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DNA local sequence alignments provide biological insights that can help scien-

tists identify genetic diseases, map newly obtained sequences to known genomes, or

identify common genomic patterns on same species. Even when optimal sequence

alignment algorithms have been well understood since more than 3 decades ago,

the technological advancements of Next Generation Sequencing and the genomic

data explosion they produced made them impractical today. Moreover, there is an

increasingly necessity of fast comparison of very small sequences (less than 5,000

base pairs) against full genomes (greater than 100M base pairs). This thesis fo-

cuses on the local alignment problem for sequences with extreme length disparity

and presents an Improved Search for a Local Alignment (ISLA) algorithm which

provides an iteration based algorithm that achieves near optimal results by focusing

local alignment only on specific areas of interest. ISLA also provides a probabilistic

model to understand the chances of achieving a higher score.
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ALINEAMIENTO LOCAL PARA SECUENCIAS DE DNA CON
LARGOS SUMAMENTE DISPARES REDUCIENDO EL ESPACIO

DE BÚSQUEDA

Por

Wilfredo Enrique Lugo-Beauchamp
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Consejero: Jaime Seguel
Departamento: Ciencias e Ingenieŕıa de la Información y la Computación

Los alineamientos locales de secuencias de ADN son usados para proveer in-

formación biológica relevante que puede ayudar en la detección de enfermedades

genéticas, parear secuencias nuevas con genomas conocidos o identificar patrones

comunes en una misma especie. Aún cuando los algorithmos de alineamientos de

secuencias locales son conocidos desde hace mas de treinta años, los avances tec-

nológicos causados por los nuevos mecanismos de secuenciación y la explosión de

información de genomas causado por estos, ha provocado que no se puedan utilizar

hoy en d́ıa. Mas aún, hay una necesidad apremiante de poder ejecutar compara-

ciones rápidas de secuencias cortas (menores de 5000 nucleótidos) contra genomas

completos (mayores de 100M nucleótidos). Esta tesis se enfoca en el problema

de alineamiento local de secuencias de largos sumamente dispares y presenta un

nuevo método que reduce el espacio de búsqueda para lograr alineamientos locales

cercanos o igual al alineamiento óptimo. El algoritmo también provee un modelo

probabiĺıstico el cual da una medida de cuán buena es la puntuación del alineamiento

obtenido.
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1. Introduction

1.1 Biological Sequence Alignments

Over the last two decades, the advancements on sequencing technologies trig-

gered an avalanche of biological data without precedent in the computational do-

main. Even when most of the best known biology related algorithms were discovered

in the last century, none of them anticipated the amount of data we are generating

in a single day. Most of these algorithms are simply computationally intractable

using available data. Thus a new set of heuristics and probabilistic methods that

sacrifice accuracy for speed came into play.

Biological systems store structural and functional information in biochemical

strings. Biologists use DNA as the master plan of the organism which contains the

coded genetic sequence[1]. Knowledge of these sequences are nowadays indispensable

for biological research and their applications in medicine and biotechnology. Once

a whole DNA sequence (or genome) is obtained for that organism, they can start

comparing that genome to establish relationships within the same species and to

understand how the physical characteristics (phenotypes) can be correlated with dif-

ferences in genomes[2]. Moreover, they also want to compare inter-species genomes

to understand evolutionary relationships. The decision on how these sequences are

related (or not) is based on what is called a pairwise alignment.

Pairwise alignment (or sequence alignments) is no different than comparing

two strings of letters for differences between them[3]. However, from the biological

perspective is not enough to know that two strings are different or equal, some metric

1



2

or score is needed to understand how similar, or how different those two sequences

are between each other. This scoring mechanism can help them embrace or discard

results and draw conclusions based on those scores.

DNAs are not the only sequences of interests on the computational biology

domain. The central dogma of biology describes how the DNA transforms into

messenger ribonucleic acid (mRNA)[4] and how mRNA is traduced into amino acids

which are the building blocks of proteins[5]. All these sequences are of interest for

biologists, and when the term pairwise alignment or sequence alignment is used, it

refers indiscriminately to DNA, mRNA or amino acid sequences.

Below sections will highlight some key applications of sequence alignments in

computational biology.

1.2 Applications

Disease Diagnosis and Treatment. It is estimated that each cell in the

human body experiments at least ten thousand DNA lesions per day[6]. These

mutations can be triggered by internal or external factors. External causes can range

from radiation (including sunlight), chemical and food exposures. Internal factors

can be attributed to physiological means like DNA mismatches during replication,

DNA strand breaks, hydrolitic reactions and reactive oxygen compounds such as

ozone. Almost all of these mutations are repaired and corrected by cells internal

mechanisms without causing major disruptions. However, there are cases when

these reactive mechanisms are not working as expected and lesions can replicate

and generate genome instability. Genome instability is known to produce at least

40 known diseases including most forms of cancer[7].

The disease diagnostics and treatment application domain deals with the de-

tection of these DNA mutations (which can also happen in newborns) and the capa-

bility of providing individualized treatments for these diseases. In order to perform
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effective and rapid detection, the person’s DNA must be sequenced and compared

against known disease mutations. There is no way this can be done without some

kind of pairwise alignment technique.

Evolution History. Regardless of today’s diversity across humans, DNA has

been providing new information on human history and human migration. By an-

alyzing genetic DNA markers between living people and human fossils, scientists

are now able to establish relationships on humans origins. Recent studies show

that the entire world population descended from African migrants around 50,000

years ago[8]. This conclusion is reached by analyzing DNA samples from human (or

human-like) fossils across different geographical locations and building a common

ancestry or phylogenetic tree. To measure this genetic variation across fossils and/or

living humans, some kind of sequence alignment is needed.

Conservation. Conservation genomics is a new area of study that is applying

DNA analysis for species preservation purposes. The primary goal is to reduce the

current rate of extinction and preserve (and promote) biodiversity of species[9]. DNA

interspecies comparisons are performed to identify common origins and to trigger

cross breeding techniques that can add genomic diversity to endangered species.

Environmental changes and their effects on DNA are also studied as a way to identify

how certain species can be helped to adapt faster to certain external factors. The

area of conservation genomics relies heavily on full genome comparisons that are

only accomplished by the use of next generation sequencing along with some kind

of sequence alignment algorithm.

Genetic Fingerprinting. Advancements in sequencing technologies are also

impacting our justice system[10]. DNA profiling applies sequence alignment and

comparative techniques to the investigative criminal discipline. Its focus is not only

on the aim of convictions on the guilty, but on exoneration of the innocent who

are imprison wrongfully. Current criminal databases contains millions of reference
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genomes of known suspects and offenders on which DNA obtained from recent crime

scenes are compared against. These databases also contain cDNA information on

repeat or serial sex offenders.

Genetic fingerprinting is also used to determine relationships between two in-

dividuals and understand how biologically related they are to each other. The most

common usage of this technology is what we know as paternity (or maternity) tests.

In this type of testing, DNA samples are obtained from the individuals of interests

(normally the child and the individual under study) and compared against each

other. This test produces a similarity score (from 0% to 100%) where a high score

increments the probability of a relationship between the two subjects. Thousands

of these tests are conducted each year around the world and sequencing alignments

are the backbone of them.

Agricultural. DNA analysis in agriculture has been predominant in recent

years. Plants, seeds and animal genomes are being modified genetically to increase

resistance to diseases and/or plagues, increase yields, boost nutritional value, in-

crement shelf life, make them weather resistant, or even being injected as vaccines

into crops [11]. Specific gene identification and correlation to specific factors is the

product of hundreds and hundreds of DNA comparisons using some kind of sequence

alignment algorithm.



2. Related Work

This chapter will discuss in detail the related work in the area of Sequence

Alignments. It will start with the mathematical definition of a sequence alignment

and its evolution and then will discuss the new technologies on DNA sequencing and

current computational challenges they impose. The last section will introduce the

concept of unbalanced sequence alignments and will present two biologically relevant

challenges in the discipline.

2.1 Sequence Alignments

A two sequence alignment problem is defined based on two sequences A and B

where:

A = a1a2a3 . . . aN−1aN

B = b1b2b3 . . . aM−1aM

N = |A|

M = |B|

ai, bj ∈ ΣALL1 ≤ i ≤ N, 1 ≤ j ≤M

ΣALL = ΣDNA|ΣRNA|ΣAMN

ΣDNA = {G,A, T, C}

ΣRNA = {G,A,U,C}

ΣAMN = {C, S, T, P,A,G,N,D,E,Q,H,R,K,M, I, L, V, F, Y,W}

As noticed, a single sequence is based on one of three alphabets: ΣDNA, ΣRNA

and ΣAMN . Each of these alphabets represents the symbols of a DNA sequence, RNA

sequence and a protein sequence, respectively. Since there are repeated symbols

5
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across the different alphabets, the context of where the sequence is coming from

provides the information needed to understand what type of sequence it is. However,

an alignment is only possible between two sequences of the same alphabet (e.g. two

DNA sequences or two RNA sequences or two protein sequences).

Now that the sequences A and B definitions are presented, an alignment of the

sequences A and B is obtained if three specific conditions are satisfied:

• Condition 1

|A′| = |B′| = |N ′|

|N ′| ≤ N +M

A′ = a′1a
′
2a
′
3 . . . a

′
N ′−1a

′
N ′

B′ = b′1b
′
2b
′
3 . . . b

′
N ′−1b

′
N ′

ak, bk ∈ Σ′ALL1 ≤ k ≤ N ′

Σ′ALL = ΣALL

⋃
{′−′}

• Condition 2

a′k = ‘−’⇒ b′k 6= ‘−’, 1 ≤ k ≤ N ′

• Condition 3

A = f(A′)

f : Σ
′∗
ALL → Σ∗ALL

x = yz, yz ∈ Σ
′∗
ALL

f(yz) =


λ, yz = λ

λf(z), y = ‘−’

yf(z), y 6= ‘−’

The first condition simply states that after a valid alignment, the new aligned

sequences A′ and B′ must have the same length. The second condition makes sure

that none of the aligned sequences can contain an interruption marker (‘-’) at the

same position. Last condition guarantees that the order of the original sequences

is preserved. This is done by defining a function that removes interruption markers

from the aligned sequence. An aligned sequence without interruption markers must
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be exactly the same as the original sequence. Figure 2–1 shows different example

alignments between two protein sequences.

Figure 2–1: Alignment examples between protein sequences A=EAEHWAP and
B=HEAGAWHEE. (a) Alignment with N’=10, (b) Alignment with N’=11, (c) Align-
ment with N’=14.

2.1.1 Alignment Quality Criteria

The previous section explained the definition of a two sequence alignment and it

was shown how there will be several possible alignments for the same two sequences.

The main problem arises when selecting the best alignment from all possible align-

ments. This is done by assigning grades or global scores to each possible alignment

and then selecting the one with the highest score. All scoring strategies are based on

probability models created by studying symbol occurrences on real sequenced data.

Based on these studied sequences, the probability that certain nucleotide or amino

acid ai could transform or mutate into bj across a certain period of evolutionary

time could be obtained. Based on this single symbol probability (paibj), it could be

establish the probability for the whole alignment as:

P (A,B|M) =
∏
paibj

The above probability considers only the likelihood that both sequences are related

based on a match model M . However, to construct a more robust approach, there

is a need to understand the probability when both sequences are totally unrelated
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based on the studied sampled data. This is obtained by using a simple probabilistic

random model R, where it is assumed at symbol ai occurs independently with a

frequency qa. Based on this, the probability of random occurrence of a mutation

between nucleotide or amino acid for an alignment could be calculated as the product

of all individual probabilities of each symbol:

P (A,B|R) =
N∏
i

qai
M∏
j

qbj

Based on these two probability models, a ratio for overall alignment score could

be obtained as follows:

P (A,B|M)
P (A,B|R)

=
∏
paibj

N∏
i
qai

M∏
j
qbj

=
N,M∏
i,j

(
paibj
qaiqbj

)
Above ratio is commonly known as the odds ratio. Since it is more difficult to

implement an alignment based scoring system which uses products of probabilities,

an additive score system is produced by applying logarithms to above ratio:

S =

N,M∑
i,j

s(ai, bj)

where :

s(x, y) = log

(
Px,y
qxqy

) (2.1)

Above equation 2.1 is known as the log-odds ratio and it is the primary metric

for sequence alignment scores [3]. The log-odds ratio is based on an evolutionary

time assumption. Since each ai element may mutate more than one time depending

on the time elapsed, different calculations are needed to be performed depending on

the estimated evolutionary time between the sequences under comparison. These

values are calculated a priori and stored in lookup tables or substitution matrices.

These matrices are commonly available and are developed by biologists based on

specific needs. The most popular substitution matrices are the Point Accepted

Mutation (PAM)[12] and the BLOck SUbstitution Matrix (BLOSUM)[13]. Both
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of them are used exclusively for amino acids/proteins and there exists different

matrices depending on the estimated evolutionary time between sequences. PAM

matrices are preferred when working with closely related proteins but don’t work

very well for dissimilar sequences. On the other hand, BLOSUM matrices uses blocks

of preserved protein segments across multiple alignments, and uses a threshold-

clustering approach to reduce the bias caused by closely related proteins. In this

way, important preserved segments are identified and have more scoring weight than

non preserved segments. Substitution matrices are commonly input arguments to

the sequence alignment problem and changes on the matrix used will change the

final score of the alignment.

The alignment scoring system explained above does not take into account inter-

ruptions or gaps on the alignment (represented by the interruption marker symbol

’-’ on section 2.1). These gaps represent the addition or removal of symbols in a se-

quence. These are also called insertion and deletions and they account for mutations

or changes occurred via natural selection. Each one of the gaps in an alignment has

a negative impact on the final score. This penalty is normally referred as a penalty

gap. These penalties could be based on a linear score or an affine score. On the

linear score each gap has the same penalty regardless how many consecutive gaps

were detected. In the affine gap model, there is a gap-extension factor which mit-

igates gaps on long insertions or deletions across the alignment. The gap function

to be used depends on the known characteristics of the sequences and it is also an

input to the sequence alignment. As in the substitution matrix, a change in the gap

function will cause a change on the final alignment score.

2.1.2 Sequence Alignment Computational Complexity

The brute force two sequence alignment algorithm is an O (N ′!) problem since

it requires the alignment of all possible combinations of alignments of size N ′. The

total number of combinations could be obtained from:
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(
N ′

N ′min

)
=

(
N ′!

(N ′−N ′min)!N ′min!

)
N ′min = min{N,M}

N ′ = M +N

Things changed dramatically in 1970 when Needleman and Wunch, using dynamic

programming techniques, designed an algorithm to compute global sequence align-

ments for two sequences with an O (N2) complexity (Assuming M = N)[14]. Until

today, this algorithm (or one of its many variations) is still being used for optimal

sequence alignments. Needleman-Wunsch recursion is defined on 2.2, where F is the

similarity matrix obtained from the recursion, f(g) is the gap penalty function used

on insertions or deletions which is a function of the gap length g. Last, s(aibj) is

the substitution matrix function that returns the similarity score between ai and bj.

Also, F0,j = g ∗ j and Fi,0 = g ∗ i are the basis for the recursion.

Even when the maximum similarity score is obtained on sequences A and B

(provided by F ), the similarity pathway P is needed to identify the gaps (if any)

across both sequences. This is normally accomplished by having separated two

dimensional array tracking the decisions made for each Fij element and performing

a backtracking when F calculation is completed. In this way, homologies between

both sequences can be identified and a global alignment score between the two

sequences is produced. This global alignment total score is stored on element FNM .

It also needs to be highlighted that the space complexity for Needleman-Wunsch is

also O (N2) since the similarity matrix F needs to be stored.

Fij = max


Fi−1,j−1 + s(aibj)

Fi−1,j − f(g)

Fi,j−1 − f(g)

(2.2)
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2.1.3 Local Alignments

Even when Needleman-Wunsch could detect homology sections on pair sequence

alignments and even when some of these could be inferred by analyzing high score

sections on the similarity matrix F , this analysis tends to be impractical. The

limitation with Needleman-Wunsch is that a continuous segment of gaps (insertions

or deletions) will affect subsequent locals and global homologies, lowering the global

score and masking homology segments on the alignment.

To address the local alignment problem, in 1981 Smith-Waterman proposed a

slight modification to the Needleman-Wunsch recursion[15]. They added a threshold

to the Fij computation where the function will ignore all scores obtained that are

below that threshold. Equation 2.3 shows the changes to the Fij calculation per-

formed by Smith-Waterman. F0,j = 0 and Fi,0 = 0 are the basis for the recursion.

As in Needleman-Wunsch, space complexity of Smith-Waterman is O (N2).

Fij = max



Fi−1,j−1 + s(aibj)

Fi−1,j − f(g)

Fi,j−1 − f(g)

0

(2.3)

Above section presented a detailed description and definition of sequences align-

ments and its global and local variants. Next section will focus on understanding the

technology behind Next Generation Sequencers and the computational challenges

they imposed.

2.2 Massively Parallel Sequencers

Sequencing is the process of determining the precise order of the characters

that compose a cDNA sequence. cDNA is synthetically produced by the sequencing

technology by using the reverse transcriptase enzyme. During the last ten years, ad-

vancements in sequencing technologies had made possible the increased throughput
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of new sequences to numbers unthinkable 20 years ago. Current technology is able

to produce up to 30Gbp per day of new data which represents an additional chal-

lenge for biologists. This new trend of sequencing technology is also known as Next

Generation Sequencers (NGS). Table 2–1 shows 3 examples of leading commercial

sequencers and their respective capabilities[16].

Technology Maximum
Read Length
(bp)

Accuracy
(%)

Reads Advantages

Roche 454 700 99.9 1M Longer Read
Lengths

Illumina 50 Single Ended,
50 Pair Ended

98 3G High Coverage

SOLiD 50+35bp 99.94 1.2M-1.4M Accuracy

Table 2–1: Massively Parallel Sequencers Overview

All NGS share a common sample preparation method, regardless of the technol-

ogy used. These pre-sequencing steps that are common to all sequencers, produce

hundreds of millions of cDNA fragments. As shown in Figure 2–2, these steps in-

clude random fragmentation of the DNA under study, ligation of the fragments with

custom linkers or adapters (each technology has their own proprietary adapters)

and amplification. The amplification step is used in all the sequencers to facili-

tate the measurement of the detection of the fluorescence signal emitted during the

sequencing processes.

All of these sequencers rely on SDS-PAGE[17] or fragment separation and the

separate fluorescent tag which identifies each nucleotide. There are 4 separate reac-

tions, one for each nucleotide. Based on these reactions, each nucleotide (A, T, G

and C) is targeted one at a time. Some characteristics in the excitation wavelength
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of these reactions allow the identification of each nucleotide and with it, the se-

quencing of the cDNA. The next section is a brief description of current sequencing

technologies.

2.2.1 Illumina GA/HiSeq System

In the Illumina System, the amplification process produces thousands of iden-

tical copies of the same DNA fragment and locates them into a single cluster. Each

cluster is made up of thousands of identical fragments and each cluster contains

a different fragment of the original sequence of interest. Based on the fluorescent

signals produced by the chemical reactions, the sequencer detects each type of nu-

cleotide fragment at a time, until all DNA fragments in the cluster are identified.

Hundreds of millions of clusters can be sequenced in a massively parallel sequencer.

A measure of interest for some practitioners is the coverage of the sequencer, which

is defined as the ratio between the size and number of reads and the size of the

genome. The Illumina sequencer is claimed to provide one of the highest coverage

ratios[16]. Figure 2–2 illustrates coverage differences between regions of a genome.

2.2.2 SOLiD System

The Sequencing by Oligonucleotide Ligation and Detection (SOLiD) sequencing

framework, which was developed by Life Technologies, is based on sequencing by

ligation. This technology relies on Emulsion PCR[18] for amplification. With this

amplification mechanism, a single bead produces thousands of copies of the original

fragment. The method uses also a double base encoding in which each base position

is queried two times with different fluorescence tags. This fluorescence tag should

match perfectly the fragment under study, ensuring the nucleotide is accurately

matched with the wavelength of the signal emitted. The SOLiD system is the

preferred choice of users that require higher accuracy.



14

Figure 2–2: DNA Sequencing and Assembly Process Overview for the NGS

2.2.3 Roche 454

The Roche 454 relies on pyrosequencing technology, which measures the emis-

sion of light when complementary nucleotides are incorporated into a growing frag-

ment strand. This system also uses Emulsion PCR[18] for the amplification process.

Each single bead is then placed into a sampling well on which the sequencing reac-

tion will occur. A high sensitivity CCD camera registers the light emission of the

millions of reactions, which are then used to properly classify each base. Among all

current massively parallel sequencers, the Roche 454 system produces the sequence

fragments of longest length, facilitating, the computational assembly of the genome.

2.2.4 Computational Impact

The NGS systems explain on section 2.2 return millions of small DNA segments

(or reads) of the sampled sequence. In order to be useful, these reads need to be
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assembled into a single sequence. For already sequenced organisms this process is

known as Mapping Assembly. One way to do this is by comparison with a similar,

known genome. Such approach involves the application of millions of two-sequence

alignments, which turns sequence alignment procedures into a true computational

bottleneck of NGS systems. This amount of data could not be analyzed in a timely

fashion with a precise alignment algorithm.

Moreover, NGS systems are now producing hundreds of daily sequenced data

and most of it ends being stored in databases for later processing[19, 20]. Normally

a bioinformatics expert first step after generating a new sequence is to compare

it against what is already available and studied to better characterize the newly

sequenced DNA. Since DNA genome sequences can range from a 20M base pairs (bp)

to 129,907M base pairs, sequence alignments between the new sequence (query) and

the sequenced data bases (references) is not a tractable problem since it becomes a

O (RMN) where R is the quantity of references to be looked at, M is an average

query length and N represents the average genome reference size.

Based on these constraints, bioinformaticians use heuristically based algorithms

that sacrifice accuracy for speed. These methods rely on inputs and knobs that

most of the times are difficult to understand and experiment with. In the assembly

process, this results in cases where the same genome data will probably generate

different assembly results based on each biologist’s custom parameters. Moreover,

it can not be determined which result is closest to the optimal assembly.

The next chapter will focus on understanding a subset of the sequence alignment

challenges on characterizing small sequences against a substantially longer sequences.

In those cases, the queried sequence is of short length when compared to the reference

sequence.
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2.3 Unbalanced Sequences

Through the rest of this thesis work, the genome concept will be used broadly

to explain the challenges on comparing small sequences to longer sequences. Most

of the time, these longer sequences are species genomes. Next subsection aims at

providing an overview of a genome and how it is represented. After that, next

subsections will explain in detail the Transposable Element (TE) and the Genome

Assembly problems, which are selected challenges that need a better way to handle

unbalanced sequences comparisons.

Genome

A genome is a DNA sequence (or RNA on some viruses) which represents all

chromosomes for the species under study. Even when most people think of a genome

as a very long single sequence of DNA, the truth is that it is not. A genome can

be seen as a set of chromosomes and each chromosome is kind of independent from

each other. In the computational domain, a full genome is not always achieved. In

most cases a genome can be completed and a consensus sequence is reached, but

not on 100% of it. There may be missing, or disconnected fragments.

A genome is normally contained in a single file which has the consensus chromo-

somes along with the missing and/or cDNA fragment sequences. Below list contains

the basic components of a genome file (not all genomes contain them all):

1. Chromosome - consensus cDNA sequence attributed to a specific

chromosome.

2. Non-Chromosome - Long DNA sequences that hasn’t been assigned

to a chromosome (yet). These maybe mitochondrial or viral frag-

ments.

3. Scaffold - Long sequences that are known to be in the correct order

but that hasn’t being connected to a proper chromosome or another

continuous area of a known sequence.



17

2.3.1 Transposable Elements

Transposable Elements (TE) (or mobile elements) are DNA sequences that have

the ability to move themselves to other parts of the genome within the same cell[21].

They are known to exist in all known genomes and can be divided into 2 main

categories: DNA Transposons and Retrotransposons. Even when TE movements

increase genome diversity they have also being implicated in diseased states.

The DNA Transposons are common in prokaryotic cells, but can also be found in

insects, worms and humans. They mostly move in a cut and paste approach but they

remain in the vicinity of their original position. These sequences are normally called

Insertion Sequence (IS) and commonly are between 700bp and 1500bp long. Figure

2–3 shows the mechanism on how a donor DNA is detached from the transposon by

the help of the transposase enzyme and how it reattaches itself to the target DNA.

Between 2%-3% of the human genome consist of DNA transposons.

The retrotransposons accounts 42% of the human genome and have the ca-

pability to move around in a copy and paste approach. As shown in Figure 2–4

retrotransposons are transcribed and then translated into the reverse transcriptase

enzyme which generates complementary DNA (cDNA) based on the transposon

RNA template. This cDNA is then inserted back into the genome in a different

position than its original position.

Retrotransposons are divided further into 2 categories: Long Terminal Repeats

(LTR) and Non-LTR. LTR Transposons are abundant in eukaryotes organisms,

but at least in the human genomes most of them are inactive (can’t move around

anymore)[22]. Non-LTR transposons on the other hand are divided into two main

categories: Short Interspersed Nuclear Elements (SINE) and the Long Interspersed

Nuclear Elements (LINE). LINE elements are divided into L1, L2 and L3 but only

L1 elements are still active in the human genome. L1 accounts for around 17% of
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Figure 2–3: DNA Transposons work by making a cut and paste approach and moving
with the help of certain proteins to another part of the genome

Figure 2–4: Retrotransposons copied themselves by generating the reverse transcrip-
tase enzyme after translation. These enzymes help to produce cDNA which is then
inserted by the transposon on another position on the genome
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the human genome and even when the vast majority of them are inactive, around

80-100 of these sequences have been estimated to be moving around the genome[23]

with an estimated average length of 7,000bp. L1 events are predicted to trigger 1 in

1000 diseases producing insertions in humans.

Transpose Elements Detection Complexity

For optimal detection of TE elements in a genome, the sequence identified as a

TE (e.g. L1 sequence) needs to be aligned across the whole genome. This process

computational complexity is O (NM) where N is the size of the genome and M the

size of the L1 sequence (around 7,000bp). In the human domain, since the genome is

about 3.2Gbp, therefore optimal sequence alignments becomes impractical due the

highly unbalanced lengths between the sequences involved. Based on these issues,

heuristic approaches are used today to detect TE (specifically L1) locations in the

genome. This research will focus on TE detection based on a library-based search.

That means that TEs were already identified by another tool and the goal is to

search for those TEs in a genome. The section below will give a detailed overview

of the tools available for TE genome searches.

Current Tools

The following paragraphs provide a detailed overview of the tools currently used

to search for TEs in genomes. First BLAST tool will be discussed in detailed and

then the Cross Match and N-HMMER tools will be briefly discussed.

BLAST. The Basic Local Alignment Search Tool (BLAST) is by far the most

used tool on the sequence alignment and sequence comparison domains[24]. BLAST

is based on the concept that a satisfactory alignment between two sequences consist

of a set of short length exact matches. BLAST divides the query sequences into a

list of short words (or K-mers) and query these K-mers into a previously indexed

reference database. EachK-mer consist of a word of lengthK which is a subsequence
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of the query sequence. As shown on Table 2–2 the length of the set of K-mers is

determined by L−K + 1 where L is the sequence length.

K=4 K=6 K=8
ACTC ACTCGA ACTCGATG
CTCG CTCGAT CTCGATGC
TCGA TCGATG TCGATGCT
CGAT CGATGC CGATGCTC
GATG GATGCT GATGCTCA
ATGC ATGCTC ATGCTCAA
TGCT TGCTCA TGCTCAAT
GCTC GCTCAA GCTCAATG
CTCA CTCAAT
TCAA TCAATG
CAAT
AATG

Table 2–2: Example of different K-mers sets for query sequence ACTCGATGCT-
CAATG

Since reference databases are indexed also by K-mers of the reference sequences,

a linear search is quickly performed to match queried K-mers to references. However,

the K value selected have implications on the results of the algorithm. A lower K

will increase the quantity of searches, the amount of overlapping and will make

more difficult DNA repeats identification. On the other hand, larger K values will

increase the amount of searches and computational resources, but will help in repeat

detection.

Once all K-mers have been selected, a scoring matrix is used to produce a

measure for all pairs. No gaps (insertions or deletions) are assumed on this step and

scores are calculated based only on matching letters. All the scores for the pairs are

sorted and only the ones higher than a threshold T are selected for further analysis.

This list of chosen scores is called High Scoring Pairs (HSP) and this process is

often call seeding. Next step BLAST goes into the K indexed database to get the

reference matches for the HSP.
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At this point BLAST starts expanding the obtained seeds on both sequences:

query K-mers and reference subsequences of length K on both directions and a new

threshold T is calculated. If the score increases with the extension, then it continues

extending until one of the following conditions is reached: (1) Scores drops X from

its maximum achieved, (2)Cumulative score reached zero or less or (3) end of one of

the sequences is reached.

Above process is a description for the core BLAST algorithm. As it can be

seen, it is very fast since it is not doing a full sequence alignment. It does a linear

search between the query and the reference and only use scoring matrices as a way

to measure sequence comparisons. There is no guarantee that the hits obtained by

BLAST are the best ones since it does not take into account gaps and there could

be better alignments that were not selected in the HSPs. However, BLAST also

provides a statistical model that allow its users to perceive the statistical significance

of the returned hits. This will be explained in detail the below.

BLAST Statistical Significance. It has been proved that a Smith-Waterman

local alignment without gaps follows an Extreme Value Distribution (EVD). An

EVD is often used to model the smallest or largest value among a large set of

independent, identically distributed arbitrary values representing measurements or

observations, in this case ungapped Smith-Waterman scores[25]. Based on the gener-

alized probabilistic theory for EVDs, a Type-I (or Gumbel) distribution can be used

to obtain the probability P of a score S equal or greater than x for two sequences

of size N and M . This can be expressed as:

P (S ≥ x) = 1− e−e−λ(x−υ)

where : υ =
KN ′M ′

λ

(2.4)

K and λ are estimated statistical parameters that are dependent on the substi-

tution matrix used, sequence composition and gap penalties. As it can be seen, the
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probability assumes an exponential decay. Since BLAST’s HSP are based in subse-

quences and not overall sequence, N ′ and M ′ are sequences with effective lengths

that take into account alignment positions. They are estimated by:

M ′ ≈M − ln(KMN)

H

N ′ ≈ N − ln(KMN)

H

(2.5)

H is the average score per alignment for two random sequences. Since BLAST

already knows its databases (they are already indexed), on most implementations

λ, H and K values are pre-calculated by the tool.

Using Equation 2.4 BLAST is able to calculate the expected score E of a match

which is the number of times an unrelated random sequence can get an score S

which can be higher then x against the set of sequences stored on a database D.

This expected score is obtained from:

E ≈ 1− eP (S>x)D (2.6)

The expected score or E-value is used by biologists to determine a significance

of a selected HSP and it is reported by BLAST on all them which are above T . Even

when BLAST is an heuristics method that does not guarantee the best alignment,

its statistical significance on results is one of the best features that has been added

to the sequence comparisons field and explains why BLAST is embraced by the

scientific community.

Cross Match. Cross Match is an efficient implementation of Smith-Waterman

algorithm that claim to have reduce the number of machine instructions per simi-

larity matrix cell[26]. It relies on SWAT tool which scans a database and provides

statistical significance on K-mer hits[27]. Based on those hits, then a constrained

Smith-Waterman is executed on highlighted sites.
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N-HMMER. N-HHMER uses known HMMER framework to search for TEs

in a sequence[28]. HMMER is based on the Hidden Markov Model (HMM) that

applies probabilistic inference methods to the sequence alignment problem. Even

when it is based on probabilistic model, HMM provides gap based scoring based on

the query profile and calculates the signal of homology based on the most dominant

HMM algorithm.

2.3.2 Genome Assembly Process

The genome assembly process aims at generating a consensus sequence from the

reads produced by a NGS system as shown on Figure 2–2. Reconstruction algorithms

are grouped in two broad classes, namely De Novo assembly, and mapping to a

known reference genome. The De Novo assembly process is used when there are no

known or consensus genome available for the organisms under study[29]. However,

whenever the sampled specimen is known to be a variant or closely related to a

species whose genome has been previously sequenced, the assembly process is done

by alignment (or mapping) with the known genome, also called reference genome.

Indeed, a reference genome sequence is a DNA template assembled by scientists as

a representative example of the specie genetic information. Thus, in these cases, the

assembly process orders and maps the reads to the reference genome, to produce

a consensus sequence. Since the count and length of chromosomes varies across

species, the length of the reference genome also will vary by species. In the case

of the human genome, the reference genome is about 3 billion nucleotides (or base

pairs).

Reference Genome Assembly Complexity

The näıve approach to a genome assembly is to simply map all possible reads

against the reference genome. In this implementation, a sequence alignment is per-

formed against the read under study and the reference genome, as is shown on Figure
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2–2. For each read, the assembly process must figure out the best position for that

read in the genome. As explained on section 2.2.4, the computational complexity for

optimal local alignment is O (RMN) where R is the number of reads, M the average

read length and N is the size of the reference genome. Since each read may contain

insertions, deletions or mutations at the same position in the genome an exact match

is not always possible. As with the TE problem described on above section, the time

and space complexity of an optimal local alignment is deemed too high to handle

reads assembly, thus, heuristics assembly algorithms are used. Subsection 2.3.2 will

present a detailed overview of the most common genome assemblers used today by

the scientific community

Current Tools

BLAT. The BLAST-Like Alignment Tool (BLAT) algorithm uses the heuris-

tics of popular BLAST algorithm to align sequenced reads to a reference genome

and produce a consensus DNA genome string [30]. As BLAST[24] and FASTA[31]

this algorithm is based on the heuristic principle in which each major alignment is

a combination of small exact matches. To implement this heuristics, BLAST in-

dexes the query sequence into a set of K-words or K-tuple. The set of K-tuples

represent all possible subsequences of length K of the query sequence. A search is

performed against different Databases and the best matches between the K-tuple

and the Databases sequences are then analyzed in more detail. BLAT is similar

in spirit, but with a few differences. In BLAT, the query sequence is not indexed,

only the reference genome is indexed. Also, in BLAST an extension is performed

when one or two overlapping or close K-tuples provide together a high scoring align-

ment (at least greater than a prefixed threshold T ). In BLAT, extensions may be

performed on any number of K-tuple (not just two).
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SeqMap. SeqMap is another tool for mapping short reads into a reference

genome to generate a consensus sequence[32]. SeqMap relies on splitting each read

into parts assuming the number of possible substitutions between the read and the

reference genome is known. It is based on the Pigeonhole principle: if X substi-

tutions are present and the length of the read is M , then the read may be partied

in pieces of length M
2X

to ensure that at least 2 pieces may have exact matches.

These exact matches could then be easily looked up against the reference genome

and provide an index to the query read segment.

MAQ. The Mapping and Assembly with Quality (MAQ) alignment method

indexes the first 28 base pairs of each read, since these are typically the read segment

with best quality[33]. It uses the same hash technique and pigeonhole principle of

SeqMap. The main difference is that it fragments only the first 28 nucleotides

into 6 hash indexes, which combine different 8bp seed templates in the form of

11110000, 00001111, 11000011, 00111100, 11001100, and 00110011 where nucleotides

in a position represented by 1 will be indexed while those at positions represented

by a 0 are not. For each template, each read is indexed based on the template

nucleotide mapping. As seen by each template, not all nucleotides on the segment

will be indexed. It depends on the current template. Once a hash table is created

for each template on each read, a set of 28-tuples is produced from the reference

genome and compared against the template hashes. If there is an exact match

between the read templates index and the reference genome index that is considered

to be a hit. Now, once a hit is found, the read quality scores on the mismatches

nucleotides (including those beyond the 28 bp size) is added. The best two higher

scores produced for each read are then stored together with the reference position.

If a read obtains the same quality score on two positions, the algorithm chooses the

smaller hash index, as a way to achieve pseudo-randomness to the selection.
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Bowtie. Bowtie is a memory efficient tool that aims at aligning short DNA

reads to produce a consensus sequence[34]. It relies on the Burrows-Wheeler trans-

formation and the Full-Text Minute-Space (FM) Index on which the reference genome

is represented as a permutation of characters with some auxiliary data structures.

By using this transformation and auxiliary data, each nucleotide in a read is looked

up into the permutations transformation. Due to the special arrangement produced

by the Burrows-Wheeler transformation, whenever a suffix is expanded on the read,

the range of the lookup matrix is reduced. The method finds all possible exact

matches between a read and the reference genome. Since the suffix scanning is per-

formed in O (N) time, the algorithm incorporates pre-calculated nucleotide tallies

of the reference transformation to reduce the scan into constant time by adding

very little space. A problem arises when reads are not exact matches. In this case,

Bowtie performs sequence backtracking based on nucleotides quality values. Low

quality values suggest that the sequenced nucleotide could be a mismatch. In such

a case, the algorithm does a nucleotide substitution in that position, and continues

the matching process forward. Since the search is greedy, the first match is the

one selected. If no match is found, the algorithm keeps on backtracking based on a

previously established backtracking policy. Unlimited backtracking is controlled by

different indexing technologies like double indexing and MAQ-like search, however

there is also a backtracking limit in place. Due to the backtracking and the6 greedy

approaches, Bowtie could not guarantee an optimal alignment and it is considered

a heuristic algorithm. However, due to its fast execution it is currently one of the

most widely used assemblers.

SSAHA. The Sequence Search Alignment by Hashing Algorithm (SSAHA)

that uses an extensive hashing approach to complete fast searches against the ref-

erence genome[35]. The reference genome is pre-processed by breaking it into con-

secutive non-overlapping k-tuple. Each k-tuple is then hashed as a 24 bit key. The
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list for that key contains all the positions on the reference genome that have that

k-tuple. For each read, a set of new k-tuple is then generated (this time they are

consecutive and overlapping) and a new hash table is created for each read with the

position of the reference genome that matched the read k-tuple. Then, the offset of

the read k-tuple is removed and each index is sorted accordingly. Once sorted, the

list order contains each read k-tuple exact match in the reference genome and its

specific position in the reference.

This chapter presented the computational challenges for unbalanced local se-

quence alignments and showed how these constraints are relevant to at least two

very important problems in biology. It was shown how these problems are handled

today by heuristics approaches that sacrificed accuracy by speed. In the next chap-

ter, a new algorithm designed for unbalanced sequences that provides near optimal

alignments is proposed.



3. Thesis Objectives

1. Design and implement a new optimal sequence alignment technique that uses

Smith-Waterman algorithm at its based but that can reduce execution time on

highly dissimilar sequence lengths

(a) Specific objectives

i. Mathematical Correctness - algorithm must be able to detect optimal

solution

ii. Execution Times - algorithm must be considerably faster than common

Smith-Waterman implementations on highly dissimilar sequence lengths.

(b) Metrics

i. Algorithm accuracy results (scores and alignment positions) will be com-

pared against known Smith-Waterman implementations using same in-

puts.

ii. Algorithm executions times will be compared against known Smith-Waterman

implementations for same inputs.

2. Develop a benchmark suite that can compare new algorithm accuracy against

known tools preferred by the scientific community.

(a) Specific objectives

i. Benchmark new algorithm results against BLAST[24] tool.

ii. Benchmark new algorithm results against Bowtie[34] tool.

(b) Metrics

i. Use BLAST and Bowtie returned position and obtain an score against

that position.
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4. Proposed Algorithm

An algorithm that performs an improved search for a local alignment (ISLA)

and uses a probability to assess the quality of the approximation will be proposed on

this chapter. The method finds approximate Smith-Waterman (SW) solutions faster

than a direct application of SW, and is scalable. ISLA achieves this by exploiting two

properties of an alignment of a short sequence X and a significantly larger sequence

Y . The first is a localization property, which reduces computations to segments of

Y of length |X| instead of the whole Y . The second is the existence of a method

to search for the best approximation to the exact solution. The method allows a

significant amount of parallel computations as well.

4.1 Algorithm Overview

ISLA uses all the exact matches between X and Y to build a profile of matches

for finding segments of Y whose alignment with X has a good chance of being a

Local Alignment optimal solution, but not to construct the solution. Each entry

in the profile of matches is an upper bound of the number of matches in the local

alignment. ISLA starts with a selection of a segment of Y with the highest match

profile value and then computes a local alignment using SW against that segment.

The score, number of matches and length of the alignment are extracted and used

to initialize the search space reduction. The latter is performed with an iterative

method, which performs one SW computation at each step. If a higher score is

found, the method reduces the number of Y -segments of interest, by eliminating
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entries on the profile of matches. ISLA computes SW on each of the remaining

segments and returns the ones with the highest score.

4.2 Definitions

This section will document some formal definitions that will be used in the rest

of the chapter. These definitions are the building blocks for the propositions that

will be developed later.

4.2.1 Local Alignment

The first definition is of a local alignment between sequence X and Y , which

will be defined with the symbol Λ, in specifically Λ(X, Y ).

4.2.2 Length of an alignment

The number of columns in a local alignment or alignment length L is defined

by:

L = m+ s+ g, (4.1)

where m will be the quantity of matches, s the quantity of substitutions and g the

quantity of gaps inserted on the resulting alignment. In the worst case scenario, a

resulting alignment length between sequences X and Y can be up to |X|+ |Y |, but

in practice we see lengths in the range of |X| < L < |Y | in our case of interest where

|Y | � |X|.

4.2.3 Substitution Matrix

As explained on section 2.1.1 the quality of a local alignment is assessed with

a scoring scheme, which is a pair (S, f) of a substitution matrix and a gap penalty

map. In DNA alignments S = [S(α, β)], α, β ∈ {A,C,G, T} is defined as

S(α, β) =


r, if α = β and

ω, otherwise,

(4.2)
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where r > 0 is the reward for a match and 0 < ω < r is the cost of a character

substitution or mismatch. In turn, the gap penalty map is defined as

f(g) =


γ + (g − 1)η, if g > 0;

0, otherwise,

(4.3)

where g is defined (as in equation 4.1) as the length of the gap sequence, this is the

number of gap symbols between two consecutive characters. On a perfect match

between 2 sequences g is zero. The constant γ is defined as the cost of the first gap

insertion between symbols. It is also known as open gap penalty. The other constant

η is the cost of subsequent gap insertions or extended gap penalty. In the particular

case where η = γ the gap penalty map is called linear. Otherwise, is said to be

affine.

The defined ranges for each of these constants are 0 < γ < r and 0 < η ≤ γ.

From now on, this DNA scoring scheme will be referred as (S, f), with S as in (4.2)

and f as in (4.3).

4.2.4 Score of an Alignment

The score of and alignment between a sequence X and a sequence Y with

respect to a given DNA scoring scheme is defined as

sc (Λ(X, Y )) = r ·m− ω · s−
q∑
i=1

f(gi). (4.4)

Here q is the number of gap sequences inserted in the alignment, while m and s

are the number of character matches and substitutions as defined on 4.1. In local

alignments, the score is required to be positive. Thus, a formal definition of local

alignment between X and Y is the 2-row array that satisfies the following conditions:

1. The first column of the alignment is a match;

2. No gap symbol is aligned with a gap symbol; and
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3. sc(Λ(X, Y )) > 0.

4.3 Propositions

To show ISLA mathematical correctness, some propositions will need to be de-

fined first. This section will establish these propositions and will use the definitions

presented on section 4.2

Proposition 4.3.1. Let α = min {ω, γ}. Then,

L < m
(

1 +
r

α

)
. (4.5)

Proof. Since sc(Λ(X, Y )) > 0 we have

0 < r ·m− ω · s− γ · g (4.6)

≤ r ·m− α(s+ g).

Thus,

s+ g <
r

α
m. (4.7)

By replacing s+ g in L with the bound (4.7) the following relationship is obtained:

L = m+ s+ g (4.8)

< m+
r

α
m = m(1 +

r

α
).

Corollary 4.3.1. All local alignments that start with a match between a character

in X and Yj in Y are a local alignment between X and Y [j : j +m · (1 + (r/α)]. In

particular, all local alignments between X and Y are a local alignment between X

and Y [j : j + |X| · (1 + (r/α)]

Proof. Direct consequence of (4.3.1) and the fact that m ≤ |X|.
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Proposition 4.3.2. Let α = min {ω, γ} and β = max {ω, γ}. Then the score to

match ratio of an alignment is bounded by mappings:

φα(u) =− αu+ (r + α), and (4.9)

φβ(u) =− βu+ (r + β) (4.10)

Proof. The ratio between the score and the matches is a measure of similarity.

From equation 4.4 and dividing the whole equation by m the following relationship

is obtained:

sc

m
= r − ω · s− γ · g

m
; (4.11)

It can be seen the ratio approaches its maximum r if s and g are small and m is

large. Since α = min {ω, γ} and β = max{ω, γ} and 1 ≤ u < 1 + r/β, then we can

establish the score ratio upper and lower bounds for the alignment by:

φα(u) =− αu+ (r + α), and (4.12)

φβ(u) =− βu+ (r + β) (4.13)

It is worth remarking φα(1) = φβ(1) = r, and φβ(u) < φα(u) for all 1 < u <

1 + r
β
. The restriction u < 1 + r/β is necessary since φβ(u) ≤ 0 for u ≥ 1 + r/β and

thus, is meaningless as lower bound for a positive rational. Figure 4–1 shows how

relationships 4.12 and 4.13 behave with these boundaries.

Proposition 4.3.3. Let L be the length of a local alignment with score sc, and m,

the number of matches in this alignment. Then,

φβ

(L
m

)
≤ sc

m
≤ φα

(L
m

)
. (4.14)

Proof. From the definition of sc we get

r ·m− β(s+ g) ≤ sc ≤ r ·m− α(s+ g), (4.15)
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Figure 4–1: φα and φβ mappings as defined in relationships 4.12 and 4.13

By replacing s + g with L − m and using a simple algebraic manipulation we get

(4.14).

The set of all possible score-to-matches ratios does not admit a total order. The

next proposition proves the existence of a partial order.

Proposition 4.3.4. Let sc1 and sc2 be scores of local alignments of lengths L1 and

L2, and number of matches m1 and m2; respectively. If

L2

m2

< φ−1β

(sc1
m1

)
, (4.16)

then

sc1
m1

<
sc2
m2

(4.17)

Proof. Since φβ is decreasing, when applied to 4.16 we get

φβ

(L2

m2

)
>
sc1
m1

. (4.18)

But

φβ

(L2

m2

)
≤ sc2
m2

. (4.19)
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We establish next, an explicit relations between matches and scores of local align-

ments.

Proposition 4.3.5. Let α be as in Proposition 4.3.1, r as defined in equation 4.2,

L as defined in 4.1 and m be the number of matches in sc(Λ(X, Y )). Then,

m ≥ sc(X, Y ) + α · L
r + α

(4.20)

Proof. Since L = m + s + q as defined on 4.1, we can also say that L−m = s + q.

We also know the score is sc(Λ(X, Y )) = r ·m+w · s+ q · γ but since it needs to be

greater than zero, we use α to obtain:

sc(X, Y ) ≥ r ·m+ α(s+ q) (4.21)

By combining L with sc(X, Y ) the following is obtained:

sc(Λ(X, Y )) ≥ r ·m+ α(L−m) (4.22)

which can be re-arranged to obtain:

m ≥ sc(X, Y ) + α · L
r + α

(4.23)

Corollary 4.3.2. Let sc(Λ(X, Y [j : j + κ ·m])) be a score with m matches, and let

tlow =
b+ α · L
r + α

, thigh =
b+ β · L
r + β

(4.24)

Then if m ≤ tlow, sc(Λ(X, Y [j : j + κ ·m])) ≤ b.

We refer to number t in (4.24) as a threshold for the number of matches.

Proposition 4.3.6. Assume that Λ(X, Y [j1 : j1 + κ · m]) has m matches. Let

mji, i = 1, ..., r, be a sequence of positive matches between X and substrings Y [ji :
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ji + |X|], such that for each i, 2 ≤ i ≤ r mj = 0, for ii−1 < j < ji. Define the

recursion:

Base: A1 = S1 = mj1.

Recursion: for 2 ≤ i ≤ r, if Si−1 + γ + (ji − ji−1 − 1)η > 0 set Si = Si−1 +mji and

Ai =


Ai−1 +mji , if Ai−1 +mji < |X|;

|X|, otherwise.

(4.25)

If Si−1 + γ + (ji − ji−1 − 1)η ≤ 0, stop.

Let U(j1) = maxAi. Then, m ≤ U(j1).

Assume that b is a lower bound for msc(X, Y ) and t is the threshold in 4.24.

Then, by Corollary 4.3.2, we eliminate all U(j) < t, where 1−|X| ≤ j ≤ |Y |+|X|−1

.

4.4 Probability Model

As shown in Figure 4–2 the graph of the set of pairs {(u, φα(u)− φβ(u)) : 1 ≤

u < 1 + r
β
} is a straight line with origin (1, 0) and end (1 + r

β
, r). The area below

this line is

A =
1

2

(r2(β − α)

β2

)
. (4.26)

Even when there is a possibility of scores in the 1 + r
α

area, those will not be of

interest since the amount of matches will be low.

Since each score-to-matches ratio of interest falls within this area, we define the

probability of existence of a higher score-to-match ratio in the sense of proposition

4.3.4 as

P
(
ρ >

sc

m

)
=

1

A

(
φα

(
φ−1β

(sc
m

))
− sc

m

)(
φ−1β

(sc
m

)
− 1
)
, (4.27)

where ρ = score-to-match ratio, is a random variable. Figure 4–3 shows the re-

lationship between the areas of the whole score-to-match ratio versus the area of

the obtained alignment. The rate between these two areas produces equation 4.27.
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Figure 4–2: Overlapping between φα and φβ mappings as defined in relationships 4.12
and 4.13

Now, by defining a new random variable σ = score of the alignment of X and Y ,

for a computed sc(X, Y ) with m matches and length L, we set the probability for

sc(X, Y ) to be the optimal score as

Pop

(
sc(X, Y )

)
= P

(
ρ >

sc(X, Y )

m

)
(4.28)

It is worth noticing that Pop(scX,Y ) ≥ 0 and equals 0 if and only if scX,Y = |X| · r

which is an exact match.

4.5 Methodology

4.5.1 Match Count Vector

ISLA algorithm starts with a match count vector or mCount. This vector is

calculated based on a well known cyclic convolution algorithm[36]. This section
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Figure 4–3: Relationship between the areas of the obtained score-match ratio versus
the area from Equation 4.26

provides a detailed explanation on how this was achieved for two DNA sequences.

Same approach can be used for proteins or mRNA sequences.

Assuming X and Y are the following sequences:

X = AGCT

Y = CGTAGCTCTA

On position (or index) zero of sequence Y (or Y0) we have:

AGCT-------

CGTAAGCTCTA

A similarity match can be found by simply counting the symbols that are the

same on each position of the sequence Y . For example, when x1 =′ G′ there is

a match (since y1 is also ’G’), so the similarity matching of Xinto Y at position

zero (or Z[0]) is 1. On Z[1] there are zero matches and if the process continues the

maximum symbol matches between sequence X and sequence Y is found on position

Z[4] with a count of 4 symbols matching. Since |X| is also 4 that implies an exact

match of X in Y at position 4 (y4). This function can be defined more properly as:

Z[n] =
∑M−1

0 f(X[n], Y [(n+ k)modN ])

where:

X[n] = xn
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Y [n] = yn

f(x, y) =


1, when x = y

0, otherwise

The above approach will give all similarities for each position of Y and the maximum

is the best symbol match of X into Y (or vice-versa). However, the computational

resources needed is O (MN) or O (M2) since sequence X needs to be padded to

make its length M . The same result can be accomplished by creating a function for

each nucleotide on each sequence to convert into numeric vectors.

fG(x) =


1, when x = ’G’

0, otherwise

fA(x) =


1, when x = ’A’

0, otherwise

fT (x) =


1, when x = ’T’

0, otherwise

fC(x) =


1, when x = ’C’

0, otherwise

Using these functions numeric vectors can be created for each symbol of the

nucleotide alphabet G,A, T, C

XG = xG0xG1....xG(M−2)xGM−1

xGi = fG(xi)

XA = xA0xA1....xA(M−2)xAM−1

xAi = fA(xi)

XT = xT0xT1....xT (M−2)xTM−1
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xTi = fT (xi)

XC = xC0xC1....xC(M−2)xCM−1

xCi = fC(xi)

0 ≤ i ≤M − 1

Based on our previous example:

X = AGCT

X = CGTAGCTCTA

XA will be 1000 for sequence X and YA will be 0001000001 for sequence Y .

This manipulation can also be applied to the Y sequence to obtain YG,YA, YT and

YC respectively. Using these numeric vectors the count of symbol ’A’ matches for

each position can be obtained by:

ZA[0] = XA[0] · YA[0] +XA[1] · YA[1] + ...+XA[M − 1] · YA[M − 1]

ZA[1] = XA[0] · YA[1] +XA[1] · YA[2] + ...+XA[M − 1] · YA[0]

In its generic form the function will be become:

ZA[n] =
∑M−1

m=0 XA[m] · YA[(n+m)modM ]

0 ≤ n ≤M − 1

The same functions can be defined for all other letters.

ZC [n] =
∑M−1

m=0 XC [m] · YC [(n+m)modM ]

ZT [n] =
∑M−1

m=0 XT [m] · YT [(n+m)modM ]

ZG[n] =
∑M−1

m=0 XG[m] · YG[(n+m)modM ]

By simply adding all matches for all four nucleotides on each position the total

match for each position is obtained.

Z[n] = ZG[n] + ZA[n] + ZT [n] + ZC [n]

0 ≤ n ≤M − 1

Thus, maximum(Z) is the maximum number of symbol matches between se-

quence X and Y . The index of that maximum will be the position in Y when that

maximum happened.
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At this point the computation still O (M2) and the problem still exist. However

when we look into the generic form of the approach:

Z[n] =
∑M−1

m=0 X[m] · Y [(n+m)modM ]

it can be seen it is very similar to a circular convolution calculation. By defining

Y as its reverse, a convolution equation can be obtained:

YR = YM−1YM−2...Y1Y0

Thus, now we have:

Z[n] =
∑M−1

m=0 X[m] · YR[(n−m)modM ]

Since this is the same as a circular convolution definition, a discrete fast fourier

transform (FFT) can be used:

Z = IFFT (FFT (X) ∗ FFT (YR))

Thus now we can obtain the symbol similarity vector using a complexity of:

4 ∗ [2 ∗O (MlogM) + O (MlogM) + O (M)]

The complexity needs to be multiplied by 4 since the calculation needs to be

performed for each nucleotide symbol.

4.5.2 Percentile trimming

Once the mCount (or M vector ) is calculated, it is then trimmed to remove

low m positions that have small chances of containing the best match or optimal

SW alignment. This filtering is based on a statistical percentile and it just assigns

to zero all values below certain threshold. Since the match count depends on the

query sequence and the reference sequence, this value is calculated dynamically and

it is unique for each M vector. Figure 4–4 shows 4 different short sequences boxplots

of M vectors that were produced against the same long sequence. ISLA percentile

is set to default on the 3rd quartile so the lower 3
4

of the matches are changed to

zero. Relationship 4.29 shows the calculation the new vector M ′ based on previous

match-count vector M . This step can also be visualized on figure 4–5
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Figure 4–4: Boxplots of matches of 4 different short sequences against the same long
sequence

M ′ =


m,m ≥ percentile,mi ∈M

0, otherwise

(4.29)

4.5.3 Matches Profile

Once M ′ is calculated ISLA algorithm produces a profile for all the matches

remaining after percentile filtering. A simple process, called pMatches, transforms

M ′ into a list M of triples

M = 〈(j,mj, dj) : j = 1, ..., |M ′|〉〉; (4.30)

where for each j = 1, ..., |M ′|, j is the index in M ′ with mj matches and a calculated

penalty of dj. dj is obtained by:

dj = γ + (j + 1− j + i)η (4.31)

dj is simply the cost of inserting a sequence of gaps between the mj and the next

nonzero entry mj+i in M ′. If mj+1 6= 0, then dj = 0 since there will be no penalty

between consecutive matches. However, if mj+1 = 0 then mj+2 will be checked to
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Figure 4–5: ISLA percentile filtering approach. It removes non significant matches
from mCount and applies a score projection



44

calculate the number of gaps. The process will continue until mj+i > 0 is found and

the quantity of gaps and overall penalty for mj is calculated. This process is bounded

by O (|Y ||X|) but the constant are just small fractions of Smith-Waterman’s since

mj itself is bounded by |X| and there is no need to continue looking for gaps beyond

that distance. The space complexity is bounded by O (|Y |) since only M ′ and M

of size |Y | are used.

The objective for the M list is to provide enough information for each position

on M ′ so an score bound can be calculated.

4.5.4 Score Projection

Using proposition 4.3.6 which give us an score projection based on matches

and proposition 4.3.5 a score projection vector is calculated using the generated M

vector. This projected score vector (or PS) contains an estimated scored value based

on the matches and penalties obtained on M . As with the match profile calculation

on sub section 4.5.3 the score projection is calculated for all psj elements of vector

PS. For each position psj the triple obtained from M is used in the form of:

(j,mj, dj) = Mj (4.32)

psj =

i<|X|∑
i=j

(r ·mj − dj) (4.33)

Even when the calculation of psj may continue until |X|, the projection will

stop if at some point psj < 0. In that case psj will not be part of PS. Only final

calculated psj > 0 will be included on PS. The final vector PS will contain a list of

tuples with the position j and the projected score psj. PS is sorted in descending

order using psj as sorting key. As in the match profile calculation, this process is

bounded by O (|Y ||X|) with small constants, space complexity is also bounded by

O (|Y |).
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Figure 4–6: thigh and tlow thresholds helps to trim further the PS vector by removing
lower projected scores

4.5.5 Threshold Calculation

Once PS vector is obtained and sorted in descendant order based on projected

scores, its first element contains the higher psj. Using this first score, a SW is

performed against X and a subsequence of Y with a starting position j̄ (associated

with with the higher psj) up to (1 + r
alpha

) · |X| as established on proposition 4.3.1.

Also based on proposition 4.3.5 and using equations defined on (4.24), thresh-

olds tlow and thigh are calculated and PS vector is trimmed further. The initial SW

score and alignment length is used to calculated the thresholds. First thigh threshold

is applied and if the resulting PS 6= ∅ then PS remains. However, if PS = ∅ after

thigh is applied, then it tlow is applied and will be used.

4.5.6 Iterations

The iterations in ISLA start with the computation of a new value of

score = sc(Λ(X, Y [j̄ : j̄ + κ · PS(j̄)] (4.34)

where j̄ ← argmax(PS) and k = (1 + r
α

). If the current iteration produces a

better alignment than before, both thresholds (tlow and thigh) are updated and the
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vector PS is reduced by deleting all PS(j) < thigh, if any, together with PS(j̄).

This process continues until:

1. U is empty

2. no new values of b are produced.

3. Max iteration limit is reached.

Algorithm 4.5.6 shows the basic concept of ISLA. First M vector is calculated using

cyclic convolution. This M vector is trimmed by making zero all elements below a

percentile and producing M ′. A profile for each match is obtained from M ′ which

is used to calculate M . After M is determined, a score projection vector PS is

produced. Threshold thigh and tlow are calculated and all elements in the PS below

thigh are removed. If the resulting vector is empty, the tlow threshold is used instead.

The iteration process will continue until one or more of the exit criteria defined

above are reached. Once an alignment is obtained a probability of the chances of a

better score based on the number of matches is provided.

Next chapter will provide implementation details on ISLA and the benchmarks

obtained.
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Algorithm 1 ISLA Algorithm pseudocode

1: procedure ISLA(X, Y , (S, f),maxTries,perc)
2: alignmentList← ∅
3: M ← mCount(X, Y )
4: M ′ ← percentileTrim(M, perc)
5: M ← pMatches(M ′,(S, f))
6: j̄ ← argmax(M )
7: (score, L,m,Λ)← SmithWaterman(X, Y [j̄ : j̄ + κ · |X|],(S, f)) . Λ is the

local alignment
8: alignmentList = {Λ}
9: α = min(S, f)
10: β = max(S, f)
11: tlow ← (score+ α|L|)/(r + α) . Calculates lower threshold
12: thigh ← (score+ β|L|)/(r + β) . Calculates higher threshold
13: PS ← ScoreProjection(M )
14: PS ← PS − {PS(j) : PS(j) < thigh} . Removes bounds less than thigh
15: if PS = ∅ then . Check for contents
16: PS ← PS − {PS(j) : PS(j) < tlow} . No contents, using tlow
17: end if
18: while PS 6= ∅ and cuurTries ≤ maxTries do
19: j̄ ← argmaxPS
20: (newScore, L,m,Λ)← SmithWaterman(X, Y [j̄ : j̄ + κ · |X|],(S, f))
21: if newScore > score then
22: alignmentList← ∅
23: alignmentList = {Λ}
24: S ← (newb,Λ)
25: score← newScore
26: tlow ← (score+ α|L|)/(r + α) . Calculates lower threshold
27: thigh ← (score+ β|L|)/(r + β) . Calculates higher threshold
28: PS ← PS − {PS(j) : PS(j) < t} . Removes bounds less than thigh
29: P = getProb(m, score, (S, f)) . Calculates probability of finding a

better score
30: else if newb = b then
31: alignmentList = alignmentList+ {Λ}
32: end if
33: delete PS(j̄)
34: currentTries = currentTries+ 1
35: end while
36: return alignmentList
37: end procedure



5. Implementation

The algorithm described on chapter 4 was implemented in a Symmetric Multi-

Processing (SMP) system using the Python[37] programming language. Algorithm

parallelization opportunities were exploited and different memory efficiency tech-

niques were used to gain better performance and efficient resources usage. This

chapter will explain in detail the algorithm implementation, its results and bench-

marks when compared to popular BLAST and Bowtie applications.

5.1 Parallelism

The original focus of this research was to be able to obtain a new algorithm for

local alignments that used Smith-Waterman but that was fully parallelized without

accuracy loss. That goal was achieved and its results published[38]. The resulting

algorithm FAMA (for Fast and Accurate Mapping Assembly) was aimed at process-

ing short reads produced by a NGS system and that needs to be mapped to a known

consensus sequence. Even though FAMA achieved 100% Smith-Waterman precision

and it is highly scalable, its executions times (while a lot better than sequential

processing) are still prohibitive to common biologist researchers and it depends on

a High Performance Cluster (HPC) architecture. The FAMA algorithm was devel-

oped in C programming language and using Message Passing Interface (MPI) as

the communication framework. It was a complex algorithm since it required a vast

amount of genome subsequences data transfers between master and workers and the

communication scheme was complicated from the programming stand point.

48
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The rest of this section will explore the parallelization approaches used on ISLA

and the reasoning behind it based on the lessons learned by FAMA.

5.1.1 Python

After FAMA, it was decided to move to an easier programming paradigm and

python was selected. Python provides tremendous programing flexibility without

the burdens of higher level languages. Even when it is known that python is an

interpreted language and it is assumed to execute slower when compared against

compiled languages such as C and C++, all the benchmarks performed pushed that

theory away.

The author executed benchmarks for computational biology common transac-

tions such as reading a FASTA or FASTQ files, performing Smith-Waterman align-

ments and even FFTW comparisons. Except for the fftw case, all other benchmarks

ran faster on python than on the C code implemented by the author. The reason

for this is that even when most of the python wrappers are python code, their low-

level modules are developed in C and compiled with optimizations for the target

system. For example, even when a person can develop a simple Smith-Waterman

algorithm in C, it can’t compete with python’s swalign which uses a lot of the nu-

merical libraries at its core, is open source and a lot of developers are constantly

improving it. Moreover, Python setups and configurations scripts have advanced a

lot in recent years, and most of the time, the flags and compile optimizations used

on the configuration scripts, will take a lot of time for a single developer to learn

and implement them.

5.1.2 Shared Memory

Operating System Shared Memory was selected as the vehicle for shared data

across workers. Figure 5–1 presents an overview of the ISLA shared memory ap-

proach. The algorithm relies on independent processing as much as possible and
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only relies on communication between master and workers just to transfer inputs

and results. In the case of the long sequence (which may be a whole genome),

communication of chromosomes or scaffolds between master and processes was pro-

hibitively slow due the time penalty and the memory limitations. Since the algorithm

was developed on a SMP system even when each process has its own memory space,

they share the same quantity limitation. For example, if a 340Mbp chromosome is

transfered to all processes, that space needs to be replicated on all processes on the

same system’s physical memory, which is a major waste of space and communication

time. This was the primary reason why the shared memory approach was used for

the long sequence.

Figure 5–1: ISLA Algorithm parallel approach. All processes handle each short
sequence independent of each other and communicate back results.

5.1.3 Python Parallelization Framework

Due the flexibility of Python, there exists several solutions for parallel process-

ing. Only on the SMP space more than 10 modules exist, a lot more for cluster

architectures and even a few for cloud computing[39].

Even when ISLA algorithm is not attached to any parallelization architecture

(e.g. SMP, HPC or cloud), due to the computational resources constraint a SMP
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approach was selected. For SMP, two Python solutions were evaluated and one

selected.

The first solution evaluated was Parallel Python. Parallel Python provides

a job oriented architecture that can be used for SMP and HPC architectures [40].

It provides a very intuitive and powerful framework which relies on job submission

to a job server. This job server is initialized with the desired number of processors

and it handles all requests transparent from users. The job submission takes the

function to be executed, its arguments and since each process runs in its own context

a list of dependent modules and methods need to be specified at job submission. The

submission can also take a callback function which is called with specified parameters

at process completion.

Parallel Python worked great for homogeneous loads where all processes shared

the same amount of work. However, that is not the case for ISLA algorithm since

each short sequence’s best alignment computation is dependent on different variables

related to sequences comparisons. The first implementation of ISLA was using

Parallel Python, but the load balancing control was adding more complexity to the

algorithm than what was desired. A callback mechanism was implemented where

functions maintained control of states by using global variables once a processes

ended. However, it didn’t work on some instances. Moreover, the biggest limitation

of parallel python was the inability to have query timeouts where the job submitter

may query the child process results even if the results are not ready. If the timeout

is reached, then the submitter will know the process is not ready yet to provide

results.

Due the load balancing complexities encountered with Parallel Python, the final

ISLA algorithm implementation is based on the Python Multiprocessing module.

Python Multiprocessing provides the same capabilities as Parallel Python but with a

more robust Application Programing Interface (API). It not only provides processing
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parallelism, but it also has the data parallelism functionality where a single function

can be automatically mapped to several inputs. It also provides basic process control

mechanism as semaphores and queues. However, the most important functionality

that convinced the author to use the framework is the timeout capability. The

timeout framework included as part of the API lets the main scheduler to query

each process individually even if the process is not ready to answer. This provides

great flexibility for unbalanced processes since there is no problem if some of them

completed early but others take more time. Algorithm Pseudocode 5.1.3 shows the

main queue implementation and how sequences are propagated to different processes.

5.1.4 Genome Processing

Genome processing is also processed in parallel using the same mechanism

shown on algorithm 5.1.3. ISLA algorithm takes a reference file which may con-

tain from one to several sequences depending on the organism. The genome (which

is normally in a FASTA file format) is divided into individual chromosomes and/or

scaffold sequences and these are processed independently of each other. Since the

genome is stored in Shared Memory, as explained on section 5.1.2, each genome

subsequence is then processed and stored by each process individually (Figure 5–2).

Each process uses an unique naming schema to avoid two processes writing to the

same space. The name schema is derived from the subsequence name stored on the

FASTA file. ISLA assumes that there can’t be two different sequences with the same

name on a single FASTA file.

5.2 Cyclic Convolution Implementation

The cyclic convolution (explained on section 4.5.1) is accomplished by calculat-

ing FFTs for each nucleotide vector. To be able to perform these computations as

fast as possible the implementation uses FFTW. FFTW is a C subroutine library

for computing the discrete Fourier transform (DFT)[41]. FFTW is one of the most
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Algorithm 2 Main Queue pseudocode which uses Python Multiprocessing module

1: procedure MainQueue(SequenceList,totalProcs)
2: pool = Pool(totalProcs)
3: poolList = ∅
4: currSeq = 0
5: for sequence in SequenceList do
6: job = pool.submit(processingFunc,sequence)
7: pooList = pooList + job
8: currSeq = currSeq + 1
9: if currSeq == totalProces then . All processes used
10: break
11: end if
12: end for
13: onQueue = 1
14: finished = 0
15: while onQueue do
16: index = 0
17: for job in procList do
18: try:
19: result = job.get(timeout=1)
20: processResult(result)
21: finished = finished + 1
22: except TimeoutError:
23: continue
24: try:
25: sequence = SequenceList.next()
26: job = pool.submit(processingFunc,sequence)
27: procList[index] = job
28: currSeq = currSeq + 1
29: except StopIteration:
30: procList = procList - result
31: if finished ≥ currSeq then
32: onQueue = 0
33: break
34: end if
35: index = index + 1
36: end for
37: index = 0
38: end while
39: end procedure
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Figure 5–2: Genome processing parallization. As FASTA formatted file is broke in
individual sequences and those are then submitted for processing.

efficient implementations available since it performs runtime queries to the running

platform, executes small benchmarks and adapts itself dynamically to perform as

fast as possible. FFTW has been ported to all major platforms and python wrappers

had been generated for it. This implementation uses Python FFTW (pyFFTW)[42].

The pyFFTW is used to calculate the forward (normal) and backward (inverse)

for both: the query sequence (shortest sequence) and the reference sequence (longest

sequence). Both sequences need to be converted to frequency domain, but the main

challenge was on the longest sequence. In case of a common chromosome or long

scaffold, it can easily contain hundred of millions of base pairs.

While the ISLA implementation transforms each genome subsequence into the

frequency domain in the same order as they are contained in the FASTA file, each

process does not follow the same order. The reason for this is that if a very large

chromosome or scaffold is going to be processed concurrently, the different match

count vectors generated by each process will have a significant impact on memory.

This normally resulted in Out of Memory scenarios. To avoid this, ISLA sorted

randomly the genome subsequence so each process is working against different sub-

sequences at the same time.
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5.3 Data Used

The data used on all the benchmarks and results on this project is a Stickleback

fish (Gasterosteus aculeatus) genome downloaded from the Ensembl genome browser

for vertebrate genomes[43]. The reason for selecting that specific genome is because

it was used by the author on another assembly project which targeted mapping reads

produced by NGS to a set of similar organisms and the Stickleback was one of them.

The Stickleback genome is approximately 460 Mb in length and contains 22 pairs

of chromosomes (groups) including a mitochondrial chromosome and an additional

1,822 unplaced supercontigs.

Due execution time constraints, the results discussed on section 5.5 are not

based on the whole genome. For accuracy measures a single scaffold (scaffold 1653)

of the genome was used, and for accuracy benchmarks against ISLA, BLAST and

Bowtie a super contig called groupVI was used. The scaffold scaffold 1653 contains

1924bp and is used as benchmark comparisons between full Smith-Waterman al-

gorithms. The super config groupVI is a 32Mbp sequence and it is used for long

sequence accuracy and execution times.

5.4 Environment

5.4.1 Hardware

All benchmarks and implementation were executed in a HPE BL920 Gen8 sys-

tem with 480 logical cores and 1 TB of RAM[44]. The system consist of 8 individual

blades that are connected and configured via an common backplane. The system

firmware allows it to be configured based on specific user needs, up to 8 individual

systems or 1 system that includes all 8 blades. In the case of this research, all 8

blades were configured as a single system. Each blade contains 2 Intel’s x86 64 EX

CPUs, and each physical processor contains 15 cores (30 cores per blade). Since the
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system has hyper-threading enabled, each blade contains 60 logical cores and thus

480 overall.

The algorithm is total agnostic to this specific configuration, and its only input

which is relevant to the architecture is the maximum process count on which 480 is

used. However, since the 1TB is shared across all process, there were cases where the

amount of process used were configured to be less to avoid Out of Memory scenarios.

5.4.2 Programming Environment

The operating system on the server is SUSE Linux Enterprise Server 12 and no

changes was required except for the installation of python needed modules.

The python version used was 2.7 but there was no single requirement for it. It

just happens it was the version installed on the system. The following table shows

a list of the python modules used on the ISLA implementation.

Module Version Description
multiprocessing (part of python 2.7) Provides ISLA parallelization API
numpy 1.8.0 Numerical Library for Python. All vectors in

ISLA are numpy vectors.
pyFFTW 0.10.4 FFTW Python wrapper, used for initial

match calculation
BioPython 1.67 Used for sequence file readings (FASTA and

FASTQ)
SharedArray 1.0 Used to store numpy vectors in shared mem-

ory
swalign 0.033 Python SmithWaterman implementation

Table 5–1: Python modules used by ISLA implementation

5.5 Results

The following section will cover the ISLA algorithm implementation results.

The section is divided into 3 main area of interest: (1) Algorithm Accuracy, (2)

Algorithm Execution Times and (3) Benchmarks against known tools. On the first
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subsection the validation of ISLA mathematical correctness is shown by comparing

ISLA results with Smith-Waterman algorithm results, the second section will com-

pare ISLA algorithm execution times with Smith-Waterman execution times and

third will provide benchmarks between ISLA algorithm accuracy, Bowtie assembler

and BLAST tools.

5.5.1 Algorithm Accuracy

Since ISLA is an iteration based algorithm, its accuracy increases based on the

number of iterations. As shown on Figure 5–3, while the number of iterations keep

increasing, its accuracy keeps growing until it reaches a 100%. Accuracy is measured

by comparing ISLA results with full SW alignment results. To have a hit, the final

score obtained by ISLA should be the same as the score produced by SW running

against the whole long sequence search space.

Figure 5–3: ISLA Accuracy by iterations.

These results were obtained using scaffold 1653 and a Illumina set of 1500 reads

obtained from the same organism. The scoring matrix used a reward of 2, and a
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substitution penalty of -1. The open gap parameter used was -1 with an extended

gap of -0.5.

As expected, an increase in iterations affects ISLA execution times. Figure 5–4

shows the increase in execution time by the increase in iterations. These are the

same runs that provide the accuracy results shown on Figure 5–3 and using the same

SW parameters.

Figure 5–4: ISLA execution times by amount of iterations

5.5.2 Execution Times

Table 5–2 shows the execution times of different implementation runs of Smith-

Waterman algorithm. All implementations use the same SW algorithm provided

by python swalign module as their base. The runs used 16 random generated sub-

sequences from the super contig groupVI contained on the genome discussed on

section 5.3. Appendix A.2 shows the bash script used to generate those reads from

the specific reference file. The script was used to generate 16 short sequence of

sizes between 35bp and 50bp. These were obtained from random positions on the
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super contig. For each one of those subsequences random mutations were added.

Mutations include insertions, deletions and SNPs. Each subsequence had at most 2

of these mutations at random positions in the subsequence.

Implementation Execution
Time

Sequential Smith-Waterman ∼3 days
Parallel Smith-Waterman ∼8 hours
ISLA (200 iterations) ∼15 minutes

Table 5–2: Execution times comparisons

The Sequential SW implementation processed all 16 reads in a sequential way

using a single processor. The Parallel SW implementation process all subsequences

concurrently. This implementation was the one that had the constraint of using a

small number of short sequences since the long sequence (32Mbp) in this case was

replicated across all nodes and the more subsequences processed, the more overall

memory it needs, reaching an Out Of Memory scenario even with small quantity

of subsequences. The ISLA implementation used 200 iterations. For these runs,

accuracy was not measured.

5.5.3 Benchmarks

On this section an analysis is performed between ISLA, Bowtie and BLAST

results. As explained on sections 2.3.1 and 2.3.2, Bowtie and BLAST are two of the

most used tools on the sequences comparison domain. Both tools rely on reference

sequence(s) indexing and exact matches search is performed in linear time. Even

when their results are based on regions of high homologies instead of alignments

they are preferred by the scientific community due to its fast execution times.

For these benchmarks the probability of finding a better match (as described

in section 4.4) is used against the results obtained from Bowtie and BLAST. Since

Bowtie and BLAST do not provide alignments per se, an SW algorithm is executed
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based on Bowtie and BLAST returned positions and probabilities are calculated

based on its results. These probabilities will be compared to the optimal align-

ment probability and a distance will be obtained. These distances are plotted on

histograms. In theory, an implementation obtaining same results as an optimal

Smith-Waterman, will contain a single histogram bin located near zero. This will

mean there are zero distances between the probabilities calculated by the algorithm

under study and the optimal Smith-Waterman alignment.

The short and long sequences used for these benchmarks are created synthet-

ically based on the script included on Appendix A.2. This script generates a ran-

dom long sequence and generates subsequences based on a short/length ratio. For

all these benchmarks the ratio used was 0.01, so for a reference long sequence of

1,000,000bp subsequences of sized 10,000bp were produced. All subsequences were

obtained based on random positions on the long sequences, and all of them con-

tained a mutation rate. As mentioned before, mutations are nucleotides insertions,

deletions and SNPs. These mutations are selected randomly and inserted in random

positions in the subsequence. Five hundred subsequences were generated in total,

and the same subsequences are used against the three methods. The benchmark

varies the mutation rate and shows algorithm results based on the following rates:

1%, 5%, 10%, 15% and 20%.

Figure 5–5 shows the results comparisons for a 1% mutation rate. As observed,

all 3 methods show almost optimal results since the distance between the optimal SW

alignment probability and their results is mostly zero. As per the results, BLAST

and Bowtie were not able to provide best position on only 3 of the 500 reads. ISLA

was able to provide the optimal positions on all of the reads. Since ISLA achieved

optimal results on only 50 iterations, no further runs with more iterations were

performed.
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Figure 5–5: ISLA, BLAST and Bowtie Benchmarks for a 1% mutation rate

Figure 5–6 shows ISLA results using 5% mutation rate. As expected, an incre-

ment in iterations produced an increase in accuracy. ISLA’s results with 50 iterations

produced 347 optimal alignments, while with the 600 iterations increased to 436.

On the other hand, figure 5–7 shows the results for Bowtie and BLAST for the same

reads. As it can be seen, Bowtie was able to get optimal positions on 399 of the

reads, and BLAST achieves an impressive 456 optimal positions.

Figure 5–8 shows ISLA results for subsequences with a 10% mutation rate.

The trend continues where an increase in iterations yields better accuracy and thus

better probability distances. For 50 iterations, ISLA was able to achieve 275 optimal

positions and 387 with 600 iterations. On Figure 5–9 BLAST and Bowtie results

can be observed. Here, it can be seen how Bowtie starts fading out on results, and a

new bin near 1 start forming. This bin gathers all subsequences that didn’t produce

a Bowtie hit. Bowtie only produced 159 optimal positions, while BLAST produced
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Figure 5–6: ISLA probability distances for 5% Mutation Rate

Figure 5–7: BLAST and Bowtie probability distances for 5% Mutation Rate

387 (same as ISLA with 600 iterations). Around 10 subsequences didn’t produce a

BLAST hit and that shows the small bin near 1.
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Figure 5–8: ISLA probability distances for 10% Mutation Rate

Figure 5–9: BLAST and Bowtie probability distances for 10% Mutation Rate

Figure 5–10 shows the ISLA results for 15% mutation rate. Here the optimal

positions ranged from 260 with 50 iterations to 376 with 600 iterations. As seen
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on figure 5–11 Bowtie was only able to find optimal positions for 162 subsequences,

while BLAST found 320. However, as per the histogram it seems the number is near

500 but that is because the bin is adding all other close to zero distances, which are

about 150 of them. It can also be seen that Bowtie was not able to provide valid

positions for most of the subsequences.

Figure 5–10: ISLA probability distances for 15% Mutation Rate

Finally, figure 5–12 shows the results for the ISLA runs for the 20% mutation

rate subsequences. Optimal positions ranged from 229 with 50 iterations to 353 with

600 iterations. From figure 5–13 it can be seen that Bowtie was only able to find 5

optimal positions while BLAST achieved 180 optimal positions.

5.5.4 Discussion

As results shown above established, ISLA algorithm achieved better accuracy

when compared with Bowtie and BLAST tools. Even when the execution times

of BLAST and Bowtie were still considerably faster than ISLA, ISLA was able to

achieve magnitudes of speed faster when compared to optimal Smith-Waterman
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Figure 5–11: BLAST and Bowtie probability distances for 15% Mutation Rate

Figure 5–12: ISLA probability distances for 20% Mutation Rate

alignments. Even when the computational complexity of ISLA is still O (NM), its
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Figure 5–13: BLAST and Bowtie probability distances for 20% Mutation Rate

constants are a small fraction of normal Smith-Waterman algorithm since the search

space is reduced considerably.

5.6 Reproducible Research

The Reproducible Research Standard (RRS) is a scientific community effort to

increase cooperation and leverage across researchers and universities. Its main goal

is to free the scientific work from copying and reuse restrictions, with attribution.

The general guidelines of RRS are:

1. Release media components (text, figures) under the Creative Com-

mons Attribution License (also known as CC-BY).

2. Release code components under MIT license or similar.

3. Attribution license on selection and arrangement.

4. All Data must be released under CC0.
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As part of this research we are aiming on being RRS fully compliant where we can

be.

Licensing. ISLA code and associated tools are released under MIT licensing

as established on [45]. This frees the scientific community from copying and reusing

the code while UPR maintains the copyrights.

Data. As explained on section 5.3, the source data used for gathering ISLA

results is already public domain. However, to be compliant with the RRS all charts

and results presented in this thesis should be surrendered into Creative Commons

Attribution License. Even when the author does not have any problem with that,

the contents of this thesis is automatically Copyrighted material from the University

of Puerto Rico, thus there will be a conflict with the university.



6. Conclusion and Future Work

6.1 Conclusion

A new and novel algorithm was presented that is able to achieve high accuracy,

while decreasing the computational time of optimal local alignments. This algorithm

results were compared to the preferred tools used by the scientific community and

data shows it can achieve equal or better precision. Algorithm also provides a novel

probabilistic model that can show insights on alignment certainty.

Even when the author is satisfied with the results there are still areas for research

and improvements that can be achieved. Next section expand on two open areas

that can be exploited to optimize even further the current implementation.

6.2 Future Work

6.2.1 Unbalanced Alignments

Even when the ISLA algorithm focused on highly unbalanced sequences, there

is no clear definition on what the term highly means. ISLA can produce an optimal

score between two sequences, one of 1000bp and another of 100bp, but the algorithm

overhead will add some much latency to the calculation that it does not make sense

to even try it. However, what is the cut-off value for ISLA? How can the algorithm

can determine if it makes sense to use ISLA or simply run normal Smith-Waterman?

Some benchmarks performed by the author shows that for small long-to-short

length ratios, ISLA algorithm execute 50 times slower than a simple SW implemen-

tation. It will be good to find such a ratio threshold and don’t try to use ISLA for

all short sequences, just for the ones that satisfy certain length ratio.

68
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6.2.2 Probability Model Enhancements

The novel probability model presented in this research can be used to under-

stand if the current alignment is close to a perfect match (low probability of finding

something better), or if the alignment based on the matches found may be discarded

since there is a high probability of finding something better. Even when this metric

provides new insights that were not available before, it will be good to think how

it may be improved to take into account the current sequences. Fox example, the

best possible alignment between two sequences can still yield a high probability of

finding something better, but it is not because the obtained alignment is low quality.

In cases where there is simply poor matching between the two sequences, probabil-

ity will be high but it is not due the lack of good alignment. There is an area of

opportunity to enhance the current model to at least provide some insights with the

probability that can provide a guideline based on the matching quality between the

sequences under study.



7. Ethical Considerations on Genome
Sequencing

This chapter deals with the ethical considerations in the area of DNA sequencing

and sequence alignments as part of medical treatments. It explores the current

contended issues in the field and briefly discuss the different point of views in the

area.

7.1 Incidental Findings

Due the decreasing costs on genome sequencing, medicine practitioners are now

increasingly incorporating the procedure as part of their diagnostics tools. This

clinical sequencing (it maybe be a whole genome or just exomes) is often ordered in

multiple medical situations that can help the practitioner get insights on rare dis-

eases, provide individualized treatment, screenings during pregnancy, asses possible

drugs responses based on gene functions and other diseases predisposition. Since

there exists an increasing number of genes and gene variants that have been corre-

lated to known diseases or risks, a single sequencing can lead to secondary discoveries

that are not related to the primary medical interest. These secondary findings are

known as incidental findings and they are a major source of ethical concern in the

medical community.

In 2012 the American College of Medical Genetics and Genomics (ACMG)

published a statement defining a new set of guidances on how to handle patient

sequencing procedures. The ACMG argues their main objective behind the new

protocols was to set a professional standard for laboratory best practices. On these

70
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recommendations, the ACMG indicated a minimum list of conditions (57 specified

genes) that should be checked and reported by laboratories when doing common

clinical sequencing. Moreover, the guidelines indicate that these findings should

be reported without validating patient preferences [46]. The recommendations also

establishes that the reporting should not be contingent on patient’s age, thus the

parents of a child being clinically sequenced does not have a say on incidental find-

ings. This specific guideline triggered an ongoing ethical discussion on patients rights

and privacy. One group in the medical community argue that genome sequencing is

just a single test and individual genes or variations checks should not be considered

as discrete tests. If these screenings are not tests, then there is no need for distinct

patient consent[47]. The other group contend that these guidelines are the same as

testing without consent and that the ACMG recommendations is an abrupt change

on patient autonomy. Their point is that the subject has a right of not to know and

also has the right to make a decision which can be different from what the medical

practitioner might choose [48].

Even when our thesis work may speed up the genome assembly process, and as

a consequence lower the costs of the test itself, the ethical debate on reporting (or

not) incidental findings will continue regardless of our work.

7.2 Code Source

What it is being considered one of the most relevant ethical issues in Bioinfor-

matics is the case of open/closed source software. It is argued that all sequencing

software should be open source since it encourages scrutiny from the scientific com-

munity and encourage replication and improvement of algorithms. On the other

hand, corporations that spend big part of their R&D budgets on trying to reach

a technology edge that can differentiate themselves from their competitors are not

willing to give that away.
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This research try to adhered to the Research Reproducibility Standard (RRS)

and thus all the algorithm source code is available to the scientific community under

the MIT licensing which will allows researchers to use it, modify it while giving

respective attribute to authors.

7.3 Legal Issues

In this section legal ethical issues affecting the sequencing of data are briefly

covered. It also discussed how these issues will be addressed under this proposed

research.

7.3.1 Open Data

One of the issues that are being debated by the scientific community on recent

years is the availability of new sequenced data. In 2000 Science Magazine had

an agreement with the Celera Genomics company where it allowed Celera to made

available their human genome sequence from its web site instead of common sequence

database consortiums as GenBank[19], MBL and DDBJ. Until that point it was

required that for all DNA/Protein related scientific publications to be considered

by Science should use sequences commonly available on these databases. If a new

sequence was generated, then that sequenced needed to be added to them. Under the

agreement, even when the access was granted to the genome data to every interested

party, they were not able to distribute it further.

This change in direction opened the door to a interesting debate between bi-

ologists regarding open data. Biologists were concerned that limiting the access to

data could restrict their ability to easily compare and aligned new data based on a

common infrastructure and that all sequenced data should be open and should be

accessed with minimal legal encumbrances.
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This research encourages RRS protocol and all the new data produced will be

under the Creative Commons (CC0) licensing. However, no new sequencing data

was produced as part of this research.

7.3.2 Gene Patents

It is estimated that more than 4, 000 genes of the 22, 000 genes in the human

genome have U.S. patents against them. This specific number accounts for a polar-

izing debate on the scientific community. One part of the debate is concentrating on

the companies right to a return of investment (ROI) after months or years studying

certain health conditions. On the other hand, it is argued that certain genes are part

of the human body and they are owned by humanity and not a single company.
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A. Bash Scripts Used

A.1 Random Sub-Sequence Generator
#!/bin/bash
#Copyright (c) <2016> <University of Puerto Rico at Mayaguez >
#
#Permission is hereby granted , free of charge , to any person

obtaining a copy of this software and associated
documentation files (the "Software "), to deal in the
Software without restriction , including without limitation
the rights to use , copy , modify , merge , publish ,

distribute , sublicense , and/or sell copies of the Software
, and to permit persons to whom the Software is furnished
to do so , subject to the following conditions:

#The above copyright notice and this permission notice shall
be included in all copies or substantial portions of the
Software.

#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND , EXPRESS OR IMPLIED , INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY , FITNESS FOR A PARTICULAR

PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR

OTHER LIABILITY , WHETHER IN AN ACTION OF CONTRACT , TORT OR
OTHERWISE , ARISING FROM , OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

#__author__ = "Wilfredo Lugo"
#__copyright__ = "Copyright 2016, University of Puerto Rico

at Mayaguez"
#__credits__ = [" Wilfredo Lugo"]
#__license__ = "MIT"
#__version__ = "1.0.1"

referenceFile=$1
exactsFile=$2
snpFile=$3
delFile=$4
insFile=$5
totalReads =16
minReadSz=$6
maxReadSz=$7
maxSNP=$8
maxDEL=$9
maxINS=${10}
echo "Generating $totalReads random reads against:

$referenceFile"
totalReferenceLen=‘cat $referenceFile | grep -v ’>’ | tr -d "

\n" | wc -m‘
everything=‘cat $referenceFile| grep -v ’>’|tr -d "\n"‘
echo -n "">$exactsFile
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for seed in ‘shuf -i 0-$totalReferenceLen -n $totalReads ‘
do

length=‘shuf -i $minReadSz -$maxReadSz -n 1‘
read=${everything:$seed:$length}
echo "@RandomSubSequence_${seed}_${length}" >>

$exactsFile
echo "$read" >> $exactsFile
echo "+" >> $exactsFile
quality=‘cat /dev/urandom | tr -dc ’<>?/:;!@#$%^&*() -_+a-

zA-Z0 -9’ | fold -w $length | head -n 1‘
echo $quality >> $exactsFile

done

echo "Generating $totalReads reads with $maxSNP snps"
echo -n "">$snpFile
for seed in ‘shuf -i 0-$totalReferenceLen -n $totalReads ‘
do

length=‘shuf -i $minReadSz -$maxReadSz -n 1‘
read=${everything:$seed:$length}
temp=‘echo $read | grep N‘
while [ $? != 1 ]
do

echo "N found on read $read"
seed=‘shuf -i 0-$totalReferenceLen -n 1‘
read=${everything:$seed:$length}
temp=‘echo $read | grep N‘

done
snpCount =0
while [ $snpCount -lt $maxSNP ]
do

rndPos=‘shuf -i 1-$length -n 1‘
letter=${read:$rndPost :1}
newLetter=""
if [[ $letter = ’A’ ]]
then

newLetter=‘cat /dev/urandom | tr -dc "GTC" | fold
-w 1 | head -n 1‘

elif [[ $letter = ’T’ ]]
then

newLetter=‘cat /dev/urandom | tr -dc "GAC" | fold
-w 1 | head -n 1‘

elif [[ $letter = ’G’ ]]
then

newLetter=‘cat /dev/urandom | tr -dc "TAC" | fold
-w 1 | head -n 1‘

elif [[ $letter = ’C’ ]]
then

newLetter=‘cat /dev/urandom | tr -dc "TAG" | fold
-w 1 | head -n 1‘

elif [[ $letter = ’N’ ]]
then

newLetter=‘cat /dev/urandom | tr -dc "TAGC" |
fold -w 1 | head -n 1‘

fi
let snpCount=snpCount +1
read=‘echo $read | sed s/./ $newLetter/$rndPos ‘

done
echo "@RandomSubSequence_${seed}_${length}_${maxSNP}_SNP"

>> $snpFile
echo "$read">> $snpFile
echo "+" >> $snpFile
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quality=‘cat /dev/urandom | tr -dc ’<>?/:;!@#$%^&*() -_+a-
zA-Z0 -9’ | fold -w $length | head -n 1‘

echo $quality >> $snpFile
done

echo "Generating $totalReads reads with $maxDEL deletions"
echo -n "">$delFile
for seed in ‘shuf -i 0-$totalReferenceLen -n $totalReads ‘
do

length=‘shuf -i $minReadSz -$maxReadSz -n 1‘
read=${everything:$seed:$length}
temp=‘echo $read | grep N‘
while [ $? != 1 ]
do

echo "N found on read $read"
seed=‘shuf -i 0-$totalReferenceLen -n 1‘
read=${everything:$seed:$length}
temp=‘echo $read | grep N‘

done
newLength=$length
delCount =0
while [ $delCount -lt $maxDEL ]
do

let newLength=newLength -1
rndPos=‘shuf -i 1-$newLength -1 -n 1‘
let delCount=delCount +1
read=${read :0: $rndPos}${read:$rndPos +1}

done
echo "@RandomSubSequence_${seed}_${newLength}_${maxDEL}

_DEL" >> $delFile
echo $read >> $delFile
echo "+" >> $delFile
quality=‘cat /dev/urandom | tr -dc ’<>?/:;!@#$%^&*() -_+a-

zA-Z0 -9’ | fold -w $newLength | head -n 1‘
echo $quality >> $delFile

done

echo "Generating $totalReads reads with $maxINS insertions"
echo -n "">$insFile
for seed in ‘shuf -i 0-$totalReferenceLen -n $totalReads ‘
do

length=‘shuf -i $minReadSz -$maxReadSz -n 1‘
read=${everything:$seed:$length}
temp=‘echo $read | grep N‘
while [ $? != 1 ]
do

echo "N found on read $read"
seed=‘shuf -i 0-$totalReferenceLen -n 1‘
read=${everything:$seed:$length}
temp=‘echo $read | grep N‘

done
newLength=$length
insCount =0
while [ $insCount -lt $maxINS ]
do

rndPos=‘shuf -i 0-$newLength -1 -n 1‘
newLetter=‘cat /dev/urandom | tr -dc "TAGC" | fold -w

1 | head -n 1‘
read=${read :0: $rndPos}${newLetter}${read:$rndPos}
let newLength=newLength +1
let insCount=insCount +1

done
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echo "@RandomSubSequence_${seed}_${newLength}_${maxINS}
_INS" >> $insFile

echo $read >> $insFile
echo "+" >> $insFile
quality=‘cat /dev/urandom | tr -dc ’<>?/:;!@#$%^&*() -_+a-

zA-Z0 -9’ | fold -w $newLength | head -n 1‘
echo $quality >> $insFile

done

A.2 Benchmark Generation Automation
#!/bin/bash
#!/bin/bash
#Copyright (c) <2016> <University of Puerto Rico at Mayaguez >
#
#Permission is hereby granted , free of charge , to any person

obtaining a copy of this software and associated
documentation files (the "Software "), to deal in the
Software without restriction , including without limitation
the rights to use , copy , modify , merge , publish ,

distribute , sublicense , and/or sell copies of the Software
, and to permit persons to whom the Software is furnished
to do so , subject to the following conditions:

#The above copyright notice and this permission notice shall
be included in all copies or substantial portions of the
Software.

#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND , EXPRESS OR IMPLIED , INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY , FITNESS FOR A PARTICULAR

PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR

OTHER LIABILITY , WHETHER IN AN ACTION OF CONTRACT , TORT OR
OTHERWISE , ARISING FROM , OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

#__author__ = "Wilfredo Lugo"
#__copyright__ = "Copyright 2016, University of Puerto Rico

at Mayaguez"
#__credits__ = [" Wilfredo Lugo"]
#__license__ = "MIT"
#__version__ = "1.0.1"
yLen =100000
ratio =0.01
totalReads =500
readsQFile=reads.fastq
readsAFile=reads.fasta
refFile=ref.fasta
bowTieDBID=randRef
mutationRatio =0.20
islaRetries =50
outputFile=${yLen}_${ratio}_${mutationRatio}_${islaRetries}_$

{totalReads }.csv
xLen=‘echo "($yLen*$ratio)/1" | bc ‘

Y=‘cat /dev/urandom | tr -dc ’AGTC ’ | fold -w $yLen | head -n
1‘

currRead =0
echo ">Random_Y_${yLen}_${ratio}" > $refFile
echo "$Y" >> $refFile
echo "$xLen"
let maxSeed=yLen -xLen
echo -n "" > $readsQFile



79

echo -n "" > $readsAFile

function getRandomMutation
{

subSeq=$1
#echo "before selection"
selection=‘shuf -i 1-3 -n 1‘
#echo "Selection: $selection"
if [ $selection -eq 0 ]
then

echo "EXACT"
#
# Read remains Exact
#
mutatedRead=$subSeq
mutationSuffix="EXACT"
newLength=$xLen

elif [ $selection -eq 1 ]
then

maxINS=‘echo "($xLen*$mutationRatio)/1" | bc ‘
#echo "MaxINS: $maxINS"
newLength=$xLen
insCount =0
read=$subSeq
while [ $insCount -lt $maxINS ]
do

rndPos=‘shuf -i 0-$newLength -1 -n 1‘
newLetter=‘cat /dev/urandom | tr -dc "TAGC" |

fold -w 1 | head -n 1‘
read=${read :0: $rndPos}${newLetter}${read:$rndPos}
let newLength=newLength +1
let insCount=insCount +1

done
mutatedRead=$read
mutationSuffix="${maxINS}_INS"

elif [ $selection -eq 2 ]
then

maxDEL=‘echo "($xLen*$mutationRatio)/1" | bc ‘
#echo "MaxDEL: $maxDEL"
newLength=$xLen
#echo "DEL Original Length: $newLength"
read=$subSeq
delCount =0
while [ $delCount -lt $maxDEL ]
do

let newLength=newLength -1
let myLength=newLength -1
rndPos=‘shuf -i 1-$myLength -n 1‘
let delCount=delCount +1
read=${read :0: $rndPos}${read:$rndPos +1}

done
mutatedRead=$read
mutationSuffix="${maxDEL}_DEL"
#echo "DEL Final Length: $newLength"

elif [ $selection -eq 3 ]
then

maxSNP=‘echo "($xLen*$mutationRatio)/1" | bc ‘
#echo "MaxSNP: $maxSNP"
newLength=$xLen
read=$subSeq
snpCount =0
while [ $snpCount -lt $maxSNP ]
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do
rndPos=‘shuf -i 1-$newLength -n 1‘
letter=${read:$rndPost :1}
newLetter=""
if [[ $letter = ’A’ ]]
then

newLetter=‘cat /dev/urandom | tr -dc "GTC" |
fold -w 1 | head -n 1‘

elif [[ $letter = ’T’ ]]
then

newLetter=‘cat /dev/urandom | tr -dc "GAC" |
fold -w 1 | head -n 1‘

elif [[ $letter = ’G’ ]]
then

newLetter=‘cat /dev/urandom | tr -dc "TAC" |
fold -w 1 | head -n 1‘

elif [[ $letter = ’C’ ]]
then

newLetter=‘cat /dev/urandom | tr -dc "TAG" |
fold -w 1 | head -n 1‘

fi
let snpCount=snpCount +1
read=‘echo $read | sed s/./ $newLetter/$rndPos ‘

done
mutatedRead=$read
mutationSuffix="${maxSNP}_SNP"

fi
}

while [ $currRead -lt $totalReads ]
do

seed=‘shuf -i 0-$maxSeed -n 1‘
subSequence=${Y:$seed:$xLen}
getRandomMutation $subSequence
echo "@Random_X_From_${seed}_${currRead}_${mutationSuffix

}" >> $readsQFile
echo "$mutatedRead" >> $readsQFile
echo "+" >> $readsQFile
#
# Generating random quality
#
#echo "Quality length: $newLength"
quality=‘cat /dev/urandom | tr -dc ’<>?/:;!@#$%^&*() -_+a-

zA-Z0 -9’ | fold -w $newLength | head -n 1‘
echo "$quality" >> $readsQFile
let currRead=currRead +1
echo "Finished read: $currRead"

done
echo "Generating FASTA file"
../ Data/bbmap/reformat.sh in=$readsQFile out=$readsAFile qin

=33 overwrite=true

echo "Making BLAST Reference Indexing"
../ncbi -blast -2.2.31+ - src/c++/ ReleaseMT/build/app/blastdb/

makeblastdb -in $refFile -parse_seqids -dbtype nucl
echo "Making Bowtie Reference Indexing"
../ bowtie2 -2.2.5/ bowtie2 -build -f $refFile $bowTieDBID

echo "Running ISLA"
python src/isla.py -l islabench.log -r $refFile -q

$readsQFile -i $islaRetries > isla.out

echo "Running BLAST"
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../ncbi -blast -2.2.31+ - src/c++/ ReleaseMT/build/app/blast/
blastn -query $readsAFile -db $refFile -outfmt "7 qseqid
sstart" | grep -v "#">blast.out

echo "Running Bowtie"
../ bowtie2 -2.2.5/ bowtie2 -a -x $bowTieDBID -q -U $readsQFile

--very -sensitive > bowtie.out
echo "Creating output $outputFile"
function processRead
{

seq=$1
bowtieHit=‘cat bowtie.out | grep $seq | wc -l‘
blastHit=‘cat blast.out | grep $seq | wc -l‘

# if [ $bowtieHit -eq 0 -o $blastHit -eq 0 ]
# then
# echo "No consensus hit found for read $seq"
# continue
# fi

#readSeq=‘python getReadFromFile.py $readsAFile $seq ‘
optimalProb=‘python SmithWaterman.py $refFile $readsAFile

$seq Random_Y_${yLen}_${ratio} 0 end ‘
echo "Optimal Prob: $optimalProb"
islaProb=‘cat isla.out | grep $seq | head -n 1 | awk -F",

" ’{print $5}’‘
islaIndex=‘cat isla.out | grep $seq | head -n 1 | awk -F"

," ’{print $3}’‘
echo "ISLA Index=$islaIndex"
#
# Processing Blast Results
#
blastIndex=‘cat blast.out | grep $seq | awk -F" " ’{print

$2}’‘
let blastIndex=blastIndex -1
blastEnd=‘echo "($blastIndex +($xLen *3))/1"| bc‘
echo "BLAST Index=$blastIndex , BLAST End: $blastEnd"
blastSubSeq=${Y:$blastIndex:$blastEnd}
blastProb=‘python SmithWaterman.py $refFile $readsAFile

$seq Random_Y_${yLen}_${ratio} $blastIndex $blastEnd ‘

#
# Processing Bowtie Results
#
bowtieIndex=‘cat bowtie.out | grep $seq | awk -F" " ’{

print $4}’‘
let bowtieIndex=bowtieIndex -1
bowtieEnd=‘echo "($bowtieIndex +($xLen *3))/1"| bc‘
echo "Bowtie Index=$bowtieIndex , Bowtie End: $bowtieEnd"
bowtieSubSeq=${Y:$bowtieIndex:$bowtieEnd}
bowtieProb=‘python SmithWaterman.py $refFile $readsAFile

$seq Random_Y_${yLen}_${ratio} $bowtieIndex $bowtieEnd
‘

#bowtieProb=‘python SmithWaterman.py $bowtieSubSeq
$readSeq ‘

echo $seq ,$islaIndex ,$blastIndex ,$bowtieIndex ,
$optimalProb ,$islaProb ,$bowtieProb ,$blastProb >>
$outputFile

}

maxConcurrent =85
totalProcs =0
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echo "Read Name ,ISLA Position ,BLAST Position ,BowTie Position ,
Optimal Probability ,ISLA Probability ,Bowtie Probability ,
BLAST Probability">$outputFile

for seq in ‘cat $readsAFile | grep ">"‘
do

seq=‘echo $seq | awk -F">" ’{print $2}’‘
echo "Processing read: $seq"
processRead $seq &
let totalProcs=totalProcs +1
if [ $totalProcs -ge $maxConcurrent ]
then

echo "Sleeping to let other processes finish"
sleep 600
totalProcs =0

fi
done
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