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ABSTRACT

Adaptive Orchestration of Resources in Distributed Wide Area Large Scale

Infrastructures

By

John Alexander Sanabria Ordoñez

The goal of this thesis is to take a step to understanding the resource management of

massively and scattered distributed systems. A framework to predict grid resources behavior

and leverage the execution of long running tasks over computational grids has been developed.

This framework employs statistical analysis for estimating the resource behavior and uses

a divisible load approach to increase the throughput and reduce the idle time exhibited by

computational resources. The proposed approach focuses on an opportunistic pull resource

selection mechanism: a number of very light agents are deployed in nonintrusive way running in

a user space. Initially the framework collects information on user requirements and application

deployment, assigns a subset of jobs to available resources, and periodically the selected pool

of resources is updated to opportunistically choose the resources that better complete the

assigned jobs. The statistical analysis process evaluates in run time different probabilistic

functions to determine the one that better model a resource behavior. Experimental results

show a significant reduction of the application makespan along with good estimations of the

resource behavior.
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RESUMEN

Adaptive Orchestration of Resources in Distributed Wide Area Large Scale

Infrastructures

Por

John Alexander Sanabria Ordoñez

El objetivo de esta tesis está dirigido a comprender la administración de recursos sobre

sistemas distribuidos masivos y globalmente dispersos. Se ha desarrollado un marco de tra-

bajo que predice el comportamiento de recursos grid y apoya la ejecución de tareas de larga

duración sobre grids computacionales. La aproximación propuesta se enfoca en un mecanismo

de selección oportunista de recursos: un número de agentes livianos se desplegaron de manera

no-invasiva en espacio de usuario. Inicialmente el marco de trabajo recoge información sobre

los requerimientos del usuario y del despliegue de la aplicación, asigna un subconjunto de tareas

a los recursos disponibles, y periodicamente el grupo de recursos seleccionados es actualizado

de modo que se escoja de manera oportunista los recursos que mejor completen los trabajos

asignados. El análisis estad́ıstico evalua en tiempo de ejecución diferentes funciones proba-

bilisticas para determinar aquella función que mejor modela el comportamiento de un recurso.

Resultados experimentales muestran una reducción significativa en el tiempo de ejecución de

la aplicación junto con una buena estimación del comportamiento del recurso.
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CHAPTER 1

Introduction

1.1 Motivating Scenario

There have been tremendous technological advances in computer and networking technologies

during the last decades. Those advances are demanding new theories, methods and techniques

to integrate effectively heterogeneous resources including computational nodes and storage

units.

During the mid-nineties multi-computer systems built from commodity components drew

the attention of system managers and the research community. At National Aeronautics

Space Administration (NASA) Goddard Space Fligh Center a group of researchers developed

a Linux driver for Ethernet network cards and built the first cluster using commodity-off-the-

shelf components. Clusters are now widely deployed in education and industrial sectors. They

are characterized by hardware homogeneity, low levels of failure and well known management

policies since they are governed by a single administrative domain. Since then clusters are

an important participant on the high performance computing landscape. In fact, the Top

500 Supercomputers site offers interesting statistical results. Eighty two percent of the 500

super computers are clusters. Over seventy percent (73.80%) of them employ Intel EM64T

technologies, e.g. Intel Core 2 and Intel Centrino, 87.80% use Linux as their operating system

and 56.40% are interconnected through Gigabit Ethernet.

In the late nineties Grid Computing emerged as a well-founded alternative for distributed

computing. Grid infrastructures embrace not only traditional computational systems but also

1
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specialized devices such as simulators, particle accelerators, and telescopes, among others.

Grid Computing mentions the relevance of ubiquity computing not only from the point of view

of the end-user but also from the point of view of the infrastructure. Grid Computing offers

dynamic infrastructures created on user demands and built from scattered resources governed

by multiple administrative domains. Those infrastructures are known as Virtual Organizations

(VOs). The computational assets are now presented as services. The service concept provides

a higher level of abstraction where service users can focus on functionality and capability of

the resources, instead of the technical details.

Grid Computing environments present additional challenges at the infrastructure, system

and functional levels. Grids inherit the well-studied problems found in classical distributed

systems, such as synchronization, security, scalability, and monitoring, among others. More-

over, these problems are often more complex in Grid systems than legacy distributed systems

because new factors, such as the number of resources engaged, diverse resource management

policies, the uncertainty of resource availability and network variable latency could affect the

normal execution of the system. There is thus a heightened interest among system developers

and users in efficient resource orchestration employing on-demand provisioning techniques.

One important challenge in such environments is resource selection: For a given applica-

tion and a heterogeneous pool of computing, communication, and storage resources; decide

dynamically which set of virtual resources should be assigned to each application component,

such that it mantains adequate quality of service. This is a difficult problem due to multiple

factors. First, the performance and availability of grid resources varies over time. Compute

nodes are heterogeneous and exhibit different capabilities, the quality of network connections

between resources varies, resources may become overloaded, unavailable because of failures,

or even new resources may become available. Second, resources may be under different ad-

ministrative domains. Users have no control on the policies ruling the use of those resources

and furthermore it is difficult to determine a priori which resources are more suitable for a

particular application.

In order to maintain a reasonable performance level, it is desirable that resources selection
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mechanisms adapt to the changing conditions. The resource selection can be repeated during

application execution either at regular intervals or when performance degradation is detected.

The system model, in this work, is a federation of distributed clusters. Each cluster is located in

a different administrative domain, and controlled by a local resource manager. In a higher level

clusters are interconnected in a wide area network and grid resource brokers are responsible

for coordinating the resources. Resource brokers may have different architectures. There can

be a central resource broker which is responsible for job scheduling in the whole Grid. On the

other hand, every single user can have her own broker that makes decisions on her behalf. We

believe that the latter approach provides more scalability and also allows the implementation

of self-adaptive opportunistic resource allocation mechanisms.

1.2 Problem Statement

We propose to study the following Resource Assignment Problem. For a given application and

a heterogeneous pool of resources, decide which set of physical resources should be assigned to

each application component, such that it mantains service level agreements under uncertainty

environment conditions.

We seek to establish a method for monitoring computational resources, modeling the be-

havior of the resources through probability functions thatexhibit the residence times in various

job stages, and using of these statistical models to produce rankings of resources according to

various performance metrics. The result of this work must be an architecture that integrates

these components in addition to the corresponding benchmarking.

1.3 Problem justification

Legacy applications keep driven critical processes on industry and education sectors. Thus,

there is an important quantity of legacy code running critical procedures in which response times

increase as much as the amount of data required to be processed grows. Legacy applications

that receive as input, the data to be processed and parameters to delimit the action range can

be easily treated as parameter sweep applications (PSA). PSA are characterized because they

tackle problems to exhibit high granularity. Thus, big input data is divided in smaller chunks
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and the pieces are delivered to different computational nodes in such a way that the total

execution time decreases.

Legacy applications presenting a PSA like-structure, are suitable for being executed on

loosely coupled infrastructures. Many times, those infrastructrues are built by resources scat-

tered geographically which are interconnected through public networks to create an envi-

ronment where network links observe high network latencies and availability and reliability

uncertainty patterns. Since PSA response time does not depend primarily on the quality of

communication links but the computation capacity of the resources, computational grids are

an excellent option as computational platform for PSA. Problems on research areas such as

data mining, signal processing and sequencing, among others; could take advantage of this

kind of computational platform and applications. For instance, Google employs the Map-

Reduce paradigm for empowering its searches. Map-Reduce divides an input data amongst

the available resources (Map) and later collect the response from the aforementioned resources

(Reduce). However, for achieving quickly response times, the paradigm relies on a high per-

formance distributed filesystem to efficiently execute the Reduce operation even on low profile

network links.

Figure 1.1. PRAGMA members distribution
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There are several international, regional and national grid initiatives around the world.

These initiatives, many times, embrace powerful computational resources (aka. clusters) to

include hundreds of computational nodes per resource. The Pacific Rim Assembly Grid Middle-

ware Application (PRAGMA) is an initiative which aims to integrate research and education

centers located around the Pacific area, Figure 1.1. Those institutions are willing to share

their computational resources amongst the authorized PRAGMA users. PRAGMA as well as

other grid platforms formed by resources cluster-based resources, present an excellent asset

for executing parameter sweep legacy applications. There is an important number of legacy

applications to be executed on grid infrastructures. However, a computational framework is

required to exploit the unsteady characteristics of the resources and take advantage of the

application requirements in such a way to generate efficient execution plans.

Despite grid-enabled resources expose their caracteristics through standarized interfaces,

these interfaces barely reflect the management policies that govern the resources behavior. We

claim that there is a lack of services to standarize the definition and exposition of management

policies to govern resources. This fact could be due to the resource managers have a design

resource oriented. This design focuses on handling the resources according to constraints

defined over resources characteristics per se, for instance CPU speed, storage capacity and

architecture, among others. User oriented resource managers are more difficult to implement

because user constraints and requirements could be specified not only in functional but also in

non-functional terms. For instance, for a user the resource selection could be driven not only

by a deadline or budget but also by security or politic issues, such as taking into account those

resources whose security level is Evaluation Assurance Level 4(EAL4) or higher. Therefore,

the computational platform would treat the grid resources as observable systems. By employ-

ing direct observation over application executions and getting information from monitoring

tools, the platform would create an internal view or snapshot of the grid environment. Using

forecasting techniques, the platform also must be able to estimate and predict resource and

application performance considering unsettled conditions observed in the environment.
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1.4 Contributions

The main contributions of this research work are summarized as follows.

• Computational Framework for Grid Environments

We describe the design and implementation of Gridjobs, a grid computing enabling

framework to provide functionalities for deployment, integration and management of

grid computing infrastructures. This framework employs statistical analysis over histor-

ical data along with self-adaptive mechanisms to allocate efficiently task to resources.

We demonstrate the utility of this tool in a real large scale environment using a compu-

tationally intensive application. A cycle short time Fourier transform (CSTFT) kernel is

deployed and executed in distributed resources pertaining to the Pacific Rim Applications

and Grid Middleware Assembly (PRAGMA) infrastructure.

• Adaptive Scheduling

We evaluate different ranking policies based on the statistical information from cluster’s

historical performance. We show that the design of the framework allows plugging dif-

ferent ranking policies focusing on estimated time execution times and estimated failure

probability without requiring application performance models. Our approach focuses on

an opportunistic pull resource selection mechanism: a number of agents are deployed in

non-intrusive way running in a user-space. Initially the framework collects information

on user requirements and application deployment, assigns a subset of jobs to available

resources, and periodically the selected pool of resources is updated to opportunistically

choose the resources that better complete the assigned jobs.

1.5 Summary

Distributed computing has evolved toward computational infrastructures built from comodity

hardware and open source software tools. Those environments have reached an important

maturity level that allows to compete against proprietary solutions on the high performance

computing field. Due to significant connectivity improvements at regional, national and in-

ternational level; distributed computing is now tackling the problem of orchestrating several
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computational resources governed by different administrative domains and interconnected via

public networks.

Grid infrastructures scattered geographically exhibit significant uncertainty levels because

the absence of mechanisms to support QoS. Resources performance could not be a priori

determined since multiple factors could affect the resources availability and accessibility. Thus,

adaptative approaches are required for maintainig acceptable levels of reliability.

In this chapter, we stated the problem of resource management in distributed wide area

large scale infrastructures, and established the scope of our research. we finally, summarize

the contributions of this thesis.



CHAPTER 2

Background and Related Work

2.1 Grid Computing Environments

Grid computing [1] relies on standard protocols and open technologies in order to provide non-

trivial quality of service through the orchestration of Grid enabled resources. Open technolog-

ical solutions along with non-proprietary protocols are required to avoid excluding resources

because of licenses or constraints imposed by hardware and software manufacturers. [2]

Grid leverages the integration concept to a higher level, as Grid infrastructures are suitable

to incorporate not only processing units and storage devices but also sensing instrumentation

and specialized equipment. Grid wraps all those components as Grid Services. Using Web Ser-

vice Description Language (WSDL) the functionality of hardware and software components

is encapsulated in such a way that integration is possible. This conceptualization renders an

appropriate computational infrastructure that could be composed by services from different

service providers which could be scattered geographically. Grid Services enable composition of

distributed components. This composition requires the incorporation of sophisticated orches-

tration mechanisms to support lifetime resource management and notification primitives. All

these complex interactions demand reliable invocation, single sign-on, authorization and dele-

gation services that allow an even and trustable interaction between requesters and providers.

[3]

The Grid concept lacks of a unique and widely accepted definition, amongst experts and

users. Despite a common ground of features and characteristics are already identified and

8
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required in order to label a system as Grid. Specifically, a Grid must provide facilities for

collaboration and aggregation as well as support for hardware and software heterogeneity, de-

centralized control, access transparency, scalability, reconfigurability and security mechanisms

[4]. Nowadays, there are various implementations of the Grid concept. P. Asadzadeh et. al.[5]

compares four important projects: Legion, UNICORE, Globus and Gridbus. Although all of

these middlewares provide the basic building blocks to create operational Grid systems, they

exhibit differences on implementation technologies, runtime platforms, and distribution model.

Grid systems can be categorized as computational oriented, data oriented and service

oriented. Most of the implementations are computational oriented. Some of the most relevant

Grid implementations are presented in the following section. Application Level Scheduling

(AppLeS) [6] is a computational and grid oriented application. AppLeS consists of a group of

agents developed for individual applications on production grids. It relies heavily on Network

Weather Service (NWS) for monitoring and predicting resource performance. AppLeS could

also interact with other systems such as Globus, Legion and NetSolve. AppLeS provides agent

templates that can be extended in such a way that applications following common parallel

and distributed programming paradigms such as master/slave or parameter sweep application

could be easily deployed. Despite scheduling is centralized, the execution is decentralized and

carried out by local resource managers.

Condor [7], [8] is a system to scavenge for PCs, workstations and clusters that belong

to different administrative domains. It provides a heterogeneous computational environment

harnessing idle CPU cycles. Condor supports checkpointing and migration between different

computational environments. Resource requests and offers are described in the Condor clas-

sified advertisement (ClassAd) language. The ClassAd language includes a query language as

part of the data model, allowing advertising agents to specify their compatibility by including

constraints in their resource offers and requests. Condor exhibits characteristics of a compu-

tational grid with a flat organization. With no support for quality of services, it presents a

centralized scheme for query executions as well a centralized scheduler to suggest scalability

problems for addressing mid- and large-size systems.
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Globus [9] presents a virtualized view of geographically distributed resources to the ap-

plications running on top of it. The Globus ecosystem consists of multiple services such as

security, resource location, resource management, data management, resource reservation and

communications. From a layered architecture, Globus provides a hierarchichal integration of

Grid components and services. This feature encourages the utilization of low level services to

leverage the composition of more sophisticated services. Globus does not support scheduling

policies but delegates policy implementation to third party local resource managers.

Finally, gLite[10] is another important implementation of Grid which presents remarkable

similarities with Globus at functional level. It provides a framework for building grid applications

tapping into the power of distributed computing and storage resources across the Internet.

gLite is supported by the Enabling Grids for E-sciencE(EGEE) project. gLite exhibits a modular

design that allows the installation of components that a resource requires. In contrast, Globus

presents a monolithic approach that demand all components must be installed on a Globus

based Grid resource.

2.2 Grid Systems Modeling

Different approaches to model Grid Systems exist. At a structural level, diverse graph ap-

proaches have been used to model distributed scenarios and systems. Directed Acyclic Graphs

(DAG) are used to model a chain of tasks ordered by their execution dependencies. The nodes

in a DAG correspond to tasks and directed edges represent precedence relationship among

tasks. Kwok and Ahmad [11], for example, use extensively DAGs to model scheduling and

mapping. The scheduling and mapping problem requires the allocation of multiple interacting

tasks of a single application in order to minimize the completion time on the parallel computer

system. Consequently, the objective of the DAG scheduling is to minimize the overall program

finish-time by proper allocation of the tasks to the processors and arrangement of execution

sequencing of the tasks. There are a number of variations in the generic DAG model that

can be found elsewhere in the literature. Although suitable to model task dependences and

dynamics of tasks execution, DAGs do not provide enough representative features to model

complex interaction of distributed services and uncertain network conditions.
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Petri Nets, on the other hand, can be used as mathematical representations of discrete dis-

tributed systems. As a modeling language, it graphically depicts the structure of a distributed

system as a directed bipartite graph with annotations. As such, a Petri net has place nodes,

transition nodes, and directed arcs connecting places with transitions. Murata [12] provides a

complete description of Petri Nets theory. Colored Petri Nets are useful to get more compact

models with a higher level of abstraction, especially when the system can be expressed as a set

of components with similar behavior. Temporized Petri Nets allows modeling discrete event

systems, manufacturing processes, and distributed systems using probability distributions to

fire transitions. Petri Nets allows for modeling dynamic transition of task and discrete events

in a distributed system, but similar to DAGs, do not provide enough representation to model

adaptive functionalities.

Initiatives directed toward modeling the load of Grid Systems are have been also developed.

X. Zhang et. al. [13] uses data mining techniques on logging and bookkeping files for iden-

tifying the load behavior of around 20,000 CPUs to handle 20,000 jobs on average. Logging

and bookkeeping files are generated by a grid broker, which is a component of gLite in charge

of managing jobs in an EGEE architecture. The information found on these files is partitioned

according to users who submit the jobs per week. From each subset a consistent snapshot of

grid use is expected. Then, discriminant learning is run over each subset in such a way that a

hypotheses discriminating good from bad jobs in the subset are determined. The hypothesis

are now used as new features used to redescribe the jobs in the test set. Double clustering

of the hypothesis and the jobs is reached and the significance of the clusters is estimated

comparing the user-based and week-based hypothesis.

Other works focus their attention on programming models. Those models are essential

because they provide a set of primitives, operations, functions and data types to present the

ground necessary to develop computational solutions. They provide a simplified view of the

machine architecture where they are executed. Note that more relevant programming models

have been selected due to non-functional properties. For single computers, object-oriented and

component-based paradigms are the preferred programming models. For parallel computers,
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message-passing paradigm is selected. Although the later model barely represents the machine

architecture, it exhibits the closest match between machine architecture and programming

model, leading to efficient program execution. Kielmann et. al. [14] consider at least five kind

of applications such as legacy code, parallel applications, grid-aware codes, support tools and

service and resource management. Each type requires a particular view of the Grid. Some of

them require a high level abstraction of the system (Legacy codes and parallel applications)

but others low or no level of abstraction (support tools and service and resource management).

From this point of view, there is not a single programming model but many; in such a way

that each model best fits the functional properties of its applications.

Amin et. al. [15] present a framework to close the existing gap between grid infrastruc-

tures and applications. This application programming interface (API) tackles problems such

as interoperability amongst multiple Grid backends, code re-usability for rapid prototyping and

extensible architecture that allows the collective and incremental development. This program-

ming model works around of three patterns that represent different kind of tasks available in

Grid systems such as single tasks, tasks with dependencies and workflows.

Finally, Németh and Sunderam [16] presents a formal approach isolated from grid imple-

mentations but used to define basic characteristics present in grid systems. The proposed

model does not intend to be a final product but a starting model that allows the deriva-

tion of more refined models. This model is built from scratch because it does not focus

on compatibilities with available protocols or systems but in functionalities that grid sys-

tems must provide. Using a declarative approach, this model specifies how to realize or

decompose a given functionality instead of what it must provide. In addition, it adopts an

architectural/system developer’s point of view. The proposed model follows the nomencla-

ture provided by Abstract State Machine(ASM). Then, diverse universes are defined, such as

APPLICAT ION,USER, PROCESS,NODE and RESOURCE, among others. Along with

the universes, several functions with different arities are specified. For instance, mapped :

PROCESS → NODE and belongsTo:RESOURCE × NDOE → {true, f alse}; which ex-

press where a process was mapped and if a given node belongs to a given resource, respectively.
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From the aforementioned universes and functions, the model establishes rules to represent dif-

ferent case uses such as communication, resource selection, delegation and mapping, among

others. Finally, a refinement of the initial model is provided in such a way that more algorithmic

details of the aforementioned rules can be given.

In [17], Németh and Sunderam refine their initial work and apply their proposed model not

only against conventional distributed systems but also against grid implementations such as

Globus and Legion. The paper presents a methodology to determine if a distributed system

is a grid system or not. In the same way, the model is used to evaluate some other computa-

tional systems to handle a large set of resources such as SETI, Condor, OGSA and SGE. The

former three are considered grid systems. Despite showing as a single user, SETI harnesses

several computational resources that belong to different owners. Condor supports matchmak-

ing mechanisms for mapping resources and jobs. In addition, a demanding job could employ

resources from other pools creating virtual organizations on-the-fly. On the other hand, SGE

is not compliant with grid characteristics defined in the model because the number of resources

and users are known beforehand.

2.3 Divisible Load Theory

Divisible load theory (DLT) offers a tractable approach to scheduling problems considering

computation and commmunication characteristics of parallel and distributed systems. DLT

is adequate for applications which are compounded by large sets of independent tasks with

low granularity. Robertazzi [18] describes ten reasons why DLT is a suitable approach to the

scheduling problem. DLT assumes that processor and links exhibit linear behavior. “Setting

up a continous-variable model and assuming that all processors stop computing at the same

instant lets you determine the optimal amount of total load to assign to each processor or

link”.

To illustrate the DLT approach assume a star network topology with a root processor P0

is processing some load itself while simultaneously distributing loads to processors P1 through

P4. Let αi be the size of data chunk assigned to each processor, wi the computing speed of

the ith processor, and zi the transmission speed of the ith link. Then, αiwi is the processing
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time of the ith processor, and αizi is the transmision time of data over the ith link. Figure

2.1 depicts a processing scenario where the load transmission for all nodes starts at the same

time and its completion time is equal.
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Figure 2.1. Gannt diagram for star network topology.

Using recurrence equations, we have:

αi =

(
zi−1 + wi−1
zi + wi

)
αi−1 (2.1)

= fi−1αi−1 =

(i−1∏
j=1

fj

)
α1 i = 2, 3, 4 (2.2)

For processor P0:

α0 =

(
z1 + w1
w0

)
α1 =

(
1

k0

)
α1

Since
∑4
i=1 αi = 1, and assuming that all processors have the same computing and com-

munication speed, a simple solution is given by:

Tf = α0w0 =

(
1

4 + 1/k0

)
(z + w)

From the basic DLT model, other models have been derived for different network topolo-

gies, such as linear daisy chains, trees, buses, hypercubes,and two- and three-dimensional
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meshes. DLT also provides a methodology to derivate single network elements which are

equivalent to complex network infrastructures. Novel approaches are also incorporating mon-

etary accounting in order to find optimal execution plans considering payments to computer

owners. DLT is an active field of research in diverse areas. For instance, in the formal field,

some researchers are extrapolating the model to more complex network infrastructures like

hypercubes. On the technological field, DLT models must be integrated with data-parallel

languages such as high-performance Fortran and high-performance C++.

More representative works to conjugate DLT with Cluster/Grid systems are now discussed.

Beaumont et. al. [19] present a unified theoretical perspective to summarize previous works

and addresses new questions to foster the research of new DLT-based approaches. This work

only considers star and tree network topologies where tasks are submitted in one-round or

multiround basis. The proposed one-round algorithms tackle issues such as selection and

ordering of the workers, and size of the chunks. Multiround algorithms determine chunk sizes

per round and number of rounds. The approaches presented in this work also consider affine

costs in such a way that a more realistic representation of real computational scenarios is

possible. However, those approaches do not focus on the characteristics exhibited for more

complex scenarios like Grid systems, for instance resource discovery, authentication, delegation

and so forth.

Viswanathan et. al. [20] propose a elaborated computational model for cluster/grid sys-

tems. In this work, the problem of computational nodes with a finite buffer is considered and

the model proposed also integrates other factors to refine the representation of real distributed

systems such as load variation over time, deadline constraints and control policies. In addition,

a novel algorithm which involves multiple computational elements for getting a scheduling plan

is also especified. That said, Coordination Node (CN) determines nodes participanting in the

computation and scheduling parameters. It sends the information to the selected nodes. The

selected nodes estimate the buffer availability and send the information to the CN. Finally, CN

distributes suitable chunk size to the compute nodes.

Cardinale and Casanova [21] develop a modified version of the basic DLT model which
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minimizes the average steady-state job turnaround time. They quantify the amount of global

information required to achieve efficient scheduling. Using simulations with different applica-

tion and platform scenarios, they have found that a global information is only needed under

high workloads. In that sense, by considering scenarios with high workloads and using dy-

namic information, the performance is improved by around 10% when compared with static

information. Some intuitive results were achieved, for example when the communication and

computation ratio is high then it is worthless to distributed the load, and a scheduling plan to

divide the load equally amongst the resource participants exhibits the worst turnaround times.

2.4 Resource Management

Krauter et. al. [22] presents a comprehensive taxonomy to describe different management

architectures. This taxonomy was derived from a study of different architectures and function-

alities exhibited by different resource management systems. Different taxonomies are defined

according to machine organization, resource management and scheduling characteristics. The

machine organization taxonomy identifies three categories Flat, Cells and Hierarchical. These

categories are determined according to how the machines interact and if they are grouped or

not. The resource taxonomy defines different categories according to the interfaces employed

for interacting with other Grid components. Thus, five categories were determined: resource

namespace organization, quality of service support, resource information store organization

and resource discovery and dissemination. The scheduling taxonomy considers the way the

schedulers are organized, how they estimate the state of resources, rescheduling policies, and

scheduling policies. For instance, scheduling policies coud be categorized as fixed and extensi-

ble. The fixe category could also be subdivided into system oriented and application oriented.

The former is widely adopted and only considers resources requirements. The latter, considers

application requirements and tries to optimize specific metrics such as completion time.

Buyya et. al. [23] identify issues in resource management and scheduling considering econ-

omy factors under grid environments. The approach is not only applied to grid environments

but also applied to federated clusters or hyperclusters. This work remarks the importance of

economic models in the Grid environments. In that sense, current Grid implementations such
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as Globus, Legion, NetSolve, Ninf, AppLeS and Nimrod/G, among others, do not consider

economy of computations as fundamental issue in Grid. Thus, a GRid Architecture for Com-

putational Economy (GRACE) middleware has been proposed. It interoperates with Globus

and Nimrod/G systems. GRACE takes advantage of deadline and cost-based scheduling mech-

anisms provided by Nimrod/G and extend them in order to include economy of computations

ideas. In addition to existing Grid components such as Grid Resource Broker, Grid Middleware

and Local Resource Manager, the GRACE middleware adds a Grid Trade Manager and Trade

Server. GRACE interoperates with existing Grid through a set of protocols and APIs defined

for the aforementioned components.

K. Lai et. al. [24] proposes a tool for resource allocation named Tycoon. Tycoon imple-

ments an Auction Share scheduling algorithm to provide a market based distributed resource

allocation system. This work compares resource allocation systems based on economic effi-

ciency, utilization, risk and fairness. Tycoon separates the allocation mechanism from agent

strategies. This separation allows great flexibility at installation application time because the

user would specify functional and non-functional application requirements and simplifies, at the

same time, the development of allocation mechanisms. Results have shown that the Auction

Share algorithm achieves high utilization of a proportional share scheduler and low latency of

a Borrowed Virtual Time Scheduler.

P. Goldsack et. al. [25] describes Smartfrog (Smart Framework for Object Groups).

Smartfrog aims to leverage the design, deployment and management of distributed component-

based systems. It provides an infrastructure to standarize configuration and lifecycle manage-

ment of applications. In addition, it takes care of fundamental issues such as scalability and

reliability. Smartfrog implements a language [26] where components and systems are de-

fined. This language describes software components that could be installed over hundreds of

thousands of resources. The language supports configurations, components and systems. In

addition, the configuration files could be validated prior to being executed over real scenar-

ios. Descriptions in this language are converted in running distributed systems thanks to the

underlying infrastructure of daemons running on whichever hosts are to be included in that
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distributed system. Executed configurations are monitored by the Smartfrog infrastructure.

Events happening while configurations are running could be mapped to triggers which generate

actions on software or hardware components.

2.5 Summary

Grid computing has achieved important advances respect to definition and implementation of

protocols and services to support the integration of scattered resources. Different grid imple-

mentations today can interoperate because there is a common ground of communication pro-

tocols along with resource management services (aka. GRAM and WS-GRAM) widely adopted

in grid infrastructures. Different grid-based computational platforms have been deployed over

local, regional and national networks that show significant computational achievements and

offer an alternative computational infrastructure to drive solutions to challenging problems.

Grid aims to provide a general-purpose distributed computational infrastructure. This is a

remarkable and challenging problem because grid-based computational models would consider

different issues such as: application characteristics, workload characteristics, resource man-

agement policies, topological interconnectivity, and resource performance. At system level,

different approaches have been made to model the behavior of static grid systems such as

DAGs and Petri Nets. Since, static systems are unrealistic, most of grid dynamic models

employ forecasting techniques based on data mining and different heuristics. At programming

level, the problem has been directed to model grid assets as services in such a way that grid

programs could defined in terms of the interaction of several services. Thus, workflow tools

are to the grid systems as message passing tools are to the cluster systems. Resource manage-

ment has explored different scenarios to range from application and resource deployment up

to mapping tasks to resources. In particular, DLT proposes a simple solution to the scheduling

problem of parameter sweep application over multi computer systems.

We have circumscribed our framework to undertake the problem of adaptive execution

of parameter sweep applications over grid infrastructures. The adaptive problem has been

tackled through statistical analysis. The statistical analysis considers previous performance

exhibited by a particular application and predicts with a significat level of accuracy future
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behaviour. The resource relevance is determined by user preferences such as performance,

reliability and economic factors, among others. In addition, the load is distributed in a way

that all the participating resources end at the same time. This framework is non-intrusive

and relies heavily on trustable external information sources thus a pull-based mechanism is

employed to get a partial snapshot of the system.



CHAPTER 3

A Computational Framework for Grid

Environments

Grid infrastructures based on cluster legacy are characterized by heterogeneity and multiple

administrative domains that provides an environment with high levels of uncertainty on avail-

ability and reliability. Meta-schedulers have been developed for orchestrating geographically

spare resources. Often the proposed solutions do not consider realistic scenarios where grid in-

frastructures are interconnected through non-dedicated networks, and managed under diverse

administration policies.

Falkon [27] is a framework that aims to leverage efficiently execution of many short tasks

on large computer clusters. It combines multi-level scheduling, streamlined task dispatcher,

anda data-aware scheduler. Falkon has shown excellent results running short tasks under Mas-

sive Parallel Processing (MPP) environments. It does not use any specific Local Resource

Manager (LRM) for task dispatching but implements a customized module for task mapping

into computational resources. Falkon is not intended for scheduling user’s applications, but

it executes efficiently scheduling plans coming from high level workflow tools such as Kara-

jan. Gridway [28, 29] enables large-scale, reliable and efficient sharing of computing resources

managed by different LRM within a single organization or scattered across several administra-

tive domains. The architecture consists of four modules:request manager, dispatch manager,

submission manager, and performance monitor. Every module is highly configurable through

a scripting language designed for Gridway. Gridway provides a basic scheduling mechanism
20
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based on flooding. During initial phases, remote resources are flooded with tasks in order to

determine performance capabilities. Flooding is a greedy approach that takes a snapshot of

the system, and consequently produces network congestion and resource overload.

The design and implementation of a grid computing enabling framework that provides

functionalities for deployment, integration, and management of computational resources grid

based is presented as follows.

3.1 Architecture

3.1.1 Grid Resource Architecture

Grid infrastructures are built from the integration of multiple computational resources which are

managed by diverse administrative domains. Every grid resource is compounded by particular

hardware and software elements. As consequence, grid systems are characterized by their

heterogeneity since they embrace a plethora of hardware devices, operating systems, scheduler

managers and monitoring tools, among other elements; many of them, non-interoperable at

all. The way how users perceive the access to those resources is highly influenced by the

management policies imposed by the resource managers.

Figure 3.1. Grid Resource Architecture
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Grid resources follow a multi-layer architecture which hides the specific details exposed by

the hardware and software components. Each layer defines service access points which are

used by the upper layer for accessing the methods and services offered by lower layers. Figure

3.1 depicts the hierarchichal structure observed by most of the grid resources. The fabric

layer is located at the bottom of the hierarchy. It regards with physical components such

as storage devices, processing units, and special measurement devices, among others. The

Hardware Manager Layer (HML) at the next level, groups software and firmware components

to hide the complexity and the heterogeneity found in the fabric layer. Software components

such as operating systems, monitoring tools, development tools, system libraries, and Local

Resource Managers (LRM) are part of this layer. This layer embraces those components

which are managed by a single administrative domain. The following layer is known as the

grid middleware. It provides a unique interface for accessing the functionality offered by the

HML. Hence, it gathers common tasks in functional groups and provides single access points

to specific operations regarding with HML components.

3.1.2 Gridjobs Architecture

Gridjobs is a computational platform for adaptive execution of sweep parameter applications.

Gridjobs perceives the grid infrastructure as an observable system. It integrates different

functional units in charge of collecting information provided by the environment and processing

this information in a way that the assets behavior can be estimated in real-time. Figure

3.2 shows the modular design exhibited by the Gridjobs framework. This loosely coupled

architecture allows that each module operates independently. A module in addition exposes

its functionality through different communication protocols such as web services and RMI

protocols. Next a description of the modules is given.

Persistence Module

The Persistence Module mimics an Information Service (IS) defined in conventional grid archi-

tectures. It is represented by entities that in most of the grid models are considered such as a

user, task, and grid resource. However, the module is not compliant with any grid based IS, but

exposes information through web service protocols, and makes information persistent over a
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Figure 3.2. Gridjobs Modules

relational database instance. Different from other initiatives, our approach does not implement

any particular query language or discovery strategy implemented in other implementations such

as MDS and GRIS.

The Persistence Module relies on Grails object relational mapping implementation known

as GORM [30] for storing the information associated with the entities defined in the grid

model. (See appendix A.1).

The IS module is populated with information provided by a framework user and other

framework modules while the framework runs. For instance, a user information is collected

the first time when the framework is executed, the information associated to an application

is gathered during the application deployment process and the grid resource and application

performance are fed by the task monitor module.

Deployment Module

The Deployment Module provides a straight mechanism for deploying applications linux based

over grid resources. Figure A.7 shows a screen shot of a client application used for deploying

legacy applications over grid infrastructures. This client program collects information related

to the application such as application name, executable name, remote installation path, remote

work directory path, and the grid resources where the application would be deployed. Along

with this information, the user must also provide the application source code and a basic

script to contain the steps used for deploying the application in a conventional Unix system.
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When this information is provided, the deployment process would be started by the user.

The application source code, along with the script, is uploaded from the user computer to the

framework server through the HTTP protocol. The framework then starts to transfer the script

and application files to each selected grid resource through the SSH protocol. The module

then executes the installation script on each resource and sends the information generated

during the deployment process to the IS module.

Task Module

A task refers to executing a program in a cluster’s compute node. The task module deals with

executing and monitoring task. It supports asynchronous and synchronous task execution.

Gridjobs is a highly parameterized platform. For instance, a configuration file specifies the

monitoring frequency, the maximum number of computational nodes involved in an execution,

per grid resource, and expectation times, among others. Hence, prior to executing a task,

the user must indicate the expected task execution time(application makespan). This time

information is used by the framework during task executions in order to avoid to indefinitely

waiting for finalizing a task. The task module uses information stored in the IS in order to

build commands for submitting task executions to grid resources via services provided by the

Grid Resource Allocation Manager(GRAM). For instance, IS provides the LRM instance and

name of the headnode, the task module contacts the local GRAM in order to request the task

execution. Underneath GRAM establishes a secure and trustable connection with the remote

grid resource which carries out the task execution.

Is already said. The framework invokes the globus-job-run for synchronous execution,

whereas the globus-job-submit command is invoked when asynchronous execution is required.

The later command is suitable for executing long lasting tasks. Since globus-job-submit does

not wait for ending the submitted task execution, returns a task identifier which would be later

used by the task monitor module in order to track task performance. Thus, the task monitor

at regular intervals queries the task status through the globus-job-status command. Every suc-

ceeded task traverses four stages: UNSUBMITTED, PENDING, ACTIVE and DONE. Every

time that some change occurs to the task’s state, this change is recorded into the IS. The
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cleaning and notification processes are carried out when the DONE stage is achieved. The

globus-job-clean command is invoked to clean any orphaned processes or staged files created

during the application execution. Finally, the user who submitted the task is notified via e-mail.

Although, the interaction with a remote LRM is achieved through the globus- series com-

mands, this interaction is not hardcoded inside the framework but implemented in the grid-

jobs.jar library (Section 3.2). Thus, the script package defined in gridjobs.jar is modified for

integrating the framework with other grid middleware implementations.

Monitoring Module

The Monitoring Module fulfills two requirements monitoring cluster status and application ex-

ecutions. The monitoring module relies on monitoring tools deployed at grid resource side

for monitoring cluster. Those monitoring tools have be able to record events happening at

compute nodes level. At this state, Gridjobs is able to interact with two of the most widely

adopted monitoring tools in the cluster market, such as SCMSWeb and Ganglia. These tools

are accessible via web services and TCP sockets, respectively. From the information that they

provide, the monitoring module can infer resource capabilities, such as number of compute

nodes, number of processors per node, memory size, and storage availability, among others. It

can also process on-line as well as off-line data associated with the resources. For on-line or

real time processing, Gridjobs uses two different communication protocols for interacting with

the aforementioned tools. For SCMSWeb installments, Gridjobs uses web services (HTTP

protocol and XML) as communication protocol. The framework then submits a HTTP GET

request to a remote SCMSWeb instance and receives as a response a XML stream which

contains the information associated with the computational nodes status. Gridjobs interfaces

with SCMSWeb because is the monitoring tool suggested by Pacific Rim Appliation and Grid

Middleware Assembly(PRAGMA). Ganglia uses in contrast raw sockets for showing resources

status. Ganglia is another widely adopted monitoring tool and it is part of the Rocks distribu-

tion. Rocks counts with an active community of developers and it is considered as one of the

most easy to install distribution for clusters. Gridjobs creates a socket connection with the

remote resource and receives a XML stream to contain the computational nodes status.
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Despite of both monitoring tools return a XML stream, each XML exhibits a particular

structures, therefore, Gridjobs implementes two different parsers which are in charge of extract

from the XML stream, relevant information to the local IS. The monitoring module processes

log files retrieved from remote LRM for off-line analysis. At this time, Gridjobs only supports

Sun Grid Engine(SGE) log files. Every SGE installment records the LRM activity in the

accounting file. From data found in this file, it is possible to infer who the most active users

are, what the characteristics of the most successful tasks are, application execution times

and delay time of the users, among others. The off-line processing does not provide updated

resource information, but does provide relevant historical data that is useful for supporting

forecasting processes. On the other hand, the monitoring module also surveils application

executions. Gridjobs is mainly concern to execute applications which load is arbitrarily divisible.

Hence, when one execution is requested, the framework divides the application load amongst

the available resources considering their historic performance. The way how the load is divided,

highly depends on information provided by the statistical module, Section 3.1.2. The statistical

module then infers the amount of load to each resource requires in such a way that most of the

resources end their execution at the same time. Then, this module estimates the application

termination time and schedules a thread which would care of all pieces achieve a termination

state (DONE or FAILED). When all tasks finalize their executions, the thread finally reports

the application execution time to IS.

Statistical Module

This module analyzes the behavior observed during task executions. It retrieves information

from IS and estimates resource and task performance scenarios. Information associated with

task executions is collected each time that an asynchronous execution is invoked. Each task

monitor in charge of a particular task, records each event to happen during the task lifetime.

The statistical module processes the data collected and tests the observed values against

several probabilistic functions and finds the function parameters to best model the data. This

module employs the Kolmogorov-Smirnov test to determine the probabilistic function along

with its corresponding parameters which exhibits the closest p-value to 0.5. KolmogorovS-
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mirnov is used for quantifyng a distance between the empirical distribution function of the

observed data and the cumulative distribution function of the reference distribution, or even

between the empirical distribution functions of two samples.

Every time that this module is executed, Groovy and R [31] scripts to include recent

systems activity are dynamically created. R is a statistical package which Gridjobs uses for

carrying out the probability duties. This probabilistic approach allows to represent resource and

task behavior with an important degree of accuracy. Finally, our framework has incorporated

this probabilistic component in conventional models Divisible Load Theory (DLT) based in

such a way that more precise scheduling plans could be generated. This approach has shown

an improved representation of the grid resources because it considers their dynamic essence.

3.2 Implementation Issues

Gridjobs has been developed under Groovy [32] and Grails [33] platforms. Groovy is a pro-

gramming language for the Java Virtual Machine. It supports all libraries developed for the

Java language but also provides features inspired by other programming languages such as

Python, Ruby and Smalltalk. Grails is a framework to support web applications development.

Different from other web frameworks, it does not intend to re-invent the wheel but provides a

modular architecture which allows the integration of technologies developed by third parties.

Grails follows the Model-View-controller (MVC) paradigm. The Model represents application

core entities. For instance, users, tasks and grid resources are entities defined in the model

of the Gridjobs framework. These entities are made persistent through Hibernate technology.

Hibernate interoperates with most popular databases in the market. Gridjobs in particular

employs PostgreSQL as its backend. Controllers handle the application logic. In particular,

Grails implements this concept through services and controllers per se.

Gridjobs in addition incorporates Quartz and Mail plug-ins in order to provide planning

and notifications mechanisms to the framework components. Quartz is an open source job

scheduling system developed in Java. It provides two fundamental classes, Job and Trigger.

A Job class allows the definition of any task programmed in Java. However, a Job instance by

itself is useless because it needs a Trigger to fire its execution. When a Gridjobs client requests
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a task execution, a Trigger instance is scheduled for attending this request. When the trigger is

fired, a GlobusjobinstanceJob instance is created. This instance submits the application execution

to the grid and creates other Trigger that will fire a GlobusjobstatusJob instance, which in turn,

surveils the application behavior. Under either normal or abnormal task finalization the mail

plug-in is employed for creating an e-mail to contain a short report describing the termination

status to the task owner.

The following sections present an algorithmic description of the task, deployment, statis-

tical, and monitoring modules. According to how they are activated inside the framework,

they are divided in two groups: synchronous and asynchronous modules. On one hand, task

and deployment modules are asynchronous because they are activated by user or third parties

requests through their web service interfaces. On the other hand, statistical and monitoring

modules are synchronous because they operate on periodic intervals of time. However, ad-

ditional wrappers have been also developed in order to allow asynchronous execution of the

aforementioned modules.

3.2.1 Asynchronous Modules

There are two asynchronous modules, the task and deployment modules. Those modules

are accessible from external entities through web service and RMI protocols. Appendix A.2

describes the implementation of these modules as Grails services and modules requirements

for a proper interoperation between Gridjobs and grid resources are described as follow.

Deployment Module

This module provides a mechanism for easy deployment of legacy applications Linux based

over computational grid resources (aka. clusters). This module relies on the SSH protocol

for transferring the application files and executing the application installation scripts. Prior to

deploy an application, it is necessary to provide to the Gridbjos framework textual information

relevant to the application, the application files and installation script. The textual information

describes insight details of the application such as executable name, application path, data

path, among others. The application files expected by Gridjobs, are regular files used in

conventional Unix systems for building legacy applications such as makefile, configure script
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and source code, among others. In addition, this module allows to determine if a given

application exists in a given grid resource and uninstall an application deployed via Gridjobs,

see appendix A.3.1.

Task Module

This module provides execution and monitoring facilities over tasks submitted to Gridjobs

framework. The framework decouples its dependency to any grid middleware implementation

since it follows a layered approach where the technological details are handle in the grid

package, implemented in the Gridjobs library.

The task module provides synchronous and asynchronous task execution. On one hand,

under synchronous execution, the task owner is blocked until the task ends its execution.

On the other hand, asynchronous execution does not block the caller but notifies her about

the task finalization status employing the mail protocol. Gridjobs makes that functionality

available through the LaunchService controller and accessible for third parties through the

Hessian protocol1.

This module interacts with remote grid resources through the GRAM protocol and assumes

a proper integration of GRAM with some Local Resource Manager (LRM) such as SGE, Torque

or MAUI, among others. (Appendix A.3.2.)

3.2.2 Synchronous Modules

Synchronous modules are in charge to keep updated information associated with grid resources.

The monitoring module interacts with remote monitoring tools and obtains the resource health.

The statistical module periodically analyzes the information observed by Gridjobs and identifies

probability functions to best model the observed resource behavior. Implementation details of

these modules are provided in appendices A.3.3 and A.3.4, respectively.

3.2.3 Gridjobs Libraries

The Gridjobs framework relies in two libraries that we have developed in Groovy. First, lib-

gridjobs.jar is a utility library to provide a single access point to third party technologies such

1Hessian is a binary web service protocol implementation.
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as Hessian and Quartz. Basically, it pulls together code sentences into methods to reduce

the algorithm length, leverage the coding speed, and hide the technology singularities. For

instance, the grid package hides the technical details employed for interacting with a remote

grid resource. However, if a user does not have access to the Globus Toolkit middleware

but does have access to other grid implementations such as Unicore or G-Lite; the framework

does not require any modification but the grid package does. Finally, libgridjobs.jar is also used

by client modules because it supplies methods for managing graphical components, handling

date/time data and remote communication via SSH and HTTP protocols, among others.

The second library is libremote.jar. It contains the interfaces which are implemented by the

Gridjobs modules who expose its functionality through web service and RMI protocols. The

framework as well the client applications need to access them. These interfaces represent,

from the client point of view, the local reference to remote operations. For the Gridjobs

modules perspective, they represent the contracts that modules must obey for exposing their

functionality to remote entities.

3.3 Software Requirements

Gridjobs is a service-oriented framework implemented under Grails and Groovy programming

environments. Gridjobs can be used as an application deployment tool and a gateway for

adaptive execution of parameter sweep applications over computational grids. In addition,

it integrates multiple services to watch and estimate the application performance over grid

infrastructures. Therefore, Gridjobs integrates diverse external software projects for providing

the functionality that an adaptive framework requires. These software dependencies are divided

in application requirements and Grails requirements.

3.3.1 Application Requirements

Gridjobs allows the application execution over grid infrastructures. Thus, Gridjobs expects

that the host where the framework is deployed along with the user who exectutes the frame-

work exhibit the corresponding valid host and user certificates. Gridjobs also has a statistical

module in charge of predict application performances. Using indirect observation, it records
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the application execution, stores the observed information in a permanent repository and later

forecasts the application performance. For storing the collected data, current Gridjobs re-

lease employs Gridjobs. However, any database supported by Hibernate [34] would does the

job. For the statistical analysis, Gridjobs employs R [31]. Gridjobs interfaces with R through

scripts generated dinamically by the framework statistical module. This module is periodically

executed in order to keep an updated record of the observed application performance in such

a way that the framework could generated adaptive application execution plans.

Application Version Homepage
Java SDK 1.6.0 11 http://java.sun.com/

Ant 1.6.5 http://ant.apache.org/

R 2.7.2 http://www.r-project.org/

PostgreSQL 8.3.1 http://www.postgresql.org/

Groovy 1.5.6 http://groovy.codehaus.org/

Grails 1.0.3 http://www.grails.org/
Table 3.1. Software packages required for deploying and executing Gridjobs.

3.3.2 Grails Requirements

Grails is a platform for developing web-based applications. It exhibits a modular design that

allows to expand its functionality through plug-ins. Gridjobs relies on three plug-ins quartz,

mail and remoting. Quartz is a java scheduler. It is used to execute the synchronous modules

and the task monitor and application execution monitor. The mail plug-in is used to notify

when tasks either finalize or abort their execution. Finally, the remoting plug-in provides the

suitable environment to expose the service and module functionalities to third party entities

through web services.

Plugin Version Homepage
Remoting 1.0 http://www.grails.org/plugin/remoting

Mail 0.5 http://www.grails.org/plugin/mail

Quartz 0.4.1-SNAPSHOT http://www.grails.org/plugin/quartz
Table 3.2. Grails Plug-ins required for Gridjobs.
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3.4 Summary

In this chapter, we have described the architectural design and implementation of a personal

computing framework to launch application executions over operational grid infrastructures.

Gridjobs interacts on top of computational grids to exhibit capabilities through grid services.

Gridjobs follows a service-based loosely coupled architecture. In fact, Gridjobs is composed

by different modules which interoperate with external entities through web service protocols.

Gridjobs has divided the services between two groups: synchronous and asynchronous services.

Statistical and Monitoring modules are synchronous. That is said because on periodic intervals

of time the statistical analysis is launched in order to update the performance profile of the

resources. Similarly, the monitoring module enquiries regularly remote monitoring tools in order

to record resources status. However, these services show service access points to enable that

users or other external components invoke their execution. Deployment, task and persistence

modules are categorized as asynchronous modules. They are not executed on regular interval

of times but on user demands. The deployment module has been used to install Linux-based

legacy applications over clusters. This module assumes the availability of a protocol to support

distributed data access (aka. Network File System (NFS) protocol) on the clusters. The task

module allows the execution of legacy applications over computational grids. This module

expects that each computational resource supports a grid-based resource management service

which must be integrated with some LRM. The task module not only executes applications

but also monitors them. It queries periodically to remote GRAM instances about the task

status. Transitions observed during the task execution are reported to Gridjobs Information

System.

Gridjobs has been developed under Groovy and Grails but it also interfaces with R for

executing statistical routines to support the forecasting process. We envision a plug-in based

platform which provide a more adaptive computational environment. For instance, Gridjobs

supports different ranking schemes defined by the Gridjobs user through the configuration

file(application.properties). This file defines a set of variables to drive the Gridjobs behavior.



CHAPTER 4

Resource Management

Grid computing defines Virtual Organizations (VOs) as abstract entities created on-the-fly

from several resources governed by different administrative domains. Each VO orchestrates

the different resources and presents a set of services to fulfill user demands. Constituent

elements of a VO are not only circumscribed to processing units, storage devices or services

but also others VOs.

Classical scheduling algorithms were designed with a steady computational platform in

mind. Similarly, highly coupled parallel architectures present an operational environment char-

acterized because of their high speed and low latency network links, low levels of communi-

cation failures between nodes, and well-known management policies, among others. Hence,

these platforms present controllable characteristics that allow work to proceed in predictable

environments. On the other hand, VO-based environments exhibit a different distributed

computational environment with ubiquitious uncertainty conditions. Since VOs could be con-

stituted by resources from different administrative domains whose performance is driven by

particular management policies, the resource managers must incorporate scheduling algorithms

to control this particular computational environment. This is a cumbersome task because VO

addresses a wide range of application over an unfit infrastructure.

4.1 Constituent Grid Elements

Grid presents different infrastructure profiles because it intends to address solutions to diverse

challenging problems. Thus, a Grid environment could be formed from compute nodes, clus-

33
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ters, storage devices, simulators, and telescopes, among others. According to the services that

each resource exposes, it would be categorized as a data grid, computational grid or service

grid.

A data grid deploys specialized hardware and software components to provide reliable and ef-

ficient access to exceptional amounts of data. For instance, resources deploying grid-based

libraries for storing medical images, distributed relational-object databases or computational

resources to employ sophisticated array storage devices along with high performance filesys-

tems to provide expeditious access to distributed files and objects.

A computational grid is characterized because of its astounding amount of computational nodes

along with advanced hardware architectures to incorporate multi-core and hyper-threading pro-

cessing units. Most of the members in a computational grid are called clusters. The clusters

are accessible through Local Resource Managers (LRM) to implement basic scheduling algo-

rithms driven by management policies defined by the cluster manager. In addition, compute

nodes have homogeneous architecture and they are interconnected through reliable and low

latency network infrastructure. Computational grids are also divided in high-throughput and

distributed-supercomputing platforms. The former platforms increase the completion rate of

a stream of jobs. The second kind of platform carries out parallel execution of applications

employing multiple computational nodes mapped on different clusters.

A Grid service deploys dissimilar services to implement multiple modules and routines for

different purposes. A Grid service leverages the creation of workflows to require streamlined

service orchestration. The Grid service category can be further divided in on-demand, col-

laborative and multimedia grid platforms. Grid services are emerging as solid computational

infrastructures because large corporations have pointed their resources toward service-oriented

software architectures. This fact has leveraged the development of multiple workflows sys-

tems for bioinformatics, business process automation, business process management, business

process modeling, and computer-supported collaboration, among others.

Our work focuses on computational grids. A description of the software components

present in these Grids now follows.
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4.1.1 Minimal software stack for a single computational grid resource

Each computational resource must deploy a middleware and a set of managers and services in

order to be consider as a computational grid resource. The grid middleware would provide a set

of services such as naming, monitoring, resource discovery, transfering, and job management.

Those services present a common set of grid-compliant protocols and rules to leverage the

interoperation and orchestration of multiple grid platforms.

For naming service and objects, there are different approaches such as relational, object mod-

els, language based and X.500/LDAP (Lightweight Directory Access Protocol), among oth-

ers. On top of a naming scheme, the resource discovery service is implemented. In particular,

Globus Toolkit has implemented two services for naming and discovering resources: Monitor-

ing Discovering and System (MDS) and Grid Resource Information Service (GRIS). MDS4[35]

implements a sophisticated scheme to support monitoring and discovery operations over dis-

similar resources. It uses standard interfaces defined in WS-Resource Framework (WSRF)

and WS-Notification (WS-N) specifications that embrace larger sets of resource data. Schopf

et. al. [36] have shown that MDS4 exhibits better perfomance than other similar service

directories such as MDS2, DataGrid Relational Grid Monitoring Architecture(R-GMA) and

Hawkeye.

Protocols to support file transfer and staging mechanisms on loosely coupled infrastruc-

tures such as regional, national and international grids are essential. These protocols must

expose high transfer rates, secure virtual channels and high levels of reliability even on pub-

lic networks. Globus provides two protocols: GridFTP and Replica Location Service (RLS).

GridFTP has shown important performance achievements over conventional file transfer pro-

tocols and services. Due to its versatile design, it is possible to develop enhanced transfer

protocols and services using the initial GridFTP protocol [37]. In that sense, RLS has been de-

veloped on top of the GridFTP protocol. Among other characteristics, it provides mechanisms

for achieving efficient data replication at suitable places in distributed grid environments, [38].

Monitoring tools are in charge of providing updated information from every compute node

in a cluster. These monitoring tools interface with the node’s operating system and retrieve
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data such as load per node, amount of free, cached and used memory, network activity, free disk

space, etc. These tools deploy agents on each monitored device which instead interact with

local operating system services or through specialized monitoring protocols like SNMP. The

information collected by each agent is sent to the central repository. This central component

keeps historical records of each compute and summarizes and presents the cluster status

in a structured way. For instance, Ganglia and SCMSWeb are two well-known monitoring

tools. Ganglia is the monitoring tool that is installed by default in the Rocks distribution

while SCMSWeb is the suggested monitoring tool for PRAGMA resources. Both use XML for

structuring the cluster information, however they differ in their transport protocol. SCMSWeb

uses HTTP and Ganglia employs plain sockets.

A service in charge of the job management in a computational grid is mandatory. Since

computational grids are formed from clusters, it is relevant to know that each cluster deploys

a particular LRM in charge of schedule and dispatch jobs. Request executions submitted to

a particular LRM are highly affected by management policies and algorithms implemented in

it. Globus implements the Grid Resource Allocation and Management (GRAM) service which

provides a basic set of primitives for submitting, monitoring and cancelling jobs. This is a

LRM-independent service which means that it could interoperate with any LRM deployed in

the target computational resource. At this time, GRAM supports Sun Grid Engine (SGE),

Portable Batch System (PBS) and Load Sharing Facility (LSF). Earlier versions of GRAM has

evolved toward more standardized communication protocols in such a way that GRAM service

could not be only accessed through command line tools and APIs but also through web service

protocols. It is remarkable that GRAM does not provide any scheduling mechanism but it

delegates this functionality to the underneath LRM.

4.2 PRAGMA - A Computational Grid Testbed

PRAGMA [39] is a grid platform to integrate different computational resources scattered

around the world. PRAGMA is an initiative founded in 2002. Today PRAGMA counts with

25 members from 18 countries. Each member shares at least one cluster. Thus, PRAGMA

is a computational grid constituted by 30 clusters, 458 compute nodes, 1020 CPUs, over 1.3
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TB in Random Memory Access (RAM) and approximately 25 TB in disk space. PRAGMA is

characterized because its hardware and software heterogeneity. All sites support GRAM and

some of them Web Services GRAM (WS-GRAM) too. Most of the clusters are built from

i686 compute nodes but there are also x86 64, Itanium and Power5+ systems-based. Similarly,

there are diverse technologies for clusters scheduling, such as SGE(16), Torque(8), PBS(3),

LSF(1) and LoadLeveler(1). Hence, PRAGMA could be denominated as a heterogeneous

computational grid.

PRAGMA presents a flat management structure. There is not central authority to deter-

mine global management policies so that local policies established by each resource owner to

drive the way the resources are used. There is not one unique central certificate authority

(CA) in charge to emit certificates. Thus, any authorized CA could discretionally emit host

and user certificates in such a way that its authorized certificates are automatically accepted

by any other PRAGMA member. Similarly, any resource and user with updated certificates

could dispatch tasks to any other PRAGMA resource. In that sense, PRAGMA could be

extrapolated as a peer-to-peer computational grid.

Now, the decentralized nature of PRAGMA resources presents a tremendous challenge for

determining the performance that each cluster could exhibit. Different techniques to estimate

resources performance have been probed such as heuristics, pricing models, machine learning,

and probability distributions. However, any estimation mechanism per se is useless unless

that it comes companied by a feedback procedure to adapt and reconfigure execution plans

according to the observed executions.

4.3 Scheduling Taxonomy

Because of the amount of components and problems intended to be tackled, Grid could

barely be represented by one single architectural model. Thus, it is possible to identify diverse

computational models applied to Grid infrastructures. Some works direct their attention at

the way the different computational elements are interconnected or the management hierarchy

that they could exhibit. That kind of model can be called topology-based Grid models. Despite

previous works consider a wide range of network topologies from well-known topologies such
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as bus, tree and rings; up to more sophisticated such as torus and hypercubes; many of them

hardly represent real Grid infrastructures. For instance, Grid initiatives such as TeraGrid and

PlanetLab exhibit a centralized management architecture where the deployment and execution

of applications are carried out by a central manager. In contrast, PRAGMA presents a totally

decentralized infrastructure where each user is responsible for deploying and scheduling the

execution of the user’s applications.

Scheduling is a widely studied problem in different areas where efficient resource man-

agement is a fundamental issue such as control theory, operations research and production

management. Cassavant and Kuhl [40] present an interesting taxonomy applicable to conven-

Figure 4.1. Scheduling Taxonomy proposed by Cassavant and Kuhl.

tional distributed systems, Figure 4.1. They conceptualize the scheduling problem as a problem

with three actuators: consumers, resources and schedulers. In this context, the scheduler el-

ement deploys different policies to drive the generation of execution plans. However, utility

computing platforms impose additional factors in the scheduling equation not being consid-

ered in that study. Thus, consumers present their computational and economical expectations

represented as QoS (Quality of Services) and resource owners display their utilization policies

and costs. Now, schedulers operating on these environments are required to consider the
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constraints imposed by consumers and resources and generate execution plans to stick to the

aforementioned constraints, Figure 4.2.

Figure 4.2. Current large scale infrastructures expose resource and consumer constraints to

affect the execution plans generated by schedulers.

Rotithor [41] proposes another taxonomy for distributed systems but this time he considers

dynamic distributed systems. In this context, the scheduling problem grows in complexity be-

cause not all variables used traditionally to generate execution plans are known. Hence, the

scheduling problem is divided in two sub-problems: state estimation and decision making. On

computational environments such as computational grids, where resources are governed by

different administrative domains and the computational resources are interconnected via pub-

lic networks, the problem of resource estimation is challenging. Rotithor classifies estimation

approaches around to the following questions:

1. Who is in charge of collecting the resources information?

2. During state information exchange, how many elements are involved?

3. How the local information is disseminated?

4. How frequent the information exchange occurrs?

To the first question, centralized, decentralized and hybrid approaches are possible. In a

centralized scenario, all the information is found in a unique repository. This kind of approach

is present in cluster systems. The decentralized approach presents a scenario where there

is not a unique information repository but many. Peer-to-Peer (P2P) based systems work

under this approach. The hybrid approach, is present in computational grids. For instance, a

computational VO monitors the status of the resources that form it and each resource instead
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implements a centralized monitoring tool.

The second question refers to the consensus problem. Similarly, three possible responses are

possible: complete, partial and variable. Partial and variable are approaches related closely but

in a partial scenario a minimum number of nodes is always required, for instance the half plus

one. In a variable scenario an arbitrary number of nodes is enough.

The third question tackles the problem of deciding who initiates the transmission of a resource

status. and three possibilites are considered: voluntary, involuntary, or combined. In the

first scenario, each element that identifies changes in the environment, immediately would

inform whom has been registered for notification. Involuntary dissemination occurs when an

information provider is directly asked for the information.

The four questions concern the frequency of information interchange. The author visualizes

three possibilities: periodic, aperiodic or combination. In a periodic frequency, the informa-

tion is exchanged on regular time interval. Aperiodic interchange is triggered when certain

conditions are met and the combined solution is relevant on computational environments that

handle real-time problems as well as general purpose computations.

4.4 Gridjobs Resource Management

4.4.1 Scheduling Approach

Gridjobs is a metascheduler to orchestrate several Grid-enabled resources for executing param-

eter sweep applications. Following the approach suggested by Rotithor, Gridjobs has divided

this orchestration process in two sub-problems. The first sub-problem is resource performance

estimation and the second one is task distribution.

Resource Performance Estimation

Gridjobs is an application-aware meta-scheduler. It assumes that the resource performance is

highly determined by the application that this resource runs. That is said because two different

applications executed with inputs of similar sizes could exhibit different execution times. Thus,

Gridjobs sends dummy executions to the resource under observation and watches how the

application instance performs in the given resource.
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Figure 4.3. Interaction perceived by Gridjobs.

Gridjobs runs on user-space and it interacts with a local GRAM service instance, Figure

4.3. When Gridjobs submits an execution, the local GRAM returns an identifier associated

with the submitted task. Onward Gridjobs uses this identifier to track the application per-

formance. Gridjobs first determines the time that this execution lasts in UNSUBMITTED

state. This state occurs while the execution request remains in the local GRAM but it has not

been dispatched and received on the remote GRAM. When the remote GRAM acknowledges

the requested execution, this execution passes to the remote LRM. Then, the remote LRM

enqueues the request. At this time, Gridjobs starts to measure the time that this execution

lasts enqueued. This state is known as PENDING. Later, when the remote LRM finds a free

slot where the execution can be executed, it then maps this execution to this free slot. Now,

Gridjobs measures the execution time which is known as the ACTIVE time. For non MPI

applications, the UNSUBMITTED and PENDING states are independent of the parameters

passed to the application. However, the ACTIVE time is directly affected by the execution

parameters. Noted that for MPI applications which specify the number of slots required for

carrying out the execution, the PENDING time varies depending of the LRM management

policies.

Along with the resource performance estimation, Gridjobs also cares for the resources

state. Gridjobs then interfaces with Ganglia and SCMSWeb monitoring tools, Figure 4.4.

Those monitoring tools, via XML, provide a complete information about cluster status such

as number of compute nodes, number of dead nodes, free memory per node, free disk space
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Figure 4.4. High-level description of interaction between Gridjobs and Monitoring Tools.

per node, and load per node, among others. Gridjobs parses this information and stores it in

a permanent repository. Gridjobs does not require the global status of the computational grid

to be known but only partial information, in particular of resources involved in the execution.

Gridjobs employs periodic pull-based mechanisms that do not hinder with the normal monitoring

tool operation at cluster level. In particular, Gridjobs is interested in the number of nodes per

resource, how many nodes are alive and the load15 value.

In Unix systems, load15 indicates the average system load over the last 15 minutes. When

Gridjobs enquiries some cluster monitoring tool, it receives the cluster status information

and averages the load15 measurement from all compute nodes. Finally, Gridjobs stores the

averaged load15 value in the Gridjobs Information System (GIS).

Task Distribution

For task distribution, Gridjobs envisions PRAGMA as a non-hierarchichal set of computational

assets. Thus, Gridjobs establishes a star topology, Figure 4.5. Gridjobs can be seen as a

gateway able to execute applications over different grid computational assets. The center

of the star corresponds to the resource to host Gridjobs and the leaf nodes correspond to

computaional resources. The server where Gridjobs is hosted could act as source and sink

resource willing not only to submit executions but also to participate in application executions.

Figure 4.6 shows a graph-based pictorial representation of a Gridjobs-based computational

grid.

Gridjobs acts as the center of the star and the extremes of the edges represent grid
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Figure 4.5. Gridjobs exhibits a star network topology.

Figure 4.6. Gridjobs-based computational grid
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computational assets (GA). In this case, those GA are clusters. Each GA deploys a particular

LRM which can seen as a broker for the computational nodes under this cluster. Hence,

Gridjobs is aware of the number of computational nodes per GA but it can not send submissions

to particular nodes. Figure 4.7 explodes each GA and reveals the constituent macro-elements

to define a GA. Thus, each GA deploys a Local Resource Manager (LRM) such as Condor,

Portable Batch System, Sun Grid Engine, etc. Most of these LRM-controlled clusters are

formed by homogeneous resources. This fact presents a great advantage because although

Gridjobs can not submit directed executions to any particular compute node, that does not

matter because all nodes have equal performance characteristics and it is assumed that efficient

load balancing algorithms along with fair management policies are deployed at each LRM.

Figure 4.7. The Extended Logic Star Topology

A notation to describe those computational elements follows. Thus, let G be a computa-

tional grid resulting in the integration of multiple computational resources which are scattered

geographically and managed by diverse administrative domains. Hence, it can be said that

G =
m⋃
j=1

gj , where m is the total number of computational resources. Now, each gj can be

seen as a tuple {Rj , Pj}, where Rj represents physical resources and Pj represents the policies

and factors aside to drive the performance and behavior of the resources deployed in gj .

Depending of the grid profile of Rj , it could represent different kinds of resources. For

instance, for a data grid, Rj would represent storage devices and databases. In our case, Rj

represents a set of homogeneous computational devices. Thus, Rj =
mj⋃
k=1

rjk , where each rjk
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represents a computational node. Now, since Pj represents rules and constraints to affect

the resource performance, Gridjobs visualizes Pj as a black-box, it then maps Pj and Rj as a

probability function.

In grid environments there are an important list of factors that could affect the perceived

resource performance, for instance overhead imposed by grid middlewares, irregular communi-

cation latency present over public networks, outdated management tools, uncertain resource

load, unknown algorithms and management policies that drive the behavior of LRMs, and so

forth. In particular, during our experiments we found that some resources give higher priority

to tasks that require one computational node to run than those tasks that require two or more

computational slots such as MPI-based tasks. In addition, many resources present integration

problems and others have outdated management scripts.

Since Gridjobs works with parameter sweep applications, now we presented how the tasks

are distributed amongst the GA. Let X be the input of a particular application app1. app1

does not require any kind of interaction with external entities in order to process its input data

and X can be arbitrarily divisible in x1, x2, . . . , xn, such that

N∑
i=1

xi = X. (4.1)

Now, Gridjobs divides X amongst the available resources in such a way that all the resources

participating in the execution, end at the same time, Figure 4.8.

According to Figure 4.8, the time estimated for executing an application with input X is

T . T is determined by the characteristics of the p1 along with the overhead imposed by the

different active and passive factors intervening the execution in p1. Now, we claim that:

T = µ1 + ρ1 +
x1
ω1

(4.2)

where µ1, ρ1 and x1
ω1

(x1 input size and ω1 power processing) represent the elapsed times

in UNSUBMITTED, PENDING and ACTIVE stages, respectively. These values are not con-

stant but uncertain and they are affected by different elements. Figure 4.9 provides a pictorial
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Figure 4.8. A Control Node sends job submissions to each node according to the schedule.

description of the elements affecting the execution of a given application over a grid infras-

tructure. When Gridjobs sends a execution request, the local GRAM addresses it. The local

GRAM returns a request identifier to Gridjobs and tries to deliver the request to the remote

GRAM. This delivery process could be affected by network congestion and load presented in

the server to host the remote GRAM. When the remote GRAM receives the request, it then

delivers the request to LRM. The total execution time is now affected by the number of pend-

ing tasks in LRM besides of the management policies used to determine the order and priority

of the pending executions. Finally, when LRM maps the request to some free slot is when the

effective execution occurs.

Figure 4.9. A diagram representing the different software components involved in a grid

execution along with a diagram state.

Thus, to express the T value as a sum of constant terms is an unrealistic approach.
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Equation 4.2 is then re-written as follows:

T = µ′1(ξµ) + ρ′1(ξρ) +
x1

ω′1(ξω)
(4.3)

where µ′1(ξµ), ρ′1(ξρ) and ω′1(ξω) are probabilistic functions to model the behavior of UN-

SUBMITTED, PENDING and ACTIVE stages, respectively. (ξµ, ξρ and ξω are the parameters

of the aforementioned probabilistic functions.) However, for simplicity, subsequently equations

stick with the nomenclature of Equation 4.2.

Now, the computational time of the second node is given by:

µ2 + ρ2 +
x2
ω2

(4.4)

The second execution request is sent ∆ time units later than the first request, Figure 4.8.

So, the second request lasts:

T = ∆ + µ2 + ρ2 +
x2
ω2

(4.5)

Now, from 4.2 and 4.5.

µ1 + ρ1 +
x1
ω1

= ∆ + µ2 + ρ2 +
x2
ω2

(4.6)

x2 is expressed in terms of x1:

x2 =

(
(µ1 − µ2) + (ρ1 − ρ2) +

x1
ω1
− ∆

)
ω2 (4.7)

Equation 4.7 is re-writen as:

x2 = A1 + B1x1 (4.8)

where, A1 = (µ1 + ρ1 − (µ2 + ρ2 + ∆))ω2 and B1 = ω2
ω1

. Since x2 represents a chunk of

data it must be positive, then A1 and B1 must be positive, too. According to that, A1 ≥ 0

so µ1 + ρ1 ≥ µ2 + ρ2 + ∆ must be true. That inequality suggests a particular order for the

processing nodes participating in the computation.

Considering again the expression 4.8, it can be said that xi+1 = Ai + Bixi . To find an

expression to represent xi in terms of x1, lets see how x4 can be written in terms of x1. By
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definition

x4 = A3 + B3x3 (4.9)

Now, let us replace x3 in terms of x2

x4 = A3 + B3(A2 + B2x2)

x4 = A3 + B3A2 + B2B3x2

By replacing x2, we have

x4 = A3 + B3A2 + B2B3(A1 + B1x1)

x4 = A3 + B3A2 + B2B3A1 + B1B2B3x1

Now, it is easy to infer a general equation for xi

xi =

i−1∑
j=1

Aj

i−1∏
k=j+1

Bk + x1

i−1∏
j=1

Bj (4.10)

Equation 4.10 gives us a closed-form expression for xi . Now, we look for the value of x1.

Replacing xi in Equation 4.1.

N∑
i=1

xi = X

N∑
i=1

 i−1∑
j=1

Ai

i−1∏
k=j+1

Bk + x1

i−1∏
j=1

Bj

 = X

N∑
i=1

i−1∑
j=1

Ai

i−1∏
k=j+1

Bk +

N∑
i=1

x1

i−1∏
j=1

Bj = X

(4.11)
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And now it is easy to derive x1:

x1 =

X −
N∑
i=1

i−1∑
j=1

Ai

i−1∏
k=j+1

Bk

N∑
i=1

i−1∏
j=1

Bj

(4.12)

4.4.2 Resource management algorithms

In this section, three algorithms are presented. The first algorithm is employed to find the

different probability functions to model a resource behavior considering the application under

execution. The second algorithm determines the total nodes available per resource and di-

vides the load among the computational resources. The third algorithm implements different

resource ranking approaches.

startanalysis()

1 probfunclist ← [cauchy , exponential , gamma, geometric , logistic , lognormal , normal , poisson,weibull ]

2 for each resource r in DB

3 do unsubmittedlist ← []

4 pendinglist ← []

5 activelist ← []

6 for each task t in DB where t.resource = r

7 do if t.exitstatus = DONE

8 then unsubmittedlist ← concat(unsubmittedlist, t.pending− t.unsubmitted)

9 pendinglist ← concat(pendinglist, t.active− t.pending)

10 activelist ← concat(activelist, t.done− t.active)

11 else unsubmittedlist ← concat(unsubmittedlist,−∞)

12 pendinglist ← concat(pendinglist,−∞)

13 activelist ← concat(activelist,−∞)

14 replaceMinusInfMax(unsubmittedlist,max(unsubmittedl ist))

15 replaceMinusInfMax(pendinglist,max(pendingl ist))

16 replaceMinusInfMax(activelist,max(activel ist))

17 for each probability function pf in probfunclist

18 do generateRscript(unsubmittedlist, pf , r )

19 generateRscript(pendinglist, pf , r )

20 generateRscript(activelist, pf , r )

21 for each resource r in DB

22 do for each stage st in [unsubmitted , pending, active]

23 do [pf , params]← selectProbFunctionWithMinp-Value(st, r , probfunclist)

24 createRandomGeneratorScript(pf , parms, st, r )
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Statistical Analysis

Gridjobs uses probabilistic functions to estimate the application behavior in a determined re-

source. Gridjobs divides the application execution time in three stages UNSUBMITTED,

PENDING and ACTIVE. It is also aware that the exhibited performance in any stage is unre-

lated to any other stage. Finally, Gridjobs also considers that the application execution time

is highly affected by the characteristics of the resource where the application runs.

The startanalysis algorithm is presented in Figure 4.4.2. This algorithm analyzes the

performance of each resource known by Gridjobs, Line 2. Each resource performance is derived

from information stored in the task table. This table stores different timestamps to record the

changes of state that every task experiments during its execution, Lines 6-13. Thus, there

are timestamps for the next transitions: UNSUBMITTED (task.unsubmitted) → PENDING

(task.pending), PENDING → ACTIVE(task.active) and ACTIVE → DONE(task.done). Failed

executions are specially treated because some timestamps could have invalid values, Line

11-13. In that case, the statistical module penalizes these executions assigning the highest

timestamp observed for that resource, Line 14-16. When the information associated with

each resource is gathered, R scripts for each stage and each resource are created, Line 17-20.

Finally, the different probability functions are evaluated through the Kolmogorov-Smirnov test.

The probability function to exhibit the closest value to 0.5 is then selected as the probability

function to model a determined resource and state.

Numerical Example This section presents a numerical example to find a probability function

for the ACTIVE state. The data below were observed in komolongma on June 1, 2009.

239980.5

239997.25

239998.5

239998.75

240000.5

239998

239998.75
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Probability Function Parameter Values

Cauchy
location = 239998.60

scale = 1.06

Exponential rate = 4.05

Geometric prob = 4.05× 10−6

Logistic
location = 239998.81

scale = 7679.97

Log-Normal
meanlog = 12.41

sdlog = 0.07

Normal
mean = 246661.25

sd = 18850.31

Poisson lambda = 246661.25

Weibull
shape = 10.06

scale = 254896.53
Table 4.1. Parameters of several probability functions found during the performance evaluation

of komolongma

240001

299978

From these data, the statistical module creates R scripts for the following probability func-

tions: Cauchy, Exponential, Gamma, Geometric, Logistic, Log-Normal, Normal, Poisson and

Weibull. Figure 4.10 shows a R script to find the parameters of the Cauchy probability func-

tion (location = 239998.602803826 and scale = 1.06432187998584). Similarly, scripts

#!/home/jas/root/bin/Rscript

library(MASS)

v ¡- c(239980.5,239997.25,239998.5,239998.75,240000.5,239998,239998.75,240001,299978)

x ¡- fitdistr(v,”cauchy”)

output ¡- paste(x$estimate[[”location”]],x$estimate[[”scale”]],sep=”—”)

print(output)

Figure 4.10. R script generated by the Gridjobs statistical module.

for the other probability functions are also created. Table 4.1 presents the parameters found

for the other functions. Finally, the Kolmogorov-Smirnov test is executed over all the prob-

ability functions. Figure 4.11 presents a R script to execute the aforementioned test for the

Cauchy probability function. In that case, Cauchy was the selected function.

Table 4.2 shows the p-values found.
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#!/home/jas/root/bin/Rscript

library(fBasics)

v ¡- c(

239980.5,239997.25,239998.5,239998.75,240000.5,239998,239998.75,240001,240001)

ks.test(v,”pcauchy”,location=239998.60,scale=1.06)

Figure 4.11. R script to apply the Kolmogorov-Smirnov test over a Cauchy probability function.

Probability Function p-value
Cauchy 0.9559

Exponential 0.00189

Geometric 0.00189

Logistic 0.02225

Log-Normal 0.001313

Normal 0.001313

Poisson 3.04× 10−8

Weibull 0.004741
Table 4.2. Parameters of several probability functions found during the performance evaluation

of komolongma

Scheduler

Figure 4.12 presents a pseudo-code description of the scheduler module implemented in Grid-

jobs. Given an application (appname) and range of data (lowvalue and highvalue), the

scheduler divides the load amongst the computational resources where the required appli-

cations has been deployed. This module first determines the set of resources where the

application has been installed, Line 1. If none resource is found, the execution ceases. Oth-

erwise, this module estimates the performance of each resource, Line 6-11. This estimation

is used later to determine the amount of data that each resource is able to process given a

deadline. Then, a ranking scheme is employed to specify an order in which the load would

be distributed amongst the resources, Lines 12-13. This ranking scheme is not fixed but

determined in execution time by the user. Noted that different ranking schemes have been

deployed on Gridjobs(Section 5.5.4) but it is possible to extend the base of available ranking

schemes. The scheduler determines the number of total nodes available per cluster and finds

the load size per each computed node, Lines 14-19. The load size is determined according to

the equations 4.10 and 4.12. Gridjobs implements a function to estimate the load size and the

pseudo-code is presented in Figure 4.13. Finally, the scheduler starts to submit the executions
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scheduler(lowvalue, highvalue, stride, appname)

� Determine what resources have installed the ’appname’ application

1 resourcelist ← selectResources(appname)

2 if size(resourcel ist) <= 0

3 then � No available resources, then EXIT

4

5 estimationlist ← []

� Loop that estimates the time that a node in r

� takes executing ’appname’

6 for each resource r in resourcel ist

7 do � The R script estimates how long time some task spends

� in UNSUBMITTED stage in resource r

8 unsubmittedtime ← executeRScript(UNSUBMITTED, r )

� Estimating how long time a task spends in PENDING stage at r

9 pendingtime ← executeRScript(PENDING, r )

� Estimating how long time a task spends in ACTIVE stage at r

� considering the appname application

10 activetime ← executeRScript(ACTIVE, appname, r )

11 estimationlist[r ]← unsubmittedtime + pendingtime + activetime

12 resourcelist ← rankedList(estimationlist, appname, rank)

13 sort(resourcelist)

14 totalnodes ← 0

15 for each resource r in resourcel ist

16 do totalnodes ← totalnodes +availablenodes(r )

17 numchunkspernode ← []

18 for i ← 1 to totalnodes

19 do numchunkspernode[i ]← selectLoad(i)

20 base ← lowvalue

21 for i ← 1 to totalnodes

22 do resource ← determineResource(resourcelist, i)

23 submitTask(base, base + numchunkspernode[i ], resource, appname)

24 base ← base + numchunkspernode[i ]

25 if base > highvalue

26 then break

Figure 4.12. Pseudo-code of the scheduler module deployed in Gridjobs.
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to the selected nodes with their corresponding job sizes.

selectLoad(i)

1 if i = 1

2 then return

X−

N∑
i=1

i−1∑
j=1

Ai

i−1∏
k=j+1

Bk

N∑
i=1

i−1∏
j=1

Bj

3 else return

i−1∑
j=1

Aj

i−1∏
k=j+1

Bk + x1

i−1∏
j=1

Bj

Figure 4.13. Pseudo-code of the selectLoad function.

Ranking Schemes

Gridjobs has implemented four different ranking schemes whose pseudo-code is presented in

Figure 4.14. At this time, these ranking schemes only consider performances exhibited by grid

resources. For instance, the timeexecutionerror scheme ranks each resource according to the

precision estimation. The expansionfactor evaluates the the application execution time along

with the enqueued elapsed time. By the way, this ranking scheme is useful on scenarios where

MPI-based applications are required. Some LRMs deploy management policies to establish

the application priority according to the number of computational nodes that the application

requires. Thus, executions to request one compute node go first. The priority then decreases

when the number of compute nodes required, increases. Finally, Gridjobs has also implemented

a ranking scheme to evaluate the computational nodes load (Section 5.5.4 provides more

description about the aforementioned ranking schemes). However, other ranking schemes to

regard with economic models such as bids and auctions, could be also implemented.

4.5 Summary

Grid infrastructures can be categorized in diverse and orthogonal taxonomies. According to

capabilities exhibited by a grid resource, it could be classified as computational grid, data

grid and service-based grid. Other taxonomy could be derived according to the management

scheme to rule the resources utilization in P2P grids and centralized grids. PRAGMA is a
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rankedList(estimationlist, appname, rank)

1 if rank = DEFAULTRANK

2 then return estimationlist

� ’estimationlist’ is a hash map whose ’keys’ are the resources name

3 resources ← keys(estimationlist)

4 resourcelist ← []

5 for each resource r in resources

6 do

7 acum ← 0

8 counter ← 0

9 tasks ← searchAllTasks(appname, r )

10 if rank = TIMEEXECUTIONERROR

11 then for each task t in tasks

12 do � Each task ’t’ has an estimated time associated with it

13 esttime ← estimatedTimeTask(t)

14 acttime ← t.unsubmittedtime + t.pending + t.active

15 acum = acum +abs(esttime− acttime)

16 counter = counter +1

17 resourcelist[r ]← acum
counter

18 if rank = EXPANSIONFACTOR

19 then for each task t in tasks

20 do

21 waittime ← t.active− t.pending

22 exectime ← t.done− t.active

23 acum = acum + exectime+waittime
exectime

24 counter = counter +1

25 resourcelist[r ]← acum
counter

26 failures ← 0

27 if rank = ESTIMATEFAILURERANK

28 then for each task t in tasks

29 do esttime ← estimatedTime(t)

30 if t.exitstatus = FAILED

31 then failures ← failures +1

32 continue

33 else acttime ← t.done− t.unsubmitted

34 if acttime ≤ esttime

35 then acum ← acum +
(

1− esttime
acttime

)
36 else acum ← acum +

(
1− acttime

esttime

)
37 counter ← counter +1

� skewpercentage and f ai lurepercentage represents a weight value.

� skewpercentage + f ai lurepercentage = 1

38 resourcelist[r ]← acum
counter (1− skewpercentage) + f ai lures

size(tasks)(1− f ai lurepercentage)

39 return resourcelist

Figure 4.14. Pseudo-code of different ranking schemes implemented in Gridjobs.
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grid initiative to mainly integrate computational resources from the Pacific area. PRAGMA

is classified as a computational grid to exhibit a P2P-based management scheme. Different

from other operational grids, PRAGMA does not deploy any reservation policy or mechanism to

restrict resources utilization. It does mean that any PRAGMA user to require a computational

resource needs to compete with other users for its utilization.

In this chapter we have discussed our approach to resource management in large scale grid

systems such as PRAGMA. The problem is divided into two sub-problems: state estimation

and decision making. For state estimation, Gridjobs employs statistical analysis to derive

probabilistic models to estimate the resources behavior. Gridjobs divides the decision making

problem in two sub-problems resource ranking and task division. Gridjobs implements ranking

schemes to consider number of failures, enqueued time, execution time and resources load.

The task division intends to divide the load amongst the participating resources in such way

that all resources end their executions at the same time.

Gridjobs offers an extendable platform in which current technological trends could be imple-

mented. Due to the Groovy versatility it is possible to derive a Domain Specific Language(DSL)

inside to Gridjobs which provides primitives to leverage the development of programs to follow

a Map-Reduce approach. On the other hand, Gridjobs only has tackled the resource perfor-

mance estimation problem. However, the network bandwidth need to be considered in order

to provide a complete computational framework.



CHAPTER 5

Experimental Results

For testing purposes, Gridjobs has been deployed on five computational assets belonging to the

Pacific Rim Application and Grid Middleware Assembly (PRAGMA) infrastructure. Most of

the PRAGMA assets have installed Globus Toolkit (GT) as their grid middleware by default.

Hence, Gridjobs only interacts with GT based computational grids. However, due to its

modular design, Gridjobs could be easily integrated with other grid middlewares such as GLite.

Although PRAGMA has approximately 30 members, many of them present different condi-

tions to limit the utilization of the computational resources. During our experimental phase, we

have tested the availability of the GRAM service executing a dummy globus command(“globus-

job-run host/jobmanager-sge /bin/hostname”) to all PRAGMA resources. Most of the re-

sources returned errors which have been summarized in Table 5.1. GRAM 7 indicates au-

thentication failures with the remote server. These failures could be caused because either

DNS could not resolve correctly an IP address or the user account is not in the grid-mapfile.

GRAM 12 is an error to indicate the gatekeeper is not running, the host is not reachable

or the gatekeeper is on a non-standard port. GRAM 93 means that a LRM is not available

on the server. More precisely, the grid middleware has not been integrated with any LRM

instance. Finally, some resources did not present any problems at grid middleware but exposed

connection problems via SSH protocol.

57
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Error Code Institution Name Server
GRAM Error 7 JLU grid1.jlu.edu.cn

GRAM Error 12

UChile syntagma.dim.uchile.cl

HKU pragma1.grid.hku.hk

OSAKU
cafe01.exp-net.osaka-u.ac.jp

tea01.exp-net.osaka-u.ac.jp

UTsukuba bruce0.omni.hpcc.jp

KISTI jupiter.gridcenter.or.kr

MIMOS nucleus.mygridusbio.net.my

APAC myproxy.pragma-grid.net

UNAM malicia.super.unam.mx

BeSTGRID ng2hpc.canterbury.ac.nz

ASGC pragma001.grid.sinica.edu.tw

BU pop.cs.binghamton.edu

HCMUT supernode2.hcmut.edu.vn

HUT bkluster.hut.edu.vn

IOIT-HCM venus.ioit-hcm.ac.vn

MU mahar.csse.monash.edu.au

CNIC pragma.sdg.ac.cn

GRAM Error 93

CUHK server1.itsc.cuhk.edu.hk

NECTEC grid64.hpcc.nectec.or.th

NCHC nacona00.nchc.org.tw

LZU pragma.lzu.edu.cn

SSH Error

USM-CS aurora.usmgrid.myren.net.my

USM-Ph hawk.usm.my

IHPC sirius.ihpc.a-star.edu.sg

UZH ocikbpra.uzh.ch
Table 5.1. Errors observed from jas@komolongma.ece.uprm.edu.
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5.1 UPRM in PRAGMA

The University of Puerto Rico at Mayagüez (UPRM) shares two clusters volatile.ece.uprm.edu

and komolongma.ece.uprm.edu. komolongma is a cluster x86-based. It has deployed the

penultimate release of the Rocks system. In addition, VDT packages have been also integrated

with the system. VDT installs all the components required by a computational grid asset such

as security modules, gatekeepers and scripts to integrate the grid middleware with a LRM

instance. In fact, prepare a cluster for sharing it with PRAGMA would not take more that

two days. On the other hand, volatile is a cluster Itanium-based. This system presents

important updating problems of different system programs. For instance, Rocks is the volatile

operating system but current Rocks releases are not available for Itanium systems. Similarly,

other programs such as compilers and grid middlewares, are not available for recent versions.

Despite many components provide their source code, their compilation many times require to

hack the source code.

5.2 Testbed

Gridjobs was successfully deployed over five PRAGMA clusters: fsvc001.asc.hpcc.jp, sakura.hpcc.jp,

rocks-52.sdsc.edu, rocks-153.sdsc.edu and komolongma.ece.uprm.edu. All those systems have

installed Globus Toolkit and Sun Grid Engin (SGE) as LRM.

fsvc001 and sakura are clusters shared by the national institute of Advanced Industrial

Science and Technology (AIST) of Japan. These systems contribute with 81 compute nodes,

over 300 Gbytes of RAM and 6.3 Tbytes of storage. rocks-52 and rocks-153 are clusters

shared by San Diego Super Computing Center. They contribute with 20 compute nodes, over

30 Gbytes of RAM and approximately 900 Gbytes of storage. Finally, komolongma contributes

with 60 compute nodes, 60 Gbytes of RAM and 1.5 Tbytes of storage.

Late 2008, PRAGMA started to migrate toward a novel security structure. This new

scheme supports the definition of Virtual Organizations. Many computational assets have

started the migration to the new scheme but others keep the previous scheme because there

are some technical details to require be addressed like to enhance the privacy levels amongst
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the members under a same VO. sakura and rocks-53 have adopted the new scheme. This

adoption presents new challenges for the initial desing in Gridjobs. For instance, the new

scheme does not support the legacy SSH protocol but the GSI-SSH protocol. GSI-SSH exhibits

interesting enhancements over SSH such as single sing-on, file transfer service and credential

forwarding. However, a detailed study to determine the impact of the new protocol over

Gridjobs services like DeploymentService has not been carried out. Similarly, since the concept

of user has disappeared, each computational asset perceives VO submitting jobs and does not

discriminate by user. This fact requires to analyse how the Gridjobs presumptions are now

affected when the application perfomance analysis is carried out. Figure 5.1 shows the current

testbed.

Figure 5.1. Assets employed during the experimental phase.

5.3 Application Deployment

Gridjobs has a deployment service able to install applications over computational grids. Grid-

jobs assumes that each computational resource exhibits an infrastructure similar to the infras-

tructure depicted in Figure 5.2. There are several Linux-based distributions to deploy this kind

of infrastructures such as Rocks, ClusterKnoppix, ParallelKnoppix, CLIC, and Red Hat Clus-

ter, among others. This configuration requires that the main storage device can be accessed

from any cluster’s compute node, even the headnode. Rocks and other cluster rocks-based

distributions employ Network File System(NFS) protocol to supply a homogeneous file system
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view. Thus, a user could access to her files indepedent on the compute node where she is

logged in.

Figure 5.2. Cluster .

When the ApplicationdeploymentService is invoked for deploying an application, it contacts

the cluster headnode and installs the application on it. Since, the availability of NFS is assumed,

when the deployment process finishes, the user could now execute the application from any

compute node in the cluster comanded by the aforementioned headnode. This characteristic is

necessary because Gridjobs dispatches task execution requests to the headnode which passes

the requests to the LRM. The LRM according to its own management policies and scheduling

algorithms, decides which compute node would attend the execution request. If the application

deployment is not visible from any cluster’s compute node, the execution request would fail.

5.4 Setting Experiments

Gridjobs is a framework to operate over real computational grids. Different from simulated en-

vironments where each experiment takes minutes or few hours to run, experiments in Gridjobs

could last from 24 up to 48 hours to run. Therefore, Gridjobs exhibits a minimal infrastructure

to support the execution of long lasting experiments.

5.4.1 Tables for supporting experiments in Gridjobs

Gridjobs has defined two tables used to invoke multiple and sequential application executions.

Figure 5.3 shows the most important attributes of the experiment and experimentinstance
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Table ”public.experiment”

Column — Type

--------------+-----------------------------

id — bigint

version — bigint

endtime — timestamp without time zone

max — bigint

nexttoexecute — bigint

sequence — bigint

starttime — timestamp without time zone

Table ”public.experimentinstance”

Column — Type

---------------+-----------------------------

appname — character varying(255)

endtime — timestamp without time zone

highparam — integer

lowparam — integer

sequence — bigint

starttime — timestamp without time zone

stride — integer

Figure 5.3. Tables to support the tracking process of experiments in Gridjobs.

tables. The experiment table stores the information associated with the number of execu-

tions required in a given experiment. The max attribute indicates the maximum number of

executions that an experiment expects to execute. nexttoexecute is a pointer to the next

experiment to be executed. This number is directly associated with the sequence attribute of

the experimentinstance table.

The attributes of the experimentinstance table are presented in the right side of Figure

5.3. This table contains all details required for executing an application under Gridjobs. Figure

5.4 presents possible entries for the aforementioned tables. The experiment entry says that

the next experiment to be executed is the number 88 and the maximum number of executions

in this experiment is 107. On the other hand, the experimeninstance entry presents the values

associated with execution 88. In this case, the application to be executed is ls4 v02 and the

range of values that this application would process is from 0 up to 200.

experiment entry

max — nexttoexecute — sequence

-----+---------------+----------

107 — 88 — 1

experimentinstance entry

appname — endtime — highparam — lowparam — sequence — starttime — stride

---------+---------+-----------+----------+----------+-----------+--------

ls4˙v02 — — 200 — 0 — 88 — — 1

Figure 5.4. Sample entries of experiment and experimentinstance tables.

5.4.2 Experiment Workflow

Figure 5.5 depicts a flow diagram to indicate how the experiments are carried out. Initially,

Gridjobs requires to make dummy executions of the application under evaluation. These

executions are carried out on the available computational resources. The Statistical service is
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then invoked. When this service finishes its execution, three different R scripts are available for

estimating the resource performance. (One script models the UNSUBMITTED state, other

script the PENDING state and a third script models the ACTIVE state). Now, the Experiment

service can be invoked. The experiment table is queried, if the nexttoexecute value is greater

than max, the experiment finalizes. Otherwise, the experimentinstance table is queried and

the corresponding application invocation is retrieved. Gridjobs then executes its ranking and

scheduling algorithms and distributes the application load amongst the available resources.

Gridjobs estimates a finalization time and schedules an application monitor. On the estimated

finalization time, the monitor is fired and it determines if all the submitted tasks have finalized.

When they finalize, Gridjobs invokes the ’Statistical’ service to update the R scripts in order

to reflect the possible changes observed in the last execution. The aforementioned process is

repeated while nexttoexecute is less or equal than the max value.

5.5 Results

5.5.1 Resource behavior is barely represented by a unique probalistic function

Different works have modeled the resources behavior through different approaches such as

data mining techniques, heuristics and probability functions. A classical approach is to do an

offline statistical analysis over historical data, then to infer resources behavior over long periods

of time. The models deducted are then integrated to simulated environments where different

conditions are controlled but these environments hardly could represent real infrastructures.

These models barely reflect the possible presence of competing applications to content for

resources. In front of rival computational intensive applications, models lost validity. Data

collected and graphics derived during our experiments show the presence of important levels

of variability over three PRAGMA resources.

rocks-52.sdsc.edu

Figure 5.6 presents the rocks-52 behavior perceived by Gridjobs at komolongma. The leftmost

sub-graph shows the elapsed time on UNSUBMITTED state. This sub-graph shows that

most of the data are concentrated around of five seconds, but also an important amount of
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Figure 5.5. Diagram Flow to describe how the experiments are executed.
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observations are found between five and ten seconds. The middle sub-grapgh indicates that

most of the requests lasted twenty five seconds in PENDING state. However, there were also

observed other requests lasting up to four minutes. In fact, longer periods of time could be

possible but Gridjobs allows to the user to define hard limits to restrict the maximum time that

a task could last. Finally, the rightmost sub-graph shows that most of the executions lasted

five or six minutes. However, unexpected values around of two minutes were also registered.

This fact is algorithmically impossible but unfortunately in rare ocassions a GRAM instance

could wrongly indicate that task has “successfully” finished. A non-invasive framework like

Gridjobs, could hardly determine if an information provided by a GRAM service is right or

wrong. Hence, additional modules to corroborate the information provided by GRAM services

are necessary. At this time, Gridjobs relies on the information provided by the remote grid

information services. Table 5.2 shows different probability functions selected by Gridjobs during

Figure 5.6. rocks-52.sdsc.edu observed behavior.

a serie of executions carried out on rocks-52. In this particular case it is possible to see how

the probability function varies to model the ACTIVE stage.

fsvc001.asc.hpcc.jp

fsvc001 is a resource located on Japan. Similarly to other PRAGMA resources, the inter-

connectivy is through Internet. Figure 5.7 presents the behavior observed in fsvc001. The
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Date Time Probability Function Function Parameters
2009-05-19T16:06:39.007-04:00 rlnorm meanlog=12.1789817289487 sdlog=0.14

2009-05-19T16:30:34.380-04:00 rCauchy location=180161.49 scale=13461.54

2009-05-19T16:57:07.789-04:00 rlogis location=180100.78 scale=11333.83

2009-05-19T17:21:21.452-04:00 rlogis location=179736.02 scale=10261.76

. . .

. . .

2009-05-19T21:28:20.343-04:00 rexp rate=5.64453549513913e-06

2009-05-19T21:55:49.918-04:00 rexp rate=5.64678430112628e-06

2009-05-19T22:23:23.580-04:00 rexp rate=5.63776552035679e-06

2009-05-19T22:58:48.770-04:00 rCauchy location=180081.35 scale=249.50

. . .

. . .

2009-05-20T02:31:26.425-04:00 rexp rate=5.71338576067818e-06

2009-05-20T03:12:07.691-04:00 rCauchy location=178382.99 scale=5489.69

. . .

. . .

2009-05-20T09:07:31.565-04:00 rCauchy location=178788.37 scale=5328.06

2009-05-20T09:31:43.100-04:00 rCauchy location=178800.02 scale=5234.30

2009-05-20T09:57:04.171-04:00 rCauchy location=178718.77 scale=5341.79

. . .

. . .
Table 5.2. Some probability functions to model the ACTIVE stage on rocks-52.
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leftmost sub-graph presents an important variability on UNSUBMITTED stage. In fact, most

of the requests last less than five seconds, but times around of the ten seconds have also

occurred. That is because Internet does not provide any QoS support for packets interchange.

The PENDING state, middle sub-graph, exhibits a stable behavior. It does mean, during this

period of time in particular, the fsvc001’s LRM had few enqueued tasks. This circumnstance

allows that arriving tasks were promptly attended. Similarly, the right-most subgraph shows

that many of the executions were around of the six and seven minutes but unexpected low

times were also observed. Finally, note that fsvc001 is one of the largest clusters shared on

PRAGMA. Despite the SCMSWeb monitoring tool informs that this computational resource

counts with more than 250 computational nodes, the management policies establish a reduced

number of nodes available to the PRAGMA users.

Figure 5.7. fsvc001 observed behavior.

komolongma.ece.uprm.edu

komolongma observes the most predictable behavior, Figure 5.8. For instance, many tasks

lasted in UNSUBMITTED stage from zero to four seconds. Similarly, on PENDING stage,

several tasks lasted less than five seconds. Finally, on execution time the time ranged between

one minute and two. This remarkable difference on uncertainty performance could be justified

by different reasons. First, Gridjobs has been deployed on komolongma. Thus, network latency
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Date Time Probability Function Function Parameters
2009-05-19T16:06:39.007-04:00 rCauchy location=114287.00 scale=22.81

2009-05-19T16:30:34.380-04:00 rCauchy location=114010.34 scale=516.74

2009-05-19T16:57:07.789-04:00 rCauchy location=114318.68 scale=100.99

2009-05-19T17:21:21.452-04:00 rCauchy location=114116.08 scale=455.15

. . .

. . .

2009-05-19T21:28:20.343-04:00 rCauchy location=113248.47 scale=55.53

2009-05-19T21:55:49.918-04:00 rexp rate=8.7970393132501e-06

2009-05-19T22:23:23.580-04:00 rCauchy location=113249.01 scale=73.81

2009-05-19T22:58:48.770-04:00 rexp rate=8.77195981549397e-06

. . .

. . .

2009-05-20T02:31:26.425-04:00 rCauchy location=113252.31 scale=92.91

2009-05-20T03:12:07.691-04:00 rCauchy location=113252.62 scale=95.56

. . .

. . .

2009-05-20T09:07:31.565-04:00 rCauchy location=113269.93 scale=269.87

2009-05-20T09:31:43.100-04:00 rCauchy location=113263.77 scale=225.54

2009-05-20T09:57:04.171-04:00 rCauchy location=113273.34 scale=272.52

. . .

. . .
Table 5.3. Some probability functions to model the ACTIVE stage on fsvc001.
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is not an issue because the communication between Gridjobs and komolongma does not require

network intervention. Second, different from the previous resources, komolongma presents a

low computational demand and absence of management policies. Low computational demand

then implies that LRM’s queue is mostly empty in such a way that as soon as one request

arrives, it is dispatched to some compute node. Finally, the lack of management policies

provides a computational environment where user computational demands are fully met. These

facts reduce the uncertainty levels that Gridjobs could observed.

Figure 5.8. komolongma observed behavior.

5.5.2 Run-time Probability Function Selection

The following set of experiments were designed to evaluate the probabily function selection

process on runtime. The characteristics of the experiments are described in Table 5.5. In these

experiments we considered two ranking schemes: defaultrank and gwrank. These rankings

establish an order in which the resources are sorted. For instance, defaultrank sorts the

resources according to the resource performance. Thus, the fastest resource goes first and

the slowest goes last. On the other hand, gwrank does not consider the resource performance

but the resource load. Thus, the resource exhibiting the lightest load goes first and the

resource with the heaviest load goes last.
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Date Time Probability Function Function Parameters
2009-05-19T16:06:39.007-04:00 rlogis location=240788.79 scale=7859.96

2009-05-19T16:30:34.380-04:00 rnorm mean=242170.21 sd=14579.02

2009-05-19T16:57:07.789-04:00 rCauchy location=239998.96 scale=10.72

2009-05-19T17:21:21.452-04:00 rCauchy location=239999.05 scale=9.78

. . .

. . .

2009-05-19T21:28:20.343-04:00 rCauchy location=239998.20 scale=6.64

2009-05-19T21:55:49.918-04:00 rCauchy location=239997.70 scale=9.63

2009-05-19T22:23:23.580-04:00 rCauchy location=239997.89 scale=9.46

2009-05-19T22:58:48.770-04:00 rCauchy location=239997.80 scale=9.16

. . .

. . .

2009-05-20T02:31:26.425-04:00 rexp rate=4.24440652317988e-06

2009-05-20T03:12:07.691-04:00 rexp rate=4.23943505263254e-06

. . .

. . .

2009-05-20T09:07:31.565-04:00 rCauchy location=238057.47 scale=4547.83

2009-05-20T09:31:43.100-04:00 rexp rate=4.30649097027218e-06

2009-05-20T09:57:04.171-04:00 rexp rate=4.30525063302825e-06

. . .

. . .
Table 5.4. Some probability functions to model the ACTIVE stage on komolongma.

Id Initial Time Final Time Ranking Num. Executions

1 May-19T15:42 May-21T15:18 Default 100

2 May-26T18:19 May-27T15:17 Default(F) 50

3 May-25T11:50 May-26T10:17 GridWay 50

4 May-25T09:07 May-29T06:41 GridWay(F) 50
Table 5.5. Experiments executed between May 19 to May 29.
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rocks-52.sdsc.edu

For experiment 1 the more accurate p.f. was Cauchy. In our analysis we have considered over

estimations and under estimations. The over estimation occurs when the actual execution

time is less than the estimated time. On average, it was found an over estimation of 12%. On

the other hand, the under estimation was approximately 10%. Gridjobs employed this function

on 76% of the times to predict the resource behavior. The parameters of this function are

depicted in Figure 5.9. The left subgraph suggests that the location parameter exhibited a

value close to 180000. On the other hand, the subgraph on the right side suggests a scale

parameter concentrated around 5000.

Figure 5.9. Density plot of p.f. to model the ACTIVE stage on rocks-52 for experiment 1.

For experiment 2, the more accurate p.f. was again Cauchy. In this experiment, Grid-

jobs employed Cauchy over 68% of the times. When this function made its estimations, its

predictions, on average, over estimated 7.8% of the actual time. The under estimated value

was 13%. The function parameters are depicted in Figure 5.10. The density functions in the

aforementioned figure, suggests a location value close to 180000 and the scale value most of

the time was around 5000. Lognormal p.f. was other function employed by Gridjobs to model

the resources over 20% of the times.
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Figure 5.10. Density plot of p.f. to model the ACTIVE stage on rocks-52 for experiment 2.

For experiment 3, the more accurate p.f. was the Logistic distribution. In this experiment,

Gridjobs employed Logistic over 47% of the times. The function parameters are depicted

in Figure 5.11. This time, the density function for the location parameter of the Logistic

distribution suggests a value betweer 164000 and 167000. The scale parameter(right-hand

subgraph) exhibited a value between 6000 and 6500. It is worthwhile to remark the following

facts. First, this experiment, during seven hours approximately, does not consider the ko-

molongma resource. Fictitious problems were created in such a way that GRAM service on

komolongma was unable to process any task directed to komolongma. Second, 47% seems

a poor prediction, however, other distributions such Cauchy(location=168000,scale ≈ 6000)

and Lognormal(mean=12.02,sd1≈ 0.07) were also selected 21% and 25% of the times, re-

spectively. Thus, Gridjobs predicted the resource behaviour with an important accuracy degree

over 92% of the times. For experiment 4, the more accurate p.f. was the Logistic distribution.

It was used to predict on 45% of the times. Figure 5.12 suggest the location (approx. 164000

- 165000) and scale (between 6000 and 7000) parameter values. In this particular experiment,

the Cauchy function exhibited a poor prediction when it is compared with previous experiments

(approx. 2 minutes of difference between estimated and actual times). However, other p.f.

1standard deviation
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Figure 5.11. Density plot of p.f. to model the ACTIVE stage on rocks-52 for experiment 3.

such as normal and log normal were also selected to predict resources performance. Thus,

Gridjobs made an acceptable prediction over 69% of the times, under a faulty scenario.

Figure 5.12. Density plot of p.f. to model the ACTIVE stage on rocks-52 for experiment 4.

fsvc001.asc.hpcc.jp

On Experiment 1, Gridjobs selected four p.f. (Weibull, Cauchy, Logistic, Exponental) to

predict the compute nodes performance on fsvc001. Cauchy, Weibull and Logistic exhibited
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important levels of accuracy. In particular, Cauchy p.f. was selected 84% of the times and

was also the most accurate p.f. Figure 5.13 presents two density plots to suggest the values

of location and scale parameters. The location paramter presented a value close to 113200

and the scale parameter had a value close to 150. In general, Gridjobs over 93% of the times

selected a p.f. to do a good work of prediction.

Figure 5.13. Density plot of p.f. to model the ACTIVE stage on fsvc001 for experiment 1.

On Experiment 2, Cauchy was again the more selected p.f. with 49% of the times.

Similarly, the Logistic p.f. showed a good level of accuracy and was choosed 16% of the

times. However, the Exponential function was used to model the performance of this resource

over 30% of the times but it had a poor level of accuracy. In general, it is possible to say that

over 65% of the times, Gridjobs made a good prediction. Figure 5.14 depicts density functions

of location and scale parameters of the Cauchy p.f. used in the experiments. For the location

parameter a value close to 113200 and an approximated value to 200 was observed for the

scale parameter.

On Experiment 3, Gridjobs tried with several p.f. with important levels of accuracy such

as Gamma, Weibull, Log Normal, Poisson, Cauchy and Logistic. Despite Cauchy was selected

over 72% of the times, this was not the more accurate p.f. Logistic made the best prediction



75

Figure 5.14. Density plot of p.f. to model the ACTIVE stage on fsvc001 for experiment 2.

and was employed to predict the fsvc001 resources performance 15% of the times. The

parameters of this p.f. are graphically represented on Figure 5.15. The Cauchy parameter

values were approximately 115200 and over 180 for location and scale parameters, respectively.

Finally, for Experiment 4, only two p.f. were selected by Gridjobs. Again, Cauchy exhibited a

Figure 5.15. Density plot of p.f. to model the ACTIVE stage on fsvc001 for experiment 3.

great accuracy and was used to model the resources performance 98% of the times. Figure
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5.16 presents the density functions corresponding to the location and scale parameters.

Figure 5.16. Density plot of p.f. to model the ACTIVE stage on fsvc001 for experiment 4.

komolongma.ece.uprm.edu

On Experiment 1, Grgidjobs exhibited a misleading behavior. Two p.f. were the most selected

functions to predict the komolongma resources performance, Exponential and Cauchy. The

Exponential p.f. got 44%, while Cauchy was selected on 52% of the times. However, Expo-

nential, with a rate parameter equal to 4.30 approximately, showed a very poor accuracy level.

On the other hand, Cauchy got the best accuracy level amongst other selected p.f. such as

Logistic, Normal and Exponential. Figure 5.17 suggests 290000 and 4000 to the location and

scale parameters, respectively.

During Experiment 2, where komolongma was off-line for eight hours approximately, Cauchy

was selected by Gridjobs to model the komolongma performance over 94% of the times. In

addition, Cauchy made the best prediction. Figure 5.18 suggests the approximated values to

location and scale parameters are 240000 and 0, respectively.

During Experiment 3, Gridjobs selected three p.f. Cauchy, Logistic and Normal. When

Cauchy and Logistic functions were selected, the estimated time overpassed the actual time

by over one minute. Gridjobs selected Cauchy 94% of the times when a modeling function was
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Figure 5.17. Density plot of p.f. to model the ACTIVE stage on komolongma for experiment

1.

Figure 5.18. Density plot of p.f. to model the ACTIVE stage on komolongma for experiment

2.
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required. However, the more accurate function was the Normal p.f. (mean equal to 230143

and standard deviation over 38900). Figure 5.19 presents the density plots for the location

and scale parameters of the Cauchy p.f. The location parameter values are between 239980

and 239990.

Figure 5.19. Density plot of p.f. to model the ACTIVE stage on komolongma for experiment

3.

Finally, Experiment 4 showed that Gridjobs selected amongst three p.f. Gamma, Weibull

and Cauchy. Cauchy was employed to model the resource over 95% of the times. Figure 5.20

suggests the values of location and scale parameters.

5.5.3 Minimum Amount of Data Required to Forecast

Gridjobs relies on previous performance observations in order to predict the performance of

coming requests. Under experimental conditions, this analysis is carried out over all observed

data. However to carry out this kind of analysis over large sets of data could be a demand-

ing computational task. In this experiment, three scenarios were under testing in order to

determine if there is an “ideal” number of executions that could correctly model a resource

performance. For “ideal” we meant the minimal number of previous executions to allow to

model all resources with acceptable levels of accuracy.
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Figure 5.20. Density plot of p.f. to model the ACTIVE stage on komolongma for experiment

4.

The first scenario considers just two previous execution, second scenario considers four ex-

ecutions, and third scenario eight previous executions. Each scenario would run 20 executions.

Each execution requests to run an appliation of size 200.

First Scenario

In this scenario, two previous executions were considered for the statistical analysis. This

experiment lasted eight and half hours. Our analysis starts with komolongma. Gridjobs selected

three probability functions Cauchy, Logistics and Weibull. Logistics was the more accurate

p.f. but Cauchy (location ≈ 240000 and scale ≈ 10) was used to model the resources over

83% of the times. When Cauchy predicted a resource behavior the 55% of the times under

estimated the resource behavior with an error of the 1.7%. Forty five percent over estimates

the resource behavior with less that 1% of error.

rocks-52 shows a larger variety of p.f. than komolongma. Six p.f. were considered

by Gridjobs Gamma, Normal, Log Normal, Logistic, Cauchy and Weibull. Weibull(shape ≈

[20,22], scale ≈ [176000, 182000]) was choosed over 71% of the times and was the more

accurate p.f. However, over 38% of the times it over estimated with an error close to the 9%.

Sixty two percet of the times, it under estimetated with 6% of error.
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Gridjobs modeled fsvc001 with four p.f. Weibull, Log-Normal, Logistic and Cauchy.

Cauchy was used 53% of the times and Logistic 33%. The Cauchy parameters were lo-

cation ≈ 114000 and scale between 0 and 400. The Logistic parameters were location ≈

114000 and scale between 350 and 500. These functions were the more accurate p.f. Cauchy

over 47% of the times over estimated the resource performance with a 3% of error and under

estimated 53% of the times with 3% of error, too.

Second scenario

Gridjobs used two p.f. to model the komolongma performance: Cauchy and Gamma. Cauchy

was employed over 95% of the times. Fifty eight percent of the times the performace was

over estimated with an error of 0.8%. The under estimation occurred 42% of the times with

an error close to 1.4%. The location parameter was close to 240000 and scale was close to

5.

rocks-52 was modeled with three p.f. Normal, Cauchy and Weibull. Weibull was selected

85% of the times. Forty five percent of the times the performace was over estimated with

5.6% of error. The under estimation occurred 55% of the time with 8.6% of error. This

p.f. has parameters with the following values: shape between 15 and 20 and scale around of

178000.

Gridjobs modeled the fsvc001 behavior with three p.f. Cauchy, Gramma and Logistic.

Cauchy was selected 85% of the times. This Cauchy function with a location value equal to

112000 and scale equal to 40, over estimated 49% of the times with 2% of error and under

estimated over 51% of the times with a 2.3% of error.

Third scenario

komolongma was modeled from three p.f. Gamma, Logistic and Cauchy. Logistic selected

over 39% of the times, shows the more accurate p.f. In addition, the estimation error is

around of 1.5% and 2.4%. Cauchy modeled komolongma over 52% of the times. The error

percentage is around of 0.5% and 2.3%.

Gridjobs modeled rocks-52 through Gamma(4%), Logistic(4%), Weibull(9.5%), Normal(14.28%)

and Cauchy(≈66%). Logistic and then Cauchy, were the more accurate p.f. Estimations based
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on Cauchy suffered an error between 1.2% and 3.9%. Similarly, Logistic exhibited an error

between 0.8% and 1.5%.

Finally, fsvc001 was modeled through five p.f. Exponential(1%), Normal(5%), Weibull(5%),

Log-Normal(20%) and Cauchy(68%). Different from previous executions, the estimation error

reached between eight and eleven percent for the Cauchy p.f. and between 12 and 36 percent

for Log-Normal.

5.5.4 Different Ranking Schemes

Gridjobs implements at least four ranking schemes. The first ranking scheme considers the

application performance and sorts the resources in such a way the fastest resource goes first and

the slowest goes last. An experiment to compare this ranking scheme with the classical Round

Figure 5.21. Behavior exhibited by the ranking scheme used in Gridjobs by default.

Robin Scheduler is depicted in Figure 5.21. In this experiment, Gridjobs with defaultrank

scheme, run 25 executions. The executions were grouped by input data size. There were

five groups, one group of size 100, other of 200, 400, 800 and 1600. From Figure 5.21 two

observations can be made: the Gridjobs estimation improves while the input data size increases

and defaultrank exhibits a performance to beat impressively the Round Robin performance.
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The expansion-factor ranking scheme is also implemented in Gridjobs. This ranking scheme

is based on the equation 5.1

execution time + waiting time

execution time
(5.1)

where waiting time corresponds to the time that certain task spend enqueued. In particular,

Gridjobs uses previous executions stored in GIS in order to do the corresponding estimations.

Figure 5.22 shows a performance comparison between Gridjobs employing the expansionfactor

scheme vs. the Round-Robin scheduler.

Figure 5.22. Behavior exhibited by the expansionfactor ranking scheme vs. the Round-Robin

scheduler.

The timeexecutionerror ranking scheme has been also implemented in Gridjobs. This ranking

scheme employs the expression 5.2 to sort the resources.

actualelapsedtime − estimatedelapsedtime
estimatedelapsedtime

(5.2)

Similarly to the previous ranking scheme, Gridjobs employs the information observed in previ-

ous executions and determines a value for each computational resource according to Equation
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5.2. Figure 5.23 compares this scheme with the Round-Robin scheduler.

Figure 5.23. Behavior exhibited by the timeexecutionerror ranking scheme vs. the Round-

Robin scheduler.

Finally, Gridjobs has also implemented a load-based ranking scheme. In this scheme Gridjobs

queries the Grid Information Service(GIS) and retrieves the resource information to regard

with the resource load. Gridjobs then goes through every computational resource, then reads

the load per node in the aforementioned resource and averages the fifteenload. This average

corresponds to the fifteenload of that cluster. fifteenload regards with the average number of

enqueued tasks at CPU level during the last fifteen minutes. From that measure the resources

are then sorted, the resource with lightest load goes first and heaviest goes last. Figure 5.24

shows a comparison between the load-based rank and timeexecutionerror (left subgraph) and

the load-based rank and expansionfactor (right subgraph). On both graphs, the red bars cor-

respond to the load-based rank. Although there is not a remarkable difference between the

compared schemes, these preliminaries experiments suggest that ranking schemes to incorpo-

rate load metrics could beat those schemes who do not consider them.
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Figure 5.24. Behavior exhibited by the timeexecutionerror ranking scheme vs. the Round-

Robin scheduler.

5.6 Summary

Gridjobs has been fully tested on computational resources to deploy GRAM services, Sun Grid

Engine as LRM and SCMSWeb or Ganglia as monitoring tools. During our testing and experi-

mental phases Gridjobs has achieved an important maturity degree. Since Gridjobs is a tool for

real environments, its development has required a strong programming discipline to control and

catch diverse abnormal circumstances. Gridjobs has also evolved in a computational gateway

able to dispatch and track executions for over 48 hours of continuous executions. Although

Gridjobs is a multi-thread application, it exhibits a significant stability and takes special care

of avoiding concurrent access to shared resources.

During our experiments interesting results have been derived. First, resources barely can

be modeled from one unique probability function. Gridjobs tries different probability functions

to model the resource behavior and evaluates the different probability functions through the

Kolmogorov-Smirnov test. The probability function to model a given resource vary over time

and are highly sensible to changes observed in the environment.

Gridjobs provides a platform to predict performance on short periods. Previous works

analyze larger periods of time and infer probability functions over those periods but barely

consider suddendly changes in the infrastructure. Previous works have shown that Weibull is
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an appropriate p.f. to model resource behavior. However, during our experiments Cauchy was

selected most of the time and many times achieved levels of accuracy close to 99%. However,

Logistic also exhibited important estimations. The Kolmogorov-Smirnov test integrated in

Gridjobs, has shown an important degree of precission since most of the time it selected the

more accurate p.f. Finally, Gridjobs evaluted different ranking schemes to consider failure

rates, enqueued times, and resource performance.



CHAPTER 6

Conclusions and Future Work

The goal of this thesis has been to develop tools to understanding the resource management

problem on large scale distributed system. To achieve this goal we have developed a framework,

referred to as GridJobs, that integrates deployment, execution, and notification mechanisms

for running applications across multiple diverse clusters. The main feature of this framework

is the use of statistical analysis over historical data combined with self-adaptive mechanisms

to automatically select efficient resources is a grid environment. GridJobs exhibits a modular

design that allows the integration of new technologies and algorithms. Gridjobs was imple-

mented assuming the existence of a computational environment to deploy a minimal set of

grid compliant services and protocols. Gridjobs thus assumes the availability of GRAM and a

monitoring tool, such as SCMSWeb or Ganglia. In addition, since Gridjobs is a platform to

work with computational grids, it is expected that GRAM deployments be properly configured

with some Local Resource Manager instance, such as SGE, PBS and LSC.

Grid environments present challenges not only at the user level but also at the administra-

tion level. To manage a grid resource demands time and effort. For instance, an operational

grid resource requires software updates, add/remove users, update certificates, re-start ser-

vices, manage disk space, add/remove compute nodes and many others duties. In particular,

PRAGMA infrastructure where barely exists a central management authority, delegates the

responsibility of keeping a healthy resource over each resource owner. PRAGMA embraces

30 clusters but many of them exhibit some kind of problem to avoid its full utilization. Grid-

jobs has been tested over diverse PRAGMA grid computational assets. Some of them deploy
86
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out-dated and buggy management scripts to impose an additional level of uncertainty about

resource performance. For instance, rocks-52’s GRAM at San Diego Supercomputing Center

could not return the output of a task which has been submitted with the globus-job-submit

command. Similarly, fsvc001 at the AIST in Japan occasionally dropped tasks with no appar-

ent reason. These factors induce additional noise over one already unsteady infrastructure.

A very important contribution of GridJobs is that it takes care of abnormal circumstances.

Gridjobs deploys a task module to track closely the behavior of tasks submitted by the frame-

work. In that sense, any abnormal activity presented by a GRAM service or an unexpected

long execution time are handled properly by the framework in order to avoid unnecessary re-

sources consumption. Normal and abnormal circumstances are recorded and used by Gridjobs

statistical module in order to model posterior resources behavior.

Previous works have assumed that one unique probability function could model the be-

havior of a given resource. Those works analyzes data collected two or three years ago and

create macro models to represent the resources behavior. Despite important results have

been derived, it is a misleading conclusion to claim that Weibull, for instance, models abso-

lutely a resource. Dynamic systems present suddenly events to affect any static performance

prediction.

It is hard to claim that a workload present in a given resource stays constant in time.

Gridjobs integrates a simple procedure to predict with a significant accuracy degree the per-

formance exhibited by a given resource. That information along with information provided by

monitoring tools allows deriving accurate performance behaviors. However, this simple proce-

dure requires some kind of stabilizer mechanism because it is highly reactive to small changes

on the perceived performance.

Nowadays, Computational grids like PRAGMA, deploy Java based resource management

services like GRAM. This mere fact suggests that it is an error to think computational grids

in terms of High Performance Computing environments since Java is not characterized by its

performance profile. However, there are additional reasons. First, each task executed under

GRAM service creates a GRAM manager instance on the target resource. When multiple tasks
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are submitted to single computational asset, the asset’s head node starts to be overloaded

because many gram managers are in memory (aka. Java processes). Second, GRAM simplifies

the interaction with remote LRMs but imposes an overhead in the response time of the tasks

submitted under it. For instance, when GRAM receives a task, it delivers this task to LRM.

LRM in turn dispatches this task toward a free compute node meanwhile GRAM is waiting

for a LRM notification. When LRM notifies, GRAM takes some time to realize about the

notification. This time could last 5 seconds which is unacceptable for real time applications.

Gridjobs divides the scheduling problem over unsteady and scattered computational resources

in two problems: performance estimation and decision making. The performance estimation

procedure is carried out from information provided by the statistical module. Then, Gridjobs

sorts the computational assets according a ranking scheme given by the framework user.

Finally, using a divisible load approach to meet the two aforementioned conditions, the load is

divided amongst the available resources.

The work presented in this thesis can be extended in several directions. First, we plan

to investigate the effect of implementing negotiation of multiple instances of GridJob. Im-

plementing negotiation may lead to a more concerted utilization of the resources; however

it raises issues related to the scalability of the resource selection algorithms. Second, we

have assumed that security and authorization functionalities are provided by a middleware

such as Globus. However, secure and trustiness considerations may change the behavior of

the systems and the interaction among Gridjobs instances. Finally, more work is needed to

incorporate other metrics considerations such as reliability, availability and sustainability (e.g.

energy consumption and carbon emissions) of the system.



CHAPTER 7

Ethics

Computers and information systems have reached several aspects of our daily life. Issues

associated with family, education, careers, freedom and democracy have been permeated by

computational infrastructures to empower the development of more sophisticated tasks. In

the mid 1940s, Wiener envisioned “a second industrial revolution, an ’automatic age’ with

’enormous potential for good and for evil’ that would generate a staggering number of new

ethical challenges and opportunities.” Wiener’s books remarked the relevance of issues such

as security, unemployment, responsabilities of computer professionals, religion, globalization,

virtual communities, and teleworking, among others.

Computational resources would provide an environment to foster situations ”to engage in

creative and flexible actions and thereby maximize their full potential as intelligent, decision-

making beings in charge of their own lives”. From this perception of the human life purpose led

Wiener to adopt the ”great principles of justice”. Those principles are principles of freedom,

equality and benevolence.

In 1960s, those ethics principles changed toward one principle, the principle of openness.

The software movement directed a proposal in which the decision making process and devel-

opment of new software solutions were not determined by one unique person or corporation

but many with altruist and common motivations. The ethic principles were intrinsically and

implicitly defined by the community itself. Those community members who exhibit succeeded

results are implicitly followed by others in the community. The collaborative movement started.

Many Internet-based projects to follow the aforementioned approach have reached an
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amazing success such as Linux, Firefox, YouTube, Wikipedia, and Facebook, among others.

Those projects are now driven by additional principles such as peering, sharing and acting

globally. Many project’s contributors are motivitaed because the acknowledgement given by

the users community. There are not explicit rules, the community itself rewards or punishes the

performance of its members. In addition, protocols and services employed by the global village

provide a suitable environment with minimum set of operational conditions such as security

and privacy.

Nowadays, the global village not only shares software but hardware resources. Collab-

orative hardware initiatives, aka. Grid, provide a great opportunity to small and mid size

institutions to use sophisticated computational facilities. Large institutions are willing to share

their massive and expensive computational infrastructures for free. Some of them are moti-

vated because of their interest to leverage collaborative research amongst international peers.

Tangible resources differ from software projects because formers have implicit costs such as

maintenance and operation. Thus, “inhabitants” of the global village must carefully use the

shared resources. Protocols and services in charge of that kind of resources would seek to

create environments to favor user demands and observe resources policies.

Non-intrusive solutions to guarantee a fair utilization of the resources according to provider

expectations would prevail. Gridjobs respects management and privacy policies established by

the resource owner. It highly relies on mechanisms deployed on the resource in such a way

that those mechanisms fulfill the requirements to assure the proper operation of the resource.

In addition, because its non-invasive nature, it is able to co-exist with existing processes and

adapts automatically its behavior according to resources availability.

Today, the ethic principles are more important than ever. Lack of responsability on duties

given to everyone has created a dark landscape. Pandemies, weather changes, rapid resources

depletion, and contamination, among others; are problems resulting of our greedy behavior.

Unselfishness would characterize our actions at different levels of our life such as family,

friends, community and work. Collaboration, cooperation and sensibility for our environment

are required to reduce the negative impact of our predecessors.
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APPENDIX A

Code in Grails

Grails is the selected platform to develop Gridjobs. Grails is a project derived from Groovy

which is a scripting language for the Java Virtual Machine (JVM). Hence, Grails and Groovy

are programming environments to gracefully interoperate with existing techonlogies for the

Java programming language. The power of Grails is that it leverages the rapid development of

highly modular web applications. This modularity is easily inherited to applications developed

under Grails.

Characteristics exhibited by Grails and Gridjobs modules code are described as follow.

A.1 Grails and Databases

Grails provides an abstraction layer named Grails object relational mapping (GORM). This layer

is on top of Hibernate which is an object relational mapping(ORM) for the Java language.

Hibernate provides a framework for mapping an object oriented domain model to conventional

databases.

GORM accepts the domain class definition following the Groovy syntax and transforms into

SQL sentences for building tables, indexes, and primary keys, among others; over relational

databases to implement the JDBC API. Figure A.1 shows, on the left side, the definition of

a Gridresource according to the Groovy syntax. On the right side, a PostgreqSQL table used

to represent the Gridresource domain class is shown.
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class Gridresource –

static hasMany = [jobstates:Jobstate,

task: Task,

taskestimationtime: Taskestimationtime,

application: Application]

String headnode

String name

String batchscheduler

String country

String organization

String userhome

static constraints = –

name(unique:true,nullable:false)

˝

˝

Table ”public.gridresource”

Column — Type — Modifiers

----------------+------------------------+-----------

id — bigint — not null

version — bigint — not null

headnode — character varying(255) — not null

name — character varying(255) — not null

batchscheduler — character varying(255) — not null

country — character varying(255) — not null

organization — character varying(255) — not null

userhome — character varying(255) — not null

Indexes:

”gridresource˙pkey” PRIMARY KEY, btree (id)

”gridresource˙name˙key” UNIQUE, btree (name)

Figure A.1. Definition of the Gridresource class and its corresponding representation on the

PostgreSQL database.

A.2 Services in Grails

Grails follows a Model-View-Controller (MVC) architecture. The model is represented through

relational dabases schemes, the view is implemented through diverse web based technologies

such as JSP, Java Server Faces and AJAX and finally the controllers are implemented as

services.

A Grails service is a class that holds one or more methods to implement the business

logic. The definition of a version service is described as follows. In order to create a service,

the grails create-service version command is executed, Figure A.2. Prior to enable the remote

access, it is necessary to install the remoting plug-in. When it has been installed, the services

might expose their functionality to external entities by adding the static expose = [] sentence.

This sentence instructs to Grails to reveal the service functionality through the protocols

specified between the square brackets. For example, Figure A.2 shows how to include the

expose sentence and how a service method is implemented. In this case, the version method is

accessible through the Hessian protocol1.

Although the methods are exposed, it is still necessary to implement a Java interface where

signature of the methods are declared. This interface must be shared with every remote entity

willing to access the service functionality. Figure A.3 presents a Java interface to implement

the signature of the version method defined in Figure A.2.

1Hessian is a binary web service protocol implementation.
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1 class VersionService –

2 static transactional = false

3 static expose = [’hessian’]

4 String version() –

5 return ”gridjobs 0.3.1”

6 ˝

7 ˝

Figure A.2. Service accessible through the Hessian web service protocol.

1 interface Version –

2 String version();

3 ˝

Figure A.3. Definition of Version interface.

Lastly, Figure A.4 shows the final implementation of the VersionService class.

1 class VersionService implements Version–

2 static transactional = false

3 static expose = [’hessian’]

4 String version() –

5 return ”gridjobs 0.3.1”

6 ˝

7 ˝

Figure A.4. VersionService fully implemented and ready to be accessed via Hessian protocol.

The version method could be used by either clients or other Gridjobs peers for querying

the version of a Gridjobs instance and to determine if compatibility problems could arise. On

the client side, the interface definition must be located in a directory accessible to the JVM

client. This interface can be seen like a contract between client and server sides. Through

this contract, the client side knows what methods are available and which parameters are

required for a proper message interchange. It thus provides a basic communication primitives

to leverage the communication between both sides. In particular, the version method when is

invoked, it returns a String to represent the Gridjobs version.

A.3 Gridjobs modules in Grails

A.3.1 Deployment Module

The Deployment module defines a service which implements the Deploy interface shown in

Figure A.5. The deploy method expects all textual information relevant to the application.

Figure A.6 shows the implementation of the DeployService module. First of all, the informa-
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1 interface Deploy –

2 String deploy(String user, String host,

3 String appname, String executablename,

4 String appdir, String data, String basedir,

5 String script, String app);

6 boolean checkapp(String appname);

7 boolean removeapp(String appname);

8 ˝

Figure A.5. Interface to define a basic set of methods used for deploying applications.

tion associated with the application is stored in IS, Lines 12-17. (That information is used later

by Gridjobs when a user requests to run the application.) Then, the script file containing the

steps used for deploying the application along with the application files are sent from the client

to the framework server through an upload service implemented in the Gridjobs framework.

Next, the script is copied to the remote resource, Lines 19-21, as well the application code,

Lines 23-25. The installation script then is executed, Lines 27-28 and the script file and the

application code finally are deleted from the remote resource filesystem, Lines 30-34.

This module can be accessed by a client program able to interact with other servers through

Hessian protocol. During initial tests we have implemented a GUI using the Groovy language

for easy deployment of various Unix legacy applications on diverse PRAGMA computational

resources, Figure A.7.

A.3.2 Task execution module

The task execution module is in charge of running application instances over remote grid

resources. It employs information from different modules and builds executions to use Grid

protocols for running legacy applications or system commands. Gridjobs allows that remote

entities execute grid applications through web service protocols. Thus, the remote.Globusjob

interface defines two methods for executing tasks to serve as a contract between Gridjobs and

task invoker, Figure A.8. This module supports asynchronous and synchronous executions.

Through the sync parameter the execution invoker indicates what sort of execution is required.

When sync variable is true then synchronous execution is carried out, otherwise asynchronous

execution.

On server side, LaunchService implements the aforementioned interface. LaunchService pro-

vides the most elementary mechanism for task execution and exposes its functionality to third
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1

2 class DeployService implements remote.Deploy –

3

4 boolean transactional = false

5 static expose = [’hessian’]

6

7 String deploy(String user, String host,

8 String appname, String executablename,

9 String appdir, String data, String basedir,

10 String script, String app) –

11 ...

12 def gr = Gridresource.findByName(host)

13 def application = new Application(gridresource: gr,

14 installationpath: appdir,

15 executablename: executablename,

16 installationdate: new DateTime().toDate(),

17 datapath: data, name: appname)

18 ...

19 def command = ”scp $–basedir˝/$–script˝ ” +

20 ”$–user˝@$–host˝:$–destdir˝”

21 tmpout = util.Util.executegetoutput(command)

22 ...

23 command =

24 ”scp $–basedir˝/$–app˝ $–user˝@$–host˝:$–destdir˝”

25 tmpout = util.Util.executegetoutput(command)

26 ...

27 command = ”ssh $–user˝@$–host˝ source $–script˝”

28 tmpout = util.Util.executegetoutput(command)

29 ...

30 command = ”ssh $–user˝@$–host˝ rm $–script˝”

31 tmpout = util.Util.executegetoutput(command)

32 ...

33 command = ”ssh $–user˝@$–host˝ rm $–app˝”

34 tmpout = util.Util.executegetoutput(command)

35 ...

36 ˝

37 ˝

Figure A.6. Snippet code of the DeployService service implementation.

Figure A.7. Screen shot of the application used for deploying applications over PRAGMA

clusters.
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1 package remote

2

3 interface Globusjob –

4 String execute(String server,String jobmanager,

5 String parameters, String when,

6 boolean lock, boolean sync);

7 String execute(String server, String appname,

8 String parameters,

9 String executionname);

10 ˝

11

Figure A.8. Methods defined for invoking the task execution.

parties through the Hessian protocol. When asynchronous execution is requested, this service

schedules a Quartz trigger that will attend this petition. The user can specify one or multiple

executions of the same task because the when parameter of the execute method is mapped onto

a CronExpression. For instance, the expression ”0 0 * MON,WED,FRI MAR,APR,MAY ? 2009” indicates to

execute the given task, every hour on Monday, Wednesday and Friday days during March, April

and May months of 2009. However, this functionality offered by Quartz is barely used inside

Gridjobs.

Figure A.9 shows the implementation of the execute methods defined in remote.Globusjob

interface. The first execute method for tasks execution demands that the user provides every

single detail required by Gridjobs for building the globus-job-command which allows the execution.

For passing parameters between different instances of Quartz Jobs, Gridjobs employs a hash

map defined in each Quartz Trigger. However, for simplicity the details related with trigger

initialization have been omitted but this trigger stores the aforementioned parameters provided

by the user along with additional parameters created by the framework in order to satisfy the

grid middleware execution requirements. Then, all the collected information will be employed

when the scheduled trigger be awoken, Line 15.

The second execute method provides a higher abstraction for executing tasks, Line 17-36.

In this case, details about LRM, executable name, installation path and data path are retrieved

from IS. However, when the information is collected, it invokes the execute method described

above.

When the trigger is awoken, an instance of the GlobusjobinstanceJob class is created, Figure

A.10. In line 6, all the information stored in the trigger is made accessible through a HashMap list.
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1 class LaunchService

2 implements remote.Globusjob –

3 boolean transactional = false

4 static expose = [’hessian’]

5 def quartzScheduler

6

7 String execute(String server, String jobmanager,

8 String parameters, String when, boolean lock,

9 boolean sync) –

10 def cronexpression =

11 util.quartz.Util.createcronexpression(when)

12 Trigger trigger = new CronTrigger()

13 // Initializing trigger parameters

14

15 quartzScheduler.scheduleJob(trigger)

16 ˝

17 String execute(String server, String appname,

18 String parameters, String executionname) –

19 def gr = Gridresource.findByName(server)

20 def batchscheduler = gr.batchscheduler

21 def userhome = gr.userhome

22 def criteria = Application.createCriteria()

23 def results = criteria.list –

24 and –

25 like(’name’,appname)

26 gridresource –

27 like(’name’,server)

28 ˝

29 ˝

30 ˝

31 def when = ”NOW+2s”

32 def lock = false

33 def sync = false

34 def newparameters =

35 ”remotecommand:$–userhome˝/” +

36 ”$–installationpath˝/$–appname˝ ” +

37 ”$–parameters˝,function:$–executionname˝”

38 execute(server, batchscheduler, newparameters,

39 when, lock, sync)

40 ˝

41 ˝

Figure A.9. Snippet code of the LaunchService.
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From the information contained in this list, the GlobusjobinstanceJob determines if the trigger will

be fired in the future, the resource name, the LRM instance, and execution parameters, among

others. Now, under asynchronous execution, the GRAM service informs about the different

stages traversed by the executed task. Gridjobs fires periodically Java threads (instances of

GlobusjobstatusJob) which surveil the task performance. However, a special care must be taken

about the monitoring frequency because a relentless monitor can overwhelm a GRAM service

or saturate a slow network connection. Gridjobs determines dynamically a suitable threshold

for monitoring frequency, Lines 15-18. From the estimated time, a new trigger is created,

line 30. This trigger will invoke the creation of a GlobusjobstatusJob instance which implements

control mechanisms for recording changes on task status and taking away non-responding

tasks. Finally, all the task information is purveyed to the trigger, Lines 31-38, and IS module,

Lines 39-44; and the task is executed using the globus-job-submit command, Lines 48-52. This

command returns an end point reference (EPR). This EPR is also stored in the recently created

trigger and used onward for the GlobusjobstatusJob class in order to track the task performance.

When the trigger created by the GlobusjobinstanceJob is activated, it launches a new Globusjob-

statusJob instance, Figure A.11. This instance queries, on periodic intervals of time, the remote

GRAM service through the globus-job-status command. This command returns the status of

the task associated with the EPR provided by the globus-job-submit command invoked by the

GlobusjobinstanceJob instance, Lines 13-16. The returned value is compared against the current

task status, Line 18. If the status has not changed, this instance validates that the maximum

time that this task might last in this state has not been exceeded, Lines 19-20. When the

time is exceeded the monitor removes the task and reports the event to IS, Lines 21-29. This

validation avoids to stay monitoring tasks whose performance has decreased or achieve an

endless state due to abnormalities to happen in the remote resource or task perse. If the

elapsed time in the current state has not been exceeded, a new trigger is programmed for

validating the task status in a near future, Lines 31-45. When the status changes, this event

is recorded and the Globusjobstatus instance validates if the new status is DONE or FAILED.

On any case, the task has ended its execution therefore this event is notified to IS as well to
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1 class GlobusjobinstanceJob–

2 static triggers = – ˝

3 def quartzScheduler

4 def execute(context) –

5 ...

6 def mjdm = context.getMergedJobDataMap()

7 def server = mjdm.server

8 def jobmanager = mjdm.jobmanager

9 def parameters = mjdm.parameters

10 def function = mjdm.function

11 def crnexpr = mjdm.crnexpr

12 def sync = mjdm.sync

13 ...

14 if (!sync) –

15 def seconds =

16 util.grid.Util.dryrunaveragetime(server,

17 jobmanager,

18 config.Config.iterations)/1000

19 // Validation when seconds equals 0

20 seconds =

21 util.Util.maximum(

22 config.Config.minimumthreshold,

23 (int)(seconds + 1))

24 def cronexpression =

25 new CronExpression(

26 util.quartz.Util.createcronexpression(

27 ”NOW+$–seconds˝s”

28 )

29 )

30 def trigger = new CronTrigger()

31 trigger.jobDataMap.server = server

32 trigger.jobDataMap.jobmanager = jobmanager

33 trigger.jobDataMap.function = function

34 trigger.jobDataMap.parameters = parameters

35 trigger.jobDataMap.crnexpr = crnexpr

36 trigger.jobDataMap.sync = sync

37 trigger.jobDataMap.cronexpression =

38 cronexpression

39 Gridresource ˙gr =

40 Gridresource.findByName(server)

41 Task ˙task = new Task(gridresource: ˙gr,

42 unsubmitted: cdt,

43 state: config.Config.UNSUBMITTED)

44 ˙task.save()

45 trigger.jobDataMap.status =

46 config.Config.UNSUBMITTED

47 trigger.jobDataMap.minimumthreshold = seconds

48 def output =

49 util.Util.executegetoutput(

50 ”$–globushome˝/bin/$–globusjobsubmit˝ ” +

51 ”$–server˝/jobmanager-$–jobmanager˝ ” +

52 ”$–parameters˝”)

53 trigger.jobDataMap.url = output

54 if (!CronExpression.isValidExpression(crnexpr))–

55 util.quartz.Util.removetrigger(context)

56 ˝

57 quartzScheduler.scheduleJob(trigger)

58 return

59 ˝

60 ...

61 ˝

62 ˝

63

Figure A.10. Snippet code of the GlobusjobinstanceJob class.
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the user who submitted the task, Lines 47-57. Otherwise, if the new state is PENDING or

ACTIVE; the time when the new state was reached, is saved in to IS and a new trigger is

created for posterior monitoring of the task, lines 58-64.

This cycle is repetead until the task achieves a DONE or FAILED stage or the task exceeds

a threshold of time that Gridjobs estimated.

A.3.3 Monitoring Module

The monitoring module is in charge to interact with either SCMSWeb or Ganglia monitoring

tools via either HTTP protocol or plain TCP sockets, respectively. Gridjobs, in the production

release, queries the remote monitoring tool each 5 minutes, hence, the ”0 0/5 * * * ?” value

is assigned to the cronExpression variable. Figure A.13 presents a snippet code of the execute

method. Although the resources to be monitored appear hardcoded in Lines 3-7, the pro-

duction release retrieves the resources information from IS. As follows, the interaction with

a SCMSWeb instance is described. The remote resource is contacted through its web ser-

vice via HTTP, Lines 9-20. The module expects a XML stream to contain general cluster

information such as number of nodes, number of dead nodes, and cluster operating system;

in addition, the XML file also provides a detailed summary of every compute, such as CPU,

memory, storage, OS version, number of network interfaces, and network activity. This infor-

mation is stored in a temporary file, Lines 21-27. The XML stream containing general cluster

information is returned and stored in a temporary file, Lines 21-27. For Ganglia systems,

Gridjobs uses plain sockets, Figure A.14. For getting information associated with the status

of a remote resource, Gridjobs establishes a channel communication with the aforementioned

resource through a socket connection. For that, it employs the resource name along with the

port number. By default, Ganglia listens for connections at port number 8649. Then, the

information coming throgh the socket is stored in a local file. In either way, the new file is

then parsed and relevant information is stored in IS.

The retrieved information allows to resemble a rough view of the grid resources status.

Thus, other services such as statistical module and service schedulers would benefit of this

info in order to build execution plans to accurately predict the resource and task behavior.
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1 class GlobusjobstatusJob

2 –

3 static triggers = – ˝

4 ...

5 def quartzScheduler

6 def mailService

7 def execute(context) –

8 def ˙flag

9 def mjdm = context.getMergedJobDataMap()

10 def oldtrigger = context.getTrigger()

11 def previousstatus = mjdm.status

12 ...

13 def status = util.Util.executegetoutput(

14 ”$–globushome˝/bin/” +

15 ”$–config.Config.globusjobstatus˝ ” +

16 ”$–url˝”)

17 ...

18 if (previousstatus == status) –

19 if ( (maxwaitingtime + mjdm.”$–status˝”) ¡

20 new DateTime().getMillis() ) –

21 ...

22 util.quartz.Util.removetrigger(context)

23 ...

24 ˙task =

25 Task.findByUnsubmitted(mjdm.UNSUBMITTED)

26 ˙task.exitstatus = config.Config.FAILED

27 ˙task.output = ”Time exhausted”

28 ...

29 ˝

30 ...

31 def trigger = new CronTrigger()

32 // Put information required for next iteration

33 trigger.jobDataMap.server = mjdm.server

34 trigger.jobDataMap.jobmanager =

35 mjdm.jobmanager

36 trigger.jobDataMap.function = mjdm.function

37 trigger.jobDataMap.parameters =

38 mjdm.parameters

39 trigger.jobDataMap.status = status

40 ...

41 scheduleJobWithOldTriggerName(context,

42 trigger)

43 ...

44 return

45 ˝

46 ...

47 if (status == config.Config.DONE ——

48 status == config.Config.FAILED) –

49 ...

50 def contacts = Contactinfo.list()

51 contacts.each – contact -¿

52 // send a notification mail

53 ˝

54 ...

55 ˙task.save()

56 ...

57 ˝ else –

58 def trigger = new CronTrigger()

59 // Put information required for next iteration

60 ...

61 scheduleJobWithOldTriggerName(context,

62 trigger)

63 ...

64 ˝

65 ...

66 ˝

67 ...

68 ˝

69

Figure A.11. Snippet code of the GlobusjobstatusJob class.
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1 class StatisticsJob –

2 def cronExpression = ”15 0/20 * 1 12 ?”

3 def group = ”mygroup”

4 def execute() –

5 ˝

6 ˝

Figure A.12. Snippet code of the StatisticsJob.groovy file.

1 public execute() –

2 ...

3 def listserver = [

4 ”komolongma.ece.uprm.edu”,

5 ”fsvc001.asc.hpcc.jp”,

6 ”sakura.hpcc.jp”,

7 ”rocks-152.sdsc.edu”

8 listserver.each – server -¿

9 def urlsuffix =

10 ”cgi-bin/scmwsweb/xml˙display.cgi?grid=on”

11 def u =

12 new URL(”http://$–server˝/$–urlsuffix˝”)

13 def uc = u.openConnection()

14 def conn = (HttpURLConnection) uc

15 conn.setDoOutput(true)

16 conn.setDoInput(true)

17 conn.setRequestMethod(”GET”)

18 def bufferInput = new BufferedReader(

19 new InputStreamReader(

20 conn.getInputStream()))

21 def time = new Date().time

22 def outFile = new File(”$–server˝-$–time˝”)

23 def string

24 while ((string = bufferInput.readLine()) != null)

25 –

26 outFile.append(string + ”“n”)

27 ˝

28 ...

29 // Saving to database

30 def xmlparser =

31 new XmlParser().parse(outFile)

32 def cluster = new Cluster(xmlparser.cluster[0])

33 cluster.save()

34 ˝

35 ˝

Figure A.13. Snippet code of the monitoring module.

1 def socket = new Socket(resourcename, new Integer(monitoringport))

2 def input = new DataInputStream(socket.getInputStream())

3 def line = null

4 while ( (line = input.readLine()) != null) –

5 outFile.append(line + ”“n”)

6 ˝

7 input.close()

8 socket.close()

Figure A.14. Snippet code to show the interaction with a Ganglia monitoring tool.
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A.3.4 Statistical Module

The statistical module uses information observed by the monitoring module and finds prob-

ability functions to approximately represent the resources behavior. This module could be

invoked in a synchronous or asynchronous way, however a description of the synchronous part

is given as follows. During our experimental phase, this module was invoked every hour. The

”0 0 0/1 * * ?” string assigned to cronExpression indicates that this module will be executed every

hour. When the statistical module is fired, it interacts with the R statistical tool using R

scripts generated dynamically by Gridjobs. These scripts are in charge of finding probabilistic

functions to best represent the data recorded by the task module. Most of the data used for

this analysis were collected by the task module. All events registered during the execution of

a task are saved in log files as well as database records. Each time that a task either ends its

execution or achieves a failure state, the framework records the different times registered by

the task during its execution. For instance, Figure A.15 shows the content of a Gridjobs log

file which has achieved a successful termination.

The statistical modules invokes the processrawdata.groovy script (Figure A.16) which pro-

cesses a large bunch of log files and retrieves the values associated with the UNSUBMITTED,

PENDING, ACTIVE and DONE fields. The numbers in front of the aforementioned labels

are timestamps to represent moments in the time when the task changed of stage. Now, the

elapsed time of a task in a given stage is the result of substract the aforementioned stage

from the next stage. For instance, the elapsed time in UNSUBMITTED stage of the task

represented in Figure A.15 is calculated as follows. The value of the UNSUBMITTED field

is 1219989644716 (2:00:44 - 29/08/2008) and 1219989648014 (2:00:48 - 29/08/2008) for

the PENDING field. To substracting UNSUBMITTED from PENDING is 3298. It means that

this task lasted in UNSUBMITTED state more than 3 seconds. Thus, the values associated

to the fields UNSUBMITTED, PENDING, ACTIVE and DONE are extracted and saved in a

list for beign processed later.

processrawdata.groovy also generates a set of statistical graphics such as density plots, run

sequence plots, autocorrelation function plots, histogram and quantile plots. The graphics
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DONE

server: komolongma.ece.uprm.edu

jobmanager: sge

function: experiment-1c

parameters: ...

UNSUBMITTED: 1219989644716

PENDING: 1219989648014

ACTIVE: 1219989650077

getoutputtime: 1219989761237

DONE: 1219989758022

Figure A.15. Log file containing a task execution summary.

1 public execute() –

2 ...

3 def binding = new Binding()

4 def gs = new GroovyScriptEngine(”.”)

5 def script = ”$–scripthome˝/processrawdata.groovy”

6 binding.setVariable(”starttime”,starttime)

7 binding.setVariable(”endtime”,endtime)

8 binding.setVariable(”servers”,˙servers)

9 binding.setVariable(”statuses”,˙statuses)

10 gs.run(script,binding)

11 ˝

Figure A.16. Snippet code used for processing the log files generated by the task monitor

module.

are generated per each resource and stage using R graphical functions, Figure A.17. The R

script used for creating the aforementioned graphics is generated on-fly in order to capture

the unsteady essence of the grid infrastructures. The graphics generated are not used by the

framework per se but they can be used for the framework user in order to get a visual support

of the events happening with the grid resources.

1 Rfilename = ”$–scripthome˝/fscript.R”

2 binding.setVariable(”filename”,Rfilename)

3 script = ”$–scripthome˝/fscriptR.groovy”

4 gs.run(script,binding)

5 util.Util.executegetoutput(Rfilename)

Figure A.17. Snippet code to generate the statistical graphics associated with task perfor-

mance.
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