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ABSTRACT 

Since 1950 researchers have proposed methodologies to find an optimal allocation of 

tasks to workstations in an assembly line. However, most of the developed models solve 

the simple line balancing problem.  The main outcomes of this thesis work were: (1) the 

development of a methodology for the design of a cost-oriented Simulated Annealing-

based heuristic for line balancing with parallel stations, stochastic times and mixed 

products, (2) the design of a Simulated Annealing-based heuristic named ANAMAR06, 

and (3) the design of a user friendly Matlab-based tool for execution of ANAMAR06. 

Results from ANAMAR06, with deterministic processing times, were compared to those 

obtained from an optimization model.  The average percentage between ANAMAR06 

and the mixed integer linear model was 1.63%.  The same comparison was done between 

results from a modified Amen’s and two Gaithe’s heuristic model.  The proposed 

algorithm outperformed all three.  
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RESUMEN 

Desde 1950 los investigadores han propuesto metodologías para realizar una óptima 

asignación de las tareas a los centros de trabajo de una línea de ensamblaje.  No obstante, 

gran parte de los modelos desarrollados ofrecen solución al problema simple de balanceo 

de línea.   

Las contribuciones mas relevantes presentadas en esta tesis son: (1) el desarrollo de una 

metodología para el diseño de un heuristico basado en la teoría de Recocido Simulado 

que permita solucionar el problema de balanceo de línea con estaciones en paralelo, 

tiempos de procesamiento estocásticos y producto mixto, (2) el diseño de un heurístico 

llamado ANAMAR06 el cual está basado en Recocido Simulado y (3) el diseño de una 

herramienta amigable al usuario en Matlab® para la ejecución de ANAMAR06. 

Los resultados de ANAMAR06 con tiempos de procesamientos determinísticos fueron 

comparados con los obtenidos por un modelo de optimización y se obtuvo una diferencia 

promedio de 1.63% entre heurístico propuesto y programación entera mixta.  De manera 

adicional, se comparó ANAMAR06 con una versión modificada del heurístico de Amen 

y dos variantes del modelo de Gaither.  ANAMAR06 superó los tres heurísticos 

analizados. 

 

 



 

iv

 

 

 

 

 

 

© Ana María González-Garcés 

 



 

v

 

ACKNOWLEDGEMENTS  

I would like to thank my parents and my brother for their unconditional love and support.  

I am immensely thankful with my family, my friends and all the people who believe in 

me during these last years. 

There are no words to express the gratitude to those who support me and encourage me 

during my studies.  I am thankful to those who work with me, those who listened to me 

and those who laugh with me and laugh at me.  They know who they are. They do not 

need to be mentioned. 

I am in debt with Dr. María Irizarry for being a wonderful advisor.  Without her 

continuous guide and support, and her eternal patience it would have been impossible to 

achieve this goal. 

I want to thank my graduate committee, Dr. Sonia Bartolomei and Dr. Pedro Resto for 

teaching me and giving me direction during my graduate studies.  I would like to thank 

all my professors, especially Dr. David González for sharing his invaluable expertise and 

knowledge. I also want to thank Dr. Mario Padrón and Joel Rivera for their technical 

support.   

I am indebted with Edwin Garavito for his technical support in the development of the 

user interface.  



 

vi

 

TABLE OF CONTENTS 
 

1. INTRODUCTION............................................................................................... 11 

2. LITERATURE REVIEW .................................................................................. 14 

2.1 Line Balancing Problem ................................................................................... 14 
2.1.1 Parallel workstations ........................................................................................... 17 
2.1.2 Mixed-Model Assembly Lines............................................................................ 22 
2.1.3 Stochastic Task Times......................................................................................... 25 
2.1.4 Cost Oriented Models.......................................................................................... 28 

2.2 Simulated Annealing......................................................................................... 30 
2.2.1 Design of the SA algorithm................................................................................. 32 
2.2.2 Simulated Annealing Structure ........................................................................... 36 
2.2.3 Simulated Annealing Applied to Line Balancing................................................ 39 

3. PROBLEM DEFINITION ................................................................................. 42 
3.1 Development of the Cost Function ................................................................... 43 

3.2 Line Balancing Constraints............................................................................... 45 
3.2.1 Capacity Constraints: .......................................................................................... 46 
3.2.2 Precedence Constraints: ...................................................................................... 48 
3.2.3 Technical Constraints .......................................................................................... 49 

3.3 Stochastic Processing Times for the Mix-Product Line ................................... 49 

3.4 Mathematical Formulation of the Problem....................................................... 52 

4. METHODOLOGY FOR THE DESIGN OF A SIMULATED ANNEALING-
BASED HEURISTIC...................................................................................................... 59 

4.1 Solution Representation and Generation .......................................................... 59 
4.1.1 Solution Representation ...................................................................................... 60 
4.1.2 Solution Generation............................................................................................. 61 

4.2 Selection of the Annealing Schedule ................................................................ 63 
4.2.1 Initial Temperature .............................................................................................. 64 
4.2.2 Cooling Rule ....................................................................................................... 68 
4.2.3 Chain Length ....................................................................................................... 71 
4.2.4 Final Temperature ............................................................................................... 74 
4.2.5 System Perturbation ............................................................................................ 75 

4.3 Optimal SA parameter setting through DOE.................................................... 77 

4.4 Evaluation and Selection of an Initial Solution ................................................ 82 
4.4.1 Heuristic Rules and Procedures........................................................................... 84 
4.4.2 Comparison of Results ........................................................................................ 87 

4.5 Final Design Called ANAMAR06.................................................................... 88 

5. RESULTS ............................................................................................................ 91 



 

vii

5.1 Performance Evaluation of ANAMAR06......................................................... 92 
5.1.1 Heuristic Procedures............................................................................................ 92 
5.1.2 Optimization Model ............................................................................................ 96 

5.2 Analysis of Heuristic Robustness Performance.............................................. 105 

6. SUMMARY AND CONCLUSIONS ............................................................... 108 
6.1 Summary ......................................................................................................... 108 

6.2 Conclusions..................................................................................................... 109 

6.3 Future Work .................................................................................................... 111 

APPENDIXES............................................................................................................... 117 
Appendix A: Simulated Annealing Main Algorithm.................................................. 117 

Appendix  B: Experimental Data Set.......................................................................... 121 

Appendix  C: User Manual ......................................................................................... 132 
 



 

viii

 
 

LIST OF TABLES 
 
 

Table 1  Precedence Matrix .............................................................................................. 49 

Table 2 Task Assignment.................................................................................................. 60 

Table 3  Parallel Workstations.......................................................................................... 60 

Table 4  ANOVA for Random Walk Lengths .................................................................. 67 

Table 5  ANOVA Results Case vs Cooling Rule ............................................................. 71 

Table 6  Factors and Levels of the CCD........................................................................... 78 

Table 7  ANOVA for Cost Difference.............................................................................. 79 

Table 8  ANOVA for log Computational Time ................................................................ 79 

Table 9  Results Response Optimizer ............................................................................... 81 

Table 10  ANOVA Results for Initial Solution ................................................................ 87 

Table 11  Experimental Data Set ...................................................................................... 92 

Table 12  Optimization Results......................................................................................... 99 

Table 13  Heuristics Performance................................................................................... 102 

Table 14  Statistics Summary ......................................................................................... 103 

Table 15  Performance of ANAMAR06 with Upper Bound on Parallel Workstations.. 104 

Table 16 Statistical Summary of ANAMAR06 with Upper Bound on Parallel 
Workstations ................................................................................................................... 105 

Table 17  Factorial Experiment Factors and Levels ....................................................... 106 

Table 18  ANOVA for Factorial Experiment ................................................................. 107 

 



 

ix

 
LIST OF FIGURES 

 

Figure 1  CTS Example..................................................................................................... 24 

Figure 2  SA Structure ...................................................................................................... 36 

Figure 3  Simulated Annealing Structure.......................................................................... 38 

Figure 4  Line Balancing Problem Representation ........................................................... 42 

Figure 5  Precedence Diagram.......................................................................................... 48 

Figure 6  Stochastic Processing Times ............................................................................. 50 

Figure 7  Lateness Probability vs CV ............................................................................... 52 

Figure 8  Methodology for the Design of a Simulated Annealing-Based Heuristic......... 59 

Figure 9  Trade Between Adjacent Workstations ............................................................. 62 

Figure 10 Change in Workstation Size After Trading ...................................................... 62 

Figure 11  Station 7 Before Transfer ................................................................................ 63 

Figure 12  Forward Transfer Example.............................................................................. 63 

Figure 13  Different Landscapes with the Same ( )f +Δ ..................................................... 66 

Figure 14  Initial Temperature Search .............................................................................. 66 

Figure 15  Boxplot Temperature vs Walk Length ............................................................ 67 

Figure 16 Temperature Decrement Rules Plot.................................................................. 70 

Figure 17 Cost Function for a Perturbation Magnitude of 1............................................. 76 

Figure 18  Cost Function for a Perturbation Magnitude of  5........................................... 77 

Figure 19  Response Optimizer for Percentage Cost Difference and CPU Time............. 81 

Figure 20  Heuristic to Assign Tasks to Workstations ..................................................... 86 

Figure 21  Initial Solution Boxplot ................................................................................... 88 

Figure 22  Flowchart Final SA algorithm......................................................................... 90 

Figure 23  Best Change in Idle Cost ................................................................................. 94 



 

x

Figure 24  Example “Best Change in Idle Cost” .............................................................. 96 

Figure 25  ANAMAR06 Computational Time ............................................................... 100 

Figure 26  ANAMAR06 Results..................................................................................... 101 

Figure 27  Typical Annealing Schedule.......................................................................... 101 

Figure 28  Heuristics Performance ................................................................................. 102 

Figure 29  Interaction Plot .............................................................................................. 107 

 
 



 

11

 
 

1. INTRODUCTION 

An assembly line consists of a sequence of stations performing repeatedly a specified 

group of tasks over product units. Each product unit spends approximately the same 

amount of time at each workstation in the line, based on a cycle time used to determine 

the allocation of activities along the line. 

The name of assembly line has been applied to flow oriented production systems which 

are typically used in manufacturing high demand products.  Assembly lines must 

guarantee continuous and economical production.  Therefore, its design, installation and 

operation are considered by managers key pieces for the effectiveness of their business. 

Assembly lines can be clustered according to the requirements and characteristics of the 

products. The first attribute to classify an assembly line is the number of products 

processed.  If only one product is assembled and all models are identical, the line is called 

“single-model line”. On the other hand, if several models are manufactured, the line can 

be classified as “mixed-model” or “multi-model”. In mixed-model lines, set ups are 

usually negligible and the balancing problem depends on the processing times and the 

tasks required for the different products.  In multi-model lines, units must be processed in 

batches due to significant set up times. Also, product sequencing becomes a major issue. 

Assembly lines are also classified according to the layout.  Usually, assembly lines are 

arranged as “serial lines” where workstations are placed one followed by the other in a 

straight line. In a “U-shaped assembly line” the end and the beginning of the line are at 
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close proximity.  Therefore, an operator can operate at workstations located at the 

beginning of the line as well as workstations at the end of the line.  This helps overcome 

the line balancing inflexibility problem of serial lines. 

Typically, in both, serial and U-shape lines there is only one operator per workstation 

which limits the minimum cycle time to the maximum of the processing times for the 

tasks.   In case being needed, parallel workstations are used to deal with long duration 

operations.  For instances where parallel stations are allowed, the maximum workload is 

limited by a multiple of the cycle time.  This multiple corresponds to the number of 

parallels in each workstation.  Because of the flexibility given by this condition a better 

balancing can be achieved. 

For any assembly line an important decision is the adequate arrangement of the line.  The 

decision problem of optimally assigning tasks to workstations in order to guarantee 

continuous product flow is known as the assembly line balancing problem. 

The main objective in line balancing is maximizing efficiency which could be understood 

as making the best use of resources such as time, capital and human talent.  Many 

researchers have focused their efforts in solving the line balancing problem using integer 

programming models, heuristics methods and other procedures.    

As manufacturing processes evolve demanding more flexible production systems, the line 

balancing problem becomes more complex.  Characteristics such as cost factors, product 

mix, stochastic task times and parallel stations must be integrated to the models in order 

to create a representation closer to reality.  However, research work that incorporates all 
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these concepts in one single effective methodology has not been found in the literature. 

The main purpose of the research described in this document is to offer a solution for the 

line balancing problem of typical manufacturing systems via the application of a 

comprehensive heuristic procedure.  
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2. LITERATURE REVIEW 

The literature review has been divided into two basic parts.  First, previous research in 

the area of line balancing and second, previous research and applications of Simulated 

Annealing heuristic models. 

2.1 Line Balancing Problem 

Since the assembly line balancing problem (ALB) was first formulated by Helgeson in 

1954 many solutions to the assembly line balancing problem have been proposed.   

Most of the research widely known in assembly line balancing such as the studies made 

by Dar-El (Mansoor) [6] and Talbot, et al. [27] has been oriented to the analysis and 

solution of the simple assembly line balancing problem (SALBP).  According to Becker 

and Scholl [5] classification, the SALBP has the following characteristics and 

assumptions: 

• Mass-production of one homogeneous product  

• Paced line with fixed cycle time  

• Deterministic operation times  

• No assignment restrictions besides the precedence constraints 

• Serial line layout with m one-sided stations 

• All stations equally equipped with respect to machines and workers 

The traditional SALBP admits three variants in the objective function: 
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− SALBP-1 Problem type 1: The objective is to minimize the number of workstations; 

where the objective is to determine the minimum number of workstations given a 

cycle time.  This cycle time is calculated taking into consideration the requirements 

of a production plan or the demand forecasts.   

This problem can be stated as follows: for a given cycle time c, each task has to be 

assigned to one station so that the number m of stations is minimized and no 

precedence constraint is violated.  

 A simple theoretical lower bound on the minimal number of stations is given by the 

equation: 

 
1==
∑

n

i
i

t
LB

c  Equation 2.1 

where;           
  
LB= lower bound for number of stations, and 

ti= processing times for task i. 

The LB is the smallest integer that solves the SALBP-1 problem.  Therefore, all 

solutions for this model must have a number of stations at least equal to the lower 

bound calculated. 

− SALBP-2 Problem type 2: The objective is to minimize the cycle time. This problem 

is generated when the number of workstations or production employees is fixed and 

the minimum cycle time has to be calculated.  Becker and Scholl [5] defined the 
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cycle time as maximum or average time available for each cycle.  Therefore, the 

minimal cycle is equivalent to the maximum workload.  Being the station time Sk  the 

sum of operation times of all tasks assigned to station k, the solution to SALBP-2 is 

stated as follows: 

                                   kMin c Max S=            Equation 2.2                              

The loads Sk are obtained creating different SALBP-1 scenarios, thus the problem 

type 2 is solved by iteratively solving type 1 problems. 

− SALBP-E Problem type E: It has the objective of maximizing efficiency: The 

efficiency can be calculated as the quotient between the sum of all the task 

processing times and the product m c⋅ , where m is the total number of workstations 

and c is the line cycle time.  This problem is solved by searching in the interval 

[ ]min max,c c or  [ ]min max,m m a solution maximizing line efficiency.  The efficiency is 

calculated using the equation: 

     1==
⋅

∑
n

i
i

t
E

m c
        Equation 2.3  

For solving SALBP-1, a large number of exact and heuristic procedures are available.  

Several of them are evaluated and organized in the literature review made by Ghosh and 

Gagnon [9].  Some effective branch and bound procedures are proposed by Hoffmann 

[10] and Scholl and Klein [24].  Additionally, a set of different heuristic techniques 

classified as single-pass, composite, backtracking and optimal decision rules have been 

exhaustively analyzed and compared by Talbot et al. [27] using a computational 

experiment.   



 

17

Solution procedures for SALBP-2 and SALBP-E are usually search methods which 

iteratively solve several SALBP-1 instances. A modification of SALOME, a bidirectional 

branch and bound is proposed by Klein and Scholl [24] to solve the SALBP-2. They 

determined a minimal cycle time and assigned tasks to the m workstations with station 

times not exceeding the minimal cycle time. This assignment is called feasible for the 

respective cycle.  The problem is solved by iteratively checking for several trial cycle 

times whether or not a feasible assignment of all tasks to m stations exists. 

The assumptions of the SALBP are very restrictive and the model obtained might not 

represent the industrial reality.  An extensive term used to classify problems with 

characteristics different to those of the SALBP is the generalized assembly line balancing 

problem (GALBP).  Parallel workstations, mixed product lines, stochastic processing 

times and U-layout assembly lines are examples of characteristics considered in the 

GALBP. 

2.1.1 Parallel workstations 

The traditional SALBP requires the assignment of each task to a single workstation. 

Consequently, the production rate is limited by the longest task time. Due to the 

indivisibility of tasks, the maximal task time tmax is a lower bound on the cycle time.  If 

there are one or more tasks with task times greater than the desired cycle time, paralleling 

of stations can be used to resolve the conflict.  

Essentially, when using a parallel station model two or more replicas of a workstation 

performing the same set of tasks are permitted.   Therefore, the option of a significant 
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increment in additional fixed cost must be considered. Cost oriented models such as the 

model presented by Pinto et al. [19] propose the minimization of labor costs which 

consist of fixed costs for duplicating a station, regular wage costs and overtime costs. 

Azkin and Zhou [4] formulated a mathematical model and a heuristic procedure to tackle 

the GALBP in a fast and accurate way. Askin and Zhou based their heuristic procedure 

on a mixed integer programming model which has the following objective function: 

    
1 1 1

min
K K L

k k lk l
k k l

y L y z A
= = =

⎧ ⎫+⎨ ⎬
⎩ ⎭
∑ ∑ ∑    Equation 2.4 

where decision variables are: 

yk =Number of stations in parallel at stage k, 

xijk= Proportion of task j of model i assigned to stage k, 

1, if tooling equipment type l is required at stage k
0, otherwiselkz ⎧ ⎫

= ⎨ ⎬
⎩ ⎭

, 

L =Fixed cost per period to open a station (include cost of labor and overhead), 

and, 

Al= Amortized unit cost for equipment/tooling type j. 

This mathematical model is a nonlinear integer program difficult to solve using regular 

computers. Therefore, the authors proposed a heuristic procedure to solve the problem 

without demanding high computational time.  

They considered two situations in which parallel stations should be allowed.  First, the 

case where the processing time for task j is greater than the line cycle time, and second 
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when there is no task which can fit into the current station, but the station is closed with 

considerable idle time. The decision to create a parallel workstation is based on the 

comparison of incremental tooling cost and the penalty cost of unutilized station time.  

The penalty cost of unutilized station time KPΔ  is calculated as follows: 

    Δ = ⋅ ⋅ a
K k kP L y T                   Equation 2.5 

   
where;  
 

 L = Fixed cost per period to open a station (include labor and overhead costs), 

ky = Number of stations in parallel at station k, and 

a
kT = Available time remaining per cycle for each workstation at stage k. 

One of the most interesting contributions of Askin and Zhou is the recursive but simple 

procedure to generate parallel workstations through the comparison of costs. However, 

the major limitation of the technique is the generation of only one solution.  There is not 

presented a dynamic search for better alternatives.  The model is static with no 

replications which might lead to balancing away from the optimal point. 

McMullen and Frazier [15] developed a Simulated Annealing model considering 

stochastic processing time and a simple mixed-model environment where it is allowed to 

generate a parallel station as long as its utilization increases. Also, an additional objective 

function oriented to the minimization of the smoothness index restricts inflated 

duplications.  

The smoothness index  s is computed as: 
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     2

1

( )
=

= −∑
m

k k
k

s w w       Equation 2.6 

where; 

m  = total number of stations, 

kw = number of workers required in workstation k, and 

kw = integer-adjusted workers required in station k. 

A computational experiment was conducted to analyze the performance of the model.  

The production performance measures of interest were average WIP level, average flow-

time, system throughput, system utilization, on-time completion, average unit labor cost, 

and cycle time performance.  The model showed excellent results for those cases where 

cycle time performance was the primary objective.  However, when the main concern is 

minimizing the design cost, some of the traditional line balancing techniques provided 

better solutions than the proposed algorithm. 

Vilarinho and Simaria [30] constructed a two-stage heuristic method with zoning 

restrictions and allowed the user to control the process of creating parallel stations by 

defining a limit of parallels or upper bound. The main objective for this model was to 

minimize the number of workstations given a cycle time and additionally maximize the 

balance between workstations.   

The objective function proposed by the authors to solve the assembly line problem was 

stated as follows: 
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2

2'

'
1 1 1 1 1

1

' 1 1
' 1 ' '( 1)

s M S S M
km m km

NK m S
k m k K m k

lm
l

s q sS MMinZ k x q
S S S M S Ms= = = = =

=

⎛ ⎞
⎜ ⎟ ⎛ ⎞
⎜ ⎟= ⋅ + − + −⎜ ⎟− −⎜ ⎟ ⎝ ⎠⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑∑
∑

    Equation 2.7 

where decision variables are: 

1, if task is assigned to workstation
,

0, otherwise

1, if task can be replicated
,

0, otherwise

idle time of station due to model ,

ik

k

km

i k
x

k
r

s k m

⎧ ⎫
= ⎨ ⎬
⎩ ⎭
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

=

 

k= number of workstations, k=1,...,S, 

m= type of model, m=1,…,M, 

N= total number of tasks, 

Dm= forecast demand for model m,    

qm= proportion of the number of units of model m being assembled, 

1
/

M

m m p
p

q D D
=

= ∑ , and 

S’= the actual number of workstations required to meet the demand in the 

assembly line (S’=K: xNK =1). 

The first term in the objective function minimizes the index of the workstation to which 

the last task is assigned, thus minimizing the number of workstations. The second term 

balances the workload between the workstations and the third term balances the workload 

within each workstation. 

In the first stage of the algorithm, an initial solution is obtained using a version of the 

rank positional weight heuristic and the program begins to look for the solution that 



 

22

minimizes the number of stations in the assembly line. In the second stage the workload 

between stations and within the stations are balanced. The heuristic was tested on a set of 

twenty problems and the efficiency of the balance was calculated.  The proposed 

procedure reached the optimal solution in small-sized problems.  In large-sized problems 

the efficiency was not less than 80%. 

One of the most relevant contributions made by the authors is the addition of restrictions 

to the model in order to obtain a feasible solution when some tasks cannot be performed 

with others in the same workstation. However, a limitation related to the objective 

function was identified.  In section 2.14 a description of why minimizing the number of 

workstations cannot be appropriate because it can lead to non optimal solutions for cost 

oriented environments is presented. 

2.1.2 Mixed-Model Assembly Lines 

In mixed-model production, products which differ from each other with respect to size, 

color, material, or equipment are manufactured on the same line.  This scenario presents 

additional challenges since tasks, processing times and precedence constraints vary from 

model to model.  Some of the assumptions made to deal with the problem are:  (1) 

precedence constraints consistent from model to model, and (2) same line balance used 

for all models.    

Several techniques have been proposed to tackle the mixed-model ALBP such as 

McMullen and Frazier [15] and Merengo [17].  The typical technique is based on 

calculating a weighted average for each task in the line, considering the contribution of 
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the model in the product-mix.  A new precedence diagram is built by merging each 

model’s precedence diagram into a single one. Weighted averages, xt , are calculated as 

follows: 

     
,

1

1

=

=

⋅
=
∑

∑

M

m i m
m

i M

m
m

t d
t

d
       Equation 2.8 

where;        

 i= 1,…,N, 

N=total number of tasks in the line, 

M= total number of models in the line, 

m= model index, 

,m it = Processing time of task x for model n, and 

md = Number of units of model n to be produced during the planning period 

Askin and Zhou [4] constructed a composite task sequence (CTS) which has two basic 

properties:  (1) it contains all required tasks for each model i, and (2) it contains all task 

precedence relations for each model i.  Therefore, the precedence of each model can be 

identified as a subset of this general sequence. 

An example of the CTS construction for products A, B y C is shown in Figure1. 
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Figure 1 CTS Example 

McMullen and Frazier calculated weighted average processing times and constructed the 

CTS to solve the mix-product assembly line problem as a single product assembly line 

balancing problem.  The objective function for their model integrated three single 

objectives: 

   1
1

: ( )
r

j j
j

Min E w L m Q
=

= +∑      Equation 2.9 

    2
2

1

: ( )
r

j j
j

Min E w w
=

= +∑            Equation 2.10 

    3
1

:
r

j
j

Min E p
=

=∏      Equation 2.11 

where; 

r = total number of workstations, 

kw = number of workers required in workstation k, 

kw = integer-adjusted workers required in station k, 

mj = number of pieces of equipment required in work center j, 

L = labor cost per worker in $/year, 

Q = equipment cost per piece in $/year, and 

pj =  probability of lateness in work center. 
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The first objective function is concerned with minimizing the sum of costs associated 

with both labor requirement and equipment requirement.  The second objective intends to 

minimize the ‘smoothness’, it means that the work must be distributed into workstations 

as evenly as possible. Finally, the third objective function minimizes the probability of 

lateness across the workstations.  This objective function is analyzed in the section 2.1.3. 

2.1.3 Stochastic Task Times 

Another assumption of SALBP is the deterministic nature of processing times. In highly 

manual production lines the variations in processing times from item to item is an 

inevitable event.  Procedures including random task times have been stated by Arcus [3] 

and Suresh and Sahu [26].  Most of the procedures developed for the stochastic version 

are modified extensions of the procedures for deterministic models.    

The majority of researchers in the revised literature assumes normally distributed task 

times and calculates the estimated standard deviations for the tasks by multiplying the 

expected task duration by a coefficient of variation (CV) term.  Usually, different levels 

of CV are tested as in Erel and Sabuncuoglu [7]. 

A time-oriented objective of stochastic models is the minimization of the probability of 

exceeding the cycle time in any station such as in Reeve and Thomas [21].  This function, 

denominated the lateness function, can be obtained by multiplying the lateness measure 

of all workstations involved in the layout of interest, as done by McMullen and Frazier. 

They calculated the function of lateness as follows: 
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1

lateness function
r

j
j

p
=

=∏    Equation 2.12         

The probability of lateness jp   is estimated by integrating the normal distribution 

function and r is the number of workstations. 

The stochastic nature of the processing times generates a new risk related to the 

probability of incomplete jobs. Additional costs are incurred if the product is not 

completed in time equal or smaller than the cycle time. These incompletion costs are 

reduced by decreasing the station utilizations. This can be done by increasing the number 

of stations or the cycle time. 

A cost oriented objective which quantifies the risk of incomplete jobs is presented in 

Sarin and Erel [22].  They developed a cost model for the single-model stochastic 

assembly line balancing problem with the objective of minimizing the total labor cost and 

the expected incompletion cost arising from tasks not completed within the given cycle 

time.  The objective function for their model was: 

   Total labor cost+ Total incompletion costMin Z =                Equation 2.13 

The problem of minimizing Z was solved by varying the number of stations K and the 

allocations of tasks for a given cycle time C.  The objective function can be rewritten as 

follows: 

  
1 1

* * β
= ∈ =

⎧ ⎫⎡ ⎤= + + −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
∑ ∑ ∑
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j
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i k Ai j

Min Z c K L IC IC SB         Equation 2.14 

where; 
c= cycle time, 
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K= number of stations on the line, 

L= labor rate, 

N = number of tasks, 

iβ = probability that task i is not completed within c, 

ICi= incompletion cost of task i, for i= 1,…,N, 

Ai= set of tasks following task i on the precedence diagram and in the station 

which contains i, 

fSi= the number of feasible starting events for task i, and 

j
iSB = Over-counted incompletion costs.  

Some of the most relevant assumptions considered by Sarin and Erel in this model are: 

• Task performance times are random variables.  They are independent of each 

other and the parameters of the distributions are known. 

• The tasks assigned to a station are performed in a given order. 

• Incomplete tasks are completed off the line at a cost which is not dependent 

on the fraction of the task completed on the line. 

• No blocking due to incomplete tasks 

Sarin and Erel’s research work presents an exhaustive deduction of probability for 

incomplete jobs based on normal probability distribution. However, their deductions can 

be used only for single product assembly lines.  Also, parallel workstations are not 

allowed. 
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2.1.4 Cost Oriented Models 

Usually, the main objective in the line balancing problem is minimizing the number of 

workstations for a given cycle time.  This type of problem has been called the Time-

Oriented Assembly Line Balancing.  Since there is an understandable relationship 

between the number of workstations, the cycle time and the total cost it is evident that the 

ALBP could be directly stated as a cost minimization problem. 

Amen [1] presents a backtracking procedure as an exact method to obtain a solution to 

the cost oriented ALBP.  The objective function of the model is to minimize the total 

costs per product unit which is computed as the sum of labor and capital cost as follows: 

      
1

M
sw sc
m

m
MinTC ck Mk

=

= +∑       Equation 2.15      

where; 

c    = cycle time, 

sw
mk = wage rate of station m, 

M = total number of stations, and 

sck = cost of capital per station. 

An effective station wage rate is defined and the total labor cost per product is calculated 

as the sum of the wage rates of each station multiplied by the cycle time.  It is assumed 

that the cost of capital depends on the total line length and that all stations have the same 

dimensions.  Amen also proves that the “maximally loaded station rule” used in time-

oriented models is not adequate when the objective is to minimize the total cost per unit.  

This rule consists on assigning tasks to the stations as long as the cycle time is not 

exceeded. 
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In 2001, Amen [2] developed station-oriented priority rules and compared them to 

existing ones using a large set of randomly generated problem instances. Amen classified 

different heuristics as methods with random choice task assignment-Z, methods with one 

problem-oriented priority rule-P, methods with several problem-oriented priority rules-H, 

methods with  exact solution of sliding problem windows-F and an exact method-E.  He 

proposes a new P rule called “best change of idle cost” and the “exact solution of sliding 

problem windows” which according to a computer experiment performs better in the 

cost-oriented problem. 

Amen’s study is the basis for Scholl and Becker’s [23] research work.  They started with 

the exact procedure considering wages and capital costs proposed by Amen, and 

corrected one of the dominance rules used in the branch and bound model.  The objective 

function proposed by Scholl and Becker minimizes the total cost per product unit which 

is given by the sum of the station wage rates wsk (per time unit) multiplied by the fixed 

cycle time c.  This objective function is given by the following equation: 

     
1

m

k
m

Min TC c ws
=

= ⋅∑     Equation 2.16 

     
where; 

 m= number of workstations, and 

 m =upper bound on m. 

Although Amen’s work is the most relevant study made in the cost oriented area, relevant 

complexities as stochastic task times, multiple product and parallel workstations were not 

considered in his models.  
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2.2 Simulated Annealing 

The existence of a great amount and variety of difficult problems that need to be solved 

efficiently encouraged the development of high performance procedures to find good 

solutions to these large problems. A heuristic method is a procedure to solve an NP hard1 

problem through an intuitive approach.   Although these methods do not provide the 

optimal solution to the problem they offer a good approach.  Sometimes heuristics 

algorithms find the optimal solution in a brief period of time. 

Simulated Annealing (SA) is a family of heuristic optimization methods, derived by a 

natural analogy with the statistical physics of random systems described by Kirkpatrick 

[13] in 1983.  Kirkpatrick, applied simulation annealing to solve several problems 

occurring in the computer’s industry but his work concentrates on the routing problem 

that arises in automatic wiring of integrated circuits and the statement and solution of the 

traveling salesman problem using the Simulated Annealing theory.  

Simulated Annealing is a Monte Carlo technique which implements a global 

minimization algorithm that works for arbitrary functions. The algorithm is proposed as 

an analogy between the way in which a metal cools and freezes into a minimum energy 

crystalline structure (the annealing process) and the search for a minimum in a more 

general system.  

                                                 

1 NP hard is the complexity class of decision problem that are intrinsically harder than those that can be 

solved in polynomial time.  
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SA was first described by Metropolis et al. [18]. Later on, Kirkpatrick [13] applied it to 

solve combinatorial problems.  Simulated Annealing’s major advantage over other 

methods is an ability to avoid becoming trapped at a local optimum. The algorithm 

employs a random search which not only accepts changes that decrease the objective 

function, but also some changes that increase it. The latter are accepted with a probability 

calculated according to certain rule. 

In the SA algorithm an initial solution and a control parameter called temperature T are 

specified.  This initial solution is set as the current solution. As the algorithm runs, this 

temperature is systematically decreased according to a cooling rate, and neighboring 

solutions to the current solution are found.  

For each iteration, the value of the objective function is calculated.  If the value is better 

to that of the current solution, the neighboring solution becomes the new current solution. 

On the other hand, if the neighboring solution provides an objective function value 

inferior to that of the current solution, the neighboring solution may still become the 

current solution according to certain acceptance probability.  The acceptance probability 

p is computed according to the criterion established by Metropolis.  Nicholas Metropolis 

proposed a modification to the simple Monte Carlo simulation to find the best state of a 

system.   The Metropolis procedure establishes that a new point in the search space is 

sampled by making a slight change to the current point and new configuration points may 

be accepted although their costs exceed the costs obtained for the best solution.  To 

accept these points Metropolis proposed a criterion based on probability and 

thermodynamics laws as follows: 
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           fp exp
T
∂⎛ ⎞= −⎜ ⎟

⎝ ⎠
                   Equation 2.17 

where; 

T = Temperature, and 

f∂ = change in the objective function. 

A random number between zero and one is generated, if the random number is smaller 

than p the solution is accepted. This strategy prevents the algorithm from getting trap in a 

local optimum. 

2.2.1 Design of the SA algorithm 

The theory of Simulated Annealing is based on the following two principles: 

A model of the process based on Markov chains 

A Markov chain is a representation of a stochastic process showing the different states of 

the process with transition probabilities for moving from one state to another.  In 

Simulated Annealing this measure corresponds to the probability that a new solution is 

generated and accepted.  It has been proven by researchers that at each value of the 

temperature, the SA algorithm performs a number of iterations large enough for the state 

probability distribution to approach a stationary value. Research on Markov chains in SA 

leads to identify stationary (equilibrium) states for the process and calculate convergence 

speed for this meta-heuristic.  The main objective of this analysis is to determine the 

minimum number of transitions required to obtain the optimum (or near to optimum) 

solution. 
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The Metropolis algorithm   

The SA algorithm contains two nested loops.  First, there is an outer loop which controls 

the decrease in temperature.  Second, there is an inner loop where transitions from one 

state i to another state j is guided by the Metropolis algorithm. 

In this algorithm state jE is generated by a perturbation mechanism and accepted with the 

following probability: 
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    ,  Equation 2.18 

In the process of solidification of materials, if the temperature is low enough, the solid 

can reach thermal equilibrium.  The probability of being at a state i with energy iE  is 

given by the Boltzman distribution: 
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where;  X represents the state with thermal equilibrium. 

The Simulated Annealing algorithm can be modeled as a Markov chain with transition 

probability function given by: 

,
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where; 

( )θ =ij T probability of making a transition from state i to state j, 

( ) =iN s number of possible solutions in the neighborhood of state i, 

( ) =jf s  objective function value at any state j in the neighborhood of state i, 

ikp = the perturbation probability of making a transition from state i to state k, and 

ikq = the probability of accepting the solution obtained at neighborhood point k. 

When a perturbation was attempted unsuccessfully the state remains the same, therefore 

i=j.  For any combination (i,j) the perturbation probability is calculated as follows: 
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     ,              Equation 2.21 

Additionally, the acceptance probability is calculated using the following expression: 
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,   Equation 2.22 

Under some circumstances of neighborhood structure the Markov chain can be 

considered as an “ergodic” process. An ergodic process has the property that in the long 

run it reaches a stationary distribution, irrespective of the initial state. 

If  ( )Tk isπ  is the probability that is is the current solution after k steps of the algorithm at 

temperature T, the state probability vector can be described as:  

    ( )1( ),... ( ),...Tk Tk Tk is sπ π π=          ,              Equation 2.23 
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For ergodic Markov chains, the state probability vector converges to a limiting 

probability vector: 

     lim Tk Tk
π π

→∞
=     ,              Equation 2.24 

It can be proven that for the SA algorithm the state probability vector converges to: 

    

( )exp
lim ( )

( )
xp

i

Tk ik
j

sj S

f s
Ts

f s
e

T

π
→∞

∈

−⎛ ⎞
⎜ ⎟
⎝ ⎠=

−⎛ ⎞
⎜ ⎟
⎝ ⎠

∑
      ,            Equation 2.25  

Considering two states is and js with ( ) ( )i jf s f s<  the ratio between the state 

probabilities can be expressed as: 
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This convergence to ∞  is possible only if: 

     lim lim ( ) 0Tk jk T
sπ

→∞ →∞
=     ,   Equation 2.27 

These mathematical deductions prove that if the SA algorithm is run long enough with an 

infinite number of temperature values and for each temperature value with an infinite 

number of steps it will reach an optimal solution at the end of the process.  However, it is 

not clear what end means and it is needed infinite number of iterations to guarantee 

optimality. 
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2.2.2 Simulated Annealing Structure 

The basic structure of SA shown in Figure 2  contains the following key elements: 

Tinitial

T2

T3

Tfinal

Tchanges

N iterations

IterationsInitial Solution

 

Figure 2 SA Structure 

a) A solutions generator:  This is the mechanisms used by the algorithm to find new 

solutions or configurations.  Considering SA as a search heuristic, this generator 

should introduce small random changes, and allow all possible solutions to be 

reached.  

b) Solutions evaluation:  The SA algorithm does not require or deduce information. It 

simply needs to be supplied with an objective function. 

c) An annealing schedule: The standard implementation of the SA algorithm is one in 

which homogeneous Markov chains of finite length are generated at decreasing 

temperatures. The following parameters are required to define the annealing schedule: 
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• An initial temperature 0T , 

• A final temperature fT or a stopping criterion, 

• A length for the Markov chains or number of iterations, and 

• A cooling rule. 

An initial temperature 0T  is related to the acceptance probability 0X   and the average 

change in the objective function f∂ . The initial temperature can be estimated by: 

     0
0ln( )

fT
X
∂

= −    ,   Equation 2.28 

The final temperature is determined by fixing the number of temperature values to be 

used, or the total number of solutions to be generated. 

 

Many cooling rules have been proposed but the simplest and most common is the 

geometric scheme: 

      1k kT Tα+ =   ,       Equation 2.29 

where; 

 α is a constant close to but smaller than 1.  Kirkpatrick [13] recommend α=0.95. 

The basic structure of the SA algorithm is shown in Figure 3. To initialize the algorithm, 

the initial temperature, the final temperature and an initial solution must be provided.  

The cooling rule is specified along with the desired number of iterations for each level of 

the current temperature.  The objective function value for the current solution will be 

referred to as Ec, and the objective function value for the best solution will be referred to 
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as Eb.  The objective function for the initial solution is evaluated and set as the best value 

Eb.    

 

 

 

Figure 3  Simulated Annealing Structure 
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Once the problem has been initialized and the objective function has been evaluated a 

neighboring solution is generated.  This new solution is named the test solution and its 

objective function value Et, is calculated and compared with the best value Eb.  If Et is 

better than Ec, the current solution is replaced by the test solution.  Otherwise, the 

Metropolis criterion is evaluated to define if the test solution should be accepted.  

If the test solution was accepted, the objective function value for the test function is 

compared with Eb. If the new value is better than Eb then Eb is replaced by Et.  Whether, 

the best solution was updated or not, the number of iterations N is increased.  If N is less 

than the maximum number of iterations for each temperature the process is repeated from 

the step where the new neighboring solution was calculated.  Otherwise, the temperature 

T is adjusted according to the cooling rate and N new iterations are generated. The cycle 

continues until T reaches the value specified for the final temperature. 

2.2.3 Simulated Annealing Applied to Line Balancing 

As mentioned before, Simulated Annealing could be efficiently used to solve large 

combinatorial optimization problems.  Some of the problems within industrial 

engineering solved through SA have been: facility design with multiple floors, facility 

layout problems in cellular manufacturing systems, product sequencing, mixed-model 

sequencing with multiple objectives, generation of robotic assembly sequences,   

balancing of U-type assembly systems, and assembly line balancing with paralleling of 

workstations. 

Kara and Ozcan [12] proposed a SA algorithm to simultaneously solve the balancing and 
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sequencing problem of mixed-model U lines.  The basic assumptions for this algorithm 

were: products with similar characteristics, deterministic processing times and no 

parallelism. The single objective function was oriented to the minimization of 

workstations and workloads deviation. 

One of the most interesting approaches used to solve the line balancing problem is 

presented in McMullen and Frazier. They developed a SA algorithm to solve the type I 

balancing problem with parallel workstations.   In order to make the model closer to 

reality they assumed multiple products and stochastic processing times. After analyzing 

the impact of a set of different objectives two of them E1 and E3 were selected.  These 

objective functions were evaluated simultaneously in the algorithm:  (1) minimizing the 

total cost and (2) minimizing the deviation from the fixed cycle time represented by the 

equations 2.9 and 2.11. 

McMullen and Frazier suggested a geometric cooling rule and a solutions generator based 

on two principles: trade and transfer. The algorithm is compared to 23 different heuristic 

rules and shows excellent results in terms of percentage of units completed within the 

cycle time and average system utilization.  However, the results obtained for unit total 

cost are relatively poor. 

Along this literature review several approaches to tackle different types of the line 

balancing problem have been presented.  Some of the researchers use simple heuristics 

rules to obtain a good allocation of the tasks in workstations and the others use more 

composite techniques such as integer programming and meta-heuristics.   The limitations 

related to computational time required to process the mathematical model of the GALBP 
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has lead to proposed procedures which provide good but not optimal solutions.  Meta-

heuristics such as Ant Colony, Tabu Search, Genetic Algorithms and Simulated 

Annealing have proven to provide excellent line balancing configurations.  Among this 

group Simulated Annealing demonstrated to be a fast and accurate algorithm.  The major 

advantage over other methods is its ability to avoid becoming trapped at a local optimum. 

Equation Chapter (Next) Section 1
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3. PROBLEM DEFINITION 

The overall objective of the line balancing problem is to determine the assignment of 

tasks to workstations in order to minimize number of stations, cycle time or cost.  The 

line balancing problem analyzed in this thesis work pursues minimizing the total line 

operating and investment cost when parallel stations are allowed. 

The assignment of tasks to stations is depicted in shown in Figure 4.  It involves the 

allocation of tasks and determination of the number of parallel stations subject to capacity 

and precedence constraints. 

 

Figure 4 Line Balancing Problem Representation 

The line balancing algorithm designed in this thesis applies to mixed-product production 

lines.  Products are assumed to belong to a product family and therefore to have similar 

characteristics.  Set up times to change from one model to another are assumed to be 

negligible.  Product flows between adjacent workstations in quantities defined as unit 

load sizes.   

The objective of the line balancing model is to minimize the total cost associated with 

operating the production line containing serial and parallel stations. At each work center a 
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group of manufacturing tasks are performed to satisfy customers’ demand.  It is assumed 

that processing times are probabilistic and the user can choose one among a group of 

probability functions included in the model.  Processing times can be the same or differ 

among models within the product family. 

3.1  Development of the Cost Function 

The problem analyzed involves a set of costs that determine the quality of the solution 

generated.  A brief description of the costs identified for the problem follows: 

• Station Costs (S):  These include the workstation capital investment cost, labor cost 

and overhead as a percentage of labor cost.  These costs are the same for all serial 

positions in the line.  It is assumed they include equipment which is the same for all 

workstations and only one operator at each work center.  Station costs increase with 

the addition of parallel stations.  When the cycle time is smaller than the longest 

processing time, the station costs control the unrestricted creation of parallel 

workstations. 

The total station costs for the line are calculated using the following expression: 

      
1

Station costs
K

k
i

S p
=

= ⋅∑       ,                Equation 3.1 

where; S is the amortized station costs in dollars per unit time, pk is the total number 

of parallel stations at serial position k, and K is the total number of serial positions 

in the line. 
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• Equipment and tooling cost (E):  The amortized costs of tooling and machinery 

required to perform a task are gathered in this category.  Equipment and tooling cost 

depend on the tasks and vary from one task to another.  Clearly if equipment cost 

for a task is high the algorithm will tend to avoid the addition of parallel stations.  

Total equipment and tooling cost is calculated using the following equation: 

   
1

Equipment and tooling costs
= ∈

= ⋅∑∑
K

i k
k i k

E p      ,    Equation 3.2  

where;  Ei is the amortized cost for tooling and equipment required to perform task 

i assigned to workstation at serial position k. 

• Lateness Cost (L):  One of the main assumptions in the problem statement is the 

stochastic behavior of processing times. These can behave according to a normal, 

uniform or triangular distribution.  Because processing times are not deterministic 

there is a possibility of exceeding the total expected time for the work center. This 

measurement is called the lateness probability.  The probability of performing the 

tasks assigned to station k in a time lower or equal to the line cycle time is 

calculated as follows: 

     ( )
cycle

kTP F t dt
−∞

= ∫   ,  Equation 3.3 

where;  F(t) corresponds to the probability distribution function for the work center’s  

processing time.   If processing times are normally distributed the probability that the 

tasks allocated to station k are performed on time is obtained using the following 

equation: 
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where; kt  is the expected total duration of all tasks assigned station k and kσ  is the 

standard deviation of processing time of the station.  Following basic probability 

principles  kσ  is obtained from: 

     2σ σ
∀∈

= ∑k i
i k

      ,     Equation 3.5 

Therefore, lateness probability of the line LP can be obtained using Equation 3.6. 

     
1
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=

= −∏
K

k
k

LP TP      ,     Equation 3.6 

When product flow takes longer than the line cycle time shop orders are not 

delivered on time which could lead to cancelled orders or a loss in the market share.  

The cost associated has been chosen to be a percentage of the product price 

representing a penalty for all possible lost orders due to lateness in lead times.  The 

mathematical expression for calculating lateness probability and cost is presented in 

section 3.3. 

3.2 Line Balancing Constraints  

As mentioned previously, the line balancing problem focuses on the assignment of tasks 

to workstations subject to a series of constraints.  The next section presents these 

constraints. 
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3.2.1 Capacity Constraints:    

These constraints restrict the total number of tasks that can be assigned to a work center 

based on a line cycle time.  The line cycle time is established by the user based on the 

production requirements.  Frequently, the cycle time is calculated using the Equation 3.7 

    available time for productionc
required production

=      ,    Equation 3.7 

The sum of all tasks processing times grouped in a work center is called “station load”.  

This load cannot exceed the cycle time to satisfy demand requirements.  However, there 

are instances which require completing a product unit in a cycle lower than the longest 

task, for these particular cases is necessary to duplicate workstations or create a parallel 

work center.  If parallel stations are generated then the station load is calculated as 

follows: 

     1,
kload

p
= ∀ ∈=
∑ i

i i k

k

t
  ,    Equation 3.8 

The mathematical expression presented in Equation 2.1 calculates the minimum number 

of workstations required given a line cycle time.  This formula provides the lower bound 

for the number of workstations without differentiating series from parallel stations.  

In this line balancing procedure is proposed the utilization of a unique aggregated cycle 

time which is obtained employing Equation 3.7.   The balance obtained using this single 

cycle time, and the weighted average time, is equivalent to do different balances for each 
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model of the product family using individual processing times and individual cycle times. 

The individual cycle times can be calculated by determining the fraction of the total 

available time that the company is willing to assign to the fabrication of each model type.  

A new weight that includes the participation of the model and the sum of the processing 

times is calculated using the following expression: 
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     ,                Equation 3.9 

where; 

pm= participation of model m, 

tim= processing time of task i for model m, 

N= total number of tasks to balance, and 

M= total number of models. 

After calculating the weight it is possible to compute the individual cycle time using 

Equation 3.10. 

   m
m

available time for production wc
required production of mod el m

⋅
=     ,         Equation 3.10 

Taking into consideration that the models manufactured in a mix-product line belong to a 

product family the variations in processing times and precedence restrictions are usually 

slight.  It can be demonstrated that if variability of the individual processing times are 

small (approximately variation coefficients up to 10%) the individual line balances 
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obtained are identical to the one generated using weighted average times and aggregated 

cycle time.  Moreover, if the processing times differ significantly among the models, the 

number of stations obtained for the partial balances is the same for the individual 

balances and the aggregate line balancing but the specific allocation of the tasks might 

vary between the balances. 

When, the precedence restrictions differ substantially, the application of the proposed 

methodology for mix-product results in a composite task sequence similar to a serial line 

causing a reduction in the efficiency of the balance.  Therefore, the adequate selection of 

the products of the family that will be manufactured in the same line is critical to generate 

an effective design.  It can be concluded that products must present similar 

characteristics, precedence relations and processing times. 

3.2.2 Precedence Constraints:    

Manufacturing operations must be performed in a certain order defined by the technical 

characteristics of each product.  These are called precedence constraints.  The set of all 

precedence relationships is represented by a network where arcs indicate precedence 

restrictions and nodes symbolize tasks. An example of a precedence diagram is shown in 

Figure 5.   
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Figure 5  Precedence Diagram 
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To facilitate mathematical operations, this graphical representation is substituted by a 

square matrix where every precedence restriction is symbolized with a one and the 

inexistence of relationship is symbolized by a zero.    

The precedence matrix for the diagram illustrated in Figure 5 is shown in Table 1. 

Table 1 Precedence Matrix 

1 2 3 4 5 6 7
1 1 1 0 0 0 0 0
2 0 1 0 0 0 0 0
3 0 0 1 0 1 1 0
4 0 0 0 1 0 0 0
5 0 0 0 0 1 1 0
6 0 0 0 0 0 1 0
7 0 0 0 0 0 0 1

Tasks
T

as
ks

 

3.2.3 Technical Constraints 

These include two groups of constraints.  First, tasks can only be assigned to one serial 

position in the line.  The second group relates to constraints in the maximum number of 

parallel stations because of equipment availability or constraints in capital investment. 

3.3 Stochastic Processing Times for the Mix-Product Line 

The total cost of the line has been defined as the sum of capital investment, operation and 

lateness cost.  Lateness cost is calculated based on the probability that products are not 

delivered in the expected time.  This probability relies on the total workstation load, the 

unit load size and the probability distribution of the processing times. 

Processing times of the mix-model are obtained using the weighted average technique.  In 

case of constant processing times, weighted average times are calculated using 



 

50

Equation 2.8.  However, when times are probabilistic it is necessary to calculate the 

average according to the rules of operations with random variables.  Weighted averages 

and standard deviation for uniform and triangular data are obtained via simulation.  Sets 

of one thousand random numbers for the each model’s process time are combined in 

order to generate an estimate of the weighted time for the task.  A scheme of the 

procedure applied to obtain the weighted averages and the parameters of the empirical 

distributions is shown in Figure 6.   

Task 1 Task 2 Task 3 Task N

Model A Model B Model M

TA1 TB1 TM1

1000

t1

Station 1

k1 parallels

Station 2

k2 parallels

Station n

kn parallels

 

Figure 6.  Stochastic Processing Times 

Initially, the parameters and probability distribution of the individual processing times are 

set, and then a vector of one thousand random values is generated for each task and each 
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model.  The arrays of individual times are combined to generate an empirical distribution 

of the data, to estimate the mean and standard deviation of the processing times and 

calculate the weighted average for each task.  The new array corresponds to the tasks’ 

processing times and their estimated mean and variance which are used in all iterations to 

calculate the lateness probability of the line. 

The lateness probability is evaluated using the general Equation 3.6.  The probability of 

finishing the operation on time in station k, kTP , is defined according to the following 

general expression: 

    
kp

k
k

k

t qTP probability c q
p

⎛ ⎞⎛ ⎞⋅
= ≤ ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

     , Equation 3.11 

Where, q represents the unit load size, c is the line cycle time and pk. is the number of 

parallel station at serial position k.  Intuitively, it is presumed that when the standard 

deviation of the processing times increases the lateness probability increases.  

Additionally, the possibility of making a delayed delivery of a product decreases as the 

unit load size increases. This is a consequence of adding positive and negative deviations 

from the expected time.  One case study was used to test the impact of variability and unit 

load size on the lateness probability.  The case study was solved at three levels of unit 

load and variance coefficient. 
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Figure 7 Lateness Probability vs CV 

As shown in Figure 7, the lateness probability decreases as the unit load size increases.  

The lowest values for lateness probability were observed for the lowest variance 

coefficient tested.  These deductions reaffirm the classic trade off between work in 

process cost and the ability to respond on time to customer’s demand. 

3.4 Mathematical Formulation of the Problem 

The model proposed assigns tasks to workstations and determine the optimal number of 

parallel workstations in order to obtain a design which minimizes capital investment, 

operation and lateness cost.    

Prior to proposing a mathematical model of the problem it is required to convert the 

individual precedence sequence into a composite precedence sequence using Askin and 

Zhou [4] technique. Additionally, individual processing times are integrated into a set of 

single weighted average times.  Weighted average times are computed using Equation 2.8 

The notation used for the development of the optimization model follows: 
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Indexes:  

i= task number, i=1,…, n, 

k= station number, k=1,…, K, and 

p=number of parallels for each station, p=1,…, P. 

Parameters: 

n =total tasks to be balanced, 

c=line cycle time, 

q=unit load size, 

ti=weighted average processing time for task i, 

Ei=equipment and tooling cost for task i, 

S=station costs to open a workstation, 

L=lateness cost penalization, 

LPk= lateness probability for station k, 

tpk=parallels workstations at station k,  

ldk=load of station k, 

si=station number where i is allocated, and 

SP=set (ai,bi) of tasks such that task a must precede task b for model i. 

Decision variables: 

1,
0,ik

if task i is assigned to station k
x

otherwise
⎧

= ⎨
⎩

 , 

1,
0,ikp

if task i is assigned to station k with p parallels
x

otherwise
⎧

= ⎨
⎩

 ,   and 

1,
0,pk

if p parallels are assigned to station k
pa

otherwise
⎧

= ⎨
⎩

 . 
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One essential restriction considered in this type of problem is related to the assigment of 

tasks to workstations.  If task i was assigned to station k, that task is not available 

anymore and cannot be allocated to any other workstation.  Adittionally, this model 

entails a series of escenarios where station k is replicated in p=1,…,P is proposed 

parallels.  Since the binary variable ikpx is only activated when task i was assigned to 

station k with p parallels, correct allocation and no duplication of tasks is guaranteed  

with the following expresions: 

   
1 1

1 , 1,...,
P K

ikp
p k

x for i n
= =

= =∑∑ ,               Equation 3.12 

The second constraint is used to calculate decision variable ikx .  That variable indicates 

whether task i was assigned to station k or not.  Because ikx  is binary, this equation take 

into consideration that only a number of  of  p parallels can be activated for each work 

center. 

  
1

, 1,..., 1,..., ,
P

ikp ik
p

x x for i n and k K
=

= = =∑   Equation 3.13        

The third constraint  is added to the model in order to capture the number of the station 

where each task was assigned 

    
1

, 1,..., ,
K

ik i
k

k x s for i n
=

⋅ = =∑   Equation 3.14  

The precedence relations are included into the formulation through the fourth constraint.  

Each precedence constraint must be expressed as an equation where the station number of 

a succeeding task bi ( bis ) must be bigger than or equal to the station number of the 
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precceding task ai ( ais ). This constraint guarantees that a task is assigned once all its 

precedents have been allocated. 

   0 , , ,bi ais s for ai bi SP− ≥ ∈                Equation 3.15 

It is decisive to ensure that all the tasks of a workstation have the same number of 

parallels; otherwise the solution obtained for the problem will lack of sense. The fifth 

constraint is used to determine which value of p was activated for station k.  That 

decision variable pkpa  is restricted to values zero or one; therefore, the sixth constraint 

ensures that only one possible value of p parallels has been activated for one particular 

station. 

 
1

10000 0 , 1,..., 1,... ,
n

kp ikp
i

pa x for k K and p P
=

⋅ − ≥ = =∑   Equation 3.16 

  
1

1 , 1,..., ,
P

kp
p

pa for p P
=

= =∑       Equation 3.17 

Analogous to the third constraint given by the Equation 3.14 in Equation 3.18 is 

calculated the number of parallels.  This is not a binary variable but a number between 1 

and an upper limit of parallel stations given by the user. 

  
1

, 1,..., ,
P

kp k
p

p pa tp for i n
=

⋅ = =∑    Equation 3.18 

In the total cost function is expected to include station, equipment and lateness cost.  

Lateness cost depends on the distribution of the processing times and the unit load size.  

The unit load size is the number of product units to be moved at once between adjacent 
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workstations.  As the unit load size increases the lateness probability decreases as a result 

of a delay lessening the effect caused by those units in the load which take less than the 

expected processing time. 

If task times for individual products are distributed normally with mean it and standard 

deviation σ i and the product flows in batches of load size q, then station parametersσ k  

and kt  are calculated as follows: 

     k i
i k

t q t
∀ ∈

= ⋅∑  ,    Equation 3.19 

            2 2
k i

i k

qσ σ
∀ ∈

= ⋅∑  ,  Equation 3.20 

The expected time for manufacturing q units at station k is kt  units of time, with a 

standard deviationσ k .   If processing times are normally distributed the probability kTP  

that tasks allocated to station k with p parallels are completed on time is calculated as 

follows:  

   

2

*1 ,
22

p

k
cycle q

k
kk

tu
p

TP exp du
σσ π −∞

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ − ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠= −⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫   Equation 3.21 

Then the lateness probability of the line is computed using Equation 3.6 as the 

complementary probability of finishing all the items on time. 

The total work load for the station k is kt time units.  This measure is obtained through 

the Equation 3.22 and Equation 3.23.  In this scenario the limit time to complete the work 
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in a workstation is defined by q c⋅ as shown in Equation 3.24. 

                   
1

1,..., 1,..., ,
n

ikp i
kp

i

x t
q t for k K and p P

p=

⋅
⋅ = = =∑    Equation 3.22 

 
1

1,..., ,
P

kp k
p

t t for k K
=

= =∑    Equation 3.23 

 0 1,..., ,kq c t for k K⋅ − ≥ =    Equation 3.24 

        

Additional constraints are integrated into the model in order to incorporate the costs 

associated with delayed shop orders and loss of costumers.  Equation 3.25 calculates the 

standard deviation of the station load as a sum of the standard deviation of the processing 

times assigned to the workstation. 

    2 2

1

0 ,
n

k ik i
i

q xσ σ
=

− ⋅ ⋅ =∑    Equation 3.25

Finally, it is calculated the probability of processing in the station k one unit of product in 

a period of time lower or equal than the line cycle.  This measure is computed using the 

cumulative probability of the normal distribution as shown in Equation 3.26  

     

2

1 0 ,
22

k

k
cycle

k
k

kk

tp
tu
tp

TP exp du
σσ π −∞

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠− − =⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫     Equation 3.26 

Once all the decision variables have been described and the constraints have been 

established it is possible to propose the objective function which minimizes the total 

investment and operational cost.  
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Making the lateness cost LC a percentage of the product price representing a penalty for 

possible lost orders due to lateness, the total cost of the line balance is expressed as 

follows: 

   
1 1 1

K K n

k k i ik
k k i

Z tp S tp E x LC LP
= = =

= ⋅ + ⋅ ⋅ + ⋅∑ ∑∑     ,  Equation 3.27 

The optimization problem is formulated as follows: 

  
1 1 1 1

1
KK K n

k k i ik k
k k i k

Min Z tp S tp E x LC TP
= = = =

⎛ ⎞
= ⋅ + ⋅ ⋅ + ⋅ −⎜ ⎟

⎝ ⎠
∑ ∑∑ ∏    ,  Equation 3.28 

Subject to:  Equations 3.12 to 3.18, and Equations 3.22 to 3.26. 

The complexity of the proposed model is high and it cannot be solved using traditional 

methodologies. Additionally, the model is restricted to normally distributed processing 

times.  Considering that it is desirable to build a general model that promptly provide a 

near to the optimum solution for real cases that involve normal, uniform or triangular 

processing times it is necessary to employ alternative methodologies to find a solution to 

the problem.  A Simulated Annealing heuristic was designed to tackle the problem.  The 

procedure developed consists of a Simulated Annealing that employs a dynamic cooling 

schedule where parameters are adjusted depending on the problem complexity.  The 

following sections describe the general SA algorithm and the selection of appropriate 

parameters in order to achieve a superior performance. 
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4. METHODOLOGY FOR THE DESIGN OF A SIMULATED ANNEALING-

BASED HEURISTIC 

The methodology proposed for the design of a Simulated Annealing-based heuristic is 

presented in Figure 8.  It is highly based on the use of design of experiments for the 

evaluation and selection of heuristic parameters and an initial solution from which the 

heuristic works to obtain a near to optimum solution. 
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Figure 8 Methodology for the Design of a Simulated Annealing-Based Heuristic 

Each one of the steps in the proposed methodology is described next. 

4.1 Solution Representation and Generation 

Solution representation and neighboring generation are two essential parts to consider in 

SA design.  Solution representation should allow manipulating the current solution 
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through small perturbations and allow reaching all possible solutions. 

4.1.1 Solution Representation 

In the SA algorithm a solution is represented through an n by k matrix, along with a k 

length vector where the number of parallel workstations is stored.  Table 2 and Table 3 

show an example of a possible line balance solution with twelve tasks and five 

workstations in series. 

Table 2 Task Assignment 

Task Assignment 
St 1 St 2 St 3 St 4 St 5 

1 0 0 0 0 
0 2 0 0 0 
3 0 0 0 0 
0 4 0 0 0 
0 5 0 0 0 
0 0 6 0 0 
0 0 7 0 0 
0 8 0 0 0 
0 0 0 9 0 
0 0 0 10 0 
0 0 0 0 11 
0 0 0 12 0 

 

In this example tasks 1 and 3 were assigned to serial position 1, tasks 2, 4, 5 and 8 were 

assigned to serial position 2 and so on.   

Table 3  Parallel Workstations 

Station 
Number 

Number of 
parallels 

St 1 1 
St 2 2 
St 3 1 
St 4 3 
St 5 1 
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4.1.2 Solution Generation 

Often the solution space of an optimization problem has many local minima. A simple 

local search algorithm proceeds by evaluating initial solution and generating a new 

solution from the neighborhood. 

The matrix of a current solution is modified through small random changes in order to 

obtain neighboring solutions. The mechanisms used to generate new feasible designs 

were called trade and transfer.  Selection of any of these methods is made through a 

random number generation.  These mechanisms are explained next. 

Trade:  The first step is to choose randomly one station x and one of both adjacent 

workstations y.  A trade is made between the last task in station x and first task in station 

y if y follows x or between first task in station x and last task in station y if y proceeds x.  

Trade is performed strictly if the precedence constraints are not violated.   

An example for this procedure is shown in Figure 9 and Figure 10.  Tasks 9 and 11 

within workstations 3 and 4 have been chosen through random selection.  If the 

precedence constraints are no violated those tasks are exchanged, otherwise the algorithm 

attempts another perturbation mechanism.  Once the trade has been made, the number of 

parallels and work loads are recalculated. 
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Figure 9 Trade Between Adjacent Workstations 

As a result of this trading process, stations can become smaller or bigger especially with 

the cancellation or addiction of parallel workstations.  This phenomenon is shown in 

Figure 10. 

Before trade 

5 5 5

6 6 6

11 11 11

Station 3 Station 4

9 9

13 13

14 14

5

6

11

 

After trade 

 

Figure 10  Change in Workstation Size After Trading 

Transfer: As in the trade mechanism, the first step is the random selection of 

workstation x.  Next a task in x is randomly chosen.  Then the target task is transferred to 

an adjacent workstation y.  Choices regarding to direction and task to transfer are not 
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deliberate but random decisions.  As shown in Figure 11, if station 7 was randomly 

chosen for a transfer, any task in 7 can be transferred to either station 6 or 8. 

 

Figure 11 Station 7 Before Transfer 

Figure 12 shows an example of forward transference.  Task 19 is randomly selected and 

then transferred to adjacent station 8.  As part of the trade process the number of parallel 

workstations is recalculated because of the resulting mutation in the current solution 

matrix.  Then the total line balancing cost and SA statistics are updated. 

 

Figure 12 Forward Transfer Example 

4.2 Selection of the Annealing Schedule 

In each iteration, the SA algorithm replaces the current solution by a random solution 

from the neighborhood which is chosen with a probability that depends on the difference 

between the corresponding function values and the temperature kT .  The control 
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parameter kT has the same function for the procedure as the temperature of the Metropolis 

algorithm. Therefore, as the temperature decreases the probability of accepting worse 

configurations decrease. 

The impact of the temperature on the performance of the algorithm is such that the 

current solution changes almost randomly when the temperature is too large but 

increasingly finds better solutions as the temperature tends to zero. 

Although Simulated Annealing has been widely used during the last two decades, there is 

still a lack of practical information to help the user in designing an appropriate annealing 

schedule that assures a good performance of the algorithm.  Most of the concerns lie on 

the selection of the initial temperature and a cooling rule in order to perform a fast and 

accurate search over the solution’s space.  

4.2.1 Initial Temperature 

According to Triki and Collette [28] the initial temperature should allow the SA to 

perform a random walk over the landscape.  This suggests that the initial temperature 

should be high enough to assure a complete walk. However, it is not desirable to perform 

unnecessary iterations which consume excessive computational time. Also, it has been 

proven that the quality of solutions at high temperatures is relative poor. 

To solve this tradeoff several rules to calculate the initial temperature have been stated.   

The initial temperature is obtained with the Van Laarhoven  equation  as follows: 

     
( )

0
0ln( )

fT
χ

+Δ
= −   ,   Equation 4.1 
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This equation is based on an initial value 0χ which is defined as the ratio between the 

number of the bad transitions the user is willing to accept and the total number of bad 

transitions.  The initial acceptance ratio is also defined as the average increase in 

acceptance probability.   

The numerator in the equation, ( )f +Δ  is the average change in the objective function 

value and is estimated by conducting an initial random search of n number of steps. The 

average change is considered as an approximation of the depth of the deepest local 

minimum. 

It is extremely important not to underestimate the value of ( )f +Δ since that would result in 

a low value for the initial temperature 0T .  As a consequence, the SA algorithm might not 

perform a complete walk over the landscape and could get trapped in a local minimum. 

Figure 13 shows two different landscapes for which the initial temperature computed 

using Laarhoven’s formula was the same. Although the objective function “a” has four 

local minima of depth 1 and objective function “b” has a minimum depth of  4, they 

cannot be distinguished by only counting the number of moves with higher cost.  In fact, 

if the landscape presents a deep minima, then ( )f +Δ may underestimate the depth of these 

minima, and the computed initial temperature may be too low. 
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Figure 13  Different Landscapes with the Same ( )f +Δ  

A simulation was conducted in order to test the robustness of the Van Laarhoven 

equation in finding the initial temperature.  A case study was used to perform 30 random 

walks for each of the following walk lengths: n=20, 50,100 and 200 steps.  The average 

change in the objective function ( )f +Δ  was estimated for each random walk resulting in 

an estimated value for 0T .  It was expected to obtain approximately the same value for 0T  

regardless of the walk length.  Results are summarized graphically in Figure 14.  The 

graph shows that short random walks resulted in higher estimates for the initial 

temperature. 
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Figure 14 Initial Temperature Search 
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An ANOVA was performed and results are summarized in Table 4.  These show that at a 

95% confidence level, the walk length has a significant impact on the resulting estimated 

value for 0T . 

Table 4 ANOVA for Random Walk Lengths 

Source DF SS MS F P Value 
Walk length 3 56.49 28.24 27.35 0.000 

Error 87 89.85 1.03   
Total 89 1.46.34    

A boxplot shown in Figure 15 shows the tendency to decrease the estimated initial 

temperature value as the number of steps is increased.  Intuitively, this inverse 

relationship can be explained as a consequence of weighing deep changes in the cost 

function between a larger set of elements. Apparently, small changes occur with higher 

frequency than drastic increments in the objective function. 
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Figure 15  Boxplot Temperature vs Walk Length 

Based on results it is concluded that the walk length has a significant impact on the 

estimated value for 0T  and since the temperature should be high enough to assure a 
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search over the solution landscape, short random walks are appropriate to estimate the 

initial temperature for the SA algorithm. 

4.2.2 Cooling Rule 

Almost all the Simulated Annealing algorithms documented in the literature employ 

simple stepwise reduction rules to update the temperature.  Among these rules the most 

frequently used is the geometric cooling rule given by: 

     1k kT Tα+ = ⋅   ,   Equation 4.2 

Where, α  is a reduction factor and 0<α <1. 

Another simple strategy to decrease the temperature is the linear cooling rule stated as 

follows: 

     1k kT T T+ = − Δ   ,   Equation 4.3 

Where TΔ  is the station decrement step taken at each one of the L trials.  These two 

schemes were analyzed by Randelman and Grest [20]. They found that reductions 

achieved using the two schemes to be comparable, and also noted that the final value of 

objective function was, in general, improved with slower cooling rates, at the expense, of 

course, of greater computational effort. Finally, they observed that the algorithm 

performance depended more on the quotient /T LΔ  than on the individual values of TΔ  

and L . 

Other researchers such as Van Laarhoven [29] and Huang [11] have analyzed approaches 

using the standard deviation of the distribution of the objective function to determine the 

next temperature decrement. The advantage of this scheme is that the temperature 
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decrement is controlled dynamically.  Therefore, those approaches can be applied to all 

types of problems.  Those schemes called “adaptive” are based on the idea of quasi-

equilibrium.  To maintain quasi-equilibrium, the expected decrement in the average 

objective function value must be less than the standard deviation of the distribution of the 

function value. 

The schedule proposed by Van Laarhoven is based on the following adaptive rule to 

update temperatures: 

    1

( )

1
ln(1 )1
3

k

k k

k
T

T T
T

σ

+ = ⋅
+ ∂

+
 ,   Equation 4.4 

where; ∂  is a “small” real number and ( )kTσ  is the standard deviation of the cost function 

evaluated for solutions collected up to temperature kT . 

Another typical adaptive rule was proposed by Huang (1986). In his schemeλ is a 

constant parameter ( 0 1λ< ≤ ) that has to be determined by the user.  A typical value of 

λ is 0.7.  The updated temperature is determined as follows: 

     1
( )

exp
k

k
k k

T

TT T λ
σ+

⎛ ⎞
= ⋅ −⎜ ⎟⎜ ⎟

⎝ ⎠
 ,  Equation 4.5 

This schedule has been widely used and is known to provide an efficient general cooling 

schedule.    

Triki and Collette [28] verified that the adaptive decrement rules proposed by Van 

Laarhoven and Huang are equivalent, but they differ significantly from the geometric 

cooling schedules.  They also noticed that adaptive rules have a tendency to degenerate at 
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low temperatures.  Certainly, when the temperature becomes sufficiently low, the SA 

algorithm will become trapped into a local minimum.  Because of the good quality of 

current solutions most of the trials will lead to worse solutions and the probability of 

accepting such transitions will be very low due to the low temperature.  Therefore, most 

of the transitions will be rejected. 

According to the literature, the cooling rule must be an asymptotic function that does not 

decrease drastically.  A simulation of three decrement rules at different levels was run in 

to find the scheme with the best performance for this particular algorithm.  The results of 

the simulation are plotted in Figure 16. 
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Figure 16  Temperature Decrement Rules Plot 

The geometric cooling rule with 0.95α =  presents a satisfactory performance.  However, 

popular adaptive rules like Laarhoven and Huang at 0.7 do not show evidence of 

adequate behavior.  In one hand Laarhoven’s rule do not decline consistently, and in the 

other hand Huang shows a rapid descend in the first ten trials. 
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Because of the significant difference observed between the behavior described in the 

literature and the one obtained via simulation it was necessary to perform additional tests 

to determine the best cooling rule.  The capability of the algorithm for finding a minimal 

solution was measured through an experiment where seven cooling rules were used for 

two different case studies.  The case-studies were analyzed as blocks and the interest of 

the experiment was to determine if the cooling rule affected the performance of the 

algorithm.   The performance measure used was the magnitude of the best cost found. 

An analysis of variance was performed to identify the impact of the cooling rule on the 

performance of the SA algorithm.  The results are summarized in Table 5.  These show 

there is not statistical evidence to support the hypothesis that the cooling rules analyzed 

affect the results of the algorithm at a 95% confidence level. However, following the 

guidelines given in the literature the geometric rule with 0.95α = and Huang with λ= 0.1 

are preferred due to their asymptotic shape. 

Table 5  ANOVA Results Case vs Cooling Rule 

Source DF SS MS F P 
Rule 7 0.00078 0.00011 0.44 0.861 
Case 1 1.87487 1.87487 7469.74 0.000 
Interaction 7 0.00077 0.00011 0.44 0.863 
Error 16 0.00402 0.00025   
Total 31 1.88044    
S 0.01584 R-Sqr= 99.79% R-Sqr= 99.59% 

4.2.3 Chain Length  

The number of iterations known as the chain length at any given temperature should be 

large enough to guarantee that the thermal equilibrium is reached.  The chain length can 

be fixed, be tied to the achievement of equilibrium or it can depend on a minimum 
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acceptance criterion.  For example, each chain length terminates when the number of 

accepted solutions reaches a given bound mL .  Some researches have proposed empirical 

equations to express the fixed chain length as a function of the problem size.   

According to Huang’s procedure to establish the number of iterations, the length of the 

Markov chain should be tied to achieve a specific state.  However, it is typical to use 

other methods as the minimum acceptance criterion mL or the minimum chain length minL  

to guarantee the validity of the statistics.  Usually the minimum chain length criterion 

depends on the size of the solution space.  For line balancing problems the size of the 

solution space may be expressed as a function of different variables:  number of tasks, 

relation between the longest processing time and the cycle time, and finally the density of 

the precedence matrix.  The density of the precedence matrix is a measure of the network 

complexity.   This characteristic was called by Dar-El (Mansoor) the F-Ratio and is 

defined as:    

     2
( 1)

dD
N N

⋅
=

⋅ −
         ,     Equation 4.6 

Where, d is the number of precedence relations which is equal to the number of ones in 

the triangular precedence matrix and ( 1) / 2N N⋅ −  is the total number of cells in the 

partial (triangular) matrix.  For balancing cases with few precedence relations D 

approaches a value of zero. On the other hand, when the precedence constraints are as in 

a serial assembly line, D reaches values near one.  The relationship between the 

dimension of the solution space and the precedence density is inversely proportional. 

Notice that when D assumes a value close to zero there are numerous alternatives for 
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allocating the tasks via the permutation of tasks and the generation of parallel stations. 

When the ratio between the longest processing time and cycle times is greater than one 

the heuristic is forced to generate at least one parallel workstation. This increment in the 

complexity of the feasible solutions may be represented as an expansion of the solution 

space.  

Considering the facts mentioned before, a rational rule to define the minimum chain 

length might be: 

     max
min

⋅
=

⋅
N tL
c D

  ,   Equation 4.7 

where; 

N = total number of tasks to balance, 

maxt = maximum duration time, 

c = line cycle time, and 

D = assembly network density. 

Some facts are known about the evolution of the SA: first, when kT  approaches zero, 

transitions are accepted with decreasing probability.  Therefore, the number of trials 

required to achieve the minimum number of transitions minL  must decrease.  

Additionally, at the beginning of the search, when the temperature is still close to the 

initial temperature, most transitions are accepted the variance is relatively high and 

therefore long chains are required to explore numerous alternatives for better solutions.      

An improved minimum length chain rule which adapts as annealing proceeds is 

calculated according toEquation 4.8. 
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    max
min int

⎛ ⎞⋅ ⋅
= ⋅⎜ ⎟⎜ ⎟⋅⎝ ⎠

kN t T
L m

c D
  ,    Equation 4.8 

where; 

m = adjustment multiplier, and 

kT = temperature for iteration k. 

This scheme generates long chains at high temperatures and short chains when a 

temperature is close to zero, in this manner the computational time reduces.  Variable m 

in this equation corresponds to a multiplier.  The value of m is obtained through an 

experimental process. 

4.2.4 Final Temperature 

In some simple implementations of Simulated Annealing the final temperature is 

determined by fixing the number of temperature values to be used, or the total number of 

solutions to be generated.  Alternatively, the search can be stopped if it is identified lack 

of progress. This lack of progress can be defined in a number of ways, but a useful basic 

definition is: no improvement (i.e. no new best solution) being found in a fixed number 

of entire Markov chains.   

For the line balancing problem the final temperature may be the temperature reached 

after a fixed number of Markov chains.   Deliberately this number of chains depends of 

the balancing problem complexity.  The deduction made previously for line balancing 

seems appropriate to define the number of temperature chains. 
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     max⋅ ⋅
=

⋅changes
M N tT

c D
  ,    Equation 4.9 

A stopping rule is also established to prevent expending computational resources 

unnecessarily.  It is suggested to stop the algorithm when after Y consecutive sequences 

the objective function has not shown improvement, where Y is calculated as 0.5 ( )changesT⋅ . 

This measure is considered conservative since half of the total Markov chains require 

considerable computational time.  However, it is attempted to explore the solution space 

efficiently without eliminating the probability for finding an enhanced solution in final 

temperatures. 

4.2.5 System Perturbation 

Although the size of the perturbation is not consider relevant part of the annealing 

schedule, after performing test runs of the algorithm,  the impact of this characteristic was 

identified. Some of the important considerations about the size of the perturbation are:  it 

is desirable a neighboring generator able to escape from local optima and the perturbation 

should shake enough the system to avoid trapping the algorithm.  Trade and transfer 

cause a single and small shake which might not alter the solution in the magnitude 

required to escape from local optima.   However, a step should not be so large that the 

optimal point is constantly exceeded.   

Two different perturbation magnitudes were tested in order to analyze the cost function 

response.  In Figure 17 shows a plot of the cost function response when only one trade or 

transfer movement is performed at each trial. The plot shows how at lower temperatures, 

changes in the cost function is barely perceptible. Significant changes occur at the 
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beginning of the process because new designs are soft modifications of last solutions. 

 

Figure 17 Cost Function for a Perturbation Magnitude of 1 

By the other hand, in Figure 18 solution present significant fluctuations during different 

simulation states which demonstrates the ability of the algorithm to perform an 

exhaustive search in a bigger zone of the solution space. 
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Figure 18 Cost Function for a Perturbation Magnitude of  5 

4.3 Optimal SA parameter setting through DOE 

In previous sections design factors for the SA algorithm were described and analyzed.  

However, it has not been identified the effect of these factors over the solution quality.  

To determine the adequate setting of these design parameters a factorial experiment was 

designed and run.  The influence of the cooling rule, Markov chains length, number of 

Markov chains, and the perturbation size on the total cost was investigated using a central 

composite experiment. The response variables were defined as the difference in 

percentage between the minimal total cost and the total cost observed at each 

experimental condition, and computational time required to finalize the simulation.   

Initially, an exploratory experiment for two case studies with 18 and 23 tasks respectively 

at two different cooling rules was run.   The factors analyzed were the cooling rule, 
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geometric rule with 0.95α = and the adaptive Huang with λ= 0.1, the number and the 

length of Markov chains and the perturbation magnitude.  The results obtained in this 

preliminary phase indicate that responses variables were not susceptible to changes in the 

case study; also more accurate results were obtained using the geometric rule although 

computational time spent in calculations was considerably higher.   In order to obtain the 

appropriate setup to generate precise solutions in a short period of time a central 

composite design was used for a case study of 23 tasks with two replications.  When the 

response was “computational time” the assumption of normality on residuals was 

accomplished employing a logarithm transformation.  The factors studied and the un-

coded levels are presented in Table 6.  The levels for factors A and B correspond to the 

multipliers in Equation 4.8 and Equation 4.9  respectively.   

Table 6 Factors and Levels of the CCD 

Factors 
Levels A. Chain 

length 
B. Number of 

chains 
C. Perturbation 

magnitude 

Low m=0.25 M=1 Perturbation= 1 

High m=2.75 M=5 Perturbation=5 

Table 7 presents the ANOVA results on the percentage difference from the minimum 

cost observed.  At a 95% confidence level results indicate that the length of Markov 

chains and number of chains have a significant impact on the response quality. 

Additionally, the interaction between the number of Markov chains and the perturbation 

magnitude result in a p-value smaller than 0.05 which proves some relevance in the 

model. 
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Table 7 ANOVA for Cost Difference 

Estimated Regression Coefficients for cost difference 
Term Coef SE Coef T P 

Constant 2.7118 0.2826 9.597 0.000 
Length of chains -1.4741 0.2599 -5.671 0.000 
Number of chains -0.6303 0.2599 -2.425 0.022 
Perturbation magnitude -0.2464 0.2599 -0.948 0.351 
length*length 0.8767 0.4956 1.769 0.087 
number*number 0.3454 0.4956 0.697 0.491 
perturb*perturb 0.4520 0.4956 0.912 0.369 
length*number 0.0895 0.2906 0.308 0.760 
length*perturb 0.2246 0.2906 0.773 0.446 
number*perturb -0.6156 0.2906 -2.118 0.043 
   R-Sq=0.666  R-Sq(adj)=0.566  

An analysis of variance was also performed to evaluate the variable “computational 

time”.  Results summarized in Table 8 reveal a strong influence of all factors over the 

CPU time.  The response variable increments as other factors increase.   

Table 8 ANOVA for log Computational Time 

Estimated Regression Coefficients for log (computational time) 
Term Coef SE Coef T P 

Constant 1.6723 0.010232 163.449 0.000 
length 0.5726 0.009412 60.842 0.000 
number 0.0497 0.009412 5.277 0.000 
perturb 0.0589 0.009412 6.258 0.000 
length*length    - 0.2412 0.017947 -13.441 0.000 
number*number    - 0.0445 0.017947 -2.481 0.019 
perturb*perturb 0.0058 0.017947 0.325 0.747 
length*number 0.0254 0.010523 2.413 0.022 
length*perturb 0.0075 0.010523 0.709 0.484 
number*perturb 0.0011 0.010523 0.102 0.920 
   R-Sq=0.993  R-Sq(adj)=0.991  
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The ANOVA results reflect a logical trade off between the quality of the response and the 

time required to achieve a good solution.  To deal with this concern the desirability 

approach was used. The desirability approach is a methodology used for the optimization 

processes with multiple responses.  The methodology assigns a "score" to a set of 

response variables and chooses factor settings that maximize that score. 

In this particular case, the main purpose of this optimization process is minimizing both, 

the deviation from optima and the time required to perform the algorithm, 

simultaneously.   The “Response Optimizer” in Minitab® was used to identify the 

combination of values for chain length, number of chains and perturbation size which 

jointly minimize the percentage cost difference and the CPU time.   The limits 

established for the evaluation of the desirability function were: an upper bound of 2% on 

the percentage cost difference and 1.8 (i.e. 60 seconds) for the logarithm of the 

computational time. 

As shown in Figure 19, the length of the Markov chains had a significant impact on both 

responses.  The number of chains and perturbation size had an impact only on the 

percentage cost difference.  The optimum coded settings for the length, number and 

perturbation size are 0.0462, 1, and 0.8035, respectively. 
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Figure 19 Response Optimizer for Percentage Cost Difference and CPU Time 

The uncoded values of the optimal setting are shown in Table 9. 

Table 9 Results Response Optimizer 

 

 

After analyzing all the parameters and defining the most favorable set up for relevant 

factors it is possible to design a scheme which optimizes resources and achieves high-

quality results.    

• Initial Temperature:  The initial Temperature is set using the formula presented 

below, for a random walk of twenty steps and probability of 0.8 of accepting bad 

transitions. 

       
( )

0 ln(0.8)
fT

+Δ
= −   ,   Equation 4.10 

• Cooling Rule: After comparing different traditional and adaptive cooling rules, the 

geometric scheme with  0.95α =  was chosen.  The cooling rule is as follows: 

Factor Setting 
Multiplier length of Markov chains 1.819 
Multiplier number of Markov chains 3 
Perturbation size 4.607 
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     1 0.95k kT T+ = ⋅     ,   Equation 4.11 

• Final Temperature:  Simulated Annealing algorithm stops the iterative process after 

changesT  number of Markov chains each one of minL length are completed.  Equations to 

calculate those parameters has been rewritten as follows: 

        maxint 3changes
N tT
c D
⋅⎛ ⎞= ⋅⎜ ⎟⋅⎝ ⎠

        , Equation 4.12 

              max
min int 1.819 N t TL

c D
⎛ ⎞⋅ ⋅

= ⋅⎜ ⎟⎜ ⎟⋅⎝ ⎠
    ,           Equation 4.13 

• System Perturbation:  Neighboring solutions are produced in each trial by making x 

trade or transfer changes, where x is calculated as follows: 

      ( )int 4.607x rand= ⋅     ,  Equation 4.14 

Rand  represents a number between 0 and 1. 

4.4 Evaluation and Selection of an Initial Solution 

Simulated Annealing is characterized for providing good solutions for combinatorial 

problems.  However, choosing the appropriate parameters for the algorithm is key for 

success. Several research works confirm that the quality of the initial solution used in the 

algorithm affects the performance of the SA.  Which criteria the user should use for 

selecting an initial solution and which solution is best are two common concerns on this 

subject. 
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Intuitively the user could assume that a good initial solution is one generated using 

techniques or methodologies validated for the particular problem.  In line balancing 

several decision rules varying from simple rules to complex heuristics have been used to 

assign tasks to workstations.    

Brian Talbot et al. [27] defined four categories to group the decision rules.  In the first 

category they clustered “Single Pass Decision Rules” which consist of simple attribute, 

priority rules such as the maximum ranked positional weight, maximum number of 

immediate followers, maximum task time, etc.  Those rules consist of a list processing 

procedures that assigns tasks to work center according to a priority attribute. The second 

category group, “Composite Decision Rules”, is a combination of single pass decision 

rules.  Occasionally, when a tie between two o more tasks occur, a single rule is not able 

to discriminate among tasks on an available list.  Therefore, a combination of rules is 

used to break the ties.  Other complex heuristic rules which require programming an 

algorithm are clustered in the category of “Backtracking Decision Rules”.  Finally, 

optimization methods like branch and bound, integer programming and dynamic 

programming are clustered in the category for “Optimal-Seeking Decision Rules”  

Taking into consideration the importance of the initial solution in the design of an 

appropriate algorithm, some of the decision rules classified as single pass decision rules 

along with a heuristic procedure were chosen to generate an initial feasible solution.  A 

brief description of the rules selected is presented below. 
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4.4.1 Heuristic Rules and Procedures 

Single Pass Decision Rules 

• Maximum rank positional weight (MaxRPW1):  The positional weight of a task is its 

processing time plus the task time of all following tasks as shown in Equation 4.15. 

     
∀ ∈

= + ∑i j
j Si

RPW t t    Equation 4.15 

• Maximum total number of followers (MaxTFOL2): The priority is based on the total 

number of follower tasks, with a higher priority given to tasks with higher values of 

MaxTFOL2. 

• Maximum task duration (MaxTD3):  Tasks are ordered in descending order of task 

duration time.  High duration tasks have a greater priority. 

• Minimum task slack (MinSLACK4):  The slack of a task is the difference between 

the upper bound and the lower bound, where upper bound and lower bound are given 

by: 

 where; 

         i i iSlack UB LB= −   ,              Equation 4.16 

             1 int
i j

j Pi
i

t t
UB N

c
∈

+

⎡ ⎤+
⎢ ⎥= + − ⎢ ⎥
⎢ ⎥⎣ ⎦

∑
       ,   and  Equation 4.17 
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           int
i j

j Si
i

t t
LB

c
∈

+

⎡ ⎤+
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

∑
   ,  Equation 4.18 

A higher priority is given to tasks with small slack values. 

• Random task assignment (Rand5):  In this approach, task priority is assigned at 

random. 

The single pass decision rules mentioned above have been included into a task 

assignment heuristic model designed to balance lines controlling the number of parallel 

stations generated.  The heuristic model assigns tasks to workstations and controls the 

creation of parallel stations by comparing the current utilization and the utilization of the 

station with parallels.  Parallel workstations are created only when utilization increases 

with the replication.  

First, all the tasks are positioned in a list using a single pass decision rule. A list of 

assignable tasks is created based on precedence constraints. Then, task j is selected from 

the assignable list, if the processing time of task j is smaller than the available time in the 

station.  The task is allocated to the station and the statistics are updated.  Otherwise, if 

the processing time exceeds the available time a new search is performed.  The heuristic 

creates a fitable list picking up from the assignable list all the tasks for which processing 

times are smaller than the available station time.  If the fitable list is not empty, the 

heuristic changes task j with the first in this list and it assigns the new task to the station.  

On the other hand, when the fitable list is empty, the algorithm evaluates and compares 

current utilization of the station with utilization of the station with task j and parallel 
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workstations.  If the utilization with parallels is greater than a minimum permissible 

utilization defined by the user, task j is allocated into the station and statistics are 

updated. Otherwise, the station is closed and a new empty station is created.   

A flowchart describing this heuristic is presented in Figure 20. 

START

Enter precedence matrix and 
processing times

Order tasks applying a single pass 
decision rule

List of unassigned tasks empty?

Yes

No

Select task j from assignable list.

cycle time-load station<time task j

Yes

No

Assign task j to station k. Update 
statistics

List of fitable tasks empty? Change task j with first task in the fitable 
list

Create list of fitable tasks with tasks with 
processing time< cycle time- load station

No

Yes
Yes

Utilization with parallel > 
minimum utilization?

No

Close station
k=k+1

Station number k=1
Load station =0

END

Create assignable list with tasks which 
precedent tasks have been assigned

 

Figure 20 Heuristic to Assign Tasks to Workstations 
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Heuristic Procedure 

The quality of the initial solution provided by a single pass decision rule was also 

compared with the composite heuristic proposed by Mejía, 2005 [16].  Mejia’s heuristic 

assigns tasks to workstations based on the cost caused by unbalance between stations.  

The algorithm evaluates costs under different scenarios with or without parallel stations 

and assigns tasks only if the unbalance cost is reduced. 

4.4.2 Comparison of Results 

Four different case studies were analyzed in order to evaluate the impact of the initial 

solution in the SA performance.  The five single pass decision rules and Mejía’s heuristic 

model were used to solve the different case studies.  Three replications of each 

experimental condition were run.  The results of an analysis of variance, summarized in 

Table 10, indicate that the initial solution provided to the algorithm impacts the 

performance of the SA. This conclusion reiterates the findings made by different 

researchers about the SA performance. 

Table 10  ANOVA Results for Initial Solution 

Source DF SS MS F P 
Heuristic Method 5 15.329 3.066 2.920 0.022 
Case Studies 3 69.815 23.272 22.130 0.000 
Interaction 15 20.885 1.392 1.320 0.225 
Error 48 50.472 1.052   
Total 71 156.501    

The results obtained were plotted in the boxplot shown in Figure 21.  The results lead to 

conclude that lower costs are achieved when the initial solution is obtained using 

maximum task duration priority rule.  
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Figure 21  Initial Solution Boxplot 

4.5 Final Design Called ANAMAR06 

In this chapter a description of the general operation of the proposed algorithm called 

ANAMAR06 along with the development of the different parameters of this heuristic 

were presented.  The specifications of the algorithm include the selection of an 

appropriate value for the components of the annealing schedule, the definition of the 

mechanism to generate a solution from the neighborhood and the size of the perturbation.  

Additionally, a single pass decision rule combined with a heuristic procedure to assign 

tasks and generate parallel workstations is employed to generate a good initial solution.   

The initial temperature was set using the Van Laarhoven equation.  The number of steps 

in the random walk was fixed to twenty in order to obtain an estimate of the local minima 

depth. 

The size of the algorithm and the computational time spent in finding the final solution 

rely on the size and complexity of the problem.  The schedule is dynamic, adaptive and 
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depends on factors such as network density, ratio between maximum processing time and 

cycle time, number of tasks to balance and current temperature.  The number and the 

length of the Markov chains were determined using results from a factorial experiment. 

A descriptive flowchart showing the steps of the ANAMAR06 is presented in Figure 22.  
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Figure 22 Flowchart Final SA algorithm 

Equation Chapter (Next) Section 1
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5. RESULTS 

In this chapter, are presented the computational results from experiments used to evaluate 

the performance of ANAMAR06.  The main objective of this experimental phase is to 

compare the procedure developed in this thesis work against the mixed integer linear 

programming model proposed in section 3.3.1 and other widely known line balancing 

procedures.  Moreover, in this chapter an analysis of the impact of diverse variables over 

the quality of the solution is presented. The variables considered were:  total number of 

tasks, density of the precedence network and the ratio between line cycle and maximum 

processing time. 

The ANAMAR06 algorithm for which results are being compared to those from an 

optimization model does not include the lateness cost due to the complexity of the non-

linearity of the objective function and the absence of equivalent procedures in the 

literature.   

The experiments are performed using a group of problems from the benchmark data sets 

for ALBP. This data set has been used for testing and comparing solution procedures in 

several relevant studies during the last two decades. The precedence and the processing 

times can been downloaded from Scholl and Klein’s web page2.    The specifications of 

the problem set used in the experiments are summarized in Table 11.  

                                                 

2  URL address: http://www.assembly-line-balancing.de/ 
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Table 11   Experimental Data Set 

Name Number 
of tasks 

Sum of 
tasks times 

Max task 
time 

Min task 
time 

 Max task time / 
Min task time 

Network 
Density 

Mansoor 11 185 45 2 22.5 0.6000 
Mitchell  21 105 13 1 6.5 0.7095 
Buxey 29 324 25 1 12.5 0.5074 
Kilbridge 45 544 55 1 27.5 0.4455 
Hahn 53 14056 1775 40 887.5 0.8382 
Tonge 70 3510 156 1 78 0.5942 

5.1 Performance Evaluation of ANAMAR06 

A computational study was completed with the purpose of evaluating the performance of 

ANAMAR06 based on the quality of the solution.  The computational speed of the 

algorithm is not considered a significant variable in this part of the process.  The 

computational speed is inversely proportional to the quality of the solution. Therefore, the 

parameters of the algorithm were set up to values resulting in CPU times within a 

reasonable range of values without compromising the quality of the solution.   

All the cases chosen for experimentation were solved using three approaches:  (1) 

Gaither’s heuristic [8], (2) a modified version of Amen’s [2] single pass decision rule, 

and (3) the SA algorithm designed in this thesis work a brief explanation of each 

approach is presented next. 

5.1.1 Heuristic Procedures  

Gaither’s heuristic places a task into a workstation, using different selection rules, only if 

the utilization of the station increases. The motivation for paralleling is to increase 

utilization as much as possible.  The first relevant step of this heuristic is to create a list 

of all tasks that are ready for immediate assignment.  The tasks placed on this list are 
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tasks which have their entire predecessors already allocated to workstations. After 

generating this list of the assignable tasks a second list is created.  This second list 

includes all assignable tasks which increase the utilization of the current work center.  If 

the list of eligible tasks is empty the station is closed, otherwise a task from the second 

list is chosen and parallel stations are created when needed.  Seven task decision rules 

have been proposed to choose tasks from the eligible list.   For experimental purposes 

only, two decision rules were used: a task that maximizes utilization and a task with the 

maximum processing time. 

Amen’s main objective contrasts with Gaither’s purpose of maximizing the utilization of 

the workstation.  Amen’s single pass decision rule pursues the minimization of the 

unitary cost per product by minimizing the idle cost.  Idle cost is caused by idle time and 

wage rate differences of the tasks assigned to the same station.  Amen assumes that tasks 

differ in their level of difficulty.  Hence there could be differences in the corresponding 

wage rates of the tasks.  

The wage rate at any given station is the maximum of the wage rates for all tasks 

assigned to the station.  The idle cost of the station is therefore calculated by multiplying 

the maximum wage rate by the station’s idle time.  Amen’s single pass decision rule is 

called the “Best change in idle cost”. In contrast with Gaither’s heuristic, Amen’s 

procedure does not generate maximally loaded station, but station resulting in the 

minimum cost possible. 

The best change of idle cost, ikΔ , is calculated as follows: 
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( )

i i i k
i

i k i i i k

t w if w w
k

w w c t w if w w
− ≤⎧

Δ = ⎨ − − >⎩
  ,             Equation 5.1

where; 

i = task to be assigned to station k, 

it = processing time for task i, 

c= line cycle time, 

kw = wage rate of task i, and 

iw = wage rate of task i. 

If the wage rate of task i is smaller than the wage rate of the workstation, by assigning 

task i to station k, there is a reduction in the idle cost which he calculates as i it w− .  If the 

wage rate of task i is higher than the workstation wage rate, then kw becomes iw .  This 

means that tasks previously assigned, and other which could also be assigned to the 

workstation, will all be paid at this new higher rate.  The idle time is reduced at the 

expense of increasing the cost of previously assigned tasks and future task assignments.  

A graphical representation of the priority rule is presented in Figure 23 

Starting situation

 c 

ws

wi≤ws

wt≤ws

ti

wi

wi>ws

wt≤ws

ti

wi-ws

 

Figure 23  Best Change in Idle Cost 
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Differences in wage rates, due to differences in level of difficulty of the tasks were not 

considered in the development of the proposed SA algorithm.  However, one major 

contribution of the proposed algorithm is considering differences in investment costs due 

to task specific equipment and tooling requirements.  Therefore, a change to the rule is 

proposed to benefit from its merits.  The best change in idle cost is calculated as follows: 

Case A:  No paralleling required 

  
0

( ) 0
i k i

i
i i k i i

t E if E
k

E c t E E if E
− =⎧

Δ = ⎨ − + >⎩
 ,    Equation 5.2 

where; 

kE = Equipment and tooling cost of station k prior to assigning task i, and 

iE = Equipment and tooling cost of task i. 

Case B: With parallel stations 

  
( )

( ) 0
( ) ( ) 0

k i k i
i

i k i k i i

d d E p if E
k

E c d d E E p if E
− − ⋅ =⎧⎪Δ = ⎨ − − ⋅ − ⋅ >⎪⎩

   , Equation 5.3  

where; 

kd = Station idle time prior to assigning task i, 

p = Number of parallel stations at serial position k, 

kl = Workload at station k prior to assigning task i, and 

id = Station idle time after assigning task i, per each c units of time= 

     ( )k i
i

l td c
p
+

= −   ,      Equation 5.4  
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An example of each case with positive equipment and tooling cost is presented in Figure 

24.  

(5*10) (1*15) 35ikΔ = − =

(7 8)10 2.5
2id +

= − =

[ ](1*10) (3 2.5)*11 *2 9.0ikΔ = − − =
 

Figure 24  Example “Best Change in Idle Cost” 

5.1.2 Optimization Model  

Results from both procedures, Gaither’s and Amen’s, along with results from the SA 

algorithm were compared with mixed integer linear programming (MILP) model.   

Reaffirming that the mathematical model proposed in this research cannot be solved 

using traditional optimization techniques a simplified MILP model is proposed. 

The model is based on the following assumptions: 

• Processing times are known, deterministic, and independent.  Processing times 

do not fluctuate due to workers expertise. 

• Precedence relations between tasks are known.  
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• Work in process inventory between stations is not allowed. 

This model differs from the one explained in section 3.4.2 because it assumes that 

processing times are deterministic and the lateness cost is excluded from the objective 

function. 

The main purpose of the function presented below is minizing station costs related to the 

capital investment required to create and operate any workstation and the cost of the 

tooling and machinery necessary to perform a particular task in a workcenter.   

            
1 1 1

,
K K n

k k i ik
k k i

Min Z tp S tp E x
= = =

= ⋅ + ⋅ ⋅∑ ∑∑               ,          Equation 5.5  

The mathematical formulation of the problem is summarized as follows: 

Minimize Total Cost  

1 1 1

K K n

k k i ik
k k i

Min Z tp S tp E x
= = =

= ⋅ + ⋅ ⋅∑ ∑∑  

Subject to: Equation 3.12 to Equation 3.18, and Equation 5.6 to Equation 5.6. 

               
1
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ikp i
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x t
ld for k K and p P

p=

⋅
= = =∑     Equation 5.6 

     
1

1,..., ,
P

pk k
p

ld ld for k K
=

= =∑                             Equation 5.7 

                                      0 1,..., ,kc ld for k K− ≥ =                  Equation 5.8 

The Equations 3.12 to 3.18 are explained in Section 3.4.  Capacity limitations are 

included in Equation 5.6, Equation 5.7, and  Equation 5.8.  The Equation 5.6 computes 
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the load of the station k with p parallels, next the final load of the station is stored in 

variable kld  which cannot exceed the line cycle time. 

The MILP model is solved using branch and bound. Branch and bound technique entails 

the definition of a group of subproblems where the range of the integer variables is 

restricted. Upper and lower bounds of the cost function are calculated for nodes or 

subregions of the problem.  The core of the approach is the rule applied to prone nodes 

and bound the problem. If the lower bound for a subregion X from the search tree is 

greater than the upper bound for any other subregion Y then A can be discarded from the 

search. 

Obtaining the optimal solution for this model is complex and demands excessive 

computational time even for moderate sized instances of the problem.  The time required 

finding the optimal solution increases exponentially as the number of tasks and maximum 

parallels allowed are incremented.  The simplest problem with eleven tasks requires 148 

restrictions and 260 decision variables for a maximum number of three parallels and a 

maximum number of workstations equal to the theoretical lower bound calculated using 

Equation 2.1. Empirically was found that a computational time smaller than 24 hours is 

only possible when the number of tasks is about twenty or less, and more than three 

parallels per station are not allowed.  This conclusion is drawn after running different 

case studies in typical computer with a processor of 1 Giga-hertz and 528 Mega bytes 

RAM memory. 

Due to the magnitude and complexity of the optimization problems, it was required to 

make use of an advanced optimization tool.  The set of MILP problems were submitted to 
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NEOS server3 to be solved using the SCIP solver.  All problems were interrupted after 

reaching ten hours of computational time, even if an optimum solution was not reached.   

In order to restrict the size of the problems the maximum number of parallels for each 

station was set to three.  This additional constraint could cause the generation of sub-

optimal solution.  Hence, it is possible to find cases where the ANAMAR06 results are 

better than the ones obtained from the optimization model.  Because of the size of the 

problems, optimal solutions were found only for Mansoor and Mitchell’s case studies.   

Results from MILP are presented in Table 12.  No results are presented for Tongue case 

study at a ratio of 0.5, since after ten hours of computational time MILP did not find any 

feasible solution. 

Table 12  Optimization Results 

Case Number 
of tasks 

Ratio 
Cycle/Max 
task Time 

Solution 
$/sec 

Optimal 
solution 

0.5 0.06337 Yes 
1.0 0.03533 Yes Mansoor 11 
1.5 0.02148 Yes 
0.5 0.11960 Yes 
1.0 0.06333 Yes Mitchell 21 
1.5 0.04255 Yes 
0.5 0.22884 No 
1.0 0.11517 No Buxey 29 
1.5 0.07661 No 
0.5 0.08944 No 
1.0 0.04486 No Kildbridge 45 
1.5 0.03162 No 
0.5 0.09769 No 
1.0 0.04725 No Hahn 53 
1.5 0.03542 No 
0.5 NA No solution 
1.0 0.19454 No Tongue 70 
1.5 0.14354 No 

                                                 

3 URL address: http://neos.mcs.anl.gov/ 
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ANAMAR06 found good solutions in computational time of less than five minutes.  The 

CPU times for ANAMAR06 are plotted in Figure 25.  Those varied from 12 up 260 

seconds for the largest case study. This shows that in terms of computational time 

ANAMAR06 outperformed the optimization model which was not capable of finding an 

optimal solution in 600 minutes limit for 66% of the case studies. 
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Figure 25 ANAMAR06 Computational Time 

Higher CPU times were observed for the cases where parallel stations were required, 

those with a ratio of 0.5.  In general the shortest CPU times were observed for cases not 

requiring parallel stations, those with a ratio of 1.5. 

Figure 26 summarizes the results obtained from ANAMAR06 algorithm. It shows the 

average percentage difference between results from the optimization model and the SA 

algorithm.  Each case study was run ten times for each of the three levels of ratio between 

the cycle time and the longest processing time.  In all the cases the percentage cost 

difference do not exceeded 12%.  The ANAMAR06 solutions for the case studies with 11 

and 21 tasks were at most 1.35% above the optimum solution. 
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ANAMAR06 Results Vs Optimization Model
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Figure 26  ANAMAR06 Results 

The annealing schedule for one of the problems analyzed is plotted in Figure 27.  The 

objective function fluctuates drastically at the beginning of the simulation. The variance 

of the cost settles down in final stages of the algorithm since the probability of accepting 

bad transitions decreases significantly as temperatures approaches zero. 
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Figure 27 Typical Annealing Schedule 

Results for Amen’s, Gaither’s and the SA algorithm are summarized in Table 13 and are 

presented graphically in Figure 28 .  Higher percentage differences between the heuristic 

and MILP were obtained in no iterative procedures of Amen and Gaither.  
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Table 13 Heuristics Performance 

Case Number 
of tasks 

Ratio 
Cycle/ 

Max task t 
ANAMAR06 Modified 

Amen 
Gaither 
Max Uti 

Gaither 
Max Dur 

0.50 0.00000 8.278365 0.80790 0.57279 
1.00 0.00000 1.330314 3.62170 1.33491 Mansoor 11 
1.50 0.00000 1.596834 32.23483 34.46931 
0.50 0.28974 7.525084 2.93695 1.28140 
1.00 0.44291 0.484762 0.83860 1.76703 Mitchell 21 
1.50 0.69695 0.430082 1.16133 1.39635 
0.50 -1.35917 83.51687 20.04930 20.09300 
1.00 2.79455 9.854997 16.40428 78.93055 Buxey 29 
1.50 9.55830 18.5511 38.36002 35.82777 
0.50 2.46775 5.636181 5.92266 6.38780 
1.00 7.26275 10.23406 10.95232 11.66781 Kildbridge 45 
1.50 0.49146 13.96268 1.19922 4.39016 
0.50 -1.69855 0.475995 -1.02148 -0.87919 
1.00 -1.69855 11.28042 10.44089 19.14654 Hahn 53 
1.50 11.98645 4.322417 7.29329 2.57055 
1.00 1.40434 4.055721 5.69250 0.60860 

Tongue 70 1.50 -4.91687 41.02689 -3.10834 1.14129 
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Figure 28 Heuristics Performance 

As shown in Table 13, in 88% of the cases the ANAMAR06 outperformed Amen’s and 

97% of the cases it outperformed Gaither’s heuristic.  The statistics summarized in Table 
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14 lead to conclude that ANAMAR06 achieves higher quality solutions with lower 

variability among the complete data set.  In 75% of the cases ANAMAR06 achieved a 

percentage difference less than 2.5% and in 50% of the cases the percentage difference 

was less than 0.44%.  The highest difference was 12%.  The percentage difference 

representing the 75th percentile in Amen’s results is more than 4 times higher than the 

corresponding value for ANAMAR06. 

Table 14  Statistics Summary 

Statistics ANAMAR06 Modified 
Amen 

Gaither 
Max Uti 

Gaither 
Max Dur 

Mean 1.630709 13.091928 9.046234 12.982746 
Standard deviation 4.266504 20.630264 11.663771 20.647076 
90th Percentile 8.180968 27.541418 24.923514 35.012696 
75 th   Percentile 2.467751 11.280423 10.952318 19.146544 
50 th   Percentile 0.442911 7.525084 5.692496 2.570552 

The results obtained reveal that the meta-heuristic proposed in this research work 

performs better than other procedures when the main objective is minimizing the total 

cost of the line.  Additionally, the computational time and capacity requirements of the 

algorithm are minimal, allowing a typical user to perform the algorithm in a traditional 

personal computer.  

The results obtained from ANAMAR06, Gaither and the modified Amen correspond to a 

problem without upper bound on the number of parallel workstations.  It is indispensable 

to perform and additional analysis in order to confirm if there is evidence that leads to 

conclude that under the same circumstances ANAMAR06 performs favorably compared 

with optimization. 
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A set of supplementary tests with a maximum number of three parallels was run.  The 

results on the percentage cost difference are summarized in Table 15.  The proposed 

algorithm outperformed optimization in 18% of the cases, in 90% ANAMAR06 achieve 

percentage cost differences smaller than 10%. 

Table 15 Performance of ANAMAR06 with Upper Bound on Parallel Workstations  

Case Number of 
tasks Ratio SA 

% cost difference 
0.5 -0.44106 
1.0 2.32567 Buxey 29 
1.5 6.97997 
0.5 5.19867 
1.0 9.84008 Kildbridge 45 
1.5 0.20304 
0.5 0.07284 
1.0 11.88633 Hahn 53 
1.5 3.42985 
1.0 4.55646 

Tongue 70 1.5 -5.00814 

The statistical results from the bounded ANAMAR06 are presented in Table 16.  The 

variability of the bounded ANAMAR06 was 15% greater to the one obtained in the 

unrestricted problem.  In general, the average difference of the percentage cost was 3.5 

for case studies from 29 up to 70 tasks.  The 95% confidence interval for the mean of the 

differences indicates that the solution obtained by ANAMAR06 is 2.6176% to 4.4813% 

above the cost obtained by optimization. Taking into account the reduced computational 

time required to perform the Simulated Annealing-based algorithm the results are 

considered satisfactory.  
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Table 16 Statistical Summary of ANAMAR06 with Upper Bound on Parallel Workstations 

Statistics Bounded  
ANAMAR06 

Unbounded  
ANAMAR06 

Mean 3.549429 1.630709 
Standard deviation 4.931251 4.266504 
90th  Percentile 10.175719 8.180968 
75th Percentile 6.603342 2.467751 
50th Percentile 3.362586 0.442911 

It is important to emphasize that one of the main characteristics of ANAMAR06 is its 

capability of solving large and unbounded problems.  When the upper bound of three 

parallels was not included into the algorithm it was able to explore a bigger proportion of 

the solution space. Hence, better results were obtained from ANAMAR06 without 

constraints on the number of parallels stations allowed. 

5.2 Analysis of Heuristic Robustness Performance 

A concern in the development of any heuristic is the robustness under different 

circumstances.   The main interest is determining if the characteristics of the line 

balancing problem affect the performance of ANAMAR06 and quality of results.  The 

variables that could increase the complexity of the problem are intuitively selected to 

perform a factorial experiment.  It is assumed that the line balancing problem enlarges 

when the number of tasks is high, the network density is low, meaning that there is a lot 

of flexibility for assigning tasks to stations, and the ratio is lower than one.  As the 

number of tasks increase, the size of the solution matrix increases enlarging the solution 

space of the problem.  On the other hand, when the network density decreases the number 

of alternatives to allocate the tasks rises significantly.   Moreover the role performed by 

the ratio between the cycle time and the maximum task is critical in defining the 
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difficulty level of the balance.  If the ratio is lower than one the solution formed by a set 

of stations without parallels is not feasible and the algorithm is forced to generate parallel 

workstations and therefore it is necessary to explore a wider solution space. 

The list of factors chosen and their experimentation levels are shown in Table 17.  The 

case studies chosen exhibited similar processing times with same station and equipment 

costs. The response variable was defined as the percentage cost difference between the 

cost obtained in each experimental condition and the case with the lowest overall 

resulting cost.  In some instances the heuristic results were better than the optimization 

outcomes due to the limit imposed on the time and the upper bound of three on the 

number of parallel stations. 

Table 17 Factorial Experiment Factors and Levels  

 Factors Levels 
A.  Number of Tasks B. Network Density C. Ratio 

Low 21 0.40 0.5 
High 45 0.80 1.5 

Eight replicates were performed at each combination of factor settings.  A logarithmic 

transformation was employed to validate normality of the data.  The results summarized 

in Table 18.  These reveal that the algorithm is sensitive to all the factors analyzed.   The 

conjectures made previously about the variables “number of tasks” and “network 

density” appears to be correct.   The performance of the algorithm decreases when the 

number of tasks increases and the network density decreases.  However, definitive 

conclusions cannot be drawn before a careful analysis of the main factor interactions is 

performed. 
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Table 18 ANOVA for Factorial Experiment 

Estimated Effects and Coefficients for Log Percentage Cost Difference 
Term Effect Coef SE Coef T P value 

Constant  0.2332 0.01237 18.85 0.00 
Number tasks 0.3453 0.1726 0.01237 13.95 0.00 
Network density -0.1948 -0.0974 0.01237 -7.87 0.00 
Ratio 0.1411 0.0706 0.01237 5.70 0.00 
Number tasks*Network density -0.2119 -0.1059 0.01237 -8.56 0.00 
Number tasks*Ratio 0.1709 0.0854 0.01237 6.91 0.00 
Network density*Ratio -0.2252 -0.1126 0.01237 -9.10 0.00 
Number tasks*Network density*Ratio -0.2091 -0.1045 0.01237 -8.45 0.00 
S = 0.0989663       R-Sq = 90.97% Sq(adj) =89.85% 

Figure 29 shows the relations between the main factors.  The slope of the lines confirms 

that the second order interaction is significant for all the cases although the relation is 

stronger between “ratio” and “network density”.  In general, the smallest percentage 

differences were achieved for the smaller number of tasks, a high network density, and a 

smaller ratio forcing parallel stations. 
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Figure 29 Interaction Plot 

With a power of 95% the ANOVA was capable of detecting differences between means 

as small as 0.23%. 
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6.  SUMMARY AND CONCLUSIONS 

6.1 Summary 

There is a significant volume of literature on the line balancing problem. However, most 

of the articles focus on obtaining solutions considering some individual aspects of the 

general problem.  In this research work a comprehensive algorithm was developed to 

tackle the GALBP for a mixed product line with stochastic processing times and parallel 

workstations.    

A Simulated Annealing-based algorithm named ANAMAR06 was designed in order to 

provide an accurate solution in a practical computational time to the problem of optimal 

allocation of tasks minimizing the total cost of the line.  The total cost of the line was 

defined as the sum of a station cost, the equipment cost that relays on the specific task 

requirements and finally a lateness cost which is a function of variability in task times 

and the workstations’ load. It is considered that all the tasks require different tools and 

equipment.  Therefore, the cost of paralleling depends not only in the cost of the space, 

table and labor but in the increment of tools and equipment needed to perform any 

specific task in a paralleled workstation.  

Precedence constraints and processing times of the individual models within a family are 

integrated using composite task sequences and weighted averages.  The algorithm allows 

normal, triangular or uniformly distributed task times and calculates the workstation 

loads using average times obtained via simulation.  To calculate the lateness probability 
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when task times are either triangular or uniform, an empirical distribution developed 

forehand is used in conjunction with the chosen unit load size. 

The parameters of the annealing structure were defined using results from a set of 

experiments.  A geometric cooling rule and an adaptive cooling schedule that depends on 

the size of the problem were employed in the final design of the algorithm.   

Five single pass decision rules and the Mejía’s Heristic were employed in order to 

analyze the impact of the initial solution on the performance of ANAMAR06 algorithm.  

This experimental process leaded to the selection of an adequate procedure to provide the 

initial balance to ANAMAR06. 

The performance of the algorithm was evaluated based on the cost percentage difference 

from the optimal solution and the computational time required. The MILP was solved 

using branch and bound with a specified computational time limit and an upper bound on 

the number of parallels.  For 66% of the cases the MILP did not find the optimal solution 

in the time limit.   

A factorial experiment was conducted in order to prove the hypothesis problem 

characteristics such as the number of tasks, network density and cycle time ratio had an 

impact on the performance of ANAMAR06.  

6.2  Conclusions 

The problem analyzed in this research deals with modeling and offering a solution to a 

real concern of the modern manufacturing industry. The mathematical formulation of this 
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problem becomes extremely complex and cannot be solved with traditional optimization. 

A large volume of literature on Simulated Annealing corroborates the capability of the 

meta-heuristic to solve models when the complexity of the problem makes difficult the 

use of traditional optimization methodologies. Nevertheless, there are no specific 

guidelines on the selection of the design parameters.  The correct selection of the cooling 

schedule and the solution generation mechanism is critical to guarantee the success of the 

algorithm since those elements define the size and direction of the search performed by 

the SA. 

By using experimentation through the entire design process it was assured settings of 

each parameter which contributes to maximize the performance of the proposed 

algorithm.   Completing a small random walk to avoid underestimating the initial 

temperature, employing a geometric cooling rule that do not decrease drastically the 

probability of accepting bad solutions and identifying a number of chains dependent on 

the size of the problem were some of the issues addressed in the design stage. 

Furthermore, it was analyzed the role of the mechanism to generate neighboring solutions 

and the size of the perturbation.  The mechanism must assure that all feasible changes in 

the solution matrix are possible and the perturbation must be large enough to help 

preventing the algorithm to get trapped in local optima.   

A tool was developed in Matlab® to facilitate obtaining an initial line balance with 

heuristic rules found in the literature review.  It was demonstrated through 

experimentation that the initial solution from the different rules had a significant effect on 
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the algorithm performance.  The maximum duration rule generated more accurate results.  

The main contribution of this thesis work is the development of an algorithm that solves 

the cost oriented GLBP, achieving satisfactory solutions in reduced computational time.  

The algorithm designed performs better than others non iterative widely known 

procedures. In 88% of the cases ANAMAR06 outperformed Amen’s modified heuristic 

and in 97% of the times outperformed Gaither’s heuristic.  In 75% of the cases the 

percentage difference from the optimum was smaller than 2.46% for the unbounded 

ANAMAR06 on the number of parallel workstations. 

6.3 Future Work 

This research addresses the balancing problem for a serial line where mix product is 

manufactured. It is assumed that the models manufactured in the line do not exhibit 

significant differences in processing times or precedence restrictions.  Therefore they are 

grouped into a product family.  The composite task sequence and weighted average time 

are employed to integrate the individual precedence constraints and the processing times.  

However, in this thesis is not presented a study of the adequacy of this methodology. It is 

proposed to perform a further research to analyze the limit conditions to use the 

composite task sequence for an efficient mix-product line balance. This analysis may 

conclude in the definition of acceptable time differences, acceptable precedence 

differences or basic rules for the appropriate use of CTS and weighted average times. 

When stations may work at two segments of the line, the line becomes a U-shaped 

assembly line.  In a U-shape line the precedence constraints are not as restrictive as in a 



 

112

serial line.  Therefore, the U-shape exhibits higher flexibility.  It is proposed to offer an 

approach to solve the U-shape line balancing problem for a production scenario 

characterized by stochastic processing times, mix product and parallel workstations.   

Another possible extension of the research work presented in this document is the 

utilization of SA to solve the balancing problem for a multi product line.  In a multi 

product line the set up times are not negligible and the batch size performs an important 

role into the optimization model.  Therefore, the problem is extended from the optimal 

assignment of the resources to the optimal use of them.  This model entails allocating 

tasks into workstations, defining the batch size and the process sequence of the models. 
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APPENDIXES 

Appendix A: Simulated Annealing Main Algorithm 

This appendix contains the code of the main routine used to solve the line balancing 

problems.  The code has been constructed in Matlab® 7.0.  The algorithm invokes other 

routines that perform specific process. 

SA ALGORITHM FOR LINE BALANCING WITH PARALLEL WORKSTATIONS%  
 
%---------------------------------------------------------------------- 
  
%RUN SOLINICIALMIXT SUBROUTINE TO FIND AN INITIAL SOLUTION 
solinitialmixt; 
 
% SOLUTION STORED IN VARIABLES “stations” and “parallels” 
%---------------------------------------------------------------------- 
 
% COMPUTE OBJECTIVE FUNCTION FOR INITIAL SOLUTION% 
  
loads=zeros(size(parallels,1),1); 
costA=zeros(size(parallels,1),1); 
for i=1:size(stations,2) 
    for j=1:n 
        if stations(j,i)>0; 
            costA(i)=costA(i)+costequipment(j,1);%*60; 
            loads(i)=loads(i)+TI2(stations(j,i)); 
        end 
    end 
end 
 
%---------------------------------------------------------------------- 
latenessmixt; %RUNS LATENESS SUBROUTINE TO FIND LATENESS COST 
 
% LATENESS PROBABILITY STORED IN VARIABLE “probability” 
%---------------------------------------------------------------------- 
 
coststot=0; 
for i=1:size(stations,2) 
 coststot=coststot+parallels(i)*(costL+costA(i)+costlab)+    
 costlateness*probatility 
end 
%---------------------------------------------------------------------- 
 
% PERFORMS ROUTINE TO FIND INITIAL TEMPERATURE  
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initemp 
 
%INITIAL TEMPERATURE STORED IN VARIABLE “Temperaturei” 
%---------------------------------------------------------------------- 
Temperature=Temperaturei; 
 
%---------------------------------------------------------------------- 
% INITIALIZE SIMULATED ANNEALING STATISTICS% 
 
Eb=coststot; 
Ec=coststot; 
Sb=stations; 
stationst=stations; 
loadt=loads; 
parallelst=parallels; 
tri=1;%trials counter% 
trial=1; 
failedchain=0; 
failed=0; 
 
%---------------------------------------------------------------------- 
 
density=(size(find(triu(PRE2,1)==1),1))/(n*(n-1)*0.5); 
 
% TOTAL MARKOV CHAINS% 
numbertri=ceil(3*n*max(TI2)/(density*cycletime));  
 
while tri<=numbertri 
    % MAXIMUM TEMPERATURE CHANGES% 
      t=1; 
% MARKOV CHAINS LENGTH 
   length=ceil(1.819*sqrt(Temperature)*n*max(TI2)/(density*cycletime)); 
 
    while t<=length && failed<(0.5*length); 
        failed=0; 

%MAXIMUM NUMBER OF ITERATIONS FOR EACH TEMPERATURE% 
        shakes=ceil(rand*4.607); 
        totshakes=0; 
 
        while totshakes<shakes; 
            mutation=ceil(rand*2); 
            c=1; 
 
            while c==1; 
                random0=ceil(rand*size(stationst,2)); 
                %STATION TO MUTATE% 
                random1=ceil(rand*size(stationst,1)); 
                 %TASK TO TRANSFER 
                if stationst(random1,random0)>0; 
                    break; 
                end 
            end 
 
%---------------------------------------------------------------------- 
       
 %FIND NEIGHBORING SOLUTION VIA TRADE OR TRANSFERING 
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            if mutation==2; 
 
 %PERFORMS ROUTINE TO FIND A NEIGHBORING SOLUTION USING TRADE 
            trade; 
  
            else; 
  
 %PERFORMS ROUTINE TO FIND A NEIGHBORING SOLUTION USING TRANSFER 
      transfer; 
 
 % NEIGHBOURING SOLUTION STORED IN VARIABLES “stationst” AND  
  “parallelst” 
 
            end 
            totshakes=totshakes+1; 
        end 
%---------------------------------------------------------------------- 
 
      %RUNS SUBROUTINE TO CALCULATE COSTS 
        fcostosmixt 
 
 % NEW COST FUNCTION VALUE STORED IN VARIABLE “costtest” 
%---------------------------------------------------------------------- 
 
        %SIMULATED ANNEALING UPDATE 
       Et=costtest; 
        %UPDATE SA STATISTICS 
        if Et<Eb; 
            Eb=Et; 
            Sb=stationst; 
            Ec=Et; 
            Sc=stationst; 
            parallelsb=parallelst; 
            loadb=loadt; 
            failed=0; 
            failedchain=; 
        else; 
            failed=failed+1; 
        end 
        if Et<=Ec; 
            Ec=Et; 
            Sc=stationst; 
            loadc=loadt; 
            parallelsc=parallelst; 
 
        else Et>Ec; 
 
%---------------------------------------------------------------------- 
            %METROPOLIS CRITERION EVALUATION% 
            f=exp(-(Et-Ec)/Temperature); 
 
            if rand<f; 
            %STORE STATISTICS    
                Ec=Et; 
                Sc=stationst;   
                loadc=loadt; 
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                parallelsc=parallelst; 
            end 
%---------------------------------------------------------------------- 
        end 
        stationst=Sc; 
        t=t+1; 
        trial=trial+1; 
    end 
    Temperature=Temperature*0.95; 
    tri=tri+1; 
end 
 
end 
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Appendix  B: Experimental Data Set 

This appendix contains the data set used to evaluate the results of the algorithm.  The 

processing times and precedence constraints are taken from Scholl and Klein web site 

http://www.wiwi.uni-jena.de.  Equipment, labor and space costs are taken from Puerto 

Rican case studies. 

Mansoor Case Study 

Precedence relations 
a b 
1 4 
2 4 
2 5 
3 11 
4 6 
5 7 
6 8 
7 9 
8 10 
9 10 

10 11 

 

Space $/sec Station $/sec L Cost $/ sec Labor Cost $/sec 
0.0010542 0.0000081 0.0010623 0.0058650 

 

 

 

 

Task Process 
time (sec) 

1 4 
2 38 
3 45 
4 12 
5 10 
6 8 
7 12 
8 10 
9 2 

10 10 
11 34 

Task Equipment 
Cost $/sec 

1 0.0000000 
2 0.0001139 
3 0.0000000 
4 0.0000000 
5 0.0000813 
6 0.0001437 
7 0.0000054 
8 0.0000000 
9 0.0000000 

10 0.0001355 
11 0.0002169 
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Mitchell Case Study 

Precedence relations 

a b 
1 2 
1 3 
2 21 
3 4 
4 5 
4 21 
5 6 
5 7 
6 8 
7 8 
7 14 
8 9 
9 10 
9 11 
9 12 
9 13 

10 15 
11 15 
12 15 
13 17 
13 18 
14 19 
15 16 
15 18 
16 17 
17 20 
18 19 

 

Task Process 
time (sec) 

1 4 
2 3 
3 9 
4 5 
5 9 
6 4 
7 8 
8 7 
9 5 

10 1 
11 3 
12 1 
13 5 
14 3 
15 5 
16 3 
17 13 
18 5 
19 2 
20 3 
21 7 
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Task Equipment 

Cost/sec 
Task Equipment 

Cost/sec 
1 0.0002711 12 0.0000813 
2 0.0000000 13 0.0000000 
3 0.0000000 14 0.0000054 
4 0.0000000 15 0.0000136 
5 0.0000949 16 0.0000244 
6 0.0000271 17 0.0001220 
7 0.0001355 18 0.0000217 
8 0.0000271 19 0.0000000 
9 0.0000000 20 0.0000000 

10 0.0000000 21 0.0000271 
11 0.0001355   

 

 Space $/sec Station $/sec L Cost $/ sec Labor Cost $/sec 
0.0010542 0.0000081 0.0010623 0.0058650 
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Buxey Case Study 

Precedence relations 
a b 

1 3 
1 25 
2 6 
2 26 
3 4 
4 5 
5 8 
5 13 
6 8 
7 9 
7 12 
7 25 
8 11 
8 16 
9 10 

10 14 
10 15 
11 17 
12 15 
13 17 
14 16 
15 19 
16 18 
17 20 
18 22 
19 21 
20 23 
21 22 
22 23 
23 24 
23 28 
24 29 
25 29 
26 27 
27 29 
28 29 

 

 

Task Process 
time (sec) 

1 7 
2 19 
3 15 
4 5 
5 12 
6 10 
7 8 
8 16 
9 2 

10 6 
11 21 
12 10 
13 9 
14 4 
15 14 
16 7 
17 14 
18 17 
19 10 
20 16 
21 1 
22 9 
23 25 
24 14 
25 14 
26 2 
27 10 
28 7 
29 20 
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Space $/sec Station $/sec L Cost $/sec Labor Cost $/sec 
0.0024138 0.0000186 0.00510000 0.0024324 

 

 

 

 

 

 

 

 

 

 

Task Equipment 
Cost $/sec 

1 0.0001241 
2 0.0002607 
3 0.0000000 
4 0.0000000 
5 0.0001862 
6 0.0003290 
7 0.0000124 
8 0.0000000 
9 0.0000000 

10 0.0003103 
11 0.0004966 
12 0.0006207 
13 0.0000000 
14 0.0000000 
15 0.0000000 
16 0.0018621 
17 0.0006207 
18 0.0018621 
19 0.0006207 
20 0.0000000 
21 0.0000000 
22 0.0003103 
23 0.0001862 
24 0.0000000 
25 0.0000124 
26 0.0000310 
27 0.0003103 
28 0.0002793 
29 0.0001862 
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Kildbridge Case Study 

Precedence relations 

a b a b 

1 3 17 27 
1 7 18 19 
2 4 19 20 
2 8 19 33 
3 5 20 21 
4 6 21 22 
5 9 22 28 
6 10 23 33 
7 9 24 33 
7 14 25 26 
8 10 26 38 
8 14 27 28 
9 41 27 33 

10 41 28 38 
11 13 29 41 
12 13 30 41 
12 37 31 41 
13 14 32 41 
13 15 33 34 
14 17 33 35 
14 25 33 36 
14 29 34 38 
14 30 35 40 
14 31 36 38 
14 32 37 43 
15 16 38 40 
15 18 39 41 
15 23 40 41 
15 24 41 42 
16 19 42 44 
17 26 42 45 

    
    
    
    
    
    
    
    
    
    

Task Process time 
(sec) 

1 1 
2 9 
3 10 
4 10 
5 17 
6 17 
7 13 
8 13 
9 20 

10 20 
11 10 
12 11 
13 6 
14 22 
15 11 
16 19 
17 12 
18 3 
19 7 
20 4 
21 55 
22 14 
23 27 
24 29 
25 26 
26 6 
27 5 
28 24 
29 4 
30 5 
31 7 
32 4 
33 15 
34 3 
35 7 
36 9 
37 4 
38 7 
39 5 
40 4 
41 21 
42 12 
43 6 
44 5 
45 5 
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Task Equipment 
Cost $/sec 

 1 0.0000000 
2 0.0000000 
3 0.0000419 
4 0.0000000 
5 0.0000000 
6 0.0000000 
7 0.0000734 
8 0.0000000 
9 0.0000000 

10 0.0000000 
11 0.0001048 
12 0.0000000 
13 0.0000000 
14 0.0000881 
15 0.0000105 
16 0.0000315 
17 0.0000000 
18 0.0000189 
19 0.0000000 
20 0.0000419 
21 0.0000000 
22 0.0000000 
23 0.0000000 
24 0.0000210 
25 0.0000000 
26 0.0000000 
27 0.0000000 
28 0.0000000 
29 0.0001048 
30 0.0000000 
31 0.0000629 
32 0.0000000 
33 0.0000000 
34 0.0000210 
35 0.0000000 
36 0.0000000 
37 0.0000315 
38 0.0000000 
39 0.0000419 
40 0.0000000 
41 0.0000189 
42 0.0000000 
43 0.0000000 
44 0.0000063 
45 0.0000000 

Space $/sec Station $/sec L Cost $/sec Labor Cost $/sec 
0.00093196 0.00000629 0.00093826 0.00347625 
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Hahn Case Study 

Task Process 
time (sec) 

Task Process 
time (sec) 

1 971 28 69 
2 142 29 99 
3 142 30 70 
4 142 31 70 
5 103 32 158 
6 96 33 191 
7 99 34 70 
8 1207 35 53 
9 160 36 50 

10 180 37 125 
11 82 38 353 
12 60 39 70 
13 112 40 128 
14 420 41 65 
15 1556 42 1775 
16 236 43 91 
17 259 44 91 
18 125 45 113 
19 601 46 487 
20 80 47 138 
21 80 48 80 
22 70 49 80 
23 89 50 65 
24 89 51 40 
25 105 52 742 
26 330 53 1085 
27 132   

  

 

 

 

 

Precedence relationships 
a b a b 

1 2 28 29 
1 3 28 30 
1 4 28 31 
1 5 28 32 
1 6 28 33 
1 7 28 34 
2 36 29 35 
3 36 30 35 
4 9 31 35 
5 9 32 35 
6 9 33 35 
7 9 34 35 
8 9 35 36 
9 10 36 37 

10 11 37 38 
11 12 37 39 
12 13 37 40 
12 14 38 41 
12 15 39 41 
13 16 40 41 
13 17 41 42 
13 18 42 43 
14 22 42 44 
15 16 42 45 
15 17 42 46 
16 29 42 47 
16 30 43 48 
16 31 44 49 
17 19 45 51 
18 42 45 52 
19 20 46 50 
19 21 47 51 
19 22 47 52 
20 23 48 51 
21 24 48 52 
22 25 49 51 
23 36 49 52 
24 36 50 51 
25 26 50 52 
26 27 51 53 
27 28 52 53 
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Task Equipment 
Cost $/sec 

Task Equipment 
Cost $/sec 

1 0.0000000 28 0.0002711 
2 0.0000000 29 0.0000000 
3 0.0000000 30 0.0000000 
4 0.0000000 31 0.0001355 
5 0.0000000 32 0.0000813 
6 0.0000000 33 0.0000000 
7 0.0000407 34 0.0000054 
8 0.0002169 35 0.0000136 
9 0.0000244 36 0.0001355 

10 0.0000000 37 0.0001220 
11 0.0000244 38 0.0000813 
12 0.0000000 39 0.0000000 
13 0.0001627 40 0.0000000 
14 0.0000000 41 0.0000271 
15 0.0000000 42 0.0000244 
16 0.0000000 43 0.0000000 
17 0.0000000 44 0.0000244 
18 0.0000000 45 0.0000000 
19 0.0000000 46 0.0001627 
20 0.0000000 47 0.0000000 
21 0.0002711 48 0.0000000 
22 0.0000000 49 0.0000000 
23 0.0000000 50 0.0000000 
24 0.0000000 51 0.0000000 
25 0.0008133 52 0.0000000 
26 0.0000271 53 0.0000000 
27 0.0001355   

 

 
Space $/sec Station $/sec L Cost $/sec Labor Cost $/sec 
0.00105422 0.00000813 0.00106235 0.00437500 
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Tongue Case Study 

Task Process 
time (sec) 

Task Process 
time (sec) 

1 17 36 40 
2 66 37 2 
3 54 38 1 
4 52 39 3 
5 6 40 13 
6 88 41 16 
7 21 42 25 
8 128 43 21 
9 68 44 43 

10 70 45 30 
11 85 46 83 
12 21 47 89 
13 134 48 56 
14 135 49 59 
15 94 50 43 
16 90 51 11 
17 50 52 26 
18 143 53 44 
19 19 54 121 
20 54 55 38 
21 50 56 68 
22 40 57 22 
23 73 58 7 
24 12 59 16 
25 152 60 32 
26 42 61 25 
27 45 62 27 
28 74 63 156 
29 26 64 28 
30 11 65 15 
31 31 66 26 
32 50 67 18 
33 102 68 72 
34 46 69 23 
35 35 70 27 

 

 

Precedence relationships 
a b a b 

1 2 28 35 
1 41 29 35 
1 69 30 31 
1 70 31 32 
2 3 32 35 
3 4 33 34 
3 68 34 35 
4 6 35 36 
4 7 35 44 
5 6 35 48 
5 24 35 51 
5 30 35 53 
6 8 35 56 
7 8 35 60 
8 12 35 61 
9 10 35 62 

10 11 36 37 
11 12 37 38 
12 13 38 39 
12 14 39 40 
13 23 40 42 
14 23 41 42 
15 16 42 43 
16 17 43 50 
16 18 44 45 
17 19 45 46 
18 19 46 47 
19 20 47 50 
19 22 48 49 
19 57 49 50 
20 21 51 52 
21 23 52 54 
22 23 53 54 
23 25 54 55 
23 31 57 58 
23 33 58 59 
24 25 59 60 
25 26 61 65 
25 27 62 63 
25 28 63 64 
25 29 64 65 
26 35 64 66 
27 35 64 67 
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Task Equipment 
Cost $/sec 

Task Equipment 
Cost $/sec 

1 0.00000000 36 0.00013554 
2 0.00000000 37 0.00008133 
3 0.00000000 38 0.00000000 
4 0.00004066 39 0.00000000 
5 0.00000000 40 0.00000000 
6 0.00000000 41 0.00000000 
7 0.00000000 42 0.00002711 
8 0.00000000 43 0.00000000 
9 0.00000000 44 0.00000000 

10 0.00005422 45 0.00000000 
11 0.00000000 46 0.00000000 
12 0.00000000 47 0.00013554 
13 0.00000000 48 0.00000000 
14 0.00000000 49 0.00008133 
15 0.00000000 50 0.00000000 
16 0.00000000 51 0.00000000 
17 0.00000000 52 0.00002711 
18 0.00000000 53 0.00000000 
19 0.00000000 54 0.00000000 
20 0.00000000 55 0.00004066 
21 0.00000542 56 0.00000000 
22 0.00001355 57 0.00005422 
23 0.00000000 58 0.00000000 
24 0.00000000 59 0.00002440 
25 0.00000000 60 0.00000000 
26 0.00027108 61 0.00000000 
27 0.00000000 62 0.00000813 
28 0.00000000 63 0.00000000 
29 0.00000000 64 0.00001355 
30 0.00009488 65 0.00000542 
31 0.00002711 66 0.00000000 
32 0.00013554 67 0.00000000 
33 0.00002711 68 0.00002440 
34 0.00000000 69 0.00009488 
35 0.00000000 70 0.00005422 

 
Space $/sec Station $/sec L Cost $/sec Labor Cost $/sec 
0.00105422 0.00000813 0.00106235 0.00729167 
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Appendix  C: User Manual 

USER MANUAL 

The SA for line balancing interface was developed in Matlab® 7.0.  This graphical user 

interface provides a windows environment with four option menus. 

1. Load 

 Load precedence matrix 

 Load processing times 

 Load models participation 

2. Calculate 

 Calculate general variance 

 Calculate composite task sequence 

3. Analysis 

4. Run SA 

Getting Started 

To perform a line balance is required to perform some sequential steps. The option 

menus will activate as the user complete the stages of the process.   

The first step is to open Matlab ® and type MIXTFORM.  The user interface will 

open in the Matlab desktop. 

Upload data: 

 Choose Load ► Load precedence matrix 

 Select and open the excel file that contains the precedence matrixes for the 

models.  See Figure  
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Figure 1 

The precedence relationships are represented using a square matrix with zeros and 

ones. If, in the cell 3,5 ( row, column) exist a 1  it means that is require to complete 

task 3 before  performing task 5.  The precedence file must have as active worksheets 

as number of models to balance.  Each active worksheet must contain the precedence 

matrix of the model.  See Figure 2. 

 

 

 

 

 

 

 

 

Figure 2 

Models to balance 
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After uploading the precedence matrix the user can upload the processing times 

 Choose Load ► Load processing times 

 Select and open the excel file that contains the processing times 

 Choose Load ► Load models participation 

As the precedence file, this file the number of active worksheets must be equal to the 

number of models.  Each worksheet contains the processing times and the parameters of 

the probability distribution in case they distribute according to the normal, uniform or 

triangular distribution.  For each case is defined a specific format: 

o Normal times → Column 1:  Mean times, Column 2:  Variation coefficient. 

o Uniform times → Column 1:  parameter “a”, Column 2:  parameter “b”. 

o Triangular times:  Column 1: lower endpoint, Column 2:  mode,  Column 3:  upper 

endpoint. 

Calculate CTS and weighted average times 

 Choose Calculate ► Calculate weighted times and variance 

 Select times distribution.  See Figure . 

 Choose Calculate ►Calculate Composite Sequence 

 

Figure 3 

After calculating the composite sequence the system displays the resulting composite 
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task sequence and weighted average processing times as shown in Figure . 

 

Figure 4 

Input costs  

 Choose Analysis ►Input Costs 

 Click “Upload Equipment and Tooling Cost” 

 Select and open the excel file that contains the equipment costs 

 Input Station, Labor and Lateness cost 

 Click “Save Costs” 

Input problem parameters 

 Choose Analysis ►Input Parameters 

 Input Cycle time, Load quantity, Minimum utilization 

 Click “Save Parameters” 

Once all input data has been uploaded the user can select the option “Run SA” to solve 

the line balancing problem.  The interface automatically displays the results for the 

balance and the discriminated cost as shown in Figure.   
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Figure 5 

Additionally, it is available the plot for Cost function vs. Iteration.  This plot is 

accessed by clicking “See Graphs” in the Results panel.   See Figure . 

 

Figure 6 
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