
A HIERARCHICAL MEMORY MODEL FOR TERRAIN DATA
MANAGEMENT IN INTERACTIVE TERRAIN VISUALIZATION

By

Ricardo Veguilla González

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

UNIVERSITY OF PUERTO RICO
MAYAGÜEZ CAMPUS

December, 2007

Approved by:

Domingo Rodŕıguez, Ph.D Date
Member, Graduate Committee

Manuel Rodŕıguez, Ph.D Date
Member, Graduate Committee

Nayda G. Santiago, Ph.D Date
Chairperson, Graduate Committee

Pedro Vásquez, Ph.D Date
Representative of Graduate School

Isidoro Couvertier, Ph.D Date
Chairperson of the Department

Abstract of Thesis Presented to the Office of Graduate Studies
of the University of Puerto Rico in Partial Fulfillment of the

Requirements for the Degree of Master of Science

A HIERARCHICAL MEMORY MODEL FOR TERRAIN DATA
MANAGEMENT IN INTERACTIVE TERRAIN VISUALIZATION

By

Ricardo Veguilla González

December 2007

Chair: Nayda G. Santiago
Major Department: Electrical and Computer Engineering

This work describes the use of a hierarchical memory model for the performance

estimation of the interactive terrain visualization system as part of the system design

process. Such visualization systems must be capable of: a) working with potentially

massive datasets which can exceed the both the memory and the disk storage ca-

pacity; b) rendering the data at a real-time frame-rate which exceed the capabilities

of general-purpose CPUs. While several solutions to these problems have been pre-

sented in the literature, they failed to address the general recurrent performance

problem of the timely movement of data throughout the complete visualization sys-

tem. This work presents a model for the estimation of the performance of interac-

tive terrain visualization systems which incorporates the characteristics of hardware

components found in visualization systems as well as the characteristics and access

patterns associated with terrain data. To validate our model, we performed a test

case study. Our results show that the model is able to characterize the general

performance behavior of the visualization systems, but the estimated performance

diverged from the measured performance as the dataset sizes increased.

ii

Resumen de Tesis Presentado a la Oficina de Estudios Graduados
de la Universidad de Puerto Rico como Cumplimiento Parcial de los

Requisitos para el Grado de Maestŕıa en Ciencias

MODELO DE MEMORIA JERÁRQUICA PARA MANEJO DE DATA
EN LA VISUALIZACIÓN INTERACTIVA DE TERRENOS

Por

Ricardo Veguilla González

Diciembre 2007

Consejera: Nayda G. Santiago
Departamento: Ingenieŕıa Eléctrica y Computadoras

En este trabajo se describe el uso de un modelo jerárquico de memoria para

estimar el rendimiento de sistemas interactivos de visualización de terrenos con la

meta de asistir procesos de diseño durante el desarrollo del sistems. Dichos sistemas

deben ser capaces de: a) manejar datos cuyo tamaño puede exceder la capacidad

de la memoria primaria y la capacidad de almacenaje en disco; b) dibujar la data

en tiempo real, lo que excede las capacidades de procesamiento de las unidades cen-

trales de procesamiento. A pesar de que numerosas soluciones han sido presentadas

en la literatura, estas no consideran el problema recurrente de rendimiento asoci-

ado al movimiento de data a través del sistema completo de visualización. En este

trabajo presentamos un modelo que incorpora tanto las caracteŕısticas de los com-

ponentes de hardware que forman parte de los sistemas de visualización, como las

characteŕısticas y patrones de acceso de la data de terrenos. Utilizando el modelo

descrito se puede identificar las caracteŕısticas de los componentes de hardware y de

software requeridos para alcanzar las metas de rendimiento deseadas en sistemas de

visualización interactiva de terrenos.

iii

Copyright c© 2007

by

Ricardo Veguilla González

I dedicate this thesis to my family.

ACKNOWLEDGMENTS

The author wishes to express his gratitude to the following people:

• Dr. Nayda Santiago and Dr. Domingo Rodŕıguez for giving me the opportunity

to work in the WALSAIP project.

• Dr. Manuel Pérez Quiñones who helped me get started in the field of computer

graphics.

• Dr. Néstor Rodŕıguez, whose lectures on memory systems were central to the

development of the main ideas presented in this work.

• Angel Villalain, Eric Fortis, Javier Malavé, Rubén Nieves, Carlos Pérez, Héctor

Ramos, Héctor Irizarry, Martha Roldán, Peter Bangdiwala, and Vazjier Rosario

for their various contributions to the development of the WALSAIP Visual Terrain

Explorer.

This work has been supported by the National Science Foundation under the CISE-

CNS Grant Number 0424546.

vi

TABLE OF CONTENTS
page

ABSTRACT ENGLISH . ii

ABSTRACT SPANISH . iii

ACKNOWLEDGMENTS . vi

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF ABBREVIATIONS . xiii

1 Introduction . 1

1.1 Performance Goals . 4
1.1.1 Visual accuracy . 5
1.1.2 Interactive frame-rate . 6

1.2 Performance Problems . 7
1.3 Previous Solutions . 8

1.3.1 Graphic Hardware Optimizations 8
1.3.2 Level-of-Detail . 9
1.3.3 External Memory Management 10
1.3.4 Data Streaming . 10

1.4 Problem Statement . 10
1.5 Goals and Objectives . 12
1.6 Proposed Solution . 13
1.7 Contributions . 14

2 Literature Review . 16

2.1 Terrain rendering optimizations 16
2.1.1 Multi-resolution or Level-of-detail Rendering Algorithms . . 16
2.1.2 External Memory Management or Out-of-core Rendering

Algorithms . 25
2.1.3 Terrain Data Streaming . 26
2.1.4 GPU Optimizations . 27
2.1.5 End-to-end Performance Analysis and Optimization 28

2.2 Data Processing Models . 29
2.2.1 Pipeline Model . 30
2.2.2 Multilevel Memory Hierarchies or Hierarchical Memory Model 30

vii

3 Hierarchical Memory Model for Terrain Data Management 33

3.1 Model Goals . 33
3.2 Extending the HHM for the terrain visualization problem 34

3.2.1 Data Characteristics . 34
3.2.2 Data Access Pattern . 35

3.3 Model Description . 37
3.3.1 Conceptual Representations 37
3.3.2 Data Unit Characterization 39
3.3.3 Hardware Component Characterization 40
3.3.4 Data Transfer Characterization 41
3.3.5 Optimization Technique Characterization 42
3.3.6 System Characterization 42
3.3.7 System Decomposition Methodology 43
3.3.8 High-level System Components 45
3.3.9 Further System Decomposition 46
3.3.10 Model Evaluation . 48

3.4 Model Validation . 49

4 Test Case . 50

4.1 Test Case System Description . 50
4.1.1 WALSAIP Visual Terrain Explorer 50
4.1.2 Implementation Technology 51
4.1.3 Application Design . 52
4.1.4 Architecture . 54
4.1.5 Java Performance Study 56

4.2 Model Validation Methodology . 59
4.2.1 Test Case Model Evaluation Scope 60
4.2.2 Performance Measurement Tests Description 64

4.3 Model Validation Results . 65
4.3.1 Discussion . 66

5 Conclusions and Future Work . 69

5.1 Conclusions . 69
5.2 Closing Remarks . 70
5.3 Future Work . 71

5.3.1 Model Enhancements . 71
5.3.2 System Studies . 71
5.3.3 Problem Domain Studies 72

APPENDICES . 73

A VTE Java Performance Profiling Results 74

B Terrain Datasets . 77

viii

C Test Case Performance Measurements Results 79

D Test Case Results Comparison . 91

BIOGRAPHICAL SKETCH . 100

ix

LIST OF TABLES
Table page

4–1 Performance Metric provided by Eclipse TPTP. 58

4–2 Dataset characteristics . 63

4–3 Test Systems Specifications . 64

4–4 Test Systems Actual Parameters . 64

4–5 Model Results - Transfer Cost . 66

A–1 Memory Usage - Total Size. 74

A–2 Memory Usage - Total Instances. 75

A–3 Execution Time - Base. 75

A–4 Execution Time - Cumulative. 76

A–5 Execution Time - Calls . 76

C–1 Hawaii - System 1 . 79

C–2 Hawaii - System 2 . 80

C–3 Hawaii - System 3 . 81

C–4 Grand Canyon - System 1 . 82

C–5 Grand Canyon - System 2 . 83

C–6 Grand Canyon - System 3 . 84

C–7 Guanica - System 1 . 85

C–8 Guanica - System 2 . 86

C–9 Guanica - System 3 . 87

C–10Jobos Bay - System 1 . 88

C–11Jobos Bay - System 2 . 89

C–12Jobos Bay - System 3 . 90

x

LIST OF FIGURES
Figure page

1–1 Different examples of visualizations. 2

1–2 3D Rendering Pipeline. 3

1–3 Interactive Terrain Visualization. 4

1–4 Four level-of-detail representations of the same model. 9

1–5 Hardware components, rendering optimizations techniques and data
flow in interactive visualization systems 11

2–1 Top-down vs. Bottom-up processing direction. 19

2–2 Hierarchical data structures. 21

2–3 Multi-stage pipeline. 30

2–4 Example of five-level memory hierarchy. 31

3–1 Read operations in a) general-purpose computing systems and b) ter-
rain visualization systems. 34

3–2 Data Access Pattern - General Computing System 36

3–3 Data access Pattern - Terrain Visualization System 36

3–4 Visualization System - Component Representation 37

3–5 Visualization System - Data Transfer Representation 38

3–6 Memory Stage - Component Representation 41

3–7 Memory Stage - Data Transfer Representation 41

3–8 Ideal System . 43

4–1 Test Case System Decomposition . 61

4–2 Hawaii Test Case Results - System 2 67

4–3 Hawaii Test Case Results - System 3 67

4–4 Hawaii Test Case Results - System 1 68

xi

4–5 Grabd Canyon Test Case Results - System 2 68

B–1 VTE visualization of the Hawaii dataset. 77

B–2 VTE visualization of the Grand Canyon dataset. 78

B–3 VTE visualization of the Guanica dataset. 78

B–4 VTE visualization of the Jobos Bay dataset. 78

D–1 Hawaii Dataset - System 1 Results Comparison 91

D–2 Hawaii Dataset - System 2 Results Comparison 91

D–3 Hawaii Dataset - System 3 Results Comparison 91

D–4 Grand Canyon Dataset - System 1 Results Comparison 92

D–5 Grand Canyon Dataset - System 2 Results Comparison 92

D–6 Grand Canyon Dataset - System 3 Results Comparison 92

D–7 Guanica Dataset - System 1 Results Comparison 93

D–8 Guanica Dataset - System 2 Results Comparison 93

D–9 Guanica Dataset - System 3 Results Comparison 93

D–10Jobos Bay Dataset - System 1 Results Comparison 93

D–11Jobos Bay Dataset - System 2 Results Comparison 94

D–12Jobos Bay Dataset - System 3 Results Comparison 94

xii

LIST OF ABBREVIATIONS

CPU Central Processor Unit
GPU Graphic Processor Unit
API Application Programming Interface
LOD Level of Detail
EMM External Memory Management
DS Data Streaming
HMM Hierarchical Memory Model
TIN Triangulated Irregular Network
PCA Principal Component Analysis
WALSAIP Wide Area, Large-Scale Automated Information Processing
VTE Visual Terrain Explorer
JOGL Java OpenGL
FPS Frames per second
GUI Graphical User Interface
MVC Model View Controller
J2SE Java 2 Standard Edition
JVM Java Virtual Machine
GC Garbage Collection
JIT Just-In-Time
RCP Rich-Client Platform
TPTP Test and Performance Tools Platform
RGB Red, Green, Blue
GIS Geographic Information System
RAID Redundant Array of Independent Drives
DEM Digital Elevation Map
OS Operating System
RAM Random Access Memory
AGP Accelerated Graphics Port
PCI Peripheral Component Interconnect

xiii

CHAPTER 1

INTRODUCTION

The field of data visualization is concerned with the use of visual representa-

tions of abstract data to facilitate human exploration and understanding of patterns

and structural relations in the abstract data being displayed, as part of a cognition,

hypothesis building, and reasoning process (see Figure 1–1 for examples). Terrain

visualization incorporates visual representations of georeferenced data with a visual

representation of the geographic region where the data originated. Computer based

visualization systems have been used for several decades for both general data and

terrain visualization scenarios. In order to construct a realistic visual representation

of the geographic region of interest, a visualization system incorporates digital rep-

resentations of the geographic region surface with corresponding satellite or aerial

images, and combine them using 3D Computer Graphics techniques to produce the

desired terrain visualization.

Performing 3D visualization in a computer requires working with a mathemat-

ical description or model of a 3D object. The most commonly used 3D model is the

polygonal model, in which a set 3D vertices are interconnected, forming triangles

or polygons which describe the 3D surface of the object of interest. To create a 3D

visualization of an object, the corresponding 3D model is processed to produce a

2D image in which the 3D nature of the object is evident. This process, called 3D

rendering, is accomplished via a series of steps which are performed in sequence and

are generally referred to as the 3D rendering pipeline. The general steps performed

as part of the 3D rendering pipeline are the following [1]:

1

2

Figure 1–1: Different examples of visualizations.

• Define each object geometry in a coordinate system local to each object (model

space).

• Transform each object from its local coordinate system into the scene’s global or

world coordinate system (world space).

• Transform the complete scene geometry from the world coordinate system into the

camera or view coordinate system (view space).

• Transform the scene geometry from the view coordinate system into the screen

coordinate system (screen space) based on the perspective projection.

Figure 1–2 describes the various general transformations, processes and spaces

involved in the 3D rendering pipeline. Each transformation is accomplished via a

series of translation, rotation and scaling operations performed on the 3D geometry

being processed at each particular step of the pipeline. In addition to the operations

which transform the geometry between spaces, other operations are performed in

each particular space. The most significant of these operations are: the light and

surface specifications performed in world space; back face culling (removal of geom-

etry facing away from the camera) performed in view space; view frustum culling

3

Figure 1–2: 3D Rendering Pipeline.

(removal of geometry outside of the projected viewing area) and hidden surface re-

moval performed in screen space; and finally the rasterization and shading process

in which the final pixel color value is calculated for each visible object in the scene.

The perspective projection is performed from the position of a virtual cam-

era, which determines 3D region (view-frustum or viewing-volume) of interest to

be rendered. The actual calculation required to perform the perspective projec-

tion are implemented by a series of matrix transformations applied to each vertex

in the model. Hardware-accelerated support for performing operations related to

3D rendering is available in consumer-level video cards (GPU) and accessible via

application programming interfaces (API).

Interactive visualization refers to a type of computer-based visualization in

which: a) the user of the visualization system controls some aspects of the visu-

alization being performed, and b) the changes resulting from the user input are in-

corporated into the visualization in a timely manner. Performing analysis through

interactive visualization is qualitatively different from the study of a sequence of

4

Figure 1–3: Interactive Terrain Visualization.

static images, due to the immediate feedback to user interaction which allows for a

more dynamic discovery process [2]. Figure 1–3 presents a conceptual representation

of the process required for interactive terrain visualization.

1.1 Performance Goals

For many general applications, computing system performance has been char-

acterized in terms of either response time (also referred to as execution time or

latency) which measures how long does it takes to finish a job, or throughput which

measures how much work is accomplished per time unit [3]. In the case of 3D in-

teractive visualization system, the two primary measures of performance are the

visual accuracy and the rendering frame-rate. Visual accuracy is closely related to

throughput while frame-rate is more closely related to response time. Traditional

non-interactive 3D rendering systems are designed with visual accuracy as primary

performance goal. This type of visualization system performs batched processing

of 3D data which, depending on the dataset and rendering parameters, may take

hours, days, or weeks to complete. On the other hand, interactive visualization sys-

tems have been traditionally characterized as soft real-time systems, and optimized

primarily for rendering frame-rate. In the following sections we discuss the different

5

issues associated with both visual accuracy and interactive rendering frame-rate, in

the context of interactive 3D terrain visualization.

1.1.1 Visual accuracy

The first criterion, visual accuracy, implies that the visual representation dis-

played to the user must correctly represent the underlying data being explored. In

the ideal case, the visual representation will always express all information contained

in the actual data. However, this may not always be possible due to limitations of the

available hardware technology to completely express the full range of the datasets.

This limitation has two general manifestations:

• Inability of the hardware to express the full range of potential values for any element

in the dataset.

• Inability of the hardware to store the complete dataset.

The first manifestation of the problem can result in a mismatch between the

range of the underlying data and the range of available visual elements used to

represent it. In the simplest example, digital display technology impose limits in

terms of the number of colors available for display, typically 24-bit or 16,777,216

spread on 3 bands (red, green and blue, generally referred to as RGB) each consisting

of 8-bit or 256 colors per band. In the case of a dataset consisting of discrete values

with variability that exceeds 16,777,216, it would not be possible to attempt a one-to-

one mapping of data values to colors. In the case of terrain visualization applications,

this is not a current concern thanks to the characteristics of the datasets and the

way the data is visually represented. Terrain datasets consist of satellite images and

elevation maps which are combined in a 3D visual representation using perspective

projection. The mapping of color elements values to the display color values is

limited either by the range of values produced by the data acquisition system or by

the range of color perceptible by the human eye. The mapping of elevation values

6

to display elements is handled by the perspective projection in which data elements

or samples are represented as occupying a position in 3D space.

The second manifestation of how hardware limitations make difficult the com-

pletely express of the dataset accurately is related to the dataset size and the storage

capacity available in the system. Visualization systems usually operate with large

datasets consisting of millions or billions of data elements. [2] defines large datasets

as those that are considerably larger than the main memory capacity of desktop

computer. More specifically:

D >> 10 ∗Md

where D is the size of dataset of interest and Md is the main memory capacity

of the desktop computer. Even larger dataset may also exceed the disk storage ca-

pacity of current consumer-level desktop computers. In such scenarios, the hardware

will be incapable of displaying all the elements of the dataset at the same time1 .

The memory capacity limitations of the hardware are still a concern in terrain vi-

sualization applications since advances in data acquisition make larger and larger

datasets possible.

1.1.2 Interactive frame-rate

The second performance goals of interactive terrain visualization is sustaining

interactive rendering frame-rate, that is, being able to draw or render the 3D visu-

alization at a rate in which interactive visualization is possible, without noticeable

latency being present between the user-driven action and the visual update in the

visualization screen. As mentioned earlier, in order to render terrain data, every

1 In many cases it may not be desirable to present the full range of the dataset,
even when the hardware is not a limiting factor. First, for considerably large
datasets, this approach may result in information overload, where there is simply
too much information to be visually digested. Second, in many cases not all the
information is different or significant enough in terms of either data variability or
number data elements to be useful.

7

vertex in the terrain geometry must be transformed (translated, rotated or scaled),

shaded depending on light position and finally perspective projected, transform-

ing the vertex information to the corresponding pixel in the visualization screen.

The result of this process is a rendered frame of animation. Achieving interactive

frame-rates is affected by two hardware-related factors:

• The hardware input/output capabilities.

• The hardware computational capabilities.

The I/O capabilities of the hardware limit how much times it takes to transfer

the data between memory storage components in the interactive visualization sys-

tem. As the dataset size increases, more elements need to be transferred as part of

the rendering of an specific frame of animation.

The hardware computation capabilities limit how much time it takes to per-

form all the vertex transformations and light calculations required to render all the

geometry in a frame of animation. Rendering a frame is computationally intensive

and is usually performed several times per second. In general, the larger the number

of frames rendered per second the smoother the animations is perceived by the user.

Rendering systems typically aim for a target frame-rate between an average of 10

to 60 frames per second.

1.2 Performance Problems

Building an interactive terrain visualization tool present a series of challenges

related to the performance and scalability of the application. Performing interactive

rendering implies that user interaction should provide immediate changes in the

visualization. In addition, we want to provide an accurate representation of the

geographic region being visualized. The more accurate the representation is, the

more complex and detailed the digital representation will be, which increases the

data set storage space requirement. As the size of the dataset increases, the more

difficult it becomes to be able to render the it interactively. The size and complexity

8

of the dataset may be too high for the CPU and the GPU to process and render at an

interactive frame-rate. The terrain dataset may be too large to store in conventional

memory or even in hard-disk and the required data transfer may stress the I/O

handling capabilities of the computer to the limit. High-capacity storage servers can

be used to alleviate this problem, however, it introduces both additional complexity

in terms of data management and network communications overhead. Relying solely

on hardware improvements to solve the previously mentioned performance problems

is costly and generally insufficient, since the hardware may not necessarily scale well

for interactive visualization applications [2].

1.3 Previous Solutions

Performance optimization related to the interactive 3D visualization of both

arbitrary 3D geometry and terrain geometry have been an active area of research

for several decades [4]. As a result, several solutions to the various performance

bottlenecks observed in specific parts of the rendering systems have been presented

in the in the literature. We categorize these solutions as:

• graphic processing unit optimizations (GPU)

• multi-resolution or level-of-detail rendering algorithms (LOD)

• external memory management algorithms (EMM)

• data streaming techniques (DS)

In the following section we briefly introduce each approach. A more in-depth re-

view of the most significant techniques related to each approach is presented in the

Chapter 2.

1.3.1 Graphic Hardware Optimizations

Current graphic processing units (GPU) provide flexible programmable capa-

bilities for graphics rendering which allow more control over the rendering pipeline

than what was available using high-level graphic APIs. As consequence, terrain vi-

sualization tools can take advantage of capabilities provided by the GPU to improve

9

Figure 1–4: Four level-of-detail representations of the same model.

rendering performance. GPU rendering optimization range from off-loading part

of the data management computations to the GPU, adapting existing data man-

agement techniques for GPU-based implementations, or devising new GPU-based

techniques specifically tailored around the strengths and limitations of the available

GPU architectures.

1.3.2 Level-of-Detail

Rendering level-of-detail (LOD) algorithms regulate the amount of detail or

resolution of the terrain geometry to improve rendering performance, while satisfy-

ing a geometric and/or visual fidelity error metric in order to maintain a faithful

representation. The basic concept behind LOD [5] is to use less detail for small,

distant portions of the scene to be rendered (see Figure 1–4). This insight is based

on the observation that it is inherently inefficient to use many polygons to render

object that will only contribute to a few pixels of the rendered scene. For clarity, we

will refer to a level of detail management algorithm as a LOD algorithms, and we

will refer to the polygonal mesh of a given detail resolution produced by the LOD

algorithm as a LOD.

10

1.3.3 External Memory Management

In order to handle datasets that exceed the size of available main memory, an

out-of-core or external memory management (EMM) scheme must be employed.

Conceptually similar to the paging mechanism employed at the OS-level, the EMM

must allow the rendering system to operate in memory only with the subset of the

terrain data required for the desired LOD at a given time. As the view position

changes, data is loaded into memory as required.

1.3.4 Data Streaming

In many cases, the dataset size may also exceed the storage capacity of available

disk storage, or the available disk space quota allocated for the user running the

visualization application. To overcome this limitation, the external memory manager

can be extended to support data streaming from remote data storage servers. Using

a client/server pattern, the visualization application requests multiresolution terrain

data from the servers, then stores it on a disk cache. The terrain data transmission

is generally performed in a coarse-to-grain fashion, so a simple low-resolution model

can be quickly displayed while more detailed data is been received. To optimize

network transmission, a data compression scheme can be employed as well as data

prefetching based on geographic spatial locality.

1.4 Problem Statement

Understanding the performance aspects related to data management and pro-

cessing is a crucial aspect for the development of effective PC-based interactive 3D

terrain visualization systems for scientific research. However, previous works have

been focused on a specific performance bottlenecks and do not address the gen-

eral recurrent performance problem of the timely movement of data throughout the

complete rendering system (see Figure 1–5). Earliest efforts related to rendering

performance optimization were focused on minimizing the number of triangles to be

11

Figure 1–5: Hardware components, rendering optimizations techniques and data
flow in interactive visualization systems

processed either by the CPU or the graphic hardware by performing selective geo-

metric simplification during an off-line operation, at run-time or via a combination

of both. To scale the rendering capabilities beyond the limitations of main memory,

rendering algorithms were extended to incorporate external memory management

capabilities in order to load data from secondary disk storage into main memory as

required. Subsequently, improvements in networking technology opened the door for

data streaming support in rendering algorithms to take advantage of remote, high-

capacity data servers. More recently, graphics processing hardware optimization has

reemerged as a focus of research due to both the improved processing capabilities,

and the flexible programming capabilities of commodity graphic processing units.

While extensive work has been done in each particular optimization area, and much

work has also been done in various combined areas (GPU-LOD, LOD-EMM, and

12

EMM-DS), there has been very little research in the performance behavior of the

complete data processing pipeline for interactive visualization systems2 .

The existing situation presents a difficult scenario for system architects and

engineers. In order to effectively design and develop efficient interactive terrain

visualization systems, a general methodology for identifying the performance char-

acteristics of the software and hardware components required to achieve a desired

performance goal. As far as we are aware, such a methodology for the performance

analysis of interactive terrain visualization systems has not been presented in the

literature. To address this problem, we are proposing the use of a model for charac-

terizing the performance of the interactive visualization system. The model should

characterize the system as a data processing pipeline composed of multiple hard-

ware component with specific performance parameters. Using the proposed model

we can identify the effect of each potential bottleneck in the total performance of

the system.

1.5 Goals and Objectives

The primary goal of this research was to develop a model for the performance

analysis of interactive terrain visualization systems. The proposed model should

help system architects and engineers to easily estimate the expected performance of

different hardware and software components under considerations as part of the de-

sign, development and implementation of interactive terrain visualization systems.

2 We must clarify the use of the term pipeline in the context of this work. Pre-
viously we referred to the “3D rendering pipeline”, the sequence of steps performed
either in software or hardware to transform the 3D data primitives and associated
raster images into the final perspective projected image to be displayed. In this work
we will use the term “data processing pipeline” to refer to the end-to-end terrain
data management system which processes the terrain data from a complete, full
resolution dataset at one end of the rendering system, to a partial and/or reduced
resolution data subset to be consumed at the other end.

13

In addition, the proposed model could serve as a foundation for the future develop-

ment of techniques for the automated selection of the ideal hardware and software

components required for achieving an specific performance goal in an interactive

terrain visualization systems. To that effect, we developed our proposed model with

the following objectives:

• Integrate memory related aspects of terrain visualization that so far have been

studied in isolation to obtain a holistic view of the performance of the system from

end to end from which performance estimations can be performed.

• Identify which components related to the terrain data management and processing

have the largest performance impact interactive visualization systems.

1.6 Proposed Solution

In this work we present our model for the performance estimation of interac-

tive terrain visualization systems. Our model is developed as a particularization

of the hierarchical memory model commonly used in computer architecture field

for characterizing the memory subsystems in computing systems. In particular, we

characterize each hardware components in terms of its memory storage and transfer

capacity. Based on this characterization, we model the data transfer cost through

the interactive visualization system as a function of the aggregated transfer cost of

each component. The data unit employed in the model is based on a combination of

terrain geometry and raster images. Data replacement between levels is determined

by geographic spatial locality and view position. Optimizations techniques such as

GPU, LOD, EMM,and DS are characterized as modifiers associated with a memory

stage. Based on this model we estimate the total performance of the system and

analyzed the impact of each performance bottleneck across the complete rendering

system. We validate our model with a test case study of the WALSAIP Visual

Terrain Explorer(VTE), a terrain visualization tool for exploration of georeferenced

14

data, which we developed as part of the Wide-Area, Large Scale, Automated In-

formation Processing project. We selected various hardware platforms as well as a

series of different datasets in order to study the performance of the VTE applications

in different scenarios. Based on the hardware components of the hardware platforms

selected, and using the model developed, we produce a performance estimated. The

results obtained show that the model can characterize the general performance be-

havior of the VTE application running on the different hardware platform, however,

the performance estimates is higher than the measured performance and diverges

even further as the dataset size increases. We analyzed the results and presented

various hypothesis as to why the model diverges from the measurements.

1.7 Contributions

In this research we present the following contributions:

• Developed a model for the analysis of interactive terrain visualization systems.

• Developed a methodology for mapping hardware/software components of interac-

tive terrain visualization systems into the model.

• Developed an interactive terrain visualization applications called Visual Terrain

Explorer.

– Implemented in Java and OpenGL for cross-platform application development

and deployment.

– Supporting Level-of-detail, External memory management, and Data stream-

ing.

In this chapter we have presented an overview of the different aspects related

to the performance of interactive terrain visualization systems. In Chapter 2 we

present a in-depth review of the literature related to the different techniques em-

ployed to improve the performance of interactive terrain visualization system. We

also present an overview of existing models which have been used to characterize

performance in computing systems. In Chapter 3 we present our proposed model

15

for the performance analysis of interactive terrain visualization. In Chapter 4 we

describe the visual terrain application called WALSAIP Visual Terrain Explorer

which we use to validate our model, as well as the results obtained. In Chapter 5

we present our conclusions and propose various potential future works.

CHAPTER 2

LITERATURE REVIEW

This chapter presents a literature review of the terrain rendering techniques

previously mentioned in Section 1.3, as well as a review of data processing models.

These two aspects are the basis of our proposed model.

2.1 Terrain rendering optimizations

2.1.1 Multi-resolution or Level-of-detail Rendering Algorithms

An excellent in-depth overview of multi-resolution or level-of-detail (LOD) ren-

dering can be found in [4]. In this section we will summarize the most relevant

aspects and considerations related to LOD rendering for terrain visualization.

A LOD algorithm is responsible for performing geometric simplification oper-

ation to eliminate redundant information where appropriate while satisfying both

performance and visual accuracy constrains. The basic components of a LOD algo-

rithms are the initial mesh, which consist of representation of the terrain at either

the minimum resolution level or the maximum resolution level, and a set of updates

operations, that, when applied to the initial mesh, produce a corresponding mesh of

different resolution. Historically, the mesh with the minimum number of polygons

required to approximate the full resolution terrain has been called the base mesh.

We will refer to the full resolution representation of a terrain as the full mesh. Even

though a LOD algorithm can begin with a base mesh (simplest representation) and

progressively add detail, the overall process is still one of geometric simplification

with respect to the original full mesh, since the resulting mesh is a simplified version

16

17

of the original. We will now describe the various characteristics which differentiate

existing LOD algorithms.

Transition Granularity between LODs

A LOD algorithm can be characterized as either discrete or continuous de-

pending on the transition granularity between successive LODs produced by the

algorithm.

• Discrete LOD: In discrete LOD algorithms, multiple individual models of differ-

ent resolutions are generated from the terrain data during an off-line processing

operation, and the appropriate model is selected at runtime. Since the bulk of the

geometric simplification is performed off-line, discrete LOD algorithms are simpler

and their runtime overhead is usually limited to evaluating the selection criteria

and handling transitions between LODs.

• Continuous LOD: In continuous LOD algorithms, a continuous spectrum of de-

tail for the terrain is encoded in a data structure from which a model for a desired

level of detail can be extracted at runtime. Continuous LOD algorithms are more

complex than discrete LOD algorithms and also incur in considerable more run-

time overhead. However, Continuous LOD algorithms are, in theory, more efficient

since they provided more granularity between LODs, we should allow for more

efficient resource utilization since the algorithm should only use as many polygons

as required to achieve the desired LOD.

Per-LOD Detail Distribution

Depending on the distribution of geometric detail across the output mesh, LOD

algorithms can be characterized as performing either a uniform or a non-uniform

geometric simplification.

• Uniform simplification: In uniform simplification algorithms, the level of detail

of a resulting mesh is uniformly distributed across the surface geometry. Uniform

simplification is usually employed in discrete LODs generation which is performed

18

off-line when no view-dependent information is available. Uniform meshes are

also generated by LOD algorithms that aim to optimize mesh layout for GPU

processing.

• Non-uniform simplification: Non-uniform simplification is generally employed

to produce meshes where the detail is selectively distributed across the surface

geometry.It is generally performed for further reducing the number of vertices in

the output mesh by only maintaining detail where required in the context of a

specific LOD mesh and for supporting view-dependent simplification algorithms,

where the level of details varies with respect to the view direction and the region

of the mesh contained inside the view frustum.

LOD Processing Direction

As mentioned before, the geometric simplification operation performed by a

LOD algorithm begins with using either the base mesh (simplest representation) or

the full mesh (most complex representation) as the initial mesh. As a result, the use

initial mesh selection allow us to classify the algorithms in terms of the direction in

which the update operation introduces complexity into the resulting mesh.

• A top-down LOD algorithm (also referred to as refinement or subdivision algo-

rithm) begins with a base mesh and then proceed to progressively add vertices,

incrementing complexity, until the desired resolution is achieved. Top-down algo-

rithms are ideally suitable for run-time operations since they complement view-

dependant simplification algorithms by supporting view culling i.e., discarding

polygons that lie outside the view frustum.

• A bottom-up LOD algorithm (simplification or decimation) begins with a full mesh

and proceed to progressively remove vertices (decreasing complexity) until the tar-

get resolution is reached. Bottom-up algorithms have higher memory and compu-

tational cost since they start with the full mesh, but are able to find the minimum

19

number of polygons for a given accuracy level. As a consequence, bottom-up algo-

rithms are generally used during offline discreet uniform simplification operations.

Figure 2–1 illustrate the relation between the terrain refinement/simplification

process and the processing direction.

Figure 2–1: Top-down vs. Bottom-up processing direction.

Terrain data structure

LOD algorithms are also differentiated by the structure employed to represent

the terrain. The basic two representations are height fields and triangulated irregular

networks (TINs) [6].

• Height fields - Array of height values at regularly spaced x and y coordinates. In

terms of management, height fields are easier to work due to their simple spatial

organization. However, height fields are considered inefficient in terms of data size,

since they store redundant information in regions with no change in elevation.

• TINS - In TINs, height values are irregularly spaced. TINs can use the mini-

mum number of elevation samples to approximate a terrain by using few samples

to describe large flat areas while using many samples on areas of larger terrain

complexity.

LOD data structure

In order to implement view-dependent multi-resolution rendering a hierarchical

structure capable of representing different parts of the terrain at different resolutions

is required. The most commonly used structures for this purpose are the quadtree

and the bintree [7]. In a quadtree structure, a rectangular region is recursively

20

subdivided into four uniform quadrants. More formally, [8] defines a quadtree for

the set of points P in a square S = [x1 : x2]× [y1 : y2] as follows:

• If |P | <= 1, then the quadtree is a single leaf where S and P are stored.

• Otherwise, let QNE, QNW , QSW , and QSE denote the four quadtrees. Let xmid =

(x1 + x2)/2 and ymid = (y1 + y2)/2, and define:

– PNE = {p ∈ P : px > xmid ∧ py > ymid}

– PNW = {p ∈ P : px ≤ xmid ∧ py > ymid}

– PSW = {p ∈ P : px ≤ xmid ∧ py ≤ ymid}

– PSE = {p ∈ P : px > xmid ∧ py ≤ ymid}

The quadtree contains a root node v, which contains S. Where v has four

children, and the X-child is the root of the quadtree of the set PX , where X|X ∈

{NE, NW, SW,SE}.

A binary triangle tree structure (or bintree) use the same strategy but subdivide

the initial rectangular region into two triangles. A bintree is in essence a kd-tree. A

kd-tree is a binary tree that recursively subdivides a space such that a k-dimensional

kd-tree divides a k-dimensional space with a (k − 1)-dimensional plane [9].

The main advantages of bintrees over quadtrees are that it is easier to work with

LOD transition artifacts [4]. Multi-triangulation [10] is an extremely general TIN

data structure which stores a base mesh and the update operation required to refine

it. Dependencies between update operations are represented by a direct acyclic

graph which influence when simplification or refinement is performed. Another data

structure commonly used is the pyramid structure (used by TerraVision [11, 12]),

which is an adaptation of the texture mipmap technique [13] for geometry. Different

LODs of a terrain geometry or texture are stored as different levels of a pyramid;

the highest LOD at the bottom of the pyramid and each subsequent LOD is half

the resolution of the previous. Figure 2–2 show the main data structures previously

described: a) a quadtree of three levels. b) a bintree of four levels. c) and d)

21

alternate representations of a pyramidal structure where each pattern represents a

different resolution.

Figure 2–2: Hierarchical data structures.

LOD selection

Since the basic LOD premise states that less detail is required for small or

distant elements of the scene, one of the most important aspects in a LOD algorithm

is the criteria used to characterize an element as being small or distant, and how that

criteria is used to select an appropriate LOD at runtime. The simplest criteria is

distance, if an object is at a specific distance of the view position, it will be rendered

using a particular LOD. An alternative criteria is the size of the particular element

when projected into the screen, which in general is a more accurate way of selecting

the LOD, but which is also more costly in terms of computation. Other parameters

used in LOD selection may include view orientation and/or surface roughness. A

more sophisticated approach proposed in [14] involves defining a rendering benefit

and cost functions for each LOD type (discrete or continuous) and perform the

selection on the benefit-to-cost ratio.

LOD transition discontinuity (the popping effect)

The most common problem faced by all LOD techniques is minimizing the

temporal discontinuity that occurs as geometric complexity suddenly changes when

22

a LOD transition occurs. This effect is commonly referred to as the popping effect

since it is particularly evident when a transition from a lower to a higher LOD causes

more polygons to suddenly pop into view. The reverse effect is also common, as

surface detail abruptly disappear when a higher to lower LOD transition occurs. The

two most common approaches to this problem are examples of the inherent trade-off

between performance and complexity present in LOD techniques. The popping effect

can be easily eliminated by a) geomorphing (geometrical interpolation) between the

two LODs as the view changes, maintaining visual continuity at the cost of the

extra computation required to do so, or b) moving the LOD transition threshold

farther away so that any potentially abrupt geometry change will occur before they

can be perceived, due to the perspective projection. While this solution does not

require extra computation, it will require maintaining geometric complexity beyond

the point where it is perceivable, which goes against the basic premise of LOD.

Terrain spatial discontinuity (surface cracks and tears)

A problem generally faced when using quadtrees or any tile-based LOD ap-

proaches is that it is possible to introduce artifacts such as cracks and tears in the

edges between LODs caused when a polygon from a higher LOD does not share a

vertex or lies on an edge of a polygon in a lower LOD. Common strategies to elimi-

nate this kind of artifact include: modifying the polygon involved by either adding

a vertex at the lower LOD triangle or adjusting the vertex of the higher LOD trian-

gle, introducing new polygons to fill the gap o subdivided both polygon to produce

a more continuous transition at the cost of adding geometrical complexity, or just

preventing simplification of vertices that lie on the LOD boundaries.

Frame-to-frame coherence

In general, continuous LODs algorithms try to minimize as much as possible the

computation required during a simplification or refinement process. Fortunately, for

interactive applications where no drastic change in the view position or orientation

23

occurs, it is possible to exploits the fact that for a particular region of the terrain,

the LOD required during the next frame of animation will be either slightly lower

(when moving away) or slightly larger when moving forward. This is known as

frame-to-frame or temporal coherence. For a LOD algorithm to take advantage of

frame-to-frame coherence, it must be capable of encoding the update operations (and

the dependencies between each operation) in order to allow incremental updates to

the last LOD instead of recomputing the new LOD from scratch.

Review of LOD algorithms

A review of the classic LOD techniques can be found in [4], here we summarize

the most relevant classic works as well as new approaches found in recent literature.

Lindstrom et al.[15] presented one of the earliest real-time continuous LOD algo-

rithms. During an off-line operation, the original mesh is broken into a quadtree

of height field blocks which contain discrete LODs. At runtime, an incremental

top-down (coarse to fine) refinement is performed by traversing down the quadtree,

followed by bottom-up simplification at the block level until the screen-space error

criteria is reached. To exploit temporal coherence, an active cut of blocks is used to

keep track of the current LOD. Extending his previous work on progressive meshes

[16, 17], Hoppe presented a TIN-based, view-dependent terrain LOD algorithm [18].

In this technique, continuous LOD is produced by adding or removing triangles from

off-line generated blocks of terrain. LOD selection is done based on view frustum,

surface orientation, and screen-space geometric error. This technique uses memory

mapping for out-of-core support.

The Geometrical MipMapping technique [19] adapts the texture mipmap [13]

technique for geometric data. It employs height fields blocks of different LODs

which are stored on disk for out-of-core operation and quad-tree of bounding boxes

for view-frustum culling and block selection. Upon block selection, the vertex data

is read from disk. To minimize CPU calculations, LOD transition are selected based

24

on minimum and maximum viewing distance which are precomputed with the worst-

case camera angle (the camera angle from which geometric error is more evident).

CABTT [20] extends the bintree-based LOD approach to work with clusters

of aggregated triangles. This reduces CPU overhead by performing view culling

per cluster. In addition, since clusters stay fixed over several frames, they may

be cached on the video card memory. QuickVDR [21] provide a general approach

based on a cluster hierarchy of progressive meshes (CHPM) where each level of

the hierarchy tree represents a different LOD. The hierarchy structure is used for

visibility culling and each node or cluster consists of a progressive mesh which can be

refined as required. The cluster itself is composed of a few thousand triangles with

an associated bounding box which is built off-line. At runtime, clusters are split or

merged as required. Zhu [22] presents a hybrid technique where irregular meshing is

used to construct an input mesh for a uniform simplification process. This technique

exploits the flexibility of an irregular mesh to produce better approximations of

the original mesh, and the ability of uniform simplification to produce regularly-

connected meshes which are ideal for creating triangle patches optimized for graphic

hardware processing.

The Geometry Clipmap [23] presents a LOD algorithm based on the texture

mapping technique, but implemented on the GPU. The basic algorithm works by

building a multi-resolution mesh from the combination of nested concentric grids

center about the view position, each grid from different level of LOD pyramid and

sorted by decreasing resolution. As the view position changes, each nested grid is

shifted to maintain the terrain LOD uniformly distributed around the view position

and new data is paged into memory to fill the update region where LOD transition

occurs. This technique integrates geometry and texture LOD and also supports

terrain compression and synthesis. A different GPU-based approach is presented in

[24], based on the progressive streaming of discrete mesh elements to the GPU. A

25

nested mesh hierarchy of discrete LODs is built off-line. At run-time, view frustum

culling is performed on the CPU and tiles identified as visible are sent to the GPU

where they are interpolated in order to obtain a continuous LOD. A specialized

memory manager is used to keep track of which data is on the GPU memory and is

used to prevent unnecessary data transfer.

2.1.2 External Memory Management or Out-of-core Rendering Algo-
rithms

The general approach used for external memory management in terrain ren-

dering applications is to subdivide the terrain geometry into blocks or tiles which

are loaded when required. One of the simplest approaches is to exploit OS based

system calls for mapping disk files to memory (memory mapping) in order to access

terrain data. This approach delegates all the paging control to the OS, which is pre-

sumably more robust and efficient, but requires optimizing the terrain data on-disk

layout (usually in coarse-to-fine order) and/or devising an algorithm to efficiently

map terrain coordinates to the vertex data locations on disk. Other approaches de-

pend on maintaining a mapping of nodes from a quadtrees or bintrees, or levels in a

pyramidal data structure, to terrain tiles on disk. More specialized techniques may

incorporate space location and LOD constrained access patterns into the data man-

ager design for a more efficient mapping of multi-resolution terrain data to external

memory.

Hoppe presented a technique [18] were terrain data being used as part of a pro-

gressive refinement process is partitioned and clustered into square tiles which are

loaded using OS provided services. Lindstrom et al.[25] follow a different approach

by optimizing data layout for memory coherence. The multiresolution terrain data

is linearized in disk and accessed via memory-mapped file mechanism provided by

the OS. Arguing that OS based services are suboptimal for paging large multireso-

lution terrain data, [26] presents a clustering technique based on object space and

26

LOD constrained access patterns which aims to minimize page faults and reduce

loading time. The technique presented by Cignoni et al.[27] is based on a hierarchi-

cal geometric partitioning using a global indexed representation of the original huge

mesh. A mesh portion is represented in core memory with indexed lists containing

only the loaded vertices and faces. Partial data load/update/write-back operation

are supported via automatic on the fly re-indexing of the loaded data portion. Ver-

tex duplication between adjacent triangles is eliminated due to the global indexing

scheme where a given vertex is referenced by only one index.

2.1.3 Terrain Data Streaming

Supporting terrain data streaming in terrain visualization aims to take advan-

tage of remote high-capacity storage servers while minimizing the data transferred

between the client and the server to compensate for the general performance issues

related to network latency and bandwidth. Several works [28–30] has been done

related to the compression of 3D geometry for multiresolution rendering. [31] ad-

dress the neighbor dependency constrain in multi-resolution rendering techniques

and proposes and scheme for the selective and progressive terrain data transmission

by minimizing neighbor dependencies. In this scheme, the server sends the base

mesh nodes first, and progressively transmit the other nodes depending on view

parameters and error metric constrains. Kalaiah et al.[32] propose using statistical

representation of the geometry in order to improve the geometry bandwidth bottle-

neck. Their approach is based on a hierarchical partitioning of the geometry into

compact nodes constructed via clustering-based hierarchical principal component

analysis (PCA) of the point geometry. Geometry decoding is performed by using a

quasi-random sampling based on the probability distribution derived from the PCA

analysis. [33] presents an overview of a proposed client-server architecture for terrain

data streaming. Data transfer to the client is reduced by visibility culling and data

caching based on the Least Potentially Visible scheme. Clientside prediction is used

27

to drive data prefetching. Terrain data representation is similar to [23]. The trans-

mission scheme allows for the transmission of deltas between different resolution

levels for low-end clients scenarios.

2.1.4 GPU Optimizations

The improvements in GPU technology has allowed for the re-evaluation of the

performance optimizations traditionally required as part of interactive 3D render-

ing, particularly so, for the case of terrain visualization. One of the earliest works

to incorporate modern GPU characteristics into terrain rendering problem is the

the GeoMipMap technique [19]. The basic difference from earlier LOD techniques

is the change in emphasis from finding the “perfect set” of triangles for a particular

resolution to minimizing CPU utilization and maximizing GPU throughput. Thus,

the algorithm sends denser mesh geometry to the GPU (compared to previous al-

gorithms), requiring less calculation on the CPU, while keeping the GPU working

as much as possible. The GPU optimization approach adopted by Yoon et al.[21]

is to cache triangle patches or clusters in the GPU memory. Using edge collapse as

triangle simplification allows their algorithm to produce a simplified mesh which is a

subset of the original mesh. This procedure can be performed by manipulating the

vertex connectivity of the geometry already in GPU memory, minimizing the data

transferred from main memory. Geometry data is only transferred to GPU memory

when the view parameters changes and new geometry regions become relevant or to

fix cracks or tears introduced during the simplification operation.

Losasso et al.[23] present a GPU LOD technique that abandons any view-

dependent re-meshing in order to minimize CPU utilization. The technique uses

concentric, uniformly tessellated, square patches (called geometry clipmaps) cen-

tered around the camera and dropping exponentially in resolution as the distance

increases. During run time, geometry is fetched from a toroidal buffer residing on

the GPU, which is updated by the CPU when required. In [34], terrain mesh is

28

decimated and stored in a nested mesh hierarchy where new vertices from finer res-

olutions only have to be progressively transmitted and morphed in height onto the

previous coarser level already available in GPU memory.

The major limitation of graphics hardware is the lack of geometry generation.

GPUs are designed to efficiently rasterize huge polygons lists sent through the bus

by the CPU, but are not capable of generating new polygons. This effectively have

forced GPU LOD algorithms to operate by means of mesh simplification operations,

which require sending geometry at full resolution through the bus, and simplified

once it is already stored in the GPU memory. LOD algorithms based on mesh

refinement, should provide the additional advantage of minimizing data transfer

even further, since such algorithms start from a course level and progressively add

vertices to achieve the desired mesh resolution.

Boubekeur et al.[35] present a GPU based approach in which a uniform mesh

is sent to the GPU memory and manipulated by vertex displacement using vertex

shaders. This approach allows for the arbitrary relocation of vertices (and thus,

simulate vertex insertions). However, while this approach minimizes the memory

footprint of mesh geometry in GPU memory, the actual overhead incurred while

transferring the vertices into the desired final mesh make this technique generally

slower than LOD techniques based on mesh simplification. It also less intuitive and

more complex than other GPU-based approaches.

2.1.5 End-to-end Performance Analysis and Optimization

The study of the performance impact of data management from end-to-end in

remote visualization systems is a new area of research. A recent work by Sisneros

et al.[36] tackles the problem of dynamically identifying the optimal cache con-

figuration which minimize absolute latency in remote visualization systems where

multiple caches nodes are linearly located between the rendering client and the data

server. The approach presented in [36] is based on the notion of an incremental,

29

which is the portion of data to be delivered or pulled through a chain of networked

caching nodes. Each incremental is identified by a compound key composed of an

arbitrary number of indices corresponding to the client request (view parameters,

mesh resolution, etc.). Each compound key is encoded as a string to simplify the

management of incremental requests by means of hash tables. Cache node config-

uration was define by three parameters: cache size (defined in number of bytes),

prefetch size and delete size (both defined in number of incrementals). For model

validation, 200 configuration were selected based on the following guidelines: cache

size were distributed between 8 kilobytes and 128 megabytes to match real-world

scenarios. Deletion size were selected as a random percentage of the cache size.

Prefetch size was limited to a range between 0 and 6 to minimize data transfer cost.

Each configuration was tested with 60 random requests. Based on the analysis of

the configuration parameter space, the authors opted for numerical minimization as

a heuristic search for better cache configurations. They used two procedural algo-

rithms, Steepest Descend and Conjugate Gradient, to determine the direction of the

minimization, moving from a cache configuration to another as long as the absolute

latency is reduced in the process.

2.2 Data Processing Models

In terms of using current hardware for interactive visualization applications, the

primary problem is still one of memory management [2]. To understand performance

aspects related to data movement through the different memory components in a

visualization system, we can incorporate two closely related models which have been

previously used to analyze the performance or search for optimal configurations

in multistage systems. These models are the pipeline model and the hierarchical

memory model.

30

2.2.1 Pipeline Model

The optimization of multistage pipelines have been a focus of extensive research

for scientists and engineers[37].

The classical problem is that of a simple, straight line transmission pipeline (also

referred to as a gun-barrel pipeline) with n compressor stations and a specified flow.

Different pressures can be specified for N points, which are located at the beginning

of the pipeline, between each compressors and at the end of the pipeline. Figure

2–3 illustrates a pipeline consisting of n stages (squares) and N = n + 1 decision

points (diamonds). These N pressure set points are the decision variables, and with

a discrete set of m possible values. Thus, the number of possible configurations for

this pipeline system is mN , which can be a huge number (for instance if m = 20 and

n = 10, there are over 2 ∗ 1014 possible configurations).

Figure 2–3: Multi-stage pipeline.

Identifying the optimal configuration is a combinatorial optimization problem,

which can be attacked via meta-heuristics such as local search, simulated annealing,

swarm intelligence, tabu search, genetic algorithms, neural networks [38].

2.2.2 Multilevel Memory Hierarchies or Hierarchical Memory Model

We turn to the concept of memory hierarchies whose motivation was clearly

presented in the following quote by Burks, Goldstine and von Neumann [39]:

“Ideally one would desire an indefinitely large memory capacity such that any

particular... word would be immediately available... It does not seem possible

to physically achieve such capacity. We are therefore forced to recognize the

possibility of constructing a hierarchy of memories, each of which has greater

capacity than the preceding but which is less quickly accessible.”

31

A hierarchical memory model (HMM) describes a random access machine whose

memory access time is non-constant and determined by the non-decreasing access

cost function f(x). A typical access cost function is f(x) = log x. Hierarchical

memory can be visualized as a set of discrete levels (see Figure 2–4) where each

level is defined as a continuous array of memory elements Am...An such that f(Ai) =

f(Ai+l), for m ≤ i < n, and f(Am−1) < f(Am) and f(An) < f(An+l). For k ≥ 1,

each level k contains the 2k−1 locations at addresses 2k−1, 2k−1 + 1, . . ., 2k − 1.

For example, if f(x) = log x, access to any location on level k takes time ≈ k. This

model mimics the behavior of memory hierarchies consisting of increasingly larger

amounts of slower memory.

Figure 2–4: Example of five-level memory hierarchy.

In general terms, the HMM is a specialized pipeline model where the set of

possible values for each decision variable increases at each subsequent stages. In

addition, the HMM is selective in terms of data flow, i.e., which data elements are

transferred between each level. In contrast, the traditional pipeline model does not

consider individual elements in the pipeline flow, only the total movement of identical

elements between endpoint. Since both of these characteristics are pertinent for the

32

problem of data management in interactive terrain visualization systems, we choose

to based our model primarily on the HMM, while reusing the conceptual form of

the pipeline model in some cases due to its convenience for expressing composition

and decomposition of stages.

In this chapter we have presented a review of the most significant techniques

and approaches related to performance optimization of interactive terrain visual-

ization systems. We also presented an overview of a previous performance study

focused terrain visualization systems with cache nodes between the visualization

client and the remote server. Finally we reviewed existing models which can be

used study aspects related to performance in computing systems. In the Chapter 3

we incorporate all these aspects into our proposed model.

CHAPTER 3

HIERARCHICAL MEMORY MODEL FOR

TERRAIN DATA MANAGEMENT

So far we have reviewed different aspects related to the performance of interac-

tive terrain visualization systems, previous work related to performance optimiza-

tions, and existing models which have been used to characterize the performance of

data processing systems. In this chapter we describe our proposed model for charac-

terizing the performance of interactive terrain visualization systems. In Section 3.1

we describe the goal of the model. In Section 3.2 we present how interactive terrain

visualization systems differ from traditional computing systems in the context of the

proposed model. Section 3.3.1 describe two different representations employed for

the conceptual presentation of the model. In Section 3.3 we describe the proposed

model in detail.

3.1 Model Goals

Our goal is to estimate the performance of different components in an interac-

tive visualization system and how the each component impacts the performance of

the whole system. As described earlier, the most critical performance problem of

interactive terrain visualization systems is related to the processing of the terrain

data. As a result, our model must be capable of characterizing the data processing

behavior of the system and in corporate the system characteristics most relevant to

the performance.

33

34

3.2 Extending the HHM for the terrain visualization problem

Extending the hierarchical memory model for the analysis of interactive terrain

visualization systems requires adapting the original model to incorporate details that

are particular to the terrain visualization problem domain. First we must describe

how an interactive terrain visualization system differs from a general computing

system. The differences between an interactive terrain visualization system and a

general computing system are primarily related to the characteristics and access

pattern of data being processed.

3.2.1 Data Characteristics

In a general purpose computing system, a memory access is either a read op-

eration or a write operation, in which a data unit consisting of a number of bits

is transferred from or to memory. The write operation requires two inputs, a) the

memory address to write to, and b) the data unit to be written. The read operation

(see diagram a) in Figure 3–1) requires one input, a) the memory address to be

read, and b) one output, the data unit read from the input memory address. At the

conceptual level, the definition of a data unit can be considered an implementation

detail. However, in concrete systems, it is usually specified at the Instruction Set

Architecture level by the instruction being used, and is typically a multiple of the

basic width of the system memory banks (common sizes are 8, 16, 32 and 64 bits).

Figure 3–1: Read operations in a) general-purpose computing systems and b) terrain
visualization systems.

Interactive terrain visualization systems operate over digital terrain geometry,

raster images, and auxiliary data such as surface normals and texture coordinates.

Access to the terrain data is dominated by read operations. Write operations to

terrain data exists primarily in two particular cases: supporting interactive ma-

nipulation of terrain geometry, and systems which alter the terrain geometry for

35

performance reasons such as algorithms performing mesh refinement or geomorph-

ing. In this research we choose to consider only the read operations. The first case of

write operations is still fairly uncommon in highly interactive visualization scenarios,

and the second case is only temporary in nature and tied to a particular stage of the

rendering system. Read operations (see diagram b) in Figure 3–1) of terrain data

consist of one input, the spatial position, and one output, the terrain data unit for

the specified spatial position. The definition of a data unit can vary greatly between

terrain visualization systems. The two primary components of a terrain data unit

are geometry and images. The geometry data unit is generally a set of one or more

vertices, which represent the terrain geometry precisely at (in the case of just one

vertex), or around the spatial position requested (in the case of multiple vertices).

The image data unit consists of raster images composed of n ×m pixels of 24-bits

(RGB bands of 8 bits each). The sizes of the image data can vary independently

of the spatial range of the geometry. That is, raster images of different sizes can

be used as texture for the same surface geometry. While images of larger resolution

(which are larger in number of pixels) are preferable due to their improved visual

quality, no clear criteria exist for selecting the image size for a particular geometry.

For this reason we cannot generalize beyond the fact that the size of a raster image

pixel is 24 bits.

3.2.2 Data Access Pattern

In terms of data access patterns, general computing system are designed for

random data access, but three memory access patterns related to locality of refer-

ence are common due two the nature of how programs are structured, stored, and

executed from memory. The three access patterns are: a) sequential locality, which

dictates that memory locations accessed tend to follow a sequential order; b) spa-

tial locality, which dictates that memory locations which are close to a previously

36

accessed memory location will probably be accessed in the future; and c) tempo-

ral locality, which dictates that memory locations previously accessed tend to be

requested again in the future.

Figure 3–2: Data Access Pattern - General Computing System

Figure 3–2 illustrates each access pattern. In each diagram, different shades

represent the expected sequence of future memory access, where darker shades occur

before lighter ones.

In relation to the terrain data being managed, terrain visualization systems

follow a data access pattern of geographic spatial locality. In other words, if a spatial

location was accessed recently, other spatial adjacent locations will be requested in

the future.

Figure 3–3: Data access Pattern - Terrain Visualization System

37

Geographic spatial locality is illustrated in Figure 3–3, in which green shades

represent previous data request and blue shades represent potential future requests.

A secondary access pattern occurs when dealing with multiresolution data. If the

data for spatial position at a particular resolution was accessed recently, data of a

level higher or a level lower of resolution may be requested in the future.

3.3 Model Description

3.3.1 Conceptual Representations

As part of the descriptions of the model we employ two different visual repre-

sentations:

• Component representation.

• Data transfer representation.

These two representations allows us to focus in different aspects of the system

as part of the model development process.

Component Perspective

Figure 3–4: Visualization System - Component Representation

When using the component representation (see Figure 3–4), we focus on the

dependencies and ordering of the components in a terrain visualization system. We

define components as a hardware element in a visualization system which is capable

of storing, transferring, and optionally, processing data to various degrees. Each

component has a set of characteristics which affect the data transfer performance

of the component and the performance of the system as a whole. Graphically, we

present the components organization similarly to a hierarchical memory model, but

presented in horizontal fashion similar to pipeline diagrams. This representation

allows us to focus on the decomposition of the system, which is naturally oriented

around components.

38

Figure 3–5: Visualization System - Data Transfer Representation

Data Transfer Representation

The goal of this representation is to represent the modeling of the data transfer

in the interactive visualization system in terms of the component characteristics (see

Figure 3–5). The total data transfer of the system is a function of the transfer cost

between every two adjacent components in the system. The data transfer cost be-

tween two adjacent components is a function of the hardware characteristics of both

components. We describe the modeling of transfer cost formally in sections 3.3.3

and 3.3.4. The data transfer representation allows us to focus on the performance of

the system in terms of the data transfer between components and the characteristics

of each components.

Element Ordering Constraint

In general, different stages or levels in a system will be organized according to

the following general rule. Let:

• E be the ordered set of elements of the system.

• |E| = N be the number of elements in set E.

• ZN = 0, 1, 2, ..., N − 1 be the set of indices to the elements in set E.

• C be the set of performance characteristics associated to an element ei where e ∈ E

and i ∈ ZN .

• vi be the value of a performance characteristic c of element ei be given by function

vi = F (c, ei) where c ∈ C, ei ∈ E and i ∈ ZN .

then:

• F (ei, c) < F (ei+1, c) where c ∈ C, ei ∈ E and i ∈ ZN .

In other words, between two adjacent elements in the system, the lower element

has a lower value for each of the performance characteristics than the next, higher

39

element. In both, the component and data transfer representation, leftmost elements

correspond to lowest values, rightmost elements correspond to highest values. Note,

that this constraint is defined only in terms of the numeric values of a performance

characteristic, not on the interpretation of the value as being high or low in terms

of performance. Lower transfer cost can be considered to give higher performance,

while lower memory capacity may limit performance. In the context of this work,

this translates to the interpretation that lower elements have lower data transfer cost

and memory capacity and higher level has higher data transfer cost and memory

capacity.

3.3.2 Data Unit Characterization

We define a terrain data unit as the basic unit of terrain data to be transferred

through the interactive terrain visualization system. As mentioned earlier, terrain

data consists of geometry and raster images. As a result, the basic terrain data

unit should incorporate both geometry and image components corresponding to the

same spatial region in the terrain dataset. In terms of geometry data, the most

attractive choice for basic data unit would be a set of polygons, since they are the

most commonly used type of primitive used in 3D rendering. However, since the

actual polygon patch construction can vary due to different implementation choices

(triangles vs. quadrilaterals, or strip layout vs. fan layout), the choice of polygon

patch as basic terrain geometry data unit would bind the model to a particular

implementation detail. In order to allow for flexibility in terms of the geometry

primitives used to render the terrain, we define the basic terrain geometry data unit

it in terms of terrain height samples. Similarly, for the case of raster image data, we

define our basic image data unit in terms of image sample points or pixels.

Let R be the rectangular spatial region of terrain with width WR and height

HR described by geometry dataset DG and by raster image dataset DI . Let DG be

the set of terrain geometry points. Let V be a 3D vertex or point in DG, and SV be

40

the size in bytes of V . Let DI be the set of raster image samples. Let P be a sample

or pixel in DI , and SP be the size in bytes of P . Let B be the smallest rectangular

subregion of R to be transferred through the interactive terrain visualization system.

Let WB and HB be the width and height of B, respectively. Let function GD(B, DG)

define the set of V in DG used to represent the terrain subregion B. Let function

ID(B, DI) define the set of P in DI used to represent the same terrain subregion

B. Then the combined terrain geometry and image data used to represent region

B is TD = GD(B, DG) + ID(B, DI), and the total size in bytes of the terrain data

unit is TDU = (|GD(B, DG)| · SV) + (|ID(B, DI)| · SP).

3.3.3 Hardware Component Characterization

At the core of our model is the hardware component characterization. In the

traditional HMM, each memory components is characterized as a memory level or

stage with an associated memory capacity and data transfer cost. We extend this

approach to consider any hardware component capable of data storage transfer as

a memory stage (MS). Similarly to the HMM we model each stage in terms of the

memory capacity and data transfer, however, in order to support more flexibility in

modeling the data transfer, we divide the data transfer cost into input transfer cost

and output transfer cost.

Formally, we define the a memory stage as the set MS of performance related

characteristics associated to a particular hardware component in the interactive

visualization system. The primary characteristics taken into consideration in this

work are:

• Memory capacity

• Read or output transfer rate

• Write or input transfer rate

However, we do not place restrictions on the type of characteristics that may

included in the characterization. For example, OS related aspects that can affect the

41

effective performance of the hardware component could be taken into consideration

by including additional characteristics as part of the memory stage definition. A

more concrete example would be to incorporate information related to the filesystem

for memory stages characteristics corresponding the disk storages units.

For performance estimation, we model a memory stage MSi, in terms of the:

• Available memory capacity function MC(MSi) (TDU)

• Input transfer cost function ITC(MSi) (time per TDU)

• Output transfer cost function OTC(MSi) (time per TDU)

Figure 3–6 and 3–7 illustrate the memory stage in the component representation

and data transfer representation, respectively

Figure 3–6: Memory Stage - Component Representation

Figure 3–7: Memory Stage - Data Transfer Representation

3.3.4 Data Transfer Characterization

In this section we describe the modeling of the data transfer cost for the in-

teractive visualization system based on the decomposition of such system into our

hierarchical memory model. As mentioned earlier, transfer cost is defined in terms

of time per terrain data unit transferred.

Transfer Cost Between Stages

The data transfer cost between two adjacent stages MSi and MSi+1 is modeled

as a function of the transfer cost associated with reading the data out from the higher

stage (MSi+1) and the transfer cost associated with writing the data into the lower

stage (MSi). Formally, the transfer cost function TC(TransferCostin, T ransferCostout)

where TransferCostin = OTC(MSi+1) and TransferCostout = ITC(MSi).

42

That is, the transfer cost between memory stages is a function of the output

cost of the higher stage and the input cost at the lower stage.

Total System Transfer Cost

The data transfer cost for the complete system is a function of the data transfer

cost associate with transferring data between every adjacent stage in the system. If

S is the order set of memory stages,|S| = N is the number of elements in S, and

ZN = 0, 1, 2, 3, ..., N − 1 is the set of indices to the elements in S, then

TotalTransferCost = TTC(S) =
N−1∑
i=0

TC(MSi, MSi+1)

3.3.5 Optimization Technique Characterization

We characterize the different optimization techniques described in Section 2.1

as modifiers applied to a particular memory stage. Stage modifiers are categorized

as following:

• Data Unit Size Reduction

• Available Memory Capacity Increment

• Transfer Cost Reduction Between Stages

Depending on the optimization technique being consider, one or all the modifiers

may be applied to the elements of the model.

3.3.6 System Characterization

In this section we describe the processes of characterizing the interactive ter-

rain visualization system in terms of the hierarchical memory model. Looking at the

system from the component perspective, we must subdivide the system into com-

ponents with a set of performance related characteristics for each component. This

requires a) to identify all the relevant hardware components of common rendering

systems in a way that is meaningful for performance analysis, and b) identifying the

most relevant hardware characteristics of each hardware components.

Ideal System Characterization

We define the Ideal System (see Figure3–8) as:

43

Figure 3–8: Ideal System

• A system with the minimum number of components.

• A system with an Ideal Data Source and an Ideal Data Sink.

The minimum number of components correspond to a data sink, a single stage,

and a data source. In this ideal system, the user input determines which data is read

from the data source, transferred trough the single memory stage and consumed by

the data sink. We define the Ideal Data Source as IdealDataSource = Dsrc if:

• MC(Dsrc) =∞

• ITC(Dsrc) =∞

• OTC(Dsrc) =∞

and the Ideal Data Sink as IdealDataSink = Dsink if

• MC(Dsink) = 0

• ITC(Dsink) = 0

• OTC(Dsink) = 0

That is, the ideal data sink has zero memory capacity and zero transfer cost,

and the ideal data source has infinite memory capacity and transfer cost. In other

words, the performance of this Ideal System is completely determined by the data

processing characteristics of the single memory stage.

3.3.7 System Decomposition Methodology

In order to populate the model with all the relevant components, we start

by representing the system as the previously described Ideal System. Then we

identify the real system components that more closely resemble the ideal data sink

and source. Then we follow a top-down decomposition approach starting at the

highest level and recursively decomposing higher-level components into lower-level

components until the all relevant components are incorporated into the model.

44

We begin the decomposition by identifying the endpoints of the systems, the

data source and data sink. Identifying the data sink is easier in visualization systems,

since the video card or graphic processing unit at the visualization workstation is the

final consumer of terrain data. In addition, it is also the component with the lowest

transfer cost. We select a remote server as end-point since it is the component with

both the largest theoretical memory capacity (storage). The initial single stage in

the high-level decomposition is the Visualization Workstation. This stage acts as

an intermediary between the consumer (GPU) and the producer (Remote Server).

We refer to these components as High-level System Components. These are the

components that more closely approximate the Ideal System.

In more complex scenarios, additional considerations can aid in the identifica-

tion of the High-level System Components. In particular, the decision to explicitly

include a hardware component in the model characterization of the system can be

made depending on:

• Natural hardware boundaries - Physical hardware boundaries generally map to

increased transfer cost and memory isolation, both of which can be mapped into

the stage model characteristics.

• Large changes in transfer cost compared to adjacent stages - Abrupt changes in

data transfer cost between stages is significant enough for it to be considered as a

stage.

• High computational capacity - The computational capacity of a particular hard-

ware component makes it possible to implement more sophisticated data replace-

ment algorithms, which can potentially improve the performance of the component,

therefore it is convenient to consider the component as an independent element in

the model.

45

3.3.8 High-level System Components

Once the high-level components are identified, we proceed to identify the most

significant hardware characteristics and map them into model characteristics. In the

following sections we describe each of the High-level System Components and the

factors that affect their performance in terms of the performance characteristics of

interest in the context of the model presented in this work.

GPU

Graphic processing units are hardware devices dedicated to the processing of

graphics data in common computer systems. GPUs are connected to the computer

motherboard via a Accelerated Graphics Port (AGP) or Peripheral Component In-

terconnect (PCI) bus. GPU components vary in features and capabilities. Many

GPUs support programmability either for graphic processing or for general purpose

processing. GPU programmability means that more sophisticated optimization tech-

niques are available for this component. The fastest rendering is possible for data

stored in video memory, local to the graphics processor. We can treat this memory

as another level of cache for our geometry data and manage it much as we do the

core memory cache. The following are the main performance characteristics of in-

terest in this work and the factors that generally affect their value for the case of

GPU components:

• Input cost: Affected by the memory bandwidth to the GPU.

• Memory capacity: Affected by the internal memory of the GPU.

• Output cost: Affected by the triangle fill rate of the GPU.

Visualization Workstation

The Visualization Workstation is basically a personal computer in which the

user interaction with the visualization system is performed. For the purpose of this

work, we consider consumer-level laptops and desktops computers as Visualization

Workstations. The following are the main performance characteristics of interest

46

in this work and the factors that generally affect their value for the case of GPU

components:

• Input cost: Affected by the disk write speed, and memory write speed and the

network bandwidth.

• Memory capacity: Affected by the disk storage and the main memory.

• Output cost: Affected by the front-side bus, disk read speed, memory read speed,

and network bandwidth.

Remote Server

A remote server is basically a computer system which is used for data serving.

Actual remote server may consists of multiple CPUs or cores, multiple disk drives in

RAID configuration. For the purpose of this work, we treat Remote Server as single

CPU, single disk systems. Similarly to the case of the Visualization Workstation,

the performance characteristics and the factors that affect them are:

• Input cost: Affected by the disk write speed, and memory write speed and the

network bandwidth.

• Memory capacity: Affected by the disk storage and the main memory.

• Output cost: Affected by the front-side bus, disk read speed, memory read speed,

and network bandwidth.

3.3.9 Further System Decomposition

After the High-level System components are identified, we proceed to recur-

sively decompose each of them to identify memory stages of interest. The depth

of the decomposition process will be determined by the precision required for the

performance estimation. Generally, the subcomponents of each High-level System

Components fall into one of the following categories:

Random Access Memory Component

Random Access Memory (RAM) components found in common computer are

a type of volatile, writable memory storage based on solid state semiconductors

47

technology. The term “random access” means that any data element stored in

the RAM memory component can be accessed at a constant time independently of

previous data requests or of where the data is physically stored in the hardware of the

component. RAM components are are commonly used as main or core memory in:

laptops, desktops and server computers; cache memory in CPUs; data buffer in disk

drives and network cards; and video memory in GPUs. RAM components typically

have less memory capacity and transfer cost than other memory components in

the system1 . The performance characteristics and related factors for the RAM

components are:

• Input cost: Affected by the memory write speed and front-side bus speed.

• Memory capacity: Affected by hardware component capacity and the operating

system (OS) memory management.

• Output cost: Affected by the memory write speed and front-side bus speed.

Flash Memory Components

Flash memory components are non-volatile writable memory components. Like

RAM component, they are also based on solid stage semiconductor technology. Flash

memory is commonly used as removable storage devices connectable via USB inter-

face; as removable memory cards in digital cameras, PDAs and cellular phones; and

as secondary memory or memory storage in many types of embedded systems. Flash

memory is generally slower than RAM memory components. In terms of memory ca-

pacity, current Flash memory support larger capacity than RAM memory, although

the applications for large capacity Flash memory are few due to its higher price.

In contrast to RAM memory components, data storage in Flash memory is usually

1 The only exception are registers which are smaller and faster, but these are not
considered in this work.

48

structured following a filesystem (FS) organization. The performance characteristics

and related factors for the Flash memory components are:

• Input cost: Affected by Flash memory write speed, the connection BUS speed, and

the OS and FS in use.

• Memory capacity: Affected by the hardware component capacity, and the OS and

FS in use.

• Output cost: Affected by the Flash memory read speed, connection BUS speed,

and the OS and FS in use.

Disk Storage

Disk storage components (also referred to as secondary or out-of-core memory

in the literature) are non-volatile storage devices in which data is stored on the

surface of magnetic disks platters. In contrast to RAM and Flash memory compo-

nents, Disk storage components employ mechanical components which spin the disk

platters and move the read-and-write heads. Disk storage component are commonly

found in laptops, desktops and server computers (in internal and external, removable

configurations) as well as in many embedded devices. Similarly to Flash memory

components, Disk Storage generally use filesystem organization. The performance

characteristics and related factors for the Disk storage components are:

• Input cost: Affected by the disk write speed, the connection BUS speed, and the

OS and FS in use.

• Memory capacity: Affected by the component capacity, and the OS and FS in use.

• Output cost: Affected by the disk read speed, the connection BUS speed, and the

OS and FS in use.

3.3.10 Model Evaluation

After decomposing the interactive terrain visualization system into the most

relevant hardware components and identifing the most significant performance char-

acteristics of each components, we can characterize each component as a memory

49

stage and evaluate the model in order to determine the expected performance in

terms of the cost of transferring data from end-to-end, i.e., from the Data Source

to the Data Sink. To do so, we must:

• Select the data unit to be used in the performance estimation.

• Select how to model the performance of each memory stage MS in terms of the

selected performance characteristics by formally defining each of the performance

modeling functions MC(MS), ITC(MS), and OTC(MS) for each component.

• Select the transfer cost function TC(TransferCostin, T ransferCostout) to model

the data transfer cost between two adjacent memory stages MSi and MSi+1, where

TransferCostin = OTC(MSi+1) and TransferCostout = ITC(MSi).

3.4 Model Validation

In the next chapter we validate our model via a test case study of interactive

terrain visualization system.

CHAPTER 4

TEST CASE

In this chapter we describe the validation of our model via a test case study. In

Section 4.1 we describe the system used for the test case study, namely, the WAL-

SAIP Visual Terrain Explorer. In Section 4.2 we describe the validation methodol-

ogy. Finally, in Section 4.3 we presents the model validation results.

4.1 Test Case System Description

4.1.1 WALSAIP Visual Terrain Explorer

The Wide Area Large Scale Automated Information Processing (WALSAIP)

project [40] is concerned with the automated processing of signal-based informa-

tion obtained from physical sensors. The main goal of the project is to support

environmental monitoring applications by providing a framework capable of per-

forming arbitrary computations on data received from sensors located on dispersed

geographical locations. The nature of the computation being conducted is deter-

mined by the domain of the research being performed. The automated information

processing framework is designed to operate in a time-space distributed manner,

meaning that data storage and computation is not necessarily localized to a specific

computing/storage server facility at a particular time. Data from sensors in multiple

locations may be stored in geographically dispersed storage servers. Computation

may be performed in a distributed manner in multiple computing nodes, which may

operate in sequence or in parallel as required. Raw or processed data can be pre-

sented by different Information Rendering Systems (IRS), depending on the nature

of either the data or the processing performed or being performed on it.

50

51

The WALSAIP Visual Terrain Explorer (VTE) is a terrain visualization tool

which aims to provide an integrated visualization system for environmental moni-

toring applications. The main goal of the VTE application is to combine diverse

georeferenced data in an interactive terrain visualization. In the context of the

WALSAIP project , the VTE applications serves as an IRS which provide an user

interface for the interactive, 3D visualization and exploration of georeferenced infor-

mation belonging to a particular geographic area.

4.1.2 Implementation Technology

Java 2 Platform

The VTE application was developed using the Java 2 Standard Edition. Al-

though Java is not necessarily a language traditional used for 3D visualization, it

presents considerable advantages due to its cross-platform capabilities and due to

the rich library of classes it provides, which facilitate building complex and versatile

applications. In terms of the application architecture, the object-oriented nature of

the language simplifies designing and building modular and extensible applications.

Eclipse Rich-Client Platform

The goal of improving the application capabilities not related to visualization

respond to the need to provide a solid, sophisticated, and productive interaction

experience for users working with the application. Previous development efforts had

been mainly focused on developing the rendering infrastructure and had only pro-

vided a rudimentary graphical user interface (GUI) implemented using Java Swing

Toolkit. Recent development efforts have focused on improving the GUI and to in-

corporate additional application functionality not related to the visualization, such

as infrastructure for remote installation and update. To fulfill these goals, it was

decided to port the VTE application to the Eclipse RCP [41] which provides an

extensible framework for building Java application. The Eclipse RCP simplifies

building sophisticated Java applications by providing a bare-bones skeleton which

52

already incorporates common functionality related to GUI management, local and

remote file management, and application update operations. The actual application

logic is programmed in a series of plug-in modules.

OpenGL

The VTE application uses OpenGL [42] as low-level graphic rendering library.

OpenGL is a cross-platform, cross-language, general-purpose graphic library. Hard-

ware accelerated execution of the OpenGL API is currently supported by most

GPUs. Integration between Java and OpenGL is provided by the Java OpenGL

binding library [43].

Specialized Java Libraries

The VTE implementation also uses the following specialized java libraries:

• Java NIO - Provides improved support for performance critical I/O operations

in Java applications. Support working with ByteBuffer objects which provide a

flexible operation for reading and writing to files, network sockets. Also provides

support for memory mapping.

• Java Advanced Imaging - Provide a simple, high-level programming model for

image processing operations.

• Java ImageIO - Provides a pluggable architecture for working with images stored

in different formats.

4.1.3 Application Design

The application design follows the object-oriented and design pattern method-

ologies [44]. The initial design process was focused on providing a modular frame-

work for constructing rendering pipelines. The pipeline was composed of three stages

or layer:

• I/O Layer - Provide abstraction over different data sources and formats.

• Data Reduction Layer - Provides abstraction over different geometric simplification

algorithms.

53

• Rendering Layer - Provides abstraction over different rendering techniques.

The pipeline was constructed at run-time depending on the inputs files by se-

lecting the appropriate modules for each part of the pipeline. Variability in terms

of performance is provided by using different Module objects which are responsible

for implementing a particular stage of the pipeline.

The original design of the VTE application aimed to provide a flexible, modu-

lar architecture, but during the implementation process it became evident that the

design was not flexible enough for our purposes. While the pipeline model seemed

like a natural choice for the terrain rendering problem, the design of the classes used

to represent the actual terrain data (the SurfaceData class) became more compli-

cated. In particular, how to encapsulate and when to perform the program logic for

handling different data formats presented several problems. The main problem was

related to the fact the implementation detail of which internal representation was

used by the SurfaceData class had different performance impact at different layer.

Changing the internal implementation of the SurfaceData to improve performance

in a layer, resulted in performance reduction in other layers. This is the result of the

fact that different data processing algorithms required specific data layouts in order

to perform adequately. Similarly, different rendering techniques required different

data layout, which resulted in having to maintain different terrain representation in-

side different renderer modules, which added an undocumented data transformation

operation to pipeline. In addition the rigid separation between layers was also too

limiting for implementing complex data simplification algorithms which, in many

cases, crossed the boundaries between layers. In particular, view-dependant LOD

algorithms require data loading and simplification controlled by the view parame-

ters. The original design allow communication between modules in the pipeline, but

54

data processing was performed only once, at the initialization phase of the visual-

ization. Changing data reduction or filtering parameter required re-initializing the

complete pipeline.

After a more in-depth study of LOD algorithms, rendering system architectures

and a reevaluation of the desired application capabilities, the following the following

design decisions were made in order to improve the design of the application:

• Move Multi-format support and data reduction and filtering support to an offline

pre-processing phase.

• Simplify I/O to handle different data sources and only one common data format.

• Improve inter-module communication support via a MessageBus communication

system.

• Simplify rendering layer to minimize the need for maintaining internal data repre-

sentations.

4.1.4 Architecture

The VTE application was then built around the following general subsystems.

• The Module Subsystem

• The Module Factories

• The Message Bus

• The Graphical User Interface

In the following sections we describe each subsystem in more detail.

The Module Interface

The Module interface provides a common base type from which different spe-

cialized interfaces are extended. The main goal of the Module is to support informa-

tion hiding and modularity by providing common interfaces to the various classes

employed as part of the core logic of the application. This allows to minimize de-

pendency on the implementation details of each class. The main sub-interfaces used

in the application are the following:

55

• FileLoader - Data source access abstraction. The read() method is invoke to load

a file from a particular data source into a DataSegment object.

• Renderer - Graphic rendering subsystem abstraction. Terrain data elements are

sent for rendering by calling different draw() methods on a Renderer module. Inter-

nally, different Renderer modules may use different rendering techniques or hard-

ware capabilities to render the data.

• Camera - Abstraction for different camera objects which provide different camera

optical simulations and movement behaviors. The main method invoked by clients

using this interface are the init() draw() and update() methods. The Camera object

collaborates with the TerrainModel module (for LOD management) and with the

Renderer module (for view parameters) in order to produce the final 3D rendering.

• TerrainModel - Abstraction which encapsulates different terrain data management

implementations. It employs the FileLoader to read data the actual data, query

the Camera module for view-dependent LOD managemnet, and sends data to be

drawn to the Renderer module.

The Module Factories

Each different Module sub-interface has an associated ModuleFactory which

is responsible for instantiating the desired Module implementation. All clients us-

ing the different Modules and the ModulesFactories are only aware of the public

Interfaces mentioned above. All details related to which actual class implements

any of the Interfaces is only known to the appropriate factory. Since the routines

related to Module management and instantiation provided by all the Factories are

exactly the same, each Factory delegates the actual work to a Java Generic-enabled

ModuleFactory which each Factory create and use internally.

Message Bus

In order to provide a simple mechanism to provide communication paths be-

tween different parts of the application, a MessageBus system was developed. The

56

MessageBus is a Singleton Mediator class implemented as a Java static class. By

registering as a MessageReceiver with the MessageBus, each object can receive mes-

sages from others objects of interest. All object interested in generating messages

must only invoke MessageBus.sendMessage() with new Message object. The Mes-

sageBus takes care of passing the Message object to the Receivers.

Graphical User Interface

The Graphical User Interface (GUI) of the VTE application is based on a Model-

View-Controller architecture [45]. In order to support different levels of sophistica-

tion at the GUI level, two different implementation of the application GUI where

developed. The first implementation was based on the Java Swing Toolkit. In this

implementation, a ViewFrame (a subclass of a Swing JFrame) contains a ViewPanel

(a subclass of a JOGL GLJPanel). Each ViewPanel contains a TerrainModel ob-

ject which encapsulates the terrain data management and rendering modules. The

second implementation is based on the Eclipse Rich-Client Platform. In this im-

plantation the TerrainModel object is bundled as an RCP plugin. The two GUI

version share the same core classes and messaging infrastructure.

4.1.5 Java Performance Study

To successfully use Java technology for performance critical applications as in

the case of interactive terrain visualization, it is crucial to first understand the gen-

eral aspects related to the performance of Java applications. To support platform-

independent execution, Java application source code is compiled to byte-code, which

is binary format design to execute in a virtual architecture call the Java Virtual Ma-

chine (JVM) [46]. The JVM itself is implemented natively in different, real computer

architectures. Once a JVM is ported to a particular architecture, any Java program

can run on that architecture. The JVM performs many services that were tradition-

ally performed by the Operating System such as thread management and memory

57

management. JVM implement automatic memory management via Garbage Col-

lection (GC) [46], which periodically reclaims unused memory.

Performance of Java applications running on early JVMs was severely limited

due to the interpreted execution of the byte-code. Java performance was substan-

tially improved with the development of JIT compilers [47] in which the byte-code

of Java applications is compiled into native machine code ”on the fly” during ap-

plication startup, and then executed. However, JIT compilation introduced other

performance problems related to the application startup time, during which the JIT

compilation was performed [48]. More recent JVMs introduced the Java HotSpot

performance engine [48]. Instead of using the JIT approach, the HotSpot engine

runs the Java program immediately using an interpreter, analyzes the run-time

execution of the program, detects critical performance ”hot spots”, and performs

optimized native-code compilation on the hot-spots. This approach avoids wasting

time compiling infrequently executed code, allows focusing on the critical parts of

the program, minimizes compilation time, and allows for continued dynamic opti-

mization of the program based on the actual run-time metrics.

In order to identify how identify potential performance problems caused by the

use of Java technology, we performed a performance study of the VTE application.

For this performance study we used the Eclipse Test and Performance Tools Platform

Project (TPTP) [49]. Eclipse TPTP is an open source, collaborative integrated test-

ing, tracing, profiling and monitoring platform which encompasses everything from

data collectors to a data model and viewers, all integrated within the Eclipse Rich

Client Platform. TPTP provides a ready-to-use, but extensible, solution for data

collection and testing development built on a common framework which provides

the opportunity for different products to be used seamlessly alongside each others

and allowing them to make their data collector available to other tools as well.

58

Table 4–1: Performance Metric provided by Eclipse TPTP.

Memory Usage
Total Instances Number of instances that had been created.
Live Instances Number of instances (not garbage collected).
Collected Instances Number of instances that were garbage collected.
Total Size Size in bytes of all created instances.
Active Size Total size of all live instances combined.

Execution Time
Base time Time taken to execute the invocation, excluding

the time spent in other methods that
were called during the invocation.

Cumulative Time Time taken to execute all
methods called from an invocation.

Calls Number of calls made by a selected method.

Performance Metrics

Table 4–1 describes the performance metrics measured during the performance

study of the VTE application using the Eclipse TPTP.

Results

The results of the performance profiling of the VTE applications are presented

in the Appendix A. Tables A–1 presents the results for the total memory usage pro-

filing; A–2 presents the results for memory usage per object instance; A–3 presents

the results for the base execution time profiling; A–4 presents the results for the

cumulative execution time profiling; and A–5 present the results of the execution

time per method call profiling.

Analysis

The results obtained give us a clear indicator of which are the most critical as-

pects of the application in terms of performance. The most critical aspects were the

data loading and processing and the level-of-detail implementation. In particular,

we observe performance problems associated with: a) the use of Java NIO classes;

b) object creation and method invocation inside critical loops; and c) the size of

terrain data structures maintained in memory. The Java NIO classes play a cru-

cial role during the data loading and conversion process. Java NIO provides classes

59

and methods for high-performance IO operation in Java. However, as observed in

the results for the number of calls metric, it is possible to use the NIO classes in a

sub-optimal way. In this case, the application invokes buffer.put(floatValue) method

inside a loop. This approach results in unnecessary number of method invocations.

The second observation is that, classes and interface that will be used in performance

critical methods must be carefully designed in order to minimized any potentially

unnecessary overhead. Such is the case of the use of the getters/setters method

for minElevation and maxElevation in the BoundingBox class. During data loading

phase, each new sample read is compared to determine the minimum and maxi-

mum elevation values. However, do to a naive implementation of the BoundingBox

class, each comparison incurred in over six getter/setter operations. The third im-

portant observation extracted from the results is that, during run-time, the most

critical part of the application is the LOD implementation. The LOD implementa-

tion builds various quadtrees where each leaf is a block of the original data, which

means that even though the algorithm may be able to allow us better interactive

rendering, its implementation may require more memory to contain the quadtrees

and images.

Performance Optimizations

In order to improve the performance of the application during loading time, the

following stratagems were adopted:

• Use arrays instead of single values when using NIO Buffers in order to minimize

method invocations.

• Move terrain data processing operations to a offline preprocessing stage.

• Minimize method invocation and object creation inside critical loops.

4.2 Model Validation Methodology

We employ the following methodology to validate our model via test case study.

• Construct model of test case system.

60

– Map components into model elements.

• Evaluate model for each test platform.

– Measure actual component performance.

– Calculate estimated performance based on the model.

• Benchmark each test platform.

– Measure actual performance.

• Validate benchmark results against model results.

4.2.1 Test Case Model Evaluation Scope

Here we describe the scope of the test case in terms of components considered

in the study, data unit characterization, as well as datasets, and test systems used

to conduct the study.

System Decomposition

For the purpose of this test case study, we only consider the main compo-

nents obtain from the decomposition of the visualization workstation component

in the complete interactive visualization system. Figure 4–1 illustrates the system

decomposition process and the final set of components selected for evaluation. The

components are:

• GPU memory

• Main memory

• Local disk storage

Data unit characterization

For the purpose of this test case study, we selected as data unit as combination

of a geometry mesh constructed from a 64x64 regular height field and a raster image

of 64x64 pixels. The geometry mesh is constructed as a triangle strip where each

height samples is represented by two triangles. Each vertex is composed of 4 floats

(x,y,z,w), and each pixel is composed of 4 bytes (r,g,b,a), for a total of 147456 bytes

per data unit.

61

Figure 4–1: Test Case System Decomposition

In this work, we restrict both function GD(B, DG) and function ID(B, DI) so

that:

• GD(B, DG) defines a rectangular array of terrain geometry points with width WGD

and height HGD.

• ID(B, DI) defines a rectangular array of terrain image pixels with width WID and

height HID.

• WGD = WID = WB

• HGD = HID = HB

In other words there is a one-to-one correspondence between geometry points,

pixel and spatial points in the terrain region being transferred. We use WB =

HB = 64, so every data unit consists of 64x64 points and 64x64 pixels. We define

V = (x, y, z, w), where each value is stored as single-precession binary floating point

number, therefore SV = |V |× 4 bytes = 16 bytes. We define P = (r, g, b, a), where

each value is a byte, therefore SP = |P |× 1 byte = 4 bytes.

Then TDU = (|GD(B, DG)| × SV) + (|ID(B, DI)| × SP) = ((WGD ×HGD) ×

SV) + ((WID ×HID)× SV) = ((64× 64)× 16) + ((64× 64)× 4) = 81920 bytes.

62

Memory Stage Modeling

For the purpose of the validation of our model, we choose to model the memory

capacity, input transfer cost and output transfer cost of each Memory Stage using

constant functions. For each component, we conducted a performance measurement

to identify each of the characteristics of interest for each system under the same test

conditions, that is, with the same conditions in which we start every performance

measurement for the formal performance study of the VTE application. The actual

values used for the modeling of each component is presented in Table 4–4.

Between-Stages Transfer Cost Modeling

To model the transfer cost between stages MSi and MSi+1 where:

• TransferCostin = OTC(MSi+1)

• TransferCostout = ITC(MSi)

we use the transfer cost function:

• TC(TransferCostin, T ransferCostout) = max(TransferCostin, T ransferCostout).

Datasets

For this study, we used four different datasets of 4 different geographic areas:

• Island of Hawaii - The terrain dataset consists of an island geography dominated

by the Mauna Loa and Mauna Kea volcanoes. Figure B–1 shows a screenshot of

the visualization of this dataset.

• Grand Canyon National Park - This dataset is a generally flat rectangle, with high

surface detail around the gorge formed by the Colorado River. Figure B–2 shows

a screenshot of the visualization of this dataset.

• Municipality of Guanica, Puerto Rico - This dataset exhibits more surface variabil-

ity, since the geographic region features coastlines, mountains, valleys and rivers.

Figure B–3 shows a screenshot of the visualization of this dataset.

63

• Jobos Bay Reserve, Puerto Rico - While generally similar to the Guanica datasets,

this dataset has more pronounced mountain areas and less elevation in the shore

region. Figure B–4 shows a screenshot of the visualization of this dataset.

Table 4–2 describe the size of each dataset in terms of number of pixels/samples,

bytes, and data units.
Table 4–2: Dataset characteristics

Area Dimensions Size (bytes) Size
(pixels) Terrain Image (Data Units)

Hawaii-1 1024 × 1024 16,777,216 4,194,304 256
Hawaii-2 2048 × 2048 67,108,864 16,777,216 1024
Hawaii-3 4096 × 4096 268,435,456 67,108,864 4096
Hawaii-4 8192 × 8192 1,073,741,824 268,435,456 16384

GrandCanyon-1 512 × 256 2,097,152 524,288 32
GrandCanyon-2 1024 × 512 8,388,608 2,097,152 128
GrandCanyon-3 2048 × 1024 33,554,432 8,388,608 512
GrandCanyon-4 4096 × 2048 134,217,728 33,554,432 2048

Guanica-1 1024 × 1216 19,922,944 4,980,736 304
Guanica-2 2048 × 2432 79,691,776 19,922,944 1216
Guanica-3 4096 × 4864 318,767,104 79,691,776 4864
Guanica-4 8192 × 9728 1,275,068,416 318,767,104 19456

JobosBay-1 1024 × 690 11,304,960 2,826,240 172.5
JobosBay-2 2048 × 1380 45,219,840 11,304,960 690
JobosBay-3 4096 × 2760 180,879,360 45,219,840 2760
JobosBay-4 8192 × 5520 723,517,440 180,879,360 11040

Test Systems

All test were performed on three different system configurations. Table 4–3

presents the vendor specifications for the components selected for the test case study.

In order to analyze the performance of each system based on the hardware perfor-

mance parameters that approximate more closely the actual performance available

during the execution of interactive visualization system, we conducted actual per-

formance measurements for each component. Table 4–4 presents the performance

values for each hardware components. The memory capacity values are in data

units. The transfer cost units are in seconds per data unit transferred.

64

Table 4–3: Test Systems Specifications

Component Parameter System 1 System 2 System 3
GPU Memory Capacity 256 MB 256 MB 32 MB

Memory Bandwidth 32 GB/s 19.4 GB/s 6.4 GB/s
Main Memory Memory Capacity 2 GB 2 GB 1 GB

Memory Bandwidth 5336 MB/s 4264 MB/s 2133 MB/s
Disk Storage Storage Capacity 80 GB 80 GB 80 GB

Transfer Rate 300 MB/s 59.4 MB/s 43.8 MB/s

Table 4–4: Test Systems Actual Parameters

Component Parameter System 1 System 2 System 3
GPU Memory Capacity 227.56 227.56 28.44

Output Cost 0.1088 0.1805 0.3599
Input Cost 0.1223 0.2028 0.4930

Main Memory Memory Capacity 1338.03 1274.31 0.5941
Output Cost 0.2482 0.4293 0.5941
Input Cost 0.4431 0.8586 1.1209

Disk Storage Memory Capacity 67811.56 67838.86 67838.86
Output Cost 25.3950 37.0066 53.8278
Input Cost 36.2786 45.6871 78.0112

4.2.2 Performance Measurement Tests Description

In order to measure the performance of the test case system, VTE, running on

each of the test platform, the VTE application was enhanced with instrumentation

to obtain the pertinent performance metrics. These are:

• Average frames per second.

• Average triangles per second.

• Average data units per second.

• Total Transfer Cost.

Due to the nature of the HotSpot compiler that is part of the modern JVM,

special attention had to be taken in the implementation of the instrumentation code

in the VTE. When the JVM loads a Java class, the initial execution performed via

the JVM built-in interpreter. During these initial phase, the HotSpot compiler per-

forms analyzes the performance of the code and performs optimizations on-the-fly

before the Java code runs at optimal speed. Performance measurements obtained

65

during this initial phase will be inaccurate and not indicative of the true perfor-

mance of the the application. Therefore, before beginning rendering performance

measurements, the instrumentation code waits for a fixed time period to allow the

HotSpot compiler to stabilize. In addition, to avoid measuring too frequently (which

would also hamper rendering performance), the instrumentation code only compute

the metrics at fixed time intervals. The default sampling duration is 10 seconds.

After waiting for the initial HotSpot optimization phase, the instrumentation code

performs a calibration routine, where it computes the number of frames rendered

during the sampling period. After doing this calibration, the instrumentation code

reports the measurements after these many frames are rendered.

In order to obtain a performance measurement representative of real usage

patterns while minimizing variability, the test performed consists of a pre-recorded

set of viewing operations. These operations form a virtual flight path in which the

complete terrain surface is explored by moving the virtual camera over the complete

terrain at a predefined set of distances and angles. The same predefined flight path

is performed 5 times for each dataset.

4.3 Model Validation Results

The complete listing of the test case results are presented in Appendix C. All

results are presented in terms of data units. The results of the model performance

estimates for each of the data sets are presented in Table 4–5.

The results of the performance measurement for the Hawaii dataset are pre-

sented in Tables C–1, C–2, and C–3. Figures D–1, D–2 and D–3 present a compar-

ison between the model results and the performance measurements.

The results of the performance measurements for the Grand Canyon dataset

are presented in Tables C–4, C–5, and C–6. Figures D–4, D–5 and D–6 present a

comparison between the model results and the performance measurements.

66

Table 4–5: Model Results - Transfer Cost

Dataset
Hawaii Hawaii Hawaii Hawaii

1 2 3 4
Data Units 256 1024 4096 16384

System 1 0.8206 3.282328016 13.12931206 52.51724826
System 2 1.1979 4.791791353 19.16716541 76.66866166
System 3 1.7415 6.965990971 27.86396388 111.4558555

Dataset
Grand Grand Grand Grand
Canyon Canyon Canyon Canyon

1 2 3 4
Data Units 32 128 512 2048

System 1 0.102572751 0.410291002 1.641164008 6.5647
System 2 0.14974348 0.598973919 2.395895677 9.5836
System 3 0.217687218 0.870748871 3.482995485 13.9320

Dataset
Guanica Guanica Guanica Guanica

1 2 3 4
Data Units 304 1216 4864 19456

System 1 0.97444113 3.8978 15.59105808 62.36423231
System 2 1.422563058 5.6903 22.76100893 91.04403572
System 3 2.068028569 8.2721 33.08845711 132.3538284

Dataset
Jobos Jobos Jobos Jobos
Bay Bay Bay Bay

1 2 3 4
Data Units 173 690 2760 11040

System 1 0.552931233 2.211724933 8.846899731 35.38759892
System 2 0.807210946 3.228843783 12.91537513 51.66150053
System 3 1.173470159 4.693880635 18.77552254 75.10209015

The results of the performance measurements for the Guanica dataset are pre-

sented in Tables C–7,C–8, and C–9. Figures D–7, D–8 and D–9 present a comparison

between the model results and the performance measurements.

The results of the performance measurements for the Jobos Bay dataset are

presented in Tables C–10,C–11, and C–12. Figures D–10, D–11 and D–12 present a

comparison between the model results and the performance measurements.

4.3.1 Discussion

Observing the results obtained, we notice that in general, both the model results

and the test results follow a similar pattern of exponential increase as the dataset

67

Figure 4–2: Hawaii Test Case Results - System 2

size increases. The only exceptions are the results obtained for the Hawaii Dataset

for System 2 and 3 (see Figures 4–2 and D–3) were the model estimated larger

transfer cost than what was actually measured . However, we also observed that the

curves for the model and the test results diverge as the dataset size increases.

With the exception of the last test (which uses the largest dataset), the model

results for the Hawaii set on System 1 (see Figure 4–4) were the ones that most

Figure 4–3: Hawaii Test Case Results - System 3

68

Figure 4–4: Hawaii Test Case Results - System 1

Figure 4–5: Grabd Canyon Test Case Results - System 2

closely approximated the actual performance. On the other hand, the results for

the last test of the Grand Canyon set on System 1 (which consists of the smallest

datasets) produced the results with the smallest difference between the estimated

and the actual performance (see Figure 4–5). All other results showed the same

general behavior of divergence between the estimated and the actual performance

results.

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this work we have presented:

• A hierarchical memory model for the performance estimation of interactive terrain

visualization systems.

• A methodology for mapping hardware components in an interactive terrain visu-

alization system into memory stages in the hierarchical memory model.

• A Java-based cross-platform interactive terrain visualization tool called Visual Ter-

rain Explorer.

Our model can be successfully used to estimate the performance of the system

for certain dataset sizes. When the dataset size increases beyond certain point,

the performance estimations obtain using the model diverge considerably from the

performance measurements obtained for our test case.

The divergence observed in the results can be attributed to several factors:

• Choice of modeling function:

– The use of constant functions to model the performance characteristics of the

memory stages.

– The maximum transfer cost as modeling function for the transfer cost between

adjacent stages.

• Software-related characteristics that affect hardware component performance:

– OS overhead related to memory management and filesystem management.

69

70

– Overhead caused by the choice of Java as implementation technology, and the

effect of the automatic memory management by the Java Virtual Machine.

The model presented in this research serves as a foundation for characterizing

the the hardware components in interactive visualization systems. By incorporat-

ing terrain data characteristic into the hierarchical memory model we were able

to construct an improved picture of visualization system in which the most criti-

cal performance aspects can be identified. Understanding which components of the

visualization system are the most critical performance bottlenecks can aid system

designer in the selection of both hardware components and software techniques for

terrain data management.

5.2 Closing Remarks

After more than 30 years of research and enormous advances in computer hard-

ware technology, the management of terrain data is still the biggest challenge faced

by the designer of interactive terrain visualization system. As technology continue

to advance, larger and larger datasets become available due to improved data acqui-

sition systems and larger data storage technology. Current technology trends point

toward a future of ubiquitous computing; a great variety of computing platforms

such as desktop, laptops, tablets, smart-phones, PDAs, and game consoles, inter-

connected via the Internet. This future scenario of highly heterogeneous computing

systems may limit the effectiveness of previous PC-oriented techniques for terrain

data management. Future visualizations systems, for both research and commercial

purposes, should be capable of providing a consistent and productive user experi-

ence. Understanding the performance capabilities required by a visualization system

will continue to be critical for the design and implementation of interactive terrain

visualization systems.

71

5.3 Future Work

We propose the following areas as potential future extensions to the work pre-

sented here:

5.3.1 Model Enhancements

The model presented in this research, can be extended to take into consideration

system configurations with parallel components. In particular:

• Parallel GPUs.

• Parallel Disk1 .

• Parallel Remote Servers.

5.3.2 System Studies

In terms of system configurations used as part of the performance study, several

future research direction are possible.

System Implementations

In order to further validate the model, a performance study should be per-

formed focusing on interactive terrain visualization systems implemented in other

programming languages or technologies other than Java.

Additional System Components

Extend the depth of the performance study by taking into account more com-

ponents in the visualization system, in particular:

• CPU cache.

• Remote server data layout and indexing.

Different High-level System Configurations

Performing studies using visualization systems view different composition than

the configurations considered in this work. For example:

1 Parallel disks are considered in the HMM-related literature.

72

• Mobile and embedded devices.

• Game consoles.

• Data streaming with multiple cache nodes 2 .

5.3.3 Problem Domain Studies

Finally, the model presented can be extended or adapted to incorporate data

characteristics and access patterns for other problem domains, such as:

• Visualization of arbitrary 3D geometry.

• General multimedia systems.

2 Incorporating the work previously presented in [36].

APPENDICES

APPENDIX A

VTE JAVA PERFORMANCE PROFILING

RESULTS

Table A–1: Memory Usage - Total Size.

Class Total Size
java.lang.Class 33408
vte.model.geomipmap.TerrainBlock 1152
java.lang.Thread 672
java.util.TimerThread 416
vte.datatypes.Vector 240
vte.model.geomipmap.Patch 200
vte.model.geomipmap.QuadTreeNode 176
vte.datatypes.Position 160
vte.model.geomipmap.TerrainBlock 128
vte.messagebus.Message 120
vte.datatypes.Light 96
vte.datatypes.Vertex 96
vte.module.data.SurfaceData 96
vte.datatypes.Angle 96
vte.model.LODTerrainModel 80
vte.model.geomipmap.GeoMMLandscape 72
vte.datatypes.BoundingBox 72
vte.ModuleFactory 48

74

75

Table A–2: Memory Usage - Total Instances.

Class Total Instances
java.lang.Class 348
vte.model.geomipmap.TerrainBlock 16
vte.datatypes.Vector 15
java.lang.Thread 7
vte.datatypes.Angle 6
vte.datatypes.Vertex 6
vte.model.geomipmap.QuadTreeNode 6
vte.datatypes.Position 5
vte.messagebus.Message 5
vte.model.geomipmap.Patch 5
java.util.TimerThread 4
vte.model.geomipmap.TerrainBlock 4
vte.data.DataType 3
vte.datatypes.BoundingBox 3
vte.data.source.loader.file.FileLoaderFactory 2
vte.data.SurfaceData 2
vte.ModuleFactory 2
vte.datatypes.Light 2
vte.camera.Fully3DCamera 1

Table A–3: Execution Time - Base.

Class Method Time
java.nio.DirectFloatBufferU put(int, float) 17.12
vte.model.geomipmap.TerrainBlock setVertexAndShading(int, int, int) 6.95
sun.misc.Unsafe putFloat(long, float) 4.98
java.nio.DirectFloatBufferU ix(int) 3.71
java.nio.Buffer checkIndex(int) 3.7
opengl.impl.mipmap.Mipmap gluBuild2DMipmaps(GL) 2.07
vte.model.geomipmap.HeightMap2Df get(int, int) 1.94
vte.model.geomipmap.TerrainBlock biLinearInterp(int[]) 1.55
vte.model.geomipmap.TerrainBlock calcDn2(float) 1.24
imageio.plugins.png.PNGImageReader read(int,ImageReadParam) 0.88
vte.model.geomipmap.TerrainBlock renderBlock(GL) 0.77
java.util.Random next(int) 0.72
vte.model.geomipmap.GeoMMLandscape access(GeoMMLandscape) 0.65
java.lang.Math max(float, float) 0.29
vte.model.LODTerrainModel setupTextures(GL) 0.25
java.lang.Math abs(float) 0.25
vte.data.SurfaceData putSample(int, int, float) 0.21
vte.model.geomipmap.TerrainBlock findBlockCenter() 0.17

76

Table A–4: Execution Time - Cumulative.

Class Method Time
vte.gui.ViewPanel display(GLAutoDrawable) 38.78
vte.model.LODTerrainModel draw(GL) 38.78
vte.model.geomipmap.GeoMMLandscape render(GL) 38.77
vte.model.geomipmap.Patch render(GL) 38.77
vte.model.geomipmap.TerrainBlock render(GL) 38.77
vte.model.geomipmap.TerrainBlock renderBlock(GL) 38.77
vte.model.geomipmap.TerrainBlock setVertexAndShading(int, int, int) 37.78
java.nio.DirectFloatBufferU put(int, float) 29.51
vte.gui.ViewPanel init(GLAutoDrawable) 11.84
vte.model.LODTerrainModel init(GL) 11.78
sun.misc.Unsafe putFloat(long, float) 4.98
vte.model.geomipmap.GeoMMLandscape GeoMMLandscape(HeightMap) 4.82
vte.model.geomipmap.GeoMMLandscape initPatches(int, int, int, float) 4.82
vte.model.geomipmap.TerrainBlock TerrainBlock(GeoMMLandscape) 4.82
vte.gui.MultiFrameGUI actionPerformed(ActionEvent) 4.67
vte.gui.MultiFrameGUI access(MultiFrameGUI, ActionEvent) 4.67
vte.gui.MultiFrameGUI openActionPerformed(ActionEvent) 4.67
vte.model.geomipmap.TerrainBlock calcDn2(float) 4.51

Table A–5: Execution Time - Calls

Class Method Calls
java.nio.DirectFloatBufferU put(int, float) 5591040
java.nio.Buffer checkIndex(int) 5591040
java.nio.DirectFloatBufferU ix(int) 5591040
sun.misc.Unsafe putFloat(long, float) 5591040
vte.model.geomipmap.HeightMap2Df get(int, int) 2854256
vte.model.geomipmap.TerrainBlock setVertexAndShading(int, int, int) 931840
vte.model.geomipmap.GeoMMLandscape access(GeoMMLandscape) 931840
java.lang.Math max(float, float) 436912
java.lang.Math abs(float) 371377
vte.model.geomipmap.TerrainBlock biLinearInterp(int[]) 371376
sun.awt.image.ByteInterleavedRaster getSample(int, int, int) 196608
java.util.Random next(int) 131072
vte.datatypes.BoundingBox getMaxElevation() 66050
vte.datatypes.BoundingBox getMinElevation() 66050
java.awt.image.BandedSampleModel setSample(int, int, int, DataBuffer) 66049
sun.awt.image.SunWritableRaster setSample(int, int, int, float) 66049
vte.data.SurfaceData putSample(int, int, float) 66049
java.awt.image.DataBuffer getElemFloat(int, int) 66049

APPENDIX B

TERRAIN DATASETS

Figure B–1: VTE visualization of the Hawaii dataset.

77

78

Figure B–2: VTE visualization of the Grand Canyon dataset.

Figure B–3: VTE visualization of the Guanica dataset.

Figure B–4: VTE visualization of the Jobos Bay dataset.

APPENDIX C

TEST CASE PERFORMANCE

MEASUREMENTS RESULTS

Table C–1: Hawaii - System 1

Average Average Average Average
Frame Rate Triangle Rate Data Units Rate Transfer Cost

Hawaii-1

108.4390 1,614,530.3000 394.1724 0.6495
112.2770 1,048,619.6230 256.0107 1.0000
112.7430 1,134,087.9670 276.8769 0.9246
113.5780 1,199,308.3130 292.7999 0.8743
113.4900 1,252,764.7260 305.8508 0.8370

Average 112.1054 1,249,862.1858 305.1421 0.8390

Hawaii-2

108.8030 1,924,497.9320 469.8481 2.1794
104.0620 1,541,919.7230 376.4452 2.7202
102.7470 1,507,382.2810 368.0133 2.7825
102.3450 1,419,731.1260 346.6140 2.9543
102.2790 1,432,093.8350 349.6323 2.9288

Average 104.0472 1,565,124.9794 382.1106 2.6799

Hawaii-3

87.0770 1,611,057.6000 393.3246 10.4138
87.9210 1,603,754.6910 391.5417 10.4612
87.7230 1,565,076.9360 382.0989 10.7197
87.7080 1,579,994.0800 385.7407 10.6185
87.3960 1,645,885.5140 401.8275 10.1934

Average 87.5650 1,601,153.7642 390.9067 10.4782

Hawaii-4

48.0490 2,767,060.8480 675.5520 24.2528
24.9590 3,572,880.5100 872.2853 18.7828
28.4700 3,742,864.0320 913.7852 17.9298
31.0780 3,797,736.6620 927.1818 17.6708
33.1030 3,829,660.1370 934.9756 17.5235

Average 33.1318 3,542,040.4378 864.7560 18.9464

79

80

Table C–2: Hawaii - System 2

Average Average Average Average
Frame Rate Triangle Rate Data Units Rate Transfer Cost

Hawaii-1

71.2270 283,343.9540 69.1758 3.7007
71.7260 210,395.8420 51.3662 4.9838
71.9220 196,835.4030 48.0555 5.3272
71.2440 487,058.5960 118.9108 2.1529
71.5330 411,361.8130 100.4301 2.5490

Average 71.5304 317,799.1216 77.5877 3.2995

Hawaii-2

69.3670 379,982.4230 92.7691 11.0382
69.6150 391,904.3380 95.6798 10.7024
69.0600 416,665.1610 101.7249 10.0664
67.8050 436,696.7290 106.6154 9.6046
66.7980 461,557.0730 112.6848 9.0873

Average 68.5290 417,361.1448 101.8948 10.0496

Hawaii-3

45.3610 408,571.0360 99.7488 41.0632
45.5870 345,206.4490 84.2789 48.6005
45.6470 505,290.5940 123.3620 33.2031
45.6640 860,070.4920 209.9781 19.5068
45.6130 1,150,606.4480 280.9098 14.5812

Average 45.5744 653,949.0038 159.6555 25.6552

Hawaii-4

34.1870 1,148,740.6580 280.4543 58.4195
36.2350 1,217,566.3600 297.2574 55.1172
36.4020 1,342,634.6860 327.7917 49.9830
36.6930 1,383,341.2270 337.7298 48.5122
36.5960 1,488,690.3150 363.4498 45.0791

Average 36.0226 1,316,194.6492 321.3366 50.9870

81

Table C–3: Hawaii - System 3

Average Average Average Average
Frame Rate Triangle Rate Data Units Rate Transfer Cost

Hawaii-1

19.7580 118,323.8900 28.8877 8.8619
19.7570 150,692.7640 36.7902 6.9584
19.8280 126,818.3000 30.9615 8.2683
19.8640 164,556.7210 40.1750 6.3721
19.8310 143,370.4510 35.0026 7.3138

Average 19.8076 140,752.4252 34.3634 7.4498

Hawaii-2

19.9080 199,221.3390 48.6380 21.0535
19.5980 176,930.0820 43.1958 23.7060
19.5220 185,181.8080 45.2104 22.6497
19.3620 223,412.7450 54.5441 18.7738
19.3060 229,222.1160 55.9624 18.2980

Average 19.5392 202,793.6180 49.5102 20.6826

Hawaii-3

19.2160 437,830.8500 106.8923 38.3189
18.9310 466,990.6120 114.0114 35.9262
19.1570 591,549.3400 144.4212 28.3615
19.1970 779,501.9520 190.3081 21.5230
19.2480 853,732.9420 208.4309 19.6516

Average 19.1498 625,921.1392 152.8128 26.8040

Hawaii-4

19.0660 518,728.2990 126.6427 129.3719
18.9720 5,493,227.9300 1,341.1201 12.2167
18.8510 649,912.8480 158.6701 103.2583
18.8950 838,357.9760 204.6772 80.0480
18.7230 939,584.6070 229.3908 71.4240

Average 18.9014 1,687,962.3320 412.1002 39.7573

82

Table C–4: Grand Canyon - System 1

Average Average Average Average
Frame Rate Triangle Rate Data Units Rate Transfer Cost

GrandCanyon-1

61.4970 9,710,174.5470 2,370.6481 0.0135
63.8110 9,452,455.7330 2,307.7285 0.0139
61.8050 9,822,218.3760 2,398.0025 0.0133
61.8350 9,894,420.0310 2,415.6299 0.0132
61.7950 9,960,051.1830 2,431.6531 0.0132

Average 62.1486 9,767,863.9740 2,384.7324 0.0134

GrandCanyon-2

55.0210 10,632,766.5240 2,595.8903 0.0493
52.6120 10,982,656.6060 2,681.3126 0.0477
53.6270 10,878,158.0580 2,655.8003 0.0482
53.5530 10,936,283.7790 2,669.9912 0.0479
52.8010 11,061,772.0270 2,700.6279 0.0474

Average 53.5228 10,898,327.3988 2,660.7245 0.0481

GrandCanyon-3

42.8420 11,859,543.8970 2,895.3965 0.1768
41.7460 11,829,330.1440 2,888.0201 0.1773
40.9310 11,911,592.8720 2,908.1037 0.1761
40.6150 11,966,043.2080 2,921.3973 0.1753
40.7040 11,972,784.8300 2,923.0432 0.1752

Average 41.3676 11,907,858.9902 2,907.1921 0.1761

GrandCanyon-4

43.3760 11,171,963.7990 2,727.5302 0.7509
40.5500 11,721,384.2120 2,861.6661 0.7157
39.8680 11,873,108.9980 2,898.7083 0.7065
38.7800 12,082,441.9270 2,949.8149 0.6943
38.5390 12,142,887.6550 2,964.5722 0.6908

Average 40.2226 11,798,357.3182 2,880.4583 0.7110

83

Table C–5: Grand Canyon - System 2

Average Average Average Average
Frame Rate Triangle Rate Data Units Rate Transfer Cost

GrandCanyon-1

43.0330 7,897,260.6560 1,928.0422 0.0166
43.2160 8,031,949.5470 1,960.9252 0.0163
43.9380 7,905,686.8300 1,930.0993 0.0166
45.6890 7,519,374.0300 1,835.7847 0.0174
45.4050 7,631,244.6560 1,863.0968 0.0172

Average 44.2562 7,797,103.1438 1,903.5896 0.0168

GrandCanyon-2

38.5590 8,525,297.4410 2,081.3714 0.0615
38.6450 8,598,043.7370 2,099.1318 0.0610
37.7230 8,912,036.2660 2,175.7901 0.0588
37.4110 9,042,751.4640 2,207.7030 0.0580
37.2500 9,137,023.6170 2,230.7187 0.0574

Average 37.9176 8,843,030.5050 2,158.9430 0.0593

GrandCanyon-3

29.2990 10,317,839.4290 2,519.0038 0.2033
30.4760 10,036,472.7640 2,450.3107 0.2090
31.1800 9,936,631.8630 2,425.9355 0.2111
31.9540 9,905,673.8900 2,418.3774 0.2117
32.5290 9,864,055.1570 2,408.2166 0.2126

Average 31.0876 10,012,134.6206 2,444.3688 0.2095

GrandCanyon-4

30.0830 10,105,542.7860 2,467.1735 0.8301
29.5270 10,195,986.9320 2,489.2546 0.8227
29.6990 10,123,939.5020 2,471.6649 0.8286
29.8230 10,076,120.9600 2,459.9905 0.8325
29.8150 10,062,648.5810 2,456.7013 0.8336

Average 29.7894 10,112,847.7522 2,468.9570 0.8295

84

Table C–6: Grand Canyon - System 3

Average Average Average Average
Frame Rate Triangle Rate Data Units Rate Transfer Cost

GrandCanyon-1

16.8150 2,999,472.2550 732.2930 0.0437
16.9300 2,885,825.2910 704.5472 0.0454
16.8300 2,974,266.2580 726.1392 0.0441
16.7560 3,009,608.3870 734.7677 0.0436
16.7420 3,037,671.1700 741.6189 0.0431

Average 16.8146 2,981,368.6722 727.8732 0.0440

GrandCanyon-2

16.5990 3,103,467.9730 757.6826 0.1689
16.5510 3,096,916.3690 756.0831 0.1693
16.6900 3,032,959.5950 740.4687 0.1729
16.8130 2,989,662.9960 729.8982 0.1754
16.7370 3,052,770.6450 745.3053 0.1717

Average 16.6780 3,055,155.5156 745.8876 0.1716

GrandCanyon-3

14.4570 4,801,723.2380 1,172.2957 0.4367
14.3800 4,795,820.0510 1,170.8545 0.4373
14.3800 4,811,523.9100 1,174.6885 0.4359
14.3970 4,799,237.6290 1,171.6889 0.4370
14.4170 4,778,963.9120 1,166.7392 0.4388

Average 14.4062 4,797,453.7480 1,171.2534 0.4371

GrandCanyon-4

13.2290 5,722,011.9065 1,396.9756 1.4660
12.9944 5,822,200.5377 1,421.4357 1.4408
13.2334 5,688,176.3117 1,388.7149 1.4747
13.3322 5,635,053.4169 1,375.7455 1.4886
13.4028 5,606,487.2520 1,368.7713 1.4962

Average 13.2384 5,694,785.8850 1,390.3286 1.4730

85

Table C–7: Guanica - System 1

Average Average Average Average
Frame Rate Triangle Rate Data Units Rate Transfer Cost

Guanica-1

75.3310 7,128,390.9720 1,740.3298 0.1747
75.8740 7,301,432.6260 1,782.5763 0.1705
77.3680 7,184,737.9910 1,754.0864 0.1733
77.9910 7,148,153.5120 1,745.1547 0.1742
78.8120 7,086,939.8260 1,730.2099 0.1757

Average 77.0752 7,169,930.9854 1,750.4714 0.1737

Guanica-2

59.7680 8,526,711.6800 2,081.7167 0.5841
59.2480 8,760,429.2720 2,138.7767 0.5685
59.2090 8,903,042.7010 2,173.5944 0.5594
59.6640 8,927,000.9630 2,179.4436 0.5579
60.7710 8,806,303.9690 2,149.9766 0.5656

Average 59.7320 8,784,697.7170 2,144.7016 0.5670

Guanica-3

49.4170 7,966,159.4300 1,944.8631 2.5009
44.2130 8,951,928.1000 2,185.5293 2.2255
36.4510 10,571,582.1050 2,580.9527 1.8846
31.0700 11,707,537.9210 2,858.2856 1.7017
28.9570 12,102,677.8000 2,954.7553 1.6462

Average 38.0216 10,259,977.0712 2,504.8772 1.9418

Guanica-4

22.6890 10,775,315.2730 2,630.6922 7.3958
22.7130 10,786,638.8690 2,633.4568 7.3880
22.7440 10,801,651.8430 2,637.1220 7.3777
22.7420 10,800,735.2220 2,636.8982 7.3784
22.0800 10,995,974.0830 2,684.5640 7.2474

Average 22.5936 10,832,063.0580 2,644.5466 7.3570

86

Table C–8: Guanica - System 2

Average Average Average Average
Frame Rate Triangle Rate Data Units Rate Transfer Cost

Guanica-1

50.1900 5,504,152.8740 1,343.7873 0.2262
51.6690 5,289,301.1940 1,291.3333 0.2354
51.8010 5,282,053.7530 1,289.5639 0.2357
51.9490 5,258,734.5770 1,283.8707 0.2368
52.3940 5,174,324.7020 1,263.2629 0.2406

Average 51.6006 5,301,713.4200 1,294.3636 0.2349

Guanica-2

55.4790 3,928,543.6320 959.1171 1.2678
49.5510 5,278,258.7750 1,288.6374 0.9436
41.6760 7,066,865.2760 1,725.3089 0.7048
37.8160 7,945,254.8530 1,939.7595 0.6269
39.6910 7,532,168.3630 1,838.9083 0.6613

Average 44.8426 6,350,218.1798 1,550.3462 0.7843

Guanica-3

40.9460 6,215,674.6660 1,517.4987 3.2053
23.2470 9,536,924.6860 2,328.3508 2.0890
16.3050 11,704,605.4220 2,857.5697 1.7021
17.3700 12,490,403.1570 3,049.4148 1.5951
18.3070 8,012,624.6420 1,956.2072 2.4864

Average 23.2350 9,592,046.5146 2,341.8082 2.0770

Guanica-4

24.2970 5,372,408.7350 1,311.6232 14.8335
17.6160 10,440,361.6940 2,548.9164 7.6330
12.6060 12,412,518.1890 3,030.3999 6.4203
10.8160 12,147,222.7500 2,965.6306 6.5605
9.8600 11,916,103.2390 2,909.2049 6.6877

Average 15.0390 10,457,722.9214 2,553.1550 7.6204

87

Table C–9: Guanica - System 3

Average Average Average Average
Frame Rate Triangle Rate Data Units Rate Transfer Cost

Guanica-1

17.9790 1,651,789.0190 403.2688 0.7538
14.4720 1,311,018.4800 320.0729 0.9498
13.8170 1,145,729.3230 279.7191 1.0868
14.3300 1,039,513.9720 253.7876 1.1979
14.4130 1,066,665.4060 260.4164 1.1674

Average 15.0022 1,242,943.2400 303.4529 1.0018

Guanica-2

17.7960 1,594,918.5410 389.3844 3.1229
14.6160 1,959,006.1500 478.2730 2.5425
14.0980 2,368,975.3330 578.3631 2.1025
15.0760 2,114,299.2700 516.1863 2.3557
15.4970 2,097,584.6340 512.1056 2.3745

Average 15.4166 2,026,956.7856 494.8625 2.4572

Guanica-3

16.0160 1,855,491.8880 453.0009 10.7373
13.9400 3,417,836.2020 834.4327 5.8291
12.1950 4,670,416.3870 1,140.2384 4.2658
12.5400 4,452,482.1440 1,087.0318 4.4746
12.8710 4,244,947.1510 1,036.3641 4.6933

Average 13.5124 3,728,234.7544 910.2136 5.3438

Guanica-4

14.4076 1,912,362.3660 466.8853 41.6719
13.7960 4,065,823.8720 992.6328 19.6004
11.9140 5,893,662.3970 1,438.8824 13.5216
12.1702 5,527,267.4420 1,349.4305 14.4179
11.7870 5,275,866.3790 1,288.0533 15.1050

Average 12.8150 4,534,996.4912 1,107.1769 17.5726

88

Table C–10: Jobos Bay - System 1

Average Average Average Average
Frame Rate Triangle Rate Data Units Rate Transfer Cost

JobosBay-1

84.6430 6,184,379.2140 1,509.8582 0.1142
77.9450 7,142,400.9730 1,743.7502 0.0989
79.7190 6,977,201.3500 1,703.4183 0.1013
78.9590 7,102,733.0050 1,734.0657 0.0995
77.8170 7,263,199.6450 1,773.2421 0.0973

Average 79.8166 6,933,982.8374 1,692.8669 0.1019

JobosBay-2

76.5770 6,285,580.1620 1,534.5655 0.4496
73.5460 6,495,802.6160 1,585.8893 0.4351
73.2710 6,602,001.9750 1,611.8169 0.4281
72.1510 6,736,625.5050 1,644.6840 0.4195
71.0910 6,842,206.1690 1,670.4605 0.4131

Average 73.3272 6,592,443.2854 1,609.4832 0.4287

JobosBay-3

83.5090 5,930,607.1000 1,447.9021 1.9062
60.4260 5,713,688.2580 1,394.9434 1.9786
53.7900 6,471,853.8740 1,580.0424 1.7468
49.0150 6,621,814.6400 1,616.6540 1.7072
46.1630 6,429,233.6120 1,569.6371 1.7584

Average 58.5806 6233439.497 1521.835815 1.8136

JobosBay-4

38.8860 3,439,146.2990 839.6353 13.1486
40.5220 7,259,869.1850 1,772.4290 6.2287
37.0640 8,468,150.0230 2,067.4194 5.3400
36.2390 9,303,622.9300 2,271.3923 4.8605
37.1430 9,757,996.1870 2,382.3233 4.6341

Average 37.9708 7645756.925 1866.639874 5.9144

89

Table C–11: Jobos Bay - System 2

Average Average Average Average
Frame Rate Triangle Rate Data Units Rate Transfer Cost

JobosBay-1

71.9920 1,608,178.7800 392.6218 0.4394
68.9420 1,629,166.5050 397.7457 0.4337
61.6820 1,635,102.7210 399.1950 0.4321
60.7210 1,640,426.9640 400.4949 0.4307
60.3260 1,641,065.7380 400.6508 0.4305

Average 64.7326 1,630,788.1416 398.1416 0.4333

JobosBay-2

53.1430 199,019.6580 48.5888 14.2008
53.5810 1,436,996.5060 350.8292 1.9668
54.0040 3,382,068.7230 825.7004 0.8357
54.1910 3,722,827.9010 908.8935 0.7592
54.2130 3,906,170.6760 953.6550 0.7235

Average 53.8264 2,529,416.6928 617.5334 1.1173

JobosBay-3

49.0520 4,321,376.2150 1,055.0235 2.6161
50.3510 4,360,097.4260 1,064.4769 2.5928
46.2410 4,385,055.9800 1,070.5703 2.5781
43.7910 4,396,349.4800 1,073.3275 2.5714
43.6460 4,407,833.3000 1,076.1312 2.5647

Average 46.6162 4374142.48 1067.905879 2.5845

JobosBay-4

35.9660 3,471,771.7990 847.6005 13.0250
38.8630 3,471,082.5910 847.4323 13.0276
40.0210 4,683,770.2680 1,143.4986 9.6546
40.6810 5,423,847.3530 1,324.1815 8.3372
41.0220 5,359,847.6170 1,308.5565 8.4368

Average 39.3106 4482063.926 1094.253888 10.0891

90

Table C–12: Jobos Bay - System 3

Average Average Average Average
Frame Rate Triangle Rate Data Units Rate Transfer Cost

JobosBay-1

20.1320 851,028.6610 207.7707 0.8302
19.6950 789,567.8760 192.7656 0.8949
19.2440 856,602.7030 209.1315 0.8248
19.2680 838,145.4660 204.6254 0.8430
19.3740 766,004.5140 187.0128 0.9224

Average 19.5426 820,269.8440 200.2612 0.8614

JobosBay-2

18.0540 421,533.6870 102.9135 6.7047
17.9480 815,673.5160 199.1390 3.4649
17.9750 1,211,060.8120 295.6691 2.3337
18.0990 1,223,078.5970 298.6032 2.3108
18.2540 1,162,914.3270 283.9146 2.4303

Average 18.0660 966,852.1878 236.0479 2.9231

JobosBay-3

18.4910 1,873,390.7200 457.3708 6.03
18.5260 1,430,298.3220 349.1939 7.90
16.8250 1,089,709.3350 266.0423 10.37
15.0900 1,044,197.4780 254.9310 10.83
15.0950 1,003,675.4010 245.0379 11.26

Average 16.8054 1,288,254.2512 314.5152 8.78

JobosBay-4

16.4130 1,443,895.7460 352.5136 31.32
16.7790 1,456,403.9620 355.5674 31.05
15.5560 1,444,167.4440 352.5799 31.31
13.9210 1,429,130.6090 348.9088 31.64
13.9750 1,400,585.2140 341.9397 32.29

Average 15.3288 1,434,836.5950 350.3019 31.52

APPENDIX D

TEST CASE RESULTS COMPARISON

Figure D–1: Hawaii Dataset - System 1 Results Comparison

Figure D–2: Hawaii Dataset - System 2 Results Comparison

Figure D–3: Hawaii Dataset - System 3 Results Comparison

91

92

Figure D–4: Grand Canyon Dataset - System 1 Results Comparison

Figure D–5: Grand Canyon Dataset - System 2 Results Comparison

Figure D–6: Grand Canyon Dataset - System 3 Results Comparison

93

Figure D–7: Guanica Dataset - System 1 Results Comparison

Figure D–8: Guanica Dataset - System 2 Results Comparison

Figure D–9: Guanica Dataset - System 3 Results Comparison

Figure D–10: Jobos Bay Dataset - System 1 Results Comparison

94

Figure D–11: Jobos Bay Dataset - System 2 Results Comparison

Figure D–12: Jobos Bay Dataset - System 3 Results Comparison

REFERENCE LIST

[1] A.H. Watt and M. Watt. Advanced Animation and Rendering Techniques:

Theory and Practice. Addison-Wesley Pub., 1992.

[2] C.D. Hansen and C.R. Johnson. The Visualization Handbook. Elsevier, 2005.

[3] D.A. Patterson and J.L. Hennessy. Computer organization & design: the hard-

ware/software interface. Morgan Kaufmann Publishers Inc. San Francisco, CA,

USA, 1993.

[4] David Luebke, Benjamin Watson, Jonathan D. Cohen, Martin Reddy, and

Amitabh Varshney. Level of Detail for 3D Graphics. Elsevier Science Inc.,

New York, NY, USA, 2002.

[5] J.H. Clark. Hierarchical Geometric Models for Visible Surface Algorithms.

Communications of the ACM, 19(10):547–554, 1976.

[6] R.J. Fowler and J.J. Little. Automatic Extraction of Irregular Network Digital

Terrain Models. Proceedings of the 6th annual conference on Computer graphics

and interactive techniques, pages 199–207, 1979.

[7] H. Samet. The Quadtree and Related Hierarchical Data Structures. ACM

Computing Surveys (CSUR), 16(2):187–260, 1984.

[8] E. Langetepe and G. Zachmann. Geometric Data Structures for Computer

Graphics. A. K. Peters, Ltd., Natick, MA, USA, 2006.

[9] A. Ogren. Continuous Level of Detail In Real-Time Terrain Rendering. Sweden:

Sweden Umea University, 2000.

[10] E. Puppo. Variable resolution triangulations. Computational Geometry: Theory

and Applications, 11(3-4):219–238, 1998.

95

96

[11] Y.G. Leclerc and S.Q. Lau. TerraVision: A Terrain Visualization System. SRI

International, Technical Note, 540, 1994.

[12] M. Reddy, Y. Leclerc, L. Iverson, and N. Bletter. TerraVision II: Visualizing

Massive Terrain Databases in VRML. Computer Graphics and Applications,

IEEE, 19(2):30–38, 1999.

[13] L. Williams. Pyramidal parametrics. Proceedings of the 10th annual conference

on Computer graphics and interactive techniques, pages 1–11, 1983.

[14] C. Zach, S. Mantler, and K. Karner. Time-critical rendering of discrete and

continuous levels of detail. Proceedings of the ACM symposium on Virtual

reality software and technology, pages 1–8, 2002.

[15] P. Lindstrom, D. Koller, W. Ribarsky, L.F. Hodges, N. Faust, and G.A. Turner.

Real-time, continuous level of detail rendering of height fields. ACM Press New

York, NY, USA, 1996.

[16] H. Hoppe. Progressive meshes. Proceedings of the 23rd annual conference on

Computer graphics and interactive techniques, pages 99–108, 1996.

[17] H. Hoppe. View-dependent Refinement of Progressive Meshes. Proceedings of

the 24th annual conference on Computer graphics and interactive techniques,

pages 189–198, 1997.

[18] H. Hoppe. Smooth View-Dependent Level-of-Detail Control and Its Application

to Terrain Rendering. IEEE Visualization ’98, 31:35–42, 1998.

[19] W.H. de Boer. Fast Terrain Rendering Using Geometrical MipMapping.

Unpublished paper, available at http://www. flipcode. com/articles/article ge-

omipmaps.pdf, 2000.

[20] J. Levenberg. Fast view-dependent level-of-detail rendering using cached geom-

etry. Proceedings IEEE Visualization’02, pages 259–266, 2002.

[21] S.E. Yoon, B. Salomon, R. Gayle, and D. Manocha. Quick-VDR: Interactive

View-Dependent Rendering of Massive Models. IEEE Visualization 2004, pages

97

131–138, 2004.

[22] Y. Zhu. Uniform Remeshing with an Adaptive Domain: A New Scheme for

View-Dependent Level-of-Detail Rendering of Meshes. Visualization and Com-

puter Graphics, IEEE Transactions on, 11(3):306–316, 2005.

[23] F. Losasso and H. Hoppe. Geometry Clipmaps: Terrain Rendering Using Nested

Regular Grids. International Conference on Computer Graphics and Interactive

Techniques, pages 769–776, 2004.

[24] Anders Brodersen. Real-time visualization of large textured terrains. In

GRAPHITE ’05: Proceedings of the 3rd international conference on Computer

graphics and interactive techniques in Australasia and South East Asia, pages

439–442, 2005.

[25] P. Lindstrom and V. Pascucci. Visualization of Large Terrains Made Easy.

Proceedings of the conference on Visualization ’01, pages 363–371, 2001.

[26] X. Bao and R. Pajarola. LOD-based Clustering Techniques for Efficient Large-

scale Terrain Storage and Visualization. Proceedings SPIE Conference on Vi-

sualization and Data Analysis, 235, 2003.

[27] P. Cignoni, C. Montani, C. Rocchini, and R. Scopigno. External Memory

Management and Simplification of Huge Meshes. IEEE Transactions on Visu-

alization and Computer Graphics, 9(4):525–537, 2003.

[28] O.G. Staadt, M.H. Gross, and R. Weber. Multiresolution compression and

reconstruction. Proceedings of IEEE Visualization 1997, 1997.

[29] A. Khodakovsky, P. Schroder, and W. Sweldens. Progressive geometry com-

pression. Proceedings of the 27th annual conference on Computer graphics and

interactive techniques, 278, 2000.

[30] PH Chou and TH Meng. Vertex data compression through vector quantization.

Visualization and Computer Graphics, IEEE Transactions on, 8(4):373–382,

2002.

98

[31] D.S.P. To, R.W.H. Lau, and M. Green. A method for progressive and selective

transmission of multi-resolution models. Proceedings of the ACM symposium

on Virtual reality software and technology, pages 88–95, 1999.

[32] A. Kalaiah and A. Varshney. Statistical geometry representation for efficient

transmission and rendering. ACM Transactions on Graphics (TOG), 24(2):348–

373, 2005.

[33] S. Deb, PJ Narayanan, and S. Bhattacharjee. Streaming terrain rendering.

International Conference on Computer Graphics and Interactive Techniques,

2006.

[34] J. Schneider and R. Westermann. GPU-Friendly High-Quality Terrain Render-

ing. Journal of WSCG (S1213-6972), 14(1):49–56, 2006.

[35] T. Boubekeur and C. Schlick. Generic Mesh Refinement on GPU. Proceedings

of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware,

pages 99–104, 2005.

[36] Robert Sisneros, Chad Jones, Jian Huang, Jinzhu Gao, Byung-Hoon Park,

and Nagiza Samatova. A multi-level cache model for run-time optimization

of remote visualization. IEEE Transactions on Visualization and Computer

Graphics, 13(5):991–1003, 2007.

[37] R.G. Carter. Pipeline optimization: dynamic programming after 30 years.

Proceedings of the 30th PSIG Annual Meeting, 1998.

[38] I.H. Osman. Meta-Heuristics: Theory and Applications. Springer, 1996.

[39] Preliminary Discussion of the Logical Design of an Electronic Computing In-

strument. Inst. of Advanced Study, Princeton, N.J., 1946.

[40] The walsaip project. http://walsaip.uprm.edu/.

[41] J. McAffer and J.M. Lemieux. Eclipse Rich Client Platform: Designing, Coding,

and Packaging Java (TM) Applications. Addison-Wesley Professional, 2005.

99

[42] Opengl - the industry standard for high performance graphics.

http://www.opengl.org.

[43] Jogl: Java binding for opengl. https://jogl.dev.java.net.

[44] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements

of reusable object-oriented software. Addison-Wesley Longman Publishing Co.,

Inc. Boston, MA, USA, 1995.

[45] S. Burbeck. Applications Programming in Smalltalk-80 (TM): How to use

Model-View-Controller (MVC). Technical report, Softsmarts Inc., 1987.

[46] B. Venners. Inside the Java Virtual Machine. McGraw-Hill Professional, 1999.

[47] W. Gu and N. Burns. Evolution of a high-performing Java virtual machine.

IBM Systems Journal, 39(1):135–150, 2000.

[48] S. Microsystems. The Java Hotspot Performance Engine Architecture. White

paper (http://java. sun. com/products/hotspot/whitepaper. html), Sun Mi-

crosystems, April, 2006.

[49] Eclipse test & performance tools platform project.

http://www.eclipse.org/tptp/.

BIOGRAPHICAL SKETCH

Ricardo Veguilla González was born in June 29, 1976 in Hato Rey, Puerto

Rico. Ricardo is son of Eduardo Veguilla Zayas and Carmen S. González Flores.

He received the Bachelors Degree in Computer Engineering from the University of

Puerto Rico, Mayagüez Campus in May 2005 with specialization in the area of Com-

puting Systems. He has worked as software developer, system administrator, and

software tester. He is currently pursuing his M.S. degree in Computer Engineering

at the University of Puerto Rico, Mayagüez Campus. His area of interest includes

software engineering, design patterns, object-oriented programming, visualization,

automated information processing, and distributed computing. He is particularly

interested in the design of software architectures and middleware for the integration

of diverse information coming from and being processed by distributed resources

and how to exploit such technologies in order to easily provide people with the

information they need. Mr. Veguilla is a member of the ACM.

100

A HIERARCHICAL MEMORY MODEL FOR TERRAIN DATA
MANAGEMENT IN INTERACTIVE TERRAIN VISUALIZATION

Ricardo Veguilla González
(787) 365-3288
Department of Electrical and Computer Engineering
Chair: Nayda G. Santiago
Degree: Master of Science
Graduation Date: December 2007

