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Abstract of Thesis Presented to the Graduate School of the University of
Puerto Rico in Partial Fulfillment of the Requirements for the Degree of

Master of Science

ON THE FORMALISM OF QUANTUM MECHANICS
CONSTRUCTED WITH THE DISPERSION RELATION OF

DEFORMED SPECIAL RELATIVITY

By

Rubén Méndez Rodŕıguez

Over the last ten years there has been a significant effort to develop

Deformed Special Relativity (DSR). This theory has two observer invariant

scales: the speed of light,(c), and the Planck energy,(Ep). It is argued by F.

Girelli, E.R. Livine, and D. Oriti that this type of theory is an effective flat

limit of quantum gravity. The idea behind the formulation of such theories is

that at energies comparable to EP the energy-momentum dispersion relation

E2 = p2c2 + m2c4 must be modified by quantum gravitational effects. As

shown by Amelino-Camelia and Piran the dispersion relation will have the

general form: E2 = p2c2 + m2c4 + λE3 + · · · where λ is of the order of

Planck length (inverse of Ep) This modification of the dispersion relation

induces changes in the structure of the relativistic wave equations and the

Schrödinger equation. The main goal of this project is to determine the

form of the DSR-modified Schrödinger equation and to explicitly calculate

the DSR corrections to its solutions for d = 1 and d = 3 problems. The Free

Particle, the Harmonic Oscillator, and the Hydrogen Atom were studied.

The study also includes applications of the Lagrangian formalism and the

effects of local gauge transformations on the Lagrangian of the theory.
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Resumen de Disertación Presentado a la Escuela Graduada de la

Universidad de Puerto Rico como Requisito Parcial para el grado de

Maestŕıa en Ciencias

SOBRE EL FORMALISMO DE MECÁNICA CUÁNTICA

CONSTRUIDA CON LA RELACIÓN DE DISPERSION DE

RELATIVIDAD ESPECIAL DEFORMADA

By

Rubén Méndez Rodŕıguez

Durante los últimos diez años se ha observado un esfuerzo importante

para desarrollar la teora llamada Deformed Special Relativity (DSR). Esta

teoŕıa tiene dos escalas invariantes: la velocidad de la luz (c) y la enerǵıa

de Planck (Ep). Se argumenta por F. Girelli, Livine E.R., y D. Oriti que

este tipo de teoŕıa es un ĺımite efectivo para el espacio-tiempo plano de la

gravedad cuántica. La idea detrás de la formulación de estas teoŕıas es que a

enerǵıas comparables a, la relación de enerǵıa y momentum E2 = p2c2 +m2c4

debe ser modificada por efectos gravitacionales cuánticos. Como ha sido

demostrado por Amelino-Camelia y Piran la relación de dispersión tendrá la

forma general:E2 = p2c2 + m2c4 + λE3, donde λ es del orden de la longitud

de Planck (el inverso de EP ). Esta modificación de la relación de dispersión

induce cambios en la estructura de las ecuaciones de onda relativista y la

ecuación de Schrödinger . El objetivo principal de este trabajo es determinar

la forma de la ecuación de Schrödinger modificada por los efectos de DSR y

calcular expĺıcitamente las correcciones inducidas por DSR a las soluciones
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de la ecuación de Schrödinger para problemas de una y tres dimensiones. Se

estudiaron la part́ıcula libre, el oscilador armónico, y el átomo de hidrógeno.

El estudio también incluye aplicaciones del formalismo de Lagrange y los

efectos de las transformaciones de calibre local en la función de Lagrange de

la teoŕıa.
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Chapter 1

Introduction

1.1 Overview

In the late 19th and early 20th centuries, with the discovery of quantum

theory and special relativity, the world of physics would not be the same.

Soon after these theories were discovered and experimentally tested, it did

not took long to combine them. The first person to do this was P.A.M Dirac

with the theory of the positron. Later, when other fundamental particles and

forces were discovered and studied by physicists, we had a model that ex-

plained the dynamics of subatomic particles known as the Standard Model.

With these outstanding results of quantum theory it didn’t took long for

physicists to investigate if gravity, well described by Einstein’s general rela-

tivity, could be quantized. These investigations led to the birth of quantum

gravity. In the late 90’s, there were some work by Gambini and Pullin [1]

in the propagation of light of semiclassical space-time. While investigating

corrections the modification of Maxwell’s equations due to quantum gravity
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they found that there were not Lorentz covariant. This result suggested

that there will be a modification to the dispersion relation of light propaga-

tion. Later on, in 2002 in an article by Alfaro, Morales-Técolt and Urrutia [2],

studying a approximation to the Einstein-Maxwell equations, they found a

correction of Maxwell equations in flat space that exibit Planck scale correc-

tions. They started with a modified dispersion relation for the energy of a

photon.

On the experimental side, in 2004 it was reported that cosmic rays with

an estimated energy of approximately 3×1020 electronvolts were observed [3].

These results were in disagreement with the so called Greisen-Zatsepin-

Kuzmin limit (GZK limit) [4], which in turn is based on Einstein’s special

relativity. Although the validity of the GZK has been confirmed in 2007 by

the Pierre Auger Observatory [5], the initial disagreement prompted the de-

velopment of alternative theories aimed at explaining it. Giovanni Amelino-

Camelia was the first to develop a theory called Deformed-Special Relativity

or Doubly Special Relativity(DSR). It is a modified version of Einstein’s spe-

cial relativity that includes two observer-independent quantities: the speed of

light and the Planck energy. It is expected to have corrections to special rel-

ativity due to quantum gravitational effects [6]. This theory was constructed

both to account for the experimental data as a modification demanded by

theoretical development in quantum gravity.

Our interest in this thesis is to investigate the non-relativistic limit of

the DSR dispersion relation and apply it to quantum mechanics. We will
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explore if DSR can give new interactions or corrections to the theory in the

non-relativistic limit. In the next chapter we will briefly discuss how Galilean

relativity is incompatible with electromagnetic theory, Einsteins solution to

the problem, and the development of DSR. DSR tries to find a nonlinear ac-

tion in momentum space that leaves the Lorentz group invariant. This leads

to the deformation of the usual dispersion relation. The modified dispersion

relation that can be constructed is not unique, there are several theories of

DSR and they are discussed in this chapter.

In the third chapter we use two approximations of the energy-momentum

relation proposed by Amelino-Camelia. The first approximation will be

applied to the modified dispersion relation proposed by Amelino-Camelia,

where we have extended to second order on our expansion parameter. This

approximation yields a more manageable equation that can be solved. The

second approximation will be the non-relativistic limit. After these approxi-

mations are completed we will write the Schrödinger equation with the DSR

correction.

Once we have the DSR Schrödinger equation the most natural step is to

solve some elementary quantum mechanics problems in the DSR context and

compare them to the ordinary quantum problems. This is done in chapter

four. We will study the harmonic oscillator, the free particle, the Green func-

tion for the free particle and the hydrogen atom. Because the Lagrangian

formalism must be equal to the ordinary Hamiltonian approach, we explore

its application in chapter five. We will briefly discuss the Lagrangian for the

ordinary Schrödinger field and write this equation in operator form. Later
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we will find the Lagrangian for our DSR-modified theory in the low momen-

tum(energy) approximation.

In Chapter six we investigate the principle of local gauge transformation.

It is known that local gauge invariance gives rise to the electromagnetic

interaction. We do this gauge transformation by two procedures. One of

these methods is by using the transfomation directly on the Schrödinger

equation. This is usually done in the non-relativistic case. The other method

uses the gauge transformation directly from the Lagrangian. For the case of

the gauge transformation of the Lagrangian we briefly discuss the ordinary

quantum mechanics case. Later we discuss the case for the DSR-modified

Lagrangian.

1.2 Revision of Bibliography

Since its creation in 2000, there has been a lot of activity in DSR research.

In this section we briefly discuss the advances in this field.

1. Planck-scale deformation of Lorentz symmetry as a solution

to the ultrahigh energy cosmic ray and the TeV-photon para-

doxes. [7] Two threshold anomalies are discussed, both arise from

astronomical observations. The first is the observation of ultrahigh

energy cosmic rays with energies above the Greisen-Zatsepin-Kuzmin

threshold. The second is photons with high energy coming from the

galaxy Mk 501. Amelino-Camelia and Piran proposed that a violation

of the ordinary Lorentz invariance would solve this problem. For the
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first time a deviation from the dispersion relation from special relativ-

ity was written to solve this “paradox” . Also the author discussed

a five parameter formalism were they generalized the dispersion rela-

tions to accommodate these parameters in the theory. Although later

it was shown that there was no such GZK violation, this initial aparent

disagreement prompted the development of DSR.

2. Measurement of the energy spectrum of cosmic rays above 1018

eV using the Pierre Auger Observatory. [5] The flux of cosmic

rays is measured with the Pierre Auger Observatory. The energy range

from 1018 eV to 1020 eV. The observatory used a combination of two

detectors, a flourescence detector and a surface detector array. A power

law extrapolation was found for energies above 4 × 1020 eV. A break

in the power law was observed at energy of 3× 1018 eV. This is called

the ankle. This break in the energy spectrum has been attributed to

the transition from the galactic component of the cosmic ray flux to

a flux dominated by extragalactic sources. This finding confirmed the

validity of the GZK limit. The original prediction of DSR on the study

of cosmic rays is not valid.

3. Kinematical solution of the UHE-cosmic-ray puzzle without a

preferred class of inertial observers. [8]

Amelino-Camelia proposes a kinematical solution of the ultra-high-

energy(UHE) cosmic-rays “paradox”. He deformed the Lorentz sym-

metry so that Planck energy Ep was also an invariant. To analyze

the kinematical problem three functions were introduced. These func-
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tions in general depend in energy, momentum and mass of the particle

and were constructed from the rapidity relation used by DSR theory.

These functions satisfy the usual dispersion relation of special relativ-

ity. These auxiliary functions transform under rotations and boosts in

the familiar way. The cosmic-ray problem is studied using these func-

tions as one normally does, but at the end one substitutes what this

function is in terms of the physical momentum, energy and mass.

4. Non-commutative space-time of Doubly Special Relativity the-

ory. [9]

There are infinitely many constructions of DSR in energy-momentum

space and any of them can be promoted to a quantum group. With

this group one can derive non-commutative space-time relations that

describe the DSR theory. This is done by using the co-products of

the algebra and the κ deformed phase space via Heisenberg double.

Although we have an ambiguity in the energy-momentum sector the

space-time of DSR theory is unique. This non-commutative version of

Minkowski space-time has ordinary Lorentz symmetry.

5. Generalized Lorentz invariance with an invariant energy scale.

[6]

A general method for implementing nonlinear actions of the Lorentz

group is discussed for a general dispersion relation. Varying speed of

light theory are also discussed within the context of the deformed dis-

persion relations of DSR. These theories are presented as an alternative

to cosmological inflation. Composite system and conservation laws are
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also discussed.

6. Transformations of coordinates and Hamiltonian formalism in

deformed special relativity. [10]

The coordinate transformation law for writing a covariant Hamilto-

nian formalism for a DSR theory is discussed. These transformations

were investigated using commutative and noncommutative coordinates

with deformed Poisson brackets. The coordinate transformations laws

were momentum dependent. These transformations were applied to the

Magueijo-Smolin model of DSR.

7. Dirac spinors for Doubly special relativity and κ-Minkowski

noncommutative spacetime. [11]

The Dirac equation is derived in the momentum representation for the

Amelino-Camelia scheme of DSR. The derivation of the Dirac equation

uses the group properties of the generator of rotation and boost. There

is a modification of differential operators on energy-momentum space

of the generators of boosts and rotations to introduce the DSR terms.

The generators still satisfy the Lorentz algebra. This technique also

works for the DSR scheme of Smolin, Magueijo, Kowalski-Glikman and

Lukierski. Later the Dirac equation is derived in coordinate space for

a non-commutative space-time.

8. Canonical doubly Special Relativity theory. [12]

The Lorentz transformations for spacetime are obtained from momen-

tum space by canonical methods for a two observer-independent theory.
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Later on a space-time metric is found. This spacetime metric depends

on energy-momentum.

9. Position space versions of the Magueijo-Smolin doubly special

relativity proposal and the problem of total momentum. [13]

The construction of a coordinate space for the Magueijo-Smolin the-

ory of DSR is proposed. This is done by two different procedures,

defining conservation of momentum for ordinary special relativity in

a certain way. This shall lead to the dispersion relation of Magueijo-

Smolin version of DSR theory and a nonlinear transformation on mo-

mentum space. The standard Lorentz transformations for coordinate

space generates these nonlinear momentum transformations. The other

procedure is to use the usual definition of conservation of momentum,

this will deform the Lorentz group in position space.

10. Quantum uncertainty in doubly special relativity. [14]

A nonlinear realization of the Lorentz transformation in momentum

space is parameterized by an invariant length. This parameterization

involves auxiliary linear transformation variables which define the non-

linear Lorentz transformation. This parameterization is used to find

four commutators in phase space. These results are for a general the-

ory of DSR. This commutators are between time and space, time and

momentum, coordinates and energy and coordinates and momentum.

Later on the author found these commutators for Magueijo-Smolin and

Amelino-Camelia versions of DSR.
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11. Deformed special relativity in position space. [15]

The deformation of special relativity was achieved in coordinate space

such that the contraction of the wave-vector and coordinate-vector re-

mains invariant. This was done by using the speed of light to be energy

dependent and an energy dependent Planck constant. With this it is

possible to determine the active transformations in position space.

12. Conservation Laws in Doubly Special Relativity. [16]

Conservation laws are obtained for both energy and momentum for

two types of DSR theory. These two theories of DSR is the one

proposed by Amelino-Camelio(DSR1) and the other one by Smolin

and Magueijo(DSR2). The conservation laws are found using two ap-

proaches: one investigated the nature of the nonlinear realization of the

symmetry group and used its properties as a constraints on the conser-

vation laws for composite system. The second approach directly used

the transformation laws and applied physical restrictions to deduce the

conservation laws. Although this is done for DSR1 and DSR2 these

methods apply to any DSR theory.

13. Berry phase effectes in the dynamics of Dirac electrons in

Doubly special relativity framework. [17] The Dirac equation is

found for the Magueijo-Smolin theory of DSR. This equation is de-

rived by algebraic methods, first using classical Poisson braket and later

quantizing the equation. The author worked out the energy eigenvalues

of the Dirac equation using the Foldy-Wouthuysen transformation.
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In summary in all articles except article [5] there is a modification of the

dispersion relation of special relativity. This modification of the dispersion

relation will account in a deformation of the Lorentz symmetry, on spacetime,

conservation laws, etc. To the best of our knowledge there is no work on

the quantum mechanical non-relativistic limit of DSR using the generalized

dispersion relation studied in this work.
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Chapter 2

Special Relativity and

Deformed Special Relativity

2.1 Special Relativity

In 1687 Sir Isaac Newton published Philosophiæ Naturalis Principia

Mathematica [18] where he established three laws of motion and the law

of universal gravitation. These laws provided satisfying results between ob-

servation and theory of celestial bodies for over two hundred years1. In 1905,

Albert Einstein published the theory of special relativity driven by Maxwell’s

theory of electromagnetism and the idea of the luminiferous aether2. Al-

though, Newton’s laws have their range of validity, Einstein concluded that

Newton’s laws in general must be modified for bodies that have speeds near

the speed of light. The failure of Newton’s laws lay in the transformation of

1Newtonian physics still did not correctly predict Mercury’s period, later this will be
predicted correctly by Albert Einstein with his theory of General Relativity.

2The Luminiferous aether was the medium physicists thought light propagated.
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coordinates between two inertial frames, know as the Galilean transforma-

tion.

When Galilean transformations are used on Newton’s second law the

principle of relativity holds. Newton stated the principle of relativity in one

of his corollaries of the laws of motion “The motions of bodies included in

a given space are the same among themselves, whether that space is at rest

or moves uniformly forward in a straight line.” [18] This means that two

observers that are in two different inertial frames, moving at uniform speed

or at rest, will experience the same phenomena as if the inertial frame is at

rest. Mathematically this means that if we perform a Galilean transformation

on Newton’s second law the form of the equation remains the same. The

Galilean transformation is:

x′ = x− vt,

t′ = t,

(2.1)

where x′ is the coordinate vector of the event in the S ′ frame, x in the S

frame and v is the relative velocity between them, provided that the origins

in space and time are chosen suitably. If a group of particles are interacting

via a two-body central potential,Vij, Newton’s second law can be written in

a moving inertial frame as

mi
dv ′i
dt′

= −∇′i
∑
j

Vij
(∣∣x ′i − x ′j∣∣) . (2.2)

Were mi is the más of a particle under the potential energy Vij and
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dvi/dt is the acceleration. We can go from one inertial frame to another

using the equations the Galilean transformation (2.1). Newton’s second law

(2.2) becomes

mi
dvi
dt

= −∇i

∑
j

Vij (|x i − xj|) . (2.3)

This means that Newton’s law of force is invariant under a Galilean trans-

formation (2.1). The principle of relativity doesn’t hold true for the Maxwell

equations if one uses a Galilean transformation. Maxwell equations lead to

the following differential operator

Ŵ ′ = ∇′2 − 1

c2

∂2

∂t′2
, (2.4)

but if one use equation (2.1) to transform to another inertial frame our dif-

ferential operator changes to

Ŵ = ∇2 − 1

c2

∂2

∂t2
− 2

c2
v ·∇ ∂

∂t
− 1

c2
(v ·∇) ( v ·∇) . (2.5)

So Maxwell equations are not invariant under this transformation and

don’t obey the principle of relativity [19].

At the time of Einstein, there existed few possibilities concerning the

theory of electromagnetism. One of them was that Maxwell equations were

incorrect, because there weren’t invariant under a Galilean transformation.

This line of thought was shown to be incorrect because of the successes of

experimentation. The second alternative was that Galilean relativity ap-

13



plied to Newtonian mechanics, but not electromagnetism. Electromagnetism

seemed to have a preferred reference frame, the frame in which the luminif-

erous aether was at rest. Some physicists prefered this alternative, but some

experiments like the Michelson-Morley experiment and other performed by

Hippolyte Fizeau questioned its existence [19]. A later alternative was the

one that Einstein accepted: that there existed a principle of relativity that

both electromagnetism and Newtonian mechanics will share. Newton’s laws

and the transformations between reference frame must be modified.

In 1905 Einstein derived the transformations between two reference frames

found previously by Lorentz, Lamor, and later Poincaré. Einstein derived

these equations from his two postulates of relativity:

1. The Principle of Relativity : The laws by which the states of physical

systems undergo change are not affected, whether these changes of state

be referred to the one or the other of two systems in uniform translatory

motion relative to each other [20].

2. The Principle of Invariant Light Speed “... light is always propagated

in empty space with a definite speed c which is independent of the state

of motion of the emitting body.”. That is, light in vacuum propagates

with the speed c (a fixed constant, independent of direction) in all

inertial systems, regardless of the state of motion of the light source [20].

The Lorentz Transformations for two inertial reference frames in which

their axes are parallel, but the relative velocity v among the frames has

14



arbitrary direction to the other is

t′ = γ(t− β ·x),

x′ = x+
(γ − 1)

β2
(β ·x)β − γβt,

(2.6)

where we have used the following definitions:

β =
v

c
,

γ = (1− β2)−1/2.

(2.7)

At this point, it is helpful to introduce the notation that will be used in

this work and was introduced by Einstein. In light of special relativity we

are introduced to the symmetry of space and time. An event takes place on

a pseudo-Euclidean space, known as the Minkowski space. Because we treat

space and time on equal footing we will use the same variable for coordinates

and time but different indices. We will use the following definition for the

coordinates x0 = ct, x1 = x, x2 = y and x3 = z. Because of the symmetry

between space and time it is convenient to introduce the notion of a. A four

vector with supper index is called a contravariant vector. A contravariant

vector for coordinates on the Minkowski space-time is

x = xµ

= (x0,x)

= (x0, x1, x2, x3)

= (ct, x, y, z)

(2.8)
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We define the covariant vector xµ = (x0,−x) = gµνxν where gµν is know

as the metric tensor. The metric tensor contains all the information about

the geometry of the space we are working with. In special relativity, in

which we are using a flat hyperbolic space, the metric tensor is represented

by a diagonal matrix with diagonal elements given by g00 = 1, g11 = g22 =

g33 = −1. Other vectorial quantities such as momentum, current density and

differential operator can be written in this form.

Because of the principle of relativity all equations that we write must

be invariant under a Lorentz transformation. The inner product between a

covariant and a contravariant vector is called a Lorentz scalar. This inner

product is written in the following way aµb
µ = aµbµ = a0b0 − a · b, where we

have use Einstein’s summation convention: repeated indeces, one as a sub-

script and the other as a superscript imply a sum over them. An important

example of a Lorentz scalar is the inner product between two momentum

4-vectors3 :

pµp
µ = E2 − p2c4 = m2c4. (2.9)

Were E, m and p is the energy, mass and momentum of the particle respec-

tively and c is the speed of light in vacuum. This is the dispersion relation

for special relativity.

3The momentum four-vector is defined as pµ = (E/c,p).
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2.2 Deformed Special Relativity

When DSR was born, one of the motiviation was an experimental one.

Amelino-Camelia and Piran [7] first proposed a deformation of the dispesion

relation of special relativity when investigating the results of ultrahigh energy

cosmic rays that arrive at Earth with energy above the Greisen-Zatsepin-

Kuzmin threshold. This limit is based on the interaction between the cosmic

rays and the photons of the cosmic microwave background (CMB) [21]. There

was an aparent contradiction with theory because this predicts that cosmic

rays with energies over the threshold energy4 of 5 × 1019 eV would interact

with the CMB photons to produce pions via a ∆ resonance. The interaction

is of the form

γCMB + p→ p+ π. (2.10)

This process continues until the cosmic ray energy falls below the pion pro-

duction threshold. If this threshold is surpassed there will be violation of

special relativity. DSR theory tries to solve this anomaly by finding new

Lorentz transformations in momentum space and a new dispersion relation.

Later on some new observations were done with greater precision using the

Pierre Auger Observatory. Using a fluorescence detector and a surface de-

tector. it was concluded that such aparent violation of the GZK limit were

taken place.

4Threshold energy is the minimum photon energy required for the creation of a pair of
fermion-antifermion pair. This energy must be greater than the total rest energy of the
particles created.
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There is also a theoretical motivation for this modification and it is found

in some calculations in loop quantum gravity were new forms of the disper-

sion relation were found. It has been pointed out that although the relation

between energy and momentum can change, it is still possible to keep the

principle of the relativity of inertial frames. We simply modify the laws by

which energy and momentum measured by different inertial observer are re-

lated to each other. This is done by adding nonlinear terms to the action of

the Lorentz transformation on momentum space [6]. The quadratic invariant

is replaced by a nonlinear invariant which in turn leads to the form for the

energy-momentum function. [22]

DSR is based on four principles [6]:

1. The relativity of inertial frames -“When gravitational effects can be

neglected, all observers in free, inertial motion are equivalent.”

2. The equivalence principle -“Under the effect of gravity, free falling ob-

servers are all equivalent to each other and are equivalent to inertial

observers.”

3. The observer independence of the Planck energy5 -“All observers agree

that there is an invariant energy scale Ep.”

4. The correspondence principle -“At energy scale much smaller that Ep,

conventional special relativity and general relativity are true; that is,

5The Planck energy is a unit of energy in the“ natural unit system” and yield Ep =√
h̄c5

G = 1.9561× 109J .
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they hold to first order in the ratio of energy scale to Ep.”

The third principle gives rise to a deformation of the usual dispersion re-

lation of special relativity: E2 = p2c2+m2c4. Amelino-Camelia [22] proposed

the following deformed dispersion relation based on his early work [7]:

E2 = p2c2 +m2c4 + F
(
E, p,m;E−1

p

)
, (2.11)

where Ep is the Planck energy and E−1
p is the order of 10−9J−1. Some

authors have proposed some dispersion relations that maintain the speed

of light and the Planck energy a constant. The first theory, proposed by

Amelino-Camelia [22], is characterized by the following energy relation

2E2
p

[
cosh

(
E

Ep

)
− cosh

(
m

Ep

)]
= p2 eE/Ep . (2.12)

In the literature theories that use this dispersion relation fall under the

category of DSR1. More recently Smolin and Maguejio have propose a second

example, known as DSR2, with the dispersion relation given by

m2

(1−m/Ep)2 =
E2 − p2

(1− E/Ep)2 . (2.13)

This dispersion relations have been generalized by Magueijo and Smolin

in [6]. The generalization of equation (2.13) is

E2f 2
1 (E,m;λ)− p2f 2

2 (E,m;λ) = m2, (2.14)
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where λ is the inverse of a observer independent energy scale of order of

the Planck energy. For this equation to satisfy the principles of DSR there

should be a suitable transformation for the boost generators. This new boost

generators are given by following a similarity transformation [6].

Ki = U−1 (p0)Li0U (p0) , (2.15)

where Ki is the boost generator and the operator L̂ is the Lorentz gener-

ator for rotation. Equation (2.13) implies that the mapping of U have the

following properties

(E ′,p) = U ◦ (E,p) = (Ef1 (E, λ) ,pf2 (E, λ)). (2.16)

For example, Magueijo and Smolin have shown that if U have the follow-

ing property [6]

U ◦ pa =
pa

1− λp0

,

this will lead to the relation dispersion proposed by them in equation (2.13).

For the Planck energy Ep to be an invariant quantity under the action of the

Lorentz group U must be singular at Ep. Unless f1 = f2 this theory exhibit

a frequency dependent speed of light. Defining f3 = f2/f1 we have that the

speed of light is given by [6]

c =
dE

dp
=

f3

1− Ef ′3
f3

, (2.17)
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so this formalism may be adapted for varying speed of light theories (VSL)

that are found in cosmological models.

The following example is an alternative to cosmological inflation [6]. If

f1 = 1 and f2 = 1 + λE, the resulting model is known to have an energy

dependence on the speed of light and is given by

c (E) =
dE

dp
= c (1 + λE)2 . (2.18)

In this case all momentum must be smaller than the maximum momen-

tum p = λ−1, which can only be reached by photons with infinite energy.

Quantum gravity also has two independent constants, the speed of light and

the Planck length6. In quantum gravity important processes like the quan-

tization of space-time and formation of black holes should take place at the

Planck length [24]. It was been some claim that DSR theories can be in-

terpreted as a flat space limit of Quantum Gravity or a Quantum Special

Relativity. [24, 25]. The existence of a length scale is directly linked with

the breakdown of the space-time continuum and the emergence of a non-

commutative space-time [9]. The specific form of the non-commutative space

time that one supposedly encounters in the context of DSR is known as κ-

Minkowski space-time. [9] There have been constructions of some DSR disper-

sion relations which appear as Casimir operators of distinct κ-Poincaré alge-

bras7 [23]. From a quantum group theoretic point of view, it has been argued

6The Planck length is a natural unit that is defined as lp =
√

h̄G
c3 = 16.16252×10−36 m.

7The Poincaré algebra is the algebra that follows the Poincaré group, this is the full
symmetry group of quantum field theory.
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that these κ-Poincare algebra are dual to different forms of κ-Minkowski non-

commutative phase spaces, all of which, indeed, have the same κ-Minkowski

space time structure [23].

The commutation relations for space-time is given by [11]

[xj, x0] = iλ xj,

where λ = 1/κ and is the deformation parameter.
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Chapter 3

Dispersion Relation for DSR

It has been stated by Smolin and Magueijo in [6],based on [7], that their

representation for the dispersion relation of DSR can be written as an infinite

series as

E2 = p2c2 +m2c4 + λE3 + · · · ,

where λ is the expansion parameter. λ is of the of order of the inverse of the

Plank energy, and has a value of 10−10J−1. In this work we generalized this

idea to second order in λ. We want to investigate if there are any correc-

tion to the energy-eigenvalues or wave functions to non-relativistic quantum

mechanics. Our energy-momentum relation is of the form

E2 = E2 + λE3 + a2λ2E4, (3.1)
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where E2 = p2c2 + m2c4 and a is a constant . We assume that this energy-

momentum relation holds for DSR. We are interested in studying the non-

relativistic limit of (3.1) and look for it’s application to Quantum Mechanics.

To this end we use a method of recursion called the method of successive

aproximations or Picard iteration method. In this method we subtitute equa-

tion (3.1) in every part of the right side of the equation where E3 or higher

terms appears. After this is done we eliminate terms of O (λ3) and higher.

Applied to (3.1), this method yields:

E2 = E2 + λE3 + a2λ2E4, (3.2)

E2 = E2 + λ
(
E2 + λE3 + a2λ2E4

)
E + a2λ2

(
E2 + λE3 + a2λ2E4

)
E2,(3.3)

E2 = E2 + λE2E + λ2E4 + a2λ2E2E2 +O
(
λ3
)

+O
(
λ4
)
, (3.4)

E2 ≈ E2 + λE2E + λ2E4 + a2λ2E2E2. (3.5)

In the second line we have separated the terms of E3 and E4 as E2E and

E2E2 and substituted in the original equation where the term E2 appears.

If we use the recursion again we end up with

E2 = E2 + λE2E + λ2E2E2 + a2λ2E2E2. (3.6)

This equation can be a candidate for the energy-momentum relation for

the Klein-Gordon equation but with DSR corrections. Because we want a

Schrödinger like equation we must have the energy term to be linear. To this
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end, we factor the E2 term in equation (3.2) and write it as follows

{
1− λ2E2

(
1 + a2

)}
E2 − λE2E − E2 = 0. (3.7)

Now that we have the term E2 we can use the quadratic equation to

have a solution for the energy. This will be used for the Hamiltonian of the

Schrödinger equation. The simplified solution for the energy is

E =
λE2 ± 2E

√
1− b2λ2E2

2 {1− λ2E2 (1 + a2)}
, (3.8)

were b2 = a2 + 3/4. We note that there are two problems with equation

(3.4). One is that there is a square root in the equation and that inside this

square root there is the term E , that for quantum mechanics is a differential

operator. In this case we have the same problem that the Klein-Gordon

equation will have if we solve for E2 directly. The other problem we have is

the appearance of a differential operator in the denominator. To solve these

problems we approximate the equation further by using the binomial series in

the numerator and the geometric series in the denominator. All terms with

O(λ3) and larger are ignored so as the negative solution. We have eliminated

negative solution to cosider only particles and not antiparticles. Thus we

have

E =
1

2
λE2 + E

(
1 + α2λ2E2

)
, (3.9)

E =
1

2
λp2c2+

1

2
λm2c4 +mc2

(
1+
( p

mc2

)2
)1/2

+ α2λ2m3c6

(
1+
( p

mc2

)2
)3/2

, .(3.10)
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where α2 = a2

2
+ 5

8
. The approximation yield equations (3.5) and (3.6), the

first equation is in terms of E and the second is an explicit equation in terms

of momentum and mass. Equation (3.5) and (3.6) is the simplest relativistic

dispersion relation we can find that is linear in E . One should notice that in

the limit λ→ 0 we recover the usual relation between energy and momentum

of the mass-shell. Because we want to construct a Schrödinger-like equation

this must be nonrelativistic. Then equation (3.6) must be aproximated but

this time in the low momentum(energy) domain. As usual with an equation

that involves a square root we use the binomial series and ignore all terms

higher than O(p2). The simplified nonrelativistic relation between energy

and momentum is

E =
(
λmc2 + 3α2λ2m2c4 + 1

) p2

2m
+

1

2
λm2c4

(
1 + 2mc2λα2

)
+mc2. (3.11)

The final term in equation (3.7) is the rest energy. This term must be sub-

tracted from the total energy E to have the kinetic energy of the particle.

The kinetic energy T is given by

T = ηλ
(
λ,m;α2

) p2

2m
+ fλ

(
λ,m;α2

)
, (3.12)

where we have two new constants that arise from DSR and that are unique

for this type of dispersion relation (3.1),

ηλ
(
λ,m;α2

)
= λmc2 + 3α2λ2m2c4 + 1, (3.13)
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and

fλ
(
λ,m;α2

)
=

1

2
λm2c4

(
1 + 2mc2λα2

)
. (3.14)

We observe that η0 ≡ ηλ (0,m;α2) = 1 and f0 ≡ fλ (0,m;α2) = 0. In this

limit we recover the usual non-relativistic kinetic energy term T = p2/2m.

The Hamiltonian for our deformed Schrödinger equation is

Ĥλ = ηλ
p̂2

2m
+ fλ + V̂ (x) . (3.15)

Performing the standard operator substitution Ĥ → i ∂
∂t

we have

{
ηλ
p̂2

2m
+ fλ + V̂ (x)

}
ψ (x, t) = ih̄

∂

∂t
ψ (x, t) . (3.16)

Multipliying by ηλ in both sides we have

{
p̂2
λ

2m
+ ηλfλ + V̂λ (x)

}
ψ (x, t) = ih̄λ

∂

∂t
ψ (x, t) , (3.17)

where we have done the following definitions

h̄λ = ηλh̄, (3.18)

p̂λ = ηλp̂ = −ih̄λ∇, (3.19)

V̂λ (x) = ηλV̂ (x) . (3.20)
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Because equation (3.11) has the same structure of the ordinary Schrödinger

equation; this equation also obey the time independent Schrödinger equation:

{
p̂2
λ

2m
+ V̂λ (x)

}
ψ (x) = Eλψ (x) ,

Ĥc
λψ (x) = Eλψ (x) ,

(3.21)

where we have redefined the energy eigenvalues as, Eλ (λ,m;α2) = E−ηλfλ.

We note that the DSR dispersion relation in the non-relativistic limit has the

effect of lowering the energy eigenvalues by a constant term.
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Chapter 4

Examples

4.1 The Harmonic Oscillator in 1-D

In this chapter we investigate one of the “classic” problems of physics:

the harmonic oscillator. We will investigate the energy eigenvalues and what

effect does the DSR correction have on physical quantities such mass, fre-

quency, occupation number etc. Because our time independent Schrödinger

equation for DSR is similar to the time independent Schrödinger equation

of ordinary quantum mechanics we will try the same technique to find the

eigenvalues. Our hamiltonian of DSR with the harmonic oscillator potential

is written in the following manner:

Ĥλ =
p̂2
λ

2m
+

1

2
mω2

λx̂
2, (4.1)

where we have absorbed the DSR constant ηλ in the potential term ω2
λ =

ηλω
2. This is done to perserve the symmetry in the creation and anhiliation

29



operators1. This symmetry between ladder operators would be broken if we

absorb the DSR constant ηλ in the mass term, because the mass term that

also apperars in the kinetic part of the hamiltonian and in the denominator

the ladder operators will not be the same, in one of the ladder operator we

will have a term mλ = ηλm and in the other a term for the mass m. The

ladder operators are then defined as:

â =

√
mωλ
2h̄λ

(
x+

ipλ
mωλ

)
, â† =

√
mωλ
2h̄λ

(
x− ipλ

mωλ

)
. (4.2)

Because the ladder operators are the same in form, in term of variables,

the conmutation relations are similar. We find that for the conmutator be-

tween the coordinate operator x̂ and momentum operator p̂λ for DSR differ

only by the constant ηλ, when compared with the “undeformed” Schrödinger

equation:

[x̂, p̂λ] = ih̄λ = ih̄(λmc2 + 3α2λ2m2c4 + 1), (4.3)[
â, â†

]
= 1. (4.4)

Because these conmutation relations are similar to that of ordinary quantum

mechanics we can further define the number operator as N̂ = a†a. We can

write the hamiltonian operator in terms of the number operator

Ĥλ =

(
N̂ +

1

2

)
h̄λωλ. (4.5)

1The creation and anhiliation operators are also known as ladder operators. These
operator when acting on a state vector(|n〉) will increase or decrease the eigenvalue of the
state by one quantum unit of h̄ω.
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Written in this form we find that the DSR energy eigenvalues are

En
λ =

(
n+

1

2

)
h̄λωλ. (4.6)

In terms of the original energy E w obtain

En
(
λ,m;α2

)
=

(
n+

1

2

)
h̄λωλ + ηλfλ,

= η
3/2
λ

(
n+

1

2

)
h̄ω + ηλfλ, (4.7)

=
(
λmc2 + 3α2λ2m2c4 + 1

)3/2
(
n+

1

2

)
h̄ω +

1

2
λ2m3c6 + fλ,

where in the last equation we have done the multiplication of fληλ and elimi-

nated terms of order O (λ3). If one approximate this equation to order O(λ)

we have.

En ∼=
[
1 +

3

2
λmc2

](
n+

1

2

)
h̄ω +

1

2
λmc2, (4.8)

= (n+
1

2
)h̄ω +

3

2
λmc2(n+

1

2
)h̄ω +

1

2
λm2c4, (4.9)

= E0
n +

3

2
λmc2E0

n +
1

2
λm2c4, (4.10)

where in the first term of equation (4.8) we have use the binomial expantion

and E0
n = (n + 1

2
)h̄ω. The last term on equation (4.10) (1

2
λm2c4) come out

from the aproximation to order ′(λ) of fλ. This term is of order of 10−36J

and the second constant term of equation (4.10) is of order of 10−23. We

note that the DSR correction to the dispersion relation have the effect of an

energy shift because of the two term added to E0
n. Our wave function also
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gets corrections:

ψn(x) =
1√
2nn!

(
mω
√
ηλπh̄

)1/4

e
− mωx2

2h̄
√
ηλHn

(√
mω
√
ηλh̄

x

)
. (4.11)
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4.2 The Hydrogen Atom

To futher investigate our non-relativistic limit of the DSR theory we inves-

tigate the problem of the hydrogen atom. We can write the time independent

Schrödinger equation as:

{
−h̄2

λ

2me

∇2 + Vλ (x)

}
ψ (x) = Eλψ (x) .

After we change to spherical coordinates the Schrödinger equation is

−h̄2
λ

2mer2

[
∂

∂r

(
r2∂ψ

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

sin2 θ

∂2ψ

∂φ

]
+Vλψ = Eλψ,(4.12)

∂

∂r

(
r2∂ψ

∂r

)
− 2mer

2

h̄2
λ

[Vλ (r, θ, φ)− Eλ]ψ −
1

h̄2 L̂
2ψ = 0.

For potentials with spherical symmetry the first two terms in the last

equation correspond to the radial part of the Laplacian and the last term

corresponds to its angular part. L̂2 is the usual angular momentum operator.

We notice that the correction of DSR is included only to the radial part of

the equation. After the separation of variables, ψ(r, θ, φ) = Rnl(r)Y
l
m(θ, φ),

we will end up with two equation one for the angular part that doesn’t get

corrections of DSR and the radial part. The radial part of the equation is

−h̄2
λ

2me

d2R

dr2
+

[
Vλ (r) +

h̄2
λ

2me

l(l + 1)

r2

]
R = EλR.
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For the case of interest,that is the hydrogen atom, we include the Coulomb

potential in the last equation and our final differential equation is

−h̄2
λ

2me

d2R

dr2
+

[
− e2

λ

4πε0

1

r2
+

h̄2
λ

2me

l(l + 1)

r2

]
R = EλR, (4.13)

where e2
λ = ηλe

2. Because this is the same equation as in ordinary quantum

mechanics the eigenenergy will have the same form:

En
λ = −

[
m

2h̄2
λ

(
e2
λ

4πε0

)2
]

1

n2
.

After inserting e2
λ and h̄2

λ in the last equation we find that

En
λ = −

[
m

2h̄2

(
e2

4πε0

)2
]

1

n2
. (4.14)

The energy (not cosidering the shift ηλfλ) is the same as the ordinary of

quantum mechanics. This is different from the harmonic oscillator were the

energy had a correction in a effective Planck constant and angular frequency,

En
λ =

(
n+ 1

2

)
h̄λωλ. Investigating the energy-eigenvalues for the hydrogen

atom we also observed an important result for quantum mechanics and this

is the Bohr’s radius(a0). Because the differential equation is the same, the

constants that define’s the Bohr’s radius are the same. The Bohr’s radius is

given by

aλ =
4πε0h̄

2
λ

me2
λ

= ηλa0 = (1 + λmc2 + 3λ2α2m2c4)a0 (4.15)
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The term λmc2 for the electron yields a value of 4.185 054 537× 10−23.

To conclude this section we write the wave function and this is given by

ψnlm(r, θ, φ)=

√(
2

naλ

)3
(n−l−1)!

2n [(n+ l)!]3
e−r/naλ

(
2r

naλ

)l
L2l+1
n−l−1

(
2r

naλ

)
Y m
l (θ, φ) , (4.16)

where the function L2l+1
n−l−1

(
2r
naλ

)
is the assosiated Laguerre polynomial.

4.3 The Free Particle in 1-D

The Schrödinger equation for the free particle is:

− h̄
2
λ

2m

∂2ψ

∂x2
+ fληλψ = ih̄λ

∂ψ

∂t
. (4.17)

To find the solution of this equation we used the Fourier transform method.

We asume that the solution of the equation is

ψ (x, t) =
1√

2πh̄λ

∫
dp eipx/h̄λ Γ (p, t) , (4.18)

Now we insert the last equation on the original differential equation take the

appropriate derivative. When this is done we will have a new equation but

now for the unknown function Γ(p, t). The differential equation that Γ(p, t)

satisfies is

∂

∂t
Γ (p, t) =

−i
h̄λ

(
p2

2m
+ fληλ

)
Γ (p, t) . (4.19)
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This equation has solution

Γ (p, t) = Φ(p) e
−i

(
p2

2m
+fληλ

)
t/h̄λ

, (4.20)

where Φ is an unknown function that arises from the integration of the differ-

ential equation and is found from the time independent Schrödinger equation.

By substituting our result for Γ on equation (4.15) the solution for the free

particle is found to be:

Ψ (x, t) =
e−ifλt/h̄√

2πh̄λ

∫
dp Φ (p) e

i

[
px− p

2t
2m

]
/h̄λ
. (4.21)

We observed that the phase factor in front of equation (4.18) doesn’t

depend of the factor ηλ. This occurred because of the factor h̄λ = ηλh̄ cancel

the constant ηλ.
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4.4 The Green Function for the 1-D Free Par-

ticle

In the usual formulation of quantum mechanics one can adopt the Hein-

senberg or the Schrödinger picture. In both views of quantum mechanics,

coordinates and momentum are replaced with operators that follows a com-

mutation relation. Another formulation of quantum mechanics uses the idea

of Green functions or propagators. By invoking the Huygen’s principle the

solution of the time dependent wave functions can also be written in the

following manner

ψ(x, t) =

∫
dx′K(x′, x; t)ψ(x′, 0). (4.22)

This equation explicitly express the principle of causality. The function

K(x′, x; t) is known as the Green function or the propagator. The propa-

gator represents the probability amplitude for transition between two points

of space-time. There are many ways to calculate the Green function but

taking advantage of the last section results we will find the Green function

by writing the appropriate differential equation that the Green function sat-

isfies. We will write the differential equation following the same technique

used in the previous section:

[
− h̄

2
λ

2m

∂2

∂x′2
+ fληλ − ih̄λ

∂

∂t

]
K(x′, x; t) = −ih̄λδ(x′ − x)δ(t). (4.23)

37



Using the Fourier transform method we assume that the solution has the

following form

K(x′, x; t) =
1

2πh̄λ

∫
dp eip(x

′−x)/h̄λ G(p, t), (4.24)

and because the Fourier transform of the delta function δ(x′ − x) is one, we

will end up we the following equation for G(p, t):

∂G

∂t
+

i

h̄λ

[
p2

2m
+ fληλ

]
G = δ(t). (4.25)

We can solve this equation for t 6= 0 because the delta function is cero. The

solution of this equation is

G(p, t) = N(p) e
− i
h̄λ

[
p2

2m
+fληλ

]
t
. (4.26)

This is the Green function for momentum space. If we want the Green

function in coordinate space we have to integrate equation(4.20). To find the

integration function N(p) we evaluate K(x′, x; 0). It turns out that N(p) = 1.

The integration of equation(4.20) yields

K(x′, x; t) =

√
m

2πih̄λt
e
im(x′−x)2

2th̄λ
− ifλt

h̄ . (4.27)

The DSR effects add the change of h̄ to h̄λ and the second term of the

exponential e−ifλt/h̄. This term also appear in the wave function of the free

particle, but this term are not observable. In both cases, for the wave func-

tion and Green function, are probability amplitude we have to take modulus
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squared this term will vanish.
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Chapter 5

Lagrangian approach to the

DSR Schrödinger equation

The Lagrangian formalism can give us another way of writing the equation

of motion for DSR, and can futher give us a better insight on the dynamics

of DSR. The advantage that the Lagrangian formalism has, is that some

interaction can be added by the symmetry principle. We will explore this

in the next chapter. First we will give a brief review of the Lagrangian

formalism of the Schrödinger equation. Later we will derive the Lagrangian

function for DSR.
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5.1 Lagrangian of Quantum Mechanics

In quantum mechanics there exists a Lagrangian density function1 that

can be used to write the Schrödinger equation

− h̄2

2m
∇2ψ (x, t) + V (x)ψ (x, t) = ih̄

∂

∂t
ψ (x, t) . (5.1)

This Lagrangian function is [26]

L = − h̄2

2m
(∇ψ)·(∇ψ∗)− V ψ∗ψ +

ih̄

2
(ψ∗∂tψ − ψ∂tψ∗) . (5.2)

We can write the Schrödinger equation using the Euler-Lagrange equation

∂L
∂ψ∗
− ∂t

(
∂L

∂ (∂tψ∗)

)
−

3∑
i=1

∂i

(
∂L

∂ (∂iψ∗)

)
= 0. (5.3)

The Lagrangian for the Schrödinger equation (5.1) can be written in terms

of the operators p̂ y Ĥ

L =
p̂ψ · p̂ψ∗

2m
− V̂ ψ∗ψ +

1

2

(
ψ∗Ĥψ − ψĤψ∗

)
. (5.4)

In this equation we observe that the Lagrangian consists of a kinetic, a

potential, and temporal part of the Schrödinger equation. Because we wrote

the Lagrangian in term of operators it is convenient to write the Euler-

1The Lagrangian density is defined by the following equation L =
∫
d3xL were L is the

Lagrangian. The Lagrangian density can be expressed in term of tha Hamiltonian density
as L =

∑
πη̇ −H. This Hamiltonian density is not the total energy of the system.
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Lagrange equation in terms of these operators as well

∂L
∂ψ∗
− Ĥ ∂L

∂(Ĥψ∗)
−

3∑
i=1

p̂i
∂L

∂ (p̂iψ∗)
= 0. (5.5)

Remembering that the operator for the Hamiltonian corresponds to the

temporal part (Ĥ → ih̄∂t). It can be verified that using the Lagrangian

written in that form that the Euler-Lagrange equation gives us

Ĥψ =
p̂2ψ

2m
+ V̂ ψ. (5.6)

If we take the correspondence of the operators Ĥ → ih̄∂t and p̂→ −ih̄∂i

we obtain the time dependent Schrödinger equation. Therefore, the Euler-

Lagrange equation(5.4) give us the most general expression for the Hamilto-

nian function. We will use this equation to find the Hamiltonian for DSR

Hλ = α2λ2E3 +
1

2
λE2 + E .

5.2 Lagrangian for DSR

To derive the non-relativistic DSR Schrödinger equation we will first give

an ansatz of how the relativistic equation will look. Then we will use the

Euler-Lagrange equation, and will then approximate this equation in the low

momentum(energy) domain. Our ansatz for the Lagrangian function is
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L =
1

2

(
ψ∗Ĥλψ − ψĤλψ

∗
)

+ p̂ψ∗· Ω̂ψ + p̂ψ· Ω̂ψ∗ + ψ∗V̂ (~x)ψ (5.7)

The first and last term of equation (5.6) are familiar to us and appeared

in our discussion of ordinary quantum theory. They represent the temporal

part of the Hamiltonian and its classical interactions. The two middle terms

arise from DSR. One expects that the operator Ω̂ will contain the kinetic

part of the Lagrangian similar to one discuss in the previous section and the

DSR interaction. The operator Ω̂ acts over the wave function and gives these

new interactions. Our goal is to find what this new operator is. After taking

the corresponding derivative in the Euler-Lagrange equation we end up with

Ĥλψ = p̂ · Ω̂ψ + V̂ ψ. (5.8)

We identify the inner product of the momentum and the vector Ω̂ψ with

p̂ · Ω̂ψ = α2λ2E3ψ +
1

2
λE2ψ + Eψ. (5.9)

From this equation we will find the operator Ω̂ under the low momen-

tum(energy) aproximation2. To this end we will go to the coordinate repre-

sentation of the momentum operator

−ih̄∇ · Ω̂ψ = α2λ2E3ψ +
1

2
λE2ψ + Eψ.

2
(
p2 +m2

)n/2 ≈ mn
(

1 + np2

2m2

)
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After our aproximation we obtain

∇ · Ω̂ψ =
i

h̄

(
fλ +m+ ηλ

p2

2m

)
ψ. (5.10)

We want to find what is the operator Ω̂ acting over the wave function.

Because what we have in equation (5.9) is the divergence of vector (Ω̂ψ),

we will use the Divergence Theorem. For this, we will integrate over the

volumen in both sides of equation (5.9):

∫
∇ · Ω̂ψ d3x =

i

h̄

∫ (
fλ +m+ ηλ

p2

2m

)
ψ d3x,

=
i

h̄

∫ (
fλ +m− ηλh̄

2

2m
∇2

)
ψ d3x.

Using the Divergence Theorem on the left side yields

∮
Ω̂ψ · da =

i

h̄

∫
(fλ +m)ψ d3x− ih̄ηλ

2m

∫
∇2ψ d3x. (5.11)

On equation (5.10) the second term on the right can be simplified using

Green’s first identity. This term will represent the kinetic term of the La-

grangian. The first term of equation (5.10) will give the DSR interaction.

Equation (5.10) as it is, can’t be written as a surface integral, because of the

DSR constribution. To write this part in terms of a surface integral we have

to assume that the wave function can be written in the following manner
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ψ = ∇2ξ.

∮
Ω̂ψ · da =

i

h̄

∫
(fλ +m)∇2ξ d3x− ih̄ηλ

2m

∮
∇ψ · da

=
i

h̄
(fλ +m)

∮
∇ξ · da− ih̄ηλ

2m

∮
∇ψ · da.

Where we have used Green’s first identity again for the first term. Now we

will write the last equation under one surface integral

∮
[Ω̂ψ − i

h̄
(fλ +m) ∇ξ +

ih̄ηλ
2m

∇ψ] · da = 0. (5.12)

Because the volumen is arbitrary we have

Ω̂ψ =
i

h̄
(fλ +m) ∇ξ − ih̄ηλ

2m
∇ψ

Ω̂ψ =
ηλ
2m
p̂ψ − h̄−2 (fλ +m) p̂ξ

(5.13)

One may observe that by taking the divergence of Ω̂ one recovers what

we had before,i.e

∇ · Ω̂ψ =
i

h̄
(fλ +m) ∇ ·∇ξ − ih̄ηλ

2m
∇2ψ

=
i

h̄

{
fλ +m+ ηλ

p2

2m

}
ψ

(5.14)

Our Lagrangian in operator form becomes

L=
1

2

(
ψ∗Ĥλψ−ψĤλψ

∗
)
− fλ
h̄2 (p̂ψ∗·p̂ξ+p̂ψ·p̂ξ∗)+

ηλ
2m

p̂ψ∗·p̂ψ+ψ∗V̂ ψ, (5.15)
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where we have eliminated the rest energy term as is done in perturbation

theory. Using the Euler-Lagrange equation of motion and multiplying by ηλ

both side we will get the “deformed” Schrödinger equation

{
p̂2
λ

2m
+ ηλfλ + V̂λ (x)

}
ψ (x, t) = ih̄λ

∂

∂t
ψ (x, t) .

We observe that the unknown function ξ, used to derive the results does

not appear in the deformed Schrödinger equation. It is introduced as a

mathematical tool to be able to perform the calculation. The nature of this

function can be explored as a extension of this work.
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Chapter 6

Gauge Transformation

In this chapter we investigate local gauge transformation. This gauge

transformation will be performed first to the Schrödinger equation directly,

as is done in many books[27,28], and later to the Lagrangian of the theory.

After studying the gauge transformation of the Schrödinger equation we will

review its application to the ordinary Schrödinger Lagrangian. Then we

will apply this technique to the DSR Lagrangian. The study of local gauge

transformations is important because when we demand that a Lagrangian has

this type of symmetry we introduce the electromagnetic interaction. Then

using Noether’s theorem we can find the conserved current. Because the La-

grangian of a non-relativistic particle is very similar to the DSR Lagrangian,

we will use the non-relativistic function to make an educated guess of how

our DSR Lagrangian should look like. Later, using the Euler-Lagrange equa-

tion, we will find the equation of motion. We will compare these results by

applying the gauge transformation to the DSR Schrödinger equation.
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6.1 Gauge Transformation of the Deformed

Schrödinger Equation

In this section we perform the gauge transformation of the wave function

direcly to the equation of motion as is done in [27,28]. We start with the

DSR Schrödinger equation of the free particle:

{
− h̄

2
λ

2m
∇2 + ηλfλ

}
ψ = ih̄λ

∂ψ

∂t
.

If we demand that the equation satisfies a gauge symmetry of the form

ψ′ → e−iqΛψ we find, as in the previous section, that there is an extra term

that comes from the derivative. It arises from the Laplacian operator. The

Laplacian operator acting on the gauge transformation is:

∇ · (∇e−iqΛψ) = e−iqΛ {∇− iq∇Λ}2 ψ

Our Schrödinger equation transforms to:

[
− h̄

2
λ

2m
{∇− iq∇Λ}2 + ηλfλ

]
ψ = ih̄λ

{
∂ψ

∂t
− iq ∂Λ

∂t
ψ

}
.

As found earlier, the equation for the free particle is not gauge invariant.

Therefore we abandon the idea of a gauge symmetry for it. Instead we write
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the following Schrödinger equation:

[
1

2m
{−ih̄λ∇− qλA}2 + ηλfλ + qλA0

]
ψ = ih̄λ

∂ψ

∂t
. (6.1)

We note that we have redefined the charge by qλ = qηλ = q(1 + λmc2 +

2α2λ2m2c4). This equation is the Schrödinger equation with an electromag-

netic interaction and is gauge invariant if the new function A and A0 trans-

formed in the following way

A′ → A+ q−1∇Λ,

A′0 → A0 − q−1∂Λ

∂t
.

Viewed this way, the electromagnetic interaction arises if we demand the

equation to be gauge invariant, as it is done in ordinary quantum mechanics.

One of the results of this derivation is the fact that the charge of the particle

becomes energy dependent due to the factor ηλ. This is what happens with

h̄, as shown earlier.
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6.2 Gauge Transformation on the Schrödinger

Lagrangian

In this review of the local gauge transformation of the Schrödinger La-

grangian we follow the article by Colussi and Wickramasekara[29]. First we

write the Lagrangian of the free particle.

L = − h̄2

2m
(∇ψ)·(∇ψ∗) +

ih̄

2
(ψ∗∂tψ − ψ∂tψ∗) ,

=
p̂ψ · p̂ψ∗

2m
+

1

2

(
ψ∗Ĥψ − ψĤψ∗

)
.

(6.2)

Now we perfom the following local transformation on the wave function.

ψ′ (x, t) = e−i
e
h̄

Λ(x,t)ψ (x, t) , ψ′∗ (x, t) = ei
e
h̄

Λ(x,t)ψ∗ (x, t) . (6.3)

These new wave functions will be entered in the Lagrangian. We notice

that because our unknown function Λ depends on the coordinate and time

parameters we will have some extra terms in the Lagragian. The derivatives

with respect to time and spatial coordiantes transform like:

∂0ψ
′ = e−i

e
h̄

Λ
[
∂0ψ − i

e

h̄
ψ ∂0Λ

]
,

Ĥψ′ = e−i
e
h̄

Λ
[
Ĥψ − i e

h̄
ψ ĤΛ

]
,

∇ψ′ = e−i
e
h̄

Λ
[
∇ψ − i e

h̄
ψ∇Λ

]
,

p̂ψ′ = e−i
e
h̄

Λ
[
p̂ψ − i e

h̄
ψp̂Λ

]
.

(6.4)
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Our Lagrangian function transforms in the following manner:

L′ = − h̄2

2m

(
∇− i e

h̄
∇Λ

)
ψ ·
(
∇ + i

e

h̄
∇Λ

)
ψ∗,

+
ih̄

2

[
ψ∗
(
∂t − i

e

h̄
∂tΛ
)
ψ − ψ

(
∂t + i

e

h̄
∂tΛ
)
ψ∗
]

=
1

2m

(
p̂− i e

h̄
p̂Λ
)
ψ ·
(
p̂+ i

e

h̄
p̂Λ
)
ψ∗

+
1

2

[
ψ∗
(
Ĥ − i e

h̄
ĤΛ
)
ψ − ψ

(
Ĥ + i

e

h̄
ĤΛ
)
ψ∗
]
.

This Lagrangian is not invariant under the gauge transformation. Following

what was done in section 6.1 we choose to write the Lagrangian as:

L =
ih̄

2
ψ∗
(
∂t + i

e

h̄
A0

)
ψ − ih̄

2
ψ
(
∂t − i

e

h̄
A0

)
ψ∗,

− h̄2

2m

(
∇ + i

e

h̄
A
)
ψ ·
(
∇− i e

h̄
A
)
ψ∗

=
1

2
ψ∗
(
Ĥ − eA0

)
ψ − 1

2
ψ
(
Ĥ + eA0

)
ψ∗ +

1

2m
(p̂+ eA)ψ · (p̂− eA)ψ∗.

The only thing that we demand is that the functions A y A0 transfom in the

following way:

A′ = A+ ∇Λ, A′0 = A0 + ∂tΛ. (6.5)

We identify these functions to be the vector and scalar potentials respec-

tively. After using the Euler-Lagrange equation the Schrödinger equation

with electromagnetic interaction is

Ĥψ =
1

2m
(p̂+ eA)2ψ + eA0ψ. (6.6)

51



6.3 Gauge Transfomation on the DSR

Lagrangian

The Lagrangian for a free particle in the DSR theory is:

L =
ih̄

2
(ψ∗∂tψ − ψ∂tψ∗)−

h̄2ηλ
2m

∇ψ ·∇ψ∗ + fλ (∇ψ∗ ·∇ξ + ∇ψ ·∇ξ∗) ,

=
1

2

(
ψ∗Ĥλψ − ψĤλψ

∗
)

+
ηλ
2m

p̂ψ∗·p̂ψ − h̄−2fλ (p̂ψ∗· p̂ξ + p̂ψ · p̂ξ∗) ,

L = LNR + LNT . (6.7)

Where the first term(LNR) in the last equation is the non-relativistic case

that was written in the last section. The second term(LNT ) includes the new

terms from the DSR interactions. The term LNR consists of the temporal

and kinetic parts of the Schrödinger equation and will transform like the

previous section. The new part we have to investigate is the term LNT which

includes of the function ξ. Now we assume that the unknown function ξ

transforms in the following manner

ξ′ = e−i
e
h̄

Ξ(x,t)ξ. (6.8)

The new transformation of the function ξ is similar to the one performd to

the wave function. Performing the gauge transformation of LNT yields:
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L′NT = fλ
{(

∇ + ieh̄−1∇Λ
)
ψ∗·
(
∇− ieh̄−1∇Ξ

)
ξ

+
(
∇− ieh̄−1∇Λ

)
ψ·
(
∇ + ieh̄−1∇Ξ

)
ξ∗
}
,

= −h̄−2fλ
{(
p̂+ ieh̄−1p̂Λ

)
ψ∗·
(
p̂− ieh̄−1 p̂Ξ

)
ξ

+
(
p̂− ieh̄−1p̂Λ

)
ψ ·
(
p̂+ ieh̄−1 p̂Ξ

)
ξ∗
}
.

We observe that, like in the earlier case, the free particle Lagrangian is

not gauge invariant and therefore we modify the Lagrangian to include a new

function

LNT = −h̄−2fλ [(p̂− eA)ψ∗ ·(p̂+ eB) ξ + (p̂+ eA)ψ · (p̂− eB) ξ∗] . (6.9)

Where the function B transforms as B′ = B + ∇Ξ. If we want to

obtain the equation of motion we use the Euler-Lagrange equation and take

the corresponding derivative. If we divide the Lagrangian in two parts1

L = LNR + LNT where the term LNR gives us the Schrödinger equation

which includes the electromagnetic field interaction that we already know.

Our Euler-Lagrange equation is

(
Ĥ − eA0

)
ψ − ηλ

2m
(p+ eA)2 ψ +

∂LNT
∂ψ∗

−
3∑
i=1

pi
∂LNT
∂ (piψ∗)

= 0.

We observe that the function LNT does not depend in the temporal derivative

so we have eliminated this term from the Euler-Lagrange equation. First we

1In this Lagrangian we have already done the transformed of momentum to the minimal
coupling.
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will take the corresponding derivatives individually and then we will evaluate

the scalar product that appears in equation (6.9).

(p̂− eA)ψ∗·(p̂+ eB)ξ = p̂ψ∗·p̂ξ + eξ p̂ψ∗·B − eψ∗p̂ξ·A− e2ψ∗ξA·B
∂LNT
∂ψ∗

= eh̄−2fλ {p̂ξ·A+ eξA·B} (6.10)

∂LNT
∂(piψ∗)

= −h̄−2fλ(pi + eξBi)

pi
∂LNT
∂(piψ∗)

= −h̄−2fλ {pipiξ + epi(ξBi)}

= −h̄−2fλ {pipiξ + eξpiBi + eBipiξ}
3∑
i=1

pi
∂LNT
∂ (piψ∗)

= −h̄−2fλ
{
p2ξ + eξp̂·B + eB·p̂ξ

}
(6.11)

Using the results found above the equation of motion is

(
Ĥ − eA0

)
ψ − ηλ

2m
(p̂+ eA)2ψ + eh̄−2fλ(p̂ξ·A + eξA·B)

+ h̄−2fλ(p
2ξ + eξp̂·B + eB·p̂ξ) = 0,

Multiplying the whole equation by ηλ we get,

(
ηλĤ − eλA0

)
ψ =

1

2m
(p̂λ + eλA)2ψ + ηλfλψ − eλh̄−2fλ(p̂ξ·A + eξA·B) (6.12)

− h̄−2eλfλ(ξp̂·B +B·p̂ξ).

Although the function ξ was use in the previous chapter as intermediate in

the calculation of the DSR Lagrangian, it did not appear in the final equation.

In this case, when the local gauge transformation is permormed one ends up

with the function ξ and a new vector function B that will be associated with
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a potential term like A.
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Chapter 7

Conclusion

In this work we have investigated the structure of a DSR theory in the con-

text of non-relativistic mechanics. Our main goal was to write a Schrödinger

-like equation using a relativistic deformed dispersion relation. To write

this equation two sets of aproximations were made. The first one was to

approximate the full deformed special relativity energy-momentum relation

equation (3.1). The second aproximation was to pass to the non-relativistic

limit, that is at low momentum (energy). After these aproximations were

done we found what was called the DSR Schrödinger equation. For the time-

independent DSR Schrödinger equation we noticed an energy shift of the

form Eλ = E − ηλfλ. Where E is the energy as defined in the “standard”

Schrödinger equation. For the temporal part of the Schrödinger equation we

have a change of scale in the Planck constant from h̄ to h̄λ = ηλh̄, were h̄

becomes energy dependent as found in [15].

We solved some “classical” problems like the harmonic oscillator, the free

particle, finding the Green’s function for the free particle and the hydrogen
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atom. For the case of the harmonic oscillator we redefined the angular fren-

quency as ω2
λ = ηλω

2. This was done to write the ladder operators in a sym-

metrical form and to use them to solve the problem. In this case we saw an

energy shift as was predicted. If we take a look at the corrected energy eigen-

values for the harmonic oscillator we find En
λ =

(
1 + 3

2
λmc2

)
(n + 1/2)h̄ω.

These corrected energy eigenvalues have the effect of a change of scale be-

cause of the term η
3/2
λ , this rescale of energy is of order of 10−23 to first order

in λ. The leading order DSR correction to the energy eigenvalues of the

hydrogen atom show no change of scale. The corrected energy eigenvalues in

this case are:

En
λ = −

[
m

2h̄2

(
e2

4πε0

)2
]

1

n2
.

These results do not depend on the constant ηλ or fλ as does the harmonic

oscillator.

In both problems will have an energy shift because the energy was defined

as Eλ = E − ηλfλ but the harmonic oscillator also got a change of scale

on the angular frequency and the Planck constant. The eigenvalues of the

hydrogen atom will get a energy shift of the order of 10−36J in first order

in λ. When investigating the wave function of the hydrogen atom we found

that the Bohr’s radius also got a correction from DSR. The correction was

a change of scale, aλ = ηλa0 = a0(1 + λmc2), where a0 is the uncorrected

Bohr’s radius. For both cases, the free particle and the Green’s function for

the free particle, we saw a change on the Planck constant and a phase factor

of the form e−ifλt/h̄. Although this factor appear in the wave function and
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the Green’s function the term are unobservable, because in such calculations

we look at the square modulus of the wave and Green’s function and this

factor then disappears

The Lagrangian formalism is a powerful tool in physics. We took the

task of writing a Lagrangian function from which we could derive the DSR

Schrödinger equation. For this we had to introduce an unknown function ξ

that would not take part of the final equation. The resulting equation by

the Lagrangian method is in complete agreement with the DSR Schrödinger

equation derived in chapter two. ξ was only used as an intermediate step for

the calculation. Later on, when we made a local gauge transformation to the

wave function that appeared in the Lagrangian, we saw that this function

and its derivative did appeared. Compared with the gauge transformation

done to the Schrödinger equation these two results seem different. But in

the case of the Lagrangian method, were the function ξ and its derivative

appeared, we associated them with a potential term and because the potential

is arbitrary we can redefine it as we like. All of our results in this work will

reduce to the non-relativistic limit when λ→ 0. It was found that the charge

of the particle becomes energy dependent due to the factor ηλ.

For future work one can investigate the role of the unknown function ξ in

the case for the interaction with the electromagnetic field were the function ξ

appears. Because of the restriction on the wave function ψ = ∇2ξ one could

try to solve this equation for ξ for the one dimensional case. Then use the

solution of ξ and look if equation (6.12) simplifies or if it can be solve for this

special case. Also a the function B is of interest. Future work can be done to
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investigate the nature of this unknown function. One can futher investigate

if the DSR Lagrangian for the electromagnetic field exhibits other kinds of

symmetries. The Noether current can be calculated yo study if any new

conserved quantities can be found. Some preliminary work has been done to

derive the DSR Schrödinger equation from the DSR Klein-Gordon equation.

We propose as future work that this equation be written and study a way to

consistently approximate this equation in the non-relativistic regime.
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