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Brain Computer Interface (BCI) is a system that is designed to translate a subject’s thought 

into a signal that is interpreted by a device. A BCI provides a communication channel between the 

human brain and a computer, making possible different applications in the bio-engineering field.  

The Brain-Computer Interface field has been in constant improvement because of the development 

of applications for people in need. These systems, BCI systems, need to be user-friendly, 

manageable, efficient, and suited for people with disabilities or with any physical complication. 

Thus, this thesis is an effort to seek improvements for those applications, by experimenting 

Positive Matrix Factorization (PMF) for motor imagery classification.  Motor imagery (MI) is a 

mental process by which a subject mentally simulates a given action. In other words, MI is the 

process by which a subject is thinking of moving a part of his/her body without moving it 

physically. Motor imagery classification is the process of classifying a subject’s mental 

simulations. Current methods rely on Common Spatial Pattern (CSP), which can be used for two-

class motor imagery classification.  The limitations with current methods are the high 

dimensionality of the EEG data that curtails extraction of discriminatory features for classification.  

The method presented in this thesis is an essential part of a functioning BCI system; it determines 

discriminative spectral features using the PMF method. These features are used to train the Support 

Vector Machine (SVM) classifier. The mentioned classifier is tested using 10-Fold Cross-

Validation. Results using different numbers of feature vectors and different number of samples are 

presented. A complexity analysis of the PMF algorithm is presented. 
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El sistema de Interface Cerebro-Computadora (BCI, por sus siglas en inglés) está diseñado 

para traducir las intenciones de un sujeto en una señal de control que es reconocida por un 

dispositivo. Un sistema de BCI provee un canal de comunicación entre el cerebro humano y una 

computadora, posibilitando diferentes aplicaciones en el campo de la bioingeniería. El campo de 

BCI está constante mejoramiento debido al desarrollo de aplicaciones para personas necesitadas. 

Los sistemas de BCI deben ser fáciles de utilizar, manejables, eficientes y apto para personas con 

discapacidades o cualquier complicación física. Por lo tanto, esta tesis es un esfuerzo para buscar 

mejoras para esas aplicaciones, mediante la experimentación del método Factorización Matricial 

Positiva (PMF, por sus siglas en inglés) para mejorar la clasificación de imágenes motrices de 

señales de electroencefalograma (EEG). La imaginación motriz es un proceso mental en el que un 

sujeto simula mentalmente una acción. En otras palabras, es el proceso mediante el cual un sujeto 

está pensando en mover una parte de su cuerpo sin moverla físicamente. La clasificación de 

imágenes motrices es el proceso de clasificar las simulaciones mentales de un sujeto. Los métodos 

actuales se basan en el Patrón Espacial Común (CSP, por sus siglas en inglés), el cual puede ser 

utilizado para clasificar dos clases o grupos de imágenes motoras. Las limitaciones con los 

métodos actuales son la alta dimensionalidad de los datos que restringe la extracción de rasgos 

discriminatorios para el proceso de clasificación. El método presentado en esta tesis es una parte 
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esencial del funcionamiento del sistema de BCI; determina la extracción de características 

discriminatorias utilizando el método de PMF. Estas características se utilizan para entrenar el 

clasificador SVM (Support Vector Machine, por sus siglas en inglés). El clasificador mencionado 

es probado mediante Validación Cruzada de 10 plegados. Se presentan resultados utilizando 

diferentes números de vectores de características y diferentes números de muestras. Un análisis de 

complejidad computacional del algoritmo de PMF también es presentado.  
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CHAPTER 1 

 

INTRODUCTION 
 

1.1 Motivation  

 

The human brain is composed of thousands of neurons interconnected by synapses [37]. Each 

connection transmits one specific signal per second. Those signals are stochastic and non-

stationary; therefore, the extraction of features or information becomes difficult because of the 

amount of signals generated by the human brain. It is very important to have new methods that 

make the extraction of features from these signals accurate, faster and easier. These methods or 

tools can help in the development of user-friendly technology that can process thoughts of people 

with physical disabilities.  

Electroencephalography (EEG) is a device used to capture human brain signals over a short 

period of time. These signals are recorded from multiple electrodes placed on the scalp. Using the 

Event-Related Desynchronization (ERD) reflected in the motor and sensory cortex when a subject 

is only imagining movement, feature extraction and classification methods were developed for 

driving Brain Computer Interfaces (BCIs) with these signals. In this work, Positive Matrix 

Factorization method is used for the extraction of features and the Support Vector Machine 

classifier is applied to classify motor imagery signals. In this thesis work, we propose a simpler 

feature extraction method that reduces the EEG data to be analyzed. Since recorded EEG data is 

normally large, data reduction is essential in a computational complexity sense. Also, the algorithm 

should be able to run quickly in order to provide features of real-time BCI applications. Hence, a 

computational time and space complexity analysis of the algorithm is presented.  
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1.2 Outline 

 

The outline of the thesis is as follows. Chapter 2 gives a brief description of the methods 

and algorithms presented in this document. The step by step process of the completion of the 

objective is explained in Chapter 3. A study of the feature extraction method and classifier 

applied to EEG signals as well as the comparison between these algorithms in terms of 

accuracy are given in Chapter 4. Also, a study of computational complexity in terms of Flops 

and time of execution are presented in Chapter 4. Finally, the conclusions and the direction for 

further development and improvement are given in Chapter 5.  

 

1.3 Objectives  

 

1.3.1 General Objectives 

 

• Implementation of Positive Matrix Factorization Method for processing EEG signals. 

 

• Analysis of Computational Complexity of PMF algorithm. 

 

• Application to classification of EEG signals. 

 

1.3.2 Specific Objectives  
 

• Implement the most promising algorithm for PMF. 

 

• Make a computational analysis of Positive Matrix Factorization in time and space. 

 

• Use the Positive Matrix Factorization Method for binary motor imagery classification. 
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1.4 Previous Work 

 

In previous work, a classification of EEG signal has been done by using Nonnegative 

Tensor Factorization (NTF) to determine discriminative spectral features.  Tensor factorization 

related research called Nonnegative Tensor Factorization For Continuous EEG Classification has 

been done in [24]. In this work, the authors employed the NTF to determine discriminative spectral 

features and used the Viterbi algorithm to classify multiple mental tasks. Numerical experiments 

where developed using two data sets in BCI competition: Graz dataset and IDIAP dataset [2]. The 

Graz dataset involves left/right imagery hand movements and consists of 140-labelled trials for 

training and 140 unlabeled trials for testing. Each trial has duration of 9 seconds and imagination 

task is carried out for 6 seconds. It contains EEG acquired from three different channels with 

sampling frequency of 128Hz. The channels used for this study were 𝐶3 and 𝐶4 because event-

related desynchronization (ERD) has contralateral dominance, (it has more discriminant 

information). On the other hand, the IDIAP dataset contains EEG data recorded from three normal 

subjects during four non-feedback sessions, which involves three tasks, including the imagination 

of repetitive self-paced left/right hand movements and the generation of words beginning with the 

same random letter. The subject performed a given task for about fifteen seconds and then switched 

randomly to another task at the operator’s request. The data were provided in two ways: raw EEG 

signals (with sampling rate equals to 512Hz) recorded from 32 electrodes, and precomputed 

features.  

 Authors applied the method to Graz dataset in BCI competition II with single-trial 

classification of motor imagery task. The analysis procedure was different according to the dataset 

and the data structure. In Graz dataset, data form was changed from temporal to spectral by using 

Complex Morlet Wavelet Transform during the preprocessing. Nonnegative Matrix Factorization 

(NMF) was enough to extract the meaningful features. Classification results using NMF in [24] 

was 51.17% without the Viterbi Algorithm and 68.55% using the Viterbi Algorithm. On the other 

hand, with 4-way tensor that contains the class information is 70.24% and with 3-way tensor is 

69.47% using the Viterbi Algorithm. However, BCI Competition III had a result of 68.65% using 

2-way tensor, which is lower than the results mentioned above. According to the authors, NTF is 

more robust than NMF in finding the hidden patterns from noisy training data.  
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CHAPTER 2 

 

THEORETICAL BACKGROUND 
 

This chapter describes important concepts about EEG signals and the Brain Computer 

Interface (BCI) system, including the algorithms used for its implementation in this work. We used 

EEG signals as the input from the users to the system. The input signals are then transformed to 

time-frequency representation using STFT or CMWT. A spectrogram is used as the input of the 

Positive Matrix Factorization method to extract features, and the classification stage is 

implemented using Support Vector Machine (SVM).  

 

2.1 Electroencephalography (EEG) 

 

Electroencephalography (EEG) is an electrical activity of an individual’s brain that can be 

collected using electrodes. It is used to capture the electrical activity of the brain with great 

temporal resolution. EEG are created by the electrical communication of millions of neural cells. 

EEG is the most widespread data recording modality, enabling more diverse research in 

neuroscience and bioengineering. An EEG recording system consists of electrodes, amplifiers, 

A/D converter, and a recording device. The electrodes, usually made of silver chloride (AgCl), 

acquire the electrical signal from the scalp. The use of conductive gel is important to reduce the 

impedance between the skin and the electrodes. The amplifier processes the analog signal from the 

electrodes by amplifying the amplitude of the EEG signals so that the A/D converter can digitize 

them in a more accurate way. Finally, the recording device is a computer that stores and displays 

the data for further processing. 

Electroencephalogram is a measurement of the potential difference over time between the 

active electrode and the reference electrode.  A third electrode, known as the ground electrode, is 

used to measure the differential voltage between the active electrodes and the reference points. 

The electrical activity is recorded in the order of microvolts. Electroencephalogram signals are 

stochastic and non-stationary signal, which means its spectrum changes with time, showing 
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oscillations at a variety of frequencies. There are five different frequency bands in which EEG can 

be divided, called brain rhythms [13]. These are: 

 

• Delta (δ) rhythms: 0.5Hz - 3.5Hz. These are associated with deep sleep and are common in 

newborns [12, 36]. 

 

• Theta (θ) rhythms: 3.5Hz - 7.5Hz. They are most common during sleep. This can be seen in 

infants and children but high θ rhythms on an awake adult is a sign of a brain disorder. 

 

• Alpha (α) rhythms: 7.5Hz - 12.5Hz. They are normally seen best under mental inactivity and 

relaxation. Best seen with eyes closed. This will be the main focus frequency range for motor 

imagery classification. 

 

• Beta (β) rhythms: 12.5Hz - 30.5Hz. This is most evidently seen in the frontal and central lobe 

area and are associated with mental engagement such as activity, busy and anxious thinking. 

Beta rhythms are desynchronized during real movement or motor imagery [26]. 

 

• Gamma (γ) rhythms: 30.5Hz -100Hz. These bands have very sharp waves, spikes and other 

non-sinusoidal activity. The presence of gamma waves in the brain activity of a healthy adult 

is related to certain motor functions or perceptions, such as visual and auditory stimuli [14]. 

Studies related to this band has been growing recently. Due to the high information transfer 

rate, it offers higher spatial specificity.  
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2.2 Brain-Computer Interface (BCI) 

 

 

 

 

Figure 2.1: A Brain Computer Interface (BCI) System 

 

A Brain Computer Interface (BCI) aims for communication pathways between the computer and 

device, based on neural activity generated by the brain. It is a system that is designed to translate a 

subject’s intention or mind into a control signal for a device such as a computer [24]. Figure 2.1 

shows a BCI where the EEG data acquired from the subject is processed and used to provide 

feedback through the display to the subject [38].  This way the human subject and the computer 

interact in performing different tasks. The task for this work is described as the imagination of left 

and right hand movements. The signal acquisition is done using bipolar EEG channels. The signal 

processing part has three general tasks: filtering, which is done by using time-frequency 

representations such as CMWT or STFT, feature extraction and classification, using both PMF and 

the SVM classifier respectively.  
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There are four main application areas of BCI systems in bioengineering. Applications for 

assisting disabled people, clinical monitoring for neurological diseases and sleeping disorders, 

behavioral neuroscience research with neural signals, and human-machine interaction are the main 

BCI systems applications. There are some important properties [13] to take in to account in order 

to design a BCI system. 

 

Properties: 

• Noise and Outliers: BCI features are noisy or contain outliers because EEG signals have a poor 

signal-to-noise ratio.  

 

• High Dimensionality: in BCI systems, feature vectors are often of high dimensionality. Indeed, 

several features are generally extracted from several channels and from several time segments 

before being concatenated into a single feature vector.  

 

• Time Information: BCI features should contain time information since brain activity patterns 

are generally related to specific time variations of EEG. 

 

• Non-Stationarity: BCI features are non-stationary since EEG signals may rapidly vary over 

time and more specifically over sessions.  

 

• Small Training Sets: The training sets are relatively small; since the training process is time 

consuming and demanding for the subjects (not have to be true for clinical use). 

 

2.3 Short-Time Fourier Transform (STFT) 

 

The spectral content of the EEG signals is non-stationary, which means that the signal 

changes over time. The Discrete Fourier Transform (DFT) is a mathematical operation that 

decomposes a waveform into a sum of sinusoid components, where the coefficients represent the 

correlation between the signal and the particular frequency sinusoid. But applying the DFT, along 

the signal does not reveal transitions in the spectra; it shows the frequencies that are present. For 
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that reason, applying the DFT over short periods of time (regular intervals) known as STFT is 

used. The EEG signal can be considered as stationary. This approach allows the identification of 

the interval of time at which all frequencies are present in the signal. The discrete STFT is 

computed using a window function w centered at time n, given as [5]: 

 

                           

                                                    𝑦(𝑛, 𝑘) = ∑ 𝑥[𝑚]𝑤[𝑛 − 𝑚]𝑒
−𝑗2𝜋𝑘𝑚

𝑁

∞

𝑚=−∞

                                       (2.1) 

                                        

 

where  𝑥[𝑚] is the signal to be analyzed, 𝑤[𝑛 − 𝑚] is the window function and 𝑁 is the frequency 

sampling factor. The resulting STFT is represented as a matrix with time and frequency 𝜔 =

2𝜋𝑘 𝑁⁄  information. The size of the window has the effect of changing the time-frequency 

resolution, with a wider window better frequency resolution but lower time resolution and vice 

versa for a narrow window is obtained. 

 

2.4 Complex Morlet Wavelet Transform (CMWT) 

 

Another method for time-frequency analysis is the Complex Morlet Wavelet Transform, 

which is very popularly used with speech waveforms. For this study, the Morlet wavelet, a family 

of complex wavelet transforms will be implemented [5, 6]. Morlet wavelet analysis utilizes a 

flexible time window length for each frequency, with the largest window applied to the lowest 

frequencies and the smallest window applied to the highest frequencies resulting in a more accurate 

time-frequency resolution than STFT, which have fixed window at the cost of computational time. 

To compute the CMWT the signal is convolved with the mother wavelet 𝑤𝑓(𝑡, 𝑓). The Morlet 

Wavelet is composed of a complex exponential multiplied by a Gaussian window given by: 

 

                                                           𝑤𝑓(𝑡, 𝑓) =
1

√𝜋𝑓𝑏

𝑒𝑗𝑤0𝑡𝑒−𝑡2 𝑓𝑏⁄ ,                                                   (2.2) 
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where 𝑤0 = 2𝜋𝑓0, the center frequency is 𝑓0, and 𝑓𝑏 is the frequency bandwidth. To satisfy the 

permissibility condition, 𝑤𝑜 should satisfy  𝑤0 ≥ 5.  

 

2.5 Positive Matrix Factorization (PMF) 

 

Processing large amounts of data such as EEG data has problems with respect to data 

representation, disambiguation, and dimensionality reduction. There are methods utilized to 

address the representation of data and its dimensionality reduction. Factor analysis and Principal 

Component analysis are two of the many classical methods used to accomplish the goal of reducing 

the number of variables and detecting structures among the variables [6]. The use of low-rank 

approximations as mentioned earlier facilitates important applications in Bioengineering and 

Image Processing. Another analysis that is commonly used for data reduction and dimensionality 

reduction is the Positive Matrix Factorization method.  

 Positive Matrix Factorization (PMF) is a linear data model which is useful in handling 

nonnegative data. It determines basis vectors which will reflect meaningful spectral characteristics 

in motor imagery EEG tasks. The nonnegative data consists of  𝑻 measurements of 𝑵 nonnegative 

scalar variables. A linear approximation of the data is given by  

                                                                 𝑎𝑡 ≈ ∑ 𝑤𝑖ℎ𝑖
𝑡 = 𝑊ℎ𝑡 ,                                                           (2.3)

𝑀

𝑖=1

 

where 𝒂𝒕 (𝑡 = 1, … , 𝑇) are 𝑵-dimensional measurement vectors (vectors of data), 𝑾 is a 𝑁×𝑀 

matrix containing the basis vectors 𝒘𝒊 as its columns. Each measurement vector is written in terms 

of the same basis vectors. The 𝑀 basis vectors 𝒘𝒊 are the building blocks of the data, and the 𝑀 

dimensional coefficient vector 𝒉𝑡 describes how strongly each building block is present in the 

measurement vector 𝒂𝒕. The measurements vectors 𝒂𝒕 can be arranged into the columns of a 𝑁×𝑇 

matrix 𝑨. 𝑨 is a nonnegative matrix with nonnegative matrix factors 𝑾 and 𝑯 such that: 

                                                                           𝑨 ≈ 𝑾𝑯,                                                                        (2.4) 
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where each column of 𝑯 contains the coefficient vector 𝒉𝑡 corresponding to the measurement 

vector 𝒗𝒕. The product 𝑾𝑯 is called a Positive Matrix Factorization of 𝑨, although 𝑨 is not 

necessarily equal to the product 𝑾𝑯. Written in this form, it becomes apparent that a linear data 

representation is simply a factorization of the data matrix. Positive Matrix Factorization requires 

all entries of  𝑾 and  𝑯 to be positive. 𝑾 is a 𝑁×𝑅 nonnegative matrix and 𝑯 is a 𝑅×𝑇 nonnegative 

matrix as well [15]. Usually, 𝑅 is chosen to be smaller than 𝑁 or 𝑇, so that  𝑾 and 𝑯 are smaller 

than 𝑨. Therefore, this results in a compressed version of the original data matrix 𝑨.    

 To find the approximate factorization of (2.4), we need to define a cost function that 

quantifies the quality of the approximation. One useful measure of a cost function is the square of 

the Euclidean Distance between  𝑨 and 𝑾𝑯: 

                                                                    
1

2
‖𝑨 − 𝑾𝑯‖𝐹

2                                                           (2.5)                                     

Euclidean Distance is lower bounded by zero, so (2.5) vanishes if and only if 𝑨 = 𝑾𝑯. 

Now, Positive Matrix Factorization can be formulated as an optimization problem. The 

optimization problem to solve is defined as: 

Problem: Given a nonnegative matrix 𝐴 ∈ ℝ𝑁×𝑇 and a positive integer 𝑅 < min (𝑁, 𝑇), 

find positive matrices 𝑊 ∈ ℝ𝑁×𝑅 and 𝐻 ∈ ℝ𝑅×𝑇 to minimize the function 

 

                                         𝑓(𝑾, 𝑯) = 
1

2
‖𝑨 − 𝑾𝑯‖𝐹

2                                                  (2.6) 

 

  The previous problem is a numerical optimization problem. ‖𝑽 − 𝑾𝑯‖2 is a convex 

function in 𝑾 only or in 𝑯 only, it is not convex in both variables together. There are many 

numerical methods that minimizes (2.6) to extract underlying features as basis vectors in 𝑯 such 

as gradient descent, conjugate gradient, convergence of gradient based, to mention a few, that can 

be applied to find the solution (local minima) for this problem. Authors explained the gradient 

descent method in [21], which is the simplest technique to implement but convergence of the 

solution is slow. This is not appropriate for applications that involve the manipulation of a big 
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dataset. Conjugate gradient on the other hand have a faster convergence but is more complicated 

to implement than gradient descent.  

For this work, two algorithms are used: Multiplicative Update Algorithm and Alternating 

Least Squares Algorithm. A Multiplicative Update Algorithm is a good compromise between 

speed and ease of implementation for solving (2.6). This algorithm for iteratively determining a 

local minimum of the previous problem is described below: 

Multiplicative Update Algorithm For PMF: 

𝑾 = 𝑟𝑎𝑛𝑑(𝑁, 𝑅); % 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑾 as random dense matrix  

𝑯 = 𝑟𝑎𝑛𝑑(𝑅, 𝑇); % 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑯 as random dense matrix  

                     𝑓𝑜𝑟 𝑖 = 1: 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 

                               𝑯 =  𝑯.∗ (𝑾𝑇𝑨)./(𝑾𝑻𝑾𝑯 + 10−9)                                                    (2.7) 

                               𝑾 =  𝑾.∗ (𝑨𝑯𝑇)./(𝑾𝑯𝑯𝑻 + 10−9)                                                    (2.8) 

                     end 

 

   The algorithm above is described using Matlab array operator notation, since Matlab is 

the software tool utilized to implement this work.  Both (2.7) and (2.8) has a 10−9 factor added to 

avoid division by zero. 𝑾 and 𝑯 are strictly positive and naturally sparse, producing a “additive 

parts-based” representation of the data. Something important about the PMF is the initialization of 

𝑾 and 𝑯 since the convergence of the algorithm mentioned above depends on initial conditions.  

The Alternating Least Squares Algorithm on the other hand exploit the fact that, while 

optimization of equation (2.6) is not convex in both 𝑾 and 𝑯, it is convex in either 𝑾 or 𝑯. This 

algorithm is more flexible in a way that it allows the iterative process to escape from poor path. It 

means that if an element of 𝑾 or 𝑯 becomes 0, it must remain 0. The Alternating Least Squares 

Algorithm is described below: 
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Alternating Least Squares Algorithm For PMF: 

𝑾 = 𝑟𝑎𝑛𝑑(𝑁, 𝑅); % 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑾 as random dense matrix  

                     𝑓𝑜𝑟 𝑖 = 1: 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 

                               Solve for 𝑯 in matrix equation 𝑾𝑻𝑾𝑯 = 𝑾𝑇𝑨. 

                               Set all negative elements in 𝑯 to 0. 

                               Solve for 𝑾 in matrix equation 𝑯𝑯𝑻𝑾𝑻 = 𝑯𝑨𝑇. 

                               Set all negative elements in 𝑾 to 0. 

                      end 

 

 PMF algorithms does not have a unique global minimum because of the initial conditions 

of matrices W and H. One way to address the challenge of the initial conditions is to use Monte 

Carlo type approach [11] with different initial conditions to see which one gives the best results. 

The one with best results are selected for further numerical analysis such as features extraction. 

The initial conditions problem is an open topic in the research community. Even though, it is a 

problem for any PMF application, it is not the main goal of this work. A good initialization can 

improve the speed and accuracy of the algorithms mentioned (Multiplicative Update and 

Alternating Least Squares algorithms), as it can produce faster convergence to an improved local 

minimum [4]. For this work, the initial conditions are defined using random numbers with the 

Matlab tool.   

2.6 Positive Matrix Factorization Numerical Example: 

 

 

Figure 2.2: Positive Matrix Factorization Illustration 
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In this section, a basic example of the calculation of the Positive Matrix Factorization is presented. 

It is important to have a basic knowledge about the method presented in this thesis for 

understanding its applications to Motor Imagery Classification. 

Let 𝐴 = [
1 2 3  5
2 4 8 12
3 6 7 13

] , we want to solve the factorization presented in Fig 3.1. Let 𝐴1 = [
1
2
3

] 

and 𝐴3 = [
3
8
7

] be the first and the third column of 𝐴, respectively. To solve, 𝐴 ≈ 𝑊𝐻, the following 

should be made: 

𝐴1 =  1×𝐴1 +  0×𝐴3 

𝐴2 =  2×𝐴1 +  0×𝐴3 

𝐴3 =  0×𝐴1 +  1×𝐴3 

𝐴4 =  2×𝐴1 +  1×𝐴3 

Now, 𝑊 is composed by 𝐴1 and 𝐴3. In other words, 𝑊 =  [𝐴1 𝐴3] =  [
1
2
3

3
8
7

]. On the other hand, 

𝐻 is composed by the coefficients of equations 𝐴1, 𝐴2, 𝐴3 and 𝐴4. Hence, 𝐻 =  [
1 2 0 2
0 0 1 1

]. 

Thus, the final step of the procedure is the following: 

                     𝐴 ≈ 𝑊𝐻 =  [
1
2
3

3
8
7

] × [
1 2 0 2
0 0 1 1

]  

                 𝐴 ≈ 𝑊𝐻 =  [

(1×1 + 3×0) (1×2 + 3×0) (1×0 + 3×1)  (1×2 + 3×1)

(2×1 + 8×0) (2×2 + 8×0) (2×0 + 8×1) (2×2 + 8×1)

(3×1 + 7×0) (3×2 + 7×0) (3×0 + 7×1) (3×2 + 7×1)
]  

                      𝐴 ≈ 𝑊𝐻 = [
1 2 3  5
2 4 8 12
3 6 7 13

] 
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2.7 Positive Tensor Factorization (PTF) 

 

 Positive Tensor Factorization is a multiway extension of Positive Matrix Factorization, 

where nonnegativity constraints are incorporated. Tensor refers to a multiway data array. To 

understand the concept of the manipulation of datasets, a vector is a 1-way tensor, a matrix is a 2-

way tensor, and a cube is a 3-way tensor, and so on. Spectral EEG data can be represented by a 

tensor whose coordinates correspond to channel, class, trial, and so on. This is the case of the NTF. 

In the case of PMF, the data matrix is limited to only two coordinates. 

  Let Ӽ ∈ ℝ𝐼1×𝐼2×…×𝐼𝑁 be an N-way tensor with N indices (𝑖1, 𝑖2, … , 𝑖𝑁). The elements of 

tensor Ӽ are denoted by 𝑥𝑖1,𝑖2,…,𝑖𝑁
 where 1 ≤ 𝑖𝑛 ≤ 𝐼𝑁. Mode-n vectors of an N-way tensor Ӽ are 

𝐼𝑛-dimensional vectors obtained from Ӽ by varying index 𝑖𝑛 while keeping the other indices fixed 

[24]. In matrix, column vectors correspond to mode-1 vectors and row vectors correspond to mode-

2 vectors. 𝑿(𝒏) ∈  ℝ𝐼𝑛×𝐼𝑛+1×𝐼𝑛+2×…×𝐼𝑁×𝐼1×𝐼2×…×𝐼𝑛−1 is the mode-n matrix form of the tensor Ӽ. The 

column vectors of matrix 𝑿(𝒏) are mode-n vectors. The mode-n matrix form of Ӽ is a PARAFAC 

model.  

A PARAFAC model is a decomposition method for multi-way data that seeks the rank-R 

approximation of the tensor Ӽ. The rank of the tensor Ӽ, R, is the minimal number of rank-1 tensors 

that is required to yield Ӽ.   The approximation of this model is denoted as: 

 

  

                                                            𝑿(𝒏) ≈  𝑾(𝒏) ⊗ 𝑯𝑾
(𝒏)

,                                                 (2.9) 

  

where 𝑾(𝒏) ∈  ℝ𝐼𝑛×𝑅, is the mode-n basis matrix and 𝑯𝑾
(𝒏)

 is the mode-n encoding matrix 

(contains the features) and 𝑅 = 𝑟𝑎𝑛𝑘(Ӽ). The approximation described in (2.9) is a column-wise 

Kronecker product. For more details about the Kronecker product, refer to [32]. As in PMF, PTF 

has nonnegative constraints of component matrices in the factorization described in (2.9).  To find 

the approximation of (2.9) we need to formulate a Numerical Optimization problem like PMF but 

using now I-divergence: 
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 𝐷[Ӽ||Ӽ̂] ≈ 𝐷 [𝑿(𝒏)||𝑾(𝒏)𝑯𝑾
(𝒏)

] = ∑ [Ӽ𝑖1,𝑖2,…,𝑖𝑁
log

Ӽ𝑖1,𝑖2,…,𝑖𝑁

Ӽ̂𝑖1,𝑖2,…,𝑖𝑁

− Ӽ𝑖1,𝑖2,…,𝑖𝑁
+ Ӽ̂𝑖1,𝑖2,…,𝑖𝑁

]

𝑖1,𝑖2,…,𝑖𝑁

 (2.10)     

where 𝐷[Ӽ||Ӽ̂] is the I-divergence (information for discrimination or the amount of information 

lost when Ӽ̂ is used to approximate Ӽ) of the tensor Ӽ.  

Problem: Minimize 𝐷[Ӽ||Ӽ̂] with respect to Ӽ̂ subject to the constraint  Ӽ̂  ≥ 𝟎  

The previous problem is a numerical optimization problem. The I-divergence is a quantity 

that measures how 𝑿(𝒏) differs from 𝑾(𝒏)𝑯𝑾
(𝒏)

. In other words, (2.10) represents the amount of 

information lost when 𝑾(𝒏)𝑯𝑾
(𝒏)

 is used to approximate. It plays the role of Squared Euclidean 

Distance so it is responsible for the nonnegativity property of the PTF algorithm.   There are many 

numerical optimization algorithms that can be applied to find the solution for this problem. Rules 

for iteratively determining nonnegative component matrices that minimize the objective function 

of the previous problem are similar to PMF method. Hence, the Multiplicative Update Algorithm 

for this optimization problem is as follows: 

 

                                            𝑊(𝑛) = 𝑊(𝑛) ⊛

[
𝑿(𝒏)

(𝑾(𝒏)𝑯𝑾
(𝒏)

)
] 𝑯𝑾

(𝒏)𝑇

1𝑧𝑇
,                                             (2.11)    

 

where / is the element-size division in the numerator of equation 2.11, 1 ∈

ℝ𝐼𝑛×1 (𝑎 𝑐𝑜𝑙𝑢𝑚𝑛 𝑣𝑒𝑐𝑡𝑜𝑟) , 𝑧 ∈ ℝ𝐼𝑛×1 with 𝑧𝑖 = ∑ [𝑯𝑾
(𝒏)

]
𝑖𝑗

𝑗 , and ⊛ is a Hadamard product. The 

updating rule for 𝑯𝑾
(𝒏)

 is like NMF method and is as follows: 

                                           𝑯𝑾
(𝒏)

= 𝑯𝑾
(𝒏)

⊛

[
𝑿(𝒏)

(𝑾(𝒏)𝑯𝑾
(𝒏)

)
] 𝑾(𝒏)𝑇

1𝑤𝑇
,                                                 (2.12) 
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where / is the element-size division in the numerator of equation 2.12, 1 ∈ ℝ𝐼𝑛×1, 𝑤 ∈ ℝ𝐼𝑛×1 with 

𝑤𝑖 = ∑ [𝑾(𝒏)]
𝑖𝑗𝑗 , and ⊛ is a Hadamard product. The updating rule of this algorithm is like (2.7) 

and (2.8) but using tensor notation. The PTF approach could be used to solve the problem of this 

thesis but computational complexity would increase.      

     

Multiplicative Update Algorithm For PTF: 

𝑾(𝒏)  = 𝑟𝑎𝑛𝑑(𝑁, 𝑅); % 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑾 as random dense matrix  

𝑯𝑾
(𝒏)

= 𝑟𝑎𝑛𝑑(𝑅, 𝑇); % 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑯 as random dense matrix  

                     𝑓𝑜𝑟 𝑖 = 1: 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 

                      𝑿(𝒏) =  𝑿(𝒏) +  𝜶𝜷 , where β is the gradient of 𝑿(𝒏) and 𝟎 <  𝜶 < 𝟏 

                                 𝑾(𝒏) = 𝑾(𝒏) ⊛
[𝑿(𝒏)/(𝑾(𝒏)𝑯𝑾

(𝒏)
)]𝑯𝑾

(𝒏)𝑻

𝟏𝒛𝑻  

                                   𝑯𝑾
(𝒏)

= 𝑯 ⊛
[𝑿(𝒏)/(𝑾(𝒏)𝑯)]𝑾(𝒏)𝑇

1𝑤𝑇  

                     end 

 

2.8 Support-Vector Machine (SVM) 

 

Support Vector Machines (SVM) is a very useful and popular technique for data 

classification, it is based on supervised learning models with associated learning algorithms that 

analyze data and recognize patterns. It finds the optimal decision hyperplane that best separates 

the data into different classes by mapping the input features onto a high-dimensional feature space 

[8] by solving the following optimization problem:  

 

 𝑚𝑖𝑛
1

2
∑ 𝑎𝑖 −

1

2

𝑛
𝑖=1  ∑ ∑ 𝑦𝑖𝑦𝑗𝑎𝑖𝑎𝑗𝐾(𝑥𝑖, 𝑥𝑗)

𝑛

𝑗=1

𝑛
𝑖=1 , (2.13) 

 𝑠. 𝑡.  ∑ 𝑦𝑖𝑎𝑖 = 0,    0 ≤ 𝑎𝑖 ≤ 𝐶𝑛
𝑖=1 , (2.14) 
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where C is the penalty factor which allow to control the trade-off between the misclassifications 

and the size of the margin between classes. Because the SVM uses a hyperplane it would only be 

able to classify classes that can be separated linearly; the problem has to be transformed to a higher 

dimension for non-linear problems, this is done with a kernel function 𝐾(𝑥𝑖, 𝑥𝑗). The SVM 

classifier with a radial basis kernel function (RBF) will be used for classification because it can 

handle non-linear features given by: 

 

 𝑅𝐵𝐹 = 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2

, 𝛾 > 0), (2.15) 

 

where 𝛾 is the kernel parameter set by the user [10, 22]. While the kernel function helps with the 

non-separable classes, SVM is still not a multi-class classifier. In other words, to make the SVM 

a multi-class classifier several algorithms have been developed: one-versus-one and one-versus-

all are the most popular. For this research, the LIBSVM library that is being used uses one-versus-

one [10, 22]. Unlike the one-versus-all algorithm that makes 𝑛 models for 𝑛 classes, one-versus-

one makes model every pair of classes. While one-versus-one has more models, it has been tested 

to be better with larger problems [23, 24]. 

 

2.9 Computational Analysis 

 

The computational analysis that is applied in this work is the time and space complexity. 

The time complexity is the time taken by an algorithm to run as a function of the length of the 

input. The time complexity of an algorithm is expressed using Big-O notation. This time is 

estimated by counting the number of elementary operations performed by the algorithm, where an 

elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and 

the number of operations performed by the algorithm differ by at most a constant factor. For this 

work, the constant factor is the number of samples.  

Performing an accurate calculation of the operation time of a program is very intensive 

because it depends on the type of computer or processor speed [25]. Complexity, in that sense, is 

the maximum number of operations that a program may execute. Regular operations are additions, 

multiplications, assignments, etc. Since, there are a lot of operations, we are only focusing on those 

operations that are performed the largest number of times. Such operations are called dominant 
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and they depend on the input data. Usually, researchers want to know how the performance time 

depends on an aspect of the data: the size. Operations includes both scalar and matrix. Some 

operations are listed below: 

 

• Addition (+) 

• Subtraction (-) 

• Multiplication (*) 

• Left Division (\) 

• Right Division (/) 

• Square Root (√) 

 

The operations mentioned above are called Floating Point Operations (FLOP). FLOP is a 

method of encoding real numbers within the limits of finite precision available on computers. In 

other words, FLOP handles Floating Point Numbers (FPN), numbers that includes decimals on it. 

Counting the number of FLOPS an algorithm requires solving a problem allows us to compare the 

relative speed of methods. FLOPS is a measurement of the computational efficiency algorithm.  It 

gives the number of basic operations an algorithm performs as a function of its input length. With 

that said, a function 𝑇 ∈ ℕ  can capture the efficiency of an algorithm such that 𝑇(𝑛) is equal to 

the maximum number of basic operations that the algorithm performs on inputs of length n. For 

instance, an algorithm with 𝑇(𝑛) = 𝑂(𝑛) is called a linear time algorithm because for large enough 

input sizes of data, the running time increases linearly with the size of the input. There are different 

time complexities; some of them are listed in the following table: 

 

 

 

 

 

 



19 
 

Name Running Time (𝑻(𝒏)) 

Logarithmic Time 𝑂(log 𝑛) 

Linear Time 𝑂(𝑛) 

Quadratic Time 𝑂(𝑛2) 

Cubic Time 𝑂(𝑛3) 

Exponential Time 2𝑂(𝑛) 

Factorial Time 𝑂(𝑛!) 

 

Table 2.1: Table of Common Time Complexities 

 

• Logarithmic Time: Algorithms taking logarithmic time are commonly found in operations 

on binary trees or when using binary search. 

 

• Linear Time: Best time complexity in situations where the algorithm must sequentially 

read its entire input.  

 

• Quadratic Time: Algorithms that are comparison-based take this type of complexity. 

Also, advanced algorithms such as the Shell Sort takes quadratic time.  

 

• Cubic Time: Algorithms involving three nested loops take Cubic Time.  

 

• Exponential Time: It is used to express the running time of some algorithm that may grow 

faster than any polynomial. 

 

• Factorial Time: Algorithms used to calculate permutations or finding the determinant of 

a matrix using Laplace expansion has this kind of time complexity. 

 

Another important aspect is the Space Complexity of an algorithm. Space Complexity is the 

amount of computer memory required by an algorithm to complete its execution. Space 

Complexity includes auxiliary space and space used by the input. The auxiliary space is the extra 

space or temporary space used by the algorithm. To measure the space, natural units are used such 
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as bytes, number of integers used, number of fixed-sized structures, etc. There are up to four 

aspects of memory usage to consider: 

 

• Memory needed to hold the code for the algorithm 

• Memory needed for the input data 

• Memory needed for the output data 

• Memory needed as working space 

 

It is important to know that both Time and Space Complexity depends on the computer 

that is used to perform this analysis. Current computers have large amounts of memory such as: 

cache memory, physical memory, and virtual memory. Cache memory (often static RAM) operates 

at speeds comparable with the CPU. Physical memory (often dynamic RAM) operates slower than 

the CPU. Virtual memory (often on disk) gives the illusion of lots of memory and operates 

thousands of times slower than RAM. An algorithm whose memory needs will fit in cache memory 

will be much faster than an algorithm which fits in main memory, which in turn will be very much 

faster than an algorithm which must resort to virtual memory. 
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CHAPTER 3 
 

METHODOLOGY 

 

 

 

Fig 3.1: Flow Chart of the Methodology 

 

 

 The methodology consists of EEG data acquisition for the motor imagery tasks of thinking 

movement in two parts of the body such as left hand and right hand. Once sufficient trials of EEG 

signals for the above tasks are obtained from a subject, the spectrogram is computed on each of 

these signals by using either STFT or CMWT. The feature extraction stage consists of computing 

the PMF on the spectrograms. A feature matrix for both testing and training data is constructed by 

the selection of the most discriminative features. A 10-Fold Cross-Validation of the feature 
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matrices is applied to make the classification process using the SVM classifier more reliable. The 

work flow for the methodology is given in Figure 3.1. 

 

3.1 EEG Signal Dataset 

   

The EEG signal generated by the cerebral cortex is measured with both frontal and motor 

imagery electrodes in the scalp surface with AgCl conductive paste applied on the region to 

provide good conduction. Lower impedance from the region indicates a better conduction. The 

subject will be asked to imagine left and right hand movement according to an arrow displayed in 

the BCI application. This process will be repeated until the subject has good performance in the 

task, with no eye blinking (electrooculography (EOG)), correct imagination of the tasks and no 

movement of other body parts (electromyography (EMG)).  

 

3.1.1 Binary EEG Motor Imagery Classification Dataset 

 

The dataset was provided by Department of Medical Informatics, Institute for Biomedical 

Engineering, Graz University of Technology in Austria [27]. This dataset contains EEG data 

recorded from a normal subject (some 25 years old female). The task was to control a feedback 

bar by imagining left or right hand movements. The order of left and right cues was random. The 

experiment consisted of 7 runs of 40 trials each, for a total of 280 trials. The runs of the experiment 

were conducted on the same day with several minute break in between. Given are 280 trials of 9 

second length. One set of 140 trials out of the 280 used was for testing and the other 140 trials for 

training.  

In the first two seconds of the run an acoustic stimulus indicates the beginning of the trial. 

Then, a cross “+” is displayed for about one second. At 𝑡 = 3𝑠 an arrow (with either left or right 

direction) was displayed as cue. At the same time, the subject was asked to move a bar into the 

direction of the cue. The recording was made using a G.Tec amplifier and Ag/AgCl electrodes, as 

previously mentioned. Three EEG channels were measured over 𝐶3, 𝐶𝑧 and 𝐶4. The EEG signals 

are sampled with 128Hz and filtered between 0.5Hz - 30Hz. Figure 3.5 and Figure 3.6 shows the 

original EEG Signal from channels 𝐶3 and 𝐶4 using only one trial. The trials for training and testing 
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were randomly selected to prevent any systematic effect due to the feedback session of the 

experiment. A visual representation of the experiment is shown in Figure 3.3. Channels 𝐶3, 𝐶𝑧 and 

𝐶4 are shown in Figure 3.2: 

 

 

 

Figure 3.2: Map of Electrode Positions 

 

 

 

 

Figure 3.3: Experiment Description: Time Scheme 
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Electrodes 1, 2 and 3 are bipolar EEG channels. Many BCI systems uses monopolar 

recordings. In monopolar recordings, one electrode is placed on the scalp and the other one is 

located away from the interest area [9]. For this work, bipolar recordings are used. In bipolar 

recordings, the electrodes are placed both on the scalp, as it can be seen in Figure 3.4 (b). 

According to [35] bipolar channels are more robust to noise. The monopolar channels have the 

disadvantage of the location of reference electrode which affects greatly the EEG recording. In 

general, the reference electrode is placed ideally on a point reflecting no brain wave activity.  

 

 

 

Figure 3.4: EEG placement electrodes method, Bipolar (a) and Monopolar (b) 

 

The format of the data is important. Data is saved in a Matlab file format. The file contains 

three variables. The first variable (training) contains 3 EEG channels and 140 trials with 9 seconds 

each. The second variable (testing) contains also the same 3 EEG channels and another 140 trials 

with 9 seconds each. The last variable contains the class labels “1” and “2”. Label “1” corresponds 

to left and label “2” corresponds to right. On the other hand, the cue was presented from 𝑡 = 3𝑠 to 

𝑡 = 9𝑠, as in Figure 3.3.  
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Figure 3.5: Original EEG Signal from Channel 𝑪𝟑 

 

 

 

Figure 3.6: Original EEG Signal from Channel 𝑪𝟒 
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3.2 Time-Frequency Analysis 

 

 

Figure 3.7: Spectrogram of Left-Hand Trial using STFT 

 

 

Figure 3.8: Spectrogram of Right-Hand Trial using STFT 
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Figure 3.9: Spectrogram of Left-Hand Trial using CMWT 

 

 

Figure 3.10: Spectrogram of Right-Hand Trial using CMWT 
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After data is collected and the generic data has been acquired, a time-frequency 

representation of the data is used to get more information of the data. The time-frequency methods 

used in this work are the STFT and the CMWT. This work was done using STFT first and then the 

CMWT to compare results. The STFT of each EEG sample was obtained using the Matlab 

spectrogram function. STFT is done like [24] where the window function is being multiplied by 

the Fourier Transform of the EEG data. Figure 3.7 shows the spectrogram (computed with STFT) 

for imaginary left-hand movement and Figure 3.8 shows the spectrogram (computed with STFT) 

for imaginary right-hand movement. On the other hand, the CMWT of each EEG signal was 

obtained using the CMWT function created in the Brain Computer Interface Lab. of the University 

of Puerto Rico at Mayaguez using Matlab, as well. Figure 3.9 and Figure 3.10 shows the time-

frequency representation of an imaginary left and right hand movements using CMWT. The time-

frequency representation of EEG data computed by the methods mentioned before are a positive 

data matrix that is used as the input to the PMF method.  

 

3.4 Feature Extraction 

 

 Positive matrices are obtained with either Short Time Fourier Transform or Complex 

Morlet Wavelet Transform. For each trial, a positive matrix is calculated for a total of 140 positive 

matrices for testing and another 140 positive matrices for training. Taking STFT matrix or CMWT 

as input for the PMF method, the output is the product of two matrices 𝑊 and 𝐻 in the form of a 

multiplication. In other words, the multiplication 𝑊𝐻 is the PMF of either STFT or CMWT matrix. 

According to [22], 𝑊 contains basis vectors in its columns and 𝐻 is the encoding matrix where 

each row represents a feature vector. Since both STFT and CMWT are different methods that are 

used to compute the positive matrices, different sizes of 𝑊 and 𝐻 are obtained. Figure 3.11 shows 

the PMF applied to an input matrix obtained with the STFT approach. As mentioned above, feature 

vectors in Figure 3.11 are the rows of matrix 𝐻. For this case, the input matrix is of size 513×13, 

matrix 𝑊 is of size 513×10 and matrix 𝐻 is of size 10×13. Figure 3.12 shows the PMF applied 

to an input matrix obtained with the CMWT approach. Feature vectors in Figure 3.12 are the rows 

of matrix 𝐻. For this case, the input matrix is of size 64×640, matrix 𝑊 is of size 64×10 and 

matrix 𝐻 is of size 10×640. The number of feature vectors depends on the number of the basis 
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selected for the PMF method. This basis must be a number less than the size of the dimension of 

the positive matrix used as input for the PMF. In other words, the basis factor gives the number of 

feature vectors. This basis also guarantees that analysis of less amount of data still gives good 

results. But, good results also depend on the features. For that reason, a feature selection method 

is done.  

 

Figure 3.11: PMF method applied to STFT matrix of trial one 

 

 

  

Figure 3.12: PMF method applied to CMWT matrix of trial one 
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3.5 Feature Selection 

 

 To quantify the separation between classes, left and right hand-movement, this research 

used the same procedure in [30]. Let 𝑀 be the normalized matrix of the features and 𝑌̂ is the feature 

matrix for each subject. We obtained the sum of the distances: 

                                                           

                                                               𝐷𝐿 = ∑|𝑌̂𝑖,𝑗 − 𝑀𝑖|

𝐽

                                                 (3.1) 

                                                     

where 𝑖 is the feature index, 𝐿 is the number of the features, 𝑗 is the class index, and 𝐽 is the total 

number of matrix imagery class. The standard deviation for each feature was also computed: 

 

                                                                      𝜎𝐿 = √
1

𝐽
∑(𝑌𝑖,𝑗 − 𝑀𝑖)

2

𝐽

𝑗=1

                                         (3.2) 

          

Sorting the results of equations (3.1) and (3.2), the first half of features were selected. Features 

with less distance means that are near the class it corresponds than those features with high 

distance. The same occurs with the standard deviation. Selected features were used for 

classification.  

 

3.6 Cross-Validation 

 

 After selecting the best features from the selected channels, the data was split using 10-

fold cross-validation. Cross-validation is used to get the accuracy for the classifier 𝐶. Accuracy is 

defined as: 

 

                                                                  𝐴𝑐𝑐 = 𝑃𝑟(𝐶(𝑣) = 𝑦)                                              (3.3) 
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for a randomly selected instance 〈𝑣, 𝑦〉 ∈ 𝑋, where the probability distribution over the instance 

space is the same as the distribution that was used to select the instance for the inducer’s training 

set. This is where the inducer builds a classifier from a given dataset. An inducer is an algorithm 

that is used to build a classifier using a given dataset [19]. One accuracy does not give many details 

about the classified data. For that reason, cross-validation is used.  

 The function used in this experiment is the k-fold cross-validation. In k-fold cross-

validation, the folds 𝐷1, 𝐷2, … , 𝐷𝑘 are randomly split k subset of approximately equal size of 

dataset D. For each of the k subset, the inducer is trained and tested k times, where each 𝑡 ∈

{1,2, … , 𝑘}, it is trained on 𝐷\𝐷𝑡. Let the instance 𝑥𝑖 =  〈𝑣, 𝑦〉 be a test set in 𝐷(𝑖) then the cross-

validation estimate of accuracy: 

 

                                                                𝐴𝑐𝑐𝑐𝑣 =  
1

𝑛
∑ 𝛿(𝐼(𝐷\𝐷(𝑖), 𝑣𝑖), 𝑦𝑖)                               (3.4)

〈𝑣𝑖,𝑦𝑖〉∈𝐷

 

 

where 𝛿(𝑖, 𝑗) = 1 if 𝑖 = 𝑗 and 0 otherwise and I is the inducer. Then a complete cross-validation 

is used where the average of all ( 𝑚
𝑚\𝑘

) possibilities for choosing 𝑚\𝑘 instance out of m [18]. 

 

3.7 Classification 

 

After using 10-fold cross-validation to make the partition to divide the data into training 

and testing sets, the data was run through the Support Vector Machine (SVM) classifier. As 

discussed in section 2.8, this experiment used LIBSVM Matlab code for the classification process 

using the SVM approach. The kernel that was used is the Radial Basis Function (RBF) because it 

generates a non-linear mapping by transforming the features into a different space, where a linear 

discrimination between classes is done. The RBF was determined using the highest accuracy 

achieved in cross-validation. The SVM uses a one-versus-one system which makes a model for 
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each class and compares them with each one, giving a point to the class that won. In other words, 

the class with the most data points wins and that class is assigned a label.  

 

 

3.8 Computational Complexity 

 

 

 As mentioned before, BCI systems must be accurate and efficient, therefore efficiency 

should be considered as much as accuracy and the computational time, as well. Most BCI systems 

must be as reliable as possible because of the real-world applications. Hence, this thesis considered 

that by obtaining the computational time required to obtain the Positive Matrix Factorization 

giving a specific number of samples as input. An important fact about the PMF method and time 

complexity is that with higher number of basis in the PMF, the computational time also increases. 

This is because with bigger set of data, the number of FLOPS or operations during the PMF method 

increases. Since, we focused only in the PMF method for this time complexity analysis, the number 

of FLOPS was obtained using only the PMF function. In other words, the number of Floating Point 

Operations per second and the time of execution was calculated using only the PMF function. The 

computer that was used for this work has an Intel Xeon 2.6 Ghz Dual Core and a 32 GB RAM, 

which was a good computer for handling the data processing and all the computations of this work. 
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CHAPTER 4 
 

RESULTS 
 

 

 In this chapter, classification accuracy for motor imagery data from [1] is presented. The 

accuracy includes the use of two channels and Support Vector Machine (SVM) classifier. The data 

was divided, and 1 10⁄  of the trials were selected for testing. In other words, 14 trials were 

randomly selected out of the 140 trials, ten times. After the feature extraction and the feature 

selection, the data was left with a feature matrix. The size of this matrix depends on PMF and the 

number of basis utilized. In the following tables, Table 4.1 and Table 4.2, different sizes of feature 

matrices are shown. The results of these instances are recorded to compute the accuracy for the 

prediction stage. These results are from pre-recorded data and not real-time data.  

 

 

4.1 Feature Matrices 

 

 

 Basis 6 Basis 8 Basis 10 

Feature Matrix 140×78 140×104 140×130 

 

Table 4.1: Feature Matrix size using Short Time Fourier Transform 

 

 

 Basis 6 Basis 8 Basis 10 

Feature Matrix 140×3840 140×5120 140×6400 

 

Table 4.2: Feature Matrix size using Complex Morlet Wavelet Transform 
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Table 4.1 and Table 4.2 shows the sizes of features matrices obtained using both STFT and 

CMWT. The number of basis is given by the user and it represents two things: the number of basis 

vectors of the PMF method and the number of feature vectors. It is very important to know the fact 

that the higher the number of observations in the feature matrix, the accuracy for the prediction 

could increase or decrease. The reason is that noise is present in these observations and it could be 

difficult to extract all of them without leaving all the important data in the dataset. According to 

[27] the data set was filtered from [0.5𝐻𝑧 − 30𝐻𝑧]. Of course, there are method to filter 

unnecessary noise such as Adaptive Filtering, Linear Regression, or Data Decomposition [31] but 

it is beyond this work.  

 

 

4.2 Cross-Validation Accuracy 

 

 A training model was created using the LIBSVM to study good possibilities in terms of 

number of samples and basis. Table 4.3 shows different percentages of accuracies according to 

number of samples and number of basis. As mentioned above, the number of basis is a factor by 

which the PMF will compute the factorization. This basis is also the number of feature vectors 

because the rows of matrix 𝐻 were taken as feature vectors. The normal EEG dataset contains 

1152 samples for each trial, for a total of 140 trials. Depending on the subject, this dataset could 

have more or less noise but all dataset has noise. Therefore, it can be seen that accuracy percentage 

is higher with less number of samples as in Table 4.3. Table 4.4 also shows cross-validation 

accuracies using Complex Morlet Wavelet Transform. CMWT gives matrices with greater 

dimensions than STFT so the number of features and the amount of noise also increased. The same 

effect as Table 4.3 can be seen; accuracy percentages are in some cases higher with less samples 

than with a big number of samples. To facilitate lector’s interpretation, accuracies are in 

percentage.  
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Number of 

Samples 

Accuracy 

with 

𝑩𝒂𝒔𝒊𝒔 𝟐 

Accuracy 

with 

𝑩𝒂𝒔𝒊𝒔 𝟒 

Accuracy 

with 

𝑩𝒂𝒔𝒊𝒔 𝟔 

Accuracy 

with 

𝑩𝒂𝒔𝒊𝒔 𝟖 

Accuracy 

with 

𝑩𝒂𝒔𝒊𝒔 𝟏𝟎 

384 62.14 69.29 65.00 64.29 66.43 

512 64.29 70.00 72.14 70.00 70.71 

640 68.57 70.71 72.14 72.14 76.00 

 

Table 4.3: Cross-Validation Accuracies using Short Time Fourier Transform 

 

 

 

 

Number of 

Samples 

Accuracy 

with 

𝑩𝒂𝒔𝒊𝒔 𝟐 

Accuracy 

with 

𝑩𝒂𝒔𝒊𝒔 𝟒 

Accuracy 

with 

𝑩𝒂𝒔𝒊𝒔 𝟔 

Accuracy 

with 

𝑩𝒂𝒔𝒊𝒔 𝟖 

Accuracy 

with 

𝑩𝒂𝒔𝒊𝒔 𝟏𝟎 

384 62.86 52.86 54.29 57.86 60.00 

512 57.85 58.57 62.86 62.14 63.57 

640 53.57 60.71 67.14 70.00 72.14 

 

Table 4.4: Cross-Validation Accuracies using Complex Morlet Wavelet Transform 

 
 

4.3 Prediction Accuracies 

 

 

Table 4.5 and Table 4.6 shows Classification Accuracies for different number of samples, 

different basis and different methods: STFT and CMWT. It can be seen in Table 4.5 that the higher 

accuracy is 75%, using a basis of 10 and 640 samples. For a basis 10 and 512 samples, a 71.43% 

was obtained and a 72.86% was obtained using a basis 8 and 640 samples. Even though we had 

the highest result using the highest amount of both basis and samples, a good accuracy can also be 

obtained using less basis (72.86%) and less number of samples (71.43%). This means that the 

PMF method is good for data reduction, which is a big challenge in the data processing perspective. 

Obtaining good results with less data than the original dataset also reduces computational time and 

it is cost effective. Short Time Fourier Transform was used to get the results of Table 4.5, which 
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gives also positives matrices smaller than the positive matrices computed using the Complex 

Morlet Wavelet Transform.  

 CMWT was used to compute positive matrices for the PMF method. Table 4.6 shows that 

the highest accuracy was 70% using number of basis of 10 and 640 samples. A 62.14% was 

obtained with a basis of ten and a number of samples of 512. Also, a 60.00% was obtained using 

a basis 8 and 640 samples. If we compare the numbers computed using STFT and the numbers 

computed using CMWT, it can be seen that STFT is a better method for features representation 

than CMWT. CMWT increases resolution of spectrogram but also increase the computational 

time. Because it increases the resolution, the noise also increases, making the prediction process a 

challenge. That is why STFT has better results than CMWT. To facilitate lector’s interpretation, 

accuracies of the tables are in percentage.  

 

Number of 

Samples 

Accuracy with 

𝑩𝒂𝒔𝒆 = 𝟔 

Accuracy with 

𝑩𝒂𝒔𝒆 = 𝟖 

Accuracy with 

𝑩𝒂𝒔𝒆 = 𝟏𝟎 

384 61.43 55.71 60.00 

512 65.00 63.57 71.43 

640 66.43 72.86 75.00 

 

Table 4.5: Classification Accuracies using Short Time Fourier Transform for Testing 

 

 

Number of 

Samples 

Accuracy with 

𝑩𝒂𝒔𝒆 = 𝟔 

Accuracy with 

𝑩𝒂𝒔𝒆 = 𝟖 

Accuracy with 

𝑩𝒂𝒔𝒆 = 𝟏𝟎 

384 57.14 57.86 62.14 

512 61.43 55.71 62.14 

640 62.86 60.00 70.00 

 

Table 4.6: Classification Accuracies using Complex Morlet Wavelet Transform for Testing 

 

 

Alternating Least Squares (ALS) and Multiplicative Update (MU) are the two algorithms 

to be analyzed fort this work. ALS is a good approach when dealing with big amount of data and 

its convergence is relatively fast but with the PMF method it is not as good as the MU algorithm. 

The reason is that ALS initialize only one of the two factorization matrices and since PMF does 

not have a unique local solution, the convergence will not get good results in terms of accuracy. 



37 
 

MU on the other hand initializes both factorization matrices 𝑊 and 𝐻, making faster the 

convergence in the PMF method. Something important to mention is the fact that the PMF method 

can get local minima for 𝑊 or 𝐻 but not with both at the same time. In other words, the initial 

conditions in this algorithm plays an important role. To obtain results of Tables 4.5 and 4.6, the 

PMF was run few times. Researchers suggest running the PMF many times and the one that gives 

the highest results will be used the Matrix Factorization of the input. This is because of the nature 

of the initial conditions of 𝑊 and 𝐻. In other words, the algorithm does not have a unique solution 

due to its initial conditions.  

 

4.4 Confusion Matrices 

 

Confusions matrices that are presented below are those whose accuracies are above 70 %. 

They show the results for the subject studied by demonstrating how many of the observations were 

correctly classified. The accuracy percentage is obtained by taking the average of the diagonal of 

the confusion matrix. 

 Figure 4.1 shows the confusion matrix obtained using CMWT, 10 basis vectors and 640 

samples. As we can see, the SVM classifier predicted 71.43% as left-hand movement and 28.57% 

as right hand movement while the actual class to be predicted was a left-hand movement.  31.43% 

was predicted as right-hand movement and 68.57% was predicted as right-hand movement while 

the actual class to be predicted was a right-hand movement. The diagonal of the confusion matrix 

of Figure 4.1 is used to calculate the final accuracy. This accuracy is obtained as the average of 

the diagonal of the confusion matrix in the following manner: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦1 =
71.43 + 68.57

2
 = 70%  

 

where 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦1 is the highest accuracy shown in Table 4.6. 
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            Figure 4.1: Confusion Matrix using CMWT (𝟕𝟎%) 

 

 

Figure 4.2 shows the confusion matrix obtained using STFT, 10 basis vectors and 512 

samples. As we can see, the SVM classifier predicted 77.14% as left-hand movement and 22.86% 

as right hand movement while the actual class to be predicted was a left-hand movement.  34.29% 

was predicted as right-hand movement and 65.71% was predicted as right-hand movement while 

the actual class to be predicted was a right-hand movement. The diagonal of the confusion matrix 

of Figure 4.2 is used to calculate the final accuracy. This accuracy is obtained as the average of 

the diagonal of the confusion matrix in the following manner: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦2 =
77.14 + 65.71

2
 = 71.43%  

 

where 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦2 is the highest accuracy shown in Table 4.5. 
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             Figure 4.2: Confusion Matrix using STFT (𝟕𝟏. 𝟒𝟑%) 

 

 

 

Figure 4.3 shows the confusion matrix obtained using STFT, 8 basis vectors and 640 

samples. As we can see, the SVM classifier predicted 74.29% as left-hand movement and 25.71% 

as right hand movement while the actual class to be predicted was a left-hand movement.  28.57% 

was predicted as right-hand movement and 71.43% was predicted as right-hand movement while 

the actual class to be predicted was a right-hand movement. The diagonal of the confusion matrix 

of Figure 4.3 is used to calculate the final accuracy. This accuracy is obtained as the average of 

the diagonal of the confusion matrix in the following manner: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦3 =
74.29 + 71.43

2
 = 72.86%  

 

where 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦3 is the highest accuracy shown in Table 4.5. 
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            Figure 4.3: Confusion Matrix using STFT (𝟕𝟐. 𝟖𝟔%) 

  

 

Figure 4.4 shows the confusion matrix obtained using STFT, 10 basis vectors and 640 

samples. As we can see, the SVM classifier predicted 57.14% as left-hand movement and 42.86% 

as right hand movement while the actual class to be predicted was a left-hand movement.  7.14% 

was predicted as right-hand movement and 92.86% was predicted as right-hand movement while 

the actual class to be predicted was a right-hand movement. The diagonal of the confusion matrix 

of Figure 4.1 is used to calculate the final accuracy. This accuracy is obtained as the average of 

the diagonal of the confusion matrix in the following manner: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦4 =
57.14 + 92.86

2
 = 75%  

 

where 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦4 is the highest accuracy shown in Table 4.5. 
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    Figure 4.4: Confusion Matrix using STFT (𝟕𝟓%) 

 

 

4.5 Computational Complexity 

 

 

 A time complexity study was performed for this work. Table 4.7 shows the time 

complexity, in FLOPS, for the Positive Matrix Factorization function using different sets of 

samples as input. The biggest set of samples is 640 and the smaller is 128 samples. Analyzing the 

table mentioned above, the PMF method using the STFT to calculate the positive matrices is quite 

fast. This time depends on many factors such as the computer capacity and the memory 

compromised during the calculation of this time. As mentioned in Section 3.8, has the computer 

has an Intel Xeon 2.6 Ghz Dual Core and a 32 GB RAM, which is a good computer for handling 

the data processing and all the computations of this work. The computational time also depends 

on how the RAM and the processor of the computer are compromised during the time computation. 

On the other hand, in Table 4.8 the same time complexity analysis was performed using CMWT 

method for the calculation of the positive matrices. Comparing both tables, Table 4.7 and Table 

4.8, we can see that the number of floating point operations using STFT are less than the number 

of floating point operations using CMWT. This means that STFT is faster than CMWT. It is true 
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that CMWT improves the resolution time-frequency representation of the dataset, but it also 

increases the resolution of noise.  

 

 

Number of Samples  FLOPS 

128 8344 

256 16664 

384 24984 

512 33304 

640 41624 

 

Table 4.7: Time Complexity of PMF function using base 10 and STFT 

 

 

 

Number of Samples FLOPS 

128 36065 

256 71905 

384 107745 

512 143585 

640 179425 

 

Table 4.8: Time Complexity of PMF function using base 10 and CMWT 

 

 

 A better visualization of Table 4.7 and Table 4.8 is shown in the following graphs. Figure 

4.5 is a graph of Time Complexity using STFT. According to [38], the number of loops in an 

algorithm along with the operation determines the time complexity. Because of the representation 

of this plot, we can say that the time complexity of this graph is a linear time complexity. Figure 

4.6 is a graph of Time Complexity using CMWT. Because of the representation of this plot and 

the Big-O notation discussed in 2.9, we can say that the time complexity representation of this 

graph is Linear Time or in Big-o notation: 𝑇(𝑛) = 𝑂(𝑛). 
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Figure 4.5: Time Complexity using STFT 

 

  

 
 

Figure 4.6: Time Complexity using CMWT 
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FLOPS were obtained using both STFT and CMWT to study how many operations the 

PMF performs given a number of samples as inputs so the time complexity could be obtained. 

CMWT generates a bigger matrix than STFT because it has better resolution. In other words, data 

partition of the CMWT is bigger, so the matrices will be in fact, bigger than the matrix generated 

using STFT.  

On the other hand, Table 4.9 shows the Space Complexity of the PMF method given 

different sizes of samples and STFT. From Table 4.9 we can see that the number of megabytes is 

proportional to number of samples. In other words, if the number of samples increases, the number 

of bytes or space in memory will also increase. FLOPS increase because the PMF method must 

perform more computations if the number of samples increases. That is, given a big input for the 

PMF, it means the input matrix will increase in rows or columns, so the computations have more 

rows or columns to process. Table 4.10, shows the Space Complexity of the PMF method given 

different sizes of samples and CMWT.  As in Table 4.9, the bytes are proportional to number of 

samples. In this case, the number of operations are more than the number of operations obtained 

using the STFT. This is because the CMWT gives as output a matrix with a bigger size than the 

matrix generated with the STFT approach. 

 

Number of Samples Megabytes 

128 17.3 

256 48.5 

384 77.4 

512 110.3 

640 142.6 

 

Table 4.9: Space Complexity of PMF function using base 10 and STFT 

 

Number of Samples Megabytes 

128 360 

256 674.5 

384 983.3 

512 1294.6 

640 1621.3 

 

Table 4.10: Space Complexity of PMF function using base 10 and CMWT 
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A better visualization of Table 4.9 and Table 4.10 is shown in the following graphs. Figure 

4.7 is a graph of Space Complexity using STFT. Because of obtained results, we can say that the 

computational complexity of this graph is linear, so 𝑇(𝑛) = 𝑂(𝑛). Figure 4.8 is a graph of Space 

Complexity using CMWT. Because of the results obtained, we can say that the computational 

complexity representation of this graph is also linear, so 𝑇(𝑛) = 𝑂(𝑛). Even though the difference 

in space complexity of STFT and CMWT is not much, STFT still gives better results in the 

computation of operations. In other words, STFT method is a good choice to calculate the positive 

matrices of each trial because it requires less memory space to compute the operations.  

 

 

 

 
 

Figure 4.7: Space Complexity using STFT 
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Figure 4.8: Space Complexity using CMWT 

 

 

4.6 Re-testing the PMF Algorithm 

 

 Table 4.11 shows the accuracy (in percentage) using a new dataset [2]. This dataset was 

collected using channels 𝐶3 and 𝐶4. It also contains 280 trials; 224 trials used for training and 56 

trials used for testing. Results from Table 4.11 demonstrate that the PMF algorithm combined with 

STFT does not change over time. The highest accuracy in Table 4.11 is similar to the highest 

accuracy of Table 4.5, considering that a basis of 5 was used for the PMF algorithm, in this case. 

 

Number of 

Samples 

Accuracy with 

𝑩𝒂𝒔𝒆 = 𝟒 

Accuracy with 

𝑩𝒂𝒔𝒆 = 𝟓 

350 69.64 71.42 

 

Table 4.11: Classification Accuracies using a different dataset and STFT  
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4.7 Discussion 

 

 Comparing all accuracies, it is seen that the best result overall using channels 𝐶3 and 𝐶4 is 

75%. This was using Short Time Fourier Transform to traduce the EEG data into a time-frequency 

representation that was used as the input positive matrix for the PMF method. The SVM classifier 

classified the features relatively good because it maps the features to a higher dimensional space 

and fits linear decision boundaries in the high dimensional space. Also, SVM is good in 

performance when the dataset is for binary motor imagery classification. In other words, SVM 

works better for dataset that has two classes. An aspect to consider is that if a subject has lower 

accuracy for authentication with the SVM classifier or any other classifier, this implies that the 

subject needs more training in performing the motor imagery task. This can be seen in the 

prediction percentages in the Confusion Matrices presented above. A better dataset can be obtained 

if a subject is well trained.  

 Also, the overall performance in terms of time complexity using STFT or CMWT is about 

0.1 seconds for 640 samples taken from the EEG data as input. This means that PMF works fast 

in terms of computational time.  Of course, computational time depends on the computer 

performance and capabilities but PMF is a good method for dimensionality data reduction. In terms 

of space complexity, STFT combined with PMF gave better results than CMWT combined with 

PMF. This is because the CMWT increases resolution and this increases matrix dimension. This 

is important for applications where storage of data is a big limitation. A suggestion for people 

developing applications is to use STFT instead of CMWT.  

 Storage of data and computational time are big limitations when handling big datasets. For 

this work, a dataset with size of 7,561 𝐾𝐵 was used. Only data from 3 EEG channels are available 

in the dataset. Since the analysis of this works takes several computations, a big number of size is 

obtained in the results. For the results, 19.1 𝑀𝐵 of space was occupied using STFT, a basis of 8 

and 640 samples. 16.9 𝑀𝐵 of space was occupied using STFT, a basis of 10 and 512 samples. 

21.1 𝑀𝐵 of space was occupied using STFT, a basis of 10 and 640 samples. On the other hand, 

an amount of 1.34 𝐺𝐵 of space was occupied using CMWT with a basis of 10 and 640 samples.  

If we sum each space occupied by the results, we get a total of 1.3971 𝐺𝐵 of space occupied. In 

terms of CPU time, the calculated time of the whole algorithm using the STFT method is 6.7188 

seconds. A total of 162.09 seconds of computational time was obtained using the CMWT method.  
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CHAPTER 5 
 

CONCLUSIONS 
 

 The objectives of this work were achieved. The implementation of the Positive Matrix 

Factorization method was done by studying two algorithms, Multiplicative Update and Alternating 

Least Squares and implementing the most promising of these two. The Multiplicative Update 

Algorithm worked better than Alternating Least Squares because it initializes both matrices 𝑊 and 

𝐻, finding a local solution faster. The ALS algorithm, on the other hand, only initialize one of the 

two matrices, making the task of finding a local solution a challenge. Also, a computational 

analysis was done for the PMF method. The space complexity as well as the computational time 

was obtained while increasing the number of samples. Space Complexity measures were obtained 

using computer tool named task manager, which it calculates the memory space used by an 

application. This analysis is important in a computer science perspective because in these days, 

huge amount of data must be managed in a short period of time to make a robust and reliable BCI 

system. The use of the PMF method for binary motor imagery classification was done, giving an 

accuracy of 75%. 

 

5.1 Contributions 

 

 The STFT or CMWT (spectrograms), was used to translate EEG data into a time-frequency 

array that was the input of the PMF method discussed in this work. The PMF was used to extract 

features from EEG signals for experiments based on motor imagery. The STFT and PMF method 

gave better results compared to results compared to results in previous work using PMF. Also, 

only 2 channels (out of 3) were used for motor imagery classification, while usually 8 channels 

are used. The Support Vector Machine was used for the classification stage of this work because 

is more reliable; it does not have the overfitting problem and its performance is good for binary 

EEG data.  
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5.2 Future Work 

 

 

 To improve the presented method to classify motor imagery data better, some suggestions 

are given below: 

 

• Study bipolar channels for EEG recordings. 

 

• Another option to improve accuracies is to explore other methods of PMF or the Spectro-

temporal Pursuit Algorithm for feature extraction. 

 

• Also, the implementation of an Adaptive Filter to extract undesirable noise in the EEG data 

could also improve accuracies.  
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