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This thesis provides a characterization of the reduced Burau matrices for braids

of the form (σ1σ2 · · · σn−1)d , with gcd(n, d) = 1, n, d ≥ 2, and exposes its

relationship with the Alexander polynomial for (n, d)-torus knot by using Markov

functions theory. In addition, a similar characterization for a particular case of

periodic braids is provided, whose closures is the mirror of a (n, d)-torus knot.
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Por
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2017
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Esta tesis provee una caraterización de las matrices reducidas de Burau para

trenzas de la forma (σ1σ2 · · · σn−1)d , con mcd(n, d) = 1, n, d ≥ 2, y expone su

relación con el polinomio de Alexander para nudos toroidales, usando la teoria de

funciones de Markov. En adición, proporcionamos una caracterización similar para

un caso particular de trenzas periodicas cuya clausura es el espejo de un (n, d)-nudo

toroidal.
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CHAPTER 1

INTRODUCTION

1.1 Justification

Braid theory has been studied by many mathematicians throughout its

development. The idea of this mathematical object was introduced by Emil Artin [3]

to formalize topological objects that represent the intertwining of several strings in

R3. Its attractiveness lies from its close relations to other objects in low dimensional

topology, such as knots, links, surfaces, and configuration spaces.

Braid groups have been extensively studied and their relation with

representation theory has led to numerous important results such as the linearity

and the orderability of the nth braid group Bn. One remarkable presentation of the

braid group is the Burau representation. This is a homological representation of the

braid groups obtained by classes of self-homeomorphisms acting on the topological

spaces obtained from the puntured disks, from which we can obtain powerful knot

invariants such as the Jones polynomial and the Alexander polynomial.

To construct the last polynomial mentioned above for knots(links) it is first

necessary to study the reducibility of the Burau representation. Then, using the

theory of Markov functions, one can construct rational functions with values in the

Laurent polynomial ring Z [t, t−1]. All these functions form a Markov Funtion, and

the associated knot(link) invariant coincides with the Alexander polynomial.

Knots are classified into three families: satellite, hyperbolic, and torus knots.

An important result is that each knot or link represents the closure of a braid, a

1
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theorem stated and proved by Emil Artin [3]. In particular, torus knots have a

unique periodic braid representation.

My interest is to analyze what is happening in the reduced Burau matrices

for the periodic braids mentioned above; the rational functions derived from these

matrices, and the Alexander polynomial.

1.2 Previous publications

In 1925, Emil Artin introduced the braid group Bn . In his paper [3], he pro-

vided an algebraic definition in terms of a group presentation by generators and

relationship and he proved that each knot(link) is isotopic to the closure of a braid.

In 1935 Burau [9] provided a nontrivial linear representation called Burau

representation, he also gave a close relationship between this representation and

the Alexander polynomial.

An interesting type of braid are periodic braids, that is, braids that have the

form w = bk, where b is word and k is the period of w. In recent work, Seong Ju

Kim, Ryan Stees and Laura Taalman [8] gave an important result that relates a big

knot class and periodic braids. This result provides an easier demonstration that

every torus knot has a unique periodic braid representation.
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1.3 Objectives

1.3.1 Main objective

• The main objective of this thesis is to find a pattern in the reduced Burau matrices

for braids of the form (σ1σ2 · · · σn−1)d , and
(
σ−11 σ−12 · · · σ−1n−1

)d
where gcd(n, d) = 1

and n, d ≥ 2.

1.3.2 Secondary objectives

• To analyze the reduced Burau representation for braids in Bn.

• To characterize the reduced Burau matrices for the braids mentioned in the main

objetive.

• To expose a general formula for the Alexander Polynomial for the knot associated

to the closure of the braids (σ1σ2 · · · σn−1)d , and
(
σ−11 σ−12 · · · σ−1n−1

)d
.



CHAPTER 2

PRELIMINARIES

This chapter provides basic definitions and results of knot theory and braid

theories.

2.1 Knots

Definition 2.1. A link is an embedding of a disjoint union of n circles into R3 or

S3. A link of one component is a knot.

A way to visualize and manipulate knots is to project the knot in R2. If

the projection is injective everywhere, except at a finite number of points called

crossings, and there is not triple intersections, tangencies or cusps, the projection

is called regular

Figure 2–1: Hopf link, unknot and trefoil

Figure 2–2: Triple intersections, tangencies, and cusps

An oriented knot (link) is a knot (link) with an orientation defined. The

orientation of a knot is usually represented by placing an arrow on its diagram in a

chosen direction.

4
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Figure 2–3: An oriented knot

Definition 2.2. Let f, g : X → Y be continuous functions. A continuous function

F : X × [0, 1] → Y such that F (x, 0) = f (x) and F (x, 1) = g (x) for all x ∈ X is

called an isotopy if F |X×{t} is homeomorphism for all t ∈ [0, 1] .

Definition 2.3. Let f, g : Y → X be embeddings of Y into X. f and g are ambient

isotopic if there is an isotopy F : X× [0, 1]→ Y such that F (x, 0) = x for all x ∈ X

and F (f (y) , 1) = g (y) for all y ∈ Y.

Definition 2.4. Two knots K1,K2 are equivalent if they are ambient isotopic.

Definition 2.5. A planar isotopy of a knot projection is a continuous deformation

of the projection.

Then, K1,K2 are equivalent if it is possible to deform one to the other by

ambient or planar isotopy.

Knots are classified into three large families: satellite, hyperbolic, and torus

knots. This thesis provides an important result for torus knots, making use of braid

theory, which will be discussed in section 2.4

Definition 2.6. A torus knot is a knot that lies on an unknotted (standard) torus

in R3; without crossing over or under itself as it lies on the torus.
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Figure 2–4: A trefoil on a torus

We can draw a torus knot, traveling p times vertically and q times horizontally

around the torus, where p, q ≥ 2 and p and q are relatively prime. A (p, q) −

torus knot is denoted by T (p, q). For example, the trefoil knot is denoted by T (3, 2) .

It goes three times vertically around the torus and twice horizontally.

Theorem 1. T (p, q) is equivalent to T (q, p) . [1]

Theorem 2. The least number of crossings that occurs in any projection, for a

T (p, q) is exactly the minimum of p (q − 1) y q (p− 1). [5]

2.2 Reidemeister Moves

In 1927, Kurt Reidemeister defined a series of move known as Reidemeister

Moves.

Figure 2–5: Type I Reidemeister move

Figure 2–6: Type II Reidemeister move
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Figure 2–7: Type III Reidemeister move

Two projections of a knot(link) are isotopic if and only if one can be transformed

into the other by a finite sequence of Reidemeister moves [7]

2.3 Knot invariants

Definition 2.7. A knot invariant is a property of a knot that does not change under

ambient isotopy.

Two projections of a knot have the same knot invariant, but two projections

with the same knot invariant need not be the same knot.

2.3.1 Alexander polynomial

The Alexander polynomial is an invariant of oriented Knot(Link) in R3,

discovered in 1923 by J. W. Alexander (Alexander, 1928). There are generally

difficult routes to compute the Alexander polynomial, but in 1969, John Conway

provided an axiomatic form to compute it.

Let L be an oriented knot projection, let +1 be a right handed (positive) and

−1 a left handed (negative) crossing, respectively, as in the figure (2–8)

Figure 2–8: Positive and negative crossings

Each crossing can be smoothed in two diferent ways, either by 0 − smoothing

or 1− smoothing according to the figure (2–9)
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Figure 2–9: Smoothings for a crossing

Define L+, L− and L0 by isolating and changing one crossing of L as shown in

figure (2–10)

Figure 2–10: A Conway triple

L+, L− and L0 are three oriented links in R3 , and form a Conway triple.

The Alexander polynomial of links is a mapping ∆ assigning every oriented

link L ⊂ R3 a Laurent polynomial ∆ (L) ∈ Z [t, t−1] satisfying the following three

axioms:

1. ∆ (L) is invariant under isotopy of L;

2. if L is a trivial knot, then ∆ (L) = 1;

3. for any Conway triple L+, L−, L0 ⊂ R3,

∆ (L+)−∆ (L−) =
(
t−1/2 − t1/2

)
∆ (L0)

The latter equality is known as the Alexander skein relation. [2]

Definition 2.8. A splittable link is a link that can be separated by a 2-sphere

embedded in S3.

Proposition 2.1. If L is splittable with at least two components, then ∆ (L) = 0.

([4] and [6])
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Example: Let’s compute the Alexander polynomial for the trefoil knot,

choosing crossings sequentially, and then applying the skein relation until trivial

links are left.

then

∆ (Lk1) = ∆ (Lk2) +
(
t−1/2 − t1/2

)
∆ (Lk3)

= 1 +
(
t−1/2 − t1/2

)
∆ (Lk3) .

for ∆ (Lk3) ,
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then

∆ (Lk3) = ∆ (Lk4) +
(
t−1/2 − t1/2

)
∆ (Lk5)

= 0 +
(
t−1/2 − t1/2

)
(1)

= t−1/2 − t1/2

therefore

∆ (Lk1) = 1 +
(
t−1/2 − t1/2

) (
t−1/2 − t1/2

)
= t−1 + t− 1

which is the Alexander polynomial for the trefoil knot.

2.4 Braid groups

Basic relations between the braid group, the symmetry groups Sn, links in R3

and representation theory are presented.
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Definition 2.9. Consider two parallel planes A and A′ in R3, each containing

n distinct Collinear points {pi} and {p′i} respectively. Let Ai : [0, 1] → R3 be

embedded arcs in R3. A geometric braid (or braid with n strand) is said to be the set

A = {A1,A2, ...,An} , where Ai connects the point pi ∈ A to the point p′τ(i) ∈ A′,

τ ∈ Sn and

1. Each Ai intersects each intermediate parallel plane between A and A′ exactly once.

2. A1,A2, ...,An intersect each intermediate parallel plane between A and A′ in exactly

n different points.

The permutation τ is called the associated permutation to the braid, and Ai is

called the ith string (or strand) in the braid.

Figure 2–11: A geometric braid

Definition 2.10. Two n − braids A and A ′ with the same permutation τ are

equivalent if there is a homotopy with permutation τ from A to A ′. In other words,

if n continuous maps exist

Fi : [0, 1]× [0, 1]→ R3, 1 ≤ i ≤ n

such that

1. Fi (t, 0) = Ai (t), Fi (t, 1) = A ′
i (t) , 1 ≤ i ≤ n, 0 ≤ t ≤ 1

2. Fi (0, k) = pi, Fi (1, k) = p′τ(i), 1 ≤ i ≤ n, 0 ≤ k ≤ 1
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and defining A k
i : [0, 1]→ R3 by A k

i (t) = Fi (t, s) , then A k is a n− braid for each

k ∈ [0, 1] .

An oriented braid is a braid with an orientation defined. The orientation of a

braid is usually downwards.

According to the definition of braid only type II and type III Reidemeister

moves can be made. In the same way of knot theory, any two geometric braids A ,

A ′ are equivalent if A can be transformed into A ′ by a finite sequence of isotopies

and Reidemeister moves.

2.4.1 The Artin braid groups

The Artin braid group was introduced by Emil Artin [3] in 1925. He provided an

algebraic definition of the braid group denoted byBn in terms of a group presentation

by generators and relations.

Definition 2.11. The Artin braid group Bn is the group generated by n − 1

generators σ1, σ2, ..., σn−1 and the braid relations

σiσj = σjσi

for all i, j = 1, 2, ..., n− 1 with |i− j| ≥ 2, and

σiσi+1σi = σi+1σiσi+1

for i, j = 1, 2, ..., n− 1

By definition B1 = {1} is a trivial group and B2 is generated by σ1 without

relations.

For n > 2, if b ∈ Bn, then

b = σn1
i1
σn2
i2
...σnr

ir

where ij ∈ {1, 2, ..., n− 1} for all j, ij 6= ik, i 6= k and nj ∈ Z for all j. b is known as

a word.
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Proposition 2.2. If s1, ..., sn−1 are elements of a group G satisfying the braid

relations, then there is a unique group homomorphism f : Bn → G such that

si = f (σi) for all i = 1, 2, ..., n− 1. See [2]

Lemma 2.1. The group Bn with n ≥ 3 is nonabelian. See [2]

Denote by Bn the set of geometric braids with multiplication. The basic blocks

to build any braid in Bn are shown in the figure(2–12)

Figure 2–12: The elementary braids

Geometrically, the first and second relations represent equivalent braids by

isotopies.
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The elements σ+
i , i = 1, 2, ..., n− 1 satisfy the braid relations and each β ∈ Bn

has an inverse β−1, giving Bn a group structure, then, there is a unique

homomorphism ϕ± : Bn → Bn such that ϕ± (σi) = σ±i for all i = i = 1, 2, ..., n− 1.

The homomorphism ϕ± is an isomorphism [2]. ϕ± allows us to identy Bn and Bn,

thus, the elements in Bn are called braids on n strings.

2.4.2 Markov funtions

In order to show the connection between knots and braids, concepts such as

Markov functions and Markov moves will appear in this section as a complement to

Alexander’s theorem

Theorem 3. (Alexander’s theorem) Any oriented Knot (link) in R3 is isotopic to a

closed braid. See [5]

The process of passing from a knot to a braid is called braiding, and it is

described in the proof of the theorem 3

Example

Figure 2–13: Braid closure
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Figure 2–14: Braiding

Definition 2.12. Let B∞ be the union of the groups B1, B2, ..., Bn, ... i.e B∞ :=⋃
k≥1

Bk. The following two operations in B∞; are called Markov moves:

1. M1 : If β ∈ Bn, then β 7→ γβγ−1 for some γ ∈ Bn. The element γβγ−1 ∈ Bn is a

conjugate of β.

2. M2 : If β ∈ Bn, then β 7→ βσ±1n , where σn is a generator of Bn+1.

Figure 2–15: Markov moves

Definition 2.13. Let α, β ∈ Bn. If β can be obtained from α by a finite number of

Markov moves, then α is said to be Markov equivalent (M − equivalent) to β and

is denoted by α ∼M β.

Theorem 4. (A. Markov) Two braids have isotopic closures in Euclidean space R3

if and only if these braids are M − equivalent. See [2]
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Definition 2.14. A periodic braid in Bn is a braid with n-strands of the form w = bk,

where b = σn1
i1
σn2
i2
...σnr

ir
, ij ∈ {1, 2, ..., n− 1} for all j, ij 6= ik, i 6= k, nj ∈ Z for all

j, and k is the number of repetitions of b or the period of w.

For any integers n ≥ 2 and k ≥ 1. A spiral link of type (n, k) is a link that

admits an n-strand braid word of the form w = bk with word lenth n− 1.

Example
(
σ1σ2σ

−1
4 σ−13

)2
is the braid representation of a spiral link of type

(5, 2) .

It is proved that every spiral knot of type (n, k) must have gcd (n, k) = 1 [8],

and we say that a spiral link with one component is a spiral knot.

Theorem 5. Let n ≥ 2 and k ≥ 1. Every spiral knot of type (n, k) admits a braid

word of the form
(
σε11 σ

ε2
2 ...σ

εn−1

n−1
)k
, where εi = ±1. [8]

Spiral knots are denoted by S (n, k, ε) , where ε = (ε1, ε1, ..., εn−1) . Note that, a

torus knot T (p, q) = S (p, q, ε) where ε = (1, 1, ..., 1) , thus T (p, q) admits a braid

word of the form (σ1σ2...σp−1)
q .

2.4.3 The Burau representation

The Burau representation is a homological representation of the braid groups

obtained by classes of self-homeomorphisms acting on the homology of topological

spaces obtained from puntured disks.

Fix n ≥ 2. For i = 1, ..., n−1, consider the n×n matrix over the ring of Laurent

polynomials Λ = Z[t, t−1]

Ui =



Ii−1 0 0 0

0 1− t t 0

0 1 0 0

0 0 0 In−i−1


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where Ik is the unit k× k matrix. Each matrix Ui has a block-diagonal form. These

blocks can be the unit matrix or the 2× 2 matrix

U =

1− t t

1 0

 .

By the Cayley-Hamilton theorem, U2 − (1− t)U − tI2 = 0. Since Ik satisfy this

equation,

U2
i − (1− t)Ui − tIn = 0, ∀i

then, UiU
−1
i = In, . where U−1i = t−1 (Ui − (1− t) In) . Hence Ui is invertible over Λ

and its inverse is given by:

U−1i =



Ii−1 0 0 0

0 0 1 0

0 t−1 1− t−1 0

0 0 0 In−i−1


The block form of the matrices U1, ..., Un−1 implies that

UiUj = UjUi, |i− j| ≥ 2;

UiUi+1Ui = Ui+1UiUi+1, |i− j| ≥ 1.

Then U1, ..., Un−1 satisfy the braid relations. By proposition 2.2 there is a

homomorphism Ψn : Bn → GLn (Λ) Such that Ψn (σi) = Ui, n ≥ 2, i = 1, ..., n− 1,

where GLn (Λ) is the group of invertible n × n matrices over Λ. Ψn is called the

Burau representaion of Bn.

• By convention, Ψ1 for the group B1 is the trivial homomorphism B1 → GL1 (Λ)

• For n = 2, Ψ2 for the group B2 is the homomorphism B2 → GL2 (Λ) such that

Ψ2 (σ1) = U.
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Since det (Ui) = −t ∀i, then det Ψn (b) = (−t)〈b〉 , ∀β ∈ Bn, where 〈b〉 : Bn → Z

such that 〈b〉
(
σvii1,...,σ

vk
ik

)
=

k∑
j=1

vj is a homomorphism, which tells us the number of

generators involved in the word.

Example The generators for B4 are σ1,σ2, and σ3, then

Ψ (σ1) =



1− t t 0 0

1 0 0 0

0 0 1 0

0 0 0 1


Ψ (σ2) =



1 0 0 0

0 1− t t 0

0 1 0 0

0 0 0 1


Ψ (σ3) =



1 0 0 0

0 1 0 0

0 0 1− t t

0 0 1 0


consider b ∈ B4 such that b = σ1σ2σ3, hence Ψ4 (b) = Ψ4 (σ1σ2σ3) = Ψ4 (σ1) Ψ4 (σ2) Ψ4 (σ3),

then

Ψ4 (σ1σ2σ3) =



1− t t 0 0

1 0 0 0

0 0 1 0

0 0 0 1





1 0 0 0

0 1− t t 0

0 1 0 0

0 0 0 1





1 0 0 0

0 1 0 0

0 0 1− t t

0 0 1 0



=



1− t −t (t− 1) −t2 (t− 1) t3

1 0 0 0

0 1 0 0

0 0 1 0


and det Ψ4 (b) = −t3.

A linear representation is said to be faithful if its kernel is trivial. The

homomorphism Ψn is not faithful for all n ≥ 5 i.e kerΨn 6= {1} for all n ≥ 5

[2]; and an easy way to study the kernel is studying first the reducibility of the

representation.
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The reduced Burau representation Ψn

Fix n ≥ 3. consider the (n− 1) × (n− 1) matrices V1, V2, ...Vn−1 over the ring

Λ = Z[t, t−1] given by:

V1 =


−t 0 0

1 1 0

0 0 In−3

 , Vn−1 =


In−3 0 0

0 1 t

0 0 −t


and for 1 < i < n− 1

Vi =



Ii−2 0 0 0 0

0 1 t 0 0

0 0 −t 0 0

0 0 1 1 0

0 0 0 0 In−i−2


.

Consider the n× n matrix C,

C =



1 1 1 .. 1

0 1 1 .. 1

0 1 .. 1

: : : :

0 0 0 .. 1


and

V ′i =

Vi 0

∗i 1


where ∗i is the row of length n− 1 equal to (0, ...0, 0) if i < n− 1 and to (0, ...0, 1)

if i = n− 1.

Note that, fixing i, for all k = 1, ..., n, the kth−column of UiC is the sum of

the first k columns of Ui. A direct calculation shows that, UiC is obtained from C

replacing the (i, i)th−entry for 1− t and replacing the (i+ 1, i) th−entry by 1.
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Similarly, for all l = 1, ..., n, the lth−row of CV ′i is the sum of the last l rows

of V ′i . Then, CV ′i is obtained from C by the same substitution above . Hence,

C−1UiC = V ′i

then, the matrices V ′1 , V
′
2 , ..., V

′
n−1 satisfy the braid relations, hence the matrices

V1, V2, ...Vn−1 also satisfy the braid relations. By proposition 2.2 there is a

homomorphism Ψr
n : Bn → GLn−1 (Λ) such that Ψr

n (σi) = Vi, n ≥ 3, i = 1, ..., n−1,

where GLn−1 (Λ) is the group of invertible (n− 1)× (n− 1) matrices over Λ. Ψr
n is

called the reduced Burau representaion of Bn.

• For n = 2, Ψr
2 for the group B2 is the homomorphism B2 → GL (Λ) such that

Ψr
2 (σ1) = (−t)1×1 .

Example The generator for B3 are σ1, and σ2, then

Ψr
3 (σ1) =

−t 0

1 1

 Ψr
3 (σ2) =

1 t

0 −t


consider b ∈ B3 such that b = σ1σ2σ1, hence Ψr

3 (b) = Ψr
3 (σ1σ2σ1) = Ψr

3 (σ1) Ψr
3 (σ2) Ψr

3 (σ1),

then

Ψr
3 (b) =

−t 0

1 1


1 t

0 −t


−t 0

1 1

 =

 0 −t2

−t 0

 .

In order to see an application of this representation, it is important to construct

a Markov function with values in Z [s, s−1] . The link invariant associated to this

function is the Alexander polynomial.

Definition 2.15. A Markov function with values in a set E is a sequence of set-

theoretic maps {fn : Bn → E}n≥1 , satisfying the following conditions:

1. ∀n ≥ 1 y ∀α, β ∈ Bn, fn (αβ) = fn (βα) ;

2. ∀n ≥ 1 y ∀β ∈ Bn, fn (β) = fn+1 (σnβ) y fn (β) = fn+1 (σ−1n β) .
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A Markov function allows us to identify isotopy invariants of oriented link in

R3.

Consider the ring homomorphism g : Z [t, t−1]→ Z [s, s−1] Such that t 7−→ s2 .

Let β ∈ Bn, n ≥ 2, then the rational function in s given by

fn (β) = (−1)n+1 s
−〈β〉 (s− s−1)
(sn − s−n)

g (det (Ψr
n (β)− In−1)) , (2.1)

is the Alexander polynomial, where 〈b〉 : Bn → Z such that 〈b〉
(
σvii1,...,σ

vk
ik

)
=

k∑
j=1

vj.

Lemma 2.2. The mapping {fn : Bn → Z [s, s−1]}n≥1 forms a Markov funtion. See

[2].

Set f̂ (K) = fn (β) , for an oriented knot(link) K ∈ R3 and an arbitrary β ∈ Bn

whose closure is isotopic to K. By the previous lemma f̂ (K) is an isotopy invariant

of K that does not depend on the choice of β.



CHAPTER 3

REDUCED BURAU MATRICES FOR BRAIDS

OF THE FORM (σ1σ2 · · · σn−1)
d WITH gcd(n, d) = 1

This chapter studies the reduced Burau matrices for braids in Bn of the form

(σ1σ2 · · · σn−1)d , where gcd(n, d) = 1 and n, d ≥ 2. These types of braids are a

subclass of periodic braids, where all their crossings are positive i.e. the base words

of the braid involve the first strand passing over all other strands in order.

Figure 3–1: Projection of the braid (σ1σ2σ3)
2

By theorem 5, a torus knot T (n, d) admits a braid word of the form (σ1σ2...σn−1)
d

i.e the closure of (σ1σ2...σn−1)
d is a knot K isotopic to T (n, d) . Now, by

theorem 1, T (n, d) is equivalent to T (d, n) ; observe that T (d, n) has a standard

braid projection (σ1σ2...σd−1)
n , then (σ1σ2...σn−1)

d and (σ1σ2...σd−1)
n are braids

whose closures are equivalent knots, but this does not mean that (σ1σ2...σn−1)
d and

(σ1σ2...σd−1)
n are equivalent. When gcd(n, d) 6= 1 the closure of (σ1σ2...σn−1)

d is a

torus link and Ψr
n

(
(σ1σ2...σn−1)

d
)

= tnIn−1 for all n ≥ 2, this can be proven using

22
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the homological interpretation of Ψr
n. In order to characterize the reduced Burau

matrices for the braids mentioned above, show the following cases:

• For n = 2, let β ∈ B2, such that β = (σ1)
d .with gcd(2, d) = 1. Then d ≥ 3 and

d = 1 + 2k, k ∈ N. Therefore,

Ψr
2 (β) = Ψr

2

(
(σ1)

d
)

= [Ψr
2 (σ1)]

d = (−t)d = −td

where Ψr
2 is the reduced Burau representation for B2 mentioned in the section

(2.4.3).

• For n = 3, let β ∈ B3, such that β = (σ1σ2)
d with gcd(3, d) = 1. Then d ≥ 2 and

d = 2 + 3k, k ∈ N ∪ 0′ or d = 1 + 3k, k ∈ N. Therefore,

Ψr
3 (β) = [Ψr

3 (σ1σ2)]
d =

−t −t2
1 0


d

hence,

Ψr
3 (β) =



 0 t3+3k

−t1+3k −t2+3k

 , d = 2 + 3k, k ∈ N ∪ 0′.

−t1+3k −t2+3k

t3k 0

 , d = 1 + 3k, k ∈ N.

.

Proving this by induction on k for d = 2 + 3k, k ∈ N ∪ 0′.

If k = 0,

Ψr
3 (β) =

−t −t2
1 0


2

=

 0 t3

−t1 −t2

 =

 0 t3+3(0)

−t1+3(0) −t2+3(0)

 .
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Suppose that the result is valid for k0, then,

Ψr
3 (β) = [Ψr

3 (σ1σ2)]
2+3k0 =

 0 t3+3k0

−t1+3k0 −t2+3k0

 .

Now, for k0 + 1, then d = 2 + 3k0 + 3 = 5 + 3k0, and note that 5 ≡ 2mod(3), thus

Ψr
3

(
(σ1σ2)

2+3k0+3
)

is well defined, therefore,

Ψr
3

(
(σ1σ2)

2+3k0+3
)

= Ψr
3

(
(σ1σ2)

2+3k0 (σ1σ2)
3
)

= [Ψr
3 (σ1σ2)]

2+3k0 [Ψr
3 (σ1σ2)]

3

=

 0 t3+3k0

−t1+3k0 −t2+3k0


t3 0

0 t3


=

 0 t3+3k0+3

−t1+3k0+3 −t2+3k0+3


 0 t3+3(k0+1)

−t1+3(k0+1) −t2+3(k0+1)

 .

The result is valid for all k ∈ N ∪ 0′. The proof for the case d = 1 + 3k, k ∈ N is

similar.

In addition, the matrices Ψr
3 (β) seen in terms of d would be,

Ψr
3 (β) =



 0 td+1

−td−1 −td

 , d = 2 + 3k, k ∈ N ∪ 0′.

−td −td+1

td−1 0

 , d = 1 + 3k, k ∈ N.
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Now, by reasoning in the same way for n equal to 4 and 5, the following matrices

are obtained:

Ψr
4 (β) =


−t −t2 −t3

1 0 0

0 1 0


d

=




0 td+1 0

0 0 td+1

−td−2 −td−1 −td

 d = 3 + 4k, k ∈ N ∪ 0′.


−td −td+1 −td+2

td−1 0 0

0 td−1 0

 d = 1 + 4k, k ∈ N.

and

Ψr
5 =



−t −t2 −t3 −t4

1 0 0 0

0 1 0 0

0 0 1 0



d

q︷ ︸︸ ︷

0 0 0 td+3

−td−1 −td −td+1 −td+2

td−2 0 0

0 td−2 0


d=2+5k,k∈N∪0′.

,



0 0 td+2 0

0 0 0 td+2

−td−2 −td−1 −td −td+1

td−3 0 0 0


d=3+5k,k∈N∪0′.

0 td+1 0 0

0 0 td+1 0

0 0 0 td+1

−td−3 −td−2 −td−1 −td


d=4+5k,k∈N∪0′.

,



−td −td+1 −td+2 −td+3

td−1 0 0 0

0 td−1 0 0

0 0 td−1 0


d=1+5k,k∈N.
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Generalizing, consider β ∈ Bn such that β = (σ1σ2 · · · σn−1)d with gcd(n, d) =

1, n, d ≥ 2 and define the Burau matrix for de braid σ1σ2 · · · σn−1 as:

Ψr
n (σ1σ2 · · · σn−1) :=



−t −t2 −t3 ·· −tn−3 −tn−2 −tn−1

1 0 0 ·· 0 0 0

0 1 0 ·· 0 0 0

· · · · · ·

· · · · · ·

· · · · · ·

0 0 0 1 0 0

0 0 0 ·· 0 1 0



.

Since Ψr
n is a homomorphism, then Ψr

n (β) = Ψr
n

(
(σ1σ2 · · · σn−1)d

)
= [Ψr

n (σ1σ2 · · · σn−1)]d.

Now, let d = p + nk, k ∈ N ∪ 0′ or k ∈ N with gcd (n, p) = 1, where p indicates

the (p, p) th position where the term −td appears in Ψr
n (β) , and the position of the

row equal to
(
−td−p+1,−td−p+2, ...,−td−1,−td,−td+1, ...,−tn−p−2,−tn−p−1

)
of length

n− 1. Therefore Ψr
n (β) is given by:

• If d = 1 + nk, k ∈ N, then Ψr
n (β) is

Ψr
n (β) =



−td −td+1 −td+2 · · · −td+n−3 −td+n−2

td−1 0 0 · · · 0 0

0 td−1 0 · · · 0 0

· · · · ·

· · · ·

· · · · ·

0 0 0 · · · td−1 0


n−1

, (3.1)

The term td−1 is in the (n− 1, n− 2) th position.
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• If d = p+ nk, k ∈ N ∪ 0′, 1 < p < n, then Ψr
n (β) is

0 · · · td+n−p 0 · · · 0 0

· 0 0 · ·

· · ·

· 0 0

0 0 ·· 0 0 0 ·· td+n−p 0

0 0 ·· 0 0 0 ·· 0 td+n−p

−td−p+1 −td−p+2 ·· −td−1 −td −td+1 ·· −td+n−p−2 −td+n−p−1

td−p 0 ·· 0 0 0 ·· 0 0

0 td−p ·· 0 0 0 ·· 0 0

0 0

·

· 0 0

0 0 · · · 0 td−p · · · 0


n−1

,

(3.2)

The terms td+n−p and td−p are in the (1, n− p+ 1) th position and the (n− 1, n− p− 1) th

position respectively.

Since the number of classes of relative primes to n can be obtained by the

function ϕ − euler, then the number of classes of Burau matrices is obtained by

the same function, and observe that, when p > n, then p ≡ Qmod(n) for some

1 ≤ Q < n with gcd (n,Q) = 1.

Let us prove (3.1) by induction on k.
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If k = 1, then d = 1 + n, thus

Ψr
n (β) =



−t −t2 −t3 ·· −tn−3 −tn−2 −tn−1

1 0 0 ·· 0 0 0

0 1 0 ·· 0 0 0

· · · · · ·

· · · · · ·

· · · · · ·

0 0 0 1 0 0

0 0 0 ·· 0 1 0



1+n

=



−t −t2 −t3 ·· −tn−3 −tn−2 −tn−1

1 0 0 ·· 0 0 0

0 1 0 ·· 0 0 0

· · · · · ·

· · · · · ·

· · · · · ·

0 0 0 1 0 0

0 0 0 ·· 0 1 0





−t −t2 −t3 ·· −tn−3 −tn−2 −tn−1

1 0 0 ·· 0 0 0

0 1 0 ·· 0 0 0

· · · · · ·

· · · · · ·

· · · · · ·

0 0 0 1 0 0

0 0 0 ·· 0 1 0



n

=



−t −t2 −t3 ·· −tn−3 −tn−2 −tn−1

1 0 0 ·· 0 0 0

0 1 0 ·· 0 0 0

· · · · · ·

· · · · · ·

· · · · · ·

0 0 0 1 0 0

0 0 0 ·· 0 1 0





tn 0 0 · · · 0 0

0 tn 0 · · · 0 0

0 0 · ·

· · · ·

· · 0 0

0 0 0 · · · tn 0

0 0 0 · · · 0 tn


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=



−t1+n −t1+(1+n) −t2+(1+n) ·· −t(1+n)+n−4 −t(1+n)+n−3 −t(1+n)+n−2

t(1+n)−1 0 0 ·· 0 0 0

0 t(1+n)−1 0 ·· 0 0 0

· · · · · ·

· · · · · ·

· · · · · ·

0 0 0 t(1+n)−1 0 0

0 0 0 ·· 0 t(1+n)−1 0


Suppose that the result in(3.1) is valid for k0, then d = 1 + nk0, therefore

Ψr
n (β) =



−t −t2 −t3 ·· −tn−3 −tn−2 −tn−1

1 0 0 ·· 0 0 0

0 1 0 ·· 0 0 0

· · · · · ·

· · · · · ·

· · · · · ·

0 0 0 1 0 0

0 0 0 ·· 0 1 0



1+nk0

=



−t1+nk0 −t1+nk0+1 −t1+nk0+2 · · · −t1+nk0+n−3 −t1+nk0+n−2

t1+nk0−1 0 0 · · · 0 0

0 t1+nk0−1 0 · · · 0 0

· · · · ·

· · · ·

· · · · ·

0 0 0 · · · t1+nk0−1 0



Now, for k0 + 1, then d = 1 +nk0 +n = (n+ 1) + nk0, and note that (n+ 1) ≡

1mod(n), so Ψr
n (β) is well defined. Therefore,
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Ψr
n

(
(σ1σ2 · · · σn−1)1+nk0+n

)
= Ψr

n

(
(σ1σ2 · · · σn−1)1+nk0 (σ1σ2 · · · σn−1)n

)
= [Ψr

n (σ1σ2 · · · σn−1)]1+nk0 [Ψr
n (σ1σ2 · · · σn−1)]n

=



−t1+nk0 −t1+nk0+1 −t1+nk0+2 ·· −t1+nk0+n−3 −t1+nk0+n−2

t1+nk0−1 0 0 ·· 0 0

0 t1+nk0−1 0 ·· 0 0

· · · · ·

· · · ·

· · · · ·

0 0 0 ·· t1+nk0−1 0





tn 0 ·· 0 0

0 tn ·· 0 0

0 0 · ·

· · · ·

· · 0 0

0 0 ·· tn 0

0 0 ·· 0 tn



=



−t1+nk0+n −t1+nk0+1+n −t1+nk0+2+n ·· −t1+nk0+n−3+n −t1+nk0+n−2+n

t1+nk0−1+n 0 0 ·· 0 0

0 t1+nk0−1+n 0 ·· 0 0

· · · · ·

· · · ·

· · · · ·

0 0 0 ·· t1+nk0−1+n 0



=



−t1+n(k0+1) −t1+n(k0+1)+1 −t1+n(k0+1)+2 ·· −t1+n(k0+1)+n−3 −t1+n(k0+1)+n−2

t1+n(k0+1)−1 0 0 ·· 0 0

0 t1+n(k0+1)−1 0 ·· 0 0

· · · · ·

· · · ·

· · · · ·

0 0 0 ·· t1+n(k0+1)−1 0


The result is valid for all k ∈ N. The proof for the matrix defined in (3.2) is similar.
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Therefore, the form of the reduced Burau matrices for braids of the form

(σ1σ2 · · · σn−1)d has been explicitly provided.

Now, let In−1 be the unit (n− 1) × (n− 1) matrix, and consider de matrix

defined in (3.1), then

Ψr
n (β)− In−1 =



−td − 1 −td+1 −td+2 · · · −td+n−3 −td+n−2

td−1 −1 0 · · · 0 0

0 td−1 −1 · · · 0 0

· · · · ·

· · · ·

· · · · ·

0 0 0 · · · td−1 −1


n−1

therefore,

det (Ψr
n (β)− In−1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−td − 1 −td+1 −td+2 · · · −td+n−3 −td+n−2

td−1 −1 0 · · · 0 0

0 td−1 −1 · · · 0 0

· · · · ·

· · · ·

· · · · ·

0 0 0 · · · td−1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n−1
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= (−1)3
(
td + 1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 0 0 ·· 0 0

td−1 −1 0 ·· 0 0

0 td−1 −1 ·· 0 0

· · · · ·

· · · ·

· · · −1 ·

0 0 0 ·· td−1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ (−1)4 td+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

td−1 0 0 ·· 0 0

0 −1 0 ·· 0 0

0 td−1 −1 ·· 0 0

· · · · ·

· · · ·

· · · −1 ·

0 0 0 ·· td−1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

(−1)5 td+2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

td−1 −1 0 ·· 0 0

0 td−1 0 ·· 0 0

0 0 −1 ·· 0 0

· · · · ·

· · · ·

· · · −1 ·

0 0 0 ·· td−1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ (−1)6 td+3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

td−1 −1 0 0 ·· 0 0

0 td−1 −1 0 ·· 0 0

0 0 td−1 0 ·· 0 0

0 0 0 −1 ·· 0 0

· · · · · ·

· · · · −1 ·

0 0 0 0 ·· td−1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

•

•

•

+ (−1)n td+n−3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

td−1 −1 0 ·· 0 0

0 td−1 −1 ·· 0 0

0 0 td−1 ·· 0 0

· · · · ·

· · · ·

· · · td−1 ·

0 0 0 ·· 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ (−1)n+1 td+n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

td−1 −1 0 ·· 0 0

0 td−1 −1 ·· 0 0

0 0 td−1 ·· 0 0

· · · · ·

· · · ·

· · · td−1 −1

0 0 0 ·· 0 td−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= (−1)n+1 (td + 1
)

+ (−1)n+1 t2d + (−1)n+1 t3d + ...+ (−1)n+1 td(n−2) + (−1)n+1 td(n−1)

= (−1)n+1 (1 + td + t2d + t3d + ...+ td(n−2) + td(n−1)
)

hence,

det (Ψr
n (β)− In−1) = (−1)n+1 (1 + td + t2d + t3d + ...+ td(n−2) + td(n−1)

)
. (3.3)

The determinants previously estimated are (n− 2)× (n− 2) determinants.

Since β has the form (σ1σ2...σn−1)
d , then 〈β〉 = (n− 1) d. Replacing the

determinant calculated in (3.3) in the rational function defined in (2.1), we obtain:

fn (β) = (−1)n+1 s
−(n−1)d (s− s−1)

(sn − s−n)
g
(
(−1)n+1 (1 + td + t2d + t3d + ...+ td(n−2) + td(n−1)

))
=

s−(n−1)d (s− s−1)
(sn − s−n)

(
1 + s2d + s4d + s6d + ...+ sd(2n−4) + sd(2n−2)

)
=

(s2 − 1)
(
1 + s2d + s4d + s6d + ...+ sd(2n−4) + sd(2n−2)

)
s(d−1)(n−1) (s2n − 1)

=

(
1 + s2d + s4d + s6d + ...+ sd(2n−4) + sd(2n−2)

)
s(d−1)(n−1) (1 + s2 + s4 + s6 + ...+ s2n−4 + s2n−2)

hence,

fn (β) =

(
1 + s2d + s4d + s6d + ...+ sd(2n−4) + sd(2n−2)

)
s(d−1)(n−1) (1 + s2 + s4 + s6 + ...+ s2n−4 + s2n−2)

. (3.4)

Recall that the knot invariant associated to fn is the Alexander polynomial,

and is obtained under the transformation s →
√

1/t. Since the clousure of β is a

knot K isotopic to a torus knot T (n, d) , the formula (3.4) provides a relatively easy

way to calculate its Alexander polynomial. In addition, since the size of the Burau

matrices changes depending on the value of n, the formula (3.4) also changes for
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every T (n, d) .

Knot Braid representation det (Ψr
n (β)− In−1) Alexander polynomial

T (2, d) (σ1)
d −1− td 1 + s2d

sd−1 (1 + s2)

T (3, d) (σ1σ2)
d 1 + td + t2d

1 + s2d + s4d

s2d−2 (1 + s2 + s4)

T (4, d) (σ1σ2σ3)
d −1− td − t2d − t3d 1 + s2d + s4d + s6d

s3d−3 (1 + s2 + s4 + s6)

T (5, d) (σ1σ2σ3σ4)
d 1 + td + t2d + t3d + t4d

1 + s2d + s4d + s6d + s8d

s4d−4 (1 + s2 + s4 + s6 + s8)

The equation (3.4) can be algebraically reduced as:

fn (β) =

(
s2nd − 1

)
(s2 − 1)

s(d−1)(n−1) (s2d − 1) (s2n − 1)
.

A posteriori result

Considering α ∈ Bn such that α =
(
σ−11 σ−12 · · · σ−1n−1

)d
, where gcd(n, d) = 1

and n, d ≥ 2, the type of braid is the mirror of the the braid (σ1σ2 · · · σn−1)d i.e.

α is a periodic braid where the base word involve the first strand passing under all

other strands in order. Since the clousure of (σ1σ2 · · · σn−1)d is a knot K isotopy to

T (n, d) , then the clousure of
(
σ−11 σ−12 · · · σ−1n−1

)d
is a knot K ′ isotopy to the mirror

of T (n, d) .

Defining the Burau matrix for the braid σn−1σn−2 · · · σ1 as:

Ψr
n (σn−1σn−2 · · · σ1) :=



0 t · · · 0 0

...
...

...
...

0 0 t 0

0 0 0 t

−t −t · · · −t −t


n−1

.
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Observe that, Ψr
n

(
σ−11 σ−12 · · · σ−1n−1

)
= Ψr

n

[
(σn−1σn−2 · · · σ1)−1

]
= [Ψr

n (σn−1σn−2 · · · σ1)]−1 ,

then

Ψr
n

(
σ−11 σ−12 · · · σ−1n−1

)
=



−t−1 −t−1 · · · −t−1 t−1

t−1 0 · · · 0 0

0 t−1 · · · 0 0

...
...

...
...

0 0 · · · t−1 0


.

Since Ψr
n ((σ1σ2...σn−1)

n) = tnIn−1 for all n ≥ 2, then

Ψr
n

((
σ−11 σ−12 · · · σ−1n−1

)n)
= Ψr

n

[(
(σn−1σn−2 · · · σ1)−1

)n]
= [Ψr

n ((σn−1σn−2 · · · σ1)n)]
−1

= (tnIn−1)
−1

= t−nIn−1

thus Ψr
n

((
σ−11 σ−12 · · · σ−1n−1

)n)
= t−nIn−1, for all n ≥ 2.

Implementing a similar analysis as the one made for braids of the form (σ1σ2 · · · σn−1)d ,

let d = p′ + nk, k ∈ N ∪ 0′ or k ∈ N with gcd (n, p′) = 1, where p′ indicates the

position of the row equal to (−t−1,−t−1, ...,−t−1, ...,−t−1,−t−1) of length n − 1.

Therefore, Ψr
n (α) is given by:

• If d = 1 + nk, k ∈ N, then Ψr
n (α) is



−t−d −t−d · · · −t−d −t−d

t−d 0 · · · 0 0

0 t−d · · · 0 0

...
...

...
...

0 0 · · · t−d 0


,

in the last row, the term t−d is in the (n− 1, n− 2) th position.
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• If d = p′ + nk, k ∈ N ∪ 0′, 1 < p′ < n, then Ψr
n (α) is

0 · · · t−d · · 0 0

...
...

...

0 0 · · · 0 · · · t−d 0

0 0 · · · 0 · · · 0 t−d

−t−d −t−d · · · −t−d · · · −t−d −t−d

t−d 0 · · · 0 · · · 0 0

0 t−d · · · 0 · · · 0 0

...
...

...

0 0 · · t−d · · · 0


n−1

,

in the first row, the term t−d is in the (1, n− p+ 1) th and in the last row the

term t−d is in the (n− 1, n− p− 1) th position. The proof of this can be made by

induction on k.

Now, let In−1 be the unit (n− 1) × (n− 1) matrix, and consider the matrices

defined above, then

det (Ψr
n (β)− In−1) = (−1)n+1 t(n−1)d

(
1 + td + t2d + ...+ td(n−2) + td(n−1)

)
. (3.5)

Note that, since α is the form
(
σ−11 σ−12 ...σ−1n−1

)d
, then 〈α〉 = (n− 1) d. Replacing the

determinant estimated in (3.5) in the rational function defined in (2.1), one obtains:

fn (α) = (−1)n+1 s
−(n−1)d (s− s−1)

(sn − s−n)
g
(
(−1)n+1 t−(n−1)d

(
1 + td + t2d + t3d + ...+ td(n−1)

))
hence,

fn (α) =

(
1 + s2d + s4d + s6d + ...+ sd(2n−4) + sd(2n−2)

)
s(3d−1)(n−1) (1 + s2 + s4 + s6 + ...+ s2n−4 + s2n−2)

. (3.6)

This equation can be algebraically reduced as:
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fn (α) =

(
s2nd − 1

)
(s2 − 1)

s(3d−1)(n−1) (s2d − 1) (s2n − 1)
,

which is the Alexander Polynomial of a knot K isotopy to the mirror of T (n, d) .

It is important to mention that the formulas (3.4) and (3.6) provide the Alexander

polynomial of the resulting knot from the closure of the braids β and α, but knots

exist whose mirror has the same Alexander polynomial, then (3.4) and (3.6) are not

necessarily different.

Recall, the Alexander Polynomial is a knot invariant, therefore it does not

change under ambient isotopy and it allows to clasify knots. Therefore, any two

knot projections with diferent Alexander Polynomial are not equivalent, but two

knot projections with the same Alexander Polynomial does not mean the projections

are equivalent. There are many difficult ways to compute this polynomial, however,

the computations and proofs conducted in this chapter expose an alternative easy

route to compute that polynomial for torus knots and provide an explicit form for

the Burau matrices for the braids (σ1σ2 · · · σn−1)d and
(
σ−11 σ−12 · · · σ−1n−1

)d
whose

clousures are knots isotopy to T (n, d) , and the mirror of T (n, d) respectively was

provided.



CHAPTER 4

CONCLUSION AND FUTURE WORK

4.1 Conclusion

This work, presents a pattern in the reduced Burau representation for braids of

the form (σ1σ2 · · · σn−1)d , and
(
σ−11 σ−12 · · · σ−1n−1

)d
with gcd(n, d) = 1 and n, d ≥ 2.

Analyzing the reduced Burau representation for these braids, a characterization of

the reduced Burau matrices for the braids mentioned above was described, and a

general formula for the Alexander polynomial for the knot associated to the closure

of the braids (σ1σ2 · · · σn−1)d , and
(
σ−11 σ−12 · · · σ−1n−1

)d
was provided, reaching all

the objectives proposed in this thesis.

4.2 Future work

The following future work is proposed:

• To characterize the reduced Burau matrices for braids of the form
(
σ±11 σ±12 · · · σ±1n−1

)d
• To find a general formula for the Alexander polynomial for the knot Associated to

the closure of the braids
(
σ±11 σ±12 · · · σ±1n−1

)d
• To extend the formulas given for the braids (σ1σ2 · · · σn−1)d and

(
σ−11 σ−12 · · · σ−1n−1

)d
to any periodic braid.
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