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ABSTRACT

Researchers and practitioners of many areas of knowledge frequently struggle with
missing data. Missing data is a problem because almost all standard statistical meth-
ods assume that the information is complete. Missing value imputation offers a solu-
tion to this problem. The main contribution of this work lies on the development of a
random forest-based imputation method that can handle any type of data, including
high-dimensional data with non-linear complex interactions. The premise behind the
proposed scheme is that a variable can be imputed taking into account only those
variables that are related to it using feature selection. This work compares the per-
formance of the proposed scheme with other two imputation methods commonly used
in literature: KNN and missForest. The results suggest that the proposed method
can be useful in complex categorical scenarios with high volume of missing values.
The proposed method is an approximation of missForest that significantly reduces

the amount of variables used in the imputation.
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RESUMEN

Investigadores de distintas areas de conocimiento se enfrentan frecuentemente al
problema de datos incompletos. Esto representa un obstaculo, pues la mayoria de
los métodos estadisticos disponibles en la literatura asumen que la informacién esta
completa. La imputacion de datos faltantes representa una opcion viable a este prob-
lema. Este trabajo tiene como contribucién principal el desarrollo de un método
de imputacién de datos vaciés basado en arboles de decision, que pueda manejar
cualquier tipo de datos, incluyendo datos de alta dimensionalidad con interacciones
complejas. La idea detras del método propuesto es que una variable pueda ser im-
putada sélo tomando en consideracion aquellas que le son significativas; esto a través
de un método de seleccion de variables. Esta tesis compara ademas, el desempeno
del método propuesto con otros dos métodos de imputacion utilizados en la literatura
(KNN y missForest). Los resultados sugieren que el método propuesto puede ser de
gran utilidad en escenarios categoricos complejos con alta cantidad de datos vacios. El
método propuesto es una aproximacion de missForest que reduce significativamente

la cantidad de variables utilizadas en la imputacién.
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1. INTRODUCTION
1.1 Motivation

Researchers and practitioners in many areas of knowledge frequently struggle with
missing data. In fact, 89% of the clinical experiments in leading medical journals deal
with missing data (Wood et al., 2004). It arises in almost all statistical analyses for
reasons such as data collection problems, equipment failures, errors in manual data
entry or in cases of non-response items in survey studies with persons (Rogier et al.,
2006; Gelman and Hill, 2006). The problem of missing values started to be addressed
in the late 70’s with few articles in the topic, but received more importance when
Little and Rubin published their book Statistical Analysis with Missing Data (Little
and Rubin, 1986; Rubin, 1976; Kalton and Kasprzyk, 1982).

Missing data is a problem because almost all standard statistical methods assume
that the information is complete. As a result, the analysis of the data gets compli-
cated, efficiency is lost, statistical power decreases, and parameter estimates may be
biased due to the differences between the complete and missing data (Kaiser, 2014).
Researchers often appeal to ad hoc methods such as case deletion or missing value
imputation to force an incomplete data set into a complete one (Schafer, 1997). The
consequence of case deletion is that potentially valuable data is discarded, which is
usually worse than having missing values. Missing value imputation, on the other
hand, refers to replacing the missing data with acceptable values, by using the data
in the recorded variables to unveil the information in the incomplete cases and also
make inferences on the population parameters (Andridge and Little, 2010). Note that
the terms variables, covariates and features will be used interchangeably throughout

this work.



When the missing cases are a small part of the data set (e.g. 5% or less), the
case deletion could be a reasonable solution to the missing data problem. But, when
dealing with high number of missing data, discarding them will lead to losing large
amounts of information. Collecting this data often requires large amounts of time
and money. This is the case when conducting studies that involve clinical trials, for
instance, a new cancer treatment. First, these trials are only conducted after getting
the approval from the Health Regulatory Agency, which in almost all cases involve
many years of previous research work and preparation. On top of that, it will also
take, on average, five years to collect the necessary data to perform robust analyses,
this without mentioning the required monetary investment (Sertkaya et al., 2014).
Many things can lead to missing data during the process (e.g. patients dropping out
from the study, problems with data collection), thus, knowing the substantial amount
of resources it takes to collect it, discarding cases is typically the least attractive
option. This is why missing value imputation is a growing area of research, specially
among researchers working on experiments that involve a large number of variables
(e.g. demographic, environmental, clinical data).

Literature on mixed-type data imputation is limited. Most imputation methods
are restricted to only one type of variable. For example, stochastic regression impu-
tation (SRI), is used for categorical data exclusively (Sulis and Porcu, 2008), whereas
regression imputation, is only used on continuous data. The options fall even shorter
when complex high dimensional mixed-type data comes into play. The first attempt to
overcome this gap involved maximum likelihood estimation, combining a multivariate
normal model with a Poisson/multinomial model to impute continuous and categori-
cal variables, respectively (Little and Schluchter, 1985). During the last decade, other
methods based on decision trees (Stekhoven and Biilmann, 2012) and near neighbors
(Kowarik and Templ, 2016) have been proposed. Yet, there still a need for new
and enhanced techniques that can satisfy the ongoing necessities of the growing data

world.



1.2 Objectives

The main contribution of this work lies on the development of an imputation
method that can handle any type of data, including high-dimensional data with non-
linear complex interactions. Random forests (Breiman, 2001) are able to handle this
type of data without making any restrictive assumptions about the structure of the
data. This thesis proposes a random-forest-based missing value imputation scheme
that exploits the relationships among variables by means of feature selection. The
premise behind the proposed scheme is that a variable can be imputed taking into
account only those variables that are related to it, whether this relationship is linear or
not. The idea is that when imputing a missing value for a variable, one might not need
to carry out a complex optimization routine until convergence in the missing value
imputation is obtained, while greatly reducing the amount of preliminary imputations
needed. Thus, the objectives of this thesis are:

1. Design a tree-based missing value imputation scheme for complex mixed-type

and high-dimensional data.

2. Understand which combinations of parameters are more suitable for different

types of data sets.

3. Compare and contrast the performance of the proposed method against popular

missing schemes in the literature using publicly available and simulated data.

1.3 Scope and General Organization

This thesis describes the development of a random-forest-based imputation for
complex high-dimensional mixed-type data. Chapter 2 elaborates on some of the
best missing value imputation schemes in the literature and describes how the pro-
posed method compares and contrasts to them in terms of its methodology. Chapter 3
provide the conceptual framework for the proposed imputation scheme. Then, Chap-

ter 4 describes how the feature selection methods were evaluated to select the most



appropriate for the proposed imputation scheme. It also explains the experiments
performed in order to optimize the proposed random-forest-based imputation. The
performance of the proposed scheme was compared to K-nearest neighbors imputation
(Kowarik and Templ, 2016) and the missForest algorithm by Stekhoven and Biilmann
(2012) in Chapter 5. These evaluations were carried out using the Endometriosis Pa-
tient Registry data from the Ponce School of Medicine and Health Sciences (PSMHS),
simulated data, and publicly available data, all having between ten to two-hundred
variables. Lastly, Chapter 6 will provide a summary of the performance of the pro-

posed scheme and other concluding remarks.



2. LITERATURE REVIEW

2.1 Missing Value Imputation

A wide array of imputation methods have been proposed in literature to deal with
the problem of missing data. They encompass anything from simple, like univariate
mean/mode imputation to more complex multivariate schemes that look for relation-
ships among covariates. Many studies have compared the performance of imputation
methods using benchmark data. But regardless of the simplicity or complexity of
an imputation method, its execution will always depend on the fitness between the
dataset, imputation method, and characteristics of the missing data (Sim et al., 2015).
There are three types of missing data, which are characterized based on the under-
lying process believed to have led to the missing values. Values missing at random
(MAR) are missing values whose probability of being unavailable depends on a mea-
surable characteristic of the individual, and not on the missing value itself. The most
common example of MAR values is portrayed in the US Census questionnaire, where
many people refuse to provide information on their household income. The second
mechanism is missing completely at random (MCAR). This type is similar to MAR
but the missing data has no systematic cause (e.g., a patient overlooked an item in
the questionnaire) (Holmes, 2010). Lastly, when the missingness is related to the
missing data itself, the data is said to be not missing at random (NMAR) (Penny
and Atkinson, 2012).

Some imputation techniques are used to impute numerical data exclusively, whereas
others strictly allow for imputing categorical data. However, these options are signif-
icantly decreased when mixed-type data comes along. One of the most popular and,
by far, the simplest is mean and mode substitution. In this method, the missing val-

ues of a numerical (quantitative) covariate are replaced by the mean of the observed



cases, while missing categorical values are replaced with the covariate’s mode (Silva
et al., 2011). Mean/mode imputation is easy-to-use but it is depicted as inferior since
it distorts the covariance structure of the data, biasing results (Rogier et al., 2006).

Another commonly used method is regression imputation. Here, the missing val-
ues are predicted from a linear regression equation using the information from the
complete cases (Enders, 2010). That is, the variable with missing values becomes the
response and the remaining variables are used to predict this missing values. If the
relationship between the variable being imputed and the remaining variables is lin-
ear, then, the method will work reasonably well. Otherwise, it will fail to understand
the relationship among variables. Additionally, regression imputation also produces
biased results, overestimating the correlations between covariates, and it only works
on numerical data.

Multiple imputation (MI) has also been proven effective in missing value impu-
tation. It is a Monte Carlo approach for estimating missing values in mixed-type
scenarios (Rogier et al., 2006). MI generates m imputations for the missing values in
a data set. Then, the m imputed data sets are analyzed using standard complete-data
procedures and the results are combined to give a final result. A popular approach
used to implementing MI is regression modeling, also known as multiple imputation
by chain equations (MICE) (Burgette and Reiter, 2010). MICE assumes that the
missing data are of MAR type and imputes them, given a conditional model per
covariate. The problem with MICE comes when specifying the conditional models
for large amounts of covariates with missing values, even more so, when complex
interactions exist between them. Identifying these models could be an uneasy task
since it is hard to adjust a model that will fit the information of the missing data
and simultaneously have convergence with the estimates (Lépez, 2005). MI compares
to the proposed method in that they both perform numerous imputations of the
missing values in the data. Also, in that they are both conditional approaches, but
the proposed method is only conditional on those variables that have a statistically

significant relationship with the variable under consideration.



2.1.1 K-Nearest Neighbors

Another commonly used missing value imputation scheme is K- nearest neighbors
(KNN). It is a non-parametric method that imputes missing data based on the out-
come of the K (a user-defined constant) observations closest to the missing value.
Missing data are replaced with observed values from donors with similar charac-
teristics (Stekhoven and Biilmann, 2012). Different distance measures are used to
determine the similarity between the missing values and the observed data. The
most popular distance measure is the Euclidean distance, which is given by the root

of squared differences between a pair of observations (x; and y;):

Other distances commonly used are: Manhattan, Minkowski, Supremum (Singh
et al., 2013) and Gower (Gower, 1971). In Yegilova et al. (2010), KNN proved to be
more effective when analyzing mixed-type data at different missing ratios. Jonsson
and Wohlin (2004) evaluated the performance of the KNN method using Likert scale
(ordinal) data. Results showed that it is feasible to use the KNN method with ordinal
data as long as an appropriate value of K is used. They suggested K to be the square
root of the number of complete cases.

K-nearest neighbors is an attractive approach due to its simplicity and effective-
ness in a variety of imputation problems (Liao et al., 2014). But one of the drawbacks
of the KNN method is that it only imputes a missing value based on its K-nearest
neighbors, which makes it a conditional approach (Lépez, 2005). Also, it is not clear
which value of K should be used. Overall, the only resemblance between the proposed
method and KNN is the way donors are handled. KNN and the proposed method
are both conditional approaches. In KNN, donors represent observations with simi-
lar characteristics, whereas in the proposed scheme, a random forest is trained only
on those covariates selected to be significant to the covariate being imputed by the

feature selection method.



2.1.2 Random Forests

Tree-based missing value imputation techniques are also widely used in mixed-
type data sets with complex interactions between variables. Decision trees are non-
parametric supervised methods used for classification and regression. They are simple
and produced by algorithms that identify various ways of splitting a data set into
branch-like segments. Their goal is to create a model that predicts the value of a
target variable by learning simple decision rules inferred from the data (Pantanowitz
and Marwala, 2009). Decision trees are divided in two main categories: (1) classifi-
cation and (2) regression. The first is used to predict categorical variables, while the
latter is used for continuous variables. Classification and regression trees (CART)
analysis is a technique that uses either of the tree types for predicting both contin-
uous and categorical variables (Gould, 2000). The CART algorithm builds the tree
by recursively partitioning the data set into non-overlapping regions (branches) and,
then, use the tree to predict the missing value for the covariate being treated as the
dependent variable (Breiman et al., 1984).

A Random forest (RF) is an ensemble of decision trees that performs, both, clas-
sification and regression by drawing M bootstrap samples from the original training
data, using each of these M samples to build M trees within the ensemble. They
can be easily adapted to the task of missing value imputation (Breiman, 2001). In
fact, random forests can work around missing values without imputing them because
they can decide what to do on a split based on the best surrogate for the variable
under consideration. Additionally, random forests provide a measure of variable im-
portance scores (VIS), which is a measure of how much the prediction error increases
when out-of-bag (OOB) data for that variable is permuted while all others are left
unchanged (Liaw and Wiener, 2014). The variable importance score for each variable
is then computed as the mean importance over all trees. For a single decision tree,

the measure of variable importance proposed by Breiman et al. (1984) is given:



VI(z;,T) =Y Al(z,t), (2.2)

teT

where Al(x;,t) = I(t)—prI(tr) —prl(tr) is the decrease in impurity due to an actual
or potential (surrogate) split on numerical predictor z; at a node ¢ of the optimally
pruned tree, T and py(pr) denotes the proportion of cases assigned to the left (right)
child node of t. Note that Equations 2.2 refers to a single decision tree. For ensembles
of M trees, the VIS of a predictor is obtained by averaging over all its VIS across the

ensemble as in:

Vi(z;) = % > VI(x;,T), (2.3)

where T;,, denotes tree m. This process of averaging across all VIS in the ensembles
has a stabilizing effect that leads to a more reliable predictor of variable importance.
For classification purposes, a measure of node impurity commonly used is the gini

index:

Gini(t) =1- Y pipk (2.4)
KAk

where pi, is the proportion of cases in node ¢ whose response label equals k (y = k). It
is zero when ¢ has cases only from one class and is maximized when classes are evenly
mixed. On the other hand, Breiman (2001) suggests the use of the mean decrease
in accuracy (MDA) for assessing node impurity in regression problems. The MDA
is assessed for each variable by removing the association between that variable and
the target. This is achieved by randomly permuting the values of the variable and
measuring the resulting increase in error.

Various random forest-based algorithms have been evaluated in the literature to
assess their performance in missing data imputation. rfImpute was used in Pan-
tanowitz and Marwala (2009) to evaluate missing HIV data from a clinic study sur-
vey. This algorithm first imputes the missing values using the mean and mode of

the observed values. Then, a random forest is trained with the complete data and
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its proximity matrix is used to update the imputation of the missing values. For
continuous covariates, the imputed value is the weighted average of the non-missing
observations, using proximities as weights. For categorical predictors, the imputed
value is the category with the largest average proximity. In Pantanowitz and Marwala
(2009), the rflmpute algorithm resulted to be superior in terms of computation time
and accuracy in comparison to other supervised methods such as neural networks.

Two other decision tree and random forest-based imputation methods were pre-
sented in Rahman and Islam (2013): (1) Decision tree based Missing value Imputation
(DMI) and (2) SiMI. DMI uses decision trees to identify horizontal segments with
higher similarity among variables. The algorithm applies expectation maximization
(EMI) (Schneider, 2001) to impute numerical missing values and mode imputation
for categorical missing values (Rahman and Islam, 2011). In a similar way, SiMI
uses a decision forest algorithm, such as SysFor (Islam and Giggins, 2011), to build
k decision trees over the complete data. The main difference between them is how
similarity is assessed among variables. SiMI algorithm finds the intersections of the
records belonging to the leaves of the forest and merge the small-sized ones with an-
other intersection, maximizing a similarity metric S; within the merged intersection.
S; is calculated using the average distance of pairs of records between two intersection.
The distance between two records is calculated using the Euclidean distance for nu-
merical attributes and a similarity based distance for categorical attributes. Finally,
missing values are imputed the same way as DMI, using EMI and mode imputation
for numerical and categorical missing values, respectively.

In Rahman and Islam (2013), SiMI the was top performer in terms of imputation
accuracy when compared to other EMI techniques. They used a random forest which
identifies even better correlations among the attributes and similarities between the
records, therefore, giving better accuracy in the imputation. They also acknowledge
this method is more complex and computationally expensive since they use decision
trees and forests. DMI and SiMI resemble the proposed method in that they impute

the missing values using only a subset of the data that is most highly correlated to
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the missing value. Another similarity is that they are both based on decision tree
methods, such as the proposed scheme.

The method in literature that most closely resembles the proposed approach is
the iterative non-parametric imputation scheme known as missForest. In a similar
approach to the proposed method, missForest can be used with any type of data:
numerical, categorical, or even mixed-type data. First, it makes an initial guess of
the missing values of a data set X using mean/mode imputation. Then, it sorts
the covariates (X;) according to their amount of missing values (ys;) in increasing
order. The imputation of each X; is done by training a RF on the observed values
(@obs,is Yobs,i) Of the data set and then predicting the missing values with the trained
RF. This procedure is repeated until a criterion v is met. The stopping criteria is
met when the difference between the newly imputed data matrix and the previous
one increases for the first time with respect to both covariate types (categorical and
numerical). missForest also provides the user with an estimate of the imputation
error, which is based on the out-of-bag (OOB) error estimate of random forest. In
Stekhoven and Biilmann (2012), this method proved to have better performance in
comparison to other multiple imputation and regression imputation schemes, espe-
cially in mixed-typed high-dimensional data with complex interactions.

Overall, the main difference between this approach and the proposed method is
how the random forest is built on the observed data. In the proposed approach,
only those covariates that are related to the variable being imputed are used to build
the random forest. Meanwhile, missForest uses all predictor variables in the data
set, regardless of the dimensionality of the problem and regardless of whether these
predictors have any relationship with the predictor being imputed. As a result, the
proposed method can be used as an approximation to missForest in scenarios where
the computational complexity of the imputation problem becomes an issue and the

relationships among predictors are known or can be assessed a priori.
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2.2 Feature Selection

The selection of relevant features or feature selection (FS) is a topic that has
grown in popularity in recent years with the increase of complex, high-dimensional
data. The presence of redundant or irrelevant features constitutes a problem since it
can degrade the performance of learners in terms of speed and predictive accuracy.
As a matter of fact, the amount of training samples needed to reach a given accuracy
grows exponentially with the amount of irrelevant features in a data set (Langley and
Iba, 1993). But, how to know when a feature is relevant? In Kohavi and John (1997),
the authors portrayed three different types of features: those that are strongly relevant
to a target, weakly relevant, or irrelevant. They described a feature X; be strongly
relevant when its removal results in the deterioration of prediction accuracy. On the
other hand, when X; is weakly relevant, it implies that the feature can sometimes
contribute to prediction accuracy depending on which other features are removed.
Finally, an irrelevant feature does not add any information to a model, thus, it never
contributes to prediction accuracy. With this in mind, many algorithms have been
developed to measure how useful is each variable in a data set. The objective of feature
selection is to select a small subset of features from the original data that will provide
the most significant information from a target (Kira and Rendell, 1992). Therefore, it
helps to better understand the data, reduces computational requirements, improves
predictor performance, and facilitates to identify which features are relevant to a

specific problem (Chandrashekar and Sahin, 2014).

2.2.1 Classification of Feature Selection Methods

Feature selection methods are grouped into three main classes: (1) filter, (2)

wrapper, and (3) embedded.
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Filter Feature Selection

Filter selection methods are the most common approach of feature selection.
They apply variable ranking techniques as the principle criteria for variable selec-
tion (Shardlow, 2008). A suitable ranking criterion is used to score the variables and
a threshold is used to remove variables below this threshold. Once this ranking/score
has been computed, a feature set composing of the best N features is created. An
advantage of filter methods is that they are easy to implement and fast to execute;
however, most of them do not take into account the interaction with the learner or
even among the features (Saeys et al., 2007). Finding a suitable learning algorithm
for filters can be a difficult task as the underlying learning algorithm is ignored. Some
examples of filter methods are information gain and correlation coefficient scores.

Correlation-based feature selection (CFS) uses a correlation based heuris-
tic to evaluate a subset of features. The rationale behind this heuristic is that an
important or good feature is highly correlated with the class but uncorrelated with
one another (Hall, 2000). The measure used to evaluate the score of a feature subset

S is given by:

_ kres
VE+ k(1= k)T

where k is the amount of features in S, 7. is the average feature-class correlation

(2.5)

S

and 7y is the average feature-feature correlation. CFS calculates a matrix of feature-
class and feature-feature correlations from the training data and then searches the
feature subsets using the best first search algorithm (Kohavi and John, 1997). The
best subset is the one with highest M, after five consecutive subsets not showing
improvement.

CFS uses symmetrical uncertainty to measure correlation between discrete fea-

tures in discrete class problems as in:

1G(z]y)

SV =2y 1 )

(2.6)
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Information gain (IG), is the amount by which the entropy, (H(z)) of a variable x
is decreased after observing values of another variable y. H(z) is the entropy of a

variable z and H (z|y) is the entropy of z after observing the values of y.
1G(x]y) = H(z) — H(z|y) (2.7)
H(z) = =) P(;)logy(P(xs)) (2.8)

H{(xly) = —Zp(yj)ZP(xilyj)logz(P(ivilyj)) (2.9)

On the other hand, CFS uses the Pearson correlation coefficient, as described in

2.10, to measure association between continuous variables in Equation 2.5.

il —T)(yi — W)
Vooilw =)D (v — T)? (2.10)

where Z; and 7; are the mean of variables x and vy, respectively.

r(z,y) =

Correlation-based algorithms are significantly faster than other selection methods
and have high prediction accuracy when analyzing high dimensional data (Yu and
Liu, 2007; Doshi and Chaturvedi, 2014). In summary, CFS algorithms can highly
reduce the dimensionality of the data while maintaining the performance of learning
algorithms.

ReliefF is another commonly used filter method, extended from the original Re-
lief (Kira and Rendell, 1992), that can deal with multi-class problems and incomplete
data. It weights the features based how well their values distinguish between instances
that are near to each other (Robnik-Sikonja and Kononenko, 2003).

ReliefF randomly chooses an instance R; and searches for its k nearest neighbors
from the same class (near-hits, H;) and also its k nearest neighbors from each of the
different classes (near-miss, M;) using Euclidean distance. In regression problems
the predicted value is continuous, therefore H; and M; cannot be used and a kind

of probability that the predicted values of two instances are different is introduced.



15

This probability can be modeled with the relative distance between the predicted
values of two instances. ReliefF updates a weight estimation W[A] for all attributes
A, estimated as the average squared difference between R; and H; and M;:

(R; — M)* + (R — H;)®

WI[A] = — — (2.11)

Then, the algorithm selects those features whose average weight is greater than or

equal to a given threshold 7. Kira and Rendell (1992) showed that 7 can be deter-

1
Vaxm

(). They also showed that there is a clear contrast between relevant and irrelevant

mined by Chebyshev’s inequality (Taylor, 2016) as 7 = for a confidence level

features, allowing 7 to be determined by inspection as well.
Overall, ReliefF algorithms are good in detecting conditional dependencies, thus,

they are robust and noise-tolerant (Robnik-Sikonja and Kononenko, 2003).

Wrapper Feature Selection

The wrapper approach uses the prediction performance of a given induction al-
gorithm/learner (a classifier) to assess the usefulness of subsets of features in the
data (Guyon and Elisseeff, 2003). Here, the feature selection is “wrapped” around
the learner and does an exhaustive search for variables in the data. The subset
with highest performance is then chosen (Kohavi and John, 1997). Wrappers have
the ability of taking into account variable dependencies by considering the induc-
tion algorithm as a black box. They can be computationally intensive and prone to
overfitting, which, in turn, introduces bias and increasing the classification error. A
common example of a wrapper method is the recursive feature elimination algorithm,
which employs backward selection. Here, the model is fitted using all the features
first and each one is ranked based on their importance to the model. The model is
then refitted with subsets of size S that vary according to the amount of features.
The subset S;, which contains the top ranked features based on the performance of

the model, is selected.
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A popular wrapper approach is feature selection using Genetic Algorithms
(GA). This method mimic properties of biological evolution (e.g crossover, inher-
itance, mutation, and selection) applying heuristic search methods to optimize the
amount of variables in a data set (Pantanowitz and Marwala, 2009). An initial set of
candidate feature subsets (.5;) are created and their corresponding performance is cal-
culated. The fitness values are some measure of model performance, such as the root
mean square error (RMSE) or classification accuracy. The subsets S; with the best
fitness values are combined randomly to produce another subsets which make up the
next population. This process is repeated many times until the best solution is found
(Chandrashekar and Sahin, 2014). GA have demonstrated to be effective handling
both small and high-dimensional data, however, they can be more computational

intensive than other feature selection methods (Mohamad et al., 2004).

Embedded Feature Selection

Embedded methods are somewhat similar to wrappers but they perform the feature
selection as part of the learning process. Hence, they are specific to a given algorithm
that learns which features best contribute to the performance of a model. The most
common examples of embedded methods are regularization methods (e.g. Lasso and
Ridge regressions) (Brownlee, 2014). Embedded FS approaches also include decision
tree-based methods. They carry out a greedy search through the space of decision
trees using an evaluation function to select the attribute that has the best ability
to discriminate among the classes. They partition the training data based on this
attribute and repeat the process on each subset, extending the tree downward until
no further discrimination is possible (Blum and Langley, 1997).

Embedded methods have the advantage that they include the interaction with the
classifier, while at the same time being less computationally intensive than wrapper
methods. Embedded methods have the advantage that they include the interaction

with the classifier and are less computationally intensive than wrapper methods.
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Artificial Contrast with Ensembles (ACE) is an embedded FS method that
uses parallel ensembles of decision trees or random forest to select the best features
in a data set. ACE creates a traditional statistical inference setting by building NV
times a random forest of M trees. It generates N random forests and calculates NV
VIS for 2J covariates in the training data set. That is, the J predictor covariates
and J additional artificial covariates. An artificial covariate z} is simply a random
permutation of the observed values of predictor x;. This process is repeated for each
feature until the set of J artificial covariates has been generated. Since these artificial
predictors are random permutations of the original, they share the same marginal
distributions, but they are by no means related to the response. The idea is that their
variable importance scores must be low since they are not related to the response,
and, hence, they can be used to create a threshold to better understand when the
magnitude of a VIS is indeed large. From each of the N random forests, a VIS is
recorded for each predictor as well as a large quantile (g), often gog or higher, for the
artificial covariate VIS’s. At the end of this iterative process, a paired t-test is used
to determine whether each of the predictors has a VIS that is larger than the large
quantile from the artificial VIS. All predictors that show a statistically significant
improvement over the artificial variables are selected as important; the remaining
predictors are discarded (Tuv et al., 2009).

The R package VSURF (Genuer et al., 2015a), is also an embedded method
that uses random forests as a mean to select important features. It is based in a
two-strategy approach: (1) preliminary elimination and ranking, and (2) variable
selection. In the first step, the objective is to find important variables highly related
to the response using random forest VIS. Here, variables are sorted according to their
mean VIS in decreasing order. A threshold value is given by the minimum predicted
value of a pruned CART tree model fitted to the curve of the standard deviations
of the VIS. Only the variables with an average VIS greater than this threshold are

retained for the next step.
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In the second step, a series of embedded random forest are modeled starting with
a random forest build with only the most important variable and ending with a
model having all the variables selected in the first step. Then, the minimum mean
OOB error, min(Xy), of these models and its associated standard deviation (see)
are computed. Finally, the smallest model (and hence its corresponding variables),
having a mean OOB error less than the minimum mean OOB error plus its standard

deviation is selected (X,op < min(Xoon) + Soob)-
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3. METHODOLOGY

This chapter presents the detailed description of the proposed imputation scheme and
the data used. The premise behind the proposed approach is that a variable can be
imputed taking into account only those other variables that are related to it. When a
missing value in a specific variable must be imputed, the imputation algorithm might
not need to make a large amount of preliminary imputations in all other covariates
with missing values or carry out a computationally-intensive optimization routine un-
til convergence in the missing value imputation is obtained. The method is currently
implemented in two phases, the first one being the feature selection and the second,
the missing value imputation. Figure 3.1 depicts an overview of the evaluation done

throughout this work.

Data sets: Publicly available,
simulated scenarios and EPR

Feat: .
© UTS Reth-F V-SURF EVﬂlund(”j Random FOICS[
selection

Proposed Feature Random forest-
Selection + based
Aoy imputation

e

Fig. 3.1.: Flow diagram of proposed approach
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3.1 Proposed Imputation Approach

The main steps of our proposed imputation method are described in Algorithm
1. Let D,,;s be a n X p-dimensional data set having missing values. By default, the
algorithm uses a forest of 125 trees (7') unless specified by the user. The maximum
amount of imputations, k, per missing record is also set to 30, unless the user spec-
ifies otherwise. This value k was set to 30 to ensure convergence of the imputation
(Comulada, 2015). The categorical and numerical impute change thresholds, A, and
A,,, are also require in the algorithm. A, is define to 4, meaning that the imputation
of record r in a categorical missing variable X; stops after 4 unchanging consecutive
imputations. In a similar way, the numerical impute change threshold (A,) is set
to 2.5%, meaning that the imputation for a record r € X; stops when the difference
between the actual imputation (P,.,) and an old one (P,4) is 2.5% or less.

Variables with missing values are first identified in the incomplete data set D,,;s.
A vector M is created with the amount of missing values in each missing variable
X;. Afterwards, an initial guess of the missing values in D,,;,s is carried out us-
ing mean/mode imputation, prior the feature selection. The statistically significant
variables for each X; € D,,;s are then determined using genetic algorithms feature
selection (GA). An important variables incidence matrix F is created as a result. The
columns in F refer to the variables with missing values, and the rows of the matrix
refer to all variables in the data set. In this incidence matrix, a value of zero in
element ¢, 7 implies predictor ¢ was not detected as to have a significant relationship
with predictor j. Otherwise, element i, j would have a value of one, portraying a sig-
nificant relationship between variables i and j. The imputation of X!s is carried out
in increasing order of missing values. Therefore, 0 is the vector of indices of columns
in D,,;s, sorted in increasing order of missing values. 0 indicates the order in which
missing variables X; are imputed in the data set.

A random forest of T' trees is built for each variable with missing values X;,

treating the vector of its observed values Dy.qin[X;] as the response. The data set



Input : A data set D,,;s having missing values
Output : A data set Dj,,,,, with all missing values imputed
Require: T+ 125; /*Number of trees in the random forest.*/;
k < 30; /*Maximum amount of imputations.*/;
A, + 4; /*Categorical impute change.*/;
A, < 0.025; /*Numerical impute change.*/;
foreach X; do
m; < CountMissVal(X;) /*M is a vector of the frequency of missing
values in each X;.*/;
end
D{™ « MeanMode(D,,;s) /*Initial imputation using mean/mode.*/;
foreach z; do
| fi < GA(DS,,0 ~ Di

* s K/
imp,0 impo /FRun feature selection./;

end

F < CreateIncidenceMatrix(F) /*Create Important variables incidence
matrix.*/;

O <« Sort(M) /*Vector of indices of columns in D,,;s sorted in increasing

order of missing values.*/;
foreach X; € D,,;; do

27%¢— NamesInCompleteCases(X;) /*Row names of missing values in
Xi*/;
Diraint— Dy [x9% cols] /*Training sample.*/;
Diesii— D™ [z, cols] /*Testing sample.*/;
foreach record r in X; do
while j in1:k ord, > A, ord. # A. do
=1

P < Predict(X;[z7*]);
dn < ChangeInImpNum(P, ey, Pog);
d. < ChangeInImpCat (P ew, Pod) ;
J=J+L
end
end
if is.numeric(X;)==TRUE then

‘ Xiimp: mean(Pew, Pod);
end
else

| X = P
end
end

Return D;,,, /*Imputed data set.*/
Algorithm 1: Proposed Imputation Scheme

cols <— which(f; == 1) U which(ColNames(D,,;s) == “Y”) /*Important
variables and overall Y of data.*/;
19" < NamesCompleteCases(X;) /¥*Row names of observed values in X;.*/;

rF <+ randomForest (D qin|Xi] ~ Dirain, T) /*Fit random forest.*/;

21
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used to train the random forest (Dy,q;,,) includes the response of the overall supervised
learning scenario, Y, as well as all other predictors that have been selected by the
feature selection algorithm, as indicated by the elements that are equal to 1 in column
j of the incidence matrix F. The random forest draws T bootstrap samples of Dy.qin
to build the T decision trees in the ensemble. The trained random forest rF is then
used to predict the missing values in X;. The testing sample Dy, consists of Y and
the important variables of X, and is used to predict X;’s missing values.

This process is repeated k times or until a stopping criterion A is met. The change
in imputation of numerical variables ¢,,, is the percentage of difference between the
new imputation of a missing value, P,., and its previous, as given by P,;. When
0y is less than or equal to A, the algorithm stops imputing values for that record
r of X; and moves on to the next one. In the case of categorical variables, if the
new imputed value has not change in the last A, iterations, then, the algorithm stops
the imputation process for that record and moves to the next r in X;. Finally, the
overall imputation of numerical missing values, Xfmp , is given by the average of the
j imputations used in d,,. Additionally, the final imputation for a categorical missing

value is given by its last imputation.

3.2 Data

Different data sets were used throughout this work to evaluate the feature selec-
tion, the parameter tunning of the random forest imputation, and the final comparison
of the proposed imputation scheme with KNN and missForest. These data sets are
divided into three groups mainly: publicly available data, simulated scenarios, and a

special case study data set called Endometriosis Patient Registry (EPR).

3.2.1 Publicly Available Data

Three data sets available at the UCI machine learning repository (Lichman, 2013)

were used: Cleveland Heart Disease (Janosi et al., 1988), Breast Cancer Wiscon-
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sin (William, 1992), and Sylva Ecology (Service, 2006). Table 3.1 gives a general
description of all three data sets.

The Cleveland Heart Disease data has a total of 14 mixed-type variables, including
demographical information, symptoms, and results on clinical analyses. The response
variable of this classification data set is an integer valued from 0 to 4, denoting the
presence of heart disease in the patient. Heart disease generally refers to conditions
that involve narrowed or blocked blood vessels that can lead to a heart attack, chest
pain (angina) or stroke (Staff, 2014). A value of zero represents the absence of heart
disease, whereas values from 1-4 represent the presence of any of the conditions pre-
viously described.

Figure 3.2 shows the missing patterns in the data set, which contains approxi-
mately 2% missing values. The rows in the grid display the different patterns found
within the missing variables, in order of occurrence. Out of the 13 variables in the
data set, 2 of them have missing values as portrayed by the number of vertical bars
in the bar plot (Figure 3.2). Over 98% of the rows represent complete cases, while

the remaining cases are missing one value in either predictor ca or thal.

Table 3.1: General description of publicly available data sets.

Num. Cat. Variables L
Data set Records Missing Response
Attr. Attr. with MV’s
Heart disease 303 5 8 2 2% Class
Breast Cancer 699 0 10 1 2% Class
Sylva 13,085 51 177 0 0% Class

The second, Breast Cancer Wisconsin, is also a small classification data set that
includes characteristics of breast cells from biopsy studies in patients. All of the
variables in this set are categorical with the response being the diagnosis of the breast

tissue being malignant or benign (Wolberg and Mangasarian, 1990). Figure 3.3 shows
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Fig. 3.2.: Visualization of missing data in Heart Disease data set. The yellow cells
show available information and the blue cells indicates missing values. The different

rows in the grid shown in the plot reflect the most common patterns in the data set.

the missing patterns in the data set. It has approximately 2% missing values, which
correspond to variable Bare.nuclei.

Finally, the Sylva Ecology data set, is the biggest data set used in this study. It
is a mixed-type data set with over 200 variables and over 10,000 records. The set
is a binary-classification of forest cover in the United States. It classifies Ponderosa
Pine trees vs everything else. An interesting aspect of this data set is that half of the

variables are noise variables.

3.2.2 Simulated Scenarios

Six different simulated data sets were also evaluated throughout this work. These
data sets can be divided into three main groups as well: (1) data sets with linear rela-
tionships (portrayed by rows two and three in Table 3.2), (2) nonlinear relationships

(rows four to six), and (3) an isolated simulated data set (row one).
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Fig. 3.3.: Visualization of missing data in Breast Cancer Wisconsin data set. The
yellow cells show available information and the blue cells indicates missing values.
The different rows in the grid shown in the plot reflect the most common patterns in

the data set.

Table 3.2: General description of simulated data scenarios.

Data set Records Numn. Cat. Variables Missing Response
Attr. Attr. with MV’s
SimOriginal 500 4 6 0 0% Num
LinReg203 500 151 52 0 0% Num
LinClass145 500 86 59 0 0% Class
NonLinReg70 500 70 0 0 0% Num
NonLinReg38 500 27 11 0 0% Num
NonLinReg125 500 7 48 0 0% Num

Generated Linear Data

The linear relationship data sets were generated using Tuv et al. (2009) linear data

generator. The LinReg203 is a regression data set with 203 mixed-type variables. The
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categorical predictors have cardinality ranging from 2 to 10 levels. It has 4 statistically
important variables, 99 correlated redundant variables (regression R? ~ 0.5 and R? ~
0.1) and 100 noise variables, following a standard normal distribution N(0,1). The
response was generated based on the additive model y = xy + x5 4+ 3 + x4 + £, where
€~ N(0,1) and x;...z4 are the important variables.

The LinClass145 is also a mixed-type linear data set with a two-class response
variable. The categorical variables were also generated with the same cardinality as
LinReg2053. 1t has 15 important variables with random linear dependency between
them and the response variable. A random weight, following an uniform distribution
U(0,1), is given to each of them when generating Y. It also has 30 redundant which
are random combinations of one important numerical variable plus random noise,
N(0,1). In addition, this data set has one hundred noise variables with distribution
N(0,1).

Generated Nonlinear Data

The nonlinear data sets were generated using the nonlinear data generator de-
scribed in Friedman (2001). The NonLinReg70 data set is a replica of the nonlinear
data set used in Tuv et al. (2009). This data set has 10 important variables from
which the target is generated. It also has 20 redundant variables, that are a ran-
dom linear combination of 3 important variables plus a random noise, based on an
uniform distribution. Finallu, there are 40 noise variables, N (0, 1), in the data set.
The numeric response variable is a weighted sum of 10 multidimensional Gaussians,
each Gaussian involving about 4 variables randomly drawn from the 10 important
variables.

The NonLinReg38 is also a regression data set with mixed-type variables. It has 8
important, 20 noise, and 10 redundant variables that were generated using the same
structure as NonLinReg70. NonLinReg125 follows the same pattern as well but it has

20 important, 75 noise and 30 redundant variables. The categorical variables in both
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NonLinReg38 and NonLinReg125 were generated with cardinality ranging from 2 to
10 levels.

SimOriginal Data

The SimOriginal data set was simulated using R (R Core Team, 2016a). It has a
numerical response variable and 10 mixed-type predictors (four numerical (X; — Xy)
and six categorical (X5 — Xjg)). The categorical predictors consider variables, which
range from low (binary) to high cardinality (10 levels). The data was simulated
so that half of the predictors are related (X; — Xj5), while the remaining half are
independent (X — Xj0). The structure of the simulated data is shown in Table 3.3.
The value of predictor X5 depends on the value of predictor X; plus random noise
based on the standard normal distribution, N(0, 1). Predictors X3 — X5 also depend
on the value of X; and so on. In addition, predictors X5 and X, further depend on
Xs. For X3, the relationship with X5 is additive, whereas its relationship with X} is
multiplicative. Finally, the response was generated based on an additive model using

X1, X5 and a random uniform noise.

Table 3.3: SimOriginal data structure. Simulated data includes 500 observations in

10 mixed-type data predictors and one numerical response variable.

Xoo ~ UNIF(7025,025) Xo1 ~ ]\7(07 ].)
X1 = Xoo + Xo1 X7NDUNIF(1,3)
X2=2*X1—|—X01 XsNDUNIF(175)
Xs=X1+Xo+ X1 XgNDUNIF(].,?)
Xy = X1 % Xo+ Xo1 X10~DUNIF(1,10)

5 =

DUNIF(2,4) X; >0
YN3*X1 —|—X2—|—X00

1 elsewhere

X¢ ~ DUNIF(1,2)
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3.2.3 Endometriosis Patient Registry (EPR)

The Endometriosis Patient Registry data set, from the Endometriosis Research
Program (ERP) at the PSMHS, is relatively large with a moderate number of miss-
ing values. This registry, described in Table 3.4, gathers information of women with
endometriosis-related symptoms, some of which chose to be diagnosed via an invasive
surgical procedure (e.g. laparoscopy, laparotomy). It includes data on demograph-
ical information, endometriosis-related symptoms, pre-existing conditions, lifestyle
choices, and family and medical history for a total of 99 different variables and 2,763
records.

The EPRs main challenge is the fact that it has more than 37,000 (14%) missing
values. If any record with missing values were to be discarded, there would be zero
records left. This issue comes up from the fact that this data was collected using a
survey that was subject to changes over a ten-year period (e.g. some questions were
added, some questions were removed). Figure 3.4 shows a visual representation of
missing values in the EPR data set. The grid displays the different patterns found
within the variables with missing values in order of occurrence. Out of the 99 variables
in the data set, 25 of them have missing values as portrayed by the number of vertical
bars in Figure 3.4. The most common pattern is records with missing values in 22
variables as shown in the first line in the grid. In fact, this pattern is present in 21% of
the records in the data set. Table 3.5 also breaks down the proportion of incomplete
values in the missing variables of the data set, with some of them having up to 99%
missing records (Pap test class variable). It is important to note that this specific
variable was removed from the data set since it is nearly non-existent. This clearly
describes the challenging nature of the EPR. Whenever any given record needs to be
imputed, there is a need for up to 21 preliminary imputations per record. For this
specific pattern, there would be 21 imputations.

Thus, EPR was the motivation behind the proposed imputation method, for its

high dimensional mixed-type nature and large amount of missing values. Also, it
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is the most complete data repository for endometriosis patients in the island and it
took a significant amount of time and effort to gather it. This data is key to further
analysis for the treatment of endometriosis.

Only complete records of this data set were used in order to perform the final
evaluation of the imputation methods. Constant variables were also removed, hence,

giving a final data set size of 91 variables and 421 records.

Table 3.4: General description of the EPR data set.

Num. Cat. Variables

Data set Records Missing Response
Attr. Attr. with MV’s

EPR 2,763 5 94 25 14% Class
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Fig. 3.4.: Visualization of missing data in the EPR data set. The yellow cells show
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Table 3.5: Proportion of incomplete values in the 25 missing variables of the EPR

data set.
Variable % Missing Variable % Missing

1. Pap test class 99.8% 14. Smoke 52.0%
2. Vomiting 76.0% 15. Cramps 51.6%
3. Irritated stomach 76.0% 16. Problems getting pregnant 46.8%
4. Headache 76.0% 17. Amount of pregnancies 46.1%
5. Chronic Pelvic Pain 76.0% 18. Dyspareunia 45.9%
6. Leg numbness 76.0% 19. Age at menarche 44.1%
7. Bloating 76.0% 20. Age 43.7%
8. Other symptoms 76.0% 21. Dysmenorrhea 43.0%
9. Age symptoms started 69.4% 22. Period length 33.0%
10. Other conditions 60.6% 23. Constipation 5.1%
t1- Numberof days be 2 ooy 24. PAP test 5.1%
tween period

12. Amount cigarcttes the . | 95. Ovarian Cysts 4.8%

patient smokes per day

13. Years smoking 52.0%
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4. ANALYSIS

The proposed approach is a combination of feature selection along with random forest-
based imputation. In order to develop our proposed scheme, five different feature
selection methods (ACE, CFS, GA, ReliefF, and VSURF) were considered and eval-
uated in a cross-validation setting. Extensive parameter tuning was carried out to
determine the most suitable combination of parameters for the proposed imputation
method. Finally, the performance of the proposed scheme was assessed and compared
to two other well known imputation methods, KNN, and missForest. This chapter
describes the framework of the analysis followed through the design of the proposed
missing imputation approach (Section 4.1) and its performance evaluation (Section

4.2).

4.1 Development of Proposed Imputation Approach

The proposed imputation approach consists of two phases: (1) selecting the impor-
tant features of each missing variable in the data set, and (2) imputing the missing
variables based on the significant variables chosen by the feature selection. Phase
1 will includes an extensive evaluation of feature selection methods for mixed-type,
high-dimensional data. Phase 2 involves a thorough parameter tuning of the random-

forest-based imputation.

4.1.1 Evaluation of Feature Selection Methods

ACE, CFS, ReliefF, GA, and VSURF were evaluated in the selection of the feature
selection method to be used in the proposed imputation approach. Figure 4.1 shows

a general description of the undergone evaluation. The performance of the feature
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selection methods was assessed using five-fold cross-validation (CV) on a random
forest model. The performance of the feature selection methods was also assessed
in more detail using the simulated data sets since their structure was known. Seven
out of the ten data sets discussed in Section 3.2 were employed in this evaluation, as
depicted in Figure 4.1. We included regression and classification data sets of various
sizes. All of the experiments in this phase were performed using the R statistical

software (R Core Team, 2016b).

Breast LinReg LinClass NonLin

selection

Ccv

' Performance of Simulated
Scenarios
Best
' Accutacy . time ! subsct . Speclﬁclty. Sensitlvlty! Accutacy

Desuablhty Desn:ablhty
Fig. 4.1.: Flow chart of steps carried out for the selection of F'S method.

Thirty bootstrap samples of each of the seven data sets were created, therefore,
the five-fold cross-validation was carried out 30 times for each F'S method and each
data set.

The ACFE method used in this evaluation is a modified version of the original
ACE by Tuv et al. (2009). This Tuv et al. (2009) version uses gradient boosted
trees (GBT) to obtain the variable scores, whereas the one used in this analysis uses
random forests. Preliminary results on the SimOriginal data were used to select

the ACE parameters. Multiple runs suggested the selection M = 150 trees for each
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ensemble as well as a ¢ = g9 for the artificial predictors VIS. Figure 4.2 shows
how the error rate in the ensemble stabilizes after including approximately 150 trees,
which is what motivated the use of ensembles of 150 trees. The results also suggested
that the importance scores were not normally distributed, thus, the non-parametric
hypothesis Wilcox test (Wild, 2011) and a Bonferroni approach (Bland and Altman,

1995) was used to assess significance a = 0.05/(number of predictors).

045 0.50
| |

Error
040
1

0 100 200 300 400 500

trees

Fig. 4.2.: Preliminary evaluation of the number of trees in a parallel ensemble or

random forest.

The CFS and ReliefF feature selection methods were implemented using the R
package FSelector (Romanski and Kotthoff, 2016). The ReliefF' method requires
that the user chooses a threshold to select the top important variables. Variables
were sorted in order of attribute importance and the percentage between them was
calculated. The top subset was composed of all the variables whose difference was
below 35%. The following parameters were used: neighbours.count = 10 and sam-
ple.size= 0.05(DatasetSize). CFS was run using its default parameters.

The VSURF method was implemented using the R package VSURF (Genuer et al.,
2015b). The amount a of trees for the random forest was changed to ntree = 125.
Finally, the GA algorithm was executed using the R package caret (Kuhn, 2016),

with number of search iterations selected as iter = 2.
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Performance Measures

Four performance measures were evaluated in the five-fold cross-validation: (1)
accuracy, (2) best subset size, (3) run time, and (4) overall desirability. In classification
models, the accuracy is the fraction of instances that are correctly predicted. It is
given by:

Accuracy =1 — g (4.1)

where f/n is the classification error given by the amount samples incorrectly classified
out of the total samples n. On the other hand, the accuracy of a regression model is
also given by the prediction error. Thus, the predicted residual error sum of squares
(PRESS) was calculated for those data sets with numeric response. The PRESS is

given by:

PRESS = i (yi — 9)° (4.2)

i=1

where y; and ¢ are the observed and predicted values, respectively. PRESS values
were scaled to a range between 0 and 1 and its complement was calculated to convert
them into accuracy values. Consequently, values close to one are preferred for this
scaled measure.

Run time denotes the CPU time, in seconds, taken to run the algorithm. A faster
FS method is desired; hence, lower run time values are preferred. The Best sub-
set measure depicts the number of important variables selected by the FS method.
Smaller subsets will lead to less complex models and, thus, smaller subsets are pre-
ferred.

Since various performance measures may favor different methods, a desirability
function was used to determine the top performer. The overall desirability function
(D) combines the previous measures and gives each one of them different weights

based on their relative importance: accuracy (60%) > run time (30%) > best subset

(10%).
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D, = 0.6 x (Accuracy) + 0.3 x (1 — Runtime’) + 0.1 x (1 — BestSubset’) (4.3)

Note that all the performance measures were scaled between 0 and 1 before calcu-
lating the desirability function. Values closer to one are preferred, since the desirabil-
ity function is scaled as well. The desirability function was scaled to values between

0 and 1 as well as:

, De —min(Dey)
" maz(Dey) — min(De,)

Furthermore, the Sensitivity, Specificity and Accuracy of the FS methods were also

(4.4)

calculated for the simulated data sets since their important variables were known.
The overall Desirability function was evaluated once more. Based on the feature
selection analysis, sensitivity is the proportion of important variables for a predictor

j correctly identified by the feature selection method:

TP
TP+ FN
where T'P is the number of variables accurately detected as important and TP + F'N

Sensitivity =

(4.5)

is the total number of important variables.
The specificity is the proportion of variables accurately not detected as impor-

tant by the feature selection method:

FP
FP+TN

where F'P is the number of excess variables detected by the feature selection method

Specificity =1 — (4.6)

and FP + TN is the number of variables that should not have been detected as
important, which are the redundant and noise variables.
The accuracy is the proportion of variables correctly identified by the feature
selection method, given by:
TP+TN

A - 47
Ty = TP I TN + FP+ FN (4.7)
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where T'P is the amount of important variables detected and T'N are the number of
non-important variables not detected out of the total number of variables in the data
set.

Once again, the overall desirability combines the previous measures in Equation
4.8 and gives each one of them different weights based on their relative importance:

sensitivity (50%) > specificity (25%) > accuracy (25%).

Dy = 0.5 x Sensitivity + 0.25 x Speci ficity + 0.25 x Accuracy (4.8)

The desirability function was scaled to values between 0 and 1 as well:

Df — mm(Df)

D', =
maz(Dy) — min(Dy)

(4.9)

4.1.2 Evaluation of Random Forest Imputation

Additional experiments were carried in order to improve the random forest-based
imputation performance. Specifically, various factors were taken into account for the
evaluation of the stopping criteria in the imputation of the missing values in X;. This
algorithm was implemented using R statistical software as well as the random forest
function available in the R package randomForest (Liaw and Wiener, 2014).

This analysis was performed using the SimOriginal data set. The performance
of an imputation technique depends on the amount of missing values present in the
data set. Thus, missing ratios of 5%, 10%, 15% and 20% were simulated for each of
the SimOriginal bootstrap samples. These missing values are randomly distributed
in the data sets, meaning that the 2% of the total variable values are missing.

Figure 4.3 portrays the multiple factors evaluated for the imputation stopping
criteria and the overall imputation. Five different factors were considered in this
evaluation: missing ratio, stage, impute change, stop rule, and imputation. The
stopping criteria ¢ is calculated for both numerical and categorical variables. In

the case of numerical variables, d,, is the percentage of difference between the new
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imputation of a missing value and an old imputation. This difference is compared
against a threshold called impute change (4A,). The algorithm will keep imputing the

missing value as long as 9, > A,,.

Missing Ratio
5%, 10%, 15%, 20 %

Imputation Impute change Impute change Impute change
Stopping Num: 2.5%, 5%, 7.5% Num: 2.5%, 5%, 7.5% Num: 2.5%, 5%, 7.5%
Criteria Cat: 2,3, 4 Cat: 2,3, 4 Cat: 2,3,4
Stop Criteria Stop Criteria Stop Criteria
Simple Simple, Avg, Max Simple, Avg, Max
Overall Imputation Imputation Imputation
Imputation Num: Last Value, Avg Num: Last Value, Avg Num: Last Value, Avg

Cat: Last Value

Cat: Last Value Cat: Last Value

Fig. 4.3.: Flow chart of evaluated factors with their corresponding levels.

Three different values of A, were evaluated: 2.5%, 5%, and 7.5%. For a given

imputation in record r, the imputation difference is:

5n _ Tnew — Lold (410)
Lold

In the case of categorical variables, if the new imputed value stays the same in
the last d. iterations, then, the algorithm stops imputing for that record and moves
on to the next record r in X;. Three options were also evaluated for A., where the
imputation value did not: change in the last two iterations (A.=2), change in the

last three iterations (A.=3), and did not change in the last three iterations (A.=4).
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Two factors were considered to decide how d,, is calculated in the algorithm: (1)
stage and (2) stop rule. Three stages were evaluated: stage 1, 2, and 3, denoting
the amount of imputation differences considered for the final impute change in the
iteration. These stages go along with three stopping criterias: simple, average, and
maximum, which depict the aggregation of these stages to obtain the final imputation
change. Table 4.1 shows all the possible combinations of stages and stop rules along
with the equations used to calculate ¢, in the experiments. For example, if the
combination stage 2/average is used, then, ¢, is calculated as the average of the

difference between imputations j and j — 1 and imputations j — 1 and j — 2.

Table 4.1: Equations used to calculate d,, in the parameter tuning.

Stage Stop Criteria On

. ()" =)

1 Simple e
j—1

. (2P —2i™E)

2 Simple JTZN
i—2

. ()" =" 8)

3 Simple g 3
Jj—3

(@imP_gimpy (g imp_imp,
J _ J— + J— J—
Tp

2 Average Sl 4
2

B

_imp __imp _imp __imp _imp __imp
(€ . ‘Lj71)+(‘tj71. £j72)+<1—j72v .Lj73)

imp imp imp
A T Ti_o T3
3 verage 3

. (miﬁmp—aci.rfp) (miiiw—aci.rfp)
2 Maximum Max{ — L e
j—1 j—2

. (2" —2i™7) (27 —2i") (27 ) —aiTh
3 Maximum Mazx i , T , i
j—1 i—2 j—3

Finally, two options were evaluated for the overall imputation value of record r

in numerical missing variable X;: last value, meaning that the final imputed value is
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x;m” , and average, which implies that the final imputed value es the average of the
imputed values considered in the calculation of ,,. If X is a categorical variable, then
the final imputed value is the last value imputed (:c;mp ). Overall, forty two different

combinations were evaluated for each missing ratio, for a total of 168 combinations.

Performance Measures

Both, regression and classification performance measures were evaluated due to
the mixed-typed nature of the data sets.

Four performance measures for numerical variables were evaluated: (1) coefficient
of determination (R?), (2) normalized root mean squared error (NRMSE), (3) index
of agreement (ds), and (4) overall numerical desirability (D,). The coefficient of
determination is the square of the Pearson’s product-moment correlation coefficient
and describes the proportion of the total variance in the observed data that can be
explained by the model (Carriquiry, 2004). The R? was implemented using the gof
function of the hydroGOF R package (Zambrano, 2014). It ranges between 0 and 1,

and the higher the value the more useful the model. R? is defined as follows:

_ SSE
SST

where SSE measures the deviation of the observations (y;) from the predicted values

(9:):

R*=1 (4.11)

SSE = (v —4:)° (4.12)

and SST', measures the deviations of the observations from their mean (7):

SST = Z(yi —p)? (4.13)

The normalized root mean square error (NRMSE) is a non-dimensional
measure of the difference between the values predicted by a model and the values

actually observed in the environment (Kaggle, 2017). It is given by:
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VA — )
var(y;)
Since NRMSE is an error measure, high values of NRMSE mean higher impu-

NRMSFE =

(4.14)

tation error. Therefore, low values of NRMSE are desired. The NRMSE was also
implemented using the gof function of the hydroGOF R package (Zambrano, 2014).
The index of agreement (d,) is a standardized measure of the degree of model
prediction error as well. It is similar to R2, but it based on the average relative error
instead. Again, dy was implemented using the gof function of the hydroGOF R package
(Zambrano, 2014). This index varies from 0 to 1, with higher values indicating better
agreement between the prediction and observations (Willmott, 1981). The equation

for ds is:

dy=1— Z?:l (yi — ?Ji)2
_ _ Lo W —
Sy (19— gl + |y — 9)

(4.15)

The overall numerical desirability function combines the previous measures

and treats them as equally important through an addition operation:

D, = R*+dy+ (1 - NRMSE) (4.16)

Note that the complement of NRMSE is used in order to reflect that larger values of
the desirability function are preferred. The desirability function was scale to values

between 0 and 1 as follows:

D,, — min(D,,)

D, =
" max(D,) — min(D,)

(4.17)

Other four performance measures were also evaluated for categorical variables:
(1) classification error (E), (2) area under precision-recall curve (AUPRC) (3) kappa
statistic (k), and (4) overall categorical desirability (D.). The classification error

is the proportion of sample cases incorrectly classified and is evaluated by:
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E = - (4.18)

where f is the number of sample cases incorrectly classified out of n total samples.
The area under the precision-recall curve is the probability that a classifier
will rank a randomly chosen positive instance higher than a randomly chosen negative
one. For multi-class problems, the AUPRC is a measure of the discriminability of
multiple pair of classes. It is based on precision, which is related to what should
have been detected, and recall, which is the fraction of what was detected (Fawcett,
2003). AUPRC values range between 0 and 1 as well, and the closer the value to 1,

the better. The equation is given by:

AUPRC =Y AUPRC(c;) * p(c;) (4.19)

cieC

where AUPRC(c¢;) is the area under de precision-recall curve for class i and p(¢;)
is a weight given based on the prevalence of the class in the data. The AUPRC
was implemented using the pr.curve function of the PRROC R package (Grau and
Keilwagen, 2015). It was preferred over the traditional area under the curve (AUC)
because it does a better job at handling unbalanced data sets.

The kappa statistic (k) is a measure of agreement between categorical variables.
It compares an observed accuracy with an expected accuracy (random chance). In
addition, it takes into account random chance (agreement with a random classifier).
Kappa can take values between -1 and 1, but a x > 0 is desired, specially values closer

to one (Sharp et al., 2017):

Do — Pe
1_pe

where p, is the observed agreement, and p. is the probability of random agreement.

K =

(4.20)

The kappa statistic was implemented using the cohen.kappa function of the psych R
package (Revelle, 2016).
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Once again, the overall desirability function for the categorical variables was

assessed and considered each as equally important.

D. =k + AUPRC + (1 — E) (4.21)

The desirability function was scaled to values between 0 and 1 as follows:

D. — min(D,)
max(D.) — min(D,)

In order to evaluate both, numerical and categorical variables at the same time,

D = (4.22)

an overall desirability function (D,) was calculated. Both are equally weighted by:

D,=D +D, (4.23)

4.2 Evaluation of Imputation Methods

The performance of the proposed imputation method was compared to KNN and
missForest. Figure 4.4 displays a general overview of the missing value imputation
evaluation. Nine data sets (BreastCancer, Heart, EPR, LinReg203, LinClass145,
NonLinReg70, NonLinReg125, NonLinReg38, and SimOriginal), described in Section
3.2, were used in this final evaluation. Thirty bootstrap samples were generated for
each data set and missing values were randomly created for each one of them using
the ProdNA function of the R package missForest (Stekhoven, 2013). These missing
values were simulated at 5%, 10%, 15% and 20% missing ratios.

The KNN was implemented using the function kNN in the R package VIM (Kowarik
and Templ, 2016). This algorithm uses Gower distance to find the k nearest neigh-
bors. We used the default parameters of the function, that is, the number of nearest
neighbors k=>5. On the other hand, the function missForest was executed using the R
package missForest (Stekhoven, 2013). Here, the default parameters of the function

were used: the number of trees in the random forest (ntrees=100), the maximum
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EPR, Heart, Breast Cancer, LinReg203, LinClass 145, NonLin70,

Data sets NonLinReg38, NonLinReg125, SimOriginal

. P d
i

Numerical :
. Categorical
Class
2
N

Evaluation

Fig. 4.4.. Flow chart of steps carried out for the performance evaluation of missing

value imputation schemes.

number of iterations to be performed given the stopping criterion is not met before-
hand (maziter=10), among others.
Performance Measures

The performance measures used for the evaluation of the imputation methods are

the same as the ones explained in Subsection 4.1.2.
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5. RESULTS

This chapter summarizes the major results of the development of the proposed im-
putation scheme (Section 5.1), and the final assessment of the performance of the
proposed method against KNN and missForest (Section 5.2). Detailed results for
some of the analyses shown in this chapter are available in Appendix A, B, and C,

respectively.

5.1 Proposed Imputation Method
5.1.1 Feature Selection

Table 5.1 shows the aggregated results of the five-fold cross-validation used in the
selection of the feature selection method. Columns three through seven denote the
average value of the performance metrics on each feature selection method across the
seven data sets. Bold values in the D!, column represent the best results. Figure 5.1
also presents the average performance of the feature selection methods. One standard
error rules are also provided for each plot. Figures 5.1(a) to 5.1(d) present the average
desirability function, D.,, average accuracy, average best subset size, and average run
time for each feature selection method and data set evaluated, respectively. ACE
has the highest average accuracy, as described in Figure 5.1(b), and CFS has the
lowest average best subset size and average run time, as depicted by Figures 5.1(c)

and 5.1(d).
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Table 5.1: Feature selection five-fold cross-validation results.

FS cvV Run Best

’

Data set Method Accuracy time subset Dev Dey
CFS 0.9834 0.0013 8 0.6103 0.3337
GA 0.9824 2.1136 7 0.5413 0.0000
BreastCancer ACE 0.9853 0.0883 10 0.5648 0.1137
ReliefF 0.9675 0.0603 6 0.7483 1.0000
VSURF 0.9839 1.7940 6 0.5696 0.1370
CFS 0.7819 0.2680 11 0.5347 0.8653
GA 0.8934 7.0413 70 0.4849 0.7286
EPR ACE 0.7945 0.3943 28 0.4114 0.5271
ReliefF 0.6782 0.5435 10 0.2193 0.0000
VSURF 0.7278 59.5774 12 0.5838 1.0000
CFS 0.7497 0.0220 5 0.4734 0.0000
GA 0.8077 0.7780 10 0.5106 0.1076
Heart ACE 0.8112 0.0057 8 0.5101 0.1062
ReliefF 0.9735 0.0343 7 0.8197 1.0000
VSURF 0.8016 0.1663 7 0.5270 0.1550
CFS 0.4579 0.0350 2 0.6431 1.0000
GA 0.7064 1.0043 86 0.5971 0.2961
LinReg203 ACE 0.7465 0.0023 73 0.5778 0.0000
ReliefF 0.4420 0.0613 78 0.5973 0.2986
VSURF 0.7673 7.0063 6 0.6373 0.9108
CFS 0.7196 0.0300 9 0.6687 1.0000
GA 0.3981 0.9180 85 0.4406 0.0000
LinClass145 ACE 0.7110 0.0463 29 0.5437 0.4521
ReliefF 0.6658 0.0427 52 0.5161 0.3308
VSURF 0.7045 5.8063 7 0.5311 0.3967
CFS 0.6588 0.0253 5 0.6838 1.0000
GA 0.8022 0.8507 38 0.5319 0.0000
NonLinReg70 ACE 0.8256 0.0243 22 0.5478 0.1045
ReliefF 0.6915 0.0683 17 0.5528 0.1377
VSURF 0.8396 3.2400 7 0.6206 0.5839
CFS 0.9852 0.9700 7 0.6560 1.0000
GA 0.9961 31.6630 147 0.4601 0.2047
Sylva ACE 0.9967 3.4700 59 0.4858 0.3089
ReliefF 0.9597 1.1637 18 0.4097 0.0000

VSURF 0.9949 334.8100 8 0.5509 0.5735
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(a) Average desirability function, including one standard error bars, on Breast Cancer, EPR, Heart,

LinClass145, LinReg203, NonLinReg70, and Sylva data sets.
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(b) Average accuracy, including one standard error bars, on Breast Cancer, EPR, Heart, Lin-

Class145, LinReg203, NonLinReg70, and Sylva data sets.
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(c) Average run time, including one standard error bars, on Breast Cancer, EPR, Heart, LinClass145,

LinReg203, NonLinReg70, and Sylva data sets.

1504
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Best Subset Size

504

ACExf CFS GA Relief Vsurf
Feature Selection Method

BreastCancer [ Heart Linkeg203 [ Sylva
EPR LinClass145|_| NonLinReg70

(d) Average best subset size, including one standard error bars, on Breast Cancer, EPR, Heart,

LinClass145, LinReg203, NonLinReg70, and Sylva data sets.

Fig. 5.1.: Five-fold cross-validation performance of feature selection methods.
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Overall, CFS performed the best in four out of seven data sets (or 57% of the
evaluated cases). Table 5.2 portrays the D, score, which is given by the sum of
the normalized desirability function through the data sets, being CFS the one with
highest result.

Table 5.2: Normalized cross-validation desirability score across all data sets.

FS Method Dy, Score

ACE 1.6125
CFS 5.1990
GA 1.3369
ReliefF 2.7671
VSURF 3.7569

Additionally, the three simulated scenarios (LinReg203, LinClass145 and NonLin-
Reg70) were evaluated in more detail since their structure and important variables
were known. Table 5.3 shows the results of this analysis, where bold values in the D}

column denote the best results.

Table 5.3: Feature selection performance on simulated scenarios.

Data set Mer;‘lSL,o d Sensitivity Specificity Accuracy Dy D}
ACE 0.4467 0.8321 0.7110 0.5275 0.4494
CFS 0.4644 0.9849 0.7196 0.6818 1.0000
LinClass145 GA 0.6867 0.4274 0.4543 0.5562 0.5521
ReliefF 0.4956 0.6582 0.6658 0.5602 0.5662
VSURF 0.1978 0.9718 0.7045 0.4015 0.0000
ACE 0.1667 0.6365 0.6273 0.5714 0.8412
CFS 0.0167 0.9903 0.9711 0.0667 0.0000
LinReg203 GA 0.1667 0.5008 0.4943 0.6667 1.0000
ReliefF 0.6250 0.6198 0.6199 0.5123 0.7428
VSURF 0.7500 0.9864 0.9818 0.4920 0.7090
ACE 0.6900 0.7472 0.7390 0.4535 0.5090
CFS 0.1967 0.9444 0.8376 0.3589 0.0000
NonLinReg70 GA 0.8633 0.5044 0.5557 0.5446 1.0000
ReliefF 0.3333 0.7756 0.7124 0.3710 0.0649

VSURF 0.4433 0.9611 0.8871 0.4580 0.5337
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Figure 5.2 also shows the performance results of this analysis. Figures 5.2(a) to
5.2(d) displays the average desirability function (Dy), average sensitivity, average
specificity, and average accuracy of each feature selection on the simulated scenarios;

including one standard error bars as well.

0.94

Desirability

GA Reliel Vsurl
Feature Selection Method

[ LinClass 145 [l LinRes203 [T NonLinRes70

(a) Average desirability funtion, including error bars, of feature selection methods on LinClass145,

LinReg203, NonLinReg70 data sets.

Accuracy

ACE OFS GA Vsurl
Feature Selection Method

[ LinClass 145 [T LinReg203 [T NonLinReg70

(b) Average accuracy, including error bars, of feature selection methods on LinClass145, LinReg203,

NonLinReg70 data sets.
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[ LinClass 145 [T LinRes203 [ NonLinRes70

(¢c) Average sensitivity, including error bars, of feature selection methods on LinClass145, LinReg203,

NonLinReg70 data sets.

0.9+

0.64

Specificity

0.8+

0.0

GA Relief Vsurf

Feature Selection Method

[ LinClass 145 [ LinRes203 [ NonLinReg70

(d) Average specificity, including error bars, of feature selection methods on LinClass145, LinReg203,
NonLinReg70 data sets.

Fig. 5.2.: Performance of feature selection methods on simulated scenarios.
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In this evaluation, GA performed better in two of the data sets, out of three (or
66% of the evaluated cases), as depicted by the overall desirability D}. Table 5.4
also confirms this result. It portrays the D’ score, which once again is the sum of
the normalized desirability, D%, through the three data sets; being GA the one with
the highest score. Note that the issue here is failing to detect important variables
since the proposed scheme imputes missing variables based on its important variables,
selected by the feature selection method. Selecting variables in excess might not have

much of an effect on the overall execution of the imputation scheme.

Table 5.4: Normalized desirability score across all data sets.

FS Method D} Score

ACE 1.7996
CFS 1.0000
GA 2.5521
ReliefF 1.3738
VSURF 1.2427

5.1.2 Evaluation of Random Forest imputation

The parameter tuning of the random forest imputation was carried out using both
CFS and GA, to evaluate which feature selection method in fact helps the imputation
perform better. Table 5.5 shows the top 3 combinations of parameters for each missing
ratio and feature selection method. Bold values in the column D! represent the best
results. Figure 5.3 also portrays the top 3 performing combinations of parameters
(using both GA and CFS) at each missing ratio in terms of the overall desirability
function (D,). Appendix A includes additional information on the the individual
performance measures. The majority of the D, results in Figure 5.3 fall in the lower
boxes of the plot, specifically in the lower left. This corner includes for the most part,
restrictive assumptions with regards of the impute difference calculation of numerical
variables (stage 3) and its threshold (A, = 2.5%). It can be seen that restrictive

combinations of parameters perform better with higher ratios of missing values.
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Fig. 5.3.: Top 3 performing combinations for each missing ratio and feature selection
method. Triangular and circular shape points denote GA and CFS values, respec-

tively.

In summary, the results in Table 5.5 confirm GA as the best feature selection
method choice, giving higher values of overall desirability (D,) in three out of four
missing ratios (or 75% of the cases). Furthermore, the selected combinations of
parameters for the proposed random-forest-based imputation is given in Table 5.6.
This combination was chosen based on the premise that the proposed method is

mostly focused on data with medium to high proportions of missing values. Thus,

the proposed imputation scheme used GA as feature selection method along with
imp __ zmp
the random-forest-based imputation having A, = 2.5%, A, = 4, §, = x]—mpﬁ?’,

xJ_S
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imp imp
.’L‘] _3

with 2"’ = ~=*-—— being the final imputation of numerical missing values and

zi" = 2" the final imputation of categorical missing values.

Table 5.6: Selected combination of parameters for the proposed random forest-based

imputation.

Parameter Suggested Value/Setting
Impute change num 2.5
Impute change cat 4
Stage 3
Stop Rule Simple
Imputation num Avg
Imputation cat Last Value

5.2 Evaluation of Imputation Methods

Table 5.7 shows the average performance of the three imputation methods in terms
of D,, D., and D,. Bold values in columns D/, D’ and D! represent the best results
for each data set and missing ratio. Figures 5.4 to 5.6 also portray D,,, D., and D,
results including one standard error bars. Appendix B includes individual plots of

the categorical and numerical performance measures.
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6. CONCLUSIONS AND FUTURE WORK

Properly imputed data gives the opportunity to retrieve, not only the best possible
predictions for the missing values, but to replace them by reliable values. The goal
of any successful missing value imputation scheme is to exploit the information in
the incomplete cases and effectively develop approaches to better understand the
underlying populations described in these data sets.

The aim of this study was to design a random-forest-based missing value imputa-
tion technique that would take into account the relationships among variables. The
final proposed imputation scheme uses GA feature selection to get these relationships,
along with the random-forest-based imputation. The proposed method was intended
to be used for high-dimensional, mixed-type data with high volume of missing values.
The scenarios evaluated included data sets from low dimensionality, ten variables, to
high dimensionality, two hundred variables.

This work also evaluated the performance of the proposed method against two of
the best missing value imputation techniques in the literature for high-dimensional,
mixed-typed data: KNN and missForest. The former uses a clustering approach to
imputation; the latter uses a supervised learning approach based on parallel ensembles
of decision trees or random forests.

Overall, results show that the proposed method outperforms KNN in the simulated
scenarios, which have complex linear and non-linear relationships. Also, the proposed
method was the top performer in the SimOriginal data set. The SimOriginal data
set has additive and multiplicative relationships between variables and non-linear
relationships between categorical and numerical variables. A reason why the proposed
method resulted to be the top performer in the SimOriginal data set could be due to
the random-forest imputation tuning being performed using this data set only. This

is just an speculation, the parameter tuning would have to be evaluated using other
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data sets to verify this. The results also suggest that the proposed method has better
performance imputing categorical variables, specially at higher missing ratios, having
lower classification error than KNN and missForest.

In general, the missForest method was the top performer, however, the proposed
method still a reasonable approximation if considered that it did not use more than
50% (in average) of the total predictors to carry out the imputations, whereas miss-
Forest did use them all. In fact, the proposed method used between 3% to 10% of the
variables in six out of the nine data sets evaluated. This is the main difference between
missForest and the proposed method. missForest is a multivariate imputation method
that uses all the variables in the data set to impute a missing variable, whereas the
proposed method is a univariate imputation that uses only those variables important
to the missing variable. This is more advantageous in high-dimensional data since it
significantly reduces the dimensionality of the problem (the amount of preliminary
imputations).

The biggest limitation of the proposed imputation scheme is its computational
complexity. This due to the feature selection method and to the imputation being
carried out per individual variable. It is important to note that the missForest algo-
rithm is parallelized and, thus, there is no way to compete with it until the proposed
scheme is parallelized. As of now, the proposed imputation method is 52% slower
than missForest. As future improvements, it is also suggested to evaluate other im-
putation mechanisms for the initial guess of the data (e.g. a random forest-based
imputation). This has a direct impact on the performance of the feature selection
method and therefore, in the imputation.

Finally, it is also suggested to explore the randomization of the order in which
variables are imputed as well as the order in which the missing values are imputed
within the variables. Right now, the proposed scheme imputes the missing variables
in ascending order of missing values and the imputed values are substituted in the

original data set to impute the new values. This means that performance of the
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imputation increases as more variables are imputed, therefore, variables that are

imputed last are better imputed than the ones imputed at the beginning.



A. PARAMETER TUNNING OF RANDOM
FOREST-BASED IMPUTATION

66



67

"XIIpew 9ouapIdul yr) Suisn Suruny rejeurered uorjejnduil 4$010] wopuel I0] SUOT)RUIqUIOD JO HSINMN 98RIOAY TV "SI

Stage: 3

Stage: 2

Stage: 1

anpepjse| mumu uonemduy

Ipdung :amydorg

Say rumu uonenduy

apdung opydorg

B0 —— §T0 —y— 10 —— €00 —m— (26) O SUISSIY

Jsuery) amduy

8 9 1 a

aneAse mu uonumduy

Xepy apydorg

8 9 L [

Say umu uonenduy

Xepy aqydorg

aneAjse| umu uonemdup Say rumu uonendug

Fay amydoig Say apydorg

ASIRN



68

Stage: 3

Stage: 2

Stage: 1

XU 00U0pUL X)) Suisn Juruny tojourered uoryeindul }$010§ WOPURI 10§ SUOIJRUIGUIOD JO ,f 9SRIOAY gy "SI

8 9 ¥ &
fuye tuye tuye
Tuvye tuve tuve
tuye tuye imve

e se | aunua uonenduy

Idung :amydoig

8 9 7 G
Tuye tuye Tuye
iuye Ituye Imve
Inye +uvye +uvye

Hay sunuTuonendurg

Apdung apydorg

70 —— CT0 —v— 10 —a— C0'0 —m— (26) ONRY SUISSTIA

aguer)y smdurg

8 9 1 3
tuye Tuye Tuye
tuve inye tuve

aneplse| swnu uonendurp

xepy mydorg

8 9 ¥ 3
tuye tuye Fuye
fuve tuye Tuvye

Say swnu uonenduuy

Nepy sanydorg

8 9 i [
Tuye tuye Tuye
+uye tuvye tuvye

anepsery swnu” uongemndury

Say amydolg

8 9 i G

: ! ! o0
-0

tuve Fuve Fmve .
Lo
-00
-0

tuve tuve tmvye .
-
=00
-0
=01
Lol

Say smnu uonenduy

Sy opmydo

2



69

Stage: 3

Stage: 2

Stage: 1

"XIIYeW 9ouapIoul ) Suisn guruny tojeurered uoryejnduil 18010] WopUel 10 SUOIJRUIGUIOD JO &p 9FRIDAY "¢y "SI

+iye +ave +ive

+uye +avye +uvye

+aye +uye +uye

aeAlse| nu uonendurg

Ipduug opypdorg

+ive +ive +ive

+uye +uve +ave

+Eye +uye +uvye

Say runu uonemdury

Spdung omydoig

T0 —— €10 —y— 10 —a— C00 —m— (96) O SUISSIY

asuey) smndury
8 9 1 4 8 9 1 4

+Hvye +Evye +Eve +iye +Hvye +Eye

+uvye +uvye 4uye 4uve +uye +uye

anpeA s unu uonemduy Fay munu uonendurg

xey oy doig xepy mydoig

+ive +aye +ive

+Eye  4Eye  $mye

anfeglse| swmu uonendury

Say amydorg

+Hvye +Eye +Eye | o1

+uve +uye +ave |

Say rwmu uonendury

Aay opydorg

Zp



70

“XLIYeU

90UOPIOUIL Sursn Suruny 19jourered uorjeinduwll 1S9I0] WOPURI I0] SUOI)RUIGUIOD JO JOLID UOIJRIIJISSRIO 98RIAY '}V "SI
pourl ) sul unj 1oy ey | 2 p ] [eulq J [yeoyIsse| V 7V dlg

T0 == CT0 =y 170 —a—= €00 —m— (%) QDY SuIssIpy

asuer) amdury

07 &g e e 06 071 [ e B 06 071 o8 0e 6 s
1 1 1 [} 1 1 1 1 [} 1 [} 1 1 [} L

=00

o =)

g FEIF FEIF FXIF FEEF FEXIF FEIF E3 X ] FEYSF FEXF

b= =01
=
00 2

-~ -¢0 =

y TEIF ES S X ) ES S X ) ES S E X IXXIF INYS INYF INIF g

S.m =01 m

2

cor 32
=00

—_ =0

y IEIR FEXF Ix¥3

& =01
- W—

anpeAse ey uonenduy anfeAIse ses uonemdury anfeAISe| es uonemdury

Apdung opypdorg Xepy mydorg Fay oy dorg



71

“XLIjeul

9ouepLUI yr) Sursn Jurung 1ojetrered uorjejnduil }$910] WOPURI 10 SUOIPRUIqUIOD Jo o13s1ie)s eddey ofeloay ¢y "SI

B0 —— 010 —v— 1) —a— GO0 —m— (96) ONEY SUISSI[Y

aguey) amdury

07 LY 0¢ s 0@ 07 &g 0¢ &6 0a 07 &g 0e e G
1} 1 1 1 [} 1 1 1 1 [} 1 1 1 1 1} IC.C
+5¥3 *E¥d +1¥3 +*5¥9 +5¥3 3 B ) 0¥ +5F3 +0§3
) =0
o =01
-7
=00
+i T8 *01¥? +*5F8 o A #0¥3 +0¥8 +H ¥ N B +H¥s
- SU0
# Fo1 B
=0T
=00
+T§d +H§d +i§d
— =0
@* =01
=01
anfepIse] aed uonendury anpepse aed uonendury aneAIseT e uonemdurg

apdurng apypdorg X[y oydorg Ay omydoig



72

.XEHQE QIUOPIIUIL uIisn QHGSp H@pwadeﬁm QOS@@S T pwwho wopueda JI0 mQOSMmHE w09 JO 90RBIDA 0 ‘ol
[ pout yo) suisn sul d worjeindur J wop J SUOIJRUIqUIOD JO DY JV 98BIAY 9y "SI

Stage: 3

Stage: 2

Stage: 1

Ex¥ X

EFEx ¥ X

Exwv X

=¥ X

EE ¥ X

E=x¥w X

aneAlseT fed” uonendury

apdung :omypdorg

0z

=¥ K

¥ E

Ex¥x XK

T0 —— OT0 —p— 10 —a— €00 —m— (%) oDy SUISSIpy

Asuey) amduy

07 g 0'e s 0

1} 1 1 1 1
ETx¥*X =¥ X k=¥ X
Ex ¥ X E=¥XE Ex¥XE

anfe st e uonemdug

Xepy anydorg

¥ X Ex¥w XK =x¥* X -90

=00

Em¥F X Ee ¥ XK =Emx¥Ex -0

=01

anpeyiser ey uonemndury

Say omydorg

AV



73

"XL1}eUI 9OUDPIOUT

V5 Sursn urung 1ejeurered uoryeindulr 4$010j WOPURI 10§ SUOIJRUIGUIOD JO (°(7) AN[IQRIISOD [BOLIOG0IRD 9FRIOAY ')y "SI

FO ——= 610 —y— 10 —e— €00 —m— (90) OnEY SUISSI]

afuer) smdug

: it I Ll B Tt B 5 Htl 1] -0
S [...“_ mN
. il itf W gl i Wit Tt itk Tl - B
. Hitl it I
L Bl anfeAIsET e uonunduy anfe \ise des uonendury -
opdung :omydorg ey oy dorg Say saygdorg

SI[qeLIe A _muﬂ.:vmwﬁwo J0] aonoun .\mﬁ:&mﬁm o(J PRZIeurIo N



74

"XIIYRW 9OUIPIOUL

V5 8uisn urung Iejeurered uorjeinduwl 1s610] WOPURI I0] SUOIYRUIGUIOD JO (¥(7) AI[IQRIISOP [ROLISWINU 98RIDAY :'QY "SI

B0 —— €10 —v— 10 —e— €00 —m— (96) OTRY SUISSIA

aguey) amdury

Wrm by By B D By by By By B By By By By By By D by -

g
wr: rm rmm r: r: Tm Tm Tm T: T: Tm Tm rm Tm rm F. rm r: :A_vm
Wﬁrw T*m Tm Tm *m: Tm :._v

aneAlse wnu uonendury Gay sumu uonendurg aneAse| s uonemdug Say unu uonemdug anepse| aunu uenemndury Say sunu uonemdurg

Sdung omypdolg spdung sopmypdoig xepy omydoig xepy soqygdoig Say aqmydoig Ay omydoig

mvﬁﬁﬂm,ﬂm\f [BILIDUWN N J0] Tonoung Lﬁﬂ-ﬁﬁﬂw 21 U@NEWCEOZ



75

"XLI}eUI 9OUDPIOUT

v 8uisn Sutung Iojourered uorjeinduwil 4so910] WOPURI 10] SUOIRUIGUIOD JO (°7) AN[IQRIISOP [[RI0AO 98RIOAY 'Y "SI

Stage: 3

Stage: 2

Stage: 1

T0 == CT'0 =g T0 —e— GO0 —m— (20) ODEY FuIssipy

Jsuey) ndury

1 4 8 9 1 4 8 9 1 4 8 9 1 4
1 1 1 1 1 1 1 1 1 It 1 1 1 1 1 1

fy By B by ot fw Mg M b M B by

W by fw oWy by ot bw M he hw by fw oy e i

O

aneIseT ae uonmndup anfeAIseT g uonemdurg anpeAlse oed”uonendury anpeAlse] ged”uonemduy

aneAlse| s uonemndury Say sumu uonendurg aneAseT sumu uonendury Hay unu uonendury

apdung :aypdorg Adung amyydorg ey sy dolg e[y sapmyydolg

uonoun,y kﬁmzﬁmﬁmwg [[E12A0)

by e hod

anfe IS ged”uonenduy anpe IS eauonendury

anpeA s sunu uonemdurg Say sunu uonemndurg

Sy pypdorg Fay amydoig



B. EVALUATION OF IMPUTATION METHODS

76



7

"SO[(RLIRA [BDLIOG)RD Sel ATUO 41 9OUIS

19S BJep I9dUR)) }seal(] I10J S[(B[IRAR JOU 9Ie S}NSAI Jer[) 9)0U ased[J ‘sporjewr uoryeindur Jo SN 98eIoAY 'T'qg S1

a0 CTo

10 €00

&0 ero 1o 00

G0 T 10 00

1SAIOSS I - popaypasodorg . NNY .

a0 Crro 10 €00

oney SuIssIy
c0 C1ro 10 LS00

a0 Cro

10 ¢00

&0 ero

10 ¢oo

a0 Ccro 10

070

O C10 0 00
] 1 1 1

F0¢

ISINUN

=001

0e1

[eUBL UG HasereC]

() LSRUruoON asere(q

SESIYUWTUON osereq]

CE1SRUITUON asER(]

COFINIUIT S2stie(]

PTSSEIUIT asee(]

BT aseiR (]

AT sereQ

I0UR)ISEIIE] HBIseIeC]




78

"SO[(RLIRA [ROLIOSO)RD SR A[UO

11 9OUIS 198 )R I90UR() }SLaIE] I0] S[R[IRAR JOU IR SINSAI JRY)} 2)0U ased[J "Sporjowt uorjejnduir jo &p ooy :g'¢ "1

g0 10 10 €00

g0 C1ro 10 C0°0

g0 ST 10 00

[EERTSR CR . potpapypasodorg . NNY .

g0 CT0 10 €00

oney SUISSTy.
g0 €10 10 <00

c0 Cro 10 00

a0

CTo T €070

co CTo 10 €070

a0 1o o0 €00
1 I 1

000

F 60

F0€70

FOL0

001

[EuISLO UG oseye(]

(250 s UONEER LN

SETNIUITUON seIe(

CEIFRUITUON Hasere(]

EOGFYUIT HSEI(T

Gy TSSE[QUT] Dasere(y

ML DaseIR(]

U osere(

I20URD)ISLATE] NISTIRC]

ip



79

"SO[(RLIBA [BOLIOSO)RD SRy AJUO

11 9OUIS 198 BIRP I00UR)) )SBIIY 10] O[(R[IRAR 10U dIR SINSOI JRY) 9)0U 0seo[J Spoyjoml uorpeindu Jo iy o8eIoay ¢ g "3

a0 <10

0 €070

g0 CT0 T0 SO0

o CTo T0 00

1810 [ssTU . poypypasodorg . NNY .

g0 CTro T0 00

oney SuIssIpy
g0 CTo 10 €00

g0 CT0

T0 €00

a0 <10

"0 €070

g0 CT0 T0 <00

co 10 T0 00
1 f L 1

00°0

Y

FCLo

[PUBIOUIG s

OLFNUITUON D9sER (T

RESoYUITUON] DaseIR(]

CRIFRYUITUON ToseRe(T

EORFU oSN

G T T ST

JLE) S RERHITG §

M D9seIR

I90UR)ISEAIE] Haseie(]




80

"SO[([RLIBA [ROLIOTUNT SeY AJUO )T 90UIS

19s eJep (),SoYUITUON I0] S[qe[leAR JOU oI SINSAI Jel} 9j0U 9sed[J ‘spoyjewl uoneindur jo HYJNY o8eloAy g S1

LR ] . popypasodor] . NNY .

oney SuIssIy
G0 CT0 T0 €00 G0 ST0 10 <00 &0 S0 T0 C00 &0 CT0 10 €00 &0 CT0 T1¢
L L f

60 10 T0 €00 60 <10 T0 €00 60 10 10 <00

&0 ¢ST0 10 €00

NNV

=AY

JemIsL UG Haseyecy (£BRuITUON HasereC] QESaYUrTUON NaseIR(] | | ¢FTSayuITUON NaseR(T LOZSUIT H9seIeC] CPTSSE[UTT Daserec] RLID) 8 HERITg | M D9serec] TDTEYISLIIE ISEIRC]




81

"SO[RLIRA [ROLIDWINU SeY ATUO 91 90UIS 198 BIRD

0L8UurTuoN I0J o[qe[rleAr j0U oIk SHNSAI eI} 9)0U e "SPOYIow Uoryejndul Jo I0II0 UOTYeIYISSe[d 9FRIOAY 'G g "SI

a0 CTo 10 €00

g0 10 10 C0°0
1 f L L

g0 Cro 10 00

15210 TSI . popaypasodory . NNY .

a0 CTo T €00

oney SuIssIy
&0 CTo 100 00

g0 CTo 10 €00

o0

o T0 €00

ML aseIR(]

g0 CT0 T0 €00

WM s

g0 10 10 GO0

I20URD)ISTIIE] NaseIeC]

[RUSLO WIS Hoseie(]

()/SayuruoN saser(q

CZISNUITUON 19svRR(]

i e HERI

QESNUITUON 19serR(]

G (IS Sl

.I().IIH U()BPJI_;!SSP.ID

00°1



82

"SO[(RLIRA [ROLISWINU SRY ATUO 41 9OUIS 1S
rIRD (), UITUON I0] S[(R[IRAR 10U dIR S)NSAI JRY) 9J0U 9sea[d ‘sporpjowr uoryeinduwr jo onsiye)s eddey] oS8RIy "9 g "S1q

18210, ]SSIUT . porpapypasodor ] . NNY .

oney SuIssIy
0 S0 T0 €00 0 ST T0 €00 &0 C1T0 T0 00 0 S0 10 00 G0 CTo TO0 €00 0 ST T0 €00 a0 CT0 TO0 C00 g0 CTo T 00
L ' ' L f ' s f L L ' f L 1 ' 1 L ' L L f ' ' ' f L ' f L ' ' L

g0 <10 T0 00
L 1 1 L

ag .;ET LT :; LY LET e e s s

Y

eddey

F 0470

00°1
190UE YIS ISeIRC]

BLLE) & HEEE g | W Dsere(

CRISNUITUON Hasere(] COFSNUIT Dasere(] CTTSSE[HUTT asere(p

[emSLI UG HasereC] () £SJurTuoN aserecy RESNUITUON] JaseIeC]




C. R CODES

33
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## Proposed imputation Code

install.packages("randomForest")
install.packages("ForImp")
install.packages ("hydroGOF")
install.packages("modeest")
install.packages("roughrf")
install.packages("psych")
install.packages ("PRROC")
install.packages("caret")
library (PRROC)
library(psych)
library(randomForest)
library(ForImp)

library (hydroGOF)
library(modeest)
library(roughrf)
library(caret)

nPerm = 30 # how many times will impute same value
nRep = 10 #how many iterations of each combination
setwd("~/") # save at My documents

# function to calculate final wvalue of imputation
mMfunction = function(x) {

x = x[which(x '= -9999)]
L = length(x)
if (typeof(x) == "double") {
mean(c(x[L], x[L - 31))
} else {
x[L]
}

Results = NULL
partialResults = NULL
RepResults = NULL
partialRep = NULL
ResultsCat = NULL
partialResultsCat = NULL
RepResultsCat = NULL
partialRepCat = NULL

comb = 1
comb2 = 1
comb3 = 1

iChangeCat = 4 # categorical tmpute chage threshold
iChange = 0.025 #numerical <mpute change threshold

setwd("~/")



# GA code to get important wvariables for proposed
# method and creates the incidence matrixz This

# incidence matrixz is then used as an input in the
# imputation Data sets ###

read.csv("~/Feature Selection/Data sets/Heart/HeartDataset_1.csv")
Data[, -ncol(Data)]

Data
Data

if (sum(is.na(Data)) > 0) {
Data = na.roughfix(Data)
}

nVar = ncol(Data)

impVarAux = matrix(nrow = nVar, ncol = 2)
Results = matrix(0, nrow = ncol(Data), ncol = ncol(Data)) #incidence matriz

for (k in 1:nVar) {
initialtime = proc.time()
impVars = NULL
names (Data) = paste("X", 1l:ncol(Data), sep = "")
names (Data) [k] = "Y"

DataX = Datal, -k] # z variables data frame
Y = Datal, k] # vy

ga.fs = gafs(x = DataX, y = Y, iters = 1, gafsControl = gafsControl(functions = rfGA,
method = "cv", number = 5), ntree = 125) # ga fs

impVars = ga.fs$ga$final #important variables for wvariable Y been evaluated

ones = which(names(Data) %in¥% c(impVars)) # extract wvariable number from impVars

Results[ones, k] = 1 #assign 1 at incidence matriz to detected important

# wvariables in variable evaluated

impVarAux[k, ] = c(k, paste(impVars, collapse = ";")) # save important variables

#

Newtime = proc.time() - initialtime # run time

impVarAux = data.frame(impVarAux, Newtime[2])

names (impVarAux) = c("Variable", "ImpVars", "RunTime")

write.table(Results, "IncidenceMat_ Heart_ GA.csv", sep = ",",
row.names = FALSE, col.names = FALSE)

write.table(impVarAux, "ImpVars_Heart_ GA.csv", sep = ",",
row.names = FALSE)

## Proposed imputation Update: Stop rule evaluating
## simple 3 stage, taking the last value imputated
## (num) or Last Val (cat) Date: Mar 12 2017 Stage:3
## Stop Crit: simple Imputation: Avg (num) LastVal
## (cat) Proposed Method-GA random forest Impute

## change num: 2.5% cat: 4 Running the more

## restrictive combination of best combination

## results



for (k in 1:nRep) {

for (misPercentage in c(0.05, 0.1, 0.15, 0.2)) {
# missing ratio in data sets
initialtime = proc.time()

# change data, data2 and impVars depending on data

# set

data = read.csv(paste("~/Heizel/SimData/SimDataWITH.",

n n

.CSV

k, ".", misPercentage, , sep = ""))

#data set with missingvalues

data2 = read.csv(paste("~/Heizel/SimData/SimDataWITHOUT.",

k, ".", misPercentage, ".csv", sep = ""))

#complete dataset

impVars = read.csv("~/Feature Selection/Feature selection for proposed
#imputation/Incidence Matrices CFS/IncidenceMat_

SimDataOriginal_CFS.csv",
header = FALSE)

# Evaluate which variables are categorical and
# numerical
for (v in 1:ncol(data)) {
cat = length(unique(datal, v]))
if (cat <= 12) {
datal[, v] = as.factor(datal, v])
} else {
datal, v] = as.numeric(datal, v])

3

data = as.data.frame(data)
data2 = as.data.frame(data2)

# Data goes here

X = datal[, -ncol(data)l]

Y = data.frame(datal[, ncol(data)])

missDF = data.frame(X, Y)

names (missDF) = paste("X", 1:ncol(X), sep = "")
names (missDF) [ncol(data)] = "Y"

# Variable Imputation Order Ascending
varMV = matrix(nrow = ncol(missDF) - 1, ncol =
for (numCol in 1:ncol(missDF) - 1) {
# For each column,
# wvalues

varMV [numCol] = sum(is.na(missDF[, numCol]))

}

MVdf = data.frame(1:(ncol(missDF) - 1), varMV)
names (MVdf) = c("NumCol", "varMV")
AscOrder = order (MVdf[, ncol(MVdf)])
# value imputation

for (i in AscOrder) {
misRows = which(is.na(missDF[, i]) == TRUE)
numMis = length(misRows)

tdentify the number of missing

# How to order variables for missing

#ID missing values in variable



imputedData = matrix(-9999, ncol = nPerm,
nrow = numMis) # matriz with j imputations

# of observations

imputedDataCat = matrix(-9999, ncol = nPerm,
nrow = numMis)

imp = which(impVars[, i] == 1) #importantn variables to be used in TF

imputedDataAux = matrix(-9999, ncol = nPerm,
nrow = numMis) # auz matriz with j

# imputations of observations

imputedDataAuxCat = matrix(-9999, ncol = nPerm,
nrow = numMis) # auz matriz with j

# imputations of observations

if (typeof(datal, i]) == "double") {
imputeChange = 0.1 #initial value of numerical impute change

for (r in 1:numMis) {
j =1 #impute round

while (j <= 3 | (j <= 30 & imputeChange >
iChange)) {
# Variables to use in the imputation process
if (length(imp) >= 1) {
cols = c(i, imp, ncol(missDF))
} else {
cols = c(i, ncol(missDF))

}

impDF = na.roughfix(missDF)
NAloc = is.na(missDF)

obsi = !NAloc[, cols[1]]
misi = NAloc[, cols[1]]

obsX = impDF [obsi, cols[-1]]
obsY = impDF [obsi, cols[1]]
misx = impDF[misi, cols[-1]]

rF = randomForest(y = obsY, x = obsX,
ntree = 150, replace = TRUE)
imputedDatal, j] = predict(object = rF,

newdata = misx, type = "response')
imputedDataAux[r, j] = c(imputedDatalr,
ib
if (5 >3) {

imputeChange = abs((imputedDatalux[r,
j] - imputedDatalux[r, j -
3]1)/(imputedDataAux[r, j -
31))
} else {
imputeChange = 0.1
}



if (j >= 3 & imputedDatalux[r,
j1 == -9999) {
missDF [misRows[r], i] = imputedDataAux[r,
j - 1]

partialRes = data.frame(k, i, misPercentage,
iChange, cbind(data2[misRows, i],
apply(imputedDataAux, 1, mMfunction)))

names (partialRes) = c("Rep", "Variable",
"JMissing", "Impute Change", "Actual",
"Imputed")

if (comb == 1) {
Results = partialRes

} else {
Results = rbind(Results, partialRes)

}

names (Results) = c("Rep", "Variable",
"YMissing", "Impute Change", "Actual",
"Imputed")

write.table(Results, "StopRule_3stageSimpleLastVal_ActImpNum_SimDataOrig.csv",
row.names = FALSE, sep = ",") #change depending data set

# calculate performance metrics on numeric

# vartables

repData = subset(Results, Rep == k &
Results[, 3] == misPercentage & Resultsl[,
4] == iChange, 5:6)

repData = data.frame(repData)

names (repData) = c("Actual", "Imputed")
metrics = gof(sim = repDatal, 2], obs = repDatal,
1D

NRMSE = metrics[5]
R2 = metrics[17]
d2 = metrics[13]
partialRep = data.frame(k, i, misPercentage,
iChange, R2, NRMSE, d2)
names (partialRep) = c("Rep", "Variable",
"YMissing", "ImputeChange", "R2",
"NRMSE", "d2")
if (comb == 1) {
RepResults = partialRep
} else {
RepResults = rbind(RepResults, partialRep)
}

write.table(RepResults, "ResultsStopRule_3stageSimpleLastValNum_SimDataOrig.csv",
row.names = FALSE, sep = ",")
comb = comb + 1



} else {
imputeChangeCat = 10 #init<al value of categorical impute change

for (r in 1:numMis) {
z =1 #impute round

while (z <= 3 | (z <= 30 & imputeChangeCat >
iChangeCat)) {

# Variables to use in the imputation process
if (length(imp) >= 1) {

cols = c(i, imp, ncol(missDF))
} else {
cols = c(i, ncol(missDF))

}

impDF = na.roughfix(missDF)
NAloc = is.na(missDF)

obsi INAloc[, cols[1]]
misi = NAloc[, cols[1]]

obsX = impDF [obsi, cols[-1]]
obsY = impDF [obsi, cols[1]]
misx = impDF[misi, cols[-1]]

rF = randomForest(y = obsY, x = obsX,
ntree = 150, replace = TRUE)
imputedDataCat [, z] = predict(object = rF,

newdata = misx, type = "response')
imputedDataAuxCat[r, z] = c(imputedDataCat[r,
z])
if (z > 3) {

if (imputedDataAuxCat[r, z] ==
imputedDataAuxCat[r, z - 1] &
imputedDataAuxCat[r, z - 1] ==
imputedDataAuxCat[r, z -
2] & imputedDataluxCat [r,

z - 2] == imputedDataluxCat [r,
z - 3]) {
imputeChangeCat = 4
} else {
imputeChangeCat = 10
3
}
if (z >= 3 & imputedDatalAuxCat[r,
z] == -9999) {
missDF [misRows[r], i] = imputedDataAuxCat[r,
z - 1]
}
z=z+1



}
}
partialResCat = data.frame(k, i, misPercentage,
iChangeCat, cbind(data2[misRows,
i], apply(imputedDataAuxCat, 1,
mMfunction)))
names (partialResCat) = c("Rep", "Variable",
"JMissing", "Impute Change", "Actual",

"Imputed")
if (comb2 == 1) {
ResultsCat = partialResCat
} else {
ResultsCat = rbind(ResultsCat, partialResCat)

3

names (ResultsCat) = c("Rep", "Variable",
"YMissing", "Impute Change", "Actual",
"Imputed")

write.table(ResultsCat, "StopRule_3stageSimpleLastVal_ActImpCat_SimDataOrig.csv",
row.names = FALSE, sep = ",")

Newtime = proc.time() - initialtime # run time
# calculate performance metrics on categorical
# vartables
repDataCat = subset(ResultsCat, Rep ==
k & ResultsCat[, 3] == misPercentage &
ResultsCat[, 4] == iChangeCat, 5:6)
repDataCat = data.frame(repDataCat)
names (repDataCat) = c("Actual", "Imputed")
error = sum(repDataCat$Imputed != repDataCat$Actual)/nrow(repDataCat)
Kappa = cohen.kappa(repDataCat) $kappa
AUC = pr.curve(repDataCat$Actual, repDataCat$Imputed)Pauc.integral
partialRepCat = data.frame(k, i, misPercentage,
iChangeCat, error, Kappa, AUC, Newtime[2])
names (partialRepCat) = c("Rep", "Variable",
"YMissing", "ImputeChange", "ClassError",
"Kappa", "PR AUC", "RunTime")
if (comb2 == 1) {
RepResultsCat = partialRepCat
} else {
RepResultsCat = rbind(RepResultsCat,
partialRepCat)
}

comb2 = comb2 + 1

write.table(RepResultsCat, "ResultsStopRule_3stageSimpleLastValCat_SimDataOrig.csv"
row.names = FALSE, sep = ",")

} #else closes



C.2 KNN and missForest Codes
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######### missForest imputation Code ########H#H#HARBHIHHHHH

install.packages("cutoffR")
install.packages ("hydroGOF")
install.packages("missForest")
install.packages("psych")
install.packages ("PRROC")
library (PRROC)

library(psych)
library(cutoffR)

library (hydroGOF)
library(missForest)

setwd("~/")
nRep = 30

Results = NULL
partialRes = NULL

RepResults = NULL
partialRep = NULL
ResultsCat = NULL
partialResCat = NULL
RepResultsCat = NULL
partialRepCat = NULL
comb = 1

for (k in 1:nRep) {
for (misPercentage in c(0.05, 0.1, 0.15, 0.2)) {
library(missForest)
DataImp = NULL
data = NULL
data2 = NULL
initialtime = proc.time()

data = read.csv(paste("~/Missing Value Imputation/Datasets with simulated Missing
Values/SimLinDataReg203 with MVs/SimLinearData_203_reg_",

k, "_", misPercentage, ".csv", sep = ""))
data2 = read.csv(paste("~/Feature Selection/Data sets/SimLinearData_203_reg
/LinearRelDataset ",
k, ".CSV”, sep = ||n))

# Evaluate which variables are categorical and
# numerical
catVars = matrix(0, nrow = 1, ncol = ncol(data)) #vector que ID cat wars
# 1=cat O=num
for (v in 1:ncol(data)) {
cat = length(unique(datal, v1))
if (cat <= 10) {
datal[, v] = as.factor(datal, vl])
catVars[, v] =1
} else {
datal[, v] = as.numeric(datal, v])



data = as.data.frame(data)
data2 = as.data.frame(data2)

DataImp = missForest(xmis = data, ntree = 100)

# matriz with categorical wvariables only
dataCat = datal[, which(catVars == 1)] #miss matriz
data2Cat = data2[, which(catVars == 1)] #real matriz
DataImpCat = Datalmp$ximp[, which(catVars ==

1)]  #pred matriz

# matriz with numerical variables only
dataNum = datal[, which(catVars == 0)] #miss matriz
data2Num = data2[, which(catVars == 0)] #real matriz
DataImpNum = Datalmp$ximp[, which(catVars ==

0)] #pred matriz

# Performance evaluation of catecorical wvars
YrealCat = NULL
YpredCat = NULL

for (n in 1:ncol(dataCat)) {
MissVal = which(is.na(dataCat[, n]) ==

TRUE)

YrealCat = append(YrealCat, data2Cat[MissVal,
nl)

YpredCat = append(YpredCat, DataImpCat[MissVal,
nl)

}

partialResCat = data.frame(k, misPercentage,
YrealCat, YpredCat)

names (partialResCat) = c("Rep", "/Missing",
"Actual", "Imputed")

if (comb == 1) {
ResultsCat = partialResCat

} else {
ResultsCat

rbind (ResultsCat, partialResCat)
}

# save tmputation data (categorical)
write.table(ResultsCat, "missForest_ActualImpDataCat_SimLinReg203.csv",
row.names = FALSE, sep = ",")

repDataCat = subset(ResultsCat, Rep == k &
ResultsCat[, 2] == misPercentage, c(3,
4))

repDataCat = data.frame(repDataCat)



names (repDataCat) = c("Actual", "Imputed")
error = sum(repDataCat$Imputed != repDataCat$Actual)/nrow(repDataCat)
Kappa = cohen.kappa(repDataCat) $kappa
AUC = pr.curve(repDataCat$Actual, repDataCat$Imputed)$auc.integral
partialRepCat = data.frame(k, misPercentage,
error, Kappa, AUC)
names (partialRepCat) = c("Rep", "/Missing",
"ClassError", "Kappa", "AUC")
if (comb == 1) {
RepResultsCat = partialRepCat

} else {
RepResultsCat = rbind(RepResultsCat, partialRepCat)

}

write.table(RepResultsCat, "missForestResultsCat_SimLinReg203.csv",
row.names = FALSE, sep = ",")

Yreal = NULL

Ypred = NULL

for (n in 1:ncol(dataNum)) {
MissVal = which(is.na(dataNum[, n]) ==

TRUE)
Yreal = append(Yreal, data2Num[MissVal,
nl)
Ypred = append(Ypred, DataImpNum[MissVal,
nl)
}
partialRes = data.frame(k, misPercentage, Yreal,
Ypred)
names (partialRes) = c("Rep", "/Missing", "Actual",
"Tmputed")

if (comb == 1) {
Results = partialRes
} else {
Results = rbind(Results, partialRes)

}

# save tmputation data (numerical)
write.table(Results, "missForest_ActualImpDataNum_SimLinReg203.csv",
row.names = FALSE, sep = ",")

Newtime = proc.time() - initialtime # 7run time
repData = subset(Results, Rep == k & Resultsl[,

2] == misPercentage, c(3, 4))
repData = data.frame(repData)
names (repData) = c("Actual", "Imputed")
repDatal, 1] = as.numeric(repDatal, 1])
repDatal[, 2] = as.numeric(repDatal, 2])
detach("package:missForest", unload = TRUE)
metrics = gof(sim = repDatal, 2], obs = repDatal,

11)



NRMSE = metrics[5]

R2 = metrics[17]

d2 = metrics[13]

partialRep = data.frame(k, misPercentage, R2,
NRMSE, d2, Newtime[2])

names (partialRep) = c("Rep", "%Missing", "R2",
"NRMSE", "d2", "RunTime")

if (comb == 1) {
RepResults = partialRep

} else {
RepResults = rbind(RepResults, partialRep)

}

comb = comb + 1

write.table(RepResults, "missForestResultsNum_SimLinReg203.csv",
row.names = FALSE, sep = ",")

RepResults



######### KNN imputation Code ########H##FFFHHHHHHHAH
install.packages("cutoffR")
install.packages ("hydroGOF")
install.packages("psych")
install.packages ("PRROC")
install.packages("VIM")
install.packages("dplyr")
library(dplyr)

library (VIM)

library (PRROC)
library(psych)
library(cutoffR)

library (hydroGOF)

setwd("~/")

nRep = 30

Results = NULL
partialRes = NULL
RepResults = NULL
partialRep = NULL
ResultsCat = NULL
partialResCat = NULL
RepResultsCat = NULL

partialRepCat = NULL
comb = 1
options(warn = -1)

for (k in 5:nRep) {
for (misPercentage in c(0.05, 0.1, 0.15, 0.2)) {
DataImp = NULL
data = NULL
data2 = NULL
initialtime = proc.time()

data = read.csv(paste("~/Missing Value Imputation/Datasets with simulated Missing
Values/Sylva Datasets with MVs/Sylva_",

k, "_", misPercentage, ".csv", sep = ""))
data2 = read.csv(paste("~/Feature Selection/Data sets/SYLVA/SylvaDataset_",
k, II‘CSVH’ Sep = ||||))

# Evaluate which variables are categorical and
# numerical

catVars = matrix(0, nrow = 1, ncol = ncol(data)) #vector que ID cat vars 1=cat O=num
for (v in 1:ncol(data)) {
cat = n_distinct(datal[, v], na.rm = TRUE)
if (cat <= 10) {
datal[, v] = as.factor(datal, v])
catVars[, v] =1
} else {
datal[, v] = as.numeric(datal, v])

}



data = as.data.frame(data)
data2 = as.data.frame(data2)

DataImp = kNN(data, imp_var = FALSE) # knn tmputation

# matriz with categorical variables only

dataCat = datal[, which(catVars == 1)] #miss matrizc
data2Cat = data2[, which(catVars == 1)] #real matriz
DataImpCat = DataImp[, which(catVars == 1)] #pred matriz

# matriz with numerical variables only

dataNum = datal[, which(catVars == 0)] #miss matriz
data2Num = data2[, which(catVars == 0)] #real matriz
DataImpNum = Datalmp[, which(catVars == 0)] #pred matriz

# Performance evaluation of catecorical wvars
YrealCat = NULL
YpredCat = NULL

for (n in 1:ncol(dataCat)) {
MissVal = which(is.na(dataCat[, n]) ==

TRUE)

YrealCat = append(YrealCat, data2Cat[MissVal,
nl)

YpredCat = append(YpredCat, DataImpCat[MissVal,
nl)

}

partialResCat = data.frame(k, misPercentage,
YrealCat, YpredCat)

names (partialResCat) = c("Rep", "%Missing",
"Actual", "Imputed")

if (comb == 1) {
ResultsCat = partialResCat

} else {
ResultsCat

rbind (ResultsCat, partialResCat)
}

# save tmputation data (categorical)
write.table(ResultsCat, "kNN_ActualImpDataCat_Sylva2.csv",

row.names = FALSE, sep = ",")

repDataCat = subset(ResultsCat, Rep == k &

ResultsCat[, 2] == misPercentage, c(3,
4))

repDataCat = data.frame(repDataCat)

names (repDataCat) = c("Actual", "Imputed")

error = sum(repDataCat$Imputed != repDataCat$Actual)/nrow(repDataCat)
Kappa = cohen.kappa(repDataCat)$kappa
AUC = pr.curve(repDataCat$Actual, repDataCat$Imputed)$auc.integral
partialRepCat = data.frame(k, misPercentage,

error, Kappa, AUC)



names (partialRepCat) = c("Rep", "%Missing",
"ClassError", "Kappa", "AUC")
if (comb == 1) {

RepResultsCat = partialRepCat
} else {
RepResultsCat = rbind(RepResultsCat, partialRepCat)

}

write.table(RepResultsCat, "kNNResultsCat_Sylva2.csv",
row.names = FALSE, sep = ",")

# Performance evaluation of numerical vars

Yreal = NULL
Ypred = NULL

for (n in 1:ncol(dataNum)) {

MissVal = which(is.na(dataNum[, n]) ==
TRUE)
Yreal = append(Yreal, data2Num[MissVal,
nl)
Ypred = append(Ypred, DataImpNum[MissVal,
nl)
}
partialRes = data.frame(k, misPercentage, Yreal,
Ypred)
names (partialRes) = c("Rep", "/Missing", "Actual",
"Imputed")
if (comb == 1) {
Results = partialRes
} else {
Results = rbind(Results, partialRes)
}

# save tmputation data (numerical)
write.table(Results, "kNN_ActualImpDataNum_Sylva2.csv",
row.names = FALSE, sep = ",")

Newtime = proc.time() - initialtime # run time

repData

subset (Results, Rep == k & Results][,

2] == misPercentage, c(3, 4))

repData = dat
names (repData
repDatal, 1]
repDatal, 2]

a

)

.frame (repData)

= c("Actual", "Imputed")
as.numeric(repDatal, 1])
as.numeric(repDatal, 2])

metrics = gof(sim = repDatal, 2], obs = repDatal,

11)

R2 = metrics[17]

NRMSE = metrics[5]

d2 = metrics[13]

partialRep = data.frame(k, misPercentage, R2,
NRMSE, d2, Newtime[2])

names (partialRep) = c("Rep", "/Missing", "R2",

"d2", "RunTime")

"NRMSE",



if (comb == 1)
RepResults = partialRep

} else {
RepResults = rbind(RepResults, partialRep)

-~

}

comb = comb + 1
write.table(RepResults, "kNNResultsNum_Sylva2.csv",

row.names = FALSE, sep = ",")
options(warn = 0)

RepResults



101

C.3 Proposed Method Parameter Tunning Example Code



## Proposed imputation Stopping rule DOE Update:
## Stop rule evaluating simple 1 stage, taking the
## average of 2 values evaluated (num) or Last Val
## (cat) Stage:1 Stop Crit: simple Imputation: Avg
## (num) LastVal (cat)

install.packages ("randomForest")
install.packages("ForImp")
install.packages ("hydroGOF")
install.packages("modeest")
install.packages ("roughrf")
install.packages("psych")
install.packages ("PRROC")
library (PRROC)
library(psych)
library(randomForest)
library(ForImp)

library (hydroGOF)
library(modeest)
library(roughrf)

nPerm = 30 # how many times will impute same value
nRep = 10 #how many iterations of each combination
setwd("~/") # save at My documents

# function to calculate final value of imputation
mMfunction = function(x) {

x = x[which(x '= -9999)]
L = length(x)
if (typeof(x) == "double") {
mean(c(x[(L - 1)1, x[L]))
} else {
x[L]
}

Results = NULL
partialResults = NULL
RepResults = NULL
partialRep = NULL
ResultsCat = NULL
partialResultsCat = NULL
RepResultsCat = NULL
partialRepCat = NULL

comb = 1
comb2 = 1
comb3 = 1

for (k in 1:nRep) {



for (misPercentage in c(0.05, 0.1, 0.15, 0.2)) {

# missing ratio in data sets

data =
k’ H.Il’

read.csv(paste("~/Heizel/SimData/SimDataWITH.",
misPercentage, ".csv'", sep = ""))

#data set with missingvalues

data2 = read.csv(paste("~/Heizel/SimData/SimDataWITHOUT.",

k, ".", misPercentage, ".csv", sep = ""))
read.csv("~/Feature Selection/Feature selection for proposed

impVars =

#complete dataset

imputation/GA/Incidence Matrices/IncidenceMat_SimDataOriginal_ GA.csv",

header = FALSE)

# Evaluate which variables are categorical and

# numerical

for (v in 1:ncol(data)) {
cat = length(unique(datal, v]))
if (cat <= 12) {

datal[, v] = as.factor(datal, v])
} else {
datal[, v] = as.numeric(datal, v])
}
}
data = as.data.frame(data)

data2 = as.data.frame(data2)

# Data goes here

X = data[, -ncol(data)l]

Y = data.frame(datal[, ncol(data)])

missDF = data.frame(X, Y)

names (missDF) = paste("X", 1:ncol(X), sep = "")
names (missDF) [ncol(data)] = "Y"

# Variable Imputation Order Ascending
varMV = matrix(nrow =
for (numCol in 1:ncol(missDF) - 1) {
# For each column,
# wvalues
varMV [numCol] =

}

ncol(missDF) - 1, ncol =

sum(is.na(missDF[,

1

tdentify the number of missing

numCol]))

MVdf = data.frame(1l:(ncol(missDF) - 1), varMV)

names (MVdf) = c("NumCol", "varMV")
AscOrder = order (MVdf[, ncol(Mvdf)])
# missing value imputation

for (i in AscOrder) {

# How to order wariables for

#ID missing values in variable

nPerm,

nPerm,

misRows = which(is.na(missDF[, i]) == TRUE)
numMis = length(misRows)
imputedData = matrix(-9999, ncol

nrow = numMis) # matriz with j
# imputations of obserwvations
imputedDataCat = matrix(-9999, ncol =

nrow = numMis)



imp = which(impVars([, i] == 1) #importantn variables to be used in rF
imputedDatalAux = matrix(-9999, ncol = nPerm,
nrow = numMis) # auz matriz with j
# imputations of observations
imputedDataAuxCat = matrix(-9999, ncol = nPerm,
nrow = numMis) # auz matriz with j
# imputations of obserwvations

if (typeof(datal, i]) == "double") {

for (iChange in c(0.025, 0.05, 0.075)) {
imputeChange = 0.1 #inittal value of numerical impute change

for (r in 1:numMis) {
j =1 #impute round

while (j <= 3 | (j <= 30 & imputeChange >
iChange)) {
# Vartables to use in the imputation process
if (length(imp) >= 1) {
cols = c(i, imp, ncol(missDF))
} else {
cols = c(i, ncol(missDF))

}

impDF = na.roughfix(missDF)
NAloc = is.na(missDF)

obsi = !'NAloc[, cols[1]]
misi = NAloc[, cols[1]]

obsX = impDF [obsi, cols[-1]]
obsY = impDF [obsi, cols[1]]
misx = impDF[misi, cols[-1]]

rF = randomForest(y = obsY, x = obsX,
ntree = 150, replace = TRUE)
imputedDatal, j] = predict(object = rF,

newdata = misx, type = "response")
imputedDatalAux[r, j] = c(imputedDatalr,
ib

if (j >= 3) {
imputeChange = abs((imputedDatalux[r,
jl - imputedDatalux[r, j -
11)/(imputedDatalux[r, j -
1))
} else {
imputeChange = 0.1
}

if (j >= 3 & imputedDatalux[r,
j1 == -9999) {
missDF [misRows[r], i] = imputedDataAux[r,
j - 1]



partialRes = data.frame(k, i, misPercentage,
iChange, cbind(data2[misRows, il,
apply (imputedDataAux, 1, mMfunction)))

names (partialRes) = c("Rep", "Variable",
"%Missing", "Impute Change", "Actual",
"Imputed")

if (comb == 1) {
Results = partialRes

} else {
Results = rbind(Results, partialRes)

}

names (Results) = c("Rep", "Variable",
"%Missing", "Impute Change", "Actual",
"Imputed")

write.table(Results, "StopRule_lstageSimpleAvg ActImpNum_SimDataOrig.csv",
row.names = FALSE, sep = ",")

# calculate performance metrics on numeric

# wvariables

repData = subset(Results, Rep ==
k & Results[, 3] == misPercentage &
Results[, 4] == iChange, 5:6)

repData = data.frame(repData)

names (repData) = c("Actual", "Imputed")

metrics = gof(sim = repDatal, 2],
obs = repDatal, 1])

NRMSE = metrics[5]

R2 = metrics[17]

d2 = metrics[13]

partialRep = data.frame(k, i, misPercentage,
iChange, R2, NRMSE, d2)

names (partialRep) = c("Rep", "Variable",
"%Missing", "ImputeChange", "R2",
"NRMSE", "d2")

if (comb == 1) {
RepResults = partialRep

} else {
RepResults = rbind(RepResults,
partialRep)
}
write.table(RepResults, "ResultsStopRule_lstageSimpleAvgNum_SimDataOrig.csv"
row.names = FALSE, sep = ",")
comb = comb + 1
}
} else {

for (iChangeCat in c(2, 3, 4)) {



imputeChangeCat = 10 #initial value of categorical impute change

for (r in 1:numMis) {
z =1 #impute round

while (z <= 3 | (z <= 30 & imputeChangeCat >
iChangeCat)) {

# Variables to use in the imputation process
if (length(imp) >= 1) {

cols = c(i, imp, ncol(missDF))
} else {

cols = c(i, ncol(missDF))

3

impDF = na.roughfix(missDF)
NAloc = is.na(missDF)

obsi INAloc[, cols[1]]
misi = NAloc[, cols[1]]

obsX = impDF [obsi, cols[-1]]
obsY = impDF [obsi, cols[1]]
misx = impDF[misi, cols[-1]]

rF = randomForest(y = obsY, x = obsX,
ntree = 150, replace = TRUE)
imputedDataCat [, z] = predict(object = rF,

newdata = misx, type = "response")
imputedDataAuxCat[r, z] = c(imputedDataCat[r,
z])
if (z > 3) {

if (iChangeCat == 2) {
if (imputedDataAuxCat [r,

z] == imputedDatalAuxCat[r,
z - 11) {
imputeChangeCat = 2
} else {
imputeChangeCat = 10

}
} else if (iChangeCat == 3) {
if (imputedDataAuxCat[r,
z] == imputedDataAuxCat[r,
z - 1] & imputedDataAuxCat[r,
z - 1] == imputedDatalAuxCat[r,
z -2 {
imputeChangeCat
} else {
imputeChangeCat
}
} else {
if (imputedDataAuxCat [r,
z] == imputedDataAuxCat[r,
z - 1] & imputedDatalAuxCat[r,

3

10



- 1] == imputedDataAuxCat[r,
- 2] & imputedDataAuxCatl[r,
- 2] == imputedDataAuxCat[r,
-3 A

imputeChangeCat
} else {

imputeChangeCat
}

N N N N

4

10

}
}

if (z >= 3 & imputedDataAuxCat [r,
z] == -9999) {
missDF [misRows[r], i] = imputedDataAuxCat[r,
z - 1]

partialResCat = data.frame(k, i,
misPercentage, iChangeCat, cbind(data2[misRows,
i], apply(imputedDataAuxCat,
1, mMfunction)))
names (partialResCat) = c("Rep", "Variable",
"%Missing", "Impute Change", "Actual",

"TImputed")
if (comb2 == 1) {
ResultsCat = partialResCat
} else {
ResultsCat = rbind(ResultsCat,
partialResCat)

3

names (ResultsCat) = c("Rep", "Variable",
"%Missing", "Impute Change", "Actual",
"Imputed")

write.table(ResultsCat, "StopRule_lstageSimpleAvg_ActImpCat_SimDataOrig.csv",
row.names = FALSE, sep = ",")

# calculate performance metrics on categorical
# wvariables
repDataCat = subset(ResultsCat, Rep ==
k & ResultsCat[, 3] == misPercentage &
ResultsCat[, 4] == iChangeCat,

5:6)
repDataCat = data.frame(repDataCat)
names (repDataCat) = c("Actual", "Imputed")

error = sum(repDataCat$Imputed !=
repDataCat$Actual) /nrow(repDataCat)
Kappa = cohen.kappa(repDataCat) $kappa
AUC = pr.curve(repDataCat$Actual,
repDataCat$Imputed)$auc. integral
partialRepCat = data.frame(k, i,



misPercentage, iChangeCat, error,

Kappa, AUC)
names (partialRepCat) = c("Rep", "Variable",
"%Missing", "ImputeChange", "ClassError",

"Kappa", "PR AUC")
if (comb2 == 1) {
RepResultsCat = partialRepCat
} else {
RepResultsCat = rbind(RepResultsCat,
partialRepCat)
}
comb2 = comb2 + 1
write.table(RepResultsCat, "ResultsStopRule_lstageSimpleAvgCat_SimDataOrig.csv",
row.names = FALSE, sep = ",")
b

} #else closes
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C.4 Feature Selection Codes



# Feature Selection with genetic algorithms

install.packages("caret")
install.packages("randomForest")
library(caret)
library(randomForest)

rep = 1

indice = 1

Results = NULL # results matriz
partialRes = NULL

¢ = matrix(ncol = 1, nrow = ncol(Data))

NonLinImpVars = c(URAN, Tl 0D = §gh #Relevant wvaribles for linear dataset
ReallV = 4 # real amount of important wvariables in data set

RedVars = 99 # amount of redundant variables in dataset

NoiseVars = 100 # amount of noise wvariables in dataset

for (rep in 1:30) {
Data = read.csv(paste("~/Feature Selection/Data sets/SimLinearData_203_Reg/LinearRelDataset_ ",

".CSV", sep = nu))

rep,

if (sum(is.na(Data)) > 0)
{
Data = na.roughfix(Data)
} # impute missing values with median/mode (in case of MV's)

# tdentify constant variables and remove them from
# data set
for (i in 1l:ncol(Data)) {
cli, ] = length(unique(Datal, i])) ==
}
constVar = which(c == "TRUE")

if (length(constVar > 0)) {
Data = Datal, —-constVarl]
} else {
Data = Data
+

names (Data) [1:ncol(Data)] = paste("X", 1l:ncol(Data),
sep = "") #name wvariables

DataX = Datal, 1:(ncol(Data) - 1)] # z wariables data frame
Y = Datal, ncol(Data)] # vy

ga.Data = gafs(x = DataX, y = Y, iters = 2, gafsControl = gafsControl(functions = rfGA,
method = "cv", number = 5), ntree = 125) #feature
# selection using GA

# performance metrics for fs method itself
impVNS = setdiff (NonLinImpVars, ga.Data$ga$final) #important variables
# not selected by CFS



impVD = length(NonLinImpVars) - length(impVNS) #important wvariables
# accurately detected
ExcessVars = length(ga.Data$ga$final) - impVD

Sensl = impVD/(RealIV + RedVars) #sensitivity

Sens2 = impVD/(ReallV) #sensitivity

Specif = 1 - (ExcessVars/(NoiseVars + RedVars)) #specificity

Accuracy = (impVD + (NoiseVars + RedVars - ExcessVars))/(length(Data) -
1)  #accuracy

partialRes = data.frame(rep, length(ga.Data$ga$final),
paste(ga.Data$ga$final, collapse = ";"), Semnsl,
Sens2, Specif, Accuracy, ga.Data$times$everything[2],
ga.Data$averages$RMSE, ga.Data$averages$Rsquared)
names (partialRes) = c("Rep", "BestSubsetSize",

"ImpVariables", "Sensitivyl", "Sensitivy2",
"Specificity", "Accuracy", "RunTime", "RMSE",
"R2")

if (indice == 1) {
Results = partialRes

} else {
Results = rbind(Results, partialRes)

}

write.table(Results, "GAResults_LinearData.csv",

sep = ",", row.names = FALSE)
indice = indice + 1



# CFS code for Classification data sets: EPR,
# Heart, Gina, Sylva

install.packages("stringr")
install.packages("randomForest")
install.packages("FSelector")
library(FSelector)
library(stringr)
library(randomForest)

nFolds = 5 # folds for CV
rep = 1
indice = 1

Results = matrix(nrow = 1, ncol = 6) # results matriz
Results = data.frame(Results)

for (rep in 1:30) {

Data = read.csv(paste("~/Feature Selection/Data sets/BreastCancer/BreastCancerDataset_",
rep, ".csv", sep = ""))

# change depending on data set

names (Data) [ncol(Data)] = "Y"
if (sum(is.na(Data)) > 0)
{
Data = na.roughfix(Data)
} # impute missing values with
# median/mode (in case of MV's)

initialtime = proc.time()

impVars = cfs(Y ~ ., Data) # perform feature selection
impVarsAux = paste(impVars, collapse = ";")

# performance metric for fs method itself
BestSubset = length(impVars) #best subset size

# Cross walidation (uses rTandom forest)

impVarNum = which(names(Data) %in% c(impVars)) # eztract column numbers from impuvars
DataNew = data.frame(Datal[, impVarNum], as.factor(Data$Y)) # new data set created

# with the features selected and Y

names (DataNew) [ncol(DataNew)] = "Y"

permRows = sample(x = 1:nrow(DataNew), size = nrow(DatalNew),
replace = FALSE)

error = matrix(nrow = nFolds, ncol = 1) #CV error matriz

acc = matrix(nrow = nFolds, ncol = 1) # accuracy matriz

# Create testing and training folds

obsFold = floor(nrow(DataNew)/nFolds)

pending = nrow(DataNew) - floor(nrow(DataNew)/nFolds) *
nFolds



i=o

for (i in 1:nFolds) {
if (i >= (nFolds - pending + 1) & pending >
0 {
assign(paste("F", i, sep = ""), DataNew[permRows[(j +
1):(j + obsFold)], 1)
j = Jj + obsFold + 1
} else {
assign(paste("F", i, sep = ""), DataNew[permRows[(j +
1):(j + obsFold)], 1)
j = j + obsFold

}
}
# Fit model
for (i in 1:nFolds) {
testing = get(paste("F", i, sep = ""))
trainingRows = setdiff(1:nrow(DataNew), as.numeric(row.names(testing)))
training = DataNew[trainingRows, ]
myRF = randomForest(Y ~ ., data = training) #fit random forest using new data
# set with selected features
predicted = predict(myRF, newdata = testing)
actual = testing$yY
# performance metrics
error[i, ] = sum(actual != predicted)/nrow(testing) # CV error
accli, 1 =1 - error[i, ] #Accuracy
}

CVerror = mean(error)
Accuracy = mean(acc)

Newtime = proc.time() - initialtime # run time

Results[indice, ] = cbind(rep, impVarsAux, BestSubset,
Newtime[2], CVerror, Accuracy)

names (Results) = c("Rep", "ImpVariables", "BestSubset Size",
"RunTime", "CV Error", "Accuracy")

write.table(Results, "CFS_Results_ BreastCancer.csv",
sep = ",", row.names = FALSE) #Change Doc

# name depending on data set

indice = indice + 1

}
Results



# VSURF-Vartable selection using random forest

install.packages ("VSURF")
install.packages("randomForest")
library (VSURF)
library(randomForest)

nFolds = 5 # folds for CV

rep = 1

indice =1

¢ = matrix(ncol = 1, nrow = ncol(Data))

NonLinImpVars = c(1:4) #Relevant wvaribles for linear dataset
ReallV = 4 # real amount of important wariables in data set
RedVars = 99 # amount of redundant variables in dataset
NoiseVars = 100 # amount of noise wvariables in dataset

Results = matrix(nrow = 1, ncol = 10) # results matriz
Results data.frame (Results)

for (rep in 1:30) {

Data = read.csv(paste("~/Feature Selection/Data sets/SimLinearData/LinearRelDataset_",
rep, ”.CSV”, sep = ||||))

initialtime = proc.time()

if (sum(is.na(Data)) > 0)
{
Data = na.roughfix(Data)
} # impute missing values with median/mode (in case of MV's)

# 1dentify constant wvariables and remove them from
# data set
for (i in 1:ncol(Data)) {
c[i, ] = length(unique(Datal, i])) ==
b
constVar = which(c == "TRUE")

if (length(constVar > 0)) {
Data = Datal, —-constVarl]

} else {
Data = Data
}
names (Data) [ncol(Data)] = "Y"

DataX = Datal[, 1:(ncol(Data) - 1)]
DataY = Data$Y

vsurf.Data = VSURF(x = DataX, y = DataY, ntree = 100,
nfor.thres = 20, nfor.interp = 10, nfor.pred = 10)



impVars = paste("X", vsurf.Data$varse1ect.pred,
sep = "", collapse = ";")

# performance metric for fs method itself
BestSubset = length(vsurf.Data$varselect.pred) #best subset size

# performance metrics for fs method itself

impVNS = setdiff (NonLinImpVars, vsurf.Data$varselect.pred) #important

# variables not selected

impVD = length(NonLinImpVars) - length(impVNS) #important wvariables accurately detected
ExcessVars = BestSubset - impVD

Sensl = impVD/(RealIV + RedVars) #sensitivity

Sens2 = impVD/(ReallV) #sensitivity

Specif = 1 - (ExcessVars/(NoiseVars + RedVars)) #specificity

Accuracy = (impVD + (NoiseVars + RedVars - ExcessVars))/(length(Data) -
1) #accuracy

# Cross wvalidation (uses random forest)

impVarNum = vsurf.Data$varselect.pred

DataNew = data.frame(Datal[, impVarNum], Data$Y) # new data set created with the
# features selected and Y

names (DataNew) [ncol(DataNew)] = "Y"

permRows = sample(x = 1:nrow(DataNew), size = nrow(DatalNew),
replace = FALSE)

error = matrix(nrow = nFolds, ncol = 1) #CV error matriz

mean_adev = matrix(nrow = nFolds, ncol = 1) # av dev matriz

# Create testing and training folds

obsFold = floor(nrow(DataNew)/nFolds)

pending = nrow(DataNew) - floor(nrow(DataNew)/nFolds) *
nFolds

j=o0

for (i in 1:nFolds) {
if (i >= (nFolds - pending + 1) & pending >
0 {
assign(paste("F", i, sep = ""), DataNew[permRows[(j +
1):(j + obsFold)], 1)
j =] + obsFold + 1
} else {
assign(paste("F", i, sep = ""), DataNew[permRows[(j +
1):(j + obsFold)], 1)
j = J + obsFold

}
¥
# Fit model
for (i in 1:nFolds) {
testing = get(paste("F", i, sep = ""))

trainingRows = setdiff(l:nrow(DataNew), as.numeric(row.names(testing)))



training = DataNew[trainingRows, ]

myRF = randomForest(Y ~ ., data = training) #fit random forest using new
# data set with selected features

predicted = predict(myRF, newdata = testing)

actual = testing$yY

# performance metrics

error[i, ] = sum((actual - predicted)”2) # PRESS
mean_adev[i, ] = sum(abs(actual - predicted)/length(predicted)) #MAD

PRESS = mean(error)
MAD = mean(mean_adev)
Newtime = proc.time() - initialtime # run time

Results[indice, ] = cbind(rep, impVarsAux, BestSubset,
Sensl, Sens2, Specif, Accuracy, Newtime[2],

PRESS, MAD)
names (Results) = c("Rep", "ImpVariables", "BestSubset Size",
"Sensitivyl", "Sensitivy2", "Specificity",

"Accuracy", "RunTime", "PRESS CV", "MAD CV")
write.table(Results, "VSurfResults_LinearData.csv",
sep = ",", row.names = FALSE)
# Change Doc name depending on data set!!!
indice = indice + 1

+
Results



# ACE feature selection using random forest to get importance score

install.packages("randomForest")
install.packages("stringr")
library(randomForest)
library(stringr)

nFolds=5 # folds for CV
gArtificial=0.9

nPerm=30
nTrees=125
rep=1

Results=matrix(nrow = 1,ncol = 10) #results matriz
Results=data.frame(Results)
indice=1

q=NULL
impor=NULL
dfPVAL=NULL
impVars=NULL
impVarsAux=NULL

NonLinImpVars=paste("X",1:15, sep = "") #Relevant varibles for linear dataset
ReallV=15 # real amount of important variables in data set

RedVars=30 # amount of redundant variables in dataset

NoiseVars=100 # amount of moise wvariables in dataset

for (rep in 1:30 )
{
data=read.csv(paste("~/Feature Selection/Data sets/SimLinear_145_class/
LinearRelDataset_Class145_",rep,".csv", sep=""))

names (data) [ncol(data)]="Y"

if (sum(is.na(data))>0){data=na.roughfix(data)}
nVar=ncol(data)-1

initialtime=proc.time()

impor=matrix(nrow=(nVar*2) ,ncol=nPerm)
g=matrix(nrow=nPerm,ncol=1)
pval=matrix(nrow=nVar,ncol=1)
pval=data.frame(pval)

for (i in 1:nPerm)

{

X = data.frame(matrix(nrow = nrow(data),ncol = (2 * nVar)))
X[,(1:nVar)] = datal[,(1:nVar)]



for (j in 1:nVar)# Artificial variables

{
X[,nVar + j] = sample(X[,j],length(X[,j]),replace = FALSE)
}

data2=cbind(X,as.factor(data$Y)) # New data frame with original
#Xs, artificial Xs, and Y at the end
names (data2) [ncol(data2)]="Y"

if (typeof(data2$Y)=="double"){rF=randomForest(Y~.,data=data2,ntree=nTrees,
importance=TRUE,replace=FALSE,na.action=na.roughfix)
}else{rF=randomForest (as.factor(Y)~.,data=data2,ntree=nTrees,
importance=TRUE,replace=FALSE)}
impor[,i]=cbind (rF$importance[,ncol (rF$importance)]) # Gini/IncNodePurity
qli]l=quantile(impor[(nVar+1): (2*nVar),i] ,probs=qArtificial)
}

for (w in 1:nVar)
{
test=wilcox.test (x=cbind (impor[w,]),y=cbind(q) ,alternative="greater",
paired=TRUE, conf .level=0.99)
pvallw,]<-test$p.value
}

dfPVAL=cbind (names(X) [1:nVar] ,pval)

if (length(which(pval<(0.05/nVar)))>=1){
impVars=subset (dfPVAL,pval<(0.05/nVar),1) [, 1]
impVarsAux=paste (subset (dfPVAL,pval<(0.05/nVar),1) [,1],sep="",
collapse=";")} else {impVars=""
impVarsAux=""%}

impVNS= setdiff (NonLinImpVars,impVars) #important variables not selected
impVD=1length (NonLinImpVars)-length(impVNS) #important variables accurately detected
ExcessVars=length(impVars)-impVD

Sens1=impVD/(RealIV+RedVars) #sensitivity

Sens2=impVD/(ReallV) #sensitivity
Specif=1-(ExcessVars/(NoiseVars+RedVars)) #specificity
Accuracy=(impVD+(NoiseVars+RedVars-ExcessVars))/(length(data)-1) #accuracy
BestSubset=length(impVars) #best subset size

#Cross walidation (uses random forest)
impVarNum=as.numeric(str_extract(impVars, "[[:digit:]]+")) # exztract

#numbers from impvars

DataNew=data.frame(datal[,impVarNum] ,as.factor(data$Y)) # new data set created
#with the features selected and Y

names (DataNew) [ncol(DataNew)]="Y"

permRows=sample (x=1:nrow(DataNew) ,size=nrow(DataNew) ,replace=FALSE)
error=matrix(nrow=nFolds,ncol=1) #cv error matriz
acc=matrix(nrow=nFolds,ncol=1) # accuracy matriz



# Create testing and training folds

obsFold=floor (nrow(DataNew)/nFolds)
pending=nrow(DataNew)-floor (nrow(DataNew) /nFolds) *nFolds
j=0

for (i in 1:nFolds){
if (i>=(nFolds-pending+1) & pending>0) {
assign(paste("F",i,sep=""),DataNew[permRows [(j+1):(j+obsFold)],]1) ; j= j + obsFold + 1 }
else
{ assign(paste("F",i,sep="") ,DataNew[permRows[(j+1):(j+obsFold)],]); j= j + obsFold }
}

#Fit model

for (i in 1:nFolds){
testing=get (paste("F",i,sep=""))
trainingRows=setdiff (1:nrow(DataNew) ,as.numeric(row.names(testing)))
training=DataNew[trainingRows,]

myRF=randomForest (Y~., data=training) #fit random forest using new data
#set with selected features

predicted=predict (myRF,newdata=testing)

actual=testing$yY

#performance metrics

error[i,]=sum(actual!=predicted)/nrow(testing) # CV error
accli,]=1-error[i,] #A4ccuracy

3

CVerror=mean (error)
Accuracy=mean(acc)

Newtime=proc.time() - initialtime # medida de tiempo de corrida

Results([indice,]=cbind(rep, impVarsAux,BestSubset,Sensl,Sens2,Specif,Accuracy,
Newtime [2] ,CVerror,Accuracy)

names (Results)=c("Rep","ImpVariables","BestSubsetSize",
"Sensitivyl","Sensitivy2","Specificity","Accuracy","RunTime", "CV Error",
"CV Accuracy")

write.table(Results,"ACErf_Results_SimLinDataClass.csv",sep=",

#Change Doc name depending on data set

indice=indice+1

",row.names = FALSE)

+
Results



# Relief code for simulated linear data set

install.packages("stringr")
install.packages("randomForest")
install.packages("FSelector")
library(FSelector)
library(stringr)
library(randomForest)

nFolds = 5 # folds for CV
rep = 1

indice = 1

¢ = matrix(ncol = 1, nrow = ncol(Data))

NonLinImpVars = c(1:4) #Relevant varibles for linear dataset
ReallV = 4 # real amount of tmportant variables in data set
RedVars = 99 # amount of redundant variables in dataset
NoiseVars = 100 # amount of noise wariables in dataset

Results = matrix(nrow = 1, ncol = 10) # results matriz
Results = data.frame(Results)

for (rep in 1:30) {
BestSubset = NULL
Data = read.csv(paste("~/Feature Selection/Data sets/SimLinearData/LinearRelDataset_",
rep, ".csv", sep = ""))
if (sum(is.na(Data)) > 0)
{
Data = na.roughfix(Data)
} # impute missing values with median/mode (in case of MV's)

initialtime = proc.time()

# tdentify constant variables and remove them from
# data set
for (i in 1:ncol(Data)) {
c[i, ] = length(unique(Datal, i])) ==
X
constVar = which(c == "TRUE")

if (length(constVar > 0)) {
Data = Datal, —constVarl]
} else {
Data = Data
}

impVars = relief(Y ~ ., data = Data, neighbours.count = 10,
sample.size = round(0.05 * (nrow(Data))))

# plot (impVars [order (-impVars$attr_importance),])

df = data.frame(impVars, 1:nrow(impVars))

names (df) = c("AtrrImp", "Var")



ord_df = df [order(-df$AtrrImp), ]
ord = ord_df[, 1]

PerChange = 0.1
i=1
while (PerChange <= 0.3) {
# le cambie porque algunas corridas no estaban
# dando el
i=1i+1
PerChange = abs((ord[i - 1] - ord[i])/ord[i -
1D

selVars = ord_df$Var[c(1:(1i - 1))]

# performance metric for fs method itself
SelimpVars = paste("X", c(selVars), sep = "", collapse = ";")
BestSubset = length(selVars) #best subset size

# performance metrics for fs method itself

impVNS = setdiff (NonLinImpVars, selVars) #imp variables not selected by CFS

impVD = length(NonLinImpVars) - length(impVNS) #imp wvariables accurately detected
ExcessVars = length(selVars) - impVD

Sensl = impVD/(ReallV + RedVars) #sensitivity

Sens2 = impVD/(ReallV) #sensitivity

Specif = 1 - (ExcessVars/(NoiseVars + RedVars)) #specificity

Accuracy = (impVD + (NoiseVars + RedVars - ExcessVars))/(length(Data) -
1) #accuracy

# Cross waltdation (uses random forest)

DataNew = data.frame(Datal, selVars], Data$Y) # new data set created with
# the features selected and Y

names (DataNew) [ncol(DataNew)] = "Y"

permRows = sample(x = l:nrow(DataNew), size = nrow(DataNew),
replace = FALSE)
error = matrix(nrow = nFolds, ncol = 1) #CV error matriz
mean_adev = matrix(nrow = nFolds, ncol = 1) # mean deviation matric

# Create testing and training folds
obsFold = floor(nrow(DataNew)/nFolds)

pending = nrow(DataNew) - floor(nrow(DataNew)/nFolds) x*
nFolds
j=o0

for (i in 1:nFolds) {
if (i >= (nFolds - pending + 1) & pending >
0 {
assign(paste("F", i, sep = ""), DataNew[permRows[(j +
1):(j + obsFold)], 1)
j = Jj + obsFold + 1
} else {



assign(paste("F", i, sep = ""), DataNew[permRows[(j +
1):(j + obsFold)], 1)
j = j + obsFold

}
}
# Fit model
for (i in 1:nFolds) {
testing = get(paste("F", i, sep = ""))
trainingRows = setdiff (1:nrow(DataNew), as.numeric(row.names(testing)))
training = DataNew[trainingRows, ]
myRF = randomForest(Y ~ ., data = training) #fit random forest using new
# data set with selected features
predicted = predict(myRF, newdata = testing)
actual = testing3Y
# performance metrics
error[i, ] = sum((actual - predicted)~2) # PRESS
mean_adev[i, ] = sum(abs(actual - predicted)/length(predicted)) #MAD
}

PRESS = mean(error)
MAD = mean(mean_adev)

Newtime = proc.time() - initialtime # run time

Results[indice, ] = cbind(rep, impVarsAux, BestSubset,
Sensl, Sens2, Specif, Accuracy, Newtime[2],

PRESS, MAD)
names (Results) = c("Rep", "ImpVariables", "BestSubset Size",
"Sensitivyl", "Sensitivy2", "Specificity",

"Accuracy", "RunTime", "PRESS CV", "MAD CV")
write.table(Results, "ReliefResults_LinearData.csv",

sep = ",", row.names = FALSE) #Change Doc name depending on data set!!!
indice = indice + 1

}
Results
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