

ii

Development of a Methodology to Solve the Line Balancing Problem with Parallel

Workstations.

By

Ana María González-Garcés

A thesis submitted in partial fulfillment of the requirements for the degree of
MASTER IN SCIENCE

In
Industrial Engineering

UNIVERSITY OF PUERTO RICO
MAYAGÜEZ CAMPUS

2006

Approved by

___________________________________ ____________

María Irizarry, Ph.D. Date

President, Graduate Committee

___________________________________ ____________

Pedro Resto, Ph.D. Date

Member, Graduate Committee

___________________________________ ____________

Sonia Bartolomei Suarez, Ph.D. Date

Member, Graduate Committee

___________________________________ ____________
María Medina, ME. Date

Representative of Graduate Studies

___________________________________ ____________

Agustín Rullán, Ph.D. Date

Chairperson of the Department

ii

ABSTRACT

Since 1950 researchers have proposed methodologies to find an optimal allocation of

tasks to workstations in an assembly line. However, most of the developed models solve

the simple line balancing problem. The main outcomes of this thesis work were: (1) the

development of a methodology for the design of a cost-oriented Simulated Annealing-

based heuristic for line balancing with parallel stations, stochastic times and mixed

products, (2) the design of a Simulated Annealing-based heuristic named ANAMAR06,

and (3) the design of a user friendly Matlab-based tool for execution of ANAMAR06.

Results from ANAMAR06, with deterministic processing times, were compared to those

obtained from an optimization model. The average percentage between ANAMAR06

and the mixed integer linear model was 1.63%. The same comparison was done between

results from a modified Amen’s and two Gaithe’s heuristic model. The proposed

algorithm outperformed all three.

iii

RESUMEN

Desde 1950 los investigadores han propuesto metodologías para realizar una óptima

asignación de las tareas a los centros de trabajo de una línea de ensamblaje. No obstante,

gran parte de los modelos desarrollados ofrecen solución al problema simple de balanceo

de línea.

Las contribuciones mas relevantes presentadas en esta tesis son: (1) el desarrollo de una

metodología para el diseño de un heuristico basado en la teoría de Recocido Simulado

que permita solucionar el problema de balanceo de línea con estaciones en paralelo,

tiempos de procesamiento estocásticos y producto mixto, (2) el diseño de un heurístico

llamado ANAMAR06 el cual está basado en Recocido Simulado y (3) el diseño de una

herramienta amigable al usuario en Matlab® para la ejecución de ANAMAR06.

Los resultados de ANAMAR06 con tiempos de procesamientos determinísticos fueron

comparados con los obtenidos por un modelo de optimización y se obtuvo una diferencia

promedio de 1.63% entre heurístico propuesto y programación entera mixta. De manera

adicional, se comparó ANAMAR06 con una versión modificada del heurístico de Amen

y dos variantes del modelo de Gaither. ANAMAR06 superó los tres heurísticos

analizados.

iv

© Ana María González-Garcés

v

ACKNOWLEDGEMENTS

I would like to thank my parents and my brother for their unconditional love and support.

I am immensely thankful with my family, my friends and all the people who believe in

me during these last years.

There are no words to express the gratitude to those who support me and encourage me

during my studies. I am thankful to those who work with me, those who listened to me

and those who laugh with me and laugh at me. They know who they are. They do not

need to be mentioned.

I am in debt with Dr. María Irizarry for being a wonderful advisor. Without her

continuous guide and support, and her eternal patience it would have been impossible to

achieve this goal.

I want to thank my graduate committee, Dr. Sonia Bartolomei and Dr. Pedro Resto for

teaching me and giving me direction during my graduate studies. I would like to thank

all my professors, especially Dr. David González for sharing his invaluable expertise and

knowledge. I also want to thank Dr. Mario Padrón and Joel Rivera for their technical

support.

I am indebted with Edwin Garavito for his technical support in the development of the

user interface.

vi

TABLE OF CONTENTS

1. INTRODUCTION... 11

2. LITERATURE REVIEW .. 14

2.1 Line Balancing Problem ... 14
2.1.1 Parallel workstations ... 17
2.1.2 Mixed-Model Assembly Lines.. 22
2.1.3 Stochastic Task Times... 25
2.1.4 Cost Oriented Models.. 28

2.2 Simulated Annealing... 30
2.2.1 Design of the SA algorithm... 32
2.2.2 Simulated Annealing Structure ... 36
2.2.3 Simulated Annealing Applied to Line Balancing.. 39

3. PROBLEM DEFINITION ... 42
3.1 Development of the Cost Function ... 43

3.2 Line Balancing Constraints... 45
3.2.1 Capacity Constraints: .. 46
3.2.2 Precedence Constraints: .. 48
3.2.3 Technical Constraints .. 49

3.3 Stochastic Processing Times for the Mix-Product Line 49

3.4 Mathematical Formulation of the Problem... 52

4. METHODOLOGY FOR THE DESIGN OF A SIMULATED ANNEALING-
BASED HEURISTIC.. 59

4.1 Solution Representation and Generation .. 59
4.1.1 Solution Representation .. 60
4.1.2 Solution Generation... 61

4.2 Selection of the Annealing Schedule .. 63
4.2.1 Initial Temperature .. 64
4.2.2 Cooling Rule ... 68
4.2.3 Chain Length ... 71
4.2.4 Final Temperature ... 74
4.2.5 System Perturbation .. 75

4.3 Optimal SA parameter setting through DOE.. 77

4.4 Evaluation and Selection of an Initial Solution .. 82
4.4.1 Heuristic Rules and Procedures... 84
4.4.2 Comparison of Results .. 87

4.5 Final Design Called ANAMAR06.. 88

5. RESULTS .. 91

vii

5.1 Performance Evaluation of ANAMAR06... 92
5.1.1 Heuristic Procedures.. 92
5.1.2 Optimization Model .. 96

5.2 Analysis of Heuristic Robustness Performance.. 105

6. SUMMARY AND CONCLUSIONS ... 108
6.1 Summary ... 108

6.2 Conclusions... 109

6.3 Future Work .. 111

APPENDIXES... 117
Appendix A: Simulated Annealing Main Algorithm.. 117

Appendix B: Experimental Data Set.. 121

Appendix C: User Manual ... 132

viii

LIST OF TABLES

Table 1 Precedence Matrix .. 49

Table 2 Task Assignment.. 60

Table 3 Parallel Workstations.. 60

Table 4 ANOVA for Random Walk Lengths .. 67

Table 5 ANOVA Results Case vs Cooling Rule ... 71

Table 6 Factors and Levels of the CCD... 78

Table 7 ANOVA for Cost Difference.. 79

Table 8 ANOVA for log Computational Time .. 79

Table 9 Results Response Optimizer ... 81

Table 10 ANOVA Results for Initial Solution .. 87

Table 11 Experimental Data Set .. 92

Table 12 Optimization Results... 99

Table 13 Heuristics Performance... 102

Table 14 Statistics Summary ... 103

Table 15 Performance of ANAMAR06 with Upper Bound on Parallel Workstations.. 104

Table 16 Statistical Summary of ANAMAR06 with Upper Bound on Parallel
Workstations ... 105

Table 17 Factorial Experiment Factors and Levels ... 106

Table 18 ANOVA for Factorial Experiment ... 107

ix

LIST OF FIGURES

Figure 1 CTS Example... 24

Figure 2 SA Structure .. 36

Figure 3 Simulated Annealing Structure.. 38

Figure 4 Line Balancing Problem Representation ... 42

Figure 5 Precedence Diagram.. 48

Figure 6 Stochastic Processing Times ... 50

Figure 7 Lateness Probability vs CV ... 52

Figure 8 Methodology for the Design of a Simulated Annealing-Based Heuristic......... 59

Figure 9 Trade Between Adjacent Workstations ... 62

Figure 10 Change in Workstation Size After Trading .. 62

Figure 11 Station 7 Before Transfer .. 63

Figure 12 Forward Transfer Example.. 63

Figure 13 Different Landscapes with the Same ()f +Δ ... 66

Figure 14 Initial Temperature Search .. 66

Figure 15 Boxplot Temperature vs Walk Length .. 67

Figure 16 Temperature Decrement Rules Plot.. 70

Figure 17 Cost Function for a Perturbation Magnitude of 1... 76

Figure 18 Cost Function for a Perturbation Magnitude of 5... 77

Figure 19 Response Optimizer for Percentage Cost Difference and CPU Time............. 81

Figure 20 Heuristic to Assign Tasks to Workstations ... 86

Figure 21 Initial Solution Boxplot ... 88

Figure 22 Flowchart Final SA algorithm... 90

Figure 23 Best Change in Idle Cost ... 94

x

Figure 24 Example “Best Change in Idle Cost” .. 96

Figure 25 ANAMAR06 Computational Time ... 100

Figure 26 ANAMAR06 Results... 101

Figure 27 Typical Annealing Schedule.. 101

Figure 28 Heuristics Performance ... 102

Figure 29 Interaction Plot .. 107

11

1. INTRODUCTION

An assembly line consists of a sequence of stations performing repeatedly a specified

group of tasks over product units. Each product unit spends approximately the same

amount of time at each workstation in the line, based on a cycle time used to determine

the allocation of activities along the line.

The name of assembly line has been applied to flow oriented production systems which

are typically used in manufacturing high demand products. Assembly lines must

guarantee continuous and economical production. Therefore, its design, installation and

operation are considered by managers key pieces for the effectiveness of their business.

Assembly lines can be clustered according to the requirements and characteristics of the

products. The first attribute to classify an assembly line is the number of products

processed. If only one product is assembled and all models are identical, the line is called

“single-model line”. On the other hand, if several models are manufactured, the line can

be classified as “mixed-model” or “multi-model”. In mixed-model lines, set ups are

usually negligible and the balancing problem depends on the processing times and the

tasks required for the different products. In multi-model lines, units must be processed in

batches due to significant set up times. Also, product sequencing becomes a major issue.

Assembly lines are also classified according to the layout. Usually, assembly lines are

arranged as “serial lines” where workstations are placed one followed by the other in a

straight line. In a “U-shaped assembly line” the end and the beginning of the line are at

12

close proximity. Therefore, an operator can operate at workstations located at the

beginning of the line as well as workstations at the end of the line. This helps overcome

the line balancing inflexibility problem of serial lines.

Typically, in both, serial and U-shape lines there is only one operator per workstation

which limits the minimum cycle time to the maximum of the processing times for the

tasks. In case being needed, parallel workstations are used to deal with long duration

operations. For instances where parallel stations are allowed, the maximum workload is

limited by a multiple of the cycle time. This multiple corresponds to the number of

parallels in each workstation. Because of the flexibility given by this condition a better

balancing can be achieved.

For any assembly line an important decision is the adequate arrangement of the line. The

decision problem of optimally assigning tasks to workstations in order to guarantee

continuous product flow is known as the assembly line balancing problem.

The main objective in line balancing is maximizing efficiency which could be understood

as making the best use of resources such as time, capital and human talent. Many

researchers have focused their efforts in solving the line balancing problem using integer

programming models, heuristics methods and other procedures.

As manufacturing processes evolve demanding more flexible production systems, the line

balancing problem becomes more complex. Characteristics such as cost factors, product

mix, stochastic task times and parallel stations must be integrated to the models in order

to create a representation closer to reality. However, research work that incorporates all

13

these concepts in one single effective methodology has not been found in the literature.

The main purpose of the research described in this document is to offer a solution for the

line balancing problem of typical manufacturing systems via the application of a

comprehensive heuristic procedure.

14

2. LITERATURE REVIEW

The literature review has been divided into two basic parts. First, previous research in

the area of line balancing and second, previous research and applications of Simulated

Annealing heuristic models.

2.1 Line Balancing Problem

Since the assembly line balancing problem (ALB) was first formulated by Helgeson in

1954 many solutions to the assembly line balancing problem have been proposed.

Most of the research widely known in assembly line balancing such as the studies made

by Dar-El (Mansoor) [6] and Talbot, et al. [27] has been oriented to the analysis and

solution of the simple assembly line balancing problem (SALBP). According to Becker

and Scholl [5] classification, the SALBP has the following characteristics and

assumptions:

• Mass-production of one homogeneous product

• Paced line with fixed cycle time

• Deterministic operation times

• No assignment restrictions besides the precedence constraints

• Serial line layout with m one-sided stations

• All stations equally equipped with respect to machines and workers

The traditional SALBP admits three variants in the objective function:

15

− SALBP-1 Problem type 1: The objective is to minimize the number of workstations;

where the objective is to determine the minimum number of workstations given a

cycle time. This cycle time is calculated taking into consideration the requirements

of a production plan or the demand forecasts.

This problem can be stated as follows: for a given cycle time c, each task has to be

assigned to one station so that the number m of stations is minimized and no

precedence constraint is violated.

 A simple theoretical lower bound on the minimal number of stations is given by the

equation:

1==
∑

n

i
i

t
LB

c Equation 2.1

where;

LB= lower bound for number of stations, and

ti= processing times for task i.

The LB is the smallest integer that solves the SALBP-1 problem. Therefore, all

solutions for this model must have a number of stations at least equal to the lower

bound calculated.

− SALBP-2 Problem type 2: The objective is to minimize the cycle time. This problem

is generated when the number of workstations or production employees is fixed and

the minimum cycle time has to be calculated. Becker and Scholl [5] defined the

16

cycle time as maximum or average time available for each cycle. Therefore, the

minimal cycle is equivalent to the maximum workload. Being the station time Sk the

sum of operation times of all tasks assigned to station k, the solution to SALBP-2 is

stated as follows:

 kMin c Max S= Equation 2.2

The loads Sk are obtained creating different SALBP-1 scenarios, thus the problem

type 2 is solved by iteratively solving type 1 problems.

− SALBP-E Problem type E: It has the objective of maximizing efficiency: The

efficiency can be calculated as the quotient between the sum of all the task

processing times and the product m c⋅ , where m is the total number of workstations

and c is the line cycle time. This problem is solved by searching in the interval

[]min max,c c or []min max,m m a solution maximizing line efficiency. The efficiency is

calculated using the equation:

 1==
⋅

∑
n

i
i

t
E

m c
 Equation 2.3

For solving SALBP-1, a large number of exact and heuristic procedures are available.

Several of them are evaluated and organized in the literature review made by Ghosh and

Gagnon [9]. Some effective branch and bound procedures are proposed by Hoffmann

[10] and Scholl and Klein [24]. Additionally, a set of different heuristic techniques

classified as single-pass, composite, backtracking and optimal decision rules have been

exhaustively analyzed and compared by Talbot et al. [27] using a computational

experiment.

17

Solution procedures for SALBP-2 and SALBP-E are usually search methods which

iteratively solve several SALBP-1 instances. A modification of SALOME, a bidirectional

branch and bound is proposed by Klein and Scholl [24] to solve the SALBP-2. They

determined a minimal cycle time and assigned tasks to the m workstations with station

times not exceeding the minimal cycle time. This assignment is called feasible for the

respective cycle. The problem is solved by iteratively checking for several trial cycle

times whether or not a feasible assignment of all tasks to m stations exists.

The assumptions of the SALBP are very restrictive and the model obtained might not

represent the industrial reality. An extensive term used to classify problems with

characteristics different to those of the SALBP is the generalized assembly line balancing

problem (GALBP). Parallel workstations, mixed product lines, stochastic processing

times and U-layout assembly lines are examples of characteristics considered in the

GALBP.

2.1.1 Parallel workstations

The traditional SALBP requires the assignment of each task to a single workstation.

Consequently, the production rate is limited by the longest task time. Due to the

indivisibility of tasks, the maximal task time tmax is a lower bound on the cycle time. If

there are one or more tasks with task times greater than the desired cycle time, paralleling

of stations can be used to resolve the conflict.

Essentially, when using a parallel station model two or more replicas of a workstation

performing the same set of tasks are permitted. Therefore, the option of a significant

18

increment in additional fixed cost must be considered. Cost oriented models such as the

model presented by Pinto et al. [19] propose the minimization of labor costs which

consist of fixed costs for duplicating a station, regular wage costs and overtime costs.

Azkin and Zhou [4] formulated a mathematical model and a heuristic procedure to tackle

the GALBP in a fast and accurate way. Askin and Zhou based their heuristic procedure

on a mixed integer programming model which has the following objective function:

1 1 1

min
K K L

k k lk l
k k l

y L y z A
= = =

⎧ ⎫+⎨ ⎬
⎩ ⎭
∑ ∑ ∑ Equation 2.4

where decision variables are:

yk =Number of stations in parallel at stage k,

xijk= Proportion of task j of model i assigned to stage k,

1, if tooling equipment type l is required at stage k
0, otherwiselkz ⎧ ⎫

= ⎨ ⎬
⎩ ⎭

,

L =Fixed cost per period to open a station (include cost of labor and overhead),

and,

Al= Amortized unit cost for equipment/tooling type j.

This mathematical model is a nonlinear integer program difficult to solve using regular

computers. Therefore, the authors proposed a heuristic procedure to solve the problem

without demanding high computational time.

They considered two situations in which parallel stations should be allowed. First, the

case where the processing time for task j is greater than the line cycle time, and second

19

when there is no task which can fit into the current station, but the station is closed with

considerable idle time. The decision to create a parallel workstation is based on the

comparison of incremental tooling cost and the penalty cost of unutilized station time.

The penalty cost of unutilized station time KPΔ is calculated as follows:

 Δ = ⋅ ⋅ a
K k kP L y T Equation 2.5

where;

 L = Fixed cost per period to open a station (include labor and overhead costs),

ky = Number of stations in parallel at station k, and

a
kT = Available time remaining per cycle for each workstation at stage k.

One of the most interesting contributions of Askin and Zhou is the recursive but simple

procedure to generate parallel workstations through the comparison of costs. However,

the major limitation of the technique is the generation of only one solution. There is not

presented a dynamic search for better alternatives. The model is static with no

replications which might lead to balancing away from the optimal point.

McMullen and Frazier [15] developed a Simulated Annealing model considering

stochastic processing time and a simple mixed-model environment where it is allowed to

generate a parallel station as long as its utilization increases. Also, an additional objective

function oriented to the minimization of the smoothness index restricts inflated

duplications.

The smoothness index s is computed as:

20

 2

1

()
=

= −∑
m

k k
k

s w w Equation 2.6

where;

m = total number of stations,

kw = number of workers required in workstation k, and

kw = integer-adjusted workers required in station k.

A computational experiment was conducted to analyze the performance of the model.

The production performance measures of interest were average WIP level, average flow-

time, system throughput, system utilization, on-time completion, average unit labor cost,

and cycle time performance. The model showed excellent results for those cases where

cycle time performance was the primary objective. However, when the main concern is

minimizing the design cost, some of the traditional line balancing techniques provided

better solutions than the proposed algorithm.

Vilarinho and Simaria [30] constructed a two-stage heuristic method with zoning

restrictions and allowed the user to control the process of creating parallel stations by

defining a limit of parallels or upper bound. The main objective for this model was to

minimize the number of workstations given a cycle time and additionally maximize the

balance between workstations.

The objective function proposed by the authors to solve the assembly line problem was

stated as follows:

21

2

2'

'
1 1 1 1 1

1

' 1 1
' 1 ' '(1)

s M S S M
km m km

NK m S
k m k K m k

lm
l

s q sS MMinZ k x q
S S S M S Ms= = = = =

=

⎛ ⎞
⎜ ⎟ ⎛ ⎞
⎜ ⎟= ⋅ + − + −⎜ ⎟− −⎜ ⎟ ⎝ ⎠⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑∑
∑

 Equation 2.7

where decision variables are:

1, if task is assigned to workstation
,

0, otherwise

1, if task can be replicated
,

0, otherwise

idle time of station due to model ,

ik

k

km

i k
x

k
r

s k m

⎧ ⎫
= ⎨ ⎬
⎩ ⎭
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

=

k= number of workstations, k=1,...,S,

m= type of model, m=1,…,M,

N= total number of tasks,

Dm= forecast demand for model m,

qm= proportion of the number of units of model m being assembled,

1
/

M

m m p
p

q D D
=

= ∑ , and

S’= the actual number of workstations required to meet the demand in the

assembly line (S’=K: xNK =1).

The first term in the objective function minimizes the index of the workstation to which

the last task is assigned, thus minimizing the number of workstations. The second term

balances the workload between the workstations and the third term balances the workload

within each workstation.

In the first stage of the algorithm, an initial solution is obtained using a version of the

rank positional weight heuristic and the program begins to look for the solution that

22

minimizes the number of stations in the assembly line. In the second stage the workload

between stations and within the stations are balanced. The heuristic was tested on a set of

twenty problems and the efficiency of the balance was calculated. The proposed

procedure reached the optimal solution in small-sized problems. In large-sized problems

the efficiency was not less than 80%.

One of the most relevant contributions made by the authors is the addition of restrictions

to the model in order to obtain a feasible solution when some tasks cannot be performed

with others in the same workstation. However, a limitation related to the objective

function was identified. In section 2.14 a description of why minimizing the number of

workstations cannot be appropriate because it can lead to non optimal solutions for cost

oriented environments is presented.

2.1.2 Mixed-Model Assembly Lines

In mixed-model production, products which differ from each other with respect to size,

color, material, or equipment are manufactured on the same line. This scenario presents

additional challenges since tasks, processing times and precedence constraints vary from

model to model. Some of the assumptions made to deal with the problem are: (1)

precedence constraints consistent from model to model, and (2) same line balance used

for all models.

Several techniques have been proposed to tackle the mixed-model ALBP such as

McMullen and Frazier [15] and Merengo [17]. The typical technique is based on

calculating a weighted average for each task in the line, considering the contribution of

23

the model in the product-mix. A new precedence diagram is built by merging each

model’s precedence diagram into a single one. Weighted averages, xt , are calculated as

follows:

,

1

1

=

=

⋅
=
∑

∑

M

m i m
m

i M

m
m

t d
t

d
 Equation 2.8

where;

 i= 1,…,N,

N=total number of tasks in the line,

M= total number of models in the line,

m= model index,

,m it = Processing time of task x for model n, and

md = Number of units of model n to be produced during the planning period

Askin and Zhou [4] constructed a composite task sequence (CTS) which has two basic

properties: (1) it contains all required tasks for each model i, and (2) it contains all task

precedence relations for each model i. Therefore, the precedence of each model can be

identified as a subset of this general sequence.

An example of the CTS construction for products A, B y C is shown in Figure1.

24

Figure 1 CTS Example

McMullen and Frazier calculated weighted average processing times and constructed the

CTS to solve the mix-product assembly line problem as a single product assembly line

balancing problem. The objective function for their model integrated three single

objectives:

 1
1

: ()
r

j j
j

Min E w L m Q
=

= +∑ Equation 2.9

 2
2

1

: ()
r

j j
j

Min E w w
=

= +∑ Equation 2.10

 3
1

:
r

j
j

Min E p
=

=∏ Equation 2.11

where;

r = total number of workstations,

kw = number of workers required in workstation k,

kw = integer-adjusted workers required in station k,

mj = number of pieces of equipment required in work center j,

L = labor cost per worker in $/year,

Q = equipment cost per piece in $/year, and

pj = probability of lateness in work center.

25

The first objective function is concerned with minimizing the sum of costs associated

with both labor requirement and equipment requirement. The second objective intends to

minimize the ‘smoothness’, it means that the work must be distributed into workstations

as evenly as possible. Finally, the third objective function minimizes the probability of

lateness across the workstations. This objective function is analyzed in the section 2.1.3.

2.1.3 Stochastic Task Times

Another assumption of SALBP is the deterministic nature of processing times. In highly

manual production lines the variations in processing times from item to item is an

inevitable event. Procedures including random task times have been stated by Arcus [3]

and Suresh and Sahu [26]. Most of the procedures developed for the stochastic version

are modified extensions of the procedures for deterministic models.

The majority of researchers in the revised literature assumes normally distributed task

times and calculates the estimated standard deviations for the tasks by multiplying the

expected task duration by a coefficient of variation (CV) term. Usually, different levels

of CV are tested as in Erel and Sabuncuoglu [7].

A time-oriented objective of stochastic models is the minimization of the probability of

exceeding the cycle time in any station such as in Reeve and Thomas [21]. This function,

denominated the lateness function, can be obtained by multiplying the lateness measure

of all workstations involved in the layout of interest, as done by McMullen and Frazier.

They calculated the function of lateness as follows:

26

1

lateness function
r

j
j

p
=

=∏ Equation 2.12

The probability of lateness jp is estimated by integrating the normal distribution

function and r is the number of workstations.

The stochastic nature of the processing times generates a new risk related to the

probability of incomplete jobs. Additional costs are incurred if the product is not

completed in time equal or smaller than the cycle time. These incompletion costs are

reduced by decreasing the station utilizations. This can be done by increasing the number

of stations or the cycle time.

A cost oriented objective which quantifies the risk of incomplete jobs is presented in

Sarin and Erel [22]. They developed a cost model for the single-model stochastic

assembly line balancing problem with the objective of minimizing the total labor cost and

the expected incompletion cost arising from tasks not completed within the given cycle

time. The objective function for their model was:

 Total labor cost+ Total incompletion costMin Z = Equation 2.13

The problem of minimizing Z was solved by varying the number of stations K and the

allocations of tasks for a given cycle time C. The objective function can be rewritten as

follows:

1 1

* * β
= ∈ =

⎧ ⎫⎡ ⎤= + + −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
∑ ∑ ∑

fSiN
j

i i k i
i k Ai j

Min Z c K L IC IC SB Equation 2.14

where;
c= cycle time,

27

K= number of stations on the line,

L= labor rate,

N = number of tasks,

iβ = probability that task i is not completed within c,

ICi= incompletion cost of task i, for i= 1,…,N,

Ai= set of tasks following task i on the precedence diagram and in the station

which contains i,

fSi= the number of feasible starting events for task i, and

j
iSB = Over-counted incompletion costs.

Some of the most relevant assumptions considered by Sarin and Erel in this model are:

• Task performance times are random variables. They are independent of each

other and the parameters of the distributions are known.

• The tasks assigned to a station are performed in a given order.

• Incomplete tasks are completed off the line at a cost which is not dependent

on the fraction of the task completed on the line.

• No blocking due to incomplete tasks

Sarin and Erel’s research work presents an exhaustive deduction of probability for

incomplete jobs based on normal probability distribution. However, their deductions can

be used only for single product assembly lines. Also, parallel workstations are not

allowed.

28

2.1.4 Cost Oriented Models

Usually, the main objective in the line balancing problem is minimizing the number of

workstations for a given cycle time. This type of problem has been called the Time-

Oriented Assembly Line Balancing. Since there is an understandable relationship

between the number of workstations, the cycle time and the total cost it is evident that the

ALBP could be directly stated as a cost minimization problem.

Amen [1] presents a backtracking procedure as an exact method to obtain a solution to

the cost oriented ALBP. The objective function of the model is to minimize the total

costs per product unit which is computed as the sum of labor and capital cost as follows:

1

M
sw sc
m

m
MinTC ck Mk

=

= +∑ Equation 2.15

where;

c = cycle time,

sw
mk = wage rate of station m,

M = total number of stations, and

sck = cost of capital per station.

An effective station wage rate is defined and the total labor cost per product is calculated

as the sum of the wage rates of each station multiplied by the cycle time. It is assumed

that the cost of capital depends on the total line length and that all stations have the same

dimensions. Amen also proves that the “maximally loaded station rule” used in time-

oriented models is not adequate when the objective is to minimize the total cost per unit.

This rule consists on assigning tasks to the stations as long as the cycle time is not

exceeded.

29

In 2001, Amen [2] developed station-oriented priority rules and compared them to

existing ones using a large set of randomly generated problem instances. Amen classified

different heuristics as methods with random choice task assignment-Z, methods with one

problem-oriented priority rule-P, methods with several problem-oriented priority rules-H,

methods with exact solution of sliding problem windows-F and an exact method-E. He

proposes a new P rule called “best change of idle cost” and the “exact solution of sliding

problem windows” which according to a computer experiment performs better in the

cost-oriented problem.

Amen’s study is the basis for Scholl and Becker’s [23] research work. They started with

the exact procedure considering wages and capital costs proposed by Amen, and

corrected one of the dominance rules used in the branch and bound model. The objective

function proposed by Scholl and Becker minimizes the total cost per product unit which

is given by the sum of the station wage rates wsk (per time unit) multiplied by the fixed

cycle time c. This objective function is given by the following equation:

1

m

k
m

Min TC c ws
=

= ⋅∑ Equation 2.16

where;

 m= number of workstations, and

 m =upper bound on m.

Although Amen’s work is the most relevant study made in the cost oriented area, relevant

complexities as stochastic task times, multiple product and parallel workstations were not

considered in his models.

30

2.2 Simulated Annealing

The existence of a great amount and variety of difficult problems that need to be solved

efficiently encouraged the development of high performance procedures to find good

solutions to these large problems. A heuristic method is a procedure to solve an NP hard1

problem through an intuitive approach. Although these methods do not provide the

optimal solution to the problem they offer a good approach. Sometimes heuristics

algorithms find the optimal solution in a brief period of time.

Simulated Annealing (SA) is a family of heuristic optimization methods, derived by a

natural analogy with the statistical physics of random systems described by Kirkpatrick

[13] in 1983. Kirkpatrick, applied simulation annealing to solve several problems

occurring in the computer’s industry but his work concentrates on the routing problem

that arises in automatic wiring of integrated circuits and the statement and solution of the

traveling salesman problem using the Simulated Annealing theory.

Simulated Annealing is a Monte Carlo technique which implements a global

minimization algorithm that works for arbitrary functions. The algorithm is proposed as

an analogy between the way in which a metal cools and freezes into a minimum energy

crystalline structure (the annealing process) and the search for a minimum in a more

general system.

1 NP hard is the complexity class of decision problem that are intrinsically harder than those that can be

solved in polynomial time.

31

SA was first described by Metropolis et al. [18]. Later on, Kirkpatrick [13] applied it to

solve combinatorial problems. Simulated Annealing’s major advantage over other

methods is an ability to avoid becoming trapped at a local optimum. The algorithm

employs a random search which not only accepts changes that decrease the objective

function, but also some changes that increase it. The latter are accepted with a probability

calculated according to certain rule.

In the SA algorithm an initial solution and a control parameter called temperature T are

specified. This initial solution is set as the current solution. As the algorithm runs, this

temperature is systematically decreased according to a cooling rate, and neighboring

solutions to the current solution are found.

For each iteration, the value of the objective function is calculated. If the value is better

to that of the current solution, the neighboring solution becomes the new current solution.

On the other hand, if the neighboring solution provides an objective function value

inferior to that of the current solution, the neighboring solution may still become the

current solution according to certain acceptance probability. The acceptance probability

p is computed according to the criterion established by Metropolis. Nicholas Metropolis

proposed a modification to the simple Monte Carlo simulation to find the best state of a

system. The Metropolis procedure establishes that a new point in the search space is

sampled by making a slight change to the current point and new configuration points may

be accepted although their costs exceed the costs obtained for the best solution. To

accept these points Metropolis proposed a criterion based on probability and

thermodynamics laws as follows:

32

 fp exp
T
∂⎛ ⎞= −⎜ ⎟

⎝ ⎠
 Equation 2.17

where;

T = Temperature, and

f∂ = change in the objective function.

A random number between zero and one is generated, if the random number is smaller

than p the solution is accepted. This strategy prevents the algorithm from getting trap in a

local optimum.

2.2.1 Design of the SA algorithm

The theory of Simulated Annealing is based on the following two principles:

A model of the process based on Markov chains

A Markov chain is a representation of a stochastic process showing the different states of

the process with transition probabilities for moving from one state to another. In

Simulated Annealing this measure corresponds to the probability that a new solution is

generated and accepted. It has been proven by researchers that at each value of the

temperature, the SA algorithm performs a number of iterations large enough for the state

probability distribution to approach a stationary value. Research on Markov chains in SA

leads to identify stationary (equilibrium) states for the process and calculate convergence

speed for this meta-heuristic. The main objective of this analysis is to determine the

minimum number of transitions required to obtain the optimum (or near to optimum)

solution.

33

The Metropolis algorithm

The SA algorithm contains two nested loops. First, there is an outer loop which controls

the decrease in temperature. Second, there is an inner loop where transitions from one

state i to another state j is guided by the Metropolis algorithm.

In this algorithm state jE is generated by a perturbation mechanism and accepted with the

following probability:

1, 0

() ()
exp 0

j i

ij j i
j i

B

E E

q f s f s
E E

k T

− ≤⎧
⎪

= −⎛ ⎞⎨
− − >⎜ ⎟⎪ ⋅⎝ ⎠⎩

 , Equation 2.18

In the process of solidification of materials, if the temperature is low enough, the solid

can reach thermal equilibrium. The probability of being at a state i with energy iE is

given by the Boltzman distribution:

exp

()
exp

i

B
T

j

j B

E
k T

P X i
E

k T

⎛ ⎞−
⎜ ⎟⋅⎝ ⎠= =

−⎛ ⎞
⎜ ⎟⋅⎝ ⎠

∑
 , Equation 2.19

where; X represents the state with thermal equilibrium.

The Simulated Annealing algorithm can be modeled as a Markov chain with transition

probability function given by:

,

1 , () (), ()
()

() ()1() exp , () (), ()
()

1 ,

j i j i
i

j i
ij j i j i

i

ik ik
k k i

if f s f s s N s
N s

f s f s
T if f s f s s N s

N s T

p q if i j

θ

≠

⎧ ≤ ∈⎪
⎪
⎪ −⎛ ⎞⎪= ⋅ − > ∈⎨ ⎜ ⎟

⎝ ⎠⎪
⎪ − =⎪
⎪⎩

∑

 , Equation 2.20

34

where;

()θ =ij T probability of making a transition from state i to state j,

() =iN s number of possible solutions in the neighborhood of state i,

() =jf s objective function value at any state j in the neighborhood of state i,

ikp = the perturbation probability of making a transition from state i to state k, and

ikq = the probability of accepting the solution obtained at neighborhood point k.

When a perturbation was attempted unsuccessfully the state remains the same, therefore

i=j. For any combination (i,j) the perturbation probability is calculated as follows:

1 , ()
()

0,

j i
iij

if s N s
N sp

otherwise

⎧ ∈⎪= ⎨
⎪
⎩

 , Equation 2.21

Additionally, the acceptance probability is calculated using the following expression:

1, () ()

() () ()
exp ,

j i

ij j i

if f s f s

q T f s f s
otherwise

T

≤⎧
⎪

= −⎛ ⎞⎨
−⎜ ⎟⎪
⎝ ⎠⎩

, Equation 2.22

Under some circumstances of neighborhood structure the Markov chain can be

considered as an “ergodic” process. An ergodic process has the property that in the long

run it reaches a stationary distribution, irrespective of the initial state.

If ()Tk isπ is the probability that is is the current solution after k steps of the algorithm at

temperature T, the state probability vector can be described as:

 ()1(),... (),...Tk Tk Tk is sπ π π= , Equation 2.23

35

For ergodic Markov chains, the state probability vector converges to a limiting

probability vector:

 lim Tk Tk
π π

→∞
= , Equation 2.24

It can be proven that for the SA algorithm the state probability vector converges to:

()exp
lim ()

()
xp

i

Tk ik
j

sj S

f s
Ts

f s
e

T

π
→∞

∈

−⎛ ⎞
⎜ ⎟
⎝ ⎠=

−⎛ ⎞
⎜ ⎟
⎝ ⎠

∑
 , Equation 2.25

Considering two states is and js with () ()i jf s f s< the ratio between the state

probabilities can be expressed as:

0

()exp
()

()()
exp

() ()() exp
()

i

kTk i

jTk j

j i TTk i

Tk j

f s
s T

f ss
T

f s f ss
s T

π
π

π
π

→

→

−⎛ ⎞
⎜ ⎟
⎝ ⎠⎯⎯→
−⎛ ⎞

⎜ ⎟
⎝ ⎠
−⎛ ⎞

= ⎯⎯⎯→∞⎜ ⎟
⎝ ⎠

, Equation 2.26

This convergence to ∞ is possible only if:

 lim lim () 0Tk jk T
sπ

→∞ →∞
= , Equation 2.27

These mathematical deductions prove that if the SA algorithm is run long enough with an

infinite number of temperature values and for each temperature value with an infinite

number of steps it will reach an optimal solution at the end of the process. However, it is

not clear what end means and it is needed infinite number of iterations to guarantee

optimality.

36

2.2.2 Simulated Annealing Structure

The basic structure of SA shown in Figure 2 contains the following key elements:

Tinitial

T2

T3

Tfinal

Tchanges

N iterations

IterationsInitial Solution

Figure 2 SA Structure

a) A solutions generator: This is the mechanisms used by the algorithm to find new

solutions or configurations. Considering SA as a search heuristic, this generator

should introduce small random changes, and allow all possible solutions to be

reached.

b) Solutions evaluation: The SA algorithm does not require or deduce information. It

simply needs to be supplied with an objective function.

c) An annealing schedule: The standard implementation of the SA algorithm is one in

which homogeneous Markov chains of finite length are generated at decreasing

temperatures. The following parameters are required to define the annealing schedule:

37

• An initial temperature 0T ,

• A final temperature fT or a stopping criterion,

• A length for the Markov chains or number of iterations, and

• A cooling rule.

An initial temperature 0T is related to the acceptance probability 0X and the average

change in the objective function f∂ . The initial temperature can be estimated by:

 0
0ln()

fT
X
∂

= − , Equation 2.28

The final temperature is determined by fixing the number of temperature values to be

used, or the total number of solutions to be generated.

Many cooling rules have been proposed but the simplest and most common is the

geometric scheme:

 1k kT Tα+ = , Equation 2.29

where;

 α is a constant close to but smaller than 1. Kirkpatrick [13] recommend α=0.95.

The basic structure of the SA algorithm is shown in Figure 3. To initialize the algorithm,

the initial temperature, the final temperature and an initial solution must be provided.

The cooling rule is specified along with the desired number of iterations for each level of

the current temperature. The objective function value for the current solution will be

referred to as Ec, and the objective function value for the best solution will be referred to

38

as Eb. The objective function for the initial solution is evaluated and set as the best value

Eb.

Figure 3 Simulated Annealing Structure

39

Once the problem has been initialized and the objective function has been evaluated a

neighboring solution is generated. This new solution is named the test solution and its

objective function value Et, is calculated and compared with the best value Eb. If Et is

better than Ec, the current solution is replaced by the test solution. Otherwise, the

Metropolis criterion is evaluated to define if the test solution should be accepted.

If the test solution was accepted, the objective function value for the test function is

compared with Eb. If the new value is better than Eb then Eb is replaced by Et. Whether,

the best solution was updated or not, the number of iterations N is increased. If N is less

than the maximum number of iterations for each temperature the process is repeated from

the step where the new neighboring solution was calculated. Otherwise, the temperature

T is adjusted according to the cooling rate and N new iterations are generated. The cycle

continues until T reaches the value specified for the final temperature.

2.2.3 Simulated Annealing Applied to Line Balancing

As mentioned before, Simulated Annealing could be efficiently used to solve large

combinatorial optimization problems. Some of the problems within industrial

engineering solved through SA have been: facility design with multiple floors, facility

layout problems in cellular manufacturing systems, product sequencing, mixed-model

sequencing with multiple objectives, generation of robotic assembly sequences,

balancing of U-type assembly systems, and assembly line balancing with paralleling of

workstations.

Kara and Ozcan [12] proposed a SA algorithm to simultaneously solve the balancing and

40

sequencing problem of mixed-model U lines. The basic assumptions for this algorithm

were: products with similar characteristics, deterministic processing times and no

parallelism. The single objective function was oriented to the minimization of

workstations and workloads deviation.

One of the most interesting approaches used to solve the line balancing problem is

presented in McMullen and Frazier. They developed a SA algorithm to solve the type I

balancing problem with parallel workstations. In order to make the model closer to

reality they assumed multiple products and stochastic processing times. After analyzing

the impact of a set of different objectives two of them E1 and E3 were selected. These

objective functions were evaluated simultaneously in the algorithm: (1) minimizing the

total cost and (2) minimizing the deviation from the fixed cycle time represented by the

equations 2.9 and 2.11.

McMullen and Frazier suggested a geometric cooling rule and a solutions generator based

on two principles: trade and transfer. The algorithm is compared to 23 different heuristic

rules and shows excellent results in terms of percentage of units completed within the

cycle time and average system utilization. However, the results obtained for unit total

cost are relatively poor.

Along this literature review several approaches to tackle different types of the line

balancing problem have been presented. Some of the researchers use simple heuristics

rules to obtain a good allocation of the tasks in workstations and the others use more

composite techniques such as integer programming and meta-heuristics. The limitations

related to computational time required to process the mathematical model of the GALBP

41

has lead to proposed procedures which provide good but not optimal solutions. Meta-

heuristics such as Ant Colony, Tabu Search, Genetic Algorithms and Simulated

Annealing have proven to provide excellent line balancing configurations. Among this

group Simulated Annealing demonstrated to be a fast and accurate algorithm. The major

advantage over other methods is its ability to avoid becoming trapped at a local optimum.

Equation Chapter (Next) Section 1

42

3. PROBLEM DEFINITION

The overall objective of the line balancing problem is to determine the assignment of

tasks to workstations in order to minimize number of stations, cycle time or cost. The

line balancing problem analyzed in this thesis work pursues minimizing the total line

operating and investment cost when parallel stations are allowed.

The assignment of tasks to stations is depicted in shown in Figure 4. It involves the

allocation of tasks and determination of the number of parallel stations subject to capacity

and precedence constraints.

Figure 4 Line Balancing Problem Representation

The line balancing algorithm designed in this thesis applies to mixed-product production

lines. Products are assumed to belong to a product family and therefore to have similar

characteristics. Set up times to change from one model to another are assumed to be

negligible. Product flows between adjacent workstations in quantities defined as unit

load sizes.

The objective of the line balancing model is to minimize the total cost associated with

operating the production line containing serial and parallel stations. At each work center a

43

group of manufacturing tasks are performed to satisfy customers’ demand. It is assumed

that processing times are probabilistic and the user can choose one among a group of

probability functions included in the model. Processing times can be the same or differ

among models within the product family.

3.1 Development of the Cost Function

The problem analyzed involves a set of costs that determine the quality of the solution

generated. A brief description of the costs identified for the problem follows:

• Station Costs (S): These include the workstation capital investment cost, labor cost

and overhead as a percentage of labor cost. These costs are the same for all serial

positions in the line. It is assumed they include equipment which is the same for all

workstations and only one operator at each work center. Station costs increase with

the addition of parallel stations. When the cycle time is smaller than the longest

processing time, the station costs control the unrestricted creation of parallel

workstations.

The total station costs for the line are calculated using the following expression:

1

Station costs
K

k
i

S p
=

= ⋅∑ , Equation 3.1

where; S is the amortized station costs in dollars per unit time, pk is the total number

of parallel stations at serial position k, and K is the total number of serial positions

in the line.

44

• Equipment and tooling cost (E): The amortized costs of tooling and machinery

required to perform a task are gathered in this category. Equipment and tooling cost

depend on the tasks and vary from one task to another. Clearly if equipment cost

for a task is high the algorithm will tend to avoid the addition of parallel stations.

Total equipment and tooling cost is calculated using the following equation:

1

Equipment and tooling costs
= ∈

= ⋅∑∑
K

i k
k i k

E p , Equation 3.2

where; Ei is the amortized cost for tooling and equipment required to perform task

i assigned to workstation at serial position k.

• Lateness Cost (L): One of the main assumptions in the problem statement is the

stochastic behavior of processing times. These can behave according to a normal,

uniform or triangular distribution. Because processing times are not deterministic

there is a possibility of exceeding the total expected time for the work center. This

measurement is called the lateness probability. The probability of performing the

tasks assigned to station k in a time lower or equal to the line cycle time is

calculated as follows:

 ()
cycle

kTP F t dt
−∞

= ∫ , Equation 3.3

where; F(t) corresponds to the probability distribution function for the work center’s

processing time. If processing times are normally distributed the probability that the

tasks allocated to station k are performed on time is obtained using the following

equation:

45

 ()2
1

22 σσ π −∞

⎛ ⎞−
= −⎜ ⎟

⎜ ⎟
⎝ ⎠

∫
cycle

k
k

kk

u t
TP exp du , Equation 3.4

where; kt is the expected total duration of all tasks assigned station k and kσ is the

standard deviation of processing time of the station. Following basic probability

principles kσ is obtained from:

 2σ σ
∀∈

= ∑k i
i k

 , Equation 3.5

Therefore, lateness probability of the line LP can be obtained using Equation 3.6.

1

1
=

= −∏
K

k
k

LP TP , Equation 3.6

When product flow takes longer than the line cycle time shop orders are not

delivered on time which could lead to cancelled orders or a loss in the market share.

The cost associated has been chosen to be a percentage of the product price

representing a penalty for all possible lost orders due to lateness in lead times. The

mathematical expression for calculating lateness probability and cost is presented in

section 3.3.

3.2 Line Balancing Constraints

As mentioned previously, the line balancing problem focuses on the assignment of tasks

to workstations subject to a series of constraints. The next section presents these

constraints.

46

3.2.1 Capacity Constraints:

These constraints restrict the total number of tasks that can be assigned to a work center

based on a line cycle time. The line cycle time is established by the user based on the

production requirements. Frequently, the cycle time is calculated using the Equation 3.7

 available time for productionc
required production

= , Equation 3.7

The sum of all tasks processing times grouped in a work center is called “station load”.

This load cannot exceed the cycle time to satisfy demand requirements. However, there

are instances which require completing a product unit in a cycle lower than the longest

task, for these particular cases is necessary to duplicate workstations or create a parallel

work center. If parallel stations are generated then the station load is calculated as

follows:

 1,
kload

p
= ∀ ∈=
∑ i

i i k

k

t
 , Equation 3.8

The mathematical expression presented in Equation 2.1 calculates the minimum number

of workstations required given a line cycle time. This formula provides the lower bound

for the number of workstations without differentiating series from parallel stations.

In this line balancing procedure is proposed the utilization of a unique aggregated cycle

time which is obtained employing Equation 3.7. The balance obtained using this single

cycle time, and the weighted average time, is equivalent to do different balances for each

47

model of the product family using individual processing times and individual cycle times.

The individual cycle times can be calculated by determining the fraction of the total

available time that the company is willing to assign to the fabrication of each model type.

A new weight that includes the participation of the model and the sum of the processing

times is calculated using the following expression:

 1

1 1

N

m im
i

m M N

m im
m i

p t
w

p t

=

= =

⋅
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

∑ ∑
 , Equation 3.9

where;

pm= participation of model m,

tim= processing time of task i for model m,

N= total number of tasks to balance, and

M= total number of models.

After calculating the weight it is possible to compute the individual cycle time using

Equation 3.10.

 m
m

available time for production wc
required production of mod el m

⋅
= , Equation 3.10

Taking into consideration that the models manufactured in a mix-product line belong to a

product family the variations in processing times and precedence restrictions are usually

slight. It can be demonstrated that if variability of the individual processing times are

small (approximately variation coefficients up to 10%) the individual line balances

48

obtained are identical to the one generated using weighted average times and aggregated

cycle time. Moreover, if the processing times differ significantly among the models, the

number of stations obtained for the partial balances is the same for the individual

balances and the aggregate line balancing but the specific allocation of the tasks might

vary between the balances.

When, the precedence restrictions differ substantially, the application of the proposed

methodology for mix-product results in a composite task sequence similar to a serial line

causing a reduction in the efficiency of the balance. Therefore, the adequate selection of

the products of the family that will be manufactured in the same line is critical to generate

an effective design. It can be concluded that products must present similar

characteristics, precedence relations and processing times.

3.2.2 Precedence Constraints:

Manufacturing operations must be performed in a certain order defined by the technical

characteristics of each product. These are called precedence constraints. The set of all

precedence relationships is represented by a network where arcs indicate precedence

restrictions and nodes symbolize tasks. An example of a precedence diagram is shown in

Figure 5.

1

2

3 4 5

6

7

1

2

3 4 5

6

7

Figure 5 Precedence Diagram

49

To facilitate mathematical operations, this graphical representation is substituted by a

square matrix where every precedence restriction is symbolized with a one and the

inexistence of relationship is symbolized by a zero.

The precedence matrix for the diagram illustrated in Figure 5 is shown in Table 1.

Table 1 Precedence Matrix

1 2 3 4 5 6 7
1 1 1 0 0 0 0 0
2 0 1 0 0 0 0 0
3 0 0 1 0 1 1 0
4 0 0 0 1 0 0 0
5 0 0 0 0 1 1 0
6 0 0 0 0 0 1 0
7 0 0 0 0 0 0 1

Tasks
T

as
ks

3.2.3 Technical Constraints

These include two groups of constraints. First, tasks can only be assigned to one serial

position in the line. The second group relates to constraints in the maximum number of

parallel stations because of equipment availability or constraints in capital investment.

3.3 Stochastic Processing Times for the Mix-Product Line

The total cost of the line has been defined as the sum of capital investment, operation and

lateness cost. Lateness cost is calculated based on the probability that products are not

delivered in the expected time. This probability relies on the total workstation load, the

unit load size and the probability distribution of the processing times.

Processing times of the mix-model are obtained using the weighted average technique. In

case of constant processing times, weighted average times are calculated using

50

Equation 2.8. However, when times are probabilistic it is necessary to calculate the

average according to the rules of operations with random variables. Weighted averages

and standard deviation for uniform and triangular data are obtained via simulation. Sets

of one thousand random numbers for the each model’s process time are combined in

order to generate an estimate of the weighted time for the task. A scheme of the

procedure applied to obtain the weighted averages and the parameters of the empirical

distributions is shown in Figure 6.

Task 1 Task 2 Task 3 Task N

Model A Model B Model M

TA1 TB1 TM1

1000

t1

Station 1

k1 parallels

Station 2

k2 parallels

Station n

kn parallels

Figure 6. Stochastic Processing Times

Initially, the parameters and probability distribution of the individual processing times are

set, and then a vector of one thousand random values is generated for each task and each

51

model. The arrays of individual times are combined to generate an empirical distribution

of the data, to estimate the mean and standard deviation of the processing times and

calculate the weighted average for each task. The new array corresponds to the tasks’

processing times and their estimated mean and variance which are used in all iterations to

calculate the lateness probability of the line.

The lateness probability is evaluated using the general Equation 3.6. The probability of

finishing the operation on time in station k, kTP , is defined according to the following

general expression:

kp

k
k

k

t qTP probability c q
p

⎛ ⎞⎛ ⎞⋅
= ≤ ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 , Equation 3.11

Where, q represents the unit load size, c is the line cycle time and pk. is the number of

parallel station at serial position k. Intuitively, it is presumed that when the standard

deviation of the processing times increases the lateness probability increases.

Additionally, the possibility of making a delayed delivery of a product decreases as the

unit load size increases. This is a consequence of adding positive and negative deviations

from the expected time. One case study was used to test the impact of variability and unit

load size on the lateness probability. The case study was solved at three levels of unit

load and variance coefficient.

52

0
0.1
0.2

0.3
0.4
0.5
0.6
0.7

0.8
0.9

1

1 5 10

Unit load size

La
te

ne
ss

 p
ro

ba
bi

lit
y

CV=0.05 CV=0.10 CV=0.20

Figure 7 Lateness Probability vs CV

As shown in Figure 7, the lateness probability decreases as the unit load size increases.

The lowest values for lateness probability were observed for the lowest variance

coefficient tested. These deductions reaffirm the classic trade off between work in

process cost and the ability to respond on time to customer’s demand.

3.4 Mathematical Formulation of the Problem

The model proposed assigns tasks to workstations and determine the optimal number of

parallel workstations in order to obtain a design which minimizes capital investment,

operation and lateness cost.

Prior to proposing a mathematical model of the problem it is required to convert the

individual precedence sequence into a composite precedence sequence using Askin and

Zhou [4] technique. Additionally, individual processing times are integrated into a set of

single weighted average times. Weighted average times are computed using Equation 2.8

The notation used for the development of the optimization model follows:

53

Indexes:

i= task number, i=1,…, n,

k= station number, k=1,…, K, and

p=number of parallels for each station, p=1,…, P.

Parameters:

n =total tasks to be balanced,

c=line cycle time,

q=unit load size,

ti=weighted average processing time for task i,

Ei=equipment and tooling cost for task i,

S=station costs to open a workstation,

L=lateness cost penalization,

LPk= lateness probability for station k,

tpk=parallels workstations at station k,

ldk=load of station k,

si=station number where i is allocated, and

SP=set (ai,bi) of tasks such that task a must precede task b for model i.

Decision variables:

1,
0,ik

if task i is assigned to station k
x

otherwise
⎧

= ⎨
⎩

 ,

1,
0,ikp

if task i is assigned to station k with p parallels
x

otherwise
⎧

= ⎨
⎩

 , and

1,
0,pk

if p parallels are assigned to station k
pa

otherwise
⎧

= ⎨
⎩

 .

54

One essential restriction considered in this type of problem is related to the assigment of

tasks to workstations. If task i was assigned to station k, that task is not available

anymore and cannot be allocated to any other workstation. Adittionally, this model

entails a series of escenarios where station k is replicated in p=1,…,P is proposed

parallels. Since the binary variable ikpx is only activated when task i was assigned to

station k with p parallels, correct allocation and no duplication of tasks is guaranteed

with the following expresions:

1 1

1 , 1,...,
P K

ikp
p k

x for i n
= =

= =∑∑ , Equation 3.12

The second constraint is used to calculate decision variable ikx . That variable indicates

whether task i was assigned to station k or not. Because ikx is binary, this equation take

into consideration that only a number of of p parallels can be activated for each work

center.

1

, 1,..., 1,..., ,
P

ikp ik
p

x x for i n and k K
=

= = =∑ Equation 3.13

The third constraint is added to the model in order to capture the number of the station

where each task was assigned

1

, 1,..., ,
K

ik i
k

k x s for i n
=

⋅ = =∑ Equation 3.14

The precedence relations are included into the formulation through the fourth constraint.

Each precedence constraint must be expressed as an equation where the station number of

a succeeding task bi (bis) must be bigger than or equal to the station number of the

55

precceding task ai (ais). This constraint guarantees that a task is assigned once all its

precedents have been allocated.

 0 , , ,bi ais s for ai bi SP− ≥ ∈ Equation 3.15

It is decisive to ensure that all the tasks of a workstation have the same number of

parallels; otherwise the solution obtained for the problem will lack of sense. The fifth

constraint is used to determine which value of p was activated for station k. That

decision variable pkpa is restricted to values zero or one; therefore, the sixth constraint

ensures that only one possible value of p parallels has been activated for one particular

station.

1

10000 0 , 1,..., 1,... ,
n

kp ikp
i

pa x for k K and p P
=

⋅ − ≥ = =∑ Equation 3.16

1

1 , 1,..., ,
P

kp
p

pa for p P
=

= =∑ Equation 3.17

Analogous to the third constraint given by the Equation 3.14 in Equation 3.18 is

calculated the number of parallels. This is not a binary variable but a number between 1

and an upper limit of parallel stations given by the user.

1

, 1,..., ,
P

kp k
p

p pa tp for i n
=

⋅ = =∑ Equation 3.18

In the total cost function is expected to include station, equipment and lateness cost.

Lateness cost depends on the distribution of the processing times and the unit load size.

The unit load size is the number of product units to be moved at once between adjacent

56

workstations. As the unit load size increases the lateness probability decreases as a result

of a delay lessening the effect caused by those units in the load which take less than the

expected processing time.

If task times for individual products are distributed normally with mean it and standard

deviation σ i and the product flows in batches of load size q, then station parametersσ k

and kt are calculated as follows:

 k i
i k

t q t
∀ ∈

= ⋅∑ , Equation 3.19

 2 2
k i

i k

qσ σ
∀ ∈

= ⋅∑ , Equation 3.20

The expected time for manufacturing q units at station k is kt units of time, with a

standard deviationσ k . If processing times are normally distributed the probability kTP

that tasks allocated to station k with p parallels are completed on time is calculated as

follows:

2

*1 ,
22

p

k
cycle q

k
kk

tu
p

TP exp du
σσ π −∞

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ − ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠= −⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫ Equation 3.21

Then the lateness probability of the line is computed using Equation 3.6 as the

complementary probability of finishing all the items on time.

The total work load for the station k is kt time units. This measure is obtained through

the Equation 3.22 and Equation 3.23. In this scenario the limit time to complete the work

57

in a workstation is defined by q c⋅ as shown in Equation 3.24.

1

1,..., 1,..., ,
n

ikp i
kp

i

x t
q t for k K and p P

p=

⋅
⋅ = = =∑ Equation 3.22

1

1,..., ,
P

kp k
p

t t for k K
=

= =∑ Equation 3.23

 0 1,..., ,kq c t for k K⋅ − ≥ = Equation 3.24

Additional constraints are integrated into the model in order to incorporate the costs

associated with delayed shop orders and loss of costumers. Equation 3.25 calculates the

standard deviation of the station load as a sum of the standard deviation of the processing

times assigned to the workstation.

 2 2

1

0 ,
n

k ik i
i

q xσ σ
=

− ⋅ ⋅ =∑ Equation 3.25

Finally, it is calculated the probability of processing in the station k one unit of product in

a period of time lower or equal than the line cycle. This measure is computed using the

cumulative probability of the normal distribution as shown in Equation 3.26

2

1 0 ,
22

k

k
cycle

k
k

kk

tp
tu
tp

TP exp du
σσ π −∞

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠− − =⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫ Equation 3.26

Once all the decision variables have been described and the constraints have been

established it is possible to propose the objective function which minimizes the total

investment and operational cost.

58

Making the lateness cost LC a percentage of the product price representing a penalty for

possible lost orders due to lateness, the total cost of the line balance is expressed as

follows:

1 1 1

K K n

k k i ik
k k i

Z tp S tp E x LC LP
= = =

= ⋅ + ⋅ ⋅ + ⋅∑ ∑∑ , Equation 3.27

The optimization problem is formulated as follows:

1 1 1 1

1
KK K n

k k i ik k
k k i k

Min Z tp S tp E x LC TP
= = = =

⎛ ⎞
= ⋅ + ⋅ ⋅ + ⋅ −⎜ ⎟

⎝ ⎠
∑ ∑∑ ∏ , Equation 3.28

Subject to: Equations 3.12 to 3.18, and Equations 3.22 to 3.26.

The complexity of the proposed model is high and it cannot be solved using traditional

methodologies. Additionally, the model is restricted to normally distributed processing

times. Considering that it is desirable to build a general model that promptly provide a

near to the optimum solution for real cases that involve normal, uniform or triangular

processing times it is necessary to employ alternative methodologies to find a solution to

the problem. A Simulated Annealing heuristic was designed to tackle the problem. The

procedure developed consists of a Simulated Annealing that employs a dynamic cooling

schedule where parameters are adjusted depending on the problem complexity. The

following sections describe the general SA algorithm and the selection of appropriate

parameters in order to achieve a superior performance.

59

4. METHODOLOGY FOR THE DESIGN OF A SIMULATED ANNEALING-

BASED HEURISTIC

The methodology proposed for the design of a Simulated Annealing-based heuristic is

presented in Figure 8. It is highly based on the use of design of experiments for the

evaluation and selection of heuristic parameters and an initial solution from which the

heuristic works to obtain a near to optimum solution.

In
iti

al

So
lu

tio
n

A
nn

ea
lin

g
Sc

he
du

le

Figure 8 Methodology for the Design of a Simulated Annealing-Based Heuristic

Each one of the steps in the proposed methodology is described next.

4.1 Solution Representation and Generation

Solution representation and neighboring generation are two essential parts to consider in

SA design. Solution representation should allow manipulating the current solution

60

through small perturbations and allow reaching all possible solutions.

4.1.1 Solution Representation

In the SA algorithm a solution is represented through an n by k matrix, along with a k

length vector where the number of parallel workstations is stored. Table 2 and Table 3

show an example of a possible line balance solution with twelve tasks and five

workstations in series.

Table 2 Task Assignment

Task Assignment
St 1 St 2 St 3 St 4 St 5

1 0 0 0 0
0 2 0 0 0
3 0 0 0 0
0 4 0 0 0
0 5 0 0 0
0 0 6 0 0
0 0 7 0 0
0 8 0 0 0
0 0 0 9 0
0 0 0 10 0
0 0 0 0 11
0 0 0 12 0

In this example tasks 1 and 3 were assigned to serial position 1, tasks 2, 4, 5 and 8 were

assigned to serial position 2 and so on.

Table 3 Parallel Workstations

Station
Number

Number of
parallels

St 1 1
St 2 2
St 3 1
St 4 3
St 5 1

61

4.1.2 Solution Generation

Often the solution space of an optimization problem has many local minima. A simple

local search algorithm proceeds by evaluating initial solution and generating a new

solution from the neighborhood.

The matrix of a current solution is modified through small random changes in order to

obtain neighboring solutions. The mechanisms used to generate new feasible designs

were called trade and transfer. Selection of any of these methods is made through a

random number generation. These mechanisms are explained next.

Trade: The first step is to choose randomly one station x and one of both adjacent

workstations y. A trade is made between the last task in station x and first task in station

y if y follows x or between first task in station x and last task in station y if y proceeds x.

Trade is performed strictly if the precedence constraints are not violated.

An example for this procedure is shown in Figure 9 and Figure 10. Tasks 9 and 11

within workstations 3 and 4 have been chosen through random selection. If the

precedence constraints are no violated those tasks are exchanged, otherwise the algorithm

attempts another perturbation mechanism. Once the trade has been made, the number of

parallels and work loads are recalculated.

62

Figure 9 Trade Between Adjacent Workstations

As a result of this trading process, stations can become smaller or bigger especially with

the cancellation or addiction of parallel workstations. This phenomenon is shown in

Figure 10.

Before trade

5 5 5

6 6 6

11 11 11

Station 3 Station 4

9 9

13 13

14 14

5

6

11

After trade

Figure 10 Change in Workstation Size After Trading

Transfer: As in the trade mechanism, the first step is the random selection of

workstation x. Next a task in x is randomly chosen. Then the target task is transferred to

an adjacent workstation y. Choices regarding to direction and task to transfer are not

63

deliberate but random decisions. As shown in Figure 11, if station 7 was randomly

chosen for a transfer, any task in 7 can be transferred to either station 6 or 8.

Figure 11 Station 7 Before Transfer

Figure 12 shows an example of forward transference. Task 19 is randomly selected and

then transferred to adjacent station 8. As part of the trade process the number of parallel

workstations is recalculated because of the resulting mutation in the current solution

matrix. Then the total line balancing cost and SA statistics are updated.

Figure 12 Forward Transfer Example

4.2 Selection of the Annealing Schedule

In each iteration, the SA algorithm replaces the current solution by a random solution

from the neighborhood which is chosen with a probability that depends on the difference

between the corresponding function values and the temperature kT . The control

64

parameter kT has the same function for the procedure as the temperature of the Metropolis

algorithm. Therefore, as the temperature decreases the probability of accepting worse

configurations decrease.

The impact of the temperature on the performance of the algorithm is such that the

current solution changes almost randomly when the temperature is too large but

increasingly finds better solutions as the temperature tends to zero.

Although Simulated Annealing has been widely used during the last two decades, there is

still a lack of practical information to help the user in designing an appropriate annealing

schedule that assures a good performance of the algorithm. Most of the concerns lie on

the selection of the initial temperature and a cooling rule in order to perform a fast and

accurate search over the solution’s space.

4.2.1 Initial Temperature

According to Triki and Collette [28] the initial temperature should allow the SA to

perform a random walk over the landscape. This suggests that the initial temperature

should be high enough to assure a complete walk. However, it is not desirable to perform

unnecessary iterations which consume excessive computational time. Also, it has been

proven that the quality of solutions at high temperatures is relative poor.

To solve this tradeoff several rules to calculate the initial temperature have been stated.

The initial temperature is obtained with the Van Laarhoven equation as follows:

()

0
0ln()

fT
χ

+Δ
= − , Equation 4.1

65

This equation is based on an initial value 0χ which is defined as the ratio between the

number of the bad transitions the user is willing to accept and the total number of bad

transitions. The initial acceptance ratio is also defined as the average increase in

acceptance probability.

The numerator in the equation, ()f +Δ is the average change in the objective function

value and is estimated by conducting an initial random search of n number of steps. The

average change is considered as an approximation of the depth of the deepest local

minimum.

It is extremely important not to underestimate the value of ()f +Δ since that would result in

a low value for the initial temperature 0T . As a consequence, the SA algorithm might not

perform a complete walk over the landscape and could get trapped in a local minimum.

Figure 13 shows two different landscapes for which the initial temperature computed

using Laarhoven’s formula was the same. Although the objective function “a” has four

local minima of depth 1 and objective function “b” has a minimum depth of 4, they

cannot be distinguished by only counting the number of moves with higher cost. In fact,

if the landscape presents a deep minima, then ()f +Δ may underestimate the depth of these

minima, and the computed initial temperature may be too low.

66

Function a

Function b

()f +Δ

Figure 13 Different Landscapes with the Same ()f +Δ

A simulation was conducted in order to test the robustness of the Van Laarhoven

equation in finding the initial temperature. A case study was used to perform 30 random

walks for each of the following walk lengths: n=20, 50,100 and 200 steps. The average

change in the objective function ()f +Δ was estimated for each random walk resulting in

an estimated value for 0T . It was expected to obtain approximately the same value for 0T

regardless of the walk length. Results are summarized graphically in Figure 14. The

graph shows that short random walks resulted in higher estimates for the initial

temperature.

Initial temperature random search

0
1
2
3
4
5
6
7
8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Trial

In
iti

al
 T

em
pe

ra
tu

re

random walk 20
steps
random walk 50
steps
random walk 100
steps
random walk 200
steps

Figure 14 Initial Temperature Search

67

An ANOVA was performed and results are summarized in Table 4. These show that at a

95% confidence level, the walk length has a significant impact on the resulting estimated

value for 0T .

Table 4 ANOVA for Random Walk Lengths

Source DF SS MS F P Value
Walk length 3 56.49 28.24 27.35 0.000

Error 87 89.85 1.03
Total 89 1.46.34

A boxplot shown in Figure 15 shows the tendency to decrease the estimated initial

temperature value as the number of steps is increased. Intuitively, this inverse

relationship can be explained as a consequence of weighing deep changes in the cost

function between a larger set of elements. Apparently, small changes occur with higher

frequency than drastic increments in the objective function.

Walk Length

Te
m

p

2001003020

8

7

6

5

4

3

2

1

Boxplot of Temp vs Walk Length

Figure 15 Boxplot Temperature vs Walk Length

Based on results it is concluded that the walk length has a significant impact on the

estimated value for 0T and since the temperature should be high enough to assure a

68

search over the solution landscape, short random walks are appropriate to estimate the

initial temperature for the SA algorithm.

4.2.2 Cooling Rule

Almost all the Simulated Annealing algorithms documented in the literature employ

simple stepwise reduction rules to update the temperature. Among these rules the most

frequently used is the geometric cooling rule given by:

 1k kT Tα+ = ⋅ , Equation 4.2

Where, α is a reduction factor and 0<α <1.

Another simple strategy to decrease the temperature is the linear cooling rule stated as

follows:

 1k kT T T+ = − Δ , Equation 4.3

Where TΔ is the station decrement step taken at each one of the L trials. These two

schemes were analyzed by Randelman and Grest [20]. They found that reductions

achieved using the two schemes to be comparable, and also noted that the final value of

objective function was, in general, improved with slower cooling rates, at the expense, of

course, of greater computational effort. Finally, they observed that the algorithm

performance depended more on the quotient /T LΔ than on the individual values of TΔ

and L .

Other researchers such as Van Laarhoven [29] and Huang [11] have analyzed approaches

using the standard deviation of the distribution of the objective function to determine the

next temperature decrement. The advantage of this scheme is that the temperature

69

decrement is controlled dynamically. Therefore, those approaches can be applied to all

types of problems. Those schemes called “adaptive” are based on the idea of quasi-

equilibrium. To maintain quasi-equilibrium, the expected decrement in the average

objective function value must be less than the standard deviation of the distribution of the

function value.

The schedule proposed by Van Laarhoven is based on the following adaptive rule to

update temperatures:

 1

()

1
ln(1)1
3

k

k k

k
T

T T
T

σ

+ = ⋅
+ ∂

+
 , Equation 4.4

where; ∂ is a “small” real number and ()kTσ is the standard deviation of the cost function

evaluated for solutions collected up to temperature kT .

Another typical adaptive rule was proposed by Huang (1986). In his schemeλ is a

constant parameter (0 1λ< ≤) that has to be determined by the user. A typical value of

λ is 0.7. The updated temperature is determined as follows:

 1
()

exp
k

k
k k

T

TT T λ
σ+

⎛ ⎞
= ⋅ −⎜ ⎟⎜ ⎟

⎝ ⎠
 , Equation 4.5

This schedule has been widely used and is known to provide an efficient general cooling

schedule.

Triki and Collette [28] verified that the adaptive decrement rules proposed by Van

Laarhoven and Huang are equivalent, but they differ significantly from the geometric

cooling schedules. They also noticed that adaptive rules have a tendency to degenerate at

70

low temperatures. Certainly, when the temperature becomes sufficiently low, the SA

algorithm will become trapped into a local minimum. Because of the good quality of

current solutions most of the trials will lead to worse solutions and the probability of

accepting such transitions will be very low due to the low temperature. Therefore, most

of the transitions will be rejected.

According to the literature, the cooling rule must be an asymptotic function that does not

decrease drastically. A simulation of three decrement rules at different levels was run in

to find the scheme with the best performance for this particular algorithm. The results of

the simulation are plotted in Figure 16.

Temperature Decrement Rules

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 21 41 61 81 101 121 141 161 181 201

Trial

T
em

pe
ra

tu
re

geometric alfa 0.95
geometric alfa 0.99

adaptive laarhoven delta 0.01
adaptive laarhoven delta 0.10
adaptive laarhoven delta 0.50
adaptive Huang lambda 0.7

adaptive Huang lambda 0.1

Figure 16 Temperature Decrement Rules Plot

The geometric cooling rule with 0.95α = presents a satisfactory performance. However,

popular adaptive rules like Laarhoven and Huang at 0.7 do not show evidence of

adequate behavior. In one hand Laarhoven’s rule do not decline consistently, and in the

other hand Huang shows a rapid descend in the first ten trials.

71

Because of the significant difference observed between the behavior described in the

literature and the one obtained via simulation it was necessary to perform additional tests

to determine the best cooling rule. The capability of the algorithm for finding a minimal

solution was measured through an experiment where seven cooling rules were used for

two different case studies. The case-studies were analyzed as blocks and the interest of

the experiment was to determine if the cooling rule affected the performance of the

algorithm. The performance measure used was the magnitude of the best cost found.

An analysis of variance was performed to identify the impact of the cooling rule on the

performance of the SA algorithm. The results are summarized in Table 5. These show

there is not statistical evidence to support the hypothesis that the cooling rules analyzed

affect the results of the algorithm at a 95% confidence level. However, following the

guidelines given in the literature the geometric rule with 0.95α = and Huang with λ= 0.1

are preferred due to their asymptotic shape.

Table 5 ANOVA Results Case vs Cooling Rule

Source DF SS MS F P
Rule 7 0.00078 0.00011 0.44 0.861
Case 1 1.87487 1.87487 7469.74 0.000
Interaction 7 0.00077 0.00011 0.44 0.863
Error 16 0.00402 0.00025
Total 31 1.88044
S 0.01584 R-Sqr= 99.79% R-Sqr= 99.59%

4.2.3 Chain Length

The number of iterations known as the chain length at any given temperature should be

large enough to guarantee that the thermal equilibrium is reached. The chain length can

be fixed, be tied to the achievement of equilibrium or it can depend on a minimum

72

acceptance criterion. For example, each chain length terminates when the number of

accepted solutions reaches a given bound mL . Some researches have proposed empirical

equations to express the fixed chain length as a function of the problem size.

According to Huang’s procedure to establish the number of iterations, the length of the

Markov chain should be tied to achieve a specific state. However, it is typical to use

other methods as the minimum acceptance criterion mL or the minimum chain length minL

to guarantee the validity of the statistics. Usually the minimum chain length criterion

depends on the size of the solution space. For line balancing problems the size of the

solution space may be expressed as a function of different variables: number of tasks,

relation between the longest processing time and the cycle time, and finally the density of

the precedence matrix. The density of the precedence matrix is a measure of the network

complexity. This characteristic was called by Dar-El (Mansoor) the F-Ratio and is

defined as:

 2
(1)

dD
N N

⋅
=

⋅ −
 , Equation 4.6

Where, d is the number of precedence relations which is equal to the number of ones in

the triangular precedence matrix and (1) / 2N N⋅ − is the total number of cells in the

partial (triangular) matrix. For balancing cases with few precedence relations D

approaches a value of zero. On the other hand, when the precedence constraints are as in

a serial assembly line, D reaches values near one. The relationship between the

dimension of the solution space and the precedence density is inversely proportional.

Notice that when D assumes a value close to zero there are numerous alternatives for

73

allocating the tasks via the permutation of tasks and the generation of parallel stations.

When the ratio between the longest processing time and cycle times is greater than one

the heuristic is forced to generate at least one parallel workstation. This increment in the

complexity of the feasible solutions may be represented as an expansion of the solution

space.

Considering the facts mentioned before, a rational rule to define the minimum chain

length might be:

 max
min

⋅
=

⋅
N tL
c D

 , Equation 4.7

where;

N = total number of tasks to balance,

maxt = maximum duration time,

c = line cycle time, and

D = assembly network density.

Some facts are known about the evolution of the SA: first, when kT approaches zero,

transitions are accepted with decreasing probability. Therefore, the number of trials

required to achieve the minimum number of transitions minL must decrease.

Additionally, at the beginning of the search, when the temperature is still close to the

initial temperature, most transitions are accepted the variance is relatively high and

therefore long chains are required to explore numerous alternatives for better solutions.

An improved minimum length chain rule which adapts as annealing proceeds is

calculated according toEquation 4.8.

74

 max
min int

⎛ ⎞⋅ ⋅
= ⋅⎜ ⎟⎜ ⎟⋅⎝ ⎠

kN t T
L m

c D
 , Equation 4.8

where;

m = adjustment multiplier, and

kT = temperature for iteration k.

This scheme generates long chains at high temperatures and short chains when a

temperature is close to zero, in this manner the computational time reduces. Variable m

in this equation corresponds to a multiplier. The value of m is obtained through an

experimental process.

4.2.4 Final Temperature

In some simple implementations of Simulated Annealing the final temperature is

determined by fixing the number of temperature values to be used, or the total number of

solutions to be generated. Alternatively, the search can be stopped if it is identified lack

of progress. This lack of progress can be defined in a number of ways, but a useful basic

definition is: no improvement (i.e. no new best solution) being found in a fixed number

of entire Markov chains.

For the line balancing problem the final temperature may be the temperature reached

after a fixed number of Markov chains. Deliberately this number of chains depends of

the balancing problem complexity. The deduction made previously for line balancing

seems appropriate to define the number of temperature chains.

75

 max⋅ ⋅
=

⋅changes
M N tT

c D
 , Equation 4.9

A stopping rule is also established to prevent expending computational resources

unnecessarily. It is suggested to stop the algorithm when after Y consecutive sequences

the objective function has not shown improvement, where Y is calculated as 0.5 ()changesT⋅ .

This measure is considered conservative since half of the total Markov chains require

considerable computational time. However, it is attempted to explore the solution space

efficiently without eliminating the probability for finding an enhanced solution in final

temperatures.

4.2.5 System Perturbation

Although the size of the perturbation is not consider relevant part of the annealing

schedule, after performing test runs of the algorithm, the impact of this characteristic was

identified. Some of the important considerations about the size of the perturbation are: it

is desirable a neighboring generator able to escape from local optima and the perturbation

should shake enough the system to avoid trapping the algorithm. Trade and transfer

cause a single and small shake which might not alter the solution in the magnitude

required to escape from local optima. However, a step should not be so large that the

optimal point is constantly exceeded.

Two different perturbation magnitudes were tested in order to analyze the cost function

response. In Figure 17 shows a plot of the cost function response when only one trade or

transfer movement is performed at each trial. The plot shows how at lower temperatures,

changes in the cost function is barely perceptible. Significant changes occur at the

76

beginning of the process because new designs are soft modifications of last solutions.

Figure 17 Cost Function for a Perturbation Magnitude of 1

By the other hand, in Figure 18 solution present significant fluctuations during different

simulation states which demonstrates the ability of the algorithm to perform an

exhaustive search in a bigger zone of the solution space.

77

Figure 18 Cost Function for a Perturbation Magnitude of 5

4.3 Optimal SA parameter setting through DOE

In previous sections design factors for the SA algorithm were described and analyzed.

However, it has not been identified the effect of these factors over the solution quality.

To determine the adequate setting of these design parameters a factorial experiment was

designed and run. The influence of the cooling rule, Markov chains length, number of

Markov chains, and the perturbation size on the total cost was investigated using a central

composite experiment. The response variables were defined as the difference in

percentage between the minimal total cost and the total cost observed at each

experimental condition, and computational time required to finalize the simulation.

Initially, an exploratory experiment for two case studies with 18 and 23 tasks respectively

at two different cooling rules was run. The factors analyzed were the cooling rule,

78

geometric rule with 0.95α = and the adaptive Huang with λ= 0.1, the number and the

length of Markov chains and the perturbation magnitude. The results obtained in this

preliminary phase indicate that responses variables were not susceptible to changes in the

case study; also more accurate results were obtained using the geometric rule although

computational time spent in calculations was considerably higher. In order to obtain the

appropriate setup to generate precise solutions in a short period of time a central

composite design was used for a case study of 23 tasks with two replications. When the

response was “computational time” the assumption of normality on residuals was

accomplished employing a logarithm transformation. The factors studied and the un-

coded levels are presented in Table 6. The levels for factors A and B correspond to the

multipliers in Equation 4.8 and Equation 4.9 respectively.

Table 6 Factors and Levels of the CCD

Factors
Levels A. Chain

length
B. Number of

chains
C. Perturbation

magnitude

Low m=0.25 M=1 Perturbation= 1

High m=2.75 M=5 Perturbation=5

Table 7 presents the ANOVA results on the percentage difference from the minimum

cost observed. At a 95% confidence level results indicate that the length of Markov

chains and number of chains have a significant impact on the response quality.

Additionally, the interaction between the number of Markov chains and the perturbation

magnitude result in a p-value smaller than 0.05 which proves some relevance in the

model.

79

Table 7 ANOVA for Cost Difference

Estimated Regression Coefficients for cost difference
Term Coef SE Coef T P

Constant 2.7118 0.2826 9.597 0.000
Length of chains -1.4741 0.2599 -5.671 0.000
Number of chains -0.6303 0.2599 -2.425 0.022
Perturbation magnitude -0.2464 0.2599 -0.948 0.351
length*length 0.8767 0.4956 1.769 0.087
number*number 0.3454 0.4956 0.697 0.491
perturb*perturb 0.4520 0.4956 0.912 0.369
length*number 0.0895 0.2906 0.308 0.760
length*perturb 0.2246 0.2906 0.773 0.446
number*perturb -0.6156 0.2906 -2.118 0.043
 R-Sq=0.666 R-Sq(adj)=0.566

An analysis of variance was also performed to evaluate the variable “computational

time”. Results summarized in Table 8 reveal a strong influence of all factors over the

CPU time. The response variable increments as other factors increase.

Table 8 ANOVA for log Computational Time

Estimated Regression Coefficients for log (computational time)
Term Coef SE Coef T P

Constant 1.6723 0.010232 163.449 0.000
length 0.5726 0.009412 60.842 0.000
number 0.0497 0.009412 5.277 0.000
perturb 0.0589 0.009412 6.258 0.000
length*length - 0.2412 0.017947 -13.441 0.000
number*number - 0.0445 0.017947 -2.481 0.019
perturb*perturb 0.0058 0.017947 0.325 0.747
length*number 0.0254 0.010523 2.413 0.022
length*perturb 0.0075 0.010523 0.709 0.484
number*perturb 0.0011 0.010523 0.102 0.920
 R-Sq=0.993 R-Sq(adj)=0.991

80

The ANOVA results reflect a logical trade off between the quality of the response and the

time required to achieve a good solution. To deal with this concern the desirability

approach was used. The desirability approach is a methodology used for the optimization

processes with multiple responses. The methodology assigns a "score" to a set of

response variables and chooses factor settings that maximize that score.

In this particular case, the main purpose of this optimization process is minimizing both,

the deviation from optima and the time required to perform the algorithm,

simultaneously. The “Response Optimizer” in Minitab® was used to identify the

combination of values for chain length, number of chains and perturbation size which

jointly minimize the percentage cost difference and the CPU time. The limits

established for the evaluation of the desirability function were: an upper bound of 2% on

the percentage cost difference and 1.8 (i.e. 60 seconds) for the logarithm of the

computational time.

As shown in Figure 19, the length of the Markov chains had a significant impact on both

responses. The number of chains and perturbation size had an impact only on the

percentage cost difference. The optimum coded settings for the length, number and

perturbation size are 0.0462, 1, and 0.8035, respectively.

81

Figure 19 Response Optimizer for Percentage Cost Difference and CPU Time

The uncoded values of the optimal setting are shown in Table 9.

Table 9 Results Response Optimizer

After analyzing all the parameters and defining the most favorable set up for relevant

factors it is possible to design a scheme which optimizes resources and achieves high-

quality results.

• Initial Temperature: The initial Temperature is set using the formula presented

below, for a random walk of twenty steps and probability of 0.8 of accepting bad

transitions.

()

0 ln(0.8)
fT

+Δ
= − , Equation 4.10

• Cooling Rule: After comparing different traditional and adaptive cooling rules, the

geometric scheme with 0.95α = was chosen. The cooling rule is as follows:

Factor Setting
Multiplier length of Markov chains 1.819
Multiplier number of Markov chains 3
Perturbation size 4.607

82

 1 0.95k kT T+ = ⋅ , Equation 4.11

• Final Temperature: Simulated Annealing algorithm stops the iterative process after

changesT number of Markov chains each one of minL length are completed. Equations to

calculate those parameters has been rewritten as follows:

 maxint 3changes
N tT
c D
⋅⎛ ⎞= ⋅⎜ ⎟⋅⎝ ⎠

 , Equation 4.12

 max
min int 1.819 N t TL

c D
⎛ ⎞⋅ ⋅

= ⋅⎜ ⎟⎜ ⎟⋅⎝ ⎠
 , Equation 4.13

• System Perturbation: Neighboring solutions are produced in each trial by making x

trade or transfer changes, where x is calculated as follows:

 ()int 4.607x rand= ⋅ , Equation 4.14

Rand represents a number between 0 and 1.

4.4 Evaluation and Selection of an Initial Solution

Simulated Annealing is characterized for providing good solutions for combinatorial

problems. However, choosing the appropriate parameters for the algorithm is key for

success. Several research works confirm that the quality of the initial solution used in the

algorithm affects the performance of the SA. Which criteria the user should use for

selecting an initial solution and which solution is best are two common concerns on this

subject.

83

Intuitively the user could assume that a good initial solution is one generated using

techniques or methodologies validated for the particular problem. In line balancing

several decision rules varying from simple rules to complex heuristics have been used to

assign tasks to workstations.

Brian Talbot et al. [27] defined four categories to group the decision rules. In the first

category they clustered “Single Pass Decision Rules” which consist of simple attribute,

priority rules such as the maximum ranked positional weight, maximum number of

immediate followers, maximum task time, etc. Those rules consist of a list processing

procedures that assigns tasks to work center according to a priority attribute. The second

category group, “Composite Decision Rules”, is a combination of single pass decision

rules. Occasionally, when a tie between two o more tasks occur, a single rule is not able

to discriminate among tasks on an available list. Therefore, a combination of rules is

used to break the ties. Other complex heuristic rules which require programming an

algorithm are clustered in the category of “Backtracking Decision Rules”. Finally,

optimization methods like branch and bound, integer programming and dynamic

programming are clustered in the category for “Optimal-Seeking Decision Rules”

Taking into consideration the importance of the initial solution in the design of an

appropriate algorithm, some of the decision rules classified as single pass decision rules

along with a heuristic procedure were chosen to generate an initial feasible solution. A

brief description of the rules selected is presented below.

84

4.4.1 Heuristic Rules and Procedures

Single Pass Decision Rules

• Maximum rank positional weight (MaxRPW1): The positional weight of a task is its

processing time plus the task time of all following tasks as shown in Equation 4.15.

∀ ∈

= + ∑i j
j Si

RPW t t Equation 4.15

• Maximum total number of followers (MaxTFOL2): The priority is based on the total

number of follower tasks, with a higher priority given to tasks with higher values of

MaxTFOL2.

• Maximum task duration (MaxTD3): Tasks are ordered in descending order of task

duration time. High duration tasks have a greater priority.

• Minimum task slack (MinSLACK4): The slack of a task is the difference between

the upper bound and the lower bound, where upper bound and lower bound are given

by:

 where;

 i i iSlack UB LB= − , Equation 4.16

 1 int
i j

j Pi
i

t t
UB N

c
∈

+

⎡ ⎤+
⎢ ⎥= + − ⎢ ⎥
⎢ ⎥⎣ ⎦

∑
 , and Equation 4.17

85

 int
i j

j Si
i

t t
LB

c
∈

+

⎡ ⎤+
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

∑
 , Equation 4.18

A higher priority is given to tasks with small slack values.

• Random task assignment (Rand5): In this approach, task priority is assigned at

random.

The single pass decision rules mentioned above have been included into a task

assignment heuristic model designed to balance lines controlling the number of parallel

stations generated. The heuristic model assigns tasks to workstations and controls the

creation of parallel stations by comparing the current utilization and the utilization of the

station with parallels. Parallel workstations are created only when utilization increases

with the replication.

First, all the tasks are positioned in a list using a single pass decision rule. A list of

assignable tasks is created based on precedence constraints. Then, task j is selected from

the assignable list, if the processing time of task j is smaller than the available time in the

station. The task is allocated to the station and the statistics are updated. Otherwise, if

the processing time exceeds the available time a new search is performed. The heuristic

creates a fitable list picking up from the assignable list all the tasks for which processing

times are smaller than the available station time. If the fitable list is not empty, the

heuristic changes task j with the first in this list and it assigns the new task to the station.

On the other hand, when the fitable list is empty, the algorithm evaluates and compares

current utilization of the station with utilization of the station with task j and parallel

86

workstations. If the utilization with parallels is greater than a minimum permissible

utilization defined by the user, task j is allocated into the station and statistics are

updated. Otherwise, the station is closed and a new empty station is created.

A flowchart describing this heuristic is presented in Figure 20.

START

Enter precedence matrix and
processing times

Order tasks applying a single pass
decision rule

List of unassigned tasks empty?

Yes

No

Select task j from assignable list.

cycle time-load station<time task j

Yes

No

Assign task j to station k. Update
statistics

List of fitable tasks empty? Change task j with first task in the fitable
list

Create list of fitable tasks with tasks with
processing time< cycle time- load station

No

Yes
Yes

Utilization with parallel >
minimum utilization?

No

Close station
k=k+1

Station number k=1
Load station =0

END

Create assignable list with tasks which
precedent tasks have been assigned

Figure 20 Heuristic to Assign Tasks to Workstations

87

Heuristic Procedure

The quality of the initial solution provided by a single pass decision rule was also

compared with the composite heuristic proposed by Mejía, 2005 [16]. Mejia’s heuristic

assigns tasks to workstations based on the cost caused by unbalance between stations.

The algorithm evaluates costs under different scenarios with or without parallel stations

and assigns tasks only if the unbalance cost is reduced.

4.4.2 Comparison of Results

Four different case studies were analyzed in order to evaluate the impact of the initial

solution in the SA performance. The five single pass decision rules and Mejía’s heuristic

model were used to solve the different case studies. Three replications of each

experimental condition were run. The results of an analysis of variance, summarized in

Table 10, indicate that the initial solution provided to the algorithm impacts the

performance of the SA. This conclusion reiterates the findings made by different

researchers about the SA performance.

Table 10 ANOVA Results for Initial Solution

Source DF SS MS F P
Heuristic Method 5 15.329 3.066 2.920 0.022
Case Studies 3 69.815 23.272 22.130 0.000
Interaction 15 20.885 1.392 1.320 0.225
Error 48 50.472 1.052
Total 71 156.501

The results obtained were plotted in the boxplot shown in Figure 21. The results lead to

conclude that lower costs are achieved when the initial solution is obtained using

maximum task duration priority rule.

88

Heuristic

Co
st

randomminslackMejía H.maxrpwmaxfolmaxdur

5

4

3

2

1

0

1.76079
2.05952

1.83931

1.34117
1.15797

0.698522

Boxplot of Cost vs Heuristic

Figure 21 Initial Solution Boxplot

4.5 Final Design Called ANAMAR06

In this chapter a description of the general operation of the proposed algorithm called

ANAMAR06 along with the development of the different parameters of this heuristic

were presented. The specifications of the algorithm include the selection of an

appropriate value for the components of the annealing schedule, the definition of the

mechanism to generate a solution from the neighborhood and the size of the perturbation.

Additionally, a single pass decision rule combined with a heuristic procedure to assign

tasks and generate parallel workstations is employed to generate a good initial solution.

The initial temperature was set using the Van Laarhoven equation. The number of steps

in the random walk was fixed to twenty in order to obtain an estimate of the local minima

depth.

The size of the algorithm and the computational time spent in finding the final solution

rely on the size and complexity of the problem. The schedule is dynamic, adaptive and

89

depends on factors such as network density, ratio between maximum processing time and

cycle time, number of tasks to balance and current temperature. The number and the

length of the Markov chains were determined using results from a factorial experiment.

A descriptive flowchart showing the steps of the ANAMAR06 is presented in Figure 22.

90

Figure 22 Flowchart Final SA algorithm

Equation Chapter (Next) Section 1

91

5. RESULTS

In this chapter, are presented the computational results from experiments used to evaluate

the performance of ANAMAR06. The main objective of this experimental phase is to

compare the procedure developed in this thesis work against the mixed integer linear

programming model proposed in section 3.3.1 and other widely known line balancing

procedures. Moreover, in this chapter an analysis of the impact of diverse variables over

the quality of the solution is presented. The variables considered were: total number of

tasks, density of the precedence network and the ratio between line cycle and maximum

processing time.

The ANAMAR06 algorithm for which results are being compared to those from an

optimization model does not include the lateness cost due to the complexity of the non-

linearity of the objective function and the absence of equivalent procedures in the

literature.

The experiments are performed using a group of problems from the benchmark data sets

for ALBP. This data set has been used for testing and comparing solution procedures in

several relevant studies during the last two decades. The precedence and the processing

times can been downloaded from Scholl and Klein’s web page2. The specifications of

the problem set used in the experiments are summarized in Table 11.

2 URL address: http://www.assembly-line-balancing.de/

92

Table 11 Experimental Data Set

Name Number
of tasks

Sum of
tasks times

Max task
time

Min task
time

 Max task time /
Min task time

Network
Density

Mansoor 11 185 45 2 22.5 0.6000
Mitchell 21 105 13 1 6.5 0.7095
Buxey 29 324 25 1 12.5 0.5074
Kilbridge 45 544 55 1 27.5 0.4455
Hahn 53 14056 1775 40 887.5 0.8382
Tonge 70 3510 156 1 78 0.5942

5.1 Performance Evaluation of ANAMAR06

A computational study was completed with the purpose of evaluating the performance of

ANAMAR06 based on the quality of the solution. The computational speed of the

algorithm is not considered a significant variable in this part of the process. The

computational speed is inversely proportional to the quality of the solution. Therefore, the

parameters of the algorithm were set up to values resulting in CPU times within a

reasonable range of values without compromising the quality of the solution.

All the cases chosen for experimentation were solved using three approaches: (1)

Gaither’s heuristic [8], (2) a modified version of Amen’s [2] single pass decision rule,

and (3) the SA algorithm designed in this thesis work a brief explanation of each

approach is presented next.

5.1.1 Heuristic Procedures

Gaither’s heuristic places a task into a workstation, using different selection rules, only if

the utilization of the station increases. The motivation for paralleling is to increase

utilization as much as possible. The first relevant step of this heuristic is to create a list

of all tasks that are ready for immediate assignment. The tasks placed on this list are

93

tasks which have their entire predecessors already allocated to workstations. After

generating this list of the assignable tasks a second list is created. This second list

includes all assignable tasks which increase the utilization of the current work center. If

the list of eligible tasks is empty the station is closed, otherwise a task from the second

list is chosen and parallel stations are created when needed. Seven task decision rules

have been proposed to choose tasks from the eligible list. For experimental purposes

only, two decision rules were used: a task that maximizes utilization and a task with the

maximum processing time.

Amen’s main objective contrasts with Gaither’s purpose of maximizing the utilization of

the workstation. Amen’s single pass decision rule pursues the minimization of the

unitary cost per product by minimizing the idle cost. Idle cost is caused by idle time and

wage rate differences of the tasks assigned to the same station. Amen assumes that tasks

differ in their level of difficulty. Hence there could be differences in the corresponding

wage rates of the tasks.

The wage rate at any given station is the maximum of the wage rates for all tasks

assigned to the station. The idle cost of the station is therefore calculated by multiplying

the maximum wage rate by the station’s idle time. Amen’s single pass decision rule is

called the “Best change in idle cost”. In contrast with Gaither’s heuristic, Amen’s

procedure does not generate maximally loaded station, but station resulting in the

minimum cost possible.

The best change of idle cost, ikΔ , is calculated as follows:

94

()

i i i k
i

i k i i i k

t w if w w
k

w w c t w if w w
− ≤⎧

Δ = ⎨ − − >⎩
 , Equation 5.1

where;

i = task to be assigned to station k,

it = processing time for task i,

c= line cycle time,

kw = wage rate of task i, and

iw = wage rate of task i.

If the wage rate of task i is smaller than the wage rate of the workstation, by assigning

task i to station k, there is a reduction in the idle cost which he calculates as i it w− . If the

wage rate of task i is higher than the workstation wage rate, then kw becomes iw . This

means that tasks previously assigned, and other which could also be assigned to the

workstation, will all be paid at this new higher rate. The idle time is reduced at the

expense of increasing the cost of previously assigned tasks and future task assignments.

A graphical representation of the priority rule is presented in Figure 23

Starting situation

 c

ws

wi≤ws

wt≤ws

ti

wi

wi>ws

wt≤ws

ti

wi-ws

Figure 23 Best Change in Idle Cost

95

Differences in wage rates, due to differences in level of difficulty of the tasks were not

considered in the development of the proposed SA algorithm. However, one major

contribution of the proposed algorithm is considering differences in investment costs due

to task specific equipment and tooling requirements. Therefore, a change to the rule is

proposed to benefit from its merits. The best change in idle cost is calculated as follows:

Case A: No paralleling required

0

() 0
i k i

i
i i k i i

t E if E
k

E c t E E if E
− =⎧

Δ = ⎨ − + >⎩
 , Equation 5.2

where;

kE = Equipment and tooling cost of station k prior to assigning task i, and

iE = Equipment and tooling cost of task i.

Case B: With parallel stations

()

() 0
() () 0

k i k i
i

i k i k i i

d d E p if E
k

E c d d E E p if E
− − ⋅ =⎧⎪Δ = ⎨ − − ⋅ − ⋅ >⎪⎩

 , Equation 5.3

where;

kd = Station idle time prior to assigning task i,

p = Number of parallel stations at serial position k,

kl = Workload at station k prior to assigning task i, and

id = Station idle time after assigning task i, per each c units of time=

 ()k i
i

l td c
p
+

= − , Equation 5.4

96

An example of each case with positive equipment and tooling cost is presented in Figure

24.

(5*10) (1*15) 35ikΔ = − =

(7 8)10 2.5
2id +

= − =

[](1*10) (3 2.5)*11 *2 9.0ikΔ = − − =

Figure 24 Example “Best Change in Idle Cost”

5.1.2 Optimization Model

Results from both procedures, Gaither’s and Amen’s, along with results from the SA

algorithm were compared with mixed integer linear programming (MILP) model.

Reaffirming that the mathematical model proposed in this research cannot be solved

using traditional optimization techniques a simplified MILP model is proposed.

The model is based on the following assumptions:

• Processing times are known, deterministic, and independent. Processing times

do not fluctuate due to workers expertise.

• Precedence relations between tasks are known.

97

• Work in process inventory between stations is not allowed.

This model differs from the one explained in section 3.4.2 because it assumes that

processing times are deterministic and the lateness cost is excluded from the objective

function.

The main purpose of the function presented below is minizing station costs related to the

capital investment required to create and operate any workstation and the cost of the

tooling and machinery necessary to perform a particular task in a workcenter.

1 1 1

,
K K n

k k i ik
k k i

Min Z tp S tp E x
= = =

= ⋅ + ⋅ ⋅∑ ∑∑ , Equation 5.5

The mathematical formulation of the problem is summarized as follows:

Minimize Total Cost

1 1 1

K K n

k k i ik
k k i

Min Z tp S tp E x
= = =

= ⋅ + ⋅ ⋅∑ ∑∑

Subject to: Equation 3.12 to Equation 3.18, and Equation 5.6 to Equation 5.6.

1

1,..., 1,..., ,
n

ikp i
pk

i

x t
ld for k K and p P

p=

⋅
= = =∑ Equation 5.6

1

1,..., ,
P

pk k
p

ld ld for k K
=

= =∑ Equation 5.7

 0 1,..., ,kc ld for k K− ≥ = Equation 5.8

The Equations 3.12 to 3.18 are explained in Section 3.4. Capacity limitations are

included in Equation 5.6, Equation 5.7, and Equation 5.8. The Equation 5.6 computes

98

the load of the station k with p parallels, next the final load of the station is stored in

variable kld which cannot exceed the line cycle time.

The MILP model is solved using branch and bound. Branch and bound technique entails

the definition of a group of subproblems where the range of the integer variables is

restricted. Upper and lower bounds of the cost function are calculated for nodes or

subregions of the problem. The core of the approach is the rule applied to prone nodes

and bound the problem. If the lower bound for a subregion X from the search tree is

greater than the upper bound for any other subregion Y then A can be discarded from the

search.

Obtaining the optimal solution for this model is complex and demands excessive

computational time even for moderate sized instances of the problem. The time required

finding the optimal solution increases exponentially as the number of tasks and maximum

parallels allowed are incremented. The simplest problem with eleven tasks requires 148

restrictions and 260 decision variables for a maximum number of three parallels and a

maximum number of workstations equal to the theoretical lower bound calculated using

Equation 2.1. Empirically was found that a computational time smaller than 24 hours is

only possible when the number of tasks is about twenty or less, and more than three

parallels per station are not allowed. This conclusion is drawn after running different

case studies in typical computer with a processor of 1 Giga-hertz and 528 Mega bytes

RAM memory.

Due to the magnitude and complexity of the optimization problems, it was required to

make use of an advanced optimization tool. The set of MILP problems were submitted to

99

NEOS server3 to be solved using the SCIP solver. All problems were interrupted after

reaching ten hours of computational time, even if an optimum solution was not reached.

In order to restrict the size of the problems the maximum number of parallels for each

station was set to three. This additional constraint could cause the generation of sub-

optimal solution. Hence, it is possible to find cases where the ANAMAR06 results are

better than the ones obtained from the optimization model. Because of the size of the

problems, optimal solutions were found only for Mansoor and Mitchell’s case studies.

Results from MILP are presented in Table 12. No results are presented for Tongue case

study at a ratio of 0.5, since after ten hours of computational time MILP did not find any

feasible solution.

Table 12 Optimization Results

Case Number
of tasks

Ratio
Cycle/Max
task Time

Solution
$/sec

Optimal
solution

0.5 0.06337 Yes
1.0 0.03533 Yes Mansoor 11
1.5 0.02148 Yes
0.5 0.11960 Yes
1.0 0.06333 Yes Mitchell 21
1.5 0.04255 Yes
0.5 0.22884 No
1.0 0.11517 No Buxey 29
1.5 0.07661 No
0.5 0.08944 No
1.0 0.04486 No Kildbridge 45
1.5 0.03162 No
0.5 0.09769 No
1.0 0.04725 No Hahn 53
1.5 0.03542 No
0.5 NA No solution
1.0 0.19454 No Tongue 70
1.5 0.14354 No

3 URL address: http://neos.mcs.anl.gov/

100

ANAMAR06 found good solutions in computational time of less than five minutes. The

CPU times for ANAMAR06 are plotted in Figure 25. Those varied from 12 up 260

seconds for the largest case study. This shows that in terms of computational time

ANAMAR06 outperformed the optimization model which was not capable of finding an

optimal solution in 600 minutes limit for 66% of the case studies.

ANAMAR06 Computational Time

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80

Number of Tasks

T
im

e
[S

ec
]

Ratio 0.5
Ratio 1.0
Ratio 1.5

Figure 25 ANAMAR06 Computational Time

Higher CPU times were observed for the cases where parallel stations were required,

those with a ratio of 0.5. In general the shortest CPU times were observed for cases not

requiring parallel stations, those with a ratio of 1.5.

Figure 26 summarizes the results obtained from ANAMAR06 algorithm. It shows the

average percentage difference between results from the optimization model and the SA

algorithm. Each case study was run ten times for each of the three levels of ratio between

the cycle time and the longest processing time. In all the cases the percentage cost

difference do not exceeded 12%. The ANAMAR06 solutions for the case studies with 11

and 21 tasks were at most 1.35% above the optimum solution.

101

ANAMAR06 Results Vs Optimization Model

-6.000
-4.000
-2.000

0.000
2.000
4.000
6.000

8.000
10.000
12.000

11 21 29 45 53 70

Number of Tasks

Pe
rc

en
ta

ge
 C

os
t D

iff
er

en
ce

Ratio 0.5

Ratio 1.0

Ratio 1.5

Figure 26 ANAMAR06 Results

The annealing schedule for one of the problems analyzed is plotted in Figure 27. The

objective function fluctuates drastically at the beginning of the simulation. The variance

of the cost settles down in final stages of the algorithm since the probability of accepting

bad transitions decreases significantly as temperatures approaches zero.

Annealing Schedule

0.2
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28

3.
48

E-
02

1.
98

E-
02

9.
65

E-
03

4.
96

E-
03

2.
68

E-
03

1.
52

E-
03

7.
82

E-
04

3.
62

E-
04

1.
68

E-
04

7.
77

E-
05

3.
60

E-
05

1.
67

E-
05

7.
73

E-
06

3.
58

E-
06

1.
66

E-
06

7.
69

E-
07

3.
56

E-
07

1.
65

E-
07

7.
64

E-
08

Temperature

T
ot

al
 C

os
t

Figure 27 Typical Annealing Schedule

Results for Amen’s, Gaither’s and the SA algorithm are summarized in Table 13 and are

presented graphically in Figure 28 . Higher percentage differences between the heuristic

and MILP were obtained in no iterative procedures of Amen and Gaither.

102

Table 13 Heuristics Performance

Case Number
of tasks

Ratio
Cycle/

Max task t
ANAMAR06 Modified

Amen
Gaither
Max Uti

Gaither
Max Dur

0.50 0.00000 8.278365 0.80790 0.57279
1.00 0.00000 1.330314 3.62170 1.33491 Mansoor 11
1.50 0.00000 1.596834 32.23483 34.46931
0.50 0.28974 7.525084 2.93695 1.28140
1.00 0.44291 0.484762 0.83860 1.76703 Mitchell 21
1.50 0.69695 0.430082 1.16133 1.39635
0.50 -1.35917 83.51687 20.04930 20.09300
1.00 2.79455 9.854997 16.40428 78.93055 Buxey 29
1.50 9.55830 18.5511 38.36002 35.82777
0.50 2.46775 5.636181 5.92266 6.38780
1.00 7.26275 10.23406 10.95232 11.66781 Kildbridge 45
1.50 0.49146 13.96268 1.19922 4.39016
0.50 -1.69855 0.475995 -1.02148 -0.87919
1.00 -1.69855 11.28042 10.44089 19.14654 Hahn 53
1.50 11.98645 4.322417 7.29329 2.57055
1.00 1.40434 4.055721 5.69250 0.60860

Tongue 70 1.50 -4.91687 41.02689 -3.10834 1.14129

Heuristics Performance

-8.00

-4.00

0.00

4.00

8.00

12.00

16.00

20.00

24.00

28.00

32.00

36.00

40.00

11 21 29 45 53 70

Number of Tasks

Pe
rc

en
ta

ge
 C

os
t D

iff
er

en
ce

ANAMAR06

Amen

Gaither Max Uti

Gaither Max Dur

Figure 28 Heuristics Performance

As shown in Table 13, in 88% of the cases the ANAMAR06 outperformed Amen’s and

97% of the cases it outperformed Gaither’s heuristic. The statistics summarized in Table

103

14 lead to conclude that ANAMAR06 achieves higher quality solutions with lower

variability among the complete data set. In 75% of the cases ANAMAR06 achieved a

percentage difference less than 2.5% and in 50% of the cases the percentage difference

was less than 0.44%. The highest difference was 12%. The percentage difference

representing the 75th percentile in Amen’s results is more than 4 times higher than the

corresponding value for ANAMAR06.

Table 14 Statistics Summary

Statistics ANAMAR06 Modified
Amen

Gaither
Max Uti

Gaither
Max Dur

Mean 1.630709 13.091928 9.046234 12.982746
Standard deviation 4.266504 20.630264 11.663771 20.647076
90th Percentile 8.180968 27.541418 24.923514 35.012696
75 th Percentile 2.467751 11.280423 10.952318 19.146544
50 th Percentile 0.442911 7.525084 5.692496 2.570552

The results obtained reveal that the meta-heuristic proposed in this research work

performs better than other procedures when the main objective is minimizing the total

cost of the line. Additionally, the computational time and capacity requirements of the

algorithm are minimal, allowing a typical user to perform the algorithm in a traditional

personal computer.

The results obtained from ANAMAR06, Gaither and the modified Amen correspond to a

problem without upper bound on the number of parallel workstations. It is indispensable

to perform and additional analysis in order to confirm if there is evidence that leads to

conclude that under the same circumstances ANAMAR06 performs favorably compared

with optimization.

104

A set of supplementary tests with a maximum number of three parallels was run. The

results on the percentage cost difference are summarized in Table 15. The proposed

algorithm outperformed optimization in 18% of the cases, in 90% ANAMAR06 achieve

percentage cost differences smaller than 10%.

Table 15 Performance of ANAMAR06 with Upper Bound on Parallel Workstations

Case Number of
tasks Ratio SA

% cost difference
0.5 -0.44106
1.0 2.32567 Buxey 29
1.5 6.97997
0.5 5.19867
1.0 9.84008 Kildbridge 45
1.5 0.20304
0.5 0.07284
1.0 11.88633 Hahn 53
1.5 3.42985
1.0 4.55646

Tongue 70 1.5 -5.00814

The statistical results from the bounded ANAMAR06 are presented in Table 16. The

variability of the bounded ANAMAR06 was 15% greater to the one obtained in the

unrestricted problem. In general, the average difference of the percentage cost was 3.5

for case studies from 29 up to 70 tasks. The 95% confidence interval for the mean of the

differences indicates that the solution obtained by ANAMAR06 is 2.6176% to 4.4813%

above the cost obtained by optimization. Taking into account the reduced computational

time required to perform the Simulated Annealing-based algorithm the results are

considered satisfactory.

105

Table 16 Statistical Summary of ANAMAR06 with Upper Bound on Parallel Workstations

Statistics Bounded
ANAMAR06

Unbounded
ANAMAR06

Mean 3.549429 1.630709
Standard deviation 4.931251 4.266504
90th Percentile 10.175719 8.180968
75th Percentile 6.603342 2.467751
50th Percentile 3.362586 0.442911

It is important to emphasize that one of the main characteristics of ANAMAR06 is its

capability of solving large and unbounded problems. When the upper bound of three

parallels was not included into the algorithm it was able to explore a bigger proportion of

the solution space. Hence, better results were obtained from ANAMAR06 without

constraints on the number of parallels stations allowed.

5.2 Analysis of Heuristic Robustness Performance

A concern in the development of any heuristic is the robustness under different

circumstances. The main interest is determining if the characteristics of the line

balancing problem affect the performance of ANAMAR06 and quality of results. The

variables that could increase the complexity of the problem are intuitively selected to

perform a factorial experiment. It is assumed that the line balancing problem enlarges

when the number of tasks is high, the network density is low, meaning that there is a lot

of flexibility for assigning tasks to stations, and the ratio is lower than one. As the

number of tasks increase, the size of the solution matrix increases enlarging the solution

space of the problem. On the other hand, when the network density decreases the number

of alternatives to allocate the tasks rises significantly. Moreover the role performed by

the ratio between the cycle time and the maximum task is critical in defining the

106

difficulty level of the balance. If the ratio is lower than one the solution formed by a set

of stations without parallels is not feasible and the algorithm is forced to generate parallel

workstations and therefore it is necessary to explore a wider solution space.

The list of factors chosen and their experimentation levels are shown in Table 17. The

case studies chosen exhibited similar processing times with same station and equipment

costs. The response variable was defined as the percentage cost difference between the

cost obtained in each experimental condition and the case with the lowest overall

resulting cost. In some instances the heuristic results were better than the optimization

outcomes due to the limit imposed on the time and the upper bound of three on the

number of parallel stations.

Table 17 Factorial Experiment Factors and Levels

 Factors Levels
A. Number of Tasks B. Network Density C. Ratio

Low 21 0.40 0.5
High 45 0.80 1.5

Eight replicates were performed at each combination of factor settings. A logarithmic

transformation was employed to validate normality of the data. The results summarized

in Table 18. These reveal that the algorithm is sensitive to all the factors analyzed. The

conjectures made previously about the variables “number of tasks” and “network

density” appears to be correct. The performance of the algorithm decreases when the

number of tasks increases and the network density decreases. However, definitive

conclusions cannot be drawn before a careful analysis of the main factor interactions is

performed.

107

Table 18 ANOVA for Factorial Experiment

Estimated Effects and Coefficients for Log Percentage Cost Difference
Term Effect Coef SE Coef T P value

Constant 0.2332 0.01237 18.85 0.00
Number tasks 0.3453 0.1726 0.01237 13.95 0.00
Network density -0.1948 -0.0974 0.01237 -7.87 0.00
Ratio 0.1411 0.0706 0.01237 5.70 0.00
Number tasks*Network density -0.2119 -0.1059 0.01237 -8.56 0.00
Number tasks*Ratio 0.1709 0.0854 0.01237 6.91 0.00
Network density*Ratio -0.2252 -0.1126 0.01237 -9.10 0.00
Number tasks*Network density*Ratio -0.2091 -0.1045 0.01237 -8.45 0.00
S = 0.0989663 R-Sq = 90.97% Sq(adj) =89.85%

Figure 29 shows the relations between the main factors. The slope of the lines confirms

that the second order interaction is significant for all the cases although the relation is

stronger between “ratio” and “network density”. In general, the smallest percentage

differences were achieved for the smaller number of tasks, a high network density, and a

smaller ratio forcing parallel stations.

Number tasks

Network density

Ratio

1-1 1-1

0.50

0.25

0.00

0.50

0.25

0.00

Number
tasks

-1
1

Network
density

-1
1

Interaction Plot Log Percentage Cost Difference

Figure 29 Interaction Plot

With a power of 95% the ANOVA was capable of detecting differences between means

as small as 0.23%.

0.4 0.8 0.4 0.8

108

6. SUMMARY AND CONCLUSIONS

6.1 Summary

There is a significant volume of literature on the line balancing problem. However, most

of the articles focus on obtaining solutions considering some individual aspects of the

general problem. In this research work a comprehensive algorithm was developed to

tackle the GALBP for a mixed product line with stochastic processing times and parallel

workstations.

A Simulated Annealing-based algorithm named ANAMAR06 was designed in order to

provide an accurate solution in a practical computational time to the problem of optimal

allocation of tasks minimizing the total cost of the line. The total cost of the line was

defined as the sum of a station cost, the equipment cost that relays on the specific task

requirements and finally a lateness cost which is a function of variability in task times

and the workstations’ load. It is considered that all the tasks require different tools and

equipment. Therefore, the cost of paralleling depends not only in the cost of the space,

table and labor but in the increment of tools and equipment needed to perform any

specific task in a paralleled workstation.

Precedence constraints and processing times of the individual models within a family are

integrated using composite task sequences and weighted averages. The algorithm allows

normal, triangular or uniformly distributed task times and calculates the workstation

loads using average times obtained via simulation. To calculate the lateness probability

109

when task times are either triangular or uniform, an empirical distribution developed

forehand is used in conjunction with the chosen unit load size.

The parameters of the annealing structure were defined using results from a set of

experiments. A geometric cooling rule and an adaptive cooling schedule that depends on

the size of the problem were employed in the final design of the algorithm.

Five single pass decision rules and the Mejía’s Heristic were employed in order to

analyze the impact of the initial solution on the performance of ANAMAR06 algorithm.

This experimental process leaded to the selection of an adequate procedure to provide the

initial balance to ANAMAR06.

The performance of the algorithm was evaluated based on the cost percentage difference

from the optimal solution and the computational time required. The MILP was solved

using branch and bound with a specified computational time limit and an upper bound on

the number of parallels. For 66% of the cases the MILP did not find the optimal solution

in the time limit.

A factorial experiment was conducted in order to prove the hypothesis problem

characteristics such as the number of tasks, network density and cycle time ratio had an

impact on the performance of ANAMAR06.

6.2 Conclusions

The problem analyzed in this research deals with modeling and offering a solution to a

real concern of the modern manufacturing industry. The mathematical formulation of this

110

problem becomes extremely complex and cannot be solved with traditional optimization.

A large volume of literature on Simulated Annealing corroborates the capability of the

meta-heuristic to solve models when the complexity of the problem makes difficult the

use of traditional optimization methodologies. Nevertheless, there are no specific

guidelines on the selection of the design parameters. The correct selection of the cooling

schedule and the solution generation mechanism is critical to guarantee the success of the

algorithm since those elements define the size and direction of the search performed by

the SA.

By using experimentation through the entire design process it was assured settings of

each parameter which contributes to maximize the performance of the proposed

algorithm. Completing a small random walk to avoid underestimating the initial

temperature, employing a geometric cooling rule that do not decrease drastically the

probability of accepting bad solutions and identifying a number of chains dependent on

the size of the problem were some of the issues addressed in the design stage.

Furthermore, it was analyzed the role of the mechanism to generate neighboring solutions

and the size of the perturbation. The mechanism must assure that all feasible changes in

the solution matrix are possible and the perturbation must be large enough to help

preventing the algorithm to get trapped in local optima.

A tool was developed in Matlab® to facilitate obtaining an initial line balance with

heuristic rules found in the literature review. It was demonstrated through

experimentation that the initial solution from the different rules had a significant effect on

111

the algorithm performance. The maximum duration rule generated more accurate results.

The main contribution of this thesis work is the development of an algorithm that solves

the cost oriented GLBP, achieving satisfactory solutions in reduced computational time.

The algorithm designed performs better than others non iterative widely known

procedures. In 88% of the cases ANAMAR06 outperformed Amen’s modified heuristic

and in 97% of the times outperformed Gaither’s heuristic. In 75% of the cases the

percentage difference from the optimum was smaller than 2.46% for the unbounded

ANAMAR06 on the number of parallel workstations.

6.3 Future Work

This research addresses the balancing problem for a serial line where mix product is

manufactured. It is assumed that the models manufactured in the line do not exhibit

significant differences in processing times or precedence restrictions. Therefore they are

grouped into a product family. The composite task sequence and weighted average time

are employed to integrate the individual precedence constraints and the processing times.

However, in this thesis is not presented a study of the adequacy of this methodology. It is

proposed to perform a further research to analyze the limit conditions to use the

composite task sequence for an efficient mix-product line balance. This analysis may

conclude in the definition of acceptable time differences, acceptable precedence

differences or basic rules for the appropriate use of CTS and weighted average times.

When stations may work at two segments of the line, the line becomes a U-shaped

assembly line. In a U-shape line the precedence constraints are not as restrictive as in a

112

serial line. Therefore, the U-shape exhibits higher flexibility. It is proposed to offer an

approach to solve the U-shape line balancing problem for a production scenario

characterized by stochastic processing times, mix product and parallel workstations.

Another possible extension of the research work presented in this document is the

utilization of SA to solve the balancing problem for a multi product line. In a multi

product line the set up times are not negligible and the batch size performs an important

role into the optimization model. Therefore, the problem is extended from the optimal

assignment of the resources to the optimal use of them. This model entails allocating

tasks into workstations, defining the batch size and the process sequence of the models.

113

REFERENCES

[1] Amen, M., An exact method for cost- oriented assembly line balancing. International

Journal of Production Economics. Vol 64. P. 187-195. 2000.

[2] Amen, M., Heuristic methods for cost-oriented assembly line balancing: A

comparison on solution quality and computing time. International Journal of Production

Economics. Vol 69. P. 255-264. 2001.

[3] Arcus, A.L. COMSOAL: A computer method of sequencing operations for assembly

lines. International Journal of Production Research. Vol 4. P. 259-277. 1966.

[4] Askin R., and Zhou, M., A parallel station heuristic for the mixed-model production

line balancing problem. International Journal of Production Research. Vol 35(11). P.

3095-3105. 1997.

[5] Becker, C., and Scholl, A., A survey on problems and methods in generalized

assembly line balancing. Invited review for the special issue “Balancing of automated

assembly and transfer lines” of the European Journal of Operational Research. 2003.

[6] Dar-El (Mansoor), Solving large single model assembly line balancing problems- a

comparative study. AIIE Transactions. Vol 7. P. 302-315. 1974.

[7] Erel, E., Sabuncuoglu, I., and Sekerci, H., Balancing of U-type assembly systems

using Simulated Annealing. International Journal of Production Research. Vol 39. P.

3003-3015. 2001.

114

[8] Gaither, N., Production and Operations Management, 7th ed. Duxbury Press, Boston.

1996.

[9] Ghosh, S., and Gagnon, R.J. A comprehensive literature review and analysis of the

design, balancing and scheduling of assembly systems. International Journal of

Production Research. Vol. 27(4). P. 637-670. 1989.

[10] Hoffmann, T., Eureka., A hybrid system for assembly line balancing. Management

Science. Vol. 38(1). P. 39-47.1992.

[11] Huang, M., Romeo, F. and Sangiovanni-Vincentelli, A., An efficient general

cooling schedule for Simulated Annealing. Proceedings of the IEEE International

Conference on Computer-Aided Design Santa Clara. P. 381-384. 1986.

[12] Kara, Y., and Ozcan, U., A Simulated Annealing approach for balancing and

sequencing of mixed-model U-lines. 2004.

[13] Kirkpatrick, S., Gelatt C., and Vecchi, M., Optimization by Simulated Annealing,

Science. Vol 220, No 4598. P. 671-680. 1983.

[14] Klein, R., and Scholl, A., Maximizing the production rate in simple assembly line

balancing – A branch and bound procedure. European Journal Operational Research. Vol

91. P. 367-385. 1996.

[15] McMullen, P., and Frazier, G., Using Simulated Annealing to solve a multiobjective

assembly line balancing problem with parallel workstations. International Journal of

Production Research. Vol 36. P. 2717-2741. 1998.

115

[16] Mejia, H., Minimización de los costos totales en el problema de balanceo de línea

con ciclo variable y estaciones en paralelo. 2005.

[17] Merengo, C., Nava, F., and Pozzettis, A., Balancing and sequencing manual mixed-

model assembly lines. International Journal of Production Research. Vol 37(12). P. 2835-

2860. 1999.

[18] Metropolis, N., Rosenbluth, A., Rosenbluth, M., and Teller, A., Equation of state

calculations by fast Computing machines. Journal of Chemical Physics. Vol 21. P. 1087-

1092. 1953.

[19] Pinto, P.A., Dannenbring, D.G., and Khumawala, B.M., Branch and bound and

heuristic procedures for assembly line balancing with parallel of stations. International

Journal of Production Research. Vol 19. P. 565-576. 1981.

[20] Randelman, R.E., and Grest, G.S., N-City Traveling Salesman Problem-

Optimization by Simulated Annealings. Journal of Statistical Physics. Vol 45. P. 885-

890. 1986.

[21] Reeve, R., and Thomas, W., Balancing stochastic assembly lines. AIIE

Transactions. Vol 5(3). P. 223-229. 1973.

[22] Sarin, S., and Erel, E., Development of cost model for the single model stochastic

assembly line balancing problem. International Journal of Production Research. Vol

28(7). P. 1305-1316. 1990.

[23] Scholl, A., and Becker, C., A note on “An exact method for cost-oriented assembly

116

line balancing. Jenaer Schriften Zur Wirtschaftswissenschaft ,FSU Jena. 2003b.

[24] Scholl, A., and Klein, R., SALOME: A bidirectional branch and- bound procedure

for assembly line balancing. INFORMS Journal on Computing. Vol 9. P. 319-334. 1997.

[25] Scholl, A., and Klein R., Balancing assembly lines effectively. A computational

comparison. European Journal of Operational Research. Vol 114. P. 50-58. 1999.

[26] Suresh, G., and Sahu, S., Stochastic assembly line balancing using Simulated

Annealing. International Journal of Production Economics. Vol 32(8). P. 1801-1910.

1994.

[27] Talbot , F., Patterson, J. and Gehrlein, W., A comparative evaluation of heuristic

line balancing techniques. Management Science. Vol 32. P. 430-436. 1986.

[28] Triki, E., Collette, Y., and Siarry, W., A theoretical study on the behavior on

Simulated Annealing leading to a new cooling schedule. European Journal of Operational

Research. Vol 166. P. 77-92. 2005.

[29] Van Laarhoven, P., and Aarts, E., Simulated Annealing: Theory and Applications.

Kluwer Academic Publishers. 1997.

[30] Vilarinho, P., and Simaria, S., A two-stage heuristic method for balancing mixed-

model assembly lines with parallel workstations. International Journal of Production

Research. Vol 40 (6). P. 1405-1420. 2002.

117

APPENDIXES

Appendix A: Simulated Annealing Main Algorithm

This appendix contains the code of the main routine used to solve the line balancing

problems. The code has been constructed in Matlab® 7.0. The algorithm invokes other

routines that perform specific process.

SA ALGORITHM FOR LINE BALANCING WITH PARALLEL WORKSTATIONS%

%--

%RUN SOLINICIALMIXT SUBROUTINE TO FIND AN INITIAL SOLUTION
solinitialmixt;

% SOLUTION STORED IN VARIABLES “stations” and “parallels”
%--

% COMPUTE OBJECTIVE FUNCTION FOR INITIAL SOLUTION%

loads=zeros(size(parallels,1),1);
costA=zeros(size(parallels,1),1);
for i=1:size(stations,2)
 for j=1:n
 if stations(j,i)>0;
 costA(i)=costA(i)+costequipment(j,1);%*60;
 loads(i)=loads(i)+TI2(stations(j,i));
 end
 end
end

%--
latenessmixt; %RUNS LATENESS SUBROUTINE TO FIND LATENESS COST

% LATENESS PROBABILITY STORED IN VARIABLE “probability”
%--

coststot=0;
for i=1:size(stations,2)
 coststot=coststot+parallels(i)*(costL+costA(i)+costlab)+
 costlateness*probatility
end
%--

% PERFORMS ROUTINE TO FIND INITIAL TEMPERATURE

118

initemp

%INITIAL TEMPERATURE STORED IN VARIABLE “Temperaturei”
%--
Temperature=Temperaturei;

%--
% INITIALIZE SIMULATED ANNEALING STATISTICS%

Eb=coststot;
Ec=coststot;
Sb=stations;
stationst=stations;
loadt=loads;
parallelst=parallels;
tri=1;%trials counter%
trial=1;
failedchain=0;
failed=0;

%--

density=(size(find(triu(PRE2,1)==1),1))/(n*(n-1)*0.5);

% TOTAL MARKOV CHAINS%
numbertri=ceil(3*n*max(TI2)/(density*cycletime));

while tri<=numbertri
 % MAXIMUM TEMPERATURE CHANGES%
 t=1;
% MARKOV CHAINS LENGTH
 length=ceil(1.819*sqrt(Temperature)*n*max(TI2)/(density*cycletime));

 while t<=length && failed<(0.5*length);
 failed=0;

%MAXIMUM NUMBER OF ITERATIONS FOR EACH TEMPERATURE%
 shakes=ceil(rand*4.607);
 totshakes=0;

 while totshakes<shakes;
 mutation=ceil(rand*2);
 c=1;

 while c==1;
 random0=ceil(rand*size(stationst,2));
 %STATION TO MUTATE%
 random1=ceil(rand*size(stationst,1));
 %TASK TO TRANSFER
 if stationst(random1,random0)>0;
 break;
 end
 end

%--

 %FIND NEIGHBORING SOLUTION VIA TRADE OR TRANSFERING

119

 if mutation==2;

 %PERFORMS ROUTINE TO FIND A NEIGHBORING SOLUTION USING TRADE
 trade;

 else;

 %PERFORMS ROUTINE TO FIND A NEIGHBORING SOLUTION USING TRANSFER
 transfer;

 % NEIGHBOURING SOLUTION STORED IN VARIABLES “stationst” AND
 “parallelst”

 end
 totshakes=totshakes+1;
 end
%--

 %RUNS SUBROUTINE TO CALCULATE COSTS
 fcostosmixt

 % NEW COST FUNCTION VALUE STORED IN VARIABLE “costtest”
%--

 %SIMULATED ANNEALING UPDATE
 Et=costtest;
 %UPDATE SA STATISTICS
 if Et<Eb;
 Eb=Et;
 Sb=stationst;
 Ec=Et;
 Sc=stationst;
 parallelsb=parallelst;
 loadb=loadt;
 failed=0;
 failedchain=;
 else;
 failed=failed+1;
 end
 if Et<=Ec;
 Ec=Et;
 Sc=stationst;
 loadc=loadt;
 parallelsc=parallelst;

 else Et>Ec;

%--
 %METROPOLIS CRITERION EVALUATION%
 f=exp(-(Et-Ec)/Temperature);

 if rand<f;
 %STORE STATISTICS
 Ec=Et;
 Sc=stationst;
 loadc=loadt;

120

 parallelsc=parallelst;
 end
%--
 end
 stationst=Sc;
 t=t+1;
 trial=trial+1;
 end
 Temperature=Temperature*0.95;
 tri=tri+1;
end

end

121

Appendix B: Experimental Data Set

This appendix contains the data set used to evaluate the results of the algorithm. The

processing times and precedence constraints are taken from Scholl and Klein web site

http://www.wiwi.uni-jena.de. Equipment, labor and space costs are taken from Puerto

Rican case studies.

Mansoor Case Study

Precedence relations
a b
1 4
2 4
2 5
3 11
4 6
5 7
6 8
7 9
8 10
9 10

10 11

Space $/sec Station $/sec L Cost $/ sec Labor Cost $/sec
0.0010542 0.0000081 0.0010623 0.0058650

Task Process
time (sec)

1 4
2 38
3 45
4 12
5 10
6 8
7 12
8 10
9 2

10 10
11 34

Task Equipment
Cost $/sec

1 0.0000000
2 0.0001139
3 0.0000000
4 0.0000000
5 0.0000813
6 0.0001437
7 0.0000054
8 0.0000000
9 0.0000000

10 0.0001355
11 0.0002169

122

Mitchell Case Study

Precedence relations

a b
1 2
1 3
2 21
3 4
4 5
4 21
5 6
5 7
6 8
7 8
7 14
8 9
9 10
9 11
9 12
9 13

10 15
11 15
12 15
13 17
13 18
14 19
15 16
15 18
16 17
17 20
18 19

Task Process
time (sec)

1 4
2 3
3 9
4 5
5 9
6 4
7 8
8 7
9 5

10 1
11 3
12 1
13 5
14 3
15 5
16 3
17 13
18 5
19 2
20 3
21 7

123

Task Equipment

Cost/sec
Task Equipment

Cost/sec
1 0.0002711 12 0.0000813
2 0.0000000 13 0.0000000
3 0.0000000 14 0.0000054
4 0.0000000 15 0.0000136
5 0.0000949 16 0.0000244
6 0.0000271 17 0.0001220
7 0.0001355 18 0.0000217
8 0.0000271 19 0.0000000
9 0.0000000 20 0.0000000

10 0.0000000 21 0.0000271
11 0.0001355

 Space $/sec Station $/sec L Cost $/ sec Labor Cost $/sec
0.0010542 0.0000081 0.0010623 0.0058650

124

Buxey Case Study

Precedence relations
a b

1 3
1 25
2 6
2 26
3 4
4 5
5 8
5 13
6 8
7 9
7 12
7 25
8 11
8 16
9 10

10 14
10 15
11 17
12 15
13 17
14 16
15 19
16 18
17 20
18 22
19 21
20 23
21 22
22 23
23 24
23 28
24 29
25 29
26 27
27 29
28 29

Task Process
time (sec)

1 7
2 19
3 15
4 5
5 12
6 10
7 8
8 16
9 2

10 6
11 21
12 10
13 9
14 4
15 14
16 7
17 14
18 17
19 10
20 16
21 1
22 9
23 25
24 14
25 14
26 2
27 10
28 7
29 20

125

Space $/sec Station $/sec L Cost $/sec Labor Cost $/sec
0.0024138 0.0000186 0.00510000 0.0024324

Task Equipment
Cost $/sec

1 0.0001241
2 0.0002607
3 0.0000000
4 0.0000000
5 0.0001862
6 0.0003290
7 0.0000124
8 0.0000000
9 0.0000000

10 0.0003103
11 0.0004966
12 0.0006207
13 0.0000000
14 0.0000000
15 0.0000000
16 0.0018621
17 0.0006207
18 0.0018621
19 0.0006207
20 0.0000000
21 0.0000000
22 0.0003103
23 0.0001862
24 0.0000000
25 0.0000124
26 0.0000310
27 0.0003103
28 0.0002793
29 0.0001862

126

Kildbridge Case Study

Precedence relations

a b a b

1 3 17 27
1 7 18 19
2 4 19 20
2 8 19 33
3 5 20 21
4 6 21 22
5 9 22 28
6 10 23 33
7 9 24 33
7 14 25 26
8 10 26 38
8 14 27 28
9 41 27 33

10 41 28 38
11 13 29 41
12 13 30 41
12 37 31 41
13 14 32 41
13 15 33 34
14 17 33 35
14 25 33 36
14 29 34 38
14 30 35 40
14 31 36 38
14 32 37 43
15 16 38 40
15 18 39 41
15 23 40 41
15 24 41 42
16 19 42 44
17 26 42 45

Task Process time
(sec)

1 1
2 9
3 10
4 10
5 17
6 17
7 13
8 13
9 20

10 20
11 10
12 11
13 6
14 22
15 11
16 19
17 12
18 3
19 7
20 4
21 55
22 14
23 27
24 29
25 26
26 6
27 5
28 24
29 4
30 5
31 7
32 4
33 15
34 3
35 7
36 9
37 4
38 7
39 5
40 4
41 21
42 12
43 6
44 5
45 5

127

Task Equipment
Cost $/sec

 1 0.0000000
2 0.0000000
3 0.0000419
4 0.0000000
5 0.0000000
6 0.0000000
7 0.0000734
8 0.0000000
9 0.0000000

10 0.0000000
11 0.0001048
12 0.0000000
13 0.0000000
14 0.0000881
15 0.0000105
16 0.0000315
17 0.0000000
18 0.0000189
19 0.0000000
20 0.0000419
21 0.0000000
22 0.0000000
23 0.0000000
24 0.0000210
25 0.0000000
26 0.0000000
27 0.0000000
28 0.0000000
29 0.0001048
30 0.0000000
31 0.0000629
32 0.0000000
33 0.0000000
34 0.0000210
35 0.0000000
36 0.0000000
37 0.0000315
38 0.0000000
39 0.0000419
40 0.0000000
41 0.0000189
42 0.0000000
43 0.0000000
44 0.0000063
45 0.0000000

Space $/sec Station $/sec L Cost $/sec Labor Cost $/sec
0.00093196 0.00000629 0.00093826 0.00347625

128

Hahn Case Study

Task Process
time (sec)

Task Process
time (sec)

1 971 28 69
2 142 29 99
3 142 30 70
4 142 31 70
5 103 32 158
6 96 33 191
7 99 34 70
8 1207 35 53
9 160 36 50

10 180 37 125
11 82 38 353
12 60 39 70
13 112 40 128
14 420 41 65
15 1556 42 1775
16 236 43 91
17 259 44 91
18 125 45 113
19 601 46 487
20 80 47 138
21 80 48 80
22 70 49 80
23 89 50 65
24 89 51 40
25 105 52 742
26 330 53 1085
27 132

Precedence relationships
a b a b

1 2 28 29
1 3 28 30
1 4 28 31
1 5 28 32
1 6 28 33
1 7 28 34
2 36 29 35
3 36 30 35
4 9 31 35
5 9 32 35
6 9 33 35
7 9 34 35
8 9 35 36
9 10 36 37

10 11 37 38
11 12 37 39
12 13 37 40
12 14 38 41
12 15 39 41
13 16 40 41
13 17 41 42
13 18 42 43
14 22 42 44
15 16 42 45
15 17 42 46
16 29 42 47
16 30 43 48
16 31 44 49
17 19 45 51
18 42 45 52
19 20 46 50
19 21 47 51
19 22 47 52
20 23 48 51
21 24 48 52
22 25 49 51
23 36 49 52
24 36 50 51
25 26 50 52
26 27 51 53
27 28 52 53

129

Task Equipment
Cost $/sec

Task Equipment
Cost $/sec

1 0.0000000 28 0.0002711
2 0.0000000 29 0.0000000
3 0.0000000 30 0.0000000
4 0.0000000 31 0.0001355
5 0.0000000 32 0.0000813
6 0.0000000 33 0.0000000
7 0.0000407 34 0.0000054
8 0.0002169 35 0.0000136
9 0.0000244 36 0.0001355

10 0.0000000 37 0.0001220
11 0.0000244 38 0.0000813
12 0.0000000 39 0.0000000
13 0.0001627 40 0.0000000
14 0.0000000 41 0.0000271
15 0.0000000 42 0.0000244
16 0.0000000 43 0.0000000
17 0.0000000 44 0.0000244
18 0.0000000 45 0.0000000
19 0.0000000 46 0.0001627
20 0.0000000 47 0.0000000
21 0.0002711 48 0.0000000
22 0.0000000 49 0.0000000
23 0.0000000 50 0.0000000
24 0.0000000 51 0.0000000
25 0.0008133 52 0.0000000
26 0.0000271 53 0.0000000
27 0.0001355

Space $/sec Station $/sec L Cost $/sec Labor Cost $/sec
0.00105422 0.00000813 0.00106235 0.00437500

130

Tongue Case Study

Task Process
time (sec)

Task Process
time (sec)

1 17 36 40
2 66 37 2
3 54 38 1
4 52 39 3
5 6 40 13
6 88 41 16
7 21 42 25
8 128 43 21
9 68 44 43

10 70 45 30
11 85 46 83
12 21 47 89
13 134 48 56
14 135 49 59
15 94 50 43
16 90 51 11
17 50 52 26
18 143 53 44
19 19 54 121
20 54 55 38
21 50 56 68
22 40 57 22
23 73 58 7
24 12 59 16
25 152 60 32
26 42 61 25
27 45 62 27
28 74 63 156
29 26 64 28
30 11 65 15
31 31 66 26
32 50 67 18
33 102 68 72
34 46 69 23
35 35 70 27

Precedence relationships
a b a b

1 2 28 35
1 41 29 35
1 69 30 31
1 70 31 32
2 3 32 35
3 4 33 34
3 68 34 35
4 6 35 36
4 7 35 44
5 6 35 48
5 24 35 51
5 30 35 53
6 8 35 56
7 8 35 60
8 12 35 61
9 10 35 62

10 11 36 37
11 12 37 38
12 13 38 39
12 14 39 40
13 23 40 42
14 23 41 42
15 16 42 43
16 17 43 50
16 18 44 45
17 19 45 46
18 19 46 47
19 20 47 50
19 22 48 49
19 57 49 50
20 21 51 52
21 23 52 54
22 23 53 54
23 25 54 55
23 31 57 58
23 33 58 59
24 25 59 60
25 26 61 65
25 27 62 63
25 28 63 64
25 29 64 65
26 35 64 66
27 35 64 67

131

Task Equipment
Cost $/sec

Task Equipment
Cost $/sec

1 0.00000000 36 0.00013554
2 0.00000000 37 0.00008133
3 0.00000000 38 0.00000000
4 0.00004066 39 0.00000000
5 0.00000000 40 0.00000000
6 0.00000000 41 0.00000000
7 0.00000000 42 0.00002711
8 0.00000000 43 0.00000000
9 0.00000000 44 0.00000000

10 0.00005422 45 0.00000000
11 0.00000000 46 0.00000000
12 0.00000000 47 0.00013554
13 0.00000000 48 0.00000000
14 0.00000000 49 0.00008133
15 0.00000000 50 0.00000000
16 0.00000000 51 0.00000000
17 0.00000000 52 0.00002711
18 0.00000000 53 0.00000000
19 0.00000000 54 0.00000000
20 0.00000000 55 0.00004066
21 0.00000542 56 0.00000000
22 0.00001355 57 0.00005422
23 0.00000000 58 0.00000000
24 0.00000000 59 0.00002440
25 0.00000000 60 0.00000000
26 0.00027108 61 0.00000000
27 0.00000000 62 0.00000813
28 0.00000000 63 0.00000000
29 0.00000000 64 0.00001355
30 0.00009488 65 0.00000542
31 0.00002711 66 0.00000000
32 0.00013554 67 0.00000000
33 0.00002711 68 0.00002440
34 0.00000000 69 0.00009488
35 0.00000000 70 0.00005422

Space $/sec Station $/sec L Cost $/sec Labor Cost $/sec
0.00105422 0.00000813 0.00106235 0.00729167

132

Appendix C: User Manual

USER MANUAL

The SA for line balancing interface was developed in Matlab® 7.0. This graphical user

interface provides a windows environment with four option menus.

1. Load

 Load precedence matrix

 Load processing times

 Load models participation

2. Calculate

 Calculate general variance

 Calculate composite task sequence

3. Analysis

4. Run SA

Getting Started

To perform a line balance is required to perform some sequential steps. The option

menus will activate as the user complete the stages of the process.

The first step is to open Matlab ® and type MIXTFORM. The user interface will

open in the Matlab desktop.

Upload data:

 Choose Load ► Load precedence matrix

 Select and open the excel file that contains the precedence matrixes for the

models. See Figure

133

Figure 1

The precedence relationships are represented using a square matrix with zeros and

ones. If, in the cell 3,5 (row, column) exist a 1 it means that is require to complete

task 3 before performing task 5. The precedence file must have as active worksheets

as number of models to balance. Each active worksheet must contain the precedence

matrix of the model. See Figure 2.

Figure 2

Models to balance

134

After uploading the precedence matrix the user can upload the processing times

 Choose Load ► Load processing times

 Select and open the excel file that contains the processing times

 Choose Load ► Load models participation

As the precedence file, this file the number of active worksheets must be equal to the

number of models. Each worksheet contains the processing times and the parameters of

the probability distribution in case they distribute according to the normal, uniform or

triangular distribution. For each case is defined a specific format:

o Normal times → Column 1: Mean times, Column 2: Variation coefficient.

o Uniform times → Column 1: parameter “a”, Column 2: parameter “b”.

o Triangular times: Column 1: lower endpoint, Column 2: mode, Column 3: upper

endpoint.

Calculate CTS and weighted average times

 Choose Calculate ► Calculate weighted times and variance

 Select times distribution. See Figure .

 Choose Calculate ►Calculate Composite Sequence

Figure 3

After calculating the composite sequence the system displays the resulting composite

135

task sequence and weighted average processing times as shown in Figure .

Figure 4

Input costs

 Choose Analysis ►Input Costs

 Click “Upload Equipment and Tooling Cost”

 Select and open the excel file that contains the equipment costs

 Input Station, Labor and Lateness cost

 Click “Save Costs”

Input problem parameters

 Choose Analysis ►Input Parameters

 Input Cycle time, Load quantity, Minimum utilization

 Click “Save Parameters”

Once all input data has been uploaded the user can select the option “Run SA” to solve

the line balancing problem. The interface automatically displays the results for the

balance and the discriminated cost as shown in Figure.

136

Figure 5

Additionally, it is available the plot for Cost function vs. Iteration. This plot is

accessed by clicking “See Graphs” in the Results panel. See Figure .

Figure 6

	1. INTRODUCTION
	2. LITERATURE REVIEW
	2.1 Line Balancing Problem
	2.1.1 Parallel workstations
	2.1.2 Mixed-Model Assembly Lines
	2.1.3 Stochastic Task Times
	2.1.4 Cost Oriented Models

	2.2 Simulated Annealing
	2.2.1 Design of the SA algorithm
	2.2.2 Simulated Annealing Structure
	2.2.3 Simulated Annealing Applied to Line Balancing

	3. PROBLEM DEFINITION
	3.1 Development of the Cost Function
	3.2 Line Balancing Constraints
	3.2.1 Capacity Constraints:
	3.2.2 Precedence Constraints:
	3.2.3 Technical Constraints

	3.3 Stochastic Processing Times for the Mix-Product Line
	3.4 Mathematical Formulation of the Problem

	4. METHODOLOGY FOR THE DESIGN OF A SIMULATED ANNEALING-BASED HEURISTIC
	4.1 Solution Representation and Generation
	4.1.1 Solution Representation
	4.1.2 Solution Generation

	4.2 Selection of the Annealing Schedule
	4.2.1 Initial Temperature
	4.2.2 Cooling Rule
	4.2.3 Chain Length
	4.2.4 Final Temperature
	4.2.5 System Perturbation

	4.3 Optimal SA parameter setting through DOE
	4.4 Evaluation and Selection of an Initial Solution
	4.4.1 Heuristic Rules and Procedures
	4.4.2 Comparison of Results

	4.5 Final Design Called ANAMAR06

	5. RESULTS
	5.1 Performance Evaluation of ANAMAR06
	5.1.1 Heuristic Procedures
	5.1.2 Optimization Model

	5.2 Analysis of Heuristic Robustness Performance

	
	6. SUMMARY AND CONCLUSIONS
	6.1 Summary
	6.2 Conclusions
	6.3 Future Work

	
	APPENDIXES

