
A COMPUTATIONAL MODELLING FRAMEWORK FOR

TIME-FREQUENCY SIGNAL REPRESENTATIONS

By

Cesar A. Aceros Moreno

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

UNIVERSITY OF PUERTO RICO

MAYAGÜEZ CAMPUS

December, 2010

Approved by:

Nestor Rodriguez, Ph.D. Date

Member, Graduate Committee

Kejie Lu, Ph.D. Date

Member, Graduate Committee

Domingo Rodriguez, Ph.D. Date

President, Graduate Committee

Darrell Hajek, Ph.D. Date

Representative of Graduate Studies

Erick E. Aponte, Ph.D. Date

Associate Director of the ECE Department

Abstract of Dissertation Presented to the Graduate School

of the University of Puerto Rico in Partial Fulfillment of the

Requirements for the Degree of Master of Science

A COMPUTATIONAL MODELLING FRAMEWORK FOR

TIME-FREQUENCY SIGNAL REPRESENTATIONS

By

Cesar A. Aceros Moreno

December 2010

Chair: Domingo Rodriguez

Major Department: Electrical and Computer Engineering

This thesis presents an open source computational tool framework for the visualiza-

tion and analysis of signals with time-dependent spectral content. SIRLAB (SIgnal

Representation LABoratory) is the name given to this tool framework written in C-

language for a Linux environment and using the OpenCV (Open Source Computer

Vision) platform, a software library of programming functions for near-real-time com-

puter vision application development. SIRLAB was initially developed as an applica-

tion tool kit for environmental surveillance operations pertaining to acoustic moni-

toring of birds, amphibians, and aquatic animals. In this setting, it receives acoustic

raw signal-data and it produces ordered sets of spectrogram frames which may be

presented in a streaming video format due to its fast computation. Computer speed

ups of more than 30 times have been reached when compared with MATLAB imple-

mentations utilizing the same computational resources and algorithm formulations.

This allows to produce streaming video with a frame rate of 30 frames per second,

for some applications, reaching the ATSC digital television frame rate standard.

ii

Resumen de Disertación Presentado a Escuela Graduada

de la Universidad de Puerto Rico como requisito parcial de los

Requerimientos para el grado de Maestŕıa en Ciencias

UN MARCO DE MODELAMIENTO COMPUTACIONAL PARA

REPRESENTACIONES DE SEÑALES TIEMPO-FRECUENCIA

Por

Cesar A. Aceros Moreno

Diciembre 2010

Consejero: Domingo Rodriguez

Departamento: Ingenieŕıa Eĺectrica y Computadoras

Esta tesis presenta un marco computacional de código abierto para la visualización y

analisis de señales con contenido espectral dependiente del tiempo. SIRLAB (Labo-

ratorio de representacion de señales) es el nombre dado a esta marco computacional

escrito en lenguage C para ambiente Linux y usando la plataforma de OpenCV, una

libreŕıa de software para desarrollo de aplicaciones en visión de computadoras para

procesamiento cercano a tiempo real. SIRLAB fue inicialmente desarrollado como un

juego de herramientas para operaciones de monitoreo ambiental asociado al moni-

toreo acústico de aves, anfibios, y animales acuaticos. En esta aplicaciones, SIRLAB

recibe señales acústicas en datos crudos y produce conjuntos ordenados de espec-

trogramas los cuales pueden ser presentados en un formato de video debido a su

rápida computación. Mejoras en la computación de hasta 30 veces con respecto a

las implementaciones de Matlab han sido alcanzadas utilizando los mismos recursos

computacionales y formulaciones de algoritmos. Esto permite producir video a una

tasa de 30 cuadros por segundo, para algunas aplicaciones, alcanzando estándares

de televisión digital (ATSC).

iii

Copyright c© 2010

by

Cesar A. Aceros Moreno

To my wife, daughter, and my parents.

TABLE OF CONTENTS
page

ABSTRACT ENGLISH . ii

ABSTRACT SPANISH . iii

LIST OF TABLES . viii

LIST OF FIGURES . ix

1 INTRODUCTION . 1

1.1 The Concept of Time-Frequency Signal Analysis 5

2 BACKGROUND RESEARCH AND PREVIOUS WORKS 9

3 SIRLAB THEORETICAL FRAMEWORK 17

3.1 Time Frequency Signal Operator Formulation 17

3.1.1 Cyclic Ambiguity Function 17

3.1.2 Wigner Distribution . 18

3.1.3 Discrete Chirp Fourier Transform 18

3.1.4 Cyclic Short Time Fourier Transform 18

3.2 Operator Approach to Acoustic Signal Analysis 19

4 MODELLING AND SIMULATION ENVIRONMENTS 21

4.1 SARCSPE - Image Formation Simulations in Matlab 21

4.2 JCID - Java Web-Based Data Processing Environment 21

4.3 Discrete Chirp Fourier Transform 25

4.4 Cyclic Short Time Transform 28

4.5 Cyclic Ambiguity Function . 28

4.6 Wigner Distribution . 31

5 SIRLAB TARGET APPLICATION ENVIRONMENT 33

6 SIRLAB SOFTWARE DESIGN SPECIFICATION 39

6.1 Document Description . 39

6.1.1 Introduction . 39

6.1.2 Intended Audience . 39

6.1.3 Hardware and Software Resources 39

vi

6.1.4 Version Management . 39

6.1.5 Definition, Acronyms and Abbreviations 39

6.1.6 Remarks . 40

6.2 Design Considerations . 40

6.2.1 Assumptions and Dependencies 42

6.2.2 General Constraints . 43

6.3 Verification and validation requirements (testing) 44

6.3.1 Goals and Guidelines . 45

6.4 System Architecture . 46

6.4.1 Architectural Strategies 46

7 SIRLAB DETAILED SYSTEM DESIGN 48

7.1 Introduction . 48

7.1.1 Intended Audience . 48

7.1.2 Version Management . 48

7.1.3 APIs used in SIRLAB . 49

7.1.4 Remarks . 49

7.2 Assumptions and Dependencies 50

7.3 SIRLAB Detailed System Design 50

7.3.1 System Architecture . 50

7.4 SIRLAB Libraries and Function Description 52

7.4.1 Inputlib . 52

7.4.2 Processlib . 56

7.4.3 Aritmetlib . 62

7.4.4 Outputlib . 63

8 SIRLAB GENERAL GUIDELINES . 67

8.1 Bare Frame of the SIRLAB for CSTFT Implementation 67

8.2 SIRLAB Ordered Set of Spectrograms 69

9 CONCLUSION AND FUTURE WORKS 71

9.1 Definition of Standar Frame in SIRLAB 71

9.2 Speedup and Video Streaming Using SIRLAB 72

9.3 High Resolution and High Sampling Rate Bioacoustics 72

9.4 SIRLAB Comparison with Other Spectrogram Software 73

9.5 Future Works . 74

vii

LIST OF TABLES
Table page

6–1 Acronyms Table . 40

6–2 Definitions Table . 40

6–3 Signal Operators to be implemented 44

7–1 Hardware where SIRLAB were Tested 50

7–2 SIRLAB Assumptions and Dependencies 50

7–3 Values of fmtprr and the Format of the Number 66

9–1 Some Spectrogram Software Comparison. 73

viii

LIST OF FIGURES
Figure page

1–1 A general approach for acoustic signal analysis 2

1–2 Evolution of Understanding . 4

1–3 Chirplet 3D Representation . 5

1–4 Aguja Canela STFT Representation using Matlab 6

1–5 Two Signals DFT Transform . 8

1–6 Two Signals STFT Transform . 8

2–1 Scattering Channel Model . 10

2–2 Four examples of detected filaments. The red solid lines show filament

skeletons, the blue dashed lines show the re-centred skeleton. . . . 14

2–3 Examples for Connect-The-Dots. Three examples of scattered points

in [0; 1], and the corresponding CTD solution. In each case the

class Γ of curves is the set of Lipschitz graphs. Panels (a),(c), and

(e) show the pointsets only, while panels (b), (d), and (f) show the

maximal Lipschitz curves, with 31; 35; 54 points respectively-out

of n = 500 points total. Panel (a) shows a uniformly distributed

random pointset. Panels (c) and (e) show clouds with a small num-

ber of points on a Lipschitz curve, in addition to uniform random

points. It seems unlikely that visual inspection would detect non-

uniform structure in (c) (compare (a)); however, a statistical test

based on CTD counts can reliably establish its presence. 15

3–1 A general approach for acoustic signal analysis 20

4–1 SARCSPE - Screenshot 1 . 22

4–2 SARCSPE - Screenshot 2 . 22

4–3 JCID - Screenshot 1 . 23

4–4 JCID - Screenshot 2 . 23

4–5 DCFT for a 6 Component Chirp Signal, N=127 25

ix

4–6 DCFT for a 6 Component Chirp Signal, N=1023 26

4–7 Three Frames Showing the Evolution of 6 Targets Using the DCFT 26

4–8 Modified DCFT for 1 Component Chirp Signal 26

4–9 Modified DCFT for 2 Component Chirp Signal 27

4–10CSTFT of two chirp signals . 28

4–11CSTFT of Anuran (Eleuterodactylus cooki) 29

4–12Current Frame Appearance for the CSTFT operator (hydrophone sound) 29

4–13Ambiguity Function of Two Chirp Signals with td = 0.002s 30

4–14Ambiguity Function of Two Chirp Signals with td = 0.012s 30

4–15 Left is the real part x1(n) = [zeros(1; 24); exp
(j∗2∗pi/N)∗[0:15] ; zeros(1; 24)]

and right is the dilation/compression of x1(n) by 3 31

4–16WD for Left Signal . 32

4–17WD for Right Signal . 32

5–1 The SAP Concept . 33

5–2 NETSIG and SIRLAB Integration Concept 35

5–3 VESO Mesh Cognitive Wireless Sensor Network 36

5–4 Testbed Installed in the Mangrove Area, Wireless Antenna, Solar

Panel, and MSN Pelican Box are visible 37

5–5 Jobos Reserve with JBNERR Office and Buoy Localizations 38

5–6 Buoy Intended as Testbed Place . 38

6–1 SIRLAB System Architecture . 46

7–1 Detailed SIRLAB System Architecture 51

7–2 Tree Structure for the SIRLAB . 52

7–3 Standard WAVE Format 7–3(a) Table and 7–3(b) The WAV header

using bvi (an hexadecimal binary file editor) 54

7–4 cstft parameters.txt Input Parameter File 55

7–5 Values for the RGB in a SIRLAB Colormap File 57

x

7–6 Three windows Hann, Rectangular and Gauss(σ = 0.4) defined in

interval [0, N − 1]. 58

7–7 Example of a window data of size K samples, window size N, and

window position P . 59

7–8 Process to copy a segment [kmin,kmax] of locdatain to the column

col in the image matstft . 61

7–9 Empty Frame Template vs Fulfilled Frame Using the CSTFT Operator

With a Chirp Signal. 64

7–10 datatime Array Data is Plot in the imagein Array. 64

7–11Frame with fmtprt parameter values 66

8–1 Bare Frame with Description of Fields. 68

8–2 Example of a Frame Output with Chirp Signal Input. 68

8–3 Transform method CSTFT computation diagram. 69

8–4 Simple depiction of the concept of a set of ordered spectrogram

frames (only five frames are presented here) which may be pre-

sented as a digital streaming video. 70

9–1 Standard Frame for Eleutherodactylus brittoni. 71

9–2 Sample Frame of Pistol Shrimp sound acquired at 192 KHz/24 bits

with FR-2 recorder. 73

9–3 Cyclic Ambiguity Function Implementation 74

9–4 DCFT Implementation . 75

9–5 iPhone App Presentation. 75

xi

CHAPTER 1

INTRODUCTION

This thesis deals with the development of a computational modelling framework

(CMF) named SIgnal Representation LABoratory (SIRLAB). This CMF is intended

to time-frequency signal representation. The computational framework is intended to

provide a open source library with a set of computational tools for signal processing.

Before to introduce the computational framework we must lay some foundations

of signal processing. A generalized signal processing framework was presented in

the MsC Thesis of Yuji Yunes [1] where physical signals are sampled and pass thru

appropiate time observation windows, in order to produce one dimensional finite

discrete signals evaluable for further treatment, see Figure 1–1.

The group of signals of interest exist in the space of continuous physical signals L(R)

(see Figure 1–1). Prior to use these signals in digital signal processing we must sam-

ple them and then use windowing techniques to obtain a discrete finite sequence.

In other words, the signal passes from L(R) to l(Z) through a sampling process.

The sampled version then is cut from l(Z) to l2(ZN) when a windowing operator is

applied. The new signal is in l2(ZN). This is the space of discrete finite signals with

finite energy. Finally, through the use of time-frequency tools it is possible to map

signals in the space l2(ZN) to the space l
2(ZN × ZN). The increased dimensional-

ity of the signal space reveals more information about the original signal. However

more information introduces an increment in the computational power required for

1

2

Figure 1–1: A general approach for acoustic signal analysis

the signal processing analysis.

For the computation of signals, we start at the signal space l2(ZN) where N is the

length of the signal acquired. The CMF proposed will provide primitives for the

development of time-frequency tools to pass from the one-dimensional space to a

higher dimensional spaces. The short time fourier transform (STFT) and the dis-

crete chirp fourier transform (DCFT) are only two in a large group of signal operators.

The CMF is expected to be a useful tool to process signals and perform informa-

tion extraction from signals acquired from the physical world. In the case of this

project we are specially interested in bioacoustical signals acquired by hydrophones

and acoustic data from anurans and birds. The bioacoustic input data is usually

3

stored in an uncompressed format as waveform audio file format (WAV or WAVE)

files. The CMF output data will be a series of frames or images built from data

provided using the signal operator (STFT or DCFT in this project) selected, or a

video created based on the images previously mentioned.

We envision the computational framework as a signal processing environment that

takes the signals acquired and, using signal operators, delivers the output data in a

standard output format.

The increase in data acquisition of real-world signals is becoming a major problem

due to the exorbitant amount of data available. This rise is linked to a high storage

capacity and high computing capacity requirements of the collected data. The high

computing capacity is most important because of its ”adequate” processing depends

on the quality of information that can be extracted. The development of strategies

to select in a signal the useful information and discard that which is not important

has been and is a hard problem in the field of signal processing. The pertinence of

this thesis is shown in (based in a concept by Stephen M. Griffin) Figure 1–2 that

depicts the stages to reach knowledge understanding.

A useful and well known strategy in signal processing is to make a mapping that

increases the dimensionality of the signal space. In this project, we map signals from

1-D signal spaces to 2-D signal spaces through the STFT and/or DCFT. This map-

ping process deals with images as an end product. Is a fact that we are living in a

world where images and videos are becoming important not only in the scientific world

but also in diverse fields such as military, biology, communications, video-games, etc.

4

��





INFORMATION

DATA

KNOWLEDGE

UNDERSTANDING

This signal
correspond
to a specie X

STRUCTURE

CONTEXT

ANALYSIS

INFERENCE

THIS THESIS

Figure 1–2: Evolution of Understanding

The 21st century is the century of biology. A new kind of biology mostly focused in

sophisticated techniques based in mathematics, physics, and chemistry. Many of the

tools to procure new discoveries in biology are and will be established under novel

tools for signal processing. These new instruments are strongly based in computers,

mathematics, and combined with an improved understanding of how to model the

phenomena involved in the source, channel and receiver relation. The modelling of

biological systems is a hard problem. With this work we are in the development of

appropriate tools that support ways to differentiate things that are useful from those

are not. The time-frequency analysis is a way to do this separation.

The information extraction from large real world data have been traditionally a de-

mandant process in terms of man’s job, computational processing and expertise of

the persons involved. This project pays special attention to the development of a

really automated information processing system that goes from signal to images or

movies. These outputs might contain valuable information that could be relevant to

the decision making process.

5

1.1 The Concept of Time-Frequency Signal Analysis

Time frequency representation is a modality for representing a signal in a 2-D format

where the horizontal axis, or abscissa, usually represents the independent variable of

time and the vertical axis, or ordinate, usually represents the independent variable of

frequency. The value of the representation is then given by the third axis (See Figure

1–3).

Figure 1–3: Chirplet 3D Representation

Another representation format commonly used is based on a color scheme where the

color value describes the magnitude or intensity of the representation (see Figure

1–4).

There exist many signals whose frequency or spectral content changes with time.

These signals are best analyzed using time-frequency signal analysis tools. Examples

of these tools are the short time fourier transform (STFT), the Wigner distribu-

tion (WD), the ambiguity function (AF), and the discrete chirp fourier transform

(DCFT). The main objective of this thesis is the formulation of a computational

modelling framework (CMF) where these time-frequency tools will be implemented

6

Figure 1–4: Aguja Canela STFT Representation using Matlab

in an integrated manner with an appropriate user interface. The CMF provides addi-

tional features such as the reception of acoustic raw signal-data and the production

of ordered sets of spectrogram frames which may be presented in a video format. It

is envisioned that this CMF will be endowed with the following attributes:

1. Signal processing primitives built-in.

2. Data acquisition using standard sound input.

3. Open-source code available for signal processing applications.

4. Stochastic analysis tools implemented.

5. Change detection capabilities.

Figure 1–5 shows two signals whose spectral contents change with time. Each signal

is composed of two time segments. Each time segment corresponds to a different

sinusoidal frequency. For example, in the first signal the first segment has a sinusoidal

frequency of 300Hz and the second segment has a sinusoidal frequency of 100Hz.

7

The second signal has as a first segment a sinusoidal frequency of 100 Hz and a

second segment with a sinusoidal frequency of 300 Hz. It can be noticed that the

Fourier transform of both of these signals is exactly the same, as depicted in Figure

1–5. From this point of view it can be determine that the Fourier transform cannot

be used as a discrimination tool to distinguish these two signals. Here is where the

concept of time-frequency signal analysis becomes instrumental. Time-frequency

signal analysis tools are computational tools designed to discriminate time-frequency

signals. A commonly used time-frequency tool is the short-time Fourier transform

(STFT). The STFT is the magnitude of a windowed Fourier transform of a given

signal. The window is usually smaller than the signal and is displaced or shifted

throughout the entire signal.

Using the STFT in the particular example presented in Figure 1–5, it is possible

to apply a time shift window to discriminate the frequency content present in the

signal at different time shifts. Figure 1–6 shows the STFT output as an image for

each of the two signals mentioned in Figure 1–5. We can see that the STFT is a

tool that can be used to discriminate time-frequency signals. Time-frequency tools,

in general, are designed to possess diverse computational processing techniques to

extract individual attributes, features, or characteristics associated with a signal.

8

Figure 1–5: Two Signals DFT Transform

Figure 1–6: Two Signals STFT Transform

CHAPTER 2

BACKGROUND RESEARCH AND PREVIOUS

WORKS

Prior to enumerate the works mentioned, we consider important to introduce the

concept signal-channel-targets interaction. This concept appears in a formulation

developed as the scattering channel model (see Figure 2–1) by Prof. Domingo Ro-

driguez. This model takes input signals from the multicomponent polynomial phase

signal subspace. These signals interact with the scattering media producing a new

multi-component polynomial phase signals. The channel attributes are encoded in

the polynomial phase signal parameters and a parameter estimator may be used to

extract these parameters. The parameter array space can be treated to extract fur-

ther intelligence. In this thesis we build a computational framework that enables

the implementation of estimators for extraction of elements in the parameter array

subspace.

Many works have been made to process signals using multiple signal transforma-

tions in order to extract parameters and information. The proposed computational

framework gives a first step toward formulation of signal processing operators as

mathematical entities. These tools will allow formulate the signal-channel-targets

interaction in a novel form. As a consequence of this the formulation of channel

models, information extraction, and decision making using mathematical operators

9

10

Figure 2–1: Scattering Channel Model

is possible.

Time-frequency analysis is a powerful tool that has been widely studied, but con-

tinues providing new ways to handle the signals and extract their information. The

Ervin Sejdic et al. [2] work is focused on the study of the concentration of energy to

perform feature extraction and classification. The authors first give an overview of

feature extraction techniques based in the Cohen’s Class to perform time-frequency

analysis and obtain the classification using the concept of energy concentration in the

TF domain. The paper is a very detailed summary of the work in the time-frequency

field in the last years.

The work of LJubisa Stankovic [3] proposes methods and algorithms suitable to

be implemented in this thesis. Her work uses the Wigner distribution based in time-

varying filtering and produces an improved way to detect multi-component and mono-

component signals in noisy environments.

The noisy environment is a condition very common in EEG and this leads us to the

paper of J. Zygierewicz et al. [4], where they develop a high resolution method to

11

produce time-frequency images, this method is suitable for implementation in the

CMF of this thesis.

Antonio Costa and Stephan Hengstler [5] propose a method for using auto-regressive

analysis for time-frequency images and thereby improve visualization and facilitate

the extraction of parameters.

The research of Kathleen A. Lindlan [6] proposes a solution of how integrate database

analysis with high performance scientific computing work to achieve the high require-

ments needed. This kind of work is of special importance especially when you are

dealing with near real-time processing methods.

The work of Emmanuel J. Candes et al. [7], is centered on the problem of detecting

one-dimensional signals from noisy measurements. The signal model is defined as

yi = αSi + zi with i = {1, . . . , N}, where (Si) are sampled values Si = S(ti) of a
signal of interest and each S(t), t ∈ [0, 1]. (zi) is a zero-mean stochastic vector.
The authors use a set of chirplets to test the highest local approximation with the

unknown input signal. With each approximation the path of the chirplet is detected

and a chirplet graph is generated.

Another work is written by Xiang-Gen Xia [8]. This paper describes the discrete

chirp Fourier transform (DCFT) a powerful but computationally demanding signal

operator defined for a signal x [n] ∈ ZN as

Xc [k, l] =

(
1√
N

) N−1∑
n=0

x [n]e
−j2π
N
(ln2+kn) (2.1)

12

The DCFT is particularly useful for a prime number signal length because in this case

the estimation of parameters of multicomponent polynomial chirp signals is relatively

easy. The parameters extracted are the information present in the chirp signals. The

information allows us to infer characteristics and behaviors of the medium where the

signal was propagated. The author also remarks the DCFT as a fractional fourier

transform where the rotation angle is related to the variable l .

A huge and seminal paper in the area was written by Leon Cohen [9]. In this work

the author summarizes fundamental ideas and methods of joint time-frequency dis-

tributions. Special attention is paid to Cohen’s class formulation; given by

P (t, w) =
1

4π2

∫ ∫ ∫
e j(θu−θt−τw)φ(θ, τ)s(u +

τ

2
) · s∗(u − τ

2
)du dθ dτ (2.2)

where the function φ(θ, τ) is the kernel function in the ambiguity domain and s is the

signal. The Wigner-Ville, Choi-Williams, and Page distributions are some examples

of distributions that belongs to Cohen class.

An interesting and recent work is made by Nicholas N. Bennett and Naoki Saito [10].

The authors develop a methodology to extract parameters of chirp signals using the

Hough transform [11]. The authors present a collection of new algorithms which

employ a local Fourier basis and variants of the randomized Hough transform to

compute estimates for parameters of multiparameter chirps. The Hough transform

is widely used as a feature extraction technique. It is also used in image analysis,

computer vision, and digital image processing. The use of this transform has been

evolved from the classical form oriented to line identification in images to a most

sophisticated uses such as identifying positions of objects such as circles or ellipses.

13

OpenCV has implemented Hough transform tools for detection of ellipses. In con-

clusion this paper emphasizes on the usefulness of edge information in lowering the

variance of parameter estimates and in decreasing the amount of spurious cross talk

observed in the traditional Hough processing techniques.

Another work from Roberto E. González and Nelson D. Padilla [12] is oriented to

detection of filaments in astronomy. In order to detect a filament, the authors con-

struct a backbone linking two nodes, this provides a skeleton-like path connecting

the highest local dark matter (DM) density traced by non-node haloes. The esti-

mation of the characteristic DM density between two skeleton-candidate haloes use

two approximations, the Voronoi tessellation density and a proxy of the minimum

DM density between the two haloes assuming (NavarroFrenkWhite) NFW profiles.

This application is akin to the time-frequency representation of signals. We can use

similar methods to determine filaments in the images of the t-f operators. Figure

2–2 shows the results of four filaments detected using the methodology formulated

in [12].

Along the same line is other work of Ery Arias-Castro et al. [13]. In this work the

authors show the importance of the well known connect-the-dots (CTD) problem.

The authors use Hölder Class and particularized Lipschitz graphs to develop a ge-

ometric approach to the problem of the CTD. An example of the results is shown

in figure 2–3 where Lipschitz graphs are immersed in uniformly distributed points in

the range [0, 1]
2
. The basis for these results are in [14] and [15]. The most recent

work of Arias-Castro is [16] where the authors expands the formulations of the papers

[13, 14] to grayscale images and use beamlets networks in 2D and 3D to characterize

14

Figure 2–2: Four examples of detected filaments. The red solid lines show filament

skeletons, the blue dashed lines show the re-centred skeleton.

filamentary structures in 3-D datasets and make analyzes of point clouds.

Another approach for information extraction is related with data mining in Cook and

Holder [17]; in this effort the authors suggest the discovery and identification of

substructures in structural data. The data mining considered uses two techniques:

unsupervised pattern discovery and supervised concept learning from examples. The

applications mentioned in this paper are CAD diagrams and chemical structures.

The data mining techniques lack of scalability especially when problems involve large

numbers of data and features.

15

Figure 2–3: Examples for Connect-The-Dots. Three examples of scattered points

in [0; 1], and the corresponding CTD solution. In each case the class Γ of curves is

the set of Lipschitz graphs. Panels (a),(c), and (e) show the pointsets only, while

panels (b), (d), and (f) show the maximal Lipschitz curves, with 31; 35; 54 points

respectively-out of n = 500 points total. Panel (a) shows a uniformly distributed

random pointset. Panels (c) and (e) show clouds with a small number of points

on a Lipschitz curve, in addition to uniform random points. It seems unlikely that

visual inspection would detect non-uniform structure in (c) (compare (a)); however,

a statistical test based on CTD counts can reliably establish its presence.

16

A German laboratory, MMER, of the Technische Universität München, in the paper

[18] develops a computational framework for video applications. The authors base

the CF on the same open source libraries that we are planning to use in this project.

The main purpose of the paper is the generic assembly of processing chains to shows

applications on the area of video analysis and pattern recognition. They focus the

development to the use of multi-core CPU architectures as a way to improve the

performance of the applications.

The work in [19] is oriented toward the design of ultrahigh strength, high toughness

steels. The authors create a computational framework for metallurgical application.

The CF was developed to help in the design of super steels. This work is a good

example of a computational framework for an specific purpose.

The Prof Adam W. Bojańczyk of Cornell Univesity proposed an interesting project

[20, 21] oriented to the parallelization of space-time adaptive processing (STAP)

structures. He which refers to adaptive radar processing algorithms that take the

signals from both multiple sensors to cancel interferences and detect a target. The

Algorithmic Library for Parallel STAP (ALPS) takes advantage of the arrival of par-

allel processing as a way to overcome the computational complexity of the time-

frequency operations. Unfortunately the project ALPS was not longer developed and

these references are the last known about it.

CHAPTER 3

SIRLAB THEORETICAL FRAMEWORK

This chapter presents the theoretical formulations associated with the SIRLAB frame-

work. A mathematical signal processing framework must be implemented along the

basis of the concept of a signal linear algebra. Concepts of signal algebra definitions

have been treated in the thesis of Cesar Aceros of 2005 [22]. In addition, this type

of framework requires as part of its background concepts pertaining to signal classi-

fication and linear vector spaces which can be found in the works of Yuji Yunes [1]

and Dilia Rueda-Serrano [30]. The chapter continues describing the different types

of mathematical tools used to treat these signals in order to extract the relevant

information important to an information user.

3.1 Time Frequency Signal Operator Formulation

3.1.1 Cyclic Ambiguity Function

The ambiguity function is useful for time delay and Doppler estimation as well as for

modeling point target response functions and it is the map

A : l2(ZN)× l2(ZN) → l2(ZN × ZN)
(f , g) �→ A{f ,g}[m, k]

where,

A{f ,g}[m, k] =
∑
n∈ZN
f [n]g∗[〈n +m〉N]W knN

and W knN = e
− j2π
N
(kn), m ∈ ZN and k ∈ ZN .

17

18

3.1.2 Wigner Distribution

The discrete Wigner transform of a signal f is the map

W : l2(ZN)× l2(ZN) → l2(Z/2N × Z/2N)
(f , f) �→ W{f }

where,

W{f }[n, k] =
1

N

∑
τ∈ZN

∑
ν∈ZN
f (τ, ν)W nν+kτN

=
1

N

∑
τ∈ZN

∑
ν∈ZN

∑
l∈ZN
W nν+kτN × ρNW−νlN x(〈l + τ〉N)y ∗(l)

and, W nν+kτN = e−
j2π
N
(nν+kτ), n ∈ ZN and k ∈ ZN .

3.1.3 Discrete Chirp Fourier Transform

The DCFT of a discrete signal x [n], n ∈ ZN, is defined as follows:

Xc : l2(ZN) → l2(ZN × ZN)
(x) �→ Xc{x}

Xc{x}[k, l] =
1√
N

N−1∑
n=0

x [n]W kn+ln
2

N

Here, WN = e
−j 2π

N , and k ∈ ZN and l ∈ ZN.

3.1.4 Cyclic Short Time Fourier Transform

The analysis window vz ∈ l2(ZM) needs to be mapped to the same space as the
signal space, i.e. l2(ZN). This is done by appending N −M zeros to v , where this
new mapped signal is denoted by v ∈ l2(ZN). The cyclic shift operator and the
Cyclic Short-Time Fourier Transform are defined as follow.

Cyclic Shift Operator:

Let x ∈ l2(ZN) be an arbitrary signal, the cyclic shift operator SkN acting over x is

19

defined as:

SkN : l
2(ZN) −→ l2(ZN)

x �−→ SkN{x} = y , where

(SkN{x})[n] = y [n] = x [〈n − k〉N], k ∈ ZN

where 〈p〉N denotes the modulo operation, i.e., 〈p〉N = remainder(pN)
Cyclic Short-Time Fourier Transform:

CSTFT : l2(ZN)× l2(ZN) −→ l2(ZN × ZN)

(x, v) �−→ CSTFT {(x, v)} = Sx,v ,

where,

CSTFT{x,v}[n, k] = Sx,v [n, k] =
∑
m ∈ ZN

x [m]v [〈n −m〉N]W kmN , (3.1)

and k, n,m ∈ ZN
If we define xn[m] = x [m]v [〈n − m〉N] as an ensemble of signals parametrized in n
and substitute it in equation 3.1 then, the CSTFT can be simplified to:

Sx,v [n, k] =
∑
m ∈ ZN

xn[m]W
km
N ,

Sx,v [n, k] = FN{xn[m]}

Sx,v [n, k] = Xn[k]

3.2 Operator Approach to Acoustic Signal Analysis

Recalling figure 1–1, we can now envision the power of the mathematical tools intro-

duced in this chapter. The time-frequency signal operators allow us to map signals

from one signal space to another. This allows the extraction of useful information

20

for the user. On the other hand, the signal algebra operators map signals in the same

signal space. This allows us to extract information and prepare signals to be used by

time-frequency signal operators.

Figure 3–1: A general approach for acoustic signal analysis

CHAPTER 4

MODELLING AND SIMULATION ENVIRONMENTS

This chapter presents a brief description of two modelling and simulation environ-

ments, “Fast Multidimensional Convolutions and SAR Image Formation Simulations

in a Matlab Environment” [30] and “Web-Based Data Processing for Environmental

Surveillance Monitoring Applications” [35]. These works instantiate the operator

signal algebra mathematical framework on which SIRLAB is based. The SIRLAB

Framework is a design evolution of these previous modelling and simulation frame-

works.

4.1 SARCSPE - Image Formation Simulations in Matlab

This work presents the SARCSPE, that is an environment for modelling and simula-

tion of synthetic-aperture radar (SAR) using Matlab. Figures 4–1 and 4–2 show the

environment.

4.2 JCID - Java Web-Based Data Processing Environment

This work presents the JCID, that is an environment for signal operators. Figures

4–3 and 4–4 show the environment.

21

22

Figure 4–1: SARCSPE - Screenshot 1

Figure 4–2: SARCSPE - Screenshot 2

23

Figure 4–3: JCID - Screenshot 1

Figure 4–4: JCID - Screenshot 2

24

Prior to the development of the CMF a lot of work had been made in Matlab.

The CMF formulated in this thesis is a response to several issues with the Matlab

implementations of the time frequency operators. Here we enumerate some of the

issues.

• Matlab is an excelent environment for testing of algorithm implementations. But,
the work at the laboratory is conducted in digital signal processors, gumstyx (ARM

processors), and recently with Alix 2D2. The testing of Matlab algorithm imple-

mentations in these computers is not feasible. For this reason the option of a

framework that allows go from workstations up to small processors is a good idea.

• The implementation of signal processing algorithms in Matlab is very easy. But,
these implementations runs too slow. We require a fast and easy implementation

environment.

• Although this is not exactly an issue, the licensing of Matlab is expensive. For this
reason the open source tools are a good idea. The problem of the open source

tools is the time required to develop an implementation for signal processing. With

this CMF we expect to make faster and easier the implementation of new time-

frequency signal operators.

The AIPLAB has been working with Matlab for a long time. Matlab provided the ba-

sis and the inspiration for the development of the SIRLAB Framework. The students

at AIPLAB frequently has to test in Matlab the algorithms before to implement in

other computational structures. This work is not an exception. The implementation

of time-frequency operators have been our work during the last 5 years. Clusters or

parallel processing computers were the target computational structures. As a result

several time-frequency operators have been implemented using Matlab.

25

Here we will explain some of the implementations using Matlab and their associated

results.

4.3 Discrete Chirp Fourier Transform

The DCFT of a signal x is defined as

XC{x}[k, l] =
1√
N

∑
n∈ZN
x [n]W kn+ln

2

N

where, W kn+ln
2

N = e−
j2π
N
(kn+ln2), k ∈ ZN and l ∈ ZN. Here we present some results

of implementations using Matlab. The figures 4–5, 4–7, 4–6, 4–5, and 4–6 show

results obtained using Matlab as algorithm implementation platform. The figures

4–5 and 4–6 show how the DCFT is capable to detect in peaks the parameters of

a chirp signal of 6 components. In addition, increasing of the number of samples

improves the signal to noise ratio for the detection.

Figure 4–5: DCFT for a 6 Component Chirp Signal, N=127

The figure 4–7 shows three video frames of six moving targets. The targets are

represented by the points.

Figures 4–8 and 4–9 show a DCFT output for a one component chirp signal and the

DCFT output for a two components chirp signal.

26

Figure 4–6: DCFT for a 6 Component Chirp Signal, N=1023

Figure 4–7: Three Frames Showing the Evolution of 6 Targets Using the DCFT

0
10

20
30

40

0
10

20
30

40
0

20

40

60

80

k axis

MDCFT Xia & Fan (|Magnitude|2)

X: 8
Y: 6
Z: 74

l axis

Figure 4–8: Modified DCFT for 1 Component Chirp Signal

27

0
10

20
30

40

0
10

20
30

40
0

20

40

60

80

k axis

MDCFT Xia & Fan (|Magnitude|2)

X: 8
Y: 6
Z: 63.24

X: 10
Y: 16
Z: 63.24

l axis

Figure 4–9: Modified DCFT for 2 Component Chirp Signal

28

4.4 Cyclic Short Time Transform

The CSTFT of a signal x is defined as

S{x,v}[m, k] =
∑
n∈ZN
x [n]v [〈m − n〉N]W knN

where, W knN = e
− j2π
N
(kn), m ∈ ZN and k ∈ ZN . The figures 4–10 and 4–11 are two

examples of the evolution in the design of the frame. The figure 4–12 is the most

recent frame design.

Figure 4–10: CSTFT of two chirp signals

4.5 Cyclic Ambiguity Function

The CAF of a pair of signals f and g is defined as

A{f ,g}[m, k] =
∑
n∈ZN
f [n]g∗[〈n +m〉N]W knN

29

Figure 4–11: CSTFT of Anuran (Eleuterodactylus cooki)

Figure 4–12: Current Frame Appearance for the CSTFT operator (hydrophone

sound)

30

where, W knN = e
− j2π
N
(kn), m ∈ ZN and k ∈ ZN. The figures 4–13 and 4–14 shown the

computation of the CAF for two chirp signals delayed td .

Figure 4–13: Ambiguity Function of Two Chirp Signals with td = 0.002s

Figure 4–14: Ambiguity Function of Two Chirp Signals with td = 0.012s

31

4.6 Wigner Distribution

The WD of a signal f is defined as

W{f }[n, k] =
1

N

∑
τ∈ZN

∑
ν∈ZN
f (τ, ν)W nν+kτN (4.1)

=
1

N

∑
τ∈ZN

∑
ν∈ZN

∑
l∈ZN
W nν+kτN × ρNW−νlN x(〈l + τ〉N)y ∗(l) (4.2)

where, W nν+kτN = e−
j2π
N
(nν+kτ), n ∈ ZN and k ∈ ZN. The figure 4–15 shows two

signals which will be processed by the WD operator. The outputs are presented in

figures 4–16 and 4–17.

0 20 40 60
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 20 40 60
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4–15: Left is the real part x1(n) =

[zeros(1; 24); exp(j∗2∗pi/N)∗[0:15] ; zeros(1; 24)] and right is the dilation/compression
of x1(n) by 3

32

10 20 30 40 50 60

10

20

30

40

50

60

200

400

600

800

Figure 4–16: WD for Left Signal of Figure 4–15

10 20 30 40 50 60

10

20

30

40

50

60

100

200

300

400

500

600

700

800

900

Figure 4–17: WD for Right Signal of Figure 4–15

CHAPTER 5

SIRLAB TARGET APPLICATION ENVIRONMENT

This chapter introduces a first application environment for the SIRLAB framework.

The BESN (Bioacoustics Environmental Surveillance Network) constitutes a perfect

application where the SIRLAB can be used. The BESN will give to SIRLAB the

networking capabilities to integrate a cognitive wireless sensor network.

Figure 5–1: The SAP Concept

The computational structure where the CMF proposed is integrated in the sensor

array processing (SAP) model depicted in Fig. 5–1 corresponds to the conceptual

representation of our system. The sensor signal processing (SSP) nodes are a set of

wireless, low-cost acoustic signal acquisition, low storage, and processing nodes which

use Linux-based miniature single board computers. These nodes are combined and

treated as a sensor array unit without a prescribed topology and their signal-based

33

34

acoustic information is aggregated to a Linux based high-performance embedded

computing unit, called a master sensor node (MSN), for further raw data processing,

algorithm implementation and information representation. The master sensor node

(MSN) unit selected is an embedded PC in mini-ITX form factor from AOpenTM,

model number i945GMt-FSA. The motherboard is equipped with one CPU: 2.00GHz

Intel R Core 2 Duo T7200; Memory: Transcend 2GB So-DIMM DDRII 667MHz;

Hard disk: Hitachi Travelstar 200GB 7200RPM SATA; OS: Linux Fedora core 12

(Red Hat).

The name of the computational framework is SIRLAB (SIgnal Representation LAB-

oratory), and one of the purposes of it is to produce easy to use programming

environment to be used by students and scientists. The SIRLAB is based completely

in open source tools such as FFTW and OpenCV. The code developed in the project

is C/C++ compatible. This work is focused in the processing of acoustic signals to

analyze underwater acoustic signals collected by hydrophone and to monitor the be-

havior of amphibians such as the endemic Puerto Rican Crested Toad (Peltophryne

[Bufo] lemur). Particular interest is placed in identifying the information present

in the signals acquired by the physical sensors and extraction of information useful

to the user with a reasonable computational effort. The Fig. 5–2 shows the Net-

Sig/SIRLAB integration with an application with underwater and aerial microphones

to acquire field data, and mobile devices as user interface for the CMF.

The SIRLAB makes the extraction of information easier, but at the expense of greater

computational complexity. This is achieved through a conversion of the acquired

signal to another signal which is more suitable for information extraction and change

detection. To achieve the information extraction we build implementations of some

of the transforms of Cohen’s class. The Cohen class maps signals acquired in one

dimension and projects into an image where time and frequency are represented. A

35

Figure 5–2: NETSIG and SIRLAB Integration Concept

time-frequency representation allows us to observe details in the signal that would

not be noticeable otherwise.

The figure 5–3 depicts a NetSig node in a BESN environment. SIRLAB runs in every

MSN and NetSig node of a BESN. The proposed computational framework includes a

visualization tool to be used in a network integrated environment and signal processing

shown in Fig. 5–3 as (NetSig) [31–33], and more specifically to be integrated into the

SAP (see Fig. 5–1) which is a sub-system consisting of four parts: L signal sensor

units (SSU), M signal processing units (SPU), one basic interface module (BIM) and

one master sensor node (MSN) which specifications was mentioned above. Because

of power considerations, and due to limited computational power of the SPUs the

computational framework will not work at this level. Instead it will run at MSN level,

where the output of the processing will be available to the Internet from the storage

device.

The WALSAIP project has been developing a testbed at the Jobos Bay National

Estuarine Research Reserve (JBNERR) (See Fig. 5–5), situated in the southeastern

part of island of Puerto Rico. JBNERR is administered by the National Oceanic

36

Figure 5–3: VESO Mesh Cognitive Wireless Sensor Network

and Atmospheric Administration (NOAA) as well as the Puerto Rico Department of

Natural and Environmental Resources (DRNA). The Jobos Bay Reserve is the second

largest estuarine area in Puerto Rico. It encompasses a chain of about 15 tear shape

mangrove islets, known as Cayos Caribe, and the Mar Negro area in western Jobos

Bay. The reserve is home to a number of species, including the endangered brown

pelican, peregrine falcon, hawksbill sea turtle, and West Indian manatee. Several

versions of testbeds have been developed and tested at JBNERR, Fig. 5–4 shows

one of them installed in the mangrove area. Recently a hardware configuration is

planned to be installed at a buoy seen in Fig 5–6, the location of the buoy can be

seen at Fig 5–5.

37

Figure 5–4: Testbed Installed in the Mangrove Area, Wireless Antenna, Solar Panel,

and MSN Pelican Box are visible

38

Jobos Reserve
Office

Buoy

3.2 Km

Figure 5–5: Jobos Reserve with JBNERR Office and Buoy Localizations

Figure 5–6: Buoy Intended as Testbed Place

CHAPTER 6

SIRLAB SOFTWARE DESIGN SPECIFICATION

6.1 Document Description

6.1.1 Introduction

SIRLAB is a computational modelling framework (CMF) for time frequency signal

operators. The class of signals of interest are bioacoustical signals acquired by mi-

crophones and/or hydrophones, but the concept can be expanded to other kind of

signals.

6.1.2 Intended Audience

This document is written to be useful for programmers and end-users, allowing them

to understand the limits of the CMF proposed. Programmers will be interested

because they will know how to add new features and improve the performance of the

CMF. The end-users will understand what they can/can’t do with the CMF.

6.1.3 Hardware and Software Resources

6.1.4 Version Management

There is no formal version management for the SIRLAB. Each signal processing

operator must be operated independently from other signal operators. The system

must be able to support many signal processing operators as was defined in chapter

5.

6.1.5 Definition, Acronyms and Abbreviations

In this section we will summarize and define some terms important to understand

the SIRLAB CMF.

39

40

Term Equivalent

AIPLAB Automated Information Processing LABoratory

API Application Programming Interface

ARM Advanced RISC Machine

CAF Cyclic Ambiguity Function

CMF Computational Modelling Framework

CSTFT Cyclic Short Time Fourier Transform

DCFT Discrete Chirp Fourier Transform

DSP Digital Signal Processor

FFTW Fast Fourier Transform of the West

GUI Graphic User Interface

OpenCV Open Source Computer Vision

RIFF Resource Interchange File Format

SIRLAB SIgnal Representation LABoratory

WAV WAVeform audio file format

T-F Time Frequency

Table 6–1: Acronyms Table

Term Definition

Output frame Is an image resulting of the computation of a signal using the SIRLAB

CMF.

RIFF Is a generic file container format for storing data in tagged chunks.

Table 6–2: Definitions Table

6.1.6 Remarks

This chapter establishes some requirements for the SIRLAB CMF design. In addition

this chapter provides an overview of the computational modelling framework.

6.2 Design Considerations

The concept of cyclic signal processing operators (such as the CSTFT) has been

used recurrently in works of the AIPLAB. Several MsC projects have been developed

based in the concept of cyclic signal processing operators such as works by Yuji Yunes

[1] and Ivan Rivera [34]. They allow map signals from a signal space l2(ZN to an

standard output signal space such as l2(ZN ×ZN) (see chapter 3). The cyclic signal
operators allows to consider the creation of output frames in the standard output

signal space. The concatenation of output frames produces video files showing the

41

evolution of the signals through time.

The development of a cyclic signal operator requires a computational algorithm im-

plementation in a computational structure to be useful. Matlab is one alternative to

make tests of the computational algorithm implementations, but it is not the only

way. Some works at the AIPLAB (Lola Bautista [35] and Ana Ramirez [36] MsC

theses) were developed with the idea to facilitate signal processing algorithm imple-

mentation.

The works presented above have been implemented in Matlab, Java, digital signal

processors (DSP), and ARM processors. A lot of experience was collected in terms

of hardware and user-interfaces as we will explain with two examples. First the Lola

Bautista’s thesis presents a Java implementation of signal operators that is a user

interface for signal operators running behind. The second is by Yuji Yunes where he

develop an implementation for the STFT operator in an ARM processor(Gumstix)

used at AIPLAB. All the works previously mentioned are user-interface or hardware-

software oriented. We need a complete system that takes signals from the real world,

process the signals using a signal processing operator, and finally provides the output

to the user.

In SIRLAB we consider an input -the signal or signals acquired from the real world-

and an output as the set of output frames or the video files. The CMF must integrate

the input/output representation to show both elements in the same frame.

42

6.2.1 Assumptions and Dependencies

Is very usual in signal processing the work with Fourier transforms. The FFTW is a

well known implementation that has been widely used in science.

Usually the outputs of time-frequency signal operators need a graphical represen-

tation of the output in order to show the results to the user. For this reason it’s

necessary to consider a graphic management library that allows the mapping of the

output of the time frequency operators to a standard picture format such as png,

avi, etc. The tool considered to perform this is the OpenCV that is a powerful API

built in C/C++ that allow image manipulations.

The selection of the operating system must consider open source projects such as

mentioned above. Although FFTW and OpenCV runs in Windows, the option of

GNU/Linux is preferred because it runs well in hardware that other groups at the

AIPLAB are using to collect data. We expect the CMF defined here will be used by

other groups to perform data analysis over the collected data.

It’s expected that the CMF proposed here extend the capabilities to better use of

hardware, taking advantages of new processors with multicore capabilities. Another

improvement will be the development of the platform in other computer languages

that allow more high level tools and the development of web applications to allow

scientists make use of the CMF via mobile phones.

43

6.2.2 General Constraints

Hardware or software environment

As was mentioned in section 6.2.1 the system will be developed under GNU/Linux.

We expect SIRLAB to run in the following computational resources. The aip-

srv01 is a Dual Quad Core Processor W55803.20GHz, 8M, 6.4GT/s, Dell Precision

T7500 with 48GB (12X4GB) SDRAM Memory and a 1066MHz, 450GB, 3Gbps

SAS, 15K RPM Hard Drive. It runs the operating system CentOS Linux Kernel

2.6.18-194.3.1.el5.centos.plus. It uses the C compiler gcc (GCC) 4.1.2 20080704

(Red Hat 4.1.2-48). The fast Fourier transform library utilized to perform all discrete

Fourier transform computations is the FFTW Version 3.2.2. This computer platform

is running OpenCV version 2.1. The Desktop-PDC-Lab01 platform is an Intel(R)

Pentium(R) 4, 3.80GHz CPU, with 3GB SDRAM, and 250GB, 7.2K, WD-HAWK

Hard Drive. Operating system Fedora 12 Linux Kernel 2.6.32.19-163.fc12.i686.PAE.

It uses the C compiler gcc (GCC) 4.4.4 20100630 (Red Hat 4.4.4-10). As the previ-

ous computer platform, this platform uses the FFTW Version 3.2.2 and the OpenCV

version 2.1.

End-user environment

The SIRLAB CMF will not provides a graphic user interface (GUI) for end users.

The end user at this stage will be a programmer or a CMF tool trained scientific.

We plan the system at the end of this thesis will have a low level user interface.

For this reason the end user will program the commands to the CMF through OS

shell command scripts and text files will modify the parameters of the signal operator

implementation. The signal operators that we will develop in this document are in

table 6–3. These examples are only a few, many other T-F signal operators are

suitable to be implemented reusing the code or programming new functions to the

libraries.

44

Signal Operator Mathematical Expression

CSTFT

S{x,v}[m, k] =
∑
n∈ZN
x [n]v [〈m − n〉N]W knN

where, W knN = e
− j2π
N
(kn), m ∈ ZN and k ∈ ZN

CAF

A{f ,g}[m, k] =
∑
n∈ZN
f [n]g∗[〈n +m〉N]W knN

where, W knN = e
− j2π
N
(kn), m ∈ ZN and k ∈ ZN

DCFT

XC{x}[k, l] =
1√
N

∑
n∈ZN
x [n]W kn+ln

2

N

where, W kn+ln
2

N = e−
j2π
N
(kn+ln2), k ∈ ZN and l ∈ ZN

WD

W{f }[n, k] =
∑
τ∈ZN

∑
ν∈ZN
f (τ, ν)W nν+kτN

where, W nν+kτN = e−
j2π
N
(nν+kτ), n ∈ ZN and k ∈ ZN.

Table 6–3: Signal Operators to be implemented

Data repository and distribution requirements

The CMF will be available as an open source application to be downloaded, utilized,

and modified freely according to the user application. The CMF will be distributed

under GNU General Public License(GPL) because the FFTW is GPL and OpenCV

is BSD.

6.3 Verification and validation requirements (testing)

To validate the SIRLAB operator implementation we will use equivalent Matlab im-

plementations of the same signal operator. During the past years at the AIPLAB

have been developed implementations (mainly for Matlab) of several signal operators,

that can be useful for testing and validation of the SIRLAB.

45

6.3.1 Goals and Guidelines

Parameters Specification

The development of a robust CMF capable to analyze WAV files according to a set

of parameters given by user. A requirement for computation of T-F operators is a

set of parameters which define the output characteristics. The parameters define the

way as the operator is processed and have implication in the use of the computational

resources such as memory use, computation time, and quality of the visualization.

Standard Output

The CMF must have the capability to place the results in defined standard directories.

This is of particular interest because if we want to develop a web interface or a shell

script, the application needs to know where the input WAV files must be placed and

where the output files will be available after processing.

Spectrograms

The CMF must produce detailed spectrograms or T-F representations. The quality

of the spectrograms are directly related with the parameters defined by the user.

Computation Time

The CMF is expected to improve the computation time in comparison to the Matlab

implementations of the past. The Matlab implementations developed are very slow.

User Interface

Although is possible the development of the CMF to receive commands using hotkeys

or inputs from the user. This scenario is not desired because it will restricts the us-

ability of the CMF. The CMF is conceived to work at command line level. We think

that a good user interface will be a web interface. Changes in the CMF process-

ing are introduced in the web application through modifications to the parameter

specification files.

46

6.4 System Architecture

The figure 6–1 is a summary of the concepts mentioned in this chapter. The figure

shows to the right the two types of input files that SIRLAB needs for processing.

The first are the WAV files that content the data acquired by physical sensors and

the second are the parameter files. The parameter files are text files that contents

a programmer defined set of values that specify the parameters for the implemented

signal processing operator. The SIRLAB has a core that interface with the libraries

built in SIRLAB. The SIRLAB libraries use the FFTW and the OpenCV routines

to perform an output of the signal processing operator. The output of the SIRLAB

consist of a collection of output ordered frames based in the WAV and the parameter

files.

Figure 6–1: SIRLAB System Architecture

6.4.1 Architectural Strategies

As we mention in section 6.4, SIRLAB is a collection of functions. The functions

in SIRLAB are divided in 4 categories: input, output, processing and mathematical

libraries. The input library is the set of functions oriented to read the values in

the input files (WAV or parameter file), e.g., a function that reads in the WAV file

the number of samples. The output library contains functions that perform the

adjustments necessary to produce output files, e.g., place the title to the frame or

place the colorbar in the output image. The processing and mathematical libraries

47

are responsible of the execution of the operations required for the signal operator

implementation, e.g., take two arrays and return the haddamard product or compute

the FFT of an array. In chapter 7 we will explain each one of the categories and the

functions implemented.

CHAPTER 7

SIRLAB DETAILED SYSTEM DESIGN

7.1 Introduction

In this chapter we introduce the SIRLAB, that is the name given to this computational

tool framework written in C/C++ language for a Linux environment and using the

FFTW and OpenCV APIs. The SIRLAB is a software composed by a set of libraries of

programming functions designed for implementation of Cohen class signal processing

operators. This chapter explains how to use the framework. We define each one of

the functions in the SIRLAB libraries explaining the purposes of the function and the

input/output parameters for the function.

7.1.1 Intended Audience

This document is written to be useful for programmers and advanced users interested

in the development of new functionality to SIRLAB. We encourage them to build new

functions for the libraries and operators. Other audience that could find interesting

this chapter is the scientific community (i.e. biologist, chemists, physicists, etc)

which can learn how to adjust parameters files for the signal processing operator

implemented.

7.1.2 Version Management

Several signal operators have been developed in SIRLAB. In general we have defined

a directory with the name <name of the signal operator><version> to identify what

operator is implemented. For example stft4.0 is the most developed version for

the short time Fourier transform operator of stft1.0, stft2.0, stft3.0 and stft4.0.

48

49

AmbFunc1.0 is the first version for the ambiguity function signal operator. Notice

that doing a change from version x.0 to y.0 involves a major revision, and doing a

change from version 4.x to 4.y involves minor revisions.

7.1.3 APIs used in SIRLAB

The SIRLAB is based in two well known open source APIs, the OpenCV and the

FFTW. The links to both projects are:

• FFTW (Fast Fourier Transform of the West) - http://www.fftw.org
• OpenCV (Open Computer Vision) - http://opencv.willowgarage.com/wiki/

The OpenCV API is responsible for the graphic operations to generate output frames

or movies. A lot of documentation are available about OpenCV, if you are planning

to program over SIRLAB and you are not familiarized with this tool you should

read the following book: Learning OpenCV: Computer Vision with the OpenCV Li-

brary [37]. The signal processing algorithms usually requires Fourier transforms to

be implemented. We have chosen the FFTW (Version 3.2.2) because it provides a

fast implementation of the Fourier transforms for several formats of the transforms

(real-to-complex, complex-to-complex), several precision formats (double or floating

point), and directions (forward or reverse). In addition FFTW allows multidimen-

sional transforms. Useful documentation of the FFTW can be encountered at the

website and the paper The Design and Implementation of FFTW3 [38].

7.1.4 Remarks

This document pretends to be a guide to learn how to use and work the SIRLAB CMF.

At the end of the reading of this chapter you must be familiarized with the platform

and be able to use any signal processing operator implemented in the SIRLAB and/or

develop new applications for signal processing operators.

http://www.fftw.org
http://opencv.willowgarage.com/wiki/

50

7.2 Assumptions and Dependencies

In this section assumptions and dependencies show the type of systems in which the

SIRLAB has run successfully, it is expected that similar systems can run SIRLAB

without significant modifications. The hardware where SIRLAB were run is in the

following table.

Computer Name Specifications

aipsrv011 Dual Quad Core Processor W5580 3.20GHz, 8M,

6.4GT/s, Dell Precision T7500 with 48GB (12X4GB)

SDRAM Memory and 1066MHz, and 450GB 3Gbps SAS,

15K RPM Hard Drive.

Desktop PDC Lab2 Intel(R) Pentium(R) 4 CPU 3.80GHz, with 3GB SDRAM,

and Hard Drive, 250GB, 7.2K, WD-HAWK.

Table 7–1: Hardware where SIRLAB were Tested

Software specifications table:

Related software FFTW 3.2.21,2

OpenCV 2.11,2

Operating systems Centos Linux kernel 2.6.18 (Red Hat 4.1.2-48)1

Fedora 12 Linux Kernel 2.6.32 (Red Hat 4.4.4-10)2

gcc compiler gcc (GCC) 4.1.2 200807041

gcc (GCC) 4.4.4 201006302

End-user characteristics wav input files.1,2

(Input) Parameters for processing in a text file.1,2

End-user characteristics png or avi output file frame format1,2

(Output)
1aipsrv01

2Desktop PDC Lab

Table 7–2: SIRLAB Assumptions and Dependencies

7.3 SIRLAB Detailed System Design

7.3.1 System Architecture

The figure 7–1 shows a detailed system architecture from the presented at figure 6–1.

This new figure presents the four libraries developed to perform the implementation

of the time frequency operator. Later each one of the functions in the four libraries

51

will be explained in detail. The first library is inputlib, this library reads the parameters

in the input parameter file and WAV file for use in the T-F operator. The processlib

and the aritmetlib are the libraries that perform all the operations required to obtain

an output. Finally outputlib takes the output of the operator and transform it to an

image to be saved in the corresponding output directory.

Figure 7–1: Detailed SIRLAB System Architecture

The list of the directories in tree-like format for the implementation of the CSTFT

T-F operator (the name of the version is stft4.0) is shown in figure 7–2. The wavs

directory content the input WAV files. The parameter file contents text files with

the parameters to process the CSTFT in different manners. The models directory

contents the empty frames or templates to be used to place the output T-F image.

The colormaps directory contents text files with the RGB specification of the color-

bars. later we will explain in detail the format of the colorbar text files. And finally

the outfiles directory. This directory contains subdirectories whose names are the

52

WAV file name with the prefix D . Inside each subdirectory there are the png, avi or

wmv output files.

Figure 7–2: Tree Structure for the SIRLAB

7.4 SIRLAB Libraries and Function Description

7.4.1 Inputlib

To perform the time-frequency signal operator function is required a set of parameters

that define how the output will be processed. In this library there are the functions

that read the parameters needed for the processing of the time frequency signal

operator. There exist two parameter sources for the SIRLAB processing schema.

The first source are the parameters into the WAV file given in the metadata of the

WAV file. The other source is a text file (input parameter file) modified by the user

with the values for each parameter. The two functions are explained in this section.

53

Reading WAV file parameters

To understand what this function does, we will first consider the structure of a WAV

(or WAVE) file (see figure 7–3). The WAVE file format is a subset of Microsoft’s

RIFF specification for the storage of multimedia files. A RIFF (Resource Interchange

File Format) file starts out with a file header followed by a sequence of data chunks.

A WAVE file is often just a RIFF file with a single ”WAVE” chunk which consists

of two sub-chunks – a ”fmt ” chunk specifying the data format and a ”data” chunk

containing the actual sample data:

(https://ccrma.stanford.edu/courses/422/projects/WaveFormat/).

This function looks into the WAV and extracts the parameters that are needed. This

function reads the parameters in the header of the WAV file. The place where the

WAV files must be located in SIRLAB is the directory: ./wavs. The unique input

parameter of the function is infilename that is the name of the WAV file. The return

parameters are the number of bytes per sample (bytespersample), the sampling rate

(samplerate), the byte rate (byterate), the bits per sample (bitspersam), the number

of channels in the WAV file (wavnumchan), and finally the number of all data samples

in the WAV file (numsamples).

int read˙wav˙parameters(char *infilename,
double *bytespersample,
unsigned int *samplerate,
unsigned int *byterate,
unsigned int *bitspersam,
short int *wannumchan,
unsigned int *numsamples);

Reading Parameters from Input Parameter File

An example of a input parameter file is in the figure 7–4. We can observe that

each parameter has a number parameter identification with format ”(XX)”, where

the number XX corresponds to the number of the parameter. After the parameter

number follows a short description of the parameter, this part does not allow spaces.

54

(a)

(b)

Figure 7–3: Standard WAVE Format 7–3(a) Table and 7–3(b) The WAV header

using bvi (an hexadecimal binary file editor)

For this reason the is the separator of words. In the next line the value of the

parameter is written. You can write up to 99 (enumerated from 01-99) parameters

for use in a T-F operator implementation.

55

Figure 7–4: cstft parameters.txt Input Parameter File

int read˙parameters(char *infilename,
unsigned int *numsamplesframe,
unsigned int *jumpsamples,
unsigned int *windowwidth,
unsigned int *zeropadding,
double *freqmin,
double *freqmax,
unsigned int *frameoverlay,
double *startpercent,
double *endpercent,
char wavdir[100]);

This function reads values (parameters) in the parameter file. These values will be

used to specify the behavior of the computation for the signal processing operator.

The place where the parameter files must be located in SIRLAB is the directory:

./parameter files. The unique input parameter of the function is infilename that is

the name of the input parameter file. The following are the return parameters for

the CSTFT operator. The first is the number of samples needed to compute one

frame (numsamplesframe). The second is the displacement factor of samples for

the computation of a decimated CSTFT (jumpsamples). The third is the window

width specification in number of samples (windowwidth). The fourth is the zero

padding applied to the FFTs. This parameter increases the spectral resolution of

56

the output (zeropadding). The fifth and sixth (freqmin, freqmax) are the minimum

and maximum frequencies that we want to see in the output frame. The seventh

(frameoverlay) is the frame overlay, it specifies the number of samples that the CMF

displaces in the WAV file to extract another set of samples (of size numsample-

frame)to compute another output image. Is normal that the WAV files are very

long, or the user is interested in an interval of the WAV file. With the eighth and

ninth (startpercent, endpercent) parameters you specify the range where the CMF

will work. The units of startpercent, endpercent are the percentage of the whole

WAV file. And, finally, if the user wants to use another directory to store the output

files, he may use the tenth parameter (wavdir[100]). The default is the ./outfiles

directory.

7.4.2 Processlib

The processlib is related with signal management functions in the SIRLAB Frame-

work. The operations focus in the colormap selection, the reading of data segments

in the WAV file, the creation of the window signal, the zeropadding signal operation,

and mathematical adjustments to the data.

Read Colormap

This function reads and converts a colormap text file into a RGB matrix (col-

ormap[256][3]) of 256 colors. The colormap text file is generated with help of

Matlab. All the colormap files must be placed at directory ./colormaps.

void readcmap(int colormap[256][3],
char filename[100]);

The figure 7–5 shows a colormap text file for the well know jet colormap of Matlab.

The figure also shows three sets of values corresponding to the amount of red, green,

and blue. The values are in the range [0, 1], where 0 indicate no color and 1 indicate

57

full color. Each set of values is composed of 256 values.

Figure 7–5: Values for the RGB in a SIRLAB Colormap File

Read Frame Data from WAV File

int read˙frame˙wav(fftw˙complex *datain,
int framepos,
int framelength,
int bitspersam,
short int wavnumchan,
double *max,
char *infilename);

The purpose of this function is the extraction a segment of data from the WAV file

that is being processed. The size of the segment is specified in the input parame-

ter file with the numsamplesframe value. The parameters given and returned by this

58

function are: *datain is the pointer to the data and is an array of type fftw complex,

which is by default a double[2] composed of the real (in[i][0]) and imaginary (in[i][1])

parts of a complex number. The framepos specifies the sample at which the segment

of data begins. The framelength specifies the number of samples that will be read,

usually this value is numsamplesframe. The bitspersam is the number of bits for

each sample and takes the value of {8, 16, 24, or32}. The wavnumchan specify the
number of channels that will be read. This value is one when data is real, because

the value for the imaginary part of datain is zero. When wavnumchan is two the data

is complex, indicating that channel 1 for real part and channel 2 for the imaginary

part. The parameter max returns the maximum value read in the segment. And

finally the infilename that is the name of the WAV file.

Create Window Data Signal

void create˙window(fftw˙complex *window,
int Nw,
int numsamplesframe,
int pos);

This function creates a zero-padded and shifted window function needed for the

CSTFT computation. The window function is zero-valued outside of the region of

support ([0, N − 1]). An example of three window functions are in figure 7–6.

Figure 7–6: Three windows Hann, Rectangular and Gauss(σ = 0.4) defined in inter-

val [0, N − 1].

59

To create the zero-padded and shifted window function the following parameters

must be given. The *window is a pointer to the window data that is an array of

type fftw complex of size numsamplesframe. The Nw is the N size of the non-zero

values of the window data. The parameter pos specifies where the non-zero windows

values are centered. Is important to notice that the window data is cyclic. This means

that for a window data of K samples and window size N, and window position P

the non-zero values will be in the range [〈P − N/2〉K, 〈P − 1 +N/2〉K], where 〈〉 is
the modulo operation. The figure 7–7 illustrates the concept of a displaced window

data.

Figure 7–7: Example of a window data of size K samples, window size N, and window

position P .

Zeropadding

Zero padding is an operation that consists of extending a signal (or spectrum) with

zeros. It maps a length N signal to a lengthM > N signal. The function zeropaddingf

performs an extension using zero-padding to the input signal in datanopad of size N.

The output is in the datapad of size Npad . Notice that Npad ≥ N.

60

void zeropaddingf(fftw˙complex *datapad,
int N,
fftw˙complex *datanopad,
int Npad);

Write to the CSTFT Matrix

For computing a T-F operator, we must perform a set of operations several times

and save the intermediate results in somewhere. The intermediate operations results

are saved in a matrix equivalent data structure. OpenCV provides the IplImage, that

is a very useful data structure that allows intermediate storage of the output for

the T-F operator in double-precision. The IplImage data structure in essence is a

CvMat but with some extra goodies buried in it to make the matrix interpretable

as an image. This structure was originally defined as part of Intel Image Processing

Library (IPL). An example of how a matrix is defined using IplImage is shown below:

IplImage *matstft = cvCreateImage(cvSize(px,py),
IPL˙DEPTH˙64F,1);

This declaration create an image (matstft) of size px × py pixels, with 64-bit floating-
point double-precision (IPL DEPTH 64F).

void write2matstft(int sam,
fftw˙complex *locdatain,
double scale,
int kmin,
int kmax,
IplImage* matstft,
int col,
double *maximo);

This function takes the data of size sam in the locdatain array and put in the corre-

sponding column col in the image matstft. The locdatain is in complex data format

and the matstft is composed of double-precision values. This function converts the

complex data to a corresponding magnitude value using the following equation:

norma =

√
(locdatain[i][0]2 + locdatain[i][1]2)

scale
(7.1)

61

The values kmin y kmax specify the segment of the locdatain array that will be

copied to matstft. The figure 7–8 shows graphically the process. In addition, the

parameter scale allows to scale the data in the matstft array as shown in equation

7.1. The parameter maximo contains the maximum value of the matstft array.

Figure 7–8: Process to copy a segment [kmin,kmax] of locdatain to the column col

in the image matstft .

Convert to Colormap

After matstft is completed, is necessary to convert the double-precision values to

an equivalent grayscale image. It is necessary to make a conversion of the double

to an RGB value. This function does the operation based in the color indexation of

the colormap array defined in the function 7.4.2. The parameters of this function

are: the imagin that is the double precision image matrix, the imagout is the RGB

image matrix, and the maximo that is the maximum value of imagin. The maximo

62

is used to normalize imagein and be able to perform the indexation according to the

colormap of 256 values (colormap[256][3]).

void conv2colormap(IplImage* imagin,
IplImage* imagout,
double maximo,
int colormap[256][3]);

7.4.3 Aritmetlib

These group of functions are related with basic arithmetic operations performed over

the data arrays of SIRLAB. The functions included in this library are the Hadamard

product operation, signal normalization, and get the maximum of an array. The

purpose of this library is contain a set of very general mathematical functions for

digital signal processing operations.

Hadamard Product

For two matrices of the same dimensions, we have the Hadamard product also known

as the entry-wise product and the Schur product. Formally, for two matrices of the

same dimensions:

A,B ∈ Rm×n (7.2)

the Hadamard product A
 B is a matrix of the same dimensions

A
 B ∈ Rm×n (7.3)

with elements given by

(A
 B)i ,j = (A)i ,j
 (B)i ,j (7.4)

In the case of this function the order of the matrices A and B are R1×N. The matrix

A corresponds to the data1 array and the matrix B corresponds to the data2 array.

N is the number of elements of data1 and data2.

63

void haddamard˙sig(fftw˙complex *data1,
fftw˙complex *data2,
int N);

Signal Normalization

This function takes an input complex data array (data1) and scales the norm of all

the data elements. The function first finds the maximum norm in data1, then adjust

the scale to normalize the magnitude of all the elements in data1 to the parameter

value. N is the number of elements in data1.

void normalize˙sig(fftw˙complex *data1,
double value,
int N);

Get Maximum

This function takes an input complex data array and finds the maximum magnitude.

The maximum value is returned in the maxnorma2 parameter. N is the size of data1.

void getmax˙sig(fftw˙complex *data1,
double *maxnorma2,
int N);

7.4.4 Outputlib

These functions are responsible to create graphical elements in the output frames.

The functions include plotting signals, embed text or draw numerical scales in the

template frame to compose an output frame. The template frame is an empty frame

which is filled with the T-F output and the metadata associated. The figure 7–9

shows the appearance of an empty frame and the final frame with the data processed.

Signal to Frame

This function plot a time signal (data array) in a selected area in the template frame.

The figure 7–10 shows the concept.

64

Figure 7–9: Empty Frame Template vs Fulfilled Frame Using the CSTFT Operator

With a Chirp Signal.

Figure 7–10: datatime Array Data is Plot in the imagein Array.

void signal2frame(fftw˙complex *datatime,
int option,
IplImage* imagin,
unsigned int numsamples,
int posy,
int posx,
int sigheight,
int length,
double *maxval);

65

The figure 7–10 shows the parameter datatime that is a complex data array. The

function parameter option specifies what field of the complex data array will be plot-

ted in the image. For the real part (option=0), the imaginary part (option=1), or

the magnitude of the datatime array elements (option=2). The parameter numsam-

ples is the number of samples of the datatime array. posx, posy are the parameters

to set the origin (in pixels) where the signal will be draw (see figure 7–10). The

sigheight and length parameters indicate the height and the width (in pixels) of the

area where the signal will be draw. The maxval returns the maximum value of the

signal.

Text to Frame

This function receives a message in the texto input parameter, and place it in the

imagein at the posx, posy coordinates. The scale of the text is specified by hscale,

vscale parameters. The shear takes values from 0.0 to 1.0 indicating the slant of

the text font. The thickness is the width line of the font. And finally line type that

takes 3 values: line type=8 generates an 8-connected line, line type=4 generates a

4-connected line, and line type=3 produces an anti-aliased line.

void text2frame(IplImage* imagein,
char texto[50],
int posx,
int posy,
double hscale,
double vscale,
double shear,
int thickness,
int line˙type);

Axis to Frame

void axisx2frame(IplImage* imagein,
double startval,
double endval,
int numoftags,
int dir,
int fmtprt,
int posx,
int posy,
int width);

66

This function receives the startval, the endval, and the numoftags and generates

a numerical scale in the imagein. Other parameters are necessary to define extra

attributes of the numerical scale. The direction of the scale is defined by dir which

takes values of: dir=1 for x orientation, and dir=2 for y orientation. The fmtprt

indicates the format of the numbers in the scale (see table 7–3 and figure 7–11).

The posx and posy define the position of the numerical scale in the imagein. Finally,

the width specifies the width of the numerical scale in pixels.

Value Format Example (700)

1 %.2E 7.00E2

2 % + .2E +7.00E2

3 %.1f 700.0

4 (%.0f) (700)

Table 7–3: Values of fmtprr and the Format of the Number

Figure 7–11: Frame with fmtprt parameter values

CHAPTER 8

SIRLAB GENERAL GUIDELINES

This chapter contains some general guidelines about the use of SIRLAB. The content

is a complement of the chapter 7 and are mostly focused in practical considerations

for the users of the CMF.

8.1 Bare Frame of the SIRLAB for CSTFT Implementation

The Fig. 8–1 depicts an empty frame that later will be completed with the CSTFT or

signal processing operator output data. In the empty frame there are several regions

defined: Frame Filename corresponds to the name of the specific png file (output

frame) associated with a segment of the wav input file. Below appears a colorbar to

show the intensity levels of the output. The CSTFT spectrum corresponds to the

magnitude of the output array of the CSTFT with colors adjusted to the colormap

selected, x-axis and y-axis corresponds to the time and frequency axis respectively.

The Time Signal area corresponds to the segment of the wav file used to perform

the CSTFT. Finally, the metadata have the information about the parameters used

to process the output frame. An example of a typical frame is shown in Fig. 8–2,

the input signal is a chirp with the following equation x [n] = sin(2π ∗ 100 ∗ (n/fs) +
2π ∗ 1500 ∗ (n/fs)3) with fs = 1000 and n ∈ Z256.

CSTFT computational method

There exist two manners to compute the CSTFT: the filter method and the transform

method. The transform method is more computationally efficient than filter method

because it only involves a time shift (m axis) and a Fourier transform (k axis) to

67

68

Frame Filename

Time Signal

Metadata

CSTFT
Spectrum

Figure 8–1: Bare Frame with Description of Fields.

Figure 8–2: Example of a Frame Output with Chirp Signal Input.

69

compute one column of the time-frequency output matrix (see Fig. 8–3). According

to the definition of the CSTFT in section 3.1.4 a complete CSTFT is an array of size

N×N. In this case the output has all the components of time and frequency possible.
In some applications full CSTFT may not be necessary. In non-full CSTFT case we

can compute some time shift resulting in a reduction in the number of computations

required to obtain an approximate result to the full CSTFT. Also, not all frequency

components may be needed, because we are interested in a range of frequencies. In

this case we can extract the range of frequencies adjusting the parameter file of the

CSTFT computation.

Figure 8–3: Transform method CSTFT computation diagram.

8.2 SIRLAB Ordered Set of Spectrograms

It is important to point out that the spectrograms are delivered as ordered sets

which may be conformed into digital streaming videos readily available in a Linux-

based environment to an information user for further signal analysis. A conceptual

70

Figure 8–4: Simple depiction of the concept of a set of ordered spectrogram frames

(only five frames are presented here) which may be presented as a digital streaming

video.

depiction is presented Fig. 8–4 of how an acoustic signal is being segmented, with

a desired segment length and window overlap, in order to produce a sequence of

time-frequency representations in the conformed set of ordered spectrograms. The

SIRLAB CMF produces these ordered sets in automated manner, starting from the

recorded signal in waveform audio format. Again, the spectrograms are envisioned

to serve as a first stage in a sequence of information processing operations seeking

to extract signal intelligence important to an information user.

CHAPTER 9

CONCLUSION AND FUTURE WORKS

9.1 Definition of Standar Frame in SIRLAB

An standard frame (see figure 9–2) is the frame unit selected to conduct performance

comparison between computational structures. This frame requires 128 operations

that include FFTs of 8192 samples. The frequencies of interest for this frame are

from 700 Hz up to 6000 Hz, that is equivalent to 1969 frequency values.

Figure 9–1: Standard Frame for Eleutherodactylus brittoni.

71

72

9.2 Speedup and Video Streaming Using SIRLAB

The figure 9–2 shows the spectrogram of an Eleutherodactylus brittoni frog output

frame of 46 ms signal length. The parameters resulting of processing the frame are

shown in the gray area at the bottom of the figure. Computer speedup of more

than 30 times have been reached when compared with MATLAB implementations

utilizing the same computational resources and algorithm formulations. The SIRLAB

computational framework has shown significant reduction in the processing running

time for a standard frame defined above. The comparison of the processing time for

the standard frame was conducted using the aipsrv01 computational structure with

Matlab and SIRLAB. The Matlab implementation required 1.44 secs/frame and the

SIRLAB .038 secs/frame. This is an improvement of 37 times.

The processing time of 0.038 ms, gives us a processing rate of 26 fps, which is near

to video streaming capability. The objective of a frame rate of 30 frames per second

may be reached, for some parameter specifications. With this frame rate the SIRLAB

will support the ATSC digital television standard.

9.3 High Resolution and High Sampling Rate Bioacoustics

Under the WALSAIP-CIMES collaboration, we have access to high resolution and

high sample rate sounds recorded at the west area of Puerto Rico. Fig. 9–2 shows

a recorded hydrophone sound at Cabo Rojo,PR (192 KHz sampling rate and 24 bits

resolution) with the presence of pistol shrimp. SIRLAB is capable to perform a high

resolution extraction of an area of the spectrogram as shown in Fig. 9–2. This

zoomed area corresponds to the snap of a shrimp.

73

Figure 9–2: Sample Frame of Pistol Shrimp sound acquired at 192 KHz/24 bits with

FR-2 recorder.

9.4 SIRLAB Comparison with Other Spectrogram Software

Table 9–1 show a comparison of SIRLAB with other commercial and open source

products that perform similar operations.

Table 9–1: Some Spectrogram Software Comparison.

Software

Feature Raven Song Sonogram SIRLAB

Scope

OpenSource No No Yes Yes

GUI Interface Yes Yes Yes No

High resolution No Yes Yes Yes

Web Integration No No Yes Yes

Signal Operator Implementation STFT STFT STFT, Wigner Ville CSTFT, DCFT, AF

Support of OS Scripting No No No Yes

Real Time Processing No No No Yes

Movie Generation No No No Yes

Stream processing No No No Yes

74

9.5 Future Works

• The computational framework is planned to be integrated in a web-application to
access the SIRLAB Framework through the NETSIG. An expected feature of the

integration is that user can submit a sound recorded in a mobile device to the

SIRLAB, process and receive the output of the CSTFT. Fig 9–5 depicts how is

expected that mobile devices access the sequence of spectrograms in the NETSIG

device.

• The new multicore processors open a window to obtain better results for the speedup
of the SIRLAB. Another on going work is the development of a multicore imple-

mentation of the SIRLAB Framework.

• In this thesis only three T-F operators (CSTFT, CAF, DCFT) have been imple-
mented. The list of T-F is long and many other operators are suitable to be

implemented using SIRLAB.

Figure 9–3: Cyclic Ambiguity Function Implementation

75

Figure 9–4: DCFT Implementation

Figure 9–5: iPhone App Presentation.

REFERENCE LIST

[1] Yuji Yunes. Acoustic signal representation for environmental surveillance moni-

toring (ESM), 2007.

[2] Ervin Sejdic, Igor Djurovic, and Jin Jiang. Time-frequency feature representation

using energy concentration: An overview of recent advances. Digital Signal

Processing, 19(1):153 – 183, 2009.

[3] LJubisa Stankovic. On the time-frequency analysis based filtering. Annals of

Telecommunications, 55:216–225, 2000. 10.1007/BF02994785.

[4] J Zygierewicz, P J Durka, H Klekowicz, P J Franaszczuk, and N E Crone. Com-

putationally efficient approaches to calculating significant ERD/ERS changes in

the time-frequency plane. Journal of neuroscience methods, 145(1-2):267–76,

June 2005.

[5] Antonio H. Costa and Stephan Hengstler. Adaptive timefrequency analysis

based on autoregressive modeling. Signal Processing, pages 1–10, August 2010.

[6] Kathleen A Lindlan, Janice Cuny, Allen D Malony, and Sameer Shende. A Tool

Framework for Static and Dynamic Analysis of Object-Oriented Software with

Templates. Database.

[7] Emmanuel J. Candes, Philip R. Charlton, and Hannes Helgason. Detecting

highly oscillatory signals by chirplet path pursuit. Applied and Computational

Harmonic Analysis, 24(1):14 – 40, 2006.

[8] Xeng-Gen Xia. Discrete chirp-fourier transform and its application to chirp rate

estimation. IEEE Trans. Signal Processing, 48:3122–3133, Nov 2000.

76

77

[9] L. Cohen. Time-frequency distributions-a review. Proceedings of the IEEE,

77(7):941 –981, jul 1989.

[10] Nicholas N. Bennett and Naoki Saito. Using edge information in time-frequency

representations for chirp parameter estimation. Applied and Computational

Harmonic Analysis, 18(2):186–197, 2005.

[11] D. H. Ballard. Generalizing the hough transform to detect arbitrary shapes.

Pattern Recognition, 13(2):111–122, 1981.

[12] Roberto E Gonzalez and Nelson E Padilla. Automated detection of filaments

in the large scale structure of the universe. Technical Report arXiv:0912.0006,

Dec 2009. Comments: 14 pages, 12 figures, submitted to MNRAS.

[13] Ery Arias-Castro, David L. Donoho, Xiaoming Huo, and Craig A. Tovey. Con-

nect the dots: How many random points can a regular curve pass through?

Advances in Applied Probability, 37(3):571–603, 2005.

[14] Ery Arias-castro, David Donoho, and Xiaoming Huo. Near-optimal detection of

geometric objects by fast multiscale methods. IEEE Trans. Inform. Theory, 51,

2005.

[15] Xiaoming Huo and David Donoho. Multiscale detection of filamentary features.

In in Image Data. SPIE Wavelet-X, 2003.

[16] Ery Arias-Castro, Boris Efros, and Ofer Levi. Networks of polynomial pieces

with application to the analysis of point clouds and images. J. Approx. Theory,

162(1):94–130, 2010.

[17] Diane J. Cook and Lawrence B. Holder. Graph-based data mining. IEEE Intel-

ligent Systems, 15:32–41, 2000.

[18] L. Diduch, R. Muller, and G. Rigoll. A framework for modular signal processing

systems with high-performance requirements. In Multimedia and Expo, 2007

IEEE International Conference on, pages 1159 –1162, 2-5 2007.

78

[19] Su Hao, Wing Kam Liu, Brian Moran, Franck Vernerey, and Gregory B. Olson.

Multi-scale constitutive model and computational framework for the design of

ultra-high strength, high toughness steels. Computer Methods in Applied Me-

chanics and Engineering, 193(17-20):1865 – 1908, 2004. Multiple Scale Meth-

ods for Nanoscale Mechanics and Materials.

[20] Kyusoon Lee and Adam W. Bojańczyk. Alps: A software framework for parallel

space-time adaptive processing. In PARA, pages 423–432, 2004.

[21] James M. Lebak and Adam W. Bojańczyk. Design and performance evaluation

of a portable parallel library for space-time adaptive processing. IEEE Trans.

Parallel Distrib. Syst., 11(3):287–298, 2000.

[22] Cesar A. Aceros-Moreno. Fast signal transforms for radar information process-

ing. Master’s thesis, University of Puerto Rico, 2005.

[23] K. Hoffman and R. Kunze. Linear Algebra. Prentice Hall, second edition, 1971.

[24] S. Lang. Algebra. Addison-Wesley Publishing Company, third edition, 1993.

[25] N. Hamilton and J. Landin. Set Theory and the Structure of Arithmetic. Allyn

and Bacon, 1963.

[26] A. Fraenkel. Set Theory and Logic. Addison-Wesley Publishing Company, 1966.

[27] H. Krishna. Digital Signal Processing Algorithms. CRC Press, 1998.

[28] D. Buchthal and D. Cameron. Modern Abstract Algebra. John Wiley and Sons,

1987.

[29] W. Greub. Graduate Texts in Mathematics. Linear Algebra. Springer-Verlag,

fourth edition, 1981.

[30] Dilia Beatriz Rueda-Serrano. Fast multidimensional convolutions and SAR im-

age formation simulations in a matlab environment, 2000.

[31] Hector M. Lugo-Cordero, Kejie Lu, Domingo Rodriguez, and Sastri Kota. A

novel service-oriented routing algorithm for wireless mesh network. In Proc.

79

IEEE MILCOM 2008, San Diego, CA, 2008.

[32] Lu Kejie, Yi Qian, Domingo Rodriguez, Wilson Rivera, and Manuel Rodriguez.

Wireless sensor networks for environmental monitoring applications: A design

framework. In IEEE GLOBECOM 2007 proceedings, 2007.

[33] Gonzalo Vaca-Castano and Domingo Rodriguez. Using syllabic MEL cepstrum

features and k-nearest neighbors to identify anurans and birds species. IEEE

Workshop on Signal Processing Systems, SiPS2010 (for publication), Oct,

2010.

[34] Ivan J. Rivera-Lebron. Hardware implementation of time frequency tools for

power quality applications. Master’s thesis, University of Puerto Rico.

[35] Lola X. Bautista-Rozo. Web-base data processing for environmental surveillance

monitoring applications. Master’s thesis, University of Puerto Rico, 2007.

[36] Ana B. Ramrez-Silva. On implementing tine-frequency representations on hard-

ware/software computational structures for sar applications. Master’s thesis,

University of Puerto Rico, 2006.

[37] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer Vision with the

OpenCV Library. O’Reilly Media, 1st edition, September 2008.

[38] Matteo Frigo and Steven G. Johnson. The design and implementation of

FFTW3. Proceedings of the IEEE, 93(2):216–231, 2005. Special issue on

“Program Generation, Optimization, and Platform Adaptation”.

	ABSTRACT ENGLISH
	ABSTRACT SPANISH
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	The Concept of Time-Frequency Signal Analysis

	BACKGROUND RESEARCH AND PREVIOUS WORKS
	SIRLAB THEORETICAL FRAMEWORK
	Time Frequency Signal Operator Formulation
	Cyclic Ambiguity Function
	Wigner Distribution
	Discrete Chirp Fourier Transform
	Cyclic Short Time Fourier Transform

	Operator Approach to Acoustic Signal Analysis

	MODELLING AND SIMULATION ENVIRONMENTS
	SARCSPE - Image Formation Simulations in Matlab
	JCID - Java Web-Based Data Processing Environment
	Discrete Chirp Fourier Transform
	Cyclic Short Time Transform
	Cyclic Ambiguity Function
	Wigner Distribution

	SIRLAB TARGET APPLICATION ENVIRONMENT
	SIRLAB SOFTWARE DESIGN SPECIFICATION
	Document Description
	Introduction
	Intended Audience
	Hardware and Software Resources
	Version Management
	Definition, Acronyms and Abbreviations
	Remarks

	Design Considerations
	Assumptions and Dependencies
	General Constraints

	Verification and validation requirements (testing)
	Goals and Guidelines

	System Architecture
	Architectural Strategies

	SIRLAB DETAILED SYSTEM DESIGN
	Introduction
	Intended Audience
	Version Management
	APIs used in SIRLAB
	Remarks

	Assumptions and Dependencies
	SIRLAB Detailed System Design
	System Architecture

	SIRLAB Libraries and Function Description
	Inputlib
	Processlib
	Aritmetlib
	Outputlib

	SIRLAB GENERAL GUIDELINES
	Bare Frame of the SIRLAB for CSTFT Implementation
	SIRLAB Ordered Set of Spectrograms

	CONCLUSION AND FUTURE WORKS
	Definition of Standar Frame in SIRLAB
	Speedup and Video Streaming Using SIRLAB
	High Resolution and High Sampling Rate Bioacoustics
	SIRLAB Comparison with Other Spectrogram Software
	Future Works

