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ABSTRACT 
 

Process Oriented Basis Representations (POBREP) is a multivariate Statistical 

Process Control (SPC) procedure with diagnosis capabilities developed by Barton and 

Gonzalez-Barreto (1996).  Although this methodology is effective when orthogonal 

process-oriented basis (POB) is presented, it is diagnosis capabilities are at risk when the 

POB is not orthogonal.  This research compared several methods to solve non-orthogonal 

POB�s problem.  Six scenarios with different Variance Inflation Factor (VIF) severity 

were created using the stencil printing process.  Coefficients were estimated using five 

methods:  Ordinary Least Square (OLS), Independent Subsets (IS), Simple Regression 

(SR), Ridge Regression (RR) and Constrained Solution Space (CSS).  These methods 

were compared in terms of the lower Square Error (SE) and higher number of times the 

coefficient is between a confidence interval (Count).  There were two comparable groups 

of results:  (1) CSS and RR methods with lowest SE and highest Count and (2) OLS, IS 

and SR with higher SE and lower Count. The best method estimate POBREP coefficient 

in presence of non non-orthogonal basis elements is Constraint Space Solution. 
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RESUMEN  
 

Representación de las Bases Orientadas al Proceso (POBREP) es una metodología de 

análisis multivariado desarrollada por Barton y González-Barreto (1996) que tiene la 

capacidad de diagnóstico.  Esta metodología es efectiva cuando las bases orientadas al 

proceso (POB) son ortogonales, pero esta capacidad de diagnóstico se afecta cuando los 

POBs no son ortogonales.  Esta investigación compara varios métodos que permiten 

resolver el problema de falta de ortogonalidad en los POBs.  Seis escenarios con 

diferentes severidades de VIF fueron desarrollados utilizando el proceso de impresión de 

un esténcil.  Los coeficientes fueron estimados usando cinco métodos:  Minimizar 

Errores Cuadraros (OLS), Subgrupos Independientes (IS), Regresión Simple (SR), 

Regresión �Ridge� (RR) y Solución  de Espacio Limitado (CSS).  Estos métodos fueron 

comparados con el objetivo de minimizar los errores cuadrados (SE) y maximizar el 

numero de veces que el coeficiente se encuentran entre unos limites de confianza 

(�Count�).   Hay dos grupos de resultados comparables:  (1) CSS y RR con valores 

mínimos de SE y valores altos �Count� ,(2)  OLS, IS y SR obtuvieron valores altos de SE 

y bajos de �Count�.  El método que mejor estima los coeficientes de POBREP en 

presencia de falta de ortogonalidad en los elementos de la base es Solución de Espacio 

Limitado. 
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1 INTRODUCTION 
 
1.1 General Content 

 

One of the principal objectives for all industry is to provide a quality product that 

meets and exceeds customer�s expectations.  Statistical process control techniques are 

very valuable to achieve this objective.  Understanding and improving quality is a key 

factor leading to business success, growth and achievement of enhanced competitive 

positions.  Among these activities, quality data collection and analysis is required.  Thus 

industry is moving towards a data rich environment. A lot of money is invested in 

systems that have the ability to capture multivariate quality characteristics for 100% of 

manufactured products with in-line vision systems.   

The growth of data-collection technology and the use of online computer for process 

monitoring have led to an increased interest in the simultaneous observation of several 

related quality characteristics or process variables (Lowry and Montgomery 1995).  

Multiple characteristics are being monitored simultaneously, consequently it is important 

to use and develop techniques for larger sets of multivariate process quality data.   The 

research in multivariate process control methods began with Hotellings�s (1947) work 

based on the multivariate normal distribution with known covariance matrix.  

Multivariate SPC methods objective is to: evaluate whether the process is operating under 

a stable behavior or not, provide an evaluation of the process capability, facilitate the 

detection and removal of special causes, and monitor the improvement effort results.   
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Multivariate statistical process control techniques monitor such multivariate data to 

provide a characterization of when irregular behaviors occur in the process, but do not 

provide any clues as to what caused those irregularities.    This diagnosis is necessary for 

the operator or the engineer in order to determine the assignable cause and take the 

corrective actions.   

1.2 Literature Review 
 
 

Process Oriented Basis Representations (POBREP) is a process diagnostics 

methodology developed by Barton and Gonzalez-Barreto (1996).  This methodology 

identifies the most likely causes of variation in product performance by linking patterns 

in multivariate data with pattern associated with certain kinds of production problems, 

this is the process-oriented basis.  The multivariate quality vector can be represented as a 

linear combination of these basis elements,  

     Azx =      (1) 

 
Multivariate Quality Vector x is a vector with one component for each product 

characteristic measured, for example a vector of repeated measurements over the surface 

of a part (dimensions, volumes, registration errors, etc.)  Process Oriented Basis Vector 

(POB) is a specific vector Aj that links specific manufacturing problems with a pattern of 

errors in the quality vector.  Process Oriented Basis Representation (POBREP) is the 

representation of a quality vector as a linear combination of the process oriented basis 

vectors.  Basis elements with large coefficients suggest particular causes for process 

problems.  This methodology was successfully applied by Gonzalez-Barreto (1996) in the 
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stencil printing process and by Espada-Colón (1998) in the component placement of 

printed circuit board. 

1.3 Problem Statement 
 
 

The orthogonallity of process-oriented basis elements plays an important role in the 

success of the POBREP methodology.  When the basis elements are orthogonal, 

POBREP establishes a reliable and accurate link between multivariate quality vectors and 

potential process errors characterized by a process-oriented basis.   The representation of 

the process oriented basis, the coefficients z values do not change when other orthogonal 

columns are added or deleted from process-oriented basis.  Some problems arise when 

there is severe multicollinearity or dependency among the column vectors that model 

potential process problem.  These problems occurs regard the reliability and explanatory 

power of the POBREP coefficients.  Non-orthogonallity and dependency produce 

POBREP coefficients that are highly sensitive to small changes in multivariate process 

data; further, the coefficients can be too large on the average and may have wrong signs.  

The presence of multicollinearity on process-oriented basis coefficients may result in 

OLS (ordinary least square) estimates with high variance, which may be distant from the 

true values.  This is not usually significant if the interest is to use the model, but it is of 

cardinal importance when the intent is to use the estimates for process diagnostics and 

control. 

The POBREP strategies do not rely in the prediction capability, but it is interested in 

the meaning of the basis coefficients to diagnosis and control.  Although the collinearity 
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problem is the same for Ordinary Least Squares regression and POBREP the 

interpretation of the results is different.  Many procedures have been proposed for 

diagnosing the presence of collinearity and assessing its potential harm to regression 

estimates, but these proposed procedures to manage multicollinearity problem for normal 

regression not necessarily resolve the POBREP issue.  This research will compare several 

methods that can be used to solve the presence of non-orthogonal basis elements in 

POBREP. 

1.4 Research Motivation 
 

The data rich environment provides the information required to characterize and 

improve the process, but the challenge consist in extracting meaningful information not 

only for process monitoring, but also for providing precise process diagnostic to help 

production personnel in the identification of the most likely process causes when 

irregularities are detected.   This research is motivated by the need for a multivariate SPC 

procedure with diagnosis capabilities such as POBREP methodology to provide diagnosis 

when an out-of-control situation occurs.  Although this methodology is effective when 

orthogonal process-oriented elements are presented, the diagnosis capabilities are at risk 

when the process-oriented basis is not orthogonal or even posses some dependencies 

among the basis elements.  Many real problem process deviations may exist that could 

not be represented with an orthogonal basis.  In order to address this possibility several 

methods to work with non-orthogonal process oriented basis are evaluated to deal with 

this issue. 
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1.5 Research Strategy 
 

This research analyzed non-orthogonal process oriented basis (POB) as presented in 

Figure 1.1.   The strategy is initiated by obtaining non-orthogonal process-oriented basis 

elements, potentially using the stencil printing process (Gonzalez-Barreto 1996).  

Variance Inflation Factor (VIF) by Marquardt (1970) will be used to assess 

multicollinearity severity.  Three cases with different severity in multicollinearity were 

considered.  One of them was when VIF ≤ 5 showing no serious multicollinearity 

problem, when 5 ≤ VIF < 10 a moderate multicollinearity, and when VIF > 10, a more 

serious multicollinearity problem. Two kinds of problems were analyzed: linear relation 

between two basis elements and linear relation between more than two basis elements.  

Table 1.1 shows six scenarios based on the severity of multicollinearity and the 

regressors involved in the relation.   

POB coefficients were estimated per scenario using five methods.  These methods 

were:  Ordinary Least Square, Independent Subsets, Ridge Regression, Constrained 

Space Solution and Simple Regression.  Each methodology detected the active basis for 

three cases: a) bias in one basis elements related, b) bias in two basis elements not related 

and c) bias in two basis elements related.  These methods were compared in terms of the 

lower Square Error of the estimated coefficients zi with the theoretical value and the 

maximum number of times zi is contained in a confidence interval.  Both measurements 

are presented in Chapter 3.  Final recommendations were provided in terms of which 

strategy achieves better result in order to work with non-orthogonal POB�s . 
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Figure 1.1:  Strategy for non-orthogonal Scenarios.

 
 
Table 1.1:  Strategy Matrix with non-orthogonal Scenarios. 

Variance Inflation Factor Relation 
between Basis Methods 

VIF < 5 5<VIF < 10 10< VIF 

Ordinary Least Square    
Independent Subsets    
Simple Regressions    
Ridge Regression    

Two Basis 
Elements 

Constrained space solution    

Ordinary Least Square    
Independent Subsets    
Simple Regressions    
Ridge Regression    

More than 
two Basis 
Elements 

Constrained space solution    
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1.5.1 Research Process Steps 
 

1. Develop POB�s with different non-orthogonallity problem. 

 a. Two basis elements related 

 b. More than two basis elements related 

2. Develop scenarios with different non-orthogonallity severity. 

 a. VIF ≤ 5 

 b. 5 < VIF ≤ 10 

 c. VIF > 10 

3. Generate multiple vectors with known active patterns for different cases of 

severity. 

 a. Case A : Bias in one basis element related 

 b. Case B:  Bias in two basis elements not related 

 c. Case C:  Bias in two basis elements related 

4. Obtain z representations for each solution method 

 a. Ordinary least Square 

 b. Simple Regression 

 c. Independent Subsets 

 d. Ridge Regression 

 e. Constrained Solution Space 

5. Compare each method 

 a. Estimated versus known zi representations (SE). 
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 b. Number of times zi is in the known confidence interval (Count). 

6. Select the best method per each scenario (severity), to minimize SE and maximize 

Count. 

7. Recommend a procedure for dealing non-orthogonal POB�s. 

 
1.6 Organization of the Thesis 
 

This research includes five major topics.  In chapter one the problem under study and 

research motivation was presented.  Second chapter consists of the review and analysis of 

background literature related to the problem area.  It also provides a review of the 

POBREP methodology that will form the basis for some of the research that is described 

in the subsequent chapters.  The third chapter includes stencil example scenarios, 

illustrates detailed description of the proposed methodology and explains the criteria for 

comparison POBREP solutions.  The fourth chapter consists of the stencil example 

scenarios results for Scenario 1 (best case) and Scenario 6 (worst case).  The same 

chapter presents result summary and recommendations per scenario.  Finally, research 

contribution and future research are included in the fifth chapter. 
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2 BACKGROUND R EVISION 
 
 
2.1  Process-Oriented Basis Representation Methodology  
 

Process Oriented Basis Representation (POBREP), developed by Barton and 

Gonzalez-Barreto (1996), is a process diagnostic methodology which identifies the most 

likely causes in product performance by linking patterns in multivariate performance data 

with patterns associated with certain kinds of production problems.  For a single part, a 

multivariate quality vector x is defined as the set of m measured deviations from nominal.  

For example, in a component placement process a quality vector is represented by the 

coordinates (x1, y1) and (x2, y2) (see Figure 2.1).  If displacement in X occurs the quality 

vector take values [1,0,1,0]. 

X Displacement

=

x1
y1
x2
y2

1
0
1
0

Quality Vector

Target

(x1, y1)

(x2, y2)

Actual

X Displacement

=

x1
y1
x2
y2

x1
y1
x2
y2

1
0
1
0

Quality Vector

Target

(x1, y1)

(x2, y2)

Actual

 
 

Figure 2.1:  Quality vector in a placement example.  
 

Linking process error with the resulting pattern of error over the surface of a 

manufactured part provides a way to diagnose observed error patterns in such parts, by 

representing the quality vector using a non-standard basis.  It is possible to identify a 

pattern of errors for each potential cause of process bias or variability.  Suppose that k 



 
 
 

 
 

10 

different patterns of interest can be identified for k different process causes, say a1, a2,  . . . 

ak , where ai�s are m dimensional vectors.  If the vectors a1, a2,  . . . ak are independent 

and m = k, then the cause related patterns provide an alternative basis for representing the 

same quality vector, and the representation of x in this basis is x = z1a1 + z2a2 + . . . zkak.  

That is, x can be thought of as a weighted sum of characteristics patterns, where the 

amount of pattern ai in x is indicated by the coefficient zi.  The vector z = (z1, z2, . . . , zk)� 

can be found b solving the system of linear equations:  x = A z,  where A is the matrix 

composed of column vectors a1, a2,  . . . ak:   A = [a1 | a2 |  . . .| ak]. 

Basis # 1 Basis # 2 Basis # 3

1 0 1
0 1 -1
1 0 -1
0 1 1

A =

Basis # 1Basis # 1 Basis # 2Basis # 2 Basis # 3Basis # 3

1 0 1
0 1 -1
1 0 -1
0 1 1

A =

1 0 1
0 1 -1
1 0 -1
0 1 1

A =

 
Figure 2.2:  Process oriented basis for a placement example. 

 

A is called a process-oriented basis (POB).   For the component placement 

example the Figure 2.2 shows the possible POB.  The POB presents X displacements, Y 

displacement and rotation.  The observed quality vector x was decomposed into patterns 

corresponding to known causes. By solving the system of linear equations to find the z 

vector, a process-oriented basis representation is formed.  The components of the z vector, 

zi ,  i= 1, 2, . . . , k, are called POBREP coefficients.  Using the process-oriented basis 
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representation z, diagnosis is possible:  potential causes are associated with patterns (ai) 

having large positive or negative POBREP coefficients (zi).  Figure 2.3 shows a graphic 

representation of the POBREP methodology for a placement example. 

Note that in many cases it will not be necessary to construct a complete basis.  This 

corresponds to a situation where k < m.  When k < m, the process-oriented basis may not 

span the subspace that x lies in, hence there may be no exact solution to the linear system.  

In this situation, x can be represented as a linear combination of k basis elements and a 

residual vector in the following regression equation form: 

x = Az + e      (2) 

this can be solved by the ordinary least squares method (OLS).  POBREP methodology 

differs from traditional regression context in that regression the equation is solved for 

many consecutive quality vectors, allowing the analysis of the behavior of z and e over 

time. 
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Observed Error Patterns (x)

Hypothesized or Observed Process Deviations

Process Oriented Basis Matrix A
A = [ A1 | A2 | ........An ]

Process

x = Az + ε - solving the linear system (via least squares if A is not  
full rank) will provide a representation of the error vector   
in the basis matrix space: zi are coefficients for the Ai

.........

Potential process causes are associated with patterns having large zi coefficients

A1 = 

Z1 Z2 Z4Z3 Zn

��...

1
0
1
0
1
0
1
0

Observed Error Patterns (x)

Hypothesized or Observed Process Deviations

Process Oriented Basis Matrix A
A = [ A1 | A2 | ........An ]

Process

x = Az + ε - solving the linear system (via least squares if A is not  
full rank) will provide a representation of the error vector   
in the basis matrix space: zi are coefficients for the Ai

.........

Potential process causes are associated with patterns having large zi coefficients

A1 = 

Z1 Z2 Z4Z3 Zn

��...

1
0
1
0
1
0
1
0

 
 

Figure 2.3:  POBREP methodology for a placement example. 
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2.2 Multicollinearity 
 

The purpose of a regression model is to identify the relative effects of the regressors 

variables, predict or estimate and select of an appropriate set of variables for the model.  

If there is no linear relationship between the regressors, they are said to be orthogonal.  In 

regression when several regressors are highly correlated, this problem is called 

multicollinearity or collinearity.  The multicollinearity is a serious problem that impacts 

the usefulness of a regression model, because it affects the ability to estimate regression 

coefficients adequately.  Montgomery and Peck (1992) present four primary sources of 

multicollinearity: 

• The data collection method employed 

• Constraints on the model or in the population. 

• Model specification 

• An overdefined model 

For the basis-oriented elements it is necessary to know and explain collinearity, 

because the coefficients are key to provide clues about what happens in the process.  If 

these coefficients are over estimated or have the wrong sign the interpretation of what 

happens in the system is inappropriate.  
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2.2.1 Methods to diagnose multicollinearity 
 

The usual approach to address multicollinearity in this context is to eliminate some of 

the regressors variables from consideration.  Mason, Gunst, and Webster (1975) give 

three specific recommendations:  1) redefine the model in terms of a smaller set of 

regressors, 2) perform preliminary studies using only subsets of the original regressors, 

and 3) use principal components type regression methods to decide which regressors to 

remove from the model.  The first two methods ignore the interrelationships between the 

regressors and consequently can lead to unsatisfactory results.  Other approaches include 

collecting additional data and the use of estimation methods other than least squares that 

are specifically designed to combat the problem induced by multicollinearity. 

Many procedures have been proposed for diagnosing the presence and the degree of 

multicollinearity.  There are established mathematical tools to measure the level of non-

orthogonallity among POB elements.  These tools include correlation matrix, variance 

inflation, eigensystem analysis, and singular value decomposition.   

The correlation matrix Q of A�A used (Webster, Gunst, Mason, 1975) is a very simple 

and helpful method for detecting dependencies between pairs of elements.  Pair wise 

correlation close to +1 or �1 indicates near linear dependencies between the 

corresponding columns.  When more than two elements of matrix A are involved in a 

linear dependency, there is no assurance that any of the pair wise correlations will be 

large.  
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Variance inflation factor (VIF) can be represented by the diagonal elements of          

C = (Q)-1 , Cjj can be written as :  Cjj = (1- Rj
2)-1   (Marquardt 1970), where Rj

2  is the 

coefficient of determination of zi, this is the fraction of all variance in one Aj that can be 

predicted from the other Aj.  A general rule is that if any of the VIF�s is greater than 4.0 

one should suspect that multicollinearity might be a problem.  If any of the VIF�s exceeds 

10, the associated regression coefficients are poorly estimated due to multicollinearity 

presence.  There are instances where the maximum VIF is less than 10 and serious non-

orthogonallity is present.  For this reasons some data analysts prefer to use a maximum 

VIF of 4 or 5 as cutoff point (Marquardt, 1970) (Snee, 1973) (Belsley, Kuh, & Welsch, 

1980). 

In small models, the variables producing the non-orthogonallity are usually apparent.  

It may not be possible to determine in large models with several large VIF�s which 

columns are involved in the relationship.  There may be two or more subsets of columns 

of A that exhibit within-subset multicollinearity.  In these situations, some analysts have 

found that an eigenvalue-eigenvector analysis of the correlation matrix is helpful.  

Marquardt has shown that there is a direct correspondence between the variance inflation 

factors and the eigenvalues and eigenvectors of the correlation matrix (Snee, 1973). 

The characteristic roots or eigenvalues are used to measure the degree of 

multicollinearity among vectors in the matrix A�A.  If there are one or more near linear 

dependencies in the matrix, then one or more of the characteristic roots will be small.   

Some analysts prefer to examine the condition number of A�A arguing that instead of 
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looking at small eigenvalues it is better to consider a ratio of the range of these roots. The 

condition number is defined as 
min

max

λ
λ=k  a measure of the spread in the eigenvalues 

spectrum of A�A.   If the condition number is less than 100, there is no serious problem 

with multicollinearity. Condition numbers between 100 and 1000 indicate moderate to 

strong multicollinearity and if k exceeds 1000, severe multicollinearity is present 

(Montgomery and Peck 1992).   The condition number helps to identify the presence of 

dependencies and decomposing A�A help to understand the elements involved in the 

dependency.   

Belsley, Kuh and Welsch (1980) propose a similar approach for diagnosing 

multicollinearity, based on the singular value decomposition of A.  Any n x p matrix A, 

considered here to be a matrix of n observations on p variant�s, may be decomposed as:   

As = UDT� where U�U = T�T = I and D is a diagonal matrix with nonnegative elements 

µk, k = 1, 2, � , b called the singular values of As.   The singular value decomposition 

(SVD) of matrix As is closely related to the familiar concepts of eigenvalues and 

eigenvectors, but some of the differences provides insight diagnostics. The degree of 

dependency relies on how small the minimum singular value is relative to the maximum 

value. This ratio is known as the condition index, which is similar to the condition 

number that provides a measure against which to measure the smallness. This index is 

defined by  
k

k µ
µη max=    k = 1, � , b.  The estimated variance of each coefficient provides 

the dependency relation.  This is decomposed into a sum of terms each of which is 
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associated with a singular value. This suggests that an unusually high proportion of the 

variance of two or more coefficients concentrated in components with same small 

singular value provides evidence that the corresponding near dependency is causing 

problems.  Belsley, Kuh and Welsh (1980) suggested regressing all but one of the 

columns involved in the dependency and using the remaining one as the response, in 

order to understand the relationship among these variables  

The methods discussed were previously, used to detect and understand the nature of 

the dependencies when these exist.  It is important to determine the methodology that 

helps dealing with this condition.  There were other mathematical tools used to manage 

the presence of multicollinearity. Some of these tools were Ridge Regression, Principal 

Components, Latent Root, Constrained Space Solution, Independent Subsets, Simple 

Regressions and Stepwise Analysis.  

2.2.2 Methods to manage multicollinearity 
 

Hoerl and Kennard (1970) proposed the used of Ridge Regression to improve on the 

problem of high sensitivity.  This approach abandons the usual least square solution and 

allows a small bias on the estimates to obtain a greatly reduced variance with a larger 

probability of being close to the true parameter value. When multicollinearity occurs, the 

variances are large, thus the estimates are far from the true values. Ridge Regression is an 

effective counter measure because it allows better interpretation of the regression 

coefficients by imposing some bias on the regression coefficients and shrinking their 

variances.  
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Principal Components is other method to obtain biased estimators of regression 

coefficients using the canonical form.  The principal components regression approach 

combats multicollinearity by using less than the full set of principal components in the 

model.  To obtain the principal component estimator, assume that the regressors are 

arranged in order of decreasing eigenvalues λ1 > λ2 > ... λp > 0.  Suppose that the last s of 

these eigenvalues is approximately equal to zero.  In principal components regression the 

principal components corresponding to near-zero eigenvalues are removed from the 

analysis and least squares applied to the remaining components.  A simulation study by 

Gunst and Mason (1977) showed that principal components regression offers 

considerable improvement over least squares when the data are ill conditioned.  They also 

point out that another advantage of principal components is that exact distribution theory 

and variable selection procedures are available (Montgomery and Peck 1992). 

Other procedure that follows the same philosophy as the principal components 

method is the Latent Root Regression Analysis developed by Hawkins (1973) and 

Webster et al. (1974).  The procedure forms estimators from the eigenvalues (or latent 

root) of the correlation matrix of regressor of response variables, Gunst et al. (1976) and 

Gunst and Mason (1977) indicates that latent root regression may provide considerable 

improvement in mean Square Error over least squares.  Gunst (1979) points out that 

latent root regression can produce regression coefficients that are very similar to those 

found by principal components, particularly when there are only one or two strong 

multicollinearity in A.     
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Principal component and Latent Root require a matrix A=[Y : X] would be a matrix 

of values of responses and regressor variables which were normalized but not centered.  

This new matrix does not have the meaning of the original matrix of POB�s.  These 

methods eliminate the small eigenvalue changing the meaning of the POB as physical 

patterns.  Because these methods change the physical pattern meaning, they were not 

included in this research. 

Birgoren (1997) developed a general constrained space solution (CSS) strategy for 

solving the multicollinearity problem.  This technique restricts the solution space for the 

regression coefficients, forcing the solution to be consistent with the physical properties 

of the monitored process.  For many processes, there is a highest attainable level for the 

magnitude of each process error which is very consistent with a process-oriented basis 

element.   The CSS technique uses theses highest errors levels to bind the POBREP 

coefficients from above or from below, or both; hence it imposes inequality constraints 

on the feasible space for the POBREP coefficients.   

Independent Subsets is a method for constructing several models when the POB are 

non-orthogonal.   If influential groups of largest size m are suspected, there are ∑ = 






m

i i
n

1
 

such cases for which calculations are required. The real challenge is to determine and 

create the Independent Subsets for the process oriented basis elements.  The objective is 

to understand the linear dependencies using Singular Value Decomposition methodology 

to form independent sets of basis elements to be analyzed separately using the OLS. 
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Simple Regression is a suggested method when multicollinearity problem is detected.  

The idea behind the Simple Regression is perform an individual regression to each POB 

to determine which pattern arises.  The contribution of this method is the individual 

projection of POB that can provide accurate coefficient estimators with out the impact of 

other non-orthogonal basis elements. 

Another common approach to select a subset of variables from a complex model is 

stepwise regression. A stepwise regression is a procedure to examine the impact of each 

variable to the model step by step. The variable that cannot contribute much to the 

variance explained would be thrown out. There are several versions of stepwise 

regression such as forward selection, backward elimination, and stepwise. If eliminated 

elements of the basis are possible without affecting the diagnosis capabilities of POBREP, 

it is a sensible thing to do.  However, in many instances this might not be a good solution 

since all basis elements might be of interest for performing different diagnostics. 
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3 Non-Orthogonal Basis Elements 
 
3.1 Introduction 

 

The Process-Oriented Basis Representative (POBREB) methodology relies on the 

estimation of the basis coefficients zi.  Using POBREP diagnosis is possible, because 

potential causes are associated with patterns (Ai) having large positive or negative 

POBREP coefficients (zi). This methodology uses ordinary least squares (OLS) as the 

solution method for the linear system:  

z = (A� A)-1A�x     (3) 
 

The multivariate quality vector can be represented as a linear combination of these basis 

elements. 

X = Az+ε      ε~Nb(0,σ2I)     (4) 
 

The standard error for the z coefficients is given by jjc*�σ  where sigma square is 

the means Square Error and cjj is the jth diagonal element of (A�A)-1.  The correlation 

matrix A�A is nearly a diagonal matrix if the column vectors are orthogonal to each other.  

The orthogonallity of process-oriented basis elements plays an important role in the 

success of the POBREP methodology.  When the basis elements are orthogonal, 

POBREP establishes a reliable and accurate link between multivariate quality vectors and 

potential process errors characterized by a process-oriented basis.   The values of 

coefficients zi do not change when other orthogonal columns are added or deleted from 

process-oriented basis.  But in some cases the process-oriented basis elements could not 
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be orthogonal. When the basis elements are not orthogonal different problems arise 

regarding the reliability and explanatory power of the POBREP coefficients. 

Consider the following non-orthogonal matrix A and quality vector x. 
 
















=
















=

35
37
25

401501
302001
201001

xA  

After solving this regression problem using OLS the following are the coefficients 

estimation:  x = 15.00 - 0.37z1 + 2.33z2.  Individual regressions are performed on z1 and 

z2, the coefficient estimation is:  x = 17.30 + 0.10z1 and x = 15.20 + 0.53z2.  Different 

coefficients are obtained from the first regression in comparison to the individual ones, z1 

changes the sign and z2 reduce significantly the value.  That is a consequence of the non-

orthogonal matrix A.  Coefficients in POBREP establish what happens in the process, if 

these are over estimated or have wrong sign the interpretation could be incorrect.  

Multicollinearity refers to linear dependencies among the column vectors of the 

matrix A.  When dependencies holds exactly, Det(A) = 0 and this matrix is not invertible. 

The implementation of the POBREP methodology depends on the degree of 

orthogonallity among the columns of A.   Three cases are discussed below:  

• Process-oriented basis elements are orthogonal and linearly independent 

• Process-oriented basis elements are non-orthogonal and linearly independent. 

• Process-oriented basis elements non-orthogonal and linearly dependent. 
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3.2 Matrix A Orthogonal and Linearly Independent 
 

When A is a complete orthogonal basis, the coefficients estimates will be reduced to 

the solution z = A-1x.  For some cases it will not be possible or practical to construct a 

complete basis.  In this case, the number of basis elements will be less than the number of 

measurements in the error quality vector.  This incomplete basis case is solved using the 

Ordinary Least Squares (OLS) solution.  

3.3 Matrix A Non-Orthogonal and Linearly Independent 
 

The first step will be to assess if the basis elements are non-orthogonal and/or linearly 

dependent.  In this research, the severity of the multicollinearity problem is based on the 

Marquardt VIF factor. For each elements j in A the VIF is calculated.  If Max{VIF} ≤ 5.0 

the multicollinearity problem will not be considered severe. In this case the estimates for 

the z coefficients are obtained with the least squares method, for the case for the matrix A 

full rank and orthogonal.  If any of the VIF�s are greater than 10, the corresponding least 

squares are likely to be so poorly estimated that a modification of the model or estimation 

criterion may be required (Snee, 1973).  Least square estimates for the z coefficients 

when strong collinearity is present have minimum variance in the class of unbiased linear 

estimators, but this variance may be large. These large variances results in two practical 

difficulties when severe multicollinearity is present: (1) The estimators can be very 

unstable, that is, sensitive to small perturbations in the data; (2) the estimators tend to 

give results for the coefficients that are too large in magnitude, either positive or negative.  
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Several methods for managing these problems were discussed in chapter two of this 

research.   

3.4 Matrix A are Linearly Dependent 
 

When an exact linear dependency exists among the elements of A, solution can not be 

obtained including all basis elements since A�A cannot be inverted. Understanding the 

nature of dependencies becomes fundamentals in dealing with this problem, using the 

same methods mentioned in section 3.3.    
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3.5 Stencil Printing Operation 
 

An example for this research is the stencil printing operation in electronics 

manufacturing, the case study obtained from Gonzalez-Barreto (1996).  This operation 

uses a vision system to take measurement of solder paste volume at several locations 

along a rectangular region on which an integrated circuit will be mounted later.     In this 

process, solder paste is applied by squeegee to all pads on the board.  Due to the 

dimension of the leads for fine-pitch components, solder paste volume on each pad is 

considered critical for this operation.  This measured is related to two of the most 

common problems in printed circuit board assembly:  1) excess solder may cause short, 2) 

lack solder might results in an open.  This component is measured at 20 different 

locations on a single part, five measurements are recorded per side as presented in Figure 

3.1.  Outward arrows represent a positive deviation (excess volume), and inward arrows 

represent a negative deviation (insufficient volume). 

 
Figure 3.1:  Multiple dimension quality characteristic (n = 20 space) 
corresponding to too much solder paste uniformly at all 20 locations 
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3.5.1 Generating Process Oriented Basis (POB) Elements 
 

Process-oriented basis elements (POBs) for the stencil printing operation were 

defined with the help of knowledgeable process engineers.  Figure 3.2 shows the 

specified POBs with their corresponding causes.  For this case study, four process 

oriented basis elements that cause process variation for the stencil printing operation was 

identified.   The following problems in the stencil printing operation are represented by 

four basis elements:  Poor board alignment on the horizontal axis, insufficient paste, poor 

board alignment on the vertical axis, and squeegee pivot problem.  In this operation, lack 

or excess of solder paste volume at each printing location around the rectangular printing 

area causes serious quality problems, and each of the four problems gives rise to a 

distinct pattern of deviations in the amount of solder paste around the rectangular area.  

Table 3.1 shows the corresponding four vectors for the elements describe above.  

Gonzalez-Barreto (1996) used two additional elements that showed a non-linear behavior, 

but in order to simplify this analysis these two POBs will not be included.  

 
Figure 3.2:  Process Oriented Basis for the stencil printing process  

A1 A2 A3 A4 

� Poor Board Alignment 
� Insufficient Paste 

� Poor Board Alignment 
� Squeegee Pivot Problem 

� Poor Board Alignment � Insufficient Paste    � Poor Board Alignment  � Squeegee Pivot Problem
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Table 3.1:  Process Oriented Basis for the stencil printing process 
 

Position A1 A2 A3 A4 

1 0 1 1 0 

2 0 0.5 1 0 

3 0 0 1 0 

4 0 -0.5 1 0 

5 0 -1 1 0 

6 0 1 -1 0 

7 0 0.5 -1 0 

8 0 0 -1 0 

9 0 -0.5 -1 0 

10 0 -1 -1 0 

11 -1 0 0 1 

12 -1 0 0 0.5 

13 -1 0 0 0 

14 -1 0 0 -0.5 

15 -1 0 0 -1 

16 1 0 0 1 

17 1 0 0 0.5 

18 1 0 0 0 

19 1 0 0 -0.5 

20 1 0 0 -1 
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The basis elements in Table 3.1 are orthogonal, but not always the POBs for a given 

process will be orthogonal.  Figure 3.3 presents non-orthogonal basis elements for the 

stencil printing process.  Process experts can provide expected patterns based on well-

understood physical phenomena.  Eight additional process oriented basis elements that 

caused process variation in stencil printing operation were identified for the stencil 

printing operation.  These problems were:  inconsistence in squeegee pivot, insufficient 

paste, and insufficient pressure in one side of the board, snap- off distance, poor board 

alignment, and stencil problem.  Table 3.2 shows the corresponding eight vectors for the 

elements describe in Figure 3.3. 

 

Figure 3.3:  Non-Orthogonal Process Oriented Basis for the stencil 

A5 A6 A7 A8 

� Inconsistence 
Squeegee Pivot 
Problem 

� Insufficient squeegee 
pressure in one side 
of the board

� Squeegee Pivot 
Problem 

� Insufficient paste

� Snap-off distance in 
one of the corner 

A9 A12 A13 A14 

� Stencil Problem
� Snap-off distance in 

two corner 
 

� Insufficient  paste 
& Inconsistent 
squeegee pivot 

� Insufficient squeegee 
pressure in one side of 
the board 
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Table 3.2:  Non-Orthogonal Process Oriented Basis for the stencil printing process 
 

Position A5 A6 A7 A8 A9 A12 A13 A14 

1 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 

6 0 0 0 0 1 0 0 0 

7 0 0 0 0 1 0 0 0 

8 0 0 0 0 1 0 0 0 

9 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 

12 0 -0.25 0 0 0 0.25 0 0 

13 0 -0.5 0 0 0 0.5 1 0 

14 0 -0.75 0 0 0 0.75 1 0 

15 0 -1 0 0 0 1 1 0 

16 -1 0 0 0 0 0 0 1 

17 -0.5 0.25 0.25 0 0 0.25 0 1 

18 0 0.5 0.5 1 1 0.5 1 1 

19 0.5 0.75 0.75 1 1 0.75 1 1 

20 1 1 1 1 1 1 1 1 
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3.5.2 Generating and Validating Quality Vector 
 

In order to compare the methods when multicollinearity is presented among the 

POB�s elements, data vectors are simulated.   To present different scenarios of non-

orthogonal POBREP basis, data with known structure was generated using Matlab® 

program (see Appendix A1).  For this case only patterns of deviations from the target 

(bias) were generated.  The quality vector was generated using random normal variables.   

[ ]( )( ) ZANx
b

j
jjj

rrr ++×=∑
=1

1,0 γσ    (5) 

where,  
 xr  = quality vector 

[ ]1,0N  = random normal variable 

jσ  = standard deviation for basis element j 

jA
r

 = POB element j 

jγ  = offset for basis element j 

 b  = # of basis elements under consideration 

( )sigmaNZ b ,0~
r

  

sigma = standard deviation for the error 

 
To validate the generator 60 samples were created.  Table 3.3 shows data for the first 

30 samples with no bias associated, and for the last 30 samples were created with bias in 

the first basis elements.   Figure 3.4 present data generated using equation 5 when there is 

not bias in the basis elements, no trend is detected and all the boxes cover zero.  The 

boxplot presented in Figure 3.5 shows the bias in the first basis element.   In Figure 3.1 

the basis elements 1 presented low value in 11-15 and high values in16 -20, in the same 
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way the boxplots appear in Figure 3.5.  From the manufacturing standpoint this means 

that poor board alignment or insufficient paste is presented. 

 
Table 3.3:  Baseline Case 

First 30 Samples Last 30 Samples 
Elements 

Bias Std.Dev. Bias Std.Dev. 

1 0 0.2887 2 0.2887 

2 0 0.2887 0 0.2887 

3 0 0.2887 0 0.2887 

4 0 0.2887 0 0.2887 
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Figure 3.4:  Box plots for generate data when no basis element is present 
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Figure 3.5:  Box plots for data generated when basis element 1 offset 
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Figure 3.6 presents the z representations for each 4 basis with no basis elements 

active for the first 30 samples and the last 30 with first basis (represented by z1=2) with 

the expected bias for the first basis element.  z1 presents the largest coefficients in the last 

30 samples and all other representations lie around zero, indicating nonrelevance of those 

basis elements.  This generator was validated for each basis and including more than one 

basis showing good results.  The procedure explained above showed the functionality of 

the data of the data vector generator. 
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Figure 3.6:  zi representations when basis element 1 experience offset. 
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3.5.3 Diagnosis of Multicollinearity in the Process Oriented Basis Elements 
 

To provide diagnosis about the condition of the A matrix the Correlation Matrix, the 

Variance Inflation Factor, Eigenvalue System, and Singular Value Decomposition of the 

POB elements were evaluated.  A program prepared in Matlab® facilitated the evaluation 

of these methods.  In this work, the Variance Inflation Factor by Marquardt (1970) will 

be used to assess multicollinearity severity and Singular Value Decomposition (Belsley, 

Kuh, Welsch (1980)) to understand the relation between the basis and the contribution to 

the variability. 

In POBREP one question is if the matrix A is orthogonal.  Consider matrix A with 7 

basis elements from stencil printing problem, A = [A1|A2|A3|A4|A7|A12] , the first four 

basis are orthogonal taken from Table 3.1, and the last two non-orthogonal basis taken 

from Table 3.2.  If we observe the matrix A�A is evident that the matrix is not orthogonal, 

given the nonzero off-diagonal elements. 
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To understand the severity of the multicollinearity issue we use the Variance Inflation 

Factor (VIF).  For the previous matrix A VIF = [3 1 1 2 5 4].  The maximum Variance 

Inflation Factor is 5, this indicate that the multicollinearity is not severe because VIF is 

less than 5.   
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Using the stencil case study some of these basis elements are grouped in order to 

construct cases with different multicollinearity severities.  The severity of the problem 

will be classified as follows:  VIF ≤ 5 not serious, 5 < VIF ≤ 10 moderate and VIF > 10 

as more serious.  Also, relationships that involve two basis elements and more than two 

basis elements will be incorporated into the study.  All this strategy was presented in 

Figure 1.1.  Table 3.4 shows the six cases with their respective POBs that will be 

considered in this study.  Each scenario was evaluated using three cases: A, B and C.  

Case A adds bias to one of the basis element in the relation, Case B activates two basis 

elements not related and Case C activates two basis elements involved in the relation.  A 

total of 18 simulations were ran considering six scenarios and three cases. 

Table 3.4:   Scenarios for the stencil printing process 
 

Variance Inflation Factor Relation 
between Basis VIF ≤ 5 5 < VIF ≤ 10 VIF > 10 

Two Basis 
Elements 

Scenario 1 
A=[A1|A2|A3|A4|A7|A12] 
 
VIFmax=5 
Relation:  A7 and A12 
Case A:  z7=2 
Case B:  z7=2, z2=3 
Case C:  z7=2, z12=3 

Scenario 2 
A=[A1|A2|A3|A4|A7|A8] 
 
VIFmax=10 
Relation:  A7 and A8 

Case A:  z7=2 
Case B:  z7=2, z2=3 
Case C:  z7=2, z8=3 

Scenario 3 
A=[A1|A2|A3|A4|A5|A6| 
A7|A9] 
VIFmax=15.5 
Relation:  A6 and A7 
Case A:  z7=2 
Case B:  z7=2, z2=3 
Case C:  z7=2, z6=3 

More than 
two Basis 
Elements 

Scenario 4 
A=[A2|A3|A4|A7|A14] 
 
VIFmax=5 
Relation:  A4, A7 and A14 

 
Case A:  z7=2 
Case B:  z7=2, z2=3 
Case C:  z7=2, z14=3 

Scenario 5 
A=[A1|A2|A3|A4|A7|A12| 
A13] 
VIFmax=10 
Relation:   A7, A12  

and A13 
Case A:  z7=2 
Case B:  z7=2, z2=3 
Case C:  z7=2, z14=3 

Scenario 6 
A=[A1|A2|A3|A4|A7|A8| 
A12|A13] 
VIFmax=20 
Relation:  A7, A8, A12 
and A13 

Case A:  z7=2 
Case B:  z7=2, z2=3 
Case C:  z7=2, z12=3 
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Appendix B presents all the VIF per each case.  Scenario 1 has a weak 

multicollinearity since VIF = 5.  In Scenario 2 the higher Variance Inflation Factor is 10, 

indicating a moderate multicollinearity.  Scenario 3 shows a severe multicollinearity with 

a maximum VIF = 15.5.  The next three cases are when there are more that two basis 

elements related. The maximum VIF in Scenario 4 is 5, there is not severe 

multicollinearity.  Scenario 5 shows a moderate multicollinearity with a maximum      

VIF = 10.  The worst case is Scenario 6 with VIF = 20 as maximum value.  

To understand the relation among the basis element and the contribution with the 

variability, Singular Value Decomposition (SVD) was used to decompose the variance.  

In the following paragraphs a description of the SVD method used to identify relationship 

between POB elements will be presented.   

The rescaled matrix As can be decomposed as: 

As = UDT�     (6) 

Where U�U =T�T=I and D is a diagonal matrix with nonnegative elements µk, k=1, �, b 

called the singular values of As.  

The degree of dependency relies on how small the minimum singular value is relative 

to the maximum value. This ratio is known as the condition index which is similar to the 

condition number that provides a benchmark against which to measure the smallness. 

This index is defined by  

k
k µ

µη max=    k = 1, � , b    (7) 
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According to Belsley, Kuh, Welsch, (1980), if the condition index is greater than 10 the 

relation exist.  The nature of the dependency can be obtained by looking at the variance 

of the estimated representations.  The variance-covariance matrix of the least square 

estimator z=(As� As)-1A�x is σ2(As� As)-1. Using the SVD, As = UDT� the variance of z is 

∑=
j j

kjt
zT 2

2
2)(

µ
σ      (8) 

 
where the µj�s are the singular values and the tkj�s are obtained from the T matrix. Note 

that this decomposes the variance of the components, each associated with one and only 

one of b singular values (or eigenvalues µj
2).  Since the singular values appear in the 

denominator, those components associated with near dependencies, small µj, will be large 

relative to other components. This suggests that an unusually high proportion of the 

variance of two or more coefficients concentrated in components with same small 

singular value provides evidence that the corresponding near dependency is causing 

problems.  

 Define the k jth variance decomposition proportion as the proportion of the 

variance of the kth basis element associated with the jth component of its decomposition. 

These proportions are calculated as   

2

2

j

kj
kj

t
µ

φ =      (9)      
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==∑
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Then the variance-decomposition proportions are  

bjk
k

kj
kj ,...,1,, ==

φ
φ

π
    (11) 

Weak dependencies are associated with condition indexes around 5 or 10, whereas 

moderate to strong relations are associated with condition indexes of 30 to 100 (Belsley, 

Kuh and Welsch (1980)).  In this research the involvement of a basis element in a 

relationship is established when the condition index exceeds five (5) and the variance 

decomposition proportion is greater than 0.1. 

  Table 3.5 presents one condition index 6.8, indicating there is a relation between the 

basis.  Variance proportion shows the poor alignment and insufficient paste, 0.63 and .24 

(greater than 0.10) are the related basis elements corresponding to A7, A12 and A13. 

Table 3.5:    Singular Value Analysis for Scenario 1 
 

Variance Proportion 
Condition Index 

A1 A2 A3 A4 A7 A12 

1.0000 0.0271 0 0 0.0006 0.0017 0.0003 

1.0398 0 0 0.1000 0 0 0 

1.1992 0.0028 0 0 0.0343 0.0016 0.0120 

1.4705 0 0.2000 0 0 0 0 

2.2904 0.0019 0 0 0.1138 0.0114 0.0488 

6.8100 0.0683 0 0 0.0012 0.6253 0.2389 

 
Similar analysis was performed for each scenario and case (see Appendix B) in Table 

3.4, there is a summary of the relations per scenario.  In Scenario 2 the relation is 
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between A7 and A8.  Scenario 3 the relation is with A6 and A7.  The basis elements A4, A7 

and A14 are related in Scenario 4.  Scenario 5 shows the dependency between basis A7, 

A12 and A13.  In Scenario 6 the relation is between A7, A8, and A12. 

There are three different cases per scenario that consist of a total of 18 configurations 

to analyze (see Table 3.4).  In order to limit the number of configurations, the scenarios 

only included deviation from the target (bias) while the variation remained constant.       
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3.5.4 Dealing with Multicollinearity in the Process Oriented Basis (POB) 
Elements 

 

The methods evaluated in this research when multicollinearity is presented within the 

POB�s are: Ordinary Least Square (OLS), Independent Subsets (IS), Simple Regressions 

(SR), Ridge Regression (RR) and Constrained Space Solution (CSS).   

3.5.4.1 Independent Subsets  

Independent Subsets is a methodology to create several orthogonal subsets with 

POB�s.   The objective is to understand the linear dependencies that exist in matrix A 

using Singular Value Decomposition methodology (as presented in section 3.5.3) to form 

independent sets of basis elements to be analyzed separately using the OLS.   

The methodology is summarized as follows: 

1. Obtain the singular value decomposition of As, and from this calculate: 

a. The conditions indexes ηk 

b. The matrix of variance-decomposition proportions π 

2. Determine the number and relative strengths of the near dependencies by the 

condition indexes exceeding 5. 

3. Determine the involvement for the columns with variance-decomposition 

proportions pi greater than 0.1 associated with the condition indexes 

exceeding the threshold value.  

4. Create subsets of As for each independent basis elements.   

5. Perform an OLS per each Independent Subset. 
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6. If a basis is presented in more than one subset, the mean of the z 

representations in m subsets is considered the estimated POB coefficient. 

For the Scenario 1 steps 1 to 3 were determined in section 3.5.3, z7 and z12 were the 

basis elements related.  Two subsets were created, AS1 = [A1 | A2| A3| A4| A7] and AS2 = 

[A1 | A2| A3| A4| A12].  To estimate the coefficient OLS was obtained per each subset.  For 

those elements that appear in more than one subset the mean of all estimates was used as 

the POB coefficient.  Consider Scenario 6, Table 3.6 shows the condition index greater 

than 5 is η13 = 19.07 with variance proportion 0.59, 0.32, 0.27 and 0.15 (greater than 

0.10).  Indicating a relation between basis elements A7, A8, A12 and A13.  Four subsets 

were created, AS1 = [A1 | A2| A3| A4| A7], AS2 = [A1 | A2| A3| A4| A8], AS3 = [A1 | A2| A3| A4| 

A12] and AS4 = [A1 | A2| A3| A4| A13]. 

Table 3.6:  Singular Value Analysis for Scenario 6  
 

Variance Proportion Condition 
Index 

A1 A2 A3 A4 A7 A8 A12 A13 

1.000 0.0033 0 0 0.0042 0.00030 0.0006 0.0007 0.0013

1.007 0.228 0 0 0.0033 0 0 0.0004 0.0008

1.2338 0 0 0.1000 0 0 0 0 0 

1.7449 0 0.2000 0 0 0 0 0 0 

2.2904 0.0015 0 0 0.1376 0.0002 0.0007 0.00009 0.0026

5.0479 0.0639 0 0 0.0015 0.0159 0.0479 0.0088 0.0147

7.1044 0.0009 0 0 0.0032 0.0321 0.0148 0.0922 0.0671

19.0764 0.0077 0 0 0.0002 0.5915 0.3281 0.2720 0.1516
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3.5.4.2 Simple Regression  

 
The idea behind Simple Regression is to perform an individual regression to each 

POB, as presented in equation 12 to determine which pattern arises.  The contribution of 

this method is the individual projection of POB that can potentially provide accurate 

coefficient estimators without the impact of other non-orthogonal basis elements.    

 ( ) xAAAz iiii ′′= −1      (12) 

3.5.4.3 Ridge Regression  

 
When multicollinearity occurs, the variances are large and thus far from the true value.  

Hoerl and Kennard introduced Ridge Regression methodology to deal in the presence of 

severe multicollinearity.  Ridge Regression is an effective counter measure because it 

allows better interpretation of the regression coefficients by shrinking their variances 

[Morris, 1982; Pagel & Lunneberg, 1985].   This methodology allows a small bias on the 

estimates to obtain a greatly reduced variance with a larger probability of being close to 

true parameter value [Neter, Wasserman, Kunter, 1990].  The z estimate is unbiased but 

imprecise, while estimate z using Ridge Regression will result in a more precise estimate 

with a small bias.  

 The z coefficients, zr are found from a modified version of the least square 

solutions. Matrix (A�A+kI)-1, k ≥ 0 is used instead of the usual (A�A)1 Note that when 

k=0  the coefficients provided by the ridge procedure are the least square estimators.  
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The mean Square error of the zr ridge estimator is 

  ( ) ( ) ( )rrr zBiaszVariancezMSE +=    (13) 
 

The challenge in Ridge Regression is to choose the value of k such that the reduction 

in the variance term is greater than the increase in the squared bias.  Hoerl and Kennard 

proved that there exists a nonzero value of k for which the MSE of zr is less than the 

variance of the least squares estimator z.  There is some controversy in the literature as to 

how determine such a value of k.  The ridge trace is an inspection method to determine an 

appropriate value of k proposed by Hoerl and Kennard.  There are other methods 

suggested by McDonald and Galarneau (1975), Mallows (1973), Waha, Golub and 

Health (1979), and others.  There is no assurance that any of these procedures will 

produce similar choice for k.  Furthermore, there is no guarantee that these methods are 

superior to straightforward inspection of the ridge trace.  In this research ridge trace is 

used as the method to estimate k the bias parameter. 

The ridge trace is a plot of the elements of zr versus k, k in the interval [0,1].  

Marquardt and Snee (1975) suggest using up to about 25 values of k, spaced 

approximately logarithmically over the interval [0,1].  If there are severe multicollinearity, 

the regression coefficients will be unstable in the trace.  At some value of k, the ridge 

estimates zr will stabilize.  The intention is to select the smallest k, biasing parameter, at 

which zr are stable.  Figure 3.7 shows ridge trace for Scenario 6A, by inspection selecting 

k = 0.2 provides a stable z coefficient.  Table F.6 in Appendix F shows k values selected 

per scenario. 
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Figure 3.7:  Ridge Trace for Scenario 6A 

 
 

3.5.4.4 Constrained Space Solution 

 
The Constrained Solution Space (CSS) technique restricts the solution space for the 

regression coefficients, forcing the solution to be consistent with the physical properties 

of the monitored process.   

Common cause variation always exists, and it might contribute to a quality vector  in 

such a way that the least squares solution to x = Az + e produce a z vector that is outside 

the feasible space of zo.  POBREP coefficient outside the feasible space of zo is 

considered unrealistically high in magnitude, and can be avoided by solving a constrained 

least squares problem: the CSS technique basically proposes solving a constrained least 
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squares problem to obtain the POBREP coefficients.  When a quality vector is 

decomposed into known patterns using constraints on the magnitude of the coefficients, 

the contribution of each pattern will be calculated with respect to limits based on the 

physical process specifications, hence the strength of each problem will be constrained in 

a realistic way.  Consequently, the residual vector e will contain the real amount process 

error that cannot be explained by the basis, and patterns in e will reveal potential missing 

basis elements.   

In many processes is possible to specify the highest level a process error can attain for 

each process problem; these levels can be imposed on the associated process-oriented 

basis components za as lower and upper bounds: l ≤ za ≤ u where l and u are m-

dimensional lower and upper bound vectors.  The lower and upper bounds can be easily 

obtained if the basis elements are scaled.  Therefore, it will suffice to specify bounds l 

and u in actual measurement units, which is an easy task for a process engineer.   

Let denote these constraints by lz ≤ z ≤ uz, where lz and uz are k-dimensional lower 

and upper bound vectors for z.  The constrained space defined in this way is the feasible 

space for the POBREP coefficients, hence the least squares solution should be solved 

with respect to these constraints.  Since the CSS technique involves solving a constrained 

least squares problem, the solution requires solving a constrained quadratic optimization 

problem as equation 14 shows.   The strategy is to calculate the unconstrained POBREP 

solution for a new quality vector, and check the feasibility of the solution.  If the solution 

is infeasible, then a problem with bounds will be solved.   
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min ||  x-Az ||2       s.t. lz ≤ z ≤ uz    (14) 

Using Matlab the constrained least squares problem in (14) was solved to obtain zc by 

a quadratic programming algorithm.  In this case the variation was in constraint as 

follows:  

...,2,1=+=
−=
≤≤

cczu
czl
uzl

iz

iz

ziz

σ
σ    (15) 

To reduce complexity in CSS, this research considers and compares CSS at 1 sigma, 

3 sigma and 6 sigma.   



 
 
 

 
 

47 

3.6 Criteria for comparing POBREP solutions 
 

POBREP establishes a reliable link between multivariate quality vectors and potential 

process errors when POB�s are orthogonal.  Coefficients developed from non-orthogonal 

data will be too large in absolute value and will often have wrong signs, because strong 

multicollinearity may result in large variances.  Six cases are presented in Table 3.4 to 

compare estimation methods for POB coefficient.   

The best method that deals with non-orthogonallity should reduce the variability and 

reach the theoretical POB coefficients.  These methods should show their strength to deal 

with non-orthogonal elements, when there are different relationship and severities among 

the relationships.    The data generated with known structure facilitated this comparison.   

The measures used in this research to compare the methods will be labeled Square Error 

and Count.   These measurements pretend to assess the ability of the method to detect 

basis elements activity in presence of relationships among matrix A basis element.  

Research had been conducted to examine the effectiveness of biased estimators and to 

attempt to determine which procedures perform best.  Gunst, Webster and Mason (1976) 

used the Square Errors (SE), as presented in equation 16, to compare methodologies 

accuracy.   

( ) ( )
2

1

�� ∑
=

−=
p

i
ii zzzSE     (16) 

Each methodology was compared in terms of the lower Square Error of the estimated 

coefficients zi. 
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To measure if the coefficients reach the target for known bias, consider a measure 

Count.  Count is another useful statistics in comparing the methods by the number of 

times zi is contained in the following confidence interval. 

n
zUCI

n
zLCI

ii

ii

σ

σ

×+=

×−=

645.1

645.1
    (17) 

    

(18) 

 

This interval use knows z� , and assumes normality due 645.12 =αz  at 90 % confidence 

and use the standard deviation of quality vector.  The suffix i is the basis and j is the run 

number.  There is a confidence interval per basis and it compares z coefficient against 

each confidence interval.  Each methodology was compared in terms of the higher 

number of estimated coefficients zi included in the interval.  The method which posses 

the minimum SE and maximum Count will be the best to deal with non-orthogonallity. 
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4 Methods Comparison using Stencil Printing 
Scenarios 

 

Since the simulation, estimation and analysis for each case in each scenario will 

follow the same procedure, details for graphical and analytical results will be provided in 

this chapter for Scenario 1, lowest severity, and Scenario 6, highest severity.  Details for 

all other four scenarios are included in Appendix C to Appendix F.  Figure 4.1 shows 

Scenario 1 strategy: (1) observed process deviation and create POB matrix A, (2) identify 

non-orthogonal severity using VIF, VIFmax=5, (3) determine POB�s related, A7 and A12, 

(4) generate error pattern with known bias,  Case A: bias in one POB related z7=2, Case 

B: bias in two POB not related z7=2, z2=3, Case C: bias in two POB related z7=2, z12=3, 

(5) estimate z coefficients using seven methods, (6) compare each method using Square 

Error (SE) and Count measure. 

To present the results some graphs were created:  run chart per method and a run 

chart presents the Square Error per method.  Scenarios 1 and 6 were explained in detail.  

The same results for Scenarios 2 to 5 were included in Appendix C-F. 
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4.1 Results Scenario 1 
  

Scenario 1A as presented in Figure 4.2 shows the methodology comparison for this 

POB�s.  POB�s values for z1 to z3 were close to 0, with the exception of z4 with values 

below the target.   All the methods provided the expected results for the first four POB�s, 

since these POB�s were orthogonal.  POB�s z7 and z12 presented high variability and high 

values due to the multicollinearity problem.   

Ordinary Least Square (OLS) presented high variability and values greater than 2 for 

z7.  Independent Subsets (IS) showed high variability in z7, but shift z12 above the target.  

Simple Regression (SR) showed reduction in the variability for z7, but z12 was above the 

target and z4 was below the target.  Ridge Regression (RR) reduced variability, but stayed 

always below the target for z7.  The z12 and z4 in RR reduced variability and it was in the 

target.  The Constraint Space Solution (CSS) presented high variability for z7, but 

controlled well the variability of the other POB�s.  This methodology showed better 

results when constraint space was 3S and 1S. 

The Square Error (Figure 4.3) showed similar results for all the methods, but RR and 

CSS had the lowest values in average as presented in Table 4.1.  CSS at 6S showed 

highest mean SE than RR, but lowest standard deviation.  SE for CSS at 6S showed 

similar results as IS.  Table 4.2 shows Count measure with better results for CSS  at 1S 

and 3S, but very similar results for RR, IS, SR and OLS. 
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Figure 4.2:  POB�s values per methods in Scenario 1A 
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Figure 4.3:  Square Error Methods Comparison for Scenario 1 
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Table 4.1:  Square Error measure Scenario 1A 
Square Error Methodology 

Mean Std. Dev. 
Ordinary Least Square 4.53 3.06 
Independent Subsets 3.15 1.87 
Simple Regression 3.27 2.26 
Ridge Regression 2.27 2.03 
Constraint Space Solution 1S 0.36 0.07 
Constraint Space Solution 3S 1.71 0.51 
Constraint Space Solution 6S 3.10 1.16 

 
 

Table 4.2:  Count measure Scenario 1A 
Methodology z1 z2 z3 z4 z7 z12 Total

Ordinary Least Square 30 30 30 30 20 29 169 
Independent Subsets 30 30 30 30 27 29 176 
Simple Regression 30 30 30 30 29 26 175 
Ridge Regression 30 30 30 30 25 30 175 
Constraint Space Solution 1S 30 30 30 30 30 30 180 
Constraint Space Solution 3S 30 30 30 30 30 30 180 
Constraint Space Solution 6S 30 30 30 30 20 29 169 
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Scenario 1B in which the offset was for z7=2 and z2=3 (not related variables) 

presented all the methods estimating z2 on target (Figure 4.4).  But also there was an 

increment in z7 and z12 variability in comparison with Scenario 1A.  All the methods were 

very similar detecting bias and variability as shows Figure 4.4.  Ordinary Least Square 

(OLS) presented high variability for z7 and z12.  Independent Subsets (IS) showed less 

variability in z7 in comparison with OLS but z7 and z12 were not on target.  Simple 

Regression (IS) showed for z7 reduction in the variability, but z12 was above the target 

and z4 was below the target.  Ridge Regression (RR) showed results similar to IS and SR, 

but RR controlled better z12 than the other methods.  Constraint Space Solution at 6S 

(CCS 6S) presented high variability for z7, but controlled well the variability of the other 

POB�s.  This methodology showed better results when constrain space at 3S and 1S. 

Square Error (Figure 4.5) presented better results in CSS at 1S and 3S.  Table 4.4 

shows lower mean SE for SR and RR than CSS at 6S, but CSS at 6S had lowest standard 

deviation.  OLS showed highest mean and standard deviation.  Table 4.2 shows Count 

measure with better results for CSS at 1S and 3S, but very similar results for RR and SR. 
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Figure 4.4:  POB�s values per methods in Scenario 1B 
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Figure 4.5:  Square Error  Methods Comparison for Scenario 1B 
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Table 4.3:  Square Error measure Scenario 1B 

 
Square Error Methodology 

Mean Std. Dev. 
Ordinary Least Square 7.30 7.68 
Independent Subsets 4.04 3.05 
Simple Regression 3.07 1.89 
Ridge Regression 3.15 2.38 
Constraint Space Solution 1S 0.37 0.08 
Constraint Space Solution 3S 1.92 0.66 
Constraint Space Solution 6S 3.35 1.09 

 
 

Table 4.4:  Count measure Scenario 1B 
 

Methodology z1 z2 z3 z4 z7 z12 Total
Ordinary Least Square 30 30 30 29 20 25 164 
Independent Subsets 30 30 30 29 25 23 167 
Simple Regression 30 30 30 30 27 26 173 
Ridge Regression 30 30 30 30 25 29 174 
Constraint Space Solution 1S 30 30 30 30 30 30 180 
Constraint Space Solution 3S 30 30 30 30 30 30 180 
Constraint Space Solution 6S 30 30 30 30 30 30 180 
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Bias in Scenario 1C were in z7=2, z12=3 two related variables.  Figure 4.6 shows the 

Independent Subset (IS) and Simple Regression (SR) increase the value of z7 and z12 

above the target.  Simple Regression also increased the value for z4.  Constraint Space 

Solution  (CSS) at 6S, Ordinary Least Square (OLS) and Ridge Regression (RR) 

presented similar results.  As in previous scenarios CSS showed the best results when the 

space was constraint at 3S and 1S.    

The Square Error (SE) is showed in Figure 4.7 CSS and RR had in average the lowest 

values (Table 4.5).  CSS at 3S and 1S showed better results than other methods.  SE for 

CSS at 6S showed similar results as RR.  OLS showed better results than IS and SR.  

Table 4.6 shows the Count with better results for CSS and RR.  Simple Regression and IS 

had the lowest Count since their ability to detect z7 on target was 2 and 0. 
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Figure 4.6:  Methodology for Scenario 1C 
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Figure 4.7:  Square Error Methods Comparison for Scenario 1C 
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Table 4.5:  Square Error measure Scenario 1C 
 

Square Error Methodology 
Mean Std. Dev. 

Ordinary Least Square 3.96 3.64 
Independent Subsets 21.93 12.08 
Simple Regression 16.07 9.27 
Ridge Regression 2.64 1.99 
Constraint Space Solution 1S 0.36 0.08 
Constraint Space Solution 3S 1.70 0.61 
Constraint Space Solution 6S 2.67 1.49 

 
 

Table 4.6:  Count measure Scenario 1C 
 

Methodology z1 z2 z3 z4 z7 z12 Total

Ordinary Least Square 30 30 30 30 22 26 168 
Independent Subsets 30 30 30 30 0 23 143 
Simple Regression 30 30 30 13 2 25 130 
Ridge Regression 30 30 30 30 27 28 175 
Constraint Space Solution 1S 30 30 30 30 30 30 180 
Constraint Space Solution 3S 30 30 30 30 30 30 180 
Constraint Space Solution 6S 30 30 30 30 30 30 180 
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Table 4.7 and 4.8 presents Count and SE measures for Scenario 1.  Constraint Space 

Solution (CSS) reported the highest Count number follow for Ridge Regression (RR) and 

Ordinary Least Square (OLS).  Independent Subset (IS) and Simple Regression (SR) 

although showed good numbers in Case A and B, did not detect the bias when two related 

basis elements were involved.  Square Error (SE) presented similar results as Count.  The 

lowest SE was CSS at 1S and 3S.  RR had lower SE results than CSS at 6S.  OLS had 

better results than IS and SR due in Scenario 1C IS and SR had higher SE.    The method 

to reduce SE with highest values of Count were CSS and RR.   

Table 4.7:  Count measure Scenario 1 Summary 
 

A B C 
Methodology 

Count Count Count 
Mean 

Ordinary Least Square 169 164 168 167 
Independent Subsets 176 167 143 162 
Simple Regression 175 173 130 159 
Ridge Regression 175 174 175 175 
Constraint Space Solution 1S 180 180 180 180 
Constraint Space Solution 3S 180 180 180 180 
Constraint Space Solution 6S 169 180 180 176 

 
Table 4.8:  Mean Square Error measure Scenario 1 Summary 

 
A B C 

Methodology 
MSE MSE MSE 

Mean 

Ordinary Least Square 4.53 7.30 3.96 5.26 
Independent Subsets 3.15 4.04 21.93 9.71 
Simple Regression 3.27 3.07 16.07 7.47 
Ridge Regression 2.27 3.15 2.64 2.68 
Constraint Space Solution 1S 0.36 0.37 0.36 0.37 
Constraint Space Solution 3S 1.71 1.92 1.70 1.78 
Constraint Space Solution 6S 3.10 3.35 2.67 3.04 
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4.2 Results Scenario 6 
 

Scenario 6 is the worst case scenario due VIF was above 10 and there were more that 

two variables related.   In Scenario 6A, Figure 4.8 shows z12, z13, z7 and z8 as the POB�s 

involved in the relation, in this one the offset was only in z7=2.  POB�s included in the 

relations presented high variability.  Ordinary Least Square (OLS) had the highest 

variability and did not detect the offset POB.  Independent Subset (IS) showed less 

variability than OLS but the detection was not clear and z12 was above the target.  Simple 

Regression (SR) showed less variability than IS and OLS.  Ridge Regression (RR) had 

the lowest variability but the offset in z7 was not evident.  Constraint Space Solution 

(CSS) although with high variability in z7 detected the offset.  As presented in Figure 4.8 

the offset was nearer to the target and with low variability when the constraint was 3S or 

1S. 

Figure 4.9 shows Square Error (SE) for CSS, RR and SR with the lowest values.  

Square Error results for SR and RR was influenced due low variability in all POB�s, but 

there was not detection as show Figure 4.8.  OLS had the highest SE mean and standard 

deviation, followed for IS.  CSS at 6S showed highest mean SE than RR, but lowest 

standard deviation.  The SE was reduced when CSS at 3S and 1S.  Table 4.10 shows 

Count measure with better results for CSS, than RR and SR 
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Figure 4.8:  POB�s values per methods in Scenario 6A 
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Figure 4.9:  Square Error Methods Comparison for Scenario 6A 
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Table 4.9:  Square Error measure Scenario 6A 
 

Square Error Methodology 
Mean Std. Dev. 

Ordinary Least Square 44.64 58.86 
Independent Subsets 10.56 6.77 
Simple Regression 8.08 5.89 
Ridge Regression 5.31 4.00 
Constraint Space Solution 1S 0.52 0.08 
Constraint Space Solution 3S 2.72 0.79 
Constraint Space Solution 6S 5.57 2.11 

 
 

Table 4.10:  Count measure Scenario 6A 
 
Methodology z1 z2 z3 z4 z7 z8 z12 z13 Total
Ordinary Least Square 30 30 30 30 11 14 14 15 174 
Independent Subsets 30 30 30 30 22 19 17 27 205 
Simple Regression 30 30 30 28 26 18 22 26 210 
Ridge Regression 30 30 30 30 24 29 28 27 228 
Constraint Space Solution 1S 30 30 30 30 30 30 30 30 240 
Constraint Space Solution 3S 30 30 30 30 30 30 30 30 240 
Constraint Space Solution 6S 30 30 30 30 30 30 30 30 240 
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In Scenario 6B the offset was in z2 = 3 and z7 = 2.  All methods estimated z2 as 

expected (Figure 4.10).  But the related variables presented high variability and off target.  

Variability increased in comparison to Scenario 6A.  Ordinary Least Square (OLS) 

presented high variability and not detection.  Independent Subsets (IS) showed all the 

variables related to z7 shifted.  Simple Regression (SR) increased variability but again all 

the variables related to z7 were shifted.  Ridge Regression (RR) showed low variability, 

but z7 was confounded with other POB.  Constrain Space Solution (CSS) at 6S reported 

similar results as RR.  CSS at 3S and 1S showed better results than other methods. 

Square Errors (SE) showed similar results as previous scenarios.  Figure 4.11 shows 

as the better methods:  RR, SR and CSS.  A notable reduction in SE occurred when CSS 

was 3S or 1S (Table 4.11).  OLS had the highest SE mean and standard deviation, 

followed for IS.  CSS at 6S showed highest mean SE than RR, but lowest standard 

deviation.  Table 4.12 shows the Count with better results for CSS, them RR and SR. 
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Figure 4.10:  POB�s values per methods in Scenario 6B 
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Figure 4.11:  Square Error Methods Comparison for Scenario 6B 
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Table 4.11:  Square Error measure Scenario 6B 
 

Square Error Methodology 
Mean Std. Dev. 

Ordinary Least Square 26.96 20.95 
Independent Subsets 12.45 8.12 
Simple Regression 7.07 4.09 
Ridge Regression 5.19 2.80 
Constraint Space Solution 1S 0.50 0.09 
Constraint Space Solution 3S 2.80 0.67 
Constraint Space Solution 6S 5.55 1.17 

 
 

Table 4.12:  Count measure Scenario 6B 
 
Methodology z1 z2 z3 z4 z7 z8 z12 z13 Total
Ordinary Least Square 30 30 30 29 7 15 12 22 175 
Independent Subsets 30 30 30 29 18 15 15 30 197 
Simple Regression 30 30 30 30 28 16 27 28 219 
Ridge Regression 30 30 30 29 25 27 27 29 227 
Constraint Space Solution 1S 30 30 30 30 30 30 30 30 240 
Constraint Space Solution 3S 30 30 30 30 30 30 30 30 240 
Constraint Space Solution 6S 30 30 30 30 30 30 30 30 240 
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Bias in Scenario 6C were z7=2, z8=3 two related variables.  Figure 4.12 presents 

Ordinary Least Square (OLS) with high variability and Simple Regression (SR) with 

small variability, but, SR shifted z1, z4, z8, z12, and z13.  Independent Subsets (IS) shifted 

z7 and increased variability.  Ridge Regression (RR) showed low variability with better 

bias identification.  Constraint Space Solution at 6S (CSS) showed the offset but had high 

variability in z7, z8.  As in the other scenarios CSS showed the best results when the space 

was constrained at 3S and 1S.    

Figure 4.13 shows Square Error (SE) for RR and CSS with the lowest values.  Table 

4.13 shows CSS at 6S with higher SE mean than RR, but lowest standard deviation.  The 

SE was reduced for CSS at 3S and 1S.  OLS and SR had highest SE mean and standard 

deviation than IS.  Table 4.14 shows Count with better results for CSS and RR.  SR and 

IS had the lowest Count due their poor ability to detect z7 on target.. 
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Figure 4.12:  POB�s values per methods in Scenario 6C 
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Figure 4.13:  Square Error Methods Comparison for Scenario 6C 
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Table 4.13:  Square Error measure Scenario 6C 
 

Square Error Methodology 
Mean Std. Dev. 

Ordinary Least Square 35.13 43.59 
Independent Subsets 20.10 15.01 
Simple Regression 35.99 18.54 
Ridge Regression 4.37 2.90 
Constraint Space Solution 1S 0.50 0.08 
Constraint Space Solution 3S 2.75 0.75 
Constraint Space Solution 6S 5.55 1.72 

 
 

Table 4.14:  Count measure Scenario 6C 
 
Methodology z1 z2 z3 z4 z7 z8 z12 z13 Total
Ordinary Least Square 30 30 30 30 11 18 10 21 180 
Independent Subsets 30 30 30 30 7 21 13 30 191 
Simple Regression 21 30 30 19 2 22 1 3 128 
Ridge Regression 30 30 30 30 28 26 28 30 232 
Constraint Space Solution 1S 30 30 30 30 30 30 30 30 240 
Constraint Space Solution 3S 30 30 30 30 30 30 30 30 240 
Constraint Space Solution 6S 30 30 30 30 30 30 30 30 240 

 
 

Count and Square Error (SE) measures for Scenario 6 were presented in Table 4.15 

and 4.16.  Constraint Space Solution (CSS) reported the highest Count number follow for 

Ridge Regression (RR) and Independent Subset (IS).  Simple Regression (SR) although 

showed good numbers in Case A and B, did not detect the bias when two related basis 

elements were involved.  Ordinary Least Square (OLS) had the lowest Count value due 

the highest variability in the POB�s.  The lowest SE was CSS at 1S and 3S.  RR had 

lowest results than CSS at 6S and IS had better results than OLS and SR.  SR showed the 
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highest SE value in Scenario 6C, increasing their overall mean.    The method 

recommended when VIF > 10 with more than two related variable is CSS due reduce SE 

and show highest Count. 

 

Table 4.15:  Count measure Scenario 6 Summary 
 

A B C 
Methodology 

Count Count Count 
Mean 

Ordinary Least Square 174 175 180 176 
Independent Subsets 205 197 191 198 
Simple Regression 210 219 128 186 
Ridge Regression 228 227 232 229 
Constraint Space Solution 1S 240 240 240 240 
Constraint Space Solution 3S 240 240 240 240 
Constraint Space Solution 6S 240 240 240 240 

 
Table 4.16:  Mean Square Error measure Scenario 6 Summary 

 
A B C 

Methodology 
MSE MSE MSE 

Mean 

Ordinary Least Square 44.64 26.96 35.13 35.58 
Independent Subsets 10.56 12.45 20.10 14.37 
Simple Regression 8.08 7.07 35.99 17.05 
Ridge Regression 5.31 5.19 4.37 4.96 
Constraint Space Solution 1S 0.52 0.50 0.50 0.51 
Constraint Space Solution 3S 2.72 2.80 2.75 2.75 
Constraint Space Solution 6S 5.57 5.55 5.55 5.56 
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4.3 Summary Results Scenarios 2 to 5 
 

Scenario 2, 3, 4 and 5 (Appendix C-F) showed similar results as Scenario 1 and 6.  

Ordinary Least Square (OLS) increased variability of POB�s as scenarios raise VIF.  

Independent Subsets (IS) and Simple Regression (SR) controlled the variability but offset 

the related POB�s.  Ridge Regression (RR) reduced variability but in some cases was 

under the target.  Constraint Space Solution (CSS) at 6S was better than RR in terms of 

Count measure and similar in terms of SE.  CSS reduced the variability as constraint the 

space at 1S or 3S.  The lowest SE was and highest Count measure was CSS at 1S and 3S.   
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4.4 Scenarios Comparison 
 

This section compared scenarios using Square Errors (SE) and Count measure as 

decision variables.  To compare between scenarios the Square Error and Count measure 

were standardized, using the number of POB per scenario. The methodologies were:  

Ordinary Least Square (OLS), Independent Subset (IS), Simple Regression (SR), Ridge 

Regression (RR) and Constraint Space Solution at 1S (CSS 1S), at 3S (CSS 3S) and 6S 

(CSS 6S).  The comparison will determine which of these procedures were the most 

adequate to solve non-orthogonal problem in the Process Oriented Basis.   

Figure 4.14 and Figure 4.15 present SE Boxplots and Count Boxplots per scenario.  

These Boxplots show individual results per scenarios.  Table 4.17 and Table 4.18 tabulate 

the Mean Square Error (MSE) and Count Percentage (Count %) measure for all the 

scenarios.  The following statements present the interpretation of the Boxplots and 

tabulate data.  OLS showed high variability in SE and lower detection in Counts 

measures as VIF increased.  This was expected since in presence of multicollinearity 

OLS estimates of POB�s will have high variance and be distant from the true values.  A 

certain amount of non-orthogonallity can be tolerated, in Scenario 1 and 4, OLS showed 

lower SE than SR and IS.  IS presented their lowest SE result when VIF was moderate (5 

≤ VIF < 10).  In comparison with OLS and SR, IS had higher Count measure and lower 

SE values.  This method regress a subset of independents POB reducing variability, but 

for the related basis elements the estimation was in some cases off target.  SR increases 
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SE and Count measure as the scenarios increased in VIF.  This method failed consistently 

estimating POB coefficients on target. 

The best results were presented using RR or CSS.  RR had the lowest SE, but not the 

highest Count values compared with CSS at 6S.  SE results for RR were influenced due 

low variability in all POB�s.  The low Count can be explained by the bias allowed in RR 

to obtain a variance reduction in the estimates.  CSS reduced the variability and estimated 

on target POB�s given that this method uses a function to minimize the variance as 

explained in section 3.5.  This procedure could become complex if there is not feasible 

solution or more than one feasible solution exists.  The research Scenarios considered 

there was always an unique feasible solution.  CSS showed the lowest SE and highest 

Count measure when the constraint space was below ± 3S.  CSS within ± 6S presented 

similar results that RR.  

Table 4.19 shows Count measure only for POB�s related, this percentage permit 

identify how methods estimate only non-orthogonal basis.  This measure provides similar 

conclusion than in Table 4.18, but magnify the difference between methods. 

Although in Scenario 1 RR and CSS reduced the SE is not feasible to invest time and 

resources using these methods, since OLS could provide good estimates.  For Scenario 2, 

OLS was not an alternative, again RR and CSS were the best alternative.  Scenario 3 

showed how a severe VIF affect the results for OLS, IS and SR.  RR and CSS again 

present better SE and Count values.  Scenario 4 showed better results for RR and CSS, 

but as in Scenario 1 OLS provided good results.  For Scenario 5 CSS was the best 
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alternative.  Scenario 6 was the worst case due VIF > 10 and there was more than one 

relation, in this case OLS showed higher SE results than IS and SR and CSS was the best 

alternative.   
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Table 4.17:  Standardize Mean Square Error measure Summary Scenarios 

 
Scenario Methodology 

1 2 3 4 5 6 
Ordinary Least Square 2.63 5.12 5.66 3.24 4.11 13.34 
Independent Subsets 4.85 4.36 4.92 6.60 3.66 5.39 
Simple Regression 3.74 4.78 6.81 5.23 5.59 6.39 
Ridge Regression 1.34 1.58 1.67 1.49 1.63 1.86 
Constraint Space Solution 1S 0.18 0.19 0.19 0.19 0.18 0.19 
Constraint Space Solution 3S 0.89 0.90 1.00 0.86 0.96 1.03 
Constraint Space Solution 6S 1.52 1.63 1.87 1.53 1.81 2.08 

 
Table 4.18:  Count % measure Summary Scenarios 

 
Scenario Methodology 

1 2 3 4 5 6 
Ordinary Least Square 92.8% 86.7% 84.6% 89.3% 87.1% 73.5% 
Independent Subsets 90.0% 87.2% 86.7% 89.6% 88.4% 82.4% 
Simple Regression 88.5% 86.1% 71.3% 89.6% 82.4% 77.4% 
Ridge Regression 97.0% 96.5% 96.3% 96.4% 95.7% 95.4% 
Constraint Space Solution 1S 100% 100% 100% 100% 100% 100% 
Constraint Space Solution 3S 100% 100% 100% 100% 100% 100% 
Constraint Space Solution 6S 100% 100% 100% 100% 100% 100% 

 

Table 4.19:  Count % measure Summary Scenarios for POB related 
 

Scenario Methodology 
1 2 3 4 5 6 

Ordinary Least Square 79% 60% 48% 74% 78% 47% 
Independent Subsets 71% 62% 56% 74% 80% 65% 
Simple Regression 75% 67% 46% 74% 69% 61% 
Ridge Regression 91% 89% 88% 91% 93% 91% 
Constraint Space Solution 1S 100% 100% 100% 100% 100% 100% 
Constraint Space Solution 3S 100% 100% 100% 100% 100% 100% 
Constraint Space Solution 6S 94% 100% 100% 100% 100% 100% 
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Figure 4.16 and 4.17 present Square Error (SE) and Count results per scenarios using 

each method.  There were two comparable groups of results:  (1) Constraint Space 

Solution (CSS) and Ridge Regression (RR) methods with lowest SE and highest Count 

measure and (2) OLS, IS and SR with higher SE and lower Count measure.  CSS at 1S 

and 3S had the lowest SE and the highest Count measure.  CSS at 6S showed similar 

results than RR for SE and better results for Count measure than RR.  OLS had lower SE 

for Scenario 1 and 4 than SR or IS.  OLS, IS and SR had similar SE results in Scenario 2.  

Scenario 3, 5 and 6 showed better SE results for IS than OLS and SR.  OLS had higher 

Count measure for Scenario 1 than SR or IS and similar Count results in Scenario 2, 3, 4 

and 5.  In Scenario 6 IS showed higher Count results than OLS and SR.  For lower VIF 

OLS was the best alternative, IS showed better results for moderate to severe VIF. 

 For all Scenarios there were not significant differences between RR and CSS.  To 

decide which method use, evaluate if your process has physical or knows constraints to 

set up the CSS procedure.  Although RR presented low variability for all the POB�s, does 

not always provide a good identification of the offset POB in comparison with CSS.  

Remember the objective of POBREP is to detect POB offset to understand the process 

issues, if RR is not effective doing this, CSS will be the best alternative.  POBREP is 

interested in the meaning of the basis elements coefficients for diagnosis and control.  

After comparing several procedures using SE and Count the most adequate procedure to 

estimate the Process Oriented Basis representation in presence of non-orthogonal basis 

elements was Constraint Space Solution at 1S.   
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Figure 4.16:  Square Error Methods Comparison for All Scenarios 
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Figure 4.17:  Count % measure Methods Comparison for All Scenarios 



 
 
 

 
 

80 

5 CONCLUSIONS AND FUTURE WORK 
 

5.1 Conclusion 
 

POBREP is a useful methodology to provide diagnosis in a multivariate process, but 

when the basis is not orthogonal may result in large variances and covariance for the least 

squares estimators of the regression coefficients.  To assure POBREP capabilities 

remains, this research recommends method to deal with non-orthogonal POB basis 

estimating coefficients for process diagnostics and control.   

In this work, the performances of several methods were evaluated for their 

capabilities to deal with non-orthogonal basis.  The method to manage non-orthogonallity 

should reduce the variability and reach the theoretical POB coefficients, reducing the 

Square Error (SE) and maximizing Count measure.  After evaluating six scenarios with 

different severity in terms of VIF and POB�s related two comparable groups of results 

were detected:  (1) Constraint Space Solution (CSS) and Ridge Regression (RR) methods 

with lowest SE and highest Count measure and (2) OLS, IS and SR with higher SE and 

lower Count measure.  RR and CSS were the best methods to address the non-orthogonal 

problem.  CSS exhibit significant improvements in the estimate of POBs when the 

constraint was below ± 3 sigma.  In terms of the other methods, when there is not severe 

multicollinearity was better to use OLS than SR or IS.  If the multicollinearity is 

moderate to severe IS was a better alternative than OLS or SR.  
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In conclusion the most adequate procedure to estimate the Process Oriented Basis 

representation in presence of non-orthogonal basis elements was Constraint Space 

Solution at 1S. 

5.2 Future Research 
 

This research only evaluates cases with bias in the POB�s but with constant standard 

deviation.   Evaluate how these methodologies react to changes in variance will be 

helpful to understand their power to estimate POB coefficients. 

Constraint Space Solution (CSS) was the best method to estimate POBREP 

coefficients when the constraints were below ± 3 sigma.   Other alternatives to challenge 

this methodology will be defining the constraints as a percentage of the target value or if 

to establish physical process constraints.  For CSS there are three possibilities feasibility 

cases, evaluation of a case with more than one feasible solution could be interesting in 

order to identify the complexity of these methods.   

Other interesting aspect will be to apply this methodology with other physical case 

that reveals a multicollinearity severity represented by VIF > 100.  Although Ridge 

Regression and Constraint Space Solution will be providing good results, it will be 

interesting to evaluate Independent Subsets results, since VIF severity increase this 

method was providing better results. 
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APPENDIX A  MATLAB® SCRIPTS 
 
APPENDIX A1 VECTOR GENERATOR 
 
%Script Name :  genepr.m 
%************************************************** 
% Script to generate a multivariate quality vector 
% to be analyzed through the use of POBREP 
%************************************************** 
 
clc 
load(filen1) 
load(filen2) 
load(filen3) 
 
[amat] = eval(strrep(filen1,'.txt','')); 
[offset] = eval(strrep(filen2,'.txt','')); 
[stddev] = eval(strrep(filen3,'.txt','')); 
 
% 
[nr,nbase] = size(amat); 
vlngth = length(amat); 
%Generate Multivariate Quality Vector 
% 
rand('normal') 
for k=1:nobs 
        for l = 1:nbase 
        ranno(l) = rand(1,1); 
        end 
                 for m = 1:vlngth 
                 sumbas = 0.0; 
                         for n = 1:nbase 
                         rancom = (ranno(n)*stddev(n)+offset(n))*amat(m,n); 
                         sumbas = sumbas + rancom; 
                         end 
                  yvector(m,k) = sumbas + rand(1,1) * sigma; 
                  end 
end 
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APPENDIX A2 MATLAB WINDOW 
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APPENDIX A3 ORDINARY LEAST SQUARE 
 
%Script Name :  pobrep.m 
%************************************************** 
load(filen1) 
load(filen2) 
load(filen3) 
[amat] = eval(strrep(filen1,'.txt','')); 
[offset] = eval(strrep(filen3,'.txt','')); 
[yvector] = eval(strrep(filen2,'.txt','')); 
[nr,nbase] = size(amat) 
[nry,nbasey]=size(yvector) 
Off = repmat(offset,nbasey,1) 
 
 f2 = figure 
 for i =1:nbasey 
  [b] = amat\yvector(:,i); 
  zcoef2(:,i) = b; 
  plot(zcoef2') 
  xlabel('Run Number') 
  ylabel('Z Values') 
  legend('z1','z2','z3') 
  title('Plot of All Generated Z Representations') 
  end 
  p_but = uicontrol(gcf,'Style','Push','position', [.89 .94 .10 .05],.... 
  'units','normalized','background','m',.... 
  'String','CLOSE','foreground','b',.... 
  'Callback','close(f2)');    
 
    Error=sum((Off'-zcoef2).^2) 
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APPENDIX A4   INDEPENDENT SUBSETS 
 
%Script Name :  Independent subsets 
%************************************************** 
 
load(filen1) 
load(filen2) 
load(filen3) 
[amat] = eval(strrep(filen1,'.txt','')); 
[offset] = eval(strrep(filen3,'.txt','')); 
[yvector] = eval(strrep(filen2,'.txt','')); 
[nr,nbase] = size(amat); 
[nry,nbasey]=size(yvector); 
vlngth = length(amat); 
Off = repmat(offset,nbasey,1) 
 
X=(1:nbasey) 
z1=[]; 
z2=[]; 
z3=[]; 
z4=[]; 
z5=[]; 
z6=[]; 
z7=[]; 
z8=[]; 
zt=[]; 
 
zac=[ ]; 
bac=[ ]; 
zacc=[ ]; 
bacc=[ ]; 
sub=0; 
corrida=0; 
entrar=0; 
de=0; 
in=0; 
damat=[ ]; 
dz=[ ]; 
iamat=[ ]; 
iz=[ ]; 
depend=0 
 
[V,D] = eig(corrcoef(amat)); 
VIF=diag(inv(corrcoef(amat))); 
[u,s,v] = svd(amat); 
sin=diag(s); 
   
 
%Calcular condition index and variance 
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for i=1:nbase 
    miu(i)=(max(sin))/sin(i); 
end 
 
for i=1:nbase 
   for j=1:nbase 
      pi(i,j)=(v(j,i)^2/sin(i)^2)/(VIF(j,:)); 
      if and( pi(i,j)>.1, miu(:,i)>5) 
          depend=1; 
    end       
   end 
end 
    
 
for i=1:nbase      
         de=0; 
         in=0; 
         damat=[ ]; 
         dz=[ ]; 
         iamat=[ ]; 
         iz=[ ]; 
        for j=1:nbase 
            if and( pi(i,j)>.1, miu(:,i)>5) 
              de=de+1; 
              damat(:,de)=amat(:,j); 
              dz(:,de)=j; 
              [dnr,dnbase] = size(damat); 
              entrar=1; 
            else 
              in=in+1; 
              iamat(:,in)=amat(:,j); 
              iz(:,in)=j; 
            end 
        end 
%Si no hay variables dependientes 
        if de==0 
           dnbase=1; 
           if and(corrida==0,depend==0) 
                entrar=1; 
           end 
           corrida=corrida+1        
        end 
 
        %Crear matrix entrando dependientes una por una                 
 
    if entrar==1     
        for m=1:dnbase 
            subamat=[ ]; 
            sub=sub+1; 
            if de<nbase 
                subamat=[iamat]; 
             z=[iz]; 
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            end 
            if de>0 
                addcol=damat(:,m); 
                addj=dz(:,m); 
                subamat=[subamat addcol]; 
                z=[z, addj] 
            end 
            [snr,snbase] = size(subamat); 
            eval(['zs',int2str(sub),' = z']); 
            zac=[zac,z]; 
            eval(['subamats',int2str(sub),' = subamat']); 
            for num=1:30 
      y=[yvector(:,num)]; 
                b = subamat\y; 
                eval(['zcoef',int2str(sub),' = b']); 
                bac=[bac,b]; 
            end 
                       for j=1:snbase 
                            if z(:,j)==1 
                                z1=[z1 
                                bac(j,:)]; 
                                [zr,znbase] = size(z1); 
                                if zr > 1 
                                    zm1=mean(z1); 
                                else 
                                    zm1=z1; 
                                end 
                                zt(1,:)=zm1; 
                            end 
                            if z(:,j)==2 
                                z2=[z2 
                                bac(j,:)]; 
                                [zr,znbase] = size(z2); 
                                if zr > 1 
                                    zm2=mean(z2);  
                                else 
                                    zm2=z2; 
                                end 
                                zt(2,:)=zm2;       
                            end  
                            if z(:,j)==3 
                                z3=[z3 
                                bac(j,:)]; 
                                [zr,znbase] = size(z3); 
                                if zr > 1 
                                    zm3=mean(z3); 
                                else 
                                    zm3=z3; 
                                end 
                                zt(3,:)=zm3;     
                            end 
                            if z(:,j)==4 
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                                z4=[z4 
                                bac(j,:)]; 
                                [zr,znbase] = size(z4); 
                                if zr > 1 
                                    zm4=mean(z4) ; 
                                else 
                                    zm4=z4; 
                                end     
                                zt(4,:)=zm4;     
                            end 
                            if z(:,j)==5 
                                z5=[z5 
                                bac(j,:)]; 
                                [zr,znbase] = size(z5); 
                                if zr > 1 
                                    zm5=mean(z5); 
                                else 
                                    zm5=z5; 
                                end 
                                zt(5,:)=zm5;     
                            end 
                            if z(:,j)==6 
                                z6=[z6 
                                bac(j,:)]; 
                                [zr,znbase] = size(z6); 
                                 if zr > 1 
                                    zm6=mean(z6); 
                                else 
                                    zm6=z6; 
                                end 
                                zt(6,:)=zm6;     
                            end 
                            if z(:,j)==7 
                                z7=[z7 
                                bac(j,:)]; 
                                [zr,znbase] = size(z7); 
                                if zr > 1 
                                    zm7=mean(z7); 
                                else 
                                    zm7=z7; 
                                end                            
                                zt(7,:)=zm7;     
                            end 
                            if z(:,j)==8 
                                z8=[z8 
                                bac(j,:)]; 
                                [zr,znbase] = size(z8); 
                                if zr > 1 
                                    zm8=mean(z8); 
                                else 
                                    zm8=z8; 
                                end                            
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                                zt(8,:)=zm8;     
                            end 
                        end                    
            subamat=[ ]; 
            z=[ ]; 
            bac=[]; 
        end 
    end     
end     
 
f1=figure 
title('Plot of Generated Z Representations') 
 
for i=1:nbase 
    subplot(3,3,i) 
    [nrr,nbasee] = size(eval(['z',int2str(i)])) 
    if nrr==1 
       plot(zt(i,:)) 
     xlabel('Run Number') 
  axis([0 30 -2 6]) 
  ylabel('Zs Values') 
        title('Independent Subsets ') 
   else 
       errorbar(X,zt(i,:),(zt(i,:)-min(eval(['z',int2str(i)]))),(max(eval(['z',int2str(i)]))-zt(i,:)))     
        xlabel('Run Number') 
  axis([0 30 -2 6]) 
  ylabel('Zs Values') 
title('Independent Subsets ')     
   end 
 title(['Z ',num2str(i),' Values']) 
    p_but = uicontrol(gcf,'Style','Push','position', [.89 .94 .10 .05],.... 
  'units','normalized','background','m',.... 
  'String','CLOSE','foreground','b',.... 
  'Callback','close(f1)');  
end 
Error=sum((Off'-zt).^2) 
f2=figure 
plot(zt') 
xlabel('Run Number') 
ylabel('Z Values') 
legend('z1','z2','z3') 
title('Plot of All Generated Z Representations') 
p_but = uicontrol(gcf,'Style','Push','position', [.89 .94 .10 .05],.... 
  'units','normalized','background','m',.... 
  'String','CLOSE','foreground','b',.... 
  'Callback','close(f2)');    
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APPENDIX A5  SIMPLE REGRESSION 
 
Script Name :  Simple_Regression.m 
%************************************************** 
% Script to determine Pobrep coefficient using  
% Simple Regression to each Basis Element 
%************************************************** 
 
load(filen1) 
load(filen2) 
load(filen3) 
[amat] = eval(strrep(filen1,'.txt','')); 
[offset] = eval(strrep(filen3,'.txt','')); 
[yvector] = eval(strrep(filen2,'.txt','')); 
[nr,nbase] = size(amat) 
[nry,nbasey]=size(yvector) 
Off = repmat(offset,nbasey,1) 
vlngth = length(amat) 
 
%Generate Regression and Graphics 
 
po=1; 
f2=figure 
for j=1:nbase 
 
   for i=1:nbasey 
 
     [b] = amat(:,j)\yvector(:,i); 
    zcoef2(po,i) = b; 
 plot(zcoef2') 
 legend('z1','z2','z3') 
 xlabel('Run Number') 
 ylabel('Z Values') 
 title('Plot of All Generated Z Representations with Simple Regression') 
   end 
   po=po+1; 
end 
   
p_but = uicontrol(gcf,'Style','Push','position', [.89 .94 .10 .05],.... 
  'units','normalized','background','m',.... 
  'String','CLOSE','foreground','b',.... 
  'Callback','close(f2)');    
 
Error=sum((Off'-zcoef2).^2) 
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APPENDIX A6  RIDGE REGRESSION  
 
Script Name : RR.m 
%********************************************** 
%* Script to calculate ridge coefficients and * 
%* produce ridge trace for each coefficient.  * 
%* User must specify X matrix,  a vector of   * 
%* deltas for the biased estimates and the    * 
%* vector of responses y.                     * 
%********************************************** 
% 
load(filen1) 
load(filen2) 
load(filen3) 
[amat] = eval(strrep(filen1,'.txt','')); 
[offsett] = eval(strrep(filen3,'.txt','')); 
[ridvec0] = eval(strrep(filen2,'.txt','')); 
load offset.txt 
[nr,nbase] = size(amat); 
[nry,nbasey]=size(ridvec0) 
Off = repmat(offsett,nbasey,1) 
rbeta=[]; 
 
[offset]=offset; 
x = amat; 
xtx = x'*x; 
d = length(xtx); 
inc = offset; 
k = length(offset); 
 
f4=figure 
for i= 1:k 
offs = inc(i)*eye(d); 
xtxd = xtx + offs; 
y = ridvec0(:,1); 
xty = x'*y; 
xtxdi = inv(xtxd); 
beta = xtxdi*xty; 
rbeta = [rbeta beta]; 
orbeta = inv(xtx)*xty; 
end 
plot(inc,rbeta') 
xlabel('delta') 
ylabel ('Ridge Coefficient') 
       legend('z1','z2','z3','z4','z7','z8','z12','z13') 
title (['Ridge Trace Example 1']) 
      p_but = uicontrol(gcf,'Style','Push','position', [.89 .94 .10 .05],.... 
  'units','normalized','background','m',.... 
  'String','CLOSE','foreground','b',.... 
  'Callback','close(f4)');    
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[row,ylength] = size(ridvec0); 
kr = input('Enter the number of k: '); 
f3=figure 
for i =1:ylength 
    offsetf = kr*eye(d); 
y = ridvec0(:,i); 
beta1 = inv(xtx + offsetf)*x'*y; 
zcoef(:,i) = beta1; 
plot(zcoef') 
legend('z1','z2','z3','z4','z7','z8','z12','z13') 
 xlabel('Run Number') 
 ylabel('Z Values') 
 title('Plot of All Generated Z Representations') 
end 
 
 p_but = uicontrol(gcf,'Style','Push','position', [.89 .94 .10 .05],.... 
  'units','normalized','background','m',.... 
  'String','CLOSE','foreground','b',.... 
  'Callback','close(f3)');   
Error=sum((Off'-zcoef).^2) 
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APPENDIX A7  CONSTRAINT SPACE SOLUTION  
 
%Script Name :  cls.m 
%************************************************** 
load(filen1) 
load(filen2) 
load(filen3) 
load(filen4) 
 
[amat] = eval(strrep(filen1,'.txt','')); 
[offset] = eval(strrep(filen3,'.txt','')); 
[yvector] = eval(strrep(filen2,'.txt','')); 
[stddev] = eval(strrep(filen4,'.txt','')); 
 [nr,nbase] = size(amat) 
[nry,nbasey]=size(yvector) 
[nr,nbase] = size(amat); 
Off = repmat(offset,nbasey,1) 
 
por=(1:1:8) 
[pnr,pnbase] = size(por); 
noffset=offset+.1 
f2 = figure 
for d=1:pnbase 
    subplot(3,3,d)  
    zcoef1=[]; 
for i =1:nbasey 
       LB=offset-por(:,d)*stddev'; 
       UB=offset+por(:,d)*stddev'; 
        [b] = lsqlin(amat,yvector(:,i),[],[],[],[],LB,UB); 
        zcoef1(:,i) = b; 
        plot(zcoef1') 
        axis([0 30 -2 6]) 
        title([int2str(por(:,d)),' Sigma']) 
        xlabel('Run Number') 
         ylabel('Zs Values') 
end 
 if d==1 
     zcoef2=zcoef1; 
     Error2=sum((Off'-zcoef2).^2) 
     elseif d==3 
         zcoef3=zcoef1; 
         Error3=sum((Off'-zcoef3).^2) 
     elseif d==6 
         zcoef4=zcoef1; 
         Error4=sum((Off'-zcoef4).^2) 
     f4=figure 
      plot(zcoef1') 
       axis([0 30 -2 6]) 
title('Plot of All Generated Z Representations with CLS, 6S') 
  xlabel('Run Number') 
  ylabel('Zs Values') 
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     end 
 end 
end 
end 
legend('z1','z2','z3') 
  p_but = uicontrol(gcf,'Style','Push','position', [.89 .94 .10 .05],.... 
  'units','normalized','background','m',.... 
  'String','CLOSE','foreground','b',.... 
  'Callback','close(f2)');  
end   
Error=sum((Off'-zcoef1).^2) 
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 APPENDIX B  DIAGNOSIS MULTICOLLINEARITY FOR 
SCENARIOS 2 - 6 
 
Table B. 1:  Variance Inflation Factor for the stencil printing process Scenarios 
 

Variance Inflation Factor Relation between 
Basis 

VIF ≤ 5 5 < VIF ≤ 10 VIF > 10 
 Scenario 1 Scenario 2 Scenario 3 

z1 3 2 4.2 
z2 1 1 1.6 
z3 1 1 2.2 
z4 2 1 2 
z5   5.2 
z6   15.5 
z7 5 10 11.9 
z8  8.5  
z9   5.6 
z12 4   
z13    

Two Basis 
Elements 

z14    
 Scenario 4 Scenario 5 Scenario 6 

z1 1 3 3 
z2 1 1 1 
z3 2 1 1 
z4  2 2 
z5    
z6    
z7 5 5 20 
z8   17 
z9    
z12   16 
z13  10 14 

More than two 
Basis Elements 

z14 4 7  
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Table B. 2:  Singular Value Analysis for Scenario 2 
 

Variance Proportion 
Condition Index 

A1 A2 A3 A4 A7 A8 

1.0000 0.0305 0 0 0.0010 0.0008 .0014 

1.1047 0 0 0.1000 0 0 .0000 

1.4491 0.0098 0 0 0.0867 0.0009 .0016 

1.5623 0 0.2000 0 0 0 .0000 

2.6436 0.0403 0 0 0.0863 0.0117 .0289 

10.3669 0.0028 0 0 0.0038 0.5733 .3603 

 
 

Table B. 3:  Singular Value Analysis for Scenario 3 
 

Variance Proportion Condition 
Index 

A1 A2 A3 A4 A5 A6 A7 A9 

1.0000 0.0055 0.0002 0.0023 0.0013 0.0003 0.0003 0.0007 0.0031

1.2163 0.0036 0.0001 0.0334 0 0 0.0001 0.0002 0.0005

1.4272 0.009 0.0006 0.0025 0.0267 0.0047 0.0001 0.0003 0.0006

1.7014 0.0003 0.098 0.0021 0.004 0.0004 0 0.0001 0.0019

2.4847 0.0143 0.0222 0.007 0.0669 0 0.0009 0.0034 0.0172

4.0508 0 0.025 0.0145 0.0708 0.0721 0.0059 0.0067 0.052 

5.2998 0.0119 0.012 0.0077 0.0302 0.1419 0.0139 0.0445 0.0302

12.1380 0.003 0.0009 0.0007 0.0001 0.0113 0.3916 0.2752 0.0028
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Table B. 4:  Singular Value Analysis for Scenario 4 

 

Variance Proportion 
Condition Index 

A2 A3 A4 A7 A14 

1 0 0.1 0 0 0 

1.2272 0 0 0.0112 0.0077 0.0224 

1.4142 0.2 0 0 0 0 

1.4142 0 0 0.08 0 0.01 

6.5187 0 0 0.1088 0.6323 0.2176 

 
 

Table B. 5:  Singular Value Analysis for Scenario 5 
 

Variance Proportion Condition 
Index 

A1 A2 A3 A4 A7 A12 A13 

1.0000 0.0020 0 0 0.0076 0.0016 0.0019 0.0042 

1.1137 0.0277 0 0 0.0015 0.0004 0.0003 0.0007 

1.1356 0 0.0000 0.1000 0 0 0 0 

1.6059 0 0.2000 0 0 0 0 0 

2.1454 0.0002 0 0 0.1379 0.0012 0.0022 0.0074 

5.9954 0.0368 0 0 0.0008 0.3287 0.0247 0.1122 

8.6097 0.0332 0 0 0.0022 0.3081 0.3309 0.1135 
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  APPENDIX C  RESULTS SCENARIO 2 
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Figure C. 1:  Methodology for Scenario 2A  
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Figure C. 2:  Square Error Methods Comparison for Scenario 2A 



 
 
 
 

 102

 
 

Table C. 1:  Square Error measure Scenario 2A 
Square Error Methodology 

Mean Median Std. Dev. 
Ordinary Least Square 8.80 4.18 9.86 

Independent Subsets 4.11 3.68 2.27 
Simple Regression 4.42 3.46 2.90 
Ridge Regression 2.73 2.17 1.85 

Constraint Space Solution 1S 0.38 0.36 0.07 
Constraint Space Solution 3S 1.78 1.79 0.55 
Constraint Space Solution 6S 3.15 3.17 1.30 

 
Table C. 2:  Count measure Scenario 2A 

Methodology z1 z2 z3 z4 z7 z8 Total
Ordinary Least Square 30 30 30 30 18 22 160 

Independent Subsets 30 30 30 30 27 18 165 
Simple Regression 30 30 30 30 29 22 171 
Ridge Regression 30 30 30 30 25 30 175 

Constraint Space Solution 1S 30 30 30 30 30 30 180 
Constraint Space Solution 3S 30 30 30 30 30 30 180 
Constraint Space Solution 6S 30 30 30 30 30 30 180 
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Figure C. 3:  Methodology for Scenario 2B 
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Figure C. 4:  Square Error Methods Comparison for Scenario 2B 
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Table C. 3:  Square Error measure Scenario 2B 
Square Error Methodology 

Mean Median Std. Dev. 
Ordinary Least Square 13.81 10.53 14.97 

Independent Subsets 5.27 4.52 3.17 
Simple Regression 4.33 3.59 2.26 
Ridge Regression 4.28 3.42 3.40 

Constraint Space Solution 1S 0.36 0.34 0.09 
Constraint Space Solution 3S 1.81 1.91 0.74 
Constraint Space Solution 6S 3.50 3.45 1.47 

 
 

Table C. 4:  Count measure Scenario 2B 
Methodology z1 z2 z3 z4 z7 z8 Total

Ordinary Least Square 30 30 30 30 9 17 146 
Independent Subsets 30 30 30 30 25 16 161 

Simple Regression 30 30 30 30 28 21 169 
Ridge Regression 30 30 30 30 21 26 167 

Constraint Space Solution 1S 30 30 30 30 30 30 180 
Constraint Space Solution 3S 30 30 30 30 30 30 180 
Constraint Space Solution 6S 30 30 30 30 30 30 180 
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Figure C. 5:  Methodology for Scenario 2C 
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Figure C. 6:  Square Error Methods Comparison for Scenario 2C 



 
 
 
 

 106

 
 

Table C. 5:  Square Error measure Scenario 2C 
Square Error Methodology 

Mean Median Std. Dev. 
Ordinary Least Square 8.11 4.29 10.01 

Independent Subsets 16.77 16.02 8.84 
Simple Regression 19.91 18.70 10.18 
Ridge Regression 2.47 1.94 1.81 

Constraint Space Solution 1S 0.39 0.39 0.07 
Constraint Space Solution 3S 1.80 1.71 0.52 
Constraint Space Solution 6S 3.14 3.28 1.32 

 
 

Table C. 6:  Count measure Scenario 2C 
Methodology z1 z2 z3 z4 z7 z8 Total

Ordinary Least Square 30 30 30 30 20 22 162 
Independent Subsets 30 30 30 29 3 23 145 

Simple Regression 25 30 30 19 2 19 125 
Ridge Regression 30 30 30 30 30 29 179 

Constraint Space Solution 1S 30 30 30 30 30 30 180 
Constraint Space Solution 3S 30 30 30 30 30 30 180 
Constraint Space Solution 6S 30 30 30 30 30 30 180 
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Table C. 7:  Count measure Scenario 2 Summary 

A B C Methodology 
Count Count Count 

Mean 

Ordinary Least Square 160 146 162 156 
Independent Subsets 165 161 145 157 
Simple Regression 171 169 125 155 
Ridge Regression 175 167 179 174 

Constraint Space Solution 1S 180 180 180 180 
Constraint Space Solution 3S 180 180 180 180 
Constraint Space Solution 6S 180 180 180 180 

 
 

Table C. 8:  Square Error measure Scenario 2 Summary 
A B C Methodology 

MSE MSE MSE 
Mean 

Ordinary Least Square 8.80 13.81 8.11 10.24 
Independent Subsets 4.11 5.27 16.77 8.71 
Simple Regression 4.42 4.33 19.91 9.56 
Ridge Regression 2.73 4.28 2.47 3.16 

Constraint Space Solution 1S 0.38 0.36 0.39 0.37 
Constraint Space Solution 3S 1.78 1.81 1.80 1.80 
Constraint Space Solution 6S 3.15 3.50 3.14 3.27 
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APPENDIX D  RESULTS SCENARIO 3 
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Figure D. 1:  Methodology for Scenario 3A 
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Figure D. 2:  Square Error Methods Comparison for Scenario 3A 
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Table D. 1:  Square Error measure Scenario 3A 

Square Error Methodology 
Mean Median Std. Dev. 

Ordinary Least Square 13.52 10.52 9.54 
Independent Subsets 10.55 8.24 7.46 

Simple Regression 12.30 11.69 6.05 
Ridge Regression 3.87 3.39 2.18 

Constraint Space Solution 1S 0.50 0.50 0.09 
Constraint Space Solution 3S 2.66 2.51 0.77 
Constraint Space Solution 6S 4.91 5.07 1.76 

 
 

Table D. 2:  Count measure Scenario 3A 
Methodology z1 z2 z3 z4 z5 z6 z7 z9 Total

Ordinary Least Square 30 30 30 30 24 11 15 30 200 
Independent Subsets 30 30 30 30 23 11 27 30 211 
Simple Regression 30 30 30 29 19 4 29 26 197 
Ridge Regression 30 30 30 30 29 26 28 30 233 

Constraint Space Solution 1S 30 30 30 30 30 30 30 30 240 
Constraint Space Solution 3S 30 30 30 30 30 30 30 30 240 
Constraint Space Solution 6S 30 30 30 30 30 30 30 30 240 
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Figure D. 3:  Methodology for Scenario 3B 
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Figure D. 4:  Square Error Methods Comparison for Scenario 3B 
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Table D. 3:  Square Error measure Scenario 3B 

Square Error Methodology 
Mean Median Std. Dev. 

Ordinary Least Square 13.33 7.74 13.95 
Independent Subsets 13.36 11.00 9.94 

Simple Regression 12.72 10.98 7.53 
Ridge Regression 4.39 3.31 3.06 

Constraint Space Solution 1S 0.49 0.49 0.08 
Constraint Space Solution 3S 2.61 2.67 0.66 
Constraint Space Solution 6S 4.90 4.69 1.88 

 
 

Table D. 4:  Count measure Scenario 3B 
Methodology z1 z2 z3 z4 z5 z6 z7 z9 Total

Ordinary Least Square 30 30 30 29 27 17 15 29 207 
Independent Subsets 30 30 30 29 27 11 23 28 208 
Simple Regression 30 30 30 28 21 10 28 17 194 
Ridge Regression 30 30 30 30 28 29 24 29 230 

Constraint Space Solution 1S 30 30 30 30 30 30 30 30 240 
Constraint Space Solution 3S 30 30 30 30 30 30 30 30 240 
Constraint Space Solution 6S 30 30 30 30 30 30 30 30 240 
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Figure D. 5:  Methodology for Scenario 3C 
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Figure D. 6  Square Error Methods Comparison for Scenario 3C 
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Table D. 5:  Square Error measure Scenario 3C 
Square Error Methodology 

Mean Median Std. Dev. 
Ordinary Least Square 18.45 11.19 16.38 

Independent Subsets 15.43 8.71 14.84 
Simple Regression 29.43 25.33 16.66 
Ridge Regression 5.09 4.38 3.01 

Constraint Space Solution 1S 0.51 0.52 0.08 
Constraint Space Solution 3S 2.71 2.65 0.62 
Constraint Space Solution 6S 5.13 4.85 1.84 

 
 

Table D. 6:  Count measure Scenario 3C 
Methodology z1 z2 z3 z4 z5 z6 z7 z9 Total

Ordinary Least Square 30 30 30 28 27 14 14 29 202 
Independent Subsets 30 30 30 28 29 13 16 29 205 
Simple Regression 24 30 30 18 2 6 5 7 122 
Ridge Regression 30 30 30 29 29 23 29 30 230 

Constraint Space Solution 1S 30 30 30 30 30 30 30 30 240 
Constraint Space Solution 3S 30 30 30 30 30 30 30 30 240 
Constraint Space Solution 6S 30 30 30 30 30 30 30 30 240 
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Table D. 7:  Count measure Scenario 3 Summary 

A B C Methodology 
Count Count Count 

Mean 

Ordinary Least Square 200 207 202 203 
Independent Subsets 211 208 205 208 
Simple Regression 197 194 122 171 
Ridge Regression 233 230 230 231 

Constraint Space Solution 1S 240 240 240 240 
Constraint Space Solution 3S 240 240 240 240 
Constraint Space Solution 6S 240 240 240 240 

 
 

Table D. 8:  Square Error measure Scenario 3 Summary 
A B C Methodology 

MSE MSE MSE 
Mean 

Ordinary Least Square 13.52 13.33 18.45 15.10 
Independent Subsets 10.55 13.36 15.43 13.11 
Simple Regression 12.30 12.72 29.43 18.15 
Ridge Regression 3.87 4.39 5.09 4.45 

Constraint Space Solution 1S 0.50 0.49 0.51 0.50 
Constraint Space Solution 3S 2.66 2.61 2.71 2.66 
Constraint Space Solution 6S 4.91 4.90 5.13 4.98 
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 APPENDIX E  RESULTS SCENARIO 4 
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Figure E. 1:  Methodology for Scenario 4A 
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Figure E. 2:  Square Error Methods Comparison for Scenario 4A 
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Table E. 1:  Square Error measure Scenario 4A 
Square Error Methodology 

Mean Median Std. Dev. 
Ordinary Least Square 4.96 4.26 4.23 

Independent Subsets 2.41 1.96 1.40 
Simple Regression 2.25 1.93 1.19 
Ridge Regression 2.63 1.74 2.25 

Constraint Space Solution 1S 0.30 0.32 0.07 
Constraint Space Solution 3S 1.30 1.29 0.42 
Constraint Space Solution 6S 2.51 2.85 1.24 

 
 

Table E. 2:  Count measure Scenario 4A 
Methodology z2 z3 z4 z7 z14 Total 

Ordinary Least Square 30 30 30 18 27 135 
Independent Subsets 30 30 30 29 27 146 

Simple Regression 30 30 30 29 27 146 
Ridge Regression 30 30 30 22 30 142 

Constraint Space Solution 1S 30 30 30 30 30 150 
Constraint Space Solution 3S 30 30 30 30 30 150 
Constraint Space Solution 6S 30 30 30 30 30 150 
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Figure E. 3:  Methodology for Scenario 4B 
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Figure E. 4:  Square Error Methods Comparison for Scenario 4B 
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Table E. 3:  Square Error measure Scenario 4B 
Square Error Methodology 

Mean Median Std. Dev. 
Ordinary Least Square 5.34 2.12 6.85 

Independent Subsets 3.20 2.37 2.50 
Simple Regression 3.17 2.36 2.27 
Ridge Regression 2.27 1.70 2.15 

Constraint Space Solution 1S 0.32 0.33 0.08 
Constraint Space Solution 3S 1.38 1.35 0.58 
Constraint Space Solution 6S 2.20 2.12 1.25 

 
 

Table E. 4:  Count measure Scenario 4B 
Methodology z2 z3 z4 z7 z14 Total 

Ordinary Least Square 30 30 30 20 26 136 
Independent Subsets 30 30 30 27 27 144 

Simple Regression 30 30 30 28 27 145 
Ridge Regression 30 30 30 28 30 148 

Constraint Space Solution 1S 30 30 30 30 30 150 
Constraint Space Solution 3S 30 30 30 30 30 150 
Constraint Space Solution 6S 30 30 30 30 30 150 
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Figure E. 5:  Methodology for Scenario 4C 

 

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

Run Number

S
qu

ar
e 

E
rr

or
 V

al
ue

s

Plot of Square Error Scenario 4C OLS
IS
SR
RR
CSS, 1S
CSS, 3S
CSS, 6S

 
Figure E. 6:  Square Error Methods Comparison for Scenario 4C 
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Table E. 5:  Square Error measure Scenario 4C 
Square Error Methodology 

Mean Median Std. Dev. 
Ordinary Least Square 5.89 3.73 5.35 

Independent Subsets 27.37 25.36 10.97 
Simple Regression 20.73 19.19 9.08 
Ridge Regression 2.58 1.84 1.80 

Constraint Space Solution 1S 0.33 0.35 0.07 
Constraint Space Solution 3S 1.61 1.66 0.57 
Constraint Space Solution 6S 2.94 3.03 1.45 

 
 

Table E. 6:  Count measure Scenario 4C 
Methodology z2 z3 z4 z7 z14 Total 

Ordinary Least Square 30 30 29 17 25 131 
Independent Subsets 30 30 30 0 23 113 

Simple Regression 30 30 29 0 23 112 
Ridge Regression 30 30 30 24 30 144 

Constraint Space Solution 1S 30 30 30 30 30 150 
Constraint Space Solution 3S 30 30 30 30 30 150 
Constraint Space Solution 6S 30 30 30 30 30 150 
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Table E. 7:  Count measure Scenario 4 Summary 

A B C Methodology 
Count Count Count 

Mean 

Ordinary Least Square 135 136 131 134 
Independent Subsets 146 144 113 134 
Simple Regression 146 145 112 134 
Ridge Regression 142 148 144 145 

Constraint Space Solution 1S 150 150 150 150 
Constraint Space Solution 3S 150 150 150 150 
Constraint Space Solution 6S 150 150 150 150 

 
 

Table E. 8:  Square Error measure Scenario 4 Summary 
A B C Methodology 

MSE MSE MSE 
Mean 

Ordinary Least Square 4.96 5.34 5.89 5.40 
Independent Subsets 2.41 3.20 27.37 11.00 
Simple Regression 2.25 3.17 20.73 8.72 
Ridge Regression 2.63 2.27 2.58 2.49 

Constraint Space Solution 1S 0.30 0.32 0.33 0.32 
Constraint Space Solution 3S 1.30 1.38 1.61 1.43 
Constraint Space Solution 6S 2.51 2.20 2.94 2.55 
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APPENDIX F  RESULTS SCENARIO 5 
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Figure F. 1:  Methodology for Scenario 5A 
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Figure F. 2:  Square Error Methods Comparison for Scenario 5A 
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Table F. 1:  Square Error measure Scenario 5A 
Square Error Methodology 

Mean Median Std. Dev. 
Ordinary Least Square 8.64 5.62 8.45 

Independent Subsets 7.27 4.81 6.87 
Simple Regression 3.85 3.54 2.14 
Ridge Regression 3.32 2.31 2.65 

Constraint Space Solution 1S 0.42 0.43 0.08 
Constraint Space Solution 3S 2.08 2.28 0.65 
Constraint Space Solution 6S 3.91 4.04 1.86 

 
 

Table F. 2:  Count measure Scenario 5A 
Methodology z1 z2 z3 z4 z7 z12 z13 Total

Ordinary Least Square 30 30 30 30 19 19 28 186 
Independent Subsets 30 30 30 30 20 23 29 192 

Simple Regression 30 30 30 30 30 28 30 208 
Ridge Regression 30 30 30 30 23 30 29 202 

Constraint Space Solution 1S 30 30 30 30 30 30 30 210 
Constraint Space Solution 3S 30 30 30 30 30 30 30 210 
Constraint Space Solution 6S 30 30 30 30 30 30 30 210 
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Figure F. 3:  Methodology for Scenario 5B 
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Figure F. 4:  Square Error Methods Comparison for Scenario 5B 
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Table F. 3:  Square Error measure Scenario 5B 
Square Error Methodology 

Mean Median Std. Dev. 
Ordinary Least Square 11.22 7.13 10.80 

Independent Subsets 8.52 6.73 6.03 
Simple Regression 6.98 5.70 4.79 
Ridge Regression 3.72 3.46 2.38 

Constraint Space Solution 1S 0.44 0.47 0.10 
Constraint Space Solution 3S 2.24 2.29 0.77 
Constraint Space Solution 6S 4.17 4.29 1.84 

 
 

Table F. 4:  Count measure Scenario 5B 
Methodology z1 z2 z3 z4 z7 z12 z13 Total

Ordinary Least Square 30 30 30 30 17 17 25 179 
Independent Subsets 30 30 30 30 20 17 27 184 

Simple Regression 30 30 30 30 26 16 25 187 
Ridge Regression 30 30 30 30 25 28 30 203 

Constraint Space Solution 1S 30 30 30 30 30 30 30 210 
Constraint Space Solution 3S 30 30 30 30 30 30 30 210 
Constraint Space Solution 6S 30 30 30 30 30 30 30 210 
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Figure F. 5:  Methodology for Scenario 5C 
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Figure F. 6:  Square Error Methods Comparison for Scenario 5C 
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Table F. 5:  Square Error measure Scenario 5C 
Square Error Methodology 

Mean Median Std. Dev. 
Ordinary Least Square 8.93 6.56 8.03 

Independent Subsets 9.83 8.05 7.13 
Simple Regression 28.29 24.67 14.20 
Ridge Regression 4.36 3.37 2.98 

Constraint Space Solution 1S 0.43 0.44 0.08 
Constraint Space Solution 3S 2.39 2.34 0.64 
Constraint Space Solution 6S 4.57 4.64 1.77 

 
 

Table F. 6:  Count measure Scenario 5C 
Methodology z1 z2 z3 z4 z7 z12 z13 Total

Ordinary Least Square 30 30 30 30 19 22 23 184 
Independent Subsets 30 30 30 30 17 20 24 181 

Simple Regression 30 30 30 11 2 21 0 124 
Ridge Regression 30 30 30 30 26 26 26 198 

Constraint Space Solution 1S 30 30 30 30 30 30 30 210 
Constraint Space Solution 3S 30 30 30 30 30 30 30 210 
Constraint Space Solution 6S 30 30 30 30 30 30 30 210 
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Table F. 7:  Count measure Scenario 5 Summary 

A B C Methodology 
Count Count Count 

Mean 

Ordinary Least Square 186 179 184 183 
Independent Subsets 192 184 181 186 
Simple Regression 208 187 124 173 
Ridge Regression 202 203 198 201 

Constraint Space Solution 1S 210 210 210 210 
Constraint Space Solution 3S 210 210 210 210 
Constraint Space Solution 6S 210 210 210 210 

 
 

Table F. 8:  Square Error measure Scenario 5 Summary 
A B C Methodology 

MSE MSE MSE 
Mean 

Ordinary Least Square 8.64 11.22 8.93 9.60 
Independent Subsets 7.27 8.52 9.83 8.54 
Simple Regression 3.85 6.98 28.29 13.04 
Ridge Regression 3.32 3.72 4.36 3.80 

Constraint Space Solution 1S 0.42 0.44 0.43 0.43 
Constraint Space Solution 3S 2.08 2.24 2.39 2.24 
Constraint Space Solution 6S 3.91 4.17 4.57 4.21 

 
 
 
 

Table F. 9:  Ridge Regression k estimation per Scenario 
 

Methodology A B C 
Scenario 1 .2 .25 .3 
Scenario 2 .2 .3 .4 
Scenario 3 .2 .3 .4 
Scenario 4 .3 .3 .3 
Scenario 5 .3 .35 .4 
Scenario 6 .2 .25 .3 

 


