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Wireless Sensor Network (WSN) is a wireless networking technology that can facilitate many

important applications in our real life, from environmental monitoring to smart grid, and

thus is a key component in the emerging Internet of Things (IoT). To design efficient WSNs,

two major issues are (1) the throughput capacity that is the maximal data rate at which a

WSN can collect data from a field, and (2) the delay that is the duration from the time a

signal is sensed to the time that is a received by the gateway of a WSN, known as the sink.

To address these two issues, there are many solutions in the literature and Compressed

Sensing (CS) is one of the most promising solutions because it can combine data collection

and compression at the same time. By using CS, sensor nodes can collaboratively generate

measurements by using a measurement matrix to linearly combine the original signals. In

theory, if the original signals are sparse, then they can be reconstructed by well-known convex

optimization, using a much smaller number of measurements, which leads to much higher

throughput and smaller delay.

In the literature, several CS based data collection schemes for WSNs have been investigated.

However, the impact of the measurement matrix has not been fully investigated. On one

hand, many researchers focused on the performance of WSN by simply assuming there

exists a measurement matrix. On the other hand, some researchers focused on the design of

measurement matrix, particularly the structured measurement matrix, without considering

the feature of WSN. Therefore, there is still a significant gap between CS and WSN.
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In this dissertation, we aim at tackling this challenging issue and we propose a novel frame-

work for structured measurement matrix to improve the performance of data collection

in WSN. Specifically, the proposed structured measurement matrix consists of rectangular

blocks with non-zero elements. Each of the blocks is used to produce measurements by lin-

early combining original signals collected from a subset of sensors. Moreover, if two bands

are adjacent in the matrix, then the corresponding subset can have intersections, and all

such intersections have the same cardinality. In this manner, the measurement matrix is a

circular overlapping block diagonal (COB) matrix.

To evaluate the performance of the proposed COB matrix, we first investigate a particular

COB case, in which the cardinality of the intersection is one half of the cardinality of a

subset of sensors. For this type of matrix, we conduct theoretical analysis to prove that

it satisfies the Restricted Isometric Property (RIP), which is widely used to determine the

minimal number of measurements that can guarantee the reconstruction of the original

signals. The theoretical analysis reveals the impacts of several important factors, including

the number of blocks, the sparsity of original signals, and the total number of signals. We

also conduct extensive simulation and the numerical results validate the theoretical analysis

and demonstrate that the proposed COB matrix outperform existing block diagonal matrix.

Based on the understandings from the specific COB case, we generalize the COB in a way

such that the size of overlapping can be an arbitrary number. For the generalized COB, we

first prove that it also satisfies the RIP with a certain bound for the number of measurement.

In addition to the aforementioned factors, we investigate the impact of the size of overlapping.

Extensive numerical results show that our analysis again is very accurate.

Finally, we conduct theoretical analysis to evaluate the throughput and delay performance

of CS-based WSN with the proposed measurement matrix. In the analysis, we first derive

schemes to partition a unit area into equal-sized region, we then develop feasible time division

multiple access (TDMA) schemes to facilitate two sensing scenarios in WSN. Using the

theoretical analysis, we further analyze the performance of WSN using practical settings,
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such as the transmission range, data rate, etc. The numerical results confirm that the

proposed COB scheme can improve throughout and delay performance.
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Las redes de sensores inalámbricos (WSN, siglas en inglés) es una tecnoloǵıa que facilita

muchas tareas importantes en nuestra vida real, desde el monitoreo del medio ambiente

hasta las redes inteligentes, componentes claves en el emergente campo del Internet de las

Cosas (IoT, siglas en inglés). Para diseñar WSN eficientes, se deben considerar dos problemas

principales (1) la capacidad de rendimiento, que es la velocidad máxima a la que un WSN

puede recopilar datos, y (2) el retraso, que es el tiempo desde el momento en que se detecta

una señal hasta que es recibida por la puerta de enlace de la WSN, conocido como el sumidero.

Existen muchas soluciones en la literatura para abordar estos dos problemas, pero es el

muestreo con compresión (CS, siglas en ingés) una de las soluciones más prometedoras, ya

que permite combinar la recopilación de datos y la compresión al mismo tiempo. Al usar CS,

cada sensor colabora en el sensado mediante el uso de una matriz para combinar linealmente

las señales originales. En teoŕıa, si las señales originales tienen muy pocas entradas no cero,

entonces pueden ser reconstruidas usando el método conocido como optimización convexa,

utilizando un número de mediciones muy pequeño. Esto conduce a un rendimiento mucho

mayor y un retraso menor en la WSN.

En la literatura, se han investigado varios esquemas de recopilación de datos basados en

CS para WSN. Sin embargo, el impacto de la matriz de medición no se ha investigado por

completo. Por un lado, muchos investigadores se centran en el rendimiento de WSN sim-

plemente asumiendo que existe una matriz de medición. Por otro lado, otros investigadores
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se centraron en el diseño de la matriz de medición, particularmente la matriz de medición

estructurada, sin considerar la caracteŕıstica de WSN. Por lo tanto, todav́ıa hay una brecha

significativa entre CS y WSN.

En esta disertación, nuestro objetivo es abordar este desaf́ıo y proponemos un nuevo modelo

para la matriz de medición estructurada, que mejora el rendimiento de la recopilación de

datos en WSN. Espećıficamente, la matriz estructurada propuesta consiste en bloques rect-

angulares que contienen elementos distintos de cero. Cada uno de los bloques se usa para

producir mediciones que combinan linealmente las señales originales sensadas de un sub-

conjunto de sensores. Además, si dos bandas son adyacentes en la matriz, su subconjunto

correspondiente tendrá intersecciones de igual cardinalidad. De esta manera, la matriz de

medición propuesta será diagonal circular con bloques solapados (COB, siglas en inglés).

Para evaluar el rendimiento de COB, primero investigamos un caso particular, en la que el

tamaño de la intersección es la mitad del tamaño de un subconjunto de sensores. Para este

tipo de matriz, se llevó a cabo un análisis teórico para demostrar que satisface la Propiedad

Isométrica Restringida (RIP, sigles en inglés), que se usa ampliamente para determinar el

número mı́nimo de mediciones que se necesitan para garantizar la reconstrucción de las

señales originales. El análisis teórico revela el impacto de varios factores importantes, tales

como, el número de bloques, la esparsidad de las señales originales y el número total de

señales. También llevamos a cabo una simulación exhaustiva y los resultados numéricos

validan el análisis teórico y demuestran que la matriz COB propuesta, supera a la matriz

diagonal de bloques existente.

De lo observado en el caso espećıfico de COB, hemos hecho una generalización, de tal man-

era que el tamaño de la superposición puede ser elegido. Para COB generalizada, primero

demostramos que también satisface RIP con una cierta cuota para el número de medidas.

Además de los factores antes mencionados, investigamos el impacto del tamaño de la super-

posición. Los extensos resultados numéricos muestran que nuestro análisis nuevamente es

muy preciso.
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Finalmente, realizamos un análisis teórico para evaluar la capacidad de rendimiento y el

retraso en WSN basado en CS con la matriz de medición propuesta. En el análisis, primero

derivamos esquemas para dividir un área espećıfica en regiones de igual tamaño, luego de-

sarrollamos esquemas de acceso múltiple por división de tiempo (TDMA, siglas en inglés)

para facilitar dos escenarios de muestreo en WSN. Utilizando el análisis teórico, analizamos

con mas detalle el rendimiento de WSN utilizando valores en la red, tales como, el rango de

transmisión, la velocidad de datos, etc. Los resultados numéricos confirman que el esquema

de COB propuesto puede mejorar la capacidad de rendimiento y los retrasos en la red.
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Chapter 1

Introduction

1.1 About Compressed Sensing

Although many of the mathematical bases for Compressed Sensing (CS) had already been

found, it was professor Emmanuel Candès who started the recent studies. At the beginning

of 2004, Candès was trying to take away the noise that he added in the famous Shepp-Logan

Phantom image (similar to the one shown in Fig. 1.1). He decided to apply the technique

called l1 minimization to see if it could reduce a bit the simulated streaks in fuzzy images

that occur when a Magnetic Resonance Imaging (MRI) is not given the necessary time to

complete a scan. To his surprise, after the algorithm gave him the output, he observed that

the returned image was almost perfect in all details. Justin Romberg was a postdoc engaged

with Candès and they immediately began to work on answering why it happened. They

explained the situation to professor Terrence Tao and later, in June 2004, they submitted

a paper [1], which is considered as one of the two CS starting points. The other one was

submitted by Donoho [2] in September 18 of the same year, who was Candès’ doctoral advisor

and had been doing research for a long time on similar situation. These pioneers published
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Figure 1.1: Shepp-Logan Phantom image1

several papers in CS, and [3] is the most cited one.

We can see CS as a signal processing technique to get data and compress it at the same

time. Its main property is to make possible to reconstruct the signal efficiently by finding

solutions to under-determined linear systems.

An underdetermined system of linear equations, i.e., more unknown that equations, can be

represented as Ax = y where the size of A is M̃ × Ñ , x ∈ CÑ , y ∈ CM̃ and M̃ < Ñ .

By basic linear algebra we know that this type of system can be inconsistent or consistent

with infinitely many solutions. A vector x with at least S entries nonzero is called S-

sparse. Compressed sensing is related with reconstruct an S-sparse vector (or signal) x ∈

CÑ from Ax = y where A ∈ CM̃×Ñ is called the measurement matrix and the system is

underdetermined. In this case, it is clear that the system is consistent, i.e. there exist a

signal that was already sensing by A and represented by sample y, and therefore should has

solution. The problem is deciding which solution to select. The assumption of sparsity will

help to find the original vector x.

As mentioned before, the emerging of CS looks like by chance. However, it has attracted

significant attention because CS can help to manage the huge explosion of data collected

1Image taken from Wikipedia entry, copyright code: CC BY-SA 4.0.
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by a variety of sensors with high dimensionality. In an article of The Economist magazine

published in 2010 with title “The data deluge”, it is mentioned that “Everywhere we look,

the quantity of information in the world is soaring”. One simple example is the resolution of

digital cameras, which increases from 2 mega-pixel to 50 mega-pixel in a decade and keeps

increasing.

1.1.1 Compressed Sensing Problem

Formally the CS problem is: to find the vector x ∈ CN that is the unique S-sparse

solution of Az = y with y = Ax, that is, {z ∈ CN : Az = Ax, ‖z‖0 ≤ s} = {x}.

It is equivalent to: finding the vector x that can be reconstructed as the unique solution

of

minimize
z∈CN

‖z‖0 subject to Az = y. (P0)

There are two related cases to solve the compressed sensing problem, first is how to design a

stable measurement matrix such that the salient information in any s-sparse or compressible

vector is not damaged by the dimensional reduction from x ∈ CN to y ∈ CM . Another

case is the reconstruction algorithm to recover x from a small number of measurement, i.e,

M � N . In this dissertation we are focus in first case.

In both cases, let S be an index set. It can be proved that the set of (2s) × N matrices

such that det(A) = 0 form some S ⊂ [N ] with card(S) ≤ 2s has Lebesgue measure zero;

hence, most (2s)×N matrices allow the reconstruction of every s-sparse vector x ∈ CN from

y = Ax ∈ C2s.

Even having a reconstruction procedure, in practice, solving (P0) is not feasible. This is be-

cause a minimizer has sparsity at most s, the straightforward approach for finding it consists
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of solving every rectangular system ASu = y, or rather every square system A∗SASu = A∗Sy,

for u ∈ CS where S runs through all the possible subsets of [N ] with size s. The number
(
N
s

)
of these subsets if too large therefore this approach is completely unpractical. For example,

for N = 1000 and s = 10, we have to solve
(

1000
10

)
≥
(

1000
10

)
= 1020 linear system of size 10×10,

but solving those system in 10−10 seconds, the time to solve (P0) would be 1010 seconds, i.e.,

more than 300 years. In general, was proved by Natarajan in [4] that solving (P0) using any

possible approach is NP-hard.

There exist another procedure without use the straightforward approach which include a

partial Fourier matrix and is based on the Prony method [5]. This was know long before the

development of compressive sensing. But still this method hides some important drawbacks

and it is not stable with respect to sparsity defects nor is it robust with respect to measure-

ment errors. It was proved in [6] that any stable scheme for s-sparse reconstruction requires

at least

M ≈ cs log(eN/s) (1.1)

linear measurements, where c > 0 is a constant depending on the stability requirement.

To illustrate the process with our own example, we create a grayscale random 30× 40 pixel

image showing in figure 1.2 on left. The image can be represented as a signal x ∈ RN where

N = 1200. We select a 6% of signal sparsity, i.e., 72 non-white pixels. When we sample

it with a linear operator represented by a random 300 × 1200 matrix Φ and get y ∈ R300

as result, i.e., do y = Φx. And after give the sensing matrix Φ and sensed signal y to the

l1 solver program, it give us back the recover signal x∗. It search in RN space amount the

all possible solutions for the best one using the important property of x, be sparse. The

error reconstruction is ‖x− x∗‖2 ≤ 7.9 × 10−6, i.e., we can said, vuala, x has been exactly

recovered. The reconstruction figure is showing on right.

In this example, we choose 300 samples. However, with a lower sample value M̃ ≥ 72 ·
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(a) Original random grayscale image (b) Recovered random gayscale image

Figure 1.2: Compressed Sensing Example

log 1200 ≈ 221.70, CS should also work as demonstrated in [7] and [2], which prove the

bound in Eq. (1.1).

There are several applications where CS made a real impact and it is still being investigated

very actively. One of the best known is single pixel camera that had its first appearance in [8],

then it was improved in [9] and more recently in 2017 it has had a significant improvement

in [10] using the technique called Compressive Ultrafast Sensing (CUS).

After more than 10 years of research using CS, there are already very good notes like [11] ,[12],

[13] and [14] that can be used to introduce the topic. In addition, some books as [15] which

focus in all mathematical aspect of CS. Or [16] that present the theory in a more friendly

way and explain several applications including benefices and difficulties. There exists a book

dedicated to Wireless Networks [17] that shows how to incorporate efficiently the idea of CS

over assorted wireless network scenarios addressing all issues from an engineering perspective.

A book by the Springer publishing house that will be released by 2019 called “Compressed

Sensing: Applications to Communication and Digital Signal Processing” which focus in

generalization of CS to more structured signal models could be an important resource in the

developed of our future research.
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Sensor

Figure 1.3: A base representation of a Wireless Sensor Network (WSN)

1.2 CS in Wireless Sensor Networks

Wireless Sensor Network (WSN) is a key component in the emerging Internet of Things (IoT).

This technology can facilitate many important applications in real life, from environmental

monitoring to smart grid. In this study, we consider a WSN that consists of one static sink

and a total of N (or Ñ) static sensors as in figure 1.3. To design efficient WSNs, we aim to

apply CS technology to address two major issues: (1) the throughput capacity that is the

maximal data rate at which a WSN can collect data from a field, and (2) the delay that is

the duration from the time a signal is sensed to the time that the signal is a received by the

sink.

In the rest of this section, we will first discuss the data collection in WSN, and then we will

elaborate on the proposed scheme for applying CS in WSN.

1.2.1 Data collection models

In a WSN, a data collection model specifies the way that sensors send their reading informa-

tion to the sink, and it is considered the most essential issue that determines the performance

of WSN. For the throughput and delay of wireless network, there are already many existing

studies. To this end, one of the first studies is [18], in which the authors analyzed the ca-
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pacity of two types of wireless networks: arbitrary networks and random networks, and they

developed the theoretical bounds for capacity. Besides the capacity analysis, some studies,

e.g., [19], investigated the connectivity issues in randomly deployed wireless networks.

For the performance of WSN, one pioneer work was done in [20], in which the authors

analyzed the transport capacity of a data-gathering in WSN under one-to-one and many-

to-one communication pattern. They discovered that the per-node throughput is bounded

by

λ =
W

(2 + ∆)2N
,

where W is the maximum transmission rate of a sensor and ∆ represents the impact of

interference.

There are numerous approaches for improve the performance of WSN. For example, in [21]

and [22], the authors proposed to use mobile nodes, i.e., mobile sink and mobile relays,

to improve the performance. For instance, the authors in [21] and [22] showed that the

theoretical upper bound λ = W
N

can be achieved if the speed of sink is sufficiently large.

To further improve the throughput and delay performance, CS based data gathering schemes

have been proposed. To explain how CS can help to improve the performance, let us first

consider the traditional way to collect data from sensors to the sink through multi-hop relay

without CS. To this end, a simple example is showed in Figure 1.4. In this example, we

assume that there are three sensors and one sink, and that sensor s1 sends one message x1

to sensor s2, s2 has to forward message x1 and send its own message x2 to sensor s3, and

finally, the sink receives x1, x2 and x3 messages from sensor s3. In a scenario where there are

N sensors si, the sink will receive all N messages from the sensor that is nearest to the sink.

To take advantage of CS in WSNs, it is necessary that the sink will receive M coded messages

yj for j = 1, . . .M , where M < N . To collect data in WSN using CS, the first complete design

was proposed in [23], where the authors proposed a Compressive Data Gathering (CDG)
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Figure 1.4: Traditional data collection

scheme, which is illustrated in Figure 1.5. Basically, the sink will received M weighted sums

of all data xi from nodes si. For example, for the first one weighted sum y1, sensor s1 will

multiplies its data x1 with a random coefficient φ11 and send that product to the next sensor

s2; sensor s2 will do the same with its own data x2 by multiplying it with φ12 and send the

sum φ11x1 +φ12x2 to sensor s3; finally, sensor s3 also do the same for its own signal and then

send φ11x1 + φ12x2 + φ13x3 to the sink.

x1

s1

x2

s2

x3

s3

y

Sink

φ11x1

φ21x1

φ11x1 + φ12x2

φ21x1 + φ22x2

φ11x1 + φ12x2 + φ13x3

φ21x1 + φ22x2 + φ23x3

Figure 1.5: CS data collection

Let us assume that the sink can reconstruct N = 3 original signals if it receives M = 2

weighted sums y1 and y2, which are

y1 = φ11x1 + φ12x2 + φ13x3

y2 = φ21x1 + φ22x2 + φ23x3.

This example shows that CDG is better than the traditional data gathering scheme because

the sink only needs to receive two messages in CDG, while it needs to receive three message

in the traditional data gathering scheme.
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1.2.2 The measurement matrices for CS in WSNs

For the example we just discussed, we can represent the previous situation as y = Φx, where

x = [x1, x2, x3]T , y = [y1, y2]T and

Φ =

φ11 φ12 φ13

φ21 φ22 φ23

 , (1.2)

which is a full nonzero unstructured random matrix.

We can also observe from the example that, although sensor s1 will send more messages

in CDG than traditional model in Figure 1.4, sensor s3 will send less. In a general chain

topology, ifM � N , then the sensor that connects to the sink will send fewer messages, which

will increase the throughput and increase the network lifetime significantly. In addition, CDG

can also reduce the total number of transmitted messages. In theory, CDG needs to send

a total of Θ(MN) messages, while the traditional scheme needs to send Θ(N2) messages in

overall complexity.

In practice, sensors usually are deployed on a two-dimensional area. Moreover, the data

collection typically follows a tree topology. Figure 1.6 shows an example in which there are

four regions, each of which has one sub-tree for data collection.

Based on this tree topology, a full measurement matrix (like Eq. (1.2)) can be used with CDG.

However, if this approach is used, an important observation is that each of the B branches

or children of the sink has to send M measurements of the original signals and therefore the

sink will receive a total of BM > N messages, an obviously undesirable situation.

To avoid such a situation, [23] and most following studies assume that CS applies only to

individual sub-trees. In Figure 1.6, there are 4 sub-trees, so for each one of them, the data

collection presented in Figure 1.5 can be applied. In this way, the corresponding measurement
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Figure 1.6: WSN two-dimensional area

matrix is not a full matrix but a structured matrix. Specifically, the matrix is a block diagonal

(BD) matrix.

Before introduce our new matrix, let us see again the two-dimensional example, each fourth

regions around the sink collect M data messages, then we will have a measurement matrix

having a Block Diagonal (BD) structure



y1

y2

y3

y4


=



Φ1 0 0 0

0 Φ2 0 0

0 0 Φ3 0

0 0 0 Φ4





x1

x2

x3

x4


, (1.3)

where yi = Φixi for i = 1, . . . , 4 represents data sending by nodes in each of the four regions

to the sink. In general, if a WSN sink has J children, then the BD matrix will have J blocks,

each of which has a size M × N , and the BD matrix has a size of M̃ × Ñ , where Ñ = JN

10



and M̃ = JM .

1.2.3 Motivation

In the literature, the CDG has inspired many further investigation on CS-based data gath-

ering in WSN. In [24], the authors considered sparsity in time and space domains for real

dataset and they proposed a model using low-rank matrices. In [25], the authors inves-

tigated signals that follow a power-law decay model and they also proposed a new data

gathering scheme that explores the spatio-temporal sparsity and they showed that the life-

time improvements can be up to two times over CDG. Their proposal is supported when a

statistical characterization of the signal is available and thus a Bayesian inference [26] can

complement conventional CS methods. Although there are many existing studies, to the

best of our knowledge, none of them considers how to improve WSN performance by using

new structured measurement matrix other than the BD matrix.

Intuitively, if the BD matrix is used, each block will be used to capture the correlations of

sensor data collected from that region by linear equations. By exploiting the correlation,

particularly the sparsity (or compressible) feature, we may be able to reconstruct N signals

using M (M < N) measurements. Although this method is viable, it does not have a direct

way to capture the correlations of data collected from different regions.

This observation has motivated us to study new structure for measurement matrix such that

the correlation can be represented by linear equations. In addition, as we discussed before,

a proper measurement matrix for CS needs to satisfy certain property to effectively recover

the signals. This step was assumed in the CDG [23] and following studies, and later it was

considered in [27] where a formal proof was presented. This connection also motivates us to

carry out a comprehensive study to not only propose a new measurement matrix, but also

formally prove that it satisfies certain property and demonstrate that the new matrix can
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lead to better performance in WSN.

In this dissertation, we propose a novel framework for measurement matrix. Specifically,

the proposed matrix can improve CDG by redefining the blocks such that adjacent blocks

overlap. The main idea of the new matrix is shown in Figure 1.7, where region 2 on the right

overlaps with regions 1 and 3 on the left and so on. Corresponding to this new partitioning

scheme, we show how a BD matrix with 4 blocks can be transformed to an overlapped matrix

with 8 block in Figure 1.8.

�
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1 3

7 5

8 4

6

2

Figure 1.7: The partitioning of a square field.




⇒





⇒

⇒

⇒

⇒

⇒




Figure 1.8: From BD to COB matrix

From this example, we can observe that some correlations of signals in region 1 and 3 can

be directly represented by linear equations for region 2. Consequently, it is possible to use

the new matrix to achieve a better performance than the performance of BD, in terms of

the number of measurements M that are needed to recover the signal.
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1.3 Objectives

The main objective in this research is to corroborate the observed hypothesis, i.e., it is

possible to improve the performance of BD, in terms of the number of measurements M

needed to recover the signal, by using the proposed matrix with overlapping blocks. To

achieve this goal, we will develop formal proof to show that the proposed matrix satisfies

the Restricted Isometric Property (RIP) and we plan to verify the proof through numerical

experiments.

In our study, the second objective is to conduct theoretical analysis to evaluate the through-

put and delay performance of CS-based WSN with the proposed measurement matrix.

1.4 Methodology

To prove the RIP property we are trying to use similar techniques developed in [27] and

[28]. To reach that, we will analyze the material presented by Foucart & Rauhut in the

book [15]. We will also study another book called “Compressed Sensing, Theory and Appli-

cations” [16]. Finally, we will investigate [29], which introduces a mathematical view of CS

focusing specifically on recovery algorithms using l1-minimization and structured random

matrices.

At the same time, we will doing some experiments to figure out under which parameters the

proposed matrix satisfies the RIP and show the differences comparing with the BD matrix

presented in [27].
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1.5 Thesis Outline

Chapter 2 includes a literature review of structure matrices and their theoretical bases that

allow them to be used in CS. A table with the summary of all matrices in the review, the

bound in the hypothesis of the theorem that makes it eligible to comply with RIP, as well

as their respective references are presented in section 2.4. Some conclusions to the structure

matrices review is presented in section 2.5.

Chapter 3 presents definition of the proposed cyclic overlapping block diagonal structure

matrix in section 3.1. The whole section 3.2 gives a detailed list of steps to reach one of

our main results, the property that guarantees our matrix can be used in CS. An important

lower bound to the number of measurement needed to recover signals using our matrix is also

presented in this section. Finally, in section 3.3, we use numerical experiments with empirical

signal recovery through a minimizer program, to find the minimal number of measurements

needed to recover signal using our proposed matrix. Those experiments validated each factor

in the lower bound.

Chapter 4 describes all about the generalization of our new matrix and creates the propose

Framework for CS. Section 4.1 gives the definition an their relations with others structures

matrices. It includes figures where can observed the behavior when the structure becomes

an unstructured matrix. Section 4.2 present the theoretical analyzes that guarantee its use

in CS. Last section 4.3, is used to do numerical experiment with the framework.

Chapter 5 aims a way to apply CS in Wireless Sensor Networks using our proposed frame-

work. In sections 5.3 and 5.4 the model is presented with its data collection scheme that

applies CS technique as well as its partition and schedule analyses. In section 5.5, numerical

experiments of scheme performance are included as another main result. Those results shows

improvements on network throughput and delays with a standing performance over the other

14



model.

Finally, Chapter 6 presents the conclusions of this work as well as indicates possible paths

for future research.
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Chapter 2

Literature Review

In this chapter, we will present a survey of structured matrices for CS measurement. Over

the past decade, CS has been used in a lot of application areas, including wireless channels,

analog sampling hardware, sensor networks and optical imaging. In CS, the traditional

measurement matrix is called the unstructured matrix, in which every entry is a non-zero

random variable. To improve the performance of CS, various structured matrices have been

proposed.

Before we start, let us present some definitions and properties from linear algebra and matrix

analysis to get a better understanding of the review.

2.1 Definitions and properties

Throughout the dissertation, we refer to the set of positive integers up to N as [N ], and

we let vec(A), where A is an M ×N matrix, represent the vectorization of a matrix, i.e., a

linear transformation which converts the matrix into a column vector with size MN × 1 by
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stacking the columns of the matrix as

vec(A) = [a11, a21, . . . , aM1, a12, a22, . . . , aM2, a1N , a2N . . . , aMN ]T . (2.1)

Definition 1. A nonnegative function ‖·‖ : X → [0,∞), where X = RN or X = CN , is

called a norm if

1. (Definiteness) ‖x‖ = 0 if and only if x = 0.

2. (Homogeneity) ‖λx‖ = |λ| ‖x‖ for all scalars λ and all vectors x ∈ X.

3. (Triangle inequality) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all vectors x, y ∈ X.

A function holding 1 and 2 but 3 is replaced by the weaker quasi-triangle inequality

‖x+ y‖ ≤ C (‖x‖+ ‖y‖) ,

for some constant C > 1, it is called a quasinorm. The smallest C is called its quasinorm

constant.

Definition 2. The lp-norm (or simply p-norm) for x ∈ RN or x ∈ CN with 1 ≤ p < ∞ is

equal to

‖x‖p :=

(
N∑
j=1

|xj|p
)1/p

,

and for p =∞

‖x‖∞ := max
j∈[N ]
|xj|.

For 0 < p < 1, ‖x‖p defines a quasinorm with constant C = 21/p−1.
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2.1.1 Sparsity and Compressibility

The sparsity concept in CS is critical, it is the essential measure of signal complexity, and

roughly speaking plays the same role in CS that bandwidth in the classical Shannon-Nyquist

theory.

Definition 3. The support of a vector x ∈ CN is the index set of its non-zero entries,

supp(x) = {j ∈ [N ] : xj 6= 0}.

Definition 4. A vector x ∈ CN is called S-sparse if at most S of its entries are nonzero.

In term of the support is,

‖x‖0 := card(supp(x)) ≤ S.

The cardinality of a set A is represented as card(A). The expression ‖x‖0 is used abusively

because is not a norm or quasinorm. We can see it like a limit as p decrease to zero of the

pth power of lp-quasinorm of x.

In real work the concept of sparsity is hard to get, therefore, let’s introduce the weaker

concept of compressibility, where we can consider signals almost S-sparse. To do that, we

first introduce one way to measure if a vector x is nearly S-sparse with the following error.

Definition 5. For p > 0, the lp-error of the best S-term approximation (EBTA) to a vector

x ∈ CN is defined by

σS(x)p := inf{‖x− z‖p , z ∈ CN is S-sparse}.

Note: The infimum may not be unique, is independently of p > 0 and σs(x)p is reached

by an S-sparse vector z ∈ CN where its nonzero entries are equal to the S largest absolute

18



entries of x.

Proposition 1. For any q > p > 0 and any x ∈ CN ,

σS(x)p ≤
1

S1/p−1/q
‖x‖p . (2.2)

The proof needs a useful and natural definition based on the note given above.

Definition 6. The nonincreasing rearrangement of the vector x ∈ CN is the vector x∗ ∈ RN

for which

x∗1 ≥ x∗2 ≥ · · · ≥ x∗N ≥ 0

and there is a permutation π : [N ]→ [N ] with x∗π(j) = |xπ(j)| for all j ∈ [N ].

Proof. If x∗ ∈ RN
+ is the nonincreasing rearrangement of x ∈ CN , we have

δs(x)qq =
N∑

j=s+1

(x∗j)
q =

N∑
j=s+1

(x∗j)
q−p(x∗j)

p

≤ (x∗s)
q−p

N∑
j=s+1

(x∗j)
p

≤

(
1

s

s∑
j=1

(x∗j)
p

) q−p
p
(

N∑
j=s+1

(x∗j)
p

)

≤
(

1

s
‖x‖pp

) q−p
p

‖x‖pp

=
1

s
q
p
−1
‖x‖q−pp ‖x‖pp .

δs(x)qq ≤
1

s
q
p
−1
‖x‖qp

δs(x)q ≤
(

1

s
q
p
−1

)1/q

‖x‖p

δs(x)q ≤
1

s1/p−1/q
‖x‖p .
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For now, we can call x ∈ CN a compressible vector if the EBTA decays quickly as S. From

previous proposition and EBTA definition, compressible vectors belongs to the unit lp-ball

for some small p > 0,

BN
p := {z ∈ CN : ‖z‖p ≤ 1}.

In particular, the non-convex ball BN
p for p < 1 serve as good models for compressible

vectors.

2.1.2 Some Probability Theory

A probability space is represented by (Ω,Σ,P) where Σ denotes an algebra on the sample

space Ω and P a probability measure on (Ω,Σ). The probability if an event B ∈ Σ es denoted

by

P(B) =

∫
B

dP(ω) =

∫
Ω

IB(ω)dP(ω). (2.3)

Boole’s inequality, also known as the union bound, says that for any finite or countable set

of events, the probability that at least one of the events happens is no greater than the

sum of the probabilities of the individual events. Formally, for a countable set of events

A1, A2, A3, . . ., we have

P

(⋃
i

Ai

)
≤
∑
i

P(Ai). (2.4)

The expectation or mean of a random variable X is denoted by

EX =

∫
Ω

X(ω)dP(ω). (2.5)

The values EXp for integer p are called moments of X, while E|X|p, for real-valued p > 0,
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are called absolute moments. The quantity

E(X − EX)2 = EX2 − (EX)2 (2.6)

is called variance.

For 1 ≤ p <∞, (E|X|p)1/p defines a norm on the Lp(Ω,P)-space.

The binomial distribution is the discrete probability distribution counting the number

of successes in a sequence of N independent experiments where the probability of each

individual success is p. If X has the binomial distribution, then

P(X = k) =

(
N

k

)
pk(1− p)N−k. (2.7)

The expectation of X is given by EX = pN . If pN is an integer, then the median

M = M(X) coincides with the expectation M(X) = pN .

A normally distributed random variable or Gaussian random variable X has probability

density function

ψ(t) =
1√

2πσ2
exp

(
−(t− µ)2

2σ2

)
. (2.8)

The mean of a Gaussian random variable is EX = µ and its variance E(X − µ)2 = σ2.

The Bernoulli distribution is a discrete probability distribution having two possible out-

comes labelled by n = 0 and n = 1 in which n = 1 (“success”) occurs with probability

p and n = 0 (“failure”) occurs with probability q = 1 − p, where 0 < p < 1. Its

probability density function is

P (n) =


1− p for n = 0

p for n = 1,

21



or, P (n) = pn(1− p)n.

Rademacher distribution is a discrete probability distribution where a random variate

X has a 50% chance of being either +1 or −1. Its probability mass function is

f(k) =


1/2 if k = −1,

1/2 if k = +1,

0 otherwise.

It can be also written as a probability density function, in terms of the Dirac delta

function, as f(k) = 1
2

(δ(k − 1) + δ(k + 1)).

A random variable Z is sub-Gaussian if its norm,

‖Z‖ψ2
:= sup

p≤1

1
√
p
Ep|Z|,

is finite.

2.1.3 Other CS related language

The property called RIP and U-RIP defined below is one of the mayor contribution in CS

theory in [7], it basically helps to show that a linear transformation behaves as an isometric.

Definition 7. The Restricted Isometry Constant (RIC) of a matrix A ∈ Rm×N is defined

as the smallest positive number δS for which

(1− δS) ‖x‖2
2 ≤ ‖Ax‖

2
2 ≤ (1 + δS) ‖x‖2

2 for all x with ‖x‖0 ≤ S. (2.9)

Many interesting signals, audio, video, MRIs images or pictures in general are sparse or
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compressive, i.e., have a low-dimensional geometric structure and can be represented by a

properly base with much lower dimension that the original one. That can be exploited to

design efficient signal acquisition and recovery methods.

The CS theory let sensing and compressing the signal directly in one step. It is well know

now that sparse signals, i.e., signals with few nonzero entries, can be recovery with high

probability from a small number of linear measurements using convex optimization problem

but just if the measurement linear process system satisfies RIP. Basically, RIP helps to figure

out that the measurement transformation process can preserve the geometry property from

the signal space to the new measurement space.

If the signal is not directly sparse and it can be represented by a basis then the property

has a little change. Let be x ∈ RN and U an orthonormal basis such that x = Uα were α is

a sparse signal, then we will work with U∗x = α. The following alternative RIP property is

presented

Definition 8. Let U denote an orthobasis for CN . The RIC of a matrix A ∈ RM×N in the

basis U , is defined as the smallest positive number δS for which

(1− δS) ‖x‖2
2 ≤ ‖Ax‖

2
2 ≤ (1 + δS) ‖x‖2

2 for all x with ‖U∗x‖0 ≤ S.

A matrix A satisfies the restricted isometry property if δS is small for reasonably large S.

The meaning of small δS and large value S, we will see later in chapter 3 where RIP for our

matrix is proved.

The will use the notion of semi-order in this dissertation, i.e., a . b means that there is an

absolute constant C1 such that a ≤ C1b. If C1 depends on some parameter c, we will write

as a .c b. Also a & b and a &c b are defined similarly.

A set C(S, ‖·‖ , r) is called a cover for the set S at resolution r with respect to the metric
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‖·‖ if for every x ∈ S, there exists x′ ∈ C(S, ‖·‖ , r) such that ‖x− x′‖ ≤ r. The minimum

cardinality of all such covers is called the covering number of S at resolution r and with

respect to the norm ‖·‖, denoted by N (S, ‖·‖ , r).

One way to analyze the recovery algorithms in Compressive Sensing (CS) involves a value

that measures how good is the measurement matrix. That value is called Coherence, and

in general, if it is smaller, better performance in the algorithm. One of the first paper with

the concept was [30]. They called a measure of the mutual coherence of two bases. That

concept come from the fact of choose a suitable base to the original signal through the simple

concept in linear algebra, change of basis. The coherence is related with the angle between

any two vectors, roughly speaking, it is the cosine of the minimum angle between any two

columns of the basis. More precisely, the mutual coherence is the maximum absolute value

of the inner product between any two normalized columns.

Definition 9. Let Φ and Ψ be orthonormal bases for RN the mutual coherence between Φ

and Ψ is defined as

µ(Φ,Ψ) = sup
φk∈Φ,ψj∈Ψ

|〈φk, ψj〉|, (2.10)

where φk and ψj represented matrix columns.

If two bases have a very small value they are mutually incoherent. It is obvious that value is

between 0 and 1. If two bases have element in common, the measure will be 1.

Lemma 1. For any pair of orthonormal bases, φ1 and φ2 of RN

µ(φ1, φ2) ≥ 1/
√
N.

Proof. Because φ1 and φ2 are orthonormal bases, we have that φT1 φ1 = φ1φ
T
1 = I and

φT2 φ2 = φ1φ
T
1 = I. That implies that the matrix φT1 φ2 is an orthonormal matrix, i.e.,

(φT1 φ2)TφT1 φ2 = φT2 (φ1φ
T
1 )φ2 = I. The sum of squares of entries in an orthonormal matrix
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is N ; the average squared entry is, therefore, 1/N ; the maximum entry is therefore at least

1/
√
N .

In [11], the two orthobases Φ and Ψ for RN are used for sensing and signal representation

respectively.

Definition 10. The coherence between the sensing basis Φ and the representation basis Ψ is

µ(Φ,Ψ) =
√
n max

1≤k,j≤n
|〈φk, ψj〉|. (2.11)

The coherence measures the largest correlation between any two elements of Φ and Ψ. If Φ

and Ψ contain correlated elements, is large, otherwise is small. In this case, µ(Φ,Ψ) ∈ [1,
√
n].

The main result in [27] use the coherence to bound the number of measurements for BD

matrices based in the basis in which the signal have a sparse expansion.

Definition 11. Let U ∈ CÑ×Ñ be a matrix with l2-normalized columns a1, . . . , aN , i.e.,

‖ai‖ = 1 for all i ∈ [N ]. The coherence µ = µ(A) of the matrix A is defined as

µ(U) :=
√
Ñ max

p,q∈[N ]
|U(p, q)|, (2.12)

where U(p, q)is the (p, q)th entry of U . Also, we can see µ as the similarity between U and

the canonical basis as (2.11). If {uñ} and {eñ}, ñ ∈ [Ñ ], denote the columns of U and of the

canonical basis for CÑ , respectively, then

µ(U) :=
√
Ñ max

p,q∈[Ñ ]
|〈up, eq〉|. (2.13)
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2.2 Structured Random Matrices

2.2.1 Fourier Matrices

A Fourier Matrix can be defined as W =
(
wjk√
N

)
for j, k = 0, 1, 2, . . . , N − 1, and normalized

by 1/
√
N to make it a unitary. or equivalently:

W =
1√
N



1 1 1 1 · · · 1

1 w w2 w3 · · · wN−1

1 w2 w4 w6 · · · w2(N−1)

1 w3 w6 w9 · · · w3(N−1)

...
...

...
...

. . .
...

1 wN−1 w2(N−1) w3(N−1) · · · w(N−1)(N−1)


where w = e−2πi/N , is a primitive Nth root of unity which i =

√
−1.

2.2.2 Circulant Matrices

A very special and important type of matrices found in CS are those calls Circular Matrices,

“is one in which the components of a vector in RN or CN are repeated again and again, but

with a shift in position” [31]. Special because its structure and important because they are

diagonalized by a discrete Fourier transform.
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

c0 cn−1 . . . c2 c1

c1 c0 cn−1 c2

... c1 c0
. . .

...

cn−2
...

... cn−1

cn−1 cn−2 · · · c1 c0


(2.14)

The Circular Convolution operation is defined as

Definition 12. Let be x, z ∈ CN by

(z ~ x)j :=
N−1∑
k=0

zj	kxk, for j = 0, . . . , N − 1,

where j 	 k = j − k mod N is the cyclic subtraction.

2.3 Structured Matrices and its RIP bounds

The simple way that originally CS was presented, complicated mathematical techniques and

tools were needed for its analysis. Some years later, the developed of probability bounds

analysis and together with the relation of some theories already found and somewhat forgot-

ten in mathematics, make the way to analyze the RIP property much more accessible and

practical. Even better, now it is possible to solve some real-world signal acquisition chal-

lenges where structure matrices are used, saving time and resources to researches proving

that their model satisfies CS requirements.

A good point to start with this survey is a review made in [32] where they show four

available alternatives for structured CS matrices. They present and cite references to known

performance guarantees, as well as areas of application where those structures arose.

27



Sub-Sampled Incoherent Bases (SIB)

The first one is for sub-sampled incoherent bases where the key concept of the coherence of

a frame (the linear algebra frames) is extended to pairs of orthonormal bases. The theorems

that guarantee which are:

Theorem 1. Let x = Ψθ be a S-sparse signal in Ψ with support Ω ⊂ [N ], |Ω| = S, and

with entries having signs chosen uniformly at random. Choose a set Γ ⊆ [N ] uniformly at

random for the set of observed measurements, with M = |Γ|. Suppose that

M ≥ C · S · µ2(Φ,Ψ) · log(N/δ) and M ≥ C ′ log2(N/δ),

for fixed values of δ < 1, C, and C ′. Then with probability at least 1− δ, θ is the solution of

the L1 minimization problem or basis pursuit (BP).

The extended result for compressible signals is

Theorem 2. Choose a subset Γ ⊆ [N ] for the set of observed measurements, with M = |Γ|.

Suppose that

M ≥ C · S · t · µ(Φ,Ψ) ·
√
N · log2 S · log(t · S logN),

for a fixed value of C. Then with probability at least 1 − 5e−t the matrix ΦTΨ has the RIP

with constant δ2S ≤ 1/2.

The very important applications are magnetic resonance imaging (MRI), and tomographic

imaging and optical microscopy. Another is used in new acquisition hardware that can obtain

projections of the signal against a class of vectors. They are a class of single pixel imagers

based on optical modulators and the random sampling ADC.
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Structurally Subsampled Matrices (SSM)

Over many applications when measurements are obtained by the hardware, they do not

correspond to a sensed coefficients in a particular transform. However, what does happen

is that observations are linear combinations of multiple coefficients of the signal, this giving

rise to a type of structured matrix. The supported theorem is:

Theorem 3. Let Φ be a structurally sub-sampled matrix of size M × N obtained from the

basis U and the p×N mixing matrix R = SM via randomized sub-sampling. Then for each

integer S > 2, any z > 1 and δ ∈ (0, 1), there exist absolute positive constants c1, c2 such

that if

M ≥ c1 · z · S · µ2(U,Ψ) ·N · log2 S · log3N,

the the matrix Φ has the (s, δ)-RIP with probability at least

1− 20 max{e−c2δ2z, N−1}.

The compressive ADCs with the first step as the random demodulator (RD) employs this

structurally.

Structurally Circulant Matrices (SCM)

Applications in communications were the first one in CS use circulant or more general

Toeplitz matrices. Some are channel estimation and multi-user detection. Compared with

generic CS matrices, sub-sampled circulant matrices have a very small degree of freedom

because the matrix can be represented by only one vector.

Theorem 4. Let Φ be a subsampled circulant matrix whose distinct entries are independent

random variables following a Rademacher distribution, and R is an arbitrary M×N identity
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submatrix. Furthermore, let δ be the smallest value for which RIP holds for all x ∈
∑

S.

Then for δ0 ∈ (0, 1) we have E{δ ≤ δ0} provided that

M ≥ C max{δ−1
0 S3/2 log3/2N, δ−2

0 S · log2 S · log2N}

where C > 0 is a universal constant. Furthermore, for 0 ≤ λ ≤ 1,

P (δS ≥ E{δ}+ γ) ≤ eγ
2/σ2

, where σ2 = C ′
S

M
log2 S · logN,

for a universal constant C ′ > 0.

Separable Matrices (SM)

For very large signal, the separable matrices will give a nice opportunity to apply CS and

measurement it adequately. Applications coming from hyper-cube sampling from multidi-

mensional data are using this structure. The single pixel camera extension to hyper-spectral

imaging and the transform imager, an imaging hardware architecture that implements a

separable CS matrix, are examples that use this CS structure.

The usual way to represent the matrix is using Kronecker products where the similarity

between blocks made it easy to obtain bounds.

Lemma 2. Let Φd, 1 ≤ d ≤ D, be matrices that have the (S, δd)-RIP, 1 ≤ d ≤ D, respec-

tively. Then Φ =
⊗D

i=1 Φi, has the (S, δ)-RIP, with

δ ≤
D∏
d=1

(1 + δd)− 1.

Start to think about structured matrices was a natural process to follow after original CS

developed. An important step in signal processing is data acquisition, choosing an efficient
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and universal one will help to save time and computer capabilities. Romberg in [7], one

author of the original paper about CS, presented in 2009 a result using an original structure

matrix where convolving the signal of interest with a random pulse and then randomly

subsampling, give him the opportunity to create a new framework for CS. He describes the

two scenarios where researches can works, measurement by random waveforms and random

sampling from an incoherent orthobasis. His proposal used the last one.

When random sampling from an incoherent orthobasis is used, two basis are involved, one

for sampling and another for the representation on the signal. Therefore, it is necessary to

quantify this relationship since the number of measurements will depend on that. As it is

mentioned in its name process, the mutual coherence defined in 9 will be used and appears

in the number of measurements as an important factor

M & µ2 · S · logN. (2.15)

Note that to reach the standard CS result M & S · logN , the mutual coherence should be

close to 1, i.e., the basis will be mutual incoherence.

The steps of the random convolution process are summarized as

H =
√
NF ∗ΣF, (2.16)

where F is a discrete Fourier matrix and Σ has a special definition of a diagonal matrix,

see [33] for details. The construction made H orthogonal and it can interpret convolution

with a pulse as a transformation into a random orthobasis.

H∗H =
(√

NF ∗ΣF
)(√

NF ∗ΣF
)∗

= N−1F ∗Σ∗FF ∗ΣF = N · I,

which is getting because FF ∗ = F ∗F = N · I and Σ∗Σ = I.
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Next, two methods are included to compress, named, sampling at random locations and

Randomly Pre-Modulated Summation (RPMS) which give him the following two results. Let

us call the whole process as Random Convolution and Compress (RCC).

Theorem 5. Let Ψ be an arbitrary orthonormal signal representation. Fix a support set Γ

of size |Γ| = S in the Ψ domain, and choose a sign sequence z on Γ uniformly at random.

Let α0 be a set of Ψ domain coefficients supported on Γ with signs z, and take x0 = Ψα0

as the signal to be acquired. Create a random convolution matrix H as described above, and

choose a set of sample locations Ω of size |Ω| = M uniformly at random with

M ≥ C0 · S · log(N/δ) (2.17)

and M ≥ C1 log3(N/δ), where C0 and C1 are known constants. Set Φ = RΩH, where RΩ is

the restriction operator over Ω. Then, given the set of samples on Ω of the convolution Hx0,

y = Φx0, the convex l1-minimization will recover α0 (and hence x0) exactly with probability

exceeding 1− δ.

Theorem 6. Let Ψ, Γ, α0, x0, and H be as in Theorem 5. Create a random pre-moduled

summation matrix PΩ as described in Section 1.2.1 in [33] that outputs a number of samples

M with

M ≥ C0 · S · log2(N/δ) (2.18)

and M ≥ C1 log4(N/δ), where C0 and C1 are known constants. Set Φ = PΘH. Then,

given the measurements y = Φx0, the convex l1-minimization will recover α0 (and hence x0)

exactly with probability exceeding 1− δ.

What can be seen from this article is a very important theoretical strategy to sensing since

this random convolution construction is universal and allows fast computations. On this

theoretical basis in the same article, they propose two important topics in which it can be

applied and show their description of their use, those are Radar Imaging and Fourier Optics.
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The next one is where I start knowing about compressed sensing, and more specifically,

when it involves structure matrices. Two related types of structured measurement matrices

were described there having a diagonal block structure. One is when the blocks are different

called Distinct Block Diagonal (DBD), and the other when blocks are equal called Repeated

Block Diagonal (RBD). In both cases, each block on the diagonal is itself a sub-Gaussian

random matrix satisfying RIP. The number of measurements in each case depends on the

signal basis. A very important issue about these types of matrices is that, for specific basis

cases, perform nearly as well as dense Gaussian random matrices without being affected by

the amount of non-zero elements.

For the structure of the matrix, let us use J,N and M positive integers and set M̃ := JM

and Ñ := JN . The model vector x ∈ CÑ is partitioned into J blocks of length N , i.e,

x = [xT1 , . . . , x
T
J ]T where xj ∈ CN , j ∈ [J ]. For each j, they suppose that a linear operator

Φj : CN → CM collects the measurements yj = Φjxj. Concatenating all of the measurements

into a vector y ∈ CM̃ , the overall measurement operator relating y to x, i.e. y = Ψx, will

have a block diagonal structure as it is shown in the following system:



y1

y2

...

yJ


︸ ︷︷ ︸
y: M̃×1

=



Φ1

Φ2

. . .

ΦJ


︸ ︷︷ ︸

Ψ: M̃×Ñ



x1

x2

...

xJ


︸ ︷︷ ︸
x: Ñ×1

. (2.19)

Their main result shows that the number of measurements depend on the base in which the

vector is sparse. They showed that those matrices perform nearly as well as dense Gaussian

random matrices.

Formally, let Ψ ∈ CM̃×Ñ denote a matrix as defined in (2.19). And let each block Φj

for j ∈ [J ] be a different unstructured random matrix populated with i.i.d. sub-Gaussian
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random variables having mean zero, standard derivation 1/
√
M , and sub-Gaussian norm

τ/
√
M , for some τ > 0.

Theorem 7. Let U denote an orthobasis for CÑ and set

µ̃(U) := min
(√

J, µ(U)
)
, where µ(U) =

√
Ñ max

p,q∈[Ñ ]
|U(p, q)|.

If S & 1 and

M̃ &τ δ
−2 · µ̃2(U) · S · log2 S · log2 Ñ ,

then δS(Ψ, U) ≤ δ < 1, except with a probability of at most O(Ñ− log Ñ log2 S).

The applications for this type of structure matrices are principally to represent acquisition

systems with architectural constraints that prevent global data aggregation. An important

case, which was the one that attracts our attention, is distributed sensing systems where

communication and environmental constraints limit the dependence of each sensor to only

a subset of the data. Another one could be, in streaming applications where signals have

data rates that necessitate operating on local signal blocks rather than on the entire signal

simultaneously.

Another interesting structure quite similar to previous block diagonal is one proposed by

Castorena in [28] called Banded Random Matrix (BRM). That type of matrix structure

appears in the literature by Wigner mentioned in 1955. The formal definition used in the

paper is taken from one of the most used and classic text book in computer science in matrix

computations [34]. The structure is depicted in Figure 2.1.

The matrices are defined as Φ̃ ∈ CM×N with entries obtained from a random probability

distribution with a centered band and zeros elsewhere. There are two main parameters that

define the band, bv ∈ [M ] and bh ∈ [N ], the vertical and horizontal bands respectively.

Furthermore, the parameter bs ∈ [bh] is important, which determines the amount of shifting
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Φ̃ =

︸ ︷︷ ︸
bs

︸ ︷︷ ︸
bh︸ ︷︷ ︸

N

}
bv

M

Figure 2.1: A banded random matrix structure of dimension M ×N .

present between subsequent rows. From this parameter, it is understood that bv = bh/bs ∈ Z.

The main RIP result is presented in Theorem 8.

Theorem 8. A Banded Random Matrix Φ̃ ∈ CM×N with band parameters bh ∈ [N ], bs ∈

[bh] and bv = bh/bs, satisfies the RIP with constant δ > δS and with probability at least

1− 4 exp(−cδ2bv/β) for c > 0 if the number of measurements satisfies

M ≥ dC · S · β(log(N/S) + 1) +N/bse − 1. (2.20)

Here, the constant C > 0 is small and depends upon the parameter δ ∈ (0, 1), on the sub-

Gaussian norm of its entries, and on c. Furthermore β is given by

β =


1 for S = 1, or S ≤ bs, bh

1− (S−bs)(S+bs)
3bh(S−1)

for bs ≤ S ≤ bh

b2s+3S(bh−1)−b2h
3S(S−1)

for S > bh.

The application of this matrix is concerned with CS sampling architectures models, such

as random demodulator, the parallel non-interleaved, the random sampler, periodic non-

uniform sampling, coded aperture camera and coded exposure camera. Some more informa-

tion about all this process and their references, can be found over the paper.
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A framework to construct fast and efficient sensing matrices for practical applications in CS

were developed in [35]. The matrix in the framework, called Structurally Random Matrix

(SRM), is going to be the product of three matrices

Φ =

√
N

M
DFR. (2.21)

Each matrix in this composition represents a step in the process to apply CS and help improve

the performance on recovering algorithms. From right to left, R has the responsibility to

do a pre-randomization, either flipping its sample sign on its signal’s elements or uniformly

permuting its sample locations.

The flipping process is doing with a diagonal matrix of Bernoulli random variables where

flip the sign’s signal locally. The uniformly random permutation step will use a random

permutation matrix that scrambles the signal’s sample locations globally.

The matrix F is going to take the role of doing a fast transformation, it is well known the

fast calculations using a Fourier matrix, but it can be visualized like any other that does it

fast. The last one D does the sub-sampling, it will pick M measurements randomly from

the already transformed coefficients. The theoretical result presented with this framework

is backed by the following theorem.

Theorem 9. With probability at least of 1− δ, the proposed framework employing the local

randomizer can reconstruct S-sparse signals exactly if the number of measurements is

M &
N

B
· S · log

(
N

δ

)
and M &

N

B
log3

(
N

δ

)
, (2.22)

where 1 ≤ B ≤ N come from F as the maximal absolute magnitude of the entries in the

order of O
(

1√
B

)
, i.e,

max
1≤i,j,≤N

|Fi,j| =
c√
B

(2.23)
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for some positive constant c.

If F is a dense and uniform matrix (e.g., DCT or normalized WHT), the sufficient conditions

becomes

M & S · log

(
N

δ

)
and M & log3

(
N

δ

)
. (2.24)

The proposed framework will perform as other frameworks where optimal performance is

guaranteed.

The way that we are proving COB and its generalization was inspired by the work of Eftekhari

et al. in [27], but actually, the main result there to prove RIP for BD was using a theorem

established by Krahmer et al. in [36]. The theorem was used to improve measurement bounds

obtaining RIP for two structure matrices named partial random circulant matrices (PRC)

and time-frequency structured random (TFS) matrices. The recovery property probability is

supported by Theorems 10 and 11 respectively.

To describe PRC, let H = Hz ∈ CN×N be a circulant matrix associated with z given by

Hz = z~x and with entries Hjk = zj	k, where ~ and 	 are operations defined in 12. And let

be Ω ⊂ [N ] with |Ω| = M and RΩ : CN → CM the operator that restricts a vector x ∈ CN to

its entries in Ω. The associated partial random circulant matrix is given by Φ = M−1/2RΩHε

and acts on vectors x ∈ CN via

Φx =
1√
M
RΩ(ε~ x), (2.25)

where ε is a Radamacher vector. The matrix Φ can be see as a circulant matrix generated

by a Rademacher vector, where the rows outside Ω are removed.

And now to describe (TFS), let us define the translation and modulation operator on CM

as (Th)j = hj	1 and (Mh)j = e2πij/Mhj = wjhj, where w = e2π/M and 	 denotes cyclic
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subtraction module M . The time-frequency shift are given by

π(λ) = M lT k, λ = (k, l) ∈ Z2
M = {0, . . . ,m− 1}2. (2.26)

For h ∈ CM \ {0} the system {π(λ)h : λ ∈ Z2
M} is called Gabor system and the M ×M2

matrix Ψh whose columns are the vectors π(λ)h for λ ∈ Z2
M is called a Gabor synthesis

matrix,

Ψh = [π(λ)h]λ∈Z2
M
∈ CM×M2

. (2.27)

Theorem 10. Let Φ ∈ RM×N be a draw of a partial random circulant matrix generated by

a Rademacher vector ε. If

M & δ−2 · S · log2 S · log2N, (2.28)

then with probability at least 1−N− logN ·log2 S, the RIC of Φ satisfies δS ≤ δ.

Theorem 11. Let ε be a Rademacher vector and consider the Gabor synthesis matrix Ψh ∈

CM×M2
generated by h = 1√

M
ε. If

M & δ−2 · S · log2 S · log2M, (2.29)

then with probability at least 1−M− logM ·log2 S, then RIC of Ψh satisfies δs ≤ δ.

The applications for PRC are system identification, radar and cameras with coded aperture.

Meanwhile, applications for TFS or Gabor synthesis matrices include operator identifica-

tion (channel estimation in wireless communications), radar and sonar. See the paper for

references over those applications.

The last paper for now, we hope to work with more structures later, was selected because it

was published recently, April 2018, and motivated us to continue our research. In addition,

its model signals with corrupted measurements not discussed until now.
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Two structured matrices are presented, one called Randomly Modulated Unit-Norm Tight

Frames (MUTF) and the second one was already discussed using Randomly Subsampled

Orthonormal System. We show here just the first one and referred the reader to the paper

for the other one.

The matrix in MUTF can be written as A = UDB̃, where U ∈ CM×Ñ is a UTF with

µ(U) ∼ 1/
√
M , D = diag(ξ) is a diagonal matrix with ξ being a length-Ñ random vector

with independent, zero mean, unit-variance, and L-subgaussian entries, and B̃ ∈ CÑ×N ,

Ñ ≥ N , represent a column-wise or orhonormal matrix. i.e., B̃∗B̃ = I.

The result that guarantees recovery signals with high probabilities is Theorem 12.

Theorem 12. Suppose y = Ax∗ + z∗ + w with Θ = [A, I] ∈ CM×(N+M), A = UDB̃ and

µ(U) ∼ 1/
√
M . If, for δ ∈ (0, 1),

M & δ−2 · S · Ñ · µ2(B̃) · log2 S · log2 Ñ , (2.30)

M & δ−2 ·K · log2K · log2 Ñ , (2.31)

where K is the sparsity of z, then with probability at least 1− 2Ñ− log2 S·log Ñ , the (S,K)-RIP

constant of Θ satisfies δs,k ≤ δ.

Applications of MUTF arise where the compressed measurement may be corrupted by im-

pulse noise like sensor networks and error correction in joint source channel coding.

2.4 Summary

Table 2.1 shows part of the research summary in structured CS matrices. The table will

give the opportunity to see their measurement bounds M and the reference. In addition, it

will help to see improvements or similar results over related matrices. On the other hand, it
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shows the high and updated research activity about structures matrices.

Some papers give name to its matrix, while others do not. We have used one that seems us

to be better related to the matrix and we have awarded it in order to follow the sequence.

Name Matrix M & bound Reference

SIM Φ
T

ΦTΨ

Sµ2(Φ,Ψ) log(N/δ) & log2(N/δ)

CStµ(Φ,Ψ)
√
N log2 S log(tS logN)

Duarte et al.
2011 [32]

SSM Φ = RU,Φ
T

zSµ2(U,Ψ)N log2 S log3N

SCM Φ = RU
max{δ−1

0 S3/2 log3/2N ,
δ−2

0 S log2 S log2N}

SM Φ =
⊗D

i=1 Φi δ ≤
∏D

d=1(1 + δd)− 1

RCC
H =

√
NF ∗ΣF

Φ = RΩH
S log(N/δ) & C1 log3(N/δ)

Romberg
2009 [33]

RPMS Φ = PΘH S log2(N/δ) & C1 log4(N/δ)

DBD Ψ = IJ ⊗ Φj δ−2µ̃2(U)S log2 S log2 Ñ Eftekhari et al.
2015 [27]

RBD Ψ = IJ ⊗ Φ δ−2γ2(U)S log2 S log2 Ñ

BRM
Φ̃

Φ̃F

dSβ(log(N/S) + 1) +N/bse − 1
CbS[log(N/S) + 1]

Castorena &
Creusere 2014 [28]

SRM
Φ =

√
N
M
DFR

F = DTC

N
B
S log

(
N
δ

)
&N
B

log3
(
N
δ

)
S log

(
N
δ

)
& log3

(
N
δ

) Thong et al.
2012. [35]

PRC
TFS

Φ = M−1/2RΩHε

Ψh = [π(λ)h]λ∈Z2
M

δ−2S log2 S log2N
δ−2S log2 S log2M

Krahmer et al.
2014. [36]

MUTF
A = UDB̃
Θ = [A, I]

δ−2SÑµ2(B̃) log2 S log2 Ñ &

δ−2K log2K log2 Ñ

Zhang et al.
2017. [37]

Table 2.1: The summary of structured matrices, M bounds and references.
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2.5 Conclusions

We can see in this short survey that most approaches are to apply CS in applications where

it is impractical to include the full measurement matrix because the size of the signals is

very large and recovery calculation will take a long time. The objective is to take advantage

of the structure of the application to define the matrix. Although there exist already several

contributions on this direction and when more areas of applications get involve of CS, more

specific structures will require, therefore, a complete classification of this structures will be

needed. We hope in future works do a more complete one.

Under special circumstances structure matrices will performs similar as unstructured matri-

ces, but usually it takes more measurement in order to reach RIP.

A reference discuss the most used structure matrices, Fourier and Toelipz, is presented by

Rauhut in notes [29]. Those notes later becomes a chapter in book [15]. The idea of do a

complete survey will help the researches shows ways to how prove RIP for structures matrices

and also check if their structure have been already prove.
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Chapter 3

The COB Matrix and Its RIP

In this chapter, we will first introduce a new type of measurement matrix, namely, the

Cyclic Overlapping Block diagonal (COB) matrix. Then, we will prove that the COB matrix

satisfies the RIP property. And finally, we will demonstrate the performance of the COB

matrix and compare it with the BD matrix.

3.1 The COB Matrix

For the definition of the proposed measurement matrix Ψ, let Φj1,Φj2 ∈ CM×N for j ∈ [J ] be

matrices populated with i.i.d. sub-Gaussian random variables having mean zero, standard

deviation 1/
√

2M and sub-Gaussian norm τ . In this way, blocks in Ψ are M × 2N matrices

Φj = [Φj1 Φj2], i.e., blocks are formed with the concatenation of Φj1 and Φj2, its structure

will be as equation (3.1)
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Ψ =



[Φ11 Φ12] 0 0 · · · 0 0

0 [Φ21 Φ22] 0 · · · 0 0

0 0 [Φ31 Φ32] · · · 0 0
...

...
...

. . .
...

...

0 0 0 0 · · · [Φ(J−1)1 Φ(J−1)2]

ΦJ2] 0 0 0 · · · 0 [ΦJ1


(3.1)

The symbol 0 represents a block of zeros, a very important advantage over full nonzero

matrices called before unstructured matrices. Structures matrices becomes in CS a new

branch of research because less computation over this type of matrices gives good perfor-

mance to the recover algorithms. In addition, the architectural sample devices does not fit

for unstructured matrices.

3.2 The RIP of the COB Matrix

In this section, we are going to prove that the proposed COB matrix (3.1) satisfies the U -

RIP property (8). The general idea is use a result from [27] which uses a result from [36]

that also took the main idea from [38]. The prove is based in Random Process or Stochastic

Process where the study of the supremum or more precisely find upper and lower bounds

for these suprema constitutes the main task of that area. This field is a useful and highly

studied math area today that has applications in many disciplines including sciences such as

biology, chemistry, ecology, neuroscience, and physics as well as technology and engineering

fields such as image processing, signal processing, information theory, computer science,

cryptography and telecommunications.1

1Areas taken from Wikipedia definition of Stochastic Process
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3.2.1 The Main Result

Shows that a matrix satisfies RIP is synonymous with guarantee that a signal can be recov-

ered using well-known algorithms. Our main result written above has a classical Compressed

Sensing form, i.e., assuming that the signal has some sparsity S & 1 and assuming too some

lower bound for the number of measurements M̃ , then shows that RIC δS is small enough

with high probability. The S is the sparsity of the signal that can be represented by a proper

orthobasis U , i.e., for a signal x = Uα in CÑ , where α ∈ ΩS is an element in the set of all

S-sparse signals with unit norm. The main result in this chapter is presented in the following

theorem.

Theorem 13. Let U denote an orthobasis for CÑ , Ψ ∈ CM̃×Ñ a J blocks COB matrix as

defined above (3.1) and set

µ̃∗ := min

{√
J

2S
, µ(U)

}
, where µ(U) =

√
Ñ max

p,q∈[Ñ ]
|U(p, q)|.

If S & 1 and

M̃

log M̃
& δ−2 · µ̃∗2 · S · log2 S log Ñ ,

for some constant c, then δS(Ψ, U) ≤ δ < 1, except with a very low probability of at most

O
(
Ñ− log M̃ log2 S

)
.

Proof. Go to 3.2.7 in this section.

A special case use later in the experiments is when the signal is represented over thecanonical

base, in that case we got the following property.

Corollary 1. Let x ∈ CÑ be a signal over the canonical base, and Ψ ∈ CM̃×Ñ a J blocks
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COB matrix as defined above (3.1). If S & 1 and

M̃

log M̃
& δ−2 · J · log2 S log Ñ ,

then δS ≤ δ < 1, except with a very low probability of at most O
(
Ñ− log Ñ log2 S

)
.

Our results show that the number of rows (measurements) needed depends linearly of the

number of blocks J and poly-logarithm with the sparsity S and the size of the signal Ñ .

The next table 3.1 shows the different bounds for the number of measurements for structured

matrices BD, COB and compare the bound with unstructured sub-Gaussian matrices, a well

known result in the CS area.

Matrix Bounds Reference

Unstructured M̃ & δ−2 · S · log(Ñ) Candès et al. 2006. [7]

BD M̃ & δ−2 · µ̃2(U) · S · log2 S · log2 Ñ Eftekhari et al. 2015. [27]

COB M̃

log M̃
& δ−2 · J · log2 S · log Ñ our result, 2018

Table 3.1: The measurement bounds for unstructured matrices, and BD and COB structures
matrices.

3.2.2 The Outline of the Proof

Using the U -RIP definition 8, we consider that a matrix A satisfies the restricted isometry

property if 0 < δS � 1 for reasonably large S. How big S can be, we will see it later.

Our result follows the idea of Eftekhari’s paper [27] which has as its main ingredient the

following theorem from [36]:

Theorem 14 (Krahmer et al. [36]). Let A ⊂ CM×N be a set of matrices, and let ε be
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a random vector whose entries are i.i.d., zero-mean, unit-variance random variables with

sub-Gaussian norm τ . Set

dF (A) := sup
A∈A
‖A‖F ,

d2(A) := sup
A∈A
‖A‖2,

and

E := γ2(A, ‖·‖2)
(
γ2(A, ‖·‖2) + dF (A)

)
+ dF (A)d2(A),

V := d2(A)
(
γ2(A, ‖·‖2) + dF (A)

)
,

U := d2
2(A).

Then, for t > 0, it holds that

logP

{
sup
A∈A

∣∣∣‖Aε‖2
2 − E‖Aε‖2

2

∣∣∣ &τ E + t

}
.τ −min

(
t2

V 2
,
t

U

)
. (3.2)

At first glance, it looks like there is no relation prove RIP for our COB matrix with this

theorem, but if we explain some details and doing mainly a transformation, it will be clear.

The steps that we need to prove RIP for our COB matrix Ψ (3.1) are:

1. RIC: write RIC as δS = supα∈ΩS

∣∣‖Ψ · x(α)‖2
2 − 1

∣∣ and check that E{‖Ψ · x(α)‖2
2} = 1

verifying that E{Ψ∗ ·Ψ} = I.

2. Transformation: build Xj(α), A(α), and A. Check that ‖Ψ · x(α)‖2 =i.d. ‖A(α) · ε‖2.

3. Calculation 1: values dF (A) and d2(A).

4. Calculation 2: value γ2(A, ‖·‖2)
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5. Applying Theorem: put everything together to get M̃ , i.e., the number of measure-

ments/rows for Ψ and shows that δS < δ, for any δ < 1, i.e., get RIP for Ψ.

In the rest of this section, we will follow those steps. First we present a formal definition

of the RIP in Section 3.2.3, in section 3.2.4 we will transform the matrix to get the random

vector ε that Theorems 14 uses. In sections 3.2.5 and 3.2.6 we calculate the values E, V and

U and finally in section 3.2.7 in order to apply Theorem 14, we will put everything together

and prove our main result Theorem 13.

3.2.3 The RIP of Measurement Matrix

Defining the set of all S-sparse signals with unit norm as

ΩS :=
{
α ∈ CÑ : ‖α‖0 ≤ S, ‖α‖2 = 1

}
,

from the U -RIP property

(1− δS)‖x‖2
2 ≤ ‖Ψx‖2

2 ≤ (1 + δS)‖x‖2
2, for all x with ‖U∗x‖0 ≤ S,

and using the fact that the signal can be represented in another base, i.e., x = Uα, we get

‖x‖2
2 = ‖Uα‖2

2 = (Uα)∗Uα = α∗(U∗U)α = 1.

Therefore, the RIC can be written as
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(1− δS) ≤ ‖Ψx‖2
2 ≤ (1 + δS)

−δS ≤ ‖Ψx‖2
2 − 1 ≤ δS

δS ≤
∣∣‖Ψx‖2

2 − 1
∣∣ ,

i.e.,

δS = sup
α∈ΩS

∣∣‖Ψ · x(α)‖2
2 − 1

∣∣ . (3.3)

The following expectation is also necessary in order to apply the Chaos Theorem 14

E{‖Ψ · x(α)‖2
2} = E

{(
ΨUα

)∗
ΨUα

}
= α∗U∗E{Ψ∗Ψ}Uα

= 1,

which is reaching because the E{Ψ∗Ψ} = I. The prove of this fact is getting in the following

lemma.

Lemma 3. Let A ∈ RM×N be a random matrix populated with i.i.d. sub-Gaussian random

variables having mean zero, standard deviation 1/
√
M . Then

E{A∗A} = I. (3.4)

Proof. Because A∗A is a N -square matrix and we want to prove that its expectation is the

identity matrix, we will check two types of elements, in and outside the diagonal.

48



Each diagonal element is ‖ai‖2
2 = 〈ai, ai〉, where ai for i ∈ [N ] represent columns of A. Then,

E {〈ai, ai〉} = E

{
M∑
k=1

a2
ki

}

=
M∑
k=1

E
{
a2
ki

}
=

M∑
k=1

(
Var(aki) + E{aki}2

)
=

M∑
i=1

1

M
= 1.

For other entries, i.e, where i 6= j,

E{〈ai, aj〉} = E

{
M∑
k=1

aki · akj

}

=
M∑
k=1

E{aki · akj}

=
M∑
k=1

E{aki} · E{akj} = 0.

The last line is zero by hypothesis, i.e., E{aij} = 0 for all entries in A and the random

variables are independent.

For our case, Ψ involved two unstructured φM×N matrices, because we choose standard

deviation 1/
√

2M in each Φ (see definition 3.1), using a similar prove to the Lemma 3, the

result is also getting for Ψ, i.e, E{Ψ∗Ψ} = I.
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3.2.4 Transformation

In order to apply the Chaos Theorem, we will convert Ψ to a vector ε, and convert x(α) to

a matrix A(α). Before giving the formal definitions of the transformation, let us illustrate

the conversion in the following example, where Ψ is a 6× 6 matrix.

Ψx(α) =



φ1 φ2 φ3 φ4 0 0

φ5 φ6 φ7 φ8 0 0

0 0 φ9 φ10 φ11 φ12

0 0 φ13 φ14 φ15 φ16

φ19 φ20 0 0 φ17 φ18

φ23 φ24 0 0 φ21 φ22





x1

x2

x3

x4

x5

x6


=



φ1x1 + φ2x2 + φ3x3 + φ4x4

φ5x1 + φ6x2 + φ7x3 + φ8x4

φ9x3 + φ10x4 + φ11x5 + φ12x6

φ13x3 + φ14x4 + φ15x5 + φ16x6

φ17x5 + φ18x6 + φ19x1 + φ20x2

φ21x5 + φ22x6 + φ23x1 + φ24x2


.
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Becomes, A(α)ε =

1√
2M


x1 x2 x3 x4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 x1 x2 x3 x4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 x3 x4 x5 x6 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 x3 x4 x5 x6 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x5 x6 x1 x2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x5 x6 x1 x2





ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8

ε9

ε10

ε11

ε12

ε13

ε14

ε15

ε16

ε17

ε18

ε19

ε20

ε21

ε22

ε23

ε24



(3.5)

=
1√
2M



ε1x1 + ε2x2 + ε3x3 + ε4x4

ε5x1 + ε6x2 + ε7x3 + ε8x4

ε9x3 + ε10x4 + ε11x5 + ε12x6

ε13x3 + ε14x4 + ε15x5 + ε16x6

ε17x5 + ε18x6 + ε19x1 + ε20x2

ε21x5 + ε22x6 + ε23x1 + ε24x2


,

where φi = 1√
2M
εi, for i ∈ [24].

Note that the rows of non-zero blocks in Ψ formed a long column vector ε and the vector

x(α) with a common factor from elements of Ψ formed a big row block diagonal matrix

A(α) = 1√
2M
X. Using this transformation is easy to see that ‖Ψ · x(α)‖2 =i.d. ‖A(α) · ε‖2.

The i.d. means that the random variables on both sides have the same distribution.

We did that transformation because inside the probability in equation (3.2) of Theorem 14
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the inequality,

sup
A∈A

∣∣∣‖Aε‖2
2 − E‖Aε‖2

2

∣∣∣︸ ︷︷ ︸
δS

&τ E + t︸ ︷︷ ︸
δ

, (3.6)

will be later δS &τ δ, where by previous section

δS = sup
α∈ΩS

∣∣‖Ψ · x(α)‖2
2 − 1

∣∣ ,
then from Ψ and x(α) we have built the set of matrices A and vector ε needed in (3.6).

Note a important fact about A(α)A∗(α) = 1
2M
×


‖x1(α)‖22 + ‖x2(α)‖22 0 0 0 0 0

0 ‖x1(α)‖22 + ‖x2(α)‖22 0 0 0 0

0 0 ‖x2(α)‖22 + ‖x3(α)‖22 0 0 0

0 0 0 ‖x2(α)‖22 + ‖x3(α)‖22 0 0

0 0 0 0 ‖x3(α)‖22 + ‖x1(α)‖22 0

0 0 0 0 0 ‖x3(α)‖22 + ‖x1(α)‖22

,

it is 6×6 diagonal matrix with entries related with sub-vectors from x(α). Later we use this

fact to calculate a norm which has the following property

‖A(α)‖2 = ‖A(α)A∗(α)‖ = ‖A∗(α)A(α)‖ . (3.7)

Let us explain in more detail the transformation example.

A. Ψ→ ε

The first block

Φ1 =

[
Φ11 Φ12

]
=

φ1 φ2 φ3 φ4

φ5 φ6 φ7 φ8


is a matrix populated with i.i.d. Bernoulli random variables having mean zero, standard
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deviation 1/
√

2M . Using the columns of Φ∗1, is transformed to a vector as follows

vec(Φ∗1) =



φ1

φ2

φ3

φ4

φ5

φ6

φ7

φ8



=
1√
2M



ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8



=
1√
2M

ε1

where ε1 is populated with i.i.d. Bernoulli random variables having mean zero, a unit

standard deviation. The same for other blocks of Ψ.

B. x(α)→ A(α)

The matrix A is building from sub-blocks of x, i.e.,

x =



x1

x2

x3

x4

x5

x6


=


x1(α)

x2(α)

x3(α)


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where x1(α) =

x1

x2

, x2(α) =

x3

x4

 and x3(α) =

x5

x6

. Then, let us use

X1(α) =

x1(α)T x2(α)T

x1(α)T x2(α)T

 =

x1 x2 x3 x4 0 0 0 0

0 0 0 0 x1 x2 x3 x4

 ,
X2(α) =

x2(α)T x3(α)T

x2(α)T x3(α)T

 =

x3 x4 x5 x6 0 0 0 0

0 0 0 0 x3 x4 x5 x6

 ,
X3(α) =

x3(α)T x1(α)T

x3(α)T x1(α)T

 =

x5 x6 x1 x2 0 0 0 0

0 0 0 0 x5 x6 x1 x2

 .

Therefore, the linear map A : ΩS → C6×3·2·4 is defined as

A(α) =
1√
2M


X1(α)

X2(α)

X3(α)


6×24

as shown explicitly in the above example in equation (3.5).

C. The index of the random process

The transformation is going to take vectors of size Ñ from S-sparse unitary space ΩS and

create a set of matrices A. In stochastic process the set is called the index set of the random

process.

For α ∈ CÑ , set x(α) = Uα, where U denote an orthobasis and define xj(α) = xj(α, U) ∈

CN , j ∈ [J ] such that

x(α) = [x1(α)T , x2(α)T , . . . , xJ(α)T ]T . (3.8)

54



And if Xj ∈ CM×2MN , i ∈ [J ] is

Xj(α) =



x∗j(α) x∗j′(α)

x∗j(α) x∗j′(α)

. . .

x∗j(α) x∗j′(α)


(3.9)

where

j′ =


j + 1 if i < J

1 if j = J

. (3.10)

Therefore,

A(α) =
1√
2M



X1(α)

X2(α)

. . .

XJ(α)


M̃×2JMN

(3.11)

The index set of the random process will be

A := {A(α) : α ∈ ΩS}. (3.12)

3.2.5 Calculation 1

Two of the three values that we have to calculate in order to apply the Chaos Theorem use

norms over the index of the random process A, i.e.,

dF (A) = sup
A∈A
‖A‖F ,

d2(A) = sup
A∈A
‖A‖2.
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where A : ΩS → CM̃×MÑ is the linear map defined above and A an element of A.

The first one used Frobenius norm, defined as the square root of the sum of the absolute

squares of its elements,

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|ai,j|2,

and the other is called the spectral norm and can be defined as the square root of the

maximum eigenvalue of A∗A or the natural norm induced from 2-norm vector, i.e.,

‖A‖2 = (maximum eigenvalue of A∗A)1/2 or

= max
|x|2 6=0

|Ax|2
|x|2

.

Intuitively, we can think of ‖A‖2 as the maximum “scale”, by which the matrix A can

“stretch” a vector.

Calculating dF (A)

To get the Frobenius norm, check that A is one row block diagonal with elements from x(α).

Each row has different “consecutively” sub-vectors xj(α) appearing in two sub-matrix Xj

and for all sub-matrix, each row is repeated M times for j = 1, . . . , J . Therefore,

dF (A) = sup
A(α)∈A

‖A(α)‖F

= sup
α∈ΩS

1√
2M

√
2M‖x1(α)‖2

2 + 2M‖x2(α)‖2
2 + · · ·+ 2M‖xJ(α)‖2

2

= sup
α∈ΩS

‖x(α)‖2

= sup
α∈ΩS

‖Uα‖2 = sup
α∈ΩS

‖α‖2 = 1. (3.13)
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Calculating d2(A)

To do this calculation, d2(A) = supA(α)∈A‖A(α)‖2, let us work first with ‖A(α)‖2 using the

property (3.7) mentioned above

‖A(α)‖2 = ‖A(α)A(α)∗‖1/2
2

=
1√
2M

max
j∈[J ]

√
‖xj(α)‖2

2 + ‖xj′(α)‖2
2

≤ 1√
2M

√
2 max
j∈[J ]
‖xj(α)‖2

2

=
1√
M

max
j∈[J ]

√
‖xj(α)‖2

2

=
1√
M

max
j∈[J ]
‖xj(α)‖2 (3.14)

=
1√
M

max
i∈[J ]
‖Ujα‖2,

from each rectangular block in U , called Uj, Ujα is the j-subvector of x, called xj(α) = Ujα.

Let be uj,n, j ∈ [J ] and n ∈ [N ], the ((j − 1)N + n)th row of U . Then, continuing the

calculation

‖A(α)‖2 ≤
1√
M

max
i∈[J ]
‖Ujα‖2

≤ 1√
M

(
N max

j∈[J ],n∈[N ]
〈uj,n, α〉2

)1/2

=
1√
M

√
N max

j∈[J ],n∈[N ]
|〈uj,n, α〉|

≤ 1√
JM

(√
JN max

j∈[J ],n∈[N ]
‖uj,n‖∞

)
‖α‖1

=
µ√
M̃
‖α‖1, (3.15)

where µ = µ(U), the biggest absolute value entry of U times
√
Ñ , called the coherence of

U .
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If we bounded maxi∈[J ]‖xj‖2 in (3.14) with its whole vector, then

‖A(α)‖2 ≤
1√
2M

max
i∈[J ]
‖xj‖2

≤ 1√
2M
‖x‖2

=
1√
2M

=

√
J/2√
M̃

. (3.16)

Then, from (3.15) and (3.16), the two calculated bounds

‖A(α)‖2 ≤
µ√
M̃
‖α‖1,

‖A(α)‖2 ≤
√
J/2√
M̃

,

finally, if we use that ‖α‖1 ≤ S and
√

J
2

=
√

J
2S

√
S, we got

‖A(α)‖2 ≤
1√
M̃

min
(
µ ‖α‖1 ,

√
J/2
)
,

≤ 1√
M̃

min

(
µ
√
S,

√
J

2S

√
S

)

=

√
S

M̃
min

(
µ,

√
J

2S

)
(3.17)

Therefore, applying sup, the bound for d2(A) is

d2(A) = sup
A(α)∈A

‖A(α)‖2

≤ sup
α∈ΩS

√
S

M̃
min

(
µ,

√
J

2S

)

= µ̃∗

√
S

M̃
, (3.18)
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where µ̃∗ = min
(
µ,
√

J
2S

)
and µ(U) =

√
Ñ maxp,q∈[Ñ ]|U(p, q)|.

3.2.6 Calculation 2

The last value involved in Chaos Theorem 14 is γ2(A, ‖·‖), a geometry property of A. It is

part of a family of functionals which is the core of the generic chaining method developed

and described in a book written in 1931 by A. Kolmogorov. In 1967, R. Dudley developed

a method to bound it using covering number, although it provides a very efficient bound for

Gaussian processes, unfortunately, in some cases the bound is not tight and some “parasitic”

logarithmic factor will be present 2. In 1985, X. Fernique and Talagrand, found the precise

relationship between the “size” of a Gaussian process and the “size” of this metric and

provided the missing understanding in the case of these processes. The book written for

Talagrand is an attempt to extend this result to other processes.

The bound for the functional γ2

The bound by Dudley is given in the next lemma,

Lemma 4. (See Talagrand’s book) Let A be a set as defined above, then

γ2(A, ‖·‖) .
∫ ∞

0

log
1
2 (N (A, ‖·‖, v)) dv.

The covering number N is defined as the minimal cardinality of all covers C of A. A set

C(A, ‖·‖, r) is called a cover for A at resolution r and with respect to the metric ‖·‖ if for

every x ∈ A, there exists x′ ∈ C(A, ‖·‖, r) such that ‖x− x′‖ ≤ r.

The covering number for A, should be the same as the covering number of ΩS, the set of all

2Taken from Talagrand’s book

59



unitary S-sparse vectors. This is because the definition of A and its metrics, therefore

γ2(A, ‖·‖) .
∫ ∞

0

log
1
2 N
(
ΩS, ‖·‖A, v

)
dv.

Using the trivial identity N (cS, ‖·‖, r) = N (S, ‖·‖, r/c), we got

γ2(A, ‖·‖) .
∫ ∞

0

log
1
2 N (ΩS, ‖·‖A, v) dv

=

∫ ∞
0

log
1
2 N

(√
SΩS√
S

, ‖·‖A, v

)
dv

=

∫ ∞
0

log
1
2 N

(
ΩS√
S
, ‖·‖A,

v√
S

)
dv.

By using a simple “change of variable” in the integral by substitution is transformed to

γ2(A, ‖·‖) .
√
S

∫ ∞
0

log
1
2 N

(
ΩS√
S
, ‖·‖A, v

)
dv. (3.19)

Before trying to bound the covering number over Ω/
√
S, let us do an example to gain a

better understanding of it.

Example. Let us consider the real line R and the absolute value |·| as a metric space and

define A as the set of real numbers whose absolute value is at most k, i.e., A = {x ∈ R :

|x| ≤ k}. The covering of
⌈

2k
r

⌉
intervals covering the interval [−k, k], therefore

N (A, |·|, r) ≤ 2k

r
.

Note that N (A, |·|, r) = 1 for r ≥ 2k, i.e, exist just one set in the cover of A.

Our task is trying to find a bound for N
(

ΩS√
S
, ‖·‖A, v

)
in terms of the independent variable

v, i.e., the radius of the elements in the cover, to bound the integral. The first to note is
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that it should exist vmax such that

∫ ∞
0

log
1
2 N

(
ΩS√
S
, ‖·‖A, v

)
dv =

∫ vmax

0

log
1
2 N

(
ΩS√
S
, ‖·‖A, v

)
dv, (3.20)

this is because for v ≥ vmax, N
(

ΩS√
S
, ‖·‖A, v

)
= 1 and therefore the log is zero.

The function N
(

ΩS√
S
, ‖·‖A, v

)
is one that for small radios its values are “high” and for large

radios its value is close to 1, and exactly 1 for values greater than one vmax.

To do that, let us consider a similar lemma from Eftekhari’s paper [27]. The idea is presented

in Figure 3.1, what we want is find two decreasing functions f and g. To approximate the

integral (3.19), the values v0 and vmax divide the integral in two parts, thereby finding two

bounds for those integrals. Note again that after vmax value, the covering number will be

one and using the log, it is zero and is not going to contribute to the integral.

Figure 3.1: Idea of bounds for Covering Lemma

Lemma 5 (The Covering Lemma for ΩS/
√
S). Consider a norm ‖·‖A on CÑ , for every

α ∈ CÑ , satisfies

‖α‖A = ‖A(α)‖2 ≤
κ√
M̃
,
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for some linear map A(·) : CÑ → CN ′ with rank of at most M̃ and some κ > 0 and integer

N ′. Then, for 0 < v < κ/
√
M̃ and M̃ & 1, we have that

log

(
N
(

ΩS√
S
, ‖·‖A, v

))
. min

{
S log Ñ + S log

(
1 +

2κ

v
√
M̃

)
,
κ2

v2M̃
log M̃ log Ñ

}
.

When v ≥ κ/
√
M̃ , we have N

(
ΩS√
S
, ‖·‖A, v

)
= 1.

Proof. Before end this section.

Because the variable v is taking values like κ/
√
M̃ and usually κ = µ̃∗ =

√
J
2S

, then

Bound left→ S log Ñ and Bound right→
(

log Ñ

M̃

)2

which means that for small values of v

the left one is better but for larger values the right one must be chosen.

The norm ‖·‖A satisfies the hypothesis of Lemma 5 with κ = µ̃∗ and the linear map defined

above A(·), then applying it for the values of v in 0 < v0 ≤ µ̃∗/
√
M̃ and a v0 value setting

later, we have

∫ ∞
0

log
1
2 N

(
ΩS√
S
, ‖·‖A, v

)
dv =

∫ v0

0

log
1
2 N

(
ΩS√
S
, ‖·‖A, v

)
dv +

∫ µ̃∗√
M̃

v0

log
1
2 N

(
ΩS√
S
, ‖·‖A, v

)
dv

.
∫ v0

0

log
1
2

√S log Ñ +

√√√√S log

(
1 +

2µ̃∗

v
√
M̃

) dv +

√
log M̃ log Ñ

∫ µ̃∗√
M̃

v0

µ̃∗

v
√
M̃
dv

. v0

√
S log Ñ + v0

√√√√S log

(
1 +

2µ̃∗

v0

√
M̃

)
+

µ̃∗√
M̃

√
log M̃ log Ñ log

(
µ̃∗

v0

√
M̃

)
,

choosing the value v0 = µ̃∗/
√
SM̃ the right hand side is

.
µ̃∗√
M̃

√
log Ñ +

µ̃∗√
M̃

√
log(1 + 2

√
S) +

µ̃∗√
M̃

logS

√
log M̃ log Ñ

.
µ̃∗√
M̃

logS

√
log M̃ log Ñ .
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Adding the
√
S factor from (3.19), the final bound is

γ2(A, ‖·‖) .
√
S

∫ ∞
0

log
1
2 N

(
ΩS√
S
, ‖·‖A, v

)
dv . µ̃∗

√
S

M̃
logS

√
log M̃ log Ñ . (3.21)

3.2.7 Applying The Chaos Theorem

Remembering that a matrix satisfies RIP if δS is small for reasonably large S. Moreover, in

the property

(1− δS)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δS)‖x‖2
2 for all x with ‖U∗x‖0 = ‖α‖0 ≤ S.

δS was converted to

δS = sup
α∈ΩS

∣∣‖Ψ · x(α)‖2
2 − 1

∣∣ .
Therefore, taking a δ < 1, the objective is show that δS < δ for the matrix Ψ, the already

calculated bounded values,

dF (A) = 1

d2(A) ≤ µ̃∗

√
S

M̃

γ2(A, ‖·‖2) . µ̃∗

√
S

M̃
logS

√
log M̃ log Ñ

allow us to bound the values E, V and U . This finally enable us apply the Chaos Theorem 14

to get the main goal of prove RIP.
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The E value

Let us compute the first one

E = γ2(A, ‖A·‖2)
(
γ2(A, ‖·‖2 + dF (A)

)
+ dF (A)d2(A),

. µ̃∗

√
S

M̃
logS

√
log M̃ log Ñ

(
µ̃∗

√
S

M̃
logS

√
log M̃ log Ñ + 1

)
+ µ̃∗

√
S

M̃
,

for a number δ < 1, let us assume that µ̃∗
√

S

M̃
logS

√
log M̃ log Ñ . δ. It is from this

assertion, but rewriting it as M̃ &τ δ
−2µ̃∗

2
S log2 S log M̃ log Ñ , and taken S & 1 where we

get the number of measurements, the bound now is

E . δ(δ + 1) +
δ

logS

√
log M̃ log Ñ

≤ 2δ +
δ

logS

√
log M̃ log Ñ

. δ

The V value

For the second one, assuming the same as before for δ but rewritten as

µ̃∗

√
S

M
.τ

δ

logS

√
log M̃ log Ñ

,
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we have that

V = d2(A)
(
γ2(A, ‖·‖+ df (A)

)
,

. µ̃∗

√
S

M̃

(
µ̃∗

√
S

M̃
logS

√
log M̃ log Ñ + 1

)

= µ̃∗
2 S

M̃
logS

√
log M̃ log Ñ + µ̃∗

√
S

M̃

.τ
δ2

logS

√
log M̃ log Ñ

+
δ

logS

√
log M̃ log Ñ

.τ
δ

logS

√
log M̃ log Ñ

(δ + 1)

.
δ

logS

√
log M̃ log Ñ

.

The U value

Finally, for the last one rewritten δ as in V , we got

U = d2
2(A)

≤

(
µ̃∗

√
S

M̃

)2

.τ
δ2

log2 S log M̃ log Ñ
.

Putting it all together

From Chaos Theorem 14, for a t > 0, it holds that

logP

{
sup
A∈A

∣∣∣‖Aε‖2
2 − E‖Aε‖2

2

∣∣∣ &τ E + t

}
.τ −min

(
t2

V 2
,
t

U

)
,
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then using all the previous calculations

∣∣∣‖Aε‖2
2 − E‖Aε‖2

2

∣∣∣→ ∣∣∣‖A(α)ε‖2
2 − 1

∣∣∣ =
∣∣∣‖Ψx(α)‖2

2 − 1
∣∣∣

δS = sup
α∈ΩS

∣∣‖Ψ · x(α)‖2
2 − 1

∣∣
E . δ

V .
δ

logS

√
log M̃ log Ñ

U .τ
δ2

log2 S log M̃ log Ñ
,

we got that

logP

{
sup
α∈ΩS

∣∣∣‖Ψx(α)‖2
2 − 1

∣∣∣ &τ δ + t

}
.τ −min


t2(
δ

logS
√

log M̃ log Ñ

)2 ,
t
δ2

log2 S log M̃ log Ñ


= −min

{
δ−2t2 log2 S log M̃ log Ñ , δ−2t log2 S log M̃ log Ñ

}

and changing t = δ, then

logP

{
sup
α∈ΩS

∣∣∣‖Ψx(α)‖2
2 − 1

∣∣∣ &τ δ

}
.τ −min

{
log2 S log M̃ log Ñ , δ−1 log2 S log M̃ log Ñ

}
,

and if we assume again that S & 1, and redefined δ to eliminate the factor depending of τ

inside the probability. In addition, using the fact that if 0 < δ < 1 then δ−1 > 1 we finally

got that

logP

{
sup
α∈ΩS

∣∣∣‖Ψx(α)‖2
2 − 1

∣∣∣ & δ

}
.τ − log2 S log M̃ log Ñ
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or

P

{
sup
α∈ΩS

∣∣∣‖Ψx(α)‖2
2 − 1

∣∣∣ & δ

}
.τ 10− log2 S log M̃ log Ñ

=
(

10log Ñ
)− log2 S log M̃

,

which means

P
{
δS & δ

}
.τ Ñ

− log2 S log M̃ .

The last equation shows that the probability that δS is greater than δ is very low, therefore

we have proved that the matrix Ψ satisfies RIP with high probability, this finally proves

Theorem 13.

Details about the Covering Lemma 5

The calculation of the bound for γ2 has a a lot of details and techniques that lemma 5 hides.

Before ending this section, we are going to give some details about its prove, which we called

previously The Covering Lemma 5.

The covering number of a set A at resolution v with respect to the norm ‖·‖, denoted by

N (A, ‖·‖ , v) is the minimal cardinality of all possible covers. To bound the covering number

of ΩS√
S

, let us use unit balls with different norms as elements on covers, i.e.,

BÑA = {β ∈ CÑ : ‖α‖A ≤ 1}

BÑ1 = {β ∈ CÑ : ‖α‖1 ≤ 1}

BÑ2 = {β ∈ CÑ : ‖α‖2 ≤ 1},

also, for T ⊆ [Ñ ], where #T = S, the unit balls in the S-dimensional subspace of CÑ
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spanned by {eñ}, ñ ∈ T as

BTA = {β ∈ CS : ‖α‖A ≤ 1}

BT1 = {β ∈ CS : ‖α‖1 ≤ 1}

BT2 = {β ∈ CS : ‖α‖2 ≤ 1}.

We can check first that BT2 is related with BTA as is presented in the next lemma.

Lemma 6. For any support T ⊂ [Ñ ] with |T | = S, we have

BT2√
S
⊆ κ√

M̃
BTA. (3.22)

Proof. From the set of all signal in Ñ -dimensional complex space with unit norm, i.e.,

ΩS =
{
α ∈ CÑ : ‖α‖2 = 1, ‖α‖0 ≤ S

}
,

and norm property ‖α‖1=
√
Ñ‖α‖2 or ‖α‖1=

√
S‖α‖2 because in the support T , |T | = S,

we have that if α ∈ ΩS√
S

, then ‖α‖ ≤ 1, i.e.,

ΩS√
S

=

{
α ∈ CÑ : ‖α‖2 =

1√
S
, ‖α‖0 ≤ S, ‖α‖1 ≤ 1

}
,

then used the hypothesis of the Covering Lemma 5 we have

‖α‖A ≤
κ√
M̃
. (3.23)

Let us consider any β on the surface of ball
BT2√
S

, i.e,. ‖β‖2 = 1√
S

and therefore β ∈ ΩS√
S

, i.e.,

‖β‖2 ≤ 1. Consequently, according to (3.23), ‖β‖A ≤
κ√
M̃

, and therefore β ∈ κ√
M̃
BTA.

Next, for every β ∈ B
T
2√
S

, ‖β‖2 = r√
S

, where r ≤ 1, we can find β′ = 1
r
β that is on the surface
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of ball
BT2√
S

. Then, ‖β′‖ ≤ κ√
M̃

, which means ‖β‖A ≤
rκ√
M̃
≤ κ√

M̃
, so β ∈ κ√

M̃
BTA.

The set ΩS√
S

can be represented now by unions of balls,
BT2√
S

over the supports T , as well as

by lemma 6 with κ√
M̃
BTA, i.e.,

ΩS√
S

=
⋃
|T |=S

BT2√
S
⊆
⋃
|T |=S

κ√
M̃
BTA. (3.24)

Before continuing, note that the set ΩS√
S

can be covered with just one ball κ√
M̃
BÑA . Therefore,

N
(

ΩS/
√
S, ‖·‖A , v

)
= 1, if v ≥ κ/

√
M̃ . This proves the last part of Covering Lemma 5.

Now, from (3.24), if v ≤ κ/
√
M̃ then

N
(

ΩS√
S
, ‖·‖A , v

)
≤ N

 ⋃
|T |=S

κ√
M̃
BTA, ‖·‖A , v


≤
(
Ñ

S

)
N

(
κ√
M̃
BTA, ‖·‖A , v

)
,

using again the trivial identity N (cS, ‖·‖, r) = N (S, ‖·‖, r/c) we get,

(
Ñ

S

)
N
(
BTA, ‖·‖A , vκ

−1
√
M̃
)
.

Using a similar result from [39] in Lemma 5.2 we have N
(
BTA, ‖·‖A , r

)
≤ (1 + 2/r)2S for

r > 0. Then,

N
(

ΩS√
S
, ‖·‖A , v

)
≤
(
Ñ

S

)(
1 +

2κ

v
√
M̃

)2S

≤

(
eÑ

S

)S (
1 +

2κ

v
√
M̃

)2S

,
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when Ñ & 1 we have,

logN
(

ΩS√
S
, ‖·‖A , v

)
≤ S log

(
eÑ

S

)
+ 2S log

(
1 +

2κ

v
√
M̃

)

. S log Ñ + S log

(
1 +

2κ

v
√
M̃

)
. (3.25)

We discussed in the paragraph after the Covering Lemma 5 that this bound is good for small

values of v, but for larger values they just proposed another one. To find that bound let us

use again that the set ΩS√
S

can be covered with just one ball, but in this case, ΩS√
S
⊆ BÑ1 , then

our task is now to find a cover for this ball because

N
(

ΩS√
S
, ‖·‖A , v

)
≤ N

(
BÑ1 , ‖·‖A , v

)
. (3.26)

The last proposition on this section is going to be a lemma with that bound. For the prove

we refer the reader to [27] on Appendix F.

Lemma 7. Let B1,Ñ denote the l1-ball in RÑ , and consider the norm ‖·‖A on CÑ , which

satisfies the hypothesis of Covering Lemma 5. Naturally, ‖·‖A induces a norm on RÑ ⊂ CÑ

For v > 0 and M̃ & 1, it holds that

log
(
N (B1,Ñ , ‖·‖A , v)

)
.

κ2

v2M̃
log M̃ log Ñ .

The previous lemma bound B1,Ñ where its elements are in RÑ . The strategy uses this two

times to bound BÑ1 where its elements are in CÑ , i.e.,

N
(
BÑ1 , ‖·‖A , v

)
≤
(
N
(
B1,Ñ , ‖·‖A , v/2

))2

,
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then using lemma 7, finally we got the another bound for bigger values of v.

logN
(

ΩS√
S
, ‖·‖A , v

)
.

κ2

v2M̃
log M̃ log Ñ . (3.27)

3.3 Overview of Numerical Experiments

In this section, we will support our result with numerical experiments. To be able to do

so, we use cutting edge good tools. They were very important because in many cases they

allowed us to obtain and see the results easily; we will show those results below. The main

objectives taking in account for the experiments were:

1. validate the theoretical analysis, and

2. demonstrate the advantages of COB over BD.

An ideal model to validate the theorem should create several COB matrices and for each of

them, while we are varying the sparsity S, the number of measurements M̃ and the number

of blocks J , we get the ratio of how many RIC values are below of a fixed threshold overall

number of COB matrices tested. But, as it has been suspected for some time that evaluating

RIP is a NP hard problem in general, Tillmann and Pfetsch in [40] confirm that conjecture

and therefore made that scenario impossible to realize. There exists some research, see for

example [41] and [42], looking for alternative or heuristic algorithms to approximate RIC

but have some limitations. We may consider this option for future works.

Instead of checking whether the RIC holds, we will run experiments using empirical signal

recovery through the minimizer problem l1 from Python package CVXPY to find the minimal

number of measurement M̃ so that the program starts to exactly recovered signals effectively

validating the factors in the bound of the Theorem 13 for COB.
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The rest of this section is organized as what follows. First, in 3.3.1 we will explain the

simulation program and settings. Next in 3.4.1 we will show using three cases of signal

sparsity the performance of BD and COB over several numbers of blocks. It will allow us

to validate the J factor bound in our theoretical result. We also included some graphs that

will help us assert how much performance is improved using COB over BD. In part 3.4.2,

we focus on the way that the sparsity influences the number of samples needed to recover

the signal. For the last factor in 3.4.3, we also show how relevant is the size of the signal,

a typical result in CS usually said is above a logarithm factor. The last part of this section

shows a important analysis about the worst signal sparsity case in 3.5, again it can be seen

that COB improves BD.

3.3.1 The Simulation Program and Settings

The first attempt to show the natural improvement of COB over BD was made using a UPRM

institutional Matlab c© version and a l1-MAGIC collection of routines for solving the convex

optimization focus in compressive sampling. The l1-magic solver was performed good but it

was coded for Matlab. Therefore, we searched for new ones and over one of the more popular

programming languages today, we found CVXPY, ConVeX optimization problems in Python.

CVXPY is a Python-embedded modeling language for convex optimization problems. It

allows to express problems in a natural way that follows the math, rather than in the

restrictive standard form required by solvers.3

The Evaluator

Before describing the evaluator, we will show how we create random matrices. It is well know

in CS theory that random matrices with random variables type such as Gaussian, Bernoulli

3Definition taken from its website.
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or Rademacher are examples of the more general case called sub-Gaussian. We implement

two cases, Gaussian and Bernoulli and use those to construct the BD and COB matrices.

The function 1 return a random Gaussian matrix having mean zero and standard deviation

1/
√
m. The rand function creates an array of the given shape and populate it with random

samples from a uniform distribution over [0, 1).

Function 1 Psi Gaussian(m, n)

Input: m,n > 0
Output: Am×n

1: A← (1/
√
m) · rand(m,n)

2: return A

The function 2 builds a random Bernoulli matrix with equal mean and standard deviation

as Gaussian. We use the same probability for +1 and −1, i.e., we could also have called it

a Rademacher matrix.

Function 2 Psi Bernoulli(m, n)

Input: m,n > 0
Output: Am×n

1: A← (1/
√
m)
(
2(rand(m,n) >= 0.5)− 1

)
2: return A

The function 3 will build BD, a J different block diagonal matrix where each block has size

M ×N . It use the function block diagonal to create a block diagonal matrix from provided

arrays, the for-loop add the others J − 1 blocks.

Function 3 Psi BD Bernoulli(M, N, J)

Input: M,N mod J = 0
Output: AM×N

1: A← Psi Bernoulli(m,n)
2: for j = 1 : J − 1 do
3: A←block diag(A, Psi Bernoulli(m, n))
4: end for
5: return A
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To build COB matrix in function 4, the idea is quite natural, create two BD matrices but

rolling the second one n spaces and next add together to get the diagonal overlap. Note

that before returning it is important to normalize the values to get the standard deviation

1/
√
M .

Function 4 Psi COB Bernoulli(M, N, J)

Input: M,N mod J = 0
Output: AM×N

1: A1 ← Psi BD Bernoulli(M,N)
2: A2 ← Psi BD Bernoulli(M,N)
3: n = N/J
4: A2 ← Roll(A2, n)
5: A← A1 + A2

6: return A/
√

2

We are dealing with different variables in the experiment and we cannot vary all at the same

time. Some of them we are not going to use here but our code will support other types of

future experiments like signals in different base or other optimizer different than L1. The

pseudo-code in 5 will describe a class used for those purposes.

Some functions to the optimizer over library CVXPY, are showing in functions 6 and 7. If

we need another type of optimizer it is easy just to create functions similar to those.

The list of functions in 8 are tools to save, get or print graphs. The function getMaxM will

read from files the maximum measurement M̃ value used to reconstruct the signal over each

experiment. All those values are taken from saved files by function save data.

The main procedure to run the experiments is showing in function 9, where we use a while

loop to search the minimal number of measurements M̃ value to recover signal. The while

loop will stop if the l2 norm is less than a tolerence value, otherwise incrementing M̃ using

m step. The value m step must be able to be divided by J . Next, we use two nested loops,

one for each signal given in X as a column and trying to recover those in another loop for

74



Class 5 CS Reconstructor(Matrix Generator, Optimizer, N, j, r, Orthobase)

Input: Matrix Generator, Optimizer, N, j, Orthobase
Output: t, L1, L2, xc

1: if Orthobase = 1 then
2: U = Fourier basis
3: else if Orthobase = 2 then
4: U = Convolution Matrix
5: else
6: U = Canonical base
7: end if
8:

9: def Evaluate(x, M)
10: A = Matrix Generator(M, N, j)
11: if Orthobase = 0 then
12: y = Ax
13: else
14: y = A(Ux)
15: end if
16: ti ← get current time
17: xc = Optimizer(y, A, N){obtain reconstructed signal}
18: tf ← get current time
19: t = tf − ti
20: L1, L2 = L1 L2(x, xc, N)
21: return t, L1, L2, xc

Function 6 CS Optimizer LASSO(y, A, N)

Input: y, A,N
Output: xc

1: lasso← Lasso(alpha = 0.00001)
2: lasso.fit(A, y)
3: xc ← lasso.coef
4: return xc

Function 7 CS Optimizer L1(y, A, N)

Input: y, A,N
Output: xc

1: vx← cvx.Variable(N)
2: objective← cvx.Minimize(cvx.norm(vx, 1))
3: constraints← [A · vx == y]
4: prob← cvx.Problem(objective, constraints)
5: result← prob.solve(verbose=False)
6: xc ← vx.value
7: return xc
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Tool functions 8 Other functions

save data(List M, List L1, List L2, k, j, method, matrix, typeExp)

save raw data(OP time, OP L1, OP L2, k, j, M, method, matrix, typeExp)

print figure(fig, x, xc)

get data(str)

get raw data(str)

mean and ci(data, confidence=0.95)

Get 5 Lists(strBegin, strEnd, k, j, N)

getMaxM(strBegin, strEnd, k, j)

each of the different P COB matrices. The function save raw data will save in a text file for

each of the S · P recover intent, the time spending in the process, the l1 and l2 error values.

When the while loop will finish, the function save data will record in a new text file the M

value, and the average l1 and l2 errors of all S · P tries. All files generated will have names

including the N,M,K and J values for better identification.
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Function 9 CS Evaluate(tE, N, S, P, X, opt, MG, k, j, M i, m step, M end, Print Fig, U)

Input: several paramethers
Output: *.txt files in folder tE, one for each recover x signal, and another with its averages.

1: M ← best M to start, J should divides M .
2: Opt← choosing optimizer
3: MG← selecting matrix
4: Reconstructor ← CS Reconstructor(MG, Opt, N, j, r, U)
5: Normalize the signals X
6:

7: while (M ≤M end)&(L2 > 0.01) do
8: for i = 1 : S do
9: for p = 1 : P do

10: t, L1, L2, xc← Reconstructor.Evaluate(x, M)
11: Get time, L1 and L2 norms
12: end for
13: end for
14: save raw data(OP time, OP L1, OP L2, k, j, r, M, Str method, Str matrix, typeExp)

15: Get L1 and L2 averages
16: M ←M +m step
17: end while
18: save data(List M, List L1, List L2, k, j, r, Str method, Str matrix, typeExp)
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Settings

As mentioned previously, we start using Matlab c© and l1-MAGIC, but because we could

had some licensing issues and also l1-MAGIC was coded some time ago, we decides given

a different try with other options. The very flexible and popular programming language

Python was the election, first because there exist nice tools to do research interactively as

is in many commercial software, the tool called notebooks tools is the one in which we are

interested.

Jupyter Notebook is a web application over Python in which you can create and share

documents easily that contain live code, equations, visualizations as well as text. The Jupyter

Notebook is one of the ideal tools used today by data science researches around the world.

The name “Jupyter” is a loose acronym meaning Julia, Python, and R. These programming

languages were the first target languages of the Jupyter application, but nowadays, the

notebook technology also supports many other languages.

Jupyter Notebook became really popular due to its versatility and ease of use, that is why

the giant Google decided to incorporate it into their projects and create Colaboratory, which

is a Google research project created to help disseminate machine learning education and

research. It is a Jupyter notebook environment that requires no setup to use and runs

entirely in the cloud over private virtual machines with the possibility to run with GPUs.

Colaboratory notebooks are stored in Google Drive and can be shared just as you would

with Google Docs or Sheets making teamwork really interesting. Colaboratory is also free

to use.

The use of Matlab running in the university which give sometimes access troubles, low

computing capabilities and the short learning curve in Jupyter Notebook, were all considered

and we decided to make the jump to the Jupyter notebooks app.
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The impressive amount of good software already implemented and freely available has allowed

us to save a lot of time in our tests. We use a library, as was mentioned at the beginning of

the section, to solve optimization problems called CVXPY.

One of the main objectives is to show that COB performance is better than BD. Because

we are dealing with several variables in our experiments, we first fix some of them and

obtain data using the aforementioned Evaluator. The theoretically bounds that we want to

corroborate are

BD −→M ≥ C1δ
−2µ̃−2S log2 S log2 Ñ

COB −→ M

logM
≥ C2δ

−2J log2 S log Ñ .

By default, we are generating sparse signals in canonical basis. Moreover, first we will choose

S indices uniformly in [N ] for non-zero signal elements. In addition, we include and analyze

the worst case for the sparsity of the signal, i.e., when its sparsity is non-uniformly and it

start at a random position. In case that position of the sparsity is bigger than the signal

size, we do a cyclic position for that.

For all experiments in this section we select Ñ = 1680 = 24×3×5×7, which has 40 divisors

1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 16, 20, 21, 24, 28, 30, 35, 40, 42, 48, 56, 60, 70, 80, 84,

105, 112, 120, 140, 168, 210, 240, 280, 336, 420, 560, 840, 1680. We can not use the whole

the divisors set, in some cases we select some of them to present the results.

The function called to get data written in files as mentioned before is:

CS Evaluate(N, S, P, X, opt, MG, k, j, M i, m s, r, M end, Print F, Orthobasis=0)

where parameters and their options are:

N: the number of elements in each signal vector
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S: the number of signal vectors to be created

P: the number of measurement matrices to test

X: S columns signals

opt: Optimizer

(1) CS Optimizer LASSO,

(2) CS Optimizer L1,

(3) CS Optimizer L1e

MG: Matrix generator

(1) Psi BD Bernoulli,

(2) Psi COB Bernoull,

(3) Psi rCOB Bernoulli

k: the sparsity, default=100

J: the number of bands, it should divide N

M init: the initial number of samples to measure

r: the number of overlapped blocks

m step: the M step

M end: Final M

Print F: Show the original and last recover signal

Othobasis: The orthobasis to transform the signal

(1) Fourier basis,

(2) Convolution Matrix,

(Other) Canonical
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The following tests were made:

# Ñ S P X opt MG k J M i m s

1 1680 10 5 2 1 & 2 50, 100,

150

4, 5, 6, 7,

8, 10, 12, 14,

15, 16, 20, 21,

24, 28, 30, 35,

40, 42, 48, 56,

60, 70, 80, 84,

105, 112, 120,

140, 168, 210,

240, 280, 336,

420, 560, 840

100 10

2 1680 10 5 2 1 & 2 20, 50, 80,

100, 120,

150, 180,

200, 250

10, 20, 40 100 10

3 800, 1200,

1600, 2000,

2400

10 5 2 1 & 2 100 10, 20, 40, 80 100 10

With values at #1 experiment presented as a row in the table, we want to show the impact

of the number of blocks as we will discuss in the next section 3.4.1. These experiments were

executed in two different runs completely in Google Colaboratory and it took about 26 hours

of execution runs. The amount of output txt files was 4294 and a total size of 17.7 MB.
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The second one was prepared to show the impact of sparsity and we will present the results

in section 3.4.2. Here we got 1730 txt files with a total size of 7.2 MB also running in Google

Colaboratory and took almost 6 hours to run. In case of the third, it was programmed to

see the impact in the size of the signal. We selected few values because choosing Ñ very

larger made the recover signal process spend more time, In addition, these values must have

several divisors to choose J .

In all three experiments we include differences of minimal number of measurements M̃ be-

tween COB and BD to compare the performance. Those differences are taken in account a

normalized J , i.e, taking the same number of nonzero elements for both matrices. It will

show that COB matrices, over the same conditions, need less measurements to recover the

signal that BD matrices as expected. Furthermore, we include minMBD−minMCOB

minMBD
, i.e, a ra-

tio of improvement with the minimal number of measurements differences between BD and

COB. It helps us assert that using COB matrices to sense a signal, and over the similar

conditions on the matrices, COB will improve around 20% to BD matrices.

3.4 Performance of COB with uniform random signal

3.4.1 The Impact of the Number of Blocks

If we consider the theoretical result, the number of blocks should affect the number of

measurements about a linear factor. This was confirmed in the experiments and can be

seen in figure 3.2. Note that COB is improving the performance of BD in the number of

measurements. If we consider the slope as a parameter to show that, we can claim that the

performance of COB will be about 20% better than BD since one is twice the other. This

improvement will also be visualized in the next section.
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Validating J factor bound in Theorem 13

According to the lineal regression in figures 3.2, it is easy to see that we are validating

the linear factor of J in the number of measurements needed to recover signals. Another

observation is about the y-intercept is not zero. This means that our bound is working

without constant values that do not depend of Ñ , S or J . This is because we have discarded

values that do not dominate in the demonstration leaving behind linear or logarithmic factors

of only J , S, and Ñ .
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Figure 3.2: The minimum M/ log(M) versus J using three different sparsity

The linear equations in table 3.4, give us the possibility to assert that the slope of BD is

twice the slope of COB, then an improvement of 20% can be archived if COB is used.

Sparsity LR equations R2-Coef. of determination

50
yBD = 1.399xBD + 61.349 0.9778

yCOB = 0.6451xCOB + 46.6383 0.9575

100
yBD = 1.229xBD + 88.453 0.9779

yCOB = 0.6684xCOB + 68.3714 0.9434

150
yBD = 1.250xBD + 102.286 0.9661

yCOB = 0.5760xCOB + 85.0773 0.9767

Table 3.4: Linear regression BD vs COB using sparsity
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COB vs. BD

The amount of measurements needed to recover the signal using COB is less than BD, our

experiments are showing this claim clearly. For example, in figure 3.3 we normalize the

number of nonzero entries in matrix COB to be according to BD. We show three different

sparsity in the signal, i.e., for 50, 100, 150, and when the number of blocks is increasing, the

numbers of measurements needed is always less in each different sparsity figure.

We include figures 3.4 and 3.5 where we show the differences and normalized difference

respectively, between the number of measurements in average needed to recover the signal

for different blocks in BD and COB. In 3.4 we can see that these differences seem constant

when the number of blocks increases. In addition, it can also deduced clearly from figure 3.5

that the improvement is about 20%.
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Figure 3.3: The minimum M versus normalized J using three different sparsity
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Figure 3.4: M differences versus normalized J using three different sparsity
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Figure 3.5: M differences ratio versus normalized J using three different sparsity

3.4.2 The Impact of The Sparsity

To show the impact of the sparsity we select two fixed block sizes and let the number of

nonzero elements on testing signals variate. The sparsity range in respect to the signal size

Ñ = 1680 was [20, 250], i.e., about between 1% and 15% of signal sparsity.

Validating the S factor in Theorem 13

As found in figure 3.6, after take the log2 over the all S values tested, we confirm the factor

in M̃ bound on our COB result. Although the two matrices do not have the same number of

nonzero elements, we can again claim the better performance of COB over BD. The linear

regressions are shown to certify the logarithm factor as well the lower slope (see table 3.5)

for COB over BD.

Blocks LR equations R2-Coef. of determination

10
yBD = 4.3014xBD + 9.0715 0.9838

yCOB = 3.8185xCOB − 5.6479 0.9710

20
yBD = 3.9934xBD + 30.1582 0.9862

yCOB = 3.5476xCOB + 9.2784 0.9791

Table 3.5: Linear regression
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Figure 3.6: The minimum M/ log(M) versus Sparsity using two different number of blocks

COB vs. BD

Figures 3.7, 3.8 and 3.9 use the same number of nonzero elements over both matrices and it

can confirm now that COB improves BD. To quantify this improvement, a ratio was graphed

in 3.9 which makes it clear again that the improvement is about 20%.
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Figure 3.7: The minimum M/ log(M) versus normalized J using two different number of
blocks
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Figure 3.8: M differences versus Sparsity using two different normalized J
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Figure 3.9: M differences ratio versus Sparsity using two different normalized J
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3.4.3 The Impact of Signal Size

In this case, for three fixed block sizes, we variate the signal size to validate the bound. The

style of previous sections is preserved. First we show the shape of the factor and next we

normalized the blocks on both matrices to ratify that COB performs better than BD.

Validating the Ñ factor on Theorem 13

From theoretical results we know that the influence of Ñ is about a logarithmic factor. Then,

after take the log to each test Ñ value over normalized J , the figure 3.10 validate it. The

linear regression over both matrices and using the slope help to visualize the improvements.

6.00 6.25 6.50 6.75 7.00 7.25 7.50 7.75 8.00
log(Signal size)

20

40

60

80

100

120

140

160

180

M
in

 M
/lo

g(
M

) t
o 

re
co

ve
r

BD
COB
LR_BD
LR_COB

(a) J = 10

6.00 6.25 6.50 6.75 7.00 7.25 7.50 7.75 8.00
log(Signal size)

20

40

60

80

100

120

140

160

180

M
in

 M
/lo

g(
M

) t
o 

re
co

ve
r

BD
COB
LR_BD
LR_COB

(b) J = 20

6.00 6.25 6.50 6.75 7.00 7.25 7.50 7.75 8.00
log(Signal size)

20

40

60

80

100

120

140

160

180

M
in

 M
/lo

g(
M

) t
o 

re
co

ve
r

BD
COB
LR_BD
LR_COB

(c) J = 40

Figure 3.10: The minimum M/ log(M) vs the log(signal size) using three different number
of blocks

Signal size LR equations R2-Coef. of determination

10
yBD = 27.5158xBD − 106.0469 0.9932

yCOB = 16.5817xCOB − 50.5781 0.9797

20
yBD = 34.6989xBD − 143.2206 0.9369

yCOB = 24.3212xCOB − 973580 0.9718

40
yBD = 37.8929xBD − 146.2236 0.9159

yCOB = 29.5358xCOB − 125.3190 0.9962

Table 3.6: Linear regression impact of signal size
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COB vs. BD

As we did with the factors J and S, we now normalize J to let both matrices compete in

equal circumstances. Figures 3.11, 3.12 and 3.13 will shows clearly the improvements. If we

want to see the approximate 20% of improvements again, check graph 3.13.
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Figure 3.11: The minimum M/ log(M) vs Ñ using three different normalized J

800 1000 1200 1400 1600 1800 2000 2200 2400
Signal size with normalized J

50

75

100

125

150

175

200

225

250

M
 D

iff
er

en
ce

(a) J = 10

800 1000 1200 1400 1600 1800 2000 2200 2400
Signal size with normalized J

50

75

100

125

150

175

200

225

250

M
 D

iff
er

en
ce

(b) J = 20

800 1000 1200 1400 1600 1800 2000 2200 2400
Signal size with normalized J

50

75

100

125

150

175

200

225

250

M
 D

iff
er

en
ce

(c) J = 40

Figure 3.12: Difference between M/ log(M) versus Ñ using three different normalized J .
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Figure 3.13: Difference ratio M/ log(M) versus Ñ using three different normalized J
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3.5 Performance of COB with random bursty signal

All signals created previously have a independent and identically distributed variables ele-

ments on its sparsity. For signal size Ñ = 1680, as we did before, we do here experiments

with 50, 100, and 150 nonzero elements, i.e., the signal sparsity. The worst case for the

random signal is that all its non-zero elements are concentrated starting in some unknown

random position. We are also experimented with this type of signals and the results show

that although more measurements of the signal are needed, we still have better results with

COB than with BD. For small number of blocks J , we observe same pattern as before, a

linear increase, see figure 3.15 and figure 3.16 when both matrices have the same nonzero

values quantity. For large J ’s, the number of measurements are converging to Ñ in less

intensity for COB. For very large J values, the signal cannot be even reconstructed.
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Figure 3.14: The minimum M/ log(M) vs J worst signal case

3.5.1 The Impact of the Number of Blocks

For this case where random signal is concentrated, and consider the theoretical result as we

did before, the number of blocks should affect the number of measurements about a linear

factor. This was confirmed again with numerical experiments and is presented below.
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Validating the J factor on Theorem 13

The random sparsity concentrate of the signal is not affected the results and still COB has

advantage over BD for small J values. We can observe in graph 3.15 that, using same values

as before in 3.2 were the sparsity is identically distributed, similar improvements over small

J values it keep getting. This is observed in the slope in the linear regressions which is twice

for BD over COB.
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Figure 3.15: The minimum M/ log(M) vs J worst signal case

The linear regression values Table 3.7 shows that in terms of quantity, the slope is close to

double in BD that in COB. As we asserted before, we can consider a 20% of improvements

with COB that it is confirm in graph 3.18 where ratio differences were drawn.

Sparsity LR equations R2-Coef. of determination

50
yBD = 11.7654xBD + 57.4777 0.9938

yCOB = 5.7084xCOB + 40.7791 0.9640

100
yBD = 12.3845xBD + 96.4295 0.9628

yCOB = 7.3556xCOB + 56.2486 0.9652

150
yBD = 15.1716BD + 107.4568 0.9502

yCOB = 8.8805xCOB + 69.3582 0.9853

Table 3.7: Linear regression BD vs COB worst case
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3.5.2 COB vs. BD

If we consider normalized J , i.e., made both BD and COB matrix with equal nonzero entries,

a concentrated signal that represent the worst case scenario to represent the sensors data,

we can observed better performance with COB, see figure 3.16. Reaffirming improvements

of 20% with COB again can be observed through the figure 3.18.
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Figure 3.16: The minimum M versus normalized J worst signal case
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Figure 3.17: M differences versus normalized J worst signal case
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Figure 3.18: M differences ratio versus normalized J worst signal case
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Chapter 4

The COB generalization

In COB we overlap one block and considering the BD result, it was very natural think

that we can get the RIP and improve the number of measurements needed to recover the

signal using COB matrices. We show that in chapter 3. Now we can think also naturally that

overlapping r blocks we should improve more but with the disadvantage that the calculations

made to recover the signal would take longer. Although under certain circumstances it might

be better to pay the cost. In this chapter, we will generalize the measurement matrix COB,

now called rCOB, and also prove that this matrix satisfies RIP. To extend our result we

shows over which circumstances rCOB performs good, we believe that it should work better

when the number of blocks increases. When this happens BD and COB presented some

instability. Numerical result are likewise include at the end of the chapter.

4.1 The rCOB Matrix

Similarly to COB’s definition, let Φj1,Φj2, . . . ,Φj(r+1) ∈ CM×N for j ∈ [J ] be matrices

populated with i.i.d. sub-Gaussian random variables having mean zero, standard deviation
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1/
√

(r + 1)M and sub-Gaussian norm τ . Now the rectangular blocks are formed by M ×

(r+ 1)N matrices Φj = [Φj1 Φj2 · · ·Φj(r+1)], i.e with the concatenation of Φjk for i ∈ [J ] and

k ∈ [r + 1].

The generalization is summarize in the following table:

rCOB
BD COB Fully r = 1

y
0 ≤ r ≤ J − 1

Table 4.1: rCOB generalization range

and its structure will be similar to

Ψ =



[Φ11 Φ12 · · · Φ1(r+1)] 0 0 · · · 0
0 [Φ21 Φ22 · · · Φ2(r+1)] 0 · · · 0
0 0 [Φ31 Φ32 · · · Φ3(r+1)] · · · 0
...

...
...

. . .
. . . · · ·

. . .
...

0 0 0 0 [Φ(J−3)1 Φ(J−3)2 · · · Φ(J−3)(r+1)]

Φ(J−2)(r+1)] 0 0 0 0 [Φ(J−2)1 · · · Φ(J−2)r

Φ(J−1)r Φ(J−1)(r+1)] 0 0 0 0 [Φ(J−1)1 · · ·

· · · ΦJr ΦJ(r+1)] 0 0 0 0 [ΦJ1


(4.1)

The symbol 0 represent block of zeros, in this case the matrix could be unstructured or

structured. The number of non-zero is increasing when r go to J − 1. On figure 4.1 we

can see the shape when r = 3 and for N = 20,M = 10 and J = 10, of course its size is

200× 100. There, we add BD and COB matrices to compare and visualize better the form

of the matrices in which we have focused in this thesis. The color black represent the blocks

Φjk and white part the zeros.

In order to better see the impact of r on the shape of the matrix and how it changes its

quantity of non-zero elements we have added the Figure 4.2, where r = 8 for the same values
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Figure 4.1: BD, COB and 3COB for N = 20,M = 10 and J = 10

of the Figure 4.1.

Figure 4.2: 8COB for N = 20,M = 10 and J = 10

The following equations describe for BD, COB and rCOB its non-zero ratio elements quan-

tity, i.e.,

BD :
JMN

M̃Ñ
=

1

J
, (4.2)

COB :
2JMN

M̃Ñ
=

2

J
, (4.3)

rCOB :
(r + 1)JMN

M̃Ñ
=
r + 1

J
. (4.4)

It is clear that the matrix sparsity is related with J , when it grows the matrix will be more

sparse and the calculations will be much faster for recover algorithm. Although, as we have

seen the number of samples M depends linearly on J , then increasing J will also increase M

and we lost the main property of CS, sub-sample the signal. For each application we have

to be carefully choosing the number of blocks.
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4.2 RIP for rCOB

The process to follow here is similar to COB. The steps are:

1. RIC: write RIC as δS = supα∈ΩS

∣∣‖Ψ · x(α)‖2
2 − 1

∣∣ and check that E{‖Ψ · x(α)‖2
2} = 1

verifying that E{Ψ∗ ·Ψ} = I.

2. Transformation: build Xj(α), A(α), and A. Check ‖Ψ · x(α)‖2 =i.d. ‖A(α) · ε‖2.

3. Calculation 1: values dF (A) and d2(A).

4. Calculation 2: value γ2(A, ‖·‖2)

5. Applying Theorem: put everything together to get M̃ , i.e., the number of measure-

ments/rows for Ψ and shows that δS < δ, i.e., get RIP for Ψ′.

We will present in next section the main theorem for rCOB without prove. The rest of the

section will shows the steps to prove it.

4.2.1 The measurement Theorem

The following theorem supports our novel framework for structures matrices. It generalizes

the BD matrix and our COB matrix, when r = 0 it reach BD, for r = 1 is COB and for

r = J − 1 will be a full structure matrix.

Theorem 15. Let U denote an orthobasis for CÑ , Ψ ∈ CM̃×Ñ a J blocks rCOB matrix as

defined above (4.1) and set

µ̃ := min
{√

J/(rS + S), µ(U)
}
, where µ(U) =

√
Ñ max

p,q∈[Ñ ]
|U(p, q)|.
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If S & 1 and

M̃

log M̃
& δ−2 · µ̃2 · S · log2 S · log Ñ ,

then δS(Ψ, U) ≤ δ < 1, except with a very low probability of at most O
(
Ñ− log M̃ log2 S

)
.

Once again we make the case for the canonical basis where the number of measurements will

be linear now with value J
r+1

.

Corollary 2. Let x ∈ CÑ be a signal, and Ψ ∈ CM̃×Ñ a J blocks rCOB measurement matrix

as defined above (4.1). If S & 1 and

M̃

log M̃
& δ−2 · J

r + 1
· log2 S · log Ñ , (4.5)

then δS ≤ δ < 1, except with a very low probability of at most O
(
Ñ− log M̃ log2 S

)
.

4.2.2 RIC for rCOB

We can represent δS for rCOB in the same way that we did for COB in (3.3), i.e.,

δS = sup
α∈ΩS

∣∣‖Ψ · x(α)‖2
2 − 1

∣∣ . (4.6)

To check that E{Ψ∗ · Ψ} = I, note that Ψ∗Ψ involved r + 1 unstructured φM×N matrices,

because we choose standard deviation 1/
√

(r + 1)M in each φ (see definition 4.1), using a

similar prove in Lemma 3, the result is also getting for rCOB.
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4.2.3 The transformation

As in COB, similar transformation is required to get index set of the random process for

rCOB. For α ∈ CÑ , set x(α) = Uα and define xj(α) as in COB such that

x(α) = [x1(α)T , x2(α)T , . . . , xJ(α)T ]T .

To define the sub-matrix Xj ∈ CM×(r+1)MN with j ∈ [J ], let us use [(x∗k(α))j] as a notation

for a row vector to all k ∈ idxj where idxj is define later. Therefore,

Xj(α) =



[(x∗k(α))j]

[(x∗k(α))j]

. . .

[(x∗k(α))j]


.

To define the ordered list of index idxj with fixed size r + 1 as follow

idxj =


[j, j + 1, · · · , j + r] if j + r ≤ J

[j, j + 1, · · · , r + j]︸ ︷︷ ︸
size J−j+1

∪ [1, 2, · · · , r + j − J ]︸ ︷︷ ︸
size r+j−J

if r + j ≥ J
. (4.7)

Note that (4.7) is consistent with (3.10) in COB, where r = 1 and with BD if r = 0.

Therefore, a matrix A here is similar as in COB, but could has to many columns as r grows.
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It has the following form:

A(α) =
1√

(r + 1)M



X1(α)

X2(α)

. . .

XJ(α)


M̃×(r+1)JMN

(4.8)

The index set of the random process will be

A := {A(α) : α ∈ ΩS}. (4.9)

Some notes about the transformation:

1. The size of matrix and vector multiplication corresponded, i.e.,

yM̃×1 = ΨM̃×Ñ · xÑ×1(α)

y′
M̃×1

= A(α)M̃×(r+1)MÑ · ε(r+1)MÑ×1

Actually, it can be proved that y = y′ or equally

‖Ψ · x(α)‖2 =i.d. ‖A(α) · ε‖2 .

2. The result of A(α) · A∗(α) is M -square diagonal matrix for j = 1, . . . , J with the

following structure

1

(r + 1)M


∑

k∈ idx1
‖xk(α)‖2

2 0
. . .

0
∑

k∈ idxJ
‖xk(α)‖2

2

 (4.10)
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This will be helpful later to calculate spectral norm of A(α).

4.2.4 Remaining steps

The two values dF (A) and d2(A) for rCOB are also similar to COB. For the first one, check

that A is diagonal composed of single-row blocks with elements from x(α). Each row has

different “consecutively” sub-vectors xj(α), and for all j, each of them will appear in r + 1

blocks. In addition, each sub-matrix Xj repeat M times a row, therefore

dF (A) = sup
A(α)∈A

‖A(α)‖F

= sup
α∈ΩS

1√
(r + 1)M

√
(r + 1)M‖x1(α)‖2

2 + · · ·+ (r + 1)M‖xJ(α)‖2
2

= sup
α∈ΩS

‖x(α)‖2

= sup
α∈ΩS

‖Uα‖2 = sup
α∈ΩS

‖α‖2 = 1. (4.11)

This result and the next one let us to think about the transformation and its properties. Off

course, the transformation matrix has repeated elements from x, therefore will be natural

that dF (A) and d2(A) has values related with x. Following this, for d2(A) we can claim that

‖A(α)‖2 ≤

√
S

M̃
min

(
µ,

√
J

r + 1

)
= µ̃

√
S

M̃
,

where we used same deduction of (3.17) and property (4.10). Therefore,

d2(A) = sup
A(α)∈A

‖A(α)‖2 ≤ µ̃

√
S

M̃
, (4.12)

where µ̃ = min
(
µ,
√

J
(r+1)S

)
and µ(U) =

√
Ñ maxp,q∈[Ñ ]|U(p, q)|.
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Here we shows the most difficult calculation to be able to apply the chaos theorem. But the

deduction made in (3.21) applying the Covering Lemma 5 can be extended to this general

matrix rCOB, we present without prove that

γ2(A, ‖·‖) .
√
S

∫ ∞
0

log
1
2 N

(
ΩS√
S
, ‖·‖A, v

)
dv . µ̃

√
S

M̃
logS

√
log M̃ log Ñ . (4.13)

From (4.11), (4.12) and (4.13) and applying Theorem 14 we prove the Theorem 15.

4.3 Numerical Experiments

In this section, like we did before with COB, we will support our theoretical results with

numerical experiments. First we will validate the theoretical analysis, and next shows under

what conditions using rCOB offers better performance than using BD. The next table shows

the parameters passed to the solver function 9. For all r values, we run the solver for each

J in the table. We left Ñ and k always constant.

# N S P X opt MG k J M i r m s
1 1680 5 5 2 3 100 4, 5, 6, 7, 8,

10, 12, 14, 15,
16, 20, 21, 24,
28, 30, 35, 40,
42, 48, 56, 60,
70, 80

380 0, 1, 2, 3,
4, 5, 8, 10,
15, 20, 25

10

Table 4.2: Values to test rCOB

The implementation code function is presented in algorithm 10. To build rCOB matrices is

done through the function 10, a similar idea from COB is used but now adding J − 1 BD

matrices rolling the second one to a factor of i · n each time before added. Again there we

have to normalize before returning.
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Function 10 Psi rCOB Bernoulli(M, N, J, r)

Input: M,N mod J = 0 & 0 ≤ r ≤ J
Output: AM×N

1: n = N/J
2: for i = 1 : r + 1 do
3: A← A+ Roll(Psi BD Bernoulli(M,N, J), i · n)
4: end for
5: x←

√
r + 1

6: return A/x

To tests all this values on table 4.2 took 18 hours running and generate more than 1000 text

files. With this experiments we expect to see that rCOB could start to recover signals over

the factor range presented in equation 4.5. From that equation, the number of blocks do a

linearly with J over the number of overlapped blocks, i.e., r + 1.

4.3.1 Validating the theoretical results

On Corollary 2, the only different factor over the number of measurements is J . Therefore

we prepare experiments using rCOB matrix over several block (J) varying the parameter

r. For r-values 0 and 1 the matrix is BD and COB respectively. On figures 4.3 to 4.4 we

present the results.

We observe that rCOB is consistently recovering signals linearly when the number of blocks

is increasing. But, graphs shows clearly that the linear factor it is much lower than in BD

as those blocks are influence by parameter r.

4.3.2 BD vs rCOB

If we consider normalize J , i.e., use the same number of nonzero values in BD and rCOB

for each r, still we can observe that rCOB is using less measurements as BD. See figure 4.5

to one example.
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(b) r = 2
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(c) r = 3
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(d) r = 4

Figure 4.3: The minimum M/ log(M) versus J for rCOB with r = 1, 2, 3, 4
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(a) r = 5

0 20 40 60 80
Number of blocks

80

100

120

140

160

180

200

M
in

 M
/lo

g(
M

) t
o 

re
co

ve
r

BD
rCOB
LR_BD
LR_COB

(b) r = 8

0 20 40 60 80
Number of blocks

80

100

120

140

160

180

200

M
in

 M
/lo

g(
M

) t
o 

re
co

ve
r

BD
rCOB
LR_BD
LR_COB

(c) r = 10
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(d) r = 15
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(e) r = 20
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(f) r = 25

Figure 4.4: The minimum M/ log(M) versus J for rCOB with r = 5, 8, 10, 15, 20, 25
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(a) r = 1
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(b) r = 2
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(d) r = 4

Figure 4.5: rCOB vs BD over normalized J
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(a) r = 5
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(b) r = 8

0 5 10 15 20 25 30
Normalized number of blocks

400

450

500

550

600

650

700

750

800

M
in

 M
 to

 re
co

ve
r

BD
COB

(c) r = 10
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(d) r = 15
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(e) r = 20
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(f) r = 25

Figure 4.6: rCOB vs BD over normalized J for r=20 and 25.
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The impact of r should be proportional to J
r+1

, the figure 4.7 will shows that. If we take the

BD and rCOB linear regression slope, the theoretical ratio should be 1
r+1

as it is show also

numerically.

0 5 10 15 20 25
r

0.0

0.2

0.4

0.6

0.8

1.0

ra
tio

1/(r+1)
mCOB/mBD

Figure 4.7: Slope ratio rCOB/BD vs r

If r = 1, we are improving 20% the number of measurement in BD using COB, as we mention

in previous chapter. The slopes observed here by the linear regressions in table 4.3 shows

those improvements at least where r is small.
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r LR equations R2-Coef. of determination

1
yBD = 1.2802xBD + 82.7476 0.9762

yCOB = 0.64741xCOB + 67.5694 0.9549

2
yBD = 1.2802xBD + 82.7476 0.9762

yCOB = 0.4419xCOB + 67.7321 0.9283

3
yBD = 1.2802xBD + 82.7476 0.9762

yCOB = 0.4334xCOB + 66.1106 0.9444

4
yBD = 1.2802xBD + 82.7476 0.9762

yCOB = 0.3031xCOB + 67.4967 0.9028

5
yBD = 1.2802xBD + 82.7476 0.9762

yCOB = 0.3158xCOB + 66.0416 0.9054

8
yBD = 1.2802xBD + 82.7476 0.9762

yCOB = 0.2121xCOB + 66.5506 0.7843

10
yBD = 1.2802xBD + 82.7476 0.9762

yCOB = 0.1172xCOB + 68.7185 0.6085

15
yBD = 1.2802xBD + 82.7476 0.9762

yCOB = 0.1169xCOB + 67.7633 0.5119

20
yBD = 1.2802xBD + 82.7476 0.9762

yCOB = 0.0799xCOB + 68.8139 0.2527

25
yBD = 1.2802xBD + 82.7476 0.9762

yCOB = 0.1162xCOB + 67.3478 0.3577

Table 4.3: Linear regression for BD vs rCOB
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Chapter 5

The Performance of Wireless Sensor

Networks with COB-based CS

5.1 Introduction

In this chapter, we will investigate the performance of wireless sensor network (WSN) that

utilizes compressed sensing (CS) with the proposed cyclic overlapping block diagonal (COB)

matrix. To demonstrate the potentials of COB, we will also study the performance of WSN

without CS and the performance of WSN that uses CS with block diagonal (BD) matrix.

The rest of this chapter is organized as what follows. First, in Section 5.2, we will review

related work and discuss the novelties and contributions of our study. We then present the

system model in Section 5.3, including the network model and the CS-based data collection

model. In Section 5.4, we elaborate on the analytical model to evaluate the throughput and

delay performance of the WSN with CS.
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5.2 The Related Work

In the literature, several CS based data collection schemes for WSNs have been investigated.

However, the impact of the measurement matrix has not been fully investigated. On the

one hand, many researchers focused on the performance of WSN by simply assuming there

exists a measurement matrix. On the other hand, some researchers focused on the design of

measurement matrix, particularly the structured measurement matrix, without considering

the feature of WSN. Therefore, there is still a significant gap between CS and WSN.

To collect data in WSN using CS, the first complete design was proposed in [23], where the

authors proposed a Compressive Data Gathering (CDG) scheme, which was illustrated in

Figure 1.5. The CDG basic scheme has been improved and has inspired many further inves-

tigation on CS-based data gathering in WSN. For example in [24], the authors considered

sparsity in time and space domains for real dataset and they proposed a model using low-

rank matrices recovery, a related CS theory using incomplete linear measurement. Rather

than recover a sparse vector, the process aim at recovering a matrix from incomplete infor-

mation where sparsity is replaced by the assumption that matrix has low rank. This setup

also appears for example in consumer taste prediction.

In [25], the authors investigated signals that follow a power-law decay model and proposed

a new data gathering scheme that explores the spatial-temporal sparsity. They showed that

the lifetime improvements can be up to two times over CDG because they reduce the number

of measurements. To evaluate it and assert that what they propose is better, real data sets

where used and compared with the traditional scheme and CGD. Their proposal is supported

when a statistical characterization of the signal is available and thus a Bayesian inference

[26] can complement conventional CS methods. An extension of this data gathering scheme

for Mobile Sensor Networks is presented in [43]
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Although using the proposed methods, the amount of messages sent to the sink is improved

and therefore a better performance in the network is supposed, together with a better dis-

tribution of the energy consumed by each sensor, there are few works investigating the per-

formance of the data gathering with CS in term of capacity and delay. In [44] is presented

a the fundamental limitation of the data gathering with CS for single-sink and multi-sink

random networks under protocol interference model, in term of capacity and delay. For the

single-sink case, they presented a scheme different that [23] where the assumption on the

relatively uniform characteristics of data sparsity distribution in each sub-tree is not consid-

ered. They prove that the capacity gain and delay bounds were archived over the traditional

scheme.

Although there are many existing studies, to the best of our knowledge, none of them are

consider how to improve WSN performance by using new structured measurement matrix

other than the BD matrix.

5.3 The System Model

In this section, we present a system model to facilitate our investigation. Specifically, we

first introduce the WSN model. We then discuss the data collection scheme that applies the

CS technique with the proposed COB matrix.

5.3.1 The WSN Model

In our study, we consider a WSN that consists of one sink and a total of Ñ static sensors.

To simplify the discussions, we assume that all sensors are deployed in a unit area and the

sink is located at the center of the unit area.
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We consider that each sensor can sense environmental data. We also assume that each

sensor has wireless communication module such that it can communicate with all neighboring

sensors that are within a fixed transmission range r. Our model satisfies the standard

connectivity as was presented in [19]. To enable CS, we further assume that each sensor has

sufficient storage and processing capabilities.

5.3.2 The CS-Based Data Collection Model

In this study, we assume that all sensor nodes measure environmental data periodically. For

each period, the sink node shall receive M̃ measurements to reconstruct Ñ original sensing

data. To collect data in WSN, we assume that a tree-based routing scheme is used, in which

a tree rooted at the sink is constructed after the WSN is deployed. In this tree, each sensor

will receive data packets from its children nodes and send packets to its parent node.

To apply CS, we consider that each sensor node can utilize two transmission modes. In

the first mode, a sensor can send its own data to its parent or forward the data from its

descendant nodes to its parent. In the second mode, a sensor will use the measurement

matrix and transmit measurement data to its parent. To illustrate these two modes, we

consider a simple WSN in Figure 5.1.

a: the sink

b c

d

e f

g h

Figure 5.1: A routed tree for data collection.

In this example, there is one sink (node a) and there are seven sensors (nodes b to h). We
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assume that at a certain time epoch, all sensors measure environmental data, denoted as

X = [xb, xc, · · · , xh]T .

Φ =

φ1b φ1c φ1d φ1e φ1f φ1g φ1h

φ2b φ2c φ2d φ2e φ2f φ2g φ2h

 (5.1)

Next, they will use a measurement matrix Φ defined in Eq. (5.1) to collect two measurements

in vector Y = ΦX, which is shown in Eq. (5.2):

Y =

y1

y2

 =

φ1b φ1c φ1d φ1e φ1f φ1g φ1h

φ2b φ2c φ2d φ2e φ2f φ2g φ2h





xb

xc

xd

xe

xf

xg

xh



. (5.2)

To utilize the measurement matrix, we set all leaf nodes, i.e., nodes e, f, g, h, to the first

mode, which means that they will only send their own measurement data, i.e., xe, xf , xg, xh,

respectively. We set all internal vertices, i.e., nodes b, c, d to the second mode. In this

manner, each of them must wait for the measurement data from all descendants, and then

append its own data and send 2 measurements to its parent node.

For example, node c shall first wait for the measurement data xf from its child node f , and

then send two measurement data to the sink a: (1) φ1cxc + φ1fxf and (2) φ2cxc + φ2fxf .

On the other hand, node b shall first wait for the measurement data from all its descendants,

including xe from node e, and two measurement data from node d: (1) φ1dxd+φ1gxg +φ1hxh
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and (2) φ2dxd + φ2gxg + φ2hxh. After that, node b will send two measurements to the sink:

(1) φ1bxb + φ1dxd + φ1exe + φ1gxg + φ1hxh and (2) φ2bxb + φ2dxd + φ2exe + φ2gxg + φ2hxh.

Finally, we note that the objective for choosing one mode is to minimize the number of

packets it shall transmit. In other words, a node shall choose mode one if and only if

the number of nodes in the sub-tree rooted at this node is smaller than the number of

measurements M̃ . For example, the sub-tree rooted at node d has three nodes. Thus, node

d shall use mode one if M̃ > 3.

5.4 The Analytical Model

In this section, we first specify necessary assumptions for the analysis, as well as notations.

We then explain the outline of the analysis, including two major issues: (1) node partitioning,

and (2) scheduling.

5.4.1 Assumptions and Notations

To facilitate the analysis, we make the following assumptions.

• The sensing field is a unit square.

• All Ñ nodes are uniformly distributed in the sensing field.

• The unit square is partitioned into C ×C squares, namely, cells, where C is an integer

and it is chosen in a way such that one cell has at least one node. We further define

c = 1
C

.

• d(i, j) means the Euclidean distance between node i and node j.
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• Node i can successfully receive a message from node j if and only if (1) d(i, j) ≤ r,

and (2) d(i, k) > (1 + ∆)r, where node k is a node that transmits at the same time

and ∆ represents the impact of interference. In the literature, such a model is known

as a protocol model.

• One node in a cell can send messages to any node in four neighboring cells (up, down,

left, right). This assumption implies that the transmission range r ≥
√

5c.

• Due to the complexity of the analysis, we consider five measurement matrices: (1) full

matrix (i.e., BD matrix with J = 1), denoted as BD1, (2) BD matrix with J = 2,

denoted as BD2, (3) BD matrix with J = 4, denoted as BD4, (4) COB matrix with

J = 4, denoted as COB4, (5) COB matrix with J = 8, denoted as COB8.

• A time division multiple access (TDMA) scheme is used to determine when a sensor

can send and receive a message. Moreover, in the TDMA scheme, the time horizon is

partitioned into equal-sized time slots. The duration of a slot is ts seconds, which can

be used to send one message.

• The transmission rate is fixed to W bits/second.

5.4.2 Overview of the Analysis

To analyze the throughput and delay performance of a WSN that utilizes CS with BD or

COB, there are two major issues: (1) how to partition the sensing field such that we can

apply CS with BD or COB, and (2) how to design a feasible time schedule for each node to

send messages. Next, we will explain how to address these two questions one-by-one. Based

on them, we will evaluate the throughput and delay of WSN with CS.
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5.4.3 Field Partitioning for BD and COB

As explained previously, we consider only five measurement matrices. Next, we first explain

the most simple case, BD1, in Figure 5.2. In this figure, the picture to the left-hand-side

represents a unit area that is partitioned into 9×9 cells1, and the smaller picture to the right

hand side represents the shape of the measurement matrix. Since BD1 is used, the measure-

ment matrix is full, represented by a single yellow block in the matrix. Correspondingly, we

note that the field consists of all yellow cells, except the cell at the center, which contains

the sink.

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9
M̃ × Ñ measurement matrix

1 A cell that transmit on slot 1

A super-cell with 9 cells

1 2 3

4 5 6

7 8 9

Figure 5.2: An example of field partition for BD1.

In Figure 5.3, we illustrate the field partitioning when BD2 is used. Since BD2 is used, the

measurement matrix has two blocks, yellow and green. Correspondingly, we note that the

field consists of two parts, yellow and green, and they have the same number of cells.

In Figure 5.4, we illustrate the field partitioning when BD4 is used. Since BD4 is used, the

measurement matrix has four blocks, yellow, green, pink, and cyan. Correspondingly, we

1Here we note that each cell has a number. These numbers are related to the TDMA schedule that will
be explained in the next subsection.
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Figure 5.3: An example of field partition for BD2.

note that the field consists of four parts, represented by the same four colors, and they have

the same number of cells.
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Figure 5.4: An example of field partition for BD4.

In the previous example, we have demonstrated the field partitioning when BD is used.

We can observe that, since blocks have no overlaps, the parts also have no overlaps. By

comparison, when COB is used, we need to find partitions with overlaps. In Figure 5.5,
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we illustrate the field partitioning when COB4 is used. Similar to BD4, COB4 has four

blocks in the measurement matrix: yellow, green, pink, and cyan. To enable overlapping, we

design two partition schemes in the left-hand-side of Figure 5.5, one for yellow and green,

and another for pink and cyan. The first one is the same as the partition for BD2, i.e., left

and right, while the second one uses a different method, i.e., up and down. In this manner,

we can observe that the size of four regions are the same, one region is overlapping with two

regions and the overlapping parts have the same size.
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Figure 5.5: An example of field partition for COB4.

Finally, in Figure 5.6, we illustrate how to partition the field for COB8. In this case, there
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are eight blocks in the measurement matrix. Similar to those for COB4, we also develop two

partitioning maps to define eight regions, in which the first one is the same of the partitioning

for BD4.
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Figure 5.6: An example of field partition for COB8.

5.4.4 Feasible Scheduling Scheme

In this subsection, we discuss how to design a feasible TDMA scheduling scheme to allow

each node to transmit and receive messages. Specifically, we first define two types of timing
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· · ·S1 S2 S3 S4 S5 Sk2

Figure 5.7: The frame of k2 time slots

format: (1) frame, and (2) super-frame. We then discuss how to design a feasible scheduling

scheme.

1. Frame: We apply a typical approach [44] to define a frame as a sequence of k2 time

slots, as shown in Figure 5.8. In this manner, all cells with index i (as shown in previous

figures) can use time slot Si in a frame to transmit. Moreover, parameter k is chosen

in a way such that the co-channel interference, i.e., interference generated by other cell

with index i, is limited according to the protocol model.

2. Super-frame: We consider that a super-frame consists of a number of frames. Since

there are different WSN applications that can be accommodated by different scheduling

schemes, here we define three types of frames in a super-frame: (1) local frame, (2)

transit frame, and (3) idle frame. A local frame is used to enable transmissions within

a cell. Meanwhile, a transit frame is used to transmit a message from one cell to an

adjacent cell. In addition, an idle frame is a frame that has no transmission.

Next, we discuss design criteria and constraints.

1. Design criteria and constraints for frame

To utilize the frame, we consider that a group is composed of k × k cells in a square

region. For example, in Figure 5.2, we consider k = 3 and there are a total of 9

groups in the field. In this figure, the number in a cell represents the index of time slot

allocated to the cell.
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Here we can observe that the same index is assigned to multiple cells, which means these

are using the same time slot and thus one node in each of these cells can transmit at the

same time. Consequently, the minimal distance between a receiver and an interfering

node is (k − 2)c. To satisfy the interference constraint specified previously, we can

derive

(k − 2)c > (1 + ∆)r ≥ (1 + ∆)
√

5c. (5.3)

This analysis leads to the constraint for choosing k:

k > 2 + (1 + ∆)
√

5. (5.4)

2. Design criteria and constraints for super-frame

• The flow constraint in the network level: In the network level, the flow constraint

means that, in a super-frame, Ñ sensors can generate Ñ messages and the sink

can receive M̃ messages.

• The flow constraint for sensor nodes on mode 1: A node on mode 1 will send its

own data or forward messages without appending its own data. In this case, the

flow constrain means that the number of messages sent by a node is the same as

the number of messages it generates plus the number of messages it receives in a

super-frame.

• The flow constraint for sensor nodes on mode 2: If a node is on mode 2, the node

will generate and send m messages in one super-frame, where m depends on the

measurement matrix.

• The timing constraint for forwarding: If a node is on mode 1, then it must be

scheduled to forward a message after it receives it. If a node is on mode 2, then it

must be scheduled to send a measurement message after it receives all messages

that are necessary to construct the measurement message. In addition, the design

121



shall lead the minimal delay.

5.4.5 Performance of a Throughput-Maximized WSN

In this subsection, we investigate the throughput and delay performance of a WSN that aims

at maximizing the throughput of the WSN. In what follows, we first discuss the performance

of BD, and then elaborate on the performance of COB.

When BD is used, we will use the field partitioning schemes described in Section 5.4.3. Since

the objective is to maximize throughput, we consider that a super-frame consists of only

local and transit frames. Specifically, we design a super-frame that consists of g local frames

and m transit frames, as shown in Figure 5.8.

Super-frame L1 L2 · · · Lg L1 L2 · · · LgT1 T2 T3 · · · Tm T1 T2 T3 · · · Tm · · ·

Frame S1 S2 · · · Sk2 S1 S2 · · · Sk2

Figure 5.8: Super-frame format for BD in WSN that maximizes throughput.

To maximize data collection, we consider that all sensors sense the environmental data at

the beginning of each super-frame, and that the time horizon is partitioned into super-frames

without any gap (i.e., idle period).

According to the field partitioning scheme, we can form a cluster in each cell and we can

choose one node in a cluster as the cluster head that forwards all messages to neighboring

cell. In this way, we can choose g as the maximum number of nodes in a cell minus one. In

our analysis, g can be estimated by nc2. By using g frames, all sensors that are not cluster

head can operate on mode 1 and send their original messages to cluster heads.

To satisfy the flow constraint in the network level, we let m = M̃
J

for BD. This is feasible

because, for BD matrices with J ∈ {1, 2, 4}, the sink can collect one measurement from
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each region in each frame. Specifically, in Figure 5.2, the sink can receive four measurement

messages in slots 2, 4, 6, 8 in each frame. Since these four messages are used to construct one

measurement, the sink can receive one measurement in each frame. Similarly, in Figure 5.3,

the sink can receive four measurement messages in slots 2, 4, 6, 8 in each frame. However,

messages received in slots 2 and 4 can be used to construct a measurement for the yellow

region, while messages received in slots 6 and 8 can be used to construct a measurement for

the green region. Finally, in Figure 5.4, we can see that the sink can receive four measurement

messages in slots 2, 4, 6, 8, where each of them is measurement from one region.

In our design, we consider that all cluster heads are operating on mode 2. To satisfy the

flow constraint for nodes in mode 2 and the timing constraint, we consider that frame Ti

(1 ≤ i ≤ m) will be used by all cluster heads that have the largest hop distance (denoted as

h) to the sink to send the i-th measurement. After receiving these messages, cluster heads

whose hop distance to the sink is h− 1 will use the next available transit frame to send the

i-th measurement. Specifically, when i < m, these messages can be sent in frame Ti+1 if

the same super-frame. However, when i = m, the messages will be sent in T1 of the next

super-frame. In a similar manner, all cluster heads with hop distance h − 2 to 1 can be

scheduled to transmit m measurement messages.

Based on the description above, we can see that (1) the duration of a super-frame is k2(g +

m)ts, (2) the sink can receive M̃ messages in each super-frame, (3) the amount of bits in

a measurement message is Wts, and (4) the sink can then reconstruct Ñ original signals.

Therefore, the achievable per-node throughput λBD(J) is

λBD(J) =
WtsM̃

k2(g +m)ts
· Ñ
M̃
· 1

Ñ
=

W

k2(g +m)
=

W

k2(g + M̃
J

)
(5.5)

According to the scheduling scheme, all sensors collect environmental data at the beginning

of each frame. So we consider the delay as the duration from the epoch that the data are
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collect to the time that the last measurement message is received by the sink. To understand

the delay, we can first see that it is bounded by the delay of the last measurement, i.e., the

m-th measurement. Clearly, the first message for the m-th measurement is send in the m-th

frame in the same super-frame that the data is collected. This message shall be forwarded

h − 1 times. Since a message can advance m hops in a super-frame, we need to use
⌈
h−1
m

⌉
super-frames, which means that we need to wait for

(⌈
h−1
m

⌉
+ 1
)
g local frames. In addition,

we need m+ h− 1 transit frames to deliver all measurements. Consequently, the total delay

τBD(J) is

τBD(J) =

[(⌈
h− 1

m

⌉
+ 1

)
g + (m+ h− 1)

]
k2ts. (5.6)

When COB is used, we will use the field partitioning schemes described in Section 5.4.3.

Since to the design for BD, we consider that a super-frame consists of only local and transit

frames. Specifically, we design a super-frame that consists of g local frames and 2m transit

frames, as shown in Figure 5.8, where m denotes the number of measurements for each

region. Notice that we need 2m transit frames because we use two field partitioning schemes

to facilitate COB.

Super-frame L1 L2 · · · Lg L1 L2 · · · LgT1 T2 T3 · · · T2m T1 T2 T3 · · · T2m · · ·

Figure 5.9: Super-frame format for COB in WSN that maximizes throughput.

Since the scheduling for COB is very similar to that of BD, we can derive the throughput

and delay as follows.

λCOB(J) =
WtsM̃

k2(g + 2m)ts
· Ñ
M̃
· 1

Ñ
=

W

k2(g + 2m)
=

W

k2(g + 2M̃
J

)
(5.7)

τCOB(J) =

[(⌈
h− 1

m

⌉
+ 1

)
g + 2(m+ h− 1)

]
k2ts. (5.8)
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5.4.6 Performance of a Low-duty-cycle WSN

In practice, many WSNs are deployed to support low duty-cycle monitoring applications.

For example, in a smart grid, power consumption can be sent once every 15 minutes. To

facilitate such applications, we design scheduling schemes for BD and COB that are slightly

different to the ones we discussed in Section 5.4.5.

Super-frame L1 L2 · · · Lg T1 T2 T3 · · · Tm · · · Tm+h−1 I1 I2 · · · Is1

Frame S1 S2 · · · Sk2 S1 S2 · · · Sk2

Figure 5.10: Super-frame format for BD in low-duty-cycle WSN.

As shown in Figure 5.10, we design a super-frame format that consists of local frames, transit

frames, and idle frames. Compared to the format in Figure 5.8, another difference is that

there are m+h−1 transit frames, which are used to deliver all measurements. Consequently,

we can derive the delay as follows.

τ ′BD(J) = [g + (m+ h− 1)]k2ts. (5.9)

In a similar way, we design super-frame format for COB in Figure 5.11. The delay perfor-

mance is:

τ ′COB(J) = [g + 2(m+ h− 1)]k2ts. (5.10)

5.5 Numerical Results

In this section, we investigate the performance of WSN using practical settings.
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Super-frame L1 L2 · · · Lg T1 T2 T3 · · · T2m · · · T
2(m+ h− 1) I1 I2 · · · Is2

Frame S1 S2 · · · Sk2 S1 S2 · · · Sk2

Figure 5.11: Super-frame format for COB in low-duty-cycle WSN.

Parameter Value

Area 200 m× 200 m = 1 unit× 1 unit

Unit length 200 m

1 m 0.005 units

Transmission range r 20m = 0.1 units

Ñ 1680

minimal C
⌈√

5
r

⌉
= 23

c 1
C

= 0.043478261 units

g dnc2 − 1e = 3

h h = C − 1 = 22

W 40, 000 bps

ts 10 ms

Table 5.1: Simulation settings.

As shown in Table 5.1, we consider that a total of Ñ = 1680 sensors are uniformly deployed in

a 200m× 200m square area. We then consider 200m as a unit. Next, we use the parameters

of sensor node defined in [liu12throughput], including the transmission range, data rate.

Particularly, we use the transmission range (20meters), to derive the minimal C = 23 and

the corresponding side length of a cell c.

Next, in Table 5.2, we choose the minimal k that satisfies the interference constraint corre-

sponding to different ∆.
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∆ k =
⌈
2 + (1 + ∆)

√
5
⌉

0.5 6

1 7

1.5 8

Table 5.2: TDMA parameter k corresponding to ∆

5.5.1 Using a random uniform-distributed sparse signal

Based on the above numerical results, we show the throughput and delay performance of

throughput-maximized WSN that utilize different BD and COB schemes in Table 5.3 when

∆ = 0.5, Table 5.4 when ∆ = 1, and Table 5.5 when ∆ = 1.5. In all experiments, we can

observe that COB8 has the best throughput and delay performance.

Matrix M̃ Throughput 1 (bps) Delay 1 (seconds) Delay 2 (seconds)

BD1 (Full) 430 2.566076469 164.52 163.44

BD2 480 4.572473708 96.12 95.04

COB4 436 5.027652086 95.76 94.68

BD4 544 7.993605116 58.68 57.6

COB8 440 9.832841691 56.88 55.8

Table 5.3: Throughput and delay performance when ∆ = 0.5

Matrix M̃ Throughput 1 (bps) Delay 1 (seconds) Delay 2 (seconds)

BD1 (Full) 430 1.885280671 223.93 222.46

BD2 480 3.359368439 130.83 129.36

COB4 436 3.693785206 130.34 128.87

BD4 544 5.872852738 79.87 78.4

COB8 440 7.224128589 77.42 75.95

Table 5.4: Throughput and delay performance when ∆ = 1
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Matrix M̃ Throughput 1 (bps) Delay 1 (seconds) Delay 2 (seconds)

BD1 (Full) 430 1.443418014 292.48 290.56

BD2 480 2.572016461 170.88 168.96

COB4 436 2.828054299 170.24 168.32

BD4 544 4.496402878 104.32 102.4

COB8 440 5.530973451 101.12 99.2

Table 5.5: Throughput and delay performance when ∆ = 1.5

5.5.2 Using a random non-uniform-distributed sparse signal

This section will shows results when the signal has the worst case scenario in its sparsity,

i.e., values are not randomly distributed, on the contrary, their sparsity is concentrated from

a certain start point. We will use the same parameters as in the previous section, including

the size of the signal Ñ = 1680 with a sparsity of S = 100. In this case the numbers

of measurements M̃ get worst compared with previous section when the number of blocks

increase.

We show the throughput and delay performance of throughput-maximized WSN that utilize

different BD and COB schemes in Table 5.6 when ∆ = 0.5, Table 5.7 when ∆ = 1, and

Table 5.8 when ∆ = 1.5. Even for the worst case, in all experiments, we can observe that

COB8 still has the best throughput and delay performance.

Matrix M̃ Throughput 1 (bps) Delay 1 (seconds) Delay 2 (seconds)

BD1 (Full) 430 2.566076469 164.52 163.44

BD2 670 3.28731098 130.32 129.24

COB4 556 3.954132068 117.36 116.28

BD4 1024 4.29000429 101.28 100.8

COB8 784 5.58347292 87.84 86.76

Table 5.6: Throughput and delay performance when ∆ = 0.5 worst case
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Matrix M̃ Throughput 1 (bps) Delay 1 (seconds) Delay 2 (seconds)

BD1 (Full) 430 1.885280671 223.93 175.91

BD2 670 2.41516725 177.38 129.36

COB4 556 2.905076621 159.74 158.27

BD4 1024 3.151839887 138.67 137.2

COB8 784 4.10214337 119.56 118.09

Table 5.7: Throughput and delay performance when ∆ = 1 worst case

Matrix M̃ Throughput 1 (bps) Delay 1 (seconds) Delay 2 (seconds)

BD1 (Full) 430 1.443418014 292.48 290.56

BD2 670 1.849112426 231.68 229.76

COB4 556 2.224199288 208.64 206.72

BD4 1024 2.413127413 181.12 179.2

COB8 784 3.140703518 156.16 154.24

Table 5.8: Throughput and delay performance when ∆ = 1.5 worst case
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Chapter 6

Conclusions and future work

6.1 Conclusions

In this dissertation, we have presented a comprehensive study on structured measurement

matrix for compressed sensing (CS) to improve the performance of data collection in wireless

sensor network (WSN). In the literature, CS technique was first applied in WSN in a scheme,

called compressive data gathering (CDG), where distributed sensing signals are assumed

to be sparse or compressible. Compared to the traditional data collection scheme that

requires the sink to received a message from every sensor, CDG can significantly improve

the performance of data collection by exploiting CS because the sink only needs to receive

much fewer measurement messages. Nevertheless, to enjoy the benefit of CS, CDG and most

following work assume that measurements are generated in individual regions, where there

is no overlap between adjacent regions. In this manner, the measurement matrix is a block

diagonal matrix (BD) and there are some previous work investigate the restricted isometric

property (RIP) of BD matrix. Although these studies are important, we notice that non-

overlapping blocks cannot explicitly represent the correlation of signals in adjacent regions.
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In this study, we envision that the performance of data collection in WSN can be improved

if we design new measurement matrix in which the correlation of signals in adjacent regions

can be directly exploited.

Specifically, we first proposed a novel family of measurement matrices for two-dimensional

WSN with the following key features: (1) a matrix consists of multiple blocks of non-zero

entries, (2) each block is used to generate measurements for a region in WSN, and (3) each

region is overlapping with two adjacent regions. In this way, the measurement matrix has

a cyclic overlapping block diagonal (COB) structure, so we named it as COB matrix. For

the COB matrix, we first developed a rigorous proof to show that it satisfies RIP when the

total number of measurements exceeds a certain threshold, i.e., a lower bound. Compared

to existing bounds, our bound can more accurately reveal the impacts of important design

parameters, including the number of blocks, the sparsity of signal, and the number of sensor

nodes. To validate the theoretical analysis, we conducted extensive numerical experiments

to test the performance of signal recovery in various scenarios. These results confirm that

our theoretical analysis can accurately capture the impacts of factors involved on the number

of measurements, and that COB outperforms BD in virtually all scenarios.

The promising results of COB motivate us to developed a novel framework for measurement

matrix used in WSN for data collection. With the new generalized COB framework, sig-

nals collected by sensors in nearby area can be use to generate measurements so that the

correlation of these signals can be better represented. For the generalized COB, we also

theoretically proved that it satisfy RIP, and we conducted numerical experiments to studied

the impacts of various factors.

Finally, we evaluated the throughput and delay performance of CS-based WSN with the

proposed measurement matrix, in which we used practical settings, such as the transmission

range of sensor, the deployment of sensor, etc. The theoretical and numerical result con-

firm that the proposed COB schemes can improve throughout and delay performance over
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previous data collection models in WSN.

6.2 Future work

The work achieved so far has left good results when CS in WSN is applied through the COB

matrix in term of throughput and delay performance over the BD matrix, but there are some

aspects that are in progress, such as

• investigating more non-uniform random signals to represent different scenarios, and

• applying the COB matrix in real WSN.

Finally, we will investigate the COB matrix in others applications, where correlations in

large-scale scenarios exist, such as in imaging processing.
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élastiques et sur celles de la force expansive de la vapeur de l’eau et de la vapeur de
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