
A DECISION TREE-BASED APPROACH FOR MISSING

VALUE IMPUTATION OF MIXED-TYPE DATA

by

Heizel M. Rosado Galindo

A Thesis Submitted In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

INDUSTRIAL ENGINEERING

University of Puerto Rico

Mayagüez Campus

May 2017

Approved by:

Saylisse Dávila, PhD
President, Graduate Committee

Date

Wandaliz Torres, PhD
Member, Graduate Committee

Date

Noel Artiles, PhD
Member, Graduate Committee

Date

Viviana Cesańı, PhD
Industrial Engineering Dept. Head

Date

Moraima De Hoyos, PhD
Representative of Graduate Studies

Date



c⃝Copyright by Heizel M. Rosado Galindo

May 2017

All Rights Reserved



iii

ABSTRACT

Researchers and practitioners of many areas of knowledge frequently struggle with

missing data. Missing data is a problem because almost all standard statistical meth-

ods assume that the information is complete. Missing value imputation offers a solu-

tion to this problem. The main contribution of this work lies on the development of a

random forest-based imputation method that can handle any type of data, including

high-dimensional data with non-linear complex interactions. The premise behind the

proposed scheme is that a variable can be imputed taking into account only those

variables that are related to it using feature selection. This work compares the per-

formance of the proposed scheme with other two imputation methods commonly used

in literature: KNN and missForest. The results suggest that the proposed method

can be useful in complex categorical scenarios with high volume of missing values.

The proposed method is an approximation of missForest that significantly reduces

the amount of variables used in the imputation.



iv

RESUMEN

Investigadores de distintas áreas de conocimiento se enfrentan frecuentemente al

problema de datos incompletos. Esto representa un obstáculo, pues la mayoŕıa de

los métodos estad́ısticos disponibles en la literatura asumen que la información está

completa. La imputación de datos faltantes representa una opción viable a este prob-

lema. Este trabajo tiene como contribución principal el desarrollo de un método

de imputación de datos vaciós basado en árboles de decisión, que pueda manejar

cualquier tipo de datos, incluyendo datos de alta dimensionalidad con interacciones

complejas. La idea detrás del método propuesto es que una variable pueda ser im-

putada sólo tomando en consideración aquellas que le son significativas; esto a través

de un método de selección de variables. Esta tesis compara además, el desempeño

del método propuesto con otros dos métodos de imputación utilizados en la literatura

(KNN y missForest). Los resultados sugieren que el método propuesto puede ser de

gran utilidad en escenarios categóricos complejos con alta cantidad de datos vaćıos. El

método propuesto es una aproximación de missForest que reduce significativamente

la cantidad de variables utilizadas en la imputación.



v

To God and my parents Marisol and Angel.

For their unconditional love.



vi

ACKNOWLEDGMENTS

I want to thank my advisor Saylisse Dávila for accepting me as her graduate

student and believing in me. It was a blessing to have your guidance during this

process. It is of great inspiration to see your compromise with all your students and

with the university. I also want to thank my graduate committee, Dr. Wandaliz

Torres and Dr. Noel Artiles for all their support, disposition and encouragement.

I also want to thank the Industrial Engineering Department for adopting me,

helping me through this process and the opportunity of being a TA. Specially, I want

to thank Dr. Betzabé Rodŕıguez for her great support and advice during hard times.

Thanks to my parents for their unconditional love and for supporting me in every

decision I make. To my boyfriend Carlos, for always making sure I would eat. To

my friends “Los guarracos” Isis, César, Miguel and Jeff, you guys are the best! I’m

forever grateful for your friendship. And finally but not least, to my church, my

pastors, for all their prayers.



vii

TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

RESUMEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Scope and General Organization . . . . . . . . . . . . . . . . . . . . 3

2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Missing Value Imputation . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 K -Nearest Neighbors . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Classification of Feature Selection Methods . . . . . . . . . . 12

3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Proposed Imputation Approach . . . . . . . . . . . . . . . . . . . . 20

3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Publicly Available Data . . . . . . . . . . . . . . . . . . . . 22

3.2.2 Simulated Scenarios . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.3 Endometriosis Patient Registry (EPR) . . . . . . . . . . . . 28

4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Development of Proposed Imputation Approach . . . . . . . . . . . 31

4.1.1 Evaluation of Feature Selection Methods . . . . . . . . . . . 31



viii

Page

4.1.2 Evaluation of Random Forest Imputation . . . . . . . . . . . 36

4.2 Evaluation of Imputation Methods . . . . . . . . . . . . . . . . . . 42

5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 Proposed Imputation Method . . . . . . . . . . . . . . . . . . . . . 44

5.1.1 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.2 Evaluation of Random Forest imputation . . . . . . . . . . . 51

5.2 Evaluation of Imputation Methods . . . . . . . . . . . . . . . . . . 54

6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 63

A Parameter Tunning of Random Forest-based imputation . . . . . . . . . 66

B Evaluation of Imputation Methods . . . . . . . . . . . . . . . . . . . . . 76

C R Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

C.1 Proposed Imputation Code . . . . . . . . . . . . . . . . . . . . . . . 84

C.2 KNN and missForest Codes . . . . . . . . . . . . . . . . . . . . . . 92

C.3 Proposed Method Parameter Tunning Example Code . . . . . . . . 101

C.4 Feature Selection Codes . . . . . . . . . . . . . . . . . . . . . . . . 109



ix

LIST OF TABLES

Table Page

3.1 General description of publicly available data sets. . . . . . . . . . . . . 23

3.2 General description of simulated data scenarios. . . . . . . . . . . . . . 25

3.3 SimOriginal data structure. . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 General description of the EPR data set. . . . . . . . . . . . . . . . . . 29

3.5 Proportion of incomplete values in the 25 missing variables of the EPR
data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Equations used to calculate δn in the parameter tuning. . . . . . . . . . 38

5.1 Feature selection five-fold cross-validation results. . . . . . . . . . . . . 45

5.2 Normalized cross-validation desirability score across all data sets. . . . 48

5.3 Feature selection performance on simulated scenarios. . . . . . . . . . . 48

5.4 Normalized desirability score across all data sets. . . . . . . . . . . . . 51

5.5 Best performing combinations of parameters per missing ratio for GA and
CFS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.6 Selected combination of parameters for the proposed random forest-based
imputation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.7 Average performance of imputation methods. . . . . . . . . . . . . . . 55



x

LIST OF FIGURES

Figure Page

3.1 Flow diagram of proposed approach . . . . . . . . . . . . . . . . . . . . 19

3.2 Visualization of missing data in Heart Disease data set. . . . . . . . . . 24

3.3 Visualization of missing data in Breast Cancer Wisconsin data set. . . 25

3.4 Visualization of missing data in the EPR data set. . . . . . . . . . . . . 29

4.1 Flow chart of steps carried out for the selection of FS method. . . . . 32

4.2 Preliminary evaluation of the number of trees in a parallel ensemble or
random forest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Flow chart of evaluated factors with their corresponding levels. . . . . . 37

4.4 Steps to performance evaluation of missing value imputation schemes. . 43

5.1 Five-fold cross-validation performance of feature selection methods. . . 47

5.2 Performance of feature selection methods on simulated scenarios. . . . 50

5.3 Top 3 performing combinations for each missing ratio and feature selection
method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Average numerical desirability of imputation methods. . . . . . . . . . 60

5.5 Average categorical desirability of imputation methods. . . . . . . . . . 61

5.6 Average overall desirability of imputation methods. . . . . . . . . . . . 62

A.1 Average NRMSE of combinations for random forest imputation parameter
tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.2 Average R2 of combinations for random forest imputation parameter tun-
ing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.3 Average d2 of combinations for random forest imputation parameter tun-
ing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.4 Average classification error of combinations for random forest imputation
parameter tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A.5 Average kappa statistic of combinations for random forest imputation pa-
rameter tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



xi

Figure Page

A.6 Average AUPRC of combinations for random forest imputation parameter
tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.7 Average categorical desirability (Dc) of combinations for random forest
imputation parameter tuning . . . . . . . . . . . . . . . . . . . . . . . . 73

A.8 Average numerical desirability (Dn) of combinations for random forest
imputation parameter tuning. . . . . . . . . . . . . . . . . . . . . . . . 74

A.9 Average overall desirability (Do) of combinations for random forest impu-
tation parameter tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B.1 Average NRMSE of imputation methods. . . . . . . . . . . . . . . . . . 77

B.2 Average d2 of imputation methods. . . . . . . . . . . . . . . . . . . . . 78

B.3 Average R2 of imputation methods. . . . . . . . . . . . . . . . . . . . . 79

B.4 Average AUPRC of imputation methods. . . . . . . . . . . . . . . . . . 80

B.5 Average classification error of imputation methods. . . . . . . . . . . . 81

B.6 Average kappa statistic of imputation methods. . . . . . . . . . . . . . 82



xii

ABBREVIATIONS

ACE Artificial contrast ensemble

AUPRC Area under precision-recall curve

CART Classification and regression trees

CFS Correlation-based feature selection

CPU Central processing unit

CV Cross-validation

DMI Decision tree based missing value imputation

EMI Expectation maximization imputation

EPR Endometriosis patient registry

ERP Endometriosis Research Program

FS Feature selection

GA Genetic algorithms

GBT Gradient boosted trees

HIV Human immunodeficiency virus

KNN K-nearest neighbors

MAR Missing at random

MCAR Missing completely at random

MDA Mean decrease in accuracy

MI Multiple imputation

MICE Multiple imputation by chain equations

NMAR Not missing at random

NRMSE Normalized root mean square error

OOB Out-of-back error

PRESS Predicted residual error sum of squares



xiii

PSMHS Ponce School of Medicine and Health Sciences

RF Random forest

RMSE Root mean square error

SiMI Similarity-based missing value imputation

SRI Stochastic regression imputation

UCI University of California Irvine

VIS Variable importance score

VSURF Variable selection using random forest



1

1. INTRODUCTION

1.1 Motivation

Researchers and practitioners in many areas of knowledge frequently struggle with

missing data. In fact, 89% of the clinical experiments in leading medical journals deal

with missing data (Wood et al., 2004). It arises in almost all statistical analyses for

reasons such as data collection problems, equipment failures, errors in manual data

entry or in cases of non-response items in survey studies with persons (Rogier et al.,

2006; Gelman and Hill, 2006). The problem of missing values started to be addressed

in the late 70’s with few articles in the topic, but received more importance when

Little and Rubin published their book Statistical Analysis with Missing Data (Little

and Rubin, 1986; Rubin, 1976; Kalton and Kasprzyk, 1982).

Missing data is a problem because almost all standard statistical methods assume

that the information is complete. As a result, the analysis of the data gets compli-

cated, efficiency is lost, statistical power decreases, and parameter estimates may be

biased due to the differences between the complete and missing data (Kaiser, 2014).

Researchers often appeal to ad hoc methods such as case deletion or missing value

imputation to force an incomplete data set into a complete one (Schafer, 1997). The

consequence of case deletion is that potentially valuable data is discarded, which is

usually worse than having missing values. Missing value imputation, on the other

hand, refers to replacing the missing data with acceptable values, by using the data

in the recorded variables to unveil the information in the incomplete cases and also

make inferences on the population parameters (Andridge and Little, 2010). Note that

the terms variables, covariates and features will be used interchangeably throughout

this work.



2

When the missing cases are a small part of the data set (e.g. 5% or less), the

case deletion could be a reasonable solution to the missing data problem. But, when

dealing with high number of missing data, discarding them will lead to losing large

amounts of information. Collecting this data often requires large amounts of time

and money. This is the case when conducting studies that involve clinical trials, for

instance, a new cancer treatment. First, these trials are only conducted after getting

the approval from the Health Regulatory Agency, which in almost all cases involve

many years of previous research work and preparation. On top of that, it will also

take, on average, five years to collect the necessary data to perform robust analyses,

this without mentioning the required monetary investment (Sertkaya et al., 2014).

Many things can lead to missing data during the process (e.g. patients dropping out

from the study, problems with data collection), thus, knowing the substantial amount

of resources it takes to collect it, discarding cases is typically the least attractive

option. This is why missing value imputation is a growing area of research, specially

among researchers working on experiments that involve a large number of variables

(e.g. demographic, environmental, clinical data).

Literature on mixed-type data imputation is limited. Most imputation methods

are restricted to only one type of variable. For example, stochastic regression impu-

tation (SRI), is used for categorical data exclusively (Sulis and Porcu, 2008), whereas

regression imputation, is only used on continuous data. The options fall even shorter

when complex high dimensional mixed-type data comes into play. The first attempt to

overcome this gap involved maximum likelihood estimation, combining a multivariate

normal model with a Poisson/multinomial model to impute continuous and categori-

cal variables, respectively (Little and Schluchter, 1985). During the last decade, other

methods based on decision trees (Stekhoven and Bülmann, 2012) and near neighbors

(Kowarik and Templ, 2016) have been proposed. Yet, there still a need for new

and enhanced techniques that can satisfy the ongoing necessities of the growing data

world.



3

1.2 Objectives

The main contribution of this work lies on the development of an imputation

method that can handle any type of data, including high-dimensional data with non-

linear complex interactions. Random forests (Breiman, 2001) are able to handle this

type of data without making any restrictive assumptions about the structure of the

data. This thesis proposes a random-forest-based missing value imputation scheme

that exploits the relationships among variables by means of feature selection. The

premise behind the proposed scheme is that a variable can be imputed taking into

account only those variables that are related to it, whether this relationship is linear or

not. The idea is that when imputing a missing value for a variable, one might not need

to carry out a complex optimization routine until convergence in the missing value

imputation is obtained, while greatly reducing the amount of preliminary imputations

needed. Thus, the objectives of this thesis are:

1. Design a tree-based missing value imputation scheme for complex mixed-type

and high-dimensional data.

2. Understand which combinations of parameters are more suitable for different

types of data sets.

3. Compare and contrast the performance of the proposed method against popular

missing schemes in the literature using publicly available and simulated data.

1.3 Scope and General Organization

This thesis describes the development of a random-forest-based imputation for

complex high-dimensional mixed-type data. Chapter 2 elaborates on some of the

best missing value imputation schemes in the literature and describes how the pro-

posed method compares and contrasts to them in terms of its methodology. Chapter 3

provide the conceptual framework for the proposed imputation scheme. Then, Chap-

ter 4 describes how the feature selection methods were evaluated to select the most



4

appropriate for the proposed imputation scheme. It also explains the experiments

performed in order to optimize the proposed random-forest-based imputation. The

performance of the proposed scheme was compared to K-nearest neighbors imputation

(Kowarik and Templ, 2016) and the missForest algorithm by Stekhoven and Bülmann

(2012) in Chapter 5. These evaluations were carried out using the Endometriosis Pa-

tient Registry data from the Ponce School of Medicine and Health Sciences (PSMHS),

simulated data, and publicly available data, all having between ten to two-hundred

variables. Lastly, Chapter 6 will provide a summary of the performance of the pro-

posed scheme and other concluding remarks.



5

2. LITERATURE REVIEW

2.1 Missing Value Imputation

A wide array of imputation methods have been proposed in literature to deal with

the problem of missing data. They encompass anything from simple, like univariate

mean/mode imputation to more complex multivariate schemes that look for relation-

ships among covariates. Many studies have compared the performance of imputation

methods using benchmark data. But regardless of the simplicity or complexity of

an imputation method, its execution will always depend on the fitness between the

dataset, imputation method, and characteristics of the missing data (Sim et al., 2015).

There are three types of missing data, which are characterized based on the under-

lying process believed to have led to the missing values. Values missing at random

(MAR) are missing values whose probability of being unavailable depends on a mea-

surable characteristic of the individual, and not on the missing value itself. The most

common example of MAR values is portrayed in the US Census questionnaire, where

many people refuse to provide information on their household income. The second

mechanism is missing completely at random (MCAR). This type is similar to MAR

but the missing data has no systematic cause (e.g., a patient overlooked an item in

the questionnaire) (Holmes, 2010). Lastly, when the missingness is related to the

missing data itself, the data is said to be not missing at random (NMAR) (Penny

and Atkinson, 2012).

Some imputation techniques are used to impute numerical data exclusively, whereas

others strictly allow for imputing categorical data. However, these options are signif-

icantly decreased when mixed-type data comes along. One of the most popular and,

by far, the simplest is mean and mode substitution. In this method, the missing val-

ues of a numerical (quantitative) covariate are replaced by the mean of the observed



6

cases, while missing categorical values are replaced with the covariate’s mode (Silva

et al., 2011). Mean/mode imputation is easy-to-use but it is depicted as inferior since

it distorts the covariance structure of the data, biasing results (Rogier et al., 2006).

Another commonly used method is regression imputation. Here, the missing val-

ues are predicted from a linear regression equation using the information from the

complete cases (Enders, 2010). That is, the variable with missing values becomes the

response and the remaining variables are used to predict this missing values. If the

relationship between the variable being imputed and the remaining variables is lin-

ear, then, the method will work reasonably well. Otherwise, it will fail to understand

the relationship among variables. Additionally, regression imputation also produces

biased results, overestimating the correlations between covariates, and it only works

on numerical data.

Multiple imputation (MI) has also been proven effective in missing value impu-

tation. It is a Monte Carlo approach for estimating missing values in mixed-type

scenarios (Rogier et al., 2006). MI generates m imputations for the missing values in

a data set. Then, the m imputed data sets are analyzed using standard complete-data

procedures and the results are combined to give a final result. A popular approach

used to implementing MI is regression modeling, also known as multiple imputation

by chain equations (MICE) (Burgette and Reiter, 2010). MICE assumes that the

missing data are of MAR type and imputes them, given a conditional model per

covariate. The problem with MICE comes when specifying the conditional models

for large amounts of covariates with missing values, even more so, when complex

interactions exist between them. Identifying these models could be an uneasy task

since it is hard to adjust a model that will fit the information of the missing data

and simultaneously have convergence with the estimates (López, 2005). MI compares

to the proposed method in that they both perform numerous imputations of the

missing values in the data. Also, in that they are both conditional approaches, but

the proposed method is only conditional on those variables that have a statistically

significant relationship with the variable under consideration.



7

2.1.1 K -Nearest Neighbors

Another commonly used missing value imputation scheme is K- nearest neighbors

(KNN). It is a non-parametric method that imputes missing data based on the out-

come of the K (a user-defined constant) observations closest to the missing value.

Missing data are replaced with observed values from donors with similar charac-

teristics (Stekhoven and Bülmann, 2012). Different distance measures are used to

determine the similarity between the missing values and the observed data. The

most popular distance measure is the Euclidean distance, which is given by the root

of squared differences between a pair of observations (xi and yi):

E(xi, yi) =

√√√√ k∑
i=1

(xi − yi)2 (2.1)

Other distances commonly used are: Manhattan, Minkowski, Supremum (Singh

et al., 2013) and Gower (Gower, 1971). In Yeşilova et al. (2010), KNN proved to be

more effective when analyzing mixed-type data at different missing ratios. Jonsson

and Wohlin (2004) evaluated the performance of the KNN method using Likert scale

(ordinal) data. Results showed that it is feasible to use the KNN method with ordinal

data as long as an appropriate value of K is used. They suggested K to be the square

root of the number of complete cases.

K-nearest neighbors is an attractive approach due to its simplicity and effective-

ness in a variety of imputation problems (Liao et al., 2014). But one of the drawbacks

of the KNN method is that it only imputes a missing value based on its K-nearest

neighbors, which makes it a conditional approach (López, 2005). Also, it is not clear

which value of K should be used. Overall, the only resemblance between the proposed

method and KNN is the way donors are handled. KNN and the proposed method

are both conditional approaches. In KNN, donors represent observations with simi-

lar characteristics, whereas in the proposed scheme, a random forest is trained only

on those covariates selected to be significant to the covariate being imputed by the

feature selection method.



8

2.1.2 Random Forests

Tree-based missing value imputation techniques are also widely used in mixed-

type data sets with complex interactions between variables. Decision trees are non-

parametric supervised methods used for classification and regression. They are simple

and produced by algorithms that identify various ways of splitting a data set into

branch-like segments. Their goal is to create a model that predicts the value of a

target variable by learning simple decision rules inferred from the data (Pantanowitz

and Marwala, 2009). Decision trees are divided in two main categories: (1) classifi-

cation and (2) regression. The first is used to predict categorical variables, while the

latter is used for continuous variables. Classification and regression trees (CART)

analysis is a technique that uses either of the tree types for predicting both contin-

uous and categorical variables (Gould, 2000). The CART algorithm builds the tree

by recursively partitioning the data set into non-overlapping regions (branches) and,

then, use the tree to predict the missing value for the covariate being treated as the

dependent variable (Breiman et al., 1984).

A Random forest (RF) is an ensemble of decision trees that performs, both, clas-

sification and regression by drawing M bootstrap samples from the original training

data, using each of these M samples to build M trees within the ensemble. They

can be easily adapted to the task of missing value imputation (Breiman, 2001). In

fact, random forests can work around missing values without imputing them because

they can decide what to do on a split based on the best surrogate for the variable

under consideration. Additionally, random forests provide a measure of variable im-

portance scores (VIS), which is a measure of how much the prediction error increases

when out-of-bag (OOB) data for that variable is permuted while all others are left

unchanged (Liaw and Wiener, 2014). The variable importance score for each variable

is then computed as the mean importance over all trees. For a single decision tree,

the measure of variable importance proposed by Breiman et al. (1984) is given:



9

V I(xj, T ) =
∑
t∈T

∆I(xj, t), (2.2)

where ∆I(xj, t) = I(t)−pLI(tL)−pRI(tR) is the decrease in impurity due to an actual

or potential (surrogate) split on numerical predictor xi at a node t of the optimally

pruned tree, T and pL(pR) denotes the proportion of cases assigned to the left (right)

child node of t. Note that Equations 2.2 refers to a single decision tree. For ensembles

of M trees, the VIS of a predictor is obtained by averaging over all its VIS across the

ensemble as in:

V I(xj) =
1

M

M∑
m=1

V I(xj, Tm), (2.3)

where Tm denotes tree m. This process of averaging across all VIS in the ensembles

has a stabilizing effect that leads to a more reliable predictor of variable importance.

For classification purposes, a measure of node impurity commonly used is the gini

index:

Gini(t) = 1−
∑
k ̸=k′

ptkp
t
k′ (2.4)

where ptk is the proportion of cases in node t whose response label equals k (y = k). It

is zero when t has cases only from one class and is maximized when classes are evenly

mixed. On the other hand, Breiman (2001) suggests the use of the mean decrease

in accuracy (MDA) for assessing node impurity in regression problems. The MDA

is assessed for each variable by removing the association between that variable and

the target. This is achieved by randomly permuting the values of the variable and

measuring the resulting increase in error.

Various random forest-based algorithms have been evaluated in the literature to

assess their performance in missing data imputation. rfImpute was used in Pan-

tanowitz and Marwala (2009) to evaluate missing HIV data from a clinic study sur-

vey. This algorithm first imputes the missing values using the mean and mode of

the observed values. Then, a random forest is trained with the complete data and



10

its proximity matrix is used to update the imputation of the missing values. For

continuous covariates, the imputed value is the weighted average of the non-missing

observations, using proximities as weights. For categorical predictors, the imputed

value is the category with the largest average proximity. In Pantanowitz and Marwala

(2009), the rfImpute algorithm resulted to be superior in terms of computation time

and accuracy in comparison to other supervised methods such as neural networks.

Two other decision tree and random forest-based imputation methods were pre-

sented in Rahman and Islam (2013): (1) Decision tree based Missing value Imputation

(DMI) and (2) SiMI. DMI uses decision trees to identify horizontal segments with

higher similarity among variables. The algorithm applies expectation maximization

(EMI) (Schneider, 2001) to impute numerical missing values and mode imputation

for categorical missing values (Rahman and Islam, 2011). In a similar way, SiMI

uses a decision forest algorithm, such as SysFor (Islam and Giggins, 2011), to build

k decision trees over the complete data. The main difference between them is how

similarity is assessed among variables. SiMI algorithm finds the intersections of the

records belonging to the leaves of the forest and merge the small-sized ones with an-

other intersection, maximizing a similarity metric Sj within the merged intersection.

Sj is calculated using the average distance of pairs of records between two intersection.

The distance between two records is calculated using the Euclidean distance for nu-

merical attributes and a similarity based distance for categorical attributes. Finally,

missing values are imputed the same way as DMI, using EMI and mode imputation

for numerical and categorical missing values, respectively.

In Rahman and Islam (2013), SiMI the was top performer in terms of imputation

accuracy when compared to other EMI techniques. They used a random forest which

identifies even better correlations among the attributes and similarities between the

records, therefore, giving better accuracy in the imputation. They also acknowledge

this method is more complex and computationally expensive since they use decision

trees and forests. DMI and SiMI resemble the proposed method in that they impute

the missing values using only a subset of the data that is most highly correlated to



11

the missing value. Another similarity is that they are both based on decision tree

methods, such as the proposed scheme.

The method in literature that most closely resembles the proposed approach is

the iterative non-parametric imputation scheme known as missForest . In a similar

approach to the proposed method, missForest can be used with any type of data:

numerical, categorical, or even mixed-type data. First, it makes an initial guess of

the missing values of a data set X using mean/mode imputation. Then, it sorts

the covariates (Xi) according to their amount of missing values (ymis,i) in increasing

order. The imputation of each Xi is done by training a RF on the observed values

(xobs,i, yobs,i) of the data set and then predicting the missing values with the trained

RF. This procedure is repeated until a criterion γ is met. The stopping criteria is

met when the difference between the newly imputed data matrix and the previous

one increases for the first time with respect to both covariate types (categorical and

numerical). missForest also provides the user with an estimate of the imputation

error, which is based on the out-of-bag (OOB) error estimate of random forest. In

Stekhoven and Bülmann (2012), this method proved to have better performance in

comparison to other multiple imputation and regression imputation schemes, espe-

cially in mixed-typed high-dimensional data with complex interactions.

Overall, the main difference between this approach and the proposed method is

how the random forest is built on the observed data. In the proposed approach,

only those covariates that are related to the variable being imputed are used to build

the random forest. Meanwhile, missForest uses all predictor variables in the data

set, regardless of the dimensionality of the problem and regardless of whether these

predictors have any relationship with the predictor being imputed. As a result, the

proposed method can be used as an approximation to missForest in scenarios where

the computational complexity of the imputation problem becomes an issue and the

relationships among predictors are known or can be assessed a priori.



12

2.2 Feature Selection

The selection of relevant features or feature selection (FS) is a topic that has

grown in popularity in recent years with the increase of complex, high-dimensional

data. The presence of redundant or irrelevant features constitutes a problem since it

can degrade the performance of learners in terms of speed and predictive accuracy.

As a matter of fact, the amount of training samples needed to reach a given accuracy

grows exponentially with the amount of irrelevant features in a data set (Langley and

Iba, 1993). But, how to know when a feature is relevant? In Kohavi and John (1997),

the authors portrayed three different types of features: those that are strongly relevant

to a target, weakly relevant, or irrelevant. They described a feature Xi be strongly

relevant when its removal results in the deterioration of prediction accuracy. On the

other hand, when Xi is weakly relevant, it implies that the feature can sometimes

contribute to prediction accuracy depending on which other features are removed.

Finally, an irrelevant feature does not add any information to a model, thus, it never

contributes to prediction accuracy. With this in mind, many algorithms have been

developed to measure how useful is each variable in a data set. The objective of feature

selection is to select a small subset of features from the original data that will provide

the most significant information from a target (Kira and Rendell, 1992). Therefore, it

helps to better understand the data, reduces computational requirements, improves

predictor performance, and facilitates to identify which features are relevant to a

specific problem (Chandrashekar and Sahin, 2014).

2.2.1 Classification of Feature Selection Methods

Feature selection methods are grouped into three main classes: (1) filter, (2)

wrapper, and (3) embedded.



13

Filter Feature Selection

Filter selection methods are the most common approach of feature selection.

They apply variable ranking techniques as the principle criteria for variable selec-

tion (Shardlow, 2008). A suitable ranking criterion is used to score the variables and

a threshold is used to remove variables below this threshold. Once this ranking/score

has been computed, a feature set composing of the best N features is created. An

advantage of filter methods is that they are easy to implement and fast to execute;

however, most of them do not take into account the interaction with the learner or

even among the features (Saeys et al., 2007). Finding a suitable learning algorithm

for filters can be a difficult task as the underlying learning algorithm is ignored. Some

examples of filter methods are information gain and correlation coefficient scores.

Correlation-based feature selection (CFS) uses a correlation based heuris-

tic to evaluate a subset of features. The rationale behind this heuristic is that an

important or good feature is highly correlated with the class but uncorrelated with

one another (Hall, 2000). The measure used to evaluate the score of a feature subset

S is given by:

Ms =
krcf√

k + k(1− k)rff
(2.5)

where k is the amount of features in S, rcf is the average feature-class correlation

and rff is the average feature-feature correlation. CFS calculates a matrix of feature-

class and feature-feature correlations from the training data and then searches the

feature subsets using the best first search algorithm (Kohavi and John, 1997). The

best subset is the one with highest Ms after five consecutive subsets not showing

improvement.

CFS uses symmetrical uncertainty to measure correlation between discrete fea-

tures in discrete class problems as in:

SU(x, y) = 2
[ IG(x|y)
H(x) +H(y)

]
(2.6)



14

Information gain (IG), is the amount by which the entropy, (H(x)) of a variable x

is decreased after observing values of another variable y. H(x) is the entropy of a

variable x and H(x|y) is the entropy of x after observing the values of y.

IG(x|y) = H(x)−H(x|y) (2.7)

H(x) = −
∑
i

P (xi) log2(P (xi)) (2.8)

H(x|y) = −
∑
j

P (yj)
∑

P (xi|yj) log2(P (xi|yj)) (2.9)

On the other hand, CFS uses the Pearson correlation coefficient, as described in

2.10, to measure association between continuous variables in Equation 2.5.

r(x, y) =

∑
i(xi − xi)(yi − yi)√∑

i(xi − xi)2
√∑

i(yi − yi)2
(2.10)

where xi and yi are the mean of variables x and y, respectively.

Correlation-based algorithms are significantly faster than other selection methods

and have high prediction accuracy when analyzing high dimensional data (Yu and

Liu, 2007; Doshi and Chaturvedi, 2014). In summary, CFS algorithms can highly

reduce the dimensionality of the data while maintaining the performance of learning

algorithms.

ReliefF is another commonly used filter method, extended from the original Re-

lief (Kira and Rendell, 1992), that can deal with multi-class problems and incomplete

data. It weights the features based how well their values distinguish between instances

that are near to each other (Robnik-Sikonja and Kononenko, 2003).

ReliefF randomly chooses an instance Ri and searches for its k nearest neighbors

from the same class (near-hits, Hj) and also its k nearest neighbors from each of the

different classes (near-miss, Mj) using Euclidean distance. In regression problems

the predicted value is continuous, therefore Hj and Mj cannot be used and a kind

of probability that the predicted values of two instances are different is introduced.



15

This probability can be modeled with the relative distance between the predicted

values of two instances. ReliefF updates a weight estimation W [A] for all attributes

A, estimated as the average squared difference between Ri and Hj and Mj:

W [A] =
−(Ri −Mj)

2 + (Ri −Hj)
2

m
(2.11)

Then, the algorithm selects those features whose average weight is greater than or

equal to a given threshold τ . Kira and Rendell (1992) showed that τ can be deter-

mined by Chebyshev’s inequality (Taylor, 2016) as τ = 1√
α∗m for a confidence level

(α). They also showed that there is a clear contrast between relevant and irrelevant

features, allowing τ to be determined by inspection as well.

Overall, ReliefF algorithms are good in detecting conditional dependencies, thus,

they are robust and noise-tolerant (Robnik-Sikonja and Kononenko, 2003).

Wrapper Feature Selection

The wrapper approach uses the prediction performance of a given induction al-

gorithm/learner (a classifier) to assess the usefulness of subsets of features in the

data (Guyon and Elisseeff, 2003). Here, the feature selection is “wrapped” around

the learner and does an exhaustive search for variables in the data. The subset

with highest performance is then chosen (Kohavi and John, 1997). Wrappers have

the ability of taking into account variable dependencies by considering the induc-

tion algorithm as a black box. They can be computationally intensive and prone to

overfitting, which, in turn, introduces bias and increasing the classification error. A

common example of a wrapper method is the recursive feature elimination algorithm,

which employs backward selection. Here, the model is fitted using all the features

first and each one is ranked based on their importance to the model. The model is

then refitted with subsets of size S that vary according to the amount of features.

The subset Si, which contains the top ranked features based on the performance of

the model, is selected.



16

A popular wrapper approach is feature selection using Genetic Algorithms

(GA). This method mimic properties of biological evolution (e.g crossover, inher-

itance, mutation, and selection) applying heuristic search methods to optimize the

amount of variables in a data set (Pantanowitz and Marwala, 2009). An initial set of

candidate feature subsets (Si) are created and their corresponding performance is cal-

culated. The fitness values are some measure of model performance, such as the root

mean square error (RMSE) or classification accuracy. The subsets Si with the best

fitness values are combined randomly to produce another subsets which make up the

next population. This process is repeated many times until the best solution is found

(Chandrashekar and Sahin, 2014). GA have demonstrated to be effective handling

both small and high-dimensional data, however, they can be more computational

intensive than other feature selection methods (Mohamad et al., 2004).

Embedded Feature Selection

Embedded methods are somewhat similar to wrappers but they perform the feature

selection as part of the learning process. Hence, they are specific to a given algorithm

that learns which features best contribute to the performance of a model. The most

common examples of embedded methods are regularization methods (e.g. Lasso and

Ridge regressions) (Brownlee, 2014). Embedded FS approaches also include decision

tree-based methods. They carry out a greedy search through the space of decision

trees using an evaluation function to select the attribute that has the best ability

to discriminate among the classes. They partition the training data based on this

attribute and repeat the process on each subset, extending the tree downward until

no further discrimination is possible (Blum and Langley, 1997).

Embedded methods have the advantage that they include the interaction with the

classifier, while at the same time being less computationally intensive than wrapper

methods. Embedded methods have the advantage that they include the interaction

with the classifier and are less computationally intensive than wrapper methods.



17

Artificial Contrast with Ensembles (ACE) is an embedded FS method that

uses parallel ensembles of decision trees or random forest to select the best features

in a data set. ACE creates a traditional statistical inference setting by building N

times a random forest of M trees. It generates N random forests and calculates N

VIS for 2J covariates in the training data set. That is, the J predictor covariates

and J additional artificial covariates. An artificial covariate x∗
j is simply a random

permutation of the observed values of predictor xj. This process is repeated for each

feature until the set of J artificial covariates has been generated. Since these artificial

predictors are random permutations of the original, they share the same marginal

distributions, but they are by no means related to the response. The idea is that their

variable importance scores must be low since they are not related to the response,

and, hence, they can be used to create a threshold to better understand when the

magnitude of a VIS is indeed large. From each of the N random forests, a VIS is

recorded for each predictor as well as a large quantile (q), often q0.8 or higher, for the

artificial covariate VIS’s. At the end of this iterative process, a paired t-test is used

to determine whether each of the predictors has a VIS that is larger than the large

quantile from the artificial VIS. All predictors that show a statistically significant

improvement over the artificial variables are selected as important; the remaining

predictors are discarded (Tuv et al., 2009).

The R package VSURF (Genuer et al., 2015a), is also an embedded method

that uses random forests as a mean to select important features. It is based in a

two-strategy approach: (1) preliminary elimination and ranking, and (2) variable

selection. In the first step, the objective is to find important variables highly related

to the response using random forest VIS. Here, variables are sorted according to their

mean VIS in decreasing order. A threshold value is given by the minimum predicted

value of a pruned CART tree model fitted to the curve of the standard deviations

of the VIS. Only the variables with an average VIS greater than this threshold are

retained for the next step.



18

In the second step, a series of embedded random forest are modeled starting with

a random forest build with only the most important variable and ending with a

model having all the variables selected in the first step. Then, the minimum mean

OOB error, min(Xoob), of these models and its associated standard deviation (soob)

are computed. Finally, the smallest model (and hence its corresponding variables),

having a mean OOB error less than the minimum mean OOB error plus its standard

deviation is selected (Xoob < min(Xoob) + soob).



19

3. METHODOLOGY

This chapter presents the detailed description of the proposed imputation scheme and

the data used. The premise behind the proposed approach is that a variable can be

imputed taking into account only those other variables that are related to it. When a

missing value in a specific variable must be imputed, the imputation algorithm might

not need to make a large amount of preliminary imputations in all other covariates

with missing values or carry out a computationally-intensive optimization routine un-

til convergence in the missing value imputation is obtained. The method is currently

implemented in two phases, the first one being the feature selection and the second,

the missing value imputation. Figure 3.1 depicts an overview of the evaluation done

throughout this work.

Imputation
Evaluation

Feature 
selection 

ACE CFS Relief-F GA V-SURF Evaluation Random Forest

KNN missForest
Proposed 
Approach

Feature 
Selection

Random forest-
based 

imputation

Proposed
Approach

Data sets: Publicly available, 
simulated scenarios and EPR

Fig. 3.1.: Flow diagram of proposed approach



20

3.1 Proposed Imputation Approach

The main steps of our proposed imputation method are described in Algorithm

1. Let Dmis be a n × p-dimensional data set having missing values. By default, the

algorithm uses a forest of 125 trees (T ) unless specified by the user. The maximum

amount of imputations, k, per missing record is also set to 30, unless the user spec-

ifies otherwise. This value k was set to 30 to ensure convergence of the imputation

(Comulada, 2015). The categorical and numerical impute change thresholds, ∆c and

∆n, are also require in the algorithm. ∆c is define to 4, meaning that the imputation

of record r in a categorical missing variable Xi stops after 4 unchanging consecutive

imputations. In a similar way, the numerical impute change threshold (∆n) is set

to 2.5%, meaning that the imputation for a record r ∈ Xi stops when the difference

between the actual imputation (Pnew) and an old one (Pold) is 2.5% or less.

Variables with missing values are first identified in the incomplete data set Dmis.

A vector M is created with the amount of missing values in each missing variable

Xi. Afterwards, an initial guess of the missing values in Dmiss is carried out us-

ing mean/mode imputation, prior the feature selection. The statistically significant

variables for each Xi ∈ Dmis are then determined using genetic algorithms feature

selection (GA). An important variables incidence matrix F is created as a result. The

columns in F refer to the variables with missing values, and the rows of the matrix

refer to all variables in the data set. In this incidence matrix, a value of zero in

element i, j implies predictor i was not detected as to have a significant relationship

with predictor j. Otherwise, element i, j would have a value of one, portraying a sig-

nificant relationship between variables i and j. The imputation of X ′
is is carried out

in increasing order of missing values. Therefore, O is the vector of indices of columns

in Dmis, sorted in increasing order of missing values. O indicates the order in which

missing variables Xi are imputed in the data set.

A random forest of T trees is built for each variable with missing values Xi,

treating the vector of its observed values Dtrain[Xi] as the response. The data set



21

Input : A data set Dmis having missing values
Output : A data set Dimp, with all missing values imputed
Require: T ← 125; /*Number of trees in the random forest.*/;

k ← 30; /*Maximum amount of imputations.*/;
∆c ← 4; /*Categorical impute change.*/;
∆n ← 0.025; /*Numerical impute change.*/;

foreach Xi do
mi ← CountMissVal(Xi) /*M is a vector of the frequency of missing
values in each Xi.*/;

end

Dimp
0 ← MeanMode(Dmis) /*Initial imputation using mean/mode.*/;

foreach xi do
fi ← GA(Di

imp,0 ∼ D−i
imp,0 /*Run feature selection.*/;

end
F ← CreateIncidenceMatrix(F ) /*Create Important variables incidence
matrix.*/;
O ← Sort(M) /*Vector of indices of columns in Dmis sorted in increasing
order of missing values.*/;
foreach Xi ∈ Dmis do

cols ← which(fi == 1) ∪ which(ColNames(Dmis) == “Y ”) /*Important
variables and overall Y of data.*/;
xobs
i ← NamesCompleteCases(Xi) /*Row names of observed values in Xi.*/;

xmis
i ← NamesInCompleteCases(Xi) /*Row names of missing values in

Xi.*/;

Dtrain← Dimp
0 [xobs

i , cols] /*Training sample.*/;

Dtest← Dimp
0 [xmis

i , cols] /*Testing sample.*/;
foreach record r in Xi do

while j in 1 : k or δn > ∆n or δc ̸= ∆c do
j = 1;
rF ← randomForest(Dtrain[Xi] ∼ Dtrain, T) /*Fit random forest.*/;
P ← Predict(Xi[x

mis
i ]);

δn ← ChangeInImpNum(Pnew, Pold);
δc ← ChangeInImpCat(Pnew, Pold) ;
j = j + 1;

end

end
if is.numeric(Xi)==TRUE then

X imp
i = mean(Pnew, Pold);

end
else

X imp
i = Pnew

end

end
Return Dimp /*Imputed data set.*/

Algorithm 1: Proposed Imputation Scheme



22

used to train the random forest (Dtrain) includes the response of the overall supervised

learning scenario, Y , as well as all other predictors that have been selected by the

feature selection algorithm, as indicated by the elements that are equal to 1 in column

j of the incidence matrix F. The random forest draws T bootstrap samples of Dtrain

to build the T decision trees in the ensemble. The trained random forest rF is then

used to predict the missing values in Xi. The testing sample Dtest, consists of Y and

the important variables of Xi, and is used to predict Xi’s missing values.

This process is repeated k times or until a stopping criterion ∆ is met. The change

in imputation of numerical variables δn, is the percentage of difference between the

new imputation of a missing value, Pnew and its previous, as given by Pold. When

δn is less than or equal to ∆n, the algorithm stops imputing values for that record

r of Xi and moves on to the next one. In the case of categorical variables, if the

new imputed value has not change in the last ∆c iterations, then, the algorithm stops

the imputation process for that record and moves to the next r in Xi. Finally, the

overall imputation of numerical missing values, X imp
i , is given by the average of the

j imputations used in δn. Additionally, the final imputation for a categorical missing

value is given by its last imputation.

3.2 Data

Different data sets were used throughout this work to evaluate the feature selec-

tion, the parameter tunning of the random forest imputation, and the final comparison

of the proposed imputation scheme with KNN and missForest. These data sets are

divided into three groups mainly: publicly available data, simulated scenarios, and a

special case study data set called Endometriosis Patient Registry (EPR).

3.2.1 Publicly Available Data

Three data sets available at the UCI machine learning repository (Lichman, 2013)

were used: Cleveland Heart Disease (Janosi et al., 1988), Breast Cancer Wiscon-



23

sin (William, 1992), and Sylva Ecology (Service, 2006). Table 3.1 gives a general

description of all three data sets.

The Cleveland Heart Disease data has a total of 14 mixed-type variables, including

demographical information, symptoms, and results on clinical analyses. The response

variable of this classification data set is an integer valued from 0 to 4, denoting the

presence of heart disease in the patient. Heart disease generally refers to conditions

that involve narrowed or blocked blood vessels that can lead to a heart attack, chest

pain (angina) or stroke (Staff, 2014). A value of zero represents the absence of heart

disease, whereas values from 1-4 represent the presence of any of the conditions pre-

viously described.

Figure 3.2 shows the missing patterns in the data set, which contains approxi-

mately 2% missing values. The rows in the grid display the different patterns found

within the missing variables, in order of occurrence. Out of the 13 variables in the

data set, 2 of them have missing values as portrayed by the number of vertical bars

in the bar plot (Figure 3.2). Over 98% of the rows represent complete cases, while

the remaining cases are missing one value in either predictor ca or thal.

Table 3.1: General description of publicly available data sets.

Data set Records
Num.

Attr.

Cat.

Attr.

Variables

with MV’s
Missing Response

Heart disease 303 5 8 2 2% Class

Breast Cancer 699 0 10 1 2% Class

Sylva 13,085 51 177 0 0% Class

The second, Breast Cancer Wisconsin, is also a small classification data set that

includes characteristics of breast cells from biopsy studies in patients. All of the

variables in this set are categorical with the response being the diagnosis of the breast

tissue being malignant or benign (Wolberg and Mangasarian, 1990). Figure 3.3 shows



24

Fig. 3.2.: Visualization of missing data in Heart Disease data set. The yellow cells

show available information and the blue cells indicates missing values. The different

rows in the grid shown in the plot reflect the most common patterns in the data set.

the missing patterns in the data set. It has approximately 2% missing values, which

correspond to variable Bare.nuclei.

Finally, the Sylva Ecology data set, is the biggest data set used in this study. It

is a mixed-type data set with over 200 variables and over 10,000 records. The set

is a binary-classification of forest cover in the United States. It classifies Ponderosa

Pine trees vs everything else. An interesting aspect of this data set is that half of the

variables are noise variables.

3.2.2 Simulated Scenarios

Six different simulated data sets were also evaluated throughout this work. These

data sets can be divided into three main groups as well: (1) data sets with linear rela-

tionships (portrayed by rows two and three in Table 3.2), (2) nonlinear relationships

(rows four to six), and (3) an isolated simulated data set (row one).



25

Fig. 3.3.: Visualization of missing data in Breast Cancer Wisconsin data set. The

yellow cells show available information and the blue cells indicates missing values.

The different rows in the grid shown in the plot reflect the most common patterns in

the data set.

Table 3.2: General description of simulated data scenarios.

Data set Records
Num.

Attr.

Cat.

Attr.

Variables

with MV’s
Missing Response

SimOriginal 500 4 6 0 0% Num

LinReg203 500 151 52 0 0% Num

LinClass145 500 86 59 0 0% Class

NonLinReg70 500 70 0 0 0% Num

NonLinReg38 500 27 11 0 0% Num

NonLinReg125 500 77 48 0 0% Num

Generated Linear Data

The linear relationship data sets were generated using Tuv et al. (2009) linear data

generator. The LinReg203 is a regression data set with 203 mixed-type variables. The



26

categorical predictors have cardinality ranging from 2 to 10 levels. It has 4 statistically

important variables, 99 correlated redundant variables (regression R2 ∼ 0.5 and R2 ∼

0.1) and 100 noise variables, following a standard normal distribution N(0, 1). The

response was generated based on the additive model y = x1 + x2 + x3 + x4 + ε, where

ϵ ∼ N(0, 1) and x1...x4 are the important variables.

The LinClass145 is also a mixed-type linear data set with a two-class response

variable. The categorical variables were also generated with the same cardinality as

LinReg203. It has 15 important variables with random linear dependency between

them and the response variable. A random weight, following an uniform distribution

U(0, 1), is given to each of them when generating Y . It also has 30 redundant which

are random combinations of one important numerical variable plus random noise,

N(0, 1). In addition, this data set has one hundred noise variables with distribution

N(0, 1).

Generated Nonlinear Data

The nonlinear data sets were generated using the nonlinear data generator de-

scribed in Friedman (2001). The NonLinReg70 data set is a replica of the nonlinear

data set used in Tuv et al. (2009). This data set has 10 important variables from

which the target is generated. It also has 20 redundant variables, that are a ran-

dom linear combination of 3 important variables plus a random noise, based on an

uniform distribution. Finallu, there are 40 noise variables, N(0, 1), in the data set.

The numeric response variable is a weighted sum of 10 multidimensional Gaussians,

each Gaussian involving about 4 variables randomly drawn from the 10 important

variables.

The NonLinReg38 is also a regression data set with mixed-type variables. It has 8

important, 20 noise, and 10 redundant variables that were generated using the same

structure as NonLinReg70. NonLinReg125 follows the same pattern as well but it has

20 important, 75 noise and 30 redundant variables. The categorical variables in both



27

NonLinReg38 and NonLinReg125 were generated with cardinality ranging from 2 to

10 levels.

SimOriginal Data

The SimOriginal data set was simulated using R (R Core Team, 2016a). It has a

numerical response variable and 10 mixed-type predictors (four numerical (X1 −X4)

and six categorical (X5 −X10)). The categorical predictors consider variables, which

range from low (binary) to high cardinality (10 levels). The data was simulated

so that half of the predictors are related (X1 − X5), while the remaining half are

independent (X6 −X10). The structure of the simulated data is shown in Table 3.3.

The value of predictor X2 depends on the value of predictor X1 plus random noise

based on the standard normal distribution, N(0, 1). Predictors X3 −X5 also depend

on the value of X1 and so on. In addition, predictors X3 and X4 further depend on

X2. For X3, the relationship with X2 is additive, whereas its relationship with X4 is

multiplicative. Finally, the response was generated based on an additive model using

X1, X2 and a random uniform noise.

Table 3.3: SimOriginal data structure. Simulated data includes 500 observations in

10 mixed-type data predictors and one numerical response variable.

X00 ∼ UNIF (−0.25, 0.25) X01 ∼ N(0, 1)

X1 = X00 +X01 X7 ∼ DUNIF (1, 3)

X2 = 2 ∗X1 +X01 X8 ∼ DUNIF (1, 5)

X3 = X1 +X2 +X01 X9 ∼ DUNIF (1, 7)

X4 = X1 ∗X2 +X01 X10 ∼ DUNIF (1, 10)

X5 =

 DUNIF (2, 4) X1 ≥ 0

1 elsewhere
Y ∼ 3 ∗X1 +X2 +X00

X6 ∼ DUNIF (1, 2)



28

3.2.3 Endometriosis Patient Registry (EPR)

The Endometriosis Patient Registry data set, from the Endometriosis Research

Program (ERP) at the PSMHS, is relatively large with a moderate number of miss-

ing values. This registry, described in Table 3.4, gathers information of women with

endometriosis-related symptoms, some of which chose to be diagnosed via an invasive

surgical procedure (e.g. laparoscopy, laparotomy). It includes data on demograph-

ical information, endometriosis-related symptoms, pre-existing conditions, lifestyle

choices, and family and medical history for a total of 99 different variables and 2,763

records.

The EPRs main challenge is the fact that it has more than 37,000 (14%) missing

values. If any record with missing values were to be discarded, there would be zero

records left. This issue comes up from the fact that this data was collected using a

survey that was subject to changes over a ten-year period (e.g. some questions were

added, some questions were removed). Figure 3.4 shows a visual representation of

missing values in the EPR data set. The grid displays the different patterns found

within the variables with missing values in order of occurrence. Out of the 99 variables

in the data set, 25 of them have missing values as portrayed by the number of vertical

bars in Figure 3.4. The most common pattern is records with missing values in 22

variables as shown in the first line in the grid. In fact, this pattern is present in 21% of

the records in the data set. Table 3.5 also breaks down the proportion of incomplete

values in the missing variables of the data set, with some of them having up to 99%

missing records (Pap test class variable). It is important to note that this specific

variable was removed from the data set since it is nearly non-existent. This clearly

describes the challenging nature of the EPR. Whenever any given record needs to be

imputed, there is a need for up to 21 preliminary imputations per record. For this

specific pattern, there would be 21 imputations.

Thus, EPR was the motivation behind the proposed imputation method, for its

high dimensional mixed-type nature and large amount of missing values. Also, it



29

is the most complete data repository for endometriosis patients in the island and it

took a significant amount of time and effort to gather it. This data is key to further

analysis for the treatment of endometriosis.

Only complete records of this data set were used in order to perform the final

evaluation of the imputation methods. Constant variables were also removed, hence,

giving a final data set size of 91 variables and 421 records.

Table 3.4: General description of the EPR data set.

Data set Records
Num.

Attr.

Cat.

Attr.

Variables

with MV’s
Missing Response

EPR 2,763 5 94 25 14% Class

Fig. 3.4.: Visualization of missing data in the EPR data set. The yellow cells show

available information and the blue cells indicates missing values. The rows in the grid

reflect the most common missing patterns in the data set.



30

Table 3.5: Proportion of incomplete values in the 25 missing variables of the EPR

data set.

Variable % Missing Variable % Missing

1. Pap test class 99.8% 14. Smoke 52.0%

2. Vomiting 76.0% 15. Cramps 51.6%

3. Irritated stomach 76.0% 16. Problems getting pregnant 46.8%

4. Headache 76.0% 17. Amount of pregnancies 46.1%

5. Chronic Pelvic Pain 76.0% 18. Dyspareunia 45.9%

6. Leg numbness 76.0% 19. Age at menarche 44.1%

7. Bloating 76.0% 20. Age 43.7%

8. Other symptoms 76.0% 21. Dysmenorrhea 43.0%

9. Age symptoms started 69.4% 22. Period length 33.0%

10. Other conditions 60.6% 23. Constipation 5.1%

11. Number of days be-

tween period
52.9% 24. PAP test 5.1%

12. Amount cigarettes the

patient smokes per day
52.1% 25. Ovarian Cysts 4.8%

13. Years smoking 52.0%



31

4. ANALYSIS

The proposed approach is a combination of feature selection along with random forest-

based imputation. In order to develop our proposed scheme, five different feature

selection methods (ACE, CFS, GA, ReliefF, and VSURF) were considered and eval-

uated in a cross-validation setting. Extensive parameter tuning was carried out to

determine the most suitable combination of parameters for the proposed imputation

method. Finally, the performance of the proposed scheme was assessed and compared

to two other well known imputation methods, KNN, and missForest. This chapter

describes the framework of the analysis followed through the design of the proposed

missing imputation approach (Section 4.1) and its performance evaluation (Section

4.2).

4.1 Development of Proposed Imputation Approach

The proposed imputation approach consists of two phases: (1) selecting the impor-

tant features of each missing variable in the data set, and (2) imputing the missing

variables based on the significant variables chosen by the feature selection. Phase

1 will includes an extensive evaluation of feature selection methods for mixed-type,

high-dimensional data. Phase 2 involves a thorough parameter tuning of the random-

forest-based imputation.

4.1.1 Evaluation of Feature Selection Methods

ACE, CFS, ReliefF, GA, and VSURF were evaluated in the selection of the feature

selection method to be used in the proposed imputation approach. Figure 4.1 shows

a general description of the undergone evaluation. The performance of the feature



32

selection methods was assessed using five-fold cross-validation (CV) on a random

forest model. The performance of the feature selection methods was also assessed

in more detail using the simulated data sets since their structure was known. Seven

out of the ten data sets discussed in Section 3.2 were employed in this evaluation, as

depicted in Figure 4.1. We included regression and classification data sets of various

sizes. All of the experiments in this phase were performed using the R statistical

software (R Core Team, 2016b).

Fig. 4.1.: Flow chart of steps carried out for the selection of FS method.

Thirty bootstrap samples of each of the seven data sets were created, therefore,

the five-fold cross-validation was carried out 30 times for each FS method and each

data set.

The ACE method used in this evaluation is a modified version of the original

ACE by Tuv et al. (2009). This Tuv et al. (2009) version uses gradient boosted

trees (GBT) to obtain the variable scores, whereas the one used in this analysis uses

random forests. Preliminary results on the SimOriginal data were used to select

the ACE parameters. Multiple runs suggested the selection M = 150 trees for each



33

ensemble as well as a q = q0.90 for the artificial predictors VIS. Figure 4.2 shows

how the error rate in the ensemble stabilizes after including approximately 150 trees,

which is what motivated the use of ensembles of 150 trees. The results also suggested

that the importance scores were not normally distributed, thus, the non-parametric

hypothesis Wilcox test (Wild, 2011) and a Bonferroni approach (Bland and Altman,

1995) was used to assess significance α = 0.05/(number of predictors).

Fig. 4.2.: Preliminary evaluation of the number of trees in a parallel ensemble or

random forest.

The CFS and ReliefF feature selection methods were implemented using the R

package FSelector (Romanski and Kotthoff, 2016). The ReliefF method requires

that the user chooses a threshold to select the top important variables. Variables

were sorted in order of attribute importance and the percentage between them was

calculated. The top subset was composed of all the variables whose difference was

below 35%. The following parameters were used: neighbours.count = 10 and sam-

ple.size= 0.05(DatasetSize). CFS was run using its default parameters.

The VSURF method was implemented using the R package VSURF (Genuer et al.,

2015b). The amount a of trees for the random forest was changed to ntree = 125.

Finally, the GA algorithm was executed using the R package caret (Kuhn, 2016),

with number of search iterations selected as iter = 2.



34

Performance Measures

Four performance measures were evaluated in the five-fold cross-validation: (1)

accuracy, (2) best subset size, (3) run time, and (4) overall desirability. In classification

models, the accuracy is the fraction of instances that are correctly predicted. It is

given by:

Accuracy = 1− f

n
(4.1)

where f/n is the classification error given by the amount samples incorrectly classified

out of the total samples n. On the other hand, the accuracy of a regression model is

also given by the prediction error. Thus, the predicted residual error sum of squares

(PRESS) was calculated for those data sets with numeric response. The PRESS is

given by:

PRESS =
n∑

i=1

(yi − ŷ)2 (4.2)

where yi and ŷ are the observed and predicted values, respectively. PRESS values

were scaled to a range between 0 and 1 and its complement was calculated to convert

them into accuracy values. Consequently, values close to one are preferred for this

scaled measure.

Run time denotes the CPU time, in seconds, taken to run the algorithm. A faster

FS method is desired; hence, lower run time values are preferred. The Best sub-

set measure depicts the number of important variables selected by the FS method.

Smaller subsets will lead to less complex models and, thus, smaller subsets are pre-

ferred.

Since various performance measures may favor different methods, a desirability

function was used to determine the top performer. The overall desirability function

(D) combines the previous measures and gives each one of them different weights

based on their relative importance: accuracy (60%) > run time (30%) > best subset

(10%).



35

Dcv = 0.6× (Accuracy) + 0.3× (1−Runtime′) + 0.1× (1−BestSubset′) (4.3)

Note that all the performance measures were scaled between 0 and 1 before calcu-

lating the desirability function. Values closer to one are preferred, since the desirabil-

ity function is scaled as well. The desirability function was scaled to values between

0 and 1 as well as:

D′
cv =

Dcv −min(Dcv)

max(Dcv)−min(Dcv)
(4.4)

Furthermore, the Sensitivity, Specificity and Accuracy of the FS methods were also

calculated for the simulated data sets since their important variables were known.

The overall Desirability function was evaluated once more. Based on the feature

selection analysis, sensitivity is the proportion of important variables for a predictor

j correctly identified by the feature selection method:

Sensitivity =
TP

TP + FN
(4.5)

where TP is the number of variables accurately detected as important and TP +FN

is the total number of important variables.

The specificity is the proportion of variables accurately not detected as impor-

tant by the feature selection method:

Specificity = 1− FP

FP + TN
(4.6)

where FP is the number of excess variables detected by the feature selection method

and FP + TN is the number of variables that should not have been detected as

important, which are the redundant and noise variables.

The accuracy is the proportion of variables correctly identified by the feature

selection method, given by:

Accuracy =
TP + TN

TP + TN + FP + FN
(4.7)



36

where TP is the amount of important variables detected and TN are the number of

non-important variables not detected out of the total number of variables in the data

set.

Once again, the overall desirability combines the previous measures in Equation

4.8 and gives each one of them different weights based on their relative importance:

sensitivity (50%) > specificity (25%) > accuracy (25%).

Df = 0.5× Sensitivity + 0.25× Specificity + 0.25× Accuracy (4.8)

The desirability function was scaled to values between 0 and 1 as well:

D′
f =

Df −min(Df )

max(Df )−min(Df )
(4.9)

4.1.2 Evaluation of Random Forest Imputation

Additional experiments were carried in order to improve the random forest-based

imputation performance. Specifically, various factors were taken into account for the

evaluation of the stopping criteria in the imputation of the missing values in Xi. This

algorithm was implemented using R statistical software as well as the random forest

function available in the R package randomForest (Liaw and Wiener, 2014).

This analysis was performed using the SimOriginal data set. The performance

of an imputation technique depends on the amount of missing values present in the

data set. Thus, missing ratios of 5%, 10%, 15% and 20% were simulated for each of

the SimOriginal bootstrap samples. These missing values are randomly distributed

in the data sets, meaning that the x% of the total variable values are missing.

Figure 4.3 portrays the multiple factors evaluated for the imputation stopping

criteria and the overall imputation. Five different factors were considered in this

evaluation: missing ratio, stage, impute change, stop rule, and imputation. The

stopping criteria δ is calculated for both numerical and categorical variables. In

the case of numerical variables, δn is the percentage of difference between the new



37

imputation of a missing value and an old imputation. This difference is compared

against a threshold called impute change (∆n). The algorithm will keep imputing the

missing value as long as δn > ∆n.

Fig. 4.3.: Flow chart of evaluated factors with their corresponding levels.

Three different values of ∆n were evaluated: 2.5%, 5%, and 7.5%. For a given

imputation in record r, the imputation difference is:

δn =
xnew − xold

xold

(4.10)

In the case of categorical variables, if the new imputed value stays the same in

the last δc iterations, then, the algorithm stops imputing for that record and moves

on to the next record r in Xi. Three options were also evaluated for ∆c, where the

imputation value did not: change in the last two iterations (∆c=2), change in the

last three iterations (∆c=3), and did not change in the last three iterations (∆c=4).



38

Two factors were considered to decide how δn is calculated in the algorithm: (1)

stage and (2) stop rule. Three stages were evaluated: stage 1, 2, and 3, denoting

the amount of imputation differences considered for the final impute change in the

iteration. These stages go along with three stopping criterias: simple, average, and

maximum, which depict the aggregation of these stages to obtain the final imputation

change. Table 4.1 shows all the possible combinations of stages and stop rules along

with the equations used to calculate δn in the experiments. For example, if the

combination stage 2/average is used, then, δn is calculated as the average of the

difference between imputations j and j − 1 and imputations j − 1 and j − 2.

Table 4.1: Equations used to calculate δn in the parameter tuning.

Stage Stop Criteria δn

1 Simple
(ximp

j −ximp
j−1 )

ximp
j−1

2 Simple
(ximp

j −ximp
j−2 )

ximp
j−2

3 Simple
(ximp

j −ximp
j−3 )

ximp
j−3

2 Average

(x
imp
j

−x
imp
j−1

)

x
imp
j−1

+
(x

imp
j−1

−x
imp
j−2

)

x
imp
j−2

2

3 Average

(x
imp
j

−x
imp
j−1

)

x
imp
j−1

+
(x

imp
j−1

−x
imp
j−2

)

x
imp
j−2

+
(x

imp
j−2

−x
imp
j−3

)

x
imp
j−3

3

2 Maximum Max
{

(ximp
j −ximp

j−1 )

ximp
j−1

,
(ximp

j−1−ximp
j−2 )

ximp
j−2

}

3 Maximum Max
{

(ximp
j −ximp

j−1 )

ximp
j−1

,
(ximp

j−1−ximp
j−2 )

ximp
j−2

,
(ximp

j−2−ximp
j−3 )

ximp
j−3

}

Finally, two options were evaluated for the overall imputation value of record r

in numerical missing variable Xi: last value, meaning that the final imputed value is



39

ximp
j , and average, which implies that the final imputed value es the average of the

imputed values considered in the calculation of δn. If Xi is a categorical variable, then

the final imputed value is the last value imputed (ximp
j ). Overall, forty two different

combinations were evaluated for each missing ratio, for a total of 168 combinations.

Performance Measures

Both, regression and classification performance measures were evaluated due to

the mixed-typed nature of the data sets.

Four performance measures for numerical variables were evaluated: (1) coefficient

of determination (R2), (2) normalized root mean squared error (NRMSE), (3) index

of agreement (d2), and (4) overall numerical desirability (Dn). The coefficient of

determination is the square of the Pearson’s product-moment correlation coefficient

and describes the proportion of the total variance in the observed data that can be

explained by the model (Carriquiry, 2004). The R2 was implemented using the gof

function of the hydroGOF R package (Zambrano, 2014). It ranges between 0 and 1,

and the higher the value the more useful the model. R2 is defined as follows:

R2 = 1− SSE

SST
(4.11)

where SSE measures the deviation of the observations (yi) from the predicted values

(ŷi):

SSE =
∑
i

(yi − ŷi)
2 (4.12)

and SST , measures the deviations of the observations from their mean (ȳ):

SST =
∑
i

(yi − ȳ)2 (4.13)

The normalized root mean square error (NRMSE) is a non-dimensional

measure of the difference between the values predicted by a model and the values

actually observed in the environment (Kaggle, 2017). It is given by:



40

NRMSE =

√
1
n

∑n
i=1(yi − ŷi)

var(yi)
(4.14)

Since NRMSE is an error measure, high values of NRMSE mean higher impu-

tation error. Therefore, low values of NRMSE are desired. The NRMSE was also

implemented using the gof function of the hydroGOF R package (Zambrano, 2014).

The index of agreement (d2) is a standardized measure of the degree of model

prediction error as well. It is similar to R2, but it based on the average relative error

instead. Again, d2 was implemented using the gof function of the hydroGOF R package

(Zambrano, 2014). This index varies from 0 to 1, with higher values indicating better

agreement between the prediction and observations (Willmott, 1981). The equation

for d2 is:

d2 = 1−
∑n

i=1 (yi − ŷi)
2∑n

i=1

(
|ŷi − ȳ|+ |yi − ȳ|

)2 (4.15)

The overall numerical desirability function combines the previous measures

and treats them as equally important through an addition operation:

Dn = R2 + d2 + (1−NRMSE) (4.16)

Note that the complement of NRMSE is used in order to reflect that larger values of

the desirability function are preferred. The desirability function was scale to values

between 0 and 1 as follows:

D′
n =

Dn −min(Dn)

max(Dn)−min(Dn)
(4.17)

Other four performance measures were also evaluated for categorical variables:

(1) classification error (E), (2) area under precision-recall curve (AUPRC) (3) kappa

statistic (κ), and (4) overall categorical desirability (Dc). The classification error

is the proportion of sample cases incorrectly classified and is evaluated by:



41

E =
f

n
(4.18)

where f is the number of sample cases incorrectly classified out of n total samples.

The area under the precision-recall curve is the probability that a classifier

will rank a randomly chosen positive instance higher than a randomly chosen negative

one. For multi-class problems, the AUPRC is a measure of the discriminability of

multiple pair of classes. It is based on precision, which is related to what should

have been detected, and recall, which is the fraction of what was detected (Fawcett,

2003). AUPRC values range between 0 and 1 as well, and the closer the value to 1,

the better. The equation is given by:

AUPRC =
∑
ci∈C

AUPRC(ci) ∗ p(ci) (4.19)

where AUPRC(ci) is the area under de precision-recall curve for class i and p(ci)

is a weight given based on the prevalence of the class in the data. The AUPRC

was implemented using the pr.curve function of the PRROC R package (Grau and

Keilwagen, 2015). It was preferred over the traditional area under the curve (AUC)

because it does a better job at handling unbalanced data sets.

The kappa statistic (κ) is a measure of agreement between categorical variables.

It compares an observed accuracy with an expected accuracy (random chance). In

addition, it takes into account random chance (agreement with a random classifier).

Kappa can take values between -1 and 1, but a κ > 0 is desired, specially values closer

to one (Sharp et al., 2017):

κ =
po − pe
1− pe

(4.20)

where po is the observed agreement, and pe is the probability of random agreement.

The kappa statistic was implemented using the cohen.kappa function of the psych R

package (Revelle, 2016).



42

Once again, the overall desirability function for the categorical variables was

assessed and considered each as equally important.

Dc = κ+ AUPRC + (1− E) (4.21)

The desirability function was scaled to values between 0 and 1 as follows:

D′
c =

Dc −min(Dc)

max(Dc)−min(Dc)
(4.22)

In order to evaluate both, numerical and categorical variables at the same time,

an overall desirability function (Do) was calculated. Both are equally weighted by:

Do = D′
n +D′

c (4.23)

4.2 Evaluation of Imputation Methods

The performance of the proposed imputation method was compared to KNN and

missForest. Figure 4.4 displays a general overview of the missing value imputation

evaluation. Nine data sets (BreastCancer, Heart, EPR, LinReg203, LinClass145,

NonLinReg70, NonLinReg125, NonLinReg38, and SimOriginal), described in Section

3.2, were used in this final evaluation. Thirty bootstrap samples were generated for

each data set and missing values were randomly created for each one of them using

the ProdNA function of the R package missForest (Stekhoven, 2013). These missing

values were simulated at 5%, 10%, 15% and 20% missing ratios.

The KNN was implemented using the function kNN in the R package VIM (Kowarik

and Templ, 2016). This algorithm uses Gower distance to find the k nearest neigh-

bors. We used the default parameters of the function, that is, the number of nearest

neighbors k=5. On the other hand, the function missForest was executed using the R

package missForest (Stekhoven, 2013). Here, the default parameters of the function

were used: the number of trees in the random forest (ntrees=100 ), the maximum



43

Fig. 4.4.: Flow chart of steps carried out for the performance evaluation of missing

value imputation schemes.

number of iterations to be performed given the stopping criterion is not met before-

hand (maxiter=10 ), among others.

Performance Measures

The performance measures used for the evaluation of the imputation methods are

the same as the ones explained in Subsection 4.1.2.



44

5. RESULTS

This chapter summarizes the major results of the development of the proposed im-

putation scheme (Section 5.1), and the final assessment of the performance of the

proposed method against KNN and missForest (Section 5.2). Detailed results for

some of the analyses shown in this chapter are available in Appendix A, B, and C,

respectively.

5.1 Proposed Imputation Method

5.1.1 Feature Selection

Table 5.1 shows the aggregated results of the five-fold cross-validation used in the

selection of the feature selection method. Columns three through seven denote the

average value of the performance metrics on each feature selection method across the

seven data sets. Bold values in the D′
cv column represent the best results. Figure 5.1

also presents the average performance of the feature selection methods. One standard

error rules are also provided for each plot. Figures 5.1(a) to 5.1(d) present the average

desirability function, Dcv, average accuracy, average best subset size, and average run

time for each feature selection method and data set evaluated, respectively. ACE

has the highest average accuracy, as described in Figure 5.1(b), and CFS has the

lowest average best subset size and average run time, as depicted by Figures 5.1(c)

and 5.1(d).



45

Table 5.1: Feature selection five-fold cross-validation results.

Data set
FS

Method

CV

Accuracy

Run

time

Best

subset
Dcv D′

cv

BreastCancer

CFS 0.9834 0.0013 8 0.6103 0.3337

GA 0.9824 2.1136 7 0.5413 0.0000

ACE 0.9853 0.0883 10 0.5648 0.1137

ReliefF 0.9675 0.0603 6 0.7483 1.0000

VSURF 0.9839 1.7940 6 0.5696 0.1370

EPR

CFS 0.7819 0.2680 11 0.5347 0.8653

GA 0.8934 7.0413 70 0.4849 0.7286

ACE 0.7945 0.3943 28 0.4114 0.5271

ReliefF 0.6782 0.5435 10 0.2193 0.0000

VSURF 0.7278 59.5774 12 0.5838 1.0000

Heart

CFS 0.7497 0.0220 5 0.4734 0.0000

GA 0.8077 0.7780 10 0.5106 0.1076

ACE 0.8112 0.0057 8 0.5101 0.1062

ReliefF 0.9735 0.0343 7 0.8197 1.0000

VSURF 0.8016 0.1663 7 0.5270 0.1550

LinReg203

CFS 0.4579 0.0350 2 0.6431 1.0000

GA 0.7064 1.0043 86 0.5971 0.2961

ACE 0.7465 0.0023 73 0.5778 0.0000

ReliefF 0.4420 0.0613 78 0.5973 0.2986

VSURF 0.7673 7.0063 6 0.6373 0.9108

LinClass145

CFS 0.7196 0.0300 9 0.6687 1.0000

GA 0.3981 0.9180 85 0.4406 0.0000

ACE 0.7110 0.0463 29 0.5437 0.4521

ReliefF 0.6658 0.0427 52 0.5161 0.3308

VSURF 0.7045 5.8063 7 0.5311 0.3967

NonLinReg70

CFS 0.6588 0.0253 5 0.6838 1.0000

GA 0.8022 0.8507 38 0.5319 0.0000

ACE 0.8256 0.0243 22 0.5478 0.1045

ReliefF 0.6915 0.0683 17 0.5528 0.1377

VSURF 0.8396 3.2400 7 0.6206 0.5839

Sylva

CFS 0.9852 0.9700 7 0.6560 1.0000

GA 0.9961 31.6630 147 0.4601 0.2047

ACE 0.9967 3.4700 59 0.4858 0.3089

ReliefF 0.9597 1.1637 18 0.4097 0.0000

VSURF 0.9949 334.8100 8 0.5509 0.5735



46

(a) Average desirability function, including one standard error bars, on Breast Cancer, EPR, Heart,

LinClass145, LinReg203, NonLinReg70, and Sylva data sets.

(b) Average accuracy, including one standard error bars, on Breast Cancer, EPR, Heart, Lin-

Class145, LinReg203, NonLinReg70, and Sylva data sets.



47

(c) Average run time, including one standard error bars, on Breast Cancer, EPR, Heart, LinClass145,

LinReg203, NonLinReg70, and Sylva data sets.

(d) Average best subset size, including one standard error bars, on Breast Cancer, EPR, Heart,

LinClass145, LinReg203, NonLinReg70, and Sylva data sets.

Fig. 5.1.: Five-fold cross-validation performance of feature selection methods.



48

Overall, CFS performed the best in four out of seven data sets (or 57% of the

evaluated cases). Table 5.2 portrays the D′
cv score, which is given by the sum of

the normalized desirability function through the data sets, being CFS the one with

highest result.

Table 5.2: Normalized cross-validation desirability score across all data sets.

FS Method D′
cv Score

ACE 1.6125

CFS 5.1990

GA 1.3369

ReliefF 2.7671

VSURF 3.7569

Additionally, the three simulated scenarios (LinReg203, LinClass145 and NonLin-

Reg70) were evaluated in more detail since their structure and important variables

were known. Table 5.3 shows the results of this analysis, where bold values in the D′
f

column denote the best results.

Table 5.3: Feature selection performance on simulated scenarios.

Data set
FS

Method
Sensitivity Specificity Accuracy Df D′

f

LinClass145

ACE 0.4467 0.8321 0.7110 0.5275 0.4494
CFS 0.4644 0.9849 0.7196 0.6818 1.0000
GA 0.6867 0.4274 0.4543 0.5562 0.5521

ReliefF 0.4956 0.6582 0.6658 0.5602 0.5662
VSURF 0.1978 0.9718 0.7045 0.4015 0.0000

LinReg203

ACE 0.1667 0.6365 0.6273 0.5714 0.8412
CFS 0.0167 0.9903 0.9711 0.0667 0.0000
GA 0.1667 0.5008 0.4943 0.6667 1.0000

ReliefF 0.6250 0.6198 0.6199 0.5123 0.7428
VSURF 0.7500 0.9864 0.9818 0.4920 0.7090

NonLinReg70

ACE 0.6900 0.7472 0.7390 0.4535 0.5090
CFS 0.1967 0.9444 0.8376 0.3589 0.0000
GA 0.8633 0.5044 0.5557 0.5446 1.0000

ReliefF 0.3333 0.7756 0.7124 0.3710 0.0649
VSURF 0.4433 0.9611 0.8871 0.4580 0.5337



49

Figure 5.2 also shows the performance results of this analysis. Figures 5.2(a) to

5.2(d) displays the average desirability function (Df ), average sensitivity, average

specificity, and average accuracy of each feature selection on the simulated scenarios;

including one standard error bars as well.

(a) Average desirability funtion, including error bars, of feature selection methods on LinClass145,

LinReg203, NonLinReg70 data sets.

(b) Average accuracy, including error bars, of feature selection methods on LinClass145, LinReg203,

NonLinReg70 data sets.



50

(c) Average sensitivity, including error bars, of feature selection methods on LinClass145, LinReg203,

NonLinReg70 data sets.

(d) Average specificity, including error bars, of feature selection methods on LinClass145, LinReg203,

NonLinReg70 data sets.

Fig. 5.2.: Performance of feature selection methods on simulated scenarios.



51

In this evaluation, GA performed better in two of the data sets, out of three (or

66% of the evaluated cases), as depicted by the overall desirability D′
f . Table 5.4

also confirms this result. It portrays the D′
f score, which once again is the sum of

the normalized desirability, D′
f , through the three data sets; being GA the one with

the highest score. Note that the issue here is failing to detect important variables

since the proposed scheme imputes missing variables based on its important variables,

selected by the feature selection method. Selecting variables in excess might not have

much of an effect on the overall execution of the imputation scheme.

Table 5.4: Normalized desirability score across all data sets.

FS Method D′
f Score

ACE 1.7996

CFS 1.0000

GA 2.5521

ReliefF 1.3738

VSURF 1.2427

5.1.2 Evaluation of Random Forest imputation

The parameter tuning of the random forest imputation was carried out using both

CFS and GA, to evaluate which feature selection method in fact helps the imputation

perform better. Table 5.5 shows the top 3 combinations of parameters for each missing

ratio and feature selection method. Bold values in the column D′
o represent the best

results. Figure 5.3 also portrays the top 3 performing combinations of parameters

(using both GA and CFS) at each missing ratio in terms of the overall desirability

function (Do). Appendix A includes additional information on the the individual

performance measures. The majority of the Do results in Figure 5.3 fall in the lower

boxes of the plot, specifically in the lower left. This corner includes for the most part,

restrictive assumptions with regards of the impute difference calculation of numerical

variables (stage 3) and its threshold (∆n = 2.5%). It can be seen that restrictive

combinations of parameters perform better with higher ratios of missing values.



52

T
ab

le
5.
5:

B
es
t
p
er
fo
rm

in
g
co
m
b
in
at
io
n
s
of

p
ar
am

et
er
s
p
er

m
is
si
n
g
ra
ti
o
fo
r
G
A

an
d
C
F
S
.

M
is
si
n
g

R
a
ti
o

(%
)

F
S

M
e
th
o
d

Im
p
u
te

C
h
a
n
g
e

(c
a
t)

Im
p
u
te

C
h
a
n
g
e

(n
u
m
)

S
ta
g
e

S
to
p

R
u
le

Im
p
u
ta
ti
o
n

(c
a
t)

Im
p
u
ta
ti
o
n

(n
u
m
)

D
o

D
′ o

5

G
A

2
7.
5

1
S
im

p
le

L
as
tV

al
u
e

L
as
tV

al
u
e

1.
26

49
1
.0
0
0

3
5

3
S
im

p
le

L
as
tV

al
u
e

L
as
tV

al
u
e

1.
26

04
0.
97

69

2
7.
5

1
S
im

p
le

L
as
tV

al
u
e

A
v
g

1.
26

03
0.
96

4

C
F
S

2
7.
5

1
S
im

p
le

L
as
tV

al
u
e

A
v
g

1.
06

85
0.
00

99

2
7.
5

1
S
im

p
le

L
as
tV

al
u
e

L
as
tV

al
u
e

1.
06

69
0.
00

15

4
2.
5

1
S
im

p
le

L
as
tV

al
u
e

L
as
tV

al
u
e

1.
06

66
0.
00

00

10

G
A

3
5

3
S
im

p
le

L
as
tV

al
u
e

A
v
g

1.
27

71
1
.0
0
0
0

3
5

3
S
im

p
le

L
as
tV

al
u
e

L
as
tV

al
u
e

1.
27

63
0.
97

72

2
7.
5

1
S
im

p
le

L
as
tV

al
u
e

A
v
g

1.
27

61
0.
97

23

C
F
S

2
7.
5

1
S
im

p
le

L
as
tV

al
u
e

A
v
g

1.
24

17
0.
04

29

3
5

1
S
im

p
le

L
as
tV

al
u
e

A
v
g

1.
24

09
0.
02

17

3
5

3
S
im

p
le

L
as
tV

al
u
e

A
v
g

1.
24

01
0.
00

00

15

C
F
S

4
2.
5

2
S
im

p
le

L
as
tV

al
u
e

A
v
g

1.
21

39
1
.0
0
0
0

4
2.
5

2
S
im

p
le

L
as
tV

al
u
e

L
as
tV

al
u
e

1.
21

35
0.
96

23

4
2.
5

3
S
im

p
le

L
as
tV

al
u
e

A
v
g

1.
21

23
0.
83

26

G
A

4
2.
5

2
S
im

p
le

L
as
tV

al
u
e

L
as
tV

al
u
e

1.
21

10
0.
68

69

4
2.
5

2
S
im

p
le

L
as
tV

al
u
e

A
v
g

1.
20

69
0.
23

34

4
2.
5

3
S
im

p
le

L
as
tV

al
u
e

A
v
g

1.
20

48
0.
00

00

20

G
A

4
2.
5

3
S
im

p
le

L
as
tV

al
u
e

A
v
g

1.
09

42
1
.0
0
0
0

4
2.
5

3
S
im

p
le

L
as
tV

al
u
e

L
as
tV

al
u
e

1.
09

41
0.
99

72

2
7.
5

3
S
im

p
le

L
as
tV

al
u
e

A
v
g

1.
08

32
0.
73

08

C
F
S

4
2.
5

3
S
im

p
le

L
as
tV

al
u
e

A
v
g

1.
06

45
0.
27

64

4
2.
5

3
S
im

p
le

L
as
tV

al
u
e

L
as
tV

al
u
e

1.
06

26
0.
22

90

2
7.
5

3
S
im

p
le

L
as
tV

al
u
e

A
v
g

1.
05

31
0.
00

00



53

Fig. 5.3.: Top 3 performing combinations for each missing ratio and feature selection

method. Triangular and circular shape points denote GA and CFS values, respec-

tively.

In summary, the results in Table 5.5 confirm GA as the best feature selection

method choice, giving higher values of overall desirability (Do) in three out of four

missing ratios (or 75% of the cases). Furthermore, the selected combinations of

parameters for the proposed random-forest-based imputation is given in Table 5.6.

This combination was chosen based on the premise that the proposed method is

mostly focused on data with medium to high proportions of missing values. Thus,

the proposed imputation scheme used GA as feature selection method along with

the random-forest-based imputation having ∆n = 2.5%, ∆c = 4, δn =
ximp
j −ximp

j−3

ximp
j−3

,



54

with ximp
n =

ximp
j−3+ximp

j

2
being the final imputation of numerical missing values and

ximp
c = ximp

j the final imputation of categorical missing values.

Table 5.6: Selected combination of parameters for the proposed random forest-based

imputation.

Parameter Suggested Value/Setting

Impute change num 2.5

Impute change cat 4

Stage 3

Stop Rule Simple

Imputation num Avg

Imputation cat Last Value

5.2 Evaluation of Imputation Methods

Table 5.7 shows the average performance of the three imputation methods in terms

of Dn, Dc, and Do. Bold values in columns D′
n, D

′
c, and D′

o represent the best results

for each data set and missing ratio. Figures 5.4 to 5.6 also portray Dn, Dc, and Do

results including one standard error bars. Appendix B includes individual plots of

the categorical and numerical performance measures.



55

T
ab

le
5.
7:

A
ve
ra
ge

p
er
fo
rm

an
ce

of
im

p
u
ta
ti
on

m
et
h
o
d
s.

N
ot
e
th
at

th
e
b
re
as
t
ca
n
ce
r
d
at
a
se
t
is
fu
ll
y
ca
te
go
ri
ca
l,
th
er
ef
or
e

N
A

va
lu
es

w
h
er
e
p
la
ce
d
in

D
n
an

d
D

o
.
A
ls
o
n
ot
e
th
at

th
e
N
on

L
in
R
eg
70

d
at
a
se
t
is

fu
ll
y
n
u
m
er
ic
al
,
th
er
ef
or
e
N
A

va
lu
es

w
h
er
e
p
la
ce
d
in

D
c
an

d
D

o
.

D
a
ta

se
t

M
is
si
n
g

R
a
ti
o

(%
)

Im
p
u
ta
ti
o
n

M
e
th
o
d

D
n

D
′ n

D
c

D
′ c

D
o

D
′ o

B
re
as
t
C
an

ce
r

5
K
N
N

N
A

N
A

0.
69
29

0.
67
41

N
A

N
A

P
ro
p
os
ed

M
et
h
o
d

N
A

N
A

0.
35
87

0.
00
00

N
A

N
A

m
is
sF
or
es
t

N
A

N
A

0.
85
44

1
.0
0
0
0

N
A

N
A

10
K
N
N

N
A

N
A

0.
68
61

0.
63
26

N
A

N
A

P
ro
p
os
ed

M
et
h
o
d

N
A

N
A

0.
36
64

0.
00
00

N
A

N
A

m
is
sF
or
es
t

N
A

N
A

0.
87
18

1
.0
0
0
0

N
A

N
A

15
K
N
N

N
A

N
A

0.
67
80

0.
62
79

N
A

N
A

P
ro
p
os
ed

M
et
h
o
d

N
A

N
A

0.
37
17

0.
00
00

N
A

N
A

m
is
sF
or
es
t

N
A

N
A

0.
85
95

1
.0
0
0
0

N
A

N
A

20
K
N
N

N
A

N
A

0.
66
96

0.
60
60

N
A

N
A

P
ro
p
os
ed

M
et
h
o
d

N
A

N
A

0.
39
77

0.
00
00

N
A

N
A

m
is
sF
or
es
t

N
A

N
A

0.
84
64

1
.0
0
0
0

N
A

N
A

E
P
R

5
K
N
N

0.
83
09

0.
79
20

0.
04
52

0.
34
82

0.
87
61

0.
82
25

P
ro
p
os
ed

M
et
h
o
d

0.
52
03

0.
00
00

0.
09
09

1
.0
0
0
0

0.
61
12

0.
00
00

m
is
sF
or
es
t

0.
91
24

1
.0
0
0
0

0.
02
09

0.
00
00

0.
93
33

1
.0
0
0
0

10
K
N
N

0.
81
28

0.
78
61

0.
04
59

0.
42
11

0.
85
87

0.
82
23

P
ro
p
os
ed

M
et
h
o
d

0.
48
79

0.
00
00

0.
08
14

1
.0
0
0
0

0.
56
94

0.
00
00

m
is
sF
or
es
t

0.
90
11

1
.0
0
0
0

0.
02
01

0.
00
00

0.
92
12

1
.0
0
0
0

15
K
N
N

0.
79
88

0.
75
85

0.
04
85

0.
35
79

0.
84
73

0.
78
09

P
ro
p
os
ed

M
et
h
o
d

0.
48
09

0.
00
00

0.
09
20

1
.0
0
0
0

0.
57
29

0.
00
00

m
is
sF
or
es
t

0.
90
01

1
.0
0
0
0

0.
02
42

0.
00
00

0.
92
42

1
.0
0
0
0

20
K
N
N

0.
78
48

0.
76
02

0.
04
94

0.
45
71

0.
83
42

0.
79
18

P
ro
p
os
ed

M
et
h
o
d

0.
46
51

0.
00
00

0.
07
84

1
.0
0
0
0

0.
54
35

0.
00
00

m
is
sF
or
es
t

0.
88
56

1
.0
0
0
0

0.
02
50

0.
00
00

0.
91
06

1
.0
0
0
0

co
n
ti
n
u
ed

on
n
ex
t
pa
ge



56

co
n
ti
n
u
ed

fr
om

pr
ev
io
u
s
pa
ge

D
a
ta

se
t

M
is
si
n
g

R
a
ti
o

(%
)

Im
p
u
ta
ti
o
n

M
e
th
o
d

D
n

D
′ n

D
c

D
′ c

D
o

D
′ o

H
ea
rt

5
K
N
N

0.
89
39

0.
77
60

0.
27
46

1
.0
0
0
0

1.
16
85

0.
81
34

P
ro
p
os
ed

M
et
h
o
d

0.
72
03

0.
00
00

0.
24
74

0.
00
00

0.
96
77

0.
00
00

m
is
sF
or
es
t

0.
94
41

1
.0
0
0
0

0.
27
06

0.
85
12

1.
21
46

1
.0
0
0
0

10
K
N
N

0.
88
92

0.
78
94

0.
26
28

1
.0
0
0
0

1.
15
19

0.
80
97

P
ro
p
os
ed

M
et
h
o
d

0.
70
04

0.
00
00

0.
25
25

0.
00
00

0.
95
30

0.
00
00

m
is
sF
or
es
t

0.
93
95

1
.0
0
0
0

0.
25
92

0.
64
88

1.
19
87

1
.0
0
0
0

15
K
N
N

0.
89
33

0.
82
79

0.
26
76

0.
93
80

1.
16
09

0.
84
41

P
ro
p
os
ed

M
et
h
o
d

0.
69
00

0.
00
00

0.
22
79

0.
00
00

0.
91
79

0.
00
00

m
is
sF
or
es
t

0.
93
56

1
.0
0
0
0

0.
27
02

1
.0
0
0
0

1.
20
58

1
.0
0
0
0

20
K
N
N

0.
88
33

0.
81
43

0.
25
94

0.
00
00

1.
14
26

0.
75
76

P
ro
p
os
ed

M
et
h
o
d

0.
71
23

0.
00
00

0.
30
84

1
.0
0
0
0

1.
02
07

0.
00
00

m
is
sF
or
es
t

0.
92
23

1
.0
0
0
0

0.
25
94

0.
00
05

1.
18
16

1
.0
0
0
0

L
in
C
la
ss
14
5

5
K
N
N

0.
24
94

0.
00
00

0.
36
90

0.
34
01

0.
61
83

0.
00
00

P
ro
p
os
ed

M
et
h
o
d

0.
43
71

1
.0
0
0
0

0.
36
39

0.
00
00

0.
80
10

1
.0
0
0
0

m
is
sF
or
es
t

0.
42
19

0.
91
86

0.
37
89

1
.0
0
0
0

0.
80
07

0.
99
83

10
K
N
N

0.
22
26

0.
00
00

0.
36
92

0.
00
00

0.
59
18

0.
00
00

P
ro
p
os
ed

M
et
h
o
d

0.
43
64

1
.0
0
0
0

0.
37
49

0.
98
39

0.
81
12

1
.0
0
0
0

m
is
sF
or
es
t

0.
41
71

0.
90
97

0.
37
50

1
.0
0
0
0

0.
79
20

0.
91
25

15
K
N
N

0.
20
35

0.
00
00

0.
36
85

0.
72
93

0.
57
20

0.
00
00

P
ro
p
os
ed

M
et
h
o
d

0.
39
13

0.
87
89

0.
35
50

0.
00
00

0.
74
64

0.
79
69

m
is
sF
or
es
t

0.
41
72

1
.0
0
0
0

0.
37
35

1
.0
0
0
0

0.
79
08

1
.0
0
0
0

20
K
N
N

0.
18
72

0.
00
00

0.
36
58

0.
81
17

0.
55
30

0.
00
00

P
ro
p
os
ed

M
et
h
o
d

0.
35
39

0.
74
29

0.
34
59

0.
00
00

0.
69
99

0.
64
13

m
is
sF
or
es
t

0.
41
17

1
.0
0
0
0

0.
37
04

1
.0
0
0
0

0.
78
21

1
.0
0
0
0

co
n
ti
n
u
ed

on
n
ex
t
pa
ge



57

co
n
ti
n
u
ed

fr
om

pr
ev
io
u
s
pa
ge

D
a
ta

se
t

M
is
si
n
g

R
a
ti
o

(%
)

Im
p
u
ta
ti
o
n

M
e
th
o
d

D
n

D
′ n

D
c

D
′ c

D
o

D
′ o

L
in
R
eg
20
3

5
K
N
N

0.
61
92

0.
00
00

0.
35
42

0.
00
00

0.
97
34

0.
00
00

P
ro
p
os
ed

M
et
h
o
d

0.
63
91

0.
35
99

0.
35
64

0.
10
17

0.
99
55

0.
28
78

m
is
sF
or
es
t

0.
67
44

1
.0
0
0
0

0.
37
56

1
.0
0
0
0

1.
05
01

1
.0
0
0
0

10
K
N
N

0.
61
25

0.
00
00

0.
35
62

0.
00
00

0.
96
87

0.
00
00

P
ro
p
os
ed

M
et
h
o
d

0.
61
96

0.
12
03

0.
36
39

0.
84
88

0.
98
36

0.
21
73

m
is
sF
or
es
t

0.
67
17

1
.0
0
0
0

0.
36
53

1
.0
0
0
0

1.
03
70

1
.0
0
0
0

15
K
N
N

0.
60
51

0.
00
00

0.
35
47

0.
00
00

0.
95
98

0.
00
00

P
ro
p
os
ed

M
et
h
o
d

0.
64
58

0.
64
31

0.
36
90

1
.0
0
0
0

1.
01
49

0.
82
82

m
is
sF
or
es
t

0.
66
84

1
.0
0
0
0

0.
35
79

0.
22
43

1.
02
63

1
.0
0
0
0

20
K
N
N

0.
60
24

0.
00
00

0.
35
54

0.
88
24

0.
95
78

0.
00
00

P
ro
p
os
ed

M
et
h
o
d

0.
68
30

1
.0
0
0
0

0.
32
08

0.
00
00

1.
00
38

0.
63
09

m
is
sF
or
es
t

0.
67
07

0.
84
69

0.
36
01

1
.0
0
0
0

1.
03
07

1
.0
0
0
0

N
on

L
in
R
eg
12
5

5
K
N
N

0.
37
85

0.
00
00

0.
36
18

0.
00
00

0.
74
04

0.
00
00

P
ro
p
os
ed

M
et
h
o
d

0.
56
53

1
.0
0
0
0

0.
36
43

0.
13
01

0.
92
96

1
.0
0
0
0

m
is
sF
or
es
t

0.
54
06

0.
86
81

0.
38
07

1
.0
0
0
0

0.
92
13

0.
95
64

10
K
N
N

0.
33
65

0.
00
00

0.
36
61

0.
63
30

0.
70
26

0.
00
00

P
ro
p
os
ed

M
et
h
o
d

0.
52
54

0.
93
86

0.
35
57

0.
00
00

0.
88
11

0.
86
12

m
is
sF
or
es
t

0.
53
78

1
.0
0
0
0

0.
37
21

1
.0
0
0
0

0.
90
99

1
.0
0
0
0

15
K
N
N

0.
30
49

0.
00
00

0.
36
27

0.
00
00

0.
66
76

0.
00
00

P
ro
p
os
ed

M
et
h
o
d

0.
52
61

0.
98
48

0.
39
34

1
.0
0
0
0

0.
91
95

1
.0
0
0
0

m
is
sF
or
es
t

0.
52
95

1
.0
0
0
0

0.
37
08

0.
26
31

0.
90
03

0.
92
38

20
K
N
N

0.
27
38

0.
00
00

0.
36
19

0.
00
00

0.
63
57

0.
00
00

P
ro
p
os
ed

M
et
h
o
d

0.
47
02

0.
78
69

0.
37
53

1
.0
0
0
0

0.
84
55

0.
81
89

m
is
sF
or
es
t

0.
52
34

1
.0
0
0
0

0.
36
85

0.
49
24

0.
89
19

1
.0
0
0
0

co
n
ti
n
u
ed

o
n
n
ex
t
pa
ge



58

co
n
ti
n
u
ed

fr
om

pr
ev
io
u
s
pa
ge

D
a
ta

se
t

M
is
si
n
g

R
a
ti
o

(%
)

Im
p
u
ta
ti
o
n

M
e
th
o
d

D
n

D
′ n

D
c

D
′ c

D
o

D
′ o

N
on

L
in
R
eg
38

5
K
N
N

0.
45
46

0.
00
00

0.
38
73

1
.0
0
0
0

0.
84
20

0.
00
00

P
ro
p
os
ed

M
et
h
o
d

0.
58
51

0.
88
30

0.
37
44

0.
00
00

0.
95
94

0.
80
04

m
is
sF
or
es
t

0.
60
23

1
.0
0
0
0

0.
38
64

0.
92
86

0.
98
87

1
.0
0
0
0

10
K
N
N

0.
41
42

0.
00
00

0.
38
65

0.
00
00

0.
80
07

0.
00
00

P
ro
p
os
ed

M
et
h
o
d

0.
54
48

0.
71
81

0.
38
96

1
.0
0
0
0

0.
93
44

0.
73
05

m
is
sF
or
es
t

0.
59
61

1
.0
0
0
0

0.
38
76

0.
37
48

0.
98
37

1
.0
0
0
0

15
K
N
N

0.
37
73

0.
00
00

0.
38
56

0.
75
29

0.
76
29

0.
00
00

P
ro
p
os
ed

M
et
h
o
d

0.
56
16

0.
87
17

0.
37
76

0.
00
00

0.
93
92

0.
82
37

m
is
sF
or
es
t

0.
58
88

1
.0
0
0
0

0.
38
82

1
.0
0
0
0

0.
97
70

1
.0
0
0
0

20
K
N
N

0.
35
01

0.
00
00

0.
38
85

1
.0
0
0
0

0.
73
86

0.
00
00

P
ro
p
os
ed

M
et
h
o
d

0.
53
65

0.
79
99

0.
38
31

0.
00
00

0.
91
96

0.
78
01

m
is
sF
or
es
t

0.
58
32

1
.0
0
0
0

0.
38
75

0.
81
24

0.
97
07

1
.0
0
0
0

N
on

L
in
R
eg
70

5
K
N
N

0.
44
10

0.
00
00

N
A

N
A

N
A

N
A

P
ro
p
os
ed

M
et
h
o
d

0.
61
77

1
.0
0
0
0

N
A

N
A

N
A

N
A

m
is
sF
or
es
t

0.
61
42

0.
98
04

N
A

N
A

N
A

N
A

10
K
N
N

0.
40
67

0.
00
00

N
A

N
A

N
A

N
A

P
ro
p
os
ed

M
et
h
o
d

0.
59
72

0.
93
10

N
A

N
A

N
A

N
A

m
is
sF
or
es
t

0.
61
13

1
.0
0
0
0

N
A

N
A

N
A

N
A

15
K
N
N

0.
38
42

0.
00
00

N
A

N
A

N
A

N
A

P
ro
p
os
ed

M
et
h
o
d

0.
58
33

0.
89
56

N
A

N
A

N
A

N
A

m
is
sF
or
es
t

0.
60
65

1
.0
0
0
0

N
A

N
A

N
A

N
A

20
K
N
N

0.
36
89

0.
00
00

N
A

N
A

N
A

N
A

P
ro
p
os
ed

M
et
h
o
d

0.
56
55

0.
84
96

N
A

N
A

N
A

N
A

m
is
sF
or
es
t

0.
60
03

1
.0
0
0
0

N
A

N
A

N
A

N
A

co
n
ti
n
u
ed

on
n
ex
t
pa
ge



59

co
n
ti
n
u
ed

fr
om

pr
ev
io
u
s
pa
ge

D
a
ta

se
t

M
is
si
n
g

R
a
ti
o

(%
)

Im
p
u
ta
ti
o
n

M
e
th
o
d

D
n

D
′ n

D
c

D
′ c

D
o

D
′ o

S
im

O
ri
gi
n
al

5
K
N
N

0.
07
73

0.
00
00

0.
31
36

0.
00
00

0.
39
10

0.
00
00

P
ro
p
os
ed

M
et
h
o
d

0.
97
29

1
.0
0
0
0

0.
36
32

1
.0
0
0
0

1.
33
61

1
.0
0
0
0

m
is
sF
or
es
t

0.
22
71

0.
16
72

0.
33
45

0.
42
17

0.
56
16

0.
18
05

10
K
N
N

0.
87
39

0.
08
92

0.
36
80

0.
50
06

1.
24
19

0.
00
00

P
ro
p
os
ed

M
et
h
o
d

0.
96
15

1
.0
0
0
0

0.
35
05

0.
00
00

1.
31
21

1
.0
0
0
0

m
is
sF
or
es
t

0.
86
53

0.
00
00

0.
38
54

1
.0
0
0
0

1.
25
07

0.
12
56

15
K
N
N

0.
09
70

0.
00
00

0.
32
32

0.
00
00

0.
42
03

0.
00
00

P
ro
p
os
ed

M
et
h
o
d

0.
94
01

1
.0
0
0
0

0.
37
70

1
.0
0
0
0

1.
31
71

1
.0
0
0
0

m
is
sF
or
es
t

0.
22
40

0.
15
05

0.
33
90

0.
29
27

0.
56
29

0.
15
91

20
K
N
N

0.
80
40

0.
00
00

0.
37
37

0.
19
29

1.
17
78

0.
00
00

P
ro
p
os
ed

M
et
h
o
d

0.
91
89

1
.0
0
0
0

0.
36
80

0.
00
00

1.
28
69

1
.0
0
0
0

m
is
sF
or
es
t

0.
86
11

0.
49
71

0.
39
74

1
.0
0
0
0

1.
25
86

0.
74
05



60

F
ig
.
5.
4.
:
A
ve
ra
ge

n
u
m
er
ic
al

d
es
ir
ab

il
it
y
of

im
p
u
ta
ti
on

m
et
h
o
d
s.

P
le
as
e
n
ot
e
th
at

re
su
lt
s
ar
e
n
ot

av
ai
la
b
le

fo
r
B
re
as
tC

an
ce
r

d
at
a
se
t
si
n
ce

it
on

ly
h
as

ca
te
go
ri
ca
l
va
ri
ab

le
s.



61

F
ig
.
5.
5.
:
A
ve
ra
ge

ca
te
go
ri
ca
l
d
es
ir
ab

il
it
y
of

im
p
u
ta
ti
on

m
et
h
o
d
s.

P
le
as
e
n
ot
e
th
at

re
su
lt
s
ar
e
n
ot

av
ai
la
b
le
fo
r
N
on

L
in
R
eg
70

d
at
a
se
t
si
n
ce

it
on

ly
h
as

n
u
m
er
ic
al

va
ri
ab

le
s.



62

F
ig
.
5.
6.
:
A
ve
ra
ge

ov
er
al
l
d
es
ir
ab

il
it
y
of

im
p
u
ta
ti
on

m
et
h
o
d
s.

P
le
as
e
n
ot
e
th
at

re
su
lt
s
ar
e
n
ot

av
ai
la
b
le

fo
r
B
re
as
tC

an
ce
r

an
d
N
on

L
in
R
eg
70

d
at
a
se
ts

si
n
ce

th
ey

al
l
h
av
e
ca
te
go
ri
ca
l
or

n
u
m
er
ic
al

va
ri
ab

le
s,
re
sp
ec
ti
ve
ly
.



63

6. CONCLUSIONS AND FUTURE WORK

Properly imputed data gives the opportunity to retrieve, not only the best possible

predictions for the missing values, but to replace them by reliable values. The goal

of any successful missing value imputation scheme is to exploit the information in

the incomplete cases and effectively develop approaches to better understand the

underlying populations described in these data sets.

The aim of this study was to design a random-forest-based missing value imputa-

tion technique that would take into account the relationships among variables. The

final proposed imputation scheme uses GA feature selection to get these relationships,

along with the random-forest-based imputation. The proposed method was intended

to be used for high-dimensional, mixed-type data with high volume of missing values.

The scenarios evaluated included data sets from low dimensionality, ten variables, to

high dimensionality, two hundred variables.

This work also evaluated the performance of the proposed method against two of

the best missing value imputation techniques in the literature for high-dimensional,

mixed-typed data: KNN and missForest. The former uses a clustering approach to

imputation; the latter uses a supervised learning approach based on parallel ensembles

of decision trees or random forests.

Overall, results show that the proposed method outperforms KNN in the simulated

scenarios, which have complex linear and non-linear relationships. Also, the proposed

method was the top performer in the SimOriginal data set. The SimOriginal data

set has additive and multiplicative relationships between variables and non-linear

relationships between categorical and numerical variables. A reason why the proposed

method resulted to be the top performer in the SimOriginal data set could be due to

the random-forest imputation tuning being performed using this data set only. This

is just an speculation, the parameter tuning would have to be evaluated using other



64

data sets to verify this. The results also suggest that the proposed method has better

performance imputing categorical variables, specially at higher missing ratios, having

lower classification error than KNN and missForest.

In general, the missForest method was the top performer, however, the proposed

method still a reasonable approximation if considered that it did not use more than

50% (in average) of the total predictors to carry out the imputations, whereas miss-

Forest did use them all. In fact, the proposed method used between 3% to 10% of the

variables in six out of the nine data sets evaluated. This is the main difference between

missForest and the proposed method. missForest is a multivariate imputation method

that uses all the variables in the data set to impute a missing variable, whereas the

proposed method is a univariate imputation that uses only those variables important

to the missing variable. This is more advantageous in high-dimensional data since it

significantly reduces the dimensionality of the problem (the amount of preliminary

imputations).

The biggest limitation of the proposed imputation scheme is its computational

complexity. This due to the feature selection method and to the imputation being

carried out per individual variable. It is important to note that the missForest algo-

rithm is parallelized and, thus, there is no way to compete with it until the proposed

scheme is parallelized. As of now, the proposed imputation method is 52% slower

than missForest. As future improvements, it is also suggested to evaluate other im-

putation mechanisms for the initial guess of the data (e.g. a random forest-based

imputation). This has a direct impact on the performance of the feature selection

method and therefore, in the imputation.

Finally, it is also suggested to explore the randomization of the order in which

variables are imputed as well as the order in which the missing values are imputed

within the variables. Right now, the proposed scheme imputes the missing variables

in ascending order of missing values and the imputed values are substituted in the

original data set to impute the new values. This means that performance of the



65

imputation increases as more variables are imputed, therefore, variables that are

imputed last are better imputed than the ones imputed at the beginning.



66

A. PARAMETER TUNNING OF RANDOM

FOREST-BASED IMPUTATION



67

F
ig
.
A
.1
.:
A
ve
ra
ge

N
R
M
S
E
of

co
m
b
in
at
io
n
s
fo
r
ra
n
d
om

fo
re
st

im
p
u
ta
ti
on

p
ar
am

et
er

tu
n
in
g
u
si
n
g
G
A

in
ci
d
en
ce

m
at
ri
x
.



68

F
ig
.
A
.2
.:
A
ve
ra
ge

R
2
of

co
m
b
in
at
io
n
s
fo
r
ra
n
d
om

fo
re
st

im
p
u
ta
ti
on

p
ar
am

et
er

tu
n
in
g
u
si
n
g
G
A

in
ci
d
en
ce

m
at
ri
x
.



69

F
ig
.
A
.3
.:
A
ve
ra
ge

d
2
of

co
m
b
in
at
io
n
s
fo
r
ra
n
d
om

fo
re
st

im
p
u
ta
ti
on

p
ar
am

et
er

tu
n
in
g
u
si
n
g
G
A

in
ci
d
en
ce

m
at
ri
x
.



70

F
ig
.
A
.4
.:

A
ve
ra
ge

cl
as
si
fi
ca
ti
on

er
ro
r
of

co
m
b
in
at
io
n
s
fo
r
ra
n
d
om

fo
re
st

im
p
u
ta
ti
on

p
ar
am

et
er

tu
n
in
g
u
si
n
g
G
A

in
ci
d
en
ce

m
at
ri
x
.



71

F
ig
.
A
.5
.:

A
ve
ra
ge

ka
p
p
a
st
at
is
ti
c
of

co
m
b
in
at
io
n
s
fo
r
ra
n
d
om

fo
re
st

im
p
u
ta
ti
on

p
ar
am

et
er

tu
n
in
g
u
si
n
g
G
A

in
ci
d
en
ce

m
at
ri
x
.



72

F
ig
.
A
.6
.:
A
ve
ra
ge

A
U
P
R
C

of
co
m
b
in
at
io
n
s
fo
r
ra
n
d
om

fo
re
st

im
p
u
ta
ti
on

p
ar
am

et
er

tu
n
in
g
u
si
n
g
G
A

in
ci
d
en
ce

m
at
ri
x
.



73

F
ig
.
A
.7
.:

A
ve
ra
ge

ca
te
go
ri
ca
l
d
es
ir
ab

il
it
y
(D

c
)
of

co
m
b
in
at
io
n
s
fo
r
ra
n
d
om

fo
re
st

im
p
u
ta
ti
on

p
ar
am

et
er

tu
n
in
g
u
si
n
g
G
A

in
ci
d
en
ce

m
at
ri
x
.



74

F
ig
.
A
.8
.:

A
ve
ra
ge

n
u
m
er
ic
al

d
es
ir
ab

il
it
y
(D

n
)
of

co
m
b
in
at
io
n
s
fo
r
ra
n
d
om

fo
re
st

im
p
u
ta
ti
on

p
ar
am

et
er

tu
n
in
g
u
si
n
g
G
A

in
ci
d
en
ce

m
at
ri
x
.



75

F
ig
.
A
.9
.:

A
ve
ra
ge

ov
er
al
l
d
es
ir
ab

il
it
y
(D

o
)
of

co
m
b
in
at
io
n
s
fo
r
ra
n
d
om

fo
re
st

im
p
u
ta
ti
on

p
ar
am

et
er

tu
n
in
g
u
si
n
g
G
A

in
ci
d
en
ce

m
at
ri
x
.



76

B. EVALUATION OF IMPUTATION METHODS



77

F
ig
.
B
.1
.:

A
ve
ra
ge

N
R
M
S
E

of
im

p
u
ta
ti
on

m
et
h
o
d
s.

P
le
as
e
n
ot
e
th
at

re
su
lt
s
ar
e
n
ot

av
ai
la
b
le

fo
r
B
re
as
t
C
an

ce
r
d
at
a
se
t

si
n
ce

it
on

ly
h
as

ca
te
go
ri
ca
l
va
ri
ab

le
s.



78

F
ig
.
B
.2
.:
A
ve
ra
ge

d
2
of

im
p
u
ta
ti
on

m
et
h
o
d
s.

P
le
as
e
n
ot
e
th
at

re
su
lt
s
ar
e
n
ot

av
ai
la
b
le

fo
r
B
re
as
t
C
an

ce
r
d
at
a
se
t
si
n
ce

it

on
ly

h
as

ca
te
go
ri
ca
l
va
ri
ab

le
s.



79

F
ig
.
B
.3
.:
A
ve
ra
ge

R
2
of

im
p
u
ta
ti
on

m
et
h
o
d
s.

P
le
as
e
n
ot
e
th
at

re
su
lt
s
ar
e
n
ot

av
ai
la
b
le

fo
r
B
re
as
t
C
an

ce
r
d
at
a
se
t
si
n
ce

it

on
ly

h
as

ca
te
go
ri
ca
l
va
ri
ab

le
s.



80

F
ig
.
B
.4
.:

A
ve
ra
ge

A
U
P
R
C

of
im

p
u
ta
ti
on

m
et
h
o
d
s.

P
le
as
e
n
ot
e
th
at

re
su
lt
s
ar
e
n
ot

av
ai
la
b
le

fo
r
N
on

L
in
R
eg
70

d
at
a
se
t

si
n
ce

it
on

ly
h
as

n
u
m
er
ic
al

va
ri
ab

le
s.



81

F
ig
.
B
.5
.:

A
ve
ra
ge

cl
as
si
fi
ca
ti
on

er
ro
r
of

im
p
u
ta
ti
on

m
et
h
o
d
s.

P
le
as
e
n
ot
e
th
at

re
su
lt
s
ar
e
n
ot

av
ai
la
b
le

fo
r
N
on

L
in
R
eg
70

d
at
a
se
t
si
n
ce

it
on

ly
h
as

n
u
m
er
ic
al

va
ri
ab

le
s.



82

F
ig
.
B
.6
.:
A
ve
ra
ge

ka
p
p
a
st
at
is
ti
c
of

im
p
u
ta
ti
on

m
et
h
o
d
s.

P
le
as
e
n
ot
e
th
at

re
su
lt
s
ar
e
n
ot

av
ai
la
b
le

fo
r
N
on

L
in
R
eg
70

d
at
a

se
t
si
n
ce

it
on

ly
h
as

n
u
m
er
ic
al

va
ri
ab

le
s.



83

C. R CODES



84

C.1 Proposed Imputation Code



## Proposed imputation Code

install.packages("randomForest")
install.packages("ForImp")
install.packages("hydroGOF")
install.packages("modeest")
install.packages("roughrf")
install.packages("psych")
install.packages("PRROC")
install.packages("caret")
library(PRROC)
library(psych)
library(randomForest)
library(ForImp)
library(hydroGOF)
library(modeest)
library(roughrf)
library(caret)

nPerm = 30 # how many times will impute same value
nRep = 10 #how many iterations of each combination

setwd("~/") # save at My documents

# function to calculate final value of imputation
mMfunction = function(x) {

x = x[which(x != -9999)]
L = length(x)
if (typeof(x) == "double") {

mean(c(x[L], x[L - 3]))
} else {

x[L]
}

}

Results = NULL
partialResults = NULL
RepResults = NULL
partialRep = NULL
ResultsCat = NULL
partialResultsCat = NULL
RepResultsCat = NULL
partialRepCat = NULL

comb = 1
comb2 = 1
comb3 = 1

iChangeCat = 4 # categorical impute chage threshold
iChange = 0.025 #numerical impute change threshold

setwd("~/")

1



# GA code to get important variables for proposed
# method and creates the incidence matrix This
# incidence matrix is then used as an input in the
# imputation Data sets ###

Data = read.csv("~/Feature Selection/Data sets/Heart/HeartDataset_1.csv")
Data = Data[, -ncol(Data)]

if (sum(is.na(Data)) > 0) {
Data = na.roughfix(Data)

}
nVar = ncol(Data)

impVarAux = matrix(nrow = nVar, ncol = 2)
Results = matrix(0, nrow = ncol(Data), ncol = ncol(Data)) #incidence matrix

for (k in 1:nVar) {
initialtime = proc.time()
impVars = NULL
names(Data) = paste("X", 1:ncol(Data), sep = "")
names(Data)[k] = "Y"

DataX = Data[, -k] # x variables data frame
Y = Data[, k] # y

ga.fs = gafs(x = DataX, y = Y, iters = 1, gafsControl = gafsControl(functions = rfGA,
method = "cv", number = 5), ntree = 125) # ga fs

impVars = ga.fs$ga$final #important variables for variable Y been evaluated
ones = which(names(Data) %in% c(impVars)) # extract variable number from impVars
Results[ones, k] = 1 #assign 1 at incidence matrix to detected important
# variables in variable evaluated
impVarAux[k, ] = c(k, paste(impVars, collapse = ";")) # save important variables
#
Newtime = proc.time() - initialtime # run time

}

impVarAux = data.frame(impVarAux, Newtime[2])
names(impVarAux) = c("Variable", "ImpVars", "RunTime")
write.table(Results, "IncidenceMat_Heart_GA.csv", sep = ",",

row.names = FALSE, col.names = FALSE)
write.table(impVarAux, "ImpVars_Heart_GA.csv", sep = ",",

row.names = FALSE)

## Proposed imputation Update: Stop rule evaluating
## simple 3 stage, taking the last value imputated
## (num) or Last Val (cat) Date: Mar 12 2017 Stage:3
## Stop Crit: simple Imputation: Avg (num) LastVal
## (cat) Proposed Method-GA random forest Impute
## change num: 2.5% cat: 4 Running the more
## restrictive combination of best combination
## results

2



for (k in 1:nRep) {

for (misPercentage in c(0.05, 0.1, 0.15, 0.2)) {
# missing ratio in data sets
initialtime = proc.time()
# change data, data2 and impVars depending on data
# set
data = read.csv(paste("~/Heizel/SimData/SimDataWITH.",

k, ".", misPercentage, ".csv", sep = "")) #data set with missingvalues
data2 = read.csv(paste("~/Heizel/SimData/SimDataWITHOUT.",

k, ".", misPercentage, ".csv", sep = "")) #complete dataset
impVars = read.csv("~/Feature Selection/Feature selection for proposed

#imputation/Incidence Matrices CFS/IncidenceMat_
SimDataOriginal_CFS.csv",

header = FALSE)

# Evaluate which variables are categorical and
# numerical
for (v in 1:ncol(data)) {

cat = length(unique(data[, v]))
if (cat <= 12) {

data[, v] = as.factor(data[, v])
} else {

data[, v] = as.numeric(data[, v])
}

}

data = as.data.frame(data)
data2 = as.data.frame(data2)

# Data goes here
X = data[, -ncol(data)]
Y = data.frame(data[, ncol(data)])
missDF = data.frame(X, Y)
names(missDF) = paste("X", 1:ncol(X), sep = "")
names(missDF)[ncol(data)] = "Y"

# Variable Imputation Order Ascending
varMV = matrix(nrow = ncol(missDF) - 1, ncol = 1)
for (numCol in 1:ncol(missDF) - 1) {

# For each column, identify the number of missing
# values
varMV[numCol] = sum(is.na(missDF[, numCol]))

}

MVdf = data.frame(1:(ncol(missDF) - 1), varMV)
names(MVdf) = c("NumCol", "varMV")
AscOrder = order(MVdf[, ncol(MVdf)]) # How to order variables for missing
# value imputation

for (i in AscOrder) {
misRows = which(is.na(missDF[, i]) == TRUE) #ID missing values in variable
numMis = length(misRows)

3



imputedData = matrix(-9999, ncol = nPerm,
nrow = numMis) # matrix with j imputations

# of observations
imputedDataCat = matrix(-9999, ncol = nPerm,

nrow = numMis)
imp = which(impVars[, i] == 1) #importantn variables to be used in rF
imputedDataAux = matrix(-9999, ncol = nPerm,

nrow = numMis) # aux matrix with j
# imputations of observations
imputedDataAuxCat = matrix(-9999, ncol = nPerm,

nrow = numMis) # aux matrix with j
# imputations of observations

if (typeof(data[, i]) == "double") {

imputeChange = 0.1 #initial value of numerical impute change

for (r in 1:numMis) {
j = 1 #impute round

while (j <= 3 | (j <= 30 & imputeChange >
iChange)) {
# Variables to use in the imputation process
if (length(imp) >= 1) {

cols = c(i, imp, ncol(missDF))
} else {

cols = c(i, ncol(missDF))
}

impDF = na.roughfix(missDF)
NAloc = is.na(missDF)
obsi = !NAloc[, cols[1]]
misi = NAloc[, cols[1]]
obsX = impDF[obsi, cols[-1]]
obsY = impDF[obsi, cols[1]]
misx = impDF[misi, cols[-1]]

rF = randomForest(y = obsY, x = obsX,
ntree = 150, replace = TRUE)

imputedData[, j] = predict(object = rF,
newdata = misx, type = "response")

imputedDataAux[r, j] = c(imputedData[r,
j])

if (j > 3) {
imputeChange = abs((imputedDataAux[r,

j] - imputedDataAux[r, j -
3])/(imputedDataAux[r, j -
3]))

} else {
imputeChange = 0.1

}

4



if (j >= 3 & imputedDataAux[r,
j] == -9999) {
missDF[misRows[r], i] = imputedDataAux[r,

j - 1]
}
j = j + 1

}
}
partialRes = data.frame(k, i, misPercentage,

iChange, cbind(data2[misRows, i],
apply(imputedDataAux, 1, mMfunction)))

names(partialRes) = c("Rep", "Variable",
"%Missing", "Impute Change", "Actual",
"Imputed")

if (comb == 1) {
Results = partialRes

} else {
Results = rbind(Results, partialRes)

}
names(Results) = c("Rep", "Variable",

"%Missing", "Impute Change", "Actual",
"Imputed")

write.table(Results, "StopRule_3stageSimpleLastVal_ActImpNum_SimDataOrig.csv",
row.names = FALSE, sep = ",") #change depending data set

# calculate performance metrics on numeric
# variables
repData = subset(Results, Rep == k &

Results[, 3] == misPercentage & Results[,
4] == iChange, 5:6)

repData = data.frame(repData)
names(repData) = c("Actual", "Imputed")
metrics = gof(sim = repData[, 2], obs = repData[,

1])
NRMSE = metrics[5]
R2 = metrics[17]
d2 = metrics[13]
partialRep = data.frame(k, i, misPercentage,

iChange, R2, NRMSE, d2)
names(partialRep) = c("Rep", "Variable",

"%Missing", "ImputeChange", "R2",
"NRMSE", "d2")

if (comb == 1) {
RepResults = partialRep

} else {
RepResults = rbind(RepResults, partialRep)

}

write.table(RepResults, "ResultsStopRule_3stageSimpleLastValNum_SimDataOrig.csv",
row.names = FALSE, sep = ",")

comb = comb + 1

5



} else {

imputeChangeCat = 10 #initial value of categorical impute change

for (r in 1:numMis) {
z = 1 #impute round

while (z <= 3 | (z <= 30 & imputeChangeCat >
iChangeCat)) {

# Variables to use in the imputation process
if (length(imp) >= 1) {

cols = c(i, imp, ncol(missDF))
} else {

cols = c(i, ncol(missDF))
}

impDF = na.roughfix(missDF)
NAloc = is.na(missDF)
obsi = !NAloc[, cols[1]]
misi = NAloc[, cols[1]]
obsX = impDF[obsi, cols[-1]]
obsY = impDF[obsi, cols[1]]
misx = impDF[misi, cols[-1]]

rF = randomForest(y = obsY, x = obsX,
ntree = 150, replace = TRUE)

imputedDataCat[, z] = predict(object = rF,
newdata = misx, type = "response")

imputedDataAuxCat[r, z] = c(imputedDataCat[r,
z])

if (z > 3) {
if (imputedDataAuxCat[r, z] ==

imputedDataAuxCat[r, z - 1] &
imputedDataAuxCat[r, z - 1] ==

imputedDataAuxCat[r, z -
2] & imputedDataAuxCat[r,

z - 2] == imputedDataAuxCat[r,
z - 3]) {
imputeChangeCat = 4

} else {
imputeChangeCat = 10

}
}

if (z >= 3 & imputedDataAuxCat[r,
z] == -9999) {
missDF[misRows[r], i] = imputedDataAuxCat[r,

z - 1]
}
z = z + 1

6



}
}
partialResCat = data.frame(k, i, misPercentage,

iChangeCat, cbind(data2[misRows,
i], apply(imputedDataAuxCat, 1,
mMfunction)))

names(partialResCat) = c("Rep", "Variable",
"%Missing", "Impute Change", "Actual",
"Imputed")

if (comb2 == 1) {
ResultsCat = partialResCat

} else {
ResultsCat = rbind(ResultsCat, partialResCat)

}
names(ResultsCat) = c("Rep", "Variable",

"%Missing", "Impute Change", "Actual",
"Imputed")

write.table(ResultsCat, "StopRule_3stageSimpleLastVal_ActImpCat_SimDataOrig.csv",
row.names = FALSE, sep = ",")

Newtime = proc.time() - initialtime # run time
# calculate performance metrics on categorical
# variables
repDataCat = subset(ResultsCat, Rep ==

k & ResultsCat[, 3] == misPercentage &
ResultsCat[, 4] == iChangeCat, 5:6)

repDataCat = data.frame(repDataCat)
names(repDataCat) = c("Actual", "Imputed")
error = sum(repDataCat$Imputed != repDataCat$Actual)/nrow(repDataCat)
Kappa = cohen.kappa(repDataCat)$kappa
AUC = pr.curve(repDataCat$Actual, repDataCat$Imputed)$auc.integral
partialRepCat = data.frame(k, i, misPercentage,

iChangeCat, error, Kappa, AUC, Newtime[2])
names(partialRepCat) = c("Rep", "Variable",

"%Missing", "ImputeChange", "ClassError",
"Kappa", "PR AUC", "RunTime")

if (comb2 == 1) {
RepResultsCat = partialRepCat

} else {
RepResultsCat = rbind(RepResultsCat,

partialRepCat)
}
comb2 = comb2 + 1

write.table(RepResultsCat, "ResultsStopRule_3stageSimpleLastValCat_SimDataOrig.csv",
row.names = FALSE, sep = ",")

} #else closes
}

}
}

7



92

C.2 KNN and missForest Codes



######### missForest imputation Code ######################

install.packages("cutoffR")
install.packages("hydroGOF")
install.packages("missForest")
install.packages("psych")
install.packages("PRROC")
library(PRROC)
library(psych)
library(cutoffR)
library(hydroGOF)
library(missForest)

setwd("~/")

nRep = 30
Results = NULL
partialRes = NULL
RepResults = NULL
partialRep = NULL
ResultsCat = NULL
partialResCat = NULL
RepResultsCat = NULL
partialRepCat = NULL
comb = 1

for (k in 1:nRep) {
for (misPercentage in c(0.05, 0.1, 0.15, 0.2)) {

library(missForest)
DataImp = NULL
data = NULL
data2 = NULL
initialtime = proc.time()

data = read.csv(paste("~/Missing Value Imputation/Datasets with simulated Missing
Values/SimLinDataReg203 with MVs/SimLinearData_203_reg_",

k, "_", misPercentage, ".csv", sep = ""))
data2 = read.csv(paste("~/Feature Selection/Data sets/SimLinearData_203_reg

/LinearRelDataset_",
k, ".csv", sep = ""))

# Evaluate which variables are categorical and
# numerical
catVars = matrix(0, nrow = 1, ncol = ncol(data)) #vector que ID cat vars
# 1=cat 0=num
for (v in 1:ncol(data)) {

cat = length(unique(data[, v]))
if (cat <= 10) {

data[, v] = as.factor(data[, v])
catVars[, v] = 1

} else {
data[, v] = as.numeric(data[, v])

1



}
}

data = as.data.frame(data)
data2 = as.data.frame(data2)

DataImp = missForest(xmis = data, ntree = 100)

# matrix with categorical variables only
dataCat = data[, which(catVars == 1)] #miss matrix
data2Cat = data2[, which(catVars == 1)] #real matrix
DataImpCat = DataImp$ximp[, which(catVars ==

1)] #pred matrix

# matrix with numerical variables only
dataNum = data[, which(catVars == 0)] #miss matrix
data2Num = data2[, which(catVars == 0)] #real matrix
DataImpNum = DataImp$ximp[, which(catVars ==

0)] #pred matrix

# Performance evaluation of catecorical vars
YrealCat = NULL
YpredCat = NULL

for (n in 1:ncol(dataCat)) {
MissVal = which(is.na(dataCat[, n]) ==

TRUE)
YrealCat = append(YrealCat, data2Cat[MissVal,

n])
YpredCat = append(YpredCat, DataImpCat[MissVal,

n])
}

partialResCat = data.frame(k, misPercentage,
YrealCat, YpredCat)

names(partialResCat) = c("Rep", "%Missing",
"Actual", "Imputed")

if (comb == 1) {
ResultsCat = partialResCat

} else {
ResultsCat = rbind(ResultsCat, partialResCat)

}

# save imputation data (categorical)
write.table(ResultsCat, "missForest_ActualImpDataCat_SimLinReg203.csv",

row.names = FALSE, sep = ",")

repDataCat = subset(ResultsCat, Rep == k &
ResultsCat[, 2] == misPercentage, c(3,
4))

repDataCat = data.frame(repDataCat)

2



names(repDataCat) = c("Actual", "Imputed")
error = sum(repDataCat$Imputed != repDataCat$Actual)/nrow(repDataCat)
Kappa = cohen.kappa(repDataCat)$kappa
AUC = pr.curve(repDataCat$Actual, repDataCat$Imputed)$auc.integral
partialRepCat = data.frame(k, misPercentage,

error, Kappa, AUC)
names(partialRepCat) = c("Rep", "%Missing",

"ClassError", "Kappa", "AUC")
if (comb == 1) {

RepResultsCat = partialRepCat
} else {

RepResultsCat = rbind(RepResultsCat, partialRepCat)
}

write.table(RepResultsCat, "missForestResultsCat_SimLinReg203.csv",
row.names = FALSE, sep = ",")

Yreal = NULL
Ypred = NULL

for (n in 1:ncol(dataNum)) {
MissVal = which(is.na(dataNum[, n]) ==

TRUE)
Yreal = append(Yreal, data2Num[MissVal,

n])
Ypred = append(Ypred, DataImpNum[MissVal,

n])
}

partialRes = data.frame(k, misPercentage, Yreal,
Ypred)

names(partialRes) = c("Rep", "%Missing", "Actual",
"Imputed")

if (comb == 1) {
Results = partialRes

} else {
Results = rbind(Results, partialRes)

}

# save imputation data (numerical)
write.table(Results, "missForest_ActualImpDataNum_SimLinReg203.csv",

row.names = FALSE, sep = ",")

Newtime = proc.time() - initialtime # run time
repData = subset(Results, Rep == k & Results[,

2] == misPercentage, c(3, 4))
repData = data.frame(repData)
names(repData) = c("Actual", "Imputed")
repData[, 1] = as.numeric(repData[, 1])
repData[, 2] = as.numeric(repData[, 2])
detach("package:missForest", unload = TRUE)
metrics = gof(sim = repData[, 2], obs = repData[,

1])

3



NRMSE = metrics[5]
R2 = metrics[17]
d2 = metrics[13]
partialRep = data.frame(k, misPercentage, R2,

NRMSE, d2, Newtime[2])
names(partialRep) = c("Rep", "%Missing", "R2",

"NRMSE", "d2", "RunTime")
if (comb == 1) {

RepResults = partialRep
} else {

RepResults = rbind(RepResults, partialRep)
}
comb = comb + 1

write.table(RepResults, "missForestResultsNum_SimLinReg203.csv",
row.names = FALSE, sep = ",")

}
}

RepResults

4



######### KNN imputation Code ######################
install.packages("cutoffR")
install.packages("hydroGOF")
install.packages("psych")
install.packages("PRROC")
install.packages("VIM")
install.packages("dplyr")
library(dplyr)
library(VIM)
library(PRROC)
library(psych)
library(cutoffR)
library(hydroGOF)

setwd("~/")

nRep = 30
Results = NULL
partialRes = NULL
RepResults = NULL
partialRep = NULL
ResultsCat = NULL
partialResCat = NULL
RepResultsCat = NULL
partialRepCat = NULL
comb = 1
options(warn = -1)
for (k in 5:nRep) {

for (misPercentage in c(0.05, 0.1, 0.15, 0.2)) {
DataImp = NULL
data = NULL
data2 = NULL
initialtime = proc.time()

data = read.csv(paste("~/Missing Value Imputation/Datasets with simulated Missing
Values/Sylva Datasets with MVs/Sylva_",
k, "_", misPercentage, ".csv", sep = ""))

data2 = read.csv(paste("~/Feature Selection/Data sets/SYLVA/SylvaDataset_",
k, ".csv", sep = ""))

# Evaluate which variables are categorical and
# numerical

catVars = matrix(0, nrow = 1, ncol = ncol(data)) #vector que ID cat vars 1=cat 0=num
for (v in 1:ncol(data)) {

cat = n_distinct(data[, v], na.rm = TRUE)
if (cat <= 10) {

data[, v] = as.factor(data[, v])
catVars[, v] = 1

} else {
data[, v] = as.numeric(data[, v])

}
}

1



data = as.data.frame(data)
data2 = as.data.frame(data2)

DataImp = kNN(data, imp_var = FALSE) # knn imputation

# matrix with categorical variables only
dataCat = data[, which(catVars == 1)] #miss matrix
data2Cat = data2[, which(catVars == 1)] #real matrix
DataImpCat = DataImp[, which(catVars == 1)] #pred matrix

# matrix with numerical variables only
dataNum = data[, which(catVars == 0)] #miss matrix
data2Num = data2[, which(catVars == 0)] #real matrix
DataImpNum = DataImp[, which(catVars == 0)] #pred matrix

# Performance evaluation of catecorical vars
YrealCat = NULL
YpredCat = NULL

for (n in 1:ncol(dataCat)) {
MissVal = which(is.na(dataCat[, n]) ==

TRUE)
YrealCat = append(YrealCat, data2Cat[MissVal,

n])
YpredCat = append(YpredCat, DataImpCat[MissVal,

n])
}

partialResCat = data.frame(k, misPercentage,
YrealCat, YpredCat)

names(partialResCat) = c("Rep", "%Missing",
"Actual", "Imputed")

if (comb == 1) {
ResultsCat = partialResCat

} else {
ResultsCat = rbind(ResultsCat, partialResCat)

}

# save imputation data (categorical)
write.table(ResultsCat, "kNN_ActualImpDataCat_Sylva2.csv",

row.names = FALSE, sep = ",")

repDataCat = subset(ResultsCat, Rep == k &
ResultsCat[, 2] == misPercentage, c(3,
4))

repDataCat = data.frame(repDataCat)
names(repDataCat) = c("Actual", "Imputed")
error = sum(repDataCat$Imputed != repDataCat$Actual)/nrow(repDataCat)
Kappa = cohen.kappa(repDataCat)$kappa
AUC = pr.curve(repDataCat$Actual, repDataCat$Imputed)$auc.integral
partialRepCat = data.frame(k, misPercentage,

error, Kappa, AUC)

2



names(partialRepCat) = c("Rep", "%Missing",
"ClassError", "Kappa", "AUC")

if (comb == 1) {
RepResultsCat = partialRepCat

} else {
RepResultsCat = rbind(RepResultsCat, partialRepCat)

}

write.table(RepResultsCat, "kNNResultsCat_Sylva2.csv",
row.names = FALSE, sep = ",")

# Performance evaluation of numerical vars
Yreal = NULL
Ypred = NULL

for (n in 1:ncol(dataNum)) {
MissVal = which(is.na(dataNum[, n]) ==

TRUE)
Yreal = append(Yreal, data2Num[MissVal,

n])
Ypred = append(Ypred, DataImpNum[MissVal,

n])
}
partialRes = data.frame(k, misPercentage, Yreal,

Ypred)
names(partialRes) = c("Rep", "%Missing", "Actual",

"Imputed")
if (comb == 1) {

Results = partialRes
} else {

Results = rbind(Results, partialRes)
}

# save imputation data (numerical)
write.table(Results, "kNN_ActualImpDataNum_Sylva2.csv",

row.names = FALSE, sep = ",")

Newtime = proc.time() - initialtime # run time
repData = subset(Results, Rep == k & Results[,

2] == misPercentage, c(3, 4))
repData = data.frame(repData)
names(repData) = c("Actual", "Imputed")
repData[, 1] = as.numeric(repData[, 1])
repData[, 2] = as.numeric(repData[, 2])
metrics = gof(sim = repData[, 2], obs = repData[,

1])
R2 = metrics[17]
NRMSE = metrics[5]
d2 = metrics[13]
partialRep = data.frame(k, misPercentage, R2,

NRMSE, d2, Newtime[2])
names(partialRep) = c("Rep", "%Missing", "R2",

"NRMSE", "d2", "RunTime")

3



if (comb == 1) {
RepResults = partialRep

} else {
RepResults = rbind(RepResults, partialRep)

}
comb = comb + 1

write.table(RepResults, "kNNResultsNum_Sylva2.csv",
row.names = FALSE, sep = ",")

options(warn = 0)
}

}

RepResults

4



101

C.3 Proposed Method Parameter Tunning Example Code



## Proposed imputation Stopping rule DOE Update:
## Stop rule evaluating simple 1 stage, taking the
## average of 2 values evaluated (num) or Last Val
## (cat) Stage:1 Stop Crit: simple Imputation: Avg
## (num) LastVal (cat)

install.packages("randomForest")
install.packages("ForImp")
install.packages("hydroGOF")
install.packages("modeest")
install.packages("roughrf")
install.packages("psych")
install.packages("PRROC")
library(PRROC)
library(psych)
library(randomForest)
library(ForImp)
library(hydroGOF)
library(modeest)
library(roughrf)

nPerm = 30 # how many times will impute same value
nRep = 10 #how many iterations of each combination

setwd("~/") # save at My documents

# function to calculate final value of imputation
mMfunction = function(x) {

x = x[which(x != -9999)]
L = length(x)
if (typeof(x) == "double") {

mean(c(x[(L - 1)], x[L]))
} else {

x[L]
}

}

Results = NULL
partialResults = NULL
RepResults = NULL
partialRep = NULL
ResultsCat = NULL
partialResultsCat = NULL
RepResultsCat = NULL
partialRepCat = NULL

comb = 1
comb2 = 1
comb3 = 1

for (k in 1:nRep) {

1



for (misPercentage in c(0.05, 0.1, 0.15, 0.2)) {
# missing ratio in data sets

data = read.csv(paste("~/Heizel/SimData/SimDataWITH.",
k, ".", misPercentage, ".csv", sep = "")) #data set with missingvalues

data2 = read.csv(paste("~/Heizel/SimData/SimDataWITHOUT.",
k, ".", misPercentage, ".csv", sep = "")) #complete dataset

impVars = read.csv("~/Feature Selection/Feature selection for proposed
imputation/GA/Incidence Matrices/IncidenceMat_SimDataOriginal_GA.csv",

header = FALSE)

# Evaluate which variables are categorical and
# numerical
for (v in 1:ncol(data)) {

cat = length(unique(data[, v]))
if (cat <= 12) {

data[, v] = as.factor(data[, v])
} else {

data[, v] = as.numeric(data[, v])
}

}

data = as.data.frame(data)
data2 = as.data.frame(data2)

# Data goes here
X = data[, -ncol(data)]
Y = data.frame(data[, ncol(data)])
missDF = data.frame(X, Y)
names(missDF) = paste("X", 1:ncol(X), sep = "")
names(missDF)[ncol(data)] = "Y"

# Variable Imputation Order Ascending
varMV = matrix(nrow = ncol(missDF) - 1, ncol = 1)
for (numCol in 1:ncol(missDF) - 1) {

# For each column, identify the number of missing
# values
varMV[numCol] = sum(is.na(missDF[, numCol]))

}

MVdf = data.frame(1:(ncol(missDF) - 1), varMV)
names(MVdf) = c("NumCol", "varMV")
AscOrder = order(MVdf[, ncol(MVdf)]) # How to order variables for
# missing value imputation

for (i in AscOrder) {
misRows = which(is.na(missDF[, i]) == TRUE) #ID missing values in variable
numMis = length(misRows)
imputedData = matrix(-9999, ncol = nPerm,

nrow = numMis) # matrix with j
# imputations of observations
imputedDataCat = matrix(-9999, ncol = nPerm,

nrow = numMis)

2



imp = which(impVars[, i] == 1) #importantn variables to be used in rF
imputedDataAux = matrix(-9999, ncol = nPerm,

nrow = numMis) # aux matrix with j
# imputations of observations
imputedDataAuxCat = matrix(-9999, ncol = nPerm,

nrow = numMis) # aux matrix with j
# imputations of observations

if (typeof(data[, i]) == "double") {

for (iChange in c(0.025, 0.05, 0.075)) {
imputeChange = 0.1 #initial value of numerical impute change

for (r in 1:numMis) {
j = 1 #impute round

while (j <= 3 | (j <= 30 & imputeChange >
iChange)) {
# Variables to use in the imputation process
if (length(imp) >= 1) {

cols = c(i, imp, ncol(missDF))
} else {

cols = c(i, ncol(missDF))
}

impDF = na.roughfix(missDF)
NAloc = is.na(missDF)
obsi = !NAloc[, cols[1]]
misi = NAloc[, cols[1]]
obsX = impDF[obsi, cols[-1]]
obsY = impDF[obsi, cols[1]]
misx = impDF[misi, cols[-1]]

rF = randomForest(y = obsY, x = obsX,
ntree = 150, replace = TRUE)

imputedData[, j] = predict(object = rF,
newdata = misx, type = "response")

imputedDataAux[r, j] = c(imputedData[r,
j])

if (j >= 3) {
imputeChange = abs((imputedDataAux[r,

j] - imputedDataAux[r, j -
1])/(imputedDataAux[r, j -
1]))

} else {
imputeChange = 0.1

}

if (j >= 3 & imputedDataAux[r,
j] == -9999) {
missDF[misRows[r], i] = imputedDataAux[r,

j - 1]

3



}
j = j + 1

}
}
partialRes = data.frame(k, i, misPercentage,

iChange, cbind(data2[misRows, i],
apply(imputedDataAux, 1, mMfunction)))

names(partialRes) = c("Rep", "Variable",
"%Missing", "Impute Change", "Actual",
"Imputed")

if (comb == 1) {
Results = partialRes

} else {
Results = rbind(Results, partialRes)

}
names(Results) = c("Rep", "Variable",

"%Missing", "Impute Change", "Actual",
"Imputed")

write.table(Results, "StopRule_1stageSimpleAvg_ActImpNum_SimDataOrig.csv",
row.names = FALSE, sep = ",")

# calculate performance metrics on numeric
# variables
repData = subset(Results, Rep ==

k & Results[, 3] == misPercentage &
Results[, 4] == iChange, 5:6)

repData = data.frame(repData)
names(repData) = c("Actual", "Imputed")
metrics = gof(sim = repData[, 2],

obs = repData[, 1])
NRMSE = metrics[5]
R2 = metrics[17]
d2 = metrics[13]
partialRep = data.frame(k, i, misPercentage,

iChange, R2, NRMSE, d2)
names(partialRep) = c("Rep", "Variable",

"%Missing", "ImputeChange", "R2",
"NRMSE", "d2")

if (comb == 1) {
RepResults = partialRep

} else {
RepResults = rbind(RepResults,

partialRep)
}
write.table(RepResults, "ResultsStopRule_1stageSimpleAvgNum_SimDataOrig.csv",

row.names = FALSE, sep = ",")
comb = comb + 1

}
} else {

for (iChangeCat in c(2, 3, 4)) {

4



imputeChangeCat = 10 #initial value of categorical impute change

for (r in 1:numMis) {
z = 1 #impute round

while (z <= 3 | (z <= 30 & imputeChangeCat >
iChangeCat)) {

# Variables to use in the imputation process
if (length(imp) >= 1) {

cols = c(i, imp, ncol(missDF))
} else {

cols = c(i, ncol(missDF))
}

impDF = na.roughfix(missDF)
NAloc = is.na(missDF)
obsi = !NAloc[, cols[1]]
misi = NAloc[, cols[1]]
obsX = impDF[obsi, cols[-1]]
obsY = impDF[obsi, cols[1]]
misx = impDF[misi, cols[-1]]

rF = randomForest(y = obsY, x = obsX,
ntree = 150, replace = TRUE)

imputedDataCat[, z] = predict(object = rF,
newdata = misx, type = "response")

imputedDataAuxCat[r, z] = c(imputedDataCat[r,
z])

if (z > 3) {
if (iChangeCat == 2) {

if (imputedDataAuxCat[r,
z] == imputedDataAuxCat[r,
z - 1]) {
imputeChangeCat = 2

} else {
imputeChangeCat = 10

}
} else if (iChangeCat == 3) {

if (imputedDataAuxCat[r,
z] == imputedDataAuxCat[r,
z - 1] & imputedDataAuxCat[r,
z - 1] == imputedDataAuxCat[r,
z - 2]) {
imputeChangeCat = 3

} else {
imputeChangeCat = 10

}
} else {

if (imputedDataAuxCat[r,
z] == imputedDataAuxCat[r,
z - 1] & imputedDataAuxCat[r,

5



z - 1] == imputedDataAuxCat[r,
z - 2] & imputedDataAuxCat[r,
z - 2] == imputedDataAuxCat[r,
z - 3]) {
imputeChangeCat = 4

} else {
imputeChangeCat = 10

}
}

}

if (z >= 3 & imputedDataAuxCat[r,
z] == -9999) {
missDF[misRows[r], i] = imputedDataAuxCat[r,

z - 1]
}
z = z + 1

}
}
partialResCat = data.frame(k, i,

misPercentage, iChangeCat, cbind(data2[misRows,
i], apply(imputedDataAuxCat,
1, mMfunction)))

names(partialResCat) = c("Rep", "Variable",
"%Missing", "Impute Change", "Actual",
"Imputed")

if (comb2 == 1) {
ResultsCat = partialResCat

} else {
ResultsCat = rbind(ResultsCat,

partialResCat)
}
names(ResultsCat) = c("Rep", "Variable",

"%Missing", "Impute Change", "Actual",
"Imputed")

write.table(ResultsCat, "StopRule_1stageSimpleAvg_ActImpCat_SimDataOrig.csv",
row.names = FALSE, sep = ",")

# calculate performance metrics on categorical
# variables
repDataCat = subset(ResultsCat, Rep ==

k & ResultsCat[, 3] == misPercentage &
ResultsCat[, 4] == iChangeCat,
5:6)

repDataCat = data.frame(repDataCat)
names(repDataCat) = c("Actual", "Imputed")
error = sum(repDataCat$Imputed !=

repDataCat$Actual)/nrow(repDataCat)
Kappa = cohen.kappa(repDataCat)$kappa
AUC = pr.curve(repDataCat$Actual,

repDataCat$Imputed)$auc.integral
partialRepCat = data.frame(k, i,

6



misPercentage, iChangeCat, error,
Kappa, AUC)

names(partialRepCat) = c("Rep", "Variable",
"%Missing", "ImputeChange", "ClassError",
"Kappa", "PR AUC")

if (comb2 == 1) {
RepResultsCat = partialRepCat

} else {
RepResultsCat = rbind(RepResultsCat,

partialRepCat)
}
comb2 = comb2 + 1
write.table(RepResultsCat, "ResultsStopRule_1stageSimpleAvgCat_SimDataOrig.csv",

row.names = FALSE, sep = ",")
}

} #else closes
}

}
}

7



109

C.4 Feature Selection Codes



# Feature Selection with genetic algorithms

install.packages("caret")
install.packages("randomForest")
library(caret)
library(randomForest)

rep = 1
indice = 1
Results = NULL # results matrix
partialRes = NULL
c = matrix(ncol = 1, nrow = ncol(Data))

NonLinImpVars = c("X1", "a", "b", "c") #Relevant varibles for linear dataset
RealIV = 4 # real amount of important variables in data set
RedVars = 99 # amount of redundant variables in dataset
NoiseVars = 100 # amount of noise variables in dataset

for (rep in 1:30) {
Data = read.csv(paste("~/Feature Selection/Data sets/SimLinearData_203_Reg/LinearRelDataset_",

rep, ".csv", sep = ""))

if (sum(is.na(Data)) > 0)
{

Data = na.roughfix(Data)
} # impute missing values with median/mode (in case of MV's)

# identify constant variables and remove them from
# data set
for (i in 1:ncol(Data)) {

c[i, ] = length(unique(Data[, i])) == 1
}
constVar = which(c == "TRUE")

if (length(constVar > 0)) {
Data = Data[, -constVar]

} else {
Data = Data

}

names(Data)[1:ncol(Data)] = paste("X", 1:ncol(Data),
sep = "") #name variables

DataX = Data[, 1:(ncol(Data) - 1)] # x variables data frame
Y = Data[, ncol(Data)] # y

ga.Data = gafs(x = DataX, y = Y, iters = 2, gafsControl = gafsControl(functions = rfGA,
method = "cv", number = 5), ntree = 125) #feature

# selection using GA

# performance metrics for fs method itself
impVNS = setdiff(NonLinImpVars, ga.Data$ga$final) #important variables
# not selected by CFS

1



impVD = length(NonLinImpVars) - length(impVNS) #important variables
# accurately detected
ExcessVars = length(ga.Data$ga$final) - impVD

Sens1 = impVD/(RealIV + RedVars) #sensitivity
Sens2 = impVD/(RealIV) #sensitivity
Specif = 1 - (ExcessVars/(NoiseVars + RedVars)) #specificity
Accuracy = (impVD + (NoiseVars + RedVars - ExcessVars))/(length(Data) -

1) #accuracy

partialRes = data.frame(rep, length(ga.Data$ga$final),
paste(ga.Data$ga$final, collapse = ";"), Sens1,
Sens2, Specif, Accuracy, ga.Data$times$everything[2],
ga.Data$averages$RMSE, ga.Data$averages$Rsquared)

names(partialRes) = c("Rep", "BestSubsetSize",
"ImpVariables", "Sensitivy1", "Sensitivy2",
"Specificity", "Accuracy", "RunTime", "RMSE",
"R2")

if (indice == 1) {
Results = partialRes

} else {
Results = rbind(Results, partialRes)

}
write.table(Results, "GAResults_LinearData.csv",

sep = ",", row.names = FALSE)
indice = indice + 1

}

2



# CFS code for Classification data sets: EPR,
# Heart, Gina, Sylva

install.packages("stringr")
install.packages("randomForest")
install.packages("FSelector")
library(FSelector)
library(stringr)
library(randomForest)

nFolds = 5 # folds for CV
rep = 1
indice = 1

Results = matrix(nrow = 1, ncol = 6) # results matrix
Results = data.frame(Results)

for (rep in 1:30) {
Data = read.csv(paste("~/Feature Selection/Data sets/BreastCancer/BreastCancerDataset_",

rep, ".csv", sep = ""))
# change depending on data set

names(Data)[ncol(Data)] = "Y"
if (sum(is.na(Data)) > 0)

{
Data = na.roughfix(Data)

} # impute missing values with
# median/mode (in case of MV's)

initialtime = proc.time()

impVars = cfs(Y ~ ., Data) # perform feature selection
impVarsAux = paste(impVars, collapse = ";")

# performance metric for fs method itself
BestSubset = length(impVars) #best subset size

# Cross validation (uses random forest)
impVarNum = which(names(Data) %in% c(impVars)) # extract column numbers from impvars
DataNew = data.frame(Data[, impVarNum], as.factor(Data$Y)) # new data set created
# with the features selected and Y
names(DataNew)[ncol(DataNew)] = "Y"

permRows = sample(x = 1:nrow(DataNew), size = nrow(DataNew),
replace = FALSE)

error = matrix(nrow = nFolds, ncol = 1) #CV error matrix
acc = matrix(nrow = nFolds, ncol = 1) # accuracy matrix

# Create testing and training folds
obsFold = floor(nrow(DataNew)/nFolds)
pending = nrow(DataNew) - floor(nrow(DataNew)/nFolds) *

nFolds

1



j = 0

for (i in 1:nFolds) {
if (i >= (nFolds - pending + 1) & pending >

0) {
assign(paste("F", i, sep = ""), DataNew[permRows[(j +

1):(j + obsFold)], ])
j = j + obsFold + 1

} else {
assign(paste("F", i, sep = ""), DataNew[permRows[(j +

1):(j + obsFold)], ])
j = j + obsFold

}
}

# Fit model
for (i in 1:nFolds) {

testing = get(paste("F", i, sep = ""))
trainingRows = setdiff(1:nrow(DataNew), as.numeric(row.names(testing)))
training = DataNew[trainingRows, ]

myRF = randomForest(Y ~ ., data = training) #fit random forest using new data
# set with selected features
predicted = predict(myRF, newdata = testing)
actual = testing$Y

# performance metrics
error[i, ] = sum(actual != predicted)/nrow(testing) # CV error
acc[i, ] = 1 - error[i, ] #Accuracy

}

CVerror = mean(error)
Accuracy = mean(acc)

Newtime = proc.time() - initialtime # run time

Results[indice, ] = cbind(rep, impVarsAux, BestSubset,
Newtime[2], CVerror, Accuracy)

names(Results) = c("Rep", "ImpVariables", "BestSubset Size",
"RunTime", "CV Error", "Accuracy")

write.table(Results, "CFS_Results_BreastCancer.csv",
sep = ",", row.names = FALSE) #Change Doc

# name depending on data set
indice = indice + 1

}
Results

2



# VSURF-Variable selection using random forest

install.packages("VSURF")
install.packages("randomForest")
library(VSURF)
library(randomForest)

nFolds = 5 # folds for CV
rep = 1
indice = 1
c = matrix(ncol = 1, nrow = ncol(Data))

NonLinImpVars = c(1:4) #Relevant varibles for linear dataset
RealIV = 4 # real amount of important variables in data set
RedVars = 99 # amount of redundant variables in dataset
NoiseVars = 100 # amount of noise variables in dataset

Results = matrix(nrow = 1, ncol = 10) # results matrix
Results = data.frame(Results)

for (rep in 1:30) {

Data = read.csv(paste("~/Feature Selection/Data sets/SimLinearData/LinearRelDataset_",
rep, ".csv", sep = ""))

initialtime = proc.time()

if (sum(is.na(Data)) > 0)
{

Data = na.roughfix(Data)
} # impute missing values with median/mode (in case of MV's)

# identify constant variables and remove them from
# data set
for (i in 1:ncol(Data)) {

c[i, ] = length(unique(Data[, i])) == 1
}
constVar = which(c == "TRUE")

if (length(constVar > 0)) {
Data = Data[, -constVar]

} else {
Data = Data

}

names(Data)[ncol(Data)] = "Y"

DataX = Data[, 1:(ncol(Data) - 1)]
DataY = Data$Y

vsurf.Data = VSURF(x = DataX, y = DataY, ntree = 100,
nfor.thres = 20, nfor.interp = 10, nfor.pred = 10)

1



impVars = paste("X", vsurf.Data$varselect.pred,
sep = "", collapse = ";")

# performance metric for fs method itself
BestSubset = length(vsurf.Data$varselect.pred) #best subset size

# performance metrics for fs method itself
impVNS = setdiff(NonLinImpVars, vsurf.Data$varselect.pred) #important
# variables not selected
impVD = length(NonLinImpVars) - length(impVNS) #important variables accurately detected
ExcessVars = BestSubset - impVD

Sens1 = impVD/(RealIV + RedVars) #sensitivity
Sens2 = impVD/(RealIV) #sensitivity
Specif = 1 - (ExcessVars/(NoiseVars + RedVars)) #specificity
Accuracy = (impVD + (NoiseVars + RedVars - ExcessVars))/(length(Data) -

1) #accuracy

# Cross validation (uses random forest)
impVarNum = vsurf.Data$varselect.pred
DataNew = data.frame(Data[, impVarNum], Data$Y) # new data set created with the
# features selected and Y
names(DataNew)[ncol(DataNew)] = "Y"

permRows = sample(x = 1:nrow(DataNew), size = nrow(DataNew),
replace = FALSE)

error = matrix(nrow = nFolds, ncol = 1) #CV error matrix
mean_adev = matrix(nrow = nFolds, ncol = 1) # av dev matrix

# Create testing and training folds
obsFold = floor(nrow(DataNew)/nFolds)
pending = nrow(DataNew) - floor(nrow(DataNew)/nFolds) *

nFolds
j = 0

for (i in 1:nFolds) {
if (i >= (nFolds - pending + 1) & pending >

0) {
assign(paste("F", i, sep = ""), DataNew[permRows[(j +

1):(j + obsFold)], ])
j = j + obsFold + 1

} else {
assign(paste("F", i, sep = ""), DataNew[permRows[(j +

1):(j + obsFold)], ])
j = j + obsFold

}
}

# Fit model
for (i in 1:nFolds) {

testing = get(paste("F", i, sep = ""))
trainingRows = setdiff(1:nrow(DataNew), as.numeric(row.names(testing)))

2



training = DataNew[trainingRows, ]

myRF = randomForest(Y ~ ., data = training) #fit random forest using new
# data set with selected features
predicted = predict(myRF, newdata = testing)
actual = testing$Y

# performance metrics

error[i, ] = sum((actual - predicted)^2) # PRESS
mean_adev[i, ] = sum(abs(actual - predicted)/length(predicted)) #MAD

}

PRESS = mean(error)
MAD = mean(mean_adev)

Newtime = proc.time() - initialtime # run time

Results[indice, ] = cbind(rep, impVarsAux, BestSubset,
Sens1, Sens2, Specif, Accuracy, Newtime[2],
PRESS, MAD)

names(Results) = c("Rep", "ImpVariables", "BestSubset Size",
"Sensitivy1", "Sensitivy2", "Specificity",
"Accuracy", "RunTime", "PRESS CV", "MAD CV")

write.table(Results, "VSurfResults_LinearData.csv",
sep = ",", row.names = FALSE)

# Change Doc name depending on data set!!!
indice = indice + 1

}
Results

3



# ACE feature selection using random forest to get importance score

install.packages("randomForest")
install.packages("stringr")
library(randomForest)
library(stringr)

nFolds=5 # folds for CV
qArtificial=0.9
nPerm=30
nTrees=125
rep=1

Results=matrix(nrow = 1,ncol = 10) #results matrix
Results=data.frame(Results)
indice=1

q=NULL
impor=NULL
dfPVAL=NULL
impVars=NULL
impVarsAux=NULL

NonLinImpVars=paste("X",1:15, sep = "") #Relevant varibles for linear dataset
RealIV=15 # real amount of important variables in data set
RedVars=30 # amount of redundant variables in dataset
NoiseVars=100 # amount of noise variables in dataset

for (rep in 1:30 )
{

data=read.csv(paste("~/Feature Selection/Data sets/SimLinear_145_class/
LinearRelDataset_Class145_",rep,".csv", sep=""))

names(data)[ncol(data)]="Y"

if (sum(is.na(data))>0){data=na.roughfix(data)}
nVar=ncol(data)-1

initialtime=proc.time()

impor=matrix(nrow=(nVar*2),ncol=nPerm)
q=matrix(nrow=nPerm,ncol=1)
pval=matrix(nrow=nVar,ncol=1)
pval=data.frame(pval)

for (i in 1:nPerm)
{

X = data.frame(matrix(nrow = nrow(data),ncol = (2 * nVar)))
X[,(1:nVar)] = data[,(1:nVar)]

1



for (j in 1:nVar)# Artificial variables

{
X[,nVar + j] = sample(X[,j],length(X[,j]),replace = FALSE)

}

data2=cbind(X,as.factor(data$Y)) # New data frame with original
#Xs, artificial Xs, and Y at the end
names(data2)[ncol(data2)]="Y"

if (typeof(data2$Y)=="double"){rF=randomForest(Y~.,data=data2,ntree=nTrees,
importance=TRUE,replace=FALSE,na.action=na.roughfix)

}else{rF=randomForest(as.factor(Y)~.,data=data2,ntree=nTrees,
importance=TRUE,replace=FALSE)}

impor[,i]=cbind(rF$importance[,ncol(rF$importance)]) # Gini/IncNodePurity
q[i]=quantile(impor[(nVar+1):(2*nVar),i],probs=qArtificial)

}

for (w in 1:nVar)
{

test=wilcox.test(x=cbind(impor[w,]),y=cbind(q),alternative="greater",
paired=TRUE,conf.level=0.99)

pval[w,]<-test$p.value
}

dfPVAL=cbind(names(X)[1:nVar],pval)

if (length(which(pval<(0.05/nVar)))>=1){
impVars=subset(dfPVAL,pval<(0.05/nVar),1)[,1]
impVarsAux=paste(subset(dfPVAL,pval<(0.05/nVar),1)[,1],sep="",

collapse=";")} else {impVars=""
impVarsAux=""}

impVNS= setdiff(NonLinImpVars,impVars) #important variables not selected
impVD=length(NonLinImpVars)-length(impVNS) #important variables accurately detected
ExcessVars=length(impVars)-impVD

Sens1=impVD/(RealIV+RedVars) #sensitivity
Sens2=impVD/(RealIV) #sensitivity
Specif=1-(ExcessVars/(NoiseVars+RedVars)) #specificity
Accuracy=(impVD+(NoiseVars+RedVars-ExcessVars))/(length(data)-1) #accuracy
BestSubset=length(impVars) #best subset size

#Cross validation (uses random forest)
impVarNum=as.numeric(str_extract(impVars, "[[:digit:]]+")) # extract
#numbers from impvars
DataNew=data.frame(data[,impVarNum],as.factor(data$Y)) # new data set created
#with the features selected and Y
names(DataNew)[ncol(DataNew)]="Y"

permRows=sample(x=1:nrow(DataNew),size=nrow(DataNew),replace=FALSE)
error=matrix(nrow=nFolds,ncol=1) #cv error matrix
acc=matrix(nrow=nFolds,ncol=1) # accuracy matrix

2



# Create testing and training folds
obsFold=floor(nrow(DataNew)/nFolds)
pending=nrow(DataNew)-floor(nrow(DataNew)/nFolds)*nFolds
j=0

for (i in 1:nFolds){
if (i>=(nFolds-pending+1) & pending>0) {

assign(paste("F",i,sep=""),DataNew[permRows[(j+1):(j+obsFold)],]) ; j= j + obsFold + 1 }
else
{ assign(paste("F",i,sep=""),DataNew[permRows[(j+1):(j+obsFold)],]); j= j + obsFold }

}

#Fit model
for (i in 1:nFolds){

testing=get(paste("F",i,sep=""))
trainingRows=setdiff(1:nrow(DataNew),as.numeric(row.names(testing)))
training=DataNew[trainingRows,]

myRF=randomForest(Y~., data=training) #fit random forest using new data
#set with selected features
predicted=predict(myRF,newdata=testing)
actual=testing$Y

#performance metrics

error[i,]=sum(actual!=predicted)/nrow(testing) # CV error
acc[i,]=1-error[i,] #Accuracy

}

CVerror=mean(error)
Accuracy=mean(acc)

Newtime=proc.time() - initialtime # medida de tiempo de corrida

Results[indice,]=cbind(rep,impVarsAux,BestSubset,Sens1,Sens2,Specif,Accuracy,
Newtime[2],CVerror,Accuracy)

names(Results)=c("Rep","ImpVariables","BestSubsetSize",
"Sensitivy1","Sensitivy2","Specificity","Accuracy","RunTime", "CV Error",
"CV Accuracy")

write.table(Results,"ACErf_Results_SimLinDataClass.csv",sep=",",row.names = FALSE)
#Change Doc name depending on data set
indice=indice+1

}
Results

3



# Relief code for simulated linear data set

install.packages("stringr")
install.packages("randomForest")
install.packages("FSelector")
library(FSelector)
library(stringr)
library(randomForest)

nFolds = 5 # folds for CV
rep = 1
indice = 1
c = matrix(ncol = 1, nrow = ncol(Data))

NonLinImpVars = c(1:4) #Relevant varibles for linear dataset
RealIV = 4 # real amount of important variables in data set
RedVars = 99 # amount of redundant variables in dataset
NoiseVars = 100 # amount of noise variables in dataset

Results = matrix(nrow = 1, ncol = 10) # results matrix
Results = data.frame(Results)

for (rep in 1:30) {
BestSubset = NULL
Data = read.csv(paste("~/Feature Selection/Data sets/SimLinearData/LinearRelDataset_",

rep, ".csv", sep = ""))

if (sum(is.na(Data)) > 0)
{

Data = na.roughfix(Data)
} # impute missing values with median/mode (in case of MV's)

initialtime = proc.time()

# identify constant variables and remove them from
# data set
for (i in 1:ncol(Data)) {

c[i, ] = length(unique(Data[, i])) == 1
}
constVar = which(c == "TRUE")

if (length(constVar > 0)) {
Data = Data[, -constVar]

} else {
Data = Data

}

impVars = relief(Y ~ ., data = Data, neighbours.count = 10,
sample.size = round(0.05 * (nrow(Data))))

# plot(impVars[order(-impVars$attr_importance),])
df = data.frame(impVars, 1:nrow(impVars))
names(df) = c("AtrrImp", "Var")

1



ord_df = df[order(-df$AtrrImp), ]
ord = ord_df[, 1]

PerChange = 0.1
i = 1
while (PerChange <= 0.3) {

# le cambie porque algunas corridas no estaban
# dando el %
i = i + 1
PerChange = abs((ord[i - 1] - ord[i])/ord[i -

1])
}

selVars = ord_df$Var[c(1:(i - 1))]

# performance metric for fs method itself
SelimpVars = paste("X", c(selVars), sep = "", collapse = ";")
BestSubset = length(selVars) #best subset size

# performance metrics for fs method itself
impVNS = setdiff(NonLinImpVars, selVars) #imp variables not selected by CFS
impVD = length(NonLinImpVars) - length(impVNS) #imp variables accurately detected
ExcessVars = length(selVars) - impVD

Sens1 = impVD/(RealIV + RedVars) #sensitivity
Sens2 = impVD/(RealIV) #sensitivity
Specif = 1 - (ExcessVars/(NoiseVars + RedVars)) #specificity
Accuracy = (impVD + (NoiseVars + RedVars - ExcessVars))/(length(Data) -

1) #accuracy

# Cross validation (uses random forest)
DataNew = data.frame(Data[, selVars], Data$Y) # new data set created with
# the features selected and Y
names(DataNew)[ncol(DataNew)] = "Y"

permRows = sample(x = 1:nrow(DataNew), size = nrow(DataNew),
replace = FALSE)

error = matrix(nrow = nFolds, ncol = 1) #CV error matrix
mean_adev = matrix(nrow = nFolds, ncol = 1) # mean deviation matrix

# Create testing and training folds
obsFold = floor(nrow(DataNew)/nFolds)
pending = nrow(DataNew) - floor(nrow(DataNew)/nFolds) *

nFolds
j = 0

for (i in 1:nFolds) {
if (i >= (nFolds - pending + 1) & pending >

0) {
assign(paste("F", i, sep = ""), DataNew[permRows[(j +

1):(j + obsFold)], ])
j = j + obsFold + 1

} else {

2



assign(paste("F", i, sep = ""), DataNew[permRows[(j +
1):(j + obsFold)], ])

j = j + obsFold
}

}

# Fit model
for (i in 1:nFolds) {

testing = get(paste("F", i, sep = ""))
trainingRows = setdiff(1:nrow(DataNew), as.numeric(row.names(testing)))
training = DataNew[trainingRows, ]

myRF = randomForest(Y ~ ., data = training) #fit random forest using new
# data set with selected features
predicted = predict(myRF, newdata = testing)
actual = testing$Y

# performance metrics

error[i, ] = sum((actual - predicted)^2) # PRESS
mean_adev[i, ] = sum(abs(actual - predicted)/length(predicted)) #MAD

}

PRESS = mean(error)
MAD = mean(mean_adev)

Newtime = proc.time() - initialtime # run time

Results[indice, ] = cbind(rep, impVarsAux, BestSubset,
Sens1, Sens2, Specif, Accuracy, Newtime[2],
PRESS, MAD)

names(Results) = c("Rep", "ImpVariables", "BestSubset Size",
"Sensitivy1", "Sensitivy2", "Specificity",
"Accuracy", "RunTime", "PRESS CV", "MAD CV")

write.table(Results, "ReliefResults_LinearData.csv",
sep = ",", row.names = FALSE) #Change Doc name depending on data set!!!

indice = indice + 1

}
Results

3



123

REFERENCES

Andridge, R. R. and Little, R. J. A. (2010). A review of hot deck imputation for

survey non-response. International statistical review = Revue internationale de

statistique, 78(1):40–64.

Bland, J. M. and Altman, D. G. (1995). Multiple significance tests: the Bonferroni

method. BMJ, 310(6973):170.

Blum, A. and Langley, P. (1997). Selection of relevant features and examples in

machine learning. Artificial Intelligence, 97:245–271.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

Breiman, L., Friedman, J., Stone, C., and Olshen, R. (1984). Classification and

regression trees.

Brownlee, J. (2014). An Introduction to Feature Selection.

Burgette, L. F. and Reiter, J. P. (2010). Multiple imputation for missing data via

sequential regression trees. American Journal of Epidemiology, 172(9):1070–1076.

Carriquiry, A. (2004). Regression inference.

Chandrashekar, G. and Sahin, F. (2014). A survey on feature selection methods.

Computers and Electrical Engineering, 40:16–28.

Comulada, W. S. (2015). Model specification and bootstrapping for multiply imputed

data: An application to count models for the frequency of alcohol use. The Stata

journal, 15(3):833–844.



124

Doshi, M. and Chaturvedi (2014). Correlation based feature selection (cfs) technique

to predict student perfromance. International Journal of Computer Networks &

Communications, 6(3).

Enders, C. K. (2010). Applied Missing Data Analysis. The Guiford Press, New York,

NY, USA.

Fawcett, T. (2003). ROC Graphs: Nos and Practical Considerations for Data Mining

Researchers. HP Laboratories.

Friedman, J. (2001). Greedy function approximation: a gradient boosting machine.

Annals of Statistics, pages 1189–1232.

Gelman, A. and Hill, J. (2006). Missing-data imputation. In Data Analysis Using Re-

gression and Multilevel/Hierarchical Models, pages 529–544. Cambridge University

Press. Cambridge Books Online.

Genuer, R., Poggi, J., and Tuleau-Malot, C. (2015a). VSURF: An R Package for

Variable Selection Using Random Forests. The R Journal, 7(2).

Genuer, R., Poggi, J., and Tuleau-Malot, C. (2015b). VSURF: An R Package for

Variable Selection Using Random Forests. The R Journal, 7(2).

Gould, J. (2000). Classification and regression trees (cart) documentation.

Gower, J. C. (1971). A General Coefficient of Similarity and Some of Its Properties.

Biometrics, 27(4):857–871.

Grau, J. and Keilwagen, J. (2015). Package ”PRROC”.

Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection.

J. Mach. Learn. Res., 3:1157–1182.

Hall, M. A. (2000). Correlation-based feature selection for discrete and numeric class

machine learning. In Proceedings of the Seventeenth International Conference on



125

Machine Learning, ICML ’00, pages 359–366, San Francisco, CA, USA. Morgan

Kaufmann Publishers Inc.

Holmes, W. (2010). Imputation methods for missing categorical questionnaire data:

A comparison of approaches. Journal of Data Science, Holmes8:361–378.

Islam, Z. and Giggins, H. (2011). Knowledge discovery through sysfor: A system-

atically developed forest of multiple decision trees. In Proceedings of the Ninth

Australasian Data Mining Conference - Volume 121, AusDM ’11, pages 195–204,

Darlinghurst, Australia, Australia. Australian Computer Society, Inc.

Janosi, A., Steinbrunn, W., Pfisterer, M., and Detrano, R. (1988). UCI machine

learning repository.

Jonsson, P. and Wohlin, C. (2004). An evaluation of k-nearest neighbour imputation

using likert data. In 10th International Symposium on Software Metrics, 2004.

Proceedings, pages 108–118.

Kaggle, K. (2017). Root Mean Squared Error.

Kaiser, J. (2014). Dealing with missing values in data. JOURNAL OF SYSTEMS

INTEGRATION, 1.

Kalton, G. and Kasprzyk, D. (1982). Imputing for missing survey responses. Pro-

ceedings of the survey research methods section, American Statistical Association,

pages 22–31.

Kira, K. and Rendell, L. (1992). The feature selection problem: Traditional methods

and a new algorithm. AAAI Proceedings.

Kohavi, R. and John, G. (1997). Wrappers for feature subset selection. Artificial

Intelligence, 97:273–324.

Kowarik, A. and Templ, M. (2016). Imputation with the R package VIM. Journal of

Statistical Software, 74(7).



126

Kuhn, M. (2016). Package ”caret”.

Langley, P. and Iba, W. (1993). Average-case analysis of a nearest neighbor algorthim.

In Proceedings of the 13th International Joint Conference on Artifical Intelligence -

Volume 2, IJCAI’93, pages 889–894, San Francisco, CA, USA. Morgan Kaufmann

Publishers Inc.

Liao, S. G., Lin, Y., Kang, D. D., Chandra, D., Bon, J., Kaminski, N., Sciurba, F. C.,

and Tseng, G. C. (2014). Missing value imputation in high-dimensional phenomic

data: imputable or not, and how? BMC Bioinformatics, 15:346.

Liaw, A. and Wiener, M. (2014). RandomForest in R. Technical report.

Lichman, M. (2013). UCI machine learning repository.

Little, R. J. and Rubin, D. B. (1986). Statistical Analysis with Missing Data. John

Wiley & Sons, Inc., New York, NY, USA.

Little, R. J. A. and Schluchter, M. D. (1985). Maximum Likelihood Estimation

for Mixed Continuous and Categorical Data with Missing Values. Biometrika,

72(3):497–512.

López, V. (2005). Comparación de los métodos de imputación con respecto al poder

de separación del modelo de regresión logist́ıca. PhD thesis, University of Puerto

Rico.

Mohamad, M., Deris, S., and Razib, M. (2004). FEATURE SELECTION METHOD

USING GENETIC ALGORITHM FOR THE CLASSIFCATION OF SMALL AND

HIGH DIMENSION DATA. First Internation Symposium on Information and

Communications Technologies.

Pantanowitz, A. and Marwala, T. (2009). Missing data imputation through the use of

the random forest algorithm. In Kacprzyk, J., Yu, W., and Sanchez, E. N., editors,

Advances in Computational Intelligence, volume 116, pages 53–62. Springer Berlin

Heidelberg, Berlin, Heidelberg.



127

Penny, K. I. and Atkinson, I. (2012). Approaches for dealing with missing data in

health care studies. Journal of Clinical Nursing, 21(19-20):2722–2729.

R Core Team (2016a). R: A Language and Environment for Statistical Computing.

R Foundation for Statistical Computing, Vienna, Austria.

R Core Team (2016b). R: A Language and Environment for Statistical Computing.

R Foundation for Statistical Computing, Vienna, Austria.

Rahman, G. and Islam, Z. (2011). A decision tree-based missing value imputation

technique for data pre-processing. In Proceedings of the Ninth Australasian Data

Mining Conference - Volume 121, AusDM ’11, pages 41–50, Darlinghurst, Aus-

tralia, Australia. Australian Computer Society, Inc.

Rahman, M. G. and Islam, M. Z. (2013). Missing value imputation using decision

trees and decision forests by splitting and merging records: Two novel techniques.

Knowledge-Based Systems, 53:51–65.

Revelle, W. (2016). Package ”psych”.

Robnik-Sikonja, M. and Kononenko, I. (2003). Theoretical and Empirical Analysis

of ReliefF and RReliefF. Machine Learning Journal, (53):23–69.

Rogier, A., Donders, T., van der Heijden, G., and Stijnend, T. (2006). Review: A gen-

tle introduction to imputation of missing values. Journal of Clinical Epidemiology,

59:1087e1091.

Romanski, P. and Kotthoff, L. (2016). F Selector R.

Rubin, D. (1976). Inference and missing data. Biometrika, 63(3):581–592.

Saeys, Y., Inza, I. n., and Larrañaga, P. (2007). A review of feature selection tech-

niques in bioinformatics. Bioinformatics.

Schafer, J. L. (1997). Analysis of Incomplete Multivariate Data. CRC Press.



128

Schneider, T. (2001). Analysis of Incomplete Climate Data: Estimation of Mean

Values and Covariance Matrices and Imputation of Missing Values. Journal of

Climate, 14.

Sertkaya, A., Birkenbach, A., Berlind, A., and Eyraud, J. (2014). Examination of

clinical trial costs and barriers for drug development. Technical report, Department

of Health and Human Services.

Service, U. F. (2006). SYLVA.

Shardlow, M. (2008). An analysis of feature selection techniques.

Sharp, T., Lengerich, R., and Bai, S. (2017). 18.7 - Cohen’s Kappa Statistic for

Measuring Agreement | STAT 509.

Silva, E., Pino, R., Lopez, M., and Cubiles, M. (2011). Missing value imputation on

missing completely at random data using multilayer perceptrons. Neural Networks,

24:121–129.

Sim, J., Lee, J. S., and Kwon, O. (2015). Missing Values and Optimal Selection of

an Imputation Method and Classification Algorithm to Improve the Accuracy of

Ubiquitous Computing Applications. Mathematical Problems in Engineering, 2015.

Singh, A., Yadav, A., and Rana, A. (2013). K-means with Three different Distance

Metrics. International Journal of Computer Applications, 67(10).

Staff, M. C. (2014). Heart disease.

Stekhoven, D. (2013). Package ”missForest”.

Stekhoven, D. J. and Bülmann, P. (2012). Missforest-non-parametric missing value

imputation for mixed-type data. Bioinformatics, 28(1):112–118.

Sulis, I. and Porcu, M. (2008). Assessing the Effectiveness of a Stochastic Regression

Imputation Method for Ordered Categorical Data.



129

Taylor, C. (2016). Learn More About Chebyshev’s Inequality in Probability.

Tuv, E., Borisov, A., Runger, G., and Torkkola, K. (2009). Feature selection with

ensembles, artificial variables, and redundancy elimination. J. Mach. Learn. Res.,

10:1341–1366.

Wild, C. (2011). Wilcoxon Handout.

William, W. (1992). UCI machine learning repository.

Willmott, C. J. (1981). On the validation of models. Physical Geography, 2(2):184–

194.

Wolberg, W. H. and Mangasarian, O. L. (1990). Multisurface method of pattern

separation for medical diagnosis applied to breast cytology. Proceedings of the

National Academy of Sciences of the United States of America, 87(23):9193–9196.

Wood, A. M., White, I. R., and Thompson, S. G. (2004). Are missing outcome data

adequately handled? a review of published randomized controlled trials in major

medical journals. Clinical Trials (London, England), 1(4):368–376.

Yeşilova, A., Kaya, Y., and Almali, N. (2010). A comparison of hot deck imputa-

tion and substitution methods in the estimation of missing data. Gazi University

Journal of Science, 24(1):69–75.

Yu, L. and Liu, H. (2007). Feature selection for high-dimensional data: A fast

correlation-based filter solution. Technical report, Arizona State University.

Zambrano (2014). Package ”hydroGOF”.


