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This research presents a sensitivity analysis of a semi-analytical inversion model

for hyperspectral remote sensing of shallow coral ecosystems. Using this inversion

model, five parameters describing water column bioptical properties, bathymetry

and magnitude of bottom reflectance are retrieved. In addition to the parameters of

interest, the model contains 12 nuisance parameters that are traditionally assigned

a fixed set of values. A sensitivity analysis of estimates retrieved to these nuisance

parameters is accomplished using SimLab software to study their impact on model

output. The computationally intensive analysis was enabled implementing the inver-

sion model within a parallel processing framework using GENCAN. The sensitivity

analysis was used to identify which nuisance parameters are most influential on the

parameters of interest. The nuisance parameters found to be most relevant are: S,

the spectral slope of the absorption coefficient for gelbstoff, Y, the spectral power

coefficient for calculating the backscattering coefficient, and Dop, a constant in the

equation for the distribution function for scattered photons from the bottom.
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UTILIZANDO COMPUTACIÓN DE ALTO-RENDIMIENTO PARA
MEJORAR EL DESEMPEO E INVESTIGAR SENSITIVIDAD DE
UN MODELO DE INVERSIÓN PARA PERCEPCIÓN REMOTA
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POCO PROFUNDAS

Por

Carolina Gerardino Neira

2007

Consejero: Wilson Rivera-Gallego
Departamento: Ingenieŕıa Eléctrica y Computadoras

Esta investigación presenta un análisis de sensibilidad aplicado a un modelo

semi-anaĺıtico inverso, para imágenes hiperespectrales de ecosistemas de aguas poco

profundas. El modelo de inversión encuentra cinco parámetros de interés los cuales

describen propiedades bio-ópticas de la columna de agua, profundidad y reflectancia

del fondo marino. Adicionalmente, el modelo tiene 12 parámetros nuisance, cuyos

valores son tradicionalmente fijados. Se utilizó el software SimLab para un análisis

de sensibilidad de los estimados de los parámetros nuisance y ver su impacto en la

salida del modelo. El complejo análisis computacional fue posible implementando el

modelo de inversion en una infraestructura para procesamiento en paralelo utilizando

el método GENCAN. El análisis de sensibilidad permitió encontrar los parámetros

nuisance más influyentes en los parámetros de interés. Los parámetros nuisance más

importantes son: S, la pendiente espectral del coeficiente de absorción para gelbstoff,

Y, la potencia espectral del coeficiente de retrodispersión, y Dop, constante en la

función de distribución por fotones dispersos desde el fondo.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Remote sensing is being utilized for both qualitative visual overviews and the

quantitative systematic assessment and monitoring of coral ecosystems in shallow

waters. Hyperspectral remote sensing, in particular, is being used to study shallow

waters because it offers more spectral detail than multispectral imagery. Com-

ponents such as phytoplankton, inorganic particles and dissolved organic material

make the analysis of coastal water properties, as well as its associated bottom fea-

tures, more complicated. To study this complex environment, more spectral detail

is necessary than that provided by multispectral sensors. Hyperspectral imagery

[7], which provides this greater detail, is comprised of information from many con-

tiguous bands of the spectrum. This detail also assists with improving efforts at

atmospheric compensation and the removal of sunglint [4].

Quantitative remote sensing of shallow coral water is often supported by empir-

ical, analytical and semi-analytical models, which are used to retrieve information

about benthic characteristics and water properties. Empirical models are based on

observed relationships between remote sensing reflectance spectra and measured en-

vironment properties, while analytical and semi-analytical models are simplified rep-

resentations of physical relationships (e.g. radiative transfer equations using single

or quasi-single scattering theory) [8]. These models define the relationship between

1
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measured surface reflectance and the underlying water properties and benthic char-

acteristics. Where feasible, these models are inverted so that these environmental

properties can be extracted from the remote sensing imagery.

Hydrolight [9] is an example of a radiative transfer model that explicitly com-

putes the spectral radial distribution within the water column based on the water

properties and benthic composition. This model, which requires numerous param-

eters, is computationally expensive, making it difficult to use it in an inversion

procedure for remote sensing analysis. Semi-analytical models, on the other hand,

work with fewer parameters than their analytical counterparts. This is typically

accomplished using a number of empirically derived parameters, which are referred

to here as nuisance parameters. Although the reduction of parameters is performed

to reduce the complexity of the problem, the nuisance parameters still have physical

significance and are an integral part of the overall model. The influence of nuisance

parameters on retrieval performance is one of the main objective of this study.

The model used for this study is a semi-analytical inversion (SAI) model devel-

oped by Lee et al. [1], [2] that retrieves water optical properties, bathymetry and

bottom albedo as a function of surface remote sensing reflectance. This SAI model

retrieves six environmental parameters, P, G, BP, B, H, ∆ (defined in Chapter 3), by

minimizing an error function (objective function) that describes the difference be-

tween modeled and measured surface reflectance. The same SAI model was adapted

by Goodman [5] in IDL (Interactive Data Language)/ENVI [10], [11], as the ba-

sis for a benthic unmixing model using hyperspectral imagery from Kaneohe Bay,

Hawaii. Goodman solved essentially the same SAI model as developed by Lee et al.,

but used a slightly modified objective function and only retrieved five parameters

(i.e., P, G, BP, B and H). It is important to note that the values of the nuisance

parameters within the model defined by Lee, and used successfully by Goodman in

Kaneohe Bay, are not specifically from Hawaii. Therefore, it is assumed that some
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of the residual errors found by Goodman are a function of the nuisance parameters.

1.2 Problem statement

The values for the nuisance parameters in the semi-analytical inversion (SAI)

model developed by Lee et al. were derived using a combination of field observations

and Hydrolight simulations. Model testing and validation was completed using data

from the west Florida shelf, Key West Florida, and the Bahamas. From this testing,

Lee et al. [2] concluded that the model was applicable to normal relatively clear

coastal water, but not for extreme cases with more optically dense water, such as

the Florida Bay. To evaluate the model in other shallow water conditions, Goodman

[12] used imagery from Kaneohe Bay, with areas of known bathymetry and bottom

properties but only limited knowledge of measured absorption coefficients and other

water properties. Results demonstrated successful application of the model, but also

indicated needs for further improvement.

Following the same modeling approach as Goodman, the objective of this study

is to use high performance computing to investigate the impact of the nuisance

parameters on the variability of the five parameters of interest. High performance

computing is used because the sensitivity analysis requires a large number of simula-

tions to evaluate the impact of the nuisance parameters. A parallel implementation

is utilized to significantly decrease computation time and thus perform a thorough

sensitivity analysis.

1.3 Solution Approach

Both an uncertainty analysis (UA) and sensitivity analysis (SA) are used to

identify the most influential nuisance parameters and analyze their impact on model
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output. The UA shows the uncertainty in the parameters of interest due to the nui-

sance parameters and the SA indicates how influential the nuisance parameters are

on the parameters of interest, which of causes the most uncertainty. This study uses

the Sobol method [13], [14], to perform the uncertainty and sensitivity analysis. Al-

though the Sobol method requires the generation of numerous samples to perform

the respective analysis, as mentioned above, the SAI model is implemented within a

parallel processing framework to enable evaluation of the large set of samples. The

resulting implementation reduces the total runtime, enables efficient memory man-

agement of large data, and preserves the load balance of sample processing. Studies

by Lugo et. al. [15], Hawick et. al. [16] and Valencia et. al. [17] have demonstrated

the reduction in runtime and total memory capacity required for different hyperspec-

tral image processing algorithms using the C programming language and Message

Passing Interface (MPI) [18] for parallel processing. The current application uses a

similar approach, but with C++ and LAM/MPI [19], which is a high-quality open-

source implementation of the MPI.

1.4 Research Objectives

The overall goal of this work is to identify the most influential nuisance pa-

rameters in the semi-analytical inversion (SAI) model developed by Lee et al. The

specific objectives are:

• Implement the existing semi-analytical inversion model within a parallel pro-

cessing framework;

• Carry out a sensitivity analysis of the SAI model to identify the nuisance pa-

rameters that contribute the most variability to the parameters of interest.
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1.5 Contributions

This study focuses on the parallel implementation of the SAI model and on us-

ing a sensitivity analysis to identify the most influential nuisance parameters within

the model. The SAI model is an important tool for those interested in mapping and

monitoring of shallow coral ecosystems (e.g. oceanographers, ecologists, biologists).

Results from the parallel implementation can be used to more efficiently execute

the model, and results from the sensitivity analysis can be used to identify areas

where the model can be improved. Thus, this study facilitates the improved overall

implementation of the SAI model, as well as its ability to retrieve information on

water properties, bottom albedo and water depth in shallow areas containing corals,

and other associated benthic organisms.

1.6 Thesis Structure

This thesis is organized as follows: Chapter 2 provides an overview of remote

sensing, sensitivity analysis, and high performance computing. Chapter 3 describes

the semi-analytical inversion (SAI) model, including a definition of both the param-

eters of interest and the nuisance parameters. Chapter 4 presents the SAI model

implementation and experimental results. Chapter 5 gives a description of the Sobol

method and results from the sensitivity analysis. Finally, chapter 6 contains the con-

clusions and recommendations for future work.



CHAPTER 2

PRELIMINARY CONCEPTS AND RELATED

WORK

This chapter presents an introduction to the important concepts on remote

sensing, sensitivity analysis and parallel computing.

2.1 Remote Sensing

Remote sensing instruments measure reflected and/or emitted electromagnetic

radiation (EMR) using aerial and satellite platforms [20].

Figure 2.1: Electromagnetic Spectrum, Image Courtesy of [3]

There are two main types of sensors: active and passive sensors. Active sensors

are instruments that first illuminate the surface observed using one of many EM

probes, and then measure the return signal, while passive sensors detect natural

energy reflected or emitted from the object. For passive instruments, the peak solar

energy is in the wavelength range of visible light (400 - 700 nm), as shown in Figure

6
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2.1. Other substantial fractions of incoming solar energy appear in the ultraviolet

and infrared, with small amounts in the microwave portion of the spectrum.

There are four commonly used categories of remote sensing systems, two that

are active and two that are passive [3]: The active systems are imaging radar sensors,

which utilize microwave energy, and lidar sensors, which typically utilize lasers in the

optical portion of the spectrum. The passive systems are thermal infrared sensors,

which detect emitted and reflected thermal radiation, and passive solar radiation

sensors, which detect sunlight reflected from the surface. Images generated by these

sensors may in turn consist of one band (panchromatic image), a few bands (mul-

tispectral image) or many narrow wavelength bands (hyperspectral image). The

hyperspectral information used in this thesis has a spectral resolution of 10 nm,

which matches the characteristics of the AVIRIS sensor, a passive hyperspectral

instrument.

Figure 2.2: Hyperspectral Imaging, Figure reprinted from ”Spectral Image for Re-
mote Sensing,” [4]

As mentioned in the introduction, hyperspectral sensors offer much greater

spectral detail than other traditional sensors, such as panchromatic instruments

and multispectral sensors. As a consequence, the spectral properties of individual

pixels are obtained in greater detail, which allows a more accurate characterization
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of the scene being examined. Figure 2.2 provides an illustration of the differences

in spectral detail for three different surface as measured using a hyperspectral in-

strument. These differences are a function of the chemical composition and physical

structure of the material exposed to EMR, which can change the direction, intensity,

wavelength content and polarization of EMR. Thus, through an understanding of

these relationships, we can characterize the surface material using reflected EMR.

2.1.1 Energy Interaction process

Hyperspectral images are collected using imaging spectrometers, which measure

upwelling radiance. For areas of shallow water, the measurements of upwelling radi-

ance include scattered skylight, light reflected from the water surface, light reflected

from the water column, and light reflected from the bottom. Further, shallow water

is typically a heterogeneous environment, with varying amounts of phytoplankton,

organic material and inorganic particles in suspension. Thus, the signal is very

complex. To analyze these images, apparent reflectance at the water surface is

first derived using atmospheric correction models, and sun glint removal algorithms,

which are subsequently used to remove the effects of specular reflection at the wa-

ter surface [21]. Inversion models can then be used to derive information on the

properties of the water and the benthic surface.

Figure 2.3 illustrates the interaction process of EMR withing the atmosphere, at

the water surface, within the water column and at the bottom. Sunlight first enters

the atmosphere (downwelling radiation), interacting with gas molecules, suspended

dust particles and aerosols. Portions of this downwelling EMR are scattered and

absorbed and the remaining EMR is transmitted to the surface. The resulting

surface illumination is a combination of EMR transmitted directly from the Sun

and scattered light from other parts of the sky. When the EMR arrives at solid
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surface, a portion is absorbed and the rest is reflected back into the atmosphere.

However, when this surface is a water surface a portion is still reflected back into

the atmosphere, but the remaining EMR is transmitted through the water surface

into the water column. The quantity of energy transmitted or reflected at the

water surface is dependent on the solar geometry and water surface conditions.

Additionally, refraction at the air-water interface alters the incident angles, with

light being closer to the vertical plane in the water column than in the air.

Figure 2.3: Interactions of EMR, Image Courtesy of [3], [5]

As the downwelling EMR passes through the water column it is further sub-

jected to both absorption and scattering. However, note that absorption in the

water column is greater at all wavelengths than in the atmosphere, and particularly

at wavelengths longer than 800 nm. Upon reaching the bottom, a portion of the en-

ergy is absorbed by the benthic surface and the other part is reflected. This reflected

energy then experiences the same absorption and scattering in the water column on

its way back to the water surface, as well as a similar process at the water surface,
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and the upwelling radiance that ultimately leaves the water will experience the same

interaction process in the atmosphere as it continues to the sensor to be measured.

Figure 2.4: Interactions of EMR with different surface materials, Image Courtesy of
[3]

The interaction of most importance with respect to classification of bottom com-

position is the spectral reflectance at the benthic surface. Spectral reflectance, which

is the ratio of reflected energy to incident energy as a function of wavelength, is used

to characterize the diverse material in the surface. More specifically, as mentioned

above, the amount of energy absorbed and reflected at a surface varies for different

materials creating a spectral signature that allows its identification. For example,

as we can see in Figure 2.4 (and as previously shown in Figure 2.3), water reflects

only in one portion of the spectrum (energy at other wavelengths is absorbed), while

vegetation and soil reflect energy differently throughout the spectrum. These curves

allow the recognition and classification of different surface materials. However, to

analyze the bottom reflectance, the water optical properties, water depth and all

of the interactions mentioned above must be considered. Additionally, as a limit-

ing factor in the process, the spectral window for performing an analysis of benthic

composition [12] is in general limited to the range from 400 to 800 nm [3].
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2.2 Remote Sensing Algorithms

The energy interaction process is approximated using different physically based

modeling approach. As two examples, we have the Hydrolight model which is an

accurate solution based on radiative transfer equations, and the SAI model, which

includes simplifying assumptions based on empirical data. Both are described below.

2.2.1 Hydrolight Model

The fundamental radiative transfer equation [22], representing the radiation

transfer processes in media such as water is defined as follows:

µ
dL(ξ, λ, z)

dz
= −c(λ, z) L(ξ, λ, z) + LE

∗ + LI
∗ + LS

∗ , (2.1)

where µ is the cosine of elevation angle, L is the radiance, c is the total beam

attenuation coefficient, LE
∗ is the elastic scattered radiance, LI

∗ is the inelastic scat-

tered radiance, and LS
∗ represents the internal energy sources (e.g., biolumenecence).

The variable ξ is the direction of ray propagation, λ is the wavelength, and z is the

geometrical depth.

The Hydrolight model [9] solves the above time-independent radiative trans-

fer [22] in horizontally homogeneous water with a constant index of refraction. Five

principal groups of parameters are input to this model, including the inherent optical

properties of the water column, properties of the water substances, the optical re-

flection and transmission properties of sea surface, which depend on the wind speed

and solar angle, the sky spectral radiance distribution, and the spectral properties of

the bottom boundary. The inherent optical properties are the scattering coefficient,

the absorption coefficient and the scattering phase function. These properties are

only dependent on the medium, in this case the water and substances dissolved in

it and are not affected by variations in the radiance distribution [8]. The principal
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substances considered in the model are the phytoplankton, colored dissolved organic

matter (CDOM), and minerals. The input parameters are used to calculate the re-

mote sensing reflectance as a function of depth, angular direction, and wavelength

within the seawater. However, as stated earlier, this model is a forward model and

not appropriate for inverting the same relationship so that the environmental pa-

rameters can be extracted from remote sensing imagery.

2.2.2 Semi-analytical Inversion Model

The SAI model is a hyperspectral remote sensing reflectance model for shal-

low waters developed by Lee et al. [1], [2] to retrieve water optical properties,

bathymetry, and bottom albedo from surface reflectance. For shallow waters, the

spectral shape of the bottom albedo (i.e., reflectance) is assumed uniform and known.

However, the intensity of the bottom albedo can change from place to place.

The SAI calculations center on the prediction of the surface remote sensing re-

flectance, R̂rs, which is an apparent optical property defined as the ratio of the water

leaving radiance to downwelling irradiance just above the surface. As an apparent

optical property, Rrs depends both on the medium, the inherent optical properties,

and on the directional structure of the ambient light field. Thus, this quantity varies

with respect to the absorption, a(λ), and backscattering, bb(λ), coefficients (inherent

optical properties), the bottom albedo, ρ(λ), water depth, H, and the solar zenith

angle θw. It is in turn approximated as a function of the subsurface surface remote

sensing reflectance, r̂rs, which is defined as the ratio of upwelling radiance to down-

welling radiance evaluated just below the water surface. The relationship between

R̂rs and r̂rs is defined as:

R̂rs =
0.5 rrs

1− 1.5 rrs

, (2.2)
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and the equation for r̂rs is:

rrs = rdp
rs

[
1− exp

(
−

[
DC

u +
1

cos θw

]
kH

)]
+

1

π
ρexp

(
−

[
DB

u +
1

cos θw

]
kH

)
(2.3)

The left portion on the right side of Equation 2.3 represents the influences from

the water column, and the right portion represents the bottom influence. A more

complete description of the SAI model is presented in Chapter 3, where the variables

and the equations describing the model are discussed in more detail.

Comparisons of the SAI model versus Hydrolight output and field data from

Florida both show good agreement [2]. The average error in retrieved water depths

between 2 and 20 m was only 5.3% at a wind speed of 5 m/s, and 5.1% at a wind

speed of 10 m/s. For average total absorption coefficients at 440 nm ranging from

0.04 and 0.24 m−1, the error was 7% and 6.3% for wind speeds of 5 m/s and 10 m/s,

respectively [2]. Therefore, it was concluded that the model produces acceptable

results for retrieving water optical properties and water depth.

2.3 Sensitivity Analysis

Sensitivity analysis (SA) is “the study of how the uncertainty in the output of a

model can be apportioned to different sources of uncertainty in the model input”[23].

Sensitivity analysis has been used in many different fields such us financial applica-

tions, risk analysis, signal processing, neural networks, and all the engineering and

science areas that work with developments and/or improvements of models. With

SA, it is possible to test both different model structures and different values for its

variables, as well as explore the behavior and quality of the model. In our case, a

research about SA for hyperspectral remote sensing reflectance of shallow waters, is

done with SAI model.
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The parameters of a model can essentially be divided into two categories, nui-

sance parameters, which are inputs, and parameters of interest, which are outputs.

Thus, SA can be used to determine the uncertainty in the parameters of interest

due to the uncertainty in the nuisance parameters [24]. With SA, it is possible to

answer questions such us what are the parameters of the system that need further

study, what empirical data is most needed for model accuracy and which of the nui-

sance parameters are the most influential [25] and hence require the most accurate

information. SA can be Local or Global. A local SA measures the effect of a given

input on a given output, while keeping all other factors in their nominal value and

using a small search space. On the other hand, a global SA uses a larger search

space and allows all of the input parameters to vary at the same time to measure

the effect on a given output factor, thus facilitating analysis of interactions between

input factors [24].

The Simulation Environment for Uncertainty and Sensitivity Analysis (Sim-

Lab)1 is a software tool used for performing SA. It has several different analysis

methods, including fixed samples, latin hypercube, quasirandom LpTau, Random,

Morris, Sobol and Fourier Amplitude Sensitivity Test (FAST). The first four meth-

ods are regression based methods, which predict one dependent variable from one

or more independent variables. However, these methods all require an assumption

of linearity, which is not appropriate for the nonlinear SAI model being examine

in this study. This leaves the Morris, Sobol and FAST techniques, which allow for

nonlinearity when performing the SA. Morris [24] is a screening method that gives

only qualitative output, ranking the nuisance parameters according to their relative

influence on the parameters of interest. This measure does not require large num-

bers of samples and as a consequence is used when the number of input parameters

1 http://simlab.jrc.cec.eu.int/
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is large and/or the model is computationally expensive. For example, Duarte [26]

used the Morris method for analyzing the Hydrolight model. Because of the model’s

complexity, which imply a large number of parameters and in consequence a large

sample set for the SA, Duarte [26] first used Morris method to reduce the number of

parameters. The limitation in this method, however, is that Morris does not provide

a quantitative indication of the exact differences in influence between parameters.

FAST [24] is a quantitative method that estimates the fractional contribution

of each input factor to the variance of the output. This method calculates only

the first order effects, or in the case of the Extended FAST, the first order and the

total order effects on output variance. The Sobol method [13] is another approach

based on variance estimation techniques. This method extends beyond the FAST

approach, allowing the estimation of the first order, N order, and total order effects.

As such, because it is the most comprehensive approach, the Sobol method is used in

this study. A more detailed description of the Sobol method is provided in Chapter 5.

2.4 Parallel Computing

Working with large data sets, in addition to having numerous parameters and

equations, implies an increas in the runtime required for model execution and anal-

ysis. This situation often limits investigators in their studies because of a lack

of computational power to fully perform their analysis. We use high performance

computing to overcome these limitations in the sensitivity analysis.

Parallel computing is essentially the execution of numerous tasks simultaneously

over multiple processors. The execution of tasks requires the elaboration of a parallel

program to allow the partition and processing of the data on multiple processors.

Generally, a set of processors perform the same task over different portions of data.
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Figure 2.5: Scheme of a parallel problem [6]

There are a many different architectures used in parallel computing, as well as

parallel programing models. Principal architectures and parallel programing models

are presented in the following sections.

2.4.1 Parallel architectures

• Shared Memory

In this architecture, all processors share the same memory and consequently

there is a global address space. The actions on the memory by one processor

are seen by all other processors, and as the number of processors increases,

there is more difficulty accessing the memory. Shared memory architectures

are divided into two classes depending on the memory access time, uniform

memory access (UMA) and non-uniform memory access (NUMA). For UMA,

there is equal access time to all parts of memory. This can also be called cache

coherent UMA (CC-UMA), where any change in a location of shared memory is

seen by all the processors. For NUMA, access time to the memory is not equal,

which can be slow. As with UMA and CC-UMA, there is also cache coherent

NUMA (CC-NUMA).

• Distributed Memory

In this architecture, each processor has its own memory and there is a network

to interconnect individual processor memory space (but there is not a global
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address space). Additionally, each processor can rapidly access its own mem-

ory without interference from other processors. This is referred to as memory

scalable, where a larger number of processors means larger memory. However,

communication between processors and synchronizing between tasks is the ex-

plicit responsibility of the programmer.

A number of approaches exist to deal with both distributed and shared memory

access. In this work the solution of the SAI model is implemented on a distributed

memory architecture using the Message Passing Interface MPI [18] as described be-

low.

2.4.2 Message Passing Interface (MPI)

MPI is a standard library that allows the communication of multiple processes

in a distributed memory environment [18]. The transfer of data is handled by

cooperative operations, which have to be matched. MPI programs can be used and

compiled on a wide variety of parallel computers, such as the IBM SP2, the Silicon

Graphics Origin 2000, or on a cluster of workstations (homogenous or heterogeneous)

over a network. There are also different versions of MPI implementations (e.g.

MPICH [27] and LAM-MPI [19]).

• MPICH : MPI/Chameleon has two versions2 , MPICH1 (MPI 1.1) and MPICH2

(MPI 2.0). MPICH2 essentially replaces MPICH1 and works on different plat-

forms, such as clusters and SMPs (Symmetric Multiprocessor machines). MPICH2

works on several operating systems, including Linux, Mac OS/X, Solaris and

Windows.

2 http://www-unix.mcs.anl.gov/mpi/mpich/index.htm
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• LAM-MPI : Local Area Multicomputer-MPI [19] was developed for use in hetero-

geneous clusters and on SMPs machines. The principal objects in this approach

are the nodes (physical computers), the processes (programs) and the messages

(data transmitted). To coordinate the interaction of these objects, LAM-MPI

uses an identification number, specifically the node ID. The node ID is then

used to execute the different processes without loss or conflict.

The parallel implementation in this work used LAM-MPI 7.1.1 running on a

Linux cluster, but because of its portability, the same code can be easily executed

on other parallel systems.



CHAPTER 3

SEMI-ANALYTICAL INVERSION MODEL

This chapter presents the mathematical foundation of the SAI model for shal-

low waters is presented. The parameters of interest and nuisance parameters that

are used in the model and examined using the sensitivity analysis are also defined.

3.1 Mathematical Foundation of the SAI model

The SAI model is an approximation of the radiative transfer equation for sim-

ulating the interaction of EMR within shallow water. As described in Chapter 2,

the interaction process of EMR changes as a function of several factors, particularly

absorption and scattering, which are both inherent optical properties. The Lee et al.

model [1], [2] was developed to retrieve shallow water bathymetry, bottom albedo

and water properties from hyperspectral imagery. The parameters of interest re-

trieved from the model are: P, G, BP, B, and H (see the parameters definition in

Table 3.1).

19
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Table 3.1: Definition of parameters, [1], [2]

Parameter Definition Units
a Absorption coefficient of the total m−1

aw Absorption coefficient of pure seawater m−1

aφ Absorption coefficient of phytoplankton pigments m−1

ag Absorption coefficient of gelbstoff m−1

ao, a1 Empirically derived coefficients
bb Backscattering coefficient of the total m−1

bbw Backscattering coefficient of seawater m−1

bbp Backscattering coefficient of particles
and viewing-angle m−1

B Bottom reflectance at 550 nm
BP Combined influences from particle backscattering coefficient,

view angle and sea state m−1

DB
u Distribution function for scattered photons from the bottom

DC
u Distribution function for scattered photons from the water

∆ Spectrally constant offset
G Absorption coefficient gelbstoff and detritus at 440 nm m−1

H Water depth m
κ Diffuse attenuation coefficients m−1

λ Wavelength nm
ρ Bottom reflectance, albedo
ρsd Sand albedo (reflectance) at 550 nm
P Phytoplankton absorption coefficient at 440 nm m−1

rrs Subsurface remote sensing reflectance sr−1

rdp
rs Subsurface remote sensing reflectance for optically

deep water sr−1

Rrs Above-surface remote sensing reflectance sr−1

R̂rs Estimated of Above-surface remote sensing reflectance sr−1

θw Subsurface solar zenith angle rad
u Radio of backscattering coefficient to the attenuation coefficient
Y Spectral power for particle backscattering coefficient
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The inversion approach for implementing this model utilizes a predictor-corrector

scheme to optimize values for the parameters of interest, while minimizing the error

function (objective function). The objective function is defined as:

err =

[∑675
405

(
Rrs(λ)− R̂rs(λ)

)2

+
∑800

720

(
Rrs(λ)− R̂rs(λ)

)2
]0.5

[∑675
405

(
R̂rs(λ)

)2

+
∑800

720

(
R̂rs(λ)

)2
]0.5 (3.1)

where R̂rs(λ), an apparent optical property, is the relation between the water leaving

radiance to downwelling irradiance. The cutoff between 675 nm and 720 nm is caused

by the absence of variables in the model that express the solar-simulated chlorophyll

[28] fluorescence, which is an absorption feature around of 680 nm. The range of

720 nm to 800 nm is significant in case of turbid water. This objective function

is essentially the root square error between modeled, R̂rs(λ), and measured Rrs(λ),

surface remote sensing reflectance. The modeled reflectance is calculated with the

SAI model and the measured is from a hyperspectral image. The objective function

used in this study (Equation 3.1) was previously implemented by Goodman [5] as a

slightly modified version of the function utilized by Lee et al [2], [28].

The following equations define the model derivation of R̂rs(λ). The surface

reflectance is a function of the subsurface remote sensing reflectance, rrs(λ), the

ratio of the upwelling radiance to the downwelling irradiance just below the water

surface, as defined using Equation 3.2:

R̂rs(λ) =
0.5 rrs(λ)

1− 1.5 rrs(λ)
. (3.2)

The quantity rrs is in turn defined as the sum of contributions from the water

column rC
rs(λ) and bottom, rB

rs(λ) as previously described in Equation 2.3:

rrs(λ) = rC
rs(λ) + rB

rs(λ), (3.3)
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The portion of the equation representing the water column, rC
rs(λ), is defined as:

rC
rs(λ) = rdp

rs (λ)

[
1− exp

(
−

[
DC

u (λ) +
1

cos θw

]
κ(λ)H

)]
, (3.4)

where 1/cos(θw), also known as Do, represents a non-lambertian field, which means

path length can increase with larger viewing angles, and will also vary with the

radiance distribution incident on the sea surface [29]. The solar zenith angle θw

is a function of solar position at the time the hyperspectral imagery was acquired.

In this study, θw is 9◦, which is the value used by Goodman [5], in his analysis of

Kaneohe Bay. However, this value tipically varies from 0◦ to 45◦. Additionally, the

values for water depth, H, are limited so as not to exceed 30 meters.

The subsurface remote sensing reflectance for optically deep water, rdp
rs (λ), is

defined by:

rdp
rs (λ) ≈ (0.084 + 0.17u(λ))u(λ), (3.5)

and the distribution function for the water column, DC
u (λ), which indicates the

attenuation of the upwelling EMR in the water column, is defined as:

DC
u (λ) ≈ 1.03(1 + 2.4u(λ))0.5. (3.6)

The second portion of equation for rrs(λ), the contribution from the bottom

rB
rs(λ), is defined as:

rB
rs(λ) =

1

π
ρ(λ) exp

(
−

[
DB

u (λ) +
1

cos θw

]
κ(λ)H

)
. (3.7)

The contributions from the bottom reflectance, ρ(λ), which includes one of the

parameters of interest, is defined by:

ρ(λ) = Bρsd(λ), (3.8)
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where ρsd(λ), is the bottom reflectance of sand normalized to 1.0 at 550 nm and B

is the albedo a 550 nm. In other words, the bottom is considered only sand but the

albedo intensity can change from place to place as a function of B.

The attenuation function from the bottom, DB
u (λ), which indicates the atten-

uation of upwelling EMR from the bottom, is defined as:

DB
u (λ) ≈ 1.04(1 + 5.4u(λ))0.5. (3.9)

The terms u(λ) and κ(λ), which are found in Equations 3.4, 3.5, 3.6, 3.7, and

3.9, are functions of the inherent optical properties. They are defined as:

u(λ) = bb(λ)/κ(λ), and (3.10)

κ(λ) = a(λ) + bb(λ), (3.11)

where a(λ) is the absorption coefficient and bb(λ) is the backscattering coefficient.

The absorption coefficient, a(λ), is defined as the sum of the absorption coefficient

of pure water, aw(λ), the absorption coefficient of phytoplankton, aφ(λ), and the

absorption coefficient of gelbstoff, ag(λ). Thus,

a(λ) = aw(λ) + aφ(λ) + ag(λ), (3.12)

where aφ(λ) is defined as:

aφ(λ) = [ao(λ) + a1(λ)ln(P )]P, (3.13)

and values for aw(λ), which is a physical property, and ao(λ) and a1(λ), which are

empirical spectra derived by Lee et al., are presented in Table 3.2.

The parameter P is the phytoplankton absorption coefficient at 440 nm, aφ(440).

Lee et al. [1] found that P varies as a function of the chlorophyll a concentration,
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Table 3.2: Spectral data for absorption parameters

λ ao a1 aw λ ao a1 aw

403.77 0.7177 0.0144 0.0051 606.85 0.2596 0.0544 0.2599
413.43 0.8065 0.0100 0.0047 616.53 0.3057 0.0645 0.2702
423.09 0.8951 0.0051 0.0047 626.21 0.3344 0.0702 0.2855
432.75 0.9674 0.0013 0.0054 635.90 0.3412 0.0709 0.3031
442.42 0.9858 0.0020 0.0071 645.58 0.3331 0.0678 0.3274
452.08 0.9577 0.0069 0.0090 655.02 0.4349 0.0887 0.3723
461.75 0.9180 0.0119 0.0100 664.89 0.7173 0.1396 0.4274
471.41 0.8564 0.0148 0.0110 674.43 0.8379 0.1555 0.4471
481.08 0.7918 0.0179 0.0129 683.97 0.6129 0.1170 0.4838
490.75 0.7549 0.0304 0.0158 693.52 0.3011 0.0607 0.5501
500.41 0.7289 0.0569 0.0218 703.07 0.1182 0.0237 0.6806
510.08 0.6884 0.0839 0.0320 712.62 0.0494 0.0099 0.9273
519.76 0.6331 0.0963 0.0407 722.17 0.0228 0.0048 1.3389
529.43 0.5724 0.0967 0.0433 731.73 0.0130 0.0028 1.8026
539.10 0.5089 0.0901 0.0476 741.29 0.0130 0.0028 2.3953
548.78 0.4359 0.0795 0.0545 750.86 0.0130 0.0028 2.4733
558.45 0.3584 0.0681 0.0614 760.42 0.0130 0.0028 2.5021
568.13 0.3043 0.0610 0.0682 770.00 0.0130 0.0028 2.4700
577.81 0.2806 0.0581 0.0858 779.57 0.0130 0.0028 2.3615
587.49 0.2657 0.0555 0.1242 789.15 0.0130 0.0028 2.1978
597.17 0.2448 0.0507 0.1881 798.72 0.0130 0.0028 1.9924

[chl-a]. Thus, if measurements were available, the value for P could be directly input

to the model, but in most cases it is typically derived as one of the parameters of

interest.

The absorption coefficient of gelbstoff, ag(λ), is approximated by:

ag(λ) = Gexp[−S(λ− 440)]. (3.14)

where G is the absorption coefficient of gelbstoff and detritus at 440 nm. Gelbstoff,

also known as yellow substance or colored dissolved organic matter (CDOM), is a mix

of humic and fulvic acids, which are compounds of dissolved and colloidal organics.

Detritus is organic material suspended in water, and along with gelbstoff, has an

important contribution to the total absorption coefficient in the visible wavelengths.
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Bricaud [30] originally developed Equation 3.14 for the range from 375 - 500 nm,

and Lee et al. extended the range to 800 nm. The parameter S defines the spectral

slope of ag(λ) and is discussed in further detail in the next section.

The backscattering coefficient bb(λ) is the sum of the backscattering coefficient

of seawater, bbw(λ), and the backscattering coefficient of particles, bbp(λ):

bb(λ) = bbw(λ) + bbp(λ), (3.15)

bbw(λ) = 0.0038(400/λ)4.3, (3.16)

bbp(λ) = BP (400/λ)Y . (3.17)

Equation 3.17 describes the backscattering by particles, where BP is a combi-

nation of particle backscattering coefficient, view angle and sea state. Gordon et al.

[29] assume a value of 0.01 for BP with excellent agreement between real and com-

puted data. However, here it derived as one of the parameters of interest. Although

these data were determined for Case 1 waters, which depend on [chl-a], it can be

extended to Case 2 waters with variations in concentrations of other elements such

as gelbstoff, suspended particles and influence from the bottom.

In summary, the five parameters of interest are P, G, BP, B and H, which are

derived using an inversion modeling approach. Other parameters in the model are

considered nuisance parameters.

3.1.1 Nuisance Parameters

Nuisance parameters are an important aspect of the model for deriving the pa-

rameters of interest. In this model, the values for most of the nuisance parameters

were determined empirically using field data and observations from Hydrolight [1],
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[2]. It is important to know the relative influence of these parameters over a given

range of acceptable values in order to examine their impact on the parameters of

interest. A sensitivity analysis is utilized to investigate their influence. The nuisance

parameters included in this analysis are presented below.

3.1.1.1 Spectral slope of ag (S)

The spectral slope of ag, S in Equation 3.14, is a proxy for variations in the

composition of gelbstoff. The greatest gelbstoff concentrations are found typically

in lakes, rivers and coastal water [22], and the dominant absorption for gelbstoff is

in the blue region of the spectrum. Lee et al. [2] indicates that S influences both P

and G, and has a smaller influence on H, which has more dependency from the total

absorption. A study by Twardowski et al. [31] collected values of S presented by

different authors, and concluded that a typical value was between 0.014-0.015 nm−1

([30], [2]), but that in some instances the values could be much higher (e.g., 0.023

nm−1). Lee et al. [1], [2] and Goodman [5], use a value of 0.015 nm−1 for S, which

represents an average for the range from 0.011-0.021 nm−1 [32]. For this study, the

later range is used.

3.1.1.2 Spectral shape parameter (Y)

The parameter Y, in Equation 3.17, is the wavelength power of bbp and varies

as a function of particle size and chlorophyll, sediment and gelbstoff concentration.

There are no direct measurements of Y and its value is assumed dependent on [chl-

a], where Y is large for large values of [chl-a]. A suggested range is 0-3 [28], but as

used by Lee et al. [1] and Goodman [5] in the SAI model, it is limited to the range

from 0-2.5. This range is comparable with the range suggested by Liew [33], where

not only [chl-a] is taken into account, but also the concentration of gelbstoff and

suspended particles. Liew defines two cases: Y=0, which has an average [chl-a] and
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high concentration of suspended sediments with fine particles; and Y=2.2, which has

low [chl-a] and low suspended sediments with large particles. Lee et al. [2] showed

that smaller Y values produce smaller values of G and larger Y values produce larger

values of G. An empirical relationship can be used for determining Y:

Y ≈ 3.44[1− 3.17exp(−2.01Rrs(440)/Rrs(490))]. (3.18)

However, this equation is not used in the current study. Instead, the range of

values from 0-2.5 are used in the sensitivity analysis to investigate the influence.

3.1.1.3 Constants of bbw

There are two constants in Equation 3.16: 0.0038 (np5) and 4.3 (np6). Lee et

al. [2] derived the values for these parameters from Smith and Baker [34]. Although

this work was completed some years ago, the values are still valid and utilized in

many different investigations (e.g. [2], [35]). The range of variability for np5 and

np6 used in the sensitivity analysis are +25% and -5%, as suggested by Smith and

Baker [34], which results in a range of 0.0036-0.00475 for np5 and 3.87-4.73 for np6.

3.1.1.4 Constants of DC
u

The constants in Equation 3.6, 1.03 (Do) and 2.4 (D1) were empirically derived

by Lee et al. [1] using Hydrolight simulations. Results from this analysis indicated

agreement of ±3% for different values of u. It was also determined that these con-

stants can influence H, one of the parameters of interest. Lee et al. suggest a range

of 1.2-1.7 for DC
u , but does not indicate individual ranges for Do and D1. Thus, the

range of values used for Do and D1, based on ±10% from the derived values of 1.03

and 2.4, which equates to 0.927-1.133 and 2.16-2.64, respectively.
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3.1.1.5 Constants of DB
u

As with DC
u , DB

u , Equation 3.9 also contains empirically derived constants, 1.04

(Dop) and 5.4 (D1p), which can also influence model output. Lee et al. indicate a

range of 1.1-2.2 for DB
u , with no indication regarding the individual constants. Thus,

again using ±10%, the ranges used for Dop and D1p are 0.936-1.144 and 4.86-5.94,

respectively.

3.1.1.6 go and g1

These parameters go and g1 relate rdp
rs with the absorption and backscattering

coefficients, and thus can influence G and BP. Equation 3.5 was developed for Case

I waters [29], but it has also been found to work for other water type as well. Lee

et al. [1] selected values for the parameters by optimizing the fit between simulated

SAI model output and simulated data from Hydrolight. The final values used in

Equation 3.5 are 0.084 for go and 0.17 for g1. Based on ±10% of these values, the

range used in the sensitivity analysis are 0.0756-0.0924 for go and 0.153-0.187 for g1.

3.1.1.7 ζ and Γ

The parameters ζ = 0.5 and Γ = 1.5 in Equation 3.2 relate above surface to

below surface remote sensing reflectance. The values for ζ is defined by:

ζ =
t t+
n2

, (3.19)

where t is the radiance transmittance, t+ is the irradiance transmittance, which

define the transfer of EMR from below to above the surface, and n is the refractive

index of water. Gordon [29] defines Γ as the water-air reflectance for totally diffuse

irradiance. This parameter is part of the denominator of Equation 3.2 (1 − Γrrs),

which represents the internal reflection from water to air. In open-ocean waters,
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internal reflections are typically insignificant but for shallow or turbid waters can

be substantial. The values employed by Lee et al. [1],[2] are consistent with values

calculated using Hydrolight (ζ ≈ 0.518, Γ ≈ 1.562), and with values reported by

Gordon [29] (ζ ≈ 0.48). Using ±10%, the ranges used in the sensitivity analysis are

0.45 - 0.55 for ζ and 1.35 - 1.65 for Γ.

3.2 Synthetic data for experiments

As mentioned before, an inversion routine is used to retrieve the five parameters

of interest in the SAI model. For the sensitivity analysis, this process is repeated

numerous times using different values for the input parameters. For this study, the

model used a total of 42 bands from 400-800 nm, each with a spectral resolution of

approximately 10 nm. Two different synthetic vectors were used to analyze model

performance and implement the sensitivity analysis, one for clear water (minimal

influence from water constituents) and one for optically dense water (significant

influence from water constituents). These vectors were created by applying the SAI

model in a forward approach, using the parameters of interest as input and obtaining

surface reflectance as output. This was performed using two different sets of input

parameters for P, G, BP, and B, as well as six different values for H (see Table 3.3),

resulting in a total of 12 vectors. By using these synthetic vectors rather than real

data, results of the inversion can be directly compared with the actual parameters

of interest used to create the synthetic data.

Table 3.3: Initial values for clear and optically dense water and range of parameters
of interest

P G BP B H
Clear Water 0.05 0.05 0.01 0.4 1,5,10,15,20,30

Optically Dense Water 0.4 1 0.2 0.4 1,5,10,15,20,30
Range 0.005-0.5 0.002-3.5 0.001-0.5 0.01-0.6 0.2-33
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This chapter described the SAI model and specified the values and ranges for

the parameters of interest and nuisance parameters used in the model and in the

sensitivity analysis tests. Chapter 4 explains how the parallel implementation was

done, what results in terms of time were obtained, what optimization was used to

perform the inversion model, and details of the Sobol method used to implement

the sensitivity analysis. Results form the two types of synthetic vectors, for clear

water and optically dense water are presented in Chapter 5.



CHAPTER 4

PARALLEL IMPLEMENTATION OF SAI

MODEL AND EXPERIMENTAL RESULTS

This chapter discusses the implementation of the semi-analytical inversion model

within a parallel processing framework. The greater processing speed obtained

with this parallel implementation is also demonstrated. This approach provides

the foundation for assessing real-time processing capabilities as well as the compu-

tation power necessary for addressing complex optimization and sensitivity ques-

tions. Details of implementing the optimization routine using GENCAN method

are described. Finally performance results for SAI model parallel implementation

are shown.

4.1 Implementation of SAI model within a Parallel Process-
ing Framework

The semi-analytical inversion model was implemented withing a parallel pro-

cessing framework using C++ and LAM-MPI [18]. As disscussed in Chapter 3,

MPI is the de facto standard for implementing parallel applications on distributed

memory systems. The specific version used in this research is LAM-MPI 7.1.1.

The Parallel and Distributed Computing Laboratory (PDCLab) at the University

of Puerto Rico at Mayaguez (http://pdc.ece.uprm.edu) facilitated use of an IBM 64

dual-processor nodes xSeries Server cluster running under Linux.

31
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Figure 4.1: Implementation of the semi-analytical model as a forward and inverse
model

Figure 4.1 presents the two-part scheme of the SAI model. The first part of the

overall scheme is the forward implementation, where the semi-analytical model is

utilized to create a set of synthetic vectors R̂rs (equivalent to the individual pixel of

a hyperstectral image). These synthetic pixels were created using the two types of

parameters of interest values: one for clear waters and one for optically dense waters

(Table 3.3). The second part of the overall scheme is the inversion model, where the

optimization method is utilized to retrieve the values for the parameters of interest

for each of the synthetic vectors using varying combinations of nuisance parameters.

This second part represents the portion that would be applied to a hyperspectral

image, using one set of nuisance parameters to retrieve the water optical properties,

bottom albedo and bathymetry. However, in order to more thoroughly analyze

model performance, synthetic vectors are utilized so that the exact values of the

parameters of interest are known. The sensitivity analysis (SA) operates on the

complete result matrix of parameters of interest for each of the synthetic vectors,
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and is ultimately used to examine the influence of the nuisance parameters on the

parameters of interest.

The overall problem addressed by the parallel implementation can be described

as a simple decomposition into independent parts that can be processed simulta-

neously, with communication of processors (slaves) and master processor occurring

only at the start and end of the application. This decomposition permits the master

to send one array of nuisance parameters to every processor for its implementation

in the optimization routine. This is possible because the implementation of the nui-

sance parameters is independent on each other. Therefore, the processing is achieved

using a master-slave scheme [36] such that the master coordinates all the processes

and slaves are in charge of the actual vector creation and optimization for each set

of nuisance parameters.

4.2 Non-linear constrained optimization

As mentioned before, the focus of the study is to examine the SAI model with

respect to evaluating the impact of the nuisance parameters on model performance.

The foundation of the SAI model is the optimization routine employed for retrieving

estimates of bathymetry and water properties. The goal of the optimization routine

is to identify the best value for the parameters of interest that minimize a given

objective function. The objective function used for performing this optimization (as

presented in Chapter 3) is defined as:

err(θ, γ) =
|Rrs − R̂rs(θ, γ)|22

|R̂rs(θ, γ)|22
, (4.1)

where err(θ, γ), which is evaluated from 405-675 nm and 720-800 nm, is a function

of the variables or parameters of interest (θ):

θ = {P, G, BP,B,H} ,
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and the nuisance parameters γ:

γ = {S, Y, np5, np6, Do, D1, Dop, D1p, go, g1, ζ, Γ} .

The SAI model is non-linear and the parameters of interest are constrained

within bounds representing reasonable physical limits. Consequently, the solution

is a non-linear constrained optimization.

The non-linear constrained optimization problem is solved using the GENCAN

routines from the OOL (Open Optimization Library). OOL [37] is implemented fol-

lowing the GNU Scientific Library (GSL) standards and operates under the General

Public License (GPL). OOL also utilizes a different set of notation when referring

to the objective function and related parameters. In this notation, the objective

function err(θ, γ) is represented by f(x), the parameters of interest θ is represented

by x, and the nuisance parameters γ are not directly expressed. The optimization

problem is expressed as [38]:

Minimize f(x)subject to x ∈ Ω, (4.2)

where l is the lower bound, u is the upper bound and Ω is the closed convex set (box

set) in <n, defined as:

Ω = {x ∈ <n |l ≤ x ≤ u} . (4.3)

and Ω is divided into disjoint open faces FI , for all I ⊂ {1, 2, ..., n, n + 1, n + 2, ..., 2n},

such that:

FI = {x ∈ Ω|xi = liifi ∈ I, xi = uiifn + i ∈ I, li < xi < ui otherwise} . (4.4)

GENCAN incorporates two different methods for minimizing a given objective

function, the truncated Newton method, and the Spectral Projected Gradient (SPG)
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method. To determine which method is utilized GENCAN executes the test:

||gI(xk)|| ≥ η||gP (xk)||, (4.5)

where η ∈ (0, 1), xk ∈ Ω (i.e., inside a given face of Ω), and gP (x) is the projected

gradient defined as:

gP (x) = PΩ(x− g(x))− x, (4.6)

where gx denotes ∇fx and gI(x) is the projection of gP (x) inside the face SI . For

all x ∈ FI , gI(x) is defined as

gI(x) = PSI [gP (x)], (4.7)

where S ⊂ <n, which is the parallel linear subspace to VI , the smallest affine sub-

space that contains FI .

If the test in Equation 4.5 is true, the truncated Newton method is performed to

compute xk+1. If not, it is necessary to leave the current face and the new iteration

is computed with the non-monotone SPG method.

If selected, the Truncated Newton method, also known as Line Search Newton

- Conjugate Gradient (CG) method, is used to compute the search direction dk to

calculate the iteration xk+1, defined as:

xk+1 = xk + αkdk, (4.8)

where αk is the step length and the maximum αmax = 1. The search direction is

computed by applying CG method to the Newton Equation:

Adk = −g(xk), (4.9)

where the Hessian A = ∇2f(xk) and g(xk) = ∇f(xk). In this approach, GENCAN

does not need explicit knowledge of the gradient and Hessian. The gradient is

calculated using finite differences given by:
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g(xk) =
f(xk + εei)− f(xk − εei)

2ε
+ O(ε2), (4.10)

where ek is the k-th unit vector, and ε is a small perturbation of x. GENCAN

requires the product of A dk, where instead of computing just the Hessian, the

product of matrix-vector is calculated as:

Adk =

(
g(xk + εei)− f(xk − εei)

2ε

)T

dk. (4.11)

The line search ends if xk + dk satisfies the sufficient descent criterion f(xk +

αmaxdk) < f(xk) and if the directional derivative 〈g(xk + dk), dk〉 is substantially

larger than 〈g(xk), dk〉. When the directional derivate is not sufficiently large, larger

step values are needed to obtain smaller functional values. Then, α is multiplied

by a fixed factor N, a process is called extrapolation. In the other case, when the

sufficient descent criterion is not satisfied, backtracking is performed, which means

the Armijo condition has to be satisfied:

f(xk + αdk) ≤ f(xk) + γα 〈gk, dk〉 . (4.12)

Further detail regarding the Truncated Newton method is provided in [38].

Where the Truncated Newton method is not used, the SPG method is used

instead. The SPG method is a modification of the Barzilai-Borwein gradient method

presented by Birgin et al [39]. In this method, the search direction dk is define as:

dk = PΩ(xk − λkg(xk))− xk, (4.13)

where λ = 1/αk and xk+1 = xk + λdk is computed until the Armijo condition

(Equation 4.12)is fullfiled. The parameter αk is defined by:

αk =
sT

k−1Yk−1

sT
k−1sk−1

, (4.14)
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and has the following range of value:

αk = min
{
αmax, max

{
αmin, α

T
k

}}
. (4.15)

where the slack variables sk = xk+1 − xk and Yk = g(xk+1 − g(xk)) are used to

estimate αk, which can only assume positive values.

4.3 Results of Optimization Routine Test

The accuracy of the GENCAN optimization routine has been verified using

two synthetic pixels with characteristics of clear water and optically dense water

at eight different water depths. The values used to create the pixel were P=0.05,

G=0.05, BP=0.001, B=0.4, for clear water, and P=0.4, G=1, BP=0.2, B=0.4, for

optically dense water and H was tested with : 1, 1.5, 5, 8, 10, 15, 20, 30 meters.

Because the synthetic pixels are generated using a forward version of the SAI model,

optimization results should obtain the same values for the parameters of interest as

were used as input. Results of GENCAN routine are also compared with an IDL

optimization routine. Figure 4.2, 4.3 and 4.4 show the percentage of error obtained

for each parameter of interest in case of clear water after optimization with GENCAN

and IDL. In general GENCAN yields percentages of errors under 1%, except for

parameters B and H at 30 meters of depth. In this case the percentages of error

were 23.12% and 4.91%, respectively.

When comparing the results to the IDL optimization for clear water significant

differences in terms of the percentage of error can be appreciated. For instance, the

error for the parameter G is 30% with IDL optimization compared to 0% of error

with GENCAN optimization (see Figure 4.2(b)).
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(a)

(b)

Figure 4.2: Percent Errors for IDL and GENCAN optimization methods for clear
water
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(a)

(b)

Figure 4.3: Percent Errors for IDL and GENCAN optimization methods for clear
water, continuation
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Figure 4.4: Percent Errors for IDL and GENCAN optimization methods for clear
water, continuation

The test done with a synthetic pixel for optically dense water are illustrated in

Figure 4.5, 4.6 and 4.7, illustrate good results for parameters P, G and BP where

the error is almost zero for both GENCAN and IDL optimization. However, for

parameters B and H the percentage of error increase with water depth. For param-

eter B, GENCAN shows an error of 33.33% from 10 meters to 30 meters, and IDL

shows an error of 33.33% from 5 meters to 30 meters. For parameter H, GENCAN

presents an error of 68.29% at 10 meters and this error increase until get an error

of 409.81% at 30 meter, and IDL also presents an increasing error begining from 5

meters with 22.44% until get 409.81% at 30 meters. These results demostrate the

difficulty of the extraction of information for bottom albedo and water depth with

optically dense water, where at larger water depth larger decreasing on light when

it is traveling through the water column and consequently there is not enough light

to be reflected from the surface.
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(a)

(b)

Figure 4.5: Percent Errors for IDL and GENCAN optimization methods for optically
dense water
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(a)

(b)

Figure 4.6: Percent Errors for IDL and GENCAN optimization methods for optically
dense water, continuation
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Figure 4.7: Percent Errors for IDL and GENCAN optimization methods for optically
dense water, continuation
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4.4 Performance Results

An experiment with 5120 different samples of nuisance parameters applied to a

clear water synthetic vector was carried out to measure execution time and speedup

of the parallel implementation of the SAI model.

(a)

(b)

Figure 4.8: Execution time of SAI model for clear water (a); enlarge subset (b)

Figure 4.8(a) shows reduction of the execution time as the number of processors

increases. A closet look at the results, Figure 4.8(b), shows that at 64 processors



45

we obtain the first local minimum time of 1855.86 seconds, which is 2.04% of serial

time. At 108 processors the time is 1190.085 seconds, which is 1.31% of serial time.

After 108 processors, the execution time continues drecreasing, but at slower rate.

Figure 4.9: Speedup of SAI model for clear water

Figure 4.9 illustrates the speedup obtained as the number of processors in-

creases. A superlinear speedup is not totally obtained, mostly because other pro-

cesses were running at the same time. The speedup also demonstrates that after 108

processors an overhead occurs. Similar results were observed when the analysis was

repeated with an increased number of samples. The results presented here demon-

strate the overall performance of the parallel implementation with respect to serial

implementation, reducing the total runtime from 20 hours with a single processor to

less than 20 minutes with 128 processors. The reduction of the execution time allows

the user to work with large sets of data and also performs exhaustive researches that

normally require inconveniently long periods of time (hours or days).



CHAPTER 5

SENSITIVITY ANALYSIS

This chapter describes the Sobol method used for performing the sensitivity

analysis (SA). The methodology for the SA and results obtained for clear and opti-

cally dense water are discussed.

5.1 Sobol Method

The Sobol method is a variance-based approach [13], [14] that measures the

overall and individual interactions at any order effect of the nuisance parameters γ on

the variance of the output variables (parameters of interest θ). In this analysis, the

output θ is equal to a set of n statistically independent input parameters f(γ). The

last one is decomposed into summands of increasing dimensionality that represents

all possible source of variability:

θ = f(γ1, ..., γn) = f0 +
n∑

i=1

fi(γi)+
n∑

i=1

n∑
j=i+1

fij(γi, γj)+ ...+ f1,...,n(γ1, ..., γn), (5.1)

where f0 is the zero order effect equivalent to the mean value of f(γ), which must

be a constant. The effects represented by the functions are: fi, the main effect of

the i - γ parameter; fij, the second order effect is the interaction effect between

parameter i and j, and f1,...n, the larger effect. Then, according to the concept of

Analysis Of Variance (ANOVA) decomposition [40], the total variance is defined as:

46
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V ar(θ) =
n∑

i=1

V ar(fi) +
n∑

i=1

n∑
j=i+1

V ar(fij) + ... + V ar(f1,...,n). (5.2)

The global sensitivity index is defined as the ratio between the conditional

expectation variance (V ar(E(θ|γi)) or V ar(fi), the variance of the expectation value

of θ conditional on a fixed value of γ and the total variance V ar(θ), such that:

Si = V ar(fi)/V ar(θ), (5.3)

where Si is the main sensitivity index and Si ∈ [0, 1]. The second order effect or

interaction sensitivity index is defined as:

Sij = V ar(fij)/V ar(θ), (5.4)

and the larger sensitivity indices are:

S1,...,n = V ar(f1,...,n)/V ar(θ). (5.5)

Additionally, all sensitivity indices sum to one:

n∑
i=1

Si +
n∑

i=1

n∑
j=i+1

Sij + ... + S1,...,n = 1. (5.6)

Following from the previous definition, the Total Sensitivity Index of parameter i

[13], named ST (i), is defined as the sum of all sensitivity indices that include the

parameter i,

ST (i) = Si + Sij + ... + Si,n, (5.7)

or

ST (i) = 1− Sv i, (5.8)



48

where Sv i is the sum of all sensitivity indices not including parameter i. Chan et al.

[13] consider ST (i) an important value because it quantitatively ranks the influence

of nuisance parameters on the parameters of interest. Thus, if the ST of a factor is

negligible, then the factor is considered non-influential and its value can be fixed to

any value within its specified range of variability. Otherwise, the factor has to be

considered important and the user has to pay attention to the value that this factor

is assigned (examples of ST are shown in [13] and [24]).

5.2 Methodology

We propose to follow four steps, described in Figure 5.1, to accomplish the SA:

1. Define the range and distribution function for each of the input variables (i.e.

the nuisance parameters). In this study, an uniform distribution function was

selected for all variables.

2. Generate samples of the nuisance parameters. The choice of the sampling

method depends on the type of sensitivity analysis that will be performed. The

Sobol method was used in this study to generating the samples. The user has to

specify the conditions, like first and total order calculation or has the option of

choosing other orders, but always including total order calculation. Depending

on the order number, the number of executions (samples) will increase. In this

research, second order was chose using Sobol method, as result 5120 samples

are generated. The generation of samples is not time consuming.

3. The model is fed with the samples. In our case, the samples were exported and

read by the C++/MPI program. Implementation then included generating the

synthetic vectors using forward model, and subsequently performing the actual

inversion. Output from this step are the parameters of interest derived for each

set of samples.
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Figure 5.1: Steps to accomplish the Sensitivity Analysis

4. Perform the uncertainty and sensitivity analysis. The results of the parallel

implementation of the inversion model are imported to SimLab for analysis.

Note that steps (1) and (2) are performed using the SimLab Statistical Prepro-

cessor module; step (3) is performed external to SimLab using C++/LAM-MPI; and

the final step (4) is performed using the SimLab Statistical Postprocessor module.

SimLab [24] was primarily designed for Monte Carlo Analysis. However, this

software has the flexibility to work with other models, even if the model is in another

computational infrastructure, such as the SAI model used here, and the results can

be exported to perform the SA.

5.3 Results

The uncertainty analysis (UA) and sensitivity analysis (SA) for both clear and

optically dense water are discussed in this section.

5.3.1 Results for Clear Water

The uncertainty analysis (UA) performed in step (4) of the above procedure

investigates the uncertainty in the parameters of interest according to variability in
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the nuisance parameters [24]. Figure 5.2 is an example of the UA for clear water

with the initial values of P=0.05, G=0.05, BP=0.01, B=0.4, and H=5. The results

exhibit little variance, and the mean value is close to those used as initial values

in the forward model. At water depth greater than 10 meters (Figure5.3), some

parameters start showing variations, which are due to the nuisance parameters.

To find out how influential the individual nuisance parameters are, the SA is

carried out. The SA results indicate which nuisance parameters are most influential

and thus which parameters need to be properly assigned so as to lower uncertainty

in the output and improve model performance.

Table 5.1 summarizes the sensitivity indices (percentage) of the first and second

order effects, showing only the most representative values. The results are for clear

water with H set to 1,5,10,15,20, and 30 meters. The analysis was performed using

two separate tests:

• Sobol method, first order only (Sobol1), with 1792 samples

• Sobol method, first and second order (Sobol4), with 5120 samples

Sensitivity indices for these tests are evaluated according to the following [13]:

100-80 %:very important, 80-50 %:important, 50-30 %:unimportant, and 30-0 %:ir-

relevant.
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(a) (b)

(c) (d)

(e)

Figure 5.2: Results of uncertainty analysis for clear water at 5 meters
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(a) (b)

(c) (d)

(e)

Figure 5.3: Results of uncertainty analysis for clear water at 10 meters
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Table 5.1: Results for Clear Water with different water depths, H

H (m) Test P G BP B H
Sobol1 S(95.36) S(99.87) Y(86.46) ζ(94.10) Dop(85.95)

1 sobol4 S(100) S(100) Y(89.66) ζ(89.2) Dop(91.79)
Sobol1 S(89.8) S(66.89) Y(94.17) S(47.94) Dop(53.55)

Y(30.75) ζ(39.12) S(30.37)
5 Sobol4 S(96.14) S(70.03) Y(95.3) S(56.53) Dop(54.45)

ζ(36.77) S(29.51)
Sobol1 S(67.68) Y(75.44) Y(91.11) S(64.15) Dop(38.73)

Y(27) S(24.79) Y(13.87) Y(27.29)
10 Sobol4 S(70.97) Y(80.89) Y(89.76) S(69.87) Dop(45.62)

Y(30.06) S(25.89) Y(22.17) S(30.45)
Sobol1 S(68.31) Y(84.45) Y(89.57) S(46.76) S(53.59)

S(15.82) Y(28.57) Dop(14.97)
15 Sobol4 S(72.30) Y(89.33) Y(86.78) S(54.49) S(52.5)

Y(25.79) S(16.87) Y(29.86) Dop(18.65)
Sobol1 S(80.09) Y(81.24) Y(91.05) Dop(21.14) S(73.80)

S(18.28) S(20.66)
20 Sobol4 S(85.21) Y(86.30) Y(89.79) S(28.89) S(79.29)

S,Y(13.66) S(19.70) S,Y(11.73) S,Y(18)
Sobol1 S(84.79) Y(75.11) Y(92.17) S(86.10) Y(30.47)

S(22.79) S(23.97)
30 Sobol4 S(90.53) Y(79.19) Y(92.35) S(95.25) Y(32.64)

S,Y(18) S(24.44) S(27.87)

Observations from examining the results in Table 5.1 include:

H = 1 meter: Sobol4, with more samples, has more stability and accuracy than

Sobol1. The values for all second order interactions (on the order of 1% or less) are

not very significant.

H = 5 meters: Results are similar to those obtained at 1 meter, except for B,

where S replaces ζ as the most influential parameter.

H = 10 meters: Additional parameters and relationships are emerging. The

nuisance parameter Y replaces S as the important parameter for G; ζ is no longer

influent on B; and Dop remains the most influential parameter for H, but with a

score less than 50%, which indicates it is unimportant.
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H = 15 meters: Results are similar to those at 10 meters, except for H, where

S is now the most significant nuisance parameter.

H = 20 meters: The parameters P,G, and BP exhibit the same behavior as

at 15 meters. For parameter B, there are no significant nuisance parameters, likely

because the increasing depth is adding difficulty for resolving information about the

bottom.

H = 30 meters: The nuisance parameters for P,G, and BP show equal or higher

values as at 20 meters; S again becomes the most significant parameter for B; and

there are no important parameters for H.

A summary of the effects presented in Table 5.1 for the sensitivity analysis of

clear water are shown in Figure 5.4. Here, the sensitivities are presented on a scale

from 0 to 1, where 0 represents 0% of influence, and 1 represents 100% of influence

over the parameter of interest. Figure 5.4 show that the nuisance parameter S is

consistent for parameter P; also S appears as influential to parameter G, but for

depths up to 5 meters Y is the most influential nuisance parameter. The parameter

Y is presented as the only one influential over the parameter of interest BP. The

parameter of interest B is affected for several parameters as the water depth increase

and S is the more influential nuisance parameter showed. The parameter of inter-

est H presents great variabilitity in its sensitivity analysis, with different nuisance

parameters emerging such as S, Y and Dop, dependent on the water depth.

As shown in Figure 5.4, the first and second order analysis do not always clearly

indicate which parameters are the most important. For example, it is not clear which

nuisance parameter is most influential on water depth, H. However, the ST index

may help clarify and resolve this question. Figure 5.5 shows the total sensitivity

indices for parameter H at 30 meters. It is clear from this figure that Y is the most

significant nuisance parameter, followed by S. Parameters such as np5, np6, Do, D1,
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Main results of the sensitivity analysis for clear water

D1p, g1, ζ (represented in the figures as np13), Γ (represented in the figures as np14),

and go have ST indices close to zero and are thus not important for determining H.
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Figure 5.5: Results of total sensitivity index for parameter H for clear water at 30
meters depth

(a) (b)

Figure 5.6: Results of total sensitivity index for clear water at 5 and 30 meters depth

As another way of looking at the same data, Figure 5.6 illustrates the relative

influence of S and Y on the different parameters of interest at 5 and 30 meters

depth. Figure 5.6(a) shows that S strongly influence two parameters, P and G,

with also influence in parameter B, and Y has strongly influence in the parameters

BP. For parameter H there are two nuisance parameters with influence Dop and

S, but this happen up to 5 meters, because at 30 meters, in Figure 5.6(b), as was

mentioned before the most influence nuisance parameter is Y. Also, there is a change

in parameter G at 30 meters, where S is not the most important, instead we have Y as
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the most influential. Thus, the parameters S and Y are more significant to P and G.

In this case, S represents spectral information related to Gelbstoff, and Y represents

spectral information for particle backscattering. A change in the concentration of the

particles in the water will affect what can be retrieved from it, thus the absorption of

phytoplankton (P) and Gelbstoff (G) will vary too. These results are in agreement

with indications from Lee et al. [2] that S and Y directly influence P and G values.

S and Y also influence other parameters. The parameter Y is the only param-

eter of those tested responsible for changes in BP. ζ and S emerge with increasing

water depth as the parameters that affect B. Up to 10 meters, the distribution

function of scattered photon from bottom, Dop, is the dominant parameter affect-

ing H, but at 15 and 20 meters, S is important, and at 30 meters, it is replaced by Y.

5.3.2 Results for Optically Dense Water

The uncertainty analysis for optically dense reveals much greater uncertainty

in the parameters of interest particularly with increasing water depth. This is at-

tributed to much greater scattering and absorption present in this water type and

hence lower available signal for model processing (i.e., lower values of Ld, down-

welling radiance). Figure 5.7, shows the UA at 5 meters depth for optically dense

water (P=0.4, G=1, BP=0.2, B=0.4, and H=5). Note the much greater uncertainty

shown in Figure 5.7 than for clear water at 5 meters depth as shown in Figure 5.2.
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(a) (b)

(c) (d)

(e)

Figure 5.7: Results of uncertainty analysis for optically dense water at 1 meter

Table 5.2 presents the sensitivity indices (percentage) of the first and second

order analyses for optically dense water with varying water depth (H=1,5,10,15,20,30

meters). AS with the clear water results, the same number of samples are used for
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Table 5.2: Results for Optically Dense Water with different depths, H

H(m) Test P G BP B H
Sobol1 Y(46.20) S(77.19) S(63.28) S(67.48) Y(60.56)

S(5.99) Y(6.22) Y(7.06) ζ(12.86) S(8.52)
1 sobol4 S,Y(57.82) S(74.26) S(63.46) S(79.88) Y(49.31)

Y(35.00) S,Y(22.70) S,Y(32.85) ζ(17.40) S,Y(32.75)
Sobol1 S(5.00) S(54.35) S(43.57) S(62.94) S(18.37)

Y(21.68) Y(30.75) ζ(8.50) g1(6.47)
5 Sobol4 S,Y(67.26) S(56.27) S(41.98) S(68.41) S(26.36)

S,Y(27.99) S,Y(34.34) S,Y(17.65) S, ζ(18.23)
Sobol1 S(5.07) S(54.37) S(43.56) S(61.17) S(21.74)

Y(21.67) Y(30.76) Y(7.74) g1(8.44)
10 Sobol4 S,Y(67.30) S(56.3) S(41.99) S(68.46) S(36.26)

S,Y(28.03) S,Y(34.32) S,Y(17.65) S, ζ(16.26)
Sobol1 S(5.07) S(54.37) S(43.55) S(61.29) S(19.36)

Y(21.66) Y(30.76) ζ(7.52) g1(7.56)
15 Sobol4 S,Y(67.23) S(56.29) S(41.99) S(73.08) S(28.15)

S,Y(28.03) S,Y(34.32) Y(15.53) S, D1p(16.19)
Sobol1 S(5.07) S(54.37) S(43.56) S(63.39) S(22.85)

Y(21.66) Y(30.76) ζ(7.91) g1(7.51)
20 Sobol4 S,Y(67.23) S(56.29) S(41.99) S(68.46) S(33.25)

S,Y(28.03) S,Y(34.32) Y(17.64) S, ζ(11.35)
Sobol1 S(5.07) S(54.37) S(43.56) S(63.28) S(20.64)

Y(21.66) Y(30.76) ζ(8.52)
30 Sobol4 S,Y(67.25) S(56.30) S(41.99) S(72.66) S(32.89)

S,Y(28.00) S,Y(34.32) S,Y(13.43) Γ(17.96)

the two different Sobol test, and only the most significant values are shown in Table

5.2.

Observations derived from examining the results in Table 5.2 include:

H = 1 meter: Parameters S and Y are again the most influential parameters.

The nuisance parameter S is the most influential for parameters G, BP and B, for

both the Sobol1 and Sobol2 tests. For the parameters of interest P and H, the

parameter Y is the most influential in the Sobol1 test. However, in the Sobol2 test

the second order index S,Y is the most significant for parameter P with 57.82%.
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H = 5, 10, 15, 20 and 30 meters: The results are nearly identical to those at

1 meter. Except for BP and H, whose nuisance parameters all have values less than

50% and are thus considered unimportant. However, all note that overall model

accuracy is poor for optically dense water at these depths.

The results of the sensitivity analysis for first and second order effect in optically

dense water are illustrated in Figure 5.8. As with Figure 5.4 for clear water, the

results were plotted using a scale of 0 to 1. Figure 5.8 shows the importance of S in

the uncertainty of estimating the parameters of interest G, BP, B and H, except for

H at 1 meter, Figure 5.8(a), which is affected in this case by the nuisance parameter

Y. The parameter P appears be influenced by the second order index S,Y at all

different water depths.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Principal results of sensitivity analysis for optically dense water
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Figure 5.9 shows the total sensitivity indices for S and Y at 5 meters, which

are the only parameters with significant influence in optically dense water. All

other parameters such us np5, np6, Do, D1, Dop, D1p, g1, ζ, Γ, and go were found

to be unimportant. According to Figure 5.9(a), S is the most significant nuisance

parameter for all five parameters of interest and Y is second, except for P where S

and Y have nearly equal influence. Similar results are also observed at 30 meters

depth, Figure 5.9(b), where the nuisance parameters S and Y are again the most

influential.

(a) (b)

Figure 5.9: Results of total sensitivity index for optically dense water at 5 and 30
meters depth

As shown in Figure 5.10(b), there are also instances where S,Y (second order

effect) have greater influence than the individual parameters (first order effects,

Figure 5.10(a)). For example, at 5 meters depth the parameter S (5%) is the most

influential parameter on P in the first order test (sobol1), while in the combined

first and second order test (sobol4), the first order effects become negligible and

S,Y (67.26%) become the most significant. Values at depths over 5 meters exhibit

similar results which is indicative of the problem that it is more difficult to retrieve

information about the bottom and water column in optically dense water at greater

depths.
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(a) (b)

Figure 5.10: Comparison of first and second order effects for optically dense water
at 5 meters depth

In conclusion it is necessary to clarify some physical aspects that interfered with

the successful gathering of benthic information and subsequent sensitivity analysis.

Downwelling radiation is significantly impacted by absorption and scattering in the

water column, which is a function of the water itself and its constituents. This result

in an exponential decrease in radiation with increasing water depth. Additionally,

there are other factors that can affect the energy transmitted or reflected such as

the solar geometry and water surface conditions but they are not directly considered

in this study. Another factor affected by the reduction in radiation is the retrieval

of bottom albedo in the shallow water, which is obtained with difficulty because not

enough energy can arrive at the bottom to be reflected and thus registered by the

sensor. The effects of absorption and scattering are less significant in clear water and

more significant in optically dense waters, and thus our ability to extract information

describing the benthic substrate is limited by the amount of energy available to be

reflected from the bottom.



CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

The contributions of this thesis are related to the parallel implementation of the

SAI model as well as the use of a sensitivity analysis to identify the most influential

nuisance parameters within the model. The GENCAN routine was used to imple-

ment the SAI model for case of clear and optically dense water. In case of clear water

GENCAN results yielded less than 1% of error, compared with the implementation

done in IDL/ENVI, where errors ranged from 1% to 200% of error depending on the

parameter. An exception appears when calculating bottom albedo (B) and water

depth (H) at 30 meters using GENCAN, for which the errors are 23.12% and 4.91%,

respectivily. In case of optically dense water, for both GENCAN and IDL/ENVI

results yielded less than 1% of error for phytoplankton absorption (P), Gelbstoff

absorption (G) and Backscattering by particles (BP) at all water depth. Again an

exception appears for parameters B and H; for B GENCAN presents an error of

33.33% from 10 meters and IDL/ENVI presents 33.33% error after 5 meters; for H,

GENCAN presents an increasing error from 68.29% to 409.81 at 10 meters to 30 me-

ters, and IDL presents an increasing error from 22.44% to 409.81% at 5 meters to 30

meters. These errors occur because the effects of absorption and scattering increase

at deeper waters and more with optically dense water, significantly increasing the

difficulty of retrieving the parameters. However, the trade-off for using GENCAN

64
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to get more accurate results is that the model operates at a higher computational

cost.

The parallel implementation of the SAI model using C++/LAM-MPI provided

the computation power for addressing a complex optimization and sensitivity anal-

ysis. The performance results show a substantial reduction in the execution time.

With 64 processors the execution time for an experiment with 5120 samples was

around 1855.86 seconds, which is only 2.04% of the sequential time.

In terms of the sensitivity analysis results of first order effect, second order ef-

fects, and total sensitivity index were examined. The first order analysis permitted

analyzing the effects of the parameters individually, where only one or two nuisance

parameters were found influential for each parameter of interest. In the case of clear

water, the influential nuisance parameters were: S for P, G, B, and H; Y for P, G, BP,

and H; ζ for B, and Dop for H. However, these results also varied with water depth.

In the case of optically dense waters, the most influential nuisance parameters found

were: S for G, BP; and B, and Y for H. These outputs are even more affected by

the water depth, where increasing depth produce significantly higher absorption of

the light. Second order effects allowed the effect of the combination of two param-

eters to became apparent. In case of clear waters these effects were classified as

not significant. However, in case of optically dense waters these effects are impor-

tant for parameter P, which is affected by S,Y. The total sensitivity index helped

to corroborate and clarify the results. For example, S was found to be the most

influential nuisance parameter on BP, for which first and second order effect results

are not significant. The influence of parameters S and Y prove the importance of

variations in water composition related to gelbstoff, chlorophyll, and suspended par-

ticles, which impact scattering and absorption. The suspended particles affect the

scattering effect and the gelbstoff and chlorophyll affect the absorption coefficient.
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The parallel implementation was a great contribution and a good beginning for

investigations that require operate over large set of data and perform complex opti-

mization. Also, it was done a progress in the study and sensitivity analysis of SAI

model, because an analysis of many nuisance parameters at the same time and with

a lot of definition of samples for them were not done before. Thus, now there is a

more complete study of the SAI model, leaving the door open to more improvements

of this model.

6.2 Future work

The OOl library offers three different methods to achieve an optimization. We

only applied one of them, GENCAN that was tested and show excellent results

despite of the time consuming. The other two optimization methods are spg (spectral

projected gradient) and pgrad (projected gradient) methods. A future study can

be conducted to compare and see which of these methods show good performance

results as much as lower time consuming.

In this thesis, a sensitivity analysis was performed. The results obtained are

considered a first step in the improvement of the SAI model. After now identify-

ing the most influential nuisance parameters more specific studies can be used to

improve the selection of values for these parameters and thus increase model perfor-

mance. Furthermore, the parallel implementation can be utilized to greatly improve

processing speed.
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