

Interactive Weather Station Data Display Through The Internet

By
Francisco Javier Espaillat Valcárcel

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE
in

COMPUTER ENGINEERING

UNIVERSITY OF PUERTO RICO
MAYAGUEZ CAMPUS

2003

Approved by:

____________________ __________________
Dr. Amos Winter, Ph.D. Date
Member, Graduate Committee

____________________ __________________
Dr. Néstor Rodríguez, Ph.D. Date
Member, Graduate Committee

____________________ __________________
Dr. Ramón Vásquez, Ph.D. Date
President, Graduate Committee

____________________ __________________
Dr. Eric Gamess, Ph.D. Date
Representative of Graduate Studies

____________________ __________________
Dr. Jose L. Cruz, Ph.D. Date
Department Director

i

Abstract

 The study of weather phenomena is of growing importance. Changes in the

overall conditions of the world, such as global warming, ozone depletion, and the

uncertainty on the causes of these events, has made weather research more important than

ever. To study these phenomena, researchers rely on archived weather data. Which are

usually found by request at institutions that operate weather stations. The researcher’s

analysis is facilitated if stored in electronic form, such as computer documents or

spreadsheets. The structure, and format of the data, along with the capacity to manipulate

and display it in a user-friendly interface will greatly enhance the researcher’s study of

the climate data. Here I present an application for obtaining and displaying weather data

on the Internet, a database system that allows the retrieval of data by other organizations,

and proposed data structures to be adopted for the sharing of this type of data.

ii

Resumen

 El estudio de fenómenos atmosféricos ha crecido en importancia. Cambios en las

condiciones generales del mundo, como calentamiento global, destrucción de la capa de

ozono, y la incertidumbre sobre las causas de estos eventos, han hecho el estudio

climatológico más importante que nunca. Para estudiar estos fenómenos, los

investigadores se apoyan en datos archivados. Estos son usualmente encontrados por

solicitud a instituciones que operan estaciones climatológicas. El análisis de data se

facilita si es almacenada en forma electrónica, como documentos de computadora u hojas

electrónicas. La estructura, formato de la data, y la capacidad de manipularla y

presentarla en una interfaz amigable realzará significativamente el estudio de data

climatológica. Aquí presento una aplicación para obtener y presentar data climatológica

en el Internet, un sistema de base de datos que permite la obtención de data por otras

instituciones, y propuestas para estructuras de datos que pueden ser adoptadas para el

intercambio de data climatológica.

iii

Acknowledgements

 We would like to acknowledge Rose Loehr of the USDA and her team for

providing us access to their weather databases and invaluable input on the development

of the application, thus giving support to our project and making it of more use to

weather researchers.

 Special thanks to Dr. Raúl Zapata of the UPR for his assistance on the needs and

wants of weather investigators when viewing weather data, and his contributions of data

from weather stations throughout Puerto Rico

iv

Table of Contents

List of Figures……………………………………………………………………… vi
List of Sample Codes………………………………………………………………. vii
List Of Apendices………………………………………………………………….. viii
Nomenclature………………………………………………………………………. ix

Chapter 1. Introduction………………………………………………………….. 1
 1.1 Importance of Weather Data Research………………………………… 1
 1.2 Previous Work in the Field…………………………………………….. 2
 1.3 Contributions…………………………………………………………... 3
 1.4 General Objectives……………………………………………………... 4
 1.5 Specific Objectives…………………………………………………….. 5
 1.6 Chapter Outline………………………………………………………… 6

Chapter 2. Data Structure………………………………………………………... 8
 2.1 Overview……………………………………………………………….. 8
 2.2 File Structure…………………………………………………………… 13
 2.3 Readings Data………………………………………………………….. 15
 2.4 Month Data…………………………………………………………….. 15
 2.5 Year Data………………………………………………………………. 16
 2.6 Compiled Readings Data………………………………………………. 17
 2.7 Compiled Day Data……………………………………………………..18

2.8 Compiled Month Data…………………………………………………..19

Chapter 3. XML Data…………………………………………………………….. 21
 3.1 Location Data…………………………………………………………... 23
 3.2 Readings Data………………………………………………………….. 26
 3.3 Month Data…………………………………………………………….. 29
 3.4 Year Data………………………………………………………………. 31

Chapter 4. Software………………………………………………………………. 34
 4.1 Support Classes………………………………………………………… 37
 4.2 Field Classes…………………………………………………………… 39
 4.3 Location Classes……………………………………………………….. 40
 4.4 Data Management Classes……………………………………………... 42
 4.5 Web Interface Classes………………………………………………….. 47

v

Chapter 5. Software Operation………………………………………………….. 50
 5.1 Data Management……………………………………………………… 50
 5.2 Web display……………………………………………………………. 57

Chapter 6. Web Interface………………………………………………………… 60
 6.1 Performance Tests……………………………………………………… 69

Chapter 7. Conclusions…………………………………………………………… 71
 7.1 Future Work……………………………………………………………. 72

Bibliography………………………………………………………………………. 74

vi

List of Figures

Figure 2-1. Hierarchical Structure of Data Files……………………………….. 14

Figure 3-1. Location Data Structure……………………………………………. 26
Figure 3-2. Day Data Structure…………………………………………………. 29
Figure 3-3. Month Data Structure………………………………………………. 31
Figure 3-4. Year Data Structure…………………………………………………33

Figure 4-1. Software Components……………………………………………… 36
Figure 4-2. WXTime and WXDay classes……………………………………... 37
Figure 4-3. WXRecord UML Diagram………………………………………… 38
Figure 4-4. WXRecordSet UML Diagram……………………………………... 38
Figure 4-5. WXStatRecord UML Diagram…………………………………….. 39
Figure 4-6. WXStatRecordSet UML Diagram…………………………………. 39
Figure 4-7. WXField class……………………………………………………… 40
Figure 4-8. WXLocation UML Diagram……………………………………….. 42
Figure 4-9. WXDayData UML Diagram……………………………………….. 43
Figure 4-10. WXMonthData UML Diagram…………………………………….. 44
Figure 4-11. WXYearData UML Diagram………………………………………. 44
Figure 4-12. WXCompiledReadingsData UML Diagram……………………….. 45
Figure 4-13. WXCompiledDayData UML Diagram…………………………….. 46
Figure 4-14. WXCompiledMonthData UML Diagram………………………….. 46

Figure 6-1. Location Page……………………………………………………….62
Figure 6-2. DataTable Header………………………………………………….. 63
Figure 6-3. DayData data table…………………………………………………. 64
Figure 6-4. MonthData data table………………………………………………. 65
Figure 6-5. YearData data table………………………………………………… 66
Figure 6-6. DayDataPrintTable………………………………………………… 67
Figure 6-7. CompiledDataTables………………………………………………..68
Figure 6-8. Graph table…………………………………………………………. 69

vii

Sample Codes

Sample Code 2-1. Readings Data File Header………………………………… 15
Sample Code 2-2. Readings Data Field Headers.……………………………… 15
Sample Code 2-3. Readings Data File……….………………………………… 15
Sample Code 2-4. Month Data File Header….…………………………………16
Sample Code 2-5. Month Data Field Headers.………………………………… 16
Sample Code 2-6. Month Data File………….………………………………… 16
Sample Code 2-7. Year Data File Header…...………………………………… 17
Sample Code 2-8. Year Data Field Headers…………………………………… 17
Sample Code 2-9. Year Data File……………………………………………… 17
Sample Code 2-10. Compiled Readings Data File Header………………………18
Sample Code 2-11. Compiled Readings Data Field Headers…………………… 18
Sample Code 2-12. Compiled Readings Data File……………………………… 18
Sample Code 2-13. Compiled Day Data File Header…………………………… 19
Sample Code 2-14. Compiled Day Data Field Headers………………………… 19
Sample Code 2-15. Compiled Day Data File…………………………………… 19
Sample Code 2-16. Compiled Month Data File Header………………………… 20
Sample Code 2-17. Compiled Month Data Field Headers……………………… 20
Sample Code 2-18. Compiled Month Data File………………………………… 20

Sample Code 3-1. XML Location Tags……...………………………………… 23
Sample Code 3-2. XML Location Information Tags...…………………………23
Sample Code 3-3. XML Location Time Range Data Tags….………………… 24
Sample Code 3-4. XML Location Field Information Tags.…………………… 25
Sample Code 3-5. XML Day Data Tags……..………………………………… 26
Sample Code 3-6. XML Day Data Information Tags..…………………………27
Sample Code 3-7. XML Day Data File……...………………………………… 28
Sample Code 3-8. XML Month Data Tags…..………………………………… 29
Sample Code 3-9. XML Month Data Information Tags…..……………………29
Sample Code 3-10. XML Month Data File…...………………………………… 30
Sample Code 3-11. XML Year Data Tags…….…………………………………31
Sample Code 3-12. XML Year Data Information Tags………………………… 31
Sample Code 3-13. XML Year Data Tags…….…………………………………32

viii

List of Apendices

Appendix A. Programmer’s Manual……………………………………………... 76
Appendix B. User’s Manual……………………………………………………… 90

ix

Nomenclature

ASCII American Standard Code for Information Exchange

CSV Comma Separated Values

DBMS Database Management System

HTML HyperText Markup Language

J2SE Java 2 Standard Edition

Java Java Programming Language.

JDK Java Development Kit

JRE Java Runtime Environment

JSP Java Server Pages

OOP Object Oriented Programming

UML Unified Modeling Language

UPR University of Puerto Rico

URL Uniform Resource Locator

W3C World Wide Web Consortium

XML Extensible Markup Language

XSL Extensible Stylesheet Language

1

Chapter 1

Introduction

1.1 Importance of Weather Data Research

 The study of weather patterns has been of crucial importance to weather

researchers for decades. It is through the study of climatic conditions from specific events

that investigators can determine the causes of these events, and predict their reappearance

in the future. Observation of past data is also necessary to notice trends or patterns in

weather variables that could have noticeable consequences to a particular region.

Problems such as global warming have intensified the need for these kinds of studies.

 In order for climatologists to undertake these kinds of tasks, they must rely on

archives of weather data. Instruments on weather stations take readings and samples of

weather variables at particular times and locations. With the study of weather variables,

such as temperature, wind speed, and pressure, during weather events, such as hurricanes,

storms, and tornadoes, researchers can acquire better insight into the causes of these

events, or the conditions that favor their appearance. These archives usually need to be

extensive and representative, spanning several years at a significant location. To the

researchers this usually entails a considerable amount of time gathering these archives

and reviewing them for pertaining information.

 Real-time data is also of importance to persons and institutions not necessarily in

the field of weather research. Access to current climate conditions can be useful to

farmers, traffic reports, emergency service units, and countless others. As of yet, these

data are usually retrieved by special by agreements among the institutions that require

them, and those working to retrieve the data.

2

1.2 Previous Work in the Field

 Weather data can be obtained from several institutions through their websites. The

National Oceanic and Atmospheric Administration (NOAA: http://www.noaa.gov)

provide descriptive forecasts of weather conditions for the following week. Current

weather conditions are posted hourly, with the option of viewing hourly changes in

weather for the previous two days. Also they display general weather conditions in map

display using average values for locations and color-coding for regions. On our

application we will provide the same useful service for real-time data. Their color-coding

mapped display of weather conditions can be used as a model for future implementations

of mapped display on our system.

 The Weather Channel is the most popular of these websites. It has a well-

developed interface for current weather conditions such as readings for temperature, wind

speed, wind direction, humidity, pressure for any point in the US. It also displays satellite

images of varying types in latest movement animations. This site is developed for the

general audience who inquires on weather conditions that affect them immediately, and

wish to retrieve that information quickly. It is not intended for weather researchers, as it

does not provide a mechanism for retrieving past archived data. We hope our application

can serve both these interests providing the most solicited items of data so general users

can find it quickly, and also allow experienced researchers to do more complex queries

and operations on archived data.

 One site that provides archived data is the University Corporation for

Atmospheric Research (http://www.ucar.edu). It has real-time data maps and forms

where the user can select fields to display on the map for a particular location. It also

offers users a downloadable software package for weather data analysis called Unidata

Software. Along with it come several components of weather data analysis such as LDM

(Local Data Manager), netCDF, GEMPAK and McIDAS for data retrieval and satellite

images. UCAR however demands a license to use any of these products. A similar

3

desktop application developed in the Java programming language has also been

developed in [15]. It provides interactive data selection utilities from several sources and

graphical views of data using the built-in Java tools. This application requires installation

of the software on the client computer, along with the Java Runtime Environment to run

java applications. By providing our data through the Internet on a web interface, we

expect to maintain a portal of climate data which can easily change its interface and

querying utilities to better suit the researcher’s needs as the application continues to

develop. This allows a product that is in a constant process of improvement, as opposed

to conventional applications that are packaged once and require the user to update for any

new changes. It also relieves the user of the need to install applications on his local

computer to view data. Data is accessible through any computer with an internet

connection and Internet browser.

1.3 Contributions

 Our main goal is to provide researchers with a resource to facilitate their study of

weather research. This website should be attractive enough for other institutions to share

their data and create a repository of weather data that researchers throughout the world

can use.

 The Extensible Markup Language (XML) promises to become the standard of

web languages for the future [7,11,14]. Its usability to describe any data structure also

allows it to be used as a hierarchical database. XML is still not yet widely known and

implemented by most browsers. For the time being, institutions are seeking to establish

standards of structures for different types of XML data [4]. It is our hope that the

structure we’ve developed in CSV and XML format, set a precedent for weather data

storage through the Internet, and that other institutions can implement and facilitate the

exchange of this type of data.

4

 We have also designed a new interface to aid researchers in their study of climate

data. This interface, accessible through the web, makes use of web resources to present

the weather data to the client in a user-friendly display. This comprehensive interface for

displaying weather data, providing appropriate visual display on request as well, is not

yet available from any other source on the Internet today.

1.4 General Objectives

• Provide weather researchers with a tool for retrieving and analyzing weather

data.

A website should have a database of climate data available to weather researchers.

These data must be accessible through easy to use data request forms, which

displays the requested data in several arrangements that best fit the type of data

requested. The user must also be able to download these data into his computer

for use in his own calculations and research.

• The data must be available to third party organizations through the Internet.

The data should also be retrievable to other institutions without consultation of

our department. A mechanism will be developed for other researchers or

programmers to use our database through the Internet and retrieve whatever data

they require.

• The user interface should be intuitive and optimally designed to minimize

confusion and learn-time to new users.

This website is destined to be used by all kinds of users interested in weather data.

These can be weather researchers conducting scientific investigations, or laymen

seeking the latest weather conditions of their local region. For this reason the

interface must not be too complex for the regular user, yet provide researchers

with a useful, not too limited, tool for conducting their investigations. The

5

interface implemented should appeal to both users, and facilitate their

understanding of how to obtain the data they need.

1.5 Specific Objectives

• All relevant data should be available to users through the website.

Aside from the climate data that is needed by interested users, the website should

display all relevant information deemed important or that would facilitate the

user’s understanding and research. This can be data about the location that he’s

researching, such as its geographical coordinates, or time zone.

• The website should perform the pertinent statistical calculations for fields that

require them.

Not only should our site display the archived data, it should also carry out

operations on the data that are important to most users. These operations can be

calculating averages from data sets, or finding its highest and lowest statistics.

Our work should anticipate which of these calculations are necessary to most

researchers and provide the mechanism to retrieve these kinds of data.

• Quality control. The application must allow field specific algorithms to be

implemented, which recognize and discard anomalous readings.

For different fields and types of data, such as temperature or precipitation data

sets, the application must allow the implementation of some quality control

algorithm. This algorithm should function only for the field it was designed to

validate, given that a quality control algorithm would be unique for every field

implemented.

• The database should be extensible.

6

The system must be designed to allow new locations and fields to be added or

removed from the database with minimal modifications to the software.

• Queries of data should be available to the user.

It is important for users to be allowed to request a full range of data for a time

range without having to seek each individual portion of data. A data compilation

form must be available to take in requests of data compilation, which the

application should retrieve and provide to the user in a continuous time series.

• All data displayed should be downloadable to the user.

All the data that the user requests on the site must have a representation in a file

that can be downloaded by the user. This file should then allow users to review or

manipulate the data at their convenience.

• Charts and graphs of data will be available for users, which suit their

respective fields.

The data can be much easier to observe and navigate if seen in visual form. The

advantage of displaying data visually is that data can be perceived and interpreted

globally, without needing to scroll through it from beginning to end [2]. The

system should allow the user to view the data he has requested in a chart or graph,

which corresponds to the particular field, he requested and the data should be

displayed in their most representative type of chart.

1.6 Chapter Outline

 In chapter 2 the data structure of our database is outlined. Here the format of the

data files is defined and how they will be organized by the application. The different

types of data files are also described and how their data are derived from lower order data

files.

7

 Chapter 3 defines the XML structures for the data. The various hierarchies for

location data, and the readings data, along with the statistical data upon them, is outlined.

Diagrams representative of the hierarchical structure they create will also accompany the

XML definitions.

 A description of the software is provided in Chapter 4. Here the different

components that make up the application is identified. And an explanation on how these

components work together and which of them can be manipulated or replaced to extend

the application’s database or to improve on the user interface.

 The operation of these components is explained in Chapter 5. The process by

which new data is retrieved from the source and stored into the database is described.

Also how the data is retrieved from the database and displayed to users through the

Internet in its different forms.

 Chapter 6 describes the implemented web interface. Providing a description of

every page, and how it enhances the display of data to facilitate its study by the users.

The steps through which users retrieve data and navigate between locations, dates and

data pages are also explained.

8

Chapter 2

Data Structure

2.1 Overview

 This chapter will outline the structure of the database. It describes the format of

how data will be organized within each data file. Also the naming conventions for each

data file types, and their position in the directory structure hierarchy.

 The database must begin with the Location data. Each weather station must have

its entry in the database and all the relevant information particular to it. Some information

is indispensable for a Location to operate properly in the application. Such as the

keyword, a unique identifying word for file storage purposes. The Location name, which

usually should describe the area from which the station collects data; in the case of

several or more than one location recording data in the same area, the name should

identify the owner or institution that operates the weather stations. The time range of

data, the date of the first and last recorded readings for that Location. Other information

is the Location’s altitude, geographical coordinates, time zone, station’s owner or

institution, etc… This information is not requisite for the Location to function in the

application, but can still be useful to the user in interpreting the Location’s data.

 One set of information about the Location that is key to its operation is the Fields

data. Fields represent the particular sensors for which the location records data from. For

example: Temperature, Relative Humidity, Pressure, Precipitation, etc. A Location can

have Fields without supporting a corresponding sensor, if that field can be calculated

from other fields for every record of data. For instance, a Heat Index reading can be

calculated given a Temperature and Relative Humidity reading. All the Fields a Location

9

supports must be stored with the Location’s information, along with their relevant

statistical data, which varies from Field to Field. This statistical data is not crucial for the

application’s regular data retrieval and storage operation, but it can be important in user

interface components. Such as drawing graphs, for example.

 After a Location has been registered into the database, and provides all the

necessary information about itself to function correctly, it can begin to gather readings

data. These readings data are the bulk of the database. They are first grouped into records.

One record contains one reading for every Field in the Location at one particular time of

the day. A Day Data is then the set of records for a whole day’s readings. These need to

be stored each in their own separate tables.

It should be noted that the day’s time range goes from 0001 (12:01 A.M.) to 2400

(12:00 M.). This is due to the fact that many, though not all, weather stations use

averaging algorithms of readings taken in faster intervals to arrive at a more

representative reading of the stored readings interval. For example, a weather station

stores temperature data for every 10 minutes. This can mean that the temperature sensor

takes a sample of the current air temperature every ten minutes and sends that reading to

be stored into the database. But not all stations work this way; some stations take sample

readings at higher intervals, for example one minute, and then average those readings

when the 10-minute interval is reached. This can lead you to interpret an entry in the

database of:
Time, Temperature (°F)

2350, 65.4

2400, 65.7

As either “the temperature taken at 2400 was of 65.7 degrees Fahrenheit”, or “the average

temperature of the time interval from 2350 to 2400, taken at 1 minute intervals, was of

65.7 degrees Fahrenheit”. Likewise the first entry in the table for the next day would be:
Time, Temperature (°F)

10, 65.5

Which can also be interpreted as the average temperature from 2400 in the previous day

to today’s 10. This depends on how the station is set up to take its readings. We don’t

10

count on always knowing which method a station implements, so we feel it safer to err on

the side of anticipating that a reading at one point in time is representative of the time

interval before it. This explains why the reading at 12:00 Midnight is stored as the 2400

reading of the day before, rather than the 0000 reading of the day after it.

 The application will implement a Quality Control system where erroneous

readings must be eliminated from the archived data. These occur because of malfunctions

in the station’s sensors or software type errors. A special symbol is then assigned to fill in

the space of where an erroneous reading was discarded. If gaps in the data occur for

several time intervals in one day, in other words, there are several Records that contain

nothing but invalid markers, these records will still be recorded into the data file. This

means a data file might look something like this:
Time, Temperature (°F), Relative Humidity (%), Pressure (inHg), Wind Speed (mph)

1310, 75.7, 89.5, 766.3, 10.4

1320, 75.5, 89.3, -, 8.7

1330, -, -, -, -

1340, -, -, -, -

1350, -, -, -, -,

...

1720, 82.4, 60.4, 766.2, 3.5

Where “-“ is the “invalid reading” or “not available” marker symbol. This is done, as

opposed to skipping 4 hours of data entry, to preserve the integrity of the data structure.

And provide the user with a continuous time series of data. Which might also be helpful

for users who perform operations on the data with spreadsheet applications that might get

“confused” otherwise.

 After these readings are stored, statistical values upon these readings need to be

calculated and stored as well. These statistical values depend on the Fields the Location

supports. Currently there are only four statistical values to be calculated out of any

readings set. These are Low, Average, High, and Total. Fields support a number of these

statistics, but not all. For example, a Temperature Field supports Low, Average, and

High, since these are relevant statistics. Precipitation however, supports High, and Total.

These statistical values are calculated at two levels, day and monthly.

11

 The Low statistic is the lowest reading in the set; Average is the sum of all valid

readings divided by the number of valid readings in the set; High is the highest reading,

and Total is the sum of all valid readings.

 The Month Data is the set of statistical values for every day in one month. The

statistical values of a Day Data is calculated and stored in a Statistical Record. This holds

the relevant statistical values of every Field in the Location for that day. The Statistical

Records for all the days in a given month constitute a Month Data.

After we have a Month Data, we can also calculate statistical values on its data,

and arrive at a new Statistical Record for that month. These are calculated from

corresponding statistical values in the Statistical Records of the Month Data. That is, the

Month’s Low reading is taken by calculating the lowest reading of all the Low readings

in every Day Statistical Record, and so on. The set of all the Month Statistical Records

then is grouped into a Year Data.

Considering that weather records can span several years and decades, we can

expect a massive amount of data to be handled by this system. It is for this reason I have

chosen not to use any mainstream DBMS, but to store these data in the basest format

available, Comma Separated Values (CSV) ASCII files. This format is very resistant to

data corruption. The loss of large sequence of bytes does not corrupt the remaining data.

It is easily readable, both by third party applications or operators who are manipulating

the database directly. It also stores its data independent of any DBMS, so the data is

available for use regardless of any problems with the application [4]. This structure

adopted to store the data resembles a traditional two-dimensional table format, where

commas are used as field delimiters. This format holds no overhead; it provides the least

amount of storage space for our data. They are self-explanatory and independent of our

system, so if any malfunction should occur on our software, the data is still usable by any

other software. Because they are also self-explanatory, any other organization can

retrieve data directly from these files without needing our software to mediate. The CSV

12

file format is also supported by mainstream spreadsheet applications, such as MS Excel

and Lotus 123; so data can be easily imported into spreadsheets and then manipulated at

the user’s convenience.

The Data in the database will not be stored in one specific unit system. Currently,

our application supports two unit systems, British and Metric. Each Field must be

assigned one of these unit systems as their “Most Precise Unit System”. This is done

because readings are always rounded off to the 2nd decimal place, and it is more accurate

to save these readings in a unit system that is more precise. For example, Temperature

readings are more accurately stored in the British unit system (°F) than in Metric (°C).

Because a change in 0.01°F is smaller than a change in 0.01°C. While Precipitation is

more accurately stored in the Metric System; anything from 0.01mm to 0.25mm might

still register as 0in.

Data will also be stored in Extensible Markup Language (XML) format. These

XML files will also be stored in using ASCII format. This ASCII XML format allows the

data in a format that uses semantic tags, which are self-describing and make it easy for

“humans to read and computers to process”[6]. The data will always be accessed

through the CSV files by our software, but the XML format may facilitate the data

retrieval for other institutions and may be used for developing a more convenient web

user interface in the future when more browsers implement XML to the fullest.

 Compiled Data files are data files of specific time ranges and Fields that the user

requests through the webpage. They can be either of readings, day, or month, compiled

data and follow almost the same structure as the Readings, Month, and Year Data files

respectively. Following a similar format to the previous Data files, they span several

days, years or months, and gather data only for specific fields the user requests. They are

always generated dynamically upon request from the user through the webpage, and

temporarily stored in a common Compiles directory, directly under the Records directory.

13

Unlike the previous Data files, they are always generated in either the Metric or British

unit systems.

 The user requests them through the web interface. In the Location’s page, he will

have a Compile Data form, where he can input the time range of data he wishes to

compile, the Fields of the Location he wants data for, and the Unit System the data is to

be given in. The Data Management software then generates the data file in the compiles

directory. While the user views the data through the website in its web format, he’ll have

the option of downloading the file in the Compiles directory, which is in CSV format.

The file is stored in the Compiles directory only temporarily. All compiled data

files, of all types (Readings, Day, Month) are stored in this common directory. But the

naming convention used to create every file should avoid any conflict of data. This

Compiles directory is emptied of all its files periodically.

2.2 File Structure

As previously stated, the software will read archived data from the CSV data files.

These files provide a much easier and faster way of retrieving the data by the software (as

opposed to the XML files, which provide an easier way for users to view data).

The data files will be stored in a hierarchical or tree structure. At the root of the

structure is a Records Directory. This directory will be assigned to the software as the

root directory for archived data. This directory will then branch out into subdirectories for

each specific Location. These directories will be named by the Location’s keyword

property (stored in the particular Location class). Inside this directory, we’ll have

subdirectories for each year in the Location’s time range. Each of those directories holds

the Year Data CSV file for that year and subdirectories for each month within that year.

These subdirectories will be named by the month name of the particular month; January,

14

February, March, and so on… Inside each of these month directories, will be stored all

the Readings Data Files for that particular month, along with the Month Data file for the

particular month.

The naming convention for these data files will be as follows:

• The Year Data file will have the year followed by the location’s keyword.

• The Month Data file will have the month name, followed by the year and the

location keyword

• The Readings Data files will use an eight digit date representation, where the

first two digits represent the day, the next two the month, and the next four the

year, followed by the location keyword.

All these files carry the corresponding .csv extension identifying them as CSV

data files.

maricao

 January2000mayaguez.csv
 01012000mayaguez.csv
 02012000mayaguez.csv

January
 February2000mayaguez.csv
 01022000mayaguez.csv
 02022000mayaguez.csv

February

2000

March 2000mayaguez.csv

2001 2002

mayaguez adjuntas

Records Directory

Figure 2-1. Hierarchical structure of data files.

15

2.3 Readings Data

The Readings Data files stores all the readings for every interval and every Field

recorded for that day. The data in these files will be separated into fields delimited by

commas. They will have the following structure:

The first line is a location and date indicator. The first field is the location name,

followed by the month name, then the day of the month, and the year.

Mayaguez, January, 3, 2003

Sample Code 2-1. Readings Data File Header

The second line is the Field headers. The first field is the time of day, followed by

the sensors that particular location supports. In parenthesis the unit the data for each Field

is stored in.

Mayaguez, January, 3, 2003

Time, Temperature (°C), Precipitation (mm), Pressure (mmHg)

Sample Code 2-2. Readings Data Field Headers.

What follows is the data recorded for that day. The first field is the time of day of

the recording, followed by all the readings corresponding to that time. The time of day is

represented in 24 hour format. The readings are ordered respectively to the ordering in

the field headers:

Mayaguez, January, 3, 2003

Time, Temperature (°C), Precipitation (mm), Pressure (mmHg)

10, 66.89, 0, 766.4

20, 66.67, 0.1, 766.8

30, 66.39, 08, -

Sample Code 2-3. Readings Data File.

2.4 Month Data

The Month Data file has a similar structure. The records are identified by the day

of the month, and there is a header for every statistic that a Field supports. Some entries

can be tagged as invalid if there aren’t any valid readings for that Field in the

16

corresponding day. This may be caused by the weather station going offline for more

than a day.

The first line in the Month Data file is the Location and Date information:

Mayaguez, January, 2003

Sample Code 2-4. Month Data File Header.

 Following, the Field headers. The first header is the day of the month, then one

header for every statistic every Field supports.

Mayaguez, January, 2003

Day, Low Temperature (°F), Avg Temperature (°F), High Temperature (°F)...

Sample Code 2-5. Month Data Field Headers.

Then the statistical data for every day in the month:

Mayaguez, January, 2003

Day, Low Temperature (°F), Avg Temperature (°F), High Temperature (°F)...
1, 67.97, 74.95, 85.4,

2, 66.41, 72.82, 85.5,

3, 65.31, 74.19, 88.0,

4, 65.07, 74.1, 86.1,

5, -, -, -,

Sample Code 2-6. Month Data File.

2.5 Year Data

The Year Data file follows the same structure as the Month Data file. The records

are ordered by the month number (starting with 1 as January) and, like the Month Data

file, there is one header of every statistic supported by each Field. It is possible to find an

Invalid Reading tag if there is no data for that particular field during the whole month.

This could happen, if a sensor was installed on a later date than the year in the Year Data

file. “Not Available” tags will still be assigned to all entries in that Field prior to the time

the sensor was installed to maintain the structure of that Locations’ data files.

The First line for the Year Data file is the Location and date info:

17

Mayaguez, 2003

Sample Code 2-7. Year Data File Header.

 Next the headers. The First header is the month, followed by headers for every

statistic supported by that field.

Mayaguez, 2003

Month, Low Temperature (°F), Avg Temperature (°F),High Temperature (°F)...

Sample Code 2-8. Year Data Field Headers.

Then the statistical data for every month in that year:

Mayaguez, 2003

Month, Low Temperature (°F), Avg Temperature (°F), High Temperature (°F)...
1, 64.46, 75.13, 89.4

2, 63.25, 75.87, 103.3

3, 63.48, 76.59, 91.9

Sample Code 2-9. Year Data File.

2.6 Compiled Readings Data

 These files store all the readings for a specified time range. This format follows

very much the format of the day data files. Every record is identified by the time of day

and the day of the reading, given that one Data file can span several days. The naming

convention for these files in the Compiles Directory is:

• The time range of the file in the 8-digit date convention.

• The Location’s keyword.

• The unit system the data is stored in.

A example of a compiled readings file name is:
04052001-17082001mayaguezmetric.csv

18

The Compiled Readings Data has a format very similar to the Readings Data.

With the exception that records need to be fully identified by the date and time of the

record.

First the time range, and Location name of the data:
Mayaguez, May, 4, 2001, to, August, 17, 2001

Sample Code 2-10. Compiled Readings Data File Header.

Then the field headers with their corresponding units. Since compiled data can

stretch across months, or years, all date fields are necessary.

Mayaguez, May, 4, 2001, to, August, 17, 2001

Year, Month, Day, Time, Temperature (°C), Relative Humidity(%)

Sample Code 2-11. Compiled Readings Data Field Headers.

 And the data:

Mayaguez, May, 4, 2001, to, August, 17, 2001

Year, Month, Day, Time, Temperature (°C), Relative Humidity(%)
2001, 5, 4, 10, 65.4, 89.6

2001, 5, 4, 20, 65.3, 89.4

…

2001, 5, 4, 2400, 66.7, 89.6

2001, 5, 5, 10, 66.3, 89.2

Sample Code 2-12. Compiled Readings Data File.

2.7 Compiled Day Data

 These files store statistical values of the Fields and time range specified on a day

basis. Very similar to the Month Data files, but not limited to any one month. Records

are identified by the date of their statistical data. The naming convention for these files is:

• The time range of the data using in their 8-digit date format.

• The Location’s keyword.

• The Unit System the data is stored in.

• A “Stats” suffix to distinguish it from the Compiled Readings Data files.

19

An example of a Compiled Day Data file:
17122001-03012002mayaguezmetricStats.csv

 The first line of the data file presents the time range and Location information just

as the Compiled Readings Data file:
Mayaguez, December, 17, 2001, to, January, 3, 2002

Sample Code 2-13. Compiled Day Data File Header.

 Then the Field headers. The date is represented by the year, month and day. And a

header for every statistic supported by the chosen Fields.

Mayaguez, December, 17, 2001, to, January, 3, 2002

Year, Month, Day, Low Temperature (°C), Avg Temperature (°C),High Temperature (°C)

Sample Code 2-14. Compiled Day Data Field Headers.

 And the data:

Mayaguez, December, 17, 2001, to, January, 3, 2002

Year, Month, Day, Low Temperature (°C), Avg Temperature (°C),High Temperature (°C)
2001, 12, 17, 65.7, 87.9, 92.8

2001, 12, 18, 66.8, 82.5, 96.7

…

2002, 1, 3, 68.2, 89.5, 95.1

Sample Code 2-15. Compiled Day Data File.

2.8 Compiled Month Data

 Like the Year Data files, these gather statistical data for specified Fields at a

monthly level for a specified time range. Their records are identified by the year and

month of the data they represent. The naming convention for these files is:

• The time range of data compiled marked by their month name and year.

• The Location’s keyword.

• The Unit System the data is stored in.

A Compiled Month Data file is:

20

April2001-November2001mayaguezbritish.csv

 The data format is very much the same as the Compiled Day Data files. With the

exception that records are only identified by a Year and Month field. The first line of the

file is the Location and time range indicator:

Mayaguez, April, 2001, to, November, 2001

Sample Code 2-16. Compiled Month Data File Header.

 Then the field headers. Year and Month for date, and one header for every

statistic every field supports.

Mayaguez, April, 2001, to, November, 2001

Year, Month, Low Temperature (°F), Avg Temperature (°F), High Temperature (°F)

Sample Code 2-17. Compiled Month Data Field Headers.

 And the statistical data:

Mayaguez, April, 2001, to, November, 2001

Year, Month, Low Temperature (°F), Avg Temperature (°F), High Temperature (°F)

2001, 4, 65.7 , 84.6 , 92.4

2001, 5, 66.8 , 86.7 , 95.7

Sample Code 2-18. Compiled Month Data File.

21

Chapter 3

XML Data

The following chapter describes the XML structures developed. The structures

will be built starting from the most general XML tags and then subsequent tags will be

added into their position of the structure. Every XML data type will also be presented in a

diagram which illustrates its hierarchical structure.

XML stands for Extensible Markup Language. It is defined as “set of rules for

defining semantic tags that break a document into parts and identify the different parts of

the document. It is a meta-markup language that defines a syntax used to define other

domain specific, semantic, structured markup languages”. [4]

The structure of our XML files will follow the guidelines set forth by the W3C

organization. XML files have a different structure than CSV files, but just as helpful for

web interface uses. The W3C intends to present it as the common format for storing data

on the web. Once its position is more accepted, web developers will be able to retrieve

data from these files to create better and more efficient user interfaces without relying on

client server software to generate dynamic WebPages. Web languages such as XSL,

XUL, XQL, and UIML have already been developed for such purposes, but web

browsers have yet to fully implement them or are not stable enough [4,9,16].

Its structure is more hierarchical than the traditional table format. It should be

noted, that the Data files in XML format carry considerable overhead when having to

name all the fields and tags for every single reading. So a database of XML data would

increase several times the database size.

XML structures and schemas can be bound by Document Type Definitions [4,12].

DTDs are defined as “a document’s legal structure. It describes the elements and

22

attributes available, where and how many times they can occur, how elements can nest,

and how elements and attributes can fit together.”[13] These DTDs set forth the structure

that an XML document must follow if it is to comply with the standards of the institution

that standardized the DTD. This avoids incompatibility problems in XML structures

between organizations. An XML document is called “valid” if it meets the constraints

defined in a DTD [7]. Each of them must agree on a common DTD to follow, and any

document failing to conform to that DTD is disregarded. The structures declared in this

work are preliminary, and do not yet contemplate several Fields of important use for the

climate research community. Therefore, no DTD is proposed in this document to serve

the standard for climate data storage in XML, as such a DTD would invariably be

subjected to important changes in the future. Support for changes in existing DTDs is

troublesome and leads to confusion between organizations with incongruent schemas yet

expect the same data types. In [5] the issue of disparity in XML schemas is addressed,

and proposed a prototype system to handle these changes between organizations.

XML structures also facilitate the creation of their software component

counterparts. When using a OOP Language, between it is easier to identify the future

objects and their responsibilities by modeling them on the XML elements in the database.

[8,11] In spite of their Object-type structure however, XML documents still retain the

significance in the ordering of elements [12]. So each record in the Data type XML

documents, will keep their chronological ordering, even though every record will be have

its time mark element.

XML files will follow the same file structure as data files, and the same naming

conventions. With the exception that they will carry the corresponding .xml extension.

23

3.1 Location Data

We start with the Location’s information file. As explained in the Data Structure

section, this file is contained directly under the Location’s directory of the Records

Directory. The main tags for defining a Location are:
<LOCATION>

</LOCATION>

Sample Code 3-1. XML Location Tags.

Next is the general information about the Location. The name is indispensable,

while other information can be added at the operator’s convenience, if it is of importance

to the users:

<LOCATION>
 <NAME>Mayaguez</NAME>

 <ALTITUDE>10m</ALTITUDE>

 <LATITUDE>18°13’</LATITUDE>

 <LONGITUDE>67°09’</LONGITUDE>

 <INSTITUTION>UPR-RUM Climatology Department</INSTITUTION>

 <TIME_ZONE>GMT-4</TIME_ZONE>

</LOCATION>

Sample Code 3-2. XML Location Information Tags.

The time range of data must be included as well. Inside the Time Range tags, we

have two date representations. For the date of the first and last recorded readings for this

Location:

24

<LOCATION>

 <NAME>Mayaguez</NAME>

 <ALTITUDE>10m</ALTITUDE>

 <LATITUDE>18°13’</LATITUDE>

 <LONGITUDE>67°09’</LONGITUDE>

 <INSTITUTION>UPR-RUM Climatology Department</INSTITUTION>

 <TIME_ZONE>GMT-4</TIME_ZONE>
 <TIME_RANGE>

 <FIRST_READING_DAY>

 <DAY>18</DAY>

 <MONTH>10</MONTH>

 <YEAR>2000</YEAR>

 </FIRST_READING_DAY>

 <LAST_READING_DAY>

 <DAY>5</DAY>

 <MONTH>6</MONTH>

 <YEAR>2003</YEAR>

 </LAST_READING_DAY>

 </TIME_RANGE>

</LOCATION>

Sample Code 3-3. Location Time Range Data Tags.

 Finally, there are the Fields tags. These contain information about the Location’s

Fields such as the user defined valid readings ranges, and statistical information. The data

is Field specific, and each WXField class must implement it’s own methods of reading

and writing it’s information into the XML data file. All the statistics and readings stored

here are in their respective Most Precise Unit System. Here is an example of a few field

tags:

25

<LOCATION>

 <NAME>Mayaguez</NAME>

 <ALTITUDE>10m</ALTITUDE>

 <LATITUDE>18°13’</LATITUDE>

 <LONGITUDE>67°09’</LONGITUDE>

 <INSTITUTION>UPR-RUM Climatology Department</INSTITUTION>

 <TIME_ZONE>GMT-4</TIME_ZONE>

 <TIME_RANGE/>

 <FIELDS>

 <TEMPERATURE>

 <LIMITS>

 <HIGH>120</HIGH>

 <LOW>50</LOW>

 </LIMITS>

 <STATS>

 <HIGH>

 <READING>95.4</READING>

 <DATE>

 <DAY>4</DAY>

 <MONTH>6</MONTH>

 <YEAR>2001</YEAR>

 </DATE>

 </HIGH>

 </STATS>

 </TEMPERATURE>

 <WIND_SPEED>

 <LIMITS>

 <HIGH>100</HIGH>

 </LIMITS>

 </WIND_SPEED>

 <STATS>

 <HIGH>5.6</HIGH>

 <DATE>

 <DAY>18</DAY>

 <MONTH>2</MONTH>

 <YEAR>2002</YEAR>

 </DATE>

 </STATS>

 </FIELDS>

</LOCATION>

Sample Code 3-4. XML Location Field Information Tags.

26

3.2 Readings Data

 The Readings Data files will begin with the following encompassing tags:
<DAYDATA>

</DAYDATA>

Sample Code 3-5. XML Day Data Tags.

 The Location and date information is included.

Location

Name

Altitude

Latitude

Longitude

Time Range

First Reading Day

Day

Month

Year

Last Reading Day

Day

Month

Year

Limits

High

Low

Stats

High
Reading

Date

Day

Month

Year

Low

Reading

Date

Day

Month

Year

Temperature

Fields

Wind Speed

Figure 3-1. Location Data structure

27

<DAYDATA>

 <LOCATION>Mayaguez</LOCATION>

 <DATE>

 <DAY>6</DAY>

 <MONTH>5</MONTH>

 <YEAR>2001</YEAR>

 </DATE>

</DAYDATA>

Sample Code 3-6. XML Day Data Information Tags.

Then the data for the day. The data is separated into records; where each records

carries a corresponding Time tag and tags with the Field names for the respective

readings at that time:

28

<DAYDATA>

 <LOCATION>Mayaguez</LOCATION>

 <DATE/>

 <DATA>

 <RECORD>

 <TIME>

 <HOUR>0</HOUR>

 <MINUTES>10</MINUTES>

 </TIME>

 <TEMPERATURE>68.7</TEMPERATURE>

 <WIND_SPEED>0</WIND_SPEED>

 <RELATIVE_HUMIDITY>89.5</RELATIVE_HUMIDITY>

 </RECORD>

 <RECORD>

 <TIME>

 <HOUR>0</HOUR>

 <MINUTES>20</MINUTES>

 </TIME>

 <TEMPERATURE>68.3</TEMPERATURE>

 <WIND_SPEED>0.2</WIND_SPEED>

 <RELATIVE_HUMIDITY>89.9</RELATIVE_HUMIDITY>

 </RECORD>

 <RECORD>

 <TIME>

 <HOUR>0</HOUR>

 <MINUTES>20</MINUTES>

 </TIME>

 <TEMPERATURE>67.9</TEMPERATURE>

 <WIND_SPEED>0.5</WIND_SPEED>

 <RELATIVE_HUMIDITY>88.3</RELATIVE_HUMIDITY>

 </RECORD>

 </DATA>

</DAYDATA>

Sample Code 3-7. XML Day Data File.

29

3.3 Month Data

 Monthly Data will be delimited by:
<MONTHDATA>

</MONTHDATA>

Sample Code 3-8. XML Month Data Tags.

 Followed by the Location and month information:

<MONTHDATA>
 <LOCATION>Mayaguez</LOCATION>

 <DATE>

 <MONTH>10</MONTH>

 <YEAR>2002</YEAR>

 </DATE>

</MONTHDATA>

Sample Code 3-9. XML Month Data Information Tags.

The data is then organized into records, each of which identified by the day of the

month. Every record is then divided into the Location’s Fields that holds all the relevant

statistics of that Field for the current day.

Record

Temperature

Wind Speed

Relative Humidity

Time

Hour

Minutes

Record

Temperature

Wind Speed

Relative Humidity

Time

Hour

Minutes

Record

Temperature

Wind Speed

Relative Humidity

Time

Hour

Minutes

Data

Date

Day

Month

Year

DayData

Location

Figure 3-2. Day Data structure

30

<MONTHDATA>

 <LOCATION>Mayaguez</LOCATION>

 <DATE/>

 <DATA>

 <RECORD>

 <DAY>1</DAY>

 <TEMPERATURE>

 <LOW>65.4</LOW>

 <AVG>86.6</LOW>

 <HIGH>97.4</HIGH>

 </TEMPERATURE>

 <PRECIPITATION>

 <HIGH>2</HIGH>

 <TOTAL>18</TOTAL>

 </PRECIPITATION>

 <WIND_SPEED>

 <AVG>1.7</AVG>

 <HIGH>3.5</HIGH>

 </WIND_SPEED>

 </RECORD>

 <RECORD>

 <DAY>2</DAY>

 <TEMPERATURE>

 <LOW>65.2</LOW>

 <AVG>86.7</LOW>

 <HIGH>97.1</HIGH>

 </TEMPERATURE>

 <PRECIPITATION>

 <HIGH>0</HIGH>

 <TOTAL>0</TOTAL>

 </PRECIPITATION>

 <WIND_SPEED>

 <AVG>1.2</AVG>

 <HIGH>2.7</HIGH>

 </WIND_SPEED>

 </RECORD>

 </DATA>

</MONTHDATA>

Sample Code 3-10. XML Month Data File.

31

3.4 Year Data

 The Year Data XML file follows the same structure as the Month Data XML file.

It begins with the following encompassing tags:
<YEARDATA>

</YEARDATA>

Sample Code 3-11. XML Year Data Tags.

 The Location and year information:

<YEARDATA>
 <LOCATION>Mayaguez</LOCATION>

 <YEAR>2001</YEAR>

</YEARDATA>

Sample Code 3-12. XML Year Data Information Tags.

 And the data, where the records are organized by month numbers:

Temperature

Low

Avg

High

Precipitation

High

Total

Wind Speed

Avg

High

Record

Day

Date

Month

Year

Data

Month Data

Location

Temperature

Low

Avg

High

Precipitation

High

Total

Wind Speed

Avg

High

Record

Day

Figure 3-3. Month Data Structure

32

<YEARDATA>

 <LOCATION>Mayaguez</LOCATION>

 <YEAR>2001</YEAR>
 <DATA>

 <RECORD>

 <MONTH>1</MONTH>

 <TEMPERATURE>

 <LOW>64.2</LOW>

 <AVG>82.7</LOW>

 <HIGH>94.1</HIGH>

 </TEMPERATURE>

 <HEAT_INDEX>

 <LOW>70.1</LOW>

 <AVG>85.30</AVG>

 <HIGH>96.5</HIGH>

 </HEAT_INDEX>

 <WIND_DIRECTION>

 <AVG>45.3</AVG>

 </WIND_DIRECTION>

 </RECORD>

 <RECORD>

 <MONTH>2</MONTH>

 <TEMPERATURE>

 <LOW>62.2</LOW>

 <AVG>82.9</LOW>

 <HIGH>92.1</HIGH>

 </TEMPERATURE>

 <HEAT_INDEX>

 <LOW>70.4</LOW>

 <AVG>83.2</AVG>

 <HIGH>97.8</HIGH>

 </HEAT_INDEX>

 <WIND_DIRECTION>

 <AVG>91.5</AVG>

 </WIND_DIRECTION>

 </RECORD>

 </DATA>

</YEARDATA>

Sample Code 3-13. XML Year Data Tags.

33

Temperature

Low

Avg

High

Heat Index

Low

Avg

High

Wind Direction

Avg

Record

Month

Data

Year Data

Location

Year

Temperature

Low

Avg

High

Heat Index

Low

Avg

High

Wind Direction

Avg

Record

Month

Figure 3-4. Year Data Structure

34

Chapter 4

Software

 This chapter describes the application. First a mention of the software used to

develop the application. Then a description of each sub-component and how it functions

in the application.

 The software was developed using Sun’s Java 2 Standard Edition (J2SE)

programming language. The object-oriented functionality that characterizes this language

makes it ideal for separating the distinct modules that make up the system. These

modules correspond to the abstract conceptual elements in the system. In the Java

environment, these modules are called “classes”. Classes are abstractions of objects.

Java’s platform independence also facilitates it’s portability into other sites.[3]

 The application has been developing using Sun’s Java Development Kit (JDK),

freely available for download at their web site (http://java.sun.com). The JDK provides

the basic classes to develop Java applications, and the Java Runtime Environment (JRE)

for executing them. For editing the software code, I’ve used the text editor Textpad,

available for download at http://www.textpad.com.

 The entire application is separated into Location classes, Data Management,

Fields Classes, Web User Interface and the Database. These all rely on each other to

retrieve and display the data for the user. The goal is to have complete functional

autonomy from these components, so that modifications to one component need not

adjust any of the others.

 The Location classes represent a Location from which data is received. For every

Location in the system, there must be a corresponding Location class. These classes must

store the Fields that the Location supports, it’s keyword property, and most importantly,

35

the function or algorithm for retrieving new data. They are not in themselves part of Data

Management, since they can be deleted or added by future operators, as they deem

necessary, with minimal adjustment to the Data Management components. Future

operators can add new Location’s given that they satisfy the requisites demanded by the

Data Management components (such as providing a function for retrieving new data).

 The Data Management components are those that interact between retrieving

fresh data from the Location classes, and the Web User Interface. It is its responsibility to

store fresh data into the Database and retrieve the archived data for use by the Web User

Interface components. It is also in charge of generating compiled data when requested by

the Web User Interface.

 The Database is the collection of archived data described in the Data Structure

chapter. As explained, it is stored in an ASCII CSV format, which allows its permanence

independent of any other software. It is handled only by the Data Management

component.

 The Field classes are those that represent Field or sensors for which a Station

collects data for. Like the Location classes, they are not a part of the Data Management

component and can be added or deleted by the operators, depending on what their

collection of Locations support. These classes provide the application with several Field

specific functions. Some of these not indispensable, such as a Quality Control Algorithm

for that field, a graph or chart generator. But some are requisite, such as the Field’s title, a

Unit System conversion function (for converting between metric and british units), and

which is it’s Most Precise Unit System.

 Finally there is the Web User Interface component. This is the software running

on the web server that displays the data to the user. It provides the user with the necessary

forms so he/she can request data. And works with the Data Management component to

retrieve the data it needs and display it to the client in a user-friendly interface. It also

36

works with Location classes for displaying information about the particular Location the

user is viewing data for. And Field classes for generating graphs and charts.

 Figure 4.1 shows us how these components work together:

 What follows is a description of the classes implemented in each of these

components. A UML diagram of how each of these classes relate to each other will

accompany each description.

Location

Classes

Data

Data

Management

Data

Database

Data
Quality Control Algorithms

Unit System
 Conversion Functions

Web User

Interface

Data

Requests

Data

Field

Classes

Graph Generators Location Information

Figure 4-1. Software components

37

4.1 Support Classes

 Some classes do not belong or fall into any of the previous components. They are

used by all of them as support classes to facilitate the representation of certain concepts

or to group sets of similar elements with a common quality. These support classes are:

• WXTime

• WXDay

• WXRecord

• WXRecordSet

• WXStatRecord

• WXStatRecordSet

The first two, WXTime and WXDay, are time representations. WXTime

represents a time of day when sets of readings were taken. WXDay represents a Day for

statistical data. WXDay can also be used to represent a month or a year, in each case, the

unnecessary date field is ignored; such as they Day field for a month, or the Day and

Month field for a year. They provide functionality for operations that constantly are

required on the time and day they represent, by several classes on all components.

Comparison operations, such as asking which time or day is before or after it, retrieving

commonly used time and day representations, such as the 24-hour time format, or the 8

digit date representation.

WXRecord represents a record of data. A set of readings taken at a particular

time. The time is represented by a WXTime object, and the readings stored in a one

WXTime

Hour

Minutes

WXDay

Day

Month

Year

Figure 4-2. WXTime and WXDay classes

38

dimensional floating point array. It provides some functionality on comparing records,

such as which record is before or after the current one, counting the number of invalid

readings, and retrieving a particular reading from the set.

WXRecordSet is a set of WXRecords that contain all the readings data for one

day. A WXDay object represents the Day, and it holds a collection of WXRecord objects.

This provides functionality on a set of WXRecords, like percentage of invalid readings in

the data set, retrieving a set of data for one particular field, iterating through records by

their time order. It also provides functions for retrieving statistical information of the data

set it contains. Such as the highest or lowest reading for a particular field.

WXStatRecord is a record of statistical data. It can be used to hold statistical data

for a day or a month. A WXDay object represents the day or month, and the data is in a

two-dimensional floating-point array. Two-dimensional, because there are several

statistics for every field.

WXRecord

Data

WXTime

1

 1

Figure 4-3. WXRecord UML diagram

WXRecordSet

WXDay

1

 1

WXRecord

1

1..*

Figure 4-4. WXRecordSet UML Diagram

39

Finally, WXStatRecordSet is a set of WXStatRecords. It represents the set of

statistical records for a month, or a year. If the WXStatRecords correspond to daily

statistics, then the WXStatRecordSet should represent a monthly set; if the

WXStatRecords correspond to monthly statistics, then it should represent a yearly set.

This class also implements functions for calculating statistical information from the data

it contains.

4.2 Field Classes

 Field classes represent sensors or weather data that the stations records data from.

They can correspond to actual sensors implemented in the weather station, or other Fields

that can be derived from data taken by sensors in the weather station. Every Field to be

supported by a Location needs to have it’s own Field class implemented. They must

provide certain functionality that is requisite to its successful operation in the application.

Like the Location class, there is already an abstract WXField class that sets the standard

for all Field classes to follow. They must all extend WXField, and implement the abstract

methods declared there. One of these methods is convert(Reading, UnitSystem) for

converting a reading from Metric to British and viceversa.

WXStatRecord

Data

WXDay

1

 1

Figure 4-5. WXStatRecord UML Diagram

WXStatRecordSet

WXDay

1

 1

WXStatRecord

1

1..*

Figure 4-6. WXStatRecordSet UML Diagram

40

Other generic methods are already declared in WXField that can be overwritten in

a subclass for better functionality. For example, the method for quality control validate(

DataSet). In WXField, it simply limits itself to discarding those readings not within the

valid readings range for that Field. But a more complex algorithm for eliminating

erroneous readings can be written into the particular Field class, which will then override

the parent function and apply its own algorithm without any change to the rest of the Data

Management component.

Graph generators are also methods that might be overwritten. The generic method

in WXField generates a standard line graph of data, but their methods can be overwritten

in the particular Field class if a more appropriate graph is suitable for that Field. For

example, a wind rose chart can be inserted into the WindDirection class for graphs, or a

bar chart for Precipitation. Overriding these methods takes place in the Field subclass and

requires no modification to the Web User Interface classes. However, if more than one

graph option is to be desired for one particular Field, such as having a line graph and a

wind rose chart available for the user, and then modifications need to be made at the Web

User Interface Components to accommodate the extra option for that Field.

4.3 Location Classes

The Location classes represent weather stations at different points of the island.

They hold information about the station, such as the Keyword, the Fields it supports, its

time interval of readings. Other information, such as the Location’s Name, its

WXField
MostPreciseUnitSystem

Title

convert()

validate()

generateGraph()

Figure 4-7. WXField class

41

geographical coordinates, the institution that operates it, etc. is saved in the Location’s

XML information file, and can be changed at will by the operators without any

consequence to the functionality of the application. The Fields it supports are represented

by a collection of WXField objects. An operator must create one Location class for every

Location in the database. Though different Locations may use the same algorithm for

retrieving data, such as one third party data provider offering data for several weather

stations in the same database format, every Location needs a unique Keyword to identify

it. And this has to be written into the Location class. It also provides the time range of

archived data for this Location, represented by two WXDay objects, the date of the first

and last recorded reading.

The most important aspect of a WXLocation class is it’s method for reading new

data. Given that every weather station is unique, or that every third party database that

offers us their data is distinct, the application could never anticipate the format the data

would be offered to us from it’s source. It is for this reason, that every Location class

must implement a function for retrieving data from the source, and pass it along to the

Data Management components in the format it would expect it to. The Data Management

components can then store the data in the database and manipulate it in it’s own format.

To do this, we’ve declared an abstract class called Location. This abstract class

declares, but doesn’t implement, the method getReadingsFromSource(Day). This method

takes a Day as a parameter, the day we want to retrieve data for, and it returns all the

readings for that day in a WXRecordSet object, the type of object used by the Data

Management classes to manipulate day readings. All Locations to be used in the

application, must extend this parent class and implement a method for retrieving fresh

data.

This absolves the Data Management classes from concerning itself with the

particulars of handling different data sites. Whenever it needs to retrieve fresh data from

a Location’s source, it merely calls the Location’s method, and knows it will return the

42

data in the common format it’s using. That way when changes occur in the third party

database, or new sites are to be added, only the affected Location class needs to be

adjusted, the rest of the system continues to function without need for any changes.

4.4 Data Management Classes

 These are the classes that manipulate the database. They act as a mediator for the

Web User Interface and the database. When a user requests data through the website, it is

these classes that retrieve the data from the database and provide it to the Web User

Interface components; and compile data if it has been requested. They also retrieve new

data from the Location’s sites periodically, and validate it before storing them into the

database.

 The classes that make up the Data Management component are:

• WXData

• WXDayData

• WXMonthData

• WXYearData

• WXCompiledReadingsData

• WXCompiledDayData

• WXCompiledMonthData

WXLocation

WXDay

1

 2 GetReadingsFromSource()

WXField

 1

1..*

Keyword

Figure 4-8. WXLocation UML Diagram

43

WXDayData is the class that represents a day’s worth of readings for a particular

Location. They day is represented by a WXDay object, and the Location by a

WXLocation object. It holds its data in a WXRecordSet object, and the statistical

information of its data in a WXStatRecord object. WXDayData objects can be created

either from new data, in which case it invokes it’s Location’s method for retrieving fresh

data, or from the data archived in the database, it can then store it’s data into the database.

Creating a WXDayData object with fresh data and then storing it into the database is the

way to increase the database’s size with new data. It also provides the statistics of the

data it contains.

 WXMonthData represents statistical data for every day in a month for a particular

Location. A WXDay object represents the Month, disregarding its Day field and the

Location by a WXLocation object. It holds it’s data in a WXStatRecordSet, given that all

it’s records are WXStatRecords (WXStatRecord of every day in the month), and the

month’s statistical information in a WXStatRecord of it’s own. It can be created from the

Readings files, or by the archived data in Month Data files. By creating a WXMonthData

object from the Readings archived files, and the storing it into the database is how

MonthData files are updated.

WXDayData

WXDay WXRecordSet

WXStatRecord

1

 1 1

1

1

1

1

1

WXLocation

Figure 4-9. WXDayData UML Diagram

44

 WXYearData holds the statistical information of every month in the year. A

WXDay object, disregarding the Day and Month fields, and the Location by a

WXLocation object represents the year. Its data is stored in a WXStatRecordSet, all the

WXStatRecords of every month in that year, and it’s own statistical information in a

WXStatRecord. This object can be created from archived Month Data files, or from

archived Year Data files. By creating a WXYearData object from archived Month Data

files and storing it’s data in the database is how Year Data files are updated.

Compiled Data files don’t directly manipulate the database. They rely on the

WXDayData, WXMonthData, and WXYearData to retrieve the data for them. The data

they gather is not stored into the database, but into a Compiles Directory, that makes the

file available for download to the client through the webpage.

The WXCompiledReadingsData class creates the CompiledReadings files. When

created, it requires a Location, and two WXDay objects, the time range to compile data

WXMonthData

WXDay WXRecordSet

WXStatRecord

1

 1 1

1

1

1

1

1

WXLocation

Figure 4-10. WXMonthData UML Diagram

WXYearData

WXDay WXStatRecordSet

WXStatRecord

1

 1 1

1

1

1

1

1

WXLocation

Figure 4-11. WXYearData UML Diagram

45

for. Its data is stored as a collection of WXDayData objects for all the days in between

the time range. It also calculates the relevant statistics for the data it has and stores it in a

WXStatRecord of it’s own.

 The WXCompiledDayData stores statistical data on a daily basis, for all the days

between a give time ranges for a Location. The time range is represented by two WXDay

objects, and the Location by a WXLocation object. Its data is stored as a collection of

MonthData objects, for all the months in between they two WXDay objects inclusive. It

would seem that a collection of WXDayData objects should be more appropriate. But for

reasons of performance, it is preferable to retrieve the statistical data from the Month

Data files. The information required is stored in them, and it avoids having to read all the

readings in the Day Data files, for what could be an extensive time range, to then retrieve

their statistical information. So the WXCompiledDayData will retrieve they day

statistical data from the WXMonthData objects, in spite of the days in the month before

the beginning of the time range, and the days in the month after the end of the time range,

will never be used. Its own statistical data, for the given time range, will be stored in a

WXStatRecord object.

WXCompiledReadingsData

WXDay

WXStatRecord

1

 1 1

2

1

1

WXDayData

1

1..*

WXLocation

Figure 4-12. WXCompiledReadingsData UML Diagram

46

 Finally, the WXCompiledMonthData gathers statistical information for all the

months within a specified time range at a particular Location. It requires a WXLocation

object, and two WXDay objects, to set the time range of data to be gathered. It builds its

data from WXYearData objects, for the same reason as explained above. After retrieving

all its data, it performs the relevant statistics calculations on its data, and stores it in a

WXStatRecord object.

WXCompiledDayData

WXDay

WXStatRecord

1

 1 1

2

1

1

WXMonthData

1

1..*

WXLocation

Figure 4-13. WXCompiledDayData UML Diagram

WXCompiledMonthData

WXLocation

WXDay

WXStatRecord

1

 1 1

2

1

1

WXYearData

1

1..*

Figure 4-14. WXCompiledMonthData UML Diagram

47

4.5 Web Interface Classes

 These are classes that serve to take requests of data from the user and display the

requested data in the form they wish to view it. Each of them generates on webpage

where the user views or requests data. They don’t access the database directly, but rely on

the Data Management components to retrieve or generate the data for them. The

following classes fall into this category:

• LocationTable

• DayDataTable

• MonthDataTable

• YearDataTable

• DayDataPrintTable

• MonthDataPrintTable

• YearDataPrintTable

• CompiledReadingsDataTable

• CompiledDayDataTable

• CompiledMonthDataTable

• CompiledReadingsDataPrintTable

• CompiledDayDataPrintTable

• CompiledMonthDataPrintTable

• DayGraph

• MonthGraph

• YearGraph

The client first accesses the data system through the LocationTable page. This

page displays all the information stored about the Location. It’s Name, Altitude,

Geographical Coordinates, etc… It might also display relevant statistics the operator may

deem important to visiting users, such as the highest and lowest recorded temperatures

for this Location.

48

It also provides the client with forms for requesting data. There are two essential

forms that the LocationTable page must display. First, the Data Request Form, this must

allow the user to input a date, a unit system, and a Data Type of date he wants to view.

The Data Type can be readings for the day, daily Statistics for the month, or monthly

statistics for the year of the date given. Through this form, the user is taken to the

DayDataTable, MonthDataTable, or YearDataTable, depending on the option he selected.

The second form is the Compile Data form. Here the user must be allowed to select

which Fields he wishes to compile data, from a list of all the Fields supported by this

Location. He must input two dates, the time range of data he wishes to compile, the unit

system, and the Data Type he wishes to compile. The Data Type can be all readings,

daily statistics, or monthly statistics, for all days or months within the time range.

The DayDataTable, MonthDataTable, and YearDataTable, display data contained

in WXDayData, WXMonthData, and WXYearData objects respectively. DayDataTable

presents the user with a table view of all the readings for the date he requested;

MonthDataTable the statistical data for every day in the month of the date; and

YearDataTable all the relevant statistics for every month in the year of the data requested

by the user. Each of them also displays the relevant statistics of the data they store.

Common elements within all these tables is a link to open the current LocationPage,

given that it is possible that the user may have arrived at this page not through the

LocationPage; links to download the data they are viewing in their corresponding CSV

file; a link to quickly switch unit systems; and a link to their corresponding PrintTable

page. Navigation links and forms must be available as well, so the user can jump from

different dates or locations without returning to the LocationPage. Also, they must

provide links at every Field header for retrieving graphs of one particular Field of data.

DayDataPrintTable, MonthDataPrintTable and YearDataPrintTable are the printer

friendly versions of their web counterparts. They display the same data as DayDataTable,

MonthDataTable and YearDataTable, in a format more suitable for printing. This means

no color, no links, and only the relevant data in the table.

49

 The CompiledDataTables display data that has been compiled for the user. They

implement almost the same interface as the DayDataTable, MonthDataTable and

YearDataTable. With the same links and relevant statistics of their data, with the

exception of graph links.

 Their printer friendly versions are implemented in the CompiledDataPrintTables.

They follow the same standard set by the DataPrintTables, for displaying the compiled

data in a printer friendly manner.

 Finally, we have the GraphTables. These display a graph of a Day, Month or Year

for a particular field. They must provide the user with the graph and a navigation form to

scroll or jump through the days, months, or years of data they are viewing. Links to their

corresponding DayDataTable, MonthDataTable or YearDataTable must be available as

well.

50

Chapter 5

Software Operation

 In this chapter is explained the basic operation of the application. The mechanism

for retrieving data from the weather station or the third party database, and how it is

stored into the database. It also describes how the process of quality control takes place

within the Field classes. Finally it explains how the Web Interface components receive

data requests from clients and display it to the user in the various tables or graphs.

5.1 Data Management

 Data retrieval begins at the Location class. The abstract parent class WXLocation

defines an abstract method getReadingsFromSource() which takes a WXDay object as a

parameter. This method has to be implemented by every single location in the system. As

it provides the mechanism for retrieving data directly from the source of the location.

And this is something unique for every Location and impossible to predict by any

developer. This method then retrieves the data from the station or the third party

database, in the format it is stored or received through the station’s institution, and

collects the readings for the day given as a parameter. Each collection of readings for a

given time of day are stored in a WXRecord object. This object holds a WXTime object

(the time of day) and all the readings corresponding to that time of day. All the

WXRecord objects for the all readings of that day are then wrapped in a WXRecordSet

object. This is then returned by the method to the calling class.

 The WXDayData object handles the Location’s data for one day. We create a

WXDayData object with its initializer, which takes as parameters a Location object (the

location from where we want the data), a WXDay object (the day we want data for), and

a value for the source of the data. These are declared in the WXData class and can either

51

be: WXData.SOURCE, or WXData.ARCHIVE. WXData.SOURCE, tells the

WXDayData object to retrieve the data directly from the location’s source. This would be

done through the Location’s getDataFromSource() method, providing the WXDay object

given in the WXDayData initializer. WXData.ARCHIVE, would have the WXDayData

object retrieve data from the files in the archives, stored in the manner explained in the

Data Structure section. The mechanism for reading the data from the archive files is

written into the WXDayData object.

After the data is retrieved, from either source, the data is run through the quality

control algorithms for each field the Location supports. The Location class’ “getFields()”

method returns an array of WXField object with all the Fields the Location supports. The

parent abstract class WXField defines a method called validate(). This method is

implemented in the parent class, but it limits itself to simply removing all the readings

that are not within the field’s range of acceptable data. Every WXField object has a range

of acceptable data, which mark the lowest and highest limits that a reading has to be

within to be considered valid. These values are field specific, and are stored in the

Location’s XML data file. The Location class reads them at the moment it is initialized

and passed as parameters when initializing the individual WXField objects. Most fields

require the high and low values be stored in the XML file. Such as Temperature, its range

of valid temperature readings can vary from location to location. However, Wind Speed

and Solar Radiation, always have a low limit of 0, and have this low limit value by

default. Wind Direction, always has a range of 0 to 360. In this last case however, it is

possible that certain locations may use numbers beyond this range to mark acceptable

readings. For instance, a Wind Direction reading of –10° can be used to represent 350°,

or 390° to represent 20°. This will be dealt by the Location’s getDataFromSource() method,

that will make the necessary conversion into a valid reading within the limits, if the

particular location is known to make these kind of readings. The validate() method takes

the WXRecordSet from the WXDayData object, and iterates through all the WXRecord

objects within it comparing the readings with the limits in the corresponding WXField

52

object. All readings not within the acceptable range are replaced with the invalid reading

indicator WXData.INVALID_READING.

The validate() method can be overwritten by any of the subclasses of WXField.

This allows for more complex field specific algorithms of quality control. The same

algorithm for removing invalid readings in a temperature data set would be different from

a wind direction data set for instance. By simply overriding the validate() method in a

subclass of WXField, the application uses that algorithm to purge the data of invalid

readings without making any modifications to any Data Management classes.

 The data is taken through the quality control algorithms regardless of whether it

was just acquired from the station’s source or from the archives. This would allow a

future developer to modify one of the quality control algorithms and be able to use the

data in the archive to update the whole database.

 After having validated the data, the WXDayData object calculates the relevant

statistics of its data. The algorithms for calculating these statistics are implemented in the

WXRecordSet class. It defines a method called getStat() which takes as parameter to

indexes. The first is the field index of data to calculate, such as the Temperature index, or

Precipitation Index, and the other is a statistic index, which indicates which statistic is to

be calculated. There are only four statistic indexes and they are defined in the WXData

class. They are WXData.LOW, WXData.AVG, WXData.HIGH, and WXData.TOTAL.

So when calling getStat(TemperatureIndex, WXData.LOW) on a WXRecordSet, I am asking

for the “lowest reading of the temperature field”.

 Every WXField must also implement a hasStat() method. This method tells us

which statistics are relevant for the Field. It takes as parameter one of the statistical

indexes and returns true or false depending on whether that statistic is relevant to the

Field. For instance, a Temperature object would return true on hasStat(WXData.LOW) and

on hasStat(WXData.HIGH) but false on hasStat(WXData.TOTAL). Likewise Precipitation

53

would return false on hasStat(WXData.LOW) and true on hasStat(WXData.TOTAL). After

performing these calculations, all the statistics for the day are stored in a WXStatRecord

object.

 WXRecordSet provides four methods for calculating these statistics. These

methods are findLow(), findHigh(), getAvg(), and getTotal(). Each of them requiring a

field index for the data they are going to find or calculate. findLow() and findHigh() return

the lowest and highest reading of the field given. findAvg() returns the average readings in

the data set, this is the sum of valid readings divided by the number of valid readings in

the data set. findTotal() returns the sum of all the valid readings in the data set.

 An exception has to be made in the case of a Wind Direction data set. The only

relevant statistic for Wind Direction is WXData.AVG, or the “General Wind Direction”,

and it needs a unique averaging algorithm, implemented in the WindDirection class,

because it’s readings are given as angles and they cannot be averaged like any other data

set. The formula used to find this general direction of angles is:

()

() 

















=

∑

∑

=

=

nXcos

nXins
tanaAvg n

i

i

n

i

i

0

0

Where X is the set of Wind Direction readings and n is the number of valid readings.

Whenever WXDayData, WXMonthData, or WXYearData is iterating through the

fields and arrives at a WindDirection field, it avoids using the findAvg() in the

WXRecordSet class and resorts to the WindDirection.findAvg() method.

It would seem like the same situation for validate(), where each field needs its

own validating algorithm. But this is the only case (so far) where one of the statistic

finding algorithms needs to be specially written for a Field. And no others are anticipated.

So for the time being, it is easier to simply modify the Data Management classes to

accommodate this unique situation.

54

 After this the WXDayData object is initialized and ready to provide data for that

day and Location. It can be used to provide data for generating a webpage of day data, or

for drawing a graph. The way the common database is updated is by creating a

WXDayData object using WXData.SOURCE (retrieving fresh data from the source)and

then saving the data into the common database using its saveData() method.

 The saveData() method takes one value as a parameter, the unit system to save the

data in. It can take one of these three values: WXData.BRITISH, WXData.METRIC, or

WXData.MOST_PRECISE. WXData.MOST_PRECISE is the value used to store data

into the Database. This value tells WXDayData to save the data in the most precise unit

system of every field. A value of WXData.METRIC or WXData.BRITISH, is an

indicator that data is being saved in one specific unit system because a user has requested

data for this day and may want to download the CSV file of the data. So if any of these

last two values are used, the file is stored in the Compiles Directory in the unit system

specified. The file is stored there temporarily and deleted after a fixed amount of time.

 The system is designed to always expect the readings to be in the most precise

unit system of the Field. Whenever there is a data set for Temperature, it’s assumed that

the readings are in Fahrenheit, and whenever there is a Wind Speed data set the readings

are in meters per second. Conversion to other systems is only done at the moment the

data is being stored in a file requested for the user in a specific unit system, or when

displaying data in a webpage with a specified unit system. The WXField parent class

defines an abstract method called convert() which takes a reading, and a unit system to

convert the reading to. All subclasses of WXField must implement this method. Inside

this method are two options, depending on which unit system is given. If the unit system

given is the field’s most precise unit system, then the reading was given in that unit

system, so no conversion is necessary and the same reading value is returned. If the unit

system given is not the field’s most precise unit, then the conversion formula, field

specific, is used to convert the reading and return a converted value.

55

 The WXMonthData object represents statistics on a day-by-day basis for a whole

month. It is initialized in the same way as a WXDayData, it expects a WXLocation

object, a WXDay object, and a Source value. The WXDay object is used, but only its

month and year values are necessary, the day value is irrelevant to the WXMonthData

object. When given a Source value of WXData.SOURCE, the WXMonthData creates

WXDayData objects for all the days within the month of the WXDay object. The are

created using the WXLocation given as parameter, the current WXDay object, and a

Source value of WXData.ARCHIVE. From each of these WXDayData objects, it

retrieves their WXStatRecord, through WXDayData’s getStatRecord() method, which

holds the relevant statistics for the day. These WXStatRecord objects are inserted into a

WXStatRecordSet object, and this comprises the data of a WXMonthData object. When

given a WXData.ARCHIVE value as Source, it merely opens the corresponding month

data file in the database structure, and builds the WXStatRecordSet and it’s

WXStatRecords from the data stored in the file.

After it has retrieved its data from either source, it finds the statistical values

relevant to its Fields. It does this through the getStat() method of the WXStatRecordSet

that holds its data. This method takes three parameters; the first is the Field index, then

the statistical set of that Field from which the statistic will be calculated, and the statistic

to calculate. Bearing in mind that WXStatRecords are three-dimensional data sets, where

the first dimension is the Day, the second is the Field, and the third the Statistic data. For

example, when invoking getStat(TemperatureIndex, WXData.LOW, WXData.HIGH) on a

WXStatRecordSet, we are asking for the “Highest reading in the set of low

temperatures”. The statistics are then stored in a WXStatRecord of its own.

WXYearData is the object that stores statistical information on a monthly basis

for all the months in a year. To create one it requires a WXLocation, and WXDay

objects, and a Source Value. Only the Year field of the WXDay object is relevant. When

retrieving data from the source, it creates WXMonthData objects for every month in the

year, using the WXLocation, the corresponding WXDay object and a Source value of

56

WXData.ARCHIVE. Its own data is then populated with the individual WXMonthData

WXStatRecords, or the statistical data for every month. And then they are stored in a

WXStatRecordSet object. When retrieving data from the archive, it opens the

corresponding Year Data file in the database, and reads the data from there. Its statistical

values are then retrieved from its WXRecordSet in the same way as the WXMonthData

object.

 In the cases of WXMonthData and WXYearData, after the data is retrieved, it

does not go through the validating process as WXDayData does. This would be

unnecessary, since all the data it acquires from WXDayData objects are already filtered,

and statistic values never generate erroneous readings.

 The WXCompiledDataClasses rely on the previous mentioned classes to gather

their data. They never manipulate the database directly, but create the necessary WXData

Objects they need. Though it is their responsibility to write their corresponding data files

into the Compiles Directory. When creating one of them, a WXLocation is needed and

two WXDay objects, the time range of data to compile. A Source value is not needed,

since there are no archived CompiledData, they are always generated upon request by the

user.

 The WXCompiledReadingsData is created with a WXLocation, two WXDay

objects, and a number array with the indexes of the Fields requested. It then iterates

through all the days from the first WXDay object to the second, creating WXDayData

objects with the provided WXLocation and the current WXDay. After they are all

initialized, it calculates the relevant statistics for the Fields in the request. It must

implement its own algorithms for finding these statistics. Given that there is no

continuous series of data, rather it is segmented into several days, special functions need

to be executed to retrieve a valid representative statistic. The High statistic for instance,

needs to be found from the High reading statistic of all the WXDayData objects. The

57

Average statistic needs to be calculated from all the readings of all the WXDayData

objects, as opposed to averaging the set of average statistic of each day.

 WXCompiledDayData and WXCompiledMonthData operate in similar ways.

WXCompiledDayData creates all the WXMonthData objects within the time range of the

two WXDay objects. It then creates an empty WXStatRecordSet of its own, and

populates it with all the WXStatRecord of every WXMonthData object, disregarding

those days before and after the time range. This will give us a continuous series of data,

and allow the use of the statistic functions in WXStatRecordSet to retrieve the statistical

data. WXCompiledMonthData works the same way, using WXYearData objects to

retrieve month statistical information.

 They all implement the saveData() method. It requires a Unit System, and

WXData.MOST_PRECISE is not acceptable. Whichever unit system is provided, the

data will be saved in the Compiles Directory, using the corresponding file name,

explained in the Data Structure chapter.

5.2 Web Display

 All Web Display classes are embedded into Java Server Pages (JSP) files. These

are web applications that allow the Java applications to generate WebPages dynamically,

given certain parameters and user requests. Parameters will be taken from the user

through HTML web form components (text boxes, check boxes, selections, etc.). These

parameters will be passed between classes and JSP files as parameters in URLs. This

approach allows the clients to continue making use of standard browser navigation

functions such as “BACK”, “FORWARD”, “HISTORY”, as opposed to applications that

request data by following a several-step process and in a pre-arranged order, where a

fault in one of the steps forces the user to start over [1]. All of them use the data

management classes to retrieve data from the database and generate the corresponding

58

Compiled Data files when necessary. All pages will always open links or data requests in

new browser windows, except for navigational links. This is done because researchers

often request new data, to compare with the data they are currently observing.

 The Location Page is accessed through static links on the main webpage. It

expects a parameter in the URL of LocationCode=x, where x is a number for identifying

Locations in the database. This code is given to the WXLocation class which returns the

corresponding WXLocation object. After the WXLocation object is created, this page

then displays the relevant information about this Location, and the two data request

forms. The first form, the Data Request Form, can open the DayDataTable,

MonthDataTable or YearDataTable, depending on the option selected of DataType. The

Compile Data Form, can lead the user to the CompiledReadingsTable,

CompiledDayDataTable, or the CompiledMonthDataTable.

 The DayDataTable, MonthDataTable, and YearDataTable all require the same

parameters. A LocationCode, to indicate the Location from which data will be retrieved.

a Date=xxxxxxxx in the eight digit date representation, for the date of data to be retrieved of

the Location. This date is used as a day for DayDataTable, only the year and month fields

for MonthDataTable, and the year field for YearDataTable. A UnitSystem=x is also

expected, where x is one of the unit system values, if none is given a default system of

British is used. Each of them then creates their corresponding Data object, which

retrieves the data they need, and then use the data in that object to display it to the user.

They also call on their corresponding Data object saveData() method and pass their

current unit system. This creates the Data File in the Compiles Directory with the given

unit system. The DataTable object then provides the user with the link to download this

file.

 CompiledDataTable pages require more parameters. They expect a LocationCode,

and a UnitSystem. A StartDate and EndDate, each of which with an eight-digit date

representation, marking the beginning and end of the time range to compile data. And a

59

comma separated array of indexes in Fields=x,y,z, to indicate the indexes of those Fields

data is to be compiled for. With these parameters, they create their corresponding

CompiledData objects, which provide them with the data to display on the webpage.

They also then invoke the CompiledData’s saveData() method and save the data in the

Compiles Directory for downloading to the user if he wishes to do so.

 Finally, the Graph classes are called by links on the DataTables. As usual, they

require a LocationCode, a Date, and a UnitSystem. They also need a Field=x, the index of the

field for which a graph is to be generated. MonthGraphTable, and YearDataTable, may

also expect a Stat=x index. This is the index of the statistical data upon which a graph will

be generated. With these parameters, they obtain the WXField class corresponding to the

index given in the Field parameter, and call its graph generating method, which can be

the one they inherit from WXField, or one they implement themselves. These

GraphTables then display the graph image to the user along with a navigational bar to

scroll through dates, and times of data.

60

Chapter 6

Web Interface

 This chapter presents the web interface as it is currently implemented on the

website. It describes the elements for each page, and how they are designed to facilitate

its usability.

 In the article “Websites That Satisfy Users”, the authors describe websites as

browsing or information seeking. [10] Information websites are those where the user

already has a goal of information he wishes to obtain, and the website provides him with

the mechanism for quickly obtaining his request, as in a query form, and performing the

necessary operations for displaying his requested data. Browsing sites are those more

interface-dependant where the user has not a specific data request but goes through an

overview of generalized data and navigates to and from different but related information

sites. Our goal is to provide a website that becomes a middle point between these two

forms of data sites. The user will always approach the website with a specific request of

data in mind, so the site must provide the mechanism for obtaining his request quickly,

but it should also provide the means to navigate to other Locations, Dates, Fields, after

the initial data request has been performed.

 The interface was designed with the hopes of providing users with an optimum

medium for researching weather data. An interface that makes it easy for researchers to

find the data they need, with minimal time to learn how to use. It is also oriented at

anticipating what information is relevant and important and providing it without requiring

him to request it. This has been achieved relying on important user interface notions that

make it easy to understand how the system will work and on recommendations by

weather researchers on what information is most important and would be requesting most

often.

61

 Beginning with the LocationTable. First we provide the user with the general

information about the Location. Its name, coordinates, altitude, institution that operates it,

the time range of data. And as some important statistics, the highest and lowest recorded

temperatures for that location in both unit systems, with links to the DayDataTable of

their dates. A small map illustrates the Location in the island of Puerto Rico. Then we

have form for viewing data for a particular date. It provides fields so the user can input a

date, the unit system, and data type he wishes to view. When loading the page, the form

always has a date set to the current data, or the last date in the Location’s time range. This

makes it easier for researchers to quickly access the latest weather information. The

system always remembers the unit system the user has selected in the past and always

initializes the page with that unit system set. If it is the user’s first visit to the site, a

default system of British is set. The default setting for Data Type is the Readings Data, as

it is the setting for viewing the latest up to the minute data. Finally, there is the Compile

Data Form. Here the user must select the Fields he wants to compile data for, the time

range of data to compile, and the unit system he wishes the data in. All of these are blank

when the page is loaded. The Data Collection type is initially set to the Readings Table,

given that it’s the most widely used setting for data compilation.

62

 From the Data Request form, the user is taken to the DayDataTable, MonthData,

or YearDataTable. All these tables have a common header, and their data tables. These

headers display the current date of data on screen, and some important links relevant to

that data. At the top, there is a form for opening a similar page of data for another

location in the same data and current unit system. The user can select which Location to

open with a selection box, with all the Location’s installed in the database. Lower in the

Location General
Information

Data Request Form

Data Compilation Form

Figure 6-1. Location Page.

63

table and properly iconized are relevant links to the data. The first is a link to open the

LocationTable page of the current Location. Next there is a link to download the CSV file

of the data on screen, which corresponds to a CSV file in the Compiles directory created

by the DayDataTable page when the data was requested. Then a link to reload the data

page in the opposite unit system. A link to open a data page of a higher order than the

page currently on screen. This means if viewing a DayDataTable page, a link to the

MonthDataTable page of the current month, in the MonthDataTable page, a link to the

YearDataTable page. And finally, a link to the printable version of the data on screen.

Below these important links, there is a navigational bar. This bar provides links to

DayDataTable pages immediately before and after the current date. A DayDataTable

provides links to days before and after the current day, a MonthDataTable links to the

previous and following month, and a YearDataTable links to previous and following

years. These links are not activated, if the date they lead to go outside the Location’s time

range of data. There’s also a link to the actual current day, month or year if that Location

is getting real-time data.

Figure 6-2. DataTable Header.

Date
Location

Form

Links

Navigation Bar

64

 The data table then is unique for every page. Common elements between them are

a graph bar, and a statistics bar. The graph bar provides all the possible graphs to be

generated from every field. These include full readings graphs, of all readings in the data

set, or statistical graphs. DayDataTable only provides readings graphs for the data of its

day. MonthDataTable and YearDataTable also provide graphs of all readings within their

time frames, and statistical graphs, such as the average temperatures for every month.

The statistics bar displays statistical information of the data in the time frame for every

field. For those statistics not supported by a particular field a blank space is left.

 Next we have the Field headers and the data itself. It is ordered chronologically

from the top down. For every field among the data table are marked the highest and

lowest values of their data sets for those fields that are supported. These are marked by

color schemes, the lowest reading in the set marked as blue, and the highest as red. This

makes it easily identifiable to the user when a particularly important reading occurred.

Graph Selectors & Statistics Bar

Figure 6-3. DayData data table.

65

 On Figure 6-4 and 6-5, we can see links are provided at the left hand column to

open the corresponding DayDataTable or MonthDataTable of the particular day or

month. An extra column is added in the MonthDataTable for Data Loss. Data Loss is the

percentage of data marked as invalid in the WXDayData object for that particular day

relative to the number of total readings a day should have for that particular Location.

This is important for a client that is viewing a MonthDataTable and may encounter a rare

statistic for a low or high reading in a particular field. With the Data Loss indicator, he

can ascertain whether all the data for that day was collected, which tells him/her whether

that statistic is accurate or not. For example, a “low temperature reading of the day” that

is unreasonably higher than any other day in the month; if the user notices that there is a

50% Data Loss for that day, it tells him/her that the weather station only recorded

temperature during the daylight hours, and the hours when the coldest temperatures occur

were discarded, and that lowest reading statistic was taken from the reduced set of hotter

temperatures. This explains to the user the strange statistic, and avoids necessity for any

further inquiry.

Figure 6-4. MonthData data table.

66

 The DayDataTable displays a much larger set of records than the MonthData or

YearData tables. For a Location with a 10-minute readings interval, the table amounts to

144 records. This causes interface problems for the user whenever the data greatly

exceeds the screen size of the computer [1]. This problem has already been addressed by

the W3C, and as solution they have set forth a standard of separating data in tables by

header, body and footer. It should allow the user to scroll through the data portion of the

table, while the rest of the page and the table header remain static. Unfortunately,

mainstream browsers have not yet implemented this. To correct this, the DayDataTable

page, repeats the Field headers bar right after the 12:00 N. record, and at the foot of the

table.

 The PrintTable pages provide the client with a display of the data that is optimal

for printing. Only minimal and essential data is displayed in a colorless fashion. They

display the same data as their DataTable counterparts, and their corresponding statistics.

The statistics among the data table are marked with (H) and (L) for High and Low.

Figure 6-5. YearData data table.

67

 The CompiledDataTables share the same header as the DataTables, with the

exception of navigation bars. They all provide the same statistics bars, for the data they

compiled. No graphs for CompiledData are implemented, so there are no graph bars. The

CompiledDaySummaries and CompiledMonthSummaries each provide links to their

corresponding DayDataTable and MonthDataTable pages. Each of these pages also

provides links to their corresponding printable versions.

Figure 6-6. DayDataPrintTable.

68

 Graph windows are opened through the links at any of the graph bars from

DataTables. GraphTables can be of DayGraphTables, MonthGraphTables, or

YearGraphTables, each of which displaying data for their corresponding time frames,

fields, and/or statistics. They provide the client with a form for selecting different dates,

unit systems, Locations, and fields for which to regenerate a graph. An Options form is

also available to modify the graph at the user’s convenience, such as the image size, the

range of the y-axis, and graph gridlines. Every GraphTable page also provides a link to

(1) (2)

(3)

Figure 6-7. CompiledDataTables. (1) CompiledReadingsTable,
(2) CompiledDaySummariesTable, (3) CompiledMonthSummariesTable.

69

open the corresponding DataTable of the current date and Location. These graphs are

displayed as regular web images, so the user can save them through the web browser’s

save image option.

 The graph type can be modified through their corresponding WXField class. This

allows future application operators, to provide graph types which best suit the type of

data to be displayed. This should be done by taking into consideration the structure and

type of data to be displayed; the intended use of the graph; and the information needed by

the client from the data [2].

6.1 Performance Tests

 The main test of performance for our software is the load time of a requested data

page by a user. Factors that determine the load time are the speed of the server to perform

the software operations of data retrieval and creation of WebPages and graph images, the

Figure 6-8. Graph table.

70

speed of the user’s Internet connection to transfer the data into his computer, and the

loading of the webpage on his computer browser. Usually this last factor is negligible, but

when unusually large WebPages, where there are many text elements to display and

arrange, a browser can delay several seconds displaying the whole set of data.

 The following tests were performed requesting data for a Location with a 10-

minute readings interval and on an Internet connection of a 56K modem. The results are

an average of 10 tries for each test. All these tests go through the following steps:

1. Retrieval of data on the server.

2. Calculations of relevant statistics on the retrieved data set.

3. Creation of webpage or graph image.

4. Download of webpage or graph image into user’s computer.

5. Display of webpage or graph image on user’s browser.

Tests results:

• Day Data Page (144 records) : 3.2 sec

• Month Data Page (31 records) : 2.4 sec

• Year Data Page (12 records) : 1.7 sec

• Compiled Readings Page (10 days, 1440 records) : 6.7 sec

• Compiled Day Summaries Page (50 days, 50 records) : 3.5 sec

• Compiled Month Summaries Page (50 months, 50 records) : 3.8 sec

• Day Graph (144 readings) : 3.8 sec

• Month Stat Graph (12 readings) : 3.1 sec

• Month Full Graph (4464 readings) : 5.6 sec

• Year Stat Graph (31 readings) : 3.6 sec

• Year Full Graph (52560 readings) : 7.3 sec

71

Chapter 7

Conclusions

 The developed application has been implemented and successfully executed over

the past year in the UPR’s Climate Department server. Currently it has acquired archived

data from nine Locations’ throughout Puerto Rico and receives real-time data from our

local weather station, which is displayed in real time at our website.

 The database is available on the web server. Using the file structure outlined in

Chapter 2, third party institutions have access to the database. This database is updated

every 10 minutes, so users can retrieve the latest data and incorporate it into their

databases and applications, in an automated fashion.

 Through the web interface, users have at their screens an easy to use and

understand interface for retrieving data they need. This interface provides them with the

relevant information about the location, and the tools to select and request or compile the

particular type of data they are looking for. The data pages serve to display the requested

data in a design that also points out the relevant statistics most users would also be

interested in. Through the use of representative icons he can also quickly retrieve other

information regarding the data he is currently viewing. These data can also be

downloaded and used at their convenience.

 With the data compilation tool, users have a mechanism for retrieving the specific

data they need. They can select the time range of data desired along with the Fields for a

particular Location. These data is then provided in a continuous data table, which can be

downloaded and manipulated for their interests. This saves them the task of retrieving all

the individual data files and the compiling them himself together.

72

 Users also have the option to view and navigate through the data in visual form

with charts and graphs. This enhances the study of data by providing a quick view of the

states of the particular weather Field. These charts and graphs can be downloaded as

regular web images for other uses by researchers.

7.1 Future Work

 Having implemented this system and made it available to the public on the

Internet, the tasks left to are to continue expanding the software to include more locations

and more data, and to improve on the features for helping researchers study weather data.

Currently our locations are limited to Puerto Rico, yet the system can be adapted to

include other locations throughout the world if other organizations agree to share their

data.

 One feature desired by users is a mechanism for Data Comparison. Users at the

site should have the ability to group data tables from different locations and/or dates into

one table or data file. This would greatly allow researchers to study weather phenomena

and its effects on different locations. This data comparison feature should come with all

its corresponding interfaces, data tables, graphs, and data files.

 A mapped display of statistical data. It would be of importance to display some

statistical value for fields for several locations laid over a map of a region. It provides

users with a better view of weather behavior and its effects over a particular geographical

area. This could be done making use of the Location’s geographical coordinates already

stored as part of its information file.

73

Bibliography

1. Burton, C. and Johnston, L. 1998. Will World Wide Web User Interfaces be Usable?
Computer Human Interaction Conference. Proceedings 1998. 1998 Australasian , 30
Nov.-4 Dec. 1998 p: 39 –44.

2. Doumont, J. and L. Vandenbroeck. March 2002. Choosing The Right Graph.
Professional Communication, IEEE Transactions on. 45(1): 1–6.

3. Eckel, Bruce. 2002. Thinking in Java 3rd edition. Prentice Hall PTR, USA.

4. Harold, Elliote Rusty. 1999. XML Bible. IDG Books, USA.

5. Hong Su, Kramer, D., Li Chen, Claypool, K. and Rundensteiner, E.A. 1-2 April 2001.
XEM: Managing the Evolution of XML Documents. Research Issues in Data
Engineering. 2001 Proceedings. Eleventh International Workshop. p: 103–110.

6. Jingyu Hou, Yanchun Zhang and Kambayashi, Y. 2001. Object Oriented
Representation for XML Data. Cooperative Database Systems for Advanced
Applications. CODAS 2001. The Proceedings of the Third International Symposium.
p: 40 –49.

7. Jun Wen, Rui Zhang and Xianliang Lu. 4-5 Nov 2002. The Design of Efficient XML
Document Model. Machine Learning and Cybernetics. Proceedings. 2002
International Conference. vol 2. p: 1102 -1106.

8. Mak, E.H.C., Chan, S.S.M. and Qing Li. 6-8 Nov 2002. XML vs. Object-Oriented
XML: Motivations, Applications, and Performance Evaluations. Cyber Worlds,
2002. Proceedings. First International Symposium. p: 371 –377.

9. Mueller, A., Mundt, T. and Lindner, W. 2001. Using XML to Semi-automatically
Derive User Interfaces. User Interfaces to Data Intensive Systems, 2001. UIDIS
2001. Proceedings. Second International Workshop. p: 91 –95.

10. Ping Zhang, Small, R.V., von Dran, G.M. and Barcellos, S. 1999. Websites That
Satisfy Users: A Theoretical Framework for Web User Interface Design and
Evaluation. System Sciences, 1999. HICSS-32. Proceedings of the 32nd Annual
Hawaii International Conference. Volume: Track2, p: 8 pp.

74

11. Pokorny, Jaroslav. 2000. XML Functionality. Database Engineering and
Applications Symposium, 2000 International. p: 266 – 274.

12. Renner, A. 2-6 April 2001. XML Data and Object Databases: The Perfect Couple?
Data Engineering, 2001. Proceedings. 17th International Conference. p: 143–148.

13. Roy, J. and Ramanujan, A. March-April 2001. XML Schema Language: Taking
XML to the Next Level. IT Professional , 3(2): 37 –40.

14. Sangho Ha and Kyoungrea Kim. 12-16 June 2001. Mapping XML Documents to the
Object-Relational Form. Industrial Electronics, 2001. Proceedings. ISIE 2001. IEEE
International Symposium. Vol: 3. p: 1757 -1761.

15. Soreide, N.N., Sun, C.L., Kilonsky, B.J., Denbo, D.W., Zhu, W.H. and Osborne, J.R.
5-8 Nov 2001. A Climate Data Portal. OCEANS, 2001. MTS/IEEE Conference and
Exhibition. Vol: 4. p: 2315 -2317.

16. Tornqvist, A., Nelson, C. and Johnson, M. 16-18 June 1999. XML And Objects-the
Future of The e-forms on the Web. Enabling Technologies: Infrastructure for
Collaborative Enterprises, 1999. (WET ICE '99) Proceedings. IEEE 8th International
Workshops. p: 303 -308.

75

Appendix A

Programmer’s Manual

A.1 Setting up the application

The software package comes in a bundle of java classes. To run the application

the installation of the Java Runtime Environment is required. It is available for download

a Sun’s website (java.sun.com). To modify the software or add Locations and Fields, it is

necessary to download the Java Standard Development Kit (JDK) also available at Sun’s

website.

After installing both of these packages, and properly configured them to allow the

execution of java applications, the software can be copied onto the host computer. It can

be copied into any directory of the host computer, if installing on a web server, it should

be installed into a directory accessible to users from the internet and given privileges to

read and write into the records directory.

 Next, the main operating class of the application needs to be written. This class is

called InteractiveWX. In it are declared the Records and Compiles directories. This class

can also be used to operate the automated functions of the application and executed from

there. Access to these directories should be placed under get methods named below.

Sample Code A-1 gives us an example of how it should look:
class InteractiveWX {

 public static file getRecordsDirectory() {

 return new File(“C:\\Records\\”);

 }

 public static file getCompilesDirectory() {

 return new File(“C:\\Records\\Compiles”);

 }

}

Sample Code A-1. Declaration of Records and Compiles directories in InteractiveWX class

76

 The application is now ready to be used. At this moment however there are no

Locations set up in the system. The next section covers how to add these Locations into

the database. There is also several Fields provided with the software that most climate

data support, if there is data for fields that are not supported they should be added as well.

A.2 Adding a Location

A Location needs to have its own corresponding Location class. We should first

give it a representative name for it. The class must also extend the WXLocation class and

implement the methods declared by it in order to be recognized by the application as a

valid Location. Working on the Location at Mayaguez we could create a class as

described in Sample Code A-2.

class Mayaguez extends WXLocation {

}

Sample Code A-2. Location class declaration.

A constructor method should then be written for the class. This constructor should

assign a keyword for the Location, making sure that it is a unique keyword for all the

implemented Locations. The indexes for the supported classes must be given a unique

value different than -1. A value of -1 for a Field index indicates the Location doesn’t

support that Field. Each field index needs to be given a distinct value in consecutive

orders, since these indexes will be used to identify data fields from data sets. These field

indexes are declared in the WXLocation class and inherited into our current Location

class when extending it. The constructor for our Mayaguez Location is declared in

Sample Code A-3.

77

class Mayaguez extends WXLocation {

 public Mayaguez() {

 KeyWord = “mayaguez”

 PressureIndex = 0;

 RelativeHumidityIndex = 1;

 DewPointIndex = 2;

 WindSpeedIndex = 3;

 }

}

Sample Code A-3. Location class constructor declaration.

 Next we need to write the Location’s time interval function. This function returns

the time interval of readings for that Location in minutes. Given that a Location can

change intervals of readings in the course of its time range, it expects a WXDay object of

the data when the readings interval is sought. If it has always maintained a constant

readings interval, the WXDay object can be ignored.

class Mayaguez extends WXLocation {

 public Mayaguez() {

 …

 }

 public getReadingsInterval(WXDay Day) {

 return 10;

 }

}

Sample Code A-4. Location class constructor declaration.

 Then the most important function in the Location class is the method for

retrieving data from its source. This method takes as parameter the WXDay object of the

day for data requested and should return the data in a WXRecordSet object. It will access

the weather station or the third party database and retrieve the data in the format they

store it. It should then convert the data into the accepted format of the Data Management

classes and properly organize it into its corresponding WXRecord objects and return the

WXRecordSet with all the records.

78

class Mayaguez extends WXLocation {

 public Mayaguez() {

 …

 }

 public int getReadingsInterval(WXDay Day) {

 …

 }

 public WXRecordSet getReadingsFromSource(WXDay Day) {

 …

 }

}

Sample Code A-5. Declaration of Location’s function for retrieving data from the source.

 This Location class is now ready to be included into the application. It should

now be registered into the WXLocation class as one of the Location’s available in the

database and assigned a LocationCode value. These Location codes are declared in the

WXLocation class, in a segment that should look like Sample Code A-6.

class WXLocation {

 public static final int MARICAO = 0,

 AGUADILLA = 1;

 …

}

Sample Code A-6. Location codes in WXLocation class.

 We then add another entry for the Location we’ve just created.

class WXLocation {

 public static final int MARICAO = 0,

 AGUADILLA = 1,
 MAYAGUEZ = 2;

 …

}

Sample Code A-7. Entry of new class into the Location codes list.

79

 We must then associate that Location Code to the Location class we’ve just

created. This is done in the Location’s getLocation() function. This function takes as

parameter a Location Code and should return the corresponding Location object.

class WXLocation {

 public static final int MARICAO = 0,

 AGUADILLA = 1,

 MAYAGUEZ = 2;

 public static WXLocation getLocation(int LocationCode) {

 switch (LocationCode) {

 case MARICAO : return new Maricao();

 case AGUADILLA : return new Aguadilla();

 }

 return null;

 }

}

Sample Code A-8. GetLocation() method in WXLocation class.

 Into this method, we then add the new Location:

class WXLocation {

 public static final int MARICAO = 0,

 AGUADILLA = 1,

 MAYAGUEZ = 2;

 public static WXLocation getLocation(int LocationCode) {

 switch (LocationCode) {

 case MARICAO : return new Maricao();

 case AGUADILLA : return new Aguadilla();
 case MAYAGUEZ : return new Mayaguez();

 }

 return null;

 }

}

Sample Code A-9. Entry of new Location into getLocation() method.

 The Location is now ready to collect data. It is recommended that the Location’s

saveLocationInfo() method is called to create the Location’s data directory within the

Record directory (using its keyword) and its XML data file. The XML data file will have

80

all the corresponding tags for the location data, but they will all be empty. The user can

now input into them the Location’s information, such as its name, the coordinates,

organization that operates it, etc.

Adding a Field

To implement a field that is not currently supported by the system it needs its own

class, which extends WXField and implements the functions declared into it. We first

create our Field class and make it an extension of WXField, as shown in Sample Code A-

10.

class Temperature extends WXField {

}

Sample Code A-10. Field class declaration.

 Then we declare the overall relevant statistic of the Location for this field. This is

the data which is to be saved into the Location’s XML Data file.

class Temperature extends WXField {

 private double HighestReading,

 LowestReading;

 private WXDay HighestReadingDay,

 LowestReadingDay;

}

Sample Code A-11. Field class relevant statistics declaration.

 These statistics need to be written to and read from the Location’s XML Data file.

This is done through the Fields writeInfo() and readInfo() functions. Each of which take a

XMLDocumentHandler object, and should use its interface to read and write its data into

the file.

81

class Temperature extends WXField {

 …

 public void writeInfo(XMLDocumentHandler) {

 …

 }

 public void readInfo(XMLDocumentHandler) {

 …

 }

}

Sample Code A-12. XML information handler methods.

 The Field’s title or name is retrieved through a getTitle() function. This is the title

that will be used at all tables when naming a column of data.

class Temperature extends WXField {

 …

 public String getTitle() {

 return “Temperature”;

 }

}

Sample Code A-13. Field’s Title method.

 After the Title, we also need the units in which the data for this field is measured

in. The Data Management classes retrieve this through the Field’s getUnit() method,

which takes as parameter the unit system desired, as one of the values declared in

WXData. An entry for WXData.MOST_PRECISE should also have its entry in this

method, it should return one of the Metric or British units, depending on which system is

most precise for this Field.

82

class Temperature extends WXField {

 …

 public String getUnit(int UnitSystem) {

 switch (UnitSystem) {

 case WXData.METRIC : return “°C”;

 case WXData.BRITISH : return “°F”;

 case WXData.MOST_PRECISE : return getUnit(WXData.BRITISH);

 }

 return null;

 }

}

Sample Code A-14. Field’s unit method.

 Aside from providing these units, this Field must also be able to convert a reading

from one of these unit systems to another. This must be done in the Field’s convert()

method, which takes as parameters a reading and a unit system to convert the reading to.

The Data Management classes always work with readings in their most precise unit

systems, so this method should only convert readings if a unit system is provided that is

no the Field’s most precise unit system. Since the given data will already be in that type

of system.

class Temperature extends WXField {

 …

 public double convert(double Reading, int UnitSystem) {

 if (UnitSystem == WXData.METRIC)

 return (Reading – 32) * 5/9;

 else

 return Reading;

 }

}

Sample Code A-15. Field’s convert method.

 As we can see in the example, given that this Fields most precise unit system is

WXData.BRITISH, it will always receive its Reading value in the British unit system, so

83

if a request is made to convert it into a British unit system, no conversion is necessary.

This explains why a mathematical operation need only be performed in the case that the

unit system to convert the reading to is of WXData.METRIC.

 Finally, this Field needs to identify to the Data Management classes, for which

statistics it supports. This is done through a hasStat() method. It requires as parameter

one of the statistical indexes, declared in the WXData class, and returns true or false

depending on whether this Field supports that statistic.

class Temperature extends WXField {

 …

 public boolean hasStat(int StatIndex) {

 switch (StatIndex) {

 case WXData.LOW :

 case WXData.AVG :

 case WXData.HIGH :

 return true;

 }

 return false;

 }

}

Sample Code A-16. Field’s hasStat method.

 In this case, the statistics implemented by temperature are low, average and high.

These are the statistics that have their entry in the hasStat method, for which will return

true if provided any of their statistical indexes. A StatIndex of WXData.TOTAL, would

not have any entry in the hasStat method and would return false in this case.

 This Field is now ready to be used by the application. It must first be registered as

a possible field for any Location in the WXLocation class. Here is where all the field

indexes are declared in a segment of code like the one illustrated in Sample Code 3-7.

84

class WXLocation {

 public int DewPointIndex = -1,

 PressureIndex = -1,

 RelativeHumidityIndex = -1,

 WindSpeedIndex = -1,

 WindDirectionIndex = -1,
 TemperatureIndex = -1;

}

Sample Code A-17. Declaration of Field indexes in WXLocation class.

 It must also be registered into the WXLocation’s initializeFields() method. Here,

the Location iterates through all the Field indexes to find those supported by the

Location. It then builds the Fields array for the Location and creates the corresponding

field object to populate that array.

85

class WXLocation {

 …

 private void initializeFields() {

 int FieldsCount = 0;

 if (DewPointIndex != -1) FieldsCount += 1;

 if (PressureIndex != -1) FieldsCount += 1;

 if (RelativeHumidityIndex != -1) FieldsCount += 1;

 if (WindSpeedIndex != -1) FieldsCount += 1;

 if (WindDirectionIndex != -1) FieldsCount += 1;

 if (TemperatureIndex != -1) FieldsCount += 1;

 Fields = new WXField[FieldsCount];

 if (DewPointIndex != -1) Fields[DewPointIndex] = new DewPoint();

 if (PressureIndex != -1) Fields[PressureIndex] = new Pressure();

 if (RelativeHumidityIndex != -1) Fields[RelativeHumidityIndex] = new

RelativeHumidity();

 if (WindSpeedIndex != -1) Fields[WindSpeedIndex] = new WindSpeed();

 if (WindDirectionIndex != -1) Fields[WindDirectionIndex] = new

WindDirection();
 if (TemperatureIndex != -1) Fields[TemperatureIndex] = new Temperature();

 }

}

Sample Code A-18. Entry of new Field index into WXLocation class’ initializeFields()
method.

 After this is done, the Field is ready to be used by any location. What is left is to

register this field into those locations that will support it. As described in Section 2, this is

done by assigning its Field index a value different than –1. In the Mayaguez class created

in Section 2, the new entry would be added as shown in Sample Code A-19.

86

class Mayaguez extends WXLocation {

 public Mayaguez() {

 KeyWord = “mayaguez”

 PressureIndex = 0;

 RelativeHumidityIndex = 1;

 DewPointIndex = 2;

 WindSpeedIndex = 3;

 TemperatureIndex = 4;

 }

}

Sample Code A-19. Entry of new Field index into Location class.

 The operator must then modify the getReadingsFromSource() method to now also

retrieve the data for the new Field and properly organize it in the WXRecordSet that it

returns.

Implementing a Quality Control Algorithm for a Field

 Quality Control is performed by the Field’s validate() method. This method is

implemented in the WXField superclass. It takes a WXRecordSet as the data to validate

and the only validation it does is to discard all those readings not within the Field’s range

of valid readings. This range of valid readings is written in the Location’s XML Data file

for those Fields that do not have a fixed range. These can be Fields such as Temperature,

or Pressure, where a range of valid readings can be adequate for one Location, but not in

another where the temperature or pressure is generally higher or lower. Fields such as

Wind Direction however have a fixed range of readings (0 to 359.99), as it doesn’t

change no matter the location. Others have only one flexible side of the readings range,

like Wind Speed, where wind speeds can vary from one location to the other, yet the

lowest possible value is always 0.

 Subclasses of the WXField class, the specific Field classes, can override this

method. To implement a Field specific quality control algorithm, the operator needs only

87

to rewrite the validate() method in the Field class and implement the algorithm into the

software code. This algorithm should discard erroneous readings by replacing their value

in the WXRecord with a WXData.INVALID_READING value. The Data Management

classes need no modification to use the newly implemented algorithm, as they always call

on the Field’s validate() method, which if not implemented, uses the one inherited by

WXField.

Overriding the validating method from WXField means that only the one

implemented in the Field class is used. It is recommended that it also call on the

superclass’ validate method to discard the readings outside the valid reading range as

shown in Sample Code A-20.

class Temperature extends WXField {

 …

 public void validate(WXRecordSet Data) {

 super.validate(Data);

 // Quality Control Algorithm.

 return Data;

 }

}

Sample Code A-20. Overriding the validate method of WXField.

Changing a Graph for a Field.

 Graphs are generated at the WXField class. All graphs generated here are typical

line graphs. It provides several methods for displaying different types of graphs. These

methods are:

• getDayGraph(). For generating graphs for readings in one day of data.

• getMonthFullGraph(). For generating a graph for all the readings in one month.

88

• getMonthStatGraph(). For a graph of statistical data for each day in the month.

• getYearFullGraph(). A graph for all the readings in a year.

• getYearStatGraph(). Statistical data for each month in the year.

Each of these methods takes in different parameters depending on the type of

graph. They all require a WXDay, a Location object, a Field index for the field they are

to draw a graph from. The Stat graphs require a statistical index as well. They each then

retrieve the data they need, through the classes in the Data Management component and

generate the graph in a BufferedImage object. Which later on is converted to a JPG image

file and stored in the Compiles directory before it is displayed on the GraphTable page.

 For an operator to implement a unique style of chart or graph for a Field he needs

to override the methods for the graphs he wishes to change. Inside the method he must

retrieve the data required, create the BufferedImage object, and use the JDK’s Graphics

interface to draw the graph elements on the BufferedImage. Then return this

BufferedImage with the graph to the calling class.

89

Appendix B

User’s Manual

B.1 Location Page

 The user arrives at this Location page through any of the links provided at the

website’s homepage. This page provides important information about the current

Location and from here the user can retrieve any table of data or compile a data set. To

retrieve these data, he/she needs to fill out the displayed forms for data request or data

compilation.

 At the top is displayed relevant information about the Location. First the Owner,

this is the person or institution that operates the weather station and provides us with their

data. Next are the geographical coordinates of the Location. The altitude of the Location

over sea level in the unit provided. The Data Collection Range are the dates of the first

and last record of data for this Location. The user must always request data within this

time frame. Anything before or after this time frame will simply display empty pages of

“not available” data. Finally, two important statistics are the Highest and Lowest

temperature readings of that Location, in British units and Metric in parenthesis. Next to

them, the dates of when those readings occurred and a link to open a DayDataTable of

that date.

 Next, the user has the “Go To Date” form. From here he can request any data

table. The date is entered in the textboxes labeled “Day”, “Month”, and “Year” under the

“Date” heading. If the user wishes to request a MonthDataTable, the “Day” entry can be

ignored. For a YearDataTable only the “Year” entry is relevant. Next he chooses the unit

system to view the data by selecting one of the British or Metric options. Finally, a Data

Type. The first option is to view a DayDataTable of all the readings for the date entered

90

in the Date form. It is labeled by the readings interval of that particular Location, for the

latest date in the time range. The second option are the daily statistics for the month

entered, and the third are the monthly summaries for the year in the “Year” textbox.

 Finally, by clicking on the “Go!” button, or by pressing the “Enter” key, a new

window is opened with the requested data.

Figure B-1. Screenshot of Location Page

91

 At the bottom of the page is the Compile Data form. This is the form that allows

the user to compile a set of data for a given time range, and fields, in a single continuous

time series. On the left is a list of Fields that the Location supports. The user must select

at least one of these fields to compile data for. Next is the time range selection form. The

time range is provided by entering the two dates in the “From” and “To” date forms. Next

the user must select one of the two unit systems. And finally the data collection type. The

first option Hill display all the recorded readings at the Location’s time interval for the

given time range. The second option gives daily summaries of the statistics for the

selected Fields on all the days in the time range. Monthly summaries is retrieved with the

third option. The data is retrieved and displayed in a new window by pressing the

“Compile!” button.

 Given that data compilation can produce excessive amounts of data request which

can overwhelm the web server, limits on the extent of time ranges have been set. This

also protects the server from an erroneous input from the user in the time range. Currently

there is a 50 day limit for compiled readings, a 500 day limit for daily summaries, and a

500 month limit for month summaries.

B-2. Viewing Data Pages

 After entering the requested data on the “Go to date” form, clicking the “Go!”

button brings up a data page. The kind of data page will correspond to the “Data page

type” option selected on the “Go to date” form. All these data pages share several

sections in common: A data header, a navigation bar, a stats bar, and the data table.

 The data header displays information about the data requested and options to

modify its display. At the top is displayed the Location’s name, and the date of the data

retrieved. A selection box of available Location’s is provided to open a new data page of

the current date for another location. The first element in the lower options is a link to the

92

Location page. This is provided in case the user has navigated into the current data page

from a data page of another Location. Next there is a link to download the CSV file of the

data on the page. This file can be easily imported into mainstream spreadsheet

applications such as MS Excel. The following option allows the user to switch the unit

system the data page is displayed in to the alternate system currently set. The next option,

not available on the Year Data page, opens a new data page of a higher time level than

the current page. This means, on a Day Data page it opens a Month Data page for the

current month; and on a Month Data page, a Year Data page for the current year. Finally

is a link to a black and white version of the data more suitable for printing.

 At the bottom of the header is a navigation bar. These links take the user to other

data pages of the same type and Location at different dates. The first two are links to the

immediately previous and next time units. These are days for Day Data pages, months for

Month Data pages, and Years for Year Data pages. The last is a link to the actual current

day, month or year. Any of these links will be disabled if the date they lead to are not

within the Location’s time range of data.

Figure B-2. Screenshot of Data Header

93

 The data table is particular for every data page type. At the top is a graphs section.

Where links to all the available graphs for every field are provided. Clicking on these

links opens a new window with the requested graph image. Below is a statistics section,

with all the relevant statistics for every field calculated from the data set in the data table.

Invalid reading markers are placed where a particular Field does not support a statistic.

Finally, there is the data. The files indexes are at the left-hand column, ordered by time,

day, or month depending on the data page type. In the case of Month Data and Year Data

pages, these indexes are also links to the Day Data or Month Data page of the date they

display. Special statistics such as the highest and lowest reading in the data set are

highlighted in the data area in red and blue accordingly.

B.3 Compiling data

 Data is compiled by filling the “Compile Data” form in the Location page. It is

necessary to select at least one Field of those available for that Location. Then providing

the time range of data to compile, by entering the start and end date of the time range. A

unit system to view the data is selected and one of the Data Type options.

Figure B-3. Screenshot of Data Table

94

 The Data Type options correspond to the Day Data, Month Data and Year Data

pages available through the “Go To Date” form. The first option, will retrieve all readings

for the selected fields at the Location’s readings interval for all dates in the provided time

range. The “Daily summaries” option brings up the daily summaries, the statistical data

for every day and the selected fields, for all the day in the time range. “Monthly

summaries” retrieves the statistical data for the selected fields for every month in the time

range.

 All Compiled Data Pages display a header similar to the Data Pages. They display

the Location name, and an option to compile data for the same time range at another

Location. They also provide links to open the Location page, download the compiled data

in a CSV file, switch to the alternate unit system, display the data in a printer friendly

version, and to compile the data at a higher time level than the current one. This means in

the Compiled Readings Page, an option to view the Daily Summaries for all the days in

the current time range. There is no navigational bar in Compiled Data Pages.

 Below the header is the data table. At its top are statistics for the selected fields

calculated from the data set in the requested time range. Statistics not supported by a

particular field are marked with an invalid reading marker.

95

 The compiled data is then displayed ordered by date and time. The left hand

column is the date index. In the case of Compiled Readings page, there is a column for

the date and one for the time of day within that date. For daily summaries there is only a

date column, which also serves as links to Day Data Pages for the date they represent.

And for monthly summaries, only the month is displayed with a link to its corresponding

Month Data Page. Statistics highlighted in the data table correspond to the highest and

lowest value in their data set, marked as red and blue respectively.

B.4 Viewing graphs

Figure B-4. Screenshot of Compiled Data Table

96

 A graph is displayed by clicking on any of the corresponding graph links for a

Field on a Data Page. All graphs have a distinct interface, which allows the user to

navigate between Locations, Fields and Dates and quickly retrieve more desired graphs.

This is achieved using the “Jump to” form at the top of the Graph Page. This form allows

the user to input a different date, location, or field and retrieving the new graph by

pressing the “Go!” button.

 The “Options” form allows the user to change some visual elements of the graph

image. The size of the image can be modified by entering new dimensions (in pixels).

The Y-Axis can also be modified by changing the graph’s High and Low values. And

other visualization options can be set or unset, such as gridlines, and displaying important

statistics on the graph image. These settings don’t apply to all types of graphs. The graph

is redrawn with new changes by pressing the “Change” button.

 It should be noticed that the “Jump to” and “Options” forms are independent of

each other. A change in the date field will not be applied if the “Change” button is

Figure B-5. Screenshot of Graph interface

97

pressed. Likewise a change in the Y-Axis field for example will not be reflected on the

graph image by clicking “Go!”. If a user wishes to change the graphs date and

visualization, he must first enter the desired options, click “Change”, and when the new

graph is loaded, enter the new date he needs, and click “Go!”.

 Below these forms is a navigational bar. The links correspond to the graph’s time

level. If viewing a graph for a day’s readings, the links will lead to the next and previous

day, and they actual current day. For a graph of daily statistics for a month, the links lead

to previous, next and current months. These links are disabled if the date they represent

are not in the Location’s time range.

 Finally, there is the graph image. This is the JPG image produced by the Field’s

corresponding getGraph() method. They will vary from Field to Field, and not all options

setting are applicable. In the case of a Wind Rose for instance, the gridlines options are

irrelevant to the graph’s visualization. The graph images can be downloaded into the

user’s computer easily by using the browser’s save image mechanism. In MS Explorer

and Netscape Navigator, it can be done by right-clicking on the image itself, and

selecting the “Save picture as…” option.

