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This work presents different alternatives for modeling binary longitudinal data

for continuous and categorical outcomes. Using a logistic model with random inter-

cept, we propose the Percentile Curves concept, which are conditional probability

curves across time representing percentiles of distribution of curves generated by

the random intercept. We also analyze the density and cumulative distribution of

subject-specific probabilities across time induced by the logistic model with random

intercept. We apply this concept to two binary longitudinal data sets (Toenail and

Garlic). Also, we expand the percentile curves concept to a logistic model with a

random intercept and slope, and we propose a methodology to compute them.
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Por

Pedro A. Torres Saavedra
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Consejero: Raúl Macchiavelli
Departamento: Departamento de Matemáticas

En este trabajo se presentan diferentes alternativas de modelamiento de datos

longitudinales para respuestas continuas y categóricas. Usando un modelo loǵıstico

con intercepto aleatorio, proponemos el concepto de Curvas Percentiles, que son cur-

vas de probabilidades condicionales a través del tiempo que representan percentiles

de una distribución de curvas generadas por el intercepto aleatorio. Aśı mismo,

analizamos la función de densidad y la distribución acumulada de las proporciones

sujeto-especificas a través del tiempo inducidas por el modelo loǵıstico con intercepto

aleatorio. Aplicamos este concepto a dos conjuntos de datos longitudinales binarios,

Uñas y Ajo. Además, ampliamos el concepto de curvas percentiles a un modelo

loǵıstico con intercepto y pendiente aleatoria y proponemos una metodoloǵıa para

calcularlas.
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CHAPTER 1

INTRODUCTION

Longitudinal data analysis is a very important branch of statistical modeling,

and it has many applications. In this work we present theoretical aspects, and

applications of longitudinal data analysis. Chapters 2 to 4 present the literature

review about longitudinal data analysis and the most recent advances. In Chapter 2,

we also talk about the longitudinal data and its advantages in comparison with cross-

sectional studies. We present a general linear model that includes several models,

and we group them in three general families according to recent literature. We

introduce a linear mixed model as the simplest case in the longitudinal data modeling

and also because it provides a comparison point with the non-linear models. The

different models used to analyze longitudinal data are discussed in Chapter 3. In this

chapter, we also discuss the marginal, subject-specific, transitions and marginalized

models, and its respective general properties. We emphasize in generalized linear

mixed models (GLMM ) as a special type of the subject-specific models used to

analyze categorical longitudinal data. In Chapter 4, we study the available models

to analyze binary longitudinal data with special emphasis on the logistic model. In

this chapter, we also compare the marginal and subject-specific model estimates, and

discuss the interpretations of each of them. In Chapter 5, we propose the Percentile

Curves in a logistic model with random effects as an interesting concept to interpret

the subject-specific probabilities induced by the random effects.
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In a logistic model with random intercept, we propose to interpret the subject-

specific probabilities across time as percentile curves of the distribution curves in-

duced by the random effect. This curve indicates that 50% of the subject-specific

probabilities are under, or above, this value across time. We formalize this result

in Proposition 1, which it is proved. All these results are theoretically developed

using classical inference and statistical model theory. Similarly, we analyze the den-

sities and cumulative distributions of the subject-specific probabilities induced by

the random effects across time, and how the random effect variance affects its shape.

We expand the Percentile Curves concept to a logistic model with random

intercept and slope. In this case, we propose a methodology to find the density

function of the subject-specific probabilities and the percentiles curves using the

Monte Carlo method.

These results are applied to two data sets (Toenail and Garlic). The first one

has a binary response, and the second one has a binomial response. The respective

interpretations are discussed in Chapter 5.

R and SAS statistical packages were used in this thesis.



CHAPTER 2

APPROACHES TO LONGITUDINAL DATA

2.1 Introduction

The characteristic definition of a longitudinal study is that the subjects are mea-

sured in repeated occasions through time. By contrast, the cross-sectional studies

measure a single time for each individual.

There are many advantages, or merits, that longitudinal studies have over cross-

sectional studies [35]. First, in a longitudinal study an investigator can separate

age effects (changes over time within individuals) from cohort effects (differences

between subjects at baseline). In a cross-sectional study this is not possible. This is

the prime advantage of the longitudinal studies. To understand this aspect better,

Figure 2.1 shows a classical example presented by Diggle et al. [35]. The plots

show the ability of reading against age for several subjects. The first plot (cross-

sectional) indicate that the reading ability appears poorer among older subjects.

This plot show only the relation between age and reading ability without consider

the repeated measures. In the second plot (longitudinal), we suppose that same data

were obtained in a longitudinal study in which each subject was measured twice. It is

clear that while younger subjects began at a higher reading level, everyone improved

with time. However, the third plot (cross-sectional and longitudinal) shows that

reading ability deteriorates with age. In this plot, a pair of points are connected

to show an unusual result. This reflects the importance of the age effects in the

longitudinal studies.

3



4

15 16 17 18 19 20 21 22

20
22

24
26

28
30

Cross−sectional

Age

R
ea

di
ng

 a
bi

lit
y

15 16 17 18 19 20 21 22

20
22

24
26

28
30

Longitudinal

Age
R

ea
di

ng
 a

bi
lit

y
15 16 17 18 19 20 21 22

20
22

24
26

28
30

Longitudinal and Cross−sectional

Age

R
ea

di
ng

 a
bi

lit
y

Figure 2–1: Relationship between reading ability and age

The second advantage is that, in a longitudinal study each subject can be its own

control. For most outcomes, there exist a considerable variability across individuals

due to the influence of unmeasured characteristics, such as environment exposure,

personal habits, and others. This tend to persists over time. A third advantage

is that, for a fixed number of subjects, the longitudinal studies are more powerful

than the cross-sectional. This happens because the repeated observations from the

same subject are rarely perfectly correlated. That is, repeated measurements from a

single subject provide more information than a single measurement obtained from a

single subject. Fourth, longitudinal data can provide information about individual

change. Statistical estimates of individual trends can be used to better understand

heterogeneity in the population, the determinants of growth, and change at the

individual level.

On the other hand, for the analysis of longitudinal data it is necessary to con-

sider that repeated observations on one subject are dependent, therefore, longitu-

dinal data analysis requires special statistical methods. This correlation must be

considered to draw valid scientific inferences, adding complexity to the models.
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There are many aspects of longitudinal studies that must be considered in order

to select an appropriate analysis [22]:

1. It is important to know whether the outcome is continuous or discrete. The selected

model will depend on the type of outcome and its distribution. For continuous

outcomes, there are several models, estimation techniques, and statistical software.

However, for discrete outcomes, the models are more complex, and researchers

still developing models and estimation techniques. Also, the statistical programs

to fit models for discrete outcomes are limited, and the programs for parameter

estimation can be computationally intensive due to the need of numerical methods.

2. The sample size (N), and the number of observations per subject (ni) are also

important aspects in a longitudinal study. In complex models such as generalized

linear mixed models, small N and ni may produce inappropriate estimates and

large biases.

3. The number and type of covariates are important aspects in order to select and

interpret a model for response mean. These can be baseline, or time-varying co-

variates. In any case, the model must consider these aspects.

4. In terms of the selection of a plausible covariance structure for Var(Y ). Different

model specifications lead to homogeneous, or heterogeneous covariances of repeated

measures over time.

2.2 A First Approach using a General Linear Model

In order to present a set of models to analyze longitudinal data, it is necessary

to understand what the likely sources of random variation that occur in practice are,

and which ones may be important to be included in the models [35]. These sources

will permit to develop and study each model component. It is possible to distinguish

between the following sources of random variation in a longitudinal study:

• Random effects : When the subjects are sampled at random from a population,

various aspects of their behavior may show stochastic variation between subjects.
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• Serial correlation: The observed measurement of the a subject may be a response

to time-varying stochastic process operating within this subject. This type of

stochastic variation results in a correlation between pairs of measurements on the

same subject which depends on the time separation. Typically, the correlation

becomes weaker as the time separation increases.

• Measurement error : Especially when the individual measurement involves some

kind of sampling within units, the measurement may itself add a component of

variation to the data.

This qualitative features must be introduced into the models by using appropriate

terms, which will be discussed in the next section.

Following Diggle’s approach [35], we will begin talking about a general model

for longitudinal data in Section 2.2.2. It will be possible to see that the models

presented in most of the literature are special cases of this general model.

2.2.1 General Notation

Consider the following general notation. Suppose a longitudinal study with N

subjects, each one measured in ni, i = 1, . . . , N , occasions across time. Let yij be

the outcome for the i− th subject in the j − th, j = 1, . . . ni, measurement.

• Yi = (Yi1, . . . , Yini
): ni×1 vector of sequence of measurements on the i−th subject.

• Y = (Y1, . . . , YN): complete set of NT =
∑N

i=1 ni measurements.

• Xi: ni × p design matrix of p covariates for the i− th subject.

• X: NT×p design matrix that contains the information of covariates for all subjects.

• β: p−dimensional parameter vector of fixed-effects associated with the covariates.

• ti = (ti1, . . . , tini
) the corresponding set of times at which the measurements were

taken.

• t = (ti, . . . , tN): NT × 1 vector with the time-points for all subjects.

• Zi: ni × q design matrix of q random effects for the i− th subject.

• ui: q−dimensional parameter vector of random-effects for the i− th subject.
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• εi: ni × 1 error vector for the i− th subject.

2.2.2 A General Linear Model

In order to present the models used to analyze longitudinal data, first we present

a general model that includes the different components associated to the random

variation sources mentioned in Section 2.2.

Let us consider the following general model :

Y = Xβ + e (2.1)

where e is aNT×1 error component normally distributed with zero mean, and covari-

ance matrix, Σ = Σ(t, α) that depends on a r−dimension parameter vector, α, and

the time-points vector, t. In the previous formulation, we make an explicit separa-

tion between mean and variance structures. The mean of Y is given by E(Y ) = Xβ,

while the variance of e, Var(e), takes different forms depending on the assumptions

on e. Our interest is to study the variance components, α. Therefore, the additive

decomposition of the ij − th element of e, eij, in terms of random effects, serial

correlated variation and measurement error can be expressed formally as [35]:

eij = z′ijui + wi(tij) + εij (2.2)

where εij are a set of NT mutually independent Gaussian random variables, each one

with zero mean, and variance τ 2, ui is a set of ni mutually independent q−element

Gaussian random vectors, each one with mean zero vector and covariance matrix D,

and wi(tij) are sampled from N independent copies of a stationary Gaussian process

with zero mean, variance σ2, and correlation function ρ(h), where h is the lag time.

Note that ui, wi(tij), and εij correspond to random effects, serial correlation, and

measurement error, respectively. The variance of the error term for the i−th subject,

ei, is given by

Var(ei) = ZiDZ
′
i + σ2Hi + τ 2Ii (2.3)
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where Zi is the ni× q design matrix with j− th row equal to z′ij, Hi a ni×ni matrix

with the jk − th element given by hijk = ρ(| tij − tik |), and Ii the ni × ni identity

matrix. When Hi is the identity matrix, that is, the measurements taken over the

same subject are independent, we have the classical linear regression model. Diggle

calls this formulation as a Parametric Model for Covariance Structure [35].

Let us consider some special cases of the variance structure of e presented in

Equation 2.3 to derive some well-known models used to analyze longitudinal data:

• Covariance Patterns Models (CPM): If the decomposition of the error term does

not consider neither random effects nor measurement error, then

eij = wi(tij)

and, therefore, the resulting model implies that

Var(Yi) = σ2Hi

In this case we are considering that the measurements taken over the same subject

have a correlation described by the function ρ(h). Two classical alternatives for

Hi are [35]:

– Uniform correlation: This structure of Hi considers that there is a positive

correlation, ρ, between any two measurements on the same subject. In matrix

terms,

Hi = (1− ρ)Ii + ρJi (2.4)

where Ii denotes the ni × ni identity matrix, and Ji the ni × ni matrix all of

whose elements are 1. A uniform correlation could be the result of considering

Yij = µij + ui + γij
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where µij = E(Yij), ui are mutually independent N(0, λ2) random variables,

the γij are mutually independent N(0, σ2) random variables, and ui and γij

are independent.

– Exponential correlation: In contrast to the uniform correlation, the correlation

between a pair of measurements on the same unit decays towards zero when

the distance between units increases. In this case, Hi has the jk− th element,

νjk, of the form:

νjk = exp(−φ | tj − tk |) (2.5)

with φ a unknown constant. If the time-points are equally-spaced, tj+1− tj =

d, for all j, then νjk could be defined as

νjk = ρ|j−k| (2.6)

where ρ = exp(−φd).

Similarly to the uniform correlation, an exponential correlation could be the

result of considering

Yij = µij +Wij (2.7)

where

Wij = ρWij−1 + γij (2.8)

and, the γij are mutually independent N [0, σ2(1 − ρ2)] random variables, to

give Var(Yij) = Var(Wij) = σ2 as required. In view of Equations 2.7 and

2.8, the exponential correlation model is sometimes called the First-order

Autoregressive Model AR(1). This concept can be generalized to p− th Order

Autoregressive Models.

• Mixed Models : If we eliminate the serially correlated component altogether, Equa-

tion 2.2 reduces to

eij = z′ijui + εij (2.9)
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and therefore,

Var(ei) = ZiDZ
′
i + τ 2Ii

Equation 2.9 corresponds to a mixed model with the conditional independence

assumption, that is, given ui the repeated measurements of a subject are inde-

pendent. The mixed word is because the model includes fixed effects which are

represented by β, and random effects included in ui. The simplest model of this

kind is obtained considering a scalar random intercept, ui0, with covariance matrix

equal to λ2I. Therefore,

Var(ei) = λ2Ji + τ 2Ii

The previous result implies that the correlation between any two measurements on

the same subject is given by:

ρ =
λ2

λ2 + τ 2

This is the well-known intra-class correlation coefficient cited usually in cluster

analysis. Note that this result is like the one obtained with the uniform correlation

structure presented in the covariance patterns models. This result shows that the

uniform correlation between observations of the same subject can be induced using

a model with random intercept.

• Mixed Model with Covariance Structures : Finally, if the model has no measurement

error term, that is, it considers only random effects and serial correlation, then its

formulation is given by:

eij = z′ijui + wi(tij)

and,

Var(ei) = ZiDZ
′
i + σ2Hi

This model is more complex because it includes random effects, and serial correla-

tion. Generally, it requires special estimation techniques, and specialized software

tools to be fitted [34].
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2.3 Linear Mixed Models for Normal Data

In the previous section, we talked about random variation sources in longitudi-

nal studies, and how these are represented in a general model. In this section, we

present a linear mixed model for response variables with normal distribution. First,

let us consider the following linear model, similar to Equation 2.1:

Yi = Xiβ + εi (2.10)

where εi is a ni × 1 error vector normally distributed with zero mean. The model is

completed by specifying an appropriate covariance matrix Σi for εi, leading to the

multivariate model

Yi ∼ N(Xiβ,Σi) (2.11)

When Σ = σ2Ii, this model corresponds to the linear regression model, which as-

sumes all repeated measurements are independent. That is, it ignores the fact that

repeated measurement within subjects may be correlated. Depending on the con-

text, it is possible to select other structures for Σi, such as uniform correlation, or

first-order autoregressive, which were showed in Section 2.2.2.

The random effects approach extends the univariate linear regression model,

but it assumes that the response can be modeled by a linear regression model with

subject-specific regression coefficients. In many situations, one could assume that

each subject responds differently across time, and consequently, each one must have

an intercept and a slope. Therefore, one can assume that the outcome yij, measured

at time tij satisfies

Yij = b̃i0 + b̃i1tij + εij (2.12)

where b̃i0 = β̃i0 + ui0 and b̃i1 = β̃i1 + ui1. Because subjects are randomly selected

from a population, it is reasonable to consider that the subject-specific regression

coefficients are randomly sampled from a population of coefficients. Assuming b̃i =

(b̃i0, b̃i1) to be bivariate normal with mean (β̃i0, β̃i1)
′ and 2× 2 covariance matrix D,
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we can rewrite the model in Equation 2.12 as:

Yij = (β̃0i + ui0) + (β̃i1 + ui1)tij + εij (2.13)

where the new random effects, ui0 and ui1, are normally distributed with zero mean

and covariance matrix D. Under this model, it is reasonable to think in terms of

the population-average profile which represents the linear regression model for the

average subject. The previous statement is valid only in the linear mixed model

context. In other types of models, such as generalized linear mixed models, it is not

true. Taken expectations to both sides in Equation 2.13, we find that the population-

averaged regression model is given by:

E(Yij) = β̃i0 + β̃i1tij + εij (2.14)

Figure 2–2 shows the subject-specific and population-average profiles for a hypothet-

ical example of longitudinal data that can be well described using a linear mixed

model with random intercepts and slopes.
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−
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−
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0
2

4
6

8

time tij

y i
j

Individual profiles with random intercepts and slopes

Figure 2–2: Subject-specific and population-average profiles. The continue line rep-
resents population-average evolution and the dash lines indicates the subject-specific
evolution
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The model presented in Equation 2.12 is a special case of the general linear

mixed model which assumes that the vector Yi of repeated measurements for the

i− th subject satisfies

Yi | ui ∼ N(Xiβ̃ + Ziui,Σi) (2.15)

ui ∼ N(0, D)

All implicit terms in the model were defined in Section 2.2.1. The components in

β̃ are called fixed effects, and the components in ui are called random effects. The

fact that the model contains fixed as well as random effects generate the term mixed

model. The formulation of this model is also called hierarchical formulation of the

linear mixed model.

Inference in Linear Mixed Models

Let fi(yi | ui) and f(ui) be the density functions corresponding to the ran-

dom variables defined in Equation 2.15, respectively. Then, the marginal (induced)

density function of Yi is

fi(yi) =

∫
<
fi(yi | ui)f(ui)dui (2.16)

which has a ni−dimensional normal density function with mean and variance given

by:

E(Yi) = Xiβ (2.17)

and,

Var(Yi) = Vi = ZiDZ
′
i + Σi (2.18)

This result shows that the linear mixed model presented in Equation 2.15 implies a

marginal model as presented in Equation 2.10, but with a specific form for the mar-

ginal covariance matrix Vi, which depends on an unknown vector α of parameters

in the covariance matrices usually called variance components. The corresponding
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marginal normal distribution with mean Xiβ and covariance Vi is called the mar-

ginal formulation of the model. A marginal model follows from a hierarchical one,

however, different random-effects models can produce the same marginal model [34].

The model presented in Equation 2.15 is called by some authors conditional model

because of the conditional formulation with respect to the random effects, or is also

called subject-specific model because it models the response for each subject based

on the respective random effect value. Precisely, the mean of the model presented

in Equation 2.15, E(Yi | ui), is called the conditional mean, which is denoted by µ̃i,

and E(Yi) is called the marginal mean, which is denoted by µi.

An important property of linear mixed models is that the marginal mean of Yi

coincide with the conditional mean given ui = 0, that is

E(Yi) = E(Yi | ui = 0) = Xiβ

The previous equation indicates that the population-average profile obtained from

integrating the random effects in the Equation 2.16 is equal to the typical profile, or

conditional mean given a zero random effect, ui = 0. In the linear mixed models with

normal distribution, it is due to the interesting properties of multivariate normal

distribution, and the linear mean structure. Consequently, this property is not

necessary true in other models, such as generalized linear mixed models, which will

be presented later.

The classical inference for linear mixed models is based on maximum likelihood

(ML). Assuming independence across subjects, the likelihood takes the form

L(θ) =
N∏

i=1

{
(2π)−ni/2 | Vi(α) |−1/2 exp

[
− 1

2
(Yi−Xiβ)′V −1

i (α)(Yi−Xiβ)
]}

(2.19)

Estimation of θ′ = (β′, α′)′ requires joint maximization of 2.19 with respect to all

elements of θ. Conditionally on α, the maximum likelihood estimator (MLE) for β
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is given by:

ˆβ(α) =

(
N∑

i=1

X ′
iWiXi

)−1 N∑
i=1

X ′
iWiYi (2.20)

where Wi = V −1
i , and α can be replaced by the Restricted Maximum Likelihood

(REML) estimator, which is obtained without first having to estimate β. β̂(α) has

a normal distribution with mean and variance given by:

E[β̂(α)] = β (2.21)

and,

Var[β̂(α)] =

(
N∑

i=1

X ′
iWiXi

)−1

(2.22)

Note that standard errors based on Equation 2.22 are valid, only if the mean and

covariance were correctly specified; however, in practice this can hardly be reached.

Thus, it is recommended to calculate the standard errors based on the formula:

Var[β̂(α)] =

(
N∑

i=1

X ′
iWiXi

)−1( N∑
i=1

X ′
iWiVar(Yi)WiXi

)(
N∑

i=1

X ′
iWiXi

)
(2.23)

where Var(Yi) is estimated using

(yi −Xiβ̂)(yi −Xiβ̂)′ (2.24)

rather than V̂i. Standard errors of β̂ based on Equation 2.24 are the so-called robust

or empirical standard errors, which will be discussed with more detail in Section

3.1.1.

Random Effects Predictions

Although in practice the primary interest is to estimate the parameters in the

marginal distribution for Yi, β and D, it is often useful to calculate the estimates

for the random effects ui as well. They reflect the between-subject variability, which

could have interesting interpretations in terms of clustering of individuals, or special

profiles. The assumptions about the random and fixed effects are different. A
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fixed effect is considered to be a constant to be estimated, while a random effect

is considered an effect sampled from a population, and therefore, we prefer to use

the term prediction to refer to random effects instead estimate. Nevertheless, some

authors do not distinguish between the two terms. They use estimate for both fixed

and random effects inference [2, 34].

In general, the prediction of the random effects, ui, is based on the conditional

posterior distribution of ui given all the information of the marginal model, that is

[34]:

fui
(ui | yi, β,D) =

fi(yi | ui, β)f(ui | D)∫
< fi(yi | ui, β)f(ui | D)dui

(2.25)

The resulting predictions from this method are called Bayes Estimates because they

use the prior information on the marginal model. For a linear mixed model, Equation

2.25 takes the form of a normal distribution with mean given by:

ûi(θ) = DZ ′
iV

−1
i (α)(yi −Xiβ) (2.26)

which is used in practice as predictor of ui. Its covariance is equal to

Var[ûi(θ)] =

{
V −1

i − ViXi

( N∑
i=1

X ′
iV

−1
i Xi

)−1

X ′
iV

−1
i

}
ZiD (2.27)

If the unknown parameters α and β in θ are replaced by their respective estimators,

then ûi is called the Empirical Bayes Estimate for the random effects in the linear

mixed model. Using a classical result of inference, it is important to note that

Var(ui) = Var[E(ui | y)] + E[Var(ui | y)] (2.28)

where E(ui | y) = ûi, and the second term in Equation 2.28 is positive. Therefore,

the Equation 2.27 underestimates the variability of the random effects, ui. This

phenomenon is usually referred to as shrinkage, and ûi is called a shrinkage estimator

[33].
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2.4 Generalized Linear Models (GLM)

Before talking about other models to analyze longitudinal data, it is important

to define the generalized linear models (GLM ), which are used to analyze categorical

data, such as binary and count data [2].

Suppose that Y is a response variable that has a density distribution that be-

longs to the exponential family:

f(y; θ, φ) = exp
{ [yθ − ψ(θ)]

aφ
+ c(y, φ)

}
(2.29)

where θ is a location parameter (not necessarily the mean), φ is a dispersion parame-

ter, ψ(·), and c(·) are known functions. If the density distribution has one-parameter

θ, Equation 2.29 can be simplified to:

f(y; θ, φ) = exp
{ [yθ − ψ(θ)]

a
+ c(y)

}
(2.30)

The expressions for a, ψ(θ), and c(y) for some well-known distributions with sample

size equal to n are shown in Table 2–1. The mean and variance of the distribution,

f(y; θ, φ), can be written in terms of the functions a, and ψ [6, 33].

Table 2–1: Expressions for a, ψ(θ), and c(y) for one-parameter distributions

Distribution a ψ(θ) c(y)

Bernoulli 1 log(1 + exp(θ)) 1

Binomial 1
n

log(1 + exp(θ)) log
[

n!
(ny)!(n−by)!

]
Poisson 1 exp(θ) − log(y!)

Poisson with offset t 1
t

y log(yt)− log(yt!) 1

In general, the systematic component of a GLM is defined using the following

equation:

g(µi) = g{E(Yi)} = Xiβ (2.31)

where Yi is the response variable for the i − th subject, g(·) is a known monotone

differentiable function, called link function, and β is a parameter vector related to
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the covariates. Table 2–2 shows the link functions commonly used for different types

of outcomes with their respective equation models.

Table 2–2: Common link functions

Outcome Link Function Equation Model

Normal Identity µi = Xiβ

Binary Logit log
(

µi

1−µi

)
= Xiβ

Binary Probit Φ−1(µi) = Xiβ
Binary Complement log− log ln(− ln(1− µi)) = Xiβ
Count Log log(µi) = Xiβ

The model presented in Equation 2.31 can be rewritten as

µi = E(Yi) = g−1(Xiβ)

The previous models are used if the observations are not correlated; however, in the

context of longitudinal studies this assumption is no valid, and it is necessary to

extend these models in order to consider correlated observations.

2.5 Model Families in General

In this section, we consider a classification of the possible models to analyze

longitudinal data in three general families. First, let us consider the following results

for models with a linear mean structure. A marginal model is characterized by a

marginal mean function given by

E(Yij | xij) = x′ijβ

where x′ij is a vector of covariates for the i − th subject at the j − th occasion.

Although the mean is conditionally expressed in terms of the covariates, this for-

mulation is considered marginal because it does not depend on other variables or

previous results. In random-effects models, we focus on the conditioning expectation

on a random effect

E(Yij | ui, xij) = x′ijβ + z′ijui
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Clearly, the mean response, depends on the covariates and the random effects. Fi-

nally, there is a third type of models which conditions a particular outcome on the

previous response or a subset thereof. A specific case, a simple first-order stationary

transition model takes the form

E(Yij | Yij−1, . . . , Yi1, x
′
ij) = x′ijβ + αYij−1

The previous type of models have a clear relation in Gaussian responses. However,

there is not a close connection between them when the outcomes are discrete, such

as binary, or categorical. In order to study other alternatives to model longitudinal

data, different to the normal responses, we consider three general model families

which are described briefly [34, 35]:

• Marginal models: Responses are modeled marginalized over all other responses

or results, and the association structure is then typically captured using a set of

association parameters, such as correlations, odds ratios, etc. These models are

also called population-averaged models because the parameters characterize the

marginal expectation.

The marginal models include an extensive range of possibilities, especially, those

that use methods based on likelihood such as the Bahadur model, or log-linear

models [34]. We will focus on marginal models in which the dependence between

observations within each individual is modeled using correlation structure matrices,

and generalized estimation equations (GEE ) to obtain estimates. These themes

will be presented in Section 3.1.

• Subject-specific models: Subject-specific models are differentiated from mar-

ginal, or population-averaged models, by the inclusion of specific parameters for

each subject. Unlike the normal responses, the parameters of subject-specific and

population-averaged models describe different types of effects of the covariates. The
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subject-specific term is usually equated to random-effects ; however, the subject-

specific parameters can be treated as (1) fixed-effects, (2) as random-effects, and

(3) eliminated by conditioning. The first case is very simple but presents many

problems when the number of parameters is large. We will emphasize the second

approach, the generalized linear mixed models. These models will be discussed

in more detail in Section 3.2.1. Finally, the third approach is well-known in epi-

demiology to analyze case-control studies. In particular, the conditional logistic

regression is often used in these studies. This method conditions on a sufficient

statistics for each subject.

• Transition models: These are models in which any response within the sequence

of repeated measures is modeled conditional upon the other outcomes. Diggle et

al. criticize the transition approach because the interpretation of a fixed effect

parameter of one response is conditional on other responses for the same subject,

outcomes of others subjects, and the number of repeated measures. We will discuss

briefly these models in Section 3.3.



CHAPTER 3

MODELING LONGITUDINAL DATA

In the previous chapter, we introduced the three model families used to analyze

longitudinal data. They can be used for both continuous and discrete outcomes.

Next, we will study some theoretical aspects, and characteristics of the models that

belong to each family.

3.1 Marginal Models

When inferences based on mean parameters, or population-average are of pri-

mary interest it is unnecessary to specify the full joint distribution, and many times

the complete likelihood can be complicated to evaluate, except with small ni. In

these situations, a marginal model is an adequate form to analyze the data origi-

nated by a longitudinal study. A marginal model specifies the mean of the response

variable, or marginal expectation, and the correlation of the repeated measures sep-

arately.

First, consider Yij, the outcome for the i−th subject in the j−th measurement.

Define a general form to relate the response and its mean:

Yij = µij + εij

Then, a marginal model establishes the following assumptions:

1. The marginal expectation of the response variable and the covariates are related

by means of:

g(µij) = g[E(Yij)] = x′ijβ (3.1)

21
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where g(.) is the link function, and x′ij is the covariates vector.

2. The variance of Yij is a function of the µij, and a parameter φ called dispersion

parameter. Thus, Var(Yij) = φυ(µij), where υ(.) is a known variance function. For

example, for Poisson response variable, the variance function is the identity, and φ

is a dispersion parameter, thus Var(Yij) = φµij.

3. Finally, the correlation between observations on the same subject, Corr(Yij, Yik) =

ρ(µij, µik;α), depends on the marginal means, and on a parameter vector α. This

correlation is modeled using a correlation structure matrix called working correla-

tion matrix. It is assumed that the correlation matrix R(α) depends on a vector

of association parameters α, and is equal for all subjects.

If g(·) is the identity function, then the model in Equation 3.1 reduces to the

classical regression model: E(Yij) = x′ijβ. The specification of a covariance structure

for the errors establishes a marginal model to continuous responses, such as we

discussed in Chapter 2. Therefore, we can see that the marginal models can be used

for both continuous and discrete responses.

A method used to calculate the estimates in the marginal models are generalized

estimating equations(GEE ). This method uses quasi-likelihood, which requires the

mean response to be expressed as a parametric function of covariates (first moment),

and the variance is assumed to be a function of the mean up to possibly unknown

scale parameters (second moment). The estimates obtained with this model are pop-

ulation average estimates because they represent the average effect of the covariates

over the marginal mean of the response for the subjects in the population who share

the same values in the covariates.

3.1.1 Generalized Estimating Equations (GEE)

The generalized estimating equations method was developed in the 1980’s to

extend the generalized linear models to correlated data [22, 29].
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Based on the marginal model, the working covariance matrix of Yi is specified

as

Vi = Var(Yi) = φA
1/2
i Ri(α)A

1/2
i (3.2)

where φ is a dispersion parameter, Ai is a ni×ni diagonal matrix with ai,jj = υ(µij)

as the j − th diagonal element, and Ri(α) the ni × ni working correlation for i− th

subject. For example, in Poisson responses, ai,jj = µij, and for binomial responses,

ai,jj = µij(1−µij). Ri(α) must be selected according the observed correlation. Nev-

ertheless, the GEE method yields consistent estimates of the regression coefficients,

and their standard errors, even with misspecification of the correlational structure.

This is a relevant property of the GEE estimates.

Table 3–1: Common choices of working correlations in standard GEE and moment-
based estimators

Structure corr(yij, yik) Estimator

Independence 0 –

Exchangeable (CS) α α̂ = 1
N

∑N
i=1

1
ni(ni−1)

∑
j 6=k eijeik

AR(1) α|j−k| α̂ = 1
N

∑N
i=1

1
(ni−1)

∑
j≤ni−1 eijei,j+1

Unstructured αjk α̂jk = 1
N

∑N
i=1 eijeik

We present the parameters for some common choices for the working correlation

matrix in Table 3–1. It can be used either for continuous or discrete data. However,

in practice, it is possible that some correlation structures work better for some type

of data [34, 35]. The term eij =
yij−µij

υ
√

µij
represents the standardized residuals.

For example, let us suppose a study with four measurements (ni = 4) taken

through time. Under each working correlation structure, the respective matrices

Ri(α) for each subject i are given by:
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Independence:

Ri =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


The independence structure assumes that repeated measurements for a subject are

not correlated. In this case, GEE simplifies to the GLM estimating equations.

Exchangeable or Compound Symmetry:

Ri =



1 α α α

α 1 α α

α α 1 α

α α α 1


Such as shown in the previous chapter, exchangeable is the correlation structure

induced by the model with random intercept, but only for the identity link function.

This structure may not be justified in a longitudinal study, but it is often reasonable

in situations in which repeated measures are not obtained over time. This structure

is appropriate when cluster sampling is involved.

Auto-regressive AR(1):

Ri =



1 α α2 α3

α 1 α α2

α2 α 1 α

α3 α2 α 1


Unstructured:

Ri =



1 α21 α31 α41

α21 1 α32 α42

α31 α32 1 α43

α41 α42 α43 1
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The unstructured correlation structure implies that the correlation matrix has ni(ni−1)
2

parameters to estimate. The estimation can present problems when there are missing

data [31].

The GEE estimator of β for the model described in Equation 3.1 is the solution

of:
N∑

i=1

D
′

i[Vi(α̂)]−1(yi − µi) = 0 (3.3)

where α̂ is a consistent estimate of α, andD′
i =

(
∂µi/∂β

)′
. Equation 3.3 is called the

Score Equation. These are similar to the score equations in the GLM. However, in

this context, the variance of Yi, depends on the parameters of the working structure

correlation. The estimates are called quasi-likelihood estimates because Equation 3.3

depends only of the mean and variance. Notice that for the normal case, Equation 3.3

reduced to the normal estimation equation for the linear regression using weighted

least-squares (WLS ) with weight matrix [Ri(α)]−1. When Ri(α) = I, the solution

to this equation is reduced to the normal estimation equation for the classic linear

regression problem.

Solving the GEE involves iterating between the quasi-likelihood solution to

estimate β, and a robust method to estimate α as a function of β. Specifically, it

involves the following steps:

1. Given estimates of Ri(α), and φ, calculate estimates of β using iteratively re-

weighted least squares where iterative estimates of α are used to yield new estimates

of β.

2. Given estimates of β, obtain estimates of α, and φ. To do this, it is necessary to

calculate Pearson (or standardized) residuals

rij =
(yij − µ̂ij)√

[V (α̂)]jj

and then, use these residuals to estimate α, and φ.
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These steps are repeated until convergence is reached. Finally, the standard errors for

β̂ are obtained using robust, or empirical estimates (also called sandwich estimates)

V (β̂) = M−1
0 M1M

−1
0

where

M0 =
N∑

i=1

D′
iV̂

−1
i Di

M1 =
N∑

i=1

D′
iV̂

−1
i (yi − µ̂i)(yi − µ̂i)

′V̂ −1
i Di

Finally, the following are some important properties of the GEE method [31]:

• GEE reduces to GLM estimating equations for ti = 1. In this case, Equation 3.2

reduces to:

Vi = φυ(µi) (3.4)

and,

D′
i = ∂µi/∂β =

[∂g(µi)

∂µi

]−1

xi (3.5)

Then, combining Equation 3.4 and 3.5, the Equation 3.3 reduce to

N∑
i=1

[∂g(µi)

∂µi

]−1

xi[φυ(µi)]
−1(yi − µi) = 0 (3.6)

which is equivalent to the score equation of a GLM [33].

• GEE are the maximum likelihood score equations for multivariate Gaussian data

when unstructured correlation is specified.

• The regression parameter estimates are consistent if the number of subjects in-

crease, even if the working correlation matrix is misspecified, as long as the model

for the mean is correct.
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• The empirical sandwich estimator of the covariance matrix of β̂ is also consis-

tent if the number of subjects is large, even if the working correlation matrix is

misspecified, as long the model for the mean is correct.

Currently, there are many statistical software packages for fitting models for lon-

gitudinal data with categorical outcomes using GEE, such as SAS PROC GENMOD

[31], gee, and geepack R libraries, Stata, SPSS, and others.

3.2 Subject-specific Models

As presented in the previous chapter, subject-specified models can be treated

using three approaches: fixed effects, random effects, and conditioning on a sufficient

statistic for the subjects. In this section, we emphasize the random effects models as

a way to model discrete longitudinal data. When we refer to subject-specific model

we will always talk about the random-effects models.

In contrast with the marginal models, which model the correlation between

repeated measures over the same subject using a working correlation matrix, the

subject-specific models, induce the correlation between observations by including

random effects for the subjects. As was mentioned by Diggle et al [35] “the corre-

lation among repeated observations arises because we cannot observe the underlying

growth curve, that is, the true regression coefficients”. The importance of including

random effects in the models has been studied by many authors, which consider that

omitting them could generate a loss of efficiency and, therefore, an increase in the

standard errors of parameter estimates [7]. These models are also referred by some

authors as conditional models [27, 35], multilevel models [15, 44] or, latent variable

models, depending on the model formulation.

A subject-specific model uses the following assumptions:
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1. The conditional expectation of the response variable is related to the covariates

and the random effects by:

g(µ̃ij) = g[E(Yij | ui)] = x′ijβ̃ + z′ijui (3.7)

where g(·) is the link function, µ̃ij is the conditional mean, x′ij is the covariate

vector, β̂ is the fixed effects parameter, z′ij is the random effects covariate vector,

and ui represents the random effects.

2. Given ui, the responses yi1 . . . yini
are mutually independent, and follow a GLM. y

has a f(y | β,D, σ2) density function in the exponential family.

3. The random effects, ui, are mutually independent with a common underlying mul-

tivariate distribution f(u).

Similarly to the marginal models, if g(·) is the identity function, then, the model

in Equation 3.7 reduces to the linear mixed model: E(Yij | ui) = x′ijβ̃ + z′ijui.

In these models, ui is a sample of independent unobservable variables from

a random effects distribution. Qualitatively, this assumption implies that we can

learn about one individual’s coefficients by understanding the variability in coeffi-

cients across the population. When there is little variability, we should rely on the

population average coefficients to estimate those for an individual. When the varia-

tion is considerable, we must rely more heavily on the data from each individual in

order to estimate their own coefficients. The random effects models is most useful

when the objective is to make inference about individuals rather than the popula-

tion average. The regression coefficients, β̃ represent the effects of the covariances on

an particular subject. This is a subject-specific interpretation, unlike the marginal

models where the β’s have a population-average interpretation.

The maximum likelihood estimation in Equation 3.7 is based on the likelihood

function of y:

f(y) =
N∏

i=1

∫ ni∏
j=1

f(yij | β,D, σ)f(u)du (3.8)



29

This is a marginal distribution of y obtained by integrating the joint distribution

of (y, u) with respect to u. In general, this integral does not a have close-form

expression, so different approximations have been proposed, for example, the Gauss-

Hermite quadrature, linear mixed effects approach (LME), and the Laplacian ap-

proximation [36], Monte Carlo algorithms [14, 32] and others [12]. We will discuss

further some of these methods.

There exist some well-known subject-specific models: beta-binomial, probit-

normal, and the generalized linear mixed models (GLMM ). GLMM s will be our

point of interest in this thesis because of their wide use in discrete longitudinal data

analysis.

3.2.1 Generalized Linear Mixed Models (GLMM)

GLMM s are an extension of the generalized linear model (GLM ), adding ran-

dom effects [12]. In a GLMM the response vector, y, is assumed to have conditionally

independent elements given the random effects u, each one with density function in

the exponential family [33]. Let us suppose that µ̃ij, the conditional mean of yij, is

related with the systematic, and random components by the following equation:

g(µ̃ij) = x′ijβ̃ + z′ijui (3.9)

where x′ij, and z′ij are the covariates vector of the fixed, and random effects, respec-

tively. The mean-to-variance relationship is given by

Var(Yi | ui) = φaiυ(µ̃ij)

where υ(.) is the variance function that relates the conditional means and variances,

φ is a scale factor (i.e. φ is assumed equal to one for standard binomial, and Poisson

models), ai is a prior weight, such as the reciprocal of a binomial denominator.

Finally, ui has a q-dimensional known distribution function fui
(ui), such as the

normal distribution N(0, D), which is used in many cases.
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Because of the properties of function g, then it is possible to apply g−1 to both

sides in Equation 3.9:

E(yij | ui) = µ̃ij = g−1(x′ijβ̃ + z′ijui)

Table 3–2 shows common link functions with their respective models. In this

case, Φ(.) is the standard normal cumulative distribution.

Table 3–2: Common link functions in GLMM

Outcome Link Function Equation Model

Binary Logit log
(

µ̃ij

1−µ̃ij

)
= x′ijβ̃ + z′ijui

Binary Probit Φ−1(µ̃ij) = x′ijβ̃ + z′ijui

Binary Complementary log− log ln(− ln(1− µ̃ij)) = x′ijβ̃ + z′ijui

Count Log log(µ̃ij) = x′ijβ̃ + z′ijui

The consequences of including random effects in the models, can be analyzed

by studying the first two moments of the marginal distribution of Yij. Note that the

marginal mean of Yij induced by the random effects, denoted by Eu(Yij), is given

by:

Eu(Yij) = Eui
[g−1(x′ijβ̃ + z′ijui)] (3.10)

which, in general, cannot be simplified, due to the nonlinear function g−1. A par-

ticular case is the Poisson regression with a random intercept distributed normally

with zero mean and variance σ2
u. In this case, the induced marginal mean of Yij is

equal to:

Eu(Yij) = x′ijβ̃ +
σ2

u

2

The marginal (induced) mean obtained by integrating out the individual’s hetero-

geneities, will be a population-average if and only if the subjects in the study can

be regarded as a random sample from a population. According to some authors, the

population-average concept is true only if we are analyzing a random sample [27].
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The marginal variance of Yij induced by the random effects, denoted by Varu(Yij),

has the following expression:

Varu(Yij) = Var(E[Yij | ui]) + E(Var[Yij | ui]) (3.11)

= Var(µij) + E[φaiυ(µij)]

= Var(g−1[x′ijβ̃ + z′ijui]) + E{φaiυ[g
−1(x′ijβ̃ + z′ijui)]}

which again cannot simplified in most cases. In a linear mixed model, the induced

marginal mean in Equation 3.10 is reduced to: Eu(Yij) = x′ijβ̃. Likewise, the induced

marginal variance in Equation 3.11 can be reduced to: Varu(Yij) = ZiDZ
′
i + Σi,

similar to Equation 2.18.

Finally, assuming conditional independence of the elements of Yi, we have that

Covu(Yij, Yik) = Cov(E[Yij | ui],E[Yik | ui]) + E[Cov(Yij, Yik | ui)]

= Cov[g−1(x′ijβ̃ + z′ijui), g
−1(x′ikβ̃ + z′ikui)]

Similarly, in a linear mixed model, the previous equation is reduced to Covu(Yij, Yik) =

Dizijz
′
ik. If the linear mixed model has only a random intercept, Covu(Yij, Yik) = σ2

u,

where σ2
u is the variance of the random intercepts.

3.2.2 Inference in GLMM

To fit a GLMM it is possible to use two alternatives: Bayesian approach and

Maximum Likelihood Estimation(MLE ). In the Bayesian approach, it is necessary

to specify the prior densities for β, D, and φ, denoted by f(β), f(D), and f(φ),

respectively. Once priors have been specified, the posterior distribution can be

found [34].

On the other hand, the complete likelihood function for GLMM can be written

from the product of the known distributions of y | u, and u. The true likelihood
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function can be written as:

L(y,u) = L(y | u)L(u) (3.12)

If we assumed that u has a multivariate normal distribution N(0, D), then

L(y,u) ∝ L(y | u) | D |−1/2 exp
(
− 1

2
u′D−1u

)
(3.13)

Based on Equation 3.13, the marginal likelihood for y could be obtained integrating

over the random effects u. However, this is not always possible because the resultant

integral of the right side in Equation 3.13 does not have an analytical solution, that

is, it must be solved using numerical methods.

3.2.3 Approximations to the Likelihood Function in GLMM

GLMM can be fitted maximizing the marginal likelihood, obtained by integrat-

ing over the random effects. The contribution of the i− th subject to the likelihood

is given by:

Li = fi(yi, β,D) =

∫
<

ni∏
j=1

fyij |u(yij | u)fu(u)du (3.14)

Thus, the likelihood function L can be written as:

L =
N∏

i=1

Li =
N∏

i=1

∫
<

ni∏
j=1

fyij |u(yij | u)fu(u)du (3.15)

where yi is the ni−dimensional vector containing all the measurements available for

the i − th subject. Notice that Equation 3.15 has the form of Equation 3.12. This

integration is done over the q-dimensional distribution of u. In some cases, Equation

3.15 can be worked out analytically, for example probit-normal model [34]. In other

cases, such as the logistic mixed model, the integral in Equation 3.15 cannot be

evaluated in closed form. Numerical approximation is necessary in order to evaluate

the likelihood, and the derivatives needed in the optimization algorithm [9, 14].

Numerical approximations for the integral of the marginal likelihood in Equation
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3.15 can be divided into those based on the approximation of the integral itself,

such as the Gauss-Hermite quadrature [34], those based on the approximation of the

integrand, such as the Laplace approximation, and those based on an approximation

of the data, such as the penalized quasi-likelihood [34].

Approximation of the Integral: Gauss-Hermite Quadrature

In many applications, it is convenient to consider an integral of the form:∫
<
W (x)f(x)dx

where W (x) is a non-negative function over the integration interval. W (x) is called

the weighted or kernel function. The integral can be interpreted as a weighted

average of f(x).

Gauss-Hermite quadrature approximate integrals of the form:∫
<
f(x) exp(−x2)dx (3.16)

where the kernel function is W (x) = exp(−x2). Gauss-Hermite quadrature is often

used for numerical integration in statistics because of the direct relationship it has

with Gaussian densities [26, 30]. In many statistical applications, a Gaussian density

is an explicit factor of the integrand. Using a linear transformation this factor takes

the form exp(−x2). When a Gaussian density is not a factor of the integrand,

the original integrand must be divided and multiplied by exp(−x2), or some other

Gaussian density, in order to put it into the Gauss-Hermite quadrature form [30].

We want to apply Gauss-Hermite quadrature to approximate integrals of the

form: ∫
<
g(x)dx (3.17)
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Table 3–3: Four points of Gauss-Hermite quadrature

Abscissa Weight

-1.650668 0.081312
-0.524647 0.804914
0.524647 0.804914
1.650668 0.081312

where g(t) > 0, and it is a smooth and unimodal function. Gauss-Hermite quadra-

ture can be rewritten in terms of Gaussian density as:∫
<
f(x)φ(x;µ, σ)dx ≈

K∑
j=1

wjf(zj) (3.18)

where φ(x;µ, σ) is an arbitrary Gaussian density. The abscissas are zj = µ+
√

2σxj,

and the weights are modified from wj to wj/
√
π, j = 1, 2, ..., K points of quadrature.

This approximation is called Classical Quadrature.

We implemented the phermite function in R to calculate the abscissas, and

weights for a classic Gauss-Hermite quadrature (see Appendix A). These values can

be found in books on numerical analysis [11, 41]. Table 3–3 shows the abscissas, and

weights using four points of quadrature. These points are symmetric about zero.

Sometimes it is necessary to take many points in order to approximate an integral

because the abscissas are sampled in an inappropriate region. Adaptive Quadrature

samples the abscissas in an appropriate region where µ̂ will be the mode of the

integrand g(x), and σ̂ = 1√
ĵ
, where:

ĵ = − ∂2

∂x2
log g(x)

∣∣∣∣
x=µ̂

(3.19)

Figure 3–1 clearly shows the differences in the abscissas between classic, and adaptive

quadrature for a specific function f(x). Using φ(x; µ̂, σ̂), the approximation is:∫
g(x)dx ≈

√
2σ̂

K∑
j=1

w∗
jg(µ̂+

√
2σ̂xj) (3.20)

where w∗
j = wj expx2

j .
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Figure 3–1: Abscissas for Classic and Adaptive Quadrature

When Equation 3.20 is applied with only one abscissa the result is the Laplace

approximation to the integral [30]:∫
<
g(x)dx ≈

√
2πσ̂g(µ̂) (3.21)

Therefore, the m-order Gauss-Hermite quadrature is, alternatively, the form of the

m-order Laplace approximation. Some simulation results suggest that in the classic

quadrature a larger number of abscissas are necessary to obtain high accuracy (100

points or more), while the adaptive quadrature provides good accuracy with 20

points or fewer [12, 35]. For the random intercept logistic model, we have confirmed

that these values are reasonable in practice [28, 39].

The previous approach show the case of a one-dimensional random effect. The

generalization of adaptive Gaussian quadrature, with K points of quadrature, is
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given by [23]∫
<
Li(yi | β,ui)L(ui)dui ≈

2q/2 | Q(θ) |−1/2

K∑
j1=1

· · ·
K∑

jq=1

[L(yi | β, aj1 , . . . , ajq)]L(uj1 , . . . , ujq)

q∏
k=1

wjk
exp(z2

jk
)

whereQ(θ) is the Hessian matrix of the Empirical Bayes Minimization, and aj1 , . . . , ajq =

ûi+21/2Q(θ)−1/2zj1,...,jq , where zj1,...,jq is a vector with elements (zj1 , . . . , zjq). ûi min-

imizes − log [Li(yi | β, ui)L(ui)], and (zj, wj) are the abscissas, and weights of the

classic quadrature, respectively.

Numerical integration to calculate the likelihood is straightforward, and hence,

numerical maximization of the likelihood can be evaluated accurately. This approx-

imation works relatively well in simple situations, such as single random effect, two,

or three nested random effects [35]. However, it fails for more complicated structures,

such as crossed random effects. In addition, it could be heavy computationally for

two, or more random effects. In some cases Monte Carlo Markov-Chain (MCMC ) is

a good alternative to estimate parameters in these models. Some of the best known

algorithms are Monte Carlo EM (MCEM ), Monte Carlo Newton Raphson (MCNR),

and Simulated Maximum Likelihood [32].

Many statistical software packages use the Gauss-Hermite approximation in

their procedures, such as SAS PROC NLMIXED [24], several R functions [37], and

MIXNO [22].

Approximation of the Integrand: Laplace Approximation

To illustrate how Laplace approximation works, let us suppose that we want to

approximate I =
∫
< e

−Q(u)du, and that ũ is the value of u for which Q is minimized.
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Then, the second-order Taylor expansion of Q(u) around ũ is of the form

Q(u) ≈ Q(ũ) +
1

2
(u− ũ)Q′′(ũ)(u− ũ) (3.22)

where Q′′(ũ) is equal to the Hessian of Q evaluated at ũ. The integral I can be

approximated using Equation 3.22, thus

I ≈ (2π)q/2 | Q′′(ũ) |−1/2 e−Q(ũ) (3.23)

In this case, it is considered thatQ(.) is unimodal. WhenQ is bimodal, it is necessary

to use an improved Laplace approximation [12]. In this method, the approximation

to the integral uses as many estimates of u as necessary according to the different

modes of the Q function. Clearly, the integral in Equation 3.15 is proportional to

an integral I, for a Q(u) function given by:

Q(u) = (aiφ)−1

ni∑
j=1

[yij(x
′
ijβ̃ + z′iju)− ψ(x′ijβ̃ + z′iju)]− 1

2
u′D−1u (3.24)

such that Laplace’s method can be applied here. In the previous equation, ψ(·) are

the functions presented in Table 2–1.

Approximation of the Data: Penalized and Marginal Quasi-Likelihood

For GLM, maximum quasi-likelihood is an attractive method because of its

ability to generate highly efficient estimators without making precise distributional

assumptions. The quasi-likelihood does not specify a distribution, only the mean

and the variance [2]. For GLMM, the objective function to maximize is modified by

a term of penalty due to the random effects, and therefore, it is called the Penalized

Quasi-likelihood (PQL). PQL could be viewed as a method of approximated inference

in GLMM. In the statistical literature, different versions of GLMM can be found

[3, 34]. We will describe the initial proposal presented by Breslow and Clayton [4].
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In a GLM context, and based on Equation 3.12, for any type of GLMM, the

quasi-likelihood form is given by

QL(y, β,u) = QL(y | u)L(u) (3.25)

Following the same principles used in the likelihood functions, the integrated quasi-

likelihood function (PQL) is given by:

PQL = (2π)−q/2 | D |−1/2

∫
<

exp
[
− 1

2φ

N∑
i=1

di(yi, µ̃i)−
1

2
u′D−1u

]
du (3.26)

where

di(yi, µ̃i) = −2

∫ µ̃i

yi

yi − t

aiυ(t)
dt (3.27)

denotes the weighted deviance. If y is Gaussian, and g−1 is the identity, the integral

in Equation 3.27 is normal, and may be evaluated in closed form. Otherwise, this

expression contains integrals that must be solved numerically with methods such as

Laplace approximation.

Equation 3.26 has the form c | D |−1/2
∫
e−Q(u)du, with c a constant term, and

Q a function of u. Therefore, Laplace approximation can be applied to approximate

this integral. Using the result of Equation 3.23, the log-quasilikehood is given by

pql ≈ −1

2
log | D | −1

2
log | Q′′(ũ) | −Q(ũ) (3.28)

where ũ = ũ(β, θ) is the solution to

Q′(u) = −
N∑

i=1

(yi − µ̃i)zi

φaiυ(µ̃i)g′(µ̃i)
+D−1u = 0

that minimizes Q(u). In addition, the approximation of the second derivative of Q

is given by

Q′′(u) =
N∑

i=1

ziz
′
i

φaiυ(µ̃i)[g′(µ̃i)]2
+D−1 +R ≈ Z ′WZ +D−1
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Therefore, the log quasi-likelihood is given by

pql ≈ −1

2
log | D | −1

2
log | I + Z ′WZD | − 1

2φ

∑
i

di(yi, ˆ̃µi)−
1

2
ũ′D−1ũ (3.29)

where ũ is chosen to maximize the last two terms, I is the identity matrix, and W

is the N ×N diagonal matrix with diagonal terms wi = {φaiυ(µ̂i)[g
′(µ̃i)]

2}−1. This

expression leads to the PQL algorithm to estimate β, and θ in the model presented

in Equation 3.9. Differentiating with respect to β and u, the score equations for the

mean parameters are:
N∑

i=1

(yi − µ̃i)xi

φaiυ(µ̃i)g′(µ̃i)
= 0 (3.30)

and
N∑

i=1

(yi − µ̃i)zi

φaiυ(µ̃i)g′(µ̃i)
= D−1u (3.31)

The solutions of Equations 3.30, and 3.31 are based on normal theory defining the

working vector Y ∗ with components Y ∗
i = (x′i

ˆ̃β + z′iû) + (yi − ˆ̃µi)g
′(ˆ̃µi). Then,

the Fisher scoring algorithm is applied repeatedly in order to determine (β̂, û) as a

function of θ. This procedure leads to the familiar mixed model equations for joint

estimation of fixed, and random effects, but involving Y ∗ and weights wi.

An alternative derivation of the PQL algorithm was developed by Schall [3] in

the context of longitudinal data. This method proposes to use a linearization of the

conditional mean as a function of fixed and random effects. This method is based

on a decomposition of the data into the conditional mean, and an appropriate error

term, with a Taylor series expansion of the mean that is a non-linear function of the

linear predictor [34]. Consider the decomposition

Yij = µ̃ij + εij = h(x′ijβ̃ + z′ijui) + εij (3.32)
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where Var(Yij) = φυ(µij) for υ(.) the usual variance function, and h = g−1. For

example, with the logistic model

µij = P (Yij = 1) = πij =
exp(x′ijβ̃ + z′ijui)

1 + exp(x′ijβ̃ + z′ijui)

εij is equal to 1 − πij with probability πij, and is equals to −πij with probability

1− πij.

Consider a linear Taylor expansion of Equation 3.32, around current estimates

ˆ̃β, and ûi of the fixed effects, and random effects, respectively. Thus,

Yij ≈ h(x′ij
ˆ̃β + z′ijûi) (3.33)

+ h′(x′ij
ˆ̃β + z′ijûi)x

′
ij(β̃ −

ˆ̃β)

+h′(x′ij
ˆ̃β + z′ijûi)z

′
ij(ui − ûi) + εij

= ˆ̃µij + υ(ˆ̃µij)x
′
ij(β̃ −

ˆ̃β) + υ(ˆ̃µij)z
′
ij(ui − ûi) + εij

where ˆ̃µ equals the current predictor h(x′ij
ˆ̃β+z′ijûi) for the conditional mean E(Yij |

ui). Rewriting Equation 3.33 in vector notation, and reordering the terms yields:

Y ∗
i ≡ V̂ −1

i (Yi − ˆ̃µ) +Xi
ˆ̃β + Ziûi ≈ Xi

ˆ̃β + Ziûi + ε∗i (3.34)

where ε∗i = V̂ −1
i εi, with zero mean. Equation 3.34 can be viewed as a linear mixed

model for the pseudo data Y ∗
i , with fixed effects β̃, random effects ui, and error terms

ε∗i . This result yields estimates for a GLMM. Given the starting values for parameters

β and D in the marginal likelihood, empirical Bayes estimates for ui using the

posterior density function and pseudo data Y ∗
i are computed. Then, the approximate

linear mixed model presented in Equation 3.34 is fitted, and then, the estimates of the

parameters are updated. This process is iterated until convergence is reached. The

resulting estimates are called penalized quasi-likelihood estimates because they are

obtained from optimizing a quasi-likelihood function using approximations of first
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and second order. Other approximation can be found in Wolfinger and O’Connell

[43].

An alternative approximation is very similar to the PQL method, but is based

on a linear Taylor expansion of the mean µ̃ij around current estimates ˆ̃β for the fixed

effects, and around ui = 0 for the random effects. This produces similar expressions

to PQL, but µ̃ij takes the form h(x′ij
ˆ̃β) rather than h(x′ij

ˆ̃β+z′ijûi). The pseudo data

are now of the form Y ∗
i ≡ V̂ −1

i (Yi − ˆ̃µ) + Xi
ˆ̃β, and satisfy the approximate linear

mixed model

Y ∗
i ≈ Xiβ̃ + Ziui + ε∗i

Following the same procedure than in PQL, the resulting estimates are called Mar-

ginal Quasi-likelihood (MQL) estimates.

3.3 Transition Models

Under a transition model, correlation among Yi1, . . . , Yini
exists because the

past values Yi1, . . . , Yij−1 explicitly influence the present observation, Yij. The past

outcomes are treated as additional predictor variables. Denote, Hij = {yik, k =

1, . . . , j − 1}, the history for i − th subject in the j − th visit. The most useful

transition models are Markov chains for which the conditional distribution of Yij

given Hij depends only on the q prior observations Yi1, . . . , Yij−q. The integer q is

called the order of the model [35].

A transition model establishes the following assumptions:

1. The conditional expectation, denoted by µ∗ij, is specified by:

g(µ∗ij) = g(E(yij | Hij)] = x′ijβ
∗ +

s∑
r=1

fr(Hij;α) (3.35)

for suitable functions fr(·) and g(·), the link function.

2. The conditional variance satisfies the equation:

Var(Yij | Hij) = φυ(µ∗ij) (3.36)
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where υ(·) is a known variance function.

This model assumes that the past affects the present through the sum of s terms,

each of which may depend on the q prior values.

As an example, a linear regression model with autoregressive errors for Gaussian

data is a Markov model. It has the form:

Yij = x′ijβ
∗ +

q∑
r=1

αr(Yij−r − x′ij−rβ
∗) + Zij

where the Zij are independent, and zero-mean Gaussian errors. This is a transi-

tion model with g(·) equal to the identity function, υ(µ∗ij) = 1, and fr(Hij;α) =

αr(Yij−r − x′ij−rβ
∗). Note that the present observation, Yij, is a linear function of

x′ij and of the earlier deviations Yij−r − x′ij−rβ
∗, r = 1, . . . , q.

An alternative to estimate β and α in Equation 3.35 is maximizing the condi-

tional likelihood:

N∏
i=1

f(yiq+1, . . . , yini
| yi1, . . . , yiq) =

N∏
i=1

ni∏
j=q+1

f(yij | Hij) (3.37)

When maximizing Equation 3.37 there are two distinct cases to consider. In the

first, fr(Hij;α) = αrfr(Hij). Here, g(µ∗ij) is a linear function of both β∗ and α =

(α1, . . . , αs), therefore, the estimation proceeds as in GLM s for independent data.

The second case occurs when the functions of past responses include both α and β∗.

Here, iterative weighted least squares are necessary as estimation procedure.

The parameters in a transition model, β∗, have a population-average interpre-

tation conditioned on the past responses. That is, the effect of a covariate over the

response variable depends on the value of the past responses.

These models were discussed here for comparison purpose, and will not be used

in the thesis.
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3.4 Marginalized Models

Marginalized models were originally proposed by Heagerty [20, 21]. These mod-

els establish a regression structure for the marginal mean µij:

g(µij) = g{E(Yij)} = x′ijβ (3.38)

The second component of the model describes the dependence among measurements

within a cluster conditioning on a latent variable rather than on other response:

g(µij | x′ij,Aij) = ∆ij(x
′
ij) + γ′ijAij (3.39)

where ∆ij(x
′
ij) represents a function of the marginal mean and dependence parame-

ters, and the variables Aij are used to structure dependence among the repeated

measurements. Aij can take different forms. For example, Aij = {Yik : k 6= j}. In

this case, γ′ij indicates how strongly all other response variables, Yik, predict the cur-

rent response, Yij. Alternatively, Aij = ui, a collection of random effects. Here, γ′ij

represents the variance components that characterize the magnitude of unobservable

or random variation which induces all within-subject correlation. These models are

called marginalized latent variables models. Finally, when Aij = {Yik : k < j} = Hij,

these models take the form of the so-called marginalized transition models.

When the conditional mean in Equation 3.39 is averaged over the distribution

of Aij, the value ∆ij(Xi) is chosen such that the resulting marginal mean structure

is properly induced:

µij = EAij
[E{g−1(∆ij(x

′
ij) + ui)}]

We will discuss with more details the marginalized latent variables models. Con-

sider the following model:

g(µij) = ∆ij(x
′
ij) + ui (3.40)
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This model assumes that the elements of the response vector Yi are conditionally

independent given ui and the distribution of ui is completely specified, for example,

ui ∼ N(0, D). Common models for longitudinal data include a subject-level random

effects model such that uij = ui0 yielding cov(uij, uik) = Di(j, k) = σ2, or a tem-

poral association model, where uij is assumed to have an autoregressive covariance

structure and cov(uij, uik) = Di(j, k) = σ2 exp(−γ | tij − tik |θ), where 1 ≤ θ ≤ 2 is

fixed.

This formulation is an alternative to the generalized linear mixed model which

parameterizes the conditional mean function ∆ij(x
′
ij) = x′ijβ̃. The marginalized

model in 3.38 and 3.39 also permits conditional statements via implicitly defined

∆ij(x
′
ij), recognizing their dependence on model assumptions. The parameter ∆ij(x

′
ij)

is a function of both the marginal linear predictor x′ijβ, and the random effects, ui.

∆ij(x
′
ij) is defined as the solution to the integral equation that links the marginal

and conditional means:

h(x′ijβ) =

∫
<
h[∆(x′ij) + ui]fui

(ui)dui (3.41)

where h = g−1 is the inverse of the link function.

For the simplest case where ui ∼ N(0, σ2), we can rewrite ui = σzi, where

z ∼ N(0, 1), and the Equation 3.41 is now

h(x′ijβ) =

∫
<
h[∆ij(x

′
ij) + σz]φ(z)dz (3.42)

where φ is the standard normal density function. Given x′ijβ, and σ the integral

equation can be numerically solved for ∆ij(x
′
ij) using numerical integration and

Newton-Raphson iteration [26, 39]. For some special cases, such as the probit link

function and Gaussian random effects, u = σz, it yields the relationship

Φ(xijβ) = E[Φ{∆ij(x
′
ij) + σz}] = Φ

[
∆ij(x

′
ij)√

1 + σ2

]
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showing that the marginal linear predictor x′ijβ is a rescaling of the conditional linear

predictor ∆ij(x
′
ij). Also it happens with the Poisson-normal regression, where:

Φ(xijβ) = exp
[
∆ij(x

′
ij) +

1

2
σ2
]

The estimation of parameters in marginalized models is based on maximum like-

lihood, quadratic estimating equations and empirical Bayes for individual-level es-

timation [20, 35]. All these steps require computationally challenging numerical

methods [19]. The parameters in a marginalized model, β, have a population-average

interpretation.

Although we consider that marginalized models are theoretically interesting, in

this work they will not be used because they are not yet implemented in commercial

software packages and hence have very little use in practice [18].

Comparisons between some of the models presented in the previous sections will

be shown in Chapter 4 for the logistic model.

3.5 Non-linear Mixed Effects Model

This type of models have a distinct formulation in comparison with the previous

ones. The first stage of a non-linear mixed model (NLME ) consists of N nonlinear

regression models with some random parameters (subject-specific),

Yi = fi(γ, δi) + εi, i = 1, . . . , N

where fi is ni × 1 vector function,

fi(γ, δi) = [f(γ, δi;x
′
i1), . . . , f(γ, δi;x

′
ini

)]′

γ is a k×1 vector of fixed parameters. In addition, Var(εi) = σ2I and Var(δi) = σ2D.

The second stage of the NLME has the form:

δi = Xiβ + ui
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Random effects ui and error terms εi are assumed mutually independent and inde-

pendent across subjects [10, 12].

This formulation implies that generally the marginal expectation of the response

variable, E(Yij), cannot be expressed in terms of population-average parameters in

close terms, namely,

E(Yij) = Eui
{fi(γ,Xiβ + ui)} 6= fi(γ,Xiβ)

such as with the GLMM. Note that the fixed effects parameters, γ, do not enter as

linear terms in the model. The parameter estimation in these are calculated using

maximum likelihood and techniques to approximate it [36].



CHAPTER 4

MODELS FOR BINARY LONGITUDINAL

DATA

4.1 Introduction

Binary data can be specified either as a series of zeros and ones (Bernoulli

form), or aggregated as frequencies of successes out of a certain number of trials

(Binomial form).

In many longitudinal studies, the researcher is interested in a dichotomous vari-

able as response, for example, presence, or absence of a disease in patients of a clinic

treated with different medications, effectiveness of a particular health care service,

or presence of symptoms in plants treated with different fungicides. In all these

cases, the binary responses are clustered within observational units, and hence, the

classical model fails in its independence assumption (i.e. data are taken at several

occasions on the same unit). In this case, it is possible to analyze this type of data

using the models described in the previous chapter with appropriate link functions.

We will concentrate on binary longitudinal data analysis with the logistic model

because of its wide use.

4.2 Marginal and Random-Effects Models

In this section, we discuss the use of marginal and random-effects models to

model binary longitudinal data. Also, we compare the parameter interpretation of

both models for the logistic case.

47
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4.2.1 Marginal Models

First, let us consider a longitudinal binary response variables vector Yi =

(yi1, . . . , yini
) measured at recorded times vector ti = (ti1, . . . , tini

) along with pos-

sibly time-dependent covariates matrix Xi = (Xi1, . . . , Xini
), where in each obser-

vation the covariate is a p−dimensional vector x′ij, for i = 1, 2, ..., N subjects. The

assumptions of the marginal model are:

1. The marginal expectation is given by:

g(µij) = x′ijβ (4.1)

where Yij ∼ Bernoulli(pij), or Yij ∼ Binomial(mij, pij), mij is the number of trials

for the i− th subject in the j− th measurement, and g(.) is the link function, such

as logit, probit or complementary log-log . Specifically, for a marginal model with

logit link function, Equation 4.1 can be rewritten as:

logit (pij) = log
( pij

1− pij

)
= x′ijβ (4.2)

If we solve for pij in Equation 4.2, the result is

pij =
exp(x′ijβ)

1 + exp(x′ijβ)

which indicates the marginal mean as a function of the covariates. The function

exp(·)
1+exp(·) is the inverse link function, that is, the inverse logit.

2. The variance of Yij is a function of the pij, and a parameter φ called dispersion

parameter. Thus,

Var(Yij) = φυ(pij) (4.3)

If Yij ∼ Bernoulli(pij) or Yij ∼ Binomial(mij, pij), Var(Yij) can be rewriten as,

respectively:

Var(Yij) = φpij(1− pij)
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and,

Var(Yij) = φmijpij(1− pij)

When the data have no overdispersion, the parameter φ in the previous equations

is equal to 1.

3. The correlation between observations over the same subject is:

Corr(Yij, Yik) = ρ(µij, µik;α) (4.4)

Some authors suggest to use AR(1) correlation structures for this type of data

[1, 34]. However, the choice of the working correlation matrix, as always, depends

on the observed data patterns and, the underlying assumptions.

To interpret the fixed coefficients in a logistic model, let us consider a lon-

gitudinal study with a binary covariate x (x = 0, 1), and a response variable

Yij ∼ Bernoulli(pij). In addition, let us suppose that the data are analyzed with a

logistic model given by the following equation:

logit(pij) = log

(
pij

1− pij

)
= β0 + β1x+ β2t (4.5)

Furthermore, assume that the residuals have a correlation structure given by a ma-

trix Ri, where Ri is any structured matrix such as the ones presented in Section

3.1.1. Based on Equation 4.5, we obtain

β1 = logit(pij | x = 1)− logit(pij | x = 0)

which measures the variation in success between groups determined by the values of

x. This is the log odds ratio (logOR). This is an population-average interpretation.

The use of these models for binary longitudinal data have been questioned

because it does not accomplish the necessary assumptions. Some authors have stud-

ied the efficiency of GEE in binary data [1]. Specifically, if the response variable

y = (y1, . . . , yp) is a Bernoulli random vector with marginal probabilities pj, and
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qj = 1− pj for j = 1, . . . , p, and constant correlation ρ between any two pairs, then

max
j 6=k

{
−
√(pjpk

qjqk

)
,−
√( qjqk

pjpk

)}
≤ ρ ≤ min

j 6=k

{
−
√(pjqk

qjpk

)
,−
√(qjpk

pjqk

)}

However, if pi(x) is a function of a covariate vector x, then a constant correlation

matrix over all x would imply that the constant correlation must lie in the interval

max
x

(
max
j 6=k

{
−
√(pjpk

qjqk

)
,−
√( qjqk

pjpk

)})
≤ ρ ≤ min

x

(
min
j 6=k

{
−
√(pjqk

qjpk

)
,−
√(qjpk

pjqk

)})
(4.6)

Inequality 4.6 shows that the constraint on ρ will depend on the covariates, but

current GEE software ignores them. When the range of x is wide, the interval in

the inequality can be quite narrow. Chaganty and Joe [1] suggested an initial data

analysis with tabulations and odds ratios to assess the strength of the dependence.

If the covariate vectors have just a few values, then an initial analysis consist of

tabulating the frequencies of the p−dimensional binary vectors for each case of

the covariate vector, and computing empirical odds ratios and correlations for each

bivariate margin. If all or majority of the p−dimensional binary vectors occur, then

the dependence is not strong; the strongest dependence is indicated if the frequencies

concentrate near the vectors of all 0’s and all 1’s. Otherwise the odds ratios and

correlations will suggest whether the dependence is weak or moderate, and whether

and exchangeable or AR(1) structure is better for the working correlation matrix.

They also suggest that generally one could use an exchangeable matrix Ri(α) for

cluster-type samples, and an AR(1) matrix for longitudinal data analysis.

In addition to GEE, there exist others methods to calculate the estimates in

marginal models such as Prentice’s GEE method, Second-Order Generalized Esti-

mating (GEE2 ), and Alternative Logistic Regression (ALR) [34]. GEE estimates

can be calculated using SAS PROC GENMOD, gee and geepack R libraries, and other

procedures are available in commercial software packages.
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4.2.2 Random-Effects Models

The assumptions of the random-effects model with logit link function and nor-

mal distribution are:

1. The conditional expectation is given by:

logit (µ̃) = log
( p̃ij

1− p̃ij

)
= x′ijβ̃ + z′ijui (4.7)

If we solve for p̃ij in Equation 4.7, the result is:

E(Yij | ui) = p̃ij =
exp(x′ijβ̃ + z′ijui)

1 + exp(x′ijβ̃ + z′ijui)

The previous equation shows clearly that the conditional mean is a function of the

random effects, that is, p̃ij = f(ui).

2. The random effects are normally distributed: ui ∼ N(0, D).

If we consider a model with random intercept, ui = ui0, the model presented in

Equation 4.7 with a time covariate is reduced to

logit (µ̃) = log
( p̃ij

1− p̃ij

)
= β0 + β1tij + ui0 (4.8)

and, therefore,

p̃ij =
exp(β0 + β1tij + ui0)

1 + exp(β0 + β1tij + ui0)

where ui0 ∼ N(0, σ2). On the other hand, ui0 could depend on the covariates. In

such case, the random-effect variance, σ2, may vary according to the levels of the

covariates. This random effect, ui0, also denoted as ui, indicates that there exists

a between-subject variability that must be explained by a random-effect associated

with each subject. This random-effect is a consequence of the characteristics of

each subject, and therefore, to the distinct forms in that they could respond across

time. The model in Equation 4.8 is called logistic model with random intercept, or

logistic-normal model [2, 32].
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The log-likelihood function for a logistic model with random intercept takes the

form [12]

logL = l(β̃, σ2) = −N
2

ln(2πσ2) + r′β̃ +
N∑

i=1

ln

∫
<

exp[hi(β̃, u)]du (4.9)

where

hi(β̃, u) = kiu−
u2

2σ2
−

ni∑
j=1

ln[1 + exp(x′ijβ̃ + u)] (4.10)

with ki =
∑ni

j=1 yij, and

r =
N∑

i=1

ni∑
j=1

yijx
′
ij

It is assumed that the first component of x′ij is 1. β̃ indicates the subject-specific

parameters.

The previous integrals could be solved using Gauss-Hermite quadrature. The

maximal error for Gauss-Hermite quadrature is increasing as the variance of the

random errors increases. For K = 20 abscissas, some authors have found that

the maximal possible error in the approximation using Gauss-Hermite quadrature

is approximately 10−3 [35]. For a logistic-normal model, several approximations of

these integrals and comparisons between them can be found in Demidenko [12].

Now, if we assume a logistic model with random intercepts and slopes, then the

model equation is given by

logit (µ̃ij) = log
( p̃ij

1− p̃ij

)
= β̃0 + (β̃1 + ui1)tij + ui0 (4.11)

where ui = (ui0, ui1) ∼ N [(0, 0), D]. The matrix D is the variance-covariance of

u. Figure 4–1 shows the difference between a logistic model with random intercept

only and one with both random intercept and slope. In the model with only random

intercept, the subject-specific curves differ by a small value due to the random

intercept. In contrast, the subject-specific curves in the random intercept and slope

model, vary considerably across time due to both random quantities, intercept and
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slope. In both cases, the differences between the curves depend on the magnitude

of the entries in the D matrix.
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Figure 4–1: Alternative Random Effects Models for Longitudinal Binary Data
Analysis

In a logistic model with random intercept, the standard deviation of the random

effects, σ has an interesting interpretation. We redefine the model presented in

Equation 4.5 in conditional terms as

logit(pij | ui) = log

(
p̃ij

1− p̃ij

)
= β̃0 + β̃1x+ β̃2tij + ziσ (4.12)

where zi ∼ N(0, 1). Based on the Equation 4.12, we have that

β̃1 = logit(p̃ij | x = 1)− logit(p̃ij | x = 0)

measures the variation in success log odds between groups determined by the values

of x for the i−th subject. This is also a subject-specific log odds ratio (logOR). This

is a subject-specific interpretation. Likewise, σ could be interpreted as a regression

coefficient for a standardized omitted covariate, with σ contrasting individuals with
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equal covariate x and time tij, whose zi’s differ by one unit:

σ = logit(p̃ij | zi = c)− logit(p̃ij | zi = c+ 1)

where c is a constant. That is, σ measures the magnitude of variation in log odds

between subjects within a group defined by the covariates [19].

4.2.3 Comparison between Marginal and Random-Effects Models

Distinguishing random-effects or conditional models from marginal models is

straightforward probabilistically, but it is often difficult in practice. We will present

the main theoretical differences between the two model families for the logistic model.

Based on the model presented in Equation 4.7, we can compare the two approaches

by considering three aspects, which will be analyzed next.

Marginal and Conditional Mean

The relation between population-average and subject-specific estimates have

been discussed by many authors. Neuhaus et al. [35] shows that if Var(ui) > 0,

then the elements of the marginal β and random effects β̃ regression vector satisfy

1. | βk |≤| β̃k |, for all k. β and β̃ indicate the marginal and conditional estimates,

respectively.

2. equality holds if and only if β̃ = 0, or σ = 0;

3. the discrepancy between β and β̃ increases with Var(ui).

In particular, if ui is assumed to follow a Gaussian distribution with mean zero and

variance σ2 in a logistic model with random intercept, Zeger et al. showed that

β ≈ β̃√
c2σ2 + 1

(4.13)

where c = 16
√

3
15π

, that is, c2 ≈ 0.346. Clearly, β̃ is always greater than β. We can

write β = kβ̃, where k is a constant that depends on σ. Figure 4–2 shows the k

values for different values of σ. For example, when σ = 2 the marginal estimate, βk,

will be approximately 75% smaller than the conditional one, β̃k. Note that βk = β̃k
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when σ = 0. The plot illustrates clearly that the discrepancy between β and β̃

increases with σ. Intuitively, this relation between curves is due to the fact that

the variance of the random effect is large and all curves are averaged. The resulting

unconditional mean has a smaller slope and value β [33].

To illustrate these relations in practice, we show the marginal and subject-

specific estimates for a fitted logistic model with random intercept for the Toenail

dataset [34], which will be described in Chapter 5.
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Figure 4–2: Constant k versus σ values for the relation between marginal and
subject-specific estimates: β = kβ̃

The marginal and random effect models are given by the following equations,

respectively:

logit (pij) = β̃0 + β̃1treat + β̃2tij

logit (p̃ij) = β̃0 + β̃1treat + β̃2tij + ui0

In the marginal model, we consider a exchangeable correlation structure. The esti-

mated standard deviation of the random intercepts is σ̂=4.0082. Table 4–1 shows
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the relation between the estimates mentioned in Equation 4.13. The marginal es-

timates obtained using the relationship 4.13 are very similar to the ones obtained

using a marginal model.

Table 4–1: Relation between marginal and subject-specific estimates in a logistic
model with random intercept, Toenail Data

Effect Marginal Subject-specific Marginal using (4.13)

Intercept −0.5819 −1.6190 −0.6321
Treatment 0.0072 −0.1609 −0.0628

Time −0.1713 −0.3911 −0.1528
Interaction −0.0777 −0.1368 −0.0534

In other cases, such as the probit model this relation is direct. Considering

p̃ij = Φ(x′ijβ̃ + z′ijui)

where u ∼ N(0, D), then

β =
β̃√

z′ijDz
′
ij

For GLMM models with logit link and Bridge function, which will be discussed in

Section 4–4, these relations can also be found analytically. This type of relations

are important to establish the impact that produces the inclusion of a random effect

in the model and to show the difference between population-average and subject-

specific estimates. In addition, these equations allow to compare the curves underly-

ing the marginal and random-effects models, such the ones shown in Figure 4–3. The

solid line indicates the population-average curve and the dashed lines indicate the

subject-specific curves for a logistic model with random intercept and a continuous

covariate x.

Induced marginal mean

The model presented in Equation 4.7 generates two expectations: (1) the condi-

tional mean, E(Yij | ui), and (2) the marginal mean induced by the random effects,
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Figure 4–3: Marginal and Subject-specific curves for logistic model with a random
intercept

denoted by Eu(Yij). The induced marginal mean is given by:

Eu(Yij) = Eu[E(Yij | ui)]

= Eu

[
exp(x′ijβ̃ + z′ijui)

1 + exp(x′ijβ̃ + z′ijui)

]

=

∫
<

exp(x′ijβ̃ + z′ijui)

1 + exp(x′ijβ̃ + z′ijui)
f(u)du

This result is one of the principal advantages of the conditional models with the

marginal models. In a conditional model, the induced marginal mean could be

obtained by integrating the random effects, while in a marginal model it is only

possible to specify a marginal mean. Several authors consider this advantage as the

ability of the random effects to produce marginal inference [30].
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In general, the induced marginal mean and the marginal mean are different,

Eu(Yij) 6=
exp(x′ijβ)

1 + exp(x′ijβ)

where the β’s are the population-average parameters presented in Section 3.1. Intu-

itively, this difference is due to the fact that the random-effect model considers the

between-subject variability, while in a marginal model, this aspect is omitted.

Finally, unlike the linear mixed model, the marginal mean (population-average

profile) and the conditional mean given ui = 0 (typical profile) are also different:

E(Yij) 6= E(Yij | ui = 0) =
exp(x′ijβ̃)

1 + exp(x′ijβ̃)

Functional shape of the distributions

This result is related with the functional shape of the conditional and induced

marginal distributions. In the conditional model, the functional shape has a logistic

form, as shown in Equation 4.7. This implies that the conditional parameters β̃ can

be interpreted in terms of log odds ratios given the random effects for each subject.

However, the induced marginal distribution obtained integrating the random effects,

u, in the model 4.7, does not have not a logistic form. This result is due to the fact

that the integral ∫
<

exp(x′ijβ̃ + ui)

1 + exp(x′ijβ̃ + ui)
fu(u)du

is not a logistic form when u ∼ N(0, D). However, Wang and Louis [42] proposed a

special distribution function for u where the marginal (induced) functional shape is

still logistic and parameters have an explicit marginal interpretation. This models

will be discussed in Section 4–4. For Poisson and Probit regressions with normal

random intercepts, the functional shape in the induced marginal distribution is re-

tained, as we showed previously.
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4.3 Marginalized Latent Variables Models

Let us consider the simplest marginally specified logistic-normal. The model

for random individual variation is given by the marginal expectation:

logit E(Yi) = x′ijβ (4.14)

The second model is used to describe the dependence among longitudinal measure-

ments and is based on a conditional model where instead of conditioning on other

response variables, we condition on a latent variable:

logit E(Yi | ui) = ∆ij + ui (4.15)

The response Yi is conditionally independent given ui, and ui ∼ N(0, Di). The

covariance matrix Di can be obtained as a function of the observation times ti and a

parameter vector α. In the marginally specified logistic-normal model, the parameter

∆ij is a function of both the marginal linear predictor ηij = x′ijβ and the random

effects standard deviation σij =
√

Var(uij). ∆ij can be obtained as the solution to

the convolution equation

h(ηij) =

∫
<
h(∆ij + ui)φ(z)dz

where h = logit −1 and φ is the standard normal density function. Given (∆ij, σij),

this equation can be solved for ∆ij using numerical integration and Newton-Raphson

iteration. σij is allowed to depend on covariates, like in GLMM ’s. For example,

log(σi) = Ziα, where Zi is a subset of Xi. The marginally specified logistic-normal

model is related to the conditionally specified logistic-normal model, where the con-

ditional log odds ∆ij are directly modeled as a function of the covariates.

Let us assume a logistic model with random intercept, ui = ui0, where ui0 ∼

N(0, σ2). We can substitute uij = σzi, where zi ∼ N(0, 1), and express the model
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for random individual variation by the conditional expectation:

logit E(Yi | ui) = ∆ij + σzi

This representation shows that the variance component σ may be interpreted as a

regression coefficient for a standardized covariate, with σ contrasting subjects with

equal ∆ij, whose zi’s differ by one unit. Because ∆ij is determined by x′ij and the

parameters (β, α), subgroups defined by the covariates x′ij are the same subgroups

defined by ∆ij [19].

These models can be defined for nested random effects. Let Yijk denote the

binary response for the i − th cluster, j − th subject and k − th measurement.

Consider the following regression model for the marginal log odds η(x′ijk) [21]:

logit E(Yijk) = η(x′ijk)

The multilevel model is completed with a second conditional assumption:

logit E(Yijk | z2,ij, z3,i) = ∆(x′ijk) + σ2z2,ij + σz3,i

for z2,ij ∼ N(0, 1) and z3,i ∼ N(0, 1) mutually independent. Each one measures the

random variation in the second and third level, respectively.

4.4 Random-Effects Models with Bridge Function

These models, originally proposed by Wang and Louis, are a GLMM [42]. The

fundamental feature is that the random effects ui do not necessarily have a normal

distribution. Let us consider the random-intercept logistic regression model com-

monly used in binary longitudinal data. The model for the conditional expectation

has the following form:

logit(µij | ui) = x′ijβ̃ + ui (4.16)
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The parameter β̃ measures the change in the conditional logit of the mean with

covariance x′ij for each subject with random effect ui. Integrating out the random

effects in the model 4.16, the induced marginal mean is given by

µij =

∫
<

exp(x′ijβ̃ + ui)

1 + exp(x′ijβ̃ + ui)
fui

(ui)dui (4.17)

which is usually not of logistic form if ui is normally distributed. That is, the model

for the conditional expectation has a logistic form but the marginal expectation

induced by the conditional model does not have a logistic form. This result motivates

a new distribution for the random effects. Let H(.) be the inverse link function, and

let G(ui) be the probability distribution function for random effects. It is of interest

whether or not there exists a distribution G(u) such that the conditional functional

shape is retained in the marginal scale, thus,∫
<
H(x′ijβ̃ + ui)dG(u) = H(k + φx′ijβ̃)

where k and φ are unknown parameters. For η = x′ijβ̃, and non-degenerate G(u)

(neither null nor uniform distribution), differentiation with respect to η yields∫
<
h(η + ui)dG(u) = φh(k + φη) (4.18)

where h = H ′. Equation 4.18 can be written as

h ∗ g−b(η) = φh(k + φη) (4.19)

where g−b is the probability density function of −b and the symbol ∗ indicates the

convolution operation. Taking the Fourier transform F of both sides of Equation

4.19, applying some properties, and the Fourier Inversion Theorem, the probability

density function of u is given by

gu(x) =
1

2π

∫
<

exp[i(
k

φ
− x)ζ]

Fh(ζ/φ)

Fh(ζ)
dζ (4.20)
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This function is called the Bridge density function [42]. This function has the char-

acteristic that it retains the functional form in the marginal mean of the conditional

model.

For the logit link, H(η) = exp(η)/[1+exp(η)], h(η) = exp(η)[1+exp(η)]−2, and

the bridge density function is given by

gu(x, φ) =
1

2π

sinφπ

cosh(φx) + cos(φπ)
(4.21)

for 0 < φ < 1, and −∞ < x < ∞. The Bridge distribution presented in Equation

4.21 has zero mean, and variance σ2
u = π2(φ−2 − 1)/3. Figure 4–4 compares the

Bridge, Normal and Logistic density functions with zero mean and variance equal

to 1. The Bridge density is more concentrate around the zero. It also has slightly

heavier tails than the Gaussian and lighter tails than the logistic.

Under the Bridge distributional assumption, the regression parameters in the

marginal and conditional logistic models are related by

β =
β̃√

1 + 3σ2
u/π

2
(4.22)

This relation is attractive because it permits to interpret the parameters as population-

average and subject-specific as well, fitting only a random effects model. In the

logistic model, it is possible to talk about log odds in both the induced marginal and

conditional forms.

In addition, β = β̃(1− ρy) where ρy = corr(Yij, Yij′ | β̃ = 0) is the intra-cluster

correlation in the binary response scale. When the random effects are nested, for

example of the form ui + uij, the Bridge distribution can still be used to preserve

marginalization. The marginal mean is given by:∫
H(x′ijβ̃ + ui + uij)dG(uij | ui)dG(ui) =

∫
H(φ1ui + φ1β̃x

′
ij)dG(ui)
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If we assume that ui ∼ φ−1B(0, φ2), not Bl(0, φ2), then the marginal mean is given

by H(φ1φ2Xiβ̃).

A generalized model with random intercept with Bridge distribution can be

easily fitted using PROC NLMIXED SAS and applying the Probability Integral Trans-

formation Theorem [8] such as was presented by Wang and Louis [42]. Table 4–2

shows the estimates obtained for a fitted logistic model with random intercepts with

a Bridge distribution, ui ∼ Bridge(0, σ2
u). The estimate for φ̂ = 0.3481, and there-

fore, σ̂u = 4.3597. Note that the estimates are similar to the ones obtained with the

model with normal random effects.
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Table 4–2: Marginal and Subject-specific estimates in a logistic model with random
intercept with Bridge distribution, Toenail Data

Effect Subject-specific Marginal using (4.22)

Intercept −1.4966 −0.8773
Treatment −0.1255 −0.0736

Time −0.4010 −0.02351
Interaction −0.1410 −0.0826

4.5 Available software to Fit Random-Effects Models

Currently there exist many softwares packages to fit GLMM s such as SAS, R,

S-PLUS, EGRET, LIMDEP, MIXOR and MIXREG, MLWiN, STATA, OSWALD, WIN-

BUGS (it uses MCMC ), and others [17]. All these programs offer wide possibilities

to analyze binary longitudinal data, however, each one has its advantages and limi-

tations.

We will briefly describe the functions and procedures that exists in R v2.2.1 and

SAS v9.1.3 packages [24, 37].

4.5.1 Functions Available in R and SAS Software Packages

Table 4–3 shows the best known functions of R to fit generalized linear mixed

models for binary longitudinal data. We have summarized the more important topics

for each function.

Similarly, Table 4–4 shows the two SAS procedures to fit longitudinal binary

data. This table includes the GLIMMIX procedure, the last procedure released by

SAS Institute to fit these type of models.

In general, the SAS routines have better consistency and the processing time is

less than the ones obtained using R. In some R functions it is necessary to consider too

many points of quadrature (Q ≥ 30) to obtain good estimates while SAS produces

similar estimates with fewer points [39]. Appendix B shows codes and outputs for

an example with each R function and SAS procedures for the Toenail dataset, which
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will be described in Section 5.3. The estimates of parameter regression differ for R

functions and SAS procedures.
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Table 4–3: Available Functions in R to fit GLMMs

Function Library Brief Description
glmmML
(Bröstom
2001)

glmmML [5]
• Fits GLMM s with random intercept by Maximum Likeli-

hood and numerical integration via classical Gauss-Hermite
quadrature.

• Accepts binomial and Poisson distributions.

• Logit and Complement log-log are link functions permitted
to binary data.

• It invokes the optim function of the MASS library.

• Newton-Raphson procedure finishes the maximization.

glmmPQL
(Venables
and Ripley
2002)

MASS [40]
• Fits GLMM s with multivariate normal random effects, us-

ing Penalized Quasi-Likelihood.

• Accepts different distributions in the response and link
functions.

• Invokes the lme function of the nlme library.

• It is possible to fit binary longitudinal data with nested
random structure.

• Permits correlation structures (R matrix).

• It also produces the empirical Bayes estimates for random
effects.

lmer (Bates
and Maech-
ler 2006)

Matrix

• This generic function fits a generalized linear mixed-effects
model with nested or crossed grouping factors for the ran-
dom effects. This function was called GLMM in the lme4
library.

• Uses the approximation penalized quasi-likelihood (PQL).

• Laplacian and adaptive Gaussian quadrature are used to
approximate the integrals.

• The PQL method is the fastest but least accurate. The
Laplace method is intermediate in speed and accuracy. The
Adaptive Quadrature method is the most accurate but can
be considerably slower than the others.

glmm (Lind-
sey 2005)

Repeated

• Requires rmutil library.

• Fits a generalized linear mixed model with a random in-
tercept using a normal mixing distribution computed by
Gauss-Hermite integration.

• It permits several response distributions and link functions.

• This library also has more functions to fit generalized non-
linear mixed models and others (gnlmm, gnlmm3, binnest,
and gnlmix functions).
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Table 4–4: Available Procedures in SAS to fit GLMMs

Function Brief Description
NLMIXED Pro-
cedure [24] • Fits nonlinear mixed models using Maximum Likelihood

Estimation.

• Permits normal, binomial, Poisson or a general distribution
for the response.

• Different integral approximations are available, the princi-
pal ones being adaptive Gaussian quadrature and a first-
order Taylor series approximation.

• A variety of alternative optimization techniques are avail-
able to carry out the maximization; the default is a dual
quasi-Newton algorithm.

• Does not permit correlation structures (R matrix).

• Standard errors are estimated using Delta method.

• Produces the empirical Bayes estimates of the random ef-
fects.

• It is possible to fit a logistic model with random intercept
with a Bridge distribution.

• It permits programming code to incorporate heterogeneous
variances, etc.

GLIMMIX Macro

• Fits GLMM using pseudo-likelihood and PROC MIXED.

• This allows multiple random effects, nested and crossed
random effects, and multiple cluster types.

• Permits covariance structures for random effects and cor-
related errors.

• Linearization and Taylor-series techniques are used to con-
struct Wald-type test statistics and confidence intervals.

• This is a production version Procedure in SAS v9.2.1.



CHAPTER 5

PERCENTILES CURVES IN A LOGISTIC

MODEL WITH RANDOM EFFECTS

Several books and papers about binary data longitudinal modeling have inter-

preted and compared the estimates in marginal and random effects models [27, 35].

These works analyzed the relation between subject-specific and population-average

estimation, as shown in Chapter 4. They have discussed the convenience of using

the marginal, or random effects (or conditional) models in different situations. As

an example, Lee and Nelder [27] considered that the principal distinction between

marginal and conditional models has often been asserted to depend on whether the

regression coefficients are going to describe an individual’s response or the marginal

response to changing covariates. In the same article, they state that they prefer

the random-effect models over marginal models: “the use of marginal models can

be dangerous, even when marginal inferences are of interest”. The reasons to prefer

the random-effects models are because they permit a simple marginal interpretation,

and because ignoring important random effects may render invalid many traditional

techniques of statistical analysis.

In this chapter we are not interested in comparing the estimates. Our interest is

to propose a methodology to interpret subject-specific curves in a logistic model with

random intercept in a longitudinal study based on a recent paper about heterogeneity

in GLMM s [13]. Our proposal is to interpret the subject-specific curves across time

as percentiles of a curve distribution that depend on the values of the random effects

variance and the the covariates parameters. We will apply this result on two datasets.

68
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5.1 Heterogeneity in a Logistic Model with Random Intercept

Consider a model for a binary response (0, 1) in a longitudinal study withN sub-

jects. The measurements were taken across time during ni occasions, i = 1, . . . , N .

Using a logistic model with random intercept, ui, the conditional mean of the re-

sponse variable Yij can be modeled as:

logit [P (Yij | ui)] = logit (p̃ij) = x′ijβ̃ + ui (5.1)

where x′ij is the covariates vector for the i−th subject measured in the j−th occasion

(j = 1, 2, ..., ni), and ui is a random variable normally distributed with zero mean

and variance σ2. The probability of success depends on an unobserved, or latent

variable related to each subject ui, and on the respective values of the covariates

x′ij. Some models consider σ, the standard deviation of the random intercept, as

a function of the covariates (i.e. treatment). This assumption implies that the

variance of ui is different for each level of the treatment in the study.

We will study the effect of the variability between subjects over the subject-

specific probabilities of success across time. Applying to longitudinal data the idea

presented by Duchateau and Janssen [13] about heterogeneity in GLMM s for clus-

tered data, Equation 5.1 implies that:

p̃ij = P (Yij | ui) = ϕ(ui) (5.2)

where ϕ(.) is a known function obtained by solving for p̃ij in Equation 5.1. ϕ(.)

corresponds to the inverse link function. In the logistic case, ϕ(.) is the inverse

logit function. Because the random effects are unobservable in practice, we can

suppress the dependence on the fixed parameters, and therefore, p̃ij is a function of

the random effects ui, thus

p̃ij =
exp(x′ijβ̃ + ui)

1 + exp(x′ijβ̃ + ui)
(5.3)



70

Using a classical theorem of statistical inference about the distribution of a trans-

formation of a random variable [8], the respective density function of p̃ (omitting

the subscript ij for simplicity) is given by [13]:

fp̃(p̃) =
1√
2πσ

exp
[
− 1

2σ2

{
logit (p̃)− x′ijβ̃

}2] 1

p̃(1− p̃)
(5.4)

where 1
p̃(1−p̃)

, p̃ 6= 0, 1, is the term related with the transformation gradient in Equa-

tion 5.3. This density is important because it permits to determine the effect of vari-

ability between subjects over the conditional mean of the response variable across

time. In addition, this density function shows an interesting form to interpret the

marginal mean of response variable induced by the random effects. The formulation

of the model in Equation 5.1 is based on the conditional mean, but in many times,

it is necessary to analyze the marginal mean of Yij, that is, E(Yij) = pij. It is impor-

tant to notice that p̃ij and pij are not the same. p̃ij represents the subject-specific

or conditional mean, and pij is the marginal mean induced by the random effects.

Based on Equation 5.4 we can find, Fp̃(p̃), the cumulative distribution of p̃,

Fp̃(t) =

∫ t

0

1√
2πσ

exp
[
− 1

2σ2

{
logit (p̃)− x′ijβ̃

}2] 1

p̃(1− p̃)
dt (5.5)

for some 0 < t < 1. This integral must be solved using numerical methods.

5.1.1 Density Function and Cumulative Distribution Function of p̃

To illustrate the advantages of knowing the density function and cumulative

distribution of p̃ in a logistic model with random intercept, we will analyze some den-

sity functions, and cumulative distributions, across time by considering the following

simple model for a longitudinal study with t repeated measures (t = 1, 2, . . . , 15):

logit (p̃ij) = β̃0 + β̃1 · tij + ui (5.6)

where ui ∼ N(0, σ2). σ takes different values (σ = 0.15, 0.6 and 1.5), β̃0 = −3, and

β̃1 = 0.5, both arbitrary values. The σ values correspond to 5%, 20% and 50% of
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the | β0 | value. Also, these values imply that the odds ratio between two subjects

with the same covariates values, differing by one unit in u, are equal to 1.2, 1.8, and

4.5, respectively.

Figures 5–1, 5–2 and 5–3 show the density functions of p̃ for the hypothetic

model presented in Equation 5.6 for t ≤ 10 1 . The main advantage of knowing this

density is that we can observe where the conditional probabilities are concentrated

across time, and also, we can determine how large is the variability between the

subject-specific probabilities. In practice this result is important because it permits

to know how the subjects are responding as a function of the time and others covari-

ates. Clearly, when σ takes a small value, the density function of p̃ is concentrate

around a specific value that corresponds to the marginal mean induced by the ran-

dom intercept. In the literature this mean is known as the induced marginal mean

[32, 35]. In contrast, when σ is large, the density of p̃ is skewed towards the left

or right, with certain concentration around zero or one, depending on the status

response. Therefore, the variability between subjects determines the shape of the

conditional probabilities distribution. Similarly, Figures 5–4, 5–5 and 5–6 show the

cumulative distribution of p̃. Clearly, the cumulative distribution has a significative

change around certain value (induced marginal mean) when σ is small. However, as

σ increases, the cumulative distribution raises more slowly to 1. These curves are

important in order to define the percentiles curves in these models.

5.1.2 Mean and Variance of p̃

An interesting question with respect to the previous distributions is related with

the parameters of the conditional probabilities distribution: the mean and variance

of p̃.

1 These plots were generated using the coplot function from the graphics R library.
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Figure 5–1: Density of p̃ across time for Logistic Model with Random Intercept (Eq.
5.1) and σ = 0.15
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Figure 5–2: Density of p̃ across time for Logistic Model with Random Intercept (Eq.
5.1) and σ = 0.6
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Figure 5–3: Density of p̃ across time for Logistic Model with Random Intercept (Eq.
5.1) and σ = 1.5
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Figure 5–4: Cumulative Distribution of p̃ for Logistic Model with Random Intercept
(Eq. 5.1) and σ = 0.15
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Figure 5–5: Cumulative Distribution of p̃ for Logistic Model with Random Intercept
(Eq. 5.1) and σ = 0.6
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Figure 5–6: Cumulative Distribution of p̃ for Logistic Model with Random Intercept
(Eq. 5.1) and σ = 1.5
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Based on the basic concepts of inference, the mean and variance of p̃ are defined

by the following equations, respectively:

E(p̃) =

∫ 1

0

p̃ · fp̃(p̃)dp̃ (5.7)

and,

Var(p̃) =

∫ 1

0

p̃2 · fp̃(p̃)dp̃−

[∫ 1

0

p̃ · fp̃(p̃)dp̃

]2

(5.8)

Since Yij is binary, it has a marginal Bernoulli distribution with mean E(Yij) = p

given by Equation 5.7. Its variance is therefore, Var(Yij) = E(Yij)[1−E(Yij)] = p(1−

p). E(p̃) represents the induced marginal mean, and Var(p̃) indicates the variability

between subject-specific probabilities. Var(p̃) has only a theoretical interest because

in practice this statistic can be inappropriate to measure the heterogeneity between

the subject-specific probabilities, especially when the random effects have a large

variance.

In the previous discussion, E(p̃) and Var(p̃) are the first and second population

moments of the distribution of p̃ only if the β values are known. Nevertheless, and

in practice the β values are unknown, and must be estimated. Therefore, we define

E(ˆ̃p) = p̂ as the estimated first moment when these are calculated by using ˆ̃β. The

estimated marginal mean induced by the random effect is p̂.

Following with the hypothetical model presented in Section 5.1, the mean and

variance of p̃ for each time t, and each σ value are given by:

E(p̃) =

∫ 1

0

· 1√
2πσ

exp
[
− 1

2σ2

{
logit (p̃)− (−3 + 0.5 · t)

}2] 1

(1− p̃)
dp̃

and,

Var(p̃) =

∫ 1

0

p̃ · 1√
2πσ

exp[−B]
1

(1− p̃)
dp̃−

[∫ 1

0

· 1√
2πσ

exp[−B]
1

(1− p̃)
dp̃

]2

where B = 1
2σ2

{
logit (p̃)− (−3 + 0.5 · t)

}2
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We calculated the induced marginal mean and the variance of p̃ for each σ value

using the integrate function from stats R library as shown in Figures 5–7 and 5–8,

respectively2 . The variance of p̃ is almost zero when σ = 0.1, and it is larger for

σ = 0.5 and σ = 2 around t = 6. This result is reasonable in several practical

situations because the variability between subjects is larger in the central times of

the study. In contrast, in the initial and final times the variability is smaller because

the subjects present similar responses. Also, it can occur that the variance will

be larger in the baseline and it will decrease across time, or conversely. However,

the Var(p̃) does not provide a good quantification of the heterogeneity between p̃

because the distribution of p̃ is skewed [25], as shown in Figure 5–2. Hence, we will

not focus on this dispersion measure in the future applications.
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Figure 5–7: Induced Marginal Mean for the model defined in Equation (5.6)

In the previous results, the induced marginal mean and variance were calculated

using the definition and the density function, fp̃(p̃). Nevertheless, these estimates

2 The approximation errors in these integrals are around 10−5.
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can be calculated directly using some results presented in Chapter 4. Note that the

Equation 5.7 can be rewritten in terms of ui as:

p = Eu[E(Yij | ui)].

Hence,

p =

∫ ∞

−∞
p̃ · fui

(ui)dui (5.9)

Rewriting Equation 5.9 in terms of the model presented in Equation 5.6, we

obtain that

p =

∫ ∞

−∞

exp(−3 + 0.5 · t+ ui)

1 + exp(−3 + 0.5 · t+ ui)
· fui

(ui)dui (5.10)
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Figure 5–8: Variance of p̃ for the model defined in Equation (5.6)

The equation 5.10 does not have a closed form and it is necessary to use numer-

ical integration or another method to approximate it. To calculate this expression

we use the phermite and gaussh.int R functions which can be found in Appendix A.

These results are the same than the ones obtained with the integrate R function.

These integrals also can be calculated in SAS PROC NLMIXED.
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5.2 An Interpretation of Percentile Curves

The density function presented in Equation 5.4 permits to determine the influ-

ence of random effects on the conditional probabilities distribution. Given a random

effect value, ui, and certain values covariates, they produce a point estimate of

the probability for the i − th subject, which corresponds to one observation of the

distribution of p̃, as shown in Section 5.1.1. In addition, for each combination of

the covariates, we can calculate the marginal mean by integrating out the random

effects in the model. All these results motivated us to study the subject-specific

curves across time, and interpret them. We will call these subject-specific curves

Subject-specific Curves Distribution.

Suppose that uq determines the q-th percentile of the random intercept distrib-

ution. Our objective is to prove that, under certain assumptions in the model, this

uq is equivalent to the q − th percentile of the subject-specific curves distribution

induced by the random effects. Our proposal is the following:

Proposition 1 (Percentiles of the subject-specific Curves Distribution). Let us con-

sider the following logistic model with random intercept:

logit [E(Yij) | ui] = x′ijβ̃ + ui (5.11)

where ui ∼ N(0, σ2). Then the q − th percentile of u is equivalent to the q − th

percentile of the subject-specific curves distribution. The subject-specific curve Cq

generated with uq is called the q − th Percentile Curve. Particulary, for u50 = 0,

the median of the random effect, the curve is called the Median Curve or Typical

Curve and it is denoted by Cmed.The curve generated by integrating out the random

effects is called the Marginal Mean Curve and it is denoted by Cmm.

The proof of this Proposition is based on the properties of the link functions

and the next classical theorem [8].
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Theorem 1 (Distribution of a Transformation of Random Variables). Let X have

cdf FX(x), let Y = g(X), and let DX = {x : fX(x) > 0} and DY = {y : fY (y) > 0}

then:

a. If g is an increasing function on DX , FY (y) = FX(g−1(y)) for y ∈ DY .

b. If g is an decreasing function on DX , FY (y) = 1− FX(g−1(y)) for y ∈ DY .

Proof. To prove the previous Proposition 1, let uq be the q−th percentile of the nor-

mal distribution N(0, σ2), with cumulative distribution Φ(·). According to previous

results,

p̃ij = logit−1(x′ijβ̃ + ui) =
exp(x′ijβ̃ + ui)

1 + exp(x′ijβ̃ + ui)

Consider X = ui and Y = logit−1(ui) in Theorem 1. It is sufficient to prove that

the function logit−1 is increasing with respect to ui to prove the proposition:

∂p̃ij

∂ui

=
exp(x′ijβ̃ + ui)

[1 + exp(x′ijβ̃ + ui)]2
> 0

Therefore, logit−1(ui) is an increasing function of ui. Theorem 1 permits to derive:

Fp̃ij(p̃ij) = P (p̃ij ≤ c)

= P [p̃ij ≤ ([logit−1(c)− x′ijβ̃]

= Φ[logit−1(c)− x′ijβ̃]

which represents the q − th percentile curve, Cq.

Hence, we prove that the q− th percentile of the random effects is equivalent to

the q−th percentile curve of the subject-specific curves distribution. In other words,

Proposition 1 indicates that the logit transformation preserves the percentiles of the

random effects. Figure 5–10 illustrates this result. The previous proposition is valid

for any link function, because these functions must be increasing [2].
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To illustrate the previous proposition, consider the model defined in Equation

5.6 with σ = 0.2, and σ = 0.5. The subject-specific curves are determined by:

p̃ =
exp(−3 + 0.5 · t+ uq)

1 + exp(−3 + 0.5 · t+ uq)

where the uq are the q − th percentiles of the normal distribution N(0, σ2). Fig-

ure 5–9 shows the percentiles curves for two hypothetic scenarios considering q =

10, 25, 50, 75 and 90, that is, uq ≈ (−1.2815,−0.6744, 0, 0.6745, 1.2815). Two impor-

tant results can be extracted from these plots. First, larger values of σ disperse the

curves more. This is consistent with the results about the density and cumulative

distribution functions presented in Section 5.1.1. Second, when σ = 0.5 the curve

with u50 = 0, Cmed, and the marginal mean curve, Cmm, are similar. However, this

is not true for σ = 2. In this situation the median, or typical curve, is different from

the marginal mean curve. These plots could be useful to the researchers because

they provide the mean and median subject-specific curves, and any other percentile

of interest in the study. Under the percentiles curves interpretation, it is possible

to determine what subjects have an abnormal response to the treatment, or what

subjects are outside certain ranges of response probabilities. Thus, we can expand

the percentiles curves concept used for continuous responses (i.e. anthropometry)

to binary responses.

5.3 Application to Real Datasets

In this section we apply the percentiles curves concept presented previously to

two datasets. We will describe the datasets used and we will show the respective

results for each application. The estimates of the models were obtained by using

SAS PROC NLMIXED [24].

5.3.1 Toenail Dataset

This data was obtained from a randomized, double-blind, parallel group, mul-

ticenter study for the comparison of two oral treatments (A and B, coded as 0 and
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1, respectively) for toenail dermatophyte onychomycosis (TDO)3 . The aim of the

study was to compare the efficacy and safety of 12 weeks of continuous therapy with

treatment A, or with treatment B. Subjects were followed during 3 months of treat-

ment, and followed further up to a total of 12 months. Measurements were taken

at baseline, every month during treatment, and every three months afterwards, re-

sulting in a maximum of 7 measurements by subject. The severity of the infection

was coded as 0 (not severe), or 1 (severe). The sample size is N = 294 patients.

The variables in the dataset are: id, response (0/1), treat (0/1), time (continuous)

of each visit (1 thru 7). Table 5–1 and Figure 5–11 show the proportion of patients

with severe Toenail infection for each treatment and visit.

Table 5–1: Proportion of Infected Patients, Toenail Dataset

Visit Time in Days,(min−max) Treatment A Treatment B
1 (Baseline) (0.0-0.0) 0.3699 0.3716

2 (0.7-1.6) 0.3475 0.3265
3 (1.5-3.5) 0.3188 0.2759
4 (2.5-4.8) 0.2197 0.2071
5 (4.0-8.8) 0.1077 0.0602
6 (5.3-12.5) 0.0855 0.0630
7 (10.5-18.5) 0.1053 0.0458

Model Equation: In order to analyze these data, we consider a model without

time/treatment interaction:

logit [P (Yij | ui)] = β̃0 + β̃1 · time+ β̃2 · treat+ ui (5.12)

where ui is the random intercept distributed normally with zero mean and variance

σ2, and Yij | ui ∼ Bernoulli(p̃ij). Note that we assume that the random intercept

variance is constant throughout the environments.

3 Source: Dermatological Data for Statistical Research, Novartis, Belgium,
http://www.blackwellpublishers.co.uk/rss/
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Figure 5–11: Proportion of Infected Patients for each treatment, Toenail Dataset

Results:

Table 5–2 shows the principal information on the fitted model for the Toenail

dataset, and the parameter estimates are presented in Table 5–3. The log-likelihood

for this model is equal to logL = −627.5. The maximum repeated measurements

by subject are 7, and 30 quadrature points were used to approximate the likelihood.

Table 5–2: Dimensions and Fit Statistics for model presented in Equation 5.12,
Toenail Dataset

Dimensions

Aspect Dimension
Total Observations 1908

Subjects 294
Max Obs Per Subject 7

Parameters 4
Quadrature Points 30

Fit Statistics
Statistic Value

-2 Log Likelihood 1255.0
BIC 1277.7
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Table 5–3: Estimates for model presented in Equation 5.12, Toenail Dataset

Parameter Estimate Standard Error t-value DF P-value

β̃0 −1.4470 0.4251 293 −3.40 0.0008
β̃1 −0.4516 0.03669 293 −12.31 <.0001
β̃2 −0.5225 0.5575 293 −0.94 0.3494
σ 4.0089 0.3819 293 10.50 < .0001
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Figure 5–12: Density Function of p̃ Induced by the Random Intercept, Toenail
Dataset

Table 5–4: Induced Marginal Mean, Toenail Dataset

Time (Days) Treat A Treat B

0 0.3707 0.3266
3 0.2614 0.2242
6 0.1717 0.1432
9 0.1047 0.0848
12 0.0591 0.0465
15 0.0309 0.0236
18 0.0149 0.0110

Instead of speaking about the estimates properties (i.e. significance), we are

interested in plotting the estimated density function and cumulative distribution of
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Figure 5–13: Cumulative Distribution of p̃ Induced by the Random Intercept, Toe-
nail Dataset
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the conditional probabilities of Toenail infection in several times, as shown in Figures

5–12 and 5–13. In this case, the estimated standard error of random effect is equal to

σ̂ = 4.0089. The density function of p̃ at the beginning of the study is concentrated

around p̃ = 0 and p̃ = 1, where the density is larger. This shape indicates a bimodal

distribution. In contrast, it is more concentrated around p̃ = 0 when time is near

18, which indicates a unimodal distribution. This behavior is stronger in treatment

2 because the conditional probabilities tend faster towards zero. In the initial times

the cumulative function raises slowly to 1, whereas in final times it begind almost

at 1 for both treatments.

Table 5–4 shows the induced marginal mean p̂ for seven specific time-points.

It indicates the probability of infection for each treatment and time. These values

have been calculated averaging the conditional probabilities over the random effects

for each time and treatment.

The σ value for Toenail dataset induces disperse percentiles curves because of its

magnitude. Also, it is possible that specific percentiles curves be different between

treatments. For example, the C75 could be different between both treatments. Note

that the median curve, or typical curve, differs notably from the marginal mean

curve. In addition, all percentiles curves, except C90, are similar between treatments.

The C90 percentile curve in treatment 2 tends faster towards zero than the same curve

in treatment 1.

Another important aspect about the percentiles curves consist in the possibility

of calculating a (1 − α)100% confidence interval for the infection subject-specific

probabilities, p̃, which are given by the percentiles curves:

[C(α/2)100%, C(1−α/2)100%]



87

For example, a 95% confidence interval on p̃ for t = 8 is given by [0, 0.5192] and

[0, 0.3904] for treatment A and B, respectively. In adittion, we can calculate the

specific time in which there is a proportion of infected patients, for example, 50%.

5.3.2 Garlic Dataset

This data was obtained from a study about the epidemiology of White Rot

in Garlic from five different environments4 . Each environment is defined by the

combination of two regions, Jesús Maŕıa and Cruz del Eje in the Córdoba province

(Argentina), and its years of study 5 . In Cruz del Eje region, the experimental

field was divided in ten blocks. In each block six sampling points (sites) were

randomly selected. Measurements of incidence over a total of fifty plants in each

point (number of dead plants/total number of plants) were taken every t days, where

t varies according to the environment. In Jesús Maŕıa region the sampling design

was similar, but five sampling points were selected instead of six. The objective is

to characterize the progress curves of the infection. The variables in the dataset

are: year, region, site, block, incidence, and time (days). Figure 5–15 shows the

incidences for each environment and block/site. The percent of dead plants varies

notably between block and site combination and environments.

To analyze this data, we propose two models for each environment. In order to

apply the proposed percentiles curves, each model is a logistic regression with ran-

dom intercept. The differences between these models are based on the assumptions

about the random intercept.

• Model 1: Random Intercept with Constant Variance

First, we define each combination of block and site as the analysis unit because

4 Source: Martha Conless, Universidad Nacional de Córdoba, Argentina.

5 The years of study were 2001− 2003 for Cruz del Eje and 2001− 2002 for Jesús
Maŕıa. They are denoted by CE1, CE2, CE3, JM1, and JM2, respectively.
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Figure 5–15: Infection Progress Curves (Incidence %) for the five environments in
the white rot experiment, Garlic Dataset

the repeated measurements are taken over these. Suppose that Yij is the j −

th measurement of incidence in the i − th block/site combination . Given the

random intercept, ui, the response in the k − th environment, k = 1, . . . , 5, has a

Binomial distribution: Yijk | ui ∼ Binomial(50, p̃ijk). The equation model for each

environment is given by:

logit [P (Yijk | uik)] = β̃0k + β̃1k · time+ uik (5.13)

where uik ∼ N(0, σ2). The time variable was transformed to time/10.

• Model 2: Variance of Random Intercept varying across Environment

In this case, the equation model for each environment is given by:

logit [P (Yij | uik)] = β̃0k + β̃1k · time+ uik (5.14)

where uik ∼ N(0, σ2
k).
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Results for Model 1: In order to plot the percentiles curves, we fitted Model 1.

Table 5–5 shows the main information on the fitted Model 1. The log-likelihood for

this model is equal to logL(M1) = 4937.75. The maximum repeated measurements

of incidence in each block/site combination is 13, and 30 quadrature points were

used to approximate the likelihood.

Table 5–5: Dimensions and Fit Statistics (Model 1 ), Garlic Dataset

Dimensions

Aspect Dimension
Observations Used 2375
Total Observations 2375

Subjects 255
Max Obs Per Subject 13

Parameters 11
Quadrature Points 30

Fit Statistics
Statistic Value

-2 Log Likelihood 9785.5
BIC 9846.5

Table 5–6 shows the estimates for fixed effects and the standard deviation of the

random intercept. The estimates of the intercept and the slope, β̂0 and β̂1, respec-

tively, differ across environments. The estimated standard deviation of the random

effect is equal to σ̂ = 3.0999, which is the same in all the environments. Figures 5–16

shows the estimated density functions for the five environments. Similar to the in-

cidence plots, the estimated density functions and cumulative distribution between

environments differ notably. For example, the similarity between the densities of

Environment 1 and Environment 3 implies that the conditional probabilities across

time are similar. In contrast, Environment 5 is different from the rest.

How can we compare these densities with the incidences in each

environment? A direct form is to compare the densities with the histogram of

incidences for each environment and specific times, such as shown in Figure 5–18.

Note that the shape of the histograms are similar than the shape of the densities
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Table 5–6: Estimates for Model 1, Garlic Dataset

Parameter Estimate Standard Error t-value DF P-value
Environment 1: Cruz del Eje 2001

β̃0 −6.0418 0.4095 254 −14.76 < .0001
β̃1 0.5534 0.009426 254 58.71 < .0001

Environment 2: Cruz del Eje 2002
β̃0 −9.0290 0.4556 254 −19.82 < .0001
β̃1 0.5051 0.01216 254 41.53 < .0001

Environment 3: Cruz del Eje 2003
β̃0 −8.0871 0.4292 254 −18.84 < .0001
β̃1 0.6497 0.01181 254 55.00 < .0001

Environment 4: Jesus Maŕıa 2001
β̃0 −7.3829 0.4513 254 −16.36 < .0001
β̃1 0.4256 0.007210 254 59.03 < .0001

Environment 5: Jesus Maŕıa 2002
β̃0 2.3270 0.6222 254 −3.74 0.0002
β̃1 0.4049 0.008171 254 49.55 < .0001

Standard Deviation of Random Intercept-Overall
σ 3.0999 0.1636 254 19.07 < .0001

around the same times, which is an indicator of adequate fit. This similarity offers

an interesting tool to analyze the properties of the incidence distribution.

Similarly, the cumulative distributions permit us to know how the infection

probability evolves. For example, in Environment 5 the cumulative distribution

raises slower to 1 as t increases. This indicates that for larger t, small incidences

have a small probability, whereas a conditional probability of infection near 1 has

a larger probability. This behavior means that the probability of a large incidence

when t is large is more probable in the Environment 5 that in the rest, as can be

observed in the histograms.

Finally, Figure 5–19 shows the percentiles curves for all environments. Graph-

ically, the induced marginal incidence in Environment 1 and Environment 3 are

similar. Likewise, the marginal incidence in Environment 2 and Environment 4 are

similar. Environment 5 presents a marginal incidence different to the rest. Never-

theless, the fact that the marginal incidence is similar between certain environments,

does not imply that the percentiles curves also are similar. The plots clearly show
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Figure 5–16: Density Functions of p̃ for t = 0, 40, 80, 120 and 160 days (Model 1 ),
Garlic Dataset [Each panel inside the plot represents a time-point ]
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Figure 5–17: Cumulative Distribution of p̃ for t = 0, 40, 80, 120 and 160 days (Model
1 ), Garlic Dataset [ Each panel inside the plot represents a time-point ]
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Figure 5–18: Histogram of Incidence in each Environment and Specific Time, Garlic
Dataset
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that the percentiles curves differ notably between environments, even though the

marginal incidence among them is similar.
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Figure 5–19: Percentile Curves (Model 1 ), Garlic Dataset

The marginal infection rates across time based on Model 2 are shown in Table

5–7. These values represent the marginal mean6 incidences, p̂, and permit to com-

pare the incidences of garlic white rot among environments at a specific time. For

6 The marginal mean of Yij can be easily calculated because Yij ∼
Binomial(50, p̂ij). Then, E(Yij) = 50 · p̂ij.



95

example, Environments CE1, CE3, and JM2 present most of the plants that are

infected for t = 180 days. In contrast, Environments CE2 and JM1 have almost

50% of infected plants. Also, there are noticeable differences in the incidences for

t = 90 days. Environment JM2 raises up to 64% of infected plants, meanwhile the

other environments have 38% or less.

Table 5–7: Induced Marginal Mean Incidences (Model 1 ), Garlic Dataset

Time (Days) CE1 CE2 CE3 JM1 JM2

0 0.0461 0.0064 0.0125 0.0202 0.2570
30 0.1101 0.0185 0.0436 0.0444 0.3774
60 0.2227 0.0472 0.1205 0.0885 0.5115
90 0.3829 0.1049 0.2649 0.1598 0.6442
120 0.5668 0.2027 0.4675 0.2616 0.7612
150 0.7369 0.3417 0.6792 0.3896 0.8530
180 0.8638 0.5070 0.8439 0.5311 0.9172

Results for Model 2:

Table 5–8 shows the main information about the fitted Model 2. The log-

likelihood for this model is equal to logL(M2) = −4860.95. The likelihood ratio

between the two models is equal to −2[logL(M2) − logL(M1)] = 153.6, which is

significant if it is compared with χ2
4 (p − value < 0.0001). This indicates that this

model has a better fit. This result is confirmed by the differences that exist between

the estimates of the standard deviation of the random intercept, as shown in Table

5–9. For example, Environments CE2 and CE3 present a larger random standard

deviation in comparison with Environment JM2. A simple standard deviation ratio

among Environments CE1 and CE3 with Environment JM2 is found to be 2.8 and

3.02 times, respectively. The larger the standard deviation the larger the variability

among the individual progress curves of infection.

Figure 5–20 shows the densities of p̃ based on Model 2. These densities are

different compared to the ones obtained in Model 1. The most relevant differences

can be observed in Environments JM1 and JME2. In Environment JM1 the density
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Table 5–8: Dimensions and Fit Statistics (Model 2 ), Garlic Dataset

Dimensions

Aspect Dimension
Observations Used 2375
Total Observations 2375

Subjects 255
Max Obs Per Subject 13

Parameters 15
Quadrature Points 30

Fit Statistics
Statistic Value

-2 Log Likelihood 9721.9
BIC 9805.0

in t = 160 is bimodal in Model 1, meanwhile it is skewed to the right in Model 2.

Likewise, the densities in Environment JM2 show differences especially at t = 0, 40

and 80 days. For example, the density at t = 80 in Model 2 is skewed to the left,

meanwhile the one in Model 1 is most concentrated around 0 and 1 (bimodal). The

cumulative distributions also present the same differences, as shown in Figure 5–21.

Note that Environments JM1 and JM2 have the smallest σ values, and it is smaller

to the common one calculated in Model 1 (σ̂ = 3.0999). These differences between

the densities and cumulative distributions will permit us to analyze the differences

in the percentiles curves among both Models.

Clearly the percentiles curves are different in both models. First, the marginal

incidences induced by the random effects are different, as shown in Table 5–10.

Second, the dispersion of the percentiles curves is smaller in Environments JM1 and

JM2 for the Model 2, as indicated by the σ̂ values on Table 5–9. In general, these

percentiles curves explain better the progress infection curves and the variability

among them in all the environments for the garlic white rot experiment.

Another important result in the percentiles curves is the time-point where the

marginal mean and median incidence curves are equal. In this time-point, the skew-

ness of the density function is switched to left or right depending on the positions of



97

both curves, as shown in Figure 5–22 for Environment JM2. In this case, the curves

are equal in t ≈ 57 days. Before t = 57 days, the density function is skewed to the

right, and after this point it is skewed to the left. This time-point can be calculated

using the following formula:

t =
− ˆ̃β0

ˆ̃β1

This result can be used to characterize the density function of p̃. In practice, this

time-point corresponds to the number of days where there is 50% of infected plants.

Clearly, this value varies among environments.

Table 5–9: Estimates for Model 2, Garlic Dataset

Parameter Estimate Standard Error t-value DF P-value
Environment 1: Cruz del Eje 2001

β̃0 -6.0218 0.3581 254 -16.82 < .0001
β̃1 0.5524 0.009428 254 58.59 < .0001
σ1 2.6909 0.2524 254 10.66 < .0001

Environment 2: Cruz del Eje 2002
β̃0 -9.5725 0.6620 254 -14.46 < .0001
β̃1 0.5070 0.01222 254 41.48 < .0001
σ2 4.3361 0.5829 254 7.44 < .0001

Environment 3: Cruz del Eje 2003
β̃0 -8.5011 0.6455 254 -13.17 < .0001
β̃1 0.6535 0.01191 254 54.85 < .0001
σ3 4.6502 0.5477 254 8.49 < .0001

Environment 4: Jesus Maŕıa 2001
β̃0 -7.2929 0.2580 254 -28.27 < .0001
β̃1 0.4244 0.007193 254 59.01 < .0001
σ4 1.6710 0.1813 254 9.22 < .0001

Environment 5: Jesus Maŕıa 2002
β̃0 -2.3056 0.3114 254 -7.40 0.0002
β̃1 0.4033 0.008153 254 49.47 < .0001
σ5 1.5348 0.2222 254 6.91 < .0001

5.4 Heterogeneity in a Logistic Model with Random Intercept and Slope

In the previous sections we talked about the percentiles curves in a logistic mod-

els with random intercept, and how this concept can be directly studied because the

conditional probabilities are a increasing univariate function of the random inter-

cept and therefore, these conserve the percentiles of the random effects distribution.
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In this section, we will expand the percentiles curves concept to a logistic model
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Figure 5–20: Density Functions of p̃ for t = 0, 40, 80, 120 and 160 days (Model 2 ),
Garlic Dataset . [Each panel inside the plot represents a time-point ]



99

 

  

 
 

Environment 2: CE2 Environment 1: CE1 

Environment 4: JM1 Environment 3: CE3 

Environment 5: JM2 

 

Figure 5–21: Cumulative Distribution of p̃ for t = 0, 40, 80, 120 and 160 days (Model
1 ), Garlic Dataset. [Each panel inside the plot represents a time-point ]

with random intercept and slope. We will apply the proposed method to the Garlic

dataset.
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In order to define the percentiles curves in these type of models, consider the

following logistic model for each environment in the Garlic dataset:

logit [P (Yijk | ui0k,ui1k)] = logit (p̃ijk) = b̃0k + b̃1ktime (5.15)

where b̃0k = β̃0ik + ui0k and b̃1k = β̃1k + ui1k are the random intercept and slope for

each block/site in the respective environment. The random effects, uik, is a random

bivariate vector distributed normally with zero mean vector and covariance matrix

Dk. In general, the matrix D contains in its principal diagonal the variance of the

random intercept and slope, and the other component is the covariance between the

random intercept and slope:

Figure 5–22: Density Function of p̃ for t = 50 and t = 70 days, before and after
the time-point where marginal mean curve is equal to median curve (Model 2 ),
Environment JM2, Garlic Dataset

Table 5–10: Induced Marginal Mean Incidences (Model 2 ), Garlic Dataset

Time (Days) CE1 CE2 CE3 JM1 JM2

0 0.0319 0.0210 0.0442 0.0027 0.1590
30 0.0881 0.0433 0.0948 0.0089 0.3160
60 0.1998 0.0821 0.1790 0.0278 0.5200
90 0.3721 0.1428 0.2995 0.0767 0.7183
120 0.5751 0.2284 0.4474 0.1799 0.8632
150 0.7596 0.3373 0.6031 0.3488 0.9441
180 0.8881 0.4621 0.7437 0.5578 0.9801
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D =

σ2
1 σ12

σ12 σ2
2


Using the correlation coefficient, ρ, between the intercept and slope, D can also be

written as:

D =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2


where σ1 and σ2 are the corresponding standard deviations of the random effects.

Similarly to Section 5.3.2, we consider two models with random intercept and

slope:
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Figure 5–23: Percentile Curves (Model 2 ), Garlic Dataset
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• Model 3 : The variance of the random intercept vary across environment, but the

variance of the random slope is constant.

• Model 4 : The variance of the random intercept and the slope vary across environ-

ments.

The fit statistics for both models are shown in Table 5–11. Two important conclu-

sions can be extracted from these results. First, a model with random intercept and

slope has a better fit than a model with only random intercept. Second, the model

with the variance of the random intercept and slope varying across environment is

better compared with the model that assumes constant variance for the random

slope. The BIC criterion is smaller in Model 4, and the likelihood ratio test is favor-

able to this model. The likelihood ratio is equal to −2[logL(M4) − logL(M3)] =

26.3. The p-value associated to this value is less to 0.0001 compared with a χ2
4.

Therefore, we will use this model to analyze the density function of p̃ and percentiles

curves in the case of two random effects.

Table 5–11: Fit Statistics for Model 3 and Model 4, Garlic Dataset

Fit Statistics
Statistic Model 3 Model 4

-2 Log Likelihood 8856.1 8829.8
BIC 8950.3 8946.2

5.4.1 Density Function of p̃ and Percentiles Curves

In a model with random intercept, the density and cumulative function of p̃

were easily deduced using the classical theorem of the transformation of random

variables. However, in the case of two random effects, intercept and slope, we have

the following situation:

p̃ij = P (Yij | ui0,ui1) = ϕ(ui0,ui1) (5.16)

p̃ is a bivariate function of the random effects, as shown in Figure 5–24. There-

fore, it is complicated to find the density function of p̃ for a given time t with the
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Figure 5–24: Conditional Probability in Function of Random Intercept and Slope

model presented in Equation 5.15 because of the transformation between the two

random effects and the probability. We propose an empirical approximation to the

density function and percentiles curves using the following methodology.

Steps to Calculate the Density Function of p̃ and Percentiles Curves

• Generate a number, sufficiently large, of samples of the a bivariate normal distri-

bution with (β̃0, β̃1) mean vector, and covariance matrix D using the Monte Carlo

Method. We used the rmvnorm function from the mvtnorm R library. We generated

N=100,000 samples of the bivariate normal distribution with the covariance matrix

D̂ for each environment. In situations with a large number of random effects, a

Cholesky decomposition can be useful in order to simplify the computational task
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[26]. We used the density function from stats R library to estimate the density

function.

• Calculate the conditional probabilities in each time t using the inverse logit trans-

formation:

p̃ij =
exp(b̃0 + b̃1t)

1 + exp(b̃0 + b̃1t)
(5.17)

• Estimate the density function of p̃ using a kernel density estimator (i.e. Gaussian

kernel) [38]. Then, plot the density function for each time.

• Calculate the percentiles of the empirical distribution of p̃. For each time it is

necessary to sort the p̃ values calculated previously, and select the respective per-

centiles. To find the k − th percentile, take the correspondent Nk
100

p̃ value. We

developed this procedure because in <2 (intercept and slope), to define an order

is not as trivial as in < (only intercept). This methodology can be expanded for

more than two random effects.

• Finally, estimate the marginal mean induced by the random effects in a specific

time averaging by the subject-specific probabilities estimated with the N random

effects ui generated in the first step, as was proposed by Molenbergs and Verbeke

[34]:

p̂ij =
1

N

N∑
i=1

exp(b̃0 + b̃1t)

1 + exp(b̃0 + b̃1t)
(5.18)

Note that the previous integral is a Monte Carlo integral for the bivariate case [16].

In general, this is a Monte Carlo integration with Gaussian weighted function.

Using the previous methodology we can obtain an approximation to the density

of p̃ and the marginal mean p̃, such as in Section 5.1.1, where they were derived the-

oretically. The β’s and variance components estimates with its respective standard

errors for Model 4 are shown in Table 5–12 7 .

7 All these parameters are significant (α = 0.01).
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Table 5–12: Estimates and Standard Errors for Model 4, Garlic Dataset

Environment β̂0 β̂1 σ̂1 σ̂2

CE1 -5.6389 (0.3280) 0.5462 (0.0351) 2.2579 (0.2793) 0.2403 (0.0303)
CE2 -7.7526 (0.6847) 0.3399 (0.0556) 2.9130 (0.6330) 0.2015 (0.0396)
CE3 -7.1399 (0.5983) 0.5508 (0.0521) 3.0347 (0.6033) 0.2464 (0.0432)
JM1 -6.8402 (0.2184) 0.3932 (0.0167) 1.2281 (0.1960) 0.0971 (0.0137)
JM2 -2.2993 (0.2325) 0.4423 (0.0391) 1.1219 (0.1894) 0.1886 (0.0309)

Correlation between intercepts and slopes: ρ̂ = 0.2603

In this case, the covariance matrices for the random effects in each environment

is given by:

D̂CE1 =

5.0981 0.1412

0.1412 0.0578

 D̂CE2 =

8.4856 0.1528

0.1528 0.0406

 D̂CE3 =

9.2094 0.1946

0.1946 0.0607


D̂JM1 =

1.5082 0.0311

0.0311 0.0094

 D̂JM2 =

1.2586 0.0551

0.0551 0.0356


The infection progress rates in the environments of the Jesús Maŕıa province has a

smaller variability in comparison with the ones in Cruz del Eje province. Likewise,

it occurs with the random intercept.

The densities of p̃ for all environments using Model 4 are shown in Figure 5–25

but in t = 40, 80 and 120 days. They are similar to the ones for Model 2 for the

equivalent times. However, among them there are differences that can be observed

in the marginal mean incidences in Table 5–13. These values differ from the ones

presented in Tables 5–7 and 5–10. For example, the incidence in Environment CE1

is smaller in comparison with the other models.

The percentiles curves are also similar to the ones presented in the previous

models. Note that the marginal mean incidence curve and the median curve are equal

in p̃ = 0.5, which is an evidence that the proposed method to find the curves with

two random effects is adequate. The consistency of the p̃ estimates also indicates

the adequacy of the methodology.
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Figure 5–25: Density Functions of p̃ for t = 40, 80 and 120 days (Model 4 ), Garlic
Dataset. [Each panel inside the plot represents a time-point ]



107

Table 5–13: Induced Marginal Mean Incidences (Model 4 ), Garlic Dataset

Time (Days) CE1 CE2 CE3 JM1 JM2

0 0.0260 0.0125 0.0222 0.0022 0.1311
30 0.0818 0.0251 0.0600 0.0071 0.3149
60 0.2038 0.0482 0.1369 0.0220 0.5695
90 0.3987 0.0844 0.2671 0.0630 0.7971
120 0.6244 0.1413 0.4386 0.1572 0.9250
150 0.8137 0.2177 0.6254 0.3254 0.9771
180 0.9276 0.3152 0.7840 0.5440 0.9935
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Figure 5–26: Percentile Curves (Model 4 ), Garlic Dataset



CHAPTER 6

CONCLUSIONS

Longitudinal data analysis requires special statistical techniques because of the

dependence between repeated measurements. A model to analyze longitudinal data

can explain the dependence using the following three sources: random effects, ser-

ial correlation and measurement error. Depending on the sources included in the

model, it is possible to talk about Covariance Pattern Models (CPM) and Mixed

Models. In the first case, the CPM models include correlation matrices to explain

the dependence between observations. In the second case, the mixed models include

random effects to induce the dependence between observations. The type of infer-

ence and the interpretation of the estimates are important points to compare these

models. The CPM models are based on a marginal inference and the estimates of

the fixed effects in the model have a population-average interpretation. Precisely,

these models are called marginal models. In these models, we can talk about the

marginal mean. Meanwhile, the mixed models, also called conditional models, are

based on a subject-specific inference and the estimates have a subject-specific in-

terpretation. In these models, we can talk about the conditional mean because the

mean of the response depends on the values of the random effects. However, using

mixed models it is possible to obtain the marginal mean induced by the random

effects. The ability of the mixed models to produce subject-specific and population-

average interpretations is an advantage of these models. In contrast, the marginal

models are criticized by many authors because they only yield estimates with a

108
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population-average interpretation. In addition, the relationship between marginal

and subject-specific models is not easily to derived in some situations.

For normal responses, the linear relationship between the response and the

mean and the properties of the multivariate normal distribution, permit to derive

the theory related to the linear mixed models. For example, the relationship between

the marginal and subject-specific models can be easily derived using these properties.

Likewise, the marginal mean and the conditional mean with the random effects equal

to zero (typical mean) are the same. This result is different in linear models with non-

normal response. In categorical longitudinal data, such as binary and count data, the

non-linearity in the mean-response relationship does not permit to derive analytically

the marginal mean induced by a subject-specific model. Also, the marginal mean

and the typical mean are different. Generalized linear mixed models (GLMM) can

be used to analyze this type of data. For these models the estimation methods

are more complicated and more computationally intensive than the ones in linear

normal response. Numerical integration and optimization algorithms are necessary

to compute the estimates in GLMMs. For binary longitudinal data, a logistic model

with a correlation structure (marginal models) can be used. However, the adequacy

of the correlations matrices in binary data have been questioned by some authors.

Therefore, a logistic model with random intercept is a better alternative to analyze

binary longitudinal data. This model includes a random intercept to induce the

dependence between the observations. This is a subject-specific model and belongs

to the GLMM family.

Percentile Curves is an original concept in the longitudinal data analysis using

a logistic model with random effects. This formulation permits us to interpret the

subject-specific probability curves as percentile curves across time. This concept

have been used by the researcher in continuous longitudinal data analysis, specially

in the medicine area. We expand the percentiles curves to binary longitudinal data.
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This concept was applied to a logistic model with random intercept, where the

density and cumulative distribution of the subject-specific probabilities across time

can be derived using statistical inference.

For a generalized linear model with random intercept, we conclude that the

percentiles random effects are conserved by the link function, and therefore, are

equivalent to the same percentiles in the conditional probabilities. This is because

the link functions are increasing with respect to the random effect. These results

permit us to study the properties of the subject-specific probabilities, such as the

shape distribution and the marginal mean induced by the random effects. The

marginal mean has a population-average interpretation, and it is important in order

to study the population-average effects. The Toenail data set was analyzed using this

model, and the results obtained permit us to evidence our proposal as an important

tool in studying binary longitudinal data. The percentiles curves for the Toenail

data set were calculated. Using these curves, it is possible to analyze the mean and

median response probability of infection for the two treatments, as well as another

percentile of interest in the study. In addition, it is possible to establish differences

between treatments for a specific percentile curve.

Also, we expanded the Percentiles Curves to a logistic model with random inter-

cept and slope, and we proposed a methodology to calculate the density distribution

and the Percentiles Curves by using the Monte Carlo method and Gaussian kernel.

We applied this methodology to white rot in garlic data set, and we can establish

that the results are adequacy, offer a interesting tool for the researcher. Using the

fitter model, a logistic model with random intercept and slope, the percentiles curves

obtained permit us to detect important differences in the infection progress curves

within and between environments.
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The percentile curves concept to analyze binary longitudinal data analysis could

be applied to other link functions, such as probit and complement log-log. It is

possible apply the percentile curves for other types of outcome, such as count (i.e.

Poisson). In any outcome type, it is possible analyze the curves for more than two

random effects using the Monte Carlo methodology.

Percentile Curves concept is a good tool in order to interpret results in a subject-

specific model when categorical longitudinal data are analyzed.
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APPENDIX A

CODES OF R FUNCTIONS USED IN THIS

THESIS

PHERMITE FUNCTION
function(n){
#------------------------------------------------------#
# CALCULATE THE ABSCISSAS FOR GAUSS-HERMITE QUADRATURE
# n: Number of points of quadrature (Q)
#------------------------------------------------------#
pim4=1/(pi^(1/4))
eps=3e-14
maxit=10
x=rep(0,n)
w=rep(0,n)
m=(n+1)/2
for(i in 1:m){
if(i==1){z=sqrt(2*n+1)-(1.85575)*((2*n+1)^(-1/6))}
else if(i==2){z=z-(1.14*(n^(0.426))/z)}
else if(i==3){z=1.86*z-0.86*x[1]}
else if(i==4){z=1.91*z-0.91*x[2]}
else{z=2.0*z-x[i-2]}

for(j in 1:maxit){
p1=pim4
p2=0.0

for(k in 1:n){
p3=p2
p2=p1
p1=z*sqrt(2.0/k)*p2-sqrt((k-1)/k)*p3

pp=sqrt(2*n)*p2
}

z1=z
z=z1-p1/pp

if(abs(z-z1)<=eps)
stop

}
x[i]=z
x[n+1-i]=-z
w[i]=2.0/(pp^2)
w[n+1-i]=w[i]

}
list(x=x,w=w)
}
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GAUSSH.INT FUNCTION
function(f, q=10, start, ...){
#------------------------------------------------------#
# CALCULATE THE INTEGRAL USING GAUSS-HERMITE QUADRATURE
#------------------------------------------------------#
library(MASS)
fn <- function(x, f, ...) {-log(f(x,...))}
if(missing(start)) start <- runif(1)
opt <- optim(start, fn=fn,
+ method="CG", control=list(maxit=500), hessian=T,f=f,...)
u<-phermite(q)
xq <- u$x sigma <- sqrt(c(1/opt$hes))
r2 <- sqrt(2)*sigma
g <- r2*exp(xq*xq)*f(opt$par+r2*xq, ...)
return(sum(u$w*g)) }



APPENDIX B

CODES TO FIT A LOGISTIC MODEL WITH

RANDOM INTERCEPT FOR TOENAIL

DATASET

glmmML R function (glmmML library)

Code:

> library(glmmML)
> glmmML(response ~ treat + time + time * treat, data = infect,
+ family = binomial, cluster = id, n.points = 50)

Output:

coef se(coef) z Pr(>|z|)
(Intercept) -1.6295 0.42682 -3.8177 0.000135
treat -0.1465 0.57400 -0.2553 0.798000
time -0.3909 0.04430 -8.8242 0.000000
treat:time -0.1379 0.06798 -2.0284 0.042500

Standard deviation in mixing distribution: 4.020
Std. Error: 0.3853

Residual deviance: 1251 on 1903 degrees of freedom AIC: 1261

glmmPQL R function (MASS library)
Code:

> library(MASS)
> glmmPQL(response ~ treat + time + time * treat, data = infect,
+ family = binomial, random = ~1 | id, verbose = F)

Output:

Loading required package: nlme

Attaching package: ’nlme’

The following object(s) are masked from package:Matrix :

BIC fixef ranef VarCorr

Linear mixed-effects model fit by maximum likelihood
Data: infect
Log-likelihood: -5849.194
Fixed: response ~ treat + time + time * treat
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(Intercept) treat time treat:time
-0.74324709 -0.03480232 -0.29469100 -0.10017514

Random effects:
Formula: ~1 | id

(Intercept) Residual
StdDev: 2.317071 0.9362732

Variance function:
Structure: fixed weights
Formula: ~invwt
Number of Observations: 1908
Number of Groups: 294

lmer R function (Matrix library)

Code:

> library(Matrix)
> lmer(response ~ treat + time + time * treat + (1 | id), family = binomial,
+ data = infect)

Output:

Generalized linear mixed model fit using PQL
Formula: response ~ treat + time + time * treat + (1 | id)

Data: infect
Family: binomial(logit link)

AIC BIC logLik deviance
1305.676 1333.445 -647.838 1295.676
Random effects:

Groups Name Variance Std.Dev.
id (Intercept) 6.24 2.498

# of obs: 1908, groups: id, 294

Estimated scale (compare to 1) 0.9291529

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.745071 0.264086 -2.8213 0.004783 **
treat -0.035512 0.374394 -0.0949 0.924433
time -0.295909 0.033892 -8.7311 < 2.2e-16 ***
treat:time -0.100492 0.053772 -1.8689 0.061640 .
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Correlation of Fixed Effects:
(Intr) treat time

treat -0.705
time -0.372 0.262
treat:time 0.234 -0.370 -0.630
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glmm R function (Repeated library)

Code:

> library(repeated)
> glmm(response~treat+time+time*treat, nest=id, family = binomial,
+ data = infect)

Output:

Coefficients:
(Intercept) treat time sd treat:time

-0.7992 -0.3070 -0.3675 3.2788 -0.1775

Degrees of Freedom: 1907 Total (i.e. Null); 1903 Residual
Null Deviance: 1980
Residual Deviance: 1268 AIC: 1278
Normal mixing variance: 10.75045

SAS PROC NLMIXED with Normal Random Effects

Code:
title ”Logistic Model with Random Intercept - Normal distribution”;
proc sort data=tesis.infection;
by id;
run;
proc nlmixed data=tesis.infection qpoints=30;
parms beta0=0 beta1=0 beta2=0 beta3=0 sigma=1;
eta = beta0 + beta1*treat + beta2*time + beta3*time*treat + u;
expeta = exp(eta);
p = expeta/(1+expeta);
model response binary(p);
random u normal(0,sigma*sigma) subject=id;
run;

Output:

Specifications
Data Set TESIS.INFECTION
Dependent Variable RESPONSE
Distribution for Dependent Variable Binary
Random Effects b
Distribution for Random Effects Normal
Subject Variable ID
Optimization Technique Dual Quasi−Newton
Integration Method Adaptive Gaussian Quadrature

Dimensions
Observations Used 1908
Observations Not Used 0
Total Observations 1908
Subjects 294
Max Obs Per Subject 7
Parameters 5
Quadrature Points 50
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Parameters
beta0 beta1 beta2 beta3 sigma NegLogLike

0 0 0 0 1 1025.69308

NOTE: GCONV convergence criterion satisfied.

Fit Statistics
−2 Log Likelihood 1250.8
AIC (smaller is better) 1260.8
AICC (smaller is better) 1260.8
BIC (smaller is better) 1279.2

Parameter Estimates
Parameter Estimate Standard Error DF t Value Pr > |t| Alpha Lower Upper Gradient
beta0 −1.6183 0.4343 293 −3.73 0.0002 0.05 −2.4731 −0.7636 −2.27E−6
beta1 −0.1608 0.5840 293 −0.28 0.7833 0.05 −1.3101 0.9885 5.153E−6
beta2 −0.3910 0.04438 293 −8.81 <.0001 0.05 −0.4783 −0.3037 0.00004
beta3 −0.1368 0.06801 293 −2.01 0.0452 0.05 −0.2706 −0.00293 0.00007
sigma 4.0066 0.3799 293 10.55 <.0001 0.05 3.2590 4.7543 −1.89E−6

SAS PROC NLMIXED with Bridge Random Effects

Code:

title ”Logistic Model with Random Intercept - Bridge distribution”;
proc sort data=tesis.infection;
by id;run;
proc nlmixed data=tesis.infection qpoints=50;
*parms beta0=-1.63 beta1=0.19 beta2=-0.40 beta3=-0.14 s1=4;
parms beta0=0 beta1=0 beta2=0 beta3=0 s1=1;
pi=2*arsin(1);
uni=probnorm(u/s1);
phi=1/sqrt(1+3/pi/pi*s1*s1);
ul=1/phi*log(sin(pi*uni*phi)/sin(phi*pi*(1-uni)));
eta = beta0 + beta1*treat + beta2*time + beta3*time*treat + ul;
expeta = exp(eta);
p = expeta/(1+expeta);
model response binary(p);
random u normal(0,s1*s1) subject=id;
estimate ’phi’ phi;
run;

Output:

Specifications
Data Set TESIS.INFECTION
Dependent Variable RESPONSE
Distribution for Dependent Variable Binary
Random Effects b
Distribution for Random Effects Normal
Subject Variable ID
Optimization Technique Dual Quasi−Newton
Integration Method Adaptive Gaussian Quadrature
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Dimensions
Observations Used 1908
Observations Not Used 0
Total Observations 1908
Subjects 294
Max Obs Per Subject 7
Parameters 5
Quadrature Points 50

Parameters
beta0 beta1 beta2 beta3 s1 NegLogLike

0 0 0 0 1 1054.23871

Fit Statistics
−2 Log Likelihood 1252.7
AIC (smaller is better) 1262.7
AICC (smaller is better) 1262.8
BIC (smaller is better) 1281.2

Parameter Estimates
Parameter Estimate Standard Error DF t Value Pr > |t| Alpha Lower Upper Gradient
beta0 −1.4966 0.4106 293 −3.65 0.0003 0.05 −2.3047 −0.6886 −1.77E−6
beta1 −0.1255 0.5665 293 −0.22 0.8248 0.05 −1.2405 0.9894 −4.99E−7
beta2 −0.4010 0.04598 293 −8.72 <.0001 0.05 −0.4915 −0.3105 0.000013
beta3 −0.1410 0.07177 293 −1.96 0.0504 0.05 −0.2823 0.000235 0.000013
s1 4.3597 0.4176 293 10.44 <.0001 0.05 3.5379 5.1816 −8.98E−7

Additional Estimates
Label Estimate Standard Error DF t Value Pr > |t| Alpha Lower Upper
phi 0.3841 0.03136 293 12.25 <.0001 0.05 0.3224 0.4458

SAS PROC GLIMMIX

Code:
title ”Logistic Model with Random Intercept - Normal distribution”;
proc glimmix data=tesis.infection;
class treat id;
model response (event=’1’) = treat time treat*time /dist=binary solution;
random intercept / subject=id;
run;

Output:

Model Information
Data Set TESIS.INFECTION
Response Variable RESPONSE
Response Distribution Binary
Link Function Logit
Variance Function Default
Variance Matrix Blocked By ID
Estimation Technique Residual PL
Degrees of Freedom Method Containment
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Class Level Information
Class Levels Values
TREAT 2 0 1
ID 294 1 2 ... 382 383

Number of Observations Read 1908
Number of Observations Used 1908

Response Profile
Ordered Value RESPONSE Total Frequency

1 0 1500
2 1 408

The GLIMMIX procedure is modeling the probability that RESPONSE=’1’.

Dimensions
G-side Cov. Parameters 1
Columns in X 6
Columns in Z per Subject 1
Subjects (Blocks in V) 294
Max Obs per Subject 7

Optimization Information
Optimization Technique Dual Quasi−Newton
Parameters in Optimization 1
Lower Boundaries 1
Upper Boundaries 0
Fixed Effects Profiled
Starting From Data

Convergence criterion (PCONV=1.11022E−8) satisfied.

Fit Statistics
-2 Res Log Pseudo-Likelihood 11159.19
Generalized Chi-Square 1489.85
Gener. Chi-Square / DF 0.78

Covariance Parameter Estimates
Cov Parm Subject Estimate Standard Error
Intercept ID 4.7095 0.6024
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Solutions for Fixed Effects
Effect TREAT Estimate Standard Error DF t Value Pr > |t|
Intercept −0.7464 0.2382 292 −3.13 0.0019
TREAT 0 0.02594 0.3360 1612 0.08 0.9385
TREAT 1 0 . . . .
TIME −0.3740 0.03960 1612 −9.45 <.0001
TIME*TREAT 0 0.09583 0.05105 1612 1.88 0.0607
TIME*TREAT 1 0 . . . .

Type III Tests of Fixed Effects
Effect Num DF Den DF F Value Pr > F
TREAT 1 1612 0.01 0.9385
TIME 1 1612 163.24 <.0001
TIME*TREAT 1 1612 3.52 0.0607
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