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ABSTRACT 

 
 Hyperspectral imagery has been shown to be a powerful technology for 

quantitative monitoring of shallow water coastal environments. In coastal remote sensing, 

to estimate sea bottom properties from hyperspectral imagery, we need to remove the 

effects of the atmosphere and the water column from the measured spectral signature.  In 

our work, we use a standard algorithm available from NRL to correct for atmospheric 

effects in hyperspectral imagery to retrieve the water leaving remote sensing reflectance, 

Rrs, from which the subsurface remote sensing reflectance, rrs, is retrieved. Here, we 

present results in the development of an algorithm combining inversion and unmixing 

models to retrieve bottom reflectance, water column optical properties, bathymetry, and 

benthic composition from subsurface remote sensing reflectance. A bio-optical model 

developed by Z.P. Lee in 1998 and 1999 relates Rrs and rrs to the water optical properties 

(OP’s), depth, and bottom reflectance. We employ an iterative algorithm to retrieve the 

parameters of interest. As in Goodman (2004), Lee’s original model is enhanced by 

adding a linear mixing model for approximating bottom composition, which is used to 

extract subpixel information in low spatial resolution satellite and airborne hyperspectral 

sensors. Results using both simulated data and AVIRIS imagery from Hawaii are 

presented. 
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RESUMEN 

 
 Las imágenes hiperespectrales han demostrado ser una tecnología de gran alcance 

para el monitoreo cuantitativo de los ambientes costeros en aguas no profundas.  Para 

estimar las características del fondo marino usando imágenes hiperespectrales, se necesita 

remover los efectos de la atmósfera y de la columna del agua de la firma espectral 

medida.  En nuestro trabajo, utilizamos un algoritmo estándar de NRL para corregir por 

los efectos atmosféricos en imágenes hiperespectrales para recuperar la reflectancia de 

percepción remota en la superficie del agua, Rrs, y de la cual se puede obtener la 

reflectancia subsuperficial de percepción remota del agua, rrs.  Aquí, presentamos 

resultados en el desarrollo de un algoritmo que combina inversión y separación espectral 

aproximando la reflectancia subsuperficial de percepción remota para extraer 

características ópticas de la columna de agua, batimetría y composición béntica.  Un 

modelo bio-óptico desarrollado por Z.P. Lee en 1998 y 1999 relaciona la Rrs y rrs con las 

propiedades ópticas (P.O.s) de la columna de agua y del fondo es utilizado.  Empleamos 

un algoritmo iterativo para obtener los parámetros de interés.  De manera similar a 

Goodman (2004), el modelo de Lee es mejorado agregando un modelo de mezclado 

espectral lineal para aproximar la composición béntica del fondo marino, el cual es usado 

para extraer información a nivel de subpixel y compensar por la baja resolución espacial 

en sensores hiperespectrales en satélites y aviones.  Se presentan resultados usando datos 

simulados e imágenes de AVIRIS sobre Hawaii. 
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Chapter 1  
 

Introduction 
 

1.1 Justification 

 

 Coral reefs play a very important role in our planet. Their importance is measured 

by means of ecological, economical, and social value.  Among the benefits that coral 

reefs provide are the protection of other associated ecosystems, prevention of erosion and 

flooding, a rich source of marine species, and a fishing and tourist attraction.  Coral reefs 

have been declining in recent years. For instance, coral bleaching may be attributed to an 

increase in water temperature [18], causing them to lose almost all of their symbiotic 

zooxanthellae, containing much of the pigmentation. Contamination, sedimentation rates, 

over-fishing, dredging to make ship channels are just a few of the anthropogenic factors 

affecting coral reefs [18, 19].  For that reason, there is a need for protecting and 

preserving these ecosystems, thus requiring a quantitative method for monitoring them. 

Such an approach can be provided by remote sensing and image analysis. 

 

 Remote sensing can be used as a method for assessing and monitoring coral reefs.  

Analysis using multispectral sensors such as Landsat and IKONOS are available [20, 22, 

23], but effectiveness using this data has been limited due to the low spectral information 

of these instruments (i.e. relatively broad wavelength bands or channels), which are 

insufficient for a detailed benthic classification.  
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Figure 1.1 Coral Reefs. From www.nmfs.noaa.gov 

 

Usually, simplifying assumptions, in situ data or spectral libraries extracted from 

hyperspectral sensors must be used to compensate for the low spectral resolution. Purkis 

[20] integrated in situ reef reflectance spectra with Landsat imagery, and used known 

depths on the area of study to obtain reasonable results. In other study [22], Zhang 

combined Landsat and SAR data to study optically denseity in shallow waters at the Gulf 

of Finland. Mishra [23] simplified a bio-optical model for retrieving bathymetry to adapt 

it to multispectral IKONOS, and obtained good classification results.  Purkis also have 

conducted coral reef habitat classifications from IKONOS imagery. He used a classifier 

trained with statistics down-sampled from hyperspectral data.  Although some of these 

studies have obtained satisfactory results, one can observe that a detailed spectral analysis 

of each pixel is not possible. Multispectral information stands short when there is need to 

know a detailed assessment of the components in each pixel.  That is one of the most 

important features that can be extracted when high spectral resolution is available. 

Hyperspectral technology allows us to extract multiple layer of information from a 

complex optical signal can be extracted providing the necessary information for 

identifying the fractional contribution of classes or endmembers that relate to actual 

components in the study area in both a spatial and temporal way.  As a simple example, 

assuming that coral reef and other benthic habitats can be subdivided into live coral, sea-

grass and sand, an image can be classified in order to obtain a spatial indication of 
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variations in these three main reef components [1].  It is important to mention that 

combination of other endmembers is possible.  Temporal changes may be obtained 

through the observation of different classification results over a sequence of images over 

time.  For example, changes of classifications from the same area may indicate a loss of 

coral and an increase of algae, or vice versa.  The work presented here combines two 

existing models into a single algorithm for estimating the optical properties of the water, 

bathymetry, bottom albedo and benthic habitat classification from hyperspectral imagery. 

 

1.2 Problem Statement 

 

 The estimation of water optical properties, bathymetry, and bottom characteristics 

from remote sensing imagery is important in order to facilitate the monitoring of benthic 

habitats, including coral reefs. Inherent Optical properties (IOP) specify the optical 

attributes of natural water that depend only on the medium, thus independent of the 

ambient light field. The most studied IOP’s are the absorption and backscattering 

coefficients. Apparent Optical properties (AOP) are dependant on the ambient medium 

and on the geometric (directional) structure of the ambient light field (e.g. remote sensing 

reflectance) [2, 3].    

 

 The problem of extracting these optical properties (OP) is difficult since there are 

many energy interactions affecting a given scene.  Usually, the hyperspectral sensor uses 

sunlight as the light source.  When it receives the signal, it is mixed with atmospheric 

radiance, sea surface reflection, scattering from the water, and bottom reflectance.  The 

scattering from the water depends on the different particles, phytoplankton and other 

types of matter that describe the water column.  So, the bottom reflectance received is 

highly correlated to all these different contributions.  Figure 1.2 illustrates this problem. 
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Figure 1.2. Energy interactions 1.   

 

 A system for the extraction of the IOP’s and the bottom reflectance is described in 

Figure 1.3.  If measured remote sensing reflectance is taken as the input, the IOP’s are 

estimated by minimizing the difference between the measured and the output of a semi-

analytical model relating IOP’s  and bathymetry with remote sensing reflectance. 

 

 The proposed algorithm consists of  

1.  The application of a bio-optical model as described by Lee [4]. 

2. Parameter estimation of the water and bottom properties via optimization and the use   

of linear unmixing for extracting the bottom reflectance similar to that of Goodman [1]. 

 

                                                 
1 from C.O. Davis Hyperspectral Imaging of the Littoral Battle Space, NRL Code  7203.  
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Figure 1.3. Water and Bottom Properties Estimation System 

 

 Figure 1.3 shows how the remote sensing reflectance obtained from the sensor is 

passed through the retrieval algorithm to obtain the water optical properties and the 

abundances for coral, sand, and algae. A final result would be the water and bottom 

properties obtained at convergence.  

 

1.3 Objectives 

 

 There are three primary objectives of this work were to 

 

• Implement an inversion algorithm and unmixing model to estimate optical 

 properties and bottom reflectance from hyperspectral imagery of coastal 

 environment. 
• Evaluate and validate the algorithms with simulated and real data. 

• Apply the developed algorithm to the problem of benthic habitat classification 

 from remote sensing imagery. 
 

 Hyperspectral imagery of Kaneohe Bay, Hawaii was used as the primary test data 

to validate the advantages of hyperspectral remote sensing technology for the mapping 
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and monitoring of benthic habitats.  Water properties, bathymetry as well as sand, coral 

and algae fractional abundances were extracted from this data.  Comparisons with 

measured bathymetry and results of Goodman [1] from the same site were used to test 

and validate the combined algorithms. 

 

1.4 Contribution of this work  

 

 In this thesis we develop a new technique to simultaneously retrieve optical 

properties, bathymetry and bottom composition that can be used for the analysis of coral 

ecosystems and coastal environments.  It shows the implementation of a semi-analytical 

model to retrieve bathymetry and optical properties of water from hyperspectral imagery, 

in combination with a linear unmixing algorithm for the classification of benthic habitats, 

considering the varying effects of the water column optical properties and bathymetry.  

The algorithms were validated for accuracy, using both synthetic and real data, and 

comparing water depth estimates with measurements from the Scanning Hydrographic 

Operational Airborne Lidar Survey (SHOALS) at Kaneohe Bay.  Also, it applies the new 

techniques to an image of Kaneohe Bay taken from the AVIRIS airborne hyperspectral 

sensor and extracts information on benthic composition and water depths.   This research 

innovates in performing the linear unmixing at the bottom level, retrieving bathymetry 

and optical properties (e.g. IOP’s and AOP’s) and at the same time give an approximation 

of the bottom reflectance in terms of fractional abundances of sand, coral and algae. It is 

based in subsurface remote sensing reflectance rather than surface remote sensing 

reflectance, thus taking advantage of the partially linear structure of the fractional 

abundances and the nonlinearity of the optical properties.  

 

 Very good results were obtained with this new approach. Water depth estimates 

were very close to SHOALS measurements. Abundance estimates seemed to be more 

consistent to those obtained by Goodman [1] on AVIRIS pixels, giving validity to the 

algorithm’s ability to characterize complex bottoms. 
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1.5 Thesis Outline 

 

This thesis is organized as follows: 

 

 Chapter 2 gives the necessary background and theoretical information for treating 

the problem of benthic classification and optical properties retrieval. Lee’s inversion 

model and Goodman’s linear unmixing technique is also discussed as an algorithm. 

Chapter 3 discusses the new approaches developed during this research.  Chapter 4 

focuses on the validation of the developed algorithms with both synthetic and real data.  

Chapter 5 analyzes a coastal scene of a Hawaiian Island and presents the different results 

obtained, including a benthic classification.  Chapter 6 states the conclusions and 

recommendations for future works. 
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Chapter 2  
 

Background and Literature Review 
 

 
 

2.1 Hyperspectral Imagery 

 
 Imaging spectrometers are instruments that measure photons (emitted or 

reflected) and its variation of energy over a portion of the electromagnetic field [21]. The 

reflected sunlight on a given material in the surface, scattered light from within the 

atmosphere and also emitted energy are measured by the airborne or space sensors.  This 

data is measured and stored in hundreds of narrow adjacent bands, thus representing an 

approximation of a continuous spectrum and a basis for identifying a given material or 

mixture of materials. One useful way to observe is to plot the reflectance as a function of 

wavelength. Furthermore, an image is built by arranging these reflectance measurements 

sequentially on a spatial basis over a specified area.  Depending on the characteristics of 

the hyperspectral sensor system and its location (height) with respect to the Earth’s 

surface (i.e., height), factors like spatial resolution and scene variability directly affect the 

visualization of the image.  One important advantage of hyperspectral imagery is that 

they are not necessarily limited to the visible spectrum of light (take a look at Figure 2.1).  

It may also cover the near infrared (NIR), the midwave infrared (MWIR) and the long 

wave infrared (LWIR).   
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Figure 2.1. The Light Spectrum. 

 

2.2 Hyperspectral Sensors 

 

  Next is a brief description of the AVIRIS and Hyperion remote sensors. Table 2.1 

gives a summary of the instrument capabilities. Figure 2.2 gives a visual description of 

what a hyperspectral image consists of, naming the spectral bands, the spatial area, the 

pixels, and the cube itself. 

 

Airborne Visible/ Infrared Imaging Spectrometer (AVIRIS) 

 

 AVIRIS is a 224-channel imaging spectrometer constructed by the Jet Propulsion 

Laboratory (JPL), and became fully operational in 1989.  It covers the range 0.4 to 2.45 

µm in 224 10-nm-wide contiguous bands.  AVIRIS is typically on the NASA ER-2 

aircraft at an altitude of 20 km, which produces approximately 20-m resolution per pixel 

and a 10.5-km swath width [27].  (Note: AVIRIS sensor can also be flown at other 

altitudes using the ER-2. The given specifications are appropriate for the data used in this 

work.) 
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Hyperion 

  

 NASA’s Hyperion instrument acquires 242 spectral bands in the range 0.4 to 2.5 

µm at 10-nm spectral resolution.  However, not all 242 are useable.  It is a spaceborn 

hyperspectral sensor with a 30-m spatial resolution and a swath width of 7.5-km at an 

altitude of 705-km [28].    

 

Table 2.1. Hyperspectral sensor characteristics. 

 Spectral Resolution Spectral Range Spatial Resolution Number of Bands

AVIRIS 10nm 0.4-2.45µm 20m 224 

Hyperion 10nm 0.4-2.5µm 30m 242 

 
Figure 2.2.  A better understanding of hyperspectral imagery. 

 

 

 

 - 10 -



 

2.3 Remote Sensing in Coastal Environments  

 

 Optically shallow waters are typically highly heterogeneous environments that 

experience a variety of dynamic processes which alter their optical properties. The 

signals measured by a sensor from above the water surface of a shallow site contain 

surface-reflected skylight, atmospheric skylight, radiance reflected from the bottom, and 

path radiance from the water column [4].  To retrieve the bottom albedo, the surface-

reflected light and the water column contributions have to be removed, and the optical 

properties of the water column have to be known or derived.  

 

 In the past, water-column contributions were normally derived from adjacent deep 

waters while light attenuation properties were assumed to be known or derived 

empirically from an image. These assumptions are not necessarily correct since the path 

radiance from deep waters is not the same as that from the water column of shallow 

waters. Also, color constituents from deep waters are not homogeneous throughout an 

image, so the optical properties may not be the same. Moreover, due to the tidal 

influence, coastal water properties change fast and known depths are not always available 

for deriving regression parameters [4]. These constraints make attractive to derive 

concurrently the optical properties of the water column, bottom depths and albedo.  

 

 Several algorithms have been developed for the estimation of optical properties of 

the water and bottom.  Taking advantage of the high spectral resolution of hyperspectral 

imagery, researchers like Maritorena [5] derived an equation that relates the reflectance 

just below the surface with the reflectance of the water column (without the bottom), the 

albedo, and the water depth with the assumption that the bottom is uniform. This 

approach, although more complex than an empirical relationship, does not resolve all the 

variables of interest. Also, one needs an estimate of two of the three parameters, to be 

able to calculate the third [1], or as in other studies where some OP’s or water depths 

have to be supplied [6].  This kind of modeling as presented in [6] requires the use of 

either bathymetric charts or in situ data.   
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 Different methods for the implementation of these models have been made to 

retrieve bathymetry and bottom composition from Hyperpspectral sensors [7, 8, 9, 6, 10]. 

For example, neural networks were used in [7]. Although these neural networks provide a 

robust implementation for obtaining bathymetry, they usually require a high amount of 

training data. Cluster analysis has also proven to give good results in the evaluation of the 

influence of water depth and bottom type in terms of downwelling irradiance and 

upwelling radiance as seen in [6].  Cluster analysis allowed for the isolation of anomalous 

behavior of light in the water column, with the help of a large database of in situ 

measures.  Minimum Distance classifiers were used in [8], to successfully discriminate 

between two sea-grass species.  But with this type of modeling, usually a high amount of 

in situ data is usually needed.   

 

 More recently, models which have the ability to model the biologically effective 

irradiance (degree of absorption of radiation in biological molecules) as a function of 

depth in natural waters (i.e. bio-optical models) have been derived in [11, 4, 12 ] without 

the need for in situ data. In these models, which are based on Lee’s model [11, 13], the 

remote sensing apparent reflectance Rrs (ratio of radiance leaving the water to irradiance 

incident on the water) is described as a function of the absorption a, backscattering bb, 

bottom reflectance ρ, and bottom depth H coefficients. Different from models based on 

empirical regression, Lee’s model only assumes the spectral shape of the bottom albedo 

to be a 550-nm normalized sand reflectance, allowing the change of the albedo intensity, 

referred as B. Furthermore, no information is needed in addition to the Rrs obtained from 

the hyperspectral sensor. It basically produces an estimate of the Rrs, and iteratively 

minimizes an error function by comparing the measured reflectance with the estimated 

one, thus finally retrieving optimized parameters representing the water column and 

bottom contributions. This procedure is also known as inversion of optical properties. 

 

 Different modifications have been done to Lee’s model for different site areas and 

specific needs. For example, A. Albert and C.D. Mobley [13] used a slightly modified 

version to study Lake Constance, Germany and simulations extracted from Hydrolight.  

Davis and Carder [34] applied a slightly modified version of Lee’s algorithm in order to 
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extract parameters from Tampa Bay, Florida, and stated that it is useful even for optically 

dense waters.  Also, several methods for finding the minimization of error or 

optimization schemes have been used.  For instance, a Levenberg-Marquardt 

optimization algorithm was used in [13] for the retrieval of parameters. Also, it is 

common to perform a reduction in the number of spectral bands for a better spectral fit.   

Genetic algorithms have been used in [14] as the optimization scheme, but just for the 

case of optically deep waters (no bottom reflectance is detected by the sensor). This type 

of algorithm seeks for a global minimum rather than possible local minimum in the error 

function, thus producing better fits.  Recently, Jiménez [31] presented a technique for 

mapping coastal waters by using Lee’s model to retrieve OP’s in combination with a 

Tikhonov regularization parameter which uses a priori information on the spectral 

signatures of the possible materials below the water column. 

 

 Recent work by J.A. Goodman [1, 15] has used a modified version of Lee’s 

algorithm to perform an analysis of Kaneohe Bay, Oahu, Hawaii.  It incorporates the use 

of a constrained linear mixing model with four endmembers: sand, coral, algae and zero-

shade (dark bottom).  Once the water and bottom properties are estimated using the semi-

analytical model, the abundance for each spectral endmember at the water surface is 

calculated and a benthic classification is performed.  A similar approach was also studied 

in [32] where water constituent retrieval is performed using known depths. 

  

 This work presents an inversion method [4] where measured remote sensing 

reflectance is transferred to subsurface remote sensing reflectance and the optical 

parameters and bottom albedo are retrieved by inverting the subsurface remote sensing 

reflectance.  Also, an unmixing approach similar to that in [1] is included. Presented 

below are the details of the models used in this work.  
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2.4 Lee’s bio-optical model 

 

 The apparent optical property Rrs(λ) is a function of the absorption a(λ), volume 

scattering β(λ), the bottom albedo ρ(λ), bottom depth H, the subsurface zenith angle θw, 

the subsurface viewing angle from nadir θ, the viewing azimuth angle from the solar 

plane φ and the constituents in the water.  Define 

 

1

2

1

( )
( )
...
( )
( )

rsR

λ
λ

λ
λ

−

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

rs

rs

rs m

rs m

R
R

R
R

 

 

where λ specifies the band and m the total number of bands.  Omitting the λ, a 

relationship between above surface and below surface remote sensing reflectance has 

been developed in [11] and is given by: 

 

0.5
1 1.5

rs
rs

rs

rR
r

≈
−

 (2.1) 

 

where wθ  is the solar zenith angle and rrs is the subsurface remote-sensing upwelling 

radiance to the downwelling irradiance evaluated just below the surface that can be 

expressed as: 
 

11 exp 1 exp 1
cos( ) cos( )

C B
dp u u

rs rs
w w

D Dr r kH kHΒρ
θ π θ

⎛ ⎞⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪ ⎪ ⎪= − − + + − +⎜ ⎟⎨ ⎬ ⎨⎢ ⎥ ⎢ ⎥⎜ ⎟⎪ ⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩⎝ ⎠
⎬
⎪⎭

u

, (2.2) 

 

where rrs
dp is the remote-sensing reflectance for optically deep waters defined as: 

 

(0.084 0.170 )= +dp
rsr u . (2.3) 
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Optical path-elongation factors for scattered photons from the water column Du
C and Du

B 

are: 

 
0.5 0.51.05(1 5.5 ) , 1.03(1 2.4 )= + = +B C

u uD u D u  (2.4) 

 

( )b bu b a b= + ,   = bκ a +b  (2.5) 

 

 The total absorption coefficient is composed of the sum of the absorption of pure 

water, the gelbstoff absorption and the phytoplankton absorption, as 

 

= + +w φ ga a a a  (2.6) 

 

where, 

 

[ ]( )exp 0.014(440 )   1λ= −g ia G i m≤ ≤  (2.7) 

 

and  

 

[ ]( ){ }ln= +φ 0 1a a a P P  (2.8) 

 

with G=0.06(chl-a) 0.65 , where chl-a is the chlorophyll a concentration. P = aφ(440).  G is 

the gelbstoff absorption coefficient of a fixed λ at 440nm. P is the phytoplankton 

absorption coefficient at 440nm.  Parameter bb represents the total backscattering 

coefficient, composed of the sum of the backscattering coefficients of pure water bbw and 

suspended particles, bbp. Their sum is denoted by: 

 

= +b bw bb b b p  (2.9) 

 

bbp is expressed as: 
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Y

i

400BP   1
λbp i mb

⎛ ⎞
= ≤⎜ ⎟

⎝ ⎠
≤  (2.10) 

 

where BP is the backscattering coefficient at 400nm and Y is the parameter describing 

the spectral shape, given by: 

 

[ ]( )3.44 1 3.17exp 2.01 (440) / (490)rs rsY R≈ − − R  (2.11) 

 

Finally, the backscattering coefficient of pure water is: 

 
4.3

i

4000.0038   1
λbw i mb

⎛ ⎞
= ≤⎜ ⎟

⎝ ⎠
≤  (2.12) 

 

 Going back to (Equation 2.2), B is the bottom albedo at 550 nm, and ρ is a 

representative bottom spectrum normalized to 1 at 550nm which in [4] was sand. 

 

  Together, these parameters and equations describe the characteristics and 

interactions of the optical properties of the water column and bottom. With the 

information acquired from the bottom parameter estimation, the water column effect may 

be filtered and essentially removed, thus providing a more accurate classification of the 

bottom.  Please refer to Table 2.1 to see the parameter description and units. 
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Table 2.2. Parameter Description and units 

Parameter Description Unit

A Absorption coefficient, total m-1

aψ Absorption coefficient of phytoplankton pigments m-1

ag Absorption coefficients of gelbstoff and detritus m-1

aw Absorption coefficients of pure seawater m-1

a0, a1 Empirically derived coefficients -- 

bb Backscattering coefficient, total m-1

bbp Backscattering coefficient of suspended particles m-1

bbw Backscattering coefficient of pure seawater m-1

B Bottom reflectance at 550 nm -- 

BP Combined coefficient for particle-backscattering, view angle and sea 

state 

m-1

Du
B Distribution function for scattered photons from the bottom -- 

Du
C Distribution function for scattered photons from the water -- 

xs,c,a Fractional endmember contributions -- 

G Absorption coefficient for gelbstoff and detritus at 440 nm m-1

H Water depth m 

Κ Attenuation coefficient m-1

Χ Wavelength nm 

B Bottom reflectance (albedo) -- 

P Phytoplankton absorption coefficient at 440 nm m-1

rrs Subsurface remote sensing reflectance sr-1

rrs
dp Subsurface remote sensing reflectance for optically deep water sr-1

Rrs Surface remote sensing reflectance sr-1

θw Subsurface solar zenith angle rad 

U Ratio of backscattering coefficient to the attenuation coefficient -- 

Y Spectral power for particle backscattering coefficient -- 

γ A vector containing the parameters to retrieve: [H,B,BP,G,P] -- 
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 A proper retrieval of the bottom properties, bathymetry and benthic classification 

is the main focus in this study. A least squares optimization procedure will be used in 

linear mixing model coefficients and the OP’s. 

 

2.5 Linear Mixing Model 

 

 A linear mixing model is used to model the spectra of the bottom albedo.  The 

expected result is an estimated value of the abundance of each of the endmembers (e.g. 

coral, sand, algae).  The linear mixing model is given by 

 

1

b a w Ax
=

= + = +∑
n

i i
i

x w  (2.13) 

 

where b is the combined spectral signature, ai is the spectral signature of the i-th 

endmember, xi the corresponding fractional abundance, w is the measurement noise 

(usually assumed  Gaussian with zero mean and σ2I variance),  A ∈ mxnℜ , m the number 

of spectral bands and n is the number of endmembers [17].  The abundances need to 

satisfy the constraints that xi ≥ 0 and 1ix =∑ .  We also tested 1ix ≤∑  to allow for a 

dark endmember. 

  

2.5.1 Non-Negative Sum Less or Equal to One (NNSLO) 

 
 This algorithm deals with the following problem: 

 
Targ min   0  1.A subject to and− ≥ 1x b x x ≤  (2.14) 

 

where 1 is a vector of ones of dimension n. The NNSLO algorithm allows for a dark pixel 

as a possible spectral signature, thus satisfying the non negative and sum to less or equal 
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to one constraints.  This minimization is transformed into a least distance problem which 

is solved as a Non Negative Least Square Problem and is described in [30]. 

  

2.5.2   Non-Negative Sum Less or Equal to One (NNSTO) 

 

 This unmixing algorithm deals with the following problem: 

 

arg min   0  1.TA subject to and x− ≥ 1x b x =  (2.15) 

  

 We solve this problem as described in [30] by transforming it to NNSLO 

problem. Now, it is important to state that in our approach, A is dependent on the optical 

properties of the water column. Therefore, during the determination of the bottom albedo 

the matrix A will change with the OP’s at each pixel.  How these OP’s are retrieved using 

Lee’s bio-optical model will be discussed next, followed by Goodman’s modifications 

and additions to the model. This algorithm is preferred over the NNSLO since better 

results were obtained when making the validation of the algorithms (Chapter 4). 

  

2.6 Retrieval of bottom and water column optical properties 

 

2.6.1 Lee’s Inversion  

 

 Equation 2.2 is an approximation that describes the remote sensing reflectance 

just below the water surface and represented as a sum of contributions from the bottom 

surface reflectance and the water column. This also may be expressed as a function of the 

total absorption, the total backscattering, the bottom albedo reflectance and the water 

depth. Due to the nonlinear nature of (2.2), an adequate nonlinear optimization technique 

must be used.  With this optimization scheme, the model’s predicted remote sensing 

reflectance for a given pixel is matched with the measured remote sensing reflectance 

after proper atmospheric correction and removal of sunglint.  Its goal is to retrieve values 
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that describe the composition of the water and the bottom albedo.  For every pixel, these 

retrieved values would be: H, the water depth; B, the bottom albedo for sand at 550nm; 

BP, which includes a combination of influences of particle backscattering, viewing angle 

and sea state; G, the absorption coefficient for gelbstoff and detrious at 440 nm and P, the 

phytoplankton absorption coefficient at 440 nm. 

 

 From Lee’s model, we state that: 

 

( , )f ρ γ=rsR  (2.16) 

 

where 

 

[ , , , , ]TP B G BP H=γ  
(2.17) 

 

The ρ in (2.16) is a 550-nm normalized sand spectra. Equations 2.16 and 2.17 specify that 

the remote sensing reflectance is a function of the contributions of the water column and 

the bottom reflectance.  The five unknowns in γ can be derived by minimizing the 

differences between the measured and modeled Rrs.  The error to be minimized is 

described in [26] and it’s given by: 

 

( ) ( )
675 8302 2

400 750
675 830

2 2

400 750

ˆ ˆ

arg min
ˆ ˆ

rs rs rs rs

rs rs

R R R R

R Rγ

⎛ ⎞⎡ ⎤− + −⎜ ⎟⎢ ⎥⎣ ⎦⎜ ⎟=
⎜ ⎟+⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑
Leee  (2.18) 

 

 For simplicity, the problem to solve is expressed as: 

 

( )
2

2
2

2

1 ˆ ,
2ˆ arg min .

γ

ρ γ
γ =

rs rs

rs

R - R ( )

R
 (2.19) 
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Although very good results can be obtained by using Lee’s bio-optical model in both 

clear and high-sediment waters, it assumes that sand spectra is the only material at the 

bottom. With the 550-nm normalized sand spectra multiplied by parameter B, it only 

describes how ‘bright’ the pixel is, stating for example that if the B is estimated high for a 

given pixel, it is probably a bright pixel characterizing the scene as shallow with sand, 

whereas a low estimated value for B would signify a deeper water or something else like 

coral or algae.  Furthermore, rather than just estimating water quality conditions and 

depth, the monitoring of the bottom materials is a very important issue for accurate 

benthic habitat mapping.   

 

2.6.2 Goodman’s Spectral Unmixing 

 

 Using Lee’s approach to obtain OP’s and water depths, Goodman [1] took 

advantage of the spectral separability in the different components of hyperspectral 

imagery to add a linear mixing model to extract bottom composition. Three endmembers 

were used in his research: coral, algae and sand.  He also added a zero-shade endmember 

to account for overall pixel brightness.   

 

 Spectral unmixing was done at the water surface, which was accomplished by 

transforming the endmember reflectances to surface remote sensing reflectance and then 

(i.e. using forward modeling) and then unmixing at the water surface.  This procedure 

will be explained in more detail in the next chapter. To define the estimation error it is 

important to describe Goodman’s approach as a two stage procedure. The first step is to 

retrieve the vector γ  by using Lee’s approach and a second step is to transform each of 

the endmember spectras to remote sensing reflectance using Lee’s forward model, then 

unmixing.  After that, the Rrs is modeled as a linear combination of the endmember Rrs’s 

and the respective fractional abundances.  The error is expressed as: 
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( ) ( )
675 8002 2

400 720
675 800

2 2

400 720

ˆ ˆ

arg min
ˆ ˆ

goodman

rs rs rs rs

rs rs

R R R R

R Rγ

⎛ ⎞⎡ ⎤− + −⎜ ⎟⎢ ⎥⎣ ⎦⎜ ⎟=
⎜ ⎟+⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑
e  (2.20) 

 

with Rrs is modeled as 

 
4

,
ˆ ( )i

i=1

x ρ γ=∑rs rs iR R  (2.21) 

 

where xi is the fractional abundance and ,( )ρ γrs iR  is the ith endmember reflectance ρi 

transformed to surface apparent reflectance Rrs.  For simplicity, the problem to solve is  

 

( )

24

,
2

2
0, 1 1 2

1 ( )
2ˆ arg min .

T

i i
i=1

x x

x
x

ρ γ

≥ =

=
∑rs rs

rs

R - R

R
 (2.22) 

 

 The objective for modeling remote sensing reflectance at the water surface as 

used in [1] is to retrieve benthic composition after obtaining the water optical properties, 

the bottom albedo and the water depth.  It is instructive to show Lee’s and Goodman’s 

approaches in an algorithmic point of view in order to make a starting point for the 

development of an improved method. 

 

2.7 Lee’s Inversion Model with Goodman’s Unmixing (LIGU) 

 

 The full procedure required to obtain water properties, depth and benthic 

composition is described here. This is based on the Lee’s inversion model. It was 

programmed in order to test if the results obtained for a given data set are similar to those 

obtained by Goodman’s algorithm.  Specifically, this was done to test whether the same 

results could be obtained in MATLAB as previously obtained by Goodman using IDL. It 
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does not have any changes made for improving results. It is just a mirror to what has been 

done already.  Basically, a set of initial parameters (i.e. H, B, BP, G, P)  is entered in the 

optimization routine, which has an error function that minimizes the sum of squares of 

the error vector elee (recall Equation 2.18). After a set of values of OP’s is retrieved using 

the nonlinear optimization routine, abundances are estimated to provide a latter 

classification of the coastal scene.  

  

   A 550-nm normalized sand reflectance, multiplied by parameter B is the only 

reflectance used for approximating the bottom reflectance for a given pixel in the 

inversion model.  The abundance estimation is done by using the retrieved vector of 

optimized values, and constructing a remote sensing reflectance endmember matrix A. A 

vector of abundances will be obtained by linearly unmixing the pixel of interest Rrs with 

A.  Figure 2.4 shows Lee’s inversion model. The vector of optical properties, bottom 

albedo B and water depths are entered as input to Lee’s model, and this returns an 

estimated remote sensing reflectance vector.  Then the error (Equation 2.18) is calculated 

for the ith iteration.  

 

 
Figure 2.3. Lee’s Inversion Algorithm. 

 

Once the squared error is minimized, a solution vector of water properties is obtained.  

This solution vector is then used for estimating the abundances. Refer to Figure 2.5, a 

representation of how the abundance estimates are retrieved. This is an additional 
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processing step added by Goodman to Lee’s inversion algorithm. For the ith iteration, the 

retrieved vector of OP’s and water depth from Lee’ model is used for transforming the 

endmember spectras to remote sensing reflectance, thus creating the endmember matrix 

A, then used to retrieve the abundance vector x̂ .   

 

 
Figure 2.4. Goodman’s Unmixing Procedure. 

 

The pseudo code for Lee’s Inversion model with Goodman’s Unmixing (LIGU) is given 

by: 

 Initialize γ  and compute Y as in (2.11). 

 While elee > Tolerance 

• Input γ  and B into Lee’s Forward Model. 

• Compute ˆ ( , )if ρ=rsR γ . 

• Minimize (2.19). 

Iterate until Convergence 

• Compute the endmember matrix: 

 ( , ) ( , ) ( , )sand coral algae
rs rs rsρ γ ρ γ ρ⎡ ⎤= ⎣ ⎦i iA R R R γi . 
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• Estimate fractional abundance vector x̂  = unmix (A, Rrs) by minimizing 

(2.22). 

• Model remote sensing reflectance as  = A . ˆ
rsR x̂

• Compute Goodman’s error (2.20). 

 

 

2.8 Conclusions 

 

 In this Chapter, the problem of retrieving optical properties of the water column 

and the bottom reflectance approximation was introduced. Different approaches to solve 

this problem were described, more specifically Lee’s bio-optical model and Goodman’s 

Linear Mixing Model.  This process was summarized as the Lee’s Inversion Model and 

Goodman’s Unmixing (LIGU) algorithm. This discussion facilitates the introduction of a 

new approach combining these two techniques.  
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Chapter 3  

 

Inversion Algorithm 
 

 

3.1 Introduction 

 

 This Chapter presents the inversion algorithm developed in this research. 

 

3.2 Modeling Remote Sensing Reflectance  

  

 As a simplifying assumption, the modeling of remote sensing reflectance for a 

given pixel in a coastal scene is assumed to be expressed as a linear combination of 

endmembers. In order to do that, both the water and bottom properties as well as the 

fractional abundances vector must be properly estimated.  The main goal is to find a 

vectorγ and a vector x such that minimizes an error e . Modifications in the way these 

OP’s and the abundances are calculated, clearly affect the modeling of the Rrs thus giving 

different errors.  There is an interest for making this error as small as possible.  For that 

reason, several changes were made to the error function used by the nonlinear 

optimization scheme, where the sum of squares of this error is minimized.  This error 

function accepts a vector γ  and returns a vector , which are the objective functions 

evaluated at

e

γ . When these evaluations make the sum of squares error to reach a specified 

tolerance, or no significant change after iteration is obtained, the algorithm stops.  
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Figure 3.1. Curve fitting of remote sensing reflectance. 

 

 The estimation of remote sensing reflectance  may be analyzed using either 

unmixing at the top of the water surface or at the bottom. The approaches discussed here 

are catalogued using that as criteria. One is a method that performs unmixing at the 

bottom level of the ocean, and the other is a method that performs unmixing at the top 

level of the ocean surface.   

ˆ
rsR

 

 It is important to mention that a set of initial values for γ is necessary in each of 

the approaches in order to obtain an optimized estimate.  Initial values for abundances are 

not required.   

 

 For simplicity of reading, a review of the most important Lee’s semi-analytical 

model equations is shown in the Table 3.1. 
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Table 3.1. Semi-analytical model equations. 

Equation 

[ ] ( )1 ln( )w 0a a a a P P Gexp -0.015 - 440λ= + + + ⎡ ⎤⎣ ⎦  (3.1) 

[( ])3.44 1 3.17exp 2.01 (440) / (490)rs rsY R≈ − − R  (3.2) 

( ) 4.30.0038 400 / (400 / )Y
bb BPλ λ= +  (3.3) 

( )b bu b a b= +  (3.4) 

(0.084 0.170 )= +dp
rsr u u  (3.5) 

0.51.05(1 5.5 )B
uD u= +  (3.6) 

0.51.03(1 2.4 )C
uD u= +  (3.7) 

= bκ a +b  (3.8) 

11 exp 1 exp 1
cos( ) cos( )

C B
dp u u

rs rs
w w

D Dr r kH kHΒρ
θ π θ

⎛ ⎞⎧ ⎫ ⎧⎡ ⎤ ⎡ ⎤⎪ ⎪ ⎪= − − + + − +⎜ ⎟⎨ ⎬ ⎨⎢ ⎥ ⎢ ⎥⎜ ⎟⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭⎝ ⎠

⎫⎪
⎬ (3.9) 

0.5
1 1.5

≈
−

rs
rs

rs

rR
r

 (3.10) 

 

  

3.3 A Simple Two-Step Retrieval Algorithm 

 

 After knowing how the error function is designed in order to retrieve both the 

OP’s and the benthic mapping, there are additional ways to address this problem in a 

more efficient way. It is intended to do the minimization of error by combining iteratively 

both the inversion of water properties as well as the abundance estimates.  At first glance, 

the simplest way to do this is by a two-stage algorithm in which a Lee’s inversion extract 

the OP’s and bathymetry, and second stage which uses the first estimation of the Rrs and 

continue to get a smaller error by introducing coral and algae spectras as an alternative to 

the sand spectra.  Unlike Goodman’s approach, the nonlinear optimization routine will 

estimate OP, bathymetry and abundances together.  This approach does not limit the 
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bottom reflectance to be sand, but by adding a linear mixture model, the bottom 

reflectance can be constructed by a linear combination of sand, coral and algae.   

 

 Define  as the estimated vector of the remote sensing reflectance at the water 

surface from the bio-optical model at wavelength λ. So, we will use the following error: 

ˆ
rsR
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, (3.11) 

 

where 

 

ˆ ˆ ) )i rs ie( R ( R (λ λ λ= − rs  (3.12) 

 

We must find a γ and a x such that minimizes the following: 

 

( )

23

1 2
2

, 2

1 ( , )
2ˆˆ, arg min

i i
i

x

x R
x

γ

ρ γ
γ =

−
=

∑rs

rs

R

R
.  (3.13) 

 

Note that the division by the norm of Rrs is to make this criterion independent of the 

empirical data size [16]. It is important to mention that this problem is bound constrained, 

which means that the optimization routine must keep the values of the estimate between a 

range of values. The reason for this is that certain values are not physically possible (like 

a negative value) or the model is expecting a specific range of values, like, for example, 

the water depth. These constraints keep the estimates within reasonable physically 

acceptable limits. 
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 This process can be subdivided in two stages.  The first stage is to retrieve 

estimates of the OP’s and water depths using Lee’s algorithm.  Now that the initialization 

is completed, both the estimated vector γ  and ρ will be used in a second stage, where the 

linear mixing model will be used to model the remote sensing reflectance. Figure 3.4 

shows a graphical representation of the approach.  Next we will show implementations of 

this approach where unmixing occurs at the bottom and at the surface.  

 

 
Figure 3.4. Two-stage retrieval algorithm. 

 

The simple two step algorithm is described below: 
 

Initialize γ and compute Y as in (3.2) 

 While elee > Tolerance of 1st Stage. 

• Input γ  and B into Lee’s Forward Model. 

• Compute ˆ ( , )if ρ=rsR γ . 

• Minimize (2.19). 

Iterate until Convergence 

While elee > Tolerance of 2nd Stage. 

• Compute endmember matrix: 
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 lg( , ) ( , ) ( , )rs sand rs coral rs a aeρ ρ ρ⎡ ⎤= ⎣ ⎦A R R Rγ γ γ  

• Estimate fractional abundance vector  = unmix (A, Rx̂ rs) solving (2.22). 

• Model remote sensing reflectance as  = Aˆ
rsR x̂ . 

• Compute the error as in (2.20). 

Iterate until convergence. 

  
   

3.4 Unmixing at the water surface or at the bottom? 

 

 There are two different ways to do the linear unmixing: at the water surface or at 

the bottom.  A linear mixing model used at top of the water surface would be similar to 

what was done in [1], where different materials reflectance spectral signatures (e.g. sand, 

coral and algae) were transformed using Lee’s semi-analytical model to surface 

reflectance.  Another way of thinking it is to perform the estimation of water optical 

properties to characterize the water column, and perform the spectral separation at the 

bottom. Our interest is to test which approach will result in a better estimate of bottom 

properties.  

3.4.1 Combined Inversion with Linear Unmixing at the Water Surface (CIUS) 

 

 We define the light interaction in the water column to be nonlinear (Equation 3.9). 

Additionally, in a similar approach to that used by Goodman, a simplifying assumption 

[15] is used for the mixing process.  We assume that the remote sensing reflectance at the 

water surface is a linear mixture of the remote sensing reflectance contributions by the 

individual bottom types. It is also assumed that the contribution of each element in the 

bottom is only affected by the water column with no interaction with the other bottom 

types inside the pixel. Therefore, the modeled remote sensing reflectance at the water 

surface is given by: 
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3

,
1

ˆ ( )rs rsR ρ γ
=

= ∑ i i
i

R x  (3.14) 

 

where i is the index for the endmembers.    In matrix form, this model can be expressed 

as: 

 

ˆ
rs =R Ax , (3.15) 

 

where  

 

( , ) ( , ) ( , )sand coral algae
rs rs rsρ γ ρ γ ρ⎡ ⎤= ⎣ ⎦i iA R R R γi , (3.16) 

 

 Each column represents transformed endmember spectra for sand, coral and algae 

converted into remote sensing reflectance space. The matrix A and the measured  are 

entered as input to the unmixing algorithm, which returns the abundances vector x.  Then 

the matrix A multiplied by x will be the new estimated remote sensing reflectance. 

Finally, the problem to solve is:   

rsR

 

( )
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1 2
2

, 2

1 ( , )
2ˆˆ, arg min

i i
i

x

x R
x

γ

ρ γ
γ =

−
=

∑rs

rs

R

R
.  (3.17) 

 

 The abundance estimate is obtained through adjusting each of the endmembers 

spectras to compensate for water column effects. The unmixing algorithm is also 

constrained to be nonnegative and that the sum of the fractional abundances equals one.  

Using this type of approach of the Rrs, the estimation of water properties and the 

abundances may be implemented simultaneously. Figure 3.5 shows this process for the ith 

iteration. 
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Figure 3.5. CIUS representation. 

 

 This type of inversion algorithm was tested with both real and simulated data.  It 

works properly for synthetic data but seems to fail or provide poor results when dealing 

with real data.  For that reason, the development of an approach that performs spectral 

unmixing at the bottom was performed.  Other ways of implementation like using 550-

nm normalized reflectances and the parameter B estimation were tried without success, 

even though performed faster. A pseudo code for the CIUS algorithm is now presented 

as: 

 

Initialize γ  and compute Y (no B needed). 

 While e > Tolerance 

• Compute matrix A. 

• Estimate fractional abundance vector x = unmix (A, Rrs) solving (2.22). 

• Model remote sensing reflectance as . ˆ ˆrs =R Ax

• Solve (3.17). 

Iterate until convergence. 
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3.4.2 Combined Inversion with Linear Unmixing at the Bottom of the Ocean 

(CIUB) 

 

 Observing that the subsurface remote sensing reflectance rrs is expressed as the 

sum of the contributions from the water column and the bottom (3.9), one can take 

advantage of using rrs instead of Rrs.  Instead of trying to approximate above the surface 

measured remote sensing reflectance Rrs, we try to fit the subsurface remote sensing 

reflectance, namely rrs.  In order to do so, the error calculation criteria is to modify (3.11) 

to: 
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and (3.12) as 

 

ˆ ) )i rs i ie ( r ( r ( )λ λ λ= −
rsr rs  (3.19) 

 

To retrieve the abundance vector and optical parameters, we solve the optimization 

problem: 
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were e is given in (3.18). 
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 The vector ρ =Ax represent the bottom albedo spectra as a linear mixing of the 

spectra of the endmembers. We now illustrate the steps to perform the minimization of 

error in (3.20).   

   

From (3.10), it is straight-forward to convert measured apparent reflectance to subsurface 

apparent reflectance as: 

 

rs

rs
rs R

Rr
5.15.0 +

=  (3.21) 

 

From Lee’s model, and letting the bottom reflectance be modeled as ρ=Ax, equation (3.9) 

is modified for estimation purposes as follows: 
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 (3.22) 

  

 The combined ρ is normalized to be equal to 1 at to 550 nm and multiplied by the 

bottom scaling parameter B.  The reason behind this is to add one more degree of 

freedom in the search for a method that produces the best results possible.  With the 

normalization at 550 nm and the addition of the scaling parameter B, we combine Lee’s 

inversion model that normalizes a sand reflectance to 550 nm and uses the parameter B to 

scale the bottom albedo in combination with the unmixing concept of Goodman.   

 

 The right hand side (RHS) of (3.22) comes from the previously described model 

with the estimated OP’s.  The LHS is the measured subsurface remote sensing 

reflectance.  Making this iterative, and subtracting the water column contributions from 

the RHS term, we obtain 
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where is the iT
ia th row of A.  

 

 Let the LHS of equation (3.23) be our vector b, and let a new matrix A be 

composed as: 

 

1ˆ exp
cos( )

Bi
i u

w

aa D
π θ

kH
⎧ ⎫⎡ ⎤⎪ ⎪= − +⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

 (3.24) 

 

Finally, a linear mixing model can be applied to estimate the proper abundances as 

 
( ) ( )ˆ ( , )i iunmix=x A b  (3.25) 

 

Figure 3.6 shows a flowchart of this method. In the modeling stage, note that OP’s, 

bathymetry, and abundance estimates are calculated inside the forward model.  

 

 
Figure 3.6. CIUB representation. 
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 This approach has its advantages over the previously discussed methods.  It does 

not make the assumption that the remote sensing reflectance at the water surface is a 

linear mixture of the remote sensing reflectance contributions by the individual bottom 

types, since it works directly with the subsurface apparent reflectance.  It is treating the 

abundance problem as partially linear, and accounting for the nonlinear nature of the 

optical properties that describe the water column.  Thus, it is a more realistic approach, 

and mathematically simpler. 

 

Furthermore, the pseudo code for the CIUB is presented as:  

 

Initialize γ and compute Y. 

Convert Rrs to rrs. 

 While e rrs > Tolerance 

• Compute matrix A as in (3.24). 

• Compute b = (0) 1ˆ 1 exp
cos( )

dp C
rs rs u

w

r r D kH
θ

⎛ ⎞⎧ ⎫⎡ ⎤⎪ ⎪− − − +⎜ ⎟⎨ ⎬⎢ ⎥⎜ ⎟⎪ ⎪⎣ ⎦⎩ ⎭⎝ ⎠
. 

• Estimate fractional abundance vector x = unmix (A, b). 

• Normalize Ax at 550 nm and multiply by B. 

• Model subsurface remote sensing reflectance as in (3.22). 

•  Solve (3.20). 

Iterate until convergence. 

 

3.5 Conclusions 

 

 An existing method for retrieving OP’s, bathymetry and benthic compositions 

was explained. It used the commonly used Lee’s inversion scheme and an added a linear 

mixing model to attack the problem of benthic classification. Furthermore, two new 

approaches were described as possible improvements to the already existing systems: the 

CIUS and the CIUB.  The difference of the newer ones is the location where the mixing 

is performed: at the water surface in a fashion similar to Goodman’s, or at the bottom. 
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Chapter 4  
 
 

Algorithm Validation 

 
4.1 Introduction 

 
 In this chapter, both real and simulated data is used to test, compare and validate 

the new algorithms presented in Chapter 3.  Synthetic data was generated in order to 

assure that the algorithms work mathematically correct and to study and compare their 

performance on shallow and deep waters, as well as clear and optically dense waters.  

The hyperspectral data used for the validation of the algorithm is a portion of pixels taken 

from a hyperspectral image of Kaneohe Bay, Hawaii taken using the AVIRIS sensor. 

Depth measurements taken by the Scanning Hydrographic Operational Airborne Lidar 

Survey (SHOALS) will be compared with the depth estimates of the model.  Included 

here is basic information regarding the preprocessing of the hyperspectral images, 

including the atmospheric and the sunglint corrections, the basic characteristics of 

SHOALS and a description of the endmembers selected for the unmixing.   

 

 All tests and code implementation were done using MATLAB.  The function 

lsqnonlin from Matlab’s Optimization Toolbox was used to compute a solution of the 

OP’s parameters vectorγ . It uses a Conjugate Gradient algorithm to minimize the sum of 

squares error.  A routine was also implemented to calculate the modeled subsurface 

surface remote sensing reflectance vector as specified by (2.2).  Previous work based on 

sensitivity analysis of these parameters [1] provided the ability to identify a range of 

viable values, thus providing upper and lower bounds, given in Table 4.1. 
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 A tolerance of 10-10, or maximum number of iterations of 1000 were selected as 

the stopping criteria for the nonlinear optimization routine.  The simulations were run in a 

Pentium 4 processor clocked at 3.06 GHz and 1GB of RAM using Windows XP OS.   

 

Table 4.1. Range of values for optimization 

 Lower Value Upper Value 

H 0.2 33 

BP 0.001 0.5 

G 0.002 3.5 

P 0.05 1 

   

4.2  Simulated Data 

 

 This section will be subdivided into two different parts, accounting for clear 

waters and for optically dense waters.  On each experiment, water depths of 1, 5, 10, 20, 

30 and 50 meters were tested to observe the limitations on the abundance estimation and 

optical properties as depth increases. The following set of values was used in order to 

create the pixels: 

 

Table 4.2. Parameter values for pixel creation. 

Parameter H BP G P 

Clear 1,5,10,15,20,30,50 0.01 0.05 0.05 

Optically Dense 1,5,10,15,20,30,50 0.20 1.00 0.50 

 

Because the approach of doing unmixing at the bottom surface makes an estimate of B, 

let it be a constant value, B= 0.4. Initial values were set to be 40% different than the real 

values.  The synthetic mixed pixel was set to have 50% sand, 30% coral and 20% algae.  

The retrieved values obtained from the optimization routine on each set of parameters are 

presented below.  The error statistic R2 is also presented. It measures the proportion of 
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the variability of the observations around the mean. The closer the R2 value to one, the 

better fit. 

4.2.1 Experiment 1: Simulating Clear Waters 

  

 Noise free synthetic pixels simulating clear water in terms of low phytoplankton 

and absorption were run through the inversion algorithm.  Table 4.3 show results for the 

approach using the linear mixing model at the bottom surface (CIUB). Table 4.4 

describes results obtained with the approach that uses the linear mixing model at top of 

the water surface (CIUS).   

  

Table 4.3. Optimization results for synthetic clear water pixels with CIUB 
Depth 

(m) 

H BP 

0.01 

G 

0.05 

P 

0.05 

Sand 

0.5 

Coral 

0.2 

Algae 

0.3 

R2

1 1.0000 0.0100 0.0500 0.0500 0.5000 0.2000 0.3000 1 

5 5.0000 0.0100 0.0500 0.0500 0.5000 0.2000 0.3000 1 

8 7.9999 0.0100 0.0500 0.0500 0.5000 0.2000 0.3000 1 

10 9.9998 0.0100 0.0500 0.0500 0.5000 0.1999 0.3001 1 

15 14.9994 0.0100 0.0500 0.0500 0.4999 0.1999 0.3001 1 

20 19.8934 0.0100 0.0500 0.0499 0.4876 0.1783 0.3342 1 

30 18.6783 0.0098 0.0502 0.0478 0 0.1618 0.8382 1 

50 23.5210 0.0099 0.0499 0.0492 0 0.8508 0.1492 1 
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Table 4.4. Optimization results for synthetic clear water pixels with CIUS. 

Water depth (m) BP 

0.01 

G 

0.05 

P 

0.05 

Sand 

0.5 

Coral 

0.2 

Algae 

0.3 

BP 

0.01 

R2

1 0.9691    0.0043  0.0435  0.0389 0.4480 0.1512  0.4008 1 

5 4.9439   0.0099   0.0495  0.0493 0.4748  0.2229  0.3023 1 

8 7.9524   0.0100   0.0499  0.0497 0.4844  0.2150  0.3006 1 

10 9.9595   0.0100   0.0500  0.0498 0.4885  0.2100  0.3015 1 

15 14.9587  0.0100   0.0500  0.0500 0.4936  0.2046  0.3017 1 

20 19.2653  0.0100   0.0501  0.0497 0.4157  0.0572  0.5270 1 

30 18.8048  0.0098   0.0501  0.0478 0     0.1182  0.8818 1 

50 29.2572  0.0100   0.0501  0.0497 0     1.0000  0.0000 1 

 

 Although almost perfect fittings to the rrs and the Rrs curves were attained in terms 

of the R2 statistic, results show that the both the abundance estimations and the OP’s 

retrieval are affected as water depth increases.  The abundance estimates were poor for 

water depths above 20 meters, where coral and algae fractions were under estimated even 

though the OP’s were not critically affected (i.e., the OP’s can be effectively obtained at 

deeper depths than the bottom contributions).  It is also notable an underestimation of 

water depth H for simulated depths of 20 meters or more.  Good estimates of BP, G and P 

for all depths have been obtained.  This makes sense since these parameters mostly 

describe optical properties of the water column, not the bottom.  Even when there is zero 

contribution coming from the bottom, these OP’s seem to be well retrieved.  As observed, 

using the CIUB seems to estimate slightly better than the CIUS. Both underestimate the 

values of H for water depth greater than those 20 meters.   

 

4.2.2 Experiment 2: Simulating Optically Dense Waters 

  

 The idea of this experiment is to test how accurate the model is when dealing with 

optically dense waters. As with the past experiment, both of the new algorithms will be 

tested using synthethic pixels for increasing water depths synthetic pixels.   
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Table 4.5. Optimization results for synthetic optically dense water pixels with CIUB 

Water depth (m) H BP 

0.2 

G 

1 

P 

0.5 

Sand 

0.5 

Coral 

0.2 

Algae 

0.3 

R2

1 1.0000 0.2000 1.0000 0.5000 0.5000 0.2002 0.2998 1 

5 4.8006 0.2000 1.0000 0.5000 0.5843 0.4126 0.0030 1 

8 5.0235 0.2000 0.9999 0.5000 1.0000 0.0000 0.0000 1 

10 6.0564 0.2000 0.9999 0.5000 1.0000 0.0000 0.0000 1 

15 9.0583 0.2000 0.9999 0.5000 1.0000 0.0000 0.0000 1 

20 12.0583 0.2000 0.9999 0.5000 1.0000 0.0000 0.0000 1 

30 18.0583 0.2000 0.9999 0.5000 1.0000 0.0000 0.0000 1 

50 30.0583 0.2000 0.9999 0.5000 1.0000 0.0000 0.0000 1 

  
  
 Observe that the estimates are significantly affected with the increase of water 

optically denseity. In contrast with clear waters, it starts to underestimate water depth 

before getting to 10 meters. Also the fractional abundances are also notably affected after 

the 5 m depth, probably causing to misclassify the bottom at depths of the three to four 

meters.  The parameters BP, P and G seem to be the best estimated values overall, stating 

again that they are parameters that exclusively describe the water column.  

 

 Now taking a look to Table 4.6, very poor abundance estimates are obtained as 

well as OP’s and water depths. Just as shallow as 5 meters depth, the estimates are poor.  

For water depth greater than 20 meters, the abundance algorithm diverges.  We are still 

getting good estimates of BP, G and P, but not as good as the unmixing at the bottom 

algorithm.   
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Table 4.6. Optimization results for synthetic optically dense water pixels with CIUS 

Water depth 

(m) 

H BP 

0.2 

G 

1 

P 

0.5 

Sand 

0.5 

Coral 

0.2 

Algae 

0.3 

R2

1 1.0000   0.1999  1.0029  0.4949 0.4853  0.2211  0.2935 1 

5 3.9363   0.1998  1.0002  0.4990 0.6476  0.3524  0.0000 1 

8 4.8449   0.1998  1.0014  0.4984 0.9531  0.0469  0.0000 1 

10 5.5968   0.1998  1.0010  0.4983 1.0000  0.0000 0.0000 1 

15 7.5144   0.1998  1.0009  0.4983 0.0000 0.0000 1.0000 1 

20 11.1603  0.2000  1.0002  0.4998 --- --- --- 1 

30 17.7016  0.1598  0.7843  0.3562 --- --- --- 1 

50 30.0000  0.1200  0.6000  0.3000 --- --- ---- 0.9609

 

 

 Notice that performing the CIUB is slightly better than the CIUS for both clear 

water and optically dense water pixels.  This analysis deals with created pixels, and 

dealing with this kind of data is usually better than when dealing with real data. Let now 

see what happens with AVIRIS pixels. 

 

4.3  Real Data 

 

 The hyperspectral data used for the validation of the algorithm was first 

atmospheric and sunglint corrected.   Also, the number of bands from the AVIRIS image 

was subset from its original 224 band to 42 in the 400-800 nm range.  The following 

subsections describe the pre-processing algorithms applied to the images.  
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4.3.1 Image Pre-processing 

 

Atmospheric Correction 

  

 The algorithm used to make atmospheric corrections to the images is called 

Tafkaa, a modified version of the ATREM algorithm and developed by the U.S. Naval 

Research Laboratory, Washington, DC. It basically calibrates imagery from the measured 

sensor radiance and transforms it to remote sensing reflectance.  The main goal of this 

algorithm is to remove the confounding effects of the atmosphere. For the case of aquatic 

environments, the process of atmospheric corrections turns out to be more complex than 

for land, since varying effects of specular reflection, wind blown surface waves and 

reflectance from the benthic substrate are present in the measurements [1].   This 

software uses lookup tables to account for these aerosol types and gaseous scatterings and 

requires specifying latitude, longitude, time, aircraft altitude, relative humidity, aerosol 

type and aerosol optical depth, water vapor column amount, and winding speed [1, 25]. 

  

Sunglint Correction 

 

 When treating ocean scenes, it is not always sufficient to use atmospheric 

correction alone.  There are wind-blown surface waves and specular reflection in the 

ocean surface that add extra brightness and artifacts to the entire image and specific 

areas.  This problem is called sunglint.  This problem can be treated because it can be 

analyzed as a function of the solar angle, surface conditions and the viewing geometry.  If 

the flight conditions, time of the day and position are known, a majority of these effects 

can be corrected.  To overcome this issue, a treatment called a 750 nm normalizing 

correction described in [4] was applied.  It assumes that the necessary correction for each 

pixel is constant across all wavelengths. The equations that approximate remote sensing 

reflectance from the atmospherically corrected data are shown below and detailed in [1].  

 

( ) ( ) (750)raw raw
rs rs rsR R Rλ λ= − + ∆ , 

(4.1)
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( )( ) ( ) (750) 0.000019 0.1 (640) (750)raw raw raw raw
rs rs rs rs rsR R R R Rλ λ= − + ∆ = + −  

(4.2)

 

4.3.2 Endmember Spectras 

 

  The endmembers represent the pure components of a scene. The goal of using 

these endmembers is to create linear approximation of the spectral signature measured by 

the sensor. In this study, three endmembers or classes were considered: sand, coral and 

algae. The endmember spectras were collected in situ in October 2001 and April 2002 by 

Goodman and Ustin at Kaneohe Bay in Hawaii.  They were measured with a modified 

GER-1500 spectrometer [1].  Figure 4.2 shows these reflectances. 

 Due to strong light attenuation affecting wavelengths larger than 675 nm, this 

study was focused on the 400-675 nm range.  However, the 550-675 nm range seems to 

provide better spectral separability and was tested in both [1] and this study. The 

algorithms compute the abundance estimates using data on this range only.   

 
Figure 4.1.  Endmember Spectras. 

 The abundance vector estimate x̂  was obtained using a Nonnegative Sum to One 

algorithm (NNSTO), where the abundance fractions must sum to one and the must be 

equal or greater than zero.  The Nonnegative Sum to Less or Equal to One (NNSLO) 
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algorithm was also tested but provided poorer results. The NNSTO was the preferred 

algorithm to run the tests.  For more details refer to Chapter 2 or [17, 29, 30]. 

 

4.3.3 Experiments with a Kaneohe Bay dataset 

  

 A small portion of the AVIRIS image of Kaneohe Bay is used to test the 

algorithms with actual airborne hyperspectral data.  It consists of a 50x50 pixel area, 

already corrected for atmospheric and sunglint effects.  Because they were not measured 

at the time of the AVIRIS data acquisition, there is no way of knowing the exact values 

for B, BP, G and P. However, water depth estimates from the SHOALS are available and 

are used to compare the estimates obtained with the algorithms with those measured by 

this instrument. The agreement of the depth estimates with SHOALS measurements was 

used as a measure of model performance for our approach. 

 

Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS) 

 

  SHOALS uses short pulses of light to detect water depth, one at an infrared 

wavelength to detect the water surface and other at the blue-green wavelength to detect 

the bottom, 1064 nm and 532 nm respectively. The aircraft is positioned via GPS 

systems, providing vertical positioning accuracy of ± 15 cm and ± 1m of horizontal 

positioning, and a depth accuracy of ± 15 cm. It operates at an altitude of 400m at a speed 

of 50 to 70 m/s, giving an elevation measurement every 8 m with a scan swath width of 

220 m. This system not only provides depth measurements but also collects geo-

referenced video with the lidar measurements, which is used to position objects like piers 

or navigation aids [33]. The area of Kaneohe Bay that has been processed with SHOALS 

measurements is used in this chapter for accuracy assessment of the depth estimates. 

 

 Results obtained for the OP’s, depths, and the abundance estimates are shown 

below.  They are presented as colormaps, where the blue values are the lowest, and the 

red values are the highest.  Refer to Table 2.2 if needed as a reference for the parameter 
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definitions.  We compare both new methods based on each of the parameters as well as 

the benthic mapping. These two methods will also be compared with the results obtained 

by Goodman’s implementation.  

 

  Before putting these algorithms through this dataset, they were tested with other 

small 25x25 subsets of AVIRIS pixels that individually contain sand, coral or algae to see 

if the abundance estimates were correct.  These small datasets were regions in the 

Kaneohe Bay where the bottom composition is known.  Table 4.7 shows the abundance 

value obtained for each material for a given pixel on both the CIUB and CIUS 

algorithms. 
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Table 4.7. Abundance estimates for sand, coral and algae datasets 

Sand dataset Coral dataset Algae dataset 
Pixel # 

CIUB CIUS CIUB CIUS CIUB CIUS 

1 1 1 0 0 0.8537 0.8461 

2 1 1 0.6595 0.7276 0.8810 0.9021 

3 1 1 0.7036 0.7379 0.8429 0.8457 

4 1 1 0.7315 0.7593 0.7522 0.7613 

5 1 1 0.7360 0.7789 0.8467 0.8401 

6 1 1 0.1091 0.6841 0.7339 0.7418 

7 1 1 0.7304 0.7815 0.7888 0.7901 

8 1 1 0.7061 0.7375 0.8160 0.8126 

9 1 1 0.6919 0.7196 0.7647 0.7703 

10 1 1 0.7414 0.7716 0.7389 0.7497 

11 1 1 0.6360 0.6866 0.6718 0.6898 

12 1 1 0.7127 0.7448 0.7556 0.7618 

13 1 1 0.7145 0.7398 0.7432 0.7524 

14 1 1 0.7210 0.7394 0.7451 0.7527 

15 1 1 0.7124 0.7414 0.7737 0.7808 

16 1 1 0.5865 0.6864 0.6807 0.6969 

17 1 1 0.6637 0.7277 0.6799 0.6963 

18 1 1 0.6616 0.7000 0.7061 0.7196 

19 1 1 0.6993 0.7367 0.7451 0.7527 

20 1 1 0.7268 0.7650 0.7833 0.7852 

21 1 1 0.5799 0.6782 0.6262 0.6446 

22 1 1 0.6800 0.6969 0.6537 0.6720 

23 1 1 0.6977 0.7221 0.6057 0.6300 

24 1 1 0.6828 0.7193 0.6235 0.6430 

25 1 1 0.6828 0.7193 0.6412 0.6606 
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Remote Sensing Reflectance Estimation 

 

Observing the pictures below, the estimates best matching the measured remote sensing 

reflectance is CIUB method.  Red regions indicating algae are almost similar in LIGU 

and the one shown in figure 4.4b, but not as close as CIUB.  The figure 4.4c illustrating 

the results from CIUS shows that fewer algae were estimated and probably an 

overestimation of sand occurred.  

 

 

 
Figure 4.2. RGB  composite of AVIRIS dataset (R=703.07nm, G=539.10nm, B=500.41nm).

 

 

 The circled area is to highlight the brightness appearing on the AVIRIS image, 

and the most similar in this detail, is the CIUB algorithm. 
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(a) 

(b) 

(c) 
Figure 4.3. Estimated RGB (R=703.07nm, G=539.10nm, B=500.41) composites of the scene.  

Rrs estimates of (a)LIGU (b) CIUB (c) CIUS 
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 Comparison of fitting errors  

 
Figure 4.4. Fitting error image scaling for LIGU 

 

 Before presenting the fitting errors on CIUB and CIUS, is important to mention 

that the minimization of the error in CIUB approach is in terms of subsurface remote 

sensing reflectance while LIGU and the CIUS approach minimizes the error of remote 

sensing reflectance. For that reason, the estimated subsurface remote sensing reflectance 

in the bottom surface approach was converted to surface remote sensing reflectance and 

an error was calculated, thus making the three approaches comparable. 
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(a) (b) 
Figure 4.5. Image scale of fitting errors for (a) CIUB (b) CIUS. 

 

 Fitting errors to the remote sensing reflectance curves look acceptable at least 

when compared with LIGU. There seems to be the greater fitting errors at the right upper 

part of the dataset, where red values appear showing errors of about 30%.  The pixels in 

red appear to be almost the same on the three images.  Since these images do not show 

any visible differences, let us take a look at the histograms of the errors and compare 

them by statistics like mean and variance.  As mentioned before, these errors calculated 

are all based on remote sensing reflectance rather than subsurface remote sensing 

reflectance.  
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(a) Mean=0.0239; Variance=5.7351e-006 

 
(b) Mean=0.0239; Variance=5.8673e-006 

 
(c) Mean=0.0251; Variance=6.2286e-006 

Figure 4.6. Fitting Error Histograms (a) LIGU (b) CIUB (c) CIUS (remote sensing reflectance). 
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LIGU and CIUB have very close mean and variance.  The CIUS algorithm did not 

performed as well. 

 
 
Depth Estimates  

  

 Both the CIUB and LIGU are very close in accuracy, whereas the CIUS is slightly 

less accurate.  Another avenue for comparing the different methods is to use water depth 

estimation, which is available from SHOALS data. A good way of visualizing this data is 

to look at scatter plots of the measured SHOALS data vs. the estimated H. 

 

(a) m=0.8891; b=0.4694 (b) m=0.9806; b=0.2892 (c) m=0.7045; b=0.6942 
Figure 4.7. Scatter plots of depths (a) LIGU, (b) CIUB, (c) CIUS. (meters) 

 

 Linear regression analysis was conducted and may be expressed as: 

 

ˆ
SHOALSH mH b= +  (4.3) 

 

where is the depth estimate, m is the slope, and b the y-intercept.  In theory, it is 

desirable to obtain an m=1 and a b=0 to make a 1-to-1 relationship, but this obviously not 

possible when dealing with real data, so at least we want this values to be as close as 

possible to 1 and 0 respectively.  

Ĥ
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 Excellent results were attained for water depths estimates with CIUB, the method 

that does the unmixing at the bottom of the surface with slope very close to 1.  The 

second best was LIGU, and third, again, the CIUS approach. It is observable that 

estimates in water depths are very good shallower than five meters.  Notice the relation in 

fitting error and water depth as the water depth increases. It is especially noticeable at the 

upper right corner of the images. When looking at Figure 4.9, the deepest waters are 

located in that area and the highest fitting errors are too. Now the colormaps of the water 

depth will be shown as well as the rest of the OP estimates, and abundance estimates.  

Again, because they were not measured at the time of the AVIRIS acquisition, there is no 

way of knowing the true values for these parameters (i.e. there are no in situ 

measurements are available for this data set).   

 

 
Figure 4.8. Water depth measurements from SHOALS. (meters) 

 

 - 55 -



 

 
(a) 

 
(b) (c) 

Figure 4.9. Water depth (in meters) estimates for (a) LIGU (b) CIUB (c) CIUS. (meters) 

 

 Visually, it seems that the LIGU obtained better depth estimates, then by the 

CIUS and by the CIUB.  When looking at the shallower areas, both the LIGU and CIUB 

look very similar as compared to SHOALS. 

  

 The next figure shows histograms of the relative difference between the 

SHOALS’s measurements and the estimated depths.  The CIUB is slightly superior (in 

terms of mean and variance) than the LIGU approach, and once again the CIUS method 

has the lowest performance.   
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(a) Mean=-0.4030; Variance=2.9698 (in meters) 

 
(b) Mean=0.3385; Variance=2.3367 (in meters) 

 
(c) Mean=-1.1818; Variance=3.2941 (in meters) 

Figure 4.10. Depth Error Histograms(a)LIGU (b) CIUB (c) CIUS 
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Parameter B  

 

 The parameter B estimates will be compared with just two methods since the 

unmixing at the surface method does not uses B for the estimation of the remote sensing 

reflectance due to the structure of the modeling approach.  

 

(a) 
 

(b) 
Figure 4.11. B estimates for (a) LIGU (b) CIUB 

 

 There is a slight difference in these two images, there seems to be higher 

estimates of B for Goodman’s approach in certain areas of the data set. 
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Parameter BP 

 
Figure 4.12. BP estimate from LIGU. 

 

 
(a) 

 
(b) 

Figure 4.13. BP estimates for (a)CIUB (b) CIUS 

 

 
 Similar values of BP were obtained by both LIGU and CIUB approaches.  More 

varying values ranging from 0.0001 to 0.06 were obtained by the CIUS approach.  This is 

something that obviously gives more credibility to the first two approaches stating that 

water properties should be more homogeneous in such a small area. 
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Parameter G 

 
Figure 4.14. G estimate LIGU. 

 

(a) 
 

(b) 
Figure 4.15. G estimates for (a) CIUB (b) CIUS. 

 

 Estimates of G obtained by the LIGU and the CIUB approaches were similar, 

which in both cases is higher than the estimates from the CIUS approach. Note the 

dependence on the bottom characteristics. This is one thing that should be further studied 

since, as seen with simulated pixels, the G parameter describes absorption of gelbstoff 

and detritus, found in the water column, not the bottom of the ocean. 
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Parameter P 

 

 
Figure 4.16. P estimate from LIGU. 

 

(a) (b) 
Figure 4.17. P estimates for (a)CIUB (b) CIUS 

 

 The three approaches look very similar; almost all the pixels got estimates of 

0.005, the lower limit of this parameter.  The optimization routine in the three approaches 

is able to do the curve fitting by making this value as small as possible.   
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  Abundance Estimates 

 

 An RGB composite of the dataset is displayed for each of the methods.  The red 

band corresponds to coral, the green to algae, and the blue to sand.   

 

 
Figure 4.18. Abundance map. LIGU. 

 

 
(a) 

 
(b) 

Figure 4.19. Abundance estimates for (a) CIUB (b) CIUS. 
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 As observed, the calculation of optical properties at the bottom or at the surface, 

by using one of the two new approaches clearly affects the estimation of abundance 

estimates.  This clearly states that the algorithm that both the CIUB and the LIGU are 

probably more reliable, at least in this dataset, were water depths ranged from 2 to 13 

meters.   

 

 Now, an image for each abundance map for each endmember is shown for each 

for the CIUB, CIUS and LIGU. 

 

 
(a) 

 
(b) 

Figure 4.20. (a) RGB of AVIRIS dataset  (b) Sand estimates for LIGU. 
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(a) 
 

(b) 
Figure 4.21. Sand estimates for (a) CIUB (b) CIUS. 

 

There is a diagonal line of sand at the second lower half of the image, which is more 

defined in the CIUB than the LIGU.  CIUB and CIUS have more solid coloring on sand.  

 

 
(a) 

 
(b) 

Figure 4.23. (a) RGB of AVIRIS dataset (b) Coral estimates for LIGU. 
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(a) 
 

(b) 
Figure 4.23. Coral estimates for (a) CIUB (b) CIUS. 

 

Circled regions on the RGB of the AVIRIS dataset shows there is more definition of what 

could be coral on the CIUB than on the LIGU. 

 

 
(a) 

 
(b) 

Figure 4.24. Algae estimate. LIGU. 
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(a) 
 

(b) 
Figure 4.25. Algae estimates for (a) CIUB (b) CIUS. 

 

Coloring of algae is more homogenous in the CIUB as compared to the LIGU, while 

there is basically no algae estimation with CIUS. 

 

4.4  Summary and Conclusions 

 

 In this Chapter, we tested, validated and compared the algorithms described in 

Chapter 3 were effectuated. First, each approach was tested with simulated pixels for 

both clear and optically dense waters, and noticed that good depth estimates were 

obtained for up to 20 meters depth in clear water and around 5 meters depth for optically 

dense waters. For very clear waters, good abundance estimates were obtained up to water 

depths of 15 meters, whereas above 2 meters of optically dense water affected the 

abundances, producing an overestimation of coral. Also abundance estimates were 

slightly better with the CIUB algorithm for both clear and optically dense pixels. 

Parameters BP, G and P seemed to be less dependable on water depth and optically 

denseity, since good estimations were obtained with very high depths, in both optically 

dense and clear waters. The algorithms were also tested with real data from a dataset of 

an image taken from AVIRIS of the Kaneohe Bay, and the algorithm that performs the 
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unmixing at the bottom of the surface seemed to be superior to that making the unmixing 

at the water surface. When compared to Lee’s Inversion and Goodman’s linear mixing 

model, it worked very close in terms of curve fitting to the Rrs measurement, and slightly 

superior depth estimates when compared to SHOALS measurements.  Abundance 

estimates were more consistent in areas where dense sand paths or coral or algae 

concentrations looked very homogeneous when looking at the AVIRIS RGB composite.   
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Chapter 5  
 
 
 

Application to Kaneohe Bay 

 

 

5.1 Introduction 

 
 In this chapter, an AVIRIS hyperspectral image from the Kaneohe Bay, Hawaii 

will be processed by the CIUB algorithm.  This area is good to demonstrate our approach 

since it has a low diversity of coral species and benthic life, but at the same time has a 

wide range of areas that can be classified. These areas include optically dense waters, 

coral reefs at different water depths, algae colonies and sand sites.  The main purpose of 

processing this image is to obtain estimates of water properties, bathymetry and benthic 

composition, which can be further contrasted with SHOALS measurements.  Another 

important advantage is that in situ data and a dense quantity of information regarding the 

environmental properties of the scene is available, thus facilitating the process of 

validation [1].   

 

5.2 Scene Description 

 

 Kaneohe Bay is located on the northeast shore of Oahu, Hawaii (Figure 5.1).  It is 

basically an enclosed area of approximately 13 km long and 4 km wide.  It contains 

several types of coral reefs like protecting barriers and patch reefs [24]. It is influenced 

by both freshwater and saltwater inputs.  This freshwater, which originates from streams 

contributes sedimentation and pollutants, mostly due to urban development, deforestation 
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and grazing.  Porites compressa and Montipora capitata are the most abundant coral 

species.  Algae species like the green bubble algae influenced coral reef displacement and 

contribute to coral reef decline.  This is due to human related factors such as sewer inputs 

and pollutants due to urbanization, etc.  

 

 
Figure 5.1 The Oahu Island, Hawai. 

 

 Other advantages of studying the Kaneohe Bay include the available historic 

scientific literature describing the coral reef ecosystem, bathymetric charts, researches 

involving coral reefs monitoring, preservation and species identification.  This facilitates 

the validation of algorithms using remote sensing techniques. 

 

5.3 Parameter and Abundance Extraction 

 

 The algorithm used to analyze the whole scene of Kaneohe Bay was the algorithm 

that applies a mixing model at the bottom of the surface (CIUB).  Results will be shown 

below.  The RGB composite of this AVIRIS image is showed in the next figure next to an 

IKONOS’s image for comparison.  The AVIRIS image is atmospherically and sunglint 

corrected. The black areas surrounding the bay and some spots over water are a mask for 

clouds, land or off shore regions. These black areas were not run through the model.  

Following these two RGB images, estimation of abundances, water depths and the 

nuisance parameters BP, P and G will be shown in color map scales. 
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(a) 

 
(b) 

Figure 5.2 Kaneohe Bay: RGB composite from (a) IKONOS (b) AVIRIS 
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(a) 

 
(b) 

Figure 5.3. Abundance Colormap of Kaneohe Bay. Red for coral, green for algae and blue for 

sand. (a) Goodman Dissertation (b) CIUB 
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 The abundance color map for the CIUB results shows several overestimations of 

coral reef in regions which are optically dense or very deep waters.  This makes sense 

when taking a look to Figure 5.3 and noticing several red spots standing for errors in the 

curve fits very close to 1. There are more sand estimates in the CIUB results image since 

Goodman’s colormap was masked with black for water depths above the three-four 

meters depths. In general, there is some congruence in the estimates for both algorithms.  

There is no way of making sure all the estimates are correct except for a few areas that 

were ground truth is available.     

 

 
Figure 5.4 Fitting error image.  

 

  The curve fitting errors mostly occurred in regions were very deep water is 

present, or muddy bottoms near the coast.  These results agree with the results obtained 

with synthetic data, where sand was overestimated as the water depths increased, 

especially in optically dense waters.   Also, one may observe that when the water depths 
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estimates were above the 8-10 meters, coral overestimations were obtained in some 

regions, and at the same time with higher fitting errors.  

 
Figure 5.5. Depth estimate (H). 

 
Figure 5.6. Estimate of BP. 
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Figure 5.7. Estimate of G. 

 
 

 
Figure 5.8. Estimate of P 
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5.4 Conclusions 

 
 The algorithm that applies a linear mixing model at bottom of the surface seems 

to be able to provide good fittings to the subsurface remote sensing curves. Good 

retrieval of OP’s and water depths, which play a very important role in determining the 

appropriate abundances for purposes of benthic mapping.  In the past chapter, the CIUB 

approach showed to have very close estimated parameters with those already validated by 

Goodman, and even better performance in water depth estimation as compared with 

SHOALS data.   

 

 Bottom composition estimates were very similar to those obtained by Goodman.   

The shore area obtained algae estimates that compare with Goodman’s.  Small spots of 

coral were also similar located in the center of the bay, and probably the CIUB estimated 

more coral than Goodman, especially in the center region.   
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Chapter 6  
 

 

Conclusions and Future Work 
 
 

6.1 Conclusions 

 

 The main purpose of this study was to provide the remote sensing community 

with new tools for making easier the process of retrieving bathymetry and benthic 

composition of coastal areas.  This work provides with a new algorithm that efficiently 

retrieve optical properties and provides reasonable estimates of benthic composition (an 

approximation of the bottom surface), optical properties of the water column and water 

depth estimates.  The innovation of this method is that it takes advantage of the high 

spectral information of hyperspectral imagery to account for the estimation of both the 

optical properties and bathymetry obtained by Lee’s inversion model while 

simultaneously providing estimates of benthic composition estimates, also considering 

for the water column effects.  Also, it performs the abundance estimates at the bottom 

surface, while in the past they were obtained using the linear mixing model at the water 

surface.   

 

   Two approaches that looked for improving the existing methods were tested with 

real and synthetic data.  The method that implements a linear mixing model at the bottom 

surface (CIUB) proved to be more accurate than methods that perform unmixing at the 

water surface (CIUS, LIGU). Also, abundance estimates obtained were very similar to 

those obtained in [1], thus showing reasonable consistency in the benthic mapping of the 
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Kaneohe Bay.  We may highlight a list of important assessments obtained with this 

research: 

 

• For synthetic data, excellent retrieval of OP’s and water depths up to 20 meters 

depth with good abundance estimates for up to 15-18 meters depth, assessed 

using the CIUB algorithm in simulated clear water.  For optically dense water, 

the retrieval of OP’s and water depth for up to 5 meters was attained with the 

CIUB. There is a tendency to estimate sand for water depths above those five 

meters.   

• A fitting error in real data of about 20-30% is found for water depths above 10 

meters, and sand is estimated for these same in both the validation dataset and the 

Kaneohe Bay image.   

• Parameter G, although an optical property that describes the water column, shows 

its dependency on the bottom as seen with real data. Parameter P was constantly 

estimated to the same value (near or equal to 0.005), a lower bound for the 

optimization. This arises the question whether is necessary or not to include this 

parameter for retrieval, or just fixing it at a constant value.   

• Fitting error accuracy for real pixels was very similar to those obtained by Lee’s.  

A mean of 0.0239 and a variance of 5.865e-6 were obtained with the CIUB 

algorithm, compared to a 0.0239 and 5.7351e-6 (Lee’s). 

• Water depth estimates were very close to SHOALS measurements on pixels with 

0.2 to 10 meters depth when dealing with real data.  We applied linear 

regressions obtained a slope of 0.9806 and intercept of 0.2892 with the CIUB 

algorithm versus a 0.8891 and a 0.4694 using LIGU.  Also, histograms that 

described the difference between the SHOALS data and the retrieved depths 

showed that the CIUB is superior, getting a mean of 0.3385 m and a variance of 

2.336 m as compared to a mean -0.4030 m and 2.9698 meters variance for the 

LIGU.   
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6.2 Future Work 

 
 Several topics would be certainly useful to be studied: 
 

• Sensitivity analysis on the inversion model.   

 

 This is to test how sensitive the estimates are to noise and depth in order to look 

for methods that deal with sensor noise and to improve our capability to estimate 

bottom composition at higher depths.  

 

• Sensor fusion.   

 

 Available data like the SHOALS measurements would alleviate the problem of 

retrieving bathymetry, and possibly the optical properties and would certainly 

improve the capacity of the algorithm to retrieve benthic composition.  This would 

also facilitate the analysis accuracy estimates of the other optical parameters. 

 

• Incorporation of spectral libraries to the unmixing algorithm. This could help in 

more accurate mapping of the marine floor.  

 

• Better understanding of mixing process. Mixing of bottom components under 

water is a nonlinear process.  

 

• Look at regularized methods to deal with the problem of high sensitivity.  
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