions and number of mode shapes less than 

the number of DOF of the structure.  The paper also presents a variation of this method, 

which deals with the manipulation of the flexibility matrix.  This corrected flexibility 

matrix incorporates the corrected mode shapes and the measured frequencies. 

Ewins [14] presents a review of the terminology involved in model adjusting or 

model updating.  He outlines different model updating algorithms currently available, 

with a discussion of each algorithms’ functionality, advantages and disadvantages.  He 

concludes with general comments on how to correctly set up for model updating and 

some of the limitations of the process. 

Aiad et al. [15] presents a procedure to improve analytical models from measured 

complex modes.  The mass and stiffness matrices are updated from experimental data.  

The example under study is a clamped plate.  The mass and stiffness matrices are 
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corrected by using different conditions in order to make the matrices meet the 

orthogonality requirement.  A modal assurance criteria (MAC) comparison is shown to 

confirm the effectiveness of the model. 

Imregun et al. [16] outlines the basic formulation of an FRF based updating 

method.  Several solution strategies are presented.  Simulated data is used to provide a 

better picture of the uniqueness of the model, the effectiveness of the updating method 

and the influence of noisy data and incomplete experimental data in the model.  Stability 

of the method and convergence of the model is also studied in some detail.  Finally the 

basic algorithm is extended to include complex FRF data and deal with proportional 

damped systems. 

Friswell and Lees [17] present a paper concerned with the resonance frequency of 

damped structures.  They define the resonance frequency as the local maximum of the 

response.  This frequency is not necessarily the undamped or damped natural frequency.  

The maximum may exhibit a shift due to the influence of neighboring modes and their 

influence upon the response.  Special attention is paid to rotating structures, where the 

definition of these resonance frequencies or critical speeds change depending on which 

degree of freedom is being considered. 

Allemang and Brown [18] examine different approaches to handling modal data 

and reformulating modal parameter estimation algorithms.  A matrix polynomial 

approach is used to unify the presentation of the different algorithms currently available.  

This unified matrix polynomial approach (UMPA) allows a discussion of the similarities 

and differences between the different methods.  Depending upon the situation and 

quantity of experimental data available, the method to be used varies, with some methods 

more appropriate than others.  Methods such as least squares, total least squares, double 

least squares and singular value decomposition take advantage of redundant measurement 

data.  Eigenvalue and singular value decomposition transformations are used to 

effectively reduce the size of the resulting eigenvalue-eigenvectors problem. 

Friswell, Inman and Pilkey [19] propose a method to update the damping and 

stiffness matrices simultaneously.  The mass matrix is assumed correct, while the other 

matrices are updated reproducing the measured modal data.  The method minimizes the 
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change in damping and stiffness, with the measured data as a constraint.  The approach 

was demonstrated using a simulated example, producing reasonable results.  The 

algorithm does not guarantee that the updated matrices are positive definite and the 

preservation of the original finite element model’s connectivity. 

Lancaster [7-8] presents a methodology to invert lambda matrices.  The paper first 

considers the inversion of a general matrix polynomial defined by: 
( ) ( ) ( )ll

lll AAAAD ++++≡ −
− λλλλ 1

1
10 L .   (1.3) 

Applying this notation to a dynamic system, where the superscript l = 2, the matrices for 

the polynomial terms become A0 = M, A1 = C and A2 = K.  This equation represents a 

dynamic system with a mass, damping and stiffness matrices. 
( ) ( ) ( )KCMD ++≡ λλλ 22     (1.4) 

From this, Lancaster presents two theorems that will help to manipulate this 

expression.  The first theorem expresses that if M and K are symmetric and M is 

nonsingular then 

( )
( ) 0

0
=+

=+

rKM
qKM

TTλ

λ
     (1.5) 

where q and r are the right and left eigenvectors of the system. 

This expressions can be normalized in a way such that 

Λ−=

=

KQR
IMQR

T

T

,      (1.6) 

which leads to 

( ) ( ) TRIQKM 11 −− Λ−=+ λλ .    (1.7) 

The second theorem states that if M is nonsingular and D (2) (λ) has a degeneracy equal to 

the multiplicity of λi for i = 1, 2, 3, …, 2n, then the eigenvectors can be normalized such 

that 

( )[ ] ( ) TRIQD 11,0121,0 −−
Λ−Λ= λλλ     (1.8) 

and 

( )[ ] ( ) 112122 −−−
+Λ−Λ= MRIQD Tλλλ .   (1.9) 
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For the previous equations Q and R are matrices populated by the left and right 

eigenvectors of the system.  By realizing that the left and right eigenvectors are identical 

and that they occur in complex conjugate pairs, a normalizing condition can be 

established as 

( ) 12 0 =+ ii
T
i CM φλφ      (1.10) 

and a definition for the damping matrix can be given as 

( )MMC TT ΦΦΛ+ΦΦΛ−= 22 .    (1.11) 

Lancaster also defines the stiffness matrix as 

TTK ΦΦΛ−ΦΦΛ−= −−− 111 .     (1.12) 

The methodology is applicable to underdamped systems, where the eigenvalues of the 

system occur in complex conjugate pairs. 

Pilkey [8-9] introduced an iterative method with damage detection capabilities.  

This technique is robust and is able to identify the damping matrix of a structure.  The 

algorithm considers viscous damping, dealing in turn with complex eigenvectors and 

eigenvalues.  The method is based on work by Lancaster [21].  The calculation of the 

damping matrix requires a known finite element model and eigen data.  The paper also 

compares different methods for model reduction and updating. 

Ortiz [3] used Pilkey’s methods to study its applicability to a sandwich composite 

beam.  The method effectively combined the FRF data with FEM data (both mass and 

stiffness matrices were generated with finite element techniques), and results were able to 

generate a damping matrix that characterized the system.  Models were established and 

compared against experimental FRF data.  It was concluded that the method could 

produce a mathematical model for sandwich composite that predicted actual beam 

behavior. 
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Chapter Three: 

Theoretical Background 

 

Various techniques are available for finite element updating.  Two ways, discrete 

parameter models and continuous models, delineate the manner in which systems can be 

described.  In discrete parameter system models, the system is an assembly of rigid body 

masses and deformable, massless elements.  Another way in which a system can be 

described is to assume that the mass and deformation is distributed throughout the 

system, this is a distributed or continuous parameter system.  A continuous model will be 

a better choice for describing a system, but in practice this approach is not always 

possible.  Sometimes the equations of motion of the system are difficult or impossible to 

solve in a closed form. 

The approach used in this investigation is the discrete parameter approach.  Here 

some assumptions were made to facilitate the study of the system.  Mass, stiffness and 

damping properties of the system are assumed to be invariant with respect to time and 

deformations in the structure are small and follow a linear stress-strain relationship.  

Because of this linear behavior, the structure is said to be linear and the principle of 

superposition can be used in the analysis of the structure.  This principle can be described 

as follows: if the application of a force FA causes the system to react by deforming with a 

deformation δA and another force, FB, is applied independently causing an arbitrary 

deformation δB then the application of both forces simultaneously will cause the system 

to react by deforming by an amount δT = δA + δB. 

To ensure that our structure behaves linearly, a slender beam serves as our test 

structure.  Depth and height of the beam are small compared to the length dimension.  

This being said, we can assume that the plane section of the beam will remain plane 

during the process of vibration.  For the analysis of our structure it is quite reasonable to 

assume linear behavior of the system, hence the principle of superposition is applicable.  

Because of linearity we can also assume the composite has an equivalent modulus of 

elasticity, a physical property that will dictate the magnitude of the components of the 

stiffness matrix. 
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In order to obtain an analytical model of the system, the structure is subjected to 

experimental modal analysis techniques.  This modal testing is conducted with the 

purpose of obtaining the modal parameters of the structure, such as natural frequencies, 

eigenvalues and eigenvectors.  The modal analysis, in addition to the finite element 

model of the structure, can be used to generate an analytical model whose behavior is 

comparable to the actual or experimental behavior of the structure. 

 

Mathematical Modeling 

 

A beam is structural member whose primary function is to support transverse 

loading.  Being a continuous system, the beam’s mass and stiffness are distributed evenly 

along the length of the longitudinal axis.  In order to properly describe the behavior of the 

beam, a discrete system will be used.  The beam is divided into equal elements having 

uniform physical properties.  With this in mind, two different approaches can be used to 

define the model: a lumped mass approach and a consistent mass approach. 

For a model based on the lumped mass approach, the displacements of all points 

within the element are equivalent to the displacement of the element’s centroid and the 

model’s accuracy increases as the number of elements increase.  A typical discrete model 

using three masses is depicted in Figure 3.1. 

 

Figure 3.1: Discrete Model with Three Degrees of Freedom. 

Here, the dynamic behavior of the system can be described using Newton’s 

second law.  Each mass element is assigned a unique coordinate system to describe its 
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motion: displacement, velocity and acceleration.  Structural and dissipative forces are 

represented by spring and dashpot elements respectively.  Application of the above 

procedure yields a set of coupled equations in the form of: 

FKxxCxM =++ &&&      (3.1) 

where M is the mass matrix, C is the damping matrix and K is the stiffness matrix of the 

system. 

The definition of each matrix is given below as: 
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The consistent mass approach is based on beam theory.  The simplest and best 

known model of these theories is the Euler Bernoulli Beam Theory, commonly referred 

to as classical beam theory.  In order to use this theory, certain assumptions are made.  

The beam is assumed to have plane symmetry, plane sections originally normal to the 

longitudinal axis of the beam remain plane and normal to the deformed longitudinal axis 

upon bending.  Also the internal strain energy of the beam member accounts only for 

bending moment deformations. 

In this theory, the transverse deflection of the beam w is governed by the 

differential equation: 

( )xf
dx

wdEI
dx
d

=







2

2

2

2

 for 0 < x < L  (3.2) 

Because we have four boundary conditions per element, a polynomial interpolation 

function of the form ( ) 43
2

2
3

1 cxcxcxcxw +++=  is chosen to describe the deflection of 

the beam element.  In order to evaluate the constants of the previous expression, the 

boundary conditions for each element must be met which are the displacement and slope 

at each node of the element given by: 
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( ) ( )

( ) ( ) 43
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    (3.3) 

From these expressions, the approximate displacement for the element can be 

expressed as: 
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where l is the element’s length. 

The shape function vector can be expressed as 
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Using this vector and the definition of kinetic energy, the mass matrix for an 

element of the beam can be defined as 

∫=
l

jiji dxmM
0

ϕϕ      (3.6) 

where m  is mass per unit length. 

Similarly the stiffness matrix can be defined as 

∫=
l

ji
ji dx

dx
d

dx
d

EIK
0

2

2

2

2 ϕϕ
    (3.7) 

Using these expressions the mass and stiffness matrix for each element are 

obtained as: 
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and 
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where EI is the modulus of rigidity of the beam. 

The model that will be developed consists of four elements with five nodes.  

Global matrices representing the system’s mass and stiffness are 10 by 10 symmetric 

matrices. 

 

Modal Analysis 

 

Modal analysis refers to the process of identifying the system’s modal 

characteristics such as natural frequencies, mode shapes and damping ratios.  This 

information is gathered via vibration experiments, specifically by generating Frequency 

Response Functions (FRF) of the system.  The Frequency Response plots the magnitude 

of the transfer function against the frequency at which the system is excited.  Figure 3.2 

shows a typical Frequency Response Function.  The natural frequencies can be identified 

by looking at the different peaks of the graph. 
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Figure 3.2: Frequency Response Function Plot. 

The information obtained from the modal analysis, in conjunction with the finite 

element model developed previously, will be used to accomplish the task at hand, 

updating the finite element model.  The updated model will be compared with the 

experimental FRF for the purpose of validating the reduced model’s ability to predict 

dynamic behavior.  Modal analysis can be summarized in three steps: extraction of modal 

properties from the FRF plot, identification of mode shapes and vibration modes, and 

structural model updating. 

For the analysis of the Frequency Response the Single Degree of Freedom 

Method (SDOF) was used.  In this method the Frequency Response Function is sectioned 

off into frequency ranges bracketing each peak.  Each peak is analyzed independently and 

is seen as the response of a single degree of freedom system.  This implies that in the 

vicinity on the resonant peak the Response Function is dominated by a specific single 

mode.  To properly identify a resonant peak two characteristics must be present: the 

magnitude of the Frequency Response must be at a maximum and a phase shift of 

approximately 90 degrees must occur. 

A Frequency Response Function can be defined as the ratio of the output to the 

input under steady state conditions when the excitation is purely harmonic.  Consider the 

single degree of freedom equation: 

( )tykxxcxm =++ &&&      (3.10) 
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in which x is the system’s output and y(t) is the input forcing function.  Assuming a 

solution of the form ( ) tiety ω= , the output of the system may be expressed as 

( ) tieiHx ωω= , where H(iω) is a complex function.  Substitution into equation 3.10 yields 

( ) ( ) ( )icmk
H

ωω
ω

+−
= 2

1 .    (3.11) 

Here m, c, k and ω represent the mass, damping, stiffness and driving frequency 

respectively. 

An analogous statement could be made with respect to our MDOF system.  By 

examining equation 3.1, the system can be defined by the matrix equation 

FKxxCxM =++ &&&      (3.12) 

where M is the mass matrix, C is the damping matrix and K is the stiffness matrix of the 

system.  Taking the Laplace transform of the system and applying a unit impulse forcing 

vector yields the following: ( ) ( ) { }12 =++ sXKCsMs .  By manipulating this expression, 

we can easily arrive to an equation similar to equation 3.11.  To transfer the equation to 

the frequency domain, let ωjs = .  The matrices in equation 3.12 are symmetric, real and 

positive definite. 

The largest value of the FRF magnitude occurs at resonance, when the driving 

frequency is near the natural frequency mk /=ω .  This corresponds to a peak in the 

FRF plot.  At this condition, large displacements and stresses are developed in the 

system.  Here lies the importance of vibration analysis for structures. 

In this analysis, a composite beam is vibrated and measurements are taken at each 

element.  The data collected is used to generate the FRF plots for the beam.  A shaker is 

used to impart the motion into the system, via a signal generator.  The shaker vibrates 

randomly within the frequency range of interest.  The input signal is measured by an 

accelerometer and the output by a laser vibrometer conditioned through a dynamic signal 

analyzer (see Figure 3.3).  The signals are then processed by the software, generating the 

FRF of the specimen. 
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Figure 3.3: Experimental Setup. 

From the generated FRF plots, modal parameters are extracted.  The modal 

parameters of interest are the values for the maximum value of the transfer function, the 

modal damping ratio and the natural frequency of the system.  The FRF plots were 

analyzed using the SDOF method discussed previously.  Various methods are available 

for the extraction of the modal parameters for each of the SDOF systems.  The method to 

be employed in this investigation will be described in the following section.  For each 

element of the finite element model, four SDOF Transfer Functions are examined, each 

function corresponding to the first four natural frequencies of that particular element. 

 

Nyquist Plots 

 

A Nyquist plot, also known as the circle fitting method, is a systematic method for 

obtaining modal parameters from Response Functions.  Basically a Nyquist diagram plots 

the real part of the complex transfer function versus the imaginary part.  This is done for 

a specific frequency range, around a resonance peak of the general FRF (SDOF method).  

For the SDOF, in the vicinity of resonance, the resulting graph resembles the figure of a 

circle, hence the name circle fitting technique. 

To construct a Nyquist plot first the frequency range of interest is divided into 

equally spaced segments and a complex response is associated with each of the 

frequencies.  Then the plot is generated using the real and imaginary parts of the 

response.  The magnitude of the response is equal to the distance from the response point 

to the origin.  From this concept we could say that resonance occurs at a frequency whose 
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corresponding point in the Nyquist circle is farthest from the origin.  If the point 

corresponding to the resonant condition was not included in the diagram, the natural 

frequency is the point lying halfway the longest arc between two adjacent points (see 

Figure 3.4). 

 

Figure 3.4: Nyquist Plot. 

The adjacent points forming the largest arc of the circle correspond to the 

frequencies ωa and ωb.  The natural frequency, ωn, can be estimated as the frequency 

corresponding to point halfway through the arc.  Using the coordinates of points ωa, ωb 

and the center of the circle, the natural frequency and the angle α are calculated.  After 

obtaining the modal frequency, the modal damping ratio can be approximated with the 

relation: 
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ζ
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ab    (3.13) 

The last piece of modal information that is needed is the mode shape for each 

individual natural frequency.  The procedure to extract the mode shapes of the system is 

taken from Inman [20].  The theory presented here will explain how to obtain real mode 

shapes from the experimental data (damping ratio, frequency response and natural 

frequencies). 
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Determining the mode shapes of a multiple degree of freedom system involves the 

measurement of several FRF.  First a FRF matrix, or receptance matrix, is established.  

Consider the system described by 
tjfeKxxCxM ω=++ &&&     (3.14) 

where feiωt is harmonic input force in complex form.  Assuming a harmonic solution to 

the system, x(t) = ueiωt, and combining with equation 3.14 yields 

( ) fuCjMK =+− ωω 2     (3.15) 

From the equation above we can define the receptance matrix, α(ω), as the ratio 

of displacement to force, which yields 

( ) ( ) 12 −
+−= CjMK ωωωα     (3.16) 

The receptance matrix can be further analyzed through the modal coordinates 

transformations.  From this transformations modal stiffness and modal damping matrices 

can be written in diagonal form as 

[ ] PKMMPdiagonal T
iK

2
1

2
1

2 −−
==Λ ω    (3.17) 

[ ] PCMMPdiagonal T
iiC

2
1

2
1

2
−−

==Λ ωζ    (3.18) 

where P is the matrix of normalized eigenvectors of the matrix 2
1

2
1

−−
KMM .  Rearranging 

these expressions for K and C and substituting into equation 3.16 yield 
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where PMS 2
1

=  consisting of column vectors ui. 

From matrix theory (AB)-1 = B-1A-1, so 

( ) 1
22 2

1 −−
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




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iii
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By realizing that, in equation 3.20, the columns of S-T are the mode shape vectors 

of the undamped system, denoted ui, equation 3.20 can be written as the summation 

( ) [ ]
( ) ( )∑

= +−
=

n

i iii

T
ii

j
uu

1
22 2 ωωζωω

ωα     (3.21) 

where uiui
T is the outer product of two n x 1 mode shape vectors. 

The element αsr of the receptance matrix corresponds to the frequency transfer 

function between the measured response, us, at node s caused by the input force fr at node 

r, when all other inputs are zero (refer to Figure 3.5).  Therefore the element can be 

defined as 

( ) ( ) ( )∑
= +−

=
n

i iii

sr

T
ii

sr j

uu

1
22 2 ωωζωω

ωα     (3.22) 

Each element of α(ω) is a transfer function defined by 

( )[ ] ( )ωωα srsr
r

s H
f
u

==     (3.23) 

where H(ω) is the transfer function. 

If the peaks of the system are well spaced, the summation of equation 3.22 is 

dominated by the term corresponding to that particular frequency.  This is equivalent to 

saying that ω = ωi and substituting into equation 3.22, yields 

( ) 22 ii

sr

T
ii

sr

uu

ωζ
ωα =      (3.24) 

which, with equation 3.23, can be rearranged as 

( )isriisr

T
ii Huu ωωζ 22=      (3.25) 

This derivation holds for proportionally damped systems with underdamped, 

widely spaced modes and the procedure gives an approximation of the modes of the 

structure by relating the measures damping ratio, the measured natural frequency and the 

measured transfer function.  Also, this procedure gives an approximation of the 

magnitude of eigenvector matrix.  The sign of this vector can be obtained from the phase 

plot of the transfer function.  At resonance the phase should +90º or -90º.  If the phase 

corresponding to that element of the mode vector is +90º, the element is positive.  
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Otherwise the element is assigned a negative value.  Next we will go step by step through 

an example of this methodology. 

 

A Cantilever Beam Example 

 

Consider the cantilever beam shown in Figure 3.5 in which three experimental 

FRF plots have been obtained. 

 

Figure 3.5: Mode Shape Acquisition. 

From these FRF plots, the natural frequencies and the damping ratios are 

obtained.  In addition, we can obtain the values for the magnitude and phase of the 

transfer function.  In order to continue refer to the values given in Tables 3.1 and 3.2. 
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Table 3.1: Natural Frequencies and Damping Ratios 

Natural Frequencies and 

Damping Ratios 

Mode Index (i) ωi (rads/s) ζi 

1 10 0.01 

2 20 0.01 

3 32 0.05 

 

Table 3.2: Data for Mode Shape Extraction. 

Frequency Response Data 

ω1(rads/s) ω2(rads/s) ω3(rads/s) Position 

Index (i) |Hi(ω)| Phase(º) |Hi(ω)| Phase(º) |Hi(ω)| Phase(º) 

11 0.423 -90 0.68 -90 0.14 -90 

21 0.917 -90 0.77 -90 0.12 +90 

31 2.316 -90 2.05 +90 0.70 -90 

 

Using equation 3.25 with the corresponding values of ζ1, ω1, H11(ω1), H21(ω1), 

H31(ω1), the first row of matrix |u1u1
T| is determined to be: 

|u1u1
T|11=0.846 |u1u1

T|21=1.834 |u1u1
T|31=4.633 

The mode shape vector u1 is defined as u1 = [a1 a2 a3] T, then 

















=
2
32313

32
2
212

3121
2
1

11

aaaaa
aaaaa
aaaaa

uu T     (3.26) 

thus a1
2=0.846, a1a2=1.834 and a1a3=4.633, yielding 
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Note that the elements of u1 are all negative because the corresponding phase angles for 

the magnitudes of the FRF around the first natural frequency are all negative.  Similarly 

the next two mode shapes can be approximated as: 
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The procedure explained above is used to obtain real mode shapes of a structure.  

The mode shapes needed for completion of our study can be complex.  The procedure to 

obtain these mode shapes is similar to the method explained above with a few slight 

modifications.  Expression 3.22 can be expressed as 
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   (3.27) 

where λj is the complex natural frequency and Ψj is the mode shape corresponding to that 

frequency.  By using this notation, the response of the system can be given in the form of 

( )[ ] tifeHu ωω= .     (3.28) 

Substitution of djjj iωαλ +−=  in equation 3.27 yields 

( ) sjrj
j

djj
jsr

i
H ΨΨ

+−
≈

α
ωα

ω     (3.29) 

where the subscript s is the node corresponding to the output measurement and r is the 

location of the node where the excitation is applied.  The term ωd is the damped natural 

frequency of the specimen.  With  

jjj ωζα =  and 21 jjdj ζωω −= .   (3.30) 

By using the aforementioned relationship, equation 3.29 can be expressed as 
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As ζj becomes smaller, expression 3.31 can be simplified as 
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For the case when s = r the term of the mode shape can be calculated using 

2
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Other terms can be found once this first term is calculated. 
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For the experimental cases the mode shapes were acquired using the Star Modal 

software.  The software performs the necessary computations to extract the mode shapes, 

natural frequencies and damping ratios. 

 

Model Incompatibility and Model Reduction 

 

As discussed before, the Finite Element Model (FEM) was used to model a 

cantilever beam system.  There are two degrees of freedom associated with each node of 

the element model.  One degree of freedom corresponds to the translational displacement 

of the node; the other degree of freedom corresponds to the rotational degree of freedom.  

This resulted in 10 by 10 matrices for the mass and stiffness associated with the system.  

From the boundary conditions of the system, there are no displacements at node 1; 

therefore the model could be reduced to an 8 by 8 system. 

In practice, only translational degrees of freedom can be accurately measured.  

These translational degrees of freedom were used to obtain the modal data for the system.  

Due to this limitation, the FEM has to be reduced to make it compatible with the 

available degrees of freedom measured, thus mass and stiffness matrices have to be 

transformed, so a model dependant only upon the translational degrees of freedom can be 

established. 

To accomplish this, there are several available methods.  One of the oldest and 

most popular methods is the Guyan Reduction or static reduction [21].  In this reduction 

the inertia terms associated with the discarded degrees of freedom are neglected.  This 

reduction is exact at zero frequency, but when applied to a dynamic system the reduction 
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may lack accuracy.  The Improved Reduced System (IRS) [22] is a modified method 

based on the Guyan Reduction.  In this method, an extra term is added to the static 

reduction transformation to make some allowances for the inertia forces of the discarded 

degrees of freedom.  The Improved Reduced System has been extended to use a dynamic 

reduction transformation, instead of the static transformation, as the basic transformation 

and thus making the process an iterative process with proven convergence (Friswell et. 

al., [23]).  This method is known as the Iterated Improved Reduced System (IIRS). 

In the IIRS procedure, the process of reducing the model starts with the 

partitioning of the mass and stiffness matrices.  The partitions are done because of the 

reordering of the degrees of freedom of the system.  The degrees of freedom of the 

system are classified into master and slave degrees of freedom.  For the current purpose, 

a master degree of freedom, denoted by the subscript m, corresponds to a measurable 

degree of freedom.  A slave degree of freedom, subscript s, corresponds to an 

immeasurable degree of freedom.  Assuming that no forces are applied to the slave 

coordinates; the system can be described as 
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where the mass and stiffness matrices appear partitioned according the relationship with 

the master and slave degrees of freedom. 

By neglecting the inertia terms corresponding to slave coordinates, the static 

transformation (Ts) between the full state vector and the master coordinates can be 

defined as 

msm
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−1     (3.36) 

The reduced mass and stiffness matrices are 

s
T

sRs
T

sR KTTKMTTM ==     (3.37) 

In order to account for the inertia terms, a second term is added to the static reduction, Ts, 

yielding the transformation for the Improved Reduced System, TIRS 

RRssIRS KMSMTTT 1−+=     (3.38) 
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where 
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The reduced mass and stiffness matrices for the IRS are 

IRS
T

IRSIRSIRS
T

IRSIRS KTTKMTTM ==    (3.40) 

The Iterated Improved Reduced System iterates the transformation matrix defined 

in equation 3.36.  The iteration scheme is as follows.  Assume an initial matrix of the 

form 
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where ti+1 is given by 

[ ] RiRiisssmsssi KMTMMKtt 11
1

−−
+ +=     (3.42) 

and the initial transformation is the static transformation given by 

smsss KKtt 1
0

−−==      (3.43) 

The mass and stiffness reduced matrices of the ith iteration are 

i
T

iRii
T

iRi KTTKMTTM ==     (3.44) 

The transformation matrix converges and the final reduced system is obtained 

from equations 3.41, 3.42 and 3.44. 

The reduced model obtained from the reduction processes will be used, in 

conjunction with the modal properties and parameters, to properly identify a damping 

matrix and update the stiffness matrix suitable for the reduced model.  The model 

obtained will be used to generate FRF, properly describing the beams’ dynamic 

behavior. 



 

 

27

Chapter Four: 

Methodology 

 

This chapter presents a description of the methods and materials used in this 

investigation.  The methodology describes all the required analysis, intermediate steps 

and results needed to successfully accomplish the task of updating the stiffness matrix for 

the composite beams under study.  Most of the methods described in this chapter are 

based in the theory presented in Chapter Three. 

The beams studied in this investigation were layered composite beams.  These 

beams were manufactured with facesheets consisting of two carbon fiber sheets and a 

foam filled honeycomb core.  The frequency response function (FRF) of each beam is 

studied in order to extract certain modal characteristics.  These characteristics are used to 

create a finite element model describing the dynamic behavior of the beams.  Each beam 

is also subjected to damage in order to identify this damage from the FRF’s and the finite 

element model.  Changes in the characteristics of the FEM, the damping and stiffness 

matrices of the model, should also account for the changes due to the damage present in 

the beam.  These FEM’s are used to generate FRF’s that can be used for damage 

detection through the use of different methods, for example the training of a neural 

network capable of distinguishing changes in FRF’s from  different damage scenarios 

(varying size and location of changes). 

Once the physical properties of the beams were obtained (dimensions, equivalent 

modulus of elasticity, equivalent density, etc.), the theoretical natural frequencies were 

calculated.  Experimental data was analyzed for both the undamaged and damaged cases 

with the help of MATLAB, SigLab and Star Modal software.  Analysis routines were 

coded in the MATLAB program; that were based on the theory presented in Chapter 

Three.  From the experimental FRF plots, the damping ratio, the natural frequency and 

the complex transfer function were identified.  This information was used to calculate the 

eigenvalues and eigenvectors for each beam structure, with the Star Modal software.  The 

mass and stiffness matrices were generated using finite element techniques.  In order to 

make the finite element model compatible with the experimental process, the matrices 
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were reduced to a four degree of freedom system by a MATLAB code based on the IIRS 

methodology. 

With the FEM matrices and the modal information, the damping and stiffness 

matrices of the system were identified and updated.  This was done through a MATLAB 

algorithm based on the theory presented by Lancaster [7-8] and Pilkey [9-10].  The 

updated model (mass, damping and stiffness matrices) FRF plots were regenerated for 

each system and compared with the experimental FRF plots to examine their adequacy in 

predicting dynamic system behavior. 

 

Beam Properties and Dimensions 

 

The physical information required from each beam was its dimensions, its mass 

and the modulus of elasticity.  As mentioned previously, three composite beams made out 

of carbon fiber and foam-filled honeycomb were available.  These three beams will be 

referred to as Beams 5, 6 and 8.  The mass of each beam was obtained by weighing. 

The beams’ modulus of rigidity (the product of the modulus of elasticity and the 

moment of inertia, EI) can be calculated through various methods.  For example, using 

the equations for natural frequency for cantilever beams described by Blevins [24], we 

can obtain an equivalent rigidity for the beams.  Another method is the use of the formula 

for layered composites, which defines the modulus as 
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where Ek is the modulus of elasticity of each layer, b is the width of the beam, and dk is 

the distance from the neutral axis of the cross-section of the beam to the interface 

between the k and the k+1 layer.  This formula requires the prior knowledge of the 

modulus for the material that makes up the beam.  Some materials used in the composite 

beams are low grade materials and the technical information needed, E, was not 

available. 

Since the beams were long and slender, the calculation of the modulus for the 

composite beams was done experimentally.  Using the equation for the deflection of a 
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cantilever beam under static loading an equivalent modulus could be determined.  The 

deflection of a beam depends upon its mechanical properties of and its dimensions.  For a 

cantilever beam, as shown in Figure 4.1, the deflection of the beam is described by 

( )xa
EI

Px
−= 3

6

2

δ      (4.2) 

where a is the distance from the fixed end of the beam to the point where the load is 

placed and x is the distance from the fixed end to the point where the displacement is 

being measured.  Rearranging this equation and defining the slope m as the ratio of the 

load to the deflection of the beam yields 

)3(
6

2

xamxEI −=      (4.3) 

where EI is the equivalent modulus of rigidity of the beam. 

 

Figure 4.1: Cantilever Beam with Concentrated Load Applied at the End. 

If a series of loads are applied to the beams and the correspondent deflection is 

measured, a load vs. deflection graph can be obtained.  From this graph, the slope of the 

curve and an equivalent modulus of rigidity can be calculated using equation 4.3. 

Experiments were performed on the three composite beams and each beam was 

subjected to a series of loads.  Here the deflection for each load was measured and a 

graph of the load versus deflection was constructed.  In addition, the slope of the best fit 

data line was also determined.  With each correlation of the data, an R-squared value is 

determined using equation 4.4. 



 

 

30

( )
( ) ( )

n
Y

Y

YY
R

j
j

jj
2

2

2

2
ˆ

1
∑∑

∑

−

−
−=     (4.4) 

These values reveal how closely the estimated values of the curve fit correspond 

to the actual data.  The closer the R-squared value is to unity the better the fit.  The 

resulting R-squared values for the correlations were close to 0.999, indicating that the use 

of equation 4.3 is acceptable.  Figures 4.2, 4.3 and 4.4 graph the experimental result with 

their corresponding fit equation. 
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Figure 4.2: Deflection vs. Load Curve for Beam 5. 
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Deflection of Bar 6
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Figure 4.3: Deflection vs. Load Curve for Beam 6. 

Deflection of Bar 8

y = 332.38x + 0.0207
R2 = 0.9995

0

0.5

1

1.5

2

2.5

3

3.5

0 0.002 0.004 0.006 0.008 0.01

Deflection (m)

Lo
ad

 (N
)

 

Figure 4.4: Deflection vs. Load Curve for Beam 8. 

The beam properties mass and modulus of rigidity are summarized in Table 4.1.  

The average beam length was 1.219 meters with an average width of 5.1 centimeters and 

an average thickness of 7.264 millimeters. 
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Table 4.1: Physical Properties for the Beams 

Beam Property Beam 5 Beam 6 Beam 8 

Mass (kg) 0.15792 0.15723 0.15505 

Modulus EI (Nm2) 22.674 22.671 22.059 

 

Theoretical Natural Frequencies 

 

Using the physical and mechanical properties for each of the beams, the first four 

natural frequencies were calculated.  The equation used for these calculations are outlined 

in Tse, Morse and Hinkle [25] and the natural frequencies are defined by: 

( )
m
EI

l
l

f n
n 2

2

2π
β

=      (4.5) 

where nlβ  is a parameter that depends on the mode of the natural frequency and the 

boundary condition of the beam, l is the length of the beam and m  is the mass per unit 

length of the beam.  The values of nlβ  for the first four modes are given by 


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


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=

9955.10
8547.7
6941.4
8751.1

nlβ . 

Since the beams were supported as shown in Figure 4.1, the length is 0.6095 meters. 

The theoretical natural frequencies and the experimental natural frequencies for 

the undamaged case of the beams are shown in the following table. 

 

 

 

 

 

 



 

 

33

Table 4.2: Theoretical and Experimental Natural Frequencies. 

Beam 5 Beam 6 Beam 8 Natural 

Frequency 

(Hz) 
Theo. Exp. Theo. Exp. Theo. Exp. 

Mode 1 19.932 2 1.536 19.971 2 1.403 19.838 21.480

Mode 2 124.912 129.721 125.155 131.074 124.32 131.935

Mode 3 349.758 346.148 350.439 348.208 3 48.10 350.004

Mode 4 685.386 634.078 686.721 636.725 682.138 639.451

 

The maximum error between the theoretical and experimental natural frequencies 

was 8.1%. 

 

Damage Scenarios 

 

One of the purposes of this investigation is to have an updated model for a 

specific specimen and explored the feasibility of this model to accurately indicate the 

presence of damage.  This updated model will in turn serve as input for a neural network 

that will be capable of distinguishing between undamaged and damaged specimens.  The 

neural network is capable of learning from these models and their FRF’s to determine the 

amount of damage present and its location.  A comparison is established between the 

property matrices (stiffness and damping matrices) of a specimen.  Each test specimen is 

subjected to the experimental process twice.  First the properties are obtained for an 

undamaged specimen.  Secondly, damaged is induced in the same specimen and then the 

properties are calculated.  The two scenarios for each specimen are compared in order to 

identify damage presence within the structure. 

Damage in the beams consisted of a slit across the top face of the carbon fiber 

sheet.  The slit was made with a vertical milling machine.  The depth of the cut is 

between 0.2 and 0.3 mm.  The location for the slit varies.  Beam 5 and 6 have a slit 

located a quarter of the length from the fixed end of the beam.  In beam 8 the damage is 
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located halfway of the beam.  Refer to Figure 4.5 for a damage location diagram for the 

beams. 

 

Figure 4.5: Damage Locations for Experimental Specimens: Top View. 

As explained previously, each beam was vibrated twice.  First the measurements 

were taken in the absence of damage.  Then damage was induced in the beam and a 

second set of measurements were taken.  The beams were divided into four elements as in 

Figure 3.3.  The beams were vibrated with an electromagnetic shaker.  The shaker 

received a random vibration signal, imparting the motion to the beam.  This input signal 

was conditioned through the computer, with the help of MATLAB and SigLab software 

and hardware.  Measurements of the signal were taken with two devices.  The input 

signal’s measurement was taken with an accelerometer.  The output signal was measured 

with a laser vibrometer, which was integrated electronically using the SigLab dynamic 

signal analyzer.  This measurement corresponds to the displacement of the beam at each 

segment of the beam.  The natural frequencies and damping ratios corresponding to the 

different segments of the beams were obtained and averaged using Star Modal. 

Tables 4.3 and 4.4 detail the average natural frequencies and damping ratios for 

each test specimen.  Table 4.3 contains the data corresponding to the undamaged beams 

and Table 4.4 contains the data for the damaged beams. 
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Table 4.3: Natural Frequencies and Damping Ratios for Undamaged Beams. 

Modal Properties 

Natural Frequency (Hz) 
Beam 5 Beam 6 Beam 8 

ω1 21.536 21.4032 21.481 

ω2 129.721 131.074 131.935 

ω3 346.148 348.208 350.004 

ω4 634.078 636.7249 639.451 

Damping Ratio    

ζ1 0.001623 0.002093 0.002095 

ζ2 0.002481 0.002181 0.002164 

ζ3 0.003105 0.003065 0.002990 

ζ4 0.004210 0.004123 0.004077 

 

 

Table 4.4: Natural Frequencies and Damping Ratios for Damaged Beams. 

Modal Properties 

Natural Frequency (Hz) 
Beam 5 Beam 6 Beam 8 

ω1 21.193 21.208 21.473 

ω2 129.807 131.112 131.520 

ω3 345.922 346.412 350.644 

ω4 633.829 634.805 638.880 

Damping Ratio    

ζ1 0.002203 0.001763 0.001785 

ζ2 0.002318 0.002178 0.002191 

ζ3 0.003126 0.003131 0.003041 

ζ4 0.004206 0.004148 0.004114 
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Eigen-Properties 

 

The eigenvalues and eigenvectors of each of the beams were obtained using the 

Star Modal software.  The analysis of the experimental data was done by curve fitting the 

FRF measurements and the mode shapes were extracted using a technique similar to the 

one presented in the previous chapter.  The information obtained is presented in the 

following tables. 

 

Table 4.5: Eigen-Properties for Undamaged Beam 5. 

Eigenvalues 

1 s t  E i g e n v a l u e 2nd  Eigenvalue 3r d  Eigenvalue 4 t h  Eigenvalue 

-0.21962 + 135.31i -2.0222 + 815.06i -6.7531 + 2174.9i -16.773 + 3984i 

Eigenvectors 

1st Mode Shape 2nd Mode Shape 3rd Mode Shape 4th Mode Shape

0.7197 + 15.031i 0.0731 + 33.579i 0.0925 + 36.427i 0.3706 + 23.085i

2.354 + 52.28i 1.1425 + 56.193i 0.1178 - 1.4019i -0.3356 - 25.017i 

-0.1203 + 95.412i 0.0523 + 9.2943i -0.0526 - 27.285i 0.2536 + 22.85i

3.0486 + 149.24i 0.0599 - 76.822i 0.5682 + 46.136i -0.2999 - 32.242i

 

Table 4.6: Eigen-Properties for Damaged Beam 5. 

Eigenvalues 

1 s t  E i g e n v a l u e 2nd  Eigenvalue 3r d  Eigenvalue 4 t h  Eigenvalue 

-0.29335 + 133.16i -1.8906 + 815.6i -6.7943 + 2173.5i -16.75 + 3982.4i

Eigenvectors 

1st Mode Shape 2nd Mode Shape 3rd Mode Shape 4th Mode Shape

-0.349 + 13.803i -0.519 + 36.564i 0.2071 + 38.378i 0.3561 + 23.921i

0.4715 + 47.678i -0.3207 + 60.795i -0.1685 - 1.5597i -0.34 - 25.792i

5.0074 + 88.622i 0.0988 + 9.74i -0.2057 - 28.143i 0.3007 + 23.792i

2.6287 + 130.71i 0.8543 - 82.416i 0.3855 + 48.034i -0.4007 - 33.65i
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Table 4.7: Eigen-Properties for Undamaged Beam 6. 

Eigenvalues 

1 s t  E i g e n v a l u e 2nd  Eigenvalue 3r d  Eigenvalue 4 t h  Eigenvalue 

-0.28147 + 134.48i -1.7962 + 823.56i -6.7058 + 2187.8i -16.495 + 4000.6i 

Eigenvectors 

1st Mode Shape 2nd Mode Shape 3rd Mode Shape 4th Mode Shape

0.003 + 13.599i 0.3809 + 37.778i 0.3332 + 38.81i 0.394 + 24.31i

1.0685 + 42.943i -0.1866 + 59.731i -0.1584 - 1.6813i -0.4013 - 26.218i 

0.9647 + 84.901i 0.0827 + 8.3652i -0.2214 - 27.9i 0.4277 + 24.382i

3.7767 + 122.6i -0.0374 - 82.044i 0.3596 + 49.629i -0.5219 - 36.563i 

 

Table 4.8: Eigen-Properties for Damaged Beam 6. 

Eigenvalues 

1 s t  E i g e n v a l u e 2nd  Eigenvalue 3r d  Eigenvalue 4 t h  Eigenvalue 

-0.23493 + 133.25i -1.7942 + 823.8i -6.8148 + 2176.6i -16.545 + 3988.6i 

Eigenvectors 

1st Mode Shape 2nd Mode Shape 3rd Mode Shape 4th Mode Shape

0.6092 + 12.045i -0.082 + 36.159i 0.2498 + 38.618i 0 .3409 + 24.52i 

2.2789 + 43.483i 0 . 3 5  +  5 8 . 8 6 8 i -0.1477 - 2.511i -0.3567 - 25.192i 

4.3091 + 80.312i 0.0654 + 8.9293i -0.129 - 27.364i 0.3148 + 23.475i 

-1.7993 + 127.23i 0.3726 - 82.348i 0.2118 + 48.259i -0.4452 - 34.297i 
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Table 4.9: Eigen-Properties for Undamaged Beam 8. 

Eigenvalues 

1 s t  E i g e n v a l u e 2nd  Eigenvalue 3r d  Eigenvalue 4 t h  Eigenvalue 

-0.28276 + 134.97i -1.7939 + 828.97i -6.5754 + 2199.1i -16.381 + 4017.8i 

Eigenvectors 

1st Mode Shape 2nd Mode Shape 3rd Mode Shape 4th Mode Shape

-0.4759 + 15.516i 0.0199 + 39.006i 0.0625 + 39.702i 0.2541 + 23.954i

0.3833 + 45.362i 0.0312 + 63.626i -0.1407 - 1.42i -0.3228 - 25.994i 

-5.0334 + 87.647i -0.0598 + 9.8517i -0.0618 - 28.879i 0.2451 + 23.267i

5.181 + 133.93i 0.5268 - 86.744i 0.1372 + 49.523i -0.339 - 33.109i

 

Table 4.10: Eigen-Properties for Damaged Beam 8. 

Eigenvalues 

1 s t  E i g e n v a l u e 2nd  Eigenvalue 3r d  Eigenvalue 4 t h  Eigenvalue 

-0.24083 + 134.92i -1.8106 + 826.36i -6.6998 + 2203.2i -16.514 + 4014.2i 

Eigenvectors 

1st Mode Shape 2nd Mode Shape 3rd Mode Shape 4th Mode Shape

0.4054 + 14.722i 0  +  3 9 . 1 8 9 i 0.3864 + 37.343i 0.7904 + 20.514i 

-0.6759 + 39.963i 0 .517 + 54.706i -0.1707 - 1.6522i -0.8738 - 23.117i 

1.9663 + 76.159i 0.0305 + 8.6751i -0.4329 - 24.942i 0 .6267 + 22.21i 

4.3413 + 121.99i -1.4653 - 79.775i 0.7239 + 45.461i -1.0951 - 28.918i 

 

Finite Element Model Reduction 

 

Finite element techniques were used to construct a model that will properly 

described the cantilever beam system.  Mass and stiffness matrices were assembled using 

the theory presented in Chapter Three.  The beam was divided into 4 elements.  Each 

element had two nodes, with two degrees of freedom in each node.  Translational degrees 
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of freedom are designated as master degrees of freedom, while rotational degrees are 

designated as slave degrees of freedom.  Each element is represented by a 4 by 4 mass 

matrix and a 4 by 4 stiffness matrix system.  Using the superposition principle the global 

matrices are assembled, yielding 10 by 10 mass and stiffness matrices.  Applying 

boundary conditions to the system, the matrices reduce to an eight degrees of freedom 

system. 

Because only the translation degrees of freedom can be measured, the system is 

further reduced using the Iterated Improved Reduced System (IIRS) described in Chapter 

3.  This method was chosen because of its advantages over other methods such as the 

Guyan Reduction Method.  The global matrices terms are rearranged according to 

equation 3.27.  The resulting reduced matrices are presented next. 

Beam 5 
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Beam 6 
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Beam 8 
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10

5521.02997.01256.00761.0
2997.08167.11353.01141.0
1256.01353.07472.12061.0

0761.01141.02061.06282.1

2 KM  

In addition to these reduced matrices, a second mass matrix will be used to 

generate another model.  This mass matrix will be composed of only the terms 

corresponding to the master degrees of freedom.  The purpose of this is to generate a 

model that will not be dependant upon a stiffness matrix in order to be reduced.  In order 

to estimate this mass matrix, only the mass density of the beam is necessary.  The FRF’s 
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corresponding to this model, call lumped mass parameter model, will be compared with 

those of the other models to verify its validity. 

This mass matrix is defined as: 


















⋅

=

1565400
54312540
05431254
0054312

420
lmM Lumped    (4.6) 

where m  is the mass per unit length of the beam and l is the length of the element. 

This chapter presented the steps to follow in order to obtain the necessary 

preliminary data used to update the models for the beams.  From this data the stiffness 

matrix can be updated and the damping matrix identified.  The next step in the process 

would be to generate FRF plots for the beams in both damage scenarios, so that the 

model could be compared with the experimental data, therefore validating the process.  

The process is summarized in the following flowchart. 



 

 

41

 

 

Figure 4.6: Procedure Flowchart. 
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42

Chapter Five: 

Examples 

 

Two examples are presented in this chapter is to demonstrate the damping and 

stiffness updating procedure.  The first example is represented by a simple lumped mass 

model.  The masses in the system are coupled using a spring and a damper.  The iterative 

process of identifying and updating the damping and stiffness matrices are explained.  

Using the correctly identified damping matrix, the stiffness matrix for the system is also 

updated.  The second example will be a model of a four element cantilever beam.  This 

situation resembles closely the experimental situation in this investigation.  The data is 

taken from Ortiz [3]. 

 

Example 1: Lumped Mass System 

 

Consider the two degree of freedom system presented in Figure 5.1. 

 

Figure 5.1: Two Degree of Freedom Lumped Mass System. 

The parameters of the system are m1, m2, c1, c2, k1 and k2 which are the system’s 

mass, damping and stiffness coefficients respectively.  Application of Newton’s second 

law of motion yields a linear matrix equation of the form: 

[ ]{ } [ ]{ } [ ]{ } 0=++ xkxcxm &&&     (5.1) 

The matrices [m], [c] and [k] are the system’s mass, damping and stiffness matrices and 

are given by: 
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







=

50
05

M , 









−

−
=

01.001.0
01.002.0

C  

and 









−

−
=

5.15.1
5.13

K . 

Here the values of m1, m2, c1, c2, k1 and k2 have been arbitrarily assigned as 5 kg, 0.01 

N·s/m and 1.5 N/m. 

In this example, we will assume that the mass matrix is previously known and the 

damping and stiffness will be determined using the procedure described in the previous 

chapter.  It is assumed that the eigen-properties are obtained experimentally.  Because we 

know the system’s properties, we know the values of the eigenvalues and eigenvectors of 

the system.  These eigenvalues and eigenvectors occur in complex conjugates, so only 

one value from each pair is needed.  The eigen-properties for this example are: 









+−

+−
=Λ

i
i

88623.0002618.00
033851.000038197.0

 









−−

−−+
=Φ

ie
ie

178215.139345.080574.0
63662.0172495.149797.0

 

For the iterative process, the data that will be used is the mass matrix of the 

system, along with the eigenvalues and eigenvectors of the system.  As an initial step, we 

choose a preliminary damping matrix.  Here, the identity matrix was chosen as the initial 

matrix. 









=

10
01

0C  

Next, the eigenvectors are normalized according to 

( ) 12 =+ ii
T
i CM φλφ      (5.2) 

After normalizing the eigenvectors, the new damping matrix is calculated using 

the following equation: 
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( )MMC TT ΦΦΛ+ΦΦΛ−= 22 .    (5.3) 

Here the term Φ  is the conjugate of the eigenvector matrix and Λ  is the conjugate of the 

eigenvalue matrix. 

After the first iteration, the new damping matrix was given by: 









−

−
=

4744.00202.0
0202.04945.0

1C . 

Using this new damping matrix, the eigenvectors are again normalized and the 

process is repeated.  The following matrices are the damping matrices for iterations 5 and 

10 respectively. 



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
−

−
=

0385.00109.0
0109.00494.0

5C  



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−

−
=

0109.00100.0
0100.00209.0

10C  

At the sixteenth iteration convergence with the real value of the damping matrix is 

obtained which is given by: 









−

−
=

01.001.0
01.002.0

16C . 

With this iterated damping matrix and the normalized eigenvectors corresponding 

to this iteration, we can identify the stiffness matrix using the following equation. 

( ) 1
11

−
−− ΦΦΛ−ΦΦΛ−= TTK     (5.4) 

Using the eigenvectors normalized by the converged damping matrix, the resulting 

stiffness matrix is 









−

−
=

5.15.1
5.10.3

K . 

This is equivalent to the original stiffness matrix of the system using Newton’s second 

law. 
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Example 2: A Cantilever Composite Beam 

 

To further illustrate the effectiveness of the damping and stiffness updating 

process, consider the following example.  A composite beam is composed of a 

honeycomb and foam core faced with carbon fiber sheets.  The beam is modeled using 

finite element techniques.  The beam is divided into four elements with two nodes per 

element.  Each node has 2 DOF, one translational DOF and one rotational DOF.  The 

beam is cantilevered and the original mass and stiffness matrices were reduced using the 

IIRS scheme, yielding a four by four system.  The data for this example comes from Ortiz 

(2002).  Refer to Figure 5.2 for a beam schematic. 

 

Figure 5.2: Composite Cantilever Beam. 

The reduced mass and stiffness matrices are: 



















−
−

−
−

=

0040.00022.00009.00005.0
0022.00137.00010.00008.0
0009.00010.00132.00015.0

0005.00008.00015.00123.0

M  
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410

4854.01009.17791.02117.0
1009.19829.28827.23255.1

7791.08827.23251.45687.3
2117.03255.15687.36864.5

⋅



















−−
−−

−−
−−

=K  

The damping matrix was successfully identified by Ortiz as: 



















−
−

−−

=

0346.00480.00704.00330.0
0480.00582.02053.01051.0
0704.02053.00767.01670.0
0330.01051.01670.02509.0

C    (5.5) 

From testing of the beam the following eigen-properties were obtained. 





















−⋅−−⋅−

−⋅−−⋅−

−⋅−−⋅−

−⋅−−⋅−

=+−=

i
i
i
i

i

31002.841038.6

31028.541026.4

31072.241029.2

41081.751081.6

,286.999026.7 11 φλ  





















−⋅+−⋅−

−⋅−−⋅

−⋅−−⋅

−⋅−−⋅

=+=

i
i
i
i

i

31023.151012.1

41052.161008.8

41065.851018.2

41008.551053.1

,66.6256623.5 22 φλ  





















−⋅−−⋅

−⋅+−⋅

−⋅−−⋅−

−⋅−−⋅−

=+=

i
i
i
i

i

41020.461083.1

41036.261099.1

41051.66104.2

41098.26102.4

,3.1764692.7 33 φλ  





















−⋅−−⋅−

−⋅+−⋅

−⋅−−⋅

−⋅+−⋅

=+−=

i
i
i
i

i

41088.1101011.2

41018.171010.7

41097.171036.3

41031.171033.1

,6.34220038.0 44 φλ  

The input data needed to update the damping and stiffness matrices are the mass 

matrix of the system and the eigen-properties of the system.  Following the same 

procedure as in Example 1, the initial damping matrix is chosen as the identity matrix. 
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

















=

1000
0100
0010
0001

0C  

By normalizing the eigenvectors of the system, as in equation 5.2, and 

substituting into equation 5.3, the first iterated damping matrix is obtained.  This result 

will be used to again normalize the eigenvectors in order to find a new damping matrix.  

The following matrices correspond to iterations: 1, 5, 10, 15 and 20 and are given by: 



















−

−−
−

=

2489.00412.00214.00580.0
0412.06188.01203.00082.0
0214.01203.09548.01447.0

0580.00082.01447.06696.0

1C , 



















−
−

−−

=

0474.00466.00645.00345.0
0466.00182.01992.00988.0
0645.01992.01306.01660.0
0345.00988.01660.01937.0

5C , 



















−
−

−−

=

0349.00479.00704.00331.0
0479.00571.02051.01049.0
0749.02051.00777.01673.0
0331.01049.01673.02494.0

10C , 



















−
−

−−

=

0345.00480.00706.00331.0
0480.00583.02053.01051.0
0706.02053.00761.01673.0
0331.01051.01673.02511.0

15C  

and 



















−
−

−−

=

0345.00480.00706.00331.0
0480.00583.02053.01051.0
0706.02053.00760.01673.0
0331.01051.01673.02512.0

20C  

respectively. 



 

 

48

After 20 iterations, the damping matrix converged to what Ortiz obtained, given 

by equation 5.5.  The stiffness matrix identified by the algorithm after the twentieth 

iteration is 

410

4854.01009.17791.02118.0
1009.19829.28827.23256.1

7791.08827.23252.45687.3
2118.03256.15687.36863.5

⋅



















−−
−−

−−
−−

=K , 

which is exact as Ortiz’s results to the 3rd decimal place and within the significant digits 

of accuracy of most equipment used in vibration modeling. 
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Chapter Six: 

Results and Discussion 

 

In this chapter the resulting model for the beams along with their FRF plots are 

presented.  Each plot will show the experimental FRF along with the FRF plots 

corresponding to the different models: one model uses a reduced mass matrix with its 

resultant damping and stiffness matrices; the other model uses a lumped mass matrix and 

its corresponding damping and stiffness matrices.  These graphs show the adequacy of 

the method in identifying the damping and stiffness matrices creating a model capable of 

describing accurately the dynamic behavior of the cantilever composite beams that were 

investigated. 

The following pages present the results for each of the beams.  The final models 

for the beams will be shown along with their corresponding FRF plots.  This will be done 

for both the undamaged and the damaged scenarios.  Finally a graph with the 

experimental plots corresponding to the undamaged and damaged condition will be 

shown. 

 

Beam 5 

 

Undamaged Beam: 

Reduced mass model 

[ ] [ ]
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
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

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
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

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−
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001279.0001378.001779.0002098.0
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CM  

[ ] 510

1080.02464.01536.00298.0
2464.06778.05902.02252.0

1536.05902.08195.06194.0
0298.02252.06194.00250.1

⋅
















=

−−
−−

−−
−−

K  
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Lumped mass model 

[ ] [ ]
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33

33

3
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[ ] 410

0362.13997.26050.15060.0
3997.27054.60891.67396.2
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⋅
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




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K  

 

 

Figure 6.1: Beam 5 Undamaged Condition – FEM Models vs. Experimental Data. 
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Table 6.1: Results for Undamaged Beam 5. 

Natural 

Frequencies (Hz) 

Experimental 

Data 

Reduced 

Mass Model 
Error (%) 

Lumped 

Mass Model 
Error (%) 

1st Natural 

Frequency 
21.536 21.392 0.67 21.523 0.06 

2nd Natural 

Frequency 
129.721 129.869 0.11 129.834 0.09 

3rd Natural 

Frequency 
346.148 348.614 0.71 353.519 2.13 

 

Damaged Beam: damage was induced using a milling machine at ¼ the length of the 

beam from the fixed end. 

Reduced mass model 
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Lumped mass model 
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Figure 6.2: Beam 5 Damaged Condition – FEM Models vs. Experimental Data. 

 

 

Figure 6.3: Beam 5 - Experimental Data for Undamaged and Damaged Conditions. 
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Table 6.2: Results for Damaged Beam 5. 

Natural 

Frequencies (Hz) 

Experimental 

Data 

Reduced 

Mass Model 
Error (%) 

Lumped 

Mass Model 
Error (%) 

1st Natural 

Frequency 
21.193 21.279 0.41 21.188 0.02 

2nd Natural 

Frequency 
129.807 129.946 0.11 129.771 0.03 

3rd Natural 

Frequency 
345.922 353.803 2.28 357.926 3.47 

 

Beam 6 

 

Undamaged Beam: 

Reduced mass model 
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Lumped mass model 
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Figure 6.4: Beam 6 Undamaged Condition – FEM Models vs. Experimental Data. 

 

Table 6.3: Results for Undamaged Beam 6. 

Natural 

Frequencies (Hz) 

Experimental 

Data 

Reduced 

Mass Model 
Error (%) 

Lumped 

Mass Model 
Error (%) 

1st Natural 

Frequency 
21.4032 21.398 0.02 21.401 0.01 

2nd Natural 

Frequency 
131.074 131.079 0.004 131.161 0.07 

3rd Natural 

Frequency 
348.208 348.790 0.17 353.055 1.39 

 



 

 

55

Damaged Beam: damage was induced using a milling machine at ¼ the length of the 

beam from the fixed end. 

Reduced mass model 
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Lumped mass model 

[ ] [ ]
































−−
−−

−−
−−

=

⋅⋅
⋅⋅

⋅⋅
⋅

=

−−

−−

−−

−

1779.00614.00718.00598.0
0614.00736.01255.00249.0

0718.01255.00567.00331.0
0598.00249.00331.02541.0

10301.710527.200
10527.2015.010527.20

010527.2015.010527.2
0010527.2015.0

33

33

33

3

CM  

[ ] 410

1914.17478.27706.14846.0
7478.24828.74596.66673.2

7706.14596.64911.81135.6
4846.06673.21135.64325.9

⋅
















=

−−
−−

−−
−−

K  



 

 

56

 

 

Figure 6.5: Beam 6 Damaged Condition – FEM Models vs. Experimental Data. 

 

Figure 6.6: Beam 6 - Experimental Data for Undamaged and Damaged Conditions. 
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Table 6.4: Results for Damaged Beam 6. 

Natural 

Frequencies (Hz) 

Experimental 

Data 

Reduced 

Mass Model 
Error (%) 

Lumped 

Mass Model 
Error (%) 

1st Natural 

Frequency 
21.208 21.184 0.11 21.224 0.08 

2nd Natural 

Frequency 
131.112 132.08 0.74 132.527 1.08 

3rd Natural 

Frequency 
346.412 357.336 3.15 362.429 4.62 

 

Beam 8 

 

Undamaged Beam: 

Reduced mass model 
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Lumped mass model 
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Figure 6.7: Beam 8 Undamaged Condition – FEM Models vs. Experimental Data. 

 

Table 6.5: Results for Undamaged Beam 8. 

Natural 

Frequencies (Hz) 

Experimental 

Data 

Reduced 

Mass Model 
Error (%) 

Lumped 

Mass Model 
Error (%) 

1st Natural 

Frequency 
21.481 21.696 1.00 21.600 0.55 

2nd Natural 

Frequency 
131.935 132.14 0.16 132.77 0.63 

3rd Natural 

Frequency 
350.004 370.228 5.78 378.663 8.19 
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Damaged Beam: damage was induced using a milling machine at ½ the length of the 

beam from the fixed end. 
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Figure 6.8: Beam 8 Damaged Condition – FEM Models vs. Experimental Data. 

 

Figure 6.9: Beam 8 - Experimental Data for Undamaged and Damaged Conditions. 
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Table 6.6: Results for Damaged Beam 8. 

Natural 

Frequencies (Hz) 

Experimental 

Data 

Reduced 

Mass Model 
Error (%) 

Lumped 

Mass Model 
Error (%) 

1st Natural 

Frequency 
21.473 21.48 0.03 21.473 0.00 

2nd Natural 

Frequency 
131.520 131.952 0.33 132.34 0.62 

3rd Natural 

Frequency 
350.644 352.609 0.56 359.294 2.47 

 

As seen in the preceding figures the models are capable to accurately predict the 

dynamic behavior of the beams under study.  Both models practically coincide with the 

experimental data for the first and second natural frequencies.  For these two natural 

frequencies the error ranged in between 0.00 to 1.08 % with and average error of 0.29 %.  

Errors between the models and the experimental data for the third natural frequency were 

larger, the largest error being 8.19 %.  These errors could be the result of a higher 

interaction between the modes as the frequencies increase, making the process of 

estimating the mode shapes from the frequency response plots more difficult.  In 

addition, errors from torsion effects in the structure and their associated displacements 

along the beam help to create these discrepancies. 

Overall the reduced mass model may be considered to be the more accurate when 

compared with the lumped mass model.  This is more evident when comparing the 

models at higher frequencies, where the reduced model resembles the experimental data 

more closely.  This is so because the reduced model takes into consideration the 

rotational degrees of freedom of the structure.  The lumped mass model only considered 

the translational degrees of freedom for the generation of the mass matrix.  Even so the 

lumped mass model is comparable to the experimental data.  This gives us an advantage 

over the reduced mass model in the sense that there is no need for a previously known 

approximation for the stiffness matrix.  Recalling the procedure to generate the reduced 
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mass model, the stiffness matrix was used to reduce the system and eliminate the slave 

degrees of freedom. 

When comparing the different FRF’s corresponding to the undamaged and 

damaged cases for each beam, there is no significant change in the behavior of the 

structure.  The damage suffered by the structures was slight and did not influence much 

the dynamic behavior of the structure.  Damping ratios and mode shapes experienced a 

slight change resulting in slight different damping and stiffness matrices for the beams. 
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Chapter Seven: 

Conclusions and Recommendation 

 

This research has demonstrated that a finite element model can be established for 

a sandwich composite beam using the information obtained from FRF plots.  Both the 

damping matrix and the stiffness matrix of the model can be updated using this method.  

The system described by these matrices was used to generate FRF’s that resembled very 

closely the experimental FRF plots taken for each beam with an average percentage of 

error of 0.30 % in predicting the natural frequency. 

The process of generating these systems was a product of a series of steps.  

Because the material under study was a composite beam, no material properties were 

available.  Prior to being able to generate the mass and stiffness matrices for a finite 

element model, some of the physical properties of the beams had to be estimated.  Some 

of the properties were measured easily, but to measure the stiffness of the beam is a bit 

more complicated.  To corroborate the accuracy of the value for the stiffness of the beam, 

theoretical natural frequencies were calculated and they were in accord with the 

experimental natural frequencies of the beams.  With this estimate, it is possible to 

simplify the finite element model in order for it to be compatible with the available 

degrees of freedom.  This reduction was carried out successfully through the use of an 

iterative procedure (IIRS).  This reduction was programmed with the help of MATLAB 

software.  The matrix system showed convergence for each of the beams. 

The modal properties of the systems were obtained with the help of Star Modal.  

The software made it possible for the natural frequencies, the modal damping and the 

complex mode shapes of the systems to be identified.  Great care must be taken when 

obtaining the FRF plots for the beams from were the modal properties were extracted.  

Special attention was paid to the coherence level of the FRF’s.  This value was an 

indication of how good the signal for the FRF was.  A value close to one for the 

coherence confirmed the linearity of the system. 

The models were then assembled by using an algorithm capable of identifying and 

updating the damping and the stiffness matrices.  This algorithm used the modal 
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properties of the system and using an iterative procedure converged upon a damping 

matrix.  This damping matrix was used to normalized the mode shapes of the system and 

successfully update the stiffness matrix.  The resulting finite element model (mass, 

damping and stiffness matrices) was used to generate the FRF’s, which were plotted 

against the experimental FRF’s.  When comparing the plots, they practically coincided 

with each other.  From the plots, one can see that the model is fairly accurate in 

describing the dynamic behavior of the beams.  As the number of natural frequencies 

increase, it is more difficult to predict the behavior of the system.  This is because there is 

higher interaction between the modes, making it difficult to model the behavior of the 

system.  From the plots, it is clear that the first and second natural frequencies behave 

almost identically to the experimental scenarios. 

As far as the models are concerned, the two models developed were very similar 

to each other.  The lumped mass model was able to represent the behavior of the system 

fairly accurate.  This model has the advantage that it does not need an initial estimate of 

the stiffness of the beam in order to generate the model.  The stiffness matrix for this 

model is completely obtained from the modal properties of the beam.  In other words, we 

can accurately describe the behavior of the beam without knowing, beforehand, the 

mechanical properties of the beam. 

When examining the damaged beams, there were small changes in the natural 

frequencies of the beam.  There were also slight changes in the modal damping of each of 

the modes.  The damaged present in the beams did not have a great effect on the stiffness 

of the beams.  The FRF’s for the damaged beams were compared and the represented, 

with accuracy, the dynamic behavior of the beams. 

A methodology similar to Ortiz [3] and Pilkey [10] in formulating the damping 

matrix was used in this research.  Natural frequency errors less than 8 percent were 

obtained, where as Ortiz had errors ranging up to 21 percent for a similar composite 

beam.  Pilkey’s algorithm on the other hand generated errors in the order of 8.0 percent.  

Both of the aforementioned methods, Ortiz’s and Pilkey’s, did not consider stiffness 

updating.  In addition to the iterative damping methodology developed, this investigation 

used the direct formulation mentioned by Lancaster [8].  This procedure is less 
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computationally intensive as compared to the work by Baruch [13] and Friswell [19], 

which requires the use of weighted orthonormal conditions and a weighing factor chosen 

from user experience that is used in a penalty function, respectively. 

Two models that compared the mass matrix formulation were also considered, in 

addition to the damping and stiffness updating.  These models differed in the way the 

mass matrix was generated.  In one method an initial guess of the stiffness of the 

structure is required, were as in the other a lumped mass approach was performed.  The 

greatest error produced by these two methods when compared to the experimental FRF 

was less than 9 percent thus giving a degree of confidence in the methodology used when 

applied to structures similar to the one investigated.  The advantage of lumped mass 

procedure as compared to the other is that there was no need to estimate an equivalent 

stiffness of the beam.  This methodology makes the overall updating procedure straight 

forward by eliminating the use of user experience or optimization algorithms.  Both 

models generated their greatest error in predicting higher frequency behavior which is 

probably due to rotational inertial effects as discussed by Friswell [23] and Humar [26]. 

This topic could be further investigated, by applying the methodology presented 

to plates.  The plate has more degrees of freedom per node, and it will be interesting to 

prove that the iterative procedure is accurate enough to identify and update matrices for 

more complex structures.  Other future work is the integration of this methodology to a 

neural network capable of distinguishing between different types of behavior of a 

particular structure.  The neural network could learn how the model of a system is 

affected by different variables such as: damage magnitude and location, modal 

characteristics of the system, frequency shift in the FRF plots, dwindling of natural 

frequency peak due to damping change, etc.  Another future work related to this topic 

could be a survey on the different methods for extracting modal properties, for example, 

damping, frequencies and mode shapes; specifically dealing with the complex behavior 

of structures.  This survey, along with practical examples, will be very helpful when 

undergoing the study of structures submitted to vibration analysis. 
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Appendixes 

Iterated Improved Reduced System 

 
% Iterative Reduction Method. 

% Model is reduced in half according to 

% the available data. 

% Input model mass and stiffnes matrix. 

format long g 

K = input ('Input Stiffness Matrix ') 

M = input ('Input Mass Matrix ') 

[m,n] = size(K); 

% Subdivision of K Matrix into 4 submatrices  

% according to their relation to the master  

% and slave degrees of freedom. 

Kmm = K(1:m/2,1:n/2); 

Kms = K(1:m/2,(n/2+1:n)); 

Ksm = K((m/2+1:m),1:n/2); 

Kss = K((m/2+1:m),(n/2+1:n)); 

% Subdivision of M Matrix into 4 submatrices  

% according to their relation to the master  

% and slave degrees of freedom. 

Mmm = M(1:m/2,1:n/2); 

Mms = M(1:m/2,(n/2+1:n)); 

Msm = M((m/2+1:m),1:n/2); 

Mss = M((m/2+1:m),(n/2+1:n)); 

% Subindices 

% mm - master master 

% ms - master slave 

% sm - slave master 

% ss - slave slave 

t = -1*inv(Kss)*Ksm; 

TS = [eye(m/2); t]; 

Tirs = TS; 

Mr = TS'*M*TS; 

Kr = TS'*K*TS; 

S=[zeros(4,8); zeros(4), inv(Kss)]; 
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i = 1; 

TC = ones(8,4); 

while ~isequal(TC,Tirs) 

    TC = Tirs; 

    Tirs = TS + S*M*Tirs*inv(Mr)*Kr; 

    Mr = Tirs'*M*Tirs; 

    Kr = Tirs'*K*Tirs; 

    Res = Tirs - TC; 

    i = i + 1; 

    if i > 1000 % Iteration Control 

        break 

    end 

end 

Miirs = Tirs'*M*Tirs % Final Reduced Mass Matrix 

Kiirs = Tirs'*K*Tirs % Final Reduced Stiffness Matrix 
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Iterative Procedure for Identifying and Updating the Damping and Stiffness Matrices 

 
n = 4; 

m = 4; 

q = 4; 

M = input('Mass Matrix '); 

L = input ('Eigenvalues Vector '); 

fi = input ('Eigenvectors Matrix '); 

L = diag(L); 

C0 = diag([1 1 1 1]); 

C = diag([2 2 2 2]); 

LSquare = L^2; % Square of Eigenvalue Matrix 

a = det(C); 

b = det(C0); 

dd = a - b; 

iter = 0; 

while real(dd) > 0.000000000000001 

% while iter < 25 

      iter = iter + 1 

      for x=1:n; 

          g = 2*M*L(x,x) + C0; 

              for y = 1:m; 

                  A(y,1) = fi(y,x); 

              end                  

          h = transpose(A)*g*A; 

          d = 1/h; 

          d1 = sqrt(d); 

          veca = d1*A; 

              for y = 1:q 

                  Normvec(y,x) = veca(y,1); 

              end 

          normalized = Normvec; 

      end     

      finorm = normalized; % Normalized Eigenvectors 

      conjfinorm = conj(normalized); % Conjugates of Normalized Eigenvectors 

      C = C0; 
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      clear C0; 

      a = det(C); 

      C0 = -M*(finorm*LSquare*transpose(finorm) + conjfinorm*conj(LSquare)*transpose(conjfinorm))*M 

      b = det(C0); 

      dd = abs(a-b); 

end 

K = inv(-finorm*(L^-1)*transpose(finorm) - conjfinorm*(conj(L)^-1)*transpose(conjfinorm)) 
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FRF Generation 

 

Program A 
% FRF Generation Program. 

% 4 DOF System. 

% Mass matrix. 

Mass = input('Mass Matrix ');; 

% Damping matrix. 

Damp = input('Damping Matrix '); 

% Stiffness matrix. 

Stiff = input('Stiffness Matrix '); 

% Force vector 

Bf = [1 

      0 

      0 

      0]; 

% Space State System 

A = [    zeros(4)            eye(4) 

     -inv(Mass)*Stiff  -inv(Mass)*Damp] 

B = [ zeros(4,1) 

      inv(Mass)*Bf] 

C = [ 0 0 0 1 0 0 0 0] 

D = zeros(size(C,1),size(B,2)) 

sys = ss(A,B,C,D) 

w = linspace(1,5000,25000); 

bodemag(sys,w) 
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Program B 
% FRF Generation Program. 

% 4 DOF System. 

% Mass matrix. 

Mass = input('Mass Matrix ');; 

% Damping matrix. 

Damp = input('Damping Matrix '); 

% Stiffness matrix. 

Stiff = input('Stiffness Matrix '); 

% Force vector 

Bf = [1 

      0 

      0 

      0]; 

% Space State System 

A = [    zeros(4)            eye(4) 

     -inv(Mass)*Stiff  -inv(Mass)*Damp] 

B = [ zeros(4,1) 

     inv(Mass)*Bf] 

C = [ 0 0 0 1 0 0 0 0] 

D = zeros(size(C,1),size(B,2)) 

sys = ss(A,B,C,D) 

w = linspace(1,5000,25000); 

bode(sys,w) 
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Plots and comparison of graphs 

 
Example: 

% Generation of graphs for composite beams experimental set up. 

% Graphs represent a comparison between three models. One model uses 

% the mass matrix obtained from an IIRS reduction. The second model 

% uses the mass matrix generated from FEM, but only considers the 

% translational degrees of freedom. The third model uses both mass 

% and stiffness matrices from the FEM IIRS Model.  All slave DOF's 

% and the corresponding elements in the mass matrix are not considered. 

% Loading of data 

load omegaHz  % Frequency Range 

figure(1) 

load Bar8UndMag 

load Bar8LumpUndMag 

load 1z5zbar8un.txt 

plot (omegaHz,Bar8UndMag,'b-.',omegaHz,Bar8LumpUndMag,'r--',X1z5zbar8un(:,1),X1z5zbar8un(:,2)-

70,'k:') 

legend ('Reduced Mass Model', 'Lumped Mass Model','Experimental Data') 

% title ('Frequency Response Functions from Dynamic Model of Sandwich Composite Beam 5: 

Undamaged Scenario') 

xlabel ('Frequency (Hz)') 

ylabel ('Magnitud (dB)') 

 




