Interactive Weather Station Data Display Through The Internet

By
Francisco Javier Espaillat Valcarcel

A Thesis Submitted in Partia Fulfillment of the Requirements for the Degree of
MASTER OF SCIENCE

in
COMPUTER ENGINEERING

UNIVERSITY OF PUERTO RICO
MAYAGUEZ CAMPUS

2003

Approved by:

Dr. Amos Winter, Ph.D. Date
Member, Graduate Committee

Dr. Néstor Rodriguez, Ph.D. Date
Member, Graduate Committee

Dr. Ramon Vésquez, Ph.D. Date
President, Graduate Committee

Dr. Eric Gamess, Ph.D. Date
Representative of Graduate Studies

Dr. Jose L. Cruz, Ph.D. Date

Department Director

Abstract

The study of weather phenomena is of growing importance. Changes in the
overal conditions of the world, such as global warming, ozone depletion, and the
uncertainty on the causes of these events, has made weather research more important than
ever. To study these phenomena, researchers rely on archived weather data. Which are
usually found by request at institutions that operate weather stations. The researcher’s
analysis is facilitated if stored in electronic form, such as computer documents or
spreadsheets. The structure, and format of the data, along with the capacity to manipulate
and display it in a user-friendly interface will greatly enhance the researcher’s study of
the climate data. Here | present an application for obtaining and displaying weather data
on the Internet, a database system that allows the retrieval of data by other organizations,
and proposed data structures to be adopted for the sharing of this type of data.

Resumen

El estudio de fendbmenos atmosféricos ha crecido en importancia. Cambios en las
condiciones generales del mundo, como calentamiento global, destruccion de la capa de
ozono, Yy la incertidumbre sobre las causas de estos eventos, han hecho el estudio
climatolégico més importante que nunca. Para estudiar estos fendémenos, los
investigadores se apoyan en datos archivados. Estos son usualmente encontrados por
solicitud a instituciones que operan estaciones climatolégicas. El andlisis de data se
facilitasi es almacenada en forma electronica, como documentos de computadora u hojas
electronicas. La estructura, formato de la data, y la capacidad de manipularla y
presentarla en una interfaz amigable realzara significativamente el estudio de data
climatolégica. Aqui presento una aplicacion para obtener y presentar data climatol 6gica
en el Internet, un sistema de base de datos que permite la obtencién de data por otras
instituciones, y propuestas para estructuras de datos que pueden ser adoptadas para el

intercambio de data climatol ogica.

Acknowledgements

We would like to acknowledge Rose Loehr of the USDA and her team for
providing us access to their weather databases and invaluable input on the development
of the application, thus giving support to our project and making it of more use to

weather researchers.
Special thanks to Dr. Rall Zapata of the UPR for his assistance on the needs and

wants of weather investigators when viewing weather data, and his contributions of data

from weather stations throughout Puerto Rico

Table of Contents

S0 T S 3
List Of SAMPlE COUES.t e e e e e
LISt Of APENUICES. ... vttt e e e e e e e e e e e e e e e e
NOMENCIBIUIE. e e e e e e e et e e e e e e e e e e eaes

Chapter 1 INtrodUCtION. ... oot e e e e e e e e e e
1.1 Importance of Weather Data Research...............ccoociviiii i inn .
1.2 PreviousWork inthe Field...........coo oo
1.3 CoNtribDULIONS. e e e e e e e e e e e e e e e e
1.4 General ODJECtIVES. ...
1.5 SPeCific ODJECLIVES.t e e e e e e e e e
1.6 Chapter OULIING. ... e e e e

Chapter 2. Data StrUCLUIt e e e e e e e e e e e e e
2. VIV B .. e e e e e e et e e e e e e e e e
22F@SITUCIUrE. e e e e e
2.3 REAINGS DAtA. ve vt e e
2AMONIN D@A.t e e e e
2.5 YA DAl ... et
2.6 Compiled ReadingS Data.c.ovvevie e e i i i e e e e
2.7Compiled Day Data........ccov it it it e e
2.8 Compiled MONth Dala.vveiie e e e e e e e e

Chapter 3. XML Data.cue ittt e e e e e e e e e e e e
Bl LOCAION DAtcut it it e e e e e
3.2 REAAINGS DAl et e
B BMONtN DALot e e
BAYEA Dala... ..o

Chapter 4. SOftWAI €.ot e e e e e e e e e e e e e e e
4.1 SUPPOIT ClaSSES. et et e e e e e e e e e e e
4.3 LOCAHON ClaSSES. et ettt et et e e e et e e e e
4.4 Data Management Classes.ovvveiiriiriiie i v
4.5 Web Interface Classes.vu et e e e

Vi
Vii
Viil
IX

Chapter 5. Software Operation..........covie it i i e e
S.1DataManagement.cc.oui it i
S.2WeED diSplay.....covo e

Chapter 6. Web INnterface.o e

0.1 ParfOrmManCe T eSS, ..o v ie et e e e e e e e e e e e e e e

Chapter 7. CONCIUSIONS. ... e e e e

L FULUIE WOTK o e e e e e e e e e

Bibliography

50
57

60
69

71
72

74

Figure 2-1.

Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.

Figure4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 4-9.

Figure 4-10.
Figure4-11.
Figure 4-12.
Figure 4-13.
Figure 4-14.

Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 6-7.
Figure 6-8.

List of Figures

Hierarchical Structure of DataFiles......................

Location Data Structure...........ocovvvieviiiin e,
Day Data SITUCLUIE.t e e e e e e e e e e
Month Data Structure............ccovviiiiiiiii i
Year Data StrUCTUre.o v e e e

Software COMPONENES.ttt e e e e e e e e
WXTime and WXDay classes.........ccovevvevennennnn .
WXRecord UML Diagram.........covvieiieiieiieiinieieieieieaan s
WXRecordSet UML Diagram..........c.ccovvvieenennn .
WX StatRecord UML Diagram............coovvvneennnnn.
WX StatRecordSet UML Diagram........................
WXLocation UML Diagram...........ccoevvveiennnnnn..
WXDayData UML Diagram..........c.ccovviveenvnennnn..
WXMonthData UML Diagram.............cccccvvvennnn..
WXYearData UML Diagram...........ccccovvevievneennnns
WXCompiledReadingsData UML Diagram
WXCompiledDayData UML Diagram...................

WXCompiledMonthData UML Diagram

Location Page........ooeiiiiiii i e
DataTable Header..........ccov i
DayDatadatatable.............coooviiiiiiiii i
MonthDatadatatable..................ccooiiiii i,
YearDatadatatable............cooieiiiiii i
DayDataPrintTable..........coovi i e
CompiledDataTables.coooei i
Graphtable..........ccooi

Vi

Sample Codes

Sample Code 2-1. Readings DataFileHeader.............c.ccooiiiiiiii i,
Sample Code 2-2. Readings Data Field Headers...............ccooooi i,
SampleCode 2-3. ReadingsDataFile.........cccovoiiii i
Sample Code 2-4. Month DataFileHeader.............coooviiiiiiiiiiiiiiiinns
Sample Code 2-5. Month Data Field Headers...........c.coovviv i,
Sample Code 2-6. Month DataFile...........ccoooiiiiiiiiii e,
Sample Code 2-7. Year DataFileHeader............coooviii i
Sample Code 2-8. Year DataField Headers.............ccoooviiii i iiiiiiie,
SampleCode2-9. Year DataFile..........coooviiiiiiii
Sample Code 2-10. Compiled Readings Data File Header...........................
Sample Code 2-11. Compiled Readings Data Field Headers........................
Sample Code 2-12. Compiled Readings Data File...................cocooveiieenn .
Sample Code 2-13. Compiled Day DataFile Header.....................ccooenis
Sample Code 2-14. Compiled Day Data Field Headers...................cocevenis
Sample Code 2-15. Compiled Day DataFile.............ccooiiiiiiiiii i,
Sample Code 2-16. Compiled Month Data File Header..............................
Sample Code 2-17. Compiled Month Data Field Headers...........................
Sample Code 2-18. Compiled Month Data File................coooiiiiiii e,
Sample Code 3-1. XML LOCAHON TAGS. .. .uviiienienienvenae v v v v v aenven e
Sample Code 3-2. XML Location Information Tags..........cocevvvveviivininnnannns
Sample Code 3-3. XML Location Time Range Data Tags...........cccvvvveennn.
Sample Code 3-4. XML Location Field Information Tags............cccoeeunee...
Sample Code 3-5. XML Day Data Tags.ccoerureeneineenieieeine e eaeeenaenen,
Sample Code 3-6. XML Day Data Information Tags...........covvvveriienneennnn.
Sample Code 3-7. XML Day DataFile.............co oo
Sample Code 3-8. XML Month Data TagS. .. .ocuvvuvenvenienvinien e venaaneen
Sample Code 3-9. XML Month Data Information Tags..........cccovviivinnnnnns
Sample Code 3-10. XML Month DataFile............cooviiiiiiii i
Sample Code 3-11. XML Year Data Tags... . ¥ I
Sample Code 3-12. XML Year Datal nformatlon Tags 31
Sample Code 3-13. XML Year Data Tags... .32

Vii

List

Appendix A. Programmer’s Manual

of Apendices

Appendix B. User'sManual..........co.oeiiiiii i

viii

Nomenclature

ASCII American Standard Code for Information Exchange
csv Comma Separated Values
DBMS Database Management System
HTML HyperText Markup Language
J2SE Java 2 Standard Edition

Java Java Programming Language.
JDK Java Development Kit

JRE Java Runtime Environment
JSP Java Server Pages

OOoP Object Oriented Programming
UML Unified Modeling Language
UPR University of Puerto Rico
URL Uniform Resource Locator
wW3C World Wide Web Consortium
XML Extensible Markup Language

XSL Extensible Stylesheet Language

Chapter 1

Introduction

1.1 Importance of Weather Data Research

The study of weather patterns has been of crucial importance to weather
researchers for decades. It is through the study of climatic conditions from specific events
that investigators can determine the causes of these events, and predict their reappearance
in the future. Observation of past data is also necessary to notice trends or patterns in
weather variables that could have noticeable consequences to a particular region.

Problems such as global warming have intensified the need for these kinds of studies.

In order for climatologists to undertake these kinds of tasks, they must rely on
archives of weather data. Instruments on weather stations take readings and samples of
weather variables at particular times and locations. With the study of weather variables,
such as temperature, wind speed, and pressure, during weather events, such as hurricanes,
storms, and tornadoes, researchers can acquire better insight into the causes of these
events, or the conditions that favor their appearance. These archives usually need to be
extensive and representative, spanning several years at a significant location. To the
researchers this usualy entails a considerable amount of time gathering these archives

and reviewing them for pertaining information.

Real-time data is also of importance to persons and institutions not necessarily in
the field of weather research. Access to current climate conditions can be useful to
farmers, traffic reports, emergency service units, and countless others. As of yet, these
data are usually retrieved by special by agreements among the institutions that require

them, and those working to retrieve the data.

1.2 Previous Work in the Field

Weather data can be obtained from severa institutions through their websites. The
National Oceanic and Atmospheric Administration (NOAA: http://www.noaa.gov)
provide descriptive forecasts of weather conditions for the following week. Current
weather conditions are posted hourly, with the option of viewing hourly changes in
weather for the previous two days. Also they display general weather conditions in map
display using average values for locations and color-coding for regions. On our
application we will provide the same useful service for real-time data. Their color-coding
mapped display of weather conditions can be used as a model for future implementations

of mapped display on our system.

The Weather Channel is the most popular of these websites. It has a well-
developed interface for current weather conditions such as readings for temperature, wind
speed, wind direction, humidity, pressure for any point in the US. It also displays satellite
images of varying types in latest movement animations. This site is developed for the
general audience who inquires on weather conditions that affect them immediately, and
wish to retrieve that information quickly. It is not intended for weather researchers, as it
does not provide a mechanism for retrieving past archived data. We hope our application
can serve both these interests providing the most solicited items of data so general users
can find it quickly, and also alow experienced researchers to do more complex queries

and operations on archived data.

One site that provides archived data is the University Corporation for
Atmospheric Research (http://www.ucar.edu). It has real-time data maps and forms
where the user can select fields to display on the map for a particular location. It also
offers users a downloadable software package for weather data analysis called Unidata
Software. Along with it come several components of weather data analysis such as LDM
(Local Data Manager), netCDF, GEMPAK and McIDAS for data retrieval and satellite

images. UCAR however demands a license to use any of these products. A similar

desktop application developed in the Java programming language has aso been
developed in [15]. It provides interactive data selection utilities from several sources and
graphical views of data using the built-in Java tools. This application requires installation
of the software on the client computer, along with the Java Runtime Environment to run
java applications. By providing our data through the Internet on a web interface, we
expect to maintain a portal of climate data which can easily change its interface and
guerying utilities to better suit the researcher’s needs as the application continues to
develop. This allows a product that is in a constant process of improvement, as opposed
to conventional applications that are packaged once and require the user to update for any
new changes. It also relieves the user of the need to install applications on his local
computer to view data. Data is accessible through any computer with an internet

connection and Internet browser.

1.3 Contributions

Our main goal is to provide researchers with a resource to facilitate their study of
weather research. This website should be attractive enough for other institutions to share
their data and create a repository of weather data that researchers throughout the world

can use.

The Extensible Markup Language (XML) promises to become the standard of
web languages for the future [7,11,14]. Its usability to describe any data structure also
allows it to be used as a hierarchical database. XML is still not yet widely known and
implemented by most browsers. For the time being, institutions are seeking to establish
standards of structures for different types of XML data [4]. It is our hope that the
structure we've developed in CSV and XML format, set a precedent for weather data
storage through the Internet, and that other institutions can implement and facilitate the

exchange of this type of data.

We have also designed a new interface to aid researchers in their study of climate
data. This interface, accessible through the web, makes use of web resources to present
the weather data to the client in a user-friendly display. This comprehensive interface for
displaying weather data, providing appropriate visual display on request as well, is not

yet available from any other source on the Internet today.

1.4 General Objectives

Provide weather researchers with a tool for retrieving and analyzing weather
data.
A website should have a database of climate data available to weather researchers.
These data must be accessible through easy to use data request forms, which
displays the requested data in several arrangements that best fit the type of data
requested. The user must also be able to download these data into his computer

for use in his own calculations and research.

The data must be available to third party organizations through the Internet.
The data should also be retrievable to other institutions without consultation of
our department. A mechanism will be developed for other researchers or

programmers to use our database through the Internet and retrieve whatever data

they require.

The user interface should be intuitive and optimally designed to minimize
confusion and learn-time to new users.
This website is destined to be used by all kinds of usersinterested in weather data.
These can be weather researchers conducting scientific investigations, or laymen
seeking the latest weather conditions of their local region. For this reason the
interface must not be too complex for the regular user, yet provide researchers

with a useful, not too limited, tool for conducting their investigations. The

interface implemented should appeal to both users, and facilitate their
understanding of how to obtain the data they need.

1.5 Specific Objectives

All relevant data should be available to users through the website.
Aside from the climate data that is needed by interested users, the website should
display all relevant information deemed important or that would facilitate the
user’s understanding and research. This can be data about the location that he's

researching, such as its geographical coordinates, or time zone.

The website should perform the pertinent statistical calculations for fields that
require them.
Not only should our site display the archived data, it should also carry out
operations on the data that are important to most users. These operations can be
calculating averages from data sets, or finding its highest and lowest statistics.
Our work should anticipate which of these calculations are necessary to most

researchers and provide the mechanism to retrieve these kinds of data.

Quality control. The application must allow field specific algorithms to be
implemented, which recognize and discard anomalous readings.
For different fields and types of data, such as temperature or precipitation data
sets, the application must allow the implementation of some quality control
algorithm. This algorithm should function only for the field it was designed to
validate, given that a quality control algorithm would be unique for every field

implemented.

The database should be extensible.

The system must be designed to allow new locations and fields to be added or

removed from the database with minimal modifications to the software.

Queries of data should be available to the user.
It is important for users to be alowed to request a full range of data for a time
range without having to seek each individual portion of data. A data compilation
form must be available to take in requests of data compilation, which the

application should retrieve and provide to the user in a continuous time series.

All data displayed should be downloadable to the user.
All the data that the user requests on the site must have a representation in afile
that can be downloaded by the user. This file should then allow users to review or

manipulate the data at their convenience.

Charts and graphs of data will be available for users, which suit their

respective fields.
The data can be much easier to observe and navigate if seen in visual form. The
advantage of displaying data visually is that data can be perceived and interpreted
globally, without needing to scroll through it from beginning to end [2]. The
system should allow the user to view the data he has requested in a chart or graph,
which corresponds to the particular field, he requested and the data should be
displayed in their most representative type of chart.

1.6 Chapter Outline

In chapter 2 the data structure of our database is outlined. Here the format of the
data files is defined and how they will be organized by the application. The different
types of data files are also described and how their data are derived from lower order data

files.

Chapter 3 defines the XML structures for the data. The various hierarchies for
location data, and the readings data, along with the statistical data upon them, is outlined.
Diagrams representative of the hierarchical structure they create will also accompany the

XML definitions.

A description of the software is provided in Chapter 4. Here the different
components that make up the application is identified. And an explanation on how these
components work together and which of them can be manipulated or replaced to extend

the application’s database or to improve on the user interface.

The operation of these components is explained in Chapter 5. The process by
which new data is retrieved from the source and stored into the database is described.
Also how the data is retrieved from the database and displayed to users through the

Internet in its different forms.

Chapter 6 describes the implemented web interface. Providing a description of
every page, and how it enhances the display of data to facilitate its study by the users.
The steps through which users retrieve data and navigate between locations, dates and

data pages are al'so explained.

Chapter 2

Data Structure

2.1 Overview

This chapter will outline the structure of the database. It describes the format of
how data will be organized within each data file. Also the naming conventions for each

datafile types, and their position in the directory structure hierarchy.

The database must begin with the Location data. Each weather station must have
its entry in the database and all the relevant information particular to it. Some information
is indispensable for a Location to operate properly in the application. Such as the
keyword, a unique identifying word for file storage purposes. The Location name, which
usually should describe the area from which the station collects data; in the case of
several or more than one location recording data in the same area, the name should
identify the owner or institution that operates the weather stations. The time range of
data, the date of the first and last recorded readings for that Location. Other information
is the Location’s altitude, geographical coordinates, time zone, station’s owner or
intitution, etc... This information is not requisite for the Location to function in the

application, but can still be useful to the user in interpreting the Location’ s data.

One set of information about the Location that is key to its operation is the Fields
data. Fields represent the particular sensors for which the location records data from. For
example: Temperature, Relative Humidity, Pressure, Precipitation, etc. A Location can
have Fields without supporting a corresponding sensor, if that field can be calculated
from other fields for every record of data. For instance, a Heat Index reading can be
calculated given a Temperature and Relative Humidity reading. All the Felds a Location

supports must be stored with the Location’s information, along with their relevant
statistical data, which varies from Field to Field. This statistical datais not crucial for the
application’s regular data retrieval and storage operation, but it can be important in user

interface components. Such as drawing graphs, for example.

After a Location has been registered into the database, and provides al the
necessary information about itself to function correctly, it can begin to gather readings
data. These readings data are the bulk of the database. They are first grouped into records.
One record contains one reading for every Field in the Location at one particular time of
the day. A Day Data is then the set of records for a whole day’s readings. These need to
be stored each in their own separate tables.

It should be noted that the day’s time range goes from 0001 (12:01 A.M.) to 2400
(12:00 M.). This is due to the fact that many, though not all, weather stations use
averaging agorithms of readings taken in faster intervals to arrive at a more
representative reading of the stored readings interval. For example, a weather station
stores temperature data for every 10 minutes. This can mean that the temperature sensor
takes a sample of the current air temperature every ten minutes and sends that reading to
be stored into the database. But not all stations work this way; some stations take sample
readings at higher intervals, for example one minute, and then average those readings
when the 10-minute interval is reached. This can lead you to interpret an entry in the
database of:

Time, Tenperature (°F)
2350, 65.4
2400, 65.7

As either “the temperature taken at 2400 was of 65.7 degrees Fahrenheit”, or “the average
temperature of the time interval from 2350 to 2400, taken at 1 minute intervals, was of

65.7 degrees Fahrenheit”. Likewise the first entry in the table for the next day would be:

Time, Tenperature (°F)
10, 65.5

Which can also be interpreted as the average temperature from 2400 in the previous day
to today’s 10. This depends on how the station is set up to take its readings. We don’t

10

count on aways knowing which method a station implements, so we feel it safer to err on
the side of anticipating that a reading at one point in time is representative of the time
interval before it. This explains why the reading at 12:00 Midnight is stored as the 2400
reading of the day before, rather than the 0000 reading of the day after it.

The application will implement a Quality Control system where erroneous
readings must be eliminated from the archived data. These occur because of malfunctions
in the station’s sensors or software type errors. A special symbol is then assigned to fill in
the space of where an erroneous reading was discarded. If gaps in the data occur for
severa time intervals in one day, in other words, there are several Records that contain
nothing but invalid markers, these records will still be recorded into the data file. This

means a data file might look something like this:

Time, Tenperature (°F), Relative Humidity (%, Pressure (inHg), Wnd Speed (nph)

1310, 75.7, 89. 5, 766. 3, 10. 4
1320, 75.5, 89. 3, -, 8.7
1330, -,

1340, -,

1350, -,

1720, 82.4, 60. 4, 766. 2, 3.5

Where “-* is the “invalid reading” or “not available” marker symbol. This is done, as
opposed to skipping 4 hours of data entry, to preserve the integrity of the data structure.
And provide the user with a continuous time series of data. Which might also be helpful
for users who perform operations on the data with spreadsheet applications that might get

“confused” otherwise.

After these readings are stored, statistical values upon these readings need to be
calculated and stored as well. These statistical values depend on the Fields the Location
supports. Currently there are only four statistical values to be calculated out of any
readings set. These are Low, Average, High, and Total. Fields support a number of these
statistics, but not all. For example, a Temperature Field supports Low, Average, and
High, since these are relevant statistics. Precipitation however, supports High, and Total.
These statistical values are calculated at two levels, day and monthly.

11

The Low statistic is the lowest reading in the set; Average is the sum of all valid
readings divided by the number of valid readings in the set; High is the highest reading,
and Total isthe sum of all valid readings.

The Month Data is the set of statistical values for every day in one month. The
statistical values of a Day Data is calculated and stored in a Statistical Record. This holds
the relevant statistical values of every Field in the Location for that day. The Statistical

Records for all the days in a given month constitute a Month Data.

After we have a Month Data, we can also calculate statistical values on its data,
and arrive a a new Statistical Record for that month. These are calculated from
corresponding statistical values in the Statistical Records of the Month Data. That is, the
Month’s Low reading is taken by calculating the lowest reading of all the Low readings
in every Day Statistical Record, and so on. The set of al the Month Statistical Records
then is grouped into a 'Y ear Data.

Considering that weather records can span several years and decades, we can
expect a massive amount of data to be handled by this system. It is for this reason | have
chosen not to use any mainstream DBMS, but to store these data in the basest format
available, Comma Separated Vaues (CSV) ASCII files. This format is very resistant to
data corruption. The loss of large sequence of bytes does not corrupt the remaining data.
It is easily readable, both by third party applications or operators who are manipulating
the database directly. It also stores its data independent of any DBMS, so the data is
available for use regardless of any problems with the application [4]. This structure
adopted to store the data resembles a traditional two-dimensional table format, where
commas are used as field delimiters. This format holds no overhead; it provides the least
amount of storage space for our data. They are self-explanatory and independent of our
system, so if any malfunction should occur on our software, the data is still usable by any
other software. Because they are also self-explanatory, any other organization can

retrieve data directly from these files without needing our software to mediate. The CSV

12

file format is also supported by mainstream spreadsheet applications, such as MS Excel
and Lotus 123; so data can be easily imported into spreadsheets and then manipulated at

the user’ s convenience.

The Datain the database will not be stored in one specific unit system. Currently,
our application supports two unit systems, British and Metric. Each Field must be
assigned one of these unit systenms as their “Most Precise Unit System”. This is done
because readings are always rounded off to the 2 decimal place, and it is more accurate
to save these readings in a unit system that is more precise. For example, Temperature
readings are more accurately stored in the British unit system (°F) than in Metric (°C).
Because a change in 0.01°F is smaller than a change in 0.01°C. While Precipitation is
more accurately stored in the Metric System; anything from 0.01mm to 0.25mm might
still register as Oin.

Data will aso be stored in Extensible Markup Language (XML) format. These
XML files will also be stored in using ASCII format. This ASCII XML format allows the
data in a format that uses semantic tags, which are self-describing and make it easy for
“humans to read and computers to process’[6]. The data will always be accessed
through the CSV files by our software, but the XML format may facilitate the data
retrieval for other institutions and may be used for developing a more convenient web

user interface inthe future when more browsers implement XML to the fullest.

Compiled Data files are data files of specific time ranges and Fields that the user
regquests through the webpage. They can be either of readings, day, or month, compiled
data and follow almost the same structure as the Readings, Month, and Year Data files
respectively. Following a similar format to the previous Data files, they span severd
days, years or months, and gather data only for specific fields the user requests. They are
always generated dynamically upon request from the user through the webpage, and

temporarily stored in a common Compiles directory, directly under the Records directory.

13

Unlike the previous Data files, they are always generated in either the Metric or British

unit systems.

The user requests them through the web interface. In the Location’s page, he will
have a Compile Data form, where he can input the time range of data he wishes to
compile, the Fields of the Location he wants data for, and the Unit System the data is to
be given in. The Data Management software then generates the data file in the compiles
directory. While the user views the data through the website in its web format, he'll have

the option of downloading the file in the Compiles directory, which isin CSV format.

The file is stored in the Compiles directory only temporarily. All compiled data
files, of al types (Readings, Day, Month) are stored in this common directory. But the
naming convention used to create every file should avoid any conflict of data. This

Compiles directory is emptied of all itsfiles periodically.

2.2 File Structure

As previoudly stated, the software will read archived data from the CSV datafiles.
These files provide a much easier and faster way of retrieving the data by the software (as

opposed to the XML files, which provide an easier way for users to view data).

The data files will be stored in a hierarchical or tree structure. At the root of the
structure is a Records Directory. This directory will be assigned to the software as the
root directory for archived data. This directory will then branch out into subdirectories for
each specific Location. These directories will be named by the Location’s keyword
property (stored in the particular Location class). Inside this directory, we'll have
subdirectories for each year in the Location’s time range. Each of those directories holds
the Year Data CSV file for that year and subdirectories for each month within that year.

These subdirectories will be named by the month name of the particular month; January,

14

February, March, and so on... Inside each of these month directories, will be stored all

the Readings Data Files for that particular month, along with the Month Data file for the

particular month.

The naming convention for these data files will be as follows:
The Year Datafile will have the year followed by the location’s keyword.
The Month Data file will have the month name, followed by the year and the
location keyword
The Readings Data files will use an eight digit date representation, where the
first two digits represent the day, the next two the month, and the next four the
year, followed by the location keyword.

All these files carry the corresponding .csv extension identifying them as CSV

datafiles.

_IRecords Director y

;||nayaguez ;ladj unt as ;lrrari cao
_ilzooo 2001 (2002
2000nmayaguez. csv ;lJanuary ;lFebr uary ;Iwar ch

Januar y2000rmayaguez. csv
01012000mayaguez. csv
02012000mayaguez. csv

Febr uar y2000mayaguez. csv
01022000mayaguez. csv
02022000mayaguez. csv

Fi qure 2-1.

Hi erarchical structure of data files.

15

2.3 Readings Data

The Readings Data files stores all the readings for every interval and every Field
recorded for that day. The data in these files will be separated into fields delimited by

commas. They will have the following structure:

The first line is a location and date indicator. The first field is the location name,

followed by the month name, then the day of the month, and the year.

Mayaguez, January, 3, 2003

Sanpl e Code 2-1. Readings Data File Header

The second line is the Field headers. The first field is the time of day, followed by
the sensors that particular location supports. In parenthesis the unit the data for each Field
is stored in.

Mayaguez, January, 3, 2003
Ti e, Tenperature (°C), Precipitation (mm), Pressure (nmHg)

Sanpl e Code 2-2. Readings Data Field Headers.

What follows is the data recorded for that day. The first field is the time of day of
the recording, followed by all the readings corresponding to that time. The time of day is
represented in 24 hour format. The readings are ordered respectively to the ordering in
the field headers:

Mayaguez, January, 3, 2003

Ti e, Tenperature (°C), Precipitation (mm, Pressure (nmHg)
10, 66. 89, 0, 766. 4

20, 66. 67, 0.1, 766. 8

30, 66. 39, 08,

Sampl e Code 2-3. Readings Data File.

2.4 Month Data

The Month Data file has a similar structure. The records are identified by the day
of the month, and there is a header for every statistic that a Field supports. Some entries
can be tagged as invalid if there aren’t any valid readings for that Field in the

16

corresponding day. This may be caused by the weather station going offline for more
than a day.

Thefirst line in the Month Datafile is the Location and Date information:

Mayaguez, January, 2003

Sanpl e Code 2-4. Month Data File Header.

Following, the Field headers. The first header is the day of the month, then one
header for every statistic every Field supports.

Mayaguez, January, 2003
Day, Low Tenperature (°F), Avg Tenperature (°F), Hi gh Tenperature (°F)...

Sampl e Code 2-5. Month Data Field Headers.

Then the statistical data for every day in the month:

Mayaguez, January, 2003

Day, Low Tenperature (°F), Avg Tenperature (°F), Hi gh Tenperature (°F)...
1, 67.97, 74.95, 85. 4,

2, 66. 41, 72.82, 85. 5,

3, 65. 31, 74. 19, 88. 0,

4, 65. 07, 74.1, 86. 1,

5,

Sanmpl e Code 2-6. Month Data File.

2.5 Year Data

The Year Data file follows the same structure as the Month Data file. The records
are ordered by the month number (starting with 1 as January) and, like the Month Data
file, there is one header of every statistic supported by each Field. It is possible to find an
Invalid Reading tag if there is no data for that particular field during the whole month.
This could happen, if a sensor was installed on a later date than the year in the Year Data
file. “Not Available” tags will still be assigned to all entriesin that Field prior to the time

the sensor was installed to maintain the structure of that Locations' data files.

The First line for the Year Data file is the Location and date info:

17

Mayaguez, 2003

Sampl e Code 2-7. Year Data File Header.

Next the headers. The First header is the month, followed by headers for every
statistic supported by that field.

Mayaguez, 2003
Mont h, Low Tenperature (°F), Avg Tenperature (°F),H gh Tenperature (°F)...

Sanpl e Code 2-8. Year Data Field Headers.

Then the statistical data for every month in that year:

Mayaguez, 2003

Mont h, Low Tenperature (°F), Avg Tenperature (°F), Hi gh Tenperature (°F)...
1, 64. 46, 75. 13, 89. 4

2, 63. 25, 75. 87, 103.3

3, 63. 48, 76. 59, 91.9

Sanpl e Code 2-9. Year Data File.

2.6 Compiled Readings Data

These files store all the readings for a specified time range. This format follows
very much the format of the day data files. Every record is identified by the time of day
and the day of the reading, given that one Data file can span several days. The naming

convention for these files in the Compiles Directory is:

The time range of the file in the 8-digit date convention.
The Location’s keyword.
The unit system the data is stored in.

A example of a compiled readings file nameis:
04052001- 17082001nayagueznetri c. csv

18

The Compiled Readings Data has a format very similar to the Readings Data.
With the exception that records need to be fully identified by the date and time of the

record.

First the time range, and L ocation name of the data:

Mayaguez, May, 4, 2001, to, August, 17, 2001

Sanpl e Code 2-10. Conpiled Readings Data File Header.

Then the field headers with their corresponding units. Since compiled data can

stretch across months, or years, all date fields are necessary.

Mayaguez, May, 4, 2001, to, August , 17, 2001
Year, Mont h, Day, Time, Tenperature (°C), Relative Hum dity(%

Sanpl e Code 2-11. Conpiled Readings Data Field Headers.

And the data:
Mayaguez, May, 4, 2001, to, August , 17, 2001
Year, Mont h, Day, Tine, Tenperature (°C), Relative Hum dity(%
2001, 5, 4, 10, 65. 4, 89.6
2001, 5, 4, 20, 65. 3, 89.4
2001, 5, 4, 2400, 66.7, 89.6
2001, 5, 5, 10, 66. 3, 89.2

Sanpl e Code 2-12. Conpiled Readings Data File.

2.7 Compiled Day Data

These files store statistical values of the Fields and time range specified on a day
basis. Very similar to the Month Data files, but not limited to any one month. Records
are identified by the date of their statistical data. The naming convention for these filesis:

The time range of the data using in their 8-digit date format.

The Location’s keyword.

The Unit System the data is stored in.

A “Stats” suffix to distinguish it from the Compiled Readings Data files.

19

An example of a Compiled Day Datafile:

17122001- 03012002mayagueznetri cStats. csv

Thefirst line of the data file presents the time range and L ocation information just
as the Compiled Readings Datafile:

Mayaguez, Decenber, 17, 2001, to, January, 3, 2002

Sanmpl e Code 2-13. Conpiled Day Data File Header

Then the Field headers. The date is represented by the year, month and day. And a
header for every statistic supported by the chosen Fields.

Mayaguez, Decenber, 17, 2001, to, January, 3, 2002
Year, Mont h, Day, Low Tenperature (°C), Avg Tenperature (°C), High Tenperature (°C

Sanpl e Code 2-14. Conpiled Day Data Field Headers

And the data:
Mayaguez, Decenber, 17, 2001, to, January, 3, 2002
Year, Mont h, Day, Low Tenperature (°C), Avg Tenperature (°C), H gh Tenperature (°C
2001, 12, 17, 65.7, 87.9, 92.8
2001, 12, 18, 66.8, 82.5, 96. 7
2002, 1, 3, 68. 2, 89. 5, 95.1

Sampl e Code 2-15. Conpiled Day Data File

2.8 Compiled Month Data

Like the Year Data files, these gather statistical data for specified Fields at a
monthly level for a specified time range. Their records are identified by the year and
month of the data they represent. The naming convention for these filesiis:

The time range of data compiled marked by their month name and year.
The Location’s keyword.
The Unit System the data is stored in.

A Compiled Month Datafile is:

20

April 2001- Novenber 2001mayaguezbriti sh. csv

The data format is very much the same as the Compiled Day Data files. With the
exception that records are only identified by a'Year and Month field. The first line of the

fileis the Location and time range indicator:

Mayaguez, April, 2001, to, Novenber, 2001

Sanpl e Code 2-16. Conpiled Month Data File Header.

Then the field headers. Year and Month for date, and one header for every
statistic every field supports.

Mayaguez, April, 2001, to, Novenber, 2001
Year, Mont h, Low Tenperature (°F), Avg Tenperature (°F), High Tenperature (°F)

Sanpl e Code 2-17. Conpiled Month Data Fi el d Headers.

And the statistical data:

Mayaguez, April, 2001, to, Novenber, 2001

Year , Month, Low Tenperature (°F), Avg Tenperature (°F), H gh Tenperature (°F)
2001, 4, 65.7 , 84.6 , 92.4

2001, 5, 66. 8 , 86.7 , 95.7

Sanpl e Code 2-18. Conpiled Month Data File.

Chapter 3

XML Data

The following chapter describes the XML structures developed. The structures
will be built starting from the most general XML tags and then subsequent tags will be
added into their position of the structure. Every XML datatype will also be presented in a
diagram which illustrates its hierarchical structure.

XML stands for Extensible Markup Language. It is defined as “ set of rules for
defining semantic tags that break a document into parts and identify the different parts of
the document. It is a meta-markup language that defines a syntax used to define other

domain specific, semantic, structured markup languages” . [4]

The structure of our XML files will follow the guidelines set forth by the W3C
organization. XML files have a different structure than CSV files, but just as helpful for
web interface uses. The W3C intends to present it as the common format for storing data
on the web. Once its position is more accepted, web developers will be able to retrieve
data from these files to create better and more efficient user interfaces without relying on
client server software to generate dynamic WebPages. Web languages such as XSL,
XUL, XQL, and UIML have aready been developed for such purposes, but web

browsers have yet to fully implement them or are not stable enough [4,9,16].

Its structure is more hierarchical than the traditional table format. It should be
noted, that the Data files in XML format carry considerable overhead when having to
name all the fields and tags for every single reading. So a database of XML data would

increase severa times the database size.

XML structures and schemas can be bound by Document Type Definitions [4,12].

DTDs are defined as “a document’s legal structure. It describes the elements and

21

22

attributes available, where and how many times they can occur, how elements can nest,
and how elements and attributes can fit together.” [13] These DTDs set forth the structure
that an XML document must follow if it is to comply with the standards of the institution
that standardized the DTD. This avoids incompatibility problems in XML structures
between organizations. An XML document is called “valid” if it meets the constraints
defined in a DTD [7]. Each of them must agree on a common DTD to follow, and any
document failing to conform to that DTD is disregarded. The structures declared in this
work are preliminary, and do not yet contemplate several Fields of important use for the
climate research community. Therefore, no DTD is proposed in this document to serve
the standard for climate data storage in XML, as such a DTD would invariably be
subjected to important changes in the future. Support for changes in existing DTDs is
troublesome and leads to confusion between organizations with incongruent schemas yet
expect the same data types. In [5] the issue of disparity in XML schemas is addressed,

and proposed a prototype system to handle these changes between organizations.

XML structures aso facilitate the creation of their software component
counterparts. When using a OOP Language, between it is easier to identify the future
objects and their responsibilities by modeling them on the XML elements in the database.
[8,11] In spite of their Object-type structure however, XML documents still retain the
significance in the ordering of elements [12]. So each record in the Data type XML
documents, will keep their chronological ordering, even though every record will be have

its time mark e ement.

XML files will follow the same file structure as data files, and the same naming

conventions. With the exception that they will carry the corresponding .xml extension.

23

3.1 Location Data

We start with the Location’s information file. As explained in the Data Structure
section, this file is contained directly under the Location’s directory of the Records

Directory. The main tags for defining a Location are:

<LOCATI ON>
</ LOCATI ON>

Sanpl e Code 3-1. XML Location Tags.

Next is the general information about the Location. The name is indispensable,
while other information can be added at the operator’ s convenience, if it is of importance

to the users:

<LOCATI ON>
<NAME>Mayaguez </ NAMVE>
<ALTI TUDE>10nx/ ALTI TUDE>
<LATI TUDE>18°13’ </ LATI TUDE>
<LONG TUDE>67° 09’ </ LONG TUDE>
<I NSTI TUTI ON>UPR- RUM Cl i nat ol ogy Depart ment </ | NSTI TUTI ON\>
<TI ME_ZONE>GMT- 4</ TI NE_ZONE>
</ LOCATI ON>

Sanpl e Code 3-2. XML Location Information Tags.

The time range of data must be included as well. Inside the Time Range tags, we
have two date representations. For the date of the first and last recorded readings for this

Location:

24

<LOCATI ON>
<NAME>Mayaguez </ NAVE>
<ALTI TUDE>10nx/ ALTI TUDE>
<LATI TUDE>18°13’ </ LATI TUDE>
<LONG TUDE>67° 09’ </ LONG TUDE>
<I NSTI TUTI ON>UPR- RUM Cl i mat ol ogy Depart nent </ | NSTI TUTI ON\>
<TI ME_ZONE>GMT- 4</ TI NE_ZONE>
<TI VE_RANGE>
<FI RST_READI NG_DAY>
<DAY>18</ DAY>
<MONTH>10</ MONTH>
<YEAR>2000</ YEAR>
</ FI RST_READI NG_DAY>
<LAST_READI NG _DAY>
<DAY>5</ DAY>
<MONTH>6</ MONTH>
<YEAR>2003</ YEAR>
</ LAST_READI NG_DAY>
</ TI ME_RANGE>
</ LOCATI ON>

Sanpl e Code 3-3. Location Tine Range Data Tags.

Finally, there are the Fields tags. These contain information about the Location’s
Fields such as the user defined valid readings ranges, and statistical information. The data
is Field specific, and each WXField class must implement it's own methods of reading
and writing it’s information into the XML data file. All the statistics and readings stored

here are in their respective Most Precise Unit System. Here is an example of a few field

tags:

<LOCATI ON>
<NAME>Mayaguez </ NAVE>
<ALTI TUDE>10nx/ ALTI TUDE>
<LATI TUDE>18°13’ </ LATI TUDE>
<LONG TUDE>67° 09’ </ LONG TUDE>
<I NSTI TUTI ON>UPR- RUM Cl i mat ol ogy Depart nent </ | NSTI TUTI ON\>
<TI ME_ZONE>GMT- 4</ TI ME_ZONE>
<TI ME_RANGE/ >
<FI ELDS>
<TEMPERATURE>
<LI M TS>
<H G+>120</ H G+
<LOW50</ LON
</LIM TS>
<STATS>
<H G+
<READI NG>95. 4</ READI NG>
<DATE>
<DAY>4</ DAY>
<MONTH>6</ MONTH>
<YEAR>2001</ YEAR>
</ DATE>
</H G+
</ STATS>
</ TEMPERATURE>
<W ND_SPEED>
<LIM TS>
<H GH>100</ H G+>
</LIMTS>
</ W ND_SPEED>
<STATS>
<HI GH>5. 6</ H G+
<DATE>
<DAY>18</ DAY>
<MONTH>2</ MONTH>
<YEAR>2002</ YEAR>
</ DATE>
</ STATS>
</ Fl ELDS>
</ LOCATI ON>

Sanpl e Code 3-4. XML Location Field I'nformation Tags.

26

Location

Nane

Al titude

Lati tude

Longi t ude

S I JE B
Fi el ds Ti me Range
I | [|
Tenperature W nd Speed First Readi ng Day Last Readi ng Day
Day Day
Mont h Mont h
Limts Stats
Hi gh
Low
Low Hi gh
Readi ng Readi ng
Dat e Dat e
Day Day
Mont h Mont h
Figure 3-1. Location Data structure

3.2 Readings Data

The Readings Data files will begin with the following encompassing tags:

<DAYDATA>
</ DAYDATA>

Sanpl e Code 3-5. XML Day Data Tags.

The Location and date information is included.

27

<DAYDATA>
<LOCATI ON>Mayaguez</ LOCATI ON>
<DATE>
<DAY>6</ DAY>
<MONTH>5</ MONTH>
<YEAR>2001</ YEAR>
</ DATE>
</ DAYDATA>

Sanpl e Code 3-6. XML Day Data Information Tags.

Then the data for the day. The data is separated into records; where each records
carries a corresponding Time tag and tags with the Field names for the respective
readings at that time:

28

<DAYDATA>
<LOCATI ON>Mayaguez</ LOCATI ON>
<DATE/ >
<DATA>
<RECORD>
<TI ME>
<HOUR>0</ HOUR>
<M NUTES>10</ M NUTES>
</ TI ME>
<TEMPERATURE>68. 7</ TEMPERATURE>
<W ND_SPEED>0</ W ND_SPEED>
<RELATI VE_HUM DI TY>89. 5</ RELATI VE_HUM DI TY>
</ RECORD>
<RECORD>
<TI ME>
<HOUR>0</ HOUR>
<M NUTES>20</ M NUTES>
</ TI ME>
<TEMPERATURE>68. 3</ TEMPERATURE>
<W ND_SPEED>0. 2</ W ND_SPEED>
<RELATI VE_HUM DI TY>89. 9</ RELATI VE_HUM DI TY>
</ RECORD>
<RECORD>
<TI ME>
<HOUR>0</ HOUR>
<M NUTES>20</ M NUTES>
</ TI ME>
<TEMPERATURE>67. 9</ TEMPERATURE>
<W ND_SPEED>0. 5</ W ND_SPEED>
<RELATI VE_HUM DI TY>88. 3</ RELATI VE_HUM DI TY>
</ RECORD>
</ DATA>
</ DAYDATA>

Sanpl e Code 3-7. XML Day Data File.

29

DayDat a
Location
[
S -
Dat a Dat e
Day
Mont h
Record Record Record
Tenperature Tenperature Tenperature
W nd Speed W nd Speed W nd Speed
Ti nme Ti nme Ti nme
Hour Hour Hour
M nut es M nut es M nut es

Figure 3-2. Day Data structure

3.3 Month Data

Monthly Data will be delimited by:

<MONTHDATA>
</ MONTHDATA>

Sanpl e Code 3-8. XML Mbnth Data Tags.

Followed by the Location and month information:

<MONTHDATA>
<LOCATI ON>Mayaguez</ LOCATI ON>
<DATE>
<MONTH>10</ MONTH>
<YEAR>2002</ YEAR>
</ DATE>

</ MONTHDATA>

Sanpl e Code 3-9. XML Mbnth Data Infornmation Tags.

The data is then organized into records, each of which identified by the day of the
month. Every record is then divided into the Location’s Fields that holds all the relevant
statistics of that Field for the current day.

30

<MONTHDATA>
<LOCATI ON>Mayaguez</ LOCATI ON>
<DATE/ >
<DATA>
<RECORD>
<DAY>1</ DAY>
<TEMPERATURE>
<LOWs65. 4</ LON
<AVG>86. 6</ LON
<H G+97. 4</ H G
</ TEMPERATURE>
<PRECI PI TATI ON>
<HI GH>2</ H GH>
<TOTAL>18</ TOTAL>
</ PRECI PI TATI ON>
<W ND_SPEED>
<AVG>1. 7</ AVG>
<H G>3. 5</ H G+
</ W ND_SPEED>
</ RECORD>
<RECORD>
<DAY>2</ DAY>
<TEMPERATURE>
<LONt65. 2</ LOW
<AVG>86. 7</ LOW
<Hl GH>97. 1</ H G+
</ TEMPERATURE>
<PRECI PI TATI ON>
<Hl GH0</ H G+
<TOTAL>0</ TOTAL>
</ PRECI PI TATI ON>
<W ND_SPEED>
<AVG>1. 2</ AVG>
<H G>2. 7</ H G+
</ W ND_SPEED>
</ RECORD>
</ DATA>
</ MONTHDATA>

Sanpl e Code 3-10. XML Mbnth Data File.

—
Mont h Dat a
Locati on
[
P JE B
Dat a Dat e
Mont h
Year
S I JE S
Record Record
Day Day
| [
J R JE R
Tenperature Tenperature
Low Low
Avg Avg
Precipitation W nd Speed Preci pitation W nd Speed
H gh Avg Hi gh Avg
Tot al H ah Tot al Hi ah

Figure 3-3. Month Data Structure

3.4 Year Data

31

The Year Data XML file follows the same structure as the Month Data XML file.

It begins with the following encompassing tags:

<YEARDATA>
</ YEARDATA>

Sampl e Code 3-11. XML Year Data Tags.

The Location and year information:

<YEARDATA>
<LOCATI ON>Mayaguez</ LOCATI ON>
<YEAR>2001</ YEAR>

</ YEARDATA>

Sampl e Code 3-12. XML Year Data Infornmation Tags.

And the data, where the records are organized by month numbers:

32

<YEARDATA>
<LOCATI ON>Mayaguez</ LOCATI ON>
<YEAR>2001</ YEAR>
<DATA>
<RECORD>
<MONTH>1</ MONTH>
<TEMPERATURE>
<LONt64. 2</ LOW
<AVG>82. 7</ LOW
<H GH>94. 1</ H G+
</ TEMPERATURE>
<HEAT_| NDEX>
<LOW+70. 1</ LOW
<AVG>85. 30</ AVG>
<H GH>96. 5</ H G+
</ HEAT_| NDEX>
<W ND_DI RECTI ON>
<AVG>45. 3</ AVG>
</ W ND_DI RECTI ON\>
</ RECORD>
<RECORD>
<MONTH>2</ MONTH>
<TEMPERATURE>
<LOW62. 2</ LOW
<AVG>82. 9</ LOW
<H G+92. 1</ H G+
</ TEMPERATURE>
<HEAT_| NDEX>
<LOWNt70. 4</ LOW
<AVG>83. 2</ AVG>
<H G+>97. 8</ H G+
</ HEAT_| NDEX>
<W ND_DI RECTI ON>
<AVG>91. 5</ AVG>
</ W ND_DI RECTI ON>
</ RECORD>
</ DATA>
</ YEARDATA>

Sanpl e Code 3-13. XM. Year

Data Tags.

Year Data
Location
Year
S B
Dat a
R I 1
Record Record
Mont h Mont h
I I
JE P R
Tenperature Tenperature
Low Low
Avg Avg
Heat | ndex W nd Direction Heat | ndex Wnd Direction
Low Avg Low Avg
Avg Avg

Fiaqure 3-4. Year Data Structure

33

Chapter 4

Software

This chapter describes the application. First a mention of the software used to
develop the application. Then a description of each sub-component and how it functions

in the application.

The software was developed using Sun's Java 2 Standard Edition (J2SE)
programming language. The object-oriented functionality that characterizes this language
makes it ideal for separating the distinct modules that make up the system. These
modules correspond to the abstract conceptual elements in the system. In the Java
environment, these modules are called “classes’. Classes are abstractions of objects.

Java's platform independence aso facilitates it’s portability into other sites.[3]

The application has been developing using Sun’s Java Development Kit (JDK),
freely available for download at their web site (http://java.sun.com). The JDK provides
the basic classes to develop Java applications, and the Java Runtime Environment (JRE)
for executing them. For editing the software code, |I've used the text editor Textpad,

available for download at http://www.textpad.com.

The entire application is separated into Location classes, Data Management,
Fields Classes, Web User Interface and the Database. These all rely on each other to
retrieve and display the data for the user. The goal is to have complete functiona
autonomy from these components, so that modifications to one component need not

adjust any of the others.

The Location classes represent a Location from which data is received. For every
Location in the system, there must be a corresponding Location class. These classes must

store the Fields that the Location supports, it’s keyword property, and most importantly,

34

35

the function or algorithm for retrieving new data. They are not in themselves part of Data
Management, since they can be deleted or added by future operators, as they deem
necessary, with minimal adjustment to the Data Management components. Future
operators can add new Location’s given that they satisfy the requisites demanded by the

Data Management components (such as providing a function for retrieving new data).

The Data Management components are those that interact between retrieving
fresh data from the Location classes, and the Web User Interface. It is its responsibility to
store fresh data into the Database and retrieve the archived data for use by the Web User
Interface components. It is also in charge of generating compiled data when requested by
the Web User Interface.

The Database is the collection of archived data described in the Data Structure
chapter. As explained, it is stored in an ASCIlI CSV format, which allows its permanence
independent of any other software. It is handled only by the Data Management

component.

The Field classes are those that represent Field or sensors for which a Station
collects data for. Like the Location classes, they are not a part of the Data Management
component and can be added or deleted by the operators, depending on what their
collection of Locations support. These classes provide the application with several Field
gpecific functions. Some of these not indispensable, such as a Quality Control Algorithm
for that field, a graph or chart generator. But some are requisite, such as the Field stitle, a
Unit System conversion function (for converting between metric and british units), and
which isit’'s Most Precise Unit System.

Finally there is the Web User Interface component. This is the software running
on the web server that displays the data to the user. It provides the user with the necessary
forms so he/she can request data. And works with the Data Management component to

retrieve the data it needs and display it to the client in a user-friendly interface. It also

36

works with Location classes for displaying information about the particular Location the

user is viewing data for. And Field classes for generating graphs and charts.

Figure 4.1 shows us how these components work together:

Dat abase

Quality Control Algorithns
Unit System

Dat a

Locati on Conver si on Functions
Dat a P
C asses
Managemnent J
4 Field
B Dat a Dat a
!/ TR Cl asses
Il 1 Request s
A . i1l
ok S o
A : ;(Wb User W‘
}a./ . B > <
) Location Information I nterface Graph Generators

Fiaure 4-1. Software conponents

What follows is a description of the classes implemented in each of these
components. A UML diagram of how each of these classes relate to each other will

accompany each description.

4.1 Support Classes

37

Some classes do not belong or fall into any of the previous components. They are

used by al of them as support classes to facilitate the representation of certain concepts

or to group sets of similar elements with a common quality. These support classes are:

WXTime

WX Day
WXRecord
WXRecordSet
WX StatRecord
WX StatRecordSet

The first two, WXTime and WXDay, are time representations. WXTime

represents a time of day when sets of readings were taken. WXDay represents a Day for

statistical data. WX Day can also be used to represent a month or a year, in each case, the

unnecessary date field is ignored; such as they Day field for a month, or the Day and

Month field for a year. They provide functionality for operations that constantly are

required on the time and day they represent, by several classes on all components.

Comparison operations, such as asking which time or day is before or after it, retrieving

commonly used time and day representations, such as the 24-hour time format, or the 8

digit date representation.

WKTi e WKDay
Hour Day
M nut es Mont h

Year

Fi gure 4-2. WKTi ne and WKDay cl asses

WXRecord represents a record of data. A set of readings taken at a particular

time. The time is represented by a WXTime object, and the readings stored in a one

38

dimensional floating point array. It provides some functionality on comparing records,
such as which record is before or after the current one, counting the number of invalid

readings, and retrieving a particular reading from the set.

WKRecor d
Dat a

1
WKTi e

Fiqure 4-3. WKRecord UM. di aararmr

WXRecordSet is a set of WXRecords that contain all the readings data for one
day. A WXDay object represents the Day, and it holds a collection of WXRecord objects.
This provides functionality on a set of WXRecords, like percentage of invalid readingsin
the data set, retrieving a set of data for one particular field, iterating through records by
their time order. It aso provides functions for retrieving statistical information of the data

Set it contains. Such as the highest or lowest reading for a particular field.

WKRecor dSet

1..* 1

WKRecor d WKDay

Figure 4-4. WKRecordSet UM. Di agram

WX StatRecord is a record of statistical data. It can be used to hold statistical data
for aday or a month. A WXDay object represents the day or month, and the dataisin a
two-dimensional floating-point array. Two-dimensional, because there are severa
statistics for every field.

39

WKSt at Record
Dat a

1
WKDay

Fiqure 4-5. WKSt at Record UML Di aararm

Finally, WX StatRecordSet is a set of WXStatRecords. It represents the set of
statistical records for a month, or a year. If the WXStatRecords correspond to daily
statistics, then the WXStatRecordSet should represent a monthly set; if the
WX StatRecords correspond to monthly statistics, then it should represent a yearly set.
This class aso implements functions for calculating statistical information from the data

it contains.

WKSt at Recor dSet

1..* 1

WKSt at Recor d WKDay

Fi aure 4-6. WKSt at RecordSet UML Di aaram

4.2 Field Classes

Field classes represent sensors or weather data that the stations records data from.
They can correspond to actual sensors implemented in the weather station, or other Fields
that can be derived from data taken by sensors in the weather station. Every Field to be
supported by a Location needs to have it's own Field class implemented. They must
provide certain functionality that is requisite to its successful operation in the application.
Like the Location class, there is already an abstract WXField class that sets the standard
for all Field classesto follow. They must all extend WXField, and implement the abstract
methods declared there. One of these methods iS convert(Reading, unitSystem) for

converting a reading from Metric to British and viceversa.

40

Other generic methods are already declared in WXField that can be overwritten in
a subclass for better functionality. For example, the method for quality control vai i dat e(
pataset). In WXField, it ssimply limits itself to discarding those readings not within the
valid readings range for that Field. But a more complex algorithm for eliminating
erroneous readings can be written into the particular Field class, which will then override
the parent function and apply its own algorithm without any change to the rest of the Data

Management component.

Graph generators are also methods that might be overwritten. The generic method
in WXField generates a standard line graph of data, but their methods can be overwritten
in the particular Field class if a more appropriate graph is suitable for that Field. For
example, awind rose chart can be inserted into the WindDirection class for graphs, or a
bar chart for Precipitation. Overriding these methods takes place in the Field subclass and
requires no modification to the Web User Interface classes. However, if more than one
graph option is to be desired for one particular Field, such as having a line graph and a
wind rose chart available for the user, and then modifications need to be made at the Web

User Interface Components to accommodate the extra option for that Field.

WKFi el d
Mbst Preci seUni t Syst em
Title

convert ()
val i dat e()

gener at eG aph()

Figure 4-7. WKFi eld cl ass

4.3 Location Classes

The Location classes represent weather stations at different points of the island.
They hold information about the station, such as the Keyword, the Fields it supports, its

time interval of readings. Other information, such as the Location’s Name, its

41

geographical coordinates, the institution that operates it, etc. is saved in the Location’s
XML information file, and can be changed at will by the operators without any
consequence to the functionality of the application. The Fields it supports are represented
by a collection of WXField objects. An operator must create one Location class for every
Location in the database. Though different Locations may use the same agorithm for
retrieving data, such as one third party data provider offering data for several weather
stations in the same database format, every Location needs a unique Keyword to identify
it. And this has to be written into the Location class. It aso provides the time range of
archived data for this Location, represented by two WXDay objects, the date of the first
and last recorded reading.

The most important aspect of a WXLocation class is it's method for reading new
data. Given that every weather station is unique, or that every third party database that
offers us their data is distinct, the application could never anticipate the format the data
would be offered to us from it’s source. It is for this reason, that every Location class
must implement a function for retrieving data from the source, and pass it aong to the
Data Management components in the format it would expect it to. The Data Management

components can then store the data in the database and manipulate it in it's own format.

To do this, we've declared an abstract class called Location. This abstract class
declares, but doesn’'t implement, the method get Readi ngsFronsource(Day). This method
takes a Day as a parameter, the day we want to retrieve data for, and it returns all the
readings for that day in a WXRecordSet object, the type of object used by the Data
Management classes to manipulate day readings. All Locations to be used in the
application, must extend this parent class and implement a method for retrieving fresh

data.

This absolves the Data Management classes from concerning itself with the
particulars of handling different data sites. Whenever it needs to retrieve fresh data from

a Location’s source, it merely cals the Location’s method, and knows it will return the

42

data in the common format it's using. That way when changes occur in the third party
database, or new sites are to be added, only the affected Location class needs to be
adjusted, the rest of the system continues to function without need for any changes.

1 WKl ocat i on 1
Keywor d

1..* Get Readi ngsFr onSour ce() 2

WKFi el d WKDay

Fi gure 4-8. WKLocation UML Di agram

4.4 Data Management Classes

These are the classes that manipulate the database. They act as a mediator for the
Web User Interface and the database. When a user requests data through the website, it is
these classes that retrieve the data from the database and provide it to the Web User
Interface components; and compile data if it has been requested. They also retrieve new
data from the Location’s sites periodically, and validate it before storing them into the
database.

The classes that make up the Data Management component are:
WXData
WXDayData
WXMonthData
WXY earData
WX CompiledReadingsData
WX CompiledDayData
WX CompiledMonthData

WXDayData is the class that represents a day’s worth of readings for a particular
Location. They day is represented by a WXDay object, and the Location by a
WXLocation object. It holds its data in a WXRecordSet object, and the statistical
information of its data in a WX StatRecord object. WXDayData objects can be created
either from new data, in which case it invokes it’s Location’s method for retrieving fresh
data, or from the data archived in the database, it can then store it’s data into the database.
Creating a WXDayData object with fresh data and then storing it into the database is the
way to increase the database’s 9ze with new data. It also provides the statistics of the

data it contains.

WKDay Dat a
1 1
1 1 1 1
WKSt at Record ’ WKLocat i on
1 1
‘ WKRecor dSet ’ ‘ WKDay ’

Fi gure 4-9. WKDayData UM. Di agrarmr

WXMonthData represents statistical data for every day in a month for a particular
Location. A WXDay object represents the Month, disregarding its Day field and the
Location by a WXL ocation object. It holds it’s data in a WX StatRecordSet, given that all
it's records are WX StatRecords (WXStatRecord of every day in the month), and the
month’s statistical information in a WXStatRecord of it's own. It can be created from the
Readings files, or by the archived datain Month Data files. By creating a WXMonthData
object from the Readings archived files, and the storing it into the database is how
MonthData files are updated.

WKMont hDat a
1 1
1 1 1 1
WKSt at Recor d ’ WKLocat i on
1 1
‘ WKRecor dSet ’ ‘ WKDay ’

Fi gure 4-10. WKMont hData UM. Di agr am

WXY earData holds the statistical information of every month in the year. A
WXDay object, disregarding the Day and Month fields, and the Location by a
WXL ocation object represents the year. Its data is stored in a WX StatRecordSet, all the
WX StatRecords of every month in that year, and it's own statistical information in a
WX StatRecord. This object can be created from archived Month Data files, or from
archived Year Data files. By creating a WXY earData object from archived Month Data
files and storing it’s data in the database is how Y ear Datafiles are updated.

WKYear Dat a
1 1
1 1 1 1
‘ WKSt at Record ’ WKLocat i on
1 1
| WKSt at Recor dSet I | WKDay I

Figure 4-11. WKYearData UML Di agram

Compiled Data files don't directly manipulate the database. They rely on the
WXDayData, WXMonthData, and WXY earData to retrieve the data for them. The data
they gather is not stored into the database, but into a Compiles Directory, that makes the
file available for download to the client through the webpage.

The WX CompiledReadingsData class creates the CompiledReadings files. When

created, it requires a Location, and two WXDay objects, the time range to compile data

for. Its data is stored as a collection of WXDayData objects for all the days in between
the time range. It also calculates the relevant statistics for the data it has and storesit in a

WX StatRecord of it's own.

WKConpi | edReadi ngsDat a

1 1 1 1

t WXSt at Record ’ WKLocat i on
1..* 2
WKDay Dat a WKDay

Fi gure 4-12. WKConpi | edReadi ngsData UML Di agranm

The WX CompiledDayData stores statistical data on a daily basis, for al the days
between a give time ranges for a Location. The time range is represented by two WXDay
objects, and the Location by a WXLocation object. Its data is stored as a collection of
MonthData objects, for al the months in between they two WXDay objects inclusive. It
would seem that a collection of WXDayData objects should be more appropriate. But for
reasons of performance, it is preferable to retrieve the statistical data from the Month
Datafiles. The information required is stored in them, and it avoids having to read all the
readings in the Day Data files, for what could be an extensive time range, to then retrieve
their dtatistical information. So the WXCompiledDayData will retrieve they day
statistical data from the WXMonthData objects, in spite of the days in the month before
the beginning of the time range, and the days in the month after the end of the time range,
will never be used. Its own statistical data, for the given time range, will be stored in a
WX StatRecord object.

46

WKConpi | edDayDat a

1 1 1 1

WKSt at Record ’ WKLocat i on
1..* 2
WKMont hDat a WKDay

Figure 4-13. WKConpi | edDayData UML Di agrarm

Finally, the WXCompiledMonthData gathers statistical information for all the
months within a specified time range at a particular Location. It requires a WXL ocation
object, and two WXDay objects, to set the time range of data to be gathered. It builds its
data from WXY earData objects, for the same reason as explained above. After retrieving

all its data, it performs the relevant statistics calculations on its data, and stores it in a
WX StatRecord object.

WKConpi | edMont hDat a

1 = 1

(WKSt at Record ’ WKLocat i on
1..* 2
WKYear Dat a WKDay

Fi gure 4-14. WKConpi | edMont hData UML Di agr am

47

4.5 Web Interface Classes

These are classes that serve to take requests of data from the user and display the
requested data in the form they wish to view it. Each of them generates on webpage
where the user views or requests data. They don’t access the database directly, but rely on
the Data Management components to retrieve or generate the data for them. The
following classes fal into this category:

LocationTable

DayDataTable
MonthDataTable
YearDataTable
DayDataPrintTable
MonthDataPrintTable

Y earDataPrintTable
CompiledReadingsDataT able
CompiledDayDataT able
CompiledMonthDataT able
CompiledReadingsDataPrintTable
CompiledDayDataPrintTable
CompiledMonthDataPrintTable
DayGraph

MonthGraph

Y earGraph

The client first accesses the data system through the LocationTable page. This
page displays all the information stored about the Location It's Name, Altitude,
Geographical Coordinates, etc... It might also display relevant statistics the operator may
deem important to visiting users, such as the highest and lowest recorded temperatures

for this Location.

It also provides the client with forms for requesting data. There are two essential
forms that the LocationTable page must display. First, the Data Request Form, this must
allow the user to input a date, a unit system, and a Data Type of date he wants to view.
The Data Type can be readings for the day, daily Statistics for the month, or monthly
statistics for the year of the date given. Through this form, the user is taken to the
DayDataTable, MonthDataTable, or Y earDataT able, depending on the option he selected.
The second form is the Compile Data form. Here the user must be allowed to select
which Fields he wishes to compile data, from a list of all the Fields supported by this
Location. He must input two dates, the time range of data he wishes to compile, the unit
system, and the Data Type he wishes to compile. The Data Type can be al readings,
daily statistics, or monthly statistics, for all days or months within the time range.

The DayDataTable, MonthDataTable, and Y earDataTable, display data contained
in WXDayData, WXMonthData, and WXY earData objects respectively. DayDataTable
presents the user with a table view of al the readings for the date he requested;
MonthDataTable the statistical data for every day in the month of the date; and
YearDataTable all the relevant statistics for every month in the year of the data requested
by the user. Each of them also displays the relevant statistics of the data they store.
Common elements within all these tables is a link to open the current LocationPage,
given that it is possible that the user may have arrived at this page not through the
LocationPage; links to download the data they are viewing in their corresponding CSV
file; alink to quickly switch unit systems; and a link to their corresponding PrintTable
page. Navigation links and forms must be available as well, so the user can jump from
different dates or locations without returning to the LocationPage. Also, they must
provide links at every Field header for retrieving graphs of one particular Field of data.

DayDataPrintTable, MonthDataPrintTable and Y earDataPrintTable are the printer
friendly versions of their web counterparts. They display the same data as DayDataT able,
MonthDataTable and YearDataTable, in a format more suitable for printing. This means

no color, no links, and only the relevant data in the table.

49

The CompiledDataT ables display data that has been compiled for the user. They
implement amost the same interface as the DayDataTable, MonthDataTable and
YearDataTable. With the same links and relevant statistics of their data, with the
exception of graph links.

Their printer friendly versions are implemented in the CompiledDataPrintTables.
They follow the same standard set by the DataPrintTables, for displaying the compiled

datain a printer friendly manner.

Finally, we have the GraphTables. These display a graph of a Day, Month or Y ear
for a particular field. They must provide the user with the graph and a navigation form to
scroll or jump through the days, months, or years of datathey are viewing. Links to their
corresponding DayDataTable, MonthDataTable or YearDataTable must be available as
well.

Chapter 5

Software Operation

In this chapter is explained the basic operation of the application. The mechanism
for retrieving data from the weather station or the third party database, and how it is
stored into the database. It also describes how the process of quality control takes place
within the Field classes. Finally it explains how the Web Interface components receive

data requests from clients and display it to the user in the various tables or graphs.

5.1 Data Management

Data retrieval begins at the Location class. The abstract parent class WXL ocation
defines an abstract method get Readi ngsFronsource() Which takes a WXDay object as a
parameter. This method has to be implemented by every single location in the system. As
it provides the mechanism for retrieving data directly from the source of the location.
And this is something unique for every Location and impossible to predict by any
developer. This method then retrieves the data from the station or the third party
database, in the format it is stored or received through the station’s institution, and
collects the readings for the day given as a parameter. Each collection of readings for a
given time of day are stored in a WXRecord object. This object holds a WXTime object
(the time of day) and all the readings corresponding to that time of day. All the
WXRecord objects for the al readings of that day are then wrapped in a WXRecordSet
object. Thisis then returned by the method to the calling class.

The WXDayData object handles the Location’s data for one day. We create a
WXDayData object with its initializer, which takes as parameters a Location object (the
location from where we want the data), a WXDay object (the day we want data for), and

avalue for the source of the data. These are declared in the WXData class and can either

50

o1

be WXDataSOURCE, or WXDataARCHIVE. WXData.SOURCE, tells the
WXDayData object to retrieve the data directly from the location’s source. This would be
done through the Location’s get bat aFr onsource() Method, providing the WXDay object
given in the WXDayData initializer. WXData ARCHIVE, would have the WXDayData
object retrieve data from the files in the archives, stored in the manner explained in the
Data Structure section. The mechanism for reading the data from the archive files is

written into the WX DayData object.

After the data is retrieved, from either source, the data is run through the quality
control algorithms for each field the L ocation supports. The Location class' “get Fi el ds() ”
method returns an array of WXField object with all the Fields the Location supports. The
parent abstract class WXField defines a method called validate(). This method is
implemented in the parent class, but it limits itself to simply removing all the readings
that are not within the field’' s range of acceptable data. Every WXField object has a range
of acceptable data, which mark the lowest and highest limits that a reading has to be
within to be considered valid. These values are field specific, and are stored in the
Location’s XML data file. The Location class reads them at the moment it is initialized
and passed as parameters when initializing the individual WXField objects. Most fields
reguire the high and low values be stored in the XML file. Such as Temperature, its range
of valid temperature readings can vary from location to location. However, Wind Speed
and Solar Radiation, always have a low limit of O, and have this low limit value by
default. Wind Direction, always has a range of 0 to 360. In this last case however, it is
possible that certain locations may use numbers beyond this range to mark acceptable
readings. For instance, a Wind Direction reading of —10° can be used to represent 350°,
or 390° to represent 20°. This will be dealt by the Location’s get bat aFr onsour ce() method,
that will make the necessary conversion into a valid reading within the limits, if the
particular location is known to make these kind of readings. The val i date() method takes
the WXRecordSet from the WX DayData object, and iterates through all the WXRecord
objects within it comparing the readings with the limits in the corresponding WXField

52

object. All readings not within the acceptable range are replaced with the invalid reading
indicator WXData.INVALID_READING.

The validate() method can be overwritten by any of the subclasses of WXField.
This allows for more complex field specific algorithms of quality control. The same
algorithm for removing invalid readings in atemperature data set would be different from
a wind direction data set for instance. By simply overriding the validate() method in a
subclass of WXField, the application uses that algorithm to purge the data of invalid

readings without making any modifications to any Data Management classes.

The data is taken through the quality control algorithms regardless of whether it
was just acquired from the station’s source or from the archives. This would allow a
future developer to modify one of the quality control algorithms and be able to use the

data in the archive to update the whole database.

After having validated the data, the WXDayData object calculates the relevant
statistics of its data. The algorithms for calculating these statistics are implemented in the
WXRecordSet class. It defines a method called getstat() which takes as parameter to
indexes. The first is the field index of data to calculate, such as the Temperature index, or
Precipitation Index, and the other is a statistic index, which indicates which statistic is to
be calculated. There are only four statistic indexes and they are defined in the WXData
class. They are WXDataLOW, WXDataAVG, WXDataHIGH, and WXData TOTAL.
So when calling get stat (Tenperat ur el ndex, Wpata. Low) on a WXRecordSet, | am asking
for the “lowest reading of the temperature field”.

Every WXField must also implement a nasstat () method. This method tells us
which statistics are relevant for the Field. It takes as parameter one of the statistical
indexes and returns true or false depending on whether that statistic is relevant to the
Field. For instance, a Temperature object would return true on hasstat (Wkbata. Low) and

0N hasStat(Wkpata. H GH) but false on hasstat(wkpata. TOTAL). Likewise Precipitation

53

would return false on hasstat(Wkpata. Low) and true on hasStat(WDat a. TOTAL). After
performing these calculations, all the statistics for the day are stored in a WX StatRecord

object.

WXRecordSet provides four methods for calculating these statistics. These
methods are findLow(), findH gh(), getAvg(), and getTotal (). Each of them requiring a
field index for the data they are going to find or calculate. findLow() and findHi gh() return
the lowest and highest reading of the field given. findavg() returnsthe average readingsin
the data set, this is the sum of valid readings divided by the number of valid readings in
the data set. fi ndTot al () returns the sum of al the valid readings in the data set.

An exception has to be made in the case of a Wind Direction data set. The only
relevant statistic for Wind Direction is WXData AV G, or the “General Wind Direction”,
and it needs a unique averaging algorithm, implemented in the WindDirection class,
because it’ s readings are given as angles and they cannot be averaged like any other data
set. The formula used to find this general direction of anglesis:

&8 sin(x) /ng
Avg = atan%=° i
CJ -
ca cos(Xi)/n -
ei=0 1]

Where X is the set of Wind Direction readings and n is the number of valid readings.

Whenever WXDayData, WXMonthData, or WXY earData is iterating through the
fields and arrives a a WindDirection field, it avoids using the findavg() in the

WX RecordSet class and resorts to the w ndbi recti on. fi ndavg() method.

It would seem like the same situation for vaiidate(), where each field needs its
own validating algorithm. But this is the only case (so far) where one of the statistic
finding algorithms needs to be specially written for a Field. And no others are anticipated.
So for the time being, it is easier to simply modify the Data Management classes to

accommodate this unique situation.

After this the WXDayData object is initialized and ready to provide data for that
day and Location. It can be used to provide data for generating a webpage of day data, or
for drawing a graph. The way the common database is updated is by creating a
WXDayData object using WXData. SOURCE (retrieving fresh data from the source)and

then saving the data into the common database using its savebat a() method.

The savepat a() method takes one value as a parameter, the unit system to save the
data in. It can take one of these three values: WXData.BRITISH, WXDataMETRIC, or
WXDataMOST_PRECISE. WXData.MOST_PRECISE is the value used to store data
into the Database. This value tells WXDayData to save the data in the most precise unit
system of every field. A value of WXDataMETRIC or WXDataBRITISH, is an
indicator that data is being saved in one specific unit system because a user has requested
data for this day and may want to download the CSV file of the data. So if any of these
last two values are used, the file is stored in the Compiles Directory in the unit system

specified. Thefile is stored there temporarily and deleted after a fixed amount of time.

The system is designed to always expect the readings to be in the most precise
unit system of the Field. Whenever there is a data set for Temperature, it's assumed that
the readings are in Fahrenheit, and whenever there is a Wind Speed data set the readings
are in meters per second. Conversion to other systems is only done at the moment the
data is being stored in a file requested for the user in a specific unit system, or when
displaying data in a webpage with a specified unit system. The WXField parent class
defines an abstract method called convert () which takes a reading, and a unit system to
convert the reading to. All subclasses of WXField must implement this method. Inside
this method are two options, depending on which unit system is given. If the unit system
given is the field's most precise unit system, then the reading was given in that unit
system, so no conversion is necessary and the same reading value is returned. If the unit
system given is not the field's most precise unit, then the conversion formula, field

specific, is used to convert the reading and return a converted value.

95

The WXMonthData object represents statistics on a day-by-day basis for a whole
month. It is initialized in the same way as a WXDayData, it expects a WXLocation
object, a WXDay object, and a Source value. The WXDay object is used, but only its
month and year values are recessary, the day value is irrelevant to the WXMonthData
object. When given a Source value of WXData.SOURCE, the WXMonthData creates
WXDayData objects for al the days within the month of the WXDay object. The are
created using the WXLocation given as parameter, the current WXDay object, and a
Source value of WXData ARCHIVE. From each of these WXDayData objects, it
retrieves their WXStatRecord, through WXDayData's get st at Record() method, which
holds the relevant statistics for the day. These WX StatRecord objects are inserted into a
WX StatRecordSet object, and this comprises the data of a WXMonthData object. When
given a WXData. ARCHIVE value as Source, it merely opens the corresponding month
data file in the database structure, and builds the WXStatRecordSet and it's
WX StatRecords from the data stored in the file.

After it has retrieved its data from either source, it finds the statistical values
relevant to its Fields. It does this through the get stat () method of the WX StatRecordSet
that holds its data. This method takes three parameters; the first is the Field index, then
the statistical set of that Field from which the statistic will be calculated, and the statistic
to calculate. Bearing in mind that WX StatRecords are three-dimensional data sets, where
the first dimension is the Day, the second is the Field, and the third the Statistic data. For
example, when invoking getstat(Tenperaturelndex, WData.LON WkData.HIGH) ONn a
WXStatRecordSet, we are asking for the “Highest reading in the set of low
temperatures’. The statistics are then stored in a WX StatRecord of its own.

WXY earData is the object that stores statistical information on a monthly basis
for al the months in a year. To create one it requires a WXLocation, and WXDay
objects, and a Source Value. Only the Year field of the WXDay object is relevant. When
retrieving data from the source, it creates WXMonthData objects for every month in the

year, using the WXLocation, the corresponding WXDay object and a Source value of

56

WXData. ARCHIVE. Its own data is then populated with the individual WXMonthData
WX StatRecords, or the statistical data for every month. And then they are stored in a
WXStatRecordSet object. When retrieving data from the archive, it opens the
corresponding Y ear Datafile in the database, and reads the data from there. Its statistical
values are then retrieved from its WXRecordSet in the same way as the WXMonthData

object.

In the cases of WXMonthData and WXY earData, after the data is retrieved, it
does not go through the validating process as WXDayData does. This would be
unnecessary, since al the data it acquires from WXDayData objects are already filtered,

and statistic values never generate erroneous readings.

The WX CompiledDataClasses rely on the previous mentioned classes to gather
their data. They never manipulate the database directly, but create the necessary WXData
Objects they need. Though it is their responsibility to write their corresponding data files
into the Compiles Directory. When creating one of them, a WXLocation is needed and
two WXDay objects, the time range of data to compile. A Source value is not needed,
since there are no archived CompiledData, they are always generated upon request by the

user.

The WXCompiledReadingsData is created with a WXLocation, two WXDay
objects, and a number array with the indexes of the Fields requested. It then iterates
through all the days from the first WXDay object to the second, creating WXDayData
objects with the provided WXLocation and the current WXDay. After they are all
initialized, it calculates the relevant statistics for the Fields in the request. It must
implement its own algorithms for finding these statistics. Given that there is no
continuous series of data, rather it is segmented into several days, special functions need
to be executed to retrieve a valid representative statistic. The High statistic for instance,
needs to be found from the High reading statistic of all the WXDayData objects. The

S7

Average statistic needs to be calculated from all the readings of all the WXDayData
objects, as opposed to averaging the set of average statistic of each day.

WXCompiledDayData and WXCompiledMonthData operate in similar ways.
WXCompiledDayData creates all the WXMonthData objects within the time range of the
two WXDay objects. It then creates an empty WXStatRecordSet of its own, and
populates it with all the WXStatRecord of every WXMonthData object, disregarding
those days before and after the time range. This will give us a continuous series of data,
and allow the use of the statistic functions in WX StatRecordSet to retrieve the statistical
data. WXCompiledMonthData works the same way, using WXY earData objects to

retrieve month statistical information.

They all implement the savebata() method. It requires a Unit System, and
WXDataMOST_PRECISE is not acceptable. Whichever unit system is provided, the
data will be saved in the Compiles Directory, using the corresponding file name,

explained in the Data Structure chapter.

5.2 Web Display

All Web Display classes are embedded into Java Server Pages (JSP) files. These
are web applications that allow the Java applications to generate WebPages dynamically,
given certain parameters and user requests. Parameters will be taken from the user
through HTML web form components (text boxes, check boxes, selections, etc.). These
parameters will be passed between classes and JSP files as parameters in URLsS. This
approach allows the clients to continue making use of standard browser navigation
functions such as “BACK”, “FORWARD”, “HISTORY”, as opposed to applications that
request data by following a several-step process and in a pre-arranged order, where a
fault in one of the steps forces the user to start over [1]. All of them use the data

management classes to retrieve data from the database and generate the corresponding

58

Compiled Data files when necessary. All pages will always open links or data requests in
new browser windows, except for navigational links. This is done because researchers

often request new data, to compare with the data they are currently observing.

The Location Page is accessed through static links on the main webpage. It
expects a parameter in the URL of Locati oncode=x, Where x is a number for identifying
Locations in the database. This code is given to the WXLocation class which returns the
corresponding WXL ocation object. After the WXL ocation object is created, this page
then displays the relevant information about this Location, and the two data request
forms. The first form, the Data Request Form, can open the DayDataTable,
MonthDataTable or Y earDataTable, depending on the option selected of DataType. The
Compile Data Form, can lead the user to the CompiledReadingsTable,
CompiledDayDataTable, or the CompiledMonthDataT able.

The DayDataTable, MonthDataTable, and YearDataTable all require the same
parameters. A LocationCode, to indicate the Location from which data will be retrieved.
a pat e=xxxxxxxx iN the eight digit date representation, for the date of data to be retrieved of
the Location. This date is used as a day for DayDataTable, only the year and month fields
for MonthDataTable, and the year field for YearDataTable. A unitsystemex iS asoO
expected, where x is one of the unit system values, if none is given a default system of
British is used. Each of them then creates their corresponding Data object, which
retrieves the data they need, and then use the data in that object to display it to the user.
They aso call on their corresponding Data object savebata() method and pass their
current unit system. This creates the Data File in the Compiles Directory with the given
unit system. The DataTable object then provides the user with the link to download this

file.

CompiledDataTable pages require more parameters. They expect a Locati onCode,
and a unitsystem A startbate and Endbate, €ach of which with an eight-digit date

representation, marking the beginning and end of the time range to compile data. And a

59

comma separated array of indexes in riel ds=x, y, z, t0 indicate the indexes of those Fields
data is to be compiled for. With these parameters, they create their corresponding
CompiledData objects, which provide them with the data to display on the webpage.
They aso then invoke the CompiledData's savepata() method and save the data in the

Compiles Directory for downloading to the user if he wishes to do so.

Finally, the Graph classes are called by links on the DataTables. As usual, they
require a Locat i onCode, & Dat e, aNd @ uni t system They also need a Fi el d=x, the index of the
field for which a graph is to be generated. MonthGraphTable, and Y earDataTable, may
also expect a stat=x index. Thisisthe index of the statistical data upon which a graph will
be generated. With these parameters, they obtain the WXField class corresponding to the
index given in the riel d parameter, and call its graph generating method, which can be
the one they inherit from WXField, or one they implement themselves. These
GraphTables then display the graph image to the user along with a navigational bar to

scroll through dates, and times of data.

Chapter 6

Web Interface

This chapter presents the web interface as it is currently implemented on the
website. It describes the elements for each page, and how they are designed to facilitate
its usability.

In the article “Websites That Satisfy Users’, the authors describe websites as
browsing or information seeking. [10] Information websites are those where the user
aready has a goal of information he wishes to obtain, and the website provides him with
the mechanism for quickly obtaining his request, as in a query form, and performing the
necessary operations for displaying his requested data. Browsing sites are those more
interface-dependant where the user has not a specific data request but goes through an
overview of generalized data and navigates to and from different but related information
sites. Our goal is to provide a website that becomes a middle point between these two
forms of data sites. The user will always approach the website with a specific request of
data in mind, so the site must provide the mechanism for obtaining his request quickly,
but it should also provide the means to navigate to other Locations, Dates, Fields, after

the initial data request has been performed.

The interface was designed with the hopes of providing users with an optimum
medium for researching weather data. An interface that makes it easy for researchers to
find the data they need, with minimal time to learn how to use. It is aso oriented at
anticipating what information is relevant and important and providing it without requiring
him to request it. This has been achieved relying on important user interface notions that
make it easy to understand how the system will work and on recommendations by
weather researchers on what information is most important and would be requesting most

often.

60

61

Beginning with the LocationTable. First we provide the user with the general
information about the Location. Its name, coordinates, altitude, institution that operates it,
the time range of data. And as some important statistics, the highest and lowest recorded
temperatures for that location in both unit systems, with links to the DayDataTable of
their dates. A small map illustrates the Location in the island of Puerto Rico. Then we
have form for viewing data for a particular date. It provides fields so the user can input a
date, the unit system, and data type he wishes to view. When loading the page, the form
always has a date set to the current data, or the last date in the Location’s time range. This
makes it easier for researchers to quickly access the latest weather information. The
system always remembers the unit system the user has selected in the past and always
initializes the page with that unit system set. If it is the user’'s first visit to the site, a
default system of British is set. The default setting for Data Type is the Readings Data, as
it is the setting for viewing the latest up to the minute data. Finally, there is the Compile
Data Form. Here the user must select the Fields he wants to compile data for, the time
range of data to compile, and the unit system he wishes the data in. All of these are blank
when the page is loaded. The Data Collection type is initially set to the Readings Table,
given that it’s the most widely used setting for data compilation.

62

RESEARCH CENTER
UNIVERSITY OF PUERTO RICO AT MAYAGUEZ

lowner University Of Puerto Rico _:

ILatitlule 18°13' I

l]_,gngim[[e 57o11" | Location General
titude | Information
ata collection range October 18, 2000 - June 4, 2003 |
;owest recorded temperature 59,5 °F {15.3°C) on April 27, 2001]

Highest recorded temperature, _ _ 1059 °F (42.79C) onJune 6, 2003l

Dat a Request Form

Unit System Data Collection Type |

pay |4 & British & 10 minutes interval for day
i ' Metric © Daily summaries for manth |
I © Manthly summaries for year |
|

|
|\"EBI’ |2003

Go!

Compile data . .
Dat a Conpil ati on Form

m Unit system Data Cullection Type
[T Temperature Day MonthYear & pritish @ 10 minutes interval for day

| : : : !
[T Dew Paint Frorm: C metric © Daily summaries for month
_ UVl 4 _

l:_ Relative © Manthly summaries for year
umidity Ta: I I I
I Heat Index / /

I pressure

I precipitation
I wind Speed
:l- Wind Directian

Compile! |

I Flux Density

Figure 6-1. Location Page.

From the Data Request form, the user is taken to the DayDataTable, MonthData,
or YearDataTable. All these tables have a common header, and their data tables. These
headers display the current date of data on screen, and some important links relevant to
that data. At the top, there is a form for opening a similar page of data for another
location in the same data and current unit system. The user can select which Location to

open with a selection box, with all the Location’s installed in the database. Lower in the

63

table and properly iconized are relevant links to the data. The first is a link to open the
LocationTable page of the current Location. Next there is alink to download the CSV file
of the data on screen, which corresponds to a CSV file in the Compiles directory created
by the DayDataTable page when the data was requested. Then a link to reload the data
page in the opposite unit system. A link to open a data page of a higher order than the
page currently on screen. This means if viewing a DayDataTable page, a link to the
MonthDataTable page of the current month, in the MonthDataTable page, a link to the
Y earDataT able page. And finally, alink to the printable version of the data on screen.

RESEARCH CENTER
UNIVERSITY OF PUERTO RICO AT MAYAGUEZ

[y _a_ _a_ _u?e_ _: - ISee data for this,
| : .

1 y g e 1 I day at: j Location
1 | I | Form
June 7, 2003 | I |Ma)'aEIUBZ :I' 1
""""" I Gu!l I

Li nks L e - 1
| w0020 2w 00 =m0 e |

L) C &) =

- =N __ I
| Open location Download CSV Switch to metric View summary Printable I
I page file of this data units for June 2003 version of this |
[data I
I << Previous nNavigation Bar MNext>> "7 Today |
I June 6, 2003 June 8, 2003 June 7, 2003 |

Figure 6-2. DataTabl e Header.

Below these important links, there is a navigational bar. This bar provides links to
DayDataTable pages immediately before and after the current date. A DayDataTable
provides links to days before and after the current day, a MonthDataTable links to the
previous and following month, and a YearDataTable links to previous and following
years. These links are not activated, if the date they lead to go outside the Location’s time
range of data. There' s also alink to the actual current day, month or year if that Location

is getting real-time data.

The data table then is unique for every page. Common elements between them are
a graph bar, and a statistics bar. The graph bar provides all the possible graphs to be
generated from every field. These include full readings graphs, of all readings in the data
set, or statistical gaphs. DayDataTable only provides readings graphs for the data of its
day. MonthDataTable and Y earDataTable also provide graphs of all readings within their
time frames, and statistical graphs, such as the average temperatures for every month.
The statistics bar displays statistical information of the data in the time frame for every
field. For those statistics not supported by a particular field a blank space is | eft.

Next we have the Field headers and the data itself. It is ordered chronologically
from the top down. For every field among the data table are marked the highest and
lowest values of their data sets for those fields that are supported. These are marked by
color schemes, the lowest reading in the set marked as blue, and the highest as red. This

makes it easily identifiable to the user when a particularly important reading occurred.

Graph Selectors & Statistics Bar
Line graph | ||Line graph|||Line graph|||Line graph|||Line graph Bar graph Line graph|||Line graph)||| Line graph

line graph chart

High| 90.7 72.6 91.3 96.6 30.01 0.0 5.4 - 1615.0
Avg 80.39 69.1 70.32 82.27 29.96 = 2.08 70.1 444.6

Lowv| 701 66.32 46.05 67.2 29.89
Total = S = S S

0.0

Temperature Dew Point Ll Heat Index Pressure Precipitation Wind Speed e Flux Density

Time (°F) Cr MUY TR (inHe) (in) (mph) PETOM (umol/s/m3)
12:10 A.M. 74.1 70.3 88.2 72.8 30.0 0.0 1.37 8.87 0.0
12:20 A.M. 74.0 70.2 87.3 72.7 30.0 0.0 0.97 226.2 0.0
12:30 A.M. 74.3 70.0 86.5 73.4 30.0 0.0 0.43 1594 0.0
12:40 A.M. 74.1 70.2 88.2 72.9 30.0 0.0 0.92 0.0 0.0
12:50 A.M. 73.6 70.0 88.6 72.0 30.0 0.0 0.16 1.7 0.0

1:00 A.M. 73.4 69.83 88.5 71.6 30.0 0.0 0.5 36.88 0.0
1:10 A.M. 73.2 69.83 89.9 71.2 29.98 0.0 0.99 43.86 0.0
1:20 A.M. 73.1 70.0 89.9 70.6 29.98 0.0 0.99 98.8 0.0
1:30 A.M. 73.1 69.76 89.1 70.9 29.98 0.0 1.44 0.47 0.0
1:40 A.M. 72.8 69.71 90.4 70.3 29.98 0.0 1.15 77.1 0.0
1:50 A.M. 72.5 69.66 90.6 69.68 29.98 0.0 1.06 93.7 0.0
2:00 A.M. 72.6 69.62 89.4 70.0 29.98 0.0 1.55 96.6 0.0
2:10 A.M. 72.7 69.36 89.8 70.4 29.97 0.0 1.22 24.43 0.0
220 40 0 rlo B | L0.2 a0 .0 S0 18 20 .07 L0 e e ol L0

Figure 6-3. DayData data table.

65

10 minute 10 minute 10 minute 10 minute 10 minute 10 minute 14
intervals intervals intervals intervals intervals intervals min|
Daily lows Daily lows Daily lows Daily lows Daily lows Daily highs] |inte]

Graphs Daily averages Daily averages Daily averages ||| Daily averages ||| Daily averages || |Daily totals Da
Daily highs Daily highs Daily highs Daily highs Daily highs

Dai

hi
High 70.1 |80.77|103.3|67.34|69.57| 83.8 |64.54/88.86|96.2 | 71.7 |82.78|92.7 | 30.0 |30.05| 30.1 | 0.3 1.4 |2.79
IAvg 66.45|75.87|87.53(62.53| 67.1 |71.76|49.43|76.16(93.04/63.17|75.97|89.74(29.94|29.99|30.04 = = 1.73
Low ©3.25| 72.6 | 82.7 |57.52|63.68|67.61|32.93|65.39|77.8 |60.8 | 70.2 | 87.0 [29.86] 29.9 |29.96 = =
Total = & & & & = = & & & & & & = = 2.8

Relative Precipitation
Humidity (%) (in)

Low Avg Avg Low Avg High Avg High Low Avg High

Temperatur: Point

Index (°F) Pressure (i

Saturday 1 0 |66.73|76.04| 88.1 |64.26|67.37| 70.5 |146.85| 76.5 | 92.6 |63.03/75.93|91.1 [29.86| 29.9 |29.96| 0.0 0.0 |1.55
Sunday 2 0 |67.19|74.62| 85.3 |64.63|68.15| 71.5 |52.49|81.64| 95.6 |63.62/73.69|88.4 [29.89|29.95/30.02| 0.01 | 0.03 |1.51
Monday 3 0 |68.66|73.36| 84.9 |67.34|62.57| 71.9 |56.57|88.86/96.1 62.69(70.2 | 89.2 |29.93(29.98|30.03| 0.3 1.4 |1.13
Tuesday 4 0 |68.99|74.92|82.7 | 67.1 |68.56|71.5 |64.54|81.23|96.2 62.64/74.47|87.0|29.94(|29.97|30.03| 0.01 | 0.01 [2.03
Wednesday 5 0 |67.24|73.31| 85.6 |65.27|68.71| 74.1 |55.28|86.67|95.9 |62.54/71.07|88.9 (29.93|29.97|30.02| 0.27 | 0.73 |1.17
Thursday 6 0 |66.85|75.15/ 85.9 | 65.2 |68.61| 72.7 |55.51|81.73]95.7 |61.7 |74.03| 90.2 [29.94/29.98|30.04| 0.03 | 0.04 |1.67
Friday 7 0 |66.35/74.12| 85.1 |63.96|67.34| 74.1 |57.07| 80.8 | 94.8 |62.24/73.37|89.4 (29.94|29.98|30.03| 0.05 | 0.1 |1.49
Saturday 8 0 |64.3 |72.6|85.0 |62.59|67.62|72.9 |56.74|85.46|95.6 |60.8|71.05|88.9 [29.98|30.02|30.08| 0.17 | 0.43 |1.28
Sunday 2 0 |66.89|75.33| 85.5 |65.55| 68.6 | 71.6 |56.31|80.95|/95.9 |61.2 |74.55|90.3 [29.97|30.01|30.06| 0.0 0.0 |16
Monday 10 13 |67.87|77.3 | 89.1 |57.52|65.61|68.43|32.93|70.18| 93.8 |63.43(76.81| 90.2 |29.94(29.99|30.05| 0.0 0.0 |1.94
Tuesday 11 100 - = = = = = = = = = = = = = = = = =

Wednesday 12| 52 | 70.1 |78.72| 87.3 |61.15|65.82| 70.7 | 49.8 |65.39|77.8|71.7|81.51(92.0 [29.95|29.99|30.04| 0.0 0.0 |2.79
Thursday 13 10 [65.97|76.85| 87.4 |63.21|68.55| 72.4 |54.42|76.49|91.8 |63.46|78.53| 92.2 |29.95| 30.0 |30.05| 0.0 0.0 |1.71
P | W Fat Cc7 o o 44 L oC] co C e ool 74 0 L 4C 40 72 44 OC 2 o4 oC g 0 o2 2 90 ool o0 0 20 nC o0 o0 4 1

Figure 6-4. MonthData data table.

On Figure 6-4 and 6-5, we can see links are provided at the left hand column to
open the corresponding DayDataTable or MonthDataTable of the particular day or
month. An extra column is added in the MonthDataTable for Data Loss. Data Loss is the
percentage of data marked as invalid in the WXDayData object for that particular day
relative to the number of total readings a day should have for that particular Location.
Thisisimportant for aclient that is viewing a MonthDataTable and may encounter arare
statistic for alow or high reading in a particular field. With the Data Loss indicator, he
can ascertain whether all the data for that day was collected, which tells him/her whether
that statistic is accurate or not. For example, a “low temperature reading of the day” that
is unreasonably higher than any other day in the month; if the user notices that there is a
50% Data Loss for that day, it tells him/her that the weather station only recorded
temperature during the daylight hours, and the hours when the coldest temperatures occur
were discarded, and that lowest reading statistic was taken from the reduced set of hotter
temperatures. This explains to the user the strange statistic, and avoids necessity for any

further inquiry.

66

10 minute
intervals

10 minute
intervals

10 minute
intervals

10 minute
intervals

10 minute
intervals

10 minute
intervals

10 minute
intervals

Monthly lows Monthly lows Monthly lows Monthly lows Monthly lows Menthly Monthly
Graphs Monthly Monthly Monthly Monthly Monthly highs averages
averages averages averages averages averages Meonthly Monthly

Monthly highs || [Monthly highs | | Monthly highs | |[Menthly highs || [Monthly highs Ueledl highs
High 67.7 [77.66|108.9/64.94|70.32(|99.0(49.47|80.75(96.8 [62.37| 78.3 |99.4| 29.9 |29.99|32.15| 0.66 8.7 [1.98|157.01
Avg 64.95(76.61|95.63|60.61|68.73|84.0|41.15|78.38(96.27| 60.9 [76.8 |96.37|29.55|29.96|30.41 5 = 1.66] 31.5 4
Low 63.25(75.13| 89.0 |55.63|66.88|74.4|30.88|73.91|95.8|59.82(74.52|92.7 |28.11|29.93|30.02 = 5 =
Total - - - - - -] - - - - - - - - - 22.79

Temperature (°F) Rgltlve Pressure (inHg)
Humidity (%)

Low Awvg High Low Avg High Low Avg High Hi
January |64.46(75.13|89.4 | 61.2 |67.86/94.5| 41.9 |79.85|96.8|59.82(74.52/ 98.3 |28.11/29.98/32.15| 0.17 1.2 [1.51]157.01] 3]
February |63.25(75.87|103.3|57.52| 67.1 |83.8|32.93|76.16|96.2 [60.8 |75.97|92.7 |29.86|29.99/ 30.1 | 0.3 2.8 |1.73| 6.28 3
March 63.48|76.62| 91.9 |55.63/66.88/74.4|30.8873.91|96.0 |61.67(77.12|94.7 |29.81|29.94|30.06| 0.12 | 1.12 [1.98| 7.81 4
April 65.41|77.22]|108.9/61.55|69.97|99.0|45.68|79.81|96.5 |60.45(77.53| 98.3 |29.79|29.93|30.07| 0.66 | 8.7 [1.69]| 6.28 5
May 65.41|77.66| 91.3 |62.81|70.32|77.1|46.05|79.78|96.3 |60.31| 78.3 | 99.4|29.82|29.97|30.08| 0.32 | 6.51 [1.55]| 6.62 4
June 67.7|77.13(89.0 |64.94/70.23|75.2|49.47|80.75/95.8 (62.37|77.37/94.8 | 29.9 |29.96/30.02| 0.24 | 2.47 |1.49| 5.0 El
July = = = = = = = = = = = = = = = = = = =
August = =
September]|
October
November
December

Figure 6-5. YearData data table.

The DayDataTable displays a much larger set of records than the MonthData or
Y earData tables. For a Location with a 10-minute readings interval, the table amounts to
144 records. This causes interface problems for the user whenever the data greatly
exceeds the screen size of the computer [1]. This problem has already been addressed by
the W3C, and as solution they have set forth a standard of separating data in tables by
header, body and footer. It should allow the user to scroll through the data portion of the
table, while the rest of the page and the table header remain static. Unfortunately,
mainstream browsers have not yet implemented this. To correct this, the DayDataTable
page, repeats the Field headers bar right after the 12:00 N. record, and at the foot of the
table.

The PrintTable pages provide the client with a display of the data that is optimal
for printing. Only minimal and essential data is displayed in a colorless fashion. They
display the same data as their DataTable counterparts, and their corresponding statistics.
The statistics among the data table are marked with (H) and (L) for High and Low.

67

Maya

UEZ January 31, 2003

High 87.4 71.9 93.7 90.9 29.98 0.0 4.37 = 1600.0
Avg 74.48 67.68 80.75 73.78 29.92 = 1.28 43.27 256.53
Low 66.2 64.1 51.0 62.28 29.88 = = . =
Total = 0.0 = . =
Time Temps;ature Po[?::rl(o I':I:II':itt:l‘i’tey s dHeatoF Pr_es:ure Precipitation Sv:r:)lenecll Di::IcrI':idon Flux IDensitzy
(°F)) (%) ndex (°F)| (inHg) (in) (mph)) (umol/s/m2)
12:10 A.M. 68.85 66.99 93.4 63.85 29.96 0.0 1.17 23.67 0.0
12:20 A.M. 68.8 66.83 93.4 64.0 29.96 0.0 0.92 75.8 0.0
12:30 A.M. 68.73 66.75 93.3 63.97 29.96 0.0 0.72 48.76 0.0
12:40 AM. 68.6 66.62 93.4 63.85 29.96 0.0 0.5 28.2 0.0
12:50 A.M. 68.39 66.48 {H) 93.7 63.52 29.96 0.0 0.9 53.29 0.0
1:00 A.M.| 68.28 66.42 {H) 93.7 63.35 29.96 0.0 1.08 19.43 0.0
1:10 A.M.| 68.16 66.25 93.6 63.33 29.94 0.0 1.17 105.5 0.0
1:20 A.M.| 68.33 66.31 92.7 63.68 29.94 0.0 1.08 29.99 0.0
1:30 A.M.| 68.24 66.04 92.8 63.94 29.94 0.0 0.9 85.6 0.0
1:40 A.M. 68.0 65.93 92.8 63.52 29.94 0.0 1.26 62.06 0.0
1:50 A.M.| 68.1 65.86 92.2 63.89 29.94 0.0 0.74 35.28 0.0
2:00 A.M.| 68.07 65.7 91.9 64.11 29.94 0.0 0.72 56.88 0.0
2:10 A.M.| 68.03 65.56 91.7 64.25 29.93 0.0 1.37 54.23 0.0
2:20 A.M. 67.94 65.45 91.8 64.23 29.93 0.0 0.72 31.69 0.0
2:30 A.M. 67.78 65.38 92.2 63.95 29.93 0.0 1.4 28.96 0.0
e T o1 e et v vy o Forie P o
Fi gure 6-6. DayDataPrint Tabl e.

The CompiledDataTables share the same header as the DataTables, with the
exception of navigation bars. They all provide the same statistics bars, for the data they

compiled. No graphs for CompiledData are implemented, so there are no graph bars. The

CompiledDaySummaries and CompiledMonthSummaries each provide links to their

corresponding DayDataTable and MonthDataTable pages. Each of these pages also

provides links to their corresponding printable versions.

68

Figure 6-7. Conpil edDat aTabl es.

(2) Conpi |l edDaySunmari esTabl e,

High| 91.2 . High| 73.3 [81.17]108.9 =
Avg 78.89 49.02 Avg{ﬁg.tlﬁ 77.35/88.2 49.91
Low| 67.7 5 Low|65.41]|71.4 | 77.5 =
Total = Total| - 5 = =
e Time Temperature ("F) Temperatur : . . - °
May 27, 2003]12:10 A.M, 74.1 84.1 Avg] T [et (2
May 27, 2003(12:20 A.M. 74.2 50.18 March 27, 2003(71.4 |76.13| 85.5 57.46
May 27, 2003(12:30 A.M. 74.4 76.5 March 28, 2003 | 68.8 |75.63| 87.4 75.73
May 27, 2003(12:40 A.M. 74.5 41.69 March 29, 2003 |68.62|75.15| 85.2 38.31
May 27, 2003(12:50 A.M. 74.3 38.58 March 30, 2003 | 70.0 |77.66| 86.6 17.3
May 27, 2003| 1:00 A.M.| 73.9 33.96 March 31, 2003 |66.81|76.95| 87.6 10.39
May 27, 2003| 1:10 A.M. 73.5 18.68 April 1, 2003 |69.58|74.22| 85.7 62.11
May 27, 2003 1:20 A.M. 73.2 29.24 April 2, 2003 |69.76|76.13| 86.7 63.4
May 27, 2003 1:30 A.M. 72.8 9.62 April 3, 2003 [69.43|74.84| 85.5 57.3
May 27, 2003| 1:40 A.M.| 72.7 43.67 April 4, 2003 |67.93|76.78| 86.9 29.68
May 27, 2003| 1:50 A.M.| 72.8 35.56 April 5, 2003 | 70.5 |78.04| 89.4 62.23
May 27, 2003| 2:00 A.M. 72.7 59.89 April 6, 2003 | 73.3 [81.17|108.9| 17.85
May 27, 2003 2:10 A.M. 72.3 92.2 April 7, 2003 [72.0 |80.24| 96.9 75.9
May 27, 2003 2:20 A.M. 72.5 60.27 April 8, 2003 | 73.2 |80.46| 96.9 55.39
May 27, 2003| 2:30 A.M.| 72.7 53.29 April 9, 2003 | 72.3 |79.09| 86.4 67.81
May 27, 2003 2:40 A.M. 72.5 41.03 April 10, 2003 [68.87|77.68| 89.0 66.84
May 27, 2003 2:50 A.M. 72.1 39.05 April 11, 2003 | 70.1 | 76.5 | 87.0 70.72
May 27, 2003 3:00 A.M. 71.9 172.5 April 12, 2003 | 70.4 |78.37| 88.1 78.23
May 27,2003 3:10 A.M. 72.0 2575 April 13, 2003 |69.43/76.05/ 89.1 62.96
(1) (2)
High‘69.54 79.45/108.9 5
Av%ﬁ.‘i..‘il 76.94/92.52 46.81
Loww|60.99|74.25| 87.5 5
TLeon‘:'pe::reH(i;I:I) General Wind Direction {°)
January 2002 |62.96/76.06| B8.9 48.06
February 2002 60.99(74.25/ 89.2 48.91
March 2002 |63.32(75.42| 89.9 49.39
April 2002 |63.41|75.09| 87.5 46.16
May 2002 |66.25|/77.65|91.4 51.81
June 2002 |67.97|79.31| 93.4 49.77
July 2002 |67.51|79.31| 93.8 42.03
August 2002 |69.54) 78.6 | 92.9 46.25
September 2002 |68.99(79.45| 92.6 53.42
October 2002 |66.97|77.68| 91.5 50.32
November 2002 |67.43|76.93| 90.5 44.85
December 2002 |64.09(75.51| 90.0 47.54
January 2003 |64.46|75.13| 89.4 39.68
February 2003 |63.25|75.87|103.3 37.59
March 2003 [63.48(76.62| 91.9 44.66
April 2003 |65.41|77.22|108.9 58.59
May 2003 |65.41|77.66| 91.3 43.66
June 2003 67.7 |77.23 89.0 39.85
(3)

(1) Conpi |l edReadi ngsTabl e,

(3) Compi | edMont hSummar i esTabl e.

Graph windows are opened through the links at any of the graph bars from

DataTables. GraphTables can be of

DayGraphTables, MonthGraphTables, or
Y earGraphTables, each of which displaying data for their corresponding time frames,

fields, and/or statistics. They provide the client with a form for selecting different dates,

unit systems, Locations, and fields for which to regenerate a graph. An Options form is

also available to modify the graph at the user’s convenience, such as the image size, the

range of the y-axis, and graph gridlines. Every GraphTable page aso provides a link to

69

open the corresponding DataTable of the current date and Location. These graphs are
displayed as regular web images, so the user can save them through the web browser’s
save image option.

The graph type can be modified through their corresponding WXField class. This
allows future application operators, to provide graph types which best suit the type of
data to be displayed. This should be done by taking into consideration the structure and

type of data to be displayed; the intended use of the graph; and the information needed by
the client from the data [2].

Unit B, . 1
Date “5'::"_“ Location Field Gat|| Width 00 High[1089 Ghange
Day E # British |Hayaguaz | | Temperaturs =] HE'.I-ghtI Law I iy
Horlzental gridlines
Month |10 - Metric ; e
= Vertical gridlines
ear Eﬁm 7 Show high and low
= £ Previous Next >> Today
October 7. 2002 October 9, 2002 June 7, 2003
Tarmperaure Foadin ge for Mayaguaz on Ooaber 8, 3002
1082
1000
1.2
0.0 = -
F b 3 | 8
BOLO £ !
70.0 === _;65" - e
e
1 2 3 4 5 &8 T E 8 111121 2 32 4 5 B 7 B 5 1011
Hor
Yiew data for thisz day

Fi qure 6-8. Graph table.

6.1 Performance Tests

The main test of performance for our software is the load time of a requested data
page by a user. Factors that determine the load time are the speed of the server to perform

the software operations of data retrieval and creation of WebPages and graph images, the

70

speed of the user’s Internet connection to transfer the data into his computer, and the
loading of the webpage on his computer browser. Usually this last factor is negligible, but
when unusually large WebPages, where there are many text elements to display and

arrange, a browser can delay several seconds displaying the whole set of data.

The following tests were performed requesting data for a Location with a 10-
minute readings interval and on an Internet connection of a 56K modem. The results are
an average of 10 tries for each test. All these tests go through the following steps:

1. Retrieval of data on the server.

2. Calculations of relevant statistics on the retrieved data set.

3. Creation of webpage or graph image.

4. Download of webpage or graph image into user’s computer.

5. Display of webpage or graph image on user’s browser.

Tests results:
Day Data Page (144 records) :3.2seC
Month Data Page (31 records) 2.4 sec
Y ear Data Page (12 records) : 1.7 sec
Compiled Readings Page (10 days, 1440 records) . 6.7 sec
Compiled Day Summaries Page (50 days, 50 records) : 3.5sec
Compiled Month Summaries Page (50 months, 50 records) : 3.8 sec
Day Graph (144 readings) : 3.8 sec
Month Stat Graph (12 readings) :3.1sec
Month Full Graph (4464 readings) : 5.6 sec
Year Stat Graph (31 readings) 1 3.6 sec

Year Full Graph (52560 readings) 1 7.3 sec

Chapter 7

Conclusions

The developed application has been implemented and successfully executed over
the past year in the UPR’s Climate Department server. Currently it has acquired archived
data from nine Locations throughout Puerto Rico and receives real-time data from our
local weather station, which is displayed in real time at our website.

The database is available on the web server. Using the file structure outlined in
Chapter 2, third party institutions have access to the database. This database is updated
every 10 minutes, so users can retrieve the latest data and incorporate it into their

databases and applications, in an automated fashion.

Through the web interface, users have at their screens an easy to use and
understand interface for retrieving data they need. This interface provides them with the
relevant information about the location, and the tools to select and request or compile the
particular type of data they are looking for. The data pages serve to display the requested
data in a design that also points out the relevant statistics most users would also be
interested in. Through the use of representative icons he can aso quickly retrieve other
information regarding the data he is currently viewing. These data can also be

downloaded and used at their convenience.

With the data compilation tool, users have a mechanism for retrieving the specific
data they need. They can select the time range of data desired along with the Fields for a
particular Location. These data is then provided in a continuous data table, which can be
downloaded and manipulated for their interests. This saves them the task of retrieving all
the individual data files and the compiling them himself together.

71

72

Users also have the option to view and navigate through the data in visua form
with charts and graphs. This enhances the study of data by providing a quick view of the
states of the particular weather Field. These charts and graphs can be downloaded as

regular web images for other uses by researchers.

7.1 Future Work

Having implemented this system and made it available to the public on the
Internet, the tasks left to are to continue expanding the software to include more locations
and more data, and to improve on the features for helping researchers study weather data.
Currently our locations are limited to Puerto Rico, yet the system can be adapted to
include other locations throughout the world if other organizations agree to share their
data.

One feature desired by users is a mechanism for Data Comparison. Users at the
site should have the ability to group data tables from different locations and/or dates into
one table or data file. This would greatly allow researchers to study weather phenomena
and its effects on different locations. This data comparison feature should come with all

its corresponding interfaces, data tables, graphs, and data files.

A mapped display of statistical data. It would be of importance to display some
statistical value for fields for several locations laid over a map of a region. It provides
users with a better view of weather behavior and its effects over a particular geographical
area. This could be done making use of the Location’s geographical coordinates already

stored as part of itsinformation file.

10.

Bibliography

Burton, C. and Johnston, L. 1998. Will World Wide Web User I nterfaces be Usable?
Computer Human Interaction Conference. Proceedings 1998. 1998 Australasian , 30
Nov.-4 Dec. 1998 p: 39 —44.

Doumont, J. and L. Vandenbroeck. March 2002. Choosing The Right Graph.
Professional Communication, |EEE Transactions on. 45(1): 1-6.

Eckel, Bruce. 2002. Thinking in Java 3¢ edition. Prentice Hall PTR, USA.
Harold, Elliote Rusty. 1999. XML Bible. IDG Books, USA.

Hong Su, Kramer, D., Li Chen, Claypool, K. and Rundensteiner, E.A. 1-2 April 2001.
XEM: Managing the Evolution of XML Documents. Research Issues in Data
Engineering. 2001 Proceedings. Eleventh International Workshop. p: 103-110.

Jingyu Hou, Y anchun Zhang and Kambayashi, Y. 2001. Object Oriented
Representation for XML Data. Cooperative Database Systems for Advanced
Applications. CODAS 2001. The Proceedings of the Third International Symposium.
p: 40 —49.

Jun Wen, Rui Zhang and Xianliang Lu. 4-5 Nov 2002. The Design of Efficient XML
Document Model. Machine Learning and Cybernetics. Proceedings. 2002
International Conference. vol 2. p: 1102 -1106.

Mak, E.H.C., Chan, S.S.M. and Qing Li. 6-8 Nov 2002. XML vs. Object-Oriented
XML: Motivations, Applications, and Performance Evaluations. Cyber Worlds,
2002. Proceedings. First International Symposium. p: 371 -377.

Mueller, A., Mundt, T. and Lindner, W. 2001. Using XML to Semi-automatically
Derive User Interfaces. User Interfaces to Data Intensive Systems, 2001. UIDIS
2001. Proceedings. Second International Workshop. p: 91 —95.

Ping Zhang, Small, R.V., von Dran, G.M. and Barcellos, S. 1999. Websites That
Satisfy Users: A Theoretical Framework for Web User I nterface Design and
Evaluation. System Sciences, 1999. HICSS-32. Proceedings of the 32" Annual
Hawaii International Conference. Volume: Track2, p: 8 pp.

73

11.

12.

13.

14.

15.

16.

74

Pokorny, Jaroslav. 2000. XML Functionality. Database Engineering and
Applications Symposium, 2000 International. p: 266 — 274.

Renner, A. 2-6 April 2001. XML Data and Object Databases: The Perfect Couple?
Data Engineering, 2001. Proceedings. 17th International Conference. p: 143-148.

Roy, J. and Ramanujan, A. March-April 2001. XML Schema Language: Taking
XML to the Next Level. IT Professiona , 3(2): 37 —40.

Sangho Ha and Kyoungrea Kim. 12-16 June 2001. Mapping XML Documentsto the
Object-Relational Form. Industrial Electronics, 2001. Proceedings. ISIE 2001. IEEE
International Symposium. Vol: 3. p: 1757 -1761.

Soreide, N.N., Sun, C.L., Kilonsky, B.J., Denbo, D.W., Zhu, W.H. and Osborne, J.R.
5-8 Nov 2001. A Climate Data Portal. OCEANS, 2001. MTS/IEEE Conference and
Exhibition. Vol: 4. p: 2315 -2317.

Torngvist, A., Nelson, C. and Johnson, M. 16-18 June 1999. XML And Objects-the
Future of The e-forms on the Web. Enabling Technologies:. Infrastructure for
Collaborative Enterprises, 1999. (WET ICE '99) Proceedings. |EEE 8th International
Workshops. p: 303 -308.

Appendix A

Programmer’s Manual

A.1 Setting up the application

The software package comes in a bundle of java classes. To run the application
the installation of the Java Runtime Environment is required. It is available for download
a Sun’s website (java.sun.com). To modify the software or add Locations and Fields, it is
necessary to download the Java Standard Development Kit (JDK) also available at Sun’s

website.

After installing both of these packages, and properly configured them to allow the
execution of java applications, the software can be copied onto the host computer. It can
be copied into any directory of the host computer, if installing on a web server, it should
be installed into a directory accessible to users from the internet and given privileges to

read and write into the records directory.

Next, the main operating class of the application needs to be written. This classis
called InteractiveW X. In it are declared the Records and Compiles directories. This class
can also be used to operate the automated functions of the application and executed from
there. Access to these directories should be placed under get methods named below.

Sample Code A-1 gives us an example of how it should look:

class Interacti veWK {

public static file getRecordsDirectory() {
return new File(“C\\Records\\”);

}

public static file getConpilesD rectory() {
return new File(“C \\Records\\Conpiles”);
}
}

Sampl e Code A-1. Declaration of Records and Conpiles directories in Interacti veWK cl ass

75

76

The application is now ready to be used. At this moment however there are no
Locations set up in the system. The next section covers how to add these Locations into
the database. There is also several Fields provided with the software that most climate
data support, if there is data for fields that are not supported they should be added as well.

A.2 Adding a Location

A Location needs to have its own corresponding Location class. We should first
give it arepresentative name for it. The class must also extend the WXL ocation class and
implement the methods declared by it in order to be recognized by the application as a
valid Location. Working on the Location at Mayaguez we could create a class as
described in Sample Code A-2.

cl ass Mayaguez extends WKLocation {

}

Sanpl e Code A-2. Location class declaration.

A constructor method should then be written for the class. This constructor should
assign a keyword for the Location, making sure that it is a unique keyword for al the
implemented Locations. The indexes for the supported classes must be given a unique
value different than -1. A value of -1 for a Field index indicates the Location doesn’'t
support that Field. Each field index needs to be given a distinct value in consecutive
orders, since these indexes will be used to identify data fields from data sets. These field
indexes are declared in the WXLocation class and inherited into our current Location
class when extending it. The constructor for our Mayaguez Location is declared in
Sample Code A-3.

77

cl ass Mayaguez extends WKLocation {

public Mayaguez() {
KeyWrd = “nayaguez”
Pressur el ndex =
Rel ati veHum di tyl ndex =
DewPoi nt | ndex =
W ndSpeedl| ndex =

Sanpl e Code A-3. Location class constructor declaration.

Next we need to write the Location’s time interval function. This function returns
the time interval of readings for that Location in minutes. Given that a Location can
change intervals of readings in the course of its time range, it expects a WXDay object of
the data when the readings interval is sought. If it has always maintained a constant

readings interval, the WXDay object can be ignored.

cl ass Mayaguez extends WXLocation {
publi c Mayaguez() {

}

public getReadi ngslnterval (WKDay Day) {

return 10;

Sanpl e Code A-4. Location class constructor declaration.

Then the most important function in the Location class is the method for
retrieving data from its source. This method takes as parameter the WXDay object of the
day for data requested and should return the data in a WXRecordSet object. It will access
the weather station or the third party database and retrieve the data in the format they
store it. It should then convert the data into the accepted format of the Data Management
classes and properly organize it into its corresponding WXRecord objects and return the
WXRecordSet with al the records.

78

cl ass Mayaguez extends WKLocation {

public Mayaguez() {

public int getReadingsinterval (WKDay Day) ({

publ i c WKRecor dSet get Readi ngsFronfSour ce(WKDay Day) {

}

Sampl e Code A-5. Declaration of Location™s function for retrieving data fromthe source.

This Location class is now ready to be included into the application. It should
now be registered into the WXLocation class as one of the Location’s available in the
database and assigned a LocationCode value. These Location codes are declared in the
WXL ocation class, in a segment that should look like Sample Code A-6.

cl ass WXLocation {

public static final int MARI CAO
AGUADI LLA = 1

Sanpl e Code A-6. Location codes in WKLocation class.

We then add another entry for the Location we've just created.

cl ass WKLocation {

public static final int MARI CAO
AGUADI LLA
MAYAGUEZ

Sanpl e Code A-7. Entry of new class into the Location codes Tist.

79

We must then associate that Location Code to the Location class we've just
created. This is done in the Location’s get Location() function. This function takes as

parameter a Location Code and should return the corresponding L ocation object.

cl ass WXLocation {

public static final int MARICAO =
AGUADI LLA
MAYAGUEZ = 2;

o
= o

public static WKLocation getlLocation(int LocationCode) {
switch (LocationCode) {
case MARICAO : return new Maricao();
case ACUADI LLA : return new Aguadilla();
}

return null;

Sanpl e Code A-8. GetLocation() nethod i n WKLocation cl ass.

Into this method, we then add the new Location:

cl ass WKLocation {

public static final int MARI CAO
AGUADI LLA
MAYAGUEZ = 2;

no
= o

public static WKLocation getLocation(int LocationCode) {
switch (LocationCode) {
case MARICAO : return new Maricao();
case AGUADI LLA : return new Aguadilla();
case MAYAGUEZ : return new Mayaguez();
}

return null;

Sanpl e Code A-9. Entry of new Location into getLocation() nethod.

The Location is now ready to collect data. It is recommended that the Location’s
saveLocationinfo() method is caled to create the Location’s data directory within the

Record directory (using its keyword) and its XML data file. The XML data file will have

80

al the corresponding tags for the location data, but they will all be empty. The user can
now input into them the Location’s information, such as its name, the coordinates,

organization that operates it, etc.

Adding a Field

To implement afield that is not currently supported by the system it needs its own
class, which extends WXField and implements the functions declared into it. We first
create our Field class and make it an extension of WXField, as shown in Sample Code A-
10.

cl ass Tenperature extends WKField {

Sanpl e Code A-10. Field class declaration.

Then we declare the overall relevant statistic of the Location for this field. Thisis
the data which is to be saved into the Location's XML Datafile.

cl ass Tenperature extends WKFi el d {

private doubl e H ghest Readi ng,
Lowest Readi ng;

private WKDay H ghest Readi ngDay,
Lowest Readi ngDay;

Sanpl e Code A-11. Field class relevant statistics declaration.

These statistics need to be written to and read from the Location’s XML Data file.
This is done through the Fields writei nfo() and readinfo() functions. Each of which take a
XMLDocumentHandler object, and should use its interface to read and write its data into
thefile.

81

cl ass Tenperature extends WKFi el d {

public void witelnfo(XM.DocurmentHandler) {

}

public void readlnfo(XM.DocumentHandl er) {

}

Sanpl e Code A-12. XML infornation handl er nethods.

The Field’ stitle or name is retrieved through aget Tit1 e() function. Thisisthetitle

that will be used at al tables when naming a column of data.

cl ass Tenperature extends WKFi el d {

public String getTitle() {
return “Tenperature”;

}

Sampl e Code A-13. Field s Title nethod.

After the Title, we also need the units in which the data for this field is measured
in. The Data Management classes retrieve this through the Field's getUnit() method,
which takes as parameter the unit system desired, as one of the values declared in
WXData. An entry for WXDataMOST_PRECISE should also have its entry in this
method, it should return one of the Metric or British units, depending on which system is

most precise for this Field.

82

cl ass Tenperature extends WKFi el d {

public String getUnit(int UnitSystem) ({
switch (UnitSystem) {
case WKData. METRI C ©return “°C;
case WKDat a. BRI TI SH Doreturn “°F;
case WKDat a. MOST_PRECI SE : return getUnit(WData. BRI TI SH);
}

return null;

Sanpl e Code A-14. Field s unit nethod.

Aside from providing these units, this Field must also be able to convert a reading
from one of these unit systems to another. This must be done in the Field’s convert()
method, which takes as parameters a reading and a unit system to convert the reading to.
The Data Management classes always work with readings in their most precise unit
systems, so this method should only convert readings if a unit system is provided that is
no the Field’'s most precise unit system. Since the given data will already be in that type
of system.

cl ass Tenperature extends WKFi el d {

public double convert(double Reading, int UnitSystem) {
if (UnitSystem == WKData. METRI C)
return (Reading — 32) * 5/09;
el se
return Reading;

Sanpl e Code A-15. Field s convert nethod.

As we can see in the example, given that this Fields most precise unit system is
WXData.BRITISH, it will always receive its Reading value in the British unit system, so

83

if areguest is made to convert it into a British unit system, no conversion is necessary.
This explains why a mathematical operation need only be performed in the case that the
unit system to convert the reading to is of WXDataMETRIC.

Finally, this Field needs to identify to the Data Management classes, for which
statistics it supports. This is done through a hasstat () method. It requires as parameter
one of the statistical indexes, declared in the WXData class, and returns true or false
depending on whether this Field supports that statistic.

cl ass Tenperature extends WKFi el d {

public bool ean hasStat(int Statlndex) {
switch (Statlndex) {
case WKDat a. LOW
case WKDat a. AVG
case WKData. H GH :
return true;

}

return fal se;

Sanpl e Code A-16. Field s hasStat nethod.

In this case, the statistics implemented by temperature are low, average and high.
These are the statistics that have their entry in the hasStat method, for which will return
true if provided any of their statistical indexes. A Statindex of WXData. TOTAL, would

not have any entry in the hasStat method and would return false in this case.

This Field is now ready to be used by the application. It must first be registered as
a possible field for any Location in the WXLocation class. Here is where al the field
indexes are declared in a segment of code like the one illustrated in Sample Code 3-7.

cl ass WKXLocation {

public int DewPointl ndex = -
Pr essur el ndex = -
Rel ati veHum dityl ndex = -
W ndSpeedl| ndex = -
W ndDi r ect i onl ndex = -

[S N = =

Tenper at ur el ndex = -

Sanpl e Code A-17. Declaration of Field indexes in WKLocation class.

It must also be registered into the WXLocation'sinitial i zeFi el ds() method. Here,
the Location iterates through all the Field indexes to find those supported by the
Location. It then builds the Fields array for the Location and creates the corresponding
field object to populate that array.

85

cl ass WKLocation {

private void initializeFields() {
int FieldsCount = O;

if (DewPoi ntl ndex = -1) FieldsCount += 1,
if (Pressurel ndex = -1) FieldsCount += 1,
if (RelativeHum ditylndex !=-1) FieldsCount += 1;
if (WndSpeedl ndex I=-1) FieldsCount += 1;
if (WndDirectionl ndex = -1) FieldsCount += 1;
if (Tenperaturel ndex I=-1) FieldsCount += 1;
Fi el ds = new WKFi el d[Fi el dsCount 1];
if (DewPointl| ndex = -1) Fields[DewPointlndex] = new DewPoi nt();
if (Pressurel ndex = -1) Fields[Pressurelndex] = new Pressure();
if (RelativeHum ditylndex !=-1) Fields[RelativeHunm ditylndex] = new
Rel ati veHum di ty();
if (WndSpeedl ndex I=-1) Fields[WndSpeedlndex] = new W ndSpeed();
if (WndDirectionl ndex I=-1) Fields|] WndDirectionlndex] = new
W ndDirection();
if (Tenperaturel ndex I=-1) Fields[Tenperaturelndex] = new Tenperature();
}
}

Sanpl € Code A-18. Entry of new Field |r:T(!1§th|dtho WKLocation class initializer elds()
After thisis done, the Field is ready to be used by any location. What is left is to
register this field into those locations that will support it. As described in Section 2, thisis
done by assigning its Field index a value different than —1. In the Mayaguez class created
in Section 2, the new entry would be added as shown in Sample Code A-19.

86

cl ass Mayaguez extends WKLocation {

public Mayaguez() {
KeyWrd = “nmayaguez”
Pressur el ndex =
Rel ati veHum di tyl ndex =
DewPoi nt | ndex =
W ndSpeedI ndex =
Tenper at ur el ndex =

PR O

Sanpl e Code A-19. Entry of new Field index into Location class.

The operator must then modify the get Readi ngsFronsour ce() method to now also
retrieve the data for the new Field and properly organize it in the WXRecordSet that it

returns.

Implementing a Quality Control Algorithm for a Field

Quality Control is performed by the Field’s validate() method. This method is
implemented in the WXField superclass. It takes a WXRecordSet as the data to validate
and the only validation it doesisto discard al those readings not within the Field’s range
of valid readings. This range of valid readings is written in the Location's XML Datafile
for those Fields that do not have afixed range. These can be Fields such as Temperature,
or Pressure, where arange of valid readings can be adequate for one Location, but not in
another where the temperature or pressure is generally higher or lower. Fields such as
wind Direction however have a fixed range of readings (0 to 359.99), as it doesn't
change no matter the location. Others have only one flexible side of the readings range,
like Wind Speed, where wind speeds can vary from one location to the other, yet the
lowest possible value is always 0.

Subclasses of the WXField class, the specific Field classes, can override this

method. To implement a Field specific quality control algorithm, the operator needs only

87

to rewrite the validate() method in the Field class and implement the algorithm into the
software code. This algorithm should discard erroneous readings by replacing their value
in the WXRecord with a WXDataINVALID_READING vaue. The Data Management
classes need no modification to use the newly implemented algorithm, as they always call
on the Field’'s validate() method, which if not implemented, uses the one inherited by
WXField.

Overriding the validating method from WXField means that only the one
implemented in the Field class is used. It is recommended that it also call on the
superclass’ validate method to discard the readings outside the valid reading range as
shown in Sample Code A-20.

cl ass Tenperature extends WKFi el d {

public void validate(WKRecordSet Data) {
super.val idate(Data);

/1 Quality Control Algorithm

return Data;

}

Sanpl e Code A-20. Overriding the validate nmethod of WKFi el d.

Changing a Graph for a Field.

Graphs are generated at the WXField class. All graphs generated here are typical
line graphs. It provides several methods for displaying different types of graphs. These
methods are:

getDayGraph(). For generating graphs for readings in one day of data.
getMonthFullGraph(). For generating a graph for all the readings in one month.

88

getMonthSatGraph(). For a graph of statistical data for each day in the month.
getYearFullGraph(). A graph for al the readingsin a year.
getYear SatGraph(). Statistical data for each month in the year.

Each of these methods takes in different parameters depending on the type of
graph. They all require a WXDay, a Location object, a Field index for the field they are
to draw a graph from. The Stat graphs require a statistical index as well. They each then
retrieve the data they need, through the classes in the Data Management component and
generate the graph in a Bufferedlmage object. Which later on is converted to a JPG image
file and stored in the Compiles directory before it is displayed on the GraphTable page.

For an operator to implement a unique style of chart or graph for a Field he needs
to override the methods for the graphs he wishes to change. Inside the method he must
retrieve the data required, create the Bufferedimage object, and use the JDK’s Graphics
interface to draw the graph elements on the Bufferedimage. Then return this

Bufferedlmage with the graph to the calling class.

Appendix B

User’s Manual

B.1 Location Page

The user arrives at this Location page through any of the links provided at the
website’'s homepage. This page provides important information about the current
Location and from here the user can retrieve any table of data or compile a data set. To
retrieve these data, he/she needs to fill out the displayed forms for data request or data

compilation.

At the top is displayed relevant information about the Location. First the Owner,
thisis the person or institution that operates the weather station and provides us with their
data. Next are the geographical coordinates of the Location. The altitude of the Location
over sea level in the unit provided. The Data Collection Range are the dates of the first
and last record of data for this Location. The user must always request data within this
time frame. Anything before or after this time frame will simply display empty pages of
“not available” data. Finally, two important statistics are the Highest and Lowest
temperature readings of that Location, in British units and Metric in parenthesis. Next to
them, the dates of when those readings occurred and a link to open a DayDataTable of
that date.

Next, the user has the “Go To Date” form. From here he can request any data
table. The date is entered in the textboxes labeled “Day”, “Month”, and “Year” under the
“Date” heading. If the user wishes to request a MonthDataTable, the “Day” entry can be
ignored. For a YearDataTable only the “Year” entry is relevant. Next he chooses the unit
system to view the data by selecting one of the British or Metric options. Finaly, a Data
Type. The first option is to view a DayDataTable of al the readings for the date entered

89

90

in the Date form. It is labeled by the readings interval of that particular Location, for the
latest date in the time range. The second option are the daily statistics for the month

entered, and the third are the monthly summaries for the year in the “Year” textbox.

Finally, by clicking on the “Go!” button, or by pressing the “Enter” key, a new
window is opened with the requested data.

RESEARCH CENTER
UNIVERSITY OF PUERTO RICO AT MAYAGLEZ

e

e

|V ‘:‘_vagi'j'ez"".

RN
ey

ol

L)
% Mayaguez

Owner University Of Puerto Rico

Latitude 1813

Longitude 67711

Altitude

Data collection range Cctober 18, 2000 - June 4, 2003

Lowest recorded temperature E£9.5 °F {15.3°C) on April 27, 2001

Highest recorded temperature 108.9 °F (42.7°C) on June 6, 2003
Go to date

Unit System Data Collection Type

Day |4 @ British © 10 minutes interval for day
. C Metric € Daily summaries for month
I6 © Monthly summaries for year

Vear 2003 Go!

Compile data

Unit system Data Callection Type

[T Termperature Day Month Year @ pritish © 10 minutes interval for day

[T Dew Paint Frarm: I I I © Metric © Daily summaries for maonth
! /!

[T Relative ' Monthly summaries for year
Hurnidity To: I I I
T Heat Index / !

[T Pressure

[Precipitation
M wind Speed
T wind Direction

[T Flux Density Compile! |

Figure B-1. Screenshot of Location Page

91

At the bottom of the page is the Compile Data form. This is the form that allows
the user to compile a set of data for a given time range, and fields, in a single continuous
time series. On the left is alist of Fields that the Location supports. The user must select
at least one of these fields to compile data for. Next is the time range selection form. The
time range is provided by entering the two dates in the “From” and “To” date forms. Next
the user must select one of the two unit systems. And finally the data collection type. The
first option Hill display al the recorded readings & the Location’s time interval for the
given time range. The second option gives daily summaries of the statistics for the
selected Fields on all the days in the time range. Monthly summaries is retrieved with the
third option. The data is retrieved and displayed in a new window by pressing the

“Compile!” button.

Given that data compilation can produce excessive amounts of data request which
can overwhelm the web server, limits on the extent of time ranges have been set. This
also protects the server from an erroneous input from the user in the time range. Currently
there is a 50 day limit for compiled readings, a 500 day limit for daily summaries, and a

500 month limit for month summaries.

B-2. Viewing Data Pages

After entering the requested data on the “Go to date” form, clicking the “Go!”
button brings up a data page. The kind of data page will correspond to the “Data page
type’ option selected on the “Go to date” form. All these data pages share several

sections in common: A data header, a navigation bar, a stats bar, and the data table.

The data header displays information about the data requested and options to
modify its display. At the top is displayed the Location’s name, and the date of the data
retrieved. A selection box of available Location’s is provided to open a new data page of

the current date for another location. The first element in the lower optionsisalink to the

92

Location page. Thisis provided in case the user has navigated into the current data page
from a data page of another Location. Next there is alink to download the CSV file of the
data on the page. This file can be easily imported into mainstream spreadsheet
applications such as MS Excel. The following option allows the user to switch the unit
system the data page is displayed in to the aternate system currently set. The next option,
not available on the Y ear Data page, opens a new data page of a higher time level than
the current page. This means, on a Day Data page it opens a Month Data page for the
current month; and on a Month Data page, a Y ear Data page for the current year. Finally

isalink to ablack and white version of the data more suitable for printing.

WIESEEE R - 'y
RESEARCH CENTER sy \
UNIVERSITY OF PUERTO RICO AT MAYAGLEZ -‘N"‘

See data for this

Mayaguez day at:
June 7, 2003 |Mayaguez 'I

¢ B K

Open location Download CSV Switch to metric View summary Printable
page file of this data units for June 2003 version of this
data
<< Previous Next > Today
June 6, 2003 June 8, 2003 June 7, 2003

Fi gure B-2. Screenshot of Data Header

At the bottom of the header is a navigation bar. These links take the user to other
data pages of the same type and Location at different dates. The first two are links to the
immediately previous and next time units. These are days for Day Data pages, months for
Month Data pages, and Y ears for Y ear Data pages. The last isalink to the actual current
day, month or year. Any of these links will be disabled if the date they lead to are not

within the Location’ s time range of data.

93

The datatable is particular for every data page type. At the top is a graphs section.
Where links to all the available graphs for every field are provided. Clicking on these
links opens a new window with the requested graph image. Below is a statistics section,
with al the relevant statistics for every field calculated from the data set in the data table.
Invalid reading markers are placed where a particular Field does not support a statistic.
Finally, there is the data. The files indexes are at the left-hand column, ordered by time,
day, or month depending on the data page type. In the case of Month Data and Y ear Data
pages, these indexes are also links to the Day Data or Month Data page of the date they
display. Specia statistics such as the highest and lowest reading in the data set are
highlighted in the data areain red and blue accordingly.

Line graph | ||Line graph|||Line graph|||Line graph|||Line graph Bar graph Line graph|||Line graph||| Line graph

line graph chart

High 90.7 72.6 91.3 96.6 30.01 0.0 5.4 = 1615.0
Avg 80.39 69.1 70.32 82.27 29.96 5 2.08 70.1 444.6
Low| 70.1 66.32 46.05 67.2 29.89 5 g g 5
Total = = = = = 0.0

Temperature peiaiies Heat Index Pressure Precipitation Wind Speed _Wmf:l
Direction

Flux Density

Humidity (umol/s/mz2)

(°F) (°6) (°F) (inHg) (mph)

12:10 A.M. 74.1 70.3 88.2 72.8 30.0 0.0 1.37 8.87 0.0
12:20 A.M. 74.0 70.2 87.3 72.7 30.0 0.0 0.97 226.2 0.0
12:30 A.M. 74.3 70.0 86.5 73.4 30.0 0.0 0.43 15.94 0.0
12:40 A.M. 74.1 70.2 88.2 72.9 30.0 0.0 0.92 0.0 0.0
12:50 A.M. 73.6 70.0 88.6 72.0 30.0 0.0 0.16 1.7 0.0
1:00 A.M. 73.4 69.83 88.5 71.6 30.0 0.0 0.5 36.88 0.0
1:10 A.M. 73.2 69.83 89.9 71.2 29.98 0.0 0.99 43.86 0.0
1:20 A.M. 73.1 70.0 89.9 70.6 29.98 0.0 0.99 98.8 0.0
1:30 A.M. 73.1 69.76 89.1 70.9 29.98 0.0 1.44 0.47 0.0
1:40 A.M. 72.8 69.71 90.4 70.3 29.98 0.0 1.15 77.1 0.0
1:50 A.M. 72.5 69.66 90.6 69.68 29.98 0.0 1.06 93.7 0.0
2:00 A.M. 72.6 69.62 89.4 70.0 29.98 0.0 1.55 96.6 0.0
2:10 A.M. 72.7 69.36 89.8 70.4 29.97 0.0 1.22 24.43 0.0
290 A M 771 A0 D an a AO 1R 70 07 nn 1172 SR A nn

Figure B-3. Screenshot of Data Table

B.3 Compiling data

Data is compiled by filling the “Compile Data” form in the Location page. It is
necessary to select at least one Field of those available for that Location. Then providing
the time range of data to compile, by entering the start and end date of the time range. A

unit system to view the data is selected and one of the Data Type options.

94

The Data Type options correspond to the Day Data, Month Data and Year Data
pages available through the “Go To Date” form. The first option, will retrieve all readings
for the selected fields at the Location’s readings interval for all dates in the provided time
range. The “Daily summaries’ option brings up the daily summaries, the statistical data
for every day and the selected fields, for all the day in the time range. “Monthly
summaries’ retrieves the statistical data for the selected fields for every month in the time

range.

All Compiled Data Pages display a header similar to the Data Pages. They display
the Location name, and an option to compile data for the same time range at another
Location. They also provide links to open the Location page, download the compiled data
in a CSV file, switch to the aternate unit system, display the data in a printer friendly
version, and to compile the data at a higher time level than the current one. This meansin
the Compiled Readings Page, an option to view the Daily Summaries for al the days in

the current time range. There is no navigational bar in Compiled Data Pages.

Below the header is the data table. At its top are statistics for the selected fields
calculated from the data set in the requested time range. Statistics not supported by a

particular field are marked with an invalid reading marker.

95

High| 73.3 [81.17|108.9 S

Avg|69.46|77.35| 88.2 49.91
Low|65.41(71.4 | 77.5 =
Totall - S S S

Temperature (°F)

General Wind Direction (°)

Low Awvg High

March 27, 2003 | 71.4 [76.13| 85.5 57.46
March 28, 2003 | 68.8 |75.63| 87.4 75.73
March 29, 2003 |68.62(75.15| 85.2 38.31
March 30, 2003 | 70.0 |77.66)| 86.6 17.3
March 31, 2003 |66.81|76.95) 87.6 10.39
April 1, 2003 |69.58|74.22| 85.7 62.11
April 2, 2003 |69.76|76.13| 86.7 63.4
April 3, 2003 |69.43|74.84| 85.5 57.3
April 4, 2003 |67.93|76.78| 86.9 29.68
April 5, 2003 | 70.5 |78.04| 89.4 62.23
April 6, 2003 | 73.3 |81.17/108.9 17.85
April 7, 2003 | 72.0 |80.24| 96.9 75.9
April 8, 2003 | 73.2 |80.46| 96.9 55.39
April 9, 2003 | 72.3 |79.09| 86.4 67.81
April 10, 2003 |68.87|77.68| 89.0 66.84
April 11, 2003 | 70.1 | 76.5 | 87.0 70.72
April 12, 2003 | 70.4 |78.37| 88.1 78.23
April 13, 2003 |69.43|76.05| 89.1 62.96

Figure B-4. Screenshot of Conpiled Data Table

The compiled data is then displayed ordered by date and time. The left hand
column is the date index. In the case of Compiled Readings page, there is a column for
the date and one for the time of day within that date. For daily summaries thereis only a
date column, which also serves as links to Day Data Pages for the date they represent.
And for monthly summaries, only the month is displayed with alink to its corresponding
Month Data Page. Statistics highlighted in the data table correspond to the highest and
lowest value in their data set, marked as red and blue respectively.

B.4 Viewing graphs

96

A graph is displayed by clicking on any of the corresponding graph links for a
Field on a Data Page. All graphs have a distinct interface, which allows the user to
navigate between Locations, Fields and Dates and quickly retrieve more desired graphs.
Thisis achieved using the “Jump to” form at the top of the Graph Page. This form allows
the user to input a different date, location, or field and retrieving the new graph by
pressing the “Go!” button.

| oOptions
Date 5:15::“ Location Fialel Got ||| width oo High [1089] Change
Davy F Lo Bl'it!sthayagqu leamparamrE j Height B00 | low (9.5

R Horizental gridlines

10 Mekric
HMonth I_ i F vertical gridlines

Year [2002 7 Show high and low
<< Pravious Next == Today
October 7, 2002 October 9, 2002 June 7, 2003

Tamperatu re readings for Mayaguez on Ooaobaer 8, 20032
10B.3

L0

912
0.0 =

LiRRE]

o 0.8

R

121 2 3 4 5 B F B 3 1011 121 ¢ 3 4 %5 & 7. B 9 111
Hour
View data for this day

Fi gure B-5. Screenshot of Graph interface

The “Options” form allows the user to change some visual elements of the graph
image. The size of the image can be modified by entering new dimensions (in pixels).
The Y-Axis can also be modified by changing the graph’s High and Low values. And
other visualization options can be set or unset, such as gridlines, and displaying important
statistics on the graph image. These settings don’t apply to all types of graphs. The graph
is redrawn with new changes by pressing the “Change” button.

It should be noticed that the “Jump to” and “Options’ forms are independent of
each other. A change in the date field will not be applied if the “Change’ button is

97

pressed. Likewise a change in the Y-Axis field for example will not be reflected on the
graph image by clicking “Go!”. If a user wishes to change the graphs date and
visualization, he must first enter the desired options, click “Change’, and when the new

graph is loaded, enter the new date he needs, and click “Go!”.

Below these forms is a navigational bar. The links correspond to the graph’s time
level. If viewing a graph for a day’s readings, the links will lead to the next and previous
day, and they actual current day. For a graph of daily statistics for a month, the links lead
to previous, next and current months. These links are disabled if the date they represent

are not in the Location’s time range.

Finally, there is the graph image. This is the JPG image produced by the Field's
corresponding getGraph() method. They will vary from Field to Field, and not all options
setting are applicable. In the case of a Wind Rose for instance, the gridlines options are
irrelevant to the graph’s visualization. The graph images can be downloaded into the
user’s computer easily by using the browser’s save image mechanism. In MS Explorer
and Netscape Navigator, it can be done by right-clicking on the image itself, and
selecting the “ Save picture as...” option.

