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Abstract 

 

The proliferation of electric vehicles poses new challenges to the safe and 

economic operation of electric power systems. If electric vehicles are integrated without 

proper control strategies, load demand peaks will increase, and the grid may be 

overloaded. Coordinated methods are expected to introduce potential solutions to 

mitigate these negative impacts. To that end, this thesis presents a conceptual framework 

to effectively integrate plug-in electric vehicles into the grid. The proposed method is 

based on a two-stage optimization process that aims to reduce the overall load variance 

considering a discrete charge/discharge rate, which is largely unexplored. The first stage 

consists on solving a quadratic programming (QP) optimization problem, while the second 

stage aims at solving a mixed-integer quadratic programming (MIQP) optimization 

problem that uses binary variables to schedule the on/off states of the 

charging/discharging process. With this formulation, two approaches, vehicle-to-grid 

(V2G) and charging methods, were considered to evaluate the impact on the demand 

curve and generating costs due to the integration of electric vehicles within the system. 

Case studies for a typical islanded power system and the Institute of Electrical and 

Electronics Engineers (IEEE) 10-unit system were conducted to demonstrate that the 

proposed algorithms perform as expected. Traditional unit commitment problem was used 

to address the variations of generating costs with and without the addition of plug-in 

electric vehicles. Numerical results reported for the different case studies and scenarios 

showed that V2G and charging operations can help flatten the overall load curves and 



iii 

 

reduce generating costs by performing appropriate schedules of the charge and 

discharge process of electric vehicles.  
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Resumen 

 

La proliferación de vehículos eléctricos presenta nuevos desafíos para la 

operación segura y económica de los sistemas de potencia eléctrica. Si los vehículos 

eléctricos se integran sin las estrategias de control adecuadas, los picos en la curva de 

carga aumentarán y la red se sobrecargará. Se espera que la utilización de métodos 

coordinados introduzca soluciones potenciales para mitigar estos impactos negativos. 

Con ese fin, esta tesis presenta una estrategia conceptual para integrar efectivamente 

los vehículos eléctricos con la red. El método propuesto está basado en un proceso de 

optimización de dos etapas que tiene como objetivo reducir la variación de la curva global 

de carga, considerando una razón de carga/descarga discreta, lo que ha sido investigado 

muy poco. La primera etapa consiste en resolver un problema de programación 

cuadrática, mientras que la segunda etapa tiene como objetivo resolver un problema de 

programación cuadrática entera-mixta que utiliza variables binarias para definir los 

estados de encendido/apagado del proceso de carga y descarga. Con esta formulación, 

se consideraron dos métodos, vehículo a red (“V2G”) y carga, para evaluar el impacto en 

la curva de demanda y los costos de generación debido a la integración de los vehículos 

eléctricos con el sistema. 

Para demostrar que los algoritmos propuestos funcionan según esperado se 

realizaron estudios utilizando un típico sistema de potencia tipo isla y el sistema de 10 

unidades del Instituto de Ingenieros Eléctricos y Electrónicos (IEEE por sus siglas en 

inglés). El problema tradicional de comisión de unidades se utilizó para evaluar la 

variación de los costos de generación con y sin la adición de los vehículos eléctricos. Los 
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resultados numéricos obtenidos para los diferentes casos de estudio y escenarios 

mostraron que las operaciones de “V2G” y carga de los vehículos pueden ayudar a 

nivelar las curvas globales de consumo y reducir los costos de generación mediante la 

implementación adecuadamente de los procesos de carga y descarga de los vehículos 

eléctricos. 
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1 Introduction 

 

The anticipation of large-scale penetration of electric vehicles has introduced new 

challenges in power system operations. This work emerges from the growing necessity 

to establish a sustainable integration of the electrical and transportation systems. The 

justification is addressed in section 1.1 of this chapter. Then, section 1.2 provides the 

main objectives of this work. A brief outline of the remainder of this thesis is presented in 

section 1.3. 

 

1.1  Justification 

Electric utilities ponder new means to maintain a secure, stable, and reliable network 

that can adapt and respond to increases in electricity demand due to population growth. 

The ability to supply this increase in demand has forced utilities to figure out alternative 

and innovative energy solutions to improve management and operation of their already 

aged systems. Therefore, one of the most recently promising alternatives is electrifying 

the transportation sector. Great interest has been given to vehicles, specifically electric 

vehicles, since they are used nearly 4% to 5% of the time for transportation purposes, 

making them available for utility functions the rest of the time [1]. This transition is 

expected to reduce fossil fuel consumption and consequently tailpipe gas emissions of 
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traditional automobiles, as well as integrate the transportation system to the power 

system [2], [3]. 

The idea of electric vehicles (EV) has been studied during the past years. Particular 

attention has been placed specifically on battery electric vehicles (BEV), since the natural 

storage capacity makes them a prominent choice if their batteries can be used without 

affecting the ability to power the vehicle for running operation. Several studies conducted 

by researchers and engineers have proved that if bi-directional power transfer can be 

adequately implemented, BEVs can provide potential benefits to the grid as a secondary 

function while they are parked and plugged in [4], [5]. They can provide ancillary services 

(A/S) like spinning reserve and frequency regulation, peak shaving, valley filling, and 

demand side management (DSM) [1], [5], [6]. In addition, they can be used to support 

large scale renewable resources since intermittency makes utilities unable to integrate 

these resources unless some means of storage is implemented [6]. This new concept to 

provide grid-side benefits from a vehicle to the power grid is termed vehicle-to-grid (V2G). 

Under the V2G concept, BEVs will play an important role, either as an electric load 

(charging) or as a generation source (discharging) to provide the grid services. As a result, 

utilities will be able to improve stability, reliability, and overall system efficiency, 

considering that BEVs will behave as a distributed energy storage system (DESS) to the 

power grid. 

It has been stated that with the V2G concept, BEVs can participate actively on grid 

operations. If just a few vehicles are involved, the impact on the grid will be negligible 

because each individual battery has a small capacity when compared to the system. For 

this technique to be successful and provide the services mentioned above, there must be 
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a large amount of BEVs aggregated to the grid. Adding all these electric vehicles to the 

grid will create a new significant load to the system and even without doing V2G 

operations with the system, the effect of charging them will certainly stress power 

networks [7], [8], [9]. This in turn, can increase the complexity of power system operation, 

and if not well handled, it may result in serious problems of security, stability, and 

reliability. Moreover, if the large penetration of these BEVs is not accurately managed, it 

can make the system susceptible to experience outages due to the lack of generation. 

Therefore, to overcome this new electrical load, infrastructure has to be changed or new 

charging techniques have to be developed. Modifying existing infrastructure is a very 

costly and complex process. Hence, the solution is to develop charging methods that 

allow integration of BEVs to provide potential benefits to the grid without affecting current 

system operation. 

This work is focused on developing a method that allows the integration of battery 

electric vehicles to the power system. These vehicles, given their natural characteristics, 

must be plugged in to charge their batteries. If restrictions are not applied to vehicle 

owners or if their accommodations are not properly met, this additional load could result 

in a nuisance rather than contribution. To manage this situation, it has been proposed to 

charge the batteries of BEVs during off-peak periods and then, if they have extra energy 

stored, release it back to the grid during peak periods to provide capacity and energy 

services. Through a smart technique, known as peak shaving and valley filling, utilities 

will not only be able to control these BEVs, but will also obtain huge benefits by flattening 

their load curves. This effect of reducing large swings on daily consumption reduces the 
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use of small expensive units, which result in a decrease of operational costs since base 

load generation can be maximized. 

 

1.2  Objectives 

The main objective of this work is to investigate an optimal way in which massive 

penetration of electric vehicles (EV), particularly battery electric vehicles, can be 

effectively integrated to the power system. The main goal is to obtain a coordinated day-

ahead schedule pattern that, during an extended period of time, provides a net load curve 

with the least possible variation. Optimal strategies will be developed considering a two-

stage approach for the V2G and charging operations using peak shaving and valley filling 

techniques. The effects of PEVs addition to the system will be evaluated on the resulting 

demand curve and its economic operation will be analyzed from the perspective of a 

traditional unit commitment. 

The following specific goals will be fulfilled during the development of this research 

work: 

• Identify an original power system net load curve to which a new electric vehicle 

charging load will be added and its effects will be evaluated. 

• Determine a coordinated charging strategy for EV integration to the grid, 

considering the vehicle requirements, load demands, and charging/V2G 

constraints. 

• Formulate the problem to effectively integrate the EVs to the power system, 

focused on leveling the load consumption curve. 
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• Develop a mathematical model that schedules the charge and discharge 

operations of the aggregated EVs during specific intervals. 

• Use the results of the proposed methods to describe the benefits obtained by the 

coordinated charging and V2G strategies on flattening the load curve and show 

how EV penetrations reduce the cycling effects on generation utilities. 

• Measure the EV impact on the load curve with and without coordinated methods. 

• Evaluate the economic advantages that EV fleets bring to the power system when 

scheduled in coordination. 

 

1.3  Work Outline 

This chapter introduces the motivation of this research and highlight the specific 

objectives and contributions. The rest of the work is organized as described below: 

Chapter 2 reviews the fundamental aspects of electric vehicles and their relationship 

with the power grid. In general, this chapter introduces the different electric vehicle types, 

energy storage systems (focusing on the batteries available in the electric vehicles), and 

the vehicle-to-grid (V2G) concept applications. 

Chapter 3 provides a concise explanation regarding power system operations and 

discusses, along with their mathematical formulation, two of the main problems (economic 

dispatch and unit commitment) encountered in the power system engineering field. 

Understanding the concepts presented in this chapter is essential for the development of 

this work, because they provide the necessary tools used to assess the economic 

operation impacts of the system when the electric vehicles are added to the network load. 
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Chapter 4 presents a complete description of the proposed intelligent method to 

effectively integrate PEVs to the grid. Specifically, the chapter is dedicated to formulate 

and explain the mathematical model of the coordinated charging/discharging algorithms 

by means of a two-stage optimization problem that aims to flatten the load demand profile 

subject to the vehicle and power system constraints under the V2G concept. In addition, 

this chapter reviews the corresponding modifications to the V2G proposed algorithm that 

result on the charging-only optimization problem. 

Chapter 5 presents the numerical results of the simulations and cases studies 

evaluated to prove the effectiveness of the V2G and charging algorithms. Also, the 

economic operation of the system between the base cases and the other simulated cases 

is tested by means the unit commitment problem. Concluding statements regarding the 

results between the different scenarios considered are presented in the final remarks 

section. 

Finally, Chapter 6 provides the contributions and summarizes the general conclusions 

obtained throughout this work. A list of recommendations points out directions for future 

work. 
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2 Background Theory 

 

This chapter reviews the fundamental aspects of the main topics in this work. First, 

electric drive vehicles and their types are described. Then, a brief explanation on energy 

storage systems and their relationship with grid-enabled vehicles is presented. 

Furthermore, the concept of vehicle-to-grid is formally introduced and discussed with all 

its applications. 

 

2.1  Electric Drive Vehicles 

2.1.1  Introduction 

Electric drive vehicles have begun to gain wider acceptance in the transportation 

sector due to the increasing price of gasoline. In addition, the generation and storage 

capacity of these vehicles have been a strong appeal for the V2G implementation on 

power systems. Automotive industries have understood the opportunity that electric 

drive vehicles (EDV) represent and have responded with the manufacture of different 

types. The EDV contribution to the network depends essentially on the vehicle type. 

Grid-enabled vehicles (GEV) are the heart of the concept but there are other EDVs 

without grid connection that can also help the system by providing grid services. 
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2.1.2  Electric Drive Vehicle Types 

Three different types of electric drive vehicles are appropriate for the V2G 

integration. These are battery, hybrid, and fuel cell vehicles [1]. As their name implies, 

they use an electric motor to provide all or part of the power needed for drive operation, 

but have different principles of operation. A brief description of each type of EDV is 

discussed below according to the literature mentioned in [1], [10], [11], [12]. For a 

complete and exhaustive explanation with regards to the theory, fundamentals, and 

design methodologies of the electric vehicle types, the reader is referred to [13]. 

The battery electric vehicle depends on an electric motor for its operation. This 

motor runs with energy from a battery that is charged from an external source by 

plugging it into an electrical socket. In this sense, BEVs should be plugged in to fill up 

the battery and unplugged for drive operation. The distance the vehicle can travel is, 

between many factors, function of the amount of energy the battery can store and if 

the battery is depleted, the vehicle can no longer operate since it is the only way to 

feed the motor. The value of BEVs for the V2G concept is based on absorbing energy 

to charge the battery and releasing it back to the grid if it will not be used for running 

operation. They will behave as a distributed generation/storage energy device 

whenever they are parked and plugged in to the grid. 

Hybrid electric vehicles (HEV) operate somewhat differently than pure electric 

vehicles or as priorly mentioned BEVs. These vehicles use either, an electric motor or 

a traditional internal combustion engine (ICE), to run, but can also operate with both 

simultaneously. The ICE runs with fuel like traditional vehicles, but the electric motor 

runs with energy from a battery. This battery is charged by the on-board internal 
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combustion engine or by regenerative braking. However, plug-in hybrid electric 

vehicles (PHEV) work similar to contemporary hybrid vehicles with the main difference 

that they possess an electrical connection to charge their batteries. This advantage 

makes PHEVs better than HEVs since they usually have large capacity batteries 

making their running operation longer. 

Similar to BEVs that can provide vehicle-to-grid services, HEVs and PHEVs can 

also be used to support the grid. Hybrids, in particular, can provide the V2G either as 

a battery vehicle or as a generator vehicle (using fuel while parked to generate). In the 

special case of plug-in hybrid vehicles, they have within them grid connection for 

transportation purposes, making them suitable for V2G applications. Conversely, 

HEVs have no grid connection. Figure 2.1 below shows the electric vehicles discussed 

up to this point with their main differences. 

 

 

Figure 2.1 Battery, hybrid, and plug-in hybrid electric vehicles [14] 
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The less commonly used type of EDV is the fuel cell vehicle (FCV). Basically, these 

vehicles run its electric motor with electricity produced by a fuel cell. This cell converts 

hydrogen gas stored in the vehicle tank in combination with atmospheric oxygen to 

generate electricity and feed the on-board electric motor. As can be seen, the fuel cell 

vehicles’ value for V2G is limited to generation, since they can produce electricity in 

the fuel cell. However, these vehicles have no connection to the grid, so the cost 

associated to plug in these vehicles to use them as distributed generation devices do 

not respond to transportation system and electric grid integration. 

In general, battery electric vehicles (BEV) and plug-in hybrid electric vehicles 

(PHEV) can contribute to V2G by providing electric storage capacity, while hybrid 

electric vehicles (HEV) and fuel cell vehicles (FCV) can contribute by providing 

generation capacity [15]. Throughout this work, particular attention has been placed 

on BEVs in order to use their storage capacity as an energy storage system when a 

significant amount of these vehicles is aggregated. 

 

2.2  Energy Storage Systems 

2.2.1  Introduction 

Global dependence on electric energy is rapidly evolving during recent years. This 

has made energy storage systems (ESS) an essential component of electrical power 

grids. The ability to store electricity when excess is produced and then release it when 

demand is high has allowed for greater flexibility in system operation. Also, energy 

storage devices offer a new strategic business tool that can be crucial to improve 

power network stability and reliability. 
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Electric energy does not have the characteristic to be stored directly as electricity. 

Therefore, it has to be converted to another form of energy. Then, the stored energy 

is converted back to electrical energy when needed. This process of energy 

conversion is done by the ESS. Energy can be converted into many forms, but the 

most common include mechanical, chemical, electrochemical, thermochemical, 

thermal, and electrical energy [16]. Different types of energy storage system 

technologies exist, the most popular being battery energy storage systems (BESS), 

compressed air energy stored systems (CAESS), fly-wheels energy storage systems 

(FESS), pumped hydroelectric storage systems (PHSS), and superconducting 

magnetic energy storage systems (SMESS). 

Energy storage systems can be used to meet technical power systems 

requirements regarding generation, distribution or even end-user consumers. They 

play an important role in energy management, power system quality, and power 

system protection based on the nature of each ESS characteristics. In report [17], R. 

Carnegie et al. state that ESS are able to: (1) deal with the increase in peak demands 

while satisfying the system constraints, (2) integrate renewable energy resources, and 

(3) provide ancillary services to the grid. Nevertheless, a more detailed list of ESS 

applications has been described by X. Luo et al. in [16], including ramping and load 

following, time shifting, peak shaving and load leveling, transmission and distribution 

stabilization, voltage regulation and control, transportation applications, spinning and 

standing reserve, among others. 

Integration of battery electric vehicles to the electrical network is the focus of this 

work. As previously mentioned, the contribution of these vehicles to the grid is based 
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on the storage capacity of their on-board batteries. Consequently, battery energy 

storage systems will be the only storage system technology considered among all 

others mentioned and will be further discussed in Section 2.2.2. 

 

2.2.2  Battery Energy Storage Systems (BESS) 

A battery energy storage system technology is used to store electrical energy as 

chemical energy to serve the electrical loads. Its main component is the battery, which 

consists of a single or multiple electrochemical stack cells connected in series or 

parallel to produce electricity at a specific system voltage and current level from an 

electrochemical reaction. Each cell contains an anode, a cathode, and an electrolyte 

and is responsible to bi-directionally convert electrical and chemical energy. During 

discharge, the electrons move from anode to cathode in a reduction-oxidation 

reaction. In contrast, during charging, the reverse reaction takes place and the battery 

is recharged by placing potential difference at their terminals [16], [17], [18]. A visual 

representation of the charge and discharge process inside the battery is illustrated on 

Figure 2.2. 
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Figure 2.2 Battery energy storage system (BESS) schematic diagram [16] 

 

Currently, many different types of batteries have been developed. Great efforts are 

being conducted regarding the progress and technology of batteries. Among all kinds 

of batteries, lead-acid are the most used since they are the oldest and most 

developed. In contrast, sodium-sulphur (NaS), nickel-cadmium (NiCd), and lithium-ion 

(Li-ion) appear to be the last incoming technology with the latter having the greatest 

potential for future development [18]. Li-ion batteries have high density and cycle 

efficiencies, low self-discharge loss, and no meaningful memory effect [19], but can 

be expensive and their cycles can create negative effects on battery life. Different from 

traditional batteries, Li-ion are composed of four major components, which include 

anode, cathode, electrolyte, and separator. The lithium ions, rather than electrons, 

move to the cathode when the battery discharges and leave the cathode when 

charges. As mentioned in [20], the electrolyte allows the movement of the lithium ions 

between anode and cathode, and the separator, which is a micro-porous membrane, 
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prevents short circuits from anode to cathode by allowing only lithium ions to pass 

through the pores. 

Batteries have been very attractive for electrical applications since they have the 

advantage to respond quickly (on the order of milliseconds) to load changes. However, 

the frequent switching of the state of charge (SOC), which is a measure of the energy 

stored in the battery to the battery capacity, depth of discharge (DOD), and operating 

temperature cause battery degradation. In theory, batteries should be operated above 

certain tolerance level and under a temperature range to achieve optimum benefits. 

Other important features of batteries are efficiency, energy density, and self-

discharge. 

 

2.2.3  Electric Vehicle Batteries 

Electric vehicles, either pure, hybrid or plug-in hybrid, own a direct relation with a 

power source for their operations. However, significant issues relative to the energy 

storage systems used by EVs involve challenges related to costs, reliability, capacity, 

cycles, among others. 

Recently, different battery technologies have been linked to these vehicles such 

as lead acid, nickel metal hydride, nickel cadmium, and lithium-ion. One of the most 

widely used coincides with Li-ion batteries for its advantages on high energy density, 

high voltage, low self-discharge rate, long cycle life, and high charge/discharge rate 

capability compared with other technologies [21]. Typical values for energy-to-weight 

and power-to-weight ratios are 180 Wh/kg and 1500 W/kg, respectively [22]. The types 
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of Li-ion batteries used with EVs are Lithium Cobalt Oxide (LCO), Lithium Manganese 

Oxide (LMO), Lithium Iron Phosphate (LFP), and Lithium Nickel–Manganese– Cobalt 

Oxide (NMC). Table 2 on [21] illustrates the different characteristics between these 

types of batteries, while Table 1 on [23] shows the different Li-ion battery pack 

manufacturers and the EVs models in which the batteries are used. In addition, [24] 

also reviews more characteristics of the different types of rechargeable batteries 

discussed in this section. 

Additional to the Li-ion batteries described, researchers are investigating other 

energy storage systems that provide greater performance characteristics for EVs. 

According to [23], the Li-S battery offers outstanding advantages over traditional 

lithium-ion batteries. Although they are capable of higher energy densities, wider 

operating temperature ranges, and lower costs with greater safety, this technology 

has not been extensively marketed because of technical drawbacks. 

 

2.2.4  EVs as Energy Storage Devices under the V2G Concept 

At the end of Section 2.1.2, it was mentioned that BEVs, particularly, can behave 

as distributed energy storage systems. This is technically possible with the premise 

that these vehicles are parked most of the time and can be plugged in to exchange 

energy with the grid to bring positive effects during idle time. For example, in [7], 

optimal scenarios consider BEVs to withdraw energy during off-peak or low demand 

periods and then feedback the energy to the grid during periods when utility needs it. 

The exchange of this energy should certainly guarantee that BEVs have enough 
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charge for transportation purposes for at least the next trip or the next grid connection. 

This task will be carried out through the V2G concept (explained later in Section 2.3) 

by optimizing the charging/discharging schedules of each vehicle to provide grid 

services while at the same time adequately fulfill the vehicle’s owner requirements. 

The basic idea is to encourage BEV’s owners to enter this market of managing and 

regulating their consumption and charging profiles by using financial incentives, 

electricity pricing such as time-of-use (TOU) tariffs, and subsidies. 

BEVs batteries are only used for running operation. Given that the vehicles can 

travel daily distances without consuming all their stored energy, electric companies 

have seen these batteries as an opportunity for storage with little investment. 

Therefore, it is the on-board battery in next-generation BEVs that appears most likely 

to be used as energy storage devices to provide power system electrical network 

support. However, the high cost and the low lifetime of batteries are the biggest 

challenges with electric vehicle development. Further improvements in batteries to 

reduce cost and avoid fast degradation will increase the interest and broaden the 

application of EVs as distributed energy storage devices. 

 

2.3  Vehicle-to-Grid (V2G) Concept 

2.3.1  Approach 

Electric drive vehicles have the potential to benefit utilities as generation/storage 

devices. The on-board battery in every individual BEV or PHEV, represents the initial 

step toward the V2G implementation of aggregated vehicles as fleets. Typical storage 

capability of these batteries is in the 1-60 kWh range [25], depending on the type of 
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battery and vehicle being used. In spite of their small capability, since vehicles are idle 

and parked most of the time, not all the stored energy is consumed during normal daily 

distances traveled. Even though each battery can contribute with remaining energy, it 

is too small to significantly impact the grid. To deal with this problem, many vehicles 

must be grouped so that the aggregation forms an appropriate size capacity that can 

impact the network on a mega-watt (MW) order. This task is performed by an 

aggregator, whose role is to effectively collect individual vehicles into a single entity 

to provide the energy and capacity for grid services. 

The aggregator introduces a crucial piece into implementation of the V2G concept. 

It is responsible for determining the optimal selection of vehicles to join and accurately 

manage to ensure controllability. Such control allows load fluctuation leveling which 

results in simplified system operations by avoiding or delaying start-up of cycling and 

peaking units. For that reason, if aggregators can certainly sell their services with 

enough precision, power system operators may opt to do transactions with them since 

dispatching a flat load curve is much easier than a varying and fluctuating load curve 

[7]. However, these power transfers must be balanced with the vehicle to reduce 

inefficiency and battery life impacts. The vehicle contribution depends mainly on the 

state of charge of each individual battery, but the aggregator should always consider 

the frequency of fluctuations and the depth of discharge when optimizing their 

schedule because both lead to battery degradation [26]. 
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2.3.2  Assumptions 

The V2G concept is mainly based on the opportunity that EDVs send power back 

to the grid. However, V2G is in the conceptual stages and for it to be technically 

feasible, some key assumptions must be considered. According to [27], these 

preeminent assumptions are: 

• The batteries of electric cars are underutilized. This implies that electric 

vehicles do not use all the stored energy in their batteries to perform daily 

operation. Thus, with the remaining energy in each individual battery, EVs can 

be aggregated to act as a significant storage device and provide a second 

function to the power system. 

• EVs are idle and parked most of the time during a 24-hour period. Vehicles, in 

general, are used to drive to work in the morning and to return home in the 

afternoon, allowing them to be connected to the grid while not being used for 

transportation purposes. In fact, according to their patterns of use, most of EVs 

parked times coincide with the periods where the utilities would need to use 

them. EVs can be connected overnight to charge when the demand is low and 

provide grid services during the day when demand is high. 

• EVs batteries do not represent a cost for electric utilities. Therefore, utilities will 

benefit from having available an energy storage system without having invested 

on it. 

• The V2G transactions can be predicted with much certainty, as possible. It has 

been stated that for V2G to have some impact on the network, many vehicles 

should participate. Therefore, because many electric cars are considered 
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within the concept, consistent patterns can be obtained regardless of the 

variability of each vehicle. The aggregator will be responsible for encouraging 

vehicle’s users to keep their vehicles plugged in whenever possible in order to 

achieve accurate V2G transactions. Once this strategy is achieved, the 

aggregator can suitably integrate EVs to the grid. 

 

2.3.3  Key Elements for Interconnection 

In order to provide the V2G services, every vehicle must comply with several 

required elements to send and receive electric power adequately. These fundamental 

elements are: 

• Grid connection – Individual vehicles should be plugged in to make electrical 

energy flow between the electric vehicle and the power system. 

• Communication system – When electric vehicles are grouped to provide 

vehicle-to-grid services, they must be able to communicate effectively with the 

aggregator. Each vehicle should send and receive relevant information like 

availability, location, power and energy capacity, dispatch commands, driving 

needs, expected usage, and other data. 

• Metering – Since vehicle-to-grid services involve energy transfer, every vehicle 

must include a metering device (on-board or off-board) capable of measuring 

energy flow between the vehicle and the grid. 
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2.3.4  Vehicle-to-Grid (V2G) Services 

Electric vehicles participating on V2G can provide several grid services. Most of 

these services, depending on jurisdiction and power system, are carried out through 

different power markets by system operators in real time. Some vehicles might be 

appropriate for one service but might not necessarily be well suited for other services. 

Thus, vehicles and power markets should be matched in order to be profitable. 

Basically, power markets differ in their applications, terminologies, control methods, 

response times, power dispatch durations, contract terms, and prices. This section 

describes some of the EV services found in the literature. The most important are: 

• Base Load Generation 

This is the principal source of electricity generation of all power systems. It 

runs continuously and is typically provided by low cost kWh generating units 

like nuclear, coal-fired, natural gas, and hydroelectric [28]. Up until now, no 

EDV has showed to provide bulk generation at competitive price because of 

limited energy storage, short lifetimes, and high kWh energy price [1]. In 

addition, most EDVs do not produce electricity; they store it in their batteries. 

Fuel cell vehicle generating capability is negligible for this type of service or 

market. 

• Ancillary Services (A/S) 

All power systems, besides bulk generation, use ancillary services to 

support the transmission of electricity from generation to ultimate consumers. 

Some utilities have them along with their systems. Others buy those services 

through an energy market. Regardless of the way, these services are 
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responsible for balancing the supply and demand fluctuation in real time and 

maintain the reliable operation of the system. Different tasks are comprised as 

ancillary services, but spinning reserve and regulation are the most suitable to 

be implemented with EDVs. 

Spinning reserve refers to the additional generation capacity that is running 

and synchronized to the grid. It is used when unpredictable events occur like 

the loss of a generator or equipment failure. Operating reserves are rarely 

used, but must be ready to respond quickly during any contingency when called 

by the system operator. As mentioned in [28], EDVs with storage capability are 

favorable to perform this task because they: (1) can be brought online fast to 

serve the load without the need to have been spinning and (2) do not affect 

battery life since it is rarely brought into operation. 

Regulation is another form of A/S. It is used to maintain a steady frequency 

and voltage on the grid by continuously matching supply (generation) with 

demand (load). Typically, this is carried out by rapid start gas fired plants or by 

hydroelectric plants with the capacity to vary their power output fast. These 

units have to be equipped with automatic generation control (AGC) and may 

be capable of adjusting (ramp up/down) their output accordingly to real time 

signals (almost every 2 – 4 seconds) and operator requests. Two different 

signals can be received by the generation units. If the load exceeds generation, 

the frequency and voltage drop and the received signal calls for regulation up. 

In contrast, if the load is less than generation, it requests regulation down. 
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Similar to spinning reserve, regulation has to be available 24 hours a day, 

every day, but unlike spinning reserve, it can be called for operation hundreds 

of times per day. EDVs are appropriate to provide regulation because: (1) 

vehicle batteries have fast response capabilities and (2) the vehicles, due to 

their nature, can participate in this market even if back-feed of power is disabled 

within the grid; in this sense, vehicles will only provide regulation down through 

charging [25]. In addition, regulation involves patterns of low depth of discharge 

which minimizes battery degradation. 

Among all electric vehicles, BEVs and PHEVs satisfy the basic 

requirements to participate on spinning reserve and regulation power markets. 

In spinning reserve, higher state of charge is preferred in order to have enough 

energy available if activated. However, the SOC for regulation cannot be 100%. 

Batteries on these vehicles perform regulation down while charging and 

regulation up when sending power back to the system. Thus, batteries should 

have an adequate SOC capable to respond to either of the regulation signals. 

Spinning reserve and regulation, both power market prices, are divided in 

two components, capacity (kW) and energy (kWh) price. The former is paid for 

the amount of power that is available and ready during a specific time and the 

latter is paid for the energy delivered in real time when the unit is called. This 

means that electric vehicles providing A/S through V2G will be paid for capacity 

price even if they are not sending or receiving power to/from the grid, making it 

an attractive market for vehicle owners. 
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• Peak Power and Peak Shaving/Valley Filling 

Utilities purchase peak power when a high demand is expected, due to the 

daily load fluctuations. Typically, peak power is provided with high-cost, fast-

response units, such as gas generators that can be turned on and off for 

periods of 3 – 5 hours per day. With respect to electric vehicles, they are 

attractive because batteries do not have a startup cost or a shutdown cost. 

However, the low storage capacity of the on-board battery is the biggest 

limitation. Also, as discussed in [29], it is evident that EVs would only replace 

traditional peaking units if the payment to vehicle owners is less than what 

utilities actually invest on that service. 

 

 

Figure 2.3 Peak shaving and valley filling demonstration [30] 

 

Another EV service is to store electricity during surplus (off-peak or low 

demand) and release it back to the grid during high demand periods. This 
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technique is known as peak shaving/valley filling and the goal is to smooth the 

load curve to simplify power system daily operations. Figure 2.3 depicts this 

behavior by shifting energy from peak to off-peak period. Electrical utilities incur 

in significant costs associated to the underutilized capacity of their generation 

units. In addition, the large variation on the load curve requires  small units to 

start up and shut down at considerable cost to satisfy the balance constraints. 

The combination of these problems often results in the operation below design 

point of the running generators. 

EVs, even without performing V2G operations, must charge their batteries 

for running operation. With appropriate charging schedules during off-peak 

periods, these vehicles can contribute to valley filling by substantially leveling 

the load curve. If the remaining energy left on the batteries can optimally be 

sent back to the grid for peak shaving, system operators will be fortunately 

since dispatching a flat curve is less complex than dispatching a varying curve. 

As a result, underutilized baseload generation costs along with capacity 

requirements for peak demand and cycling costs can be drastically reduced. 

Overall, the ability to schedule both charging and discharging of BEVs or 

PHEVs could increase power system utilization in a significant manner. The 

problem arises with the large depth of discharge involved in this application, 

which can seriously affect battery life. 

• Renewable Integration 

Renewable energy has turned out to be a significant challenge for utilities. 

Regions where there is no water for hydroelectric plants, constant wind patterns 
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for wind farms, or uninterruptible periods of solar light for PV arrays are, but not 

limited to, some of the leading issues regarding renewable sources integration. 

Therefore, one of the most attractive applications of EVs is to support large 

scale of renewable resources [6]. As it is well known, these resources are 

intermittent, and their value entirely depends on environmental conditions. 

Hence, on-board electric batteries of EVs offer storage capacity absorbing 

energy during surplus and delivering it back during shortage. This way, 

renewable resources can be adequately implemented since fluctuating 

renewable supply can be matched with the already changing load. 

 

2.3.5  Aggregator 

Electric vehicle batteries have low kWh storage capability. Consequently, 

hundreds of vehicles should be grouped to create a meaningful impact on the system 

scale. In addition, grid services usually call for power on a MW basis, making the 

aggregation apparent. The main idea of aggregation is to join as much vehicles as 

possible to create an appropriate size of batteries that can support the grid in an 

efficient and reliable manner. Once these vehicles are aggregated, they are able to 

provide different services to the system [31]. 

Those grid services are mostly scheduled and contracted through a power market 

with the system operator. To complete the agreements, the system operator does not 

want to deal with individual vehicles; instead he will directly deal with an intermediary 

called the aggregator, which is a control interface between both the vehicles and the 



26 

 

system operator. The aggregator can be a sub-system operator on the distribution 

level or a private owner such as a parking lot manager. 

The aggregators’ role, as indicated in [25] and [27], is to effectively collect the EVs 

into a single entity to provide energy and capacity grid services. It is the aggregators’ 

responsibility to determine which vehicles to select to join the aggregation and 

accurately monitor, control and manage them according to their needs. In addition, he 

should accurately regulate the charge and discharge operations of each vehicle 

through a strategic method considering that the primary goal of plugging in the vehicle 

is charging the battery to serve the next drive. His business corresponds to selling the 

energy and capacity services to the vehicle owners and then providing them to the 

system operator. As an advantage for vehicle owners, transactions undertaken by 

means of the aggregator, will considerably result in lower costs than would be incurred 

by individual vehicles. 

Figure 2.4 illustrates what the aggregators role should be by means of an 

uncoordinated versus coordinated charging schedule of a plugged-in vehicle. From 

the illustration below, it is evident that a PEV does not have to begin its charging 

process exactly when it is plugged in. Simply, the aggregator should find the 

appropriate time, based on an optimal system condition, to charge the vehicle as long 

as he guarantees the PEV gets the desired SOC value at departure time. This task of 

controlling the charging schedules of PEVs while considering owner requirements is 

what an aggregator is expected to realize in order to control large-scale penetrations 

of battery electric vehicles. 
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Figure 2.4 Uncoordinated versus coordinated charging scheme [32] 

 

BVs aggregations or fleets can be utilized to perform two main functions. They can 

act either as controllable loads or as generation storage devices [25]. As a controllable 

load, the aggregator can manipulate the charging process of the vehicles allowing the 

power system to reduce the load fluctuations or level the load curve shape. In contrast, 

as a generation/storage device, they can help the system by supplying both energy 

and capacity services. Depending on the state of charge, the batteries can either 

absorb or discharge energy performing regulation down or regulation up. Also, they 

can supply power back to the grid to lower peak periods and be available as reserve 

capacity. Since most of the operations of electric vehicles under the control of the 

aggregator require continuous charge and discharge, battery degradation is the 

highest concern of vehicles owners. Therefore, the aggregator should pay enough 

attention to this delicate matter. 
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2.3.6  Regions and/or Systems Expected to Adopt the V2G Concept 

Several applications, benefits, and advantages of the V2G concept have been 

highlighted. Strategies for implementation and key elements for interconnection have 

also been described. However, it has not been pointed out which power systems or 

regions are well suited to adopt the V2G concept. W. Kempton and J. Tomić consider 

this aspect in [6], arguing about diverse characteristics of jurisdictions that would 

consider earlier implementation. Below, a simple list of power system characteristics 

that might facilitate V2G adoption are presented: 

• Power systems that want to improve their network providing more reliability and 

stability without having large investment on new infrastructure associated to 

generation. 

• Regions that have grid isolation. Typically, this occurs on small islands where 

its own system receives no support from another system because of the lack 

of electrical connection.  

• Power systems where the cost for ancillary services are high, or regions where 

there is no source of hydropower. 

• Countries that have adopted new policies and goal targets for new technology 

investment, high penetration of renewable energy resources, such as wind and 

solar, and reductions on power plant emissions. 

• Places where the price of gasoline is high compared to the price of electricity, 

so that people can be motivated to move from traditional vehicles to electric 

vehicles. 
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3 Power System Operation 

 

The purpose of this chapter is to present a brief explanation regarding power system 

operations. In addition to the general description provided in Section 3.1, this chapter 

focuses on the economic operation of available generation units, particularly, thermal 

units. Section 3.2 and 3.3 explore the fundamental concepts and mathematical 

formulation of the two main problems encountered in power system operations: economic 

dispatch and unit commitment. The material illustrated throughout these sections is 

supported by journal articles [30], [33], [34] and a thesis work by R. Pérez [35]. For a 

complete description and examples of the economic dispatch and unit commitment 

problems, the reader is referred to the following textbooks [36], [37]. 

 

3.1  System Overview 

An electric power system, or electric grid, is a network of electrical components 

capable of supplying, transferring and using electric power. Four major physical elements 

comprise the grid: generation, transmission, distribution, and load. Generation 

corresponds to all the plants electrically connected to the grid that supply the power. 

Transmission is the essential component that ties the generation plants with the load 

centers through high voltage lines. Distribution links, by means of low voltage lines, the 
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load centers with the industries, business, or homes that are the load of the system. The 

load is the final element where electrical energy should be effectively delivered to be 

utilized by end consumers. 

Achieving balance among all the grid elements is the fundamental challenge of 

utilities. As it is well known, demand is not constant, and its uncertainty makes the 

engineering, planning, and operation of the overall system a difficult task. Since electric 

utilities cannot predict the load with certainty, they use historical data and forecast 

algorithms for planning purposes. Operationally, supply and demand must be dynamically 

balanced. Since load is not directly under the control of system operators, utilities must 

change generators’ output to satisfy this grid constraint. 

Utilities project or forecast the electric demand and carry out several processes to deal 

with the load fluctuations at different time frames. Unit commitment (UC) and economic 

dispatch (ED) are these two main processes. Unit commitment establishes the generator 

operating schedules in advance of operating time; in other words, it determines which 

generators will be needed to satisfy the load forecast for the next day. Typically, UC 

includes large thermal units that take a long time to start up and reach operating 

conditions. In contrast, economic dispatch is the process of choosing the generators’ 

output level of the committed units, which results in the minimum cost to meet the 

demand. Usually, ED can be done relatively close to operating time, hours or even 

minutes before dispatching the units. In addition, three other mechanisms are used to 

overcome the small fluctuations between UC forecast and actual demand. These 

mechanisms are out of the economic margin but provide the flexibility to inject power to 

the grid in short time scales. The first method that aids for this control is the opposition to 
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load changes by means of the addition or extraction of kinetic energy from the rotating 

inertia of the generators spinning on the system. If this method does not compensate, 

then the second method is to activate the droop characteristic of the generators. 

Generators, by means of a governor, can instantaneously change their output according 

to frequency deviation once it strays beyond a set point. The third mechanism, automatic 

generation control (AGC), is the most commonly used by utilities. It provides a feedback 

signal from the system’s frequency issuing an increase or decrease on the output level of 

the generators. The resulting signal is known as the area control error (ACE) and the goal 

of the AGC is to minimize it requesting the desire changes. 

Another issue regarding system operation occurs when there is a sudden loss of 

power on the grid. System operators need to ensure that there is additional generation 

capacity available to the previously scheduled to attend unforeseen events. This 

generation capacity above scheduled demand is known as spinning reserve and has a 

significant cost for being idle waiting for a contingency to occur. 

Despite their attempts, the fundamental process to produce electricity and deliver it to 

end user remains the same. The lack of storage capacity forces generation (supply) and 

load (demand) to be balanced at all times. In general, the continuously varying load along 

with the large swing on daily consumption requires the system operator to constantly 

maintain and control the flow of electricity at the dispatch center to satisfy the balance 

constraints. Therefore, successful planning and dispatch of generation units is crucial in 

power systems operations. 
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3.2  Economic Dispatch Problem 

Undoubtedly, the economic dispatch (ED) is an essential problem on power system 

engineering. It is, in essence, a unit commitment optimization sub problem that seeks to 

allocate the real power output of each scheduled unit so that the overall generation fuel 

costs are minimized and a set of technical constraints are satisfied. The problem is stated 

just for a specific load level and for simplicity, the constraints considered are the forecast 

load demand, the systems losses, and the generator output operating limits. Modelling 

this behavior is critical on the system operation because it guarantees optimal economic 

states in all their online units already connected to the grid. Mathematically, the ED 

optimization problem can be formulated as: 

1

min ( )
GN

T i i

i

C F P
=

=         (3. 1) 

subject to: 

1

( )
GN

i D L i

i

P P P P
=

= +
        (3. 2) 

, [1, ]Min Max

i i i GP P P i N          (3. 3) 

where TC  is the total operating cost of all the scheduled units, iP  the real power supplied 

by unit i, ( )i iF P  the fuel cost function of the ith unit in terms of iP , GN  the number of 

scheduled units, DP  the real power system demand, ( )L iP P  the transmission system 

losses in terms of iP , and 
Min

iP ,
Max

iP  are the lower and upper operational limits of the ith 
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unit, respectively. The constraint of equation 3.2 establishes the power system equilibrium 

which is met when generation equals demand plus system losses, and equation 3.3 

enforces the units to operate under their design capacities. 

The fuel cost function, in $/hr, relates the cost of the fuel used in terms of the real 

power output of a generation unit. Usually, a quadratic equation is used to model that 

input-output relationship and is given by: 

2( )i i i i i i iF P a P b P c= + +  ($/hr)      (3. 4) 

where ia , ib , and ic  are the cost coefficients of the generation unit i , with units of 

$/MWhr2, $/MWhr, and $/hr, respectively. Figure 3.1 illustrates a traditional representation 

of a fuel cost function in terms of power output. 

 

 

Figure 3.1 Typical fuel cost function of a thermal generation unit [35] 
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The corresponding predefined system condition under the ED problem is the system 

demand load ( DP ) and generally is assumed that has been previously estimated from any 

particular forecast algorithm. 

A common practice is to approximate the transmission losses in terms of the power 

output of the plants by the Kron’s loss formula method. Its value can be obtained by 

means of the B matrix loss formula expressed as: 

0 00
ˆ ˆ ˆ( ) [ ]T T

L iP P B B B= + +P P P        (3. 5) 

or formally as: 

0 00

1 1 1

( )
G G GN N N

L i i ij j i i

i j i

P P PB P B P B
= = =

= + +       (3. 6) 

where ijB , 0iB , and 00B  are the B coefficients. 

From equations 3.1 – 3.3, the ED problem is a constrained optimization problem that 

consist of an objective function, an equality constraint and inequality constraints. 

Therefore, the problem can optimally be solved by the following Lagrange function: 

1

( ( ) )
GN

T D L i i

i

C P P P P
=

= + + −       (3. 7) 

where  is the Lagrange function and   the Lagrange multiplier associated to the 

constraint of equation 3.2. Taking the first derivative of equation 3.7 with respect to the 

GN  power output variables and  , and then equating to zero results in the below 

coordination equations: 
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Observe from equation 3.8 that the solution merely returns the constraint equation, so 

from equation 3.9, the value of   can be re-arranged as: 
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where the term 
( )i i

i

dF P

dP
 is the incremental cost and 

( )
1

L iP P  
1  

iP

−

 
− 

 
 is called the penalty 

factor, both for the ith generation unit.  

Finally, it can be observed that the minimal cost occurs when the product of the 

incremental cost and the penalty factor is the same for all the units at some value of  . 

Indeed, we must verify that the sum of all power outputs satisfies the demand and the 

losses, and in addition guarantee the feasibility of the solution by enforcing the lower and 

upper generator limits of equation 3.3. 

 

3.3  Unit Commitment Problem 

Another crucial task on power system engineering is how to economically handle the 

load fluctuations and cycles throughout the different days, weeks, and even seasons. 

Therefore, electric utilities must decide in advance when and for how long the generators 
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should be turned on and off to reduce the production costs. This is done by means of a 

computational process called unit commitment (UC) which according to reference [38] is 

defined as: 

“a critical combinatorial optimization problem for daily economic planning and 

operation of the modern power systems which collectively performs suitable on/off 

decision of generating units and distributes generated power among the committed 

units to achieve minimum generation cost while satisfying power demand, reserve, 

and other basic constraints over a scheduled time horizon”. 

 

From the above definition, recognize that UC is different from the ED problem because 

it involves finding the minimum cost using the optimal mix of the different available units 

of the whole system and not just allocating the output power of the online generators. 

Therefore, the objective function of the UC problem can be stated as the minimization of 

the total running cost, mainly including fuel costs, startup costs, and shut down costs of 

the units. Mathematically, for GN  thermal power units over a scheduled time period T, it 

is given by: 

( ) 1 1

1 1

min     1     1  
GNT

T i ij ij ij ij ij ij ij ij

j i

C F P U SUC U U SDC U U
− −

= =

   =  + − + −       (3. 11) 

where TC  is the total cost ($), ( )i ijF P  the fuel cost function of the unit i ($/hr), ijP  the real 

power output of the thermal unit i at hour j (MW), ijU  the binary variable {0,1} for the on/off 

status of the unit i at hour j, ijSUC  the startup cost of the unit i at hour j ($/hr), ijSDC  the 
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shut-down cost of the unit i at hour j ($/hr), T the number of time intervals under the study 

(hr), and GN  the number of power thermal units. 

The fuel cost function ( )i ijF P  is the same as ( )i iF P  from equation 3.4 but in terms of 

real power of unit i at hour j. The shutdown cost is assumed to be constant and 

independent of the length of time the unit has been running before shutting down. A 

common practice is to assign a value of zero in the study [34]. On the other hand, the 

start-up cost is associated to restarting a decommitted unit and is related to the 

temperature of the boiler or the number of hours the unit has been down. If the unit is cold 

(shut-down for a long time), it requires more fuel and energy to achieve the corresponding 

boiler temperature than if the unit is hot or recently shutdown (removed from service not 

long ago). A simple way to represent the start-up cost of the units is with the step function 

given by: 

1,   

,        
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ij ij i
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−
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= 
−

     (3. 12) 

where ijH SUC−  is the hot start-up cost of unit i at hour j, ijC SUC−  the cold start-up cost 

of unit i at hour j, 
1

off

ijX
−

 the down time of unit i up to hour j-1, and iCSH  the number of 

hours it takes for the boiler of unit i to cool down. 

The unit commitment problem from equation 3.11 involves a set of physical and 

operational constraints that must be satisfied. Each individual power system imposes their 

own rules, and hence the constraints, depending on their procedures and standards. The 
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most typical constraints are related to system and unit requirements, and can be defined 

as follows: 

• Power Balance  

The generated power from all the committed units must satisfy the forecasted 

demand and the losses of the system over the scheduled horizon. This is: 

1

( ), [1, ]
GN

i ij D L i

i

P U P P P j T
=

 = −         (3. 13) 

• Spinning and Supplemental Reserves 

Unforeseen load changes and forced outages of generating units are the 

reason for reserve requirements. The stable and reliable operation of power 

systems rely on maintaining the sum of the maximum generating capacities of the 

online units above an acceptable value that includes the power balance plus the 

reserve requirement. Formally, spinning reserve can be defined as the unused 

capacities of the committed units that are unloaded but ready to respond on the 

event of disturbances, in addition to what is needed to serve the actual demand 

(including losses). These capacities should be provided by units that are already 

synchronized to the network. In contrast, supplemental reserve includes the 

generation capacities of off-line units that can be available within minutes (usually 

10 minutes). Unlike spinning reserve, they are not synchronized to the grid and 

normally come on-line once the spinning reserve are depleted. 

Some of the common rules used to determine the reserve requirements are: 

(1) a given percentage of the load or even the peak demand, (2) the amount of 

power equal to bring on the largest committed unit, and (3) other regulations that 
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may vary according to jurisdictions. The equations of these reserve requirements 

are: 

1 1
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where jSR  is the specified spinning reserve requirement at hour j, p jSu  the 

specified supplemental reserve requirement at hour j, and OGN  the number of off-

line generating units. Equation 3.14 is for spinning reserve requirement, while 

equation 3.15 is for supplemental reserve requirement. 

• Minimum Up/Down Times 

Once a unit is committed or decommitted, there is a predefined minimum time 

before any change can occur. As a result, two thermal operating unit constraints 

may arise: minimum up-time and minimum down-time. The former is the minimum 

time the unit should be running prior to shutting it down once it is committed, and 

the latter is the minimum time the unit has to be shut-down before it can start up if 

it is decommitted. The minimum up-time and minimum down-time constraint 

equations are: 
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respectively, where 
1

ON

ijX
−

 is the up-time of unit i up to hour 1j − , 
ON

iT  the minimum 

up-time requirement of unit i, 
1

OFF

ijX
−

 the down-time of unit i up to hour 1j − , and 

OFF

iT  the minimum down-time requirement of unit i. 

• Ramp Rates 

The output power difference from one hour to another is physical restricted for 

the thermal units. This implies that under a certain time interval, ijP  cannot exceed 

1ijP
−  by more than a certain ramp-up value, nor may it be less than a certain ramp-

down value. Hence, the rate of changes from previous to actual time intervals on 

each generator are controlled by specified ramp up/down constraints expressed 

as: 

1 , [1, ], [1, ]ij ij i GP P RUR i N j T
−

−           (3. 18) 

1 , [1, ], [1, ]ij ij i GP P RDR i N j T
−
−           (3. 19) 

where iRUR  is the ramp-up rate limit of unit i , and iRDR  is the ramp-down rate 

limit of the unit i. 

• Unit Operating Range 

The committed units must generate power within their operational range. Upper 

and lower limits are given by: 

, [1, ], [1, ]Min Max

i ij ij i ij GP U P P U i N j T            (3. 20) 
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The unit commitment problem formulation explained so far consists of the objective 

function of equation 3.11 subject to the constraints of equations 3.13 - 3.20. Constraints 

from equations 3.13 - 3.15 are related to system requirements, while constraints from 

equations 3.16 - 3.20 correspond to the thermal units. Several techniques have been 

employed to solve the UC problem. Traditional optimization methods like priority list, 

dynamic programming, Lagrangian relaxation, and branch-and-bound are the most 

common. Also, various meta-heuristic methods recently applied to the UC solution are 

the evolutionary computation algorithms including differential evolution, genetic algorithm, 

particle swarm optimization, evolutionary programming, ant colony optimization, among 

others. Despite the technique utilized, UC is a very difficult problem to solve due to the 

large quantity of subsets (combinations) that can arise from the GN  units considered. In 

addition, its formulation involves integer and continuous decision variables, making 

evident the complexity of the problem. 
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4 Plug-in Electric Vehicle Integration Algorithm 

 

This chapter provides a complete overview of the proposed intelligent method to 

integrate PEVs to the grid. First, a brief introduction is presented in Section 4.1. Section 

4.2 summarizes some of the previous works related to V2G and charging integration 

methods. Section 4.3 presents background information about the model used as 

reference in this work, while Section 4.4 describes the main features considered in our 

proposed model. Details associated to the shared data between vehicle owners and 

system operators are explained in Section 4.5. The two-stage mathematical formulations 

for V2G and charging optimization problems are discussed in Section 4.6 and 4.7, 

respectively. Finally, Section 4.8 offers the final remarks of the optimization algorithms 

suggested. 

 

4.1  Introduction 

Electric vehicles, due to their energy savings and low carbon emissions, have recently 

gained enough attention in many countries as the new emerging transportation 

technology option. However, from the point of view of electric utilities, as these vehicles 

get wider acceptance by the transportation sector, the charging process of large-scale 

penetration can seriously become a burden to the operations of existing power systems 
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if adequate coordination is not implemented. Therefore, the smart integration of EVs into 

the grid is, along with many other tasks, one of the most important problems that electric 

utilities will have to face. 

During the past years, many studies have shown that intelligent V2G techniques are 

the fundamental key to achieve active participation of electric vehicles on the grid and 

improve the power system operations. Although there are numerous findings and 

contributions on these techniques, there is still space to further extend research on this 

topic since it is at its conceptual stages. 

In this work, a coordinated charging/discharging implementation framework for V2G 

is proposed using a two-stage optimization algorithm. The model approach emphasizes 

on an effective strategy to handle a large penetration of PEVs while providing benefits to 

grid operations. This chapter is dedicated to formulate and explain the mathematical 

model of the optimization problem that aims to minimize the overall load and flatten the 

load profile subject to the vehicle and system constraints under the V2G concept. 

 

4.2  Literature Review 

Currently, large scale electric vehicle penetration threatens to destabilize current 

power system operations. With the urgency to avoid that harmful direction, different EVs 

integration methods have been presented in the literature. Many of them comprise 

optimization procedures to minimize or maximize a specific objective. Other methods are 

heuristic; whose main objective is to prevent the system from operating out of its limits. A 

wide range of objectives exist to implement intelligent charging strategies, but the most 
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common are costs minimization, profit maximization, or the improvement of a specific 

operational aspects of the system. 

Given the low energy consumption at night and the underutilized power grid during 

that period, a typical PEV integration method is the passive strategy that use off-peak 

periods for charging the vehicles. However, if all PEVs start their recharging process at 

the same time (no coordination), this solution may result in several disadvantages. Hence, 

active strategies such as minimize load variance, maximize load factor, and load leveling 

are among other common objectives for coordinated charging/discharging methods. Z. 

Wang and S. Wang suggest in [39] a peak shaving and valley filling V2G algorithm 

through an objective function that aims to match a target load curve with a planned curve 

(forecast load plus EVs load). Authors in [40] present a similar approach in which they 

used the same objective function to implement their control strategy algorithm for demand 

side management. In article [7], the authors proposed a double-layer optimal charging 

strategy to minimize the overall load variance of a net load curve to deal with the 

computational complexity of large scale penetration optimization problem. 

A multi-objective optimization problem was considered by [8] for the EVs charge and 

discharge. The first objective function evaluates the operational cost minimization, while 

the second objective function assess the difference between the minimum and maximum 

demand. This methodology aims to set the load factor equal to one, while operational 

costs are reduced. Particular attention should be placed on scheduling algorithms with 

multi-objective optimization problems because they can achieve optimal solutions 

considering multiple strategies. This is the case for the work performed on [9], which 

evaluated various aspects in the objective function from the customer interest to the 
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system operator objectives. Their approach presented the need for the system operator 

to reduce the peak load and that of the customer perspective, who is financially motivated, 

but concerned with the battery degradation as the V2G takes place. 

The charging and discharging operation of PEVs can also be extended to demand 

side management on buildings. Instead of V2G, it is termed as vehicle-to-building (V2B). 

In [41], the authors considered the utilization of PHEVs smart processes to minimize the 

square Euclidean distance between instantaneous energy demand and the average 

demand of the building by controlling their schedules. Another work related to this topic 

[42], examines a mathematical model for peak shaving and valley filling on the load profile 

of a non-residential building under the presence of solar cells in order to flatten the power 

consumption curve. L. Jian et al. explored in [43] the possibility to smooth out the load 

variance in a household microgrid by controlling the charging patterns of PHEVs. In [44], 

K. Mets et al. presents quadratic programming algorithms to schedule PEVs where the 

objective function aims to minimize the square Euclidean distance between a target load 

profile and a real demand curve. In their approach, the real load profile corresponds to 

the household load profile in the local algorithm and to the load profile observed by the 

transformer to which the households are connected in the iterative global and global 

algorithms. Although these techniques have been developed for households or buildings, 

they can be applied in a similar way to the grid, since their objective to reduce peaks, fill 

valleys, and flatten an overall load profile are still the same. 

In addition to minimizing load variance, maximizing load factor, or load leveling, PEVs 

can be optimally integrated with other goals. Some of the most common control methods 

found in the literature include decrease network losses, balance renewable energy 
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services, reduce emissions, minimize operational costs, and provide ancillary services. 

Despite the objective function goal, these control methods can be categorized under two 

architectures no matter if they are for charging only, or if they include charging and 

discharging. The architectures are commonly referred to as centralized and decentralized 

controls [45]. 

In the centralized or direct control, all instructions and decisions regarding the 

charge/discharge of each vehicle falls directly on an external entity, usually an 

aggregator. This entity is responsible for collecting all the necessary information from 

both, the plugged-in vehicles and the system operator. With this data, the corresponding 

optimal algorithms should be applied to achieve the proposed objectives while satisfying 

vehicle owner requirements. Finally, with the results obtained, the entity must instruct and 

manage all the vehicles under its governance. 

Decentralized or indirect control architecture, in contrast, makes each vehicle acts as 

an independent decision-making agent rather than an external entity or an aggregator. 

Although every PEV decides the charge/discharge process by itself, the decision is 

influenced by a price or a control signal sent by the external entity which seeks to achieve 

a common objective between all users. Zhang et al. proposed in [46] a decentralized 

charging protocol where each vehicle determines its optimal charging schedule based on 

a cost signal sent by an aggregator. Then, every single PEV submits his schedule to the 

aggregator, so that the load curve and the cost signal can be updated when a certain 

number of vehicles are plugged in. However, in spite of the signal or factors used to 

influence the customers’ decision in decentralized control algorithms, there is no 

guarantee of optimal results from the system operator’s point of view [47]. 
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The authors of [45] presented a review of different strategies and methods that many 

researchers on the topic have done to effectively integrate electric vehicles with the grid. 

Table 1 and Table 2 of this reference provide a summary of references regarding 

algorithms for the centralized and decentralized control, respectively. Both tables are 

organized by their main objectives, if the algorithm includes V2G, and the software, solver 

or tools employed to solve the problem. 

Most optimal algorithms proposed in the literature evaluate the schedules of their 

PEVS by continuous charging/discharging rates, varying from zero to maximum power. 

Very few works investigate the coordination of electric vehicles based on discrete rate 

methods. The author’s motivation in [48] to carry out its work concerning discrete rates is 

based on the fact that continuous charging rate is difficult to implement and chargers in 

current practice can only support several discrete charging levels. 

 

4.3  V2G Model Background 

An unlimited number of V2G algorithms that aim at flattening the load curve are 

defined as optimization problems. Usually, their mathematical formulation comprises an 

objective function whose decision variables rely on the charging/discharging rate of every 

PEV during each time slot. The basic constraints consist of maintaining the total load 

below maximum generation limits, ensuring charging/discharging rates are between 

lower and upper limits, and guaranteeing that minimum/maximum state of charges 

allowed are satisfied. Many other constraints can be added for controlling additional 

restrictions, but it will result on problem enlargement because the number of constraints 
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and the decision variables increase with the number of PEVs involved and with the 

number of time intervals considered. Evidently, this implies that with a large penetration 

of electric vehicles into the grid and with smaller time slots (more time intervals) evaluated, 

the computational complexity of the coordinated algorithms will become immensely high 

and a very difficult task for operators. 

A previous work developed by L. Jian et al. in [7] proposed a double-layer optimal 

charging scenario in order to deal with this problem and to reduce the computational 

complexity associated with large scale PEV integration. These authors suggested to 

divide the problem in two optimization layers. In the first layer, a Central Control Center 

(CCC) determines the optimal schedule for each individual charging station as a whole, 

aiming to minimize the overall load variance of the base load and the aggregation of the 

PEVs. Next, in the second layer, every single charging station plans the 

charging/discharging schedule of each charging post, following the instructions ordered 

by the CCC in the first layer. Figure 4.1 depicts the schematic diagram of the double-layer 

optimization strategy from [7]. 

The problem division technique (two-layers) suggested in [7] provides great 

advantages to deal with large scale penetration of PEVs. Undoubtedly, it reduces the 

number of variables resulting from the optimization algorithm compared to the problem 

without the division. Particularly, the second layer avoids computing the schedule of each 

vehicle at once, reducing the number of variables and constraints significantly. Instead, 

the double-layer strategy allows to compute all the second layers simultaneously in a 

smaller scale between all aggregators, simplifying the computational complexity of the 

overall optimization problem. 
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An important fact is that the single model is not exactly equivalent to the double-layer 

optimal charging strategy. Although authors found a small difference on optimal results 

between the single model (no division) and the proposed model (two-layer division), the 

optimal strategy agrees very well with the design objective. Therefore, no disadvantage 

is associated with implementing this technique to effectively integrate PEVs. 

 

 

Figure 4.1 Energy and information flow of the double-layer optimization strategy [7] 

 

4.4  V2G Model Description 

Throughout this work, a coordinated V2G algorithm to effectively integrate PEVs into 

the grid is suggested based on the methodology of the double-layer optimization strategy 

proposed in [7]. Similar to the mentioned reference, our focus is to determine an improved 

optimal V2G schedule that results on peak shaving and valley filling by means of a two-
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stage method approach. Besides utilizing the two-stage optimization strategy to decrease 

the computational complexity, the objective function has been simplified to reduce the 

overall load variance, while using the least possible amount of power. This change in 

objective function, allows the algorithm to evaluate larger PEVs penetrations and to 

compensate for the computational effort associated to the increase in variables. 

Furthermore, our previous guideline reference [7] examined the optimal V2G schedule 

for daily services offered by the charging stations. However, the target is to include the 

charging/discharging optimal schedules in the periods that can take place during nights, 

in addition to those services that can be obtained through the charging stations during the 

day. PEV users may not live near a charging station and neither they will leave their PEVs 

at the charging stations during night. Therefore, the interaction between the vehicles with 

the grid should be controlled even if they are operating outside of a charging station. This 

way, it can be ensured that each vehicle will be controlled not only in the charging pole at 

work, or any other parking lot station, but also while at home. Specifically, we center the 

analysis on two periods during the coming one-day cycle to coordinate the day ahead 

optimal PEV schedules. The first period coincides with the arrival and departure time of 

work, while the second corresponds to the arrival back home until the next day. Figure 

4.2 shows the time intervals over a complete cycle. 
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Figure 4.2 Time interval over a complete cycle 

 

In addition, as an effort to look at a more realistic scenario, charging and discharging 

efficiencies have been included in the algorithm. The energy transfer between the network 

and the PEVs is not ideal, and neglecting these losses is not practical. Both efficiencies 

should be considered to account for the energy transfer losses between the battery pack 

of PEVs and the system, which may impact the overall load curve if their value is not high 

enough. Also, since battery degradation is one of the greatest drawbacks of the V2G 

concept, a discrete and constant rate of charge and discharge for the PEVs have been 

evaluated within the proposed algorithm. Although continuous methods are promising in 

the future, in this work it is believed that discrete rates will also impact the upcoming 

research and will co-exist in the long run. Furthermore, as pointed out in [49], the majority 

of electric vehicle supply equipment (EVSE) and standards just enable discrete rates. 

These rates depend on the charging level type contemplated in the vehicle design. In 

North America, according to the Society of Automotive Engineers, the standard SAE 

J1772 defines several types of charging levels. The most common are AC Level 1 for 

charges on 120 V outlets and AC Level 2 for 240 V plugs. Table 1 in [50] summarized the 

different charging power levels and their characteristics for the SAE and IEC Standards. 
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Along with the fixed rate, constraints are introduced in the algorithm to prevent fast 

deterioration of the vehicle batteries by avoiding the frequency of switches between the 

charge and discharge modes. The restriction will limit the algorithm to schedule 

alternating modes (charge and discharge) between consecutive time slots. This means 

that the schedule for any period t to t + 1 to t + 2 will never change their states from charge 

to discharge to charge, and neither will change from discharge to charge to discharge. 

This work goes beyond other PEVs integration algorithms. As revealed in [44], it is 

emphasized on adjusting the PEVs power consumption to support optimal operation of 

the network instead of adapting the power generation to their power demand. Here is 

where the big challenges exist on the new incoming technology about electrifying the 

transportation sector. Manipulating or controlling the lifestyle of PEV owners concerning 

their charging schedules, will be a much-complicated task if appropriate social 

implementation is not performed. 

 

4.5  V2G Model Input Data 

To properly operate a smart technique through a centralized algorithm, it is essential 

to have good communication between the electric vehicles, the network, and the 

operators. The flow of information among these parts is indispensable and can be 

effectively managed by means of an online software and a cell phone application able to 

establish direct communication with the EVSE used to managed the charge/discharge 

operation of every single PEV. First, data from every vehicle should be shared with the 

external entity during a registration process in order to actively participate in the proposed 

V2G centralized program. During the registration, vehicle owners should provide the 
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following information about their vehicles: model (PEVMODEL), battery type (PEVBAT TYPE), 

battery capacity (PEVBAT CAP), and the energy consumed as consequence of the driving 

action or driving consumption (PEVDC). Additionally, they must notify the aggregator to 

which they will belong (AggregatorID). Then, a unique identification number is assigned to 

the vehicle to distinguish between all other vehicles subscribed to the program. Once the 

vehicle is registered, it can join the V2G operations under the supervision of the selected 

aggregator. If for any reason, the information submitted in the registration has changed, 

it must be updated. 

Aggregators must know in advance the vehicle owner’s requirements prior to 

determine optimal schedules. Therefore, each vehicle who intends to join the operations 

during the coming one-day cycle is required to submit the data before a specific deadline 

time. With the PEVID, they need to send to the aggregators, at least, the indicated 

information in the following data string: 

PEVID = [ Date, LOC1st Period, Time1st Con, Time1st Leave, SOC1st Con, LOC2nd Period,  

TD2nd Trip, Time2nd Con, Time2nd Leave, SOCDesired, SOCLower, SOCUpper] 

where Date is the proposed date to which the PEV is willing to participate, LOC1st Period 

the location of the first plug-in period, Time1st Con the plug-in time of the first connection 

period, Time1st Leave the un-plug time of the first connection period, SOC1st Con the state of 

charge value when connected in the first period, LOC2nd Period the location of the second 

plug-in period, TD2nd Trip the travel distance for the second PEV trip of the day, i.e. the 

distance that the EV expects to travel between the first and second connection periods, 

Time2nd Con the plug-in time of the second connection period, Time2nd Leave the un-plug time 

of the second connection period, SOCDesired the minimum desired state of charge value 
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when leaving on the second connection period, SOCLower the allowed lower limit 

(minimum) value for the state of charge of the battery, and SOCUpper the allowed upper 

limit (maximum) value for the state of charge of the battery. 

These input data depend entirely on the behavior of each user, and clearly, will be 

provided at first by inference. However, as the PEV owners get more knowledge of their 

actions and experience from their vehicle, they will be able to provide more accurate 

estimates about their parameters. 

 

4.6  V2G Model Mathematical Formulation 

Our proposed mathematical model, as previously mentioned, follows the problem 

division of the double-layer optimization charging strategy used in [7]. Nevertheless, we 

have developed our own perspective about the two-stage formulation by expanding the 

second stage so that an aggregator can manage the V2G operations of PEVs on parking 

lots during the day as well as their homes during the night. Figure 4.3 shows our 

suggested schematic diagram representation for the two-stage V2G problem. 

The main idea is that all PEVs submit their input data to the aggregators before a 

deadline time. Next, each of the aggregators must process this information and send it to 

the master or main aggregator (MA) as a total from all its PEVs. As soon as the MA 

receives the data reports from all the aggregators, he proceeds to calculate the optimal 

V2G schedule associated to each aggregator based on the vehicle needs. Once the 

results have been obtained, he imparts the instructions to each of the aggregators so they 

can manage all the PEVs under its domain independently of where they are located. The 

work performed by the master aggregator corresponds to the first optimization stage while 
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the work performed by the other aggregators is part of the second stage. Both stages will 

be explained in detail in Sections 4.6.1 and 4.6.2. 

 

 

4.6.1  First Optimization Stage 

In the first optimization stage, the master aggregator has the function to develop 

the optimal schedules for all the aggregators with the aim of minimizing the overall 

load variance using the least possible amount of power. The main goal of this stage 

is to allocate the operating power schedule during each time slot for every aggregator 

Figure 4.3 Two-stage schematic diagram 
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over the entire period, which will be then used by the aggregators on the second 

optimization stage. Thus, the objective function can be defined as: 

( )
2

1

1

min
T

st Stage Base Aggregatort t
t

OF P P
=

= +      (4. 1) 

,

1

, [1, ]
A

Aggregator a tt
a

P P t T
=

=         (4. 2) 

where T  is the total number of time slots, A  is the total number of aggregators, Base t
P  

is the forecast load in t-th time slot and is assumed to be known, and 𝑃𝑎,𝑡 is the 

operating power of the a-th aggregator in the t-th time slot. From the objective function 

described in equation 4.1 it can be seen that the decision variables are
,a tP , and there 

are A T  of them. Under this formulation, in general, the algorithm will assign the 

positive values of ,a tP  (PEV’s charging their batteries) during the periods of low Base t
P  

and the negative values (PEV’s discharging their batteries) when Base t
P  is high, 

resulting on a new flattened load curve. 

The minimization of the objective function is subject to a set of inequality 

constraints that take control of some of the system limitations and EV user 

preferences. The constraints included in the formulation are defined as: 

• Maximum Generation Limit 

, [1, ]Base Aggregator Max Gent t t
P P P t T+         (4. 3) 

This constraint guarantees that the new load curve resulting from the 

addition of the PEVs will be maintained below the maximum generation limits 
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of the system during each time slot. Here, Max Gen t
P  is the maximum generation 

limit of the t-th time slot, and in total, there will be T  constraints (one for each 

time slot) associated to the maximum generation limit. If the algorithm performs 

well in leveling the load curve with the addition of the PEVs, this constraint 

should have no problem because the peaks will decrease, and the valleys are 

the segments of the curve that will increase. However, if the aggregation of 

PEVs is large enough that the new load curve results in averages above the 

peaks, this constraint will activate its role in the algorithm. 

• Lower and Upper Aggregator Operational Power Limits 

The lower and upper limits of the charging/discharging rates of the 

aggregators during each time slot ( ,a tP ) depend on the quantity of PEVs and 

whether they are or not plugged in to the grid. The constraint is defined as: 

( )
( ) ( )
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1 1

1( ) ( ) ,
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N a N a
a a a a
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
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 
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 

   

 
 (4. 4) 

where 
a

Max Rate nP  is the maximum charging/discharging rate inside the battery 

for the n-th vehicle at the a-th aggregator, DH  the discharging efficiency 

(between battery and grid), CH  the charging efficiency (between grid and 

battery), and ( )a

n t  is a binary variable for the n-th PEV at the a-th aggregator 

that is 0 if the PEV is not plugged-in and 1 if it is plugged-in. The mathematical 

representation is expressed in equation 4.5 as: 



58 

 

1 1 2 2

1 1 2 2

0, [ , 1], [ , 1]
( )

1, [ , 1], [ , 1]

[1, ], [1, ( )], [1, ]

a a a a

start n end n start n end n
a

n
a a a a

start n end n start n end n

t t t t t
t

t t t t t

t T n N a a A



   − −


= 
   − −

     

   (4. 5) 

in which the value of 1

a

start nt  and 2

a

start nt  represent the beginning of the next time 

interval of Time1st Con and Time2nd Con, respectively, for the n-th PEV in the a-th 

aggregator. In a similar way, the value of 1

a

end nt  and 2

a

end nt  denote the 

beginning of the time interval of Time1st Leave and Time2nd Leave, respectively, for 

the n-th PEV at the a-th aggregator.  

The nomenclature of the time intervals (time slots) in the algorithm is of 

outmost importance. Therefore, the following example have been developed 

for better understanding of the reader. Assumes that 1t =  hour, the study 

period has 24 time slots (T = 24), and the cycle starts up at 8:00 a.m. and ends 

at 8:00 a.m. the next day. Therefore, if for any particular PEV the Time1st Con, 

Time1st Leave, Time2nd Con, and Time2nd Leave are 8:10 a.m., 4:55 p.m., 6:37 p.m., 

and 7:25 a.m., respectively, then, 1startt  is 2, 1endt is 9, 2startt is 12, and 2endt  is 

24. Observe that startt  is the beginning of the time interval where the PEV will 

start its operation, but endt  is the end of the last time interval (or the beginning 

of the next time interval) where the PEV will stop its operation. For the example 

previously showed 1endt  was 9, meaning that the last time interval where the 

PEV will be doing V2G transactions during the first period is the 8th, but is 

equivalent to say that end operations at the beginning of 9th interval. Using 
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these times ( startt and endt ) in the algorithm is a practical way to ensure that the 

PEVs initiate their V2G operations after being connected and cease before they 

leave the grid. 

Both constraints (upper and lower) stated in equation 4.4, ensure that each 

aggregator maintains its operational V2G charging/discharging rate between 

the limits that can be achieved with the vehicles plugged in, even if they are at 

their maximum rates during each time slot. Since the problem has A T  

decision variables, then, there will be A T  constraints (one for each time slot 

of every aggregator) associated to the upper and lower limits of the decision 

variables. 

• Minimum and Maximum Aggregator Accumulated Energy 

Analogous to the state of charge of a battery, we can establish an 

accumulated energy limitation for every aggregator. At first, it might be thought 

that the aggregators should have no minimum or maximum limit with the 

amount of energy that they can handle, because the network is able to send 

and receive all the energy associated to these vehicles as long as the energy 

transfer between the vehicles and the grid comply with the equipment and 

operational limits. However, this is not a valid argument. Each aggregator has 

a minimum and maximum accumulated energy quantity that is directly linked 

with the number of PEVs connected to the grid and with the minimum and 

maximum state of charge paths that every single PEV can have during its plug-

in period. Therefore, we define the accumulated energy quantity from the first 

time slot to the t-th time slot by the a-th aggregator as: 
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and the constraint as: 

( ) ( ) ( ) , [1, ], [1, ]a LOWER a a UPPERE t E t E t t T a A         (4. 7) 

where t  is the length of the time slots with units of hours. The terms ( )a LOWERE t  

and ( )a UPPERE t  in equations 4.7 are the lower and upper boundaries of the 

accumulated energy quantity of the a-th aggregator, respectively. These two 

parameters can be summarized as the minimum and maximum amount of 

energy that can accumulate each aggregator to the t-th time slot. 

Mathematically they are expressed as: 
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and 
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1
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N a
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E t E t t T a A
=
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where ( )a

PEV n LOWERE t  and ( )a

PEV n UPPERE t  are the lower and upper boundaries of 

the accumulated energy quantity of each individual PEV (i.e. n), respectively, 

in the a-th aggregator. Up to this point, it is important to recognize the difference 

between the upper and lower limits of ( )aE t  and ( )a

PEV nE t . The first corresponds 

to the accumulated energy quantity limits from the first time slot to the t-th of 

the a-th aggregator as a whole, while the latter is the same but for each n-th 
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PEV of the a-th aggregator. The summation of the ( )a

PEV nE t  limits under each 

time slot forms equations 4.8 and 4.9. Another important fact about the 

accumulated energy to the t-th time slot is that both, ( )aE t  and ( )a

n PEVE t , are 

quantities of energy on the grid side and not on the PEV batteries. 

The ( )a

PEV n LOWERE t  and ( )a

PEV n UPPERE t  values depend on the lower and upper 

limit paths that each PEV battery state of charge takes during the charging or 

discharging process. Figure 4.4 illustrates this behavior through a graphical 

route of the state of charge limits that a PEV can undergo while plugged in. The 

red lines represent the lower and upper limits of the state of charge using any 

charging/discharging rate (no discrete rate) while the blue lines show the lower 

and upper state of charge limits considering a discrete charging/discharging 

rate. Since the operational rate considered in the proposed algorithm is 

discrete, the blue route sets the minimum and maximum state of charge values 

of each PEV. It can be observed that as long as the state of charge values are 

maintained in the blue area, all the state of charge constraints will be satisfied. 

In addition, due to the discrete rate, you can see that the charging and 

discharging slopes are the same during all time slots but with different sign. 

Mathematically they are defined as 

a

Rate n

a

n

P t

Bat Cap


 for charging and 

a

Rate n

a

n

P t

Bat Cap

− 
 

for discharging. For better understanding, in the middle of both periods, there 

is a charging and a discharging process during one time slot (i.e. from t to t+1). 
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Figure 4.4 is intended to show a graphical interpretation of the state of 

charge values during all time slots of a complete cycle. Therefore, we make the 

following clarifications: 

o It is not drawn to scale. 

o It provides the SOC limit paths for continuous rates (red), as well as for 

discrete rates (blue). The discrete representation is above the 

continuous. 

o The 1DiscreteSOC  value is not necessarily greater than 2DiscreteSOC . 

o Neither the 4DiscreteSOC  value is greater than 3DiscreteSOC . 

o All these values depend on every single PEV value for 1st ConSOC , 

LowerSOC , UpperSOC , DesiredSOC , and 2Trip . 

o The SOC  quantity on the y axis is unitless, since it is a ratio (kWh/kWh). 

o The x axis corresponds to time over a 24-hour period and is represented 

by t to define the time intervals (8:00 a.m. to 8:00 a.m.) or the time slots 

(1 – T). This quantity is also unitless. 
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Figure 4.4 Minimum/maximum state of charge values during the V2G process 
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Hence, based on Figure 4.4, we can derive the following equations: 
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where the SOC notation stands for state of charge value at the end of the t-th 

period, 1

a

st Con nSOC  is the state of charge when plugged-in during the first 

connection period, 
a

Lower nSOC  is the allowed lower limit (minimum) value for the 

state of charge of the battery, 
a

Upper nSOC  is the allowed upper limit (maximum) 

value for the state of charge of the battery, 
a

Desired nSOC  is the minimum desired 

state of charge value when leaving on the second connection period. The term 

a

nBat Cap  is the battery capacity, 2

a

nTrip  is the energy consumed on the battery 

due to the driving operation of the second trip of the PEV, 2

a

nTD  is travel 

distance for the second PEV trip of the day, 
a

nDC  is the driving consumption of 
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the PEV, and 
a

Rate nP  is the charging/discharging rate of power inside the 

battery, where n is for the n-th PEV and a is for the a-th aggregator. 

The energy associated to the power losses of the V2G is considered in 

terms 1

a

Step nE  and 2

a

Step nE .They are used to correct the energy upper limits in 

equation ( )a UPPERE t .The number of times these terms are used is determined 

by equations 1

a

nk  in the first connection period and 2

a

ns  for the second 

connection period. The rest of the terms are detailed in the list of symbols at 

the beginning of this document. 

All equations from 4.10 - 4.31 have been obtained by analyzing and 

understanding Figure 4.4. They incorporate all the PEV owners' requirements 

and reflect the behavior of the SOC limits of each vehicle during its 

charging/discharging process in order to construct the accumulated energy 

limits ( ( )a LOWERE t  and ( )a UPPERE t ) of the constraint in equation 4.7. 

The constraint in equation 4.7 is set to guarantee the minimum and 

maximum demanded energy quantities on each of the aggregators. Like the 

constraint of equation 4.4, in equation 4.7 there are A T  number of 

constraints associated to the accumulated energy limits from the first time slot 

to the t-th time slot of the a-th aggregator. 

 

The first optimization stage concludes here. In summary, it consists on the 

objective function in equation 4.1 and the three constraints in equations 4.3, 4.4, and 
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4.7. Throughout this formulation, the master aggregator can achieve optimal results 

on the decision variables ,a tP . Once obtained, the MA must send the corresponding 

guideline to each of the aggregators separately. This instruction only includes the ideal 

base curve that each aggregator must follow on the second stage to manage their 

PEVs. We have named it aggregator instruction curve or mathematically as 

a

Base AggregatorP
−  for the a-th aggregator, and can be expressed in vector form as: 

,1

,2

,3

,

, [1, ]

a

a

a
aBase Aggregator

a T

P

P

PP a A

P

−

 
 
 
 =  
 
 
 
 

      (4. 32) 

 

4.6.2  Second Optimization Stage 

The second optimization stage involves the aggregators and the PEVs. In this 

stage, the aggregators should coordinate the charging/discharging power for each of 

their PEVs following the instructions ordered by the master aggregator from the first 

optimization stage. They are responsible for determining during which time slots the 

PEVs should charge, discharge or remain idle while meeting the PEVs requirements. 

As a target, they dispatch all their scheduled vehicles using the reference signal 

a

Base AggregatorP
− , aiming to minimize the difference between both curves over each time 

slot. Hence, the second stage task can be formulated as: 
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where 
a

CH nP  and 
a

DH nP  are the charging and discharging rates (inside the battery, not 

in the grid) for the n-th PEV at the a-th aggregator, respectively. Concerning these two 

parameters, it is important that 
a

CH nP  and 
a

DH nP  are equal to 
a

Rate nP  in order to match 

the first optimization stage with the second. If they are not equal, the algorithm loses 

compatibility between both stages. The formulation uses ,

a

CH n tU  and ,

a

DH n tU  as the 

decision variables of the problem. They are binary variables and indicate the 

charging/discharging status of the V2G operation during the t-th time slot of the n-th 

PEV at the a-th aggregator. Since there are two decision variables per time slot, a 

total of 2 N T   variables are associated with equation 4.33. 

The second stage objective function is subject to various equality and inequality 

constraints in order to satisfy the user preferences. These constraints are: 

• Charging/Discharging Status 

The ,

a

CH n tU  and ,

a

DH n tU  are binary {0,1} variables that indicate whether the 

charging or discharging process are activated or not during a specific time slot. 

For example, , 0a

CH n tU =  means that during the t-th time slot, the n-th PEV at 

the a-th aggregator is not charging, while if , 1a

CH n tU =  it is charging. The same 
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occurs with ,

a

DH n tU  but for discharging mode. Thus, associated to these 

operational statuses we can derive the following constraints: 

, 1 1 2 20, [ , 1], [ , 1]

[1, ( )], [1, ]

a a a a a

CH n t start n end n start n end nU t t t t t

n N a a A

=   − −

   

   (4. 35) 

, 1 1 2 20, [ , 1], [ , 1]
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a a a a a

DH n t start n end n start n end nU t t t t t

n N a a A
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, , 1, [1, ], [1, ( )], [1, ]a a

CH n t DH n tU U t T n N a a A+           (4. 37) 

Equations 4.35 and 4.36 guarantee that there is no charging or discharging 

operation (no V2G) when the PEVs are not plugged in and equation 4.37 

assures that any PEV cannot charge and discharge simultaneously in the same 

time slot. For the first two equations, the total number of constraints can be 

quantified as ( )
( )

1 2 1 2
1

( 1) ( ) ( 1)
N a

a a a a

start n start n end n end n

n

t t t T t
=

− + − + − +  on each 

aggregator, while the latter, Equation 4.37, has a total of N T  constraints on 

each aggregator too. 

• Lower and Upper State of Charge 

The state of charge is a measure of how much energy is left on the PEV 

battery as a percent of its full capacity. In this algorithm, it is modeled as: 
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[1, ], [1, ( )], [1, ]t T n N a a A         (4. 38) 

where ( ) a

nSOC t  is the state of charge value at the end of the t-th time slot of 

the n-th PEV at the a-th aggregator. However, to guarantee that the PEV 

batteries are neither overcharged nor deeply discharged during V2G 

operations, a constraint with upper and lower limits is established and defined 

as: 

1 1 2 2

( ) ,

[ , 1], [ , 1], [1, ( )], [1, ]

a a a

Lower n n Upper n

a a a a

start n end n start n end n

SOC SOC t SOC

t t t t t n N a a A

 

  − −    

 (4. 39) 

where the lower and upper state of charge values are set by owner preferences 

before joining the grid. In total, equation 4.39 has N T  constraints for each 

limit at each aggregator. 

• Minimum Desired State of Charge at Leave Time 

2( 1) , [1, ( )], [1, ]a a a

end n n Desired nSOC t SOC n N a a A−        (4. 40) 

where 2( 1)a a

end n nSOC t −  is the state of charge value at the end of the last time 

interval of the second connection period of the n-th PEV at the a-th aggregator. 
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By means of this constraint, PEVs can leave their second connection period 

with a state of charge value above the minimum, as requested to the 

aggregator when they submitted their preferences. Equation 4.40 consists of N 

constraints on each aggregator. 

• Switching Frequency Limitation 

It is known that PEV battery degradation is directly proportional to the 

number of cycles given. Therefore, to reduce the battery degradation as a 

consequence of V2G operations, the frequency of switching between the 

charging and discharging modes in continuous time slots must be limited. Two 

constraints can formally be used to control this behavior, which can be stated 

as: 

1 1 2 2

( ) 2,

[ , 3], [ , 3], [1, ( )], [1, ]

a

CH n

a a a a

start n end n start n end n

SF t

t t t t t n N a a A



  − −    
 (4. 41) 

1 1 2 2

( ) 2,

[ , 3], [ , 3], [1, ( )], [1, ]

a

DH n

a a a a

start n end n start n end n

SF t

t t t t t n N a a A



  − −    
 (4. 42) 

where ( ) a

CH nSF t  is the switching frequency from charge-to-discharge-to-charge 

and ( ) a

DH nSF t  is the switching frequency from discharge-to-charge-to-discharge 

beginning at the t-th time slot for the n-th vehicle at the a-th aggregator. Both 

equations consist of ( 2)N x T −  number of constraints on each aggregator. 

Equations 4.43 and 4.44 define ( ) a

CH nSF t and ( ) a

DH nSF t , respectively. 
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This is the end of the second optimization stage. Recapping, the second stage 

comprises an objective function stated by equation 4.33 subject to the equality 

constraints of equations 4.35 and 4.36 and to the inequality constraints of equations 

4.37, 4.39, 4.40, 4.41, and 4.42. The optimal results of this stage provide the operating 

charging/discharging schedule of each PEV by means of its operational status 

(charge, discharge, or idle) during each time slot. With this schedule, the aggregator 

must control and manage the V2G operation of every PEV under its domain by 

sending the 
a

Status nPEV  signal to the charging/discharging device to which the PEV is 

plugged in. Below, an illustrative matrix of the PEV status is displayed. 

,1 ,1

,2 ,2

,3 ,3

, ,

, [1, ( )], [1, ]

a a

CH n DH n

a a

CH n DH n

a a a
Status n CH n DH n

a a

CH n T DH n T

U U

U U

PEV n N a a AU U

U U

 
 
 
 =    
 
 
 
  

  (4. 45) 
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4.6.3  V2G Model Algorithm Assumptions 

The V2G model presented in this chapter was developed based on the premise to 

evaluate the impact that PEVs can create on the load curve as a consequence of their 

interaction with the grid. Therefore, a set of reasonable assumptions have been 

considered concerning the power system, the PEVs capabilities, and the personal 

preferences of each PEV. These assumptions are: 

• The power system has a reliable communication system that allows the flow of 

information between users, aggregators, and the charge/discharging devices. 

• Transformers and lines capacities are never above operational limits in the 

parking lots nor in the homes. This implies that the utility grid has done the 

necessary upgrades to the system in order to adequately handle PEV charging 

or discharging processes. In contrast, it can also mean that the utility only 

allows V2G interactions on places where the system has the capacity to 

manage the PEVs without affecting actual grid operations. 

• All parking lots charging stations or aggregators and charging/discharging 

devices at homes are equipped with the adequate outlets to manage the 

corresponding charging/discharging rate. 

• The converter device used to charge and discharge the plug-in electric vehicle 

is modeled only by means of a charge and discharge efficiency. 

• These efficiencies are to be equal for all the PEVs during the whole study. This 

assumption is valid because the charge and discharge rates used in the 

algorithm are constant. 
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• The PEV onboard batteries are thought of as ideal, where the transient 

performance of the charge/discharge process is not considered. In addition, 

any battery inefficiency such as self-discharge, loss of capacity, and poor 

operation due to temperature changes have been neglected. 

• The battery capacity is fixed to a specific kWh value. The study period is one 

day (24 hours), so the battery capacity is not supposed to change in that short 

time. 

• PEV owners have similar life styles and driving patterns. Their vehicle main 

purpose is commuting. That is, users just drive from home to work in the 

morning, and back home in the evening/night with just a minimal deviation for 

another task. This argument is not far from reality, since actual PEV batteries 

do not provide enough capacity to travel beyond commuting purposes. 

• The energy consumed on the PEV corresponds to the distance traveled, and 

no other activity is realized other than driving. The PEV heaters, radios, lights, 

A/C units, between many other electrical devices consume energy and drains 

the battery. This effect is disregarded in the PEV batteries. 

• In addition, the aspects considered in the algorithm are just some of the 

operational features of the V2G concept and in no way contemplates all the 

limitations of the system or other economic aspects. 

 

4.7  Charging Model Mathematical Formulation 

The two-stage V2G algorithm proposed in Section 4.6 to effectively integrate PEVs 

with the grid can be simplified a charging-only operation within the electric vehicles 
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instead of considering both charge and discharge. This section illustrates the changes 

that have to be done in the algorithm to avoid any kind of PEV discharge with the grid. 

The changes in both stages are minimal and most of them associated to the lower 

limits. In the first optimization stage, major changes occur in equations 4.4, 4.10, 4.11, 

and 4.12. Also, equations 4.17 and 4.21 require adjustments. On the other hand, the 

second stage changes involve the elimination of the discharging status variables and 

remove their terms from all the corresponding equations. These changes are on 

equations 4.34, 4.37, 4.38, and 4.45, while equations 4.36 and 4.41 - 4.44 are eliminated. 

A detailed explanation regarding all modifications along with the new equations is shown 

for each stage. 

 

4.7.1  First Stage Modifications 

The first change corresponds to equation 4.4. If discharge is not allowed, PEVs 

are only able to charge. Thus, the aggregator rate limits equation should be modified 

to: 
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     (4. 46) 

where the difference is in the lower limit which is set to zero. Respect to equations 

4.10, 4.11, and 4.12, Figure 4.5 allows an easier understanding on how to proceed 

with their modifications. Similar to the V2G process, this figure depicts the state of 

charge limit values of a particular PEV undergoing the charging-only process. From 

the figure, it can be observed that, since the PEV discharges at no time, the state of 
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charge is never below the value at which begins in the first and second connection 

periods. In order to correct the equations, it is also important to notice that the value 

of k2 is set to any integer value greater than zero, but in practice, it can be equal to 

zero depending on the 1st ConSOC , LowerSOC , and 2Trip . If it is zero, it means that 

1 1critic endt t= in the first connection period. Hence, considering all these statements, the 

resultant changes in the first optimization stage are: 
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Figure 4.5 Minimum/maximum state of charge values during the charging process 
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equation 4.10 should be modified to: 
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equation 4.11 should be adjusted to: 
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and equation 4.12 corrected to: 
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where: 
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2

a
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and 2

a

nk  in equation 4.21 should be corrected to: 
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The rest of the equations of the first optimization stage remain the same except 

for equations 4.14, 4.15, 4.16, 4.20, 4.29, and 4.30 that are removed. 

 

4.7.2  Second Stage Modifications 

The second stage modifications are mainly due to the ,

a

DH n tU  term. No discharge 

implicates , 0a

DH n tU = , therefore, all equations can disregard it. The first change comes 

up with the objective function term 
a

PEV tP  of equation 4.34 that may be redefined as: 

( )
,

1

,

[1, ], [1, ]

a aN a
CH n t CH na

PEV t
n CH

U P
P

t T a A

=

 
=  

 
 

   


      (4. 53) 



84 

 

which as a consequence implies that the number of decision variables on the objective 

function is reduced from 2 N T   to N T . 

Additionally, the constraint of equation 4.36 becomes void, equation 4.37 is fixed 

to: 

, 1, [1, ], [1, ( )], [1, ]a

CH n tU t T n N a a A           (4. 54) 

and equation 4.38 is reformulated as: 
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With respect to the switching frequency constraints, they are no longer needed. 

Since discharging is not considered, the PEV operation cannot switch between one 

mode to the other, leaving equations 4.41 - 4.44 out of context. After all, the result of 

the second optimization stage has slightly changed in dimensions and equation 4.45 

about the PEV status can be now showed as a vector of the form: 
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4.8  Summary 

The proposed method to intelligently schedule the PEVs was mathematically 

formulated and explained in this chapter. The algorithm seeks to determine optimal 

charging and V2G operations so that the final net load curve has the least variation over 

an extended time horizon. To achieve the objective, a two-stage strategy was used in 

order to reduce the computational effort which may result from large scale PEV 

penetration. The first stage is a quadratic programming (QP) optimization problem whose 

decision variables depend only on the number of aggregators and the time slots, while 

the second stage is a mixed-integer quadratic programming (MIQP) optimization problem 

where the variables rely on the amount of PEVs allocated on each aggregator and the 

time slots. Under this formulation, this means that, once the first optimization stage is 

concluded, all aggregators can compute their PEV optimal schedules (second stage 

optimization) at the same time because they are independent of each other. This 

technique results in a time performance improvement of the overall algorithm if compared 

to other methods that schedule all their PEVs under the same aggregator. In general, the 

problem division provides an outstanding tool that enable V2G operators dispatch faster 

all their PEVs without affecting the quality of their schedules. 

Interestingly, the possibility of considering continuous charging/discharging rates in 

the second optimization stage was evaluated. It was found, however, that it introduces a 

new level of complexity because the binary variables that determine the on/off status of 

the charge/discharge operations cannot be eliminated if efficiencies in the algorithm are 

to be considered. Therefore, the model is forced to use 4 N T   variables on the second 

optimization stage, including a combination of continuos and binary variables. 
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Conversely, if the binary variables are not used, then a non-linear constraint must be 

employed to prevent the algorithm from allowing charge and discharge operations 

simultaneously in the same time interval. Hence, both of the alternatives make the 

quadratic programming optimization problem harder to solve. 

From the perspective of this model, communication between PEVs, aggregators, 

master aggregator, and system operator is crucial. Principally, the master aggregator and 

all the aggregators, should have direct communication with the EVSE used to manage 

the charge/discharge operations of every PEV. A communication failure between an 

aggregator and its PEVs implies the loss of control of the charging and/or discharging 

process of every single PEV. Losing communication with a single PEV will be negligible 

to the system, but the charging process will not be completed, affecting PEV performance. 

However, if the master aggregator loses communication with an aggregator, all PEVs 

under the governance of that aggregator will fail to contribute to the grid. As a result, the 

overall load curve will be less flattened than expected as per optimal schedules. 

Therefore, a properly maintained communication system is one of the most critical 

aspects of effective integration of PEVs. 
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5 Simulations and Case Studies 

 

This chapter is dedicated to discussing and analyzing the numerical results of the 

simulations carried out using the proposed PEV integration algorithm described in 

Chapter 4. The usefulness of this study is proved through three different case studies 

considering multiple scenarios in each of the cases. Variations on specific parameters is 

performed in order to evaluate the impact they have in the proposed model results. 

The first section provides a general overview on how the simulations are carried out 

and introduces the general simulation parameters including those related to the power 

system, the plug-in electric vehicles, and user behavior. The preceding sections consider 

several cases and scenarios to assess the performance of the two-stage optimization 

strategy on the load profile curve and evaluate the impact on the economic operation of 

the power system by means of the UC problem. Lastly, Section 5.5 shows some final 

remarks associated to all the simulation results obtained in this chapter. 

 

5.1  Introduction 

The control strategies developed to effectively manage the charge/discharge process 

of plug-in electric vehicles were conceptually tested by simulation frameworks. All of them 

were implemented under the mathematical software Matrix Laboratory (MATLAB 8.4 
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R2014b) on an Intel Core i5-6200U CPU @ 2.30 GHz with 8.00 GB of RAM. Also, an 

interface with MATLAB was created using GUROBI Optimization (simply mentioned as 

Gurobi) to solve the quadratic programming (QP) and the mixed-integer quadratic 

programming (MIQP) optimization problems that MATLAB on its own cannot handle 

(referring to the MIQP). 

The Gurobi solver has the capability to manage both optimization problems defined in 

Chapter 4. In the first stage, which evaluates a continuous QP optimization problem, the 

model is solved to optimality subject to the default tolerances. This implies that an optimal 

solution is available. As the number of decision variables (aggregators A and time slots 

T) increases, the solver takes longer to achieve the solution, but overall, there is no 

inconvenient finding optimal solutions and providing the results in a reasonable time. 

However, for the second stage, which evaluates a mixed-integer QP (MIQP) optimization 

problem, the behavior was not the same. These problems are hard to solve, and as the 

dimension increases, the computational complexity grows significatively. As more PEVs 

were added in the simulation (N), more candidate solutions must be explored in the state 

space search. Therefore, for the dimensions considered in our simulations, some 

termination criteria parameters have been activated in order to obtain model solutions. If 

the algorithm reaches or exceeds any of these termination parameters, the solver 

interrupts and provides the best solution found up to that point. For this work, a time limit 

of 360 seconds and a node limit of 5,000 have been assumed for the branch and bound 

nodes. Whichever comes first, the solver will stop the optimization process, giving the 

best solution found up to that point as the problem solution. 
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Several cases have been studied based on typical islanded load profiles and the IEEE 

10-unit system. On each of the cases, particular scenarios with different levels of PEVs 

have been implemented aiming to demonstrate the effectiveness of the integration 

algorithm and to evaluate the resulting load profiles with the addition of PEVs on the 

systems considered. 

The simulations were modeled for uncoordinated charging, coordinated charging, and 

coordinated charging/discharging (V2G) cases for each of the load profiles considered. 

The base case simulation involves no PEV integration. That is, only a UC problem is 

evaluated in order to determine the original economic operation of the system when no 

PEVs are involved with the grid. Uncoordinated charging considers a possible scenario 

during upcoming years when PEVs become more attractive to vehicle owners and no 

restrictions are applied regarding their charging schedules. Particularly, this case 

simulates a scenario where all PEVs charge their batteries when they arrive home in the 

evening/night up to a full SOC. The coordinated charging case simulation includes just 

charging operations associated to the PEVs and the coordinated charging/discharging 

case comprises bidirectional power flow between the grid and the PEVs but in optimal 

ways as per the proposed algorithms in this work. For all the cases, the two-stage 

optimization algorithm, provides quantitative results in order to construct the new resulting 

load curve (except for the base case, where no integration algorithm is applied). Then, 

with the new obtained load profiles, UC problems were carried out to evaluate the impact 

on the economic operations of the system as a consequence of PEV addition. 

The two-stage optimization method proposed in Chapter 4 is conducted for one-day 

cycles (24 hours). In our simulations, the cycle starts at 8:00 a.m. and concludes at 8:00 
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a.m. the next day. For better precision on the proposed models, the time slot is defined 

to be 0.25 hours ( 15mint = ) over the complete cycle; therefore, there are 96 time slots 

in a 24-hour period (cycle). Sections 5.1.1 – 5.1.3 provide the rest of the simulation 

parameter assumptions associated to the power system, the PEVs, and user behavior. 

 

5.1.1  Power System Assumptions 

Regarding the power system, the only input data needed to execute the two-stage 

optimization algorithm of the PEVs integration is the base load curve in watts (kW or 

MW). Usually, their values come from forecast algorithms or historical data recorded 

by the utilities. For the purpose of this work, the load curve is assumed to be known. 

Appendix B provides data for the IEEE 10-unit system and the typical islanded power 

system load profiles used for the simulations. Observe from some of the tables in 

Appendix B.1 and B.2 that they only have hourly values (i.e. data for 24 time slots over 

24 hours). Therefore, due to the limited resolution in the data, the simulations (which 

require data for 96 time slots) will assume that the values for all the time slots of a 

specific hour will be the same as the corresponding hourly data. For example, from 

Table B.1.1 the hourly demand for 8:00 a.m. is 1300 MW. Thus, in the simulations, 

the 1300 MW will be applied from the first to the fourth time interval (8:00 a.m., 8:15 

a.m., 8:30 a.m., and 8:45 a.m.). The same will occur with the 1400 MW at 9:00 a.m. 

which will be repeated over the 9:00 a.m., 9:15 a.m., 9:30 a.m., and 9:45 a.m. This 

way, we will obtain the complete load profile for the 96 time slots of the simulations. 

To evaluate the economic operation of the power system, the UC problem should 

be carried out. This problem uses specific data of the generating units to execute its 
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mathematical procedures. Such information like minimum and maximum operating 

power of the units (operating range), cost coefficients, minimum up/down times, ramp 

rates, and hot/cold start-up costs are included in Appendix C. Tables C.1.1 and C.1.2 

provide the generator parameters used for the UC problem of the IEEE 10-unit 

system. 

The unit commitment problem will be solved on an hourly basis for a time horizon 

of 24 hours. However, the resultant load profile obtained from the proposed V2G and 

charging algorithms of Chapter 4 is in 15-minute time intervals. Hence, to match this 

difference, the load profile must be converted back from 96 to 24 time slots. The 

assumption will be to take the average of the four time slots on each hour. Consider 

time slots for the 8:00 a.m., 8:15 a.m., 8:30 a.m., and 8:45 a.m. Then, the average 

demand of all those time slots, will be used as the load data for the 8:00 a.m. time 

slot. In a similar way, this will be performed with the other time slots of each hour in 

the time horizon until the load profile data is reduced to 24 time slots. In addition, a 

match for the hours will be executed before performing the UC problem analysis. As 

previously mentioned, the simulation for the V2G and charging algorithms are 

performed starting at 8:00 a.m. for a period of 24 hours. However, the UC problem will 

be executed starting at 12:00 a.m. also for a 24-hour period. This causes a mismatch 

between both algorithms. Thus, a shifting in the load is executed to pair the hours and 

avoid losing synchronism among them. 
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5.1.2  Electric Vehicle Assumptions 

Pure electric vehicles or battery electric vehicles are the only PEVs considered in 

this work. The electric vehicle model used in the simulations is the 2019 Nissan LEAF. 

It has a Lithium-ion battery pack with a storage capacity of 40 kWh, an onboard 

charger with maximum charging rate of 6.6 kW, and a driving consumption of 0.36 

kWh/mi under the premise that the vehicle has a range of 112 MPGE (combined 

between city and highway). All this data have been obtained through the vehicle dealer 

web page [51]. Therefore, we have assumed these specifications as the vehicle’s 

parameters for all case studies investigated in this work. 

The charging and discharging behavior of the onboard batteries are modeled as 

linear, that is, the energy gained or released inside each battery is accounted as 

RateP t   during any interval of the charging/discharging process. For simplicity, we 

have neglected any kind of internal battery inefficiency and self-discharge, and the 

losses associated to the power transfer to/from the grid are considered through the 

charging ( CH ) and discharging ( DH ) efficiencies in the algorithms. Both efficiencies 

involve the power loss in the AC-DC converter when doing charge or discharge 

operations with the battery. From the literature, it was found that some studies use a 

charging efficiency value of 92% [52], [53]. Similar studies that consider charge and 

discharge set both efficiencies to 90% [54], [55]. Other authors contemplate different 

charging (92%) and discharging (90%) efficiencies like [56]. Bai et al. in [57] employed 

diverse values for both efficiencies ranging from 87% to 95.24% in their simulation 

cases. However, all these studies do not base their efficiency parameters on any work 

that validates its value with certainty. Research from the point of view of chargers 
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demonstrates that charging efficiencies vary according to the output power, having 

their optimal values at almost rated value. Table 1 from [58] provides a list with the 

efficiency for various converters available in the literature at different values of rated 

power. Due to this variability, a value of 95% is set for the charging and discharging 

efficiencies in our work and is assumed to be constant for all case studies because 

the charging/discharging rates are fixed in our algorithms at their maximum value. 

Finally, it is assumed that either the homes or charging stations (parking lots) are 

equipped with AC Level 2 connections to manage the V2G operations of the PEVs. 

For this level it means that PEVs can charge/discharge their batteries at higher rates 

with 240 V rather than traditional 120 V outlets. As previously mentioned in this 

section, a 6.6 kW fixed rate will be used which is the actual value for the 2019 Nissan 

LEAF. 

 

5.1.3  User Behaviors Assumptions 

It is assumed that most of the time, PEVs will be charged/discharged at home or 

at work. Thus, in this research work, we focus on two connection periods where the 

first one starts when you arrive at work and ends when departing from work, and the 

second period begins when you arrive back to home after work and concludes when  

leaving the house the next day again for work, as illustrated in Figure 4.2. PEV users 

make the first trip in the morning from home to work and the second trip in the 

evening/night from the work back to home. The daily distance travel associated to 

both trips is modeled with a normal distribution using a mean of 33 miles and a 

standard deviation of 5 miles. The assumption of the 33 miles is based on the average 
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12,000 miles per year used by most vehicle dealers to determine if a vehicle has been 

highly driven. The assumption is that the first trip takes between 40% to 50% of the 

total daily distance and the second trip takes the remaining of the total distance 

traveled (i.e. 100% of total distance less first trip). 

The plug-in and un-plug times of the first and second connection periods are also 

assumed to follow normal distributions with mean and standard deviation. For each of 

the connection periods, their times are randomly generated according to the 

parameters shown in Table 5.1. 

 

Times Mean 
Standard 

Deviation (h) 
Lower Bound  Upper Bound 

1st 
Connection 

8:30 a.m. 0.5 8:00 a.m. 10:00 a.m. 

1st Leave 5:00 p.m. 1.0 3:00 p.m. 8:00 p.m. 

2nd 
Connection 

- - 3:30 p.m. 12:00 a.m. 

2nd Leave 7:30 a.m. 0.5 5:00 a.m. 8:00 a.m. 

Table 5.1 Mean, standard deviation, and bounds of plug-in/un-plug times 

 

Observe from Table 5.1 that no mean and standard deviation are illustrated for the 

2nd connection time. The reason is because you first need to know the 2nd trip 

duration in order to calculate the 2nd connection time. Under this assumption, the idea 

is to set the 2nd connection time equal to the 1st leave time plus 2nd trip duration and 

not to calculate it with a randomly hour. Hence, normal distribution is used instead to 

compute the 2nd trip duration, where the mean and standard deviation values are 

assumed to be 1 hour and 0.5 hour, respectively, for each trip. This 2nd trip duration 
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has no relation with the 2nd trip length, since users can do any other task during this 

time before arriving home, which is independent of the miles traveled. Also observe 

from Table 5.1 that each plug-in/un-plug time has a range defined by the lower and 

upper bounds. Any value generated that violates these bounds, is automatically 

adjusted to the corresponding bounded value. 

Besides the daily distance traveled and the plug-in and un-plug times, it is also 

assumed that users will avoid deep discharges. This is critical in order to protect the 

battery from fast deterioration and is modeled in this work by setting the lower state of 

charge (SOC) to 50% of the battery capacity. PEVs must not drain their batteries 

below a 0.5 SOC value to support the grid. This means, that prior to leaving any 

connection period, each battery is guaranteed to be full enough to execute their next 

trip, and at the end have a SOC above the lower limit. Considering that batteries are 

one of the most expensive components of the vehicle, the SOC parameter is used 

quite conservative to extend the useful life. However, from the perspective of the 

power system, this is at the cost of having less energy available to provide services to 

the grid. 

Other important parameters to complete the simulations are the SOC value prior 

to the first trip and the SOC value at the end of the second connection period. The 

former has been set to 95% and the latter equal or greater than 95%. This setting 

guarantees that PEVs charge their batteries to almost a full SOC for the next day 

before leaving home for work. 

In this work, the user behavior was randomly generated according to the 

information of this section, specifically as per Table 5.1. Their values were fixed to be 
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used equally in all the scenarios of all study cases unless otherwise stated. Thus, 

throughout all the simulations, the same data have been adopted in order to do fair 

comparisons. 

 

5.2  Case Study A 

The main purpose of this case study is to examine the first and second stages of the 

coordinated charging and V2G algorithm methods proposed in Chapter 4. Particularly, it 

is focused on showing the operational behavior of both stages and how they interact when 

handling coordinated PEVs schedules. The usefulness of the results for each of the 

stages is shown, and the effectiveness of the optimization strategies on leveling a 

demand profile is demonstrated. Two scenarios are considered under case study A for 

typical islanded power system load profiles. Scenario 1 is based on a load profile for a 

distribution substation while scenario 2 is based on the load profile of a transmission 

transformer. 

 

5.2.1  Case Study A: Scenario 1 

Scenario 1 was carried out using the load demand curve for a traditional 

distribution substation. In the simulation, 15 aggregators with 75 battery electric 

vehicles under its domain were considered for a total of 1125 PEVs. All other 

parameters were used as previously explained in Section 5.1. The performance of the 

coordinated charging and V2G strategies is illustrated in Figure 5.1. It can be observed 

that both algorithms (charging and V2G) perform well on flattening the base load curve 
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with the integration of PEVs. For comparison purposes, the plot of 1125 uncoordinated 

vehicles and the base load curve (no PEVs added) have been included. Table 5.2 lists 

the minimum, maximum, and average power values of the load curves with their own 

standard deviation. 

 

 Minimum (kW) Maximum (kW) Average (kW) 
Standard 

Deviation (kW) 

Base 20,600 27,780 24,977 2,433 

Uncoordinated 
Charging 

20,600 31,045 25,557 3,059 

Coordinated 
Charging 

23,636 27,780 25,599 1,575 

Coordinated 
V2G 

24,431 26,451 25,654 938 

Table 5.2 Power values for load profiles on Figure 5.1 

 

 

Figure 5.1 Load profiles before and after PEVs addition through different methods 
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The results of the first optimization stage, as explained in Chapter 4, provides the 

optimal curve that each aggregator must follow in the second optimization stage. 

Then, each aggregator, independently of the others, schedules its PEVs following the 

output results given by the master aggregator in the first stage. The results of the 

second stage are the schedules of every PEV under each aggregator. At this point, 

with the schedule of each PEV, the aggregator can submit the real power curve that 

can dispatch all their vehicles. Figures 5.2 and 5.3 depict the power curve that the 

aggregator must follow in the second stage (instructions or result from first stage) and 

the real power curve that is achieved with all their vehicle schedules (result of the 

second stage). Figure 5.2 is shown for aggregator 13 in the V2G model, while Figure 

5.3 is for aggregator 13 in the charging model. 

 

 

Figure 5.2 Aggregator 13 schedule curve in V2G algorithm 
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Figure 5.3 Aggregator 13 schedule curve in charging algorithm 

 

From Figures 5.2 and 5.3, it can be identified that the real curve closely follows the 

instruction curve. As the algorithm of the second optimization stage finds a better 

solution, smaller differences will exist between these two curves. The errors for these 

plots are represented by the maximum, average and standard deviation of the 

difference between both curves which are listed in Table 5.3. 

 

Aggregator Methods 
Maximum 

Difference (kW) 
Average 

Difference (kW) 
Standard 

Deviation (kW) 

13 V2G 3.47 1.27 0.831 

13 Charging 3.60 0.65 1.069 

Table 5.3 Deviation between instruction and real curves of Figures 5.2 and 5.3 
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When all aggregators obtain the real load curve (created by the schedule of all 

their PEVs) of their fleet, they can submit it to the master aggregator. Once the master 

aggregator receives all of them, proceeds to construct the real load profile achieved 

in the system by the addition of all the coordinated PEVs. Therefore, the master 

aggregator real load curve is formed by all the individual aggregator real curves. In 

this scenario, the real load curve corresponds to the “Coordinated Charging” and 

“Coordinated V2G” plots in Figure 5.1 for the charging and V2G methods, respectively. 

From the first optimization stage, it can be recognized that if we add all their results, 

the master aggregator optimal load curve is obtained. In other words, the optimal load 

curve is the sum of all the instructions given by the master aggregator to its individual 

aggregators. This means that if all the aggregators schedule their PEVs (in the second 

optimization stage) so that they exactly follow the instruction curve, the real load curve 

becomes the same as the optimal load curve. For both of the proposed methods, 

charging and V2G, it is observed that the real load curves are quite similar to the 

optimal load curves. Figures 5.4 and 5.5 depict this behavior on the scenario under 

study. Table 5.4 lists the average relative error and the maximum difference for the 

plots of Figures 5.4 and 5.5. 

 

Method Maximum 
Difference (kW) 

Average 
Difference (kW) 

Average Error 
(%) 

V2G 32.81  6.54 0.026 

Charging 30.00 3.16 0.013 

Table 5.4 Deviations between optimal and real curves of Figures 5.4 and 5.5 
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Figure 5.4 Optimal and real load curve of the V2G algorithm 

 

 

Figure 5.5 Optimal and real load curve of the charging algorithm 
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From the plots of Figures 5.4 and 5.5, due to the minimal difference between 

optimal and real load curves, it can be concluded that the optimal load curve obtained 

from the first optimization stage is a practical approach for analysis on load profiles. 

This approximation avoids having to perform second optimization stages, when the 

purpose of the study is just to evaluate the impact of the load profiles and it is not 

intended to schedule the charging/discharging process of every PEV. Note that with 

the increase in aggregators and the intensification in the deviation of the aggregator 

real curve from the aggregator instruction curve, the real load curve and the optimal 

load curve show a deviation from one another. Moreover, it should be understood that 

optimal and real load curves are not the same unless otherwise proved by performing 

the simulations for the second stage. However, for macro analysis from the point of 

view of system operation, this is a valid approach on assessing the behavior of peak 

shaving and valley filling on load profiles. Case study B and C of this chapter are 

developed under this assumption and use the optimal load curve of the first 

optimization stage to perform their analysis without the implementation of the second 

stage for all the aggregators. 

Finally, Figures 5.6 and 5.7 illustrate an example of the optimal schedule of a PEV 

for the V2G and charging methods, respectively. The vertical bars represent the binary 

variable (1,0) of the status (charge and/or discharge). If no bar is present in a particular 

time slot, it is because the vehicle is idle or is not plugged in. The grey shadow at the 

background is the battery state of charge representation. The non-grey shadow 

background in the plots are those time slots where the PEV is not plugged in and its 

SOC is unknown. Figure 5.6 corresponds to the 10th PEV of aggregator 1 of the V2G 
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algorithm, while Figure 5.7 corresponds to the same PEV, but for the charging 

algorithm. 

 

 

Figure 5.6 Optimal V2G schedule and SOC for PEV 10th of aggregator 1 

 

 

Figure 5.7 Optimal charging schedule and SOC for PEV 10th of aggregator 1 
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The simulation results of this scenario clearly show that the coordinated algorithms 

proposed in this work are effective for peak shaving and valley filling control strategies. 

Figure 5.1 confirms that both algorithms satisfy the objective of flattening the variance 

on the load curve, with the V2G method achieving better results due to its natural 

behavior of injecting power back to the grid. Interestingly, the V2G method can reduce 

peaks by 4.78%, while the uncontrolled charging can force a rise of 11.75%. 

Therefore, this is not about how coordinated methods can improve in the system, but 

about what they can avoid. 

 

5.2.2  Case Study A: Scenario 2 

This scenario is based on the load profile of a transmission transformer of a typical 

islanded power system. Simulation was performed with a total of 7,225 PEVs divided 

equally in 85 aggregators (each aggregator has 85 PEVs under its control). Results 

of the first optimization stage for the V2G and charging methods are illustrated in 

Figure 5.8. The base load curve and the uncoordinated charging are added for 

comparison purposes. Different than scenario 1, these plots show the master 

aggregator optimal load curve (results of the first optimization stage) and not the real 

load curve. The minimum, maximum, average and standard deviation values for the 

load curves are included in Table 5.5. In the same way as in the previous scenario, 

both methods reduce the overall variance of the load curve with the V2G method 

providing better results compared to coordinated charging. A larger peak, about 

10.31% higher, could be obtained if no coordination methods are implemented. 
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Figure 5.8 Load profiles for case study A scenario 2 

 

 
Minimum 

(MW) 
Maximum 

(MW) 
Average 

(MW) 
Standard 

Deviation (MW) 

Base 175.78 282.56 240.13 33.30 

Uncoordinated 
Charging 

175.78 311.69 243.90 37.88 

Coordinated 
Charging 

204.36 282.56 244.16 26.79 

Coordinated 
V2G 

211.41 261.77 244.53 22.01 

Table 5.5 Power values for load profiles on Figure 5.8 
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Figure 5.9 Aggregator 25 schedule curve in V2G algorithm 

 

 

Figure 5.10 Aggregator 25 schedule curve in charging algorithm 
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Aggregator Methods 
Maximum 

Difference (kW) 
Average 

Difference (kW) 
Standard 

Deviation (kW) 

25 V2G 4.07 1.47 1.070 

25 Charging 2.93 0.39 0.837 

Table 5.6 Deviation between instruction and real curves of Figure 5.9 and 5.10 

 

Figures 5.9 and 5.10 plot the instruction and optimal curve of aggregator 25 for the 

V2G and charging methods, respectively. Although it seems that both curves follow 

each other pretty close, as expected, they have small variations that cannot be 

appreciated from the figures. They are analyzed in terms of the difference between 

both curves as listed in Table 5.6. Major differences in a time slot resulted in 4.07 kW. 

If this were to occur for all the aggregators at the same time slot, a total error of 345.95 

kW is introduced in the master aggregator optimal curve for that specific time slot. 

However, master aggregator is in the order of MW, and this error (which is the worst 

case), may not be greater than 5% at peak values. 

Figure 5.11 shows the load of all PEVs under each method. These are the master 

aggregator optimal values used to modify the base load curves. In other words, this is 

equivalent to the contribution that the master aggregator can submit to the grid. It is 

evident that the load for the charging method is positive during late night valley hours. 

In contrast, the V2G load alternates between positive and negative. When it is 

negative, it means that PEVs (as a whole) are injecting power back to the grid. Major 

injection comes at about 7:00 p.m. when highest load peak is present. 
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Figure 5.11 PEVs complete load for the V2G and charging methods 

 

A representation of the optimal schedule for the PEV 50 of aggregator 25 is 

illustrated for the V2G and charging methods in Figures 5.12 and 5.13, respectively. 

Note that for the charging method, the PEV only perform charging operations during 

the night. In contrast, for the V2G method, the PEV charges at the beginning of the 

first connection period and increases its SOC to a higher value. Then, during peak 

hours, the PEV supports the grid discharging the energy accumulated in its battery. A 

charging process occurs again during the valley hours to complete the SOC for the 

next day. 
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Figure 5.12 Optimal V2G schedule and SOC for PEV 50 of aggregator 25 

 

 

Figure 5.13 Optimal charging schedule and SOC for PEV 50 of aggregator 25 
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5.3  Case Study B 

The objective of case study B goes beyond examining the effect on the new load curve 

resulting from the addition of PEVs by the algorithms proposed on Chapter 4. Particularly, 

it is focused on evaluating the economic operation of the system for the different load 

profiles obtained with and without the PEVs. This will be tested with a traditional unit 

commitment problem in order to determine how much will be the operating cost for the 

cycle been studied. Also, with the UC solution, we will study if the load changes in the 

demand curve resulting from the addition of PEVs will allow utilities to avoid turning on/off 

small expensive units as consequence of the peak shaving and valley filling technique 

achieved by the coordinated PEVs integration algorithm. Thus, a better insight on the 

viability of the PEVs interaction with the power grid can be obtained in the economic 

aspect. 

Similar to case study A, the approaches that will be reviewed corresponds to: (1) the 

V2G and charging coordinated methods of PEVs and (2) uncoordinated charging of 

PEVs. For simplicity, in the V2G and charging approaches, the load profiles used are the 

optimal load curves obtained from the result of the first optimization stage. For macro 

analysis of this type, it is a good approximation, since the intention is not to obtain the 

exact load curve and neither to determine the PEV charging schedules, but remember 

that the optimal load curve obtained in the first optimization stage is not the same as the 

real load curve obtained from the result of all the aggregators in the second optimization 

stage. Uncoordinated approach is the resultant load curve formed when all PEVs charge 

their batteries to full SOC when they arrive back home. 
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This case study is based on the IEEE 10-unit system, which is a standard system that 

includes hourly demand load data and generating unit’s data, as illustrated on Appendices 

B and C. Reserve requirements are assumed to be 10% of the demand on each hour. 

The data for this system have been taken from the literature on references [38], [59]. 

Case study B is composed of several scenarios considering different PEVs 

penetration levels. The scenarios contemplated in the simulations account for 15, 30, and 

45 thousand PEVs, where each of them will be evaluated with the V2G and charging 

algorithm on the IEEE 10-unit load curve. In addition, some scenarios will be simulated 

varying specific parameters of the proposed methods to evaluate the impact they have. 

Table 5.7 break downs the scenarios that will be simulated. Sections 5.3.1 to 5.3.5 

preview the numerical results for the base, uncoordinated charging, coordinated charging, 

and coordinated V2G approaches for the five scenarios considered. Scenario 2 is 

identified as the main scenario and is used by other scenarios to compare and contrast 

advantages and disadvantages between them. 

 

Scenario PEVs Efficiency 
SOC 

Lower Limit 
Change 

     

Scenario 1 A = 100, N = 150 CH DH = = 0.95 50% PEVs 

Scenario 2 A = 150, N = 200 CH DH = = 0.95 50% N / A 

Scenario 3 A = 150, N = 300 CH DH = = 0.95 50% PEVs 

Scenario 4 A = 150, N =200 CH DH = = 1.00 50% Efficiency 

Scenario 5 
A = 100, N = 150 
A = 150, N = 200 CH DH = = 0.95 40%, 30% SOC 

Table 5.7 Scenarios to be simulated in case study B 
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5.3.1  Case Study B: Scenario 1 

Simulation runs for the first optimization stage of the V2G and charging algorithms 

were carried out in this scenario for 15,000 PEVs. The optimal load curves obtained 

by the results of the first optimization stage were used to compute the total generating 

costs by means of the UC problem in the IEEE 10-unit system. For comparison 

purposes, the UC of the base load curve and the uncoordinated charging were added. 

Figure 5.14 shows the load profiles under evaluation for the UC problems. The 

minimum, maximum, average, and standard deviation values for the load profiles are 

listed in Table 5.8 and total cost are given in Table 5.9. 

 

 

Figure 5.14 Load profiles for case study B scenario 1 
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Minimum 

(MW) 
Maximum 

(MW) 
Average 

(MW) 
Standard 

Deviation (MW) 

Base 700.00 1,500.00 1,129.17 224.03 

Uncoordinated 
Charging 

700.00 1,500.00 1,136.98 228.65 

Coordinated 
Charging 

804.21 1,500.00 1,137.52 210.11 

Coordinated 
V2G 

804.21 1,405.95 1,138.28 186.06 

Table 5.8 Power values for load profiles of case study B scenario 1 

 

 Total Cost ($) 

Base $ 566,485.60 

Uncoordinated Charging $ 572,713.90 

Coordinated Charging $ 569,984.90 

Coordinated V2G $ 565,017.50 

Table 5.9 Total cost for load profiles of case study B scenario 1 

 

Results from this scenario illustrate that the best alternative is the coordinated V2G 

method. It reduces the peak value by 6.27% and costs even when carrying the load 

of the PEVs. The uncoordinated charging method does not reach the actual maximum 

value but increases the second peak of the day and therefore the operation costs. 

Although coordinated charging performs well on reducing the standard deviation, an 

increase in the costs is present as expected for the addition of the PEVs load. An 

important fact is that generating units 9 and 10 were not turned on for the V2G load 

profile, while for the other approaches, all units were used. 
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5.3.2  Case Study B: Scenario 2 

An exact copy of case study B scenario 1 was reproduced in scenario 2 with the 

only difference that 30,000 PEVs were considered. Figure 5.15 illustrates the load 

profiles for this scenario. Table 5.10 provides the minimum, maximum, average, and 

standard deviation values for the load profiles and the total costs are listed in Table 

5.11. 

 

 

Figure 5.15 Load profiles for case study B scenario 2 
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Minimum 

(MW) 
Maximum 

(MW) 
Average 

(MW) 
Standard 

Deviation (MW) 

Base 700.00 1,500.00 1,129.17 224.03 

Uncoordinated 
Charging 

700.00 1,520.82 1,144.79 234.37 

Coordinated 
Charging 

875.17 1,500.00 1,145.86 198.09 

Coordinated 
V2G 

908.42 1,343.09 1,147.38 156.22 

Table 5.10 Power values for load profiles of case study B scenario 2 

 

 Total Cost ($) 

Base $ 566,485.60 

Uncoordinated Charging - 

Coordinated Charging $ 574,971.20 

Coordinated V2G $ 566,080.40 

Table 5.11 Total cost for load profiles of case study B scenario 2 

 

Similar to the previous scenario, coordinated V2G achieves the best results. Peak 

is reduced by 10.46% while generating costs remain below base case serving 30 

thousand PEVs. An additional unit turned out to be decommitted (unit 8), using only 7 

units to supply the load. Coordinated charging cost increases due to the addition of 

load with the new 15,000 PEVs, but still improves the standard deviation. 

However, with this PEVs penetration degree, it is recognized that the second peak 

elevates to 1520.82 MW which is higher than actual first peak (1500 MW) if no 

coordination exists. Unit commitment results for the uncoordinated charging could not 

be obtained because no feasible states were found specifically at hour 20, where the 
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load plus 10% reserve requirement cannot be satisfied by the capacity of the 

generating units available. This confirms that if coordinated methods are not 

implemented, limited systems may confront problems filling the demand in the peaks. 

Interestingly, analysis was made including the addition of another unit to the system 

equal to generation unit 10. The generation costs obtained with the 11 units were 

$576,371.70, but at the cost of having invested on a new unit. 

 

5.3.3  Case Study B: Scenario 3 

Another replica of case study B scenario 1 was repeated in scenario 3 adding more 

PEVs. A total of 45,000 have been considered in this scenario. The rest of the 

parameters remain the same. Figure 5.16 illustrates the load profiles for scenario 3 

and Table 5.12 gives the minimum, maximum, average and standard deviation values 

for those load profiles. The total operating cost is shown in Table 5.13. 
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Figure 5.16 Load profiles for case study B scenario 3 

 

 
Minimum 

(MW) 
Maximum 

(MW) 
Average 

(MW) 
Standard 

Deviation (MW) 

Base 700.00 1,500.00 1,129.17 224.03 

Uncoordinated 
Charging 

700.00 1,581.93 1,152.59 241.14 

Coordinated 
Charging 

920.23 1,500.00 1,154.22 187.20 

Coordinated 
V2G 

967.06 1,308.84 1,156.49 131.65 

Table 5.12 Power values for load profiles of case study B scenario 3 
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 Total Cost ($) 

Base $ 566,485.60 

Uncoordinated Charging - 

Coordinated Charging $ 578,562.00 

Coordinated V2G $ 569,225.80 

Table 5.13 Total cost for load profiles of case study B scenario 3 

 

Again, the coordinated V2G resulting load profile performed best. The standard 

deviation and peak are significantly reduced in 41.24% and 12.74%, respectively. 

Unlike the previous scenarios, for this amount of PEVs, the V2G generating costs 

begin to increase compared to base case. Also, coordinated charging costs increased 

compared to their counterparts (scenario 1 and 2) as expected, given the PEVs 

increase. Uncoordinated charging still boosts the second peak by 13% from the 

original curve and 5.46% of the actual peak. No results were computed for the 

uncoordinated charging since the load is out of the system limits. 

 

5.3.4  Case Study B: Scenario 4 

Scenario 4 of this case study is expected to assess the changes on the load profile 

by neglecting the efficiency parameter in the proposed V2G and charging algorithm 

considering the economic impact they have. To carry out this scenario, the data of 

scenario 2 have been adopted, but setting the charging and discharging efficiency 

values to 1 (ignoring the losses between the batteries and the grid). As scenarios 1 to 

3, simulations were carried out and the resultant load curves were analyzed by means 

of UC. Figure 5.17 shows the load profiles under evaluation for this scenario. The 



119 

 

minimum, maximum, average, and standard deviation values for the load profiles and 

the total costs are illustrated in Tables 5.14 and 5.15, respectively. 

 

 

Figure 5.17 Load profiles for case study B scenario 4 

 

 
Minimum 

(MW) 
Maximum 

(MW) 
Average 

(MW) 
Standard 

Deviation (MW) 

Base 700.00 1,500.00 1,129.17 224.03 

Uncoordinated 
Charging 

700.00 1,514.78 1,144.00 233.75 

Coordinated 
Charging 

870.16 1,500.00 1,145.03 199.23 

Coordinated 
V2G 

898.00 1,339.44 1,145.03 157.01 

Table 5.14 Power values for load profiles of case study B scenario 4 
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 Total Cost ($) 

Base $ 566,485.60 

Uncoordinated Charging - 

Coordinated Charging $ 574,620.60 

Coordinated V2G $ 564,644.60 

Table 5.15 Total cost for load profiles of case study B scenario 4 

 

This scenario compares directly with scenario 2, both assuming 30,000 PEVs. The 

only difference between the scenarios is the efficiency. It is observed that average 

and standard deviation values do not change significantly, when compared to their 

counterparts. Relatively small differences can be seen in the minimum and maximum 

values which are obviously less than scenario 2 due to neglecting the power losses. 

Even though generation costs for the charging method reflects a small change, the 

V2G method produces definitely higher variations indicating that depending on the 

depth of the analysis performed, the efficiency should be accounted. 

 

5.3.5  Case Study B: Scenario 5 

Scenario 5 is dedicated to investigating the effect load profiles may have by 

discharging PEV batteries to a deeper state of charges. Simulation runs of the first 

optimization stage were performed setting the state of charge lower limit of PEVs to 

40 and 30 percent. The resulting optimal load curves were evaluated with the UC 

problem and analyzed. Scenario 5 was implemented with the data of scenarios 1 

(15,000 PEVs) and 2 (30,000 PEVs), only changing the SOC parameter. In this 

scenario, only the V2G approach was evaluated. Figure 5.18 and Figure 5.19 illustrate 
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the V2G load profiles for the different SOC lower limit values assumed with 15 

thousand PEVs and 30,000 PEVs, respectively. In both graphs, the corresponding 

V2G load profile of scenario 1 and 2 was included for comparison purposes because 

they were executed with a SOC lower limit of 50%. Tables 5.16 and 5.17 show the 

relevant power values (minimum, maximum, average, and standard deviation) of the 

load curves, while the generating costs are illustrated in Table 5.18. These three 

tables include the corresponding power values and generating costs from scenario 1 

and 2 for a SOC lower limit of 50% to compare between SOC lower limits of 50%, 

40%, and 30%. 

 

 

Figure 5.18 Load profiles for case study B scenario 5 with 15,000 PEVs 
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Figure 5.19 Load profiles for case study B scenario 5 with 30,000 PEVs 

 

 
SOC 

Lower 
Limit 

Minimum 
(MW) 

Maximum 
(MW) 

Average 
(MW) 

Standard 
Deviation 

(MW) 

Base N / A 700.00 1,500.00 1,129.17 224.03 

Coordinated 
V2G 

50% 804.21 1,405.95 1,138.28 186.06 

Coordinated 
V2G 

40% 804.21 1,405.95 1,138.54 179.32 

Coordinated 
V2G 

30% 804.21 1,405.95 1,138.79 173.06 

Table 5.16 Power values for load profiles of case study B scenario 5 with 15,000 PEVs 
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SOC 

Lower 
Limit 

Minimum 
(MW) 

Maximum 
(MW) 

Average 
(MW) 

Standard 
Deviation 

(MW) 

Base N / A 700.00 1,500.00 1,129.17 224.03 

Coordinated 
V2G 

50% 908.42 1,343.09 1,147.38 156.22 

Coordinated 
V2G 

40% 908.42 1,319.74 1,147.89 142.37 

Coordinated 
V2G 

30% 908.42 1,311.90 1,148.41 129.61 

Table 5.17 Power values for load profiles of case study B scenario 5 with 30,000 PEVs 

 

 SOC Lower Limit Total Cost ($) for 
15,000 PEVs 

Total Cost ($) for 
30,000 PEVs 

Base N /A $ 566,485.60 $ 566,485.60 

Coordinated V2G 50% $ 565,017.50 $ 566,080.40 

Coordinated V2G 40% $ 562,789.30 $ 565,551.20 

Coordinated V2G 30% $ 562,765.40 $ 566,820.10 

Table 5.18 Total cost for load profiles of case study B scenario 5 

 

From the results obtained in this scenario, variations on the load profiles can be 

achieved with higher depth of discharge on the batteries of PEVs. Minimum and 

maximum values do not change for 15,000 PEVs while for 30,000 PEVs only the 

maximum value changes (refer to the graphs to observe the behavior on the plots). 

When the SOC lower limit value is 30%, a reduction in the standard deviation of 13 

MW and 26.61 MW can be obtained for 15 and 30 thousand PEVS, respectively. The 

greatest impact is seen on the generating costs which are reduced as batteries receive 

deeper and longer discharges. This is the case for 15,000 PEVs. In contrast, observe 
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that the generating costs for 30,000 PEVs decrease when using a SOC lower limit of 

40% but increase above the SOC lower limit of 50% when a 30% SOC lower limit was 

considered. Overall, using deeper discharges from vehicle batteries can improve 

system operations, but it should be carefully studied to avoid scenarios like the SOC 

lower limit of 30% with 30 thousand vehicles. However, in real life, this is not a practical 

approach because customers will suffer an accelerated battery degradation. 

 

5.4  Case Study C 

The goal of case study C is to evaluate the behavior of several load profiles with high 

peak conditions and different seasons of the year with the integration of plug-in electric 

vehicles by the V2G and charging algorithms. This case is based on load demand curves 

of typical islanded power systems. A reasonable number of PEVs that achieve an almost 

flattened load curve and a minimized load variance have been used to complete the 

simulation runs. 

To carry out this study, only the first stage of the proposed V2G optimization algorithm 

was performed. The second stage is not necessary, since the main objective of this stage 

is not to obtain the exact load curve and neither to determine the PEV charging schedules. 

With the optimal load curve obtained from the first optimization stage, the performance of 

reducing the overall load variance can be figured out in the load profiles of the system 

under consideration. Advantages and disadvantages of the resulting new profiles based 

on the peak shaving and valley filling strategies were highlighted. Refer to Table 5.19 for 

a complete summary of the load profiles tested in this case study. 
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Load Profile Reason 

1 Peak 

2 Summer 

3 Winter 

Table 5.19 Load profiles evaluated on case study C 

 

5.4.1  Case Study C: Scenario 1 

The scenario 1 of case study C is based on a load profile for a typical islanded 

power system. For this scenario, it is assumed that the highest peak of demand was 

recorded. Simulation runs of the V2G and charging algorithms with this load profile 

were implemented considering 160 aggregators with 250 PEVs under its domain, 

creating a fleet of 40,000 PEVs interacting with the grid. Results of the new flattened 

curves are displayed at Figure 5.20 and their relevant power values are showed in 

Table 5.20. Base load curve and the uncoordinated charging resulting curve have 

been added for comparison purposes. 
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Figure 5.20 Load profiles for case study C scenario 1 

 

 
Minimum 

(MW) 
Maximum 

(MW) 
Average 

(MW) 
Standard 

Deviation (MW) 

Base 2,121.00 2,690.00 2,410.83 175.99 

Uncoordinated 
Charging 

2,121.00 2,827.07 2,431.66 201.76 

Coordinated 
Charging 

2,248.49 2,690.00 2,433.10 145.68 

Coordinated 
V2G 

2,253.19 2,521.73 2,435.13 112.49 

Table 5.20 Power values for load profiles of case study C scenario 1 

 

The simulation results, as expected, show that the coordinated methods can 

suppress critical system conditions compared to uncoordinated. The highest peak of 
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2,807.07 MW using uncoordinated charging brings a considerable increment of 

137.07 MW above the already highest peak. This is equivalent to a 5.1% increase. In 

contrast, the V2G method can avoid that critical condition by almost eliminating the 

peak and flattening the curve to 2,521.73 MW. A peak reduction of 6.26% was 

achieved. A difference of 305.34 MW between both peaks can be suppressed if the 

coordinated schemes are implemented versus if they are not. Definitely, this scenario 

illustrates that the highest possible peak can be reduced almost entirely with 40,000 

PEVs engaging in V2G transactions with the power grid. 

 

5.4.2  Case Study C: Scenario 2 

This scenario is intended to review the load profiles over different seasons of the 

year under the presence of PEVs. A summer load curve and a winter load curve for a 

typical islanded power system, displayed in Figure 5.21, will be investigated. Both 

profiles appear to behave likewise with an upward shift in load. However, the 

inconsistency on the difference between maximum and minimum values on each 

profile, makes them different as far as PEVs integration are concerned. In other words, 

curves with greater variance are more likely used to receive the benefits of PEVs 

coordinated methods. Simulations will examine which integration method is suitable 

over different seasons of the year for this particular system. 
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Figure 5.21 Base load curves on summer and winter for a typical islanded power 

system 

 

Similar to the previous scenario, 40 thousand PEVs are integrated to the grid using 

the first optimization stage of the V2G and charging algorithms proposed in this work. 

Simulations were performed for summer and winter profiles. Results of load profiles 

and power values for the summer and winter are shown in Figures 5.22 and 5.23 and 

Tables 5.21 and 5.22, respectively. 
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Figure 5.22 Summer load profiles for case study C scenario 2 

 

 
Minimum 

(MW) 
Maximum 

(MW) 
Average 

(MW) 
Standard 

Deviation (MW) 

Base 2,048.00 2,485.00 2,291.38 132.41 

Uncoordinated 
Charging 

2,048.00 2,596.80 2,312.21 153.28 

Coordinated 
Charging 

2,178.07 2,485.00 2,313.64 98.43 

Coordinated 
V2G 

2,211.24 2,366.89 2,315.68 69.65 

Table 5.21 Power values for summer load profiles of case study C scenario 2 
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Figure 5.23 Winter load profiles for case study C scenario 2 

 

 
Minimum 

(MW) 
Maximum 

(MW) 
Average 

(MW) 
Standard 

Deviation (MW) 

Base 1,683.00 2,289.00 2,025.92 186.78 

Uncoordinated 
Charging 

1,683.00 2,451.07 2,046.12 214.31 

Coordinated 
Charging 

1,841.69 2,289.00 2,047.56 153.29 

Coordinated 
V2G 

1,881.95 2,147.94 2,049.58 122.80 

Table 5.22 Power values for winter load profiles of case study C scenario 2 

 

Standard deviation for the summer base load curve is much smaller than in winter. 

In addition, the difference between minimum and maximum power values are 437 MW 
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for summer and 606 MW for winter. This fact, in theory, simplifies the profile issues in 

summer compared to winter, but care should be taken with the uncoordinated 

charging because it always aggravates the problem. Two main conclusions support 

this scenario. First, during summer, fewer PEVs are needed to achieve the same 

results of winter because fluctuations between minimum and maximum values is much 

smaller than winter. In other words, variance in the summer load curve is slighter 

compared to winter and fewer kWh are needed to flatten the overall load curve. 

Second, just performing coordinated charging operations during the summer valley 

hours create a meaningful impact on the load profile even without doing V2G 

operations. A promising alternative should be using the charging method during the 

summer and considering V2G transactions only during the winter periods, which 

evidently produce greater impacts. This way, PEV batteries degradation can be 

delayed while power system still benefits from PEVs addition to the grid. 

 

5.5  Final Remarks 

Through the three case studies of this chapter, the coordinated V2G and charging 

algorithms aiming to support the peak shaving and valley filling strategies were put under 

investigation. Simulation results were reported for the different case studies and 

scenarios, indicating that the V2G and charging operations can help flatten the overall 

load curves. Coordinated charging strategies merely postpone the PEVs load until late at 

night alleviating the stress of the system. In contrast, coordinated V2G algorithm, besides 

successfully allocating the PEVs load to the valley hours, demonstrates that it can greatly 

suppress the peak periods of the profiles. 
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Case study A validates the algorithm methods of the first and second optimization 

stages to appropriately schedule the PEVs. The operational costs fluctuations as a 

consequence of PEV integration was proved in case study B. In addition, it was confirmed 

that peaking units can be delayed or avoided to supply the peak periods if load curves 

are modified as per the proposed strategies. This was the case for generating units 9 and 

10 in scenario 1 and 8,9, and 10 for scenario 2 of the coordinated V2G approach. In case 

study C, the viability of the proposed methods was investigated on the critical day where 

the largest peak was documented and for two different seasons of the year. 

From all the simulations it can be concluded that the proposed methods bring positive 

results to the grid. Although V2G methods, which greatly alleviate negative impacts, were 

not implemented, charging methods are still promising alternatives because in some way, 

there is a real control of the new load and power system utilization can be maximized 

during nights. Now, huge penetrations of PEVs charging their batteries without any control 

cannot be allowed because system operations can be threatened. 
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6 Conclusions and Future Works 

 

This chapter discusses the conclusions accomplished through this work and points 

out some recommendations for future developments. Section 6.1 provides the concluding 

statements and section 6.2 offers guidelines that may result on the improvement of this 

work. 

 

6.1  Conclusion 

In this work, a modeling approach technique to effectively manage the integration of 

plug-in electric vehicles with the power system was developed and evaluated through 

simulations frameworks. The proposed PEV schedule model solution is based on a two-

stage optimization process that aims to reduce the overall load variance considering a 

discrete charge/discharge rate. The first stage is a quadratic programming (QP) 

optimization problem whose decision variables depend on the number of aggregators and 

the time slots, while the second stage is a mixed-integer quadratic programming (MIQP) 

optimization problem where the variables rely on the amount of PEVs allocated on each 

aggregator and the time slots. The algorithm was successful in finding optimal solutions 

on the first optimization stage. However, in the second optimization stage, whose decision 

variables are discrete (i.e. binary), as the number of PEVs grow, the problem becomes 
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harder to solve making the convergence time to drastically increase and the optimality of 

the solution to decrease. In this work, the second optimization stage results were the best 

feasible solutions found, up to the point where a forced termination criterion of time was 

applied. Even though no proof of optimal solution exists in our second stage, the results 

obtained demonstrate that the algorithm performed well on scheduling the charge and/or 

discharge status of PEVs. If optimal solutions had been obtained in the second 

optimization stage, the difference would be a smaller gap between real load curves and 

optimal load curves. 

In this work, two centralized approaches were presented to schedule PEVs, 

corresponding to coordinated V2G and coordinated charging methods. Several case 

studies, focusing on minimizing the overall load variance, were tested with both methods 

showing great performance. Simulation results evidenced that V2G operations can 

achieve the best results on flattening the overall load profiles and coordinated charging 

to bring positive effects by strategically filling the valleys. Although V2G is preferred from 

the power system perspective, charging methods are promising alternatives to reduce the 

load variance when compared to uncoordinated charging, which may result in 

complications to the grid. 

The case studies evaluated demonstrate that generating costs can be reduced when 

PEVs are scheduled in coordination. Unit commitment solutions show that start up and 

shut down of peaking units can be avoided by intelligent PEV integration, since large 

swings on the daily demand curve are reduced. It was proved that underutilized capacity 

of the system during nights can be used (maximized) to supply the new PEV load instead 

of force peaking units to being committed during rush hours. In contrast, results illustrate 
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that under some uncoordinated charging schemes (specifically with highly PEV adoption 

rates), the system can encounter scenarios where available units cannot supply the 

demand. This impact may vary between different utilities, so proper studies should be 

evaluated within each specific system.  

Overall, intelligent scheduling introduces great opportunity for evolving a sustainable 

electric vehicle integration to the grid. Measures of the impact on the resulting load curve 

should be performed on the system with and without electric vehicles. This is the case for 

the obtained results of the first optimization stage on this work, since it provides the 

necessary tools to assess good approximations concerning PEVs integration at a macro 

level without performing the schedule of each electric vehicle through the second stage. 

This can lead utilities to make accurate planning assessments since it can provide a good 

insight into implementation. 

Up to this date, V2G and charging techniques are under development at their 

conceptual stages. However, it is clear that they have great potential to effectively 

manage large scale of PEVs in a centralized manner. As electric vehicles gain wider 

acceptance and as major drawbacks in computational complexity advance in technology, 

it is expected that better scheduling strategies will be developed. 

 

6.2  Future Work 

This work presented a coordinated method to effectively integrate electric vehicles to 

the power system grid. It was modeled mathematically by a two-stage optimization 

problem. The second stage, which consists of a mixed integer quadratic programming 
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problem, cannot be solved to optimality. Solutions obtained were the best solutions found 

up to a specified time termination criterion forced by a manual parameter. Thus, a better 

solver, specialized for this type of MIQP, should be considered to improve the execution 

time of the aforementioned problem. 

Simulations considering high number of PEVs was another of the limitations of the 

second optimization stage. When large penetration under each aggregator were used 

(i.e. N > 85 in the second stage), the computational complexity arising from the dimension 

of the decision variables became tremendously high, making the solver unavailable to run 

due to lack of memory. Therefore, machines with higher memory capacities could allow 

simulations considering more PEVs. 

It is evident, that from the coordinated methods proposed, parallel computing is a 

natural model between aggregators. Therefore, the implementation of a parallel 

computing technique within every aggregator will further simplify the computational 

complexity of the second optimization stage, allowing for improvements in the executing 

time and convergence to an optimal solution. 

Overall, in order to improve the above-mentioned limitations, it is suggested that future 

works investigate the viability to find optimal solutions by avoiding all the obstacles so far 

experimented in this work. It is important to recognize that second optimization results 

correspond to the optimal schedules of every single EVs. 

Optimal scheduling of the electric vehicles was formulated and solved by means of 

traditional optimization problems. Hence, further research efforts can be focused on 

evaluating non-traditional techniques to investigates if the performance of the proposed 
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method can be improved. One interesting possibility can be incorporate heuristic methods 

that can handle large penetration of PEVs and all the constraints involved in the model. 

This work can be further extended by modifying the objective function of the 

optimization problem to consider other PEV parameters. This can be implemented 

through a multi-objective optimization problem considering, for example, the signal cost 

in the second term of the objective function. However, this feature will increase the 

complexity and may result in greater difficulty in finding optimal solutions due to the large 

amount of decision variables involved. 

It is well known that optimal schedules of electric vehicles require greater 

understanding of driving patterns, daily distance traveled, parked times, and owner 

behavior. The certainty of the results depends entirely on the accuracy of the information 

corresponding to each EV. In a similar way, precise load forecast curves regarding power 

system are needed to achieve real solutions. Moreover, specific data of generator units 

is necessary to carry out unit commitment problems to evaluate the feasibility of PEVs in 

terms of generating costs. In this work, all transportation data was assumed as per 

everyday life (no statistical data) and power system data corresponds to a traditional 

islanded power system and the standard IEEE10-unit system. Therefore, obtaining real 

transportation and power system data, will result in one of the most critical steps on 

improving the contribution of this work. 

Recent studies are looking to incorporate renewable energy with storage capacity 

technologies. However, the coordinated V2G and charging methods proposed do not 

provide any features to integrate them to the transportation system. Wind or solar 

integration can be considered separately by means of the base load curve. Thus, an 
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extension of the V2G concept can be implemented to consider different levels of wind or 

solar integration in order to incorporate both clean energy transitions. 

Several questions should be addresses in the near future concerning V2G 

implementation. Although this work provides a general background of the V2G concept, 

a more comprehensive study is required to advance the understanding of real 

implementation drawbacks. Besides the technical challenges concerning V2G, additional 

social, cultural, economic, and political issues should be explored. To this end, optimal 

schedules to effectively manage PEV integration can be implemented, but as far as the 

practical issues mentioned above were not attended, electric and transportation systems 

cannot be combined. 
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Appendix A:  Numerical Examples for Lower/Upper State of Charge Limits 

A.1  V2G Example 

Appendix A.1 illustrates a graphical representation of the lower and upper state of 

charge bound values of a single PEV during a complete V2G operation cycle. These 

values are then used to construct the minimum and maximum limits for the 

accumulated energy constraint equation of the first optimization stage. Assume that 

the charge/discharge rate (inside the battery) is  3 kW, the time interval 1t h = , and 

the data presented in Table A.1.1 correspond to the user behaviors and the 

parameters used to carry out the example. Therefore, with these data, the slope of all 

changes associated to the energy in the battery are 
( 3 ) (1 )

0.125
(24 )

kW h

kWh

 
=  . If 

operation is idle, the value is zero. Figure A.1.1 shows the SOC paths with their 

corresponding values. 

Battery Capacity 24 kWh 

Driving Demand 0.29 kWh/mi 

Total Travel Distance 33.104 mi 

Trip 1 Length (45% of Total) 14.897 mi 

Trip 2 Length (55% of Total) 18.207 mi 

SOC decrease from Trip 1 0.18 

SOC decrease from Trip 2 0.22 

Departure SOC before Trip 1 0.95 

Minimum Desired SOC at 2nd Leave Time 0.85 

Lower SOC Allowed 0.40 

Upper SOC Allowed 0.99 

1st Connection Time / 1Startt  8:17 a.m. / 9:00 a.m. 

1st Leave Time / 1Endt  5:05 p.m. / 5:00 p.m. 

2nd Connection Time / 2Startt  6:10 p.m. / 7:00 p.m. 

2nd Leave Time / 2Endt  7:40 a.m. / 7:00 a.m. 

Table A.1.1 User behaviors and parameters data for V2G example 
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Figure A.1.1 Minimum/maximum state of charge values for the V2G example 
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A.2  Charging Example 

Appendix A.2 is very similar to the example presented in Appendix A.1 with the 

only difference that just considers charging process. Like the previous example, 

assume also that the charge rate (inside the battery) is 3 kW, the time interval 1 ,t h =  

and the data presented in Table A.2.1 correspond to the user behaviors and the 

parameters used to carry out the example. In this case, the slope is modified to 

(3 ) (1 )
0.125

(24 )

kW h

kWh


= , and like the V2G example, if it is idle a zero value is assigned. 

Figure A.2.1 illustrates the SOC paths with their corresponding values. 

Battery Capacity 24 kWh 

Driving Demand 0.29 kWh/mi 

Total Travel Distance 31.723 mi 

Trip 1 Length (40% of Total) 12.689 mi 

Trip 2 Length (60% of Total) 19.034 mi 

SOC decrease from Trip 1 0.153 

SOC decrease from Trip 2 0.230 

Departure SOC before Trip 1 0.84 

Minimum Desired SOC at 2nd Leave Time 0.85 

Lower SOC Allowed 0.50 

Upper SOC Allowed 0.99 

1st Connection Time / 1Startt  7:55 a.m. / 8:00 a.m. 

1st Leave Time / 1Endt  4:15 p.m. / 4:00 p.m. 

2nd Connection Time / 2Startt  5:32 p.m. / 6:00 p.m. 

2nd Leave Time / 2Endt  7:20 a.m. / 7:00 a.m. 

Table A.2.1 User behaviors and parameters data for charging example 
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Figure A.2.1 Minimum/maximum state of charge values for the charging example 
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Appendix B:  Load Curves Data 

B.1  IEEE 10-Unit System Load Curve 

 

Time Slot 
Hour 

1 
12:00 a.m. 

2 
1:00 a.m. 

3 
2:00 a.m. 

4 
3:00 a.m. 

5 
4:00 a.m. 

6 
5:00 a.m. 

Demand 
(MW) 

700 750 850 950 1000 1100 

Time Slot 
Hour 

7 
6:00 a.m. 

8 
7:00 a.m. 

9 
8:00 a.m. 

10 
9:00 a.m. 

11 
10:00 a.m. 

12 
11:00 a.m. 

Demand 
(MW) 

1150 1200 1300 1400 1450 1500 

Time Slot 
Hour 

13 
12:00 p.m. 

14 
1:00 p.m. 

15 
2:00 p.m. 

16 
3:00 p.m. 

17 
4:00 p.m. 

18 
5:00 p.m. 

Demand 
(MW) 

1400 1300 1200 1050 1000 1100 

Time Slot 
Hour 

19 
6:00 p.m. 

20 
7:00 p.m. 

21 
8:00 p.m. 

22 
9:00 p.m. 

23 
10:00 p.m. 

24 
11:00 p.m. 

Demand 
(MW) 

1200 1400 1300 1100 900 800 

Table B.1.1 Hourly load demand of IEEE 10-unit system 
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B.2  Typical Islanded Power System Load Curves 

 

Time Slot 
Hour 

1 
12:00 a.m. 

2 
12:15 a.m. 

3 
12:30 a.m. 

4 
12:45 a.m. 

5 
1:00 a.m. 

6 
1:15 a.m. 

Demand 
(MW) 

23.43 22.96 22.68 22.30 22.30 22.11 

Time Slot 
Hour 

7 
1:30 a.m. 

8 
1:45 a.m. 

9 
2:00 a.m. 

10 
2:15 a.m. 

11 
2:30 a.m. 

12 
2:45 a.m. 

Demand 
(MW) 

21.64 21.17 21.07 21.07 20.88 20.88 

Time Slot 
Hour 

13 
3:00 a.m. 

14 
3:15 a.m. 

15 
3:30 a.m. 

16 
3:45 a.m. 

17 
4:00 a.m. 

18 
4:15 a.m. 

Demand 
(MW) 

20.60 20.88 20.98 20.98 20.69 21.07 

Time Slot 
Hour 

19 
4:30 a.m. 

20 
4:45 a.m. 

21 
5:00 a.m. 

22 
5:15 a.m. 

23 
5:30 a.m. 

24 
5:45 a.m. 

Demand 
(MW) 

21.07 20.98 20.60 21.54 21.73 22.02 

Time Slot 
Hour 

25 
6:00 a.m. 

26 
6:15 a.m. 

27 
6:30 a.m. 

28 
6:45 a.m. 

29 
7:00 a.m. 

30 
7:15 a.m. 

Demand 
(MW) 

22.2 22.49 22.68 22.58 22.87 22.49 

Time Slot 
Hour 

31 
7:30 a.m. 

32 
7:45 a.m. 

33 
8:00 a.m. 

34 
8:15 a.m. 

35 
8:30 a.m. 

36 
8:45 a.m. 

Demand 
(MW) 

23.34 23.34 23.43 24.38 24.85 25.42 

Time Slot 
Hour 

37 
9:00 a.m. 

38 
9:15 a.m. 

39 
9:30 a.m. 

40 
9:45 a.m. 

41 
10:00 a.m. 

42 
10:15 a.m. 

Demand 
(MW) 

25.51 25.80 26.46 26.27 26.27 26.46 

Time Slot 
Hour 

43 
10:30 a.m. 

44 
10:45 a.m. 

45 
11:00 a.m. 

46 
11:15 a.m. 

47 
11:30 a.m. 

48 
11:45 a.m. 

Demand 
(MW) 

26.65 26.74 26.55 27.21 27.50 27.31 

Time Slot 
Hour 

49 
12:00 p.m. 

50 
12:15 p.m. 

51 
12:30 p.m. 

52 
12:45 p.m. 

53 
1:00 p.m. 

54 
1:15 p.m. 

Demand 
(MW) 

27.02 27.02 27.02 27.21 27.02 27.12 

Time Slot 
Hour 

55 
1:30 p.m. 

56 
1:45 p.m. 

57 
2:00 p.m. 

58 
2:15 p.m. 

59 
2:30 p.m. 

60 
2:45 p.m. 

Demand 
(MW) 

27.31 27.31 27.31 27.69 27.40 27.50 
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Time Slot 
Hour 

61 
3:00 p.m. 

62 
3:15 p.m. 

63 
3:30 p.m. 

64 
3:45 p.m. 

65 
4:00 p.m. 

66 
4:15 p.m. 

Demand 
(MW) 

27.02 27.02 27.02 27.40 27.40 27.21 

Time Slot 
Hour 

67 
4:30 p.m. 

68 
4:45 p.m. 

69 
5:00 p.m. 

70 
5:15 p.m. 

71 
5:30 p.m. 

72 
5:45 p.m. 

Demand 
(MW) 

27.21 26.93 26.65 26.08 26.08 25.98 

Time Slot 
Hour 

73 
6:00 p.m. 

74 
6:15 p.m. 

75 
6:30 p.m. 

76 
6:45 p.m. 

77 
7:00 p.m. 

78 
7:15 p.m. 

Demand 
(MW) 

25.98 25.70 26.36 26.55 26.55 26.55 

Time Slot 
Hour 

79 
7:30 p.m. 

80 
7:45 p.m. 

81 
8:00 p.m. 

82 
8:15 p.m. 

83 
8:30 p.m. 

84 
8:45 p.m. 

Demand 
(MW) 

27.02 27.21 27.40 27.31 27.50 27.78 

Time Slot 
Hour 

85 
9:00 p.m. 

86 
9:15 p.m. 

87 
9:30 p.m. 

88 
9:45 p.m. 

89 
10:00 p.m. 

90 
10:15 p.m. 

Demand 
(MW) 

27.59 27.59 27.69 27.12 26.55 25.80 

Time Slot 
Hour 

91 
10:30 p.m. 

92 
10:45 p.m. 

93 
11:00 p.m. 

94 
11:15 p.m. 

95 
11:30 p.m. 

96 
11:45 p.m. 

Demand 
(MW) 

25.98 25.61 25.04 25.13 24.38 24.00 

Table B.2.1 Traditional load profile for a distribution substation on a typical islanded 

power system 
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Time Slot 
Hour 

1 
12:00 a.m. 

2 
12:15 a.m. 

3 
12:30 a.m. 

4 
12:45 a.m. 

5 
1:00 a.m. 

6 
1:15 a.m. 

Demand 
(MW) 

211.10 206.25 201.00 195.98 198.11 194.27 

Time Slot 
Hour 

7 
1:30 a.m. 

8 
1:45 a.m. 

9 
2:00 a.m. 

10 
2:15 a.m. 

11 
2:30 a.m. 

12 
2:45 a.m. 

Demand 
(MW) 

191.32 189.57 186.73 185.10 183.43 180.64 

Time Slot 
Hour 

13 
3:00 a.m. 

14 
3:15 a.m. 

15 
3:30 a.m. 

16 
3:45 a.m. 

17 
4:00 a.m. 

18 
4:15 a.m. 

Demand 
(MW) 

178.75 177.94 175.78 176.71 176.17 178.45 

Time Slot 
Hour 

19 
4:30 a.m. 

20 
4:45 a.m. 

21 
5:00 a.m. 

22 
5:15 a.m. 

23 
5:30 a.m. 

24 
5:45 a.m. 

Demand 
(MW) 

179.79 181.18 185.72 193.56 197.95 201.19 

Time Slot 
Hour 

25 
6:00 a.m. 

26 
6:15 a.m. 

27 
6:30 a.m. 

28 
6:45 a.m. 

29 
7:00 a.m. 

30 
7:15 a.m. 

Demand 
(MW) 

211.26 226.22 225.48 232.45 229.38 231.09 

Time Slot 
Hour 

31 
7:30 a.m. 

32 
7:45 a.m. 

33 
8:00 a.m. 

34 
8:15 a.m. 

35 
8:30 a.m. 

36 
8:45 a.m. 

Demand 
(MW) 

232.04 234.03 235.62 243.11 245.75 244.71 

Time Slot 
Hour 

37 
9:00 a.m. 

38 
9:15 a.m. 

39 
9:30 a.m. 

40 
9:45 a.m. 

41 
10:00 a.m. 

42 
10:15 a.m. 

Demand 
(MW) 

243.19 247.07 247.89 247.68 249.70 251.90 

Time Slot 
Hour 

43 
10:30 a.m. 

44 
10:45 a.m. 

45 
11:00 a.m. 

46 
11:15 a.m. 

47 
11:30 a.m. 

48 
11:45 a.m. 

Demand 
(MW) 

252.55 253.10 254.53 259.35 257.76 258.31 

Time Slot 
Hour 

49 
12:00 p.m. 

50 
12:15 p.m. 

51 
12:30 p.m. 

52 
12:45 p.m. 

53 
1:00 p.m. 

54 
1:15 p.m. 

Demand 
(MW) 

262.21 263.58 262.59 261.60 264.35 264.19 

Time Slot 
Hour 

55 
1:30 p.m. 

56 
1:45 p.m. 

57 
2:00 p.m. 

58 
2:15 p.m. 

59 
2:30 p.m. 

60 
2:45 p.m. 

Demand 
(MW) 

264.19 263.65 265.98 264.62 262.83 266.28 

Time Slot 
Hour 

61 
3:00 p.m. 

62 
3:15 p.m. 

63 
3:30 p.m. 

64 
3:45 p.m. 

65 
4:00 p.m. 

66 
4:15 p.m. 

Demand 
(MW) 

265.43 265.75 266.64 270.43 268.90 270.59 
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Time Slot 
Hour 

67 
4:30 p.m. 

68 
4:45 p.m. 

69 
5:00 p.m. 

70 
5:15 p.m. 

71 
5:30 p.m. 

72 
5:45 p.m. 

Demand 
(MW) 

271.98 271.64 267.53 266.92 265.55 266.26 

Time Slot 
Hour 

73 
6:00 p.m. 

74 
6:15 p.m. 

75 
6:30 p.m. 

76 
6:45 p.m. 

77 
7:00 p.m. 

78 
7:15 p.m. 

Demand 
(MW) 

267.10 272.16 278.21 282.56 280.97 281.06 

Time Slot 
Hour 

79 
7:30 p.m. 

80 
7:45 p.m. 

81 
8:00 p.m. 

82 
8:15 p.m. 

83 
8:30 p.m. 

84 
8:45 p.m. 

Demand 
(MW) 

278.92 277.14 277.42 274.90 277.05 274.26 

Time Slot 
Hour 

85 
9:00 p.m. 

86 
9:15 p.m. 

87 
9:30 p.m. 

88 
9:45 p.m. 

89 
10:00 p.m. 

90 
10:15 p.m. 

Demand 
(MW) 

269.68 266.18 265.07 264.14 261.27 256.30 

Time Slot 
Hour 

91 
10:30 p.m. 

92 
10:45 p.m. 

93 
11:00 p.m. 

94 
11:15 p.m. 

95 
11:30 p.m. 

96 
11:45 p.m. 

Demand 
(MW) 

253.32 245.54 238.92 233.54 228.61 223.83 

Table B.2.2 Traditional load profile for a transmission transformer on typical islanded 

power system 
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Time Slot 
Hour 

1 
12:00 a.m. 

2 
1:00 a.m. 

3 
2:00 a.m. 

4 
3:00 a.m. 

5 
4:00 a.m. 

6 
5:00 a.m. 

Demand 
(MW) 

2273 2186 2172 2126 2121 2182 

Time Slot 
Hour 

7 
6:00 a.m. 

8 
7:00 a.m. 

9 
8:00 a.m. 

10 
9:00 a.m. 

11 
10:00 a.m. 

12 
11:00 a.m. 

Demand 
(MW) 

2209 2209 2392 2427 2456 2493 

Time Slot 
Hour 

13 
12:00 p.m. 

14 
1:00 p.m. 

15 
2:00 p.m. 

16 
3:00 p.m. 

17 
4:00 p.m. 

18 
5:00 p.m. 

Demand 
(MW) 

2534 2526 2523 2514 2528 2481 

Time Slot 
Hour 

19 
6:00 p.m. 

20 
7:00 p.m. 

21 
8:00 p.m. 

22 
9:00 p.m. 

23 
10:00 p.m. 

24 
11:00 p.m. 

Demand 
(MW) 

2533 2665 2690 2661 2545 2414 

Table B.2.3 Traditional peak load curve for a typical islanded power system 

 

Time Slot 
Hour 

1 
12:00 a.m. 

2 
1:00 a.m. 

3 
2:00 a.m. 

4 
3:00 a.m. 

5 
4:00 a.m. 

6 
5:00 a.m. 

Demand 
(MW) 

2284 2158 2080 2058 2048 2088 

Time Slot 
Hour 

7 
6:00 a.m. 

8 
7:00 a.m. 

9 
8:00 a.m. 

10 
9:00 a.m. 

11 
10:00 a.m. 

12 
11:00 a.m. 

Demand 
(MW) 

2102 2187 2311 2340 2409 2398 

Time Slot 
Hour 

13 
12:00 p.m. 

14 
1:00 p.m. 

15 
2:00 p.m. 

16 
3:00 p.m. 

17 
4:00 p.m. 

18 
5:00 p.m. 

Demand 
(MW) 

2329 2341 2358 2382 2382 2335 

Time Slot 
Hour 

19 
6:00 p.m. 

20 
7:00 p.m. 

21 
8:00 p.m. 

22 
9:00 p.m. 

23 
10:00 p.m. 

24 
11:00 p.m. 

Demand 
(MW) 

2302 2426 2485 2473 2404 2313 

Table B.2.4 Traditional summer load curve for a typical islanded power system 
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Time Slot 
Hour 

1 
12:00 a.m. 

2 
1:00 a.m. 

3 
2:00 a.m. 

4 
3:00 a.m. 

5 
4:00 a.m. 

6 
5:00 a.m. 

Demand 
(MW) 

1860 1783 1738 1683 1696 1774 

Time Slot 
Hour 

7 
6:00 a.m. 

8 
7:00 a.m. 

9 
8:00 a.m. 

10 
9:00 a.m. 

11 
10:00 a.m. 

12 
11:00 a.m. 

Demand 
(MW) 

1885 1889 1991 2060 2097 2152 

Time Slot 
Hour 

13 
12:00 p.m. 

14 
1:00 p.m. 

15 
2:00 p.m. 

16 
3:00 p.m. 

17 
4:00 p.m. 

18 
5:00 p.m. 

Demand 
(MW) 

2152 2186 2149 2137 2119 2126 

Time Slot 
Hour 

19 
6:00 p.m. 

20 
7:00 p.m. 

21 
8:00 p.m. 

22 
9:00 p.m. 

23 
10:00 p.m. 

24 
11:00 p.m. 

Demand 
(MW) 

2278 2289 2251 2208 2124 1980 

Table B.2.5 Traditional winter load curve for a typical islanded power system 
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Appendix C:  Generator Data 

C.1  IEEE 10-Unit System Generator Data 

 

Unit MinP  MaxP  a 2($ / )MWh  b ($ / )MWh  c ($)  

1 150 455 0.00048 16.19 1000 

2 150 455 0.00031 17.26 970 

3 20 130 0.00200 16.60 700 

4 20 130 0.00211 16.50 680 

5 25 162 0.00398 19.70 450 

6 20 80 0.00712 22.26 370 

7 25 85 0.00079 27.74 480 

8 10 55 0.00413 25.92 660 

9 10 55 0.00222 27.27 665 

10 10 55 0.00173 27.79 670 

Table C.1.1 Generator data for the IEEE 10-unit system 

 

Unit 
Min Up 

(h) 
Min Down 

(h) 
Ramp Up 

(MW) 
Ramp Down 

(MW) 

Hot Start 
Cost 
($) 

Cold Start 
Cost 
($) 

Status 
(h) 

1 8 8 152.5 152.5 4500 9000 8 

2 8 8 152.5 152.5 5000 10000 8 

3 5 5 55.0 55.0 550 1100 -5 

4 5 5 55.0 55.0 560 1120 -5 

5 6 6 68.5 68.5 900 1800 -6 

6 3 3 30.0 30.0 170 340 -3 

7 3 3 30.0 30.0 260 520 -3 

8 1 1 22.5 22.5 30 60 -1 

9 1 1 22.5 22.5 30 60 -1 

10 1 1 22.5 22.5 30 60 -1 

Table C.1.2 Generator data for the IEEE 10-unit system 


