ALEXANDER POLYNOMIAL FOR TORUS KNOTS VIA BURAU MATRICES FOR PERIODIC BRAIDS

By
Raúl Alfonso Beltrán Hoyos
A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE
in
PURE MATHEMATICS
UNIVERSITY OF PUERTO RICO
MAYAGÜEZ CAMPUS
2017

Approved by:

Gabriele Castellini, Ph.D
Date
Member, Graduate Committee

Juan Romero, Ph.D
Member, Graduate Committee

Juan A. Ortiz-Navarro, Ph.D
President, Graduate Committee

Betsy Morales Caro, Ph.D
Date
Representative of Graduate Studies

Olgamary Rivera-Marrero, Ph.D
Date
Chairperson of the Department

Abstract of Thesis Presented to the Graduate School of the University of Puerto Rico in Partial Fulfillment of the
 Requirements for the Degree of Master of Science
 ALEXANDER POLYNOMIAL FOR TORUS KNOTS VIA BURAU MATRICES FOR PERIODIC BRAIDS

By
Raúl Alfonso Beltrán Hoyos 2017

Chair: Juan A. Ortiz-Navarro
Department: Mathematical Sciences

This thesis provides a characterization of the reduced Burau matrices for braids of the form $\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{d}$, with $\operatorname{gcd}(n, d)=1, n, d \geq 2$, and exposes its relationship with the Alexander polynomial for (n, d)-torus knot by using Markov functions theory. In addition, a similar characterization for a particular case of periodic braids is provided, whose closures is the mirror of a (n, d)-torus knot.

Resumen de Tesis Presentado a Escuela Graduada de la Universidad de Puerto Rico como requisito parcial de los Requerimientos para el grado de Maestría en Ciencias

POLINOMIO DE ALEXANDER PARA NUDOS TOROIDALES VIA MATRICES DE BURAU PARA TRENZAS PERIODICAS

Por
Raúl Alfonso Beltrán Hoyos

2017
Consejero: Juan A. Ortiz-Navarro
Departamento: Ciencias Matemáticas

Esta tesis provee una caraterización de las matrices reducidas de Burau para trenzas de la forma $\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{d}$, con $\operatorname{mcd}(n, d)=1, n, d \geq 2$, y expone su relación con el polinomio de Alexander para nudos toroidales, usando la teoria de funciones de Markov. En adición, proporcionamos una caracterización similar para un caso particular de trenzas periodicas cuya clausura es el espejo de un (n, d)-nudo toroidal.

Copyright © 2017
by
Raúl Alfonso Beltrán Hoyos

To my wife, my parents and my sisters.

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor Juan A. Ortiz Navarro for his continuous support, patience, and motivation.

Thank you to my parents for their care, love, and for being there every time I needed their advice.

I am also thankful to my wife for her unconditional help and love of things that are important to me.

TABLE OF CONTENTS

page
ABSTRACT ENGLISH ii
ABSTRACT SPANISH iii
ACKNOWLEDGMENTS vi
1 INTRODUCTION 1
1.1 Justification 1
1.2 Previous publications 2
1.3 Objectives 3
1.3.1 Main objective 3
1.3.2 Secondary objectives 3
2 PRELIMINARIES 4
2.1 Knots 4
2.2 Reidemeister Moves 6
2.3 Knot invariants 7
2.3.1 Alexander polynomial 7
2.4 Braid groups 10
2.4.1 The Artin braid groups 12
2.4.2 Markov funtions 14
2.4.3 The Burau representation 16
3 Reduced Burau matrices for braids of the form $\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{d}$ with $\operatorname{gcd}(n, d)=1$ 22
4 CONCLUSION AND FUTURE WORK 38
4.1 Conclusion 38
4.2 Future work 38

CHAPTER 1 INTRODUCTION

1.1 Justification

Braid theory has been studied by many mathematicians throughout its development. The idea of this mathematical object was introduced by Emil Artin [3] to formalize topological objects that represent the intertwining of several strings in \mathbb{R}^{3}. Its attractiveness lies from its close relations to other objects in low dimensional topology, such as knots, links, surfaces, and configuration spaces.

Braid groups have been extensively studied and their relation with representation theory has led to numerous important results such as the linearity and the orderability of the $n t h$ braid group B_{n}. One remarkable presentation of the braid group is the Burau representation. This is a homological representation of the braid groups obtained by classes of self-homeomorphisms acting on the topological spaces obtained from the puntured disks, from which we can obtain powerful knot invariants such as the Jones polynomial and the Alexander polynomial.

To construct the last polynomial mentioned above for knots(links) it is first necessary to study the reducibility of the Burau representation. Then, using the theory of Markov functions, one can construct rational functions with values in the Laurent polynomial ring $\mathbb{Z}\left[t, t^{-1}\right]$. All these functions form a Markov Funtion, and the associated knot(link) invariant coincides with the Alexander polynomial.

Knots are classified into three families: satellite, hyperbolic, and torus knots. An important result is that each knot or link represents the closure of a braid, a
theorem stated and proved by Emil Artin [3]. In particular, torus knots have a unique periodic braid representation.

My interest is to analyze what is happening in the reduced Burau matrices for the periodic braids mentioned above; the rational functions derived from these matrices, and the Alexander polynomial.

1.2 Previous publications

In 1925, Emil Artin introduced the braid group B_{n}. In his paper [3], he provided an algebraic definition in terms of a group presentation by generators and relationship and he proved that each knot(link) is isotopic to the closure of a braid.

In 1935 Burau [9] provided a nontrivial linear representation called Burau representation, he also gave a close relationship between this representation and the Alexander polynomial.

An interesting type of braid are periodic braids, that is, braids that have the form $w=b^{k}$, where b is word and k is the period of w. In recent work, Seong Ju Kim, Ryan Stees and Laura Taalman [8] gave an important result that relates a big knot class and periodic braids. This result provides an easier demonstration that every torus knot has a unique periodic braid representation.

1.3 Objectives

1.3.1 Main objective

- The main objective of this thesis is to find a pattern in the reduced Burau matrices for braids of the form $\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{d}$, and $\left(\sigma_{1}^{-1} \sigma_{2}^{-1} \cdots \sigma_{n-1}^{-1}\right)^{d}$ where $\operatorname{gcd}(n, d)=1$ and $n, d \geq 2$.

1.3.2 Secondary objectives

- To analyze the reduced Burau representation for braids in B_{n}.
- To characterize the reduced Burau matrices for the braids mentioned in the main objetive.
- To expose a general formula for the Alexander Polynomial for the knot associated to the closure of the braids $\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{d}$, and $\left(\sigma_{1}^{-1} \sigma_{2}^{-1} \cdots \sigma_{n-1}^{-1}\right)^{d}$.

CHAPTER 2 PRELIMINARIES

This chapter provides basic definitions and results of knot theory and braid theories.

2.1 Knots

Definition 2.1. A link is an embedding of a disjoint union of n circles into \mathbb{R}^{3} or S^{3}. A link of one component is a knot.

A way to visualize and manipulate knots is to project the knot in \mathbb{R}^{2}. If the projection is injective everywhere, except at a finite number of points called crossings, and there is not triple intersections, tangencies or cusps, the projection is called regular

Figure 2-1: Hopf link, unknot and trefoil

Figure 2-2: Triple intersections, tangencies, and cusps
An oriented knot (link) is a knot (link) with an orientation defined. The orientation of a knot is usually represented by placing an arrow on its diagram in a chosen direction.

Figure 2-3: An oriented knot
Definition 2.2. Let $f, g: X \rightarrow Y$ be continuous functions. A continuous function $F: X \times[0,1] \rightarrow Y$ such that $F(x, 0)=f(x)$ and $F(x, 1)=g(x)$ for all $x \in X$ is called an isotopy if $\left.F\right|_{X \times\{t\}}$ is homeomorphism for all $t \in[0,1]$.

Definition 2.3. Let $f, g: Y \rightarrow X$ be embeddings of Y into $X . f$ and g are ambient isotopic if there is an isotopy $F: X \times[0,1] \rightarrow Y$ such that $F(x, 0)=x$ for all $x \in X$ and $F(f(y), 1)=g(y)$ for all $y \in Y$.
Definition 2.4. Two knots K_{1}, K_{2} are equivalent if they are ambient isotopic.
Definition 2.5. A planar isotopy of a knot projection is a continuous deformation of the projection.

Then, K_{1}, K_{2} are equivalent if it is possible to deform one to the other by ambient or planar isotopy.

Knots are classified into three large families: satellite, hyperbolic, and torus knots. This thesis provides an important result for torus knots, making use of braid theory, which will be discussed in section 2.4

Definition 2.6. A torus knot is a knot that lies on an unknotted (standard) torus in \mathbb{R}^{3}; without crossing over or under itself as it lies on the torus.

Figure 2-4: A trefoil on a torus
We can draw a torus knot, traveling p times vertically and q times horizontally around the torus, where $p, q \geq 2$ and p and q are relatively prime. A $(p, q)-$ torus knot is denoted by $T(p, q)$. For example, the trefoil knot is denoted by $T(3,2)$. It goes three times vertically around the torus and twice horizontally.

Theorem 1. $T(p, q)$ is equivalent to $T(q, p)$. [1]
Theorem 2. The least number of crossings that occurs in any projection, for a $T(p, q)$ is exactly the minimum of $p(q-1)$ y $q(p-1)$. [5]

2.2 Reidemeister Moves

In 1927, Kurt Reidemeister defined a series of move known as Reidemeister

Moves.

Figure 2-5: Type I Reidemeister move

Figure 2-6: Type II Reidemeister move

Figure 2-7: Type III Reidemeister move
Two projections of a knot(link) are isotopic if and only if one can be transformed into the other by a finite sequence of Reidemeister moves [7]

2.3 Knot invariants

Definition 2.7. A knot invariant is a property of a knot that does not change under ambient isotopy.

Two projections of a knot have the same knot invariant, but two projections with the same knot invariant need not be the same knot.

2.3.1 Alexander polynomial

The Alexander polynomial is an invariant of oriented $\operatorname{Knot}(\operatorname{Link})$ in \mathbb{R}^{3}, discovered in 1923 by J. W. Alexander (Alexander, 1928). There are generally difficult routes to compute the Alexander polynomial, but in 1969, John Conway provided an axiomatic form to compute it.

Let L be an oriented knot projection, let +1 be a right handed (positive) and -1 a left handed (negative) crossing, respectively, as in the figure (2-8)

Figure 2-8: Positive and negative crossings
Each crossing can be smoothed in two diferent ways, either by $0-$ smoothing or $1-$ smoothing according to the figure (2-9)

Figure 2-9: Smoothings for a crossing
Define L_{+}, L_{-}and L_{0} by isolating and changing one crossing of L as shown in figure (2-10)

L_{-}

Figure 2-10: A Conway triple
L_{+}, L_{-}and L_{0} are three oriented links in \mathbb{R}^{3}, and form a Conway triple.
The Alexander polynomial of links is a mapping Δ assigning every oriented $\operatorname{link} L \subset \mathbb{R}^{3}$ a Laurent polynomial $\Delta(L) \in \mathbb{Z}\left[t, t^{-1}\right]$ satisfying the following three axioms:

1. $\Delta(L)$ is invariant under isotopy of L;
2. if L is a trivial knot, then $\Delta(L)=1$;
3. for any Conway triple $L_{+}, L_{-}, L_{0} \subset \mathbb{R}^{3}$,

$$
\Delta\left(L_{+}\right)-\Delta\left(L_{-}\right)=\left(t^{-1 / 2}-t^{1 / 2}\right) \Delta\left(L_{0}\right)
$$

The latter equality is known as the Alexander skein relation. [2]
Definition 2.8. A splittable link is a link that can be separated by a 2-sphere embedded in S^{3}.

Proposition 2.1. If L is splittable with at least two components, then $\Delta(L)=0$. ([4] and [6])

Example: Let's compute the Alexander polynomial for the trefoil knot, choosing crossings sequentially, and then applying the skein relation until trivial links are left.

then

$$
\begin{aligned}
\Delta\left(L_{k_{1}}\right) & =\Delta\left(L_{k_{2}}\right)+\left(t^{-1 / 2}-t^{1 / 2}\right) \Delta\left(L_{k_{3}}\right) \\
& =1+\left(t^{-1 / 2}-t^{1 / 2}\right) \Delta\left(L_{k_{3}}\right) .
\end{aligned}
$$

for $\Delta\left(L_{k_{3}}\right)$,

then

$$
\begin{aligned}
\Delta\left(L_{k_{3}}\right) & =\Delta\left(L_{k_{4}}\right)+\left(t^{-1 / 2}-t^{1 / 2}\right) \Delta\left(L_{k_{5}}\right) \\
& =0+\left(t^{-1 / 2}-t^{1 / 2}\right)(1) \\
& =t^{-1 / 2}-t^{1 / 2}
\end{aligned}
$$

therefore

$$
\begin{aligned}
\Delta\left(L_{k_{1}}\right) & =1+\left(t^{-1 / 2}-t^{1 / 2}\right)\left(t^{-1 / 2}-t^{1 / 2}\right) \\
& =t^{-1}+t-1
\end{aligned}
$$

which is the Alexander polynomial for the trefoil knot.

2.4 Braid groups

Basic relations between the braid group, the symmetry groups S_{n}, links in \mathbb{R}^{3} and representation theory are presented.

Definition 2.9. Consider two parallel planes A and A^{\prime} in \mathbb{R}^{3}, each containing n distinct Collinear points $\left\{p_{i}\right\}$ and $\left\{p_{i}^{\prime}\right\}$ respectively. Let $\mathscr{A}_{i}:[0,1] \rightarrow \mathbb{R}^{3}$ be embedded arcs in \mathbb{R}^{3}. A geometric braid (or braid with n strand) is said to be the set $\mathscr{A}=\left\{\mathscr{A}_{1}, \mathscr{A}_{2}, \ldots, \mathscr{A}_{n}\right\}$, where \mathscr{A}_{i} connects the point $p_{i} \in A$ to the point $p_{\tau(i)}^{\prime} \in A^{\prime}$, $\tau \in S_{n}$ and

1. Each \mathscr{A}_{i} intersects each intermediate parallel plane between A and A^{\prime} exactly once.
2. $\mathscr{A}_{1}, \mathscr{A}_{2}, \ldots, \mathscr{A}_{n}$ intersect each intermediate parallel plane between A and A^{\prime} in exactly n different points.

The permutation τ is called the associated permutation to the braid, and \mathscr{A}_{i} is called the ith string (or strand) in the braid.

Figure 2-11: A geometric braid
Definition 2.10. Two n-braids \mathscr{A} and \mathscr{A}^{\prime} with the same permutation τ are equivalent if there is a homotopy with permutation τ from \mathscr{A} to \mathscr{A}^{\prime}. In other words, if n continuous maps exist

$$
F_{i}:[0,1] \times[0,1] \rightarrow \mathbb{R}^{3}, \quad 1 \leq i \leq n
$$

such that

1. $F_{i}(t, 0)=\mathscr{A}_{i}(t), F_{i}(t, 1)=\mathscr{A}_{i}^{\prime}(t), 1 \leq i \leq n, 0 \leq t \leq 1$
2. $F_{i}(0, k)=p_{i}, F_{i}(1, k)=p_{\tau(i)}^{\prime}, 1 \leq i \leq n, 0 \leq k \leq 1$
and defining $\mathscr{A}_{i}^{k}:[0,1] \rightarrow \mathbb{R}^{3}$ by $\mathscr{A}_{i}^{k}(t)=F_{i}(t, s)$, then \mathscr{A}^{k} is a n-braid for each $k \in[0,1]$.

An oriented braid is a braid with an orientation defined. The orientation of a braid is usually downwards.

According to the definition of braid only type II and type III Reidemeister moves can be made. In the same way of knot theory, any two geometric braids \mathscr{A}, \mathscr{A}^{\prime} are equivalent if \mathscr{A} can be transformed into \mathscr{A}^{\prime} by a finite sequence of isotopies and Reidemeister moves.

2.4.1 The Artin braid groups

The Artin braid group was introduced by Emil Artin [3] in 1925. He provided an algebraic definition of the braid group denoted by B_{n} in terms of a group presentation by generators and relations.

Definition 2.11. The Artin braid group B_{n} is the group generated by $n-1$ generators $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}$ and the braid relations

$$
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}
$$

for all $i, j=1,2, \ldots, n-1$ with $|i-j| \geq 2$, and

$$
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}
$$

for $i, j=1,2, \ldots, n-1$
By definition $B_{1}=\{1\}$ is a trivial group and B_{2} is generated by σ_{1} without relations.

For $n>2$, if $b \in B_{n}$, then

$$
b=\sigma_{i_{1}}^{n_{1}} \sigma_{i_{2}}^{n_{2}} \ldots \sigma_{i_{r}}^{n_{r}}
$$

where $i_{j} \in\{1,2, \ldots, n-1\}$ for all $j, i_{j} \neq i_{k}, i \neq k$ and $n_{j} \in \mathbb{Z}$ for all $j . b$ is known as a word.

Proposition 2.2. If s_{1}, \ldots, s_{n-1} are elements of a group G satisfying the braid relations, then there is a unique group homomorphism $f: B_{n} \rightarrow G$ such that $s_{i}=f\left(\sigma_{i}\right)$ for all $i=1,2, \ldots, n-1$. See [2]

Lemma 2.1. The group B_{n} with $n \geq 3$ is nonabelian. See [2]
Denote by \mathscr{B}_{n} the set of geometric braids with multiplication. The basic blocks to build any braid in \mathscr{B}_{n} are shown in the figure(2-12)

Figure 2-12: The elementary braids
Geometrically, the first and second relations represent equivalent braids by isotopies.

$$
\sigma_{1} \sigma_{1}^{-1}=1
$$

$$
\sigma_{1} \sigma_{2} \sigma_{3}=\sigma_{2} \sigma_{1} \sigma_{2}
$$

$$
\sigma_{1} \sigma_{3}=\sigma_{3} \sigma_{1}
$$

The elements $\sigma_{i}^{+}, i=1,2, \ldots, n-1$ satisfy the braid relations and each $\beta \in \mathscr{B}_{n}$ has an inverse β^{-1}, giving \mathscr{B}_{n} a group structure, then, there is a unique homomorphism $\varphi_{ \pm}: B_{n} \rightarrow \mathscr{B}_{n}$ such that $\varphi_{ \pm}\left(\sigma_{i}\right)=\sigma_{i}^{ \pm}$for all $i=i=1,2, \ldots, n-1$. The homomorphism $\varphi_{ \pm}$is an isomorphism [2]. $\varphi_{ \pm}$allows us to identy B_{n} and \mathscr{B}_{n}, thus, the elements in B_{n} are called braids on n strings.

2.4.2 Markov funtions

In order to show the connection between knots and braids, concepts such as Markov functions and Markov moves will appear in this section as a complement to Alexander's theorem

Theorem 3. (Alexander's theorem) Any oriented Knot (link) in \mathbb{R}^{3} is isotopic to a closed braid. See [5]

The process of passing from a knot to a braid is called braiding, and it is described in the proof of the theorem 3

Example

Figure 2-13: Braid closure

Figure 2-14: Braiding
Definition 2.12. Let B_{∞} be the union of the groups $B_{1}, B_{2}, \ldots, B_{n}, \ldots$ i.e $B_{\infty}:=$ $\bigcup_{k \geq 1} B_{k}$. The following two operations in B_{∞}; are called Markov moves:

1. $M_{1}:$ If $\beta \in B_{n}$, then $\beta \mapsto \gamma \beta \gamma^{-1}$ for some $\gamma \in B_{n}$. The element $\gamma \beta \gamma^{-1} \in B_{n}$ is a conjugate of β.
2. M_{2} : If $\beta \in B_{n}$, then $\beta \mapsto \beta \sigma_{n}^{ \pm 1}$, where σ_{n} is a generator of B_{n+1}.

Figure 2-15: Markov moves
Definition 2.13. Let $\alpha, \beta \in B_{n}$. If β can be obtained from α by a finite number of Markov moves, then α is said to be Markov equivalent (M - equivalent) to β and is denoted by $\alpha \sim_{M} \beta$.

Theorem 4. (A. Markov) Two braids have isotopic closures in Euclidean space \mathbb{R}^{3} if and only if these braids are $M-$ equivalent. See [2]

Definition 2.14. A periodic braid in B_{n} is a braid with n-strands of the form $w=b^{k}$, where $b=\sigma_{i_{1}}^{n_{1}} \sigma_{i_{2}}^{n_{2}} \ldots \sigma_{i_{r}}^{n_{r}}, i_{j} \in\{1,2, \ldots, n-1\}$ for all $j, i_{j} \neq i_{k}, i \neq k, n_{j} \in \mathbb{Z}$ for all j, and k is the number of repetitions of b or the period of w.

For any integers $n \geq 2$ and $k \geq 1$. A spiral link of type (n, k) is a link that admits an n-strand braid word of the form $w=b^{k}$ with word lenth $n-1$.

Example $\left(\sigma_{1} \sigma_{2} \sigma_{4}^{-1} \sigma_{3}^{-1}\right)^{2}$ is the braid representation of a spiral link of type $(5,2)$.

It is proved that every spiral knot of type (n, k) must have $\operatorname{gcd}(n, k)=1[8]$, and we say that a spiral link with one component is a spiral knot.

Theorem 5. Let $n \geq 2$ and $k \geq 1$. Every spiral knot of type (n, k) admits a braid word of the form $\left(\sigma_{1}^{\epsilon_{1}} \sigma_{2}^{\epsilon_{2}} \ldots \sigma_{n-1}^{\epsilon_{n-1}}\right)^{k}$, where $\epsilon_{i}= \pm 1$. [8]

Spiral knots are denoted by $S(n, k, \epsilon)$, where $\epsilon=\left(\epsilon_{1}, \epsilon_{1}, \ldots, \epsilon_{n-1}\right)$. Note that, a torus knot $T(p, q)=S(p, q, \epsilon)$ where $\epsilon=(1,1, \ldots, 1)$, thus $T(p, q)$ admits a braid word of the form $\left(\sigma_{1} \sigma_{2} \ldots \sigma_{p-1}\right)^{q}$.

2.4.3 The Burau representation

The Burau representation is a homological representation of the braid groups obtained by classes of self-homeomorphisms acting on the homology of topological spaces obtained from puntured disks.

Fix $n \geq 2$. For $i=1, \ldots, n-1$, consider the $n \times n$ matrix over the ring of Laurent polynomials $\Lambda=\mathbb{Z}\left[t, t^{-1}\right]$

$$
U_{i}=\left(\begin{array}{cccc}
I_{i-1} & 0 & 0 & 0 \\
0 & 1-t & t & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & I_{n-i-1}
\end{array}\right)
$$

where I_{k} is the unit $k \times k$ matrix. Each matrix U_{i} has a block-diagonal form. These blocks can be the unit matrix or the 2×2 matrix

$$
U=\left(\begin{array}{cc}
1-t & t \\
1 & 0
\end{array}\right)
$$

By the Cayley-Hamilton theorem, $U^{2}-(1-t) U-t I_{2}=0$. Since I_{k} satisfy this equation,

$$
U_{i}^{2}-(1-t) U_{i}-t I_{n}=0, \quad \forall i
$$

then, $U_{i} U_{i}^{-1}=I_{n}$. where $U_{i}^{-1}=t^{-1}\left(U_{i}-(1-t) I_{n}\right)$. Hence U_{i} is invertible over Λ and its inverse is given by:

$$
U_{i}^{-1}=\left(\begin{array}{cccc}
I_{i-1} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & t^{-1} & 1-t^{-1} & 0 \\
0 & 0 & 0 & I_{n-i-1}
\end{array}\right)
$$

The block form of the matrices U_{1}, \ldots, U_{n-1} implies that

$$
\begin{aligned}
U_{i} U_{j} & =U_{j} U_{i}, \quad|i-j| \geq 2 \\
U_{i} U_{i+1} U_{i} & =U_{i+1} U_{i} U_{i+1}, \quad|i-j| \geq 1
\end{aligned}
$$

Then U_{1}, \ldots, U_{n-1} satisfy the braid relations. By proposition 2.2 there is a homomorphism $\Psi_{n}: B_{n} \rightarrow G L_{n}(\Lambda)$ Such that $\Psi_{n}\left(\sigma_{i}\right)=U_{i}, n \geq 2, i=1, \ldots, n-1$, where $G L_{n}(\Lambda)$ is the group of invertible $n \times n$ matrices over $\Lambda . \Psi_{n}$ is called the Burau representaion of B_{n}.

- By convention, Ψ_{1} for the group B_{1} is the trivial homomorphism $B_{1} \rightarrow G L_{1}(\Lambda)$
- For $n=2, \Psi_{2}$ for the group B_{2} is the homomorphism $B_{2} \rightarrow G L_{2}(\Lambda)$ such that

$$
\Psi_{2}\left(\sigma_{1}\right)=U
$$

Since $\operatorname{det}\left(U_{i}\right)=-t \forall i$, then $\operatorname{det} \Psi_{n}(b)=(-t)^{\langle b\rangle}, \forall \beta \in B_{n}$, where $\langle b\rangle: B_{n} \rightarrow \mathbb{Z}$ such that $\langle b\rangle\left(\sigma_{i_{1}, \ldots,}^{v_{i}}, \sigma_{i_{k}}^{v_{k}}\right)=\sum_{j=1}^{k} v_{j}$ is a homomorphism, which tells us the number of generators involved in the word.

Example The generators for B_{4} are σ_{1}, σ_{2}, and σ_{3}, then
$\Psi\left(\sigma_{1}\right)=\left[\begin{array}{cccc}1-t & t & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \Psi\left(\sigma_{2}\right)=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1-t & t & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \Psi\left(\sigma_{3}\right)=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1-t & t \\ 0 & 0 & 1 & 0\end{array}\right]$
consider $b \in B_{4}$ such that $b=\sigma_{1} \sigma_{2} \sigma_{3}$, hence $\Psi_{4}(b)=\Psi_{4}\left(\sigma_{1} \sigma_{2} \sigma_{3}\right)=\Psi_{4}\left(\sigma_{1}\right) \Psi_{4}\left(\sigma_{2}\right) \Psi_{4}\left(\sigma_{3}\right)$, then

$$
\begin{aligned}
\Psi_{4}\left(\sigma_{1} \sigma_{2} \sigma_{3}\right)= & {\left[\begin{array}{cccc}
1-t & t & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1-t & t & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1-t & t \\
0 & 0 & 1 & 0
\end{array}\right] } \\
= & {\left[\begin{array}{cccc}
1-t & -t(t-1) & -t^{2}(t-1) & t^{3} \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] }
\end{aligned}
$$

and $\operatorname{det} \Psi_{4}(b)=-t^{3}$.
A linear representation is said to be faithful if its kernel is trivial. The homomorphism Ψ_{n} is not faithful for all $n \geq 5$ i.e $\operatorname{ker} \Psi_{n} \neq\{1\}$ for all $n \geq 5$ [2]; and an easy way to study the kernel is studying first the reducibility of the representation.

The reduced Burau representation Ψ_{n}

Fix $n \geq 3$. consider the $(n-1) \times(n-1)$ matrices $V_{1}, V_{2}, \ldots V_{n-1}$ over the ring $\Lambda=\mathbb{Z}\left[t, t^{-1}\right]$ given by:

$$
V_{1}=\left(\begin{array}{ccc}
-t & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & I_{n-3}
\end{array}\right), \quad V_{n-1}=\left(\begin{array}{ccc}
I_{n-3} & 0 & 0 \\
0 & 1 & t \\
0 & 0 & -t
\end{array}\right)
$$

and for $1<i<n-1$

$$
V_{i}=\left(\begin{array}{ccccc}
I_{i-2} & 0 & 0 & 0 & 0 \\
0 & 1 & t & 0 & 0 \\
0 & 0 & -t & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & I_{n-i-2}
\end{array}\right) .
$$

Consider the $n \times n$ matrix C,

$$
C=\left(\begin{array}{ccccc}
1 & 1 & 1 & . . & 1 \\
0 & 1 & 1 & . . & 1 \\
0 & & 1 & . . & 1 \\
: & : & : & & : \\
0 & 0 & 0 & . . & 1
\end{array}\right)
$$

and

$$
V_{i}^{\prime}=\left(\begin{array}{ll}
V_{i} & 0 \\
*_{i} & 1
\end{array}\right)
$$

where $*_{i}$ is the row of length $n-1$ equal to $(0, \ldots 0,0)$ if $i<n-1$ and to $(0, \ldots 0,1)$ if $i=n-1$.

Note that, fixing i, for all $k=1, \ldots, n$, the $k t h-$ column of $U_{i} C$ is the sum of the first k columns of U_{i}. A direct calculation shows that, $U_{i} C$ is obtained from C replacing the $(i, i) t h$-entry for $1-t$ and replacing the $(i+1, i) t h$-entry by 1 .

Similarly, for all $l=1, \ldots, n$, the l th-row of $C V_{i}^{\prime}$ is the sum of the last l rows of V_{i}^{\prime}. Then, $C V_{i}^{\prime}$ is obtained from C by the same substitution above. Hence,

$$
C^{-1} U_{i} C=V_{i}^{\prime}
$$

then, the matrices $V_{1}^{\prime}, V_{2}^{\prime}, \ldots, V_{n-1}^{\prime}$ satisfy the braid relations, hence the matrices $V_{1}, V_{2}, \ldots V_{n-1}$ also satisfy the braid relations. By proposition 2.2 there is a homomorphism $\Psi_{n}^{r}: B_{n} \rightarrow G L_{n-1}(\Lambda)$ such that $\Psi_{n}^{r}\left(\sigma_{i}\right)=V_{i}, n \geq 3, i=1, \ldots, n-1$, where $G L_{n-1}(\Lambda)$ is the group of invertible $(n-1) \times(n-1)$ matrices over $\Lambda . \Psi_{n}^{r}$ is called the reduced Burau representaion of B_{n}.

- For $n=2, \Psi_{2}^{r}$ for the group B_{2} is the homomorphism $B_{2} \rightarrow G L(\Lambda)$ such that $\Psi_{2}^{r}\left(\sigma_{1}\right)=(-t)_{1 \times 1}$.
Example The generator for B_{3} are σ_{1}, and σ_{2}, then

$$
\Psi_{3}^{r}\left(\sigma_{1}\right)=\left(\begin{array}{cc}
-t & 0 \\
1 & 1
\end{array}\right) \quad \Psi_{3}^{r}\left(\sigma_{2}\right)=\left(\begin{array}{cc}
1 & t \\
0 & -t
\end{array}\right)
$$

consider $b \in B_{3}$ such that $b=\sigma_{1} \sigma_{2} \sigma_{1}$, hence $\Psi_{3}^{r}(b)=\Psi_{3}^{r}\left(\sigma_{1} \sigma_{2} \sigma_{1}\right)=\Psi_{3}^{r}\left(\sigma_{1}\right) \Psi_{3}^{r}\left(\sigma_{2}\right) \Psi_{3}^{r}\left(\sigma_{1}\right)$, then

$$
\Psi_{3}^{r}(b)=\left(\begin{array}{cc}
-t & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & t \\
0 & -t
\end{array}\right)\left(\begin{array}{cc}
-t & 0 \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
0 & -t^{2} \\
-t & 0
\end{array}\right)
$$

In order to see an application of this representation, it is important to construct a Markov function with values in $\mathbb{Z}\left[s, s^{-1}\right]$. The link invariant associated to this function is the Alexander polynomial.

Definition 2.15. A Markov function with values in a set E is a sequence of settheoretic maps $\left\{f_{n}: B_{n} \rightarrow E\right\}_{n \geq 1}$, satisfying the following conditions:

1. $\forall n \geq 1 y \forall \alpha, \beta \in B_{n}, f_{n}(\alpha \beta)=f_{n}(\beta \alpha)$;
2. $\forall n \geq 1 y \forall \beta \in B_{n}, f_{n}(\beta)=f_{n+1}\left(\sigma_{n} \beta\right)$ y $f_{n}(\beta)=f_{n+1}\left(\sigma_{n}^{-1} \beta\right)$.

A Markov function allows us to identify isotopy invariants of oriented link in \mathbb{R}^{3}.

Consider the ring homomorphism $g: \mathbb{Z}\left[t, t^{-1}\right] \rightarrow \mathbb{Z}\left[s, s^{-1}\right]$ Such that $t \longmapsto s^{2}$. Let $\beta \in B_{n}, n \geq 2$, then the rational function in s given by

$$
\begin{equation*}
f_{n}(\beta)=(-1)^{n+1} \frac{s^{-\langle\beta\rangle}\left(s-s^{-1}\right)}{\left(s^{n}-s^{-n}\right)} g\left(\operatorname{det}\left(\Psi_{n}^{r}(\beta)-I_{n-1}\right)\right), \tag{2.1}
\end{equation*}
$$

is the Alexander polynomial, where $\langle b\rangle: B_{n} \rightarrow \mathbb{Z}$ such that $\langle b\rangle\left(\sigma_{i_{1}, \ldots,}^{v_{i}}, \sigma_{i_{k}}^{v_{k}}\right)=\sum_{j=1}^{k} v_{j}$. Lemma 2.2. The mapping $\left\{f_{n}: B_{n} \rightarrow \mathbb{Z}\left[s, s^{-1}\right]\right\}_{n \geq 1}$ forms a Markov funtion. See [2].

Set $\widehat{f}(K)=f_{n}(\beta)$, for an oriented $\operatorname{knot}($ link $) K \in \mathbb{R}^{3}$ and an arbitrary $\beta \in B_{n}$ whose closure is isotopic to K. By the previous lemma $\widehat{f}(K)$ is an isotopy invariant of K that does not depend on the choice of β.

CHAPTER 3 REDUCED BURAU MATRICES FOR BRAIDS OF THE FORM $\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{d}$ WITH $\operatorname{gcd}(n, d)=1$

This chapter studies the reduced Burau matrices for braids in B_{n} of the form $\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{d}$, where $\operatorname{gcd}(n, d)=1$ and $n, d \geq 2$. These types of braids are a subclass of periodic braids, where all their crossings are positive i.e. the base words of the braid involve the first strand passing over all other strands in order.

Figure 3-1: Projection of the braid $\left(\sigma_{1} \sigma_{2} \sigma_{3}\right)^{2}$

By theorem 5, a torus knot $T(n, d)$ admits a braid word of the form $\left(\sigma_{1} \sigma_{2} \ldots \sigma_{n-1}\right)^{d}$ i.e the closure of $\left(\sigma_{1} \sigma_{2} \ldots \sigma_{n-1}\right)^{d}$ is a knot K isotopic to $T(n, d)$. Now, by theorem 1, $T(n, d)$ is equivalent to $T(d, n)$; observe that $T(d, n)$ has a standard braid projection $\left(\sigma_{1} \sigma_{2} \ldots \sigma_{d-1}\right)^{n}$, then $\left(\sigma_{1} \sigma_{2} \ldots \sigma_{n-1}\right)^{d}$ and $\left(\sigma_{1} \sigma_{2} \ldots \sigma_{d-1}\right)^{n}$ are braids whose closures are equivalent knots, but this does not mean that $\left(\sigma_{1} \sigma_{2} \ldots \sigma_{n-1}\right)^{d}$ and $\left(\sigma_{1} \sigma_{2} \ldots \sigma_{d-1}\right)^{n}$ are equivalent. When $\operatorname{gcd}(n, d) \neq 1$ the closure of $\left(\sigma_{1} \sigma_{2} \ldots \sigma_{n-1}\right)^{d}$ is a torus link and $\Psi_{n}^{r}\left(\left(\sigma_{1} \sigma_{2} \ldots \sigma_{n-1}\right)^{d}\right)=t^{n} I_{n-1}$ for all $n \geq 2$, this can be proven using
the homological interpretation of Ψ_{n}^{r}. In order to characterize the reduced Burau matrices for the braids mentioned above, show the following cases:

- For $n=2$, let $\beta \in B_{2}$, such that $\beta=\left(\sigma_{1}\right)^{d}$. with $\operatorname{gcd}(2, d)=1$. Then $d \geq 3$ and $d=1+2 k, k \in \mathbb{N}$. Therefore,

$$
\Psi_{2}^{r}(\beta)=\Psi_{2}^{r}\left(\left(\sigma_{1}\right)^{d}\right)=\left[\Psi_{2}^{r}\left(\sigma_{1}\right)\right]^{d}=(-t)^{d}=-t^{d}
$$

where Ψ_{2}^{r} is the reduced Burau representation for B_{2} mentioned in the section (2.4.3).

- For $n=3$, let $\beta \in B_{3}$, such that $\beta=\left(\sigma_{1} \sigma_{2}\right)^{d}$ with $\operatorname{gcd}(3, d)=1$. Then $d \geq 2$ and $d=2+3 k, k \in \mathbb{N} \cup 0^{\prime}$ or $d=1+3 k, k \in \mathbb{N}$. Therefore,

$$
\Psi_{3}^{r}(\beta)=\left[\Psi_{3}^{r}\left(\sigma_{1} \sigma_{2}\right)\right]^{d}=\left(\begin{array}{cc}
-t & -t^{2} \\
1 & 0
\end{array}\right)^{d}
$$

hence,

$$
\Psi_{3}^{r}(\beta)=\left\{\begin{array}{cc}
\left(\begin{array}{cc}
0 & t^{3+3 k} \\
-t^{1+3 k} & -t^{2+3 k}
\end{array}\right), & d=2+3 k, k \in \mathbb{N} \cup 0^{\prime} \\
\left(\begin{array}{cc}
-t^{1+3 k} & -t^{2+3 k} \\
t^{3 k} & 0
\end{array}\right), & d=1+3 k, k \in \mathbb{N}
\end{array}\right.
$$

Proving this by induction on k for $d=2+3 k, k \in \mathbb{N} \cup 0^{\prime}$.
If $k=0$,

$$
\Psi_{3}^{r}(\beta)=\left(\begin{array}{cc}
-t & -t^{2} \\
1 & 0
\end{array}\right)^{2}=\left(\begin{array}{cc}
0 & t^{3} \\
-t^{1} & -t^{2}
\end{array}\right)=\left(\begin{array}{cc}
0 & t^{3+3(0)} \\
-t^{1+3(0)} & -t^{2+3(0)}
\end{array}\right) .
$$

Suppose that the result is valid for k_{0}, then,

$$
\Psi_{3}^{r}(\beta)=\left[\Psi_{3}^{r}\left(\sigma_{1} \sigma_{2}\right)\right]^{2+3 k_{0}}=\left(\begin{array}{cc}
0 & t^{3+3 k_{0}} \\
-t^{1+3 k_{0}} & -t^{2+3 k_{0}}
\end{array}\right) .
$$

Now, for $k_{0}+1$, then $d=2+3 k_{0}+3=5+3 k_{0}$, and note that $5 \equiv 2 \bmod (3)$, thus $\Psi_{3}^{r}\left(\left(\sigma_{1} \sigma_{2}\right)^{2+3 k_{0}+3}\right)$ is well defined, therefore,

$$
\begin{aligned}
\Psi_{3}^{r}\left(\left(\sigma_{1} \sigma_{2}\right)^{2+3 k_{0}+3}\right) & =\Psi_{3}^{r}\left(\left(\sigma_{1} \sigma_{2}\right)^{2+3 k_{0}}\left(\sigma_{1} \sigma_{2}\right)^{3}\right) \\
& =\left[\Psi_{3}^{r}\left(\sigma_{1} \sigma_{2}\right)\right]^{2+3 k_{0}}\left[\Psi_{3}^{r}\left(\sigma_{1} \sigma_{2}\right)\right]^{3} \\
& =\left(\begin{array}{cc}
0 & t^{3+3 k_{0}} \\
-t^{1+3 k_{0}} & -t^{2+3 k_{0}}
\end{array}\right)\left(\begin{array}{ll}
t^{3} & 0 \\
0 & t^{3}
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & t^{3+3 k_{0}+3} \\
-t^{1+3 k_{0}+3} & -t^{2+3 k_{0}+3}
\end{array}\right) \\
& \left(\begin{array}{cc}
0 & t^{3+3\left(k_{0}+1\right)} \\
-t^{1+3\left(k_{0}+1\right)} & -t^{2+3\left(k_{0}+1\right)}
\end{array}\right) .
\end{aligned}
$$

The result is valid for all $k \in \mathbb{N} \cup 0^{\prime}$. The proof for the case $d=1+3 k, k \in \mathbb{N}$ is similar.

In addition, the matrices $\Psi_{3}^{r}(\beta)$ seen in terms of d would be,

$$
\Psi_{3}^{r}(\beta)=\left\{\begin{array}{cl}
\left(\begin{array}{cc}
0 & t^{d+1} \\
-t^{d-1} & -t^{d}
\end{array}\right), & d=2+3 k, k \in \mathbb{N} \cup 0^{\prime} . \\
\left(\begin{array}{cc}
-t^{d} & -t^{d+1} \\
t^{d-1} & 0
\end{array}\right), & d=1+3 k, k \in \mathbb{N} .
\end{array}\right.
$$

Now, by reasoning in the same way for n equal to 4 and 5 , the following matrices are obtained:

$$
\Psi_{4}^{r}(\beta)=\left(\begin{array}{ccc}
-t & -t^{2} & -t^{3} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)=\left\{\begin{array}{ccc}
\left(\begin{array}{ccc}
0 & t^{d+1} & 0 \\
0 & 0 & t^{d+1} \\
-t^{d-2} & -t^{d-1} & -t^{d}
\end{array}\right) \\
\left(\begin{array}{ccc}
-t^{d} & -t^{d+1} & -t^{d+2} \\
t^{d-1} & 0 & 0 \\
0 & t^{d-1} & 0
\end{array}\right)
\end{array} \quad d=3+4 k, k \in \mathbb{N} \cup 0^{\prime} .\right.
$$

and

$$
\begin{aligned}
& \Psi_{5}^{r}=\left(\begin{array}{cccc}
-t & -t^{2} & -t^{3} & -t^{4} \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)^{d} \\
& \overbrace{\left(\begin{array}{cccc}
0 & 0 & 0 & t^{d+3} \\
-t^{d-1} & -t^{d} & -t^{d+1} & -t^{d+2} \\
t^{d-2} & & 0 & 0 \\
0 & t^{d-2} & & 0
\end{array}\right),\left(\begin{array}{cccc}
0 & 0 & t^{d+2} & 0 \\
0 & 0 & 0 & t^{d+2} \\
-t^{d-2} & -t^{d-1} & -t^{d} & -t^{d+1} \\
t^{d-3} & 0 & 0 & 0
\end{array}\right)}^{\substack{d=3+5 k, k \in \mathbb{N} \cup 0^{\prime} .}} \\
& \left(\begin{array}{cccc}
0 & t^{d+1} & 0 & 0 \\
0 & 0 & t^{d+1} & 0 \\
0 & 0 & 0 & t^{d+1} \\
-t^{d-3} & -t^{d-2} & -t^{d-1} & -t^{d} \\
& d=4+5 k, k \in \mathbb{N} \cup 0^{\prime} .
\end{array}\right.
\end{aligned}
$$

Generalizing, consider $\beta \in B_{n}$ such that $\beta=\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{d}$ with $\operatorname{gcd}(n, d)=$ $1, n, d \geq 2$ and define the Burau matrix for de braid $\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}$ as:

$$
\Psi_{n}^{r}\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right):=\left(\begin{array}{ccccccc}
-t & -t^{2} & -t^{3} & . . & -t^{n-3} & -t^{n-2} & -t^{n-1} \\
1 & 0 & 0 & . . & 0 & 0 & 0 \\
0 & 1 & 0 & . . & 0 & 0 & 0 \\
. & . & . & & \cdot & \cdot & \cdot \\
. & . & . & & \cdot & \cdot & \cdot \\
. & . & . & & \cdot & \cdot & \cdot \\
0 & 0 & 0 & & 1 & 0 & 0 \\
0 & 0 & 0 & . . & 0 & 1 & 0
\end{array}\right) .
$$

Since Ψ_{n}^{r} is a homomorphism, then $\Psi_{n}^{r}(\beta)=\Psi_{n}^{r}\left(\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{d}\right)=\left[\Psi_{n}^{r}\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)\right]^{d}$. Now, let $d=p+n k, k \in \mathbb{N} \cup 0^{\prime}$ or $k \in \mathbb{N}$ with $\operatorname{gcd}(n, p)=1$, where p indicates the (p, p) th position where the term $-t^{d}$ appears in $\Psi_{n}^{r}(\beta)$, and the position of the row equal to $\left(-t^{d-p+1},-t^{d-p+2}, \ldots,-t^{d-1},-t^{d},-t^{d+1}, \ldots,-t^{n-p-2},-t^{n-p-1}\right)$ of length $n-1$. Therefore $\Psi_{n}^{r}(\beta)$ is given by:

- If $d=1+n k, k \in \mathbb{N}$, then $\Psi_{n}^{r}(\beta)$ is

$$
\Psi_{n}^{r}(\beta)=\left(\begin{array}{cccccc}
-t^{d} & -t^{d+1} & -t^{d+2} & \cdots & -t^{d+n-3} & -t^{d+n-2} \tag{3.1}\\
t^{d-1} & 0 & 0 & \cdots & 0 & 0 \\
0 & t^{d-1} & 0 & \cdots & 0 & 0 \\
\cdot & \cdot & \cdot & & \cdot & \cdot \\
\cdot & \cdot & & & \cdot & \cdot \\
\cdot & \cdot & \cdot & & \cdot & \cdot \\
0 & 0 & 0 & \cdots & t^{d-1} & 0
\end{array}\right)_{n-1}
$$

The term t^{d-1} is in the $(n-1, n-2)$ th position.

- If $d=p+n k, k \in \mathbb{N} \cup 0^{\prime}, 1<p<n$, then $\Psi_{n}^{r}(\beta)$ is
$\left(\begin{array}{ccccccccc}0 & \cdots & t^{d+n-p} & 0 & \cdot & \cdot & \cdot & 0 & 0 \\ \cdot & & 0 & 0 & & & & \cdot & \cdot \\ \cdot & & & & & & & \cdot & \cdot \\ \cdot & & & & & & & & 0 \\ 0 & 0 & . . & 0 & 0 & 0 & . . & t^{d+n-p} & 0 \\ 0 & 0 & . . & 0 & 0 & 0 & . . & 0 & t^{d+n-p} \\ -t^{d-p+1} & -t^{d-p+2} & . . & -t^{d-1} & -t^{d} & -t^{d+1} & . . & -t^{d+n-p-2} & -t^{d+n-p-1} \\ t^{d-p} & 0 & . . & 0 & 0 & 0 & . . & 0 & 0 \\ 0 & t^{d-p} & . . & 0 & 0 & 0 & . . & 0 & 0 \\ 0 & 0 & & & & & & & 0 \\ \cdot & & & & & & & & \\ \cdot & & & & & 0 & 0 & & \\ 0 & 0 & \cdot & . & \cdot & 0 & t^{d-p} & \cdots & 0\end{array}\right)_{n-1}$

The terms t^{d+n-p} and t^{d-p} are in the $(1, n-p+1)$ th position and the $(n-1, n-p-1)$ th position respectively.

Since the number of classes of relative primes to n can be obtained by the function φ-euler, then the number of classes of Burau matrices is obtained by the same function, and observe that, when $p>n$, then $p \equiv Q \bmod (n)$ for some $1 \leq Q<n$ with $\operatorname{gcd}(n, Q)=1$.

Let us prove (3.1) by induction on k.

If $k=1$, then $d=1+n$, thus

$$
\begin{aligned}
& \Psi_{n}^{r}(\beta)=\left(\begin{array}{ccccccc}
-t & -t^{2} & -t^{3} & . . & -t^{n-3} & -t^{n-2} & -t^{n-1} \\
1 & 0 & 0 & . . & 0 & 0 & 0 \\
0 & 1 & 0 & . . & 0 & 0 & 0 \\
\cdot & \cdot & \cdot & & \cdot & \cdot & \cdot \\
. & \cdot & \cdot & & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & & \cdot & \cdot & \cdot \\
0 & 0 & 0 & & 1 & 0 & 0 \\
0 & 0 & 0 & . . & 0 & 1 & 0
\end{array}\right)^{1+n} \\
& =\left(\begin{array}{ccccccc}
-t & -t^{2} & -t^{3} & . . & -t^{n-3} & -t^{n-2} & -t^{n-1} \\
1 & 0 & 0 & . . & 0 & 0 & 0 \\
0 & 1 & 0 & . . & 0 & 0 & 0 \\
. & \cdot & \cdot & & \cdot & \cdot & \cdot \\
. & \cdot & \cdot & & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & & \cdot & \cdot & \cdot \\
0 & 0 & 0 & & 1 & 0 & 0 \\
0 & 0 & 0 & . . & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccccccc}
-t & -t^{2} & -t^{3} & . . & -t^{n-3} & -t^{n-2} & -t^{n-1} \\
1 & 0 & 0 & . . & 0 & 0 & 0 \\
0 & 1 & 0 & . . & 0 & 0 & 0 \\
\cdot & \cdot & \cdot & & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & & . & . & \cdot \\
\cdot & \cdot & \cdot & & \cdot & \cdot & \cdot \\
0 & 0 & 0 & & 1 & 0 & 0 \\
0 & 0 & 0 & . . & 0 & 1 & 0
\end{array}\right)^{n} \\
& =\left(\begin{array}{ccccccc}
-t & -t^{2} & -t^{3} & . . & -t^{n-3} & -t^{n-2} & -t^{n-1} \\
1 & 0 & 0 & . . & 0 & 0 & 0 \\
0 & 1 & 0 & . . & 0 & 0 & 0 \\
\cdot & \cdot & \cdot & & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & & \cdot & \cdot & \cdot \\
0 & 0 & 0 & & 1 & 0 & 0 \\
0 & 0 & 0 & . . & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{cccccc}
t^{n} & 0 & 0 & \cdots & 0 & 0 \\
0 & t^{n} & 0 & \cdots & 0 & 0 \\
0 & 0 & & & \cdot & \cdot \\
\cdot & \cdot & & & \cdot & \cdot \\
\cdot & \cdot & & & 0 & 0 \\
0 & 0 & 0 & \cdots & t^{n} & 0 \\
0 & 0 & 0 & \cdots & 0 & t^{n}
\end{array}\right)
\end{aligned}
$$

$$
=\left(\begin{array}{ccccccc}
-t^{1+n} & -t^{1+(1+n)} & -t^{2+(1+n)} & . . & -t^{(1+n)+n-4} & -t^{(1+n)+n-3} & -t^{(1+n)+n-2} \\
t^{(1+n)-1} & 0 & 0 & . . & 0 & 0 & 0 \\
0 & t^{(1+n)-1} & 0 & . . & 0 & 0 & 0 \\
\cdot & \cdot & \cdot & & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & & \cdot & \cdot & \cdot \\
0 & 0 & 0 & & t^{(1+n)-1} & 0 & 0 \\
0 & 0 & 0 & . . & 0 & t^{(1+n)-1} & 0
\end{array}\right)
$$

Suppose that the result in(3.1) is valid for k_{0}, then $d=1+n k_{0}$, therefore

$$
\begin{aligned}
& \Psi_{n}^{r}(\beta)=\left(\begin{array}{ccccccc}
-t & -t^{2} & -t^{3} & . . & -t^{n-3} & -t^{n-2} & -t^{n-1} \\
1 & 0 & 0 & . . & 0 & 0 & 0 \\
0 & 1 & 0 & . . & 0 & 0 & 0 \\
\cdot & \cdot & \cdot & & \cdot & \cdot & \cdot \\
. & . & \cdot & & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & & \cdot & \cdot & \cdot \\
0 & 0 & 0 & & 1 & 0 & 0 \\
0 & 0 & 0 & . . & 0 & 1 & 0
\end{array}\right)^{1+n k_{0}} \\
& =\left(\begin{array}{cccccc}
-t^{1+n k_{0}} & -t^{1+n k_{0}+1} & -t^{1+n k_{0}+2} & \cdots & -t^{1+n k_{0}+n-3} & -t^{1+n k_{0}+n-2} \\
t^{1+n k_{0}-1} & 0 & 0 & \cdots & 0 & 0 \\
0 & t^{1+n k_{0}-1} & 0 & \cdots & 0 & 0 \\
\cdot & \cdot & \cdot & & \cdot & \cdot \\
\cdot & \cdot & & & \cdot & \cdot \\
\cdot & \cdot & \cdot & & \cdot & \cdot \\
0 & 0 & 0 & \cdots & t^{1+n k_{0}-1} & 0
\end{array}\right)
\end{aligned}
$$

Now, for $k_{0}+1$, then $d=1+n k_{0}+n=(n+1)+n k_{0}$, and note that $(n+1) \equiv$ $1 \bmod (n)$, so $\Psi_{n}^{r}(\beta)$ is well defined. Therefore,

$$
\begin{aligned}
& \Psi_{n}^{r}\left(\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{1+n k_{0}+n}\right)=\Psi_{n}^{r}\left(\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{1+n k_{0}}\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{n}\right) \\
& =\left[\Psi_{n}^{r}\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)\right]^{1+n k_{0}}\left[\Psi_{n}^{r}\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)\right]^{n} \\
& =\left(\begin{array}{cccccc}
-t^{1+n k_{0}} & -t^{1+n k_{0}+1} & -t^{1+n k_{0}+2} & . . & -t^{1+n k_{0}+n-3} & -t^{1+n k_{0}+n-2} \\
t^{1+n k_{0}-1} & 0 & 0 & . . & 0 & 0 \\
0 & t^{1+n k_{0}-1} & 0 & . . & 0 & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & & \cdot & \cdot \\
\cdot & \cdot & \cdot & & \cdot & \cdot \\
0 & 0 & 0 & . . & t^{1+n k_{0}-1} & 0
\end{array}\right)\left(\begin{array}{ccccc}
t^{n} & 0 & . . & 0 & 0 \\
0 & t^{n} & . . & 0 & 0 \\
0 & 0 & . & \cdot \\
\cdot & \cdot & . & \cdot \\
\cdot & \cdot & 0 & 0 \\
0 & 0 & . . & t^{n} & 0 \\
0 & 0 & . . & 0 & t^{n}
\end{array}\right) \\
& =\left(\begin{array}{cccccc}
-t^{1+n k_{0}+n} & -t^{1+n k_{0}+1+n} & -t^{1+n k_{0}+2+n} & . . & -t^{1+n k_{0}+n-3+n} & -t^{1+n k_{0}+n-2+n} \\
t^{1+n k_{0}-1+n} & 0 & 0 & . . & 0 & 0 \\
0 & t^{1+n k_{0}-1+n} & 0 & . . & 0 & 0 \\
\cdot & \cdot & \cdot & & \cdot & \cdot \\
\cdot & \cdot & & & \cdot & \cdot \\
\cdot & \cdot & \cdot & & \cdot & \cdot \\
0 & 0 & 0 & . . & t^{1+n k_{0}-1+n} & 0
\end{array}\right) \\
& =\left(\begin{array}{cccccc}
-t^{1+n\left(k_{0}+1\right)} & -t^{1+n\left(k_{0}+1\right)+1} & -t^{1+n\left(k_{0}+1\right)+2} & . . & -t^{1+n\left(k_{0}+1\right)+n-3} & -t^{1+n\left(k_{0}+1\right)+n-2} \\
t^{1+n\left(k_{0}+1\right)-1} & 0 & 0 & . . & 0 & 0 \\
0 & t^{1+n\left(k_{0}+1\right)-1} & 0 & . . & 0 & 0 \\
\cdot & \cdot & \cdot & & \cdot & \cdot \\
\cdot & \cdot & & & \cdot & \cdot \\
\cdot & \cdot & \cdot & & \cdot & \cdot \\
0 & 0 & 0 & . . & t^{1+n\left(k_{0}+1\right)-1} & 0
\end{array}\right)
\end{aligned}
$$

The result is valid for all $k \in \mathbb{N}$. The proof for the matrix defined in (3.2) is similar.

Therefore, the form of the reduced Burau matrices for braids of the form $\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{d}$ has been explicitly provided.

Now, let I_{n-1} be the unit $(n-1) \times(n-1)$ matrix, and consider de matrix defined in (3.1), then

$$
\Psi_{n}^{r}(\beta)-I_{n-1}=\left(\begin{array}{cccccc}
-t^{d}-1 & -t^{d+1} & -t^{d+2} & \cdots & -t^{d+n-3} & -t^{d+n-2} \\
t^{d-1} & -1 & 0 & \cdots & 0 & 0 \\
0 & t^{d-1} & -1 & \cdots & 0 & 0 \\
\cdot & \cdot & \cdot & & \cdot & \cdot \\
\cdot & \cdot & & & \cdot & \cdot \\
\cdot & \cdot & \cdot & & \cdot & \cdot \\
0 & 0 & 0 & \cdots & t^{d-1} & -1
\end{array}\right)_{n-1}
$$

therefore,

$$
\operatorname{det}\left(\Psi_{n}^{r}(\beta)-I_{n-1}\right)=\left|\begin{array}{cccccc}
-t^{d}-1 & -t^{d+1} & -t^{d+2} & \cdots & -t^{d+n-3} & -t^{d+n-2} \\
t^{d-1} & -1 & 0 & \cdots & 0 & 0 \\
0 & t^{d-1} & -1 & \cdots & 0 & 0 \\
\cdot & \cdot & \cdot & & \cdot & \cdot \\
\cdot & \cdot & & & \cdot & \cdot \\
\cdot & \cdot & \cdot & & \cdot & \cdot \\
0 & 0 & 0 & \cdots & t^{d-1} & -1
\end{array}\right|_{n-1}
$$

$=(-1)^{3}\left(t^{d}+1\right)\left|\begin{array}{cccccc}-1 & 0 & 0 & . . & 0 & 0 \\ t^{d-1} & -1 & 0 & . . & 0 & 0 \\ 0 & t^{d-1} & -1 & . . & 0 & 0 \\ \cdot & \cdot & \cdot & & \cdot & \cdot \\ \cdot & \cdot & & & \cdot & \cdot \\ \cdot & \cdot & \cdot & & -1 & \cdot \\ 0 & 0 & 0 & . . & t^{d-1} & -1\end{array}\right|+(-1)^{4} t^{d+1}\left|\begin{array}{cccccc}t^{d-1} & 0 & 0 & . . & 0 & 0 \\ 0 & -1 & 0 & . . & 0 & 0 \\ 0 & t^{d-1} & -1 & . . & 0 & 0 \\ \cdot & \cdot & \cdot & & \cdot & \cdot \\ \cdot & . & & & . & \cdot \\ \cdot & . & . & & -1 & \cdot \\ 0 & 0 & 0 & . . & t^{d-1} & -1\end{array}\right|+$
$(-1)^{5} t^{d+2}\left|\begin{array}{cccccc}t^{d-1} & -1 & 0 & . . & 0 & 0 \\ 0 & t^{d-1} & 0 & . . & 0 & 0 \\ 0 & 0 & -1 & . . & 0 & 0 \\ \cdot & \cdot & \cdot & & \cdot & \cdot \\ \cdot & \cdot & & . & \cdot \\ \cdot & \cdot & \cdot & & -1 & \cdot \\ 0 & 0 & 0 & . & t^{d-1} & -1\end{array}\right|+(-1)^{6} t^{d+3}\left|\begin{array}{ccccccc}t^{d-1} & -1 & 0 & 0 & . & 0 & 0 \\ 0 & t^{d-1} & -1 & 0 & . & 0 & 0 \\ 0 & 0 & t^{d-1} & 0 & . . & 0 & 0 \\ 0 & 0 & 0 & -1 & . . & 0 & 0 \\ \cdot & \cdot & \cdot & . & & . & \cdot \\ \cdot & \cdot & . & . & & -1 & \cdot \\ 0 & 0 & 0 & 0 & . & t^{d-1} & -1\end{array}\right|+$
-
$+(-1)^{n} t^{d+n-3}\left|\begin{array}{cccccc}t^{d-1} & -1 & 0 & . . & 0 & 0 \\ 0 & t^{d-1} & -1 & . . & 0 & 0 \\ 0 & 0 & t^{d-1} & . . & 0 & 0 \\ . & . & \cdot & & \cdot & \cdot \\ \cdot & \cdot & & & \cdot & \cdot \\ \cdot & \cdot & \cdot & & t^{d-1} & \cdot \\ 0 & 0 & 0 & . . & 0 & -1\end{array}\right|+(-1)^{n+1} t^{d+n-2}\left|\begin{array}{cccccc}t^{d-1} & -1 & 0 & . . & 0 & 0 \\ 0 & t^{d-1} & -1 & . . & 0 & 0 \\ 0 & 0 & t^{d-1} & . . & 0 & 0 \\ . & . & . & & . & \cdot \\ \cdot & . & & & . & \cdot \\ . & . & . & & t^{d-1} & -1 \\ 0 & 0 & 0 & . . & 0 & t^{d-1}\end{array}\right|$

$$
\begin{aligned}
& =(-1)^{n+1}\left(t^{d}+1\right)+(-1)^{n+1} t^{2 d}+(-1)^{n+1} t^{3 d}+\ldots+(-1)^{n+1} t^{d(n-2)}+(-1)^{n+1} t^{d(n-1)} \\
& =(-1)^{n+1}\left(1+t^{d}+t^{2 d}+t^{3 d}+\ldots+t^{d(n-2)}+t^{d(n-1)}\right)
\end{aligned}
$$

hence,

$$
\begin{equation*}
\operatorname{det}\left(\Psi_{n}^{r}(\beta)-I_{n-1}\right)=(-1)^{n+1}\left(1+t^{d}+t^{2 d}+t^{3 d}+\ldots+t^{d(n-2)}+t^{d(n-1)}\right) \tag{3.3}
\end{equation*}
$$

The determinants previously estimated are $(n-2) \times(n-2)$ determinants.
Since β has the form $\left(\sigma_{1} \sigma_{2} \ldots \sigma_{n-1}\right)^{d}$, then $\langle\beta\rangle=(n-1) d$. Replacing the determinant calculated in (3.3) in the rational function defined in (2.1), we obtain:

$$
\begin{aligned}
f_{n}(\beta) & =(-1)^{n+1} \frac{s^{-(n-1) d}\left(s-s^{-1}\right)}{\left(s^{n}-s^{-n}\right)} g\left((-1)^{n+1}\left(1+t^{d}+t^{2 d}+t^{3 d}+\ldots+t^{d(n-2)}+t^{d(n-1)}\right)\right) \\
& =\frac{s^{-(n-1) d}\left(s-s^{-1}\right)}{\left(s^{n}-s^{-n}\right)}\left(1+s^{2 d}+s^{4 d}+s^{6 d}+\ldots+s^{d(2 n-4)}+s^{d(2 n-2)}\right) \\
& =\frac{\left(s^{2}-1\right)\left(1+s^{2 d}+s^{4 d}+s^{6 d}+\ldots+s^{d(2 n-4)}+s^{d(2 n-2)}\right)}{s^{(d-1)(n-1)}\left(s^{2 n}-1\right)} \\
& =\frac{\left(1+s^{2 d}+s^{4 d}+s^{6 d}+\ldots+s^{d(2 n-4)}+s^{d(2 n-2)}\right)}{s^{(d-1)(n-1)}\left(1+s^{2}+s^{4}+s^{6}+\ldots+s^{2 n-4}+s^{2 n-2}\right)}
\end{aligned}
$$

hence,

$$
\begin{equation*}
f_{n}(\beta)=\frac{\left(1+s^{2 d}+s^{4 d}+s^{6 d}+\ldots+s^{d(2 n-4)}+s^{d(2 n-2)}\right)}{s^{(d-1)(n-1)}\left(1+s^{2}+s^{4}+s^{6}+\ldots+s^{2 n-4}+s^{2 n-2}\right)} \tag{3.4}
\end{equation*}
$$

Recall that the knot invariant associated to f_{n} is the Alexander polynomial, and is obtained under the transformation $s \rightarrow \sqrt{1 / t}$. Since the clousure of β is a knot K isotopic to a torus knot $T(n, d)$, the formula (3.4) provides a relatively easy way to calculate its Alexander polynomial. In addition, since the size of the Burau matrices changes depending on the value of n, the formula (3.4) also changes for
every $T(n, d)$.

Knot	Braid representation	$\operatorname{det}\left(\Psi_{n}^{r}(\beta)-I_{n-1}\right)$	Alexander polynomial
$T(2, d)$	$\left(\sigma_{1}\right)^{d}$	$-1-t^{d}$	$\frac{1+s^{2 d}}{s^{d-1}\left(1+s^{2}\right)}$
$T(3, d)$	$\left(\sigma_{1} \sigma_{2}\right)^{d}$	$1+t^{d}+t^{2 d}$	$\frac{1+s^{2 d}+s^{4 d}}{s^{2 d-2}\left(1+s^{2}+s^{4}\right)}$
$T(4, d)$	$\left(\sigma_{1} \sigma_{2} \sigma_{3}\right)^{d}$	$-1-t^{d}-t^{2 d}-t^{3 d}$	$\frac{1+s^{2 d}+s^{4 d}+s^{6 d}}{s^{3 d-3}\left(1+s^{2}+s^{4}+s^{6}\right)}$
$T(5, d)$	$\left(\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4}\right)^{d}$	$1+t^{d}+t^{2 d}+t^{3 d}+t^{4 d}$	$\frac{1+s^{2 d}+s^{4 d}+s^{6 d}+s^{8 d}}{s^{4 d-4}\left(1+s^{2}+s^{4}+s^{6}+s^{8}\right)}$

The equation (3.4) can be algebraically reduced as:

$$
f_{n}(\beta)=\frac{\left(s^{2 n d}-1\right)\left(s^{2}-1\right)}{s^{(d-1)(n-1)}\left(s^{2 d}-1\right)\left(s^{2 n}-1\right)} .
$$

A posteriori result

Considering $\alpha \in B_{n}$ such that $\alpha=\left(\sigma_{1}^{-1} \sigma_{2}^{-1} \cdots \sigma_{n-1}^{-1}\right)^{d}$, where $\operatorname{gcd}(n, d)=1$ and $n, d \geq 2$, the type of braid is the mirror of the the braid $\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{d}$ i.e. α is a periodic braid where the base word involve the first strand passing under all other strands in order. Since the clousure of $\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{d}$ is a knot K isotopy to $T(n, d)$, then the clousure of $\left(\sigma_{1}^{-1} \sigma_{2}^{-1} \cdots \sigma_{n-1}^{-1}\right)^{d}$ is a knot K^{\prime} isotopy to the mirror of $T(n, d)$.

Defining the Burau matrix for the braid $\sigma_{n-1} \sigma_{n-2} \cdots \sigma_{1}$ as:

$$
\Psi_{n}^{r}\left(\sigma_{n-1} \sigma_{n-2} \cdots \sigma_{1}\right):=\left(\begin{array}{ccccc}
0 & t & \cdots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & & t & 0 \\
0 & 0 & & 0 & t \\
-t & -t & \cdots & -t & -t
\end{array}\right)_{n-1} .
$$

Observe that, $\Psi_{n}^{r}\left(\sigma_{1}^{-1} \sigma_{2}^{-1} \cdots \sigma_{n-1}^{-1}\right)=\Psi_{n}^{r}\left[\left(\sigma_{n-1} \sigma_{n-2} \cdots \sigma_{1}\right)^{-1}\right]=\left[\Psi_{n}^{r}\left(\sigma_{n-1} \sigma_{n-2} \cdots \sigma_{1}\right)\right]^{-1}$, then

$$
\Psi_{n}^{r}\left(\sigma_{1}^{-1} \sigma_{2}^{-1} \cdots \sigma_{n-1}^{-1}\right)=\left(\begin{array}{ccccc}
-t^{-1} & -t^{-1} & \cdots & -t^{-1} & t^{-1} \\
t^{-1} & 0 & \cdots & 0 & 0 \\
0 & t^{-1} & \cdots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & t^{-1} & 0
\end{array}\right) .
$$

Since $\Psi_{n}^{r}\left(\left(\sigma_{1} \sigma_{2} \ldots \sigma_{n-1}\right)^{n}\right)=t^{n} I_{n-1}$ for all $n \geq 2$, then

$$
\begin{aligned}
\Psi_{n}^{r}\left(\left(\sigma_{1}^{-1} \sigma_{2}^{-1} \cdots \sigma_{n-1}^{-1}\right)^{n}\right) & =\Psi_{n}^{r}\left[\left(\left(\sigma_{n-1} \sigma_{n-2} \cdots \sigma_{1}\right)^{-1}\right)^{n}\right] \\
& =\left[\Psi_{n}^{r}\left(\left(\sigma_{n-1} \sigma_{n-2} \cdots \sigma_{1}\right)^{n}\right)\right]^{-1} \\
& =\left(t^{n} I_{n-1}\right)^{-1} \\
& =t^{-n} I_{n-1}
\end{aligned}
$$

thus $\Psi_{n}^{r}\left(\left(\sigma_{1}^{-1} \sigma_{2}^{-1} \cdots \sigma_{n-1}^{-1}\right)^{n}\right)=t^{-n} I_{n-1}$, for all $n \geq 2$.
Implementing a similar analysis as the one made for braids of the form $\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{d}$, let $d=p^{\prime}+n k, k \in \mathbb{N} \cup 0^{\prime}$ or $k \in \mathbb{N}$ with $\operatorname{gcd}\left(n, p^{\prime}\right)=1$, where p^{\prime} indicates the position of the row equal to $\left(-t^{-1},-t^{-1}, \ldots,-t^{-1}, \ldots,-t^{-1},-t^{-1}\right)$ of length $n-1$. Therefore, $\Psi_{n}^{r}(\alpha)$ is given by:

- If $d=1+n k, k \in \mathbb{N}$, then $\Psi_{n}^{r}(\alpha)$ is

$$
\left(\begin{array}{ccccc}
-t^{-d} & -t^{-d} & \cdots & -t^{-d} & -t^{-d} \\
t^{-d} & 0 & \cdots & 0 & 0 \\
0 & t^{-d} & \cdots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & t^{-d} & 0
\end{array}\right)
$$

in the last row, the term t^{-d} is in the $(n-1, n-2)$ th position.

- If $d=p^{\prime}+n k, k \in \mathbb{N} \cup 0^{\prime}, 1<p^{\prime}<n$, then $\Psi_{n}^{r}(\alpha)$ is

$$
\left(\begin{array}{ccccccc}
0 & \cdots & t^{-d} & \cdot & \cdot & 0 & 0 \\
\vdots & & & & & \vdots & \vdots \\
0 & 0 & \cdots & 0 & \cdots & t^{-d} & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & t^{-d} \\
-t^{-d} & -t^{-d} & \cdots & -t^{-d} & \cdots & -t^{-d} & -t^{-d} \\
t^{-d} & 0 & \cdots & 0 & \cdots & 0 & 0 \\
0 & t^{-d} & \cdots & 0 & \cdots & 0 & 0 \\
\vdots & & & & & \vdots & \vdots \\
0 & 0 & \cdot & \cdot & t^{-d} & \cdots & 0
\end{array}\right)_{n-1},
$$

in the first row, the term t^{-d} is in the $(1, n-p+1)$ th and in the last row the term t^{-d} is in the $(n-1, n-p-1)$ th position. The proof of this can be made by induction on k.

Now, let I_{n-1} be the unit $(n-1) \times(n-1)$ matrix, and consider the matrices defined above, then

$$
\begin{equation*}
\operatorname{det}\left(\Psi_{n}^{r}(\beta)-I_{n-1}\right)=(-1)^{n+1} t^{(n-1) d}\left(1+t^{d}+t^{2 d}+\ldots+t^{d(n-2)}+t^{d(n-1)}\right) . \tag{3.5}
\end{equation*}
$$

Note that, since α is the form $\left(\sigma_{1}^{-1} \sigma_{2}^{-1} \ldots \sigma_{n-1}^{-1}\right)^{d}$, then $\langle\alpha\rangle=(n-1) d$. Replacing the determinant estimated in (3.5) in the rational function defined in (2.1), one obtains:

$$
f_{n}(\alpha)=(-1)^{n+1} \frac{s^{-(n-1) d}\left(s-s^{-1}\right)}{\left(s^{n}-s^{-n}\right)} g\left((-1)^{n+1} t^{-(n-1) d}\left(1+t^{d}+t^{2 d}+t^{3 d}+\ldots+t^{d(n-1)}\right)\right)
$$

hence,

$$
\begin{equation*}
f_{n}(\alpha)=\frac{\left(1+s^{2 d}+s^{4 d}+s^{6 d}+\ldots+s^{d(2 n-4)}+s^{d(2 n-2)}\right)}{s^{(3 d-1)(n-1)}\left(1+s^{2}+s^{4}+s^{6}+\ldots+s^{2 n-4}+s^{2 n-2}\right)} . \tag{3.6}
\end{equation*}
$$

This equation can be algebraically reduced as:

$$
f_{n}(\alpha)=\frac{\left(s^{2 n d}-1\right)\left(s^{2}-1\right)}{s^{(3 d-1)(n-1)}\left(s^{2 d}-1\right)\left(s^{2 n}-1\right)}
$$

which is the Alexander Polynomial of a knot K isotopy to the mirror of $T(n, d)$. It is important to mention that the formulas (3.4) and (3.6) provide the Alexander polynomial of the resulting knot from the closure of the braids β and α, but knots exist whose mirror has the same Alexander polynomial, then (3.4) and (3.6) are not necessarily different.

Recall, the Alexander Polynomial is a knot invariant, therefore it does not change under ambient isotopy and it allows to clasify knots. Therefore, any two knot projections with diferent Alexander Polynomial are not equivalent, but two knot projections with the same Alexander Polynomial does not mean the projections are equivalent. There are many difficult ways to compute this polynomial, however, the computations and proofs conducted in this chapter expose an alternative easy route to compute that polynomial for torus knots and provide an explicit form for the Burau matrices for the braids $\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{d}$ and $\left(\sigma_{1}^{-1} \sigma_{2}^{-1} \cdots \sigma_{n-1}^{-1}\right)^{d}$ whose clousures are knots isotopy to $T(n, d)$, and the mirror of $T(n, d)$ respectively was provided.

CHAPTER 4 CONCLUSION AND FUTURE WORK

4.1 Conclusion

This work, presents a pattern in the reduced Burau representation for braids of the form $\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{d}$, and $\left(\sigma_{1}^{-1} \sigma_{2}^{-1} \cdots \sigma_{n-1}^{-1}\right)^{d}$ with $\operatorname{gcd}(n, d)=1$ and $n, d \geq 2$. Analyzing the reduced Burau representation for these braids, a characterization of the reduced Burau matrices for the braids mentioned above was described, and a general formula for the Alexander polynomial for the knot associated to the closure of the braids $\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{d}$, and $\left(\sigma_{1}^{-1} \sigma_{2}^{-1} \cdots \sigma_{n-1}^{-1}\right)^{d}$ was provided, reaching all the objectives proposed in this thesis.

4.2 Future work

The following future work is proposed:

- To characterize the reduced Burau matrices for braids of the form $\left(\sigma_{1}^{ \pm 1} \sigma_{2}^{ \pm 1} \cdots \sigma_{n-1}^{ \pm 1}\right)^{d}$
- To find a general formula for the Alexander polynomial for the knot Associated to the closure of the braids $\left(\sigma_{1}^{ \pm 1} \sigma_{2}^{ \pm 1} \cdots \sigma_{n-1}^{ \pm 1}\right)^{d}$
- To extend the formulas given for the braids $\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{d}$ and $\left(\sigma_{1}^{-1} \sigma_{2}^{-1} \cdots \sigma_{n-1}^{-1}\right)^{d}$ to any periodic braid.

REFERENCE LIST

[1] Adams, Colin . The Knot Book: An elementary introduction to the mathematical theory of knots". New York: W.H. Freeman,1994.
[2] Christian Kassel and Vladimir Turaev, Braid Groups, Graduate Texts in Mathematics, 247, Springer, San francisco (2008)
[3] E. Artin, Theory of braids, Annals of Math. (2) 48(1947), 101-126.
[4] G Burde, H Zieschang, Knots, Walter de Gruyter, Berlin (2003)
[5] Murasugi, Kunio. On the braid index of alternating links". Transactions of the american mathematical society, 1991, Vol. 326, Number 1, pp. 237-260.
[6] P Cromwell, Knots and Links (2004) 142-143,147-148, 157, 159,162-168
[7] Reidemeister, Kurt.Elementare Begrundung der Knotentheorie. Abhandlungen Aus Dem Mathematischen Seminar Der Universitat Hamburg, 1927, Vol. 5, Number 1, pp. 24-32.
[8] Seong Ju Kim, Ryan Stees, and Laura Taalman, Spiral Knot, Journal of Integer Sequences, Vol. 19 (2016)
[9] W. Burau über Zopfgruppen und gleichsinnig verdrillte Verkettunge, Abh. Math. Semin. Hamburg. Univ., 11 (1935), 179-186.

ALEXANDER POLYNOMIAL FOR TORUS KNOTS VIA BURAU MATRICES FOR PERIODIC BRAIDS

Raúl Alfonso Beltrán Hoyos
raul.beltran1@upr.edu
Department of Mathematical Sciences
Chair: Juan A. Ortiz-Navarro
Degree: Master of Science
Graduation Date: 2017

