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Abstract 
 

This work presents the existence of multiple steady states in equilibrium multistage reactive 

distillation for methyl tert-butyl ether (MTBE) synthesis. The Rachford-Rice procedure is 

extended to reactive systems where a continuation analysis was applied using the Damköhler 

number for an isothermal reactive flash process involving both MTBE and tertiary amyl methyl 

ether (TAME) mixtures exhibiting Hopf bifurcations. The Extension of this analysis to non-

equilibrium models shows the existence of limit points in the case of the TAME mixture and 

isolas with intersecting branches in the case of the MTBE mixture. New expressions to 

calculate the nonequilibrium residue composition maps for reactive separation processes 

incorporating mass transfer effects and design aspects were derived. For MTBE synthesis it 

was demonstrated that reactive saddle-point azeotrope calculated by equilibrium and non-

equilibrium approaches are not the same and for TAME synthesis the nonequilibrium and 

equilibrium reactive composition curve maps in the limit of reaction equilibrium were 

obtained. 
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Resumen 
 

En este trabajo investigativo se muestra la existencia de Múltiples Estados Estacionarios en el 

modelamiento de una columna de destilación reactiva en equilibrio de fases para la síntesis de 

metil terbutil éter (MTBE). El procedimiento de Rachford-Rice se extiende a sistemas de 

separación con reacción tipo flash, luego a este esquema se le aplica un análisis de 

continuación utilizando el número de Damköhler, y se estudia la producción de MTBE y 

teramil metil éter (TAME) donde en ambos sistemas se encontraron bifurcaciones tipo Hopf. 

El análisis anterior fue extendido a un sistema unitario de separación reactiva de no-equilibrio 

donde se muestra la existencia de bifurcaciones tipo límite en la síntesis de TAME y el 

fenómeno de curvas cerradas tipo “isolas” junto con ramificaciones interceptadas en la 

producción de MTBE. Se derivó una nueva expresión para calcular los mapas residuales de 

composición donde se incorporó el efecto de transferencia de masa junto a configuraciones de 

diseño. Con la síntesis de MTBE se demostró que los modelos de equilibrio y no-equilibrio no 

coinciden en la localización de azeótropos reactivos, y se reportó un mapa de curvas de 

composición en el límite de la reacción para la producción de TAME. 

 



 iv

 

Acknowledgments 
 

I would like to thank God to stay with me every time, to my wife Carola Barrera, my daughters 

Itzel and Eluney Ruiz Barrera, my parents Gerardo Ruiz and Ana Mercado, my sisters Ana and 

Yenis Ruiz Mercado, and my parents in law Idelilliam Cuadro and Samuel Barrera, for their 

unconditional support, inspiration, and love. I would also like to express my gratitude to the 

people who helped me through my graduate studies at the University of Puerto Rico at 

Mayaguez, especially my advisor Professor Lakshmi Sridhar. Thanks to Professor Jaime 

Benitez for his academic and humanistic wisdom, he is like my father in Puerto Rico. I am 

grateful for the financial support of the NSF (grant number CTS 0341608), the Chemical 

Engineering Department, and AGEP Puerto Rico.  

   



 v

 

Contents 
 

Abstract....................................................................................................................................... ii 

Resumen..................................................................................................................................... iii 

Acknowledgments ..................................................................................................................... iv 

List of Tables ........................................................................................................................... viii 

List of Figures............................................................................................................................ ix 

Chapter 1 Introduction............................................................................................................ 1 

1.1 Objectives .................................................................................................................... 3 

Chapter 2 Modelling and Simulation of Equilibrium Reactive Distillation Columns....... 4 

2.1 Introduction.................................................................................................................. 4 

2.2 Multistage Reactive Distillation Column..................................................................... 6 

2.2.1 Model Equations ...................................................................................................... 6 

2.3 Metathesis of 2-pentene ............................................................................................... 7 

2.4 Multiple Steady States in Reactive Distillation ......................................................... 10 

2.5 MTBE Production...................................................................................................... 11 

2.6 Conclusions................................................................................................................ 13 

Chapter 3 Equilibrium Continuation................................................................................... 15 



 vi

3.1 Numerical Continuation............................................................................................. 15 

3.1.1 Prediction ............................................................................................................... 16 

3.1.2 Correction .............................................................................................................. 16 

3.2 CL_MATCONT......................................................................................................... 17 

3.3 Bifurcations................................................................................................................ 18 

3.3.1 Branching Point Locator ........................................................................................ 20 

Chapter 4 The Equilibrium Single Stage Reactive Separation Problem.......................... 22 

4.1 Introduction................................................................................................................ 22 

4.2 The Isothermal Reactive Separation Flash Problem.................................................. 24 

4.3 Modified Rachford -Rice Procedure.......................................................................... 25 

4.4 TAME Process ........................................................................................................... 26 

4.5 Solution Procedure..................................................................................................... 27 

4.6 Hopf Bifurcations in a MTBE TP Reactive Separation Flash ................................... 28 

4.7 Hopf Bifurcations in an Isothermal Isobaric TAME Process .................................... 31 

4.8 Discussion of Results................................................................................................. 34 

4.9 Conclusions................................................................................................................ 35 

Chapter 5 Singularities in Non-Equilibrium Reactive Separation Processes................... 36 

5.1 Introduction................................................................................................................ 36 

5.2 DAE Formulation for the Isothermal Isobaric Equilibrium Reactive Flash Problem ...

 .................................................................................................................................... 37 



 vii

5.3 Non Equilibrium Reactive Model.............................................................................. 40 

5.4 Non-Equilibrium Reactive Flash Problem................................................................. 43 

5.5 Results and Discussion .............................................................................................. 47 

5.6 Conclusions................................................................................................................ 51 

Chapter 6 Design and Analysis of Non-Equilibrium Reactive Separation Processes...... 54 

6.1 Introduction................................................................................................................ 54 

6.2 Derivation of the Equations ....................................................................................... 56 

6.3 Solution Strategy........................................................................................................ 63 

6.4 Case of Study 1: MTBE............................................................................................. 64 

6.5 Case of Study 2: TAME............................................................................................. 67 

6.6 Conclusions................................................................................................................ 69 

Conclusions............................................................................................................................... 71 

Appendix A. Physical Properties ............................................................................................ 73 

Appendix B. Tray Design Procedure ..................................................................................... 78 

Nomenclature ........................................................................................................................... 84 

References................................................................................................................................. 88 

 



 viii

 

List of Tables 
 

Table 2-1. Specifications for the simulation of the metathesis system........................................ 8 

 

Table 4-1. Equilibrium  problem for  MTBE system. Feed conditions and specifications. ...... 48 

 

Table 4-2. Equilibrium  problem for  TAME system. Feed conditions and specifications. ...... 49 

 

Table 4-3. Feed conditions and specifications for nonequilibrium MTBE problem. ................ 50 

 

Table 4-4. Feed conditions and specifications for nonequilibrium TAME problem................. 50 

 

Table 5-1. Tray specifications.................................................................................................... 64 

 

Table 5-2. Reactive azeotrope point coordinates....................................................................... 67 

 



 ix

 

List of Figures 
 

Figure 2-1. a) Equilibrium stage. b) Equilibrium multistage column.......................................... 5 

 

Figure 2-2. Metathesis of 2-pentene. Comparison between Chen et al. (2000) simulation results 

(solid line) and design results (filled triangles) of Okasinski and Doherty (1998) Da=7............ 8 

 

Figure 2-3. Steady state liquid compositions profile for metathesis of 2-pentene founded by 

three different methods. Solution by: (A) Chen et al. (2000) algorithm, (B) trust region Dogleg 

method, and (C) Levenberg-Marquardt method. Green(+): xC4H8, Blue(o): xC5H10, Red(*): 

xC6H12. (D) Steady state temperature profile. ............................................................................... 9 

 

Figure 2-4. Steady state liquid compositions and temperature profiles for metathesis of 2-

pentene by Chen et al. (2000). ..................................................................................................... 9 

 

Figure 2-5. MSS for MTBE production, vapor MTBE composition......................................... 10 

 

Figure 2-6. Column configuration and feed specifications for MTBE system.......................... 12 

 

Figure 2-7. A) High conversion MTBE steady state liquid compositions profile. Orange (+): 

xmethanol, blue(o): xi-butene, red(*): xMTBE, green(Δ): xn-butane. B) Steady state temperature profile.

.................................................................................................................................................... 12 



 x

Figure 2-8. A) Intermediate conversion MTBE SS liquid composition profiles. B) Steady state 

temperature profile..................................................................................................................... 13 

 

Figure 2-9. A) Low conversion MTBE SS liquid composition profiles. B) Steady state 

temperature profile..................................................................................................................... 14 

 

Figure 3-1. A fictive branching diagram.................................................................................... 20 

 

Figure 3-2. Hopf bifurcation illustrated in branching diagrams. ............................................... 21 

 

Figure 4-1. Continuation diagram for MTBE synthesis. ........................................................... 29 

 

Figure 4-2. Hopf point 1. Convergence to steady state.............................................................. 29 

 

Figure 4-3. Hopf point 1. Periodic oscillation. .......................................................................... 30 

 

Figure 4-4. Hopf bifurcation points at various temperatures..................................................... 30 

 

Figure 4-5. Hopf bifurcation points at different Pressures. ....................................................... 31 

 

Figure 4-6. Continuation diagram for TAME problem ............................................................. 32 

 

Figure 4-7. Hopf point, periodic oscillations for TAME problem............................................. 32 



 xi

Figure 4-8. Hopf point, convergence to steady state. ................................................................ 33 

 

Figure 4-9. The behavior of the Hopf bifurcation points at various temperatures for TAME 

system (P=2.55 atm). ................................................................................................................. 33 

 

Figure 4-10. The behavior of the Hopf bifurcation points at various pressures for TAME 

system (T=335 K). ..................................................................................................................... 34 

 

Figure 5-1. The non-equilibrium stage for homogeneous liquid-phase reaction....................... 41 

 

Figure 5-2. Algorithm flowchart for isothermal non-equilibrium problem............................... 46 

 

Figure 5-3. Algorithm flowchart for non-isothermal non-equilibrium problem........................ 47 

 

Figure 5-4. Hopf point for isothermal equilibrium MTBE problem.......................................... 48 

 

Figure 5-5. Hopf point for isothermal equilibrium TAME problem ......................................... 50 

 

Figure 5-6. Continuation diagram for isothermal nonequilibrium MTBE problem. ................. 51 

 

Figure 5-7. Continuation diagram for non-isothermal nonequilibrium MTBE problem........... 52 

 

Figure 5-8. Continuation diagram for isothermal nonequilibrium TAME problem.................. 52 



 xii

Figure 5-9. Continuation diagram for non-isothermal nonequilibrium TAME problem........... 53 

 

Figure 6-1. Diagram of the froth on a distillation tray............................................................... 57 

 

Figure 6-2. Coordinate system................................................................................................... 59 

 

Figure 6-3. Non-equilibrium reactive composition curves (solid red lines) and equilibrium 

reactive composition curves (dashed blue lines) in transformed composition variables for 

MTBE synthesis......................................................................................................................... 65 

 

Figure 6-4. Phase diagram in transformed composition variables with temperature for MTBE 

synthesis at P = 11 atm (liquid phase: solid red lines, vapor phase: dashed blue lines). ........... 66 

 

Figure 6-5. Non-equilibrium reactive composition curves (solid red lines) and equilibrium 

reactive composition curves (dashed blue lines) in transformed composition variables for 

TAME synthesis......................................................................................................................... 69 

 

Figure A-1. Calculation of the enthalpy of a component........................................................... 77 



 xiii

 

Publication that resulted from this work: 

 
• Design of Non-Equilibrium Reactive Separation Processes. Gerardo Ruiz and L. N. 

Sridhar. Submitted to Industrial Engineering & Chemistry Research. 2008.    

 

• Singularities in Reactive Separation Processes. Gerardo Ruiz, M. Diaz and L. N. Sridhar, 

Industrial Engineering & Chemistry Research. 2008, 47, 2808-2816. 

 

• The Isothermal Isobaric Reactive Flash Problem. Gerardo Ruiz, L. N. Sridhar and R. 

Rengaswamy, Industrial Engineering & Chemistry Research. 2006, 45, 6548-6554.  

 



 

 

1

 

Chapter 1 Introduction  
 

There has been an on growing interest in the design and optimization of reactive distillation 

systems because they offer an alternative procedure to conventional processes. Reactive 

distillation (RD) combines the key operations of most chemical processes into one unit: 

chemical reaction and distillation. RD has several applications to processes as methyl tert-butyl 

ether (MTBE) production, synthesis of tertiary amyl methyl ether (TAME), metathesis of 

alkenes, etc.  

 

The typical RD equipment is comprised of a non hybrid scheme where reaction and separation 

occur simultaneously in all stages, and a hybrid system where the column is divided into three 

regions, one for reactions and separation and two for separation only. Like conventional 

distillation columns the RD towers are made by using trays or packing1, and can be used to 

carry out both homogeneous and heterogeneous catalyzed chemical reactions2-4. 

  

Mathematical models of several complexities for RD have been commonly applied in MTBE 

and TAME synthesis. All models can be enclosed in two: the equilibrium reactive model (EQ) 

which adopts an equilibrium stage approach with a reaction rate expression, and the more 

complex non-equilibrium (NEQ) model that takes into account both finite reaction rates and 

finite interface mass and energy transfer fluxes. Multiple steady states (MSS) behavior has 

been reported previously involving both EQ and NEQ models, but a detailed analysis of 
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reactive distillation process that involve the identification of the singular point that cause theses 

multiplicities is necessary.   

 

During reactive separations, complex interactions between reaction kinetics and mass transfer 

operations occurs introducing strong nonlinearities. The interactions between vapor-liquid 

mass and energy transfer and chemical kinetics increase the complexity of modeling and scale 

up of RD processes. Therefore, a study of the effect(s) of mass transfer on the multiplicity 

regions will have significant implications in column design, operation, and control. 

 

Residue curve maps play an important role in the design of reactive separation processes. 

Barbosa and Doherty5 and Ung and Doherty6 have derived a set of differential equations to 

model the reactive simple distillation with multiple reactions expressed in terms of transformed 

composition variables using the equilibrium model. Castillo and Towler7, Taylor et al.8, and 

Sridhar et al.9, 10 addressed departures from equilibrium to draw composition trajectories to 

locate azeotropes in non-reactive systems. They showed that the azeotrope calculated with EQ 

and NEQ models coincide. But, what effect does the mass transfer have on the distillation lines 

and in the location of the NEQ reactive azeotrope? Will the NEQ and EQ reactive azeotropes 

coincide as in the non-reactive case?     

  

This work presents the existence of multiple steady states in multistage reactive distillation, 

singular points and MSS in NEQ and EQ single stage reactive separation processes, and finally 

the non-equilibrium reactive composition curve maps are calculated showing  that stationary 

reactive points calculated by equilibrium and non-equilibrium models are not the same. 
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1.1 Objectives 

 
The objectives of this work are: 

• To investigate the causes for the multiplicity that occurs in equilibrium and non-

equilibrium reactive distillation processes  

• To locate the singularities that cause these MSS 

• To design and construct tools to investigate the effect of kinetics and mass transfer on 

feasible splits for NEQ reactive separation processes. 
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Chapter 2 Modelling and Simulation of Equilibrium 
Reactive Distillation Columns 

 

The equilibrium reactive model is applied to study the metathesis of 2-pentene and MTBE 

synthesis using the algorithm implemented by Chen et al.11 to find the steady state solution. 

Simultaneously two methods to solve nonlinear algebraic equation system are applied where 

multiple steady states are found for MTBE process. 

2.1 Introduction 

 
Figure 2-1(a) shows a schematic diagram of the equilibrium stage. In the equilibrium reactive 

model the vapor and liquid leaving the stage are assumed to be in equilibrium with each other. 

A complete reactive separation process is modeled as a series of j equilibrium stages (Figure 

2-1(b)). The general model is comprised of partial and total material balance equations, energy 

balance for each stage, and the phase equilibrium relation. 

The equations that describe the equilibrium stages are: 

The material balance for each component and the total material balance, 

 
( )

1 1 1 1 , ,
1

r
j i j

j i j j i j j i j j i j j i j j m i j m
m

d x
F z L x V y V y L x v R

dt
ε

ε− − + +
=

= + + − − + ∑  (2.1) 

 1 1 , ,
1

r
j

j j j j j j m T j m
m

d
F L V V L v R

dt
ε

ε− +
=

= + + − − + ∑  (2.2) 

Where xij and yij are the liquid and vapor molar fractions respectively for the component i in 

the stage j, jε is the total holdup for stage j, ,j mR  is the reaction rate for m reaction in the stage 
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j, and ,m iν  is the stoichiometric coefficient i in reaction m, , ,
1

c

m T m i
i

ν ν
=

= ∑ , c is the total number 

of components in the mixture, Fj is the total feed to stage j, zij is the molar feed composition for 

the component i in the stage j, Lj is the liquid molar flow leaving from stage j, and Vj is the 

vapor molar flow leaving from stage j. The stages are numbered from the top to bottom as 

shown in Figure 2-1(b).     

The following relation is used to account for the phase equilibrium, 

 , , ,i j i j i jy K x=  (2.3) 

where Kij is the phase equilibrium constant for the component i in the stage j. 

 
Figure 2-1. a) Equilibrium stage. b) Equilibrium multistage column. 

 

The summation of liquid and vapor mole fraction is given by, 
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 ,
1

1
c

i j
i

x
=

=∑  (2.4) 

 ,
1

1
c

i j
i

y
=

=∑  (2.5) 

Finally, the enthalpy balance is defined as, 

 
( )

1 1 1 1
j j F L V V L

j j j j j j j j j j j

d H
F H L H V H V H L H Q

dt
ε

− − + += + + − − +  (2.6) 

where Hj is the molar enthalpy of the stage j, Hj
L and Hj

V are the liquid and vapor enthalpy 

respectively for the stage j, and Q°
j heat flow transferred to or from  the surroundings for the 

stage j. 

 

2.2 Multistage Reactive Distillation Column 

 
The system of nonlinear simultaneous differential and algebraic equations was solved at steady 

state by three different methods: the Chen et al.11 algorithm, the trust region dogleg method, 

and the Levenberg-Marquardt method12. The Chen et al.11 algorithm solved the nonlinear 

algebraic equation dynamically using a small integrating time, whereas the last two methods 

are algorithms to solve directly nonlinear algebraic equation systems that have different 

predictor steps and convergence criteria. The model was validated for efficiency and 

robustness using the metathesis of 2-pentene process.  

2.2.1 Model Equations 
 
Rearranging and adjusting equation (2.1) based on Chen et al.11 assumption (constant total 

molar holdup) gives 
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( ) ( ) ( )1 1 1 1 , ,
1,ref

1 Da R
i j T T

j i j j i j j i j j i j j i j j r i j rR
rT j T f

d x
F z L x V y V y L x v R

d F k
ε ε δ

τ ε ε− − + +
=

= + + − − + ∑  (2.7) 

Where 
1

N

T j
j

F F
=

= ∑  is the total feed flow to column, 
1

N

T j
j

ε ε
=

= ∑  is the total molar holdup of the 

column, ( )/T Td F dtτ ε= , and ( )
1

N
R
T j j

j

ε δ ε
=

= ∑  is the molar holdup summation when reaction 

occurs in stage j and 1jδ = , for all others 0jδ = . 

The Damköhler number is a dimensionless ratio of a characteristic liquid residence time 

( )/R
T Fε  and the characteristic reaction time ( ),ref1 / fk , ( ) ( ),refDa / / 1 /R

T fF kε= . ,reffk  is the 

forward reaction rate at a temperature of reference. This dimensional number allows to study 

simultaneously the reaction and physical separation phenomena using Da>>1 when the 

reaction equilibrium limit is reached and Da<<1 when only non-reactive separation is 

achieved.    

The Da number plays an important role in this work; it is used as a continuation parameter to 

investigate the multiplicity behavior at steady state condition ( )( )/ 0i jd x dτ = .   

2.3 Metathesis of 2-pentene 

 
This is an ideal process for reactive distillation applications. 

The equimolar reversible reaction of 2-pentene to form 2-butene and 3-hexene is shown in the 

equation below: 

 5 10 4 8 6 122C H C H +C H⇔  (2.8) 

Equation (2.7) is solved at steady state assuming the same configuration system as in Chen et 

al.11 and using Da=7 to match the design model assumption made by Okasinski and Doherty13 
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as exposed in Table 2-1. Figure 2-2 shows the comparison between the Chen et al.11 simulation 

and the experimental results of Okasinski and Doherty13. As can be seen, the simulation and 

design results are in good agreement.  Our temperature and liquid compositions profiles shown 

in Figure 2-3 are identical to the profiles obtained by Chen et al.11 (Figure 2-4). 

 

 

Figure 2-2. Metathesis of 2-pentene. Comparison between Chen et al. (2000) simulation results (solid line) 
and design results (filled triangles) of Okasinski and Doherty (1998) Da=7. 
 

 

 
Table 2-1. Specifications for the simulation of the metathesis system 

 
Number of stages 14 
Feed location 7 
Feed quality 1 
Feed rate 100 kmol/h 
Feed composition [xC4H8, xC5H10, xC6H12] [0.0, 1.0, 0.0] 
Reflux ratio 4.0 
Reboil ratio 5.0 
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Figure 2-3. Steady state liquid compositions profile for metathesis of 2-pentene found by three different 
methods. Solution by: (A) Chen et al. (2000) algorithm, (B) trust region Dogleg method, and (C) Levenberg-
Marquardt method. Green(+): xC4H8, Blue(o): xC5H10, Red(*): xC6H12. (D) Steady state temperature profile. 
 

 

 

Figure 2-4. Steady state liquid compositions and temperature profiles for metathesis of 2-pentene by Chen 
et al. (2000). 
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2.4 Multiple Steady States in Reactive Distillation 

 
MSS in conventional distillation have been known from simulation and theoretical analysis14-

16. Figure 2-5 shows the MSS phenomenon for MTBE production, where each line represents a 

steady state profile of the MTBE molar fraction in the vapor phase through the column stages. 

On the first rigorous analysis of non-equilibrium separation processes, provided by Sridhar et 

al.10, 17, the MSS occurred in the phase equilibrium calculations at the interface. Pisarenko et 

al.18 first reported a MSS in RD where they found three steady states for a RD column, two of 

which were stable. MSS in RD have been also demonstrated by other several workers1, 4, 11, 19-24 

where the most commonly investigated situation involves the MTBE synthesis in the Jacobs 

and Krishna25 column configuration. In this case two steady states were found originated from 

two different paths that correspond to two different kinds of residual curves. 

 
Figure 2-5. MSS for MTBE production, vapor MTBE composition. 

 

Another situation is the TAME synthesis in the column configuration of Mohl et al.26. They 

showed that multiple steady states for the TAME process are originated by kinetic instabilities. 
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Recently experimental and simulation studies of the MSS existences have been performed by 

Mueller and Marquardt27 for non reactive system. Rapmund et al.28 performed experiments for 

the TAME production where multiplicities were observed as function of the start-up procedure 

utilized. Mohl et. al.26 revealed that only theoretical and experimental studies at the same time 

enable the possibility to verify experimentally the existence of MSS.  

 

2.5 MTBE Production 

 
The MTBE (CH3COCH3) is produced by liquid phase esterification reaction from methanol 

(MeOH) and i-butene. This reaction is highly selective, and only occurs in the presence of 

other olefins29, which operates as an inert component, such as n-butane: 

 -butene+MeOH+n-butane MTBE+n-butanei ⎯⎯→←⎯⎯  (2.9) 

In this simulation, the configuration used is described in the Figure 2-6 with Da = 100. The 

thermodynamic equilibrium constant, the reaction rate constant, and the rate equation were 

taken from Venimadhavan et al.30. 

The rate model that describes the kinetics of MTBE synthesis catalyzed by H2SO4 is: 

 ( )( ) ( ) ( ) ( )
MTBE

-butene MeOH4464*exp 3187 /
8.33 8*exp(6820 / )i

aR T K a a
E T K

⎡ ⎤
= − −⎢ ⎥−⎣ ⎦

 (2.10) 

where T is the temperature in Kelvin, and a is the activity. The boiling point temperature of 

isobutene at 11 atm (328.15 K) is chosen as the reference temperature to 

calculate 1
,ref 0.4882 hfk −= . The non ideality of the liquid phase is represented by the Wilson 

equation using the thermodynamic data taken from Table 3.3 in Barbosa31 and Table 3 in Ung 

and Doherty32. 

http://www.lpt.rwth-aachen.de/Staff/name.php?Kuerzel=wma
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Figure 2-6. Column configuration and feed specifications for MTBE system. 

 

Three steady states were found at low, intermediate, and high isobutene conversion. The plots 

for the liquid compositions and temperature profile for high conversion at steady state are 

shown in Figure 2-7. 

 

Figure 2-7. A) High conversion MTBE steady state liquid compositions profile. Orange (+): xmethanol, 
blue(o): xi-butene, red(*): xMTBE, green(Δ): xn-butane. B) Steady state temperature profile. 
 

At a Damköhler number of 100 the system produces multiple solutions but at low Da (∼<50) 

this phenomenon does not occur. The appearance of either state depends on the initial state of 
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the column (initial liquid compositions and temperature profiles). A possible phenomenon 

responsible for the multiple steady states can be the non ideality of the liquid mixture. Another 

explanation is a combination of physical separation and the presence of an exothermic 

chemical equilibrium reaction inside the column. 

 

Plots for the temperature and liquid composition profiles for intermediate and low conversion 

steady state are illustrated in Figure 2-8 and Figure 2-9 respectively, showing the effect when 

the forward equilibrium reaction is displaced to the products (left side of the reaction)  and  the 

decrease of the MTBE composition in the last stages (rectifying zone).  

 

Figure 2-8. A) Intermediate conversion MTBE SS liquid composition profiles. B) Steady state temperature 
profile. 
  

2.6 Conclusions 

 
A steady state analysis of the equilibrium reactive distillation problem using the Damköhler 

number was performed. The metathesis of 2-pentene was used to validate the accuracy of the 

strategy employed then extended to the MTBE production to show MSS phenomenon. The Da 
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number is an important parameter in modeling reactive distillation processes because it 

produces multiplicities at critical values. 

 

Figure 2-9. A) Low conversion MTBE SS liquid composition profiles. B) Steady state temperature profile. 
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Chapter 3 Equilibrium Continuation 
 

The continuation method is applied to solve ordinary differential equations (ODE) and systems 

of differential algebraic equations (DAE) at steady state conditions. It computes a successive 

sequence of points of solutions which are function of an active parameter (i.e. Da). The 

continuation method localizes singular points which produce multiple solutions. We use 

throughout this work a numerical continuation program called CL_MATCONT.      

 

3.1 Numerical Continuation33 

 A numerical continuation is a technique that computes a consecutive sequence of point’s 

solution which approximates the desired branch33. Most continuation algorithms implement a 

prediction of a new point and correction of the predicted point. This method produces a 

succession of points ,.....2,1, =ixi along the curve fulfilling a chosen convergence criterion. 

As an illustration, consider a differential equation 

 ( , )du f u
dt

α=  (3.1) 

where nu ∈R , α ∈R , and 1: n nf + →R R  

At steady state, ( ) 0, =αuf , and defining a new function F(x),  

 ( ) ( , ) 0F x f u α= =  (3.2) 

Suppose we have found a point xi on the curve, with 1( , ) nx u α += ∈R and defining a 

normalized tangent vector v to the equilibrium curve at x as v ∈ Rn+1. In this case, ( ) 0xF x v⋅ =  



 

 

16

and , 1v v = . The computation of the next point xi+1 consists of two steps: the prediction of a 

new point, and the correction of the predicted point. 

3.1.1 Prediction 
 
Step size h is an important parameter in the continuation algorithm since too small step-sizes 

can lead to additional unnecessary numerical work, while too big step-sizes may lead to lose 

details of the solution curve. A frequently used predictor is the tangent prediction: 

 0
i iX x hv= +  (3.3) 

3.1.2 Correction 
 
It is assume that X0 is close to the solution curve. To find the next point xi+1 on the curve we 

use a modified Newton procedure. Since the standard Newton iterations can only be applied to 

square systems (# equations= # unknowns), an extra scalar condition is added: 

 
( )
( )

0

0

F x

g x

=

=
 (3.4) 

The function g(x) could be a hyperplane passing through X0 that is orthogonal to the vector vi: 

 ( ) 0 , ig x x X v= −  (3.5) 

then, the Newton iteration turns into: 

 ( ) ( )1 1k k k k
xX X H X H X+ −= +  (3.6) 

where ( ) ( )
0

F X
H X

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
and ( ) ( )x

x T
i

F X
H X

v
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

when the point xi+1 is found, we have to calculate the tangent vector in this point: 

 ( )1
1

0
1

x i
iT

i

F x
v

v
+

+

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 (3.7) 
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3.2 CL_MATCONT 

 
We use the program CL_MATCONT33 for drawing the continuation diagram and locating the 

singular points in the next chapters. The prediction-correction continuation algorithm used here 

is based on the Moore-Penrose pseudo-inverse matrix to obtain the solution curve for the 

equation set ( ) 0F x =  for a function 1: n nF + →R R . The Moore-Penrose pseudo-inverse 

matrix for a ( )1N N× +  matrix A is defined as  

 1( )T TA A AA+ −=  (3.8) 

To obtain A b+ , where Nb∈R , a system is made for which 1Nx +∈R  such that  

 0
0

T

Ax b
v x
Av

=

=
=

 (3.9) 

where x A b+=  is a solution to this system.  

For a curve ( ) 0F x =  where 1: n nF + →R R a tangent vector  iv  should satisfy  

 ( ) ( )( ) 0i i
xF x v =  (3.10) 

For a point ( )ix on the curve, the prediction of the next point is tangential and this will lead to 

the Moore-Penrose correction (see Dhooge et al.33 for details)  

 1 ( ) ( )k k k k
xX X F X F X+ += −  (3.11) 

For the computation of ( )k
xF X+  CL_MATCONT uses the approximation  

 1( ) 0k k
xF X V+ − =  (3.12) 

Once all these functions are defined the correction procedure in CL_MATCONT is simple as 

described by Dhooge et al. (2004). 

 ( )k
xA F X=  (3.13) 
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 Tk

A
B

V

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (3.14) 

 
0

kAV
R

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 (3.15) 

 
( )

0

kF X
Q

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 (3.16) 

The correction procedure would yield  

 1 1

|| ||
k k WW V B R V

W
− += − =  (3.17) 

 1 1k kX X B Q+ −= −  (3.18) 

This iteration procedure is repeated until a certain tolerance is attained.   

3.3 Bifurcations33, 34 

 
The bifurcations produce multiplicity (paths) in the solution of a continuous system that 

depends on the active parameter (i.e. α, Da). With the solution evaluated at each active 

parameter value is possible to make a branching diagram as shown in the Figure 3-1. The 

bifurcation can be detected along the steady state equilibrium curve. 

In continuous systems there are several types of bifurcations34. For this work only three types 

of bifurcation will be considerate because they have physical significance in reactive 

separation processes.  

• Fold bifurcation: also known as limit point, denoted by LP (Figure 3-1), this type of 

singular point frequently arises in pairs, showing hysteresis effects. In situations a LP 

separates stable from unstable behavior and indicate that two solutions are born or two 

solutions extinguish each other.  
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• Hopf bifurcation: denoted as H (Figure 3-2), is the type of bifurcation that connects a SS 

branch (equilibrium) with periodic state (a branch of periodic oscillations). At H point  

there is an exchange of stability from stable equilibrium to stable limit cycle that encircles 

the unstable equilibrium  

• Branching bifurcation: denoted by BP (Figure 3-1), is a point where two branches intersect. 

A BP where various braches intersect is called multiple BP, and it can produce an isola 

curve.  

 
Three test functions are defined to detect these singularities33: 

 1( , ) det x
T

F
u

v
φ α

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (3.19) 

 ( )2 ( , ) det 2 ( , )u nu f u Iφ α α=  (3.20) 

 3 1( , ) nu vφ α +=  (3.21) 

where  is the bialternate matrix product or byproduct. For example If ( , )uf u α  is an n × n 

matrix  and In is the n × n identity matrix, then the byproduct 2 ( , )u nf u Iα  is an m × m matrix 

where ( )1 / 2m n n= − . If the matrix components are pairs ( ),i j  with i j> , the bialternate 

matrix product is defined by35: 

 ( )( ) ( ), , ,

if 
if  and 
if  and 

2 ( , )
if  and 
if 

0 otherwise
.

il

ik

ii jj
u n i j k l

jl

jk

a k j
a k i l j
a a k i l j

f u I
a k i l j

a l i

α

− =⎧
⎪ ≠ =⎪

+ = =⎪
= ⎨ = ≠⎪

⎪− =
⎪
⎩

 (3.22) 
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The singularities can be defined using these test function: 

BP: 1 0φ =  

H: 2 0φ =  

LP: 3 0φ = and 1 0φ ≠  

 

 
Figure 3-1. A fictive branching diagram 

 

3.3.1 Branching Point Locator33 
 
The location of LP and H points normally does not cause inconvenient, but the location of BP 

can give problems. This difficulty can be avoided by using p ∈ Rn and  β ∈ R and considering 

the extended system: 

 

( , ) 0
( , ) 0

( , ) 0

1 0

T
u
T

T

f u p
f u p

p f u

p p
α

α β

α

α

+ =

=

=

− =

 (3.23) 
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This system is solved by the Newton’s method with initial values β=0 and ppfp T
u μ=: where 

μ is the closed to zero real eigenvalue. A BP (u,α) corresponds to a regular solution (u,α ,0, p). 

 

Figure 3-2. Hopf bifurcation illustrated in branching diagrams. 
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Chapter 4 The Equilibrium Single Stage Reactive 
Separation Problem 

 

In this chapter we present some results for the isothermal isobaric reactive separation process. 

We show that the Rachford-Rice procedure can be extended to reactive systems. We also 

demonstrate that even in isothermal isobaric reactive separation processes which is probably 

the least nonlinear of all reactive separation processes we get nonlinear phenomena such as 

Hopf bifurcations. While it has been shown that Hopf bifurcations are impossible in isothermal 

CSTR problems and also in non-reactive flash problems, we demonstrate in this chapter that 

isothermal reactive flash processes involving both MTBE and TAME mixtures exhibit Hopf 

bifurcations. 

 

4.1 Introduction 

 
During the last decade there has been a tremendous interest in the field of reactive distillation. 

A review of the various models used in reactive distillation can be found in Taylor and 

Krishna36. Of special interest is the existence of multiple steady-states in these problems, since 

the combination of separation and reaction can in principle introduce the nonlinearity that can 

cause multiplicity.  Multiple steady-states in reactive distillations was demonstrated by several 

workers1, 4, 19, 22-26, 28, 37-42. The most commonly investigated situations include the MTBE 

synthesis in the Jacobs-Krishna25 column configuration and the TAME Synthesis in the column 

of Mohl et al.26.  The multiple steady-states for these two columns were investigated by Chen 
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et. al.4 who concluded that multiplicities are lost for high values of Da for TAME, while the 

opposite is found for MTBE. This conclusion, however is specific to the column configuration 

described in Jacobs-Krishna25 and Mohl et. al.26.  Rodriguez et. al. 43, 44 discussed causes for 

the existence of multiple steady-states in binary and ternary systems. Unfortunately, the most 

important reactive separation process problems where multiplicity exists such as MTBE and 

TAME processes involve more than three components. In order to understand what causes 

multiplicity in these problems one must look at the simplest reactive separation process 

problem involving the MTBE and TAME mixture such as the isothermal reactive flash 

problem. Mohl et. al.26 prove that isothermal CSTR problems do not exhibit Hopf bifurcations 

while, on the other hand,  for non-reactive isothermal flash processes involving homogeneous 

mixtures Hopf bifurcations are impossible45.  However we demonstrate that isothermal reactive 

flash processes involving both TAME and MTBE exhibit Hopf bifurcations. In this chapter a 

brief description of the isothermal reactive flash process is first given along with the equations 

involved. A modified Rachford-Rice46 procedure for solving the isothermal reactive separation 

process problem is presented. We then demonstrate the existence of Hopf bifurcations in the 

isothermal reactive flash processes involving both the MTBE and TAME mixtures.  Dynamic 

simulations are performed demonstrating the existence of limit cycles that are a characteristic 

feature of problems with Hopf bifurcations and the behavior of these singular points with 

temperature and pressure variations are presented.   
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4.2 The Isothermal Reactive Separation Flash Problem 

 
For a single stage reactive separation unit with a single reaction, equation (2.7) is set as,  

 ( ) ( )
,ref

1 Dai
i i i i

f

dx Fz Vy Lx v R
d F kτ

= − − +  (4.1) 

At steady state and using 
,ref

Da

fk F
ε

=  equation (2.6) is reduced to: 

 ( ) ( )1 0i i i iFz Vy Lx v R
F F

ε
− − + =  (4.2) 

where F is the external feed, L is the liquid flow, V the vapor flow, ε  the holdup, R the extent 

of reaction and ν  the stoichiometric coefficient.  

We also have the phase equilibrium equation (2.3) for a single stage  

 i i iy K x=  (4.3) 

Where the physical equilibrium constant is defined as: 

 
sat

i i
i

PK
P

γ
=  (4.4) 

And the summation expression for both phases (equation (2.4) and (2.5))   

 
1

1
c

i
i

y
=

=∑  (4.5) 

 
1

1
c

i
i

x
=

=∑  (4.6) 

The total number of equations and variables are equal to 2c + 2 which includes equations (4.2), 

(4.3), (4.5), and (4.6) and variables xi, yi, L, and V respectively. This set of equations at steady 

state can be solved by specifying T, P, and ε. While this set of equations at steady state can be 

solved using a variety of techniques, a modified Rachford-Rice procedure for solving the 

isothermal isobaric reactive flash problem is presented in the next section. 
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4.3 Modified Rachford -Rice Procedure 

  
We solve the set of equations (4.2), (4.3), (4.5), and (4.6) using a modified Rachford Rice 

procedure.  

Defining ( )i iRε ν = ℜ  and 1

c

i
i

F
=

⎛ ⎞ℜ⎜ ⎟
⎝ ⎠ = Ξ
∑

, we obtain from equation (4.2), 

 0i
i i i

V Lz y x
F F F

ℜ
− − + =  (4.7) 

Substituting equation (4.3) and re-arranging we get 

 i
i i i

L Vz K x
F F F
ℜ ⎛ ⎞+ = +⎜ ⎟

⎝ ⎠
 (4.8) 

or  

 
i

i

i

i

z
Fx

L V K
F F

ℜ
+

=
⎛ ⎞+⎜ ⎟
⎝ ⎠

 (4.9) 

and 

 
i

i

i i

i

z
Fy K L V K

F F

ℜ⎛ ⎞+⎜ ⎟
= ⎜ ⎟

+⎜ ⎟
⎝ ⎠

 (4.10) 

Since 
1

( ) 0
c

i i
i

y x
=

− =∑  we have 

 ( )
1

1 0
i

c i

i
i

i

z
F KL V K

F F
=

ℜ⎛ ⎞+⎜ ⎟
− =⎜ ⎟

+⎜ ⎟
⎝ ⎠

∑  (4.11) 

If V
F

α= , 1L
F

α= − Ξ −  we get  
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( ) ( ) ( ) ( )

1

1 0
1

i
c i

i
i i

z
F K

K
α

α α=

ℜ⎛ ⎞+⎜ ⎟
− = Φ =⎜ ⎟− Ξ − +⎜ ⎟

⎝ ⎠

∑  (4.12) 

The derivative of this function with respect to α will be  

 
( ) ( )( )

( ) ( )2
2

1

1 '
1

i
c i

i
i i

z
F K

K
α

α α=

ℜ⎛ ⎞+⎜ ⎟
− − = Φ⎜ ⎟

− Ξ − +⎜ ⎟
⎝ ⎠

∑  (4.13) 

Using the method of Newton we can compute α in the inner loop and obtain both V
F

α=  and 

1L
F

α= − Ξ − .  The liquid and vapor compositions can be corrected in the outer loop using 

equations (4.9) and (4.10) .  

 

4.4 TAME Process 

 
Tertiary amyl methyl ether (TAME) is generated from methanol and a mixture of isoamylenes 

2-methyl-1-butene (2MB1) and 2-methyl-2-butene (2MB2) reacting in liquid phase using a 

sulphonic acid ion exchange resin as catalyst47-49 and n-pentane as inert. Three reactions take 

place simultaneously, 

Reaction 1: 2MB1+MeOH TAME⎯⎯→←⎯⎯  (4.14) 

Reaction 2: 2MB2+MeOH TAME⎯⎯→←⎯⎯  (4.15)  

Reaction 3: 2MB1 2MB2⎯⎯→←⎯⎯  (4.16) 

Only two of the above three reactions are independent. Adding equations (4.14) and (4.15), 
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Reaction 4: (2.0)MeOH+2MB1 2MB2 (2.0)TAME⎯⎯→+ ←⎯⎯  (4.17) 

 

Since the isomerisation (reaction 3) is very fast in comparison to the TAME reactions47 the rate 

model for reaction 4  is  

 2M1B TAME
4 4 2

MeOH 1 MeOH

1
f

a aR k
a K a

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (4.18) 

And for a catalyst activity of 1.2 (eq H+)/(kg catalyst)26:  

 ( )( )10
4 3

107641 1.9769x10 expfk K
T

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 (4.19) 

The equilibrium constants50 

 4 4273.5/
1 1.057x10 e TK −=  (4.20) 

and 

 899.9/
3 0.648e TK =  (4.21) 

4.5 Solution Procedure  

 
At steady state equation (4.1) can be re-written as  

 ( ) ( )
,ref

Da 0i V i L i i
f

z y x v R
k

θ θ− − + =  (4.22) 

where /L L Fθ = and /V V Fθ = and ,reffk  is the forward rate constant  evaluated at the boiling 

point of the lowest boiling pure component in the system. This temperature value is 328.15 K 

for the MTBE process and 334.15 K for the TAME process. Using the Damköhler number as 

the continuation parameter we solve equations (4.22), (4.3), (4.5) and equation (4.6) using the 

program CL_MATCONT33. Details of the algorithm and the strategy for the numerical 
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equilibrium continuation and obtaining the location of the bifurcation points are presented in 

Chapter 3 and Dhooge et al.33.  

 

4.6 Hopf Bifurcations in a MTBE TP Reactive Separation Flash 

 
In this section we demonstrate the existence of Hopf bifurcations in an isothermal isobaric (TP)  

reactive separation flash problem. Consider a reactive separation TP flash for the MTBE 

synthesis problem. In this problem, isobutene reacts with methanol to produce MTBE using n-

butane as an inert component. The rate model and the activity coefficient parameters are given 

in Section 2.5 using components ordered as [isobutene, methanol, MTBE and n-butane]. For a 

feed composition of  [0.163 0.005 0.081 0.751], a pressure of 11 atm, and a temperature of 

363.22 K51 the program CL_MATCONT (Chapter 3) was used to draw the continuation curve 

by using the Damköhler number as the continuation parameter. Two Hopf bifurcation points 

were found at the Damköhler values of 1.495 and 5.128 as shown in Figure 4-1. We performed 

a dynamic simulation for two different starting points were for each of the Hopf points a 

periodic oscillation and a convergence to a steady-state were obtained characteristic of a Hopf 

bifurcation point. The periodic oscillation and the convergence to the steady-state at the first 

Hopf point are shown in Figure 4-2 and Figure 4-3 respectively. Similar results were found for 

the second Hopf bifurcation point. Figure 4-4 shows the Hopf points at various temperatures 

were it can be observed that at a temperature of 363.25 K and beyond one of the Hopf points 

disappears. A similar behavior is observed when the total pressure of the system is changed as 

shown in Figure 4-5 where it is seen that as the pressure is lowered below 11 atmospheres one 

of the Hopf points disappears.  
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Figure 4-1. Continuation diagram for MTBE synthesis. 
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Figure 4-2. Hopf point 1. Convergence to steady state. 
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Figure 4-3. Hopf point 1. Periodic oscillation. 
 
 

 
Figure 4-4. Hopf bifurcation points at various temperatures 
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Figure 4-5. Hopf bifurcation points at different Pressures. 
 

4.7 Hopf Bifurcations in an Isothermal Isobaric TAME Process 

 
Performing a similar analysis as in section 4.6 now for TAME synthesis, a Hopf bifurcation 

point at a Damköhler number of 0.4620 was obtained at 335K and 2.55 atmospheres as shown 

in Figure 4-6  using components ordered as MeOH, 2M1B, 2M2B, TAME and n-pentane at a 

feed composition of [0.2647; 0.0463; 0.2846; 0; 0.4044]. Figure 4-7 and Figure 4-8 show the 

existence of a limit cycle and a steady-state at this Damköhler value. Figure 4-9 shows the 

existence of the Hopf bifurcation point at various temperatures while Figure 4-10 shows the 

Hopf bifurcation points at various pressures. These results clearly demonstrate the existence of 

Hopf bifurcations in isothermal reactive flash processes. It is possible that under certain 

operating conditions these Hopf bifurcations can exist in multistage columns too and such 

columns may need special control mechanisms like delayed feedback control.  
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Figure 4-6. Continuation diagram for TAME problem 
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Figure 4-7. Hopf point, periodic oscillations for TAME problem. 
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Figure 4-8. Hopf point, convergence to steady state. 

 
 
 
 

 
Figure 4-9. The behavior of the Hopf bifurcation points at various temperatures for TAME system (P=2.55 
atm). 
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Figure 4-10. The behavior of the Hopf bifurcation points at various pressures for TAME system (T=335 K). 
 

4.8 Discussion of Results 

 
Results obtained clearly demonstrate the existence of Hopf bifurcations which causes the 

coexistence of a stable steady state and an unstable limit cycle in isothermal reactive flash 

processes. It is possible that, under certain operating conditions, these Hopf bifurcations can 

exist in multistage columns too, and such columns may need special control mechanisms such 

as delayed feedback control. Mohl et al.26 showed that an isothermal CSTR problem involving 

the MTBE and TAME reactions cannot exhibit Hopf bifurcations. The work of Lucia45 clearly 

shows that an isothermal non-reactive flash problem cannot exhibit any multiple steady states. 

Furthermore, as can be seen in Figure 4-1, at large Damköhler numbers these bifurcation points 

do not exist. 



 

 

35

Therefore, we conclude that it is the combination of the phase equilibrium and the reaction that 

causes these Hopf bifurcations. Just as two nonsingular Jacobian matrixes can be 

added/combined to give a singular Jacobian matrix, so also two processes that cannot by 

themselves produce limit cycles can be combined to produce highly nonlinear phenomenon 

like Hopf bifurcations. Additionally, this paper demonstrates that such instabilities and 

oscillations are not necessarily due to multiple stages and can occur even in isothermal reactive 

separation process problems. 

 

4.9 Conclusions 

  
The main conclusions of this Chapter are as follows.  

• The Rachford-Rice procedure used to solve non-reactive flash isothermal isobaric flash 

processes can be extended to reactive systems.   

• While isothermal CSTR problems and isothermal non-reactive flash problems do not 

exhibit Hopf bifurcations, isothermal reactive flash process problems involving MTBE and 

TAME mixtures do exhibit Hopf bifurcations.  

• In the neighborhood of these Hopf bifurcations, both limit cycles and steady-states can be 

observed. 
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Chapter 5 Singularities in Non-Equilibrium Reactive 
Separation Processes 

 

In this chapter, we demonstrate the existence of various types of singularities in equilibrium 

and non-equilibrium reactive separation process problems. First, the equilibrium reactive 

separation process problem is posed as a set of differential algebraic equations (DAE) and it is 

shown that Hopf bifurcation points can exist even for this formulation, for both the MTBE and 

TAME systems as in Ruiz et al.52. Extension of this analysis to non-equilibrium models shows 

the existence of limit points in the case of the TAME mixture and isolas with intersecting 

branches in the case of the MTBE mixture. 

5.1 Introduction 

 
Multiple steady-states in non-equilibrium reactive distillations was demonstrated by several 

workers1, 3, 53-56 but all this  work involve RD multistage columns. In a recent article Ruiz et 

al.52 analyzed the isothermal isobaric reactive flash problem and showed that the MTBE 

reactive flash process, under isothermal isobaric conditions exhibited Hopf bifurcations. In this 

article we modify the approach used by Ruiz et al.52, where a continuation procedure 

implemented in CL_MATCONT was used to solve all the equations for the reactive flash taken 

together. In this chapter, we express the reactive flash problem as a set of differential algebraic 

equation system (DAE) and demonstrate Hopf bifurcations for the MTBE and TAME systems 

even when such an approach is used. We then investigate the nature of the singularities in the 

non-equilibrium reactive isothermal flash problem described in Sridhar et al.17 and show that 
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the effect of imposing mass transfer rate equations on the equilibrium reactive flash problem 

causes the emergence of singularities like limit points and bifurcation (branch) points. This 

chapter is organized as follows; first the DAE formulation for the equilibrium reactive flash 

process is described. Then we demonstrate the solution procedure and the existence of Hopf 

bifurcations for the MTBE and TAME isothermal reactive flash problems. We then implement 

a similar procedure for the non-equilibrium isothermal and non-isothermal reactive flash 

problems and show the existence of limit points in the case of the TAME mixture and 

bifurcation points and isolas in the case of the MTBE system. 

 

5.2 DAE Formulation for the Isothermal Isobaric Equilibrium Reactive 
Flash Problem 

 
The differential algebraic formulation for the isothermal isobaric reactive flash problem can be 

derived as follows.  

Equation (4.1) can be re-written as 

 ( )
,ref

Dai
i V i L i i

f

dx z y x v R
d k

θ θ
τ

= − − +  (5.1) 

while the overall  mass balance equation is 

 ( )
,ref

Da1 0V L T
f

v R
k

θ θ− − + =  (5.2) 

The summation expression for the vapor phase (equation (4.5)) and the phase equilibrium 

relation (equation (4.3)), can be combined to yield  
1

1
n

i i
i

K x
=

=∑ which by differentiation with 

time will yield 
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1 1

0
n n

i i
i i

i i

dx dKK x
d dτ τ= =

+ =∑ ∑  (5.3) 

Since, 
sat

i
i i

PK
P

γ= , 
sat

i i idK P d
d P d

γ
τ τ

=  and applying the chain rule to  id
d
γ
τ

 

we take 

 
1

n
ji i

j j

dxd
d x d
γ γ
τ τ=

∂
=

∂∑  (5.4) 

and this would yield the equations  

 
sat

1

n
ji i i

j j

dxdK P
d P x d

γ
τ τ=

∂
=

∂∑  (5.5) 

and  

 sat

1 1 1

1 0
n n n

ji i
i i i

i i j j

dxdxK P x
d P x d

γ
τ τ= = =

∂
+ =

∂∑ ∑ ∑  (5.6) 

Expressing i

jx
γ∂

∂  
in logarithmic form, we take  lni i

i
j jx x

γ γγ∂ ∂
=

∂ ∂
 and substitution yields  

 sat

1 1 1

1 ln 0
n n n

ji i
i i i i

i i j j

dxdxK P x
d P x d

γγ
τ τ= = =

⎛ ⎞∂
+ =⎜ ⎟⎜ ⎟∂⎝ ⎠

∑ ∑ ∑  (5.7) 

Substitution of the component mass balance equation yields   

 
1 ,ref

sat

1 1 ,ref

Da

1 ln Da 0

n

i i V i L i i
i f

n n
i

i i i j V j L j j
i j j f

K z y x v R
k

P x z y x v R
P x k

θ θ

γγ θ θ

=

= =

⎛ ⎞
− − +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞⎛ ⎞⎛ ⎞∂

+ − − + =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠⎝ ⎠

∑

∑ ∑
 (5.8) 

 

Grouping similar terms for Lθ  and  Vθ  
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or  

 
1 1,ref ,ref

1 1 1 1

Da ln Da

ln ln 0

n n
i

i i i i j j
i jf j f

n n n n
i i

L i i i j V i i i j
i j i jj j

K z v R x z v R
k x k

K x x x K y x y
x x

γ

γ γθ θ

= =

= = = =

⎛ ⎞⎛ ⎞⎛ ⎞∂
+ + +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂⎜ ⎟ ⎜ ⎟− + − + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

∑ ∑

∑ ∑ ∑ ∑
 (5.10) 

Furthermore, since ( )
,ref

Da1L V T
f

v R
k

θ θ= − +   we would get 
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We can then solve for θV as  
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V n n
i
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∑ ∑ ∑ ∑

∑ ∑
 (5.12) 

which can be simplified into 
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Equation (5.2) can be rewritten as 

 ( )
,ref

Da1L V T
f

v R
k

θ θ= − +  (5.14) 

and therefore the DAE equation set for the reactive flash are equation (5.13), (5.14), (4.3) and 

(5.1). 

 

For a given temperature, pressure, feed composition, Damköhler number, and an initial guess 

for the liquid phase composition we can calculate the vapor phase composition, activity 

coefficient, evaluate Lθ and Vθ , and solve the differential equation (5.1) at steady state. The 

initial solution point is then fed into CL_MATCONT (section 3.2) to obtain the solution curve. 

 

5.3 Non Equilibrium Reactive Model 

 
The non-equilibrium model has separate balance equations for each phase, which are 

interconnected by material and energy balances around the interphase. The energy balance is 

one for each phase, each one containing a rate of energy transfer term across bulk interphase. 

A schematic representation of the non-equilibrium reactive stage is shown in Figure 5-1. The 

component molar balance equations for the vapor and liquid phase are: 
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 ,
, , 1 , 1 , net

V
i j V V

i j j i j j i j i j j

d
f V y V y N a

dt
ε

+ += − + −  (5.15) 

 ,
, , 1 , 1 , net , ,

1

L r
i j L L

i j j i j j i j i j j j i m m j
m

d
f L x L x N a v R

dt
ε

ε− −
=

= − + + + ∑  (5.16) 

Rm,j is the rate of reaction m on stage j, net ja  is the net interfacial area on stage j, εj the reaction 

holdup, and Ni,j represents the interface mass transfer rate for the component i on stage j that is 

related to the chemical potential gradients in either phase by the generalized Maxwell Stefan 

equations  

 ( )
, , , , , ,

1 , , net

L L Lc
i j i j i j k j k j i j

L L L
kj t j i k j

x x N x N
T c k a

μ
η =

∂ −
=

∂ ∑  (5.17) 

 ( )
, , , , , ,

1 , , net

v v vc
i j i j i j k j k j i j

V v v
kj t j i k j

y y N y N
T c k a

μ
η =

∂ −
=

∂ ∑  (5.18) 

 

Figure 5-1. The non-equilibrium stage for homogeneous liquid-phase reaction 
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where ,i kk  represent the corresponding mass transfer coefficient of the i-k pair in the 

appropriate phase, ct is the total concentration, ,i jμ  is the chemical potential for the component 

i on stage j, is the gas constant, and η is the dimensionless distance along diffusion path. 

The energy balance equations, 

 
( )

1 1 net

V

j V VF V V V V
j j j j j j j j j

d H
F H V H V H E a Q

dt

ε
+ += − + − +  (5.19) 

 
( )

1 1 net

L

j L LF L L L L
j j j j j j j j j

d H
F H L H L H E a Q

dt

ε
+ += − + + +  (5.20) 

The interface energy transfer fluxes both with conductive and convective terms  

 , ,
1

V c
jV V V V

j j i j i j
i

T
E N H

η =

∂
= − +

∂ ∑h  (5.21) 

 , ,
1

L c
jL L L L

j j i j i j
i

T
E N H

η =

∂
= − +

∂ ∑h  (5.22) 

where jh  is the heat transfer coefficient in the appropriate phase on stage j, and ,i jH  is the 

molar enthalpy for the component i on stage j.   

The phase equilibrium relation at the interface, 

 , , ,
I I
i j i j i jy K x=  (5.23) 

The summation of vapor and liquid mole fraction at the interface, 

 
1

1
c

I
i j

i

y
=

=∑  (5.24) 

 
1

1
c

I
i j

i

x
=

=∑  (5.25) 
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5.4 Non-Equilibrium Reactive Flash Problem 

 
The motivation of analyzing the non-equilibrium reactive TP problem is to investigate the 

effect of the mass transfer equations on the single stage reactive flash problem. Consequently 

we look at a reactive analog of the single stage non-equilibrium flash problem described in 

Sridhar et al.17. The equations in this problem include the material balance for the vapor and 

liquid phase, the phase equilibrium relationships and the transfer rate equations. Assuming the 

reaction occurs in the liquid phase the equations are very similar to that described in Sridhar et 

al.17 except for the reaction term in the liquid phase material balance equation. The equations 

for the single stage non-equilibrium reactive flash problem include the material balance 

equations for the vapor and liquid phases   

 net 0V V
i i if Vy N a− − =  (5.26) 

and  

 net ,
1

0 
r

L L L
i i i i m m

m

f Lx N a v Rε
=

− + + =∑  (5.27) 

The phase equilibrium relationships at the interface can be written as  

 I I
i i iy K x=  (5.28) 

The transfer rate equations for the vapor and liquid phases expressed in c-1 dimensional matrix 

form are  

 ( ) ( )( )V V V I V
t tN c y y N yκ⎡ ⎤= − +⎣ ⎦  (5.29) 

 ( ) ( )( )L L L I L
t tN c x x N xκ⎡ ⎤= − +⎣ ⎦  (5.30) 

The mass transfer coefficients κV and κL are calculated (Appendix A) using the AIChE 

method57 with the modification of Bennett et al.58 while the interfacial area was calculated 
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(Appendix B) using the procedures in Zuiderweg59. These procedures are also described in 

Taylor and Krishna60.  

The interface material balance equations would be  

 0L V
i iI I

N N− =  (5.31) 

Additionally we have the summation equations for the interface compositions  

 
1

1
c

I
i

i

x
=

=∑  (5.32) 

and  

 
1

1
c

I
i

i

y
=

=∑  (5.33) 

In order to obtain the singularities in the problem we must divide this set of equations into 

differential and algebraic equations. The ordinary differential equations that we will 

incorporate in CL_MATCONT (section 3.2) are the material balance equations for the vapor 

and liquid phases   

 net

V
V Vi

i i i
d f Vy N a
dt
ε

= − −  (5.34) 

and  

 net ,
1,ref

Da
L L r

L Li
i i i i m m

mf

d Ff Lx N a v R
dt k
ε

=

= − + + ∑  (5.35) 

These are the two equations that will be incorporated by the CL_MATCONT program to 

investigate the singularities. The other equations will be the algebraic equations which will be 

solved along with the ordinary differential equations. Defining L L
i ixε ε=  and V V

i iyε ε=  we 

can rewrite equations (5.34) and (5.35) as 
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 ( )net
1 V Vi

i i iV
dy f Vy N a
dt ε

= − −  (5.36) 

and  

 net ,
1,ref

1 = Da  
L r

L Li
i i i i m mL

mf

dx Ff Lx N a v R
dt kε =

⎛ ⎞
− + +⎜ ⎟⎜ ⎟

⎝ ⎠
∑  (5.37) 

 

For a given temperature and pressure and fixed feed composition, the algebraic system of 

equations are first solved. This is done by first fixing an initial guess for I
ix , I

iy , V
iN , L

iN , 

V and L  . The physical properties ρL, ρV, σ, μV, DV, DL are then estimated (Appendix A) and 

the tray design procedure (Appendix B) is executed. The multicomponent mass transfer 

coefficients are then obtained and the steady state version of the ordinary differential equation 

system is then solved. When the two systems of equations converge, the liquid and vapor 

holdups are calculated by the empirical correlations in the tray design procedure. This gives us 

the initial value of the Damköhler number which is used as a continuation parameter.  The 

design parameters that constitute the tray specifications are then fixed. With these design 

parameters maintained constant, the continuation procedure using CL_MATCONT is then 

executed using the Damköhler number as the continuation parameter.  

In the non-isothermal non-equilibrium case, we consider additionally the bulk energy balance 

equations in the liquid and vapor phase which are 

 net

L
L LF L L LdU F H LH E a Q

dt
= − + +  (5.38) 

 net

V
V VF V V VdU F H VH E a Q

dt
= − − +  (5.39) 

where L L LU Hε= , V V VU Hε= , and Q° is the heat transfer rate from the surroundings.   
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We also consider the interface energy balance equation 

 0L V

I I
E E− =  (5.40) 

The energy fluxes, which include the convective and conductive contributions, are  

 ( )
1

c
L L I L L L

i i
i

E T T N H
=

= − + ∑h  (5.41) 

 ( )
1

c
V V V I V V

i i
i

E T T N H
=

= − + ∑h  (5.42) 

The liquid and vapor heat transfer coefficients (Appendix A) are 1/ 2LeL L L L
t pCκ ρ=h , and 

2/3LeV V V V
t pCκ ρ=h  where Le is the Lewis number. The enthalpies are calculated using a 

procedure showed in Appendix A. Figure 5-2 and Figure 5-3 show the algorithm flowcharts for 

the isothermal and non-isothermal non-equilibrium problems. 

 

 

Figure 5-2. Algorithm flowchart for isothermal non-equilibrium problem. 
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5.5 Results and Discussion 

 
We found singularities for both the equilibrium and non-equilibrium models for both the 

MTBE and TAME synthesis. The MTBE system is given in Section 2.5, and the TAME 

system is illustrated in Section 4.4. The DAE system solved using CL_MATCONT produced 

the following results. The equilibrium reactive flash problem showed the existence of Hopf 

bifurcations as in Ruiz et al.52 whereas the nonequilibrium problem revealed the existence of 

limit points (turning points) in the case of the TAME mixture and isolas with an intersecting 

branch in the case of the MTBE problem. Table 5-1 to Table 5-4 show the feed conditions and 

specifications for the equilibrium and nonequilibrium problems. Figure 5-4 to Figure 5-9 show 

the solution curves with the singular points for all the problems. 

 

 

Figure 5-3. Algorithm flowchart for non-isothermal non-equilibrium problem 
 

Two important issues can be observed from these results. First, in regard to reactive separation 

processes in general for non-reactive problems, Sridhar et al.17 have shown that the imposition 
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of the mass-transfer equations on the equilibrium separation process problem does not cause 

any additional multiplicities. However, in the case of reactive separation process problems, the 

situation is slightly different. The imposition of the mass-transfer equations on the equilibrium 

reactive separation process problem cause the occurrence of limit points and branch points that 

are caused by the intersection of isolas with isolated branches. The additional nonlinearity that 

is produced by the reaction kinetics interacting with the mass transfer correlations does indeed 

cause the birth of the limit points and branch points. 

 

Table 5-1. Equilibrium  problem for  MTBE system. Feed conditions and specifications. 
 

Stage Specifications 
T(K) 364.25 

P(bar) 11.25 
zIsobutene 0.46241 
zMeOH 0.08385 
zMTBE 0.00128 

zn-Butane 0.45245 
 

 

Figure 5-4. Hopf point for isothermal equilibrium MTBE problem. 
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Table 5-2. Equilibrium  problem for  TAME system. Feed conditions and specifications. 
 

Stage Specifications 
T(K) 335 

P(bar) 2.46 
zMeOH 0.30556 
z2M1B 0.03889 
z2M2B 0.23889 
zTAME 0.00000 

zn-Pentane 0.41666 
 

The second important conclusion is the fact that the MTBE and TAME mixtures seem to react 

differently to the imposition of the mass-transfer equations. However, this result is not 

surprising to us. As far as multiple steady states are concerned, Chen et al.4 have demonstrated 

that, for certain specifications, both mixtures show significantly different behavior by 

demonstrating that, for TAME, multiplicities are lost for high Da values, whereas for MTBE, 

multiplicities are lost for low Da values. This is because of the difference in kinetics in both 

cases. This difference in the kinetics also seems to influence the nature of the singularities that 

are produced by the imposition of the mass-transfer correlations on the reactive separation 

process problem. The MTBE process and the TAME process models do react differently when 

the additional mass transfer correlations are incorporated. The incorporation of the mass-

transfer correlations causes the occurrence of limit (turning) points in the case of the TAME 

problem and branch (bifurcation) points and isolas in the case of the MTBE problem. This is 

due to the two different kinetic mechanism equations interacting with the mass transfer 

correlations. 
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Figure 5-5. Hopf point for isothermal equilibrium TAME problem 
 

 

Table 5-3. Feed conditions and specifications for nonequilibrium MTBE problem. 
 

Stage Specifications Liquid Phase Vapor Phase 
F(kmol/h) 216.00 252.00 

T(K) 380.01 401.01 
P(bar) 18.04 18.04 
zIsobutene 0.3500 0.6069 
zMeOH 0.3500 0.1783 
zMTBE 0.1980 0.0475 

zn-Butane 0.2770 0.1674 
 

 

Table 5-4. Feed conditions and specifications for nonequilibrium TAME problem. 
 

Stage Specifications Liquid Phase Vapor Phase 
F(kmol/h) 216.00 252.00 

T(K) 325.31 346.31 
P(bar) 2.00 2.00 
zMeOH 0.090 0.197793 
z2M1B 0.300 0.326756 
z2M2B 0.350 0.302763 
zTAME 0.100 0.014649 

zn-Pentane 0.160 0.158039 
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5.6 Conclusions 

 
This chapter investigates the nature of the singularities in equilibrium and nonequilibrium 

reactive separation units. It is shown that the differential algebraic equation (DAE) formulation 

of the equilibrium reactive separation process problem produces Hopf bifurcations such as 

those observed in the work of Ruiz et al.52 It is also shown that the imposition of the mass-

transfer equations on the reactive flash problem leads to the formation of limit points in the 

case of the TAME mixture and isolas with intersecting branches in the case of the MTBE 

problem. 

 

 

Figure 5-6. Continuation diagram for isothermal nonequilibrium MTBE problem. 
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Figure 5-7. Continuation diagram for non-isothermal nonequilibrium MTBE problem. 
 
 
 
 

 

Figure 5-8. Continuation diagram for isothermal nonequilibrium TAME problem. 
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Figure 5-9. Continuation diagram for non-isothermal nonequilibrium TAME problem. 
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Chapter 6 Design and Analysis of Non-Equilibrium 
Reactive Separation Processes 

 

In this chapter we derive new expressions to calculate the non-equilibrium residue composition 

maps for reactive separation processes incorporating mass transfer effects and design aspects. 

Next, we discuss the strategy to solve the differential algebraic equation (DAE) system to find 

the non-equilibrium reactive composition curve. We illustrate using the MTBE synthesis the 

case when stationary reactive points calculated by equilibrium and non-equilibrium approaches 

do not match for reactive saddle-point azeotrope. For TAME synthesis, we studied the 

nonequilibrium and equilibrium reactive composition curve maps in the limit of reaction 

equilibrium. 

 

6.1 Introduction 

 
The distillation residue curve maps (RCM) have been studied by several workers5, 6, 31, 32, 46, 61-

67 in the design and synthesis of reactive and non-reactive separation processes. The RCM are 

used to establish feasible splits by distillation of azeotropic mixtures due to the presence of 

nonreactive azeotropes after the reaction, reactive azeotropes, and distillation boundaries for 

continuous distillation at infinite reflux. In a simple distillation process the liquid composition 

change dynamically because the vapors are richer in the more light components than the liquid 

from which they came. The path of liquid compositions stating from some initial condition is 

called a residue curve, and the collection of all such curves for a given mixture is called a 

residue curve map46. A RCM contain the same information like a phase diagram for a mixture. 
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Barbosa and Doherty5 and Ung and Doherty6 have derived autonomous differential equations 

describing the dynamics of simple homogeneous reactive distillation using a set of transformed 

composition variables. However all these works involved the use of the equilibrium model 

assuming that the liquid and vapor phase composition are in equilibrium and that there are no 

differences between the interface and bulk composition profiles. The real reactive separation 

process operates distant from the physical equilibrium resulting in mass transfer fluxes 

between phases (non equilibrium phase) as a function of the mass transfer gradient.  

Castillo and Towler7 established a general relationship between the vapor and liquid 

compositions that leave a tray at total reflux condition to take into account mass transfer effect 

in the non reactive RCM. They assume that the behavior of a stage column could be 

approximated to a packed column because is has been demonstrated that residue curves 

represent operating liquid composition profiles of continuous packed columns at total reflux 

condition65. This approach is used by Taylor et al.8 for the non reactive separation case to 

calculate equilibrium RCM and composition trajectory maps (CTM) considering mass transfer 

effects. Sridhar et al.9, 10, addressed departures from equilibrium to draw composition 

trajectories and locate azeotropes. They conclude that the stationary points of these equations 

are the same, but non-equilibrium modeling is necessary to compute distillation boundaries. 

 

This chapter is organized as follows. First, a system of equations is established and discussed 

to incorporate mass transfer effects and design aspects to calculate composition curve maps for 

reactive separation processes. Next, a strategy is established to solve the differential algebraic 

equation (DAE) system for the non-equilibrium reactive composition curve maps, and the case 

when stationary reactive points calculated by equilibrium and non-equilibrium approaches do 
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not match is shown for the methyl tert-butyl ether (MTBE) production. For TAME synthesis, 

the nonequilibrium and equilibrium reactive composition curve maps in the limit of reaction 

equilibrium are reported. 

 

6.2 Derivation of the Equations 

 
Doing a component material balance (plug flow model) for the vapor phase moving through 

the tray60 (Figure 6-1): 

 i
i b

dv N aA
dh

= −  (6.1) 

Where vi is the molar flow rate of component i, Ni is the mass transfer flux of component i, a 

the interfacial area per unit volume of froth and, Ab is active bubbling area 

Summing (6.1) and considering that iv V=∑ , 

 t b
dV N aA
dh

= −  (6.2) 

and V
i i i tN J y N= + , i iv y V= , substituting these two definitions in (6.1): 

 ( )Vi
i i i t b

dy dVV y J y N aA
dh dh

+ = − +  (6.3) 

Substituting (6.2) in (6.3): 

 Vi
i b

dyV J aA
dh

= −  (6.4) 

Combining (6.4) in c -1 dimensional matrix form, 

 ( ) ( )V
b

d y
V J aA

dh
= −  (6.5) 

Now, defining (JV): 
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 ( ) [ ]( )V V I
t OVJ c K y y= −  (6.6) 

where V
tc is the total molar concentration for vapor phase, yI the interphase vapor molar 

composition and, [KOV] the overall mass transfer coefficient matrix defined as 

 [ ] [ ]1 11
V

V Lt
OV L

t

cK M
c

κ κ
− −− ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦  (6.7) 

L
tc is the total molar concentration for liquid phase, [M] is the matrix of equilibrium constant 

[ ] [ ][ ]M K= Γ , where [K] is a diagonal matrix of the vapor liquid equilibrium ratios 

/S
i i iK P Pγ= , [Γ] is the thermodynamic factor matrix (Appendix A) and, [κV] and [κL] are the 

mass transfer coefficients matrices for vapor an liquid phase respectively. 

 

 
Figure 6-1. Diagram of the froth on a distillation tray. 

 

Substituting (6.6) in (6.5) 

 ( ) [ ]( )1 V I
t OV b

d y
c K y y aA

dh V
= −  (6.8) 

Integrating (6.8) over the dispersion height: 
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 ( )
( )( )

( ) [ ]
0

1L f

E

y h V
t OV bIy

d y
c K aA dh

Vy y
=

−∫ ∫  (6.9) 

 
( )
( ) [ ]exp

I
L

OVI
E

y y

y y

−
= −

−
 (6.10) 

 ( ) [ ]( )I I
L Ey y Q y y− = −  (6.11) 

Where [ ] [ ]exp OVQ = −  and, [ ]OV  is the overall number of transfer units for the vapor 

phase 

 [ ] [ ]
0

1fh V
OV t OV bc K aA dh

V
= ∫  (6.12) 

Rearrange (6.11) 

 ( ) ( ) [ ]( ) [ ]( )I I
L Ey y Q y Q y− = −  (6.13) 

Adding (yI) and subtracting (yE) in both sides of (6.13)  

 ( ) ( ) [ ]( ) ( ) [ ]( )I I
L E E Ey y y Q y y Q y− = − − +  (6.14) 

 ( ) [ ] [ ] ( )I
L E Ey y I Q y y− = − −⎡ ⎤⎣ ⎦  (6.15) 

Defining [E] = [I]-[Q] then, 

 ( ) [ ]( )I
L E Ey y E y y− = −  (6.16) 

Differentiating (6.16) with respect to z, where '/z z D=  is the dimensionless coordinate 

respect to total diameter of the stage. The coordinate system is showed in Figure 6-2. 

Assuming the matrix [E] is constant, 

 [ ] ( ) ( ) [ ] [ ] ( )I
L E

d y d y d y
E E I

dz dz dz
= + −⎡ ⎤⎣ ⎦  (6.17) 

Assuming that ( ) 0Ed y
dz

= , this is true for Lewis case 168 , then (6.17) is simplified to 
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 [ ] ( ) ( )I
L

d y d y
E

dz dz
=  (6.18) 

The vapor composition at the interface is assumed in equilibrium and is related with the liquid 

composition trough a linear expression 

 ( ) [ ]( ) ( )*y M x b= +  (6.19) 

Differentiating (6.19) with respect to z where [M] and (b) are independent of z 

 
( ) [ ] ( )*d y d x

M
dz dz

=  (6.20) 

 

 
Figure 6-2. Coordinate system 

 

Performing a material balance at steady state at any point in z’ direction using Figure 9.4 in 

Lockett68, and considering chemical reaction in liquid phase,    

 ( ) ( ) ( ) ( ) ( )'
' ' '' ' ' = ' ' 'E E z z L L L zV y dz L x h dz V y dz L xν+Δ+ − +R  (6.21) 

Where ' LL
W

= , '
b

VV
A

= , ( )ν is the vector of  stoichiometric coefficients, and R is the rate of 

reaction. Substituting L’ and V’ in (6.21)   
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 ( ) ( ) ( ) ( )
'

L E
LL E

b b

d Lx V VW y W y Wh
dz A A

ν= − + R  (6.22) 

Assuming that L EV V V= =  

 ( ) ( ) ( ) ( )
' ' L E L

b

d x dL WL x V y y Wh
dz dz A

ν+ = − + R  (6.23) 

Doing a total mass balance 

 
' L T

dL Wh
dz

ν= R  (6.24) 

Tν  is the net stoichiometric coefficient, T iν ν= ∑  

Substituting (6.24) and changing z’ to z in (6.23) 

 ( ) ( ) ( )L
L E T

b

d x WD V WDhy y x
dz A L L

ν ν= − + −
R  (6.25) 

Substituting (6.24) in (6.20) 

 
( ) [ ] ( ) ( )

*
L

L E T
b

d y WD V WDhM y y x
dz A L L

ν ν
⎛ ⎞

= − + −⎜ ⎟
⎝ ⎠

R  (6.26) 

Replacing (6.26) in (6.18) 

 ( ) [ ][ ]( ) [ ][ ]( )L L
L E T

b

d y WD WDhE y y E x
dz A V

ν ν= Λ − + Λ −
R  (6.27) 

Where [ ] [ ]V M
L

Λ =  

At total reflux condition Ey x= , and x is independent of yL and z.  

Defining ( ) ( )L L EY y y= − , 
b

WDA
A

= , LWDhB
V

=
R  and substituting in (6.27) 

 ( ) [ ][ ]( ) [ ][ ]( )L
L T

d Y
A E Y B E x

dz
ν ν= Λ + Λ −  (6.28) 
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Solving (6.28) as a first order linear equation with ( ) ( )0L LY Y=  at 0z =   as initial conditions, 

where ( ) ( )0 0L L EY y y= −  and 0Ly  is the composition of the vapor above the liquid at the tray 

exit ( 0z = )   

 ( ) [ ][ ] [ ] ( ) [ ][ ] ( )0exp expL T L
BY A E z I x A E z Y
A

ν ν⎡ ⎤= Λ − − + Λ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦  (6.29) 

Defining ( )LY  as the average vapor composition above the liquid, ( ) ( )L L EY y y= −  

 ( ) ( )
1

0
L LY Y dz= ∫  (6.30) 

Combining (6.29) with (6.30) and solving 

( ) [ ][ ] [ ] [ ] [ ] [ ] ( ) [ ][ ] [ ] [ ] [ ] ( )1 1 1 1
0exp ' ' exp ' 'L T L

BY E I E I x E I E Y
A

ν ν− − − −⎡ ⎤⎡ ⎤ ⎡ ⎤= Λ − Λ − − + Λ − Λ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦
 (6.31) 

Where [ ] [ ]' AΛ = Λ . Defining 'MVE⎡ ⎤⎣ ⎦  as a square matrix ((c-1)×(c-1))  of multicomponent 

Murphree tray efficiencies relative to [ ]'Λ  

 [ ][ ] [ ] [ ] 1' exp ' 'MVE E I −⎡ ⎤⎡ ⎤ = Λ − Λ⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦  (6.32) 

If A=1 that is for a rectangular tray of width W and length Z, equation (6.32) is the same 

expression of multicomponent Murphree tray efficiencies defined by Taylor and Krishna60.   

Substituting (6.32) in (6.31)  

 ( ) [ ] [ ] ( ) [ ] ( )1 1
0' 'MV MV

L T L
BY E E I x E E Y
A

ν ν− −⎡ ⎤⎡ ⎤ ⎡ ⎤= − − +⎣ ⎦ ⎣ ⎦⎣ ⎦  (6.33) 

Rewriting (6.33) in terms of Ly , yL0 and yE 

 ( ) [ ] [ ] ( ) [ ] ( )1 1
0' 'MV MV

L E T L E
By y E E I x E E y y
A

ν ν− −⎡ ⎤⎡ ⎤ ⎡ ⎤− = − − + −⎣ ⎦ ⎣ ⎦⎣ ⎦  (6.34) 

Using (6.16) with *
0

Iy y=  in (6.34) 
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 ( ) [ ] [ ] ( ) ( )1 *
0' 'MV MV

L E T E
By y E E I x E y y
A

ν ν−⎡ ⎤⎡ ⎤ ⎡ ⎤− = − − + −⎣ ⎦ ⎣ ⎦⎣ ⎦  (6.35) 

Again, at total reflux condition ( ) ( )Ex y=  and ( ) [ ]( )*y K x= , equation (6.35) can be 

expressed as, 

 ( ) [ ] [ ] ( ) [ ] [ ] ( )1' ' 'MV MV MV
TL

By E E I x I E K E x
A

ν ν−⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − − + + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦  (6.36) 

The second term in the right of (6.36) is the c -1 dimensional matrix form of equation 14 in 

Castillo and Towler7. 

Now, using the transformed composition variables X and Y , and the representation of residue 

curve maps in the transformed composition variables6, 

 ( )[ ] ( )
( )[ ] ( )

1
Ref Ref

1
Ref Ref

1,...,
1

i i
i

T

x x
X i c R

x
ν ν

ν ν

−

−

−
= = −

−
 (6.37) 

 ( )[ ] ( )
( )[ ] ( )

1
Ref Ref

1
Ref Ref

1,...,
1

i i
i

T

y y
Y i c R

y
ν ν

ν ν

−

−

−
= = −

−
 (6.38) 

 1,..., 1i
i i

dX X Y i c R
dτ

= − = − −  (6.39) 

Where [ ] 1
Refν − is the inverse of the square matrix of stoichiometric coefficients for the R 

reference components in the R reactions, 

 [ ]
( ) ( )1 1 1

Ref

1

c R c R R

ir

c cR

ν ν

ν ν
ν ν

− + − +⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

 

( )Refx  and ( )Refy  are column vectors of dimension R, 

( )
1

Ref

c R

c

x
x

x

− +⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

, ( )
1

Ref

c R

c

y
y

y

− +⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠
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( )iν  and ( )Tν  are row vectors of dimension R, 

 ( ) ( )1 2, , ,i i i iRν ν ν ν= , ( ) ( )1 2, , ,T T T TRν ν ν ν=  

  The transformed molar fractions satisfied the summation equations, 

 
1

1
c R

i
i

X
−

=

=∑  (6.40) 

 
1

1
c R

i
i

Y
−

=

=∑  (6.41) 

The temperature of the system is given by the thermodynamic reaction equilibrium equation, 

 ( )
1

i
c

v
R i i

i

K xγ
=

= ∏  (6.42) 

Where the reaction equilibrium constant KR is given by 

 ( )exp R
R

G T
K

RT
⎡ ⎤Δ

= −⎢ ⎥
⎣ ⎦

 (6.43) 

 

6.3 Solution Strategy 

 
To obtain the non-equilibrium composition maps, it is necessary to solve a system of 

differential and algebraic equations (DAE).  The algorithm B in Ung and Doherty32 is used, but 

is modified in the way that the relation between y and x described by equation (6.36) is used. 

This increases the number of algebraic equations because now y, V, and L appears as implicit 

variables. The thermodynamic factor matrix [Γ] is calculated with the Wilson model, the vapor 

and liquid mass transfer coefficients, and the interfacial area Anet are obtained as described in 

Ruiz et al.69. An important issue is the couplings of design aspects into the NEQ composition 

curve maps. These design aspects appear summarized in Table 6-1. They were calculated for 
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the MTBE and TAME non-equilibrium reactive separation processes69. All variables and 

properties are changing dynamically. Finally, the equilibrium residue curve maps are obtained 

with the original algorithm B32.  

 
Table 6-1. Tray specifications 

 
System MTBE TAME 

Tray type Sieve Sieve 

Weir height (hw) 0.092 m 0.092 m 

Downcomer area (Ad) 0.047 m2 0.041 m2 

Bubbling area (Ab) 0.50 m2 0.93 m2 

Total tray area 0.60 m2 1.00 m2 

Weir length (W) 0.59 m 0.62 m 

Downcomer width (Wd) 0.11 m 0.09 m 

Liquid flow path length (Z) 0.65 m 0.95 m 

Hole pitch (p) 0.015 m 0.015 m 

Hole diameter (dh) 0.005 m 0.005 m 

 

6.4 Case of Study 1: MTBE 

 
The MTBE synthesis (section 2.5) is used as a case of study to draw the equilibrium and non 

equilibrium curve maps using the equilibrium thermodynamic data shown in Table 3.3 in 

Barbosa31. The reaction is given by the equation (6.44)   

 
-butene+MeOH MTBE

  (c1)        (c2)               (c3)

i ⎯⎯→←⎯⎯  (6.44) 

with the presence of n-butane (c4) as inert. The reference component ( )Refz  is the MTBE and 

the vector of stoichiometric coefficients are [ ]1; 1; 1;0ν = − − +  and 1Tν = − .  
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Using equation (6.37) the transformed composition variables are obtained: 

 1 3
1

31
x xX

x
+

=
+

 (6.45) 

 2 3
2

31
x xX

x
+

=
+

 (6.46) 

 4 3
4

41
x xX

x
+

=
+

 (6.47) 

The equilibrium and non-equilibrium residue composition maps for MTBE synthesis at P= 11 

atm are shown in Figure 6-3. The composition map is a triangle where each corner represent a 

pure component of the system and each side of the triangle represent a binary mixture, two non 

reactive (n-butane – methanol and n-butane – i-butene) and one reactive (methanol – i-butene).  

 

Figure 6-3. Non-equilibrium reactive composition curves (solid red lines) and equilibrium reactive 
composition curves (dashed blue lines) in transformed composition variables for MTBE synthesis. 
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The two types of models localize one non-reactive azeotrope at T=354.27 K in the n-butane – 

methanol axis that remain after the reaction. The convergences of these two models do not take 

place for another stationary point: the pseudo-reactive azeotrope as shown in phase diagram 

(see Figure 6-4). This azeotrope appears in the middle of the reactive vertex. For all practical 

purposes it is not possible to separate beyond this point and the pseudo-reactive azeotrope has 

the same behavior as a reactive azeotrope32. 

 

Figure 6-4. Phase diagram in transformed composition variables with temperature for MTBE synthesis at 
P = 11 atm (liquid phase: solid red lines, vapor phase: dashed blue lines). 
 

When the derivative part of the DAE system is set equal to zero (steady state condition) the 

system is solved as a nonlinear algebraic equation system. In this study we found a reactive 

saddle point azeotrope in the vicinity of the n-butane vertex using the EQ and NEQ models but 

as it occurs in the other reactive stationary point the two models do not converge on the same 

composition and temperature values. Table 6-2 shows the azeotrope point coordinates for both 

models. The presence of the reactive saddle-point azeotrope explains why the first (in 
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ascendant order) residue curve originated in the non-reactive azeotrope point (Figure 6-3) 

proceeds as it does in the surrounding area of the n-butane vertex. This reactive azeotrope point 

has been reported previously by Ung and Doherty6 and Taylor et al.66 using the EQ model 

approach at different pressures. The effect of including the non-equilibrium condition is 

evident at each curve, the NEQ curves that originate in the azeotrope point are completely 

displaced with respect to the EQ curves. Also, the composition lines starting in the n-butane – 

i-butene vertex have different slopes increasing when the curves are in the vicinity of the 

reactive vertex.   

Table 6-2. Reactive azeotrope point coordinates 
 

 NEQ model EQ model 

X1 0.035091 0.008008 

X2 0.010644 0.002103 

X3 0.954265 0.989889 

T(K) 357.65 357.55 

 

6.5 Case of Study 2: TAME 

 
Another process to draw the equilibrium and nonequilibrium curve maps in the limit of 

reaction equilibrium is the TAME synthesis. The reactions and kinetic expression appears in 

section 4.4. In addition the thermodynamic equilibrium constants are taken from Oost et al.48      

For this study we have to consider two simultaneous reactions, The TAME synthesis from the 

isoamylenes (equation (4.17)) and the isomerisation (equation (4.16)), 

 1 2 3 42A +A A 2A⎯⎯→+ ←⎯⎯  (6.48)   

 2 3A A  (6.49) 
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where methanol is component A1, 2-methyl-1-butene (2MB1) is component A2, 2-methyl-2-

butene (2MB2) is component A3, TAME is component A4, and with the presence of n-pentane 

(A5) as inert. The degrees of freedom for this reactive system is two (c-R-1=5-2-1=2), and the 

reactive composition curve map can be represented in a two dimensional transformed 

composition coordinates. Two reference components must be chosen, A2 and A3 are suitable 

choices since [ ]Refν is nonsingular, then 

( ) 2
Ref

3

x
x

x
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

[ ]Ref

1 1
1 1

ν
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 

and  

( ) ( )2,0Tν = −  

The transformed composition variables are 

 1 3 2
1

3 21
x x xX

x x
− −

=
− −

 (6.50) 

 4 2 3
4

3 21
x x xX

x x
+ +

=
− −

 (6.51) 

 5
5

3 21
xX

x x
=

− −
 (6.52) 

 

Only two transformed variables are independent due to equation (6.40) and X1 and X5 are 

chosen as independent variables. For this set of coordinates the composition space is contained 

by a trapezoid. The equilibrium and non-equilibrium residue composition maps for TAME 

synthesis at P= 2.5 atm are shown in Figure 6-5. The two types or residue composition maps 
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localize one non-reactive azeotrope at T=330.089 K in the methanol – n-pentane side that 

remains after the reaction. We deduce from this residue composition map that there are no 

reactive azeotropes, but steady state solutions of residue composition maps are necessary to be 

sure that there are not distillation boundaries in the mixture. 

 

Figure 6-5. Non-equilibrium reactive composition curves (solid red lines) and equilibrium reactive 
composition curves (dashed blue lines) in transformed composition variables for TAME synthesis  
 

6.6 Conclusions 

 
We have derived a new expression to relate liquid and vapor bulk composition for reactive 

separation processes at total reflux condition in terms of the mass transfer coefficients and 

design aspects to draw non-equilibrium composition maps. In this work it was also 

demonstrated that for reactive azeotrope points in the MTBE synthesis the equilibrium and 

non-equilibrium composition maps are not the same, contrary to non-reactive separation 

systems where all stationary points are similar within the two models. For TAME synthesis, 
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the nonequilibrium and equilibrium reactive composition curve maps in the limit of reaction 

equilibrium were reported and the two models localized one non-reactive azeotrope. But steady 

state solutions of residue composition maps are necessary to be sure that there are none 

distillation boundaries in the mixture. 
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Conclusions 
 

The Damköhler number is an important parameter to investigate the MSS phenomena in 

modeling reactive separation processes because it facilitates the simultaneously study of the 

reaction and physical separation processes, that at a critical Da values it produces 

multiplicities.  

 

The Rachford-Rice procedure used to solve non-reactive flash isothermal isobaric flash 

processes can be extended to reactive systems. While isothermal CSTR problems and 

isothermal non-reactive flash problems do not exhibit Hopf bifurcations, isothermal reactive 

flash process problems involving MTBE and TAME mixtures do exhibit Hopf bifurcations.  

The imposition of the mass-transfer equations on the reactive flash problem leads to the 

formation of limit points in the case of the TAME mixture and isolas with intersecting 

branches in the case of the MTBE problem. 

 

It was also demonstrated that for reactive azeotrope points in the MTBE synthesis the 

equilibrium and non-equilibrium composition maps are not the same, contrary to non-reactive 

separation systems where all stationary points are similar within the two models. 

For TAME synthesis, the nonequilibrium and equilibrium reactive composition curve maps in 

the limit of reaction equilibrium were reported and the two models localized one non-reactive 

azeotrope. To confirm that there are not distillation boundaries in the mixture, steady state 

solutions of residue composition maps are required. 
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Future work on applying the continuation analysis to find singular points in multistage EQ and 

NEQ reactive distillation must be considered including packed columns. In the design and 

synthesis area, kinetic effects on nonequilibrium composition curve maps must be 

implemented.  
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Appendix A. Physical Properties 
 

The diffusion coefficients in the gas mixture are estimated using the Fuller–Schettler-Giddings 

method60. The equation of the diffusivity is  

 
{ }

1 2

1.75 1 2
2

3 3
1 2

M M
M M

D CT
P V V

+

=
+

 (A.1) 

where C = 1.013e-02, T is in K, P in Pa and M in kg/mol. The units of D is in m2/s V is the 

molecular diffusion volume calculated by using the procedures in Taylor and Krishna 60.  

The binary Fick diffusivity for each pair of components in the liquid mixture is from the 

Maxwell-Stefan diffusion coefficients                                                         

 ij ij ijD D= Γ  (A.2) 

 ( )( ) ( )( )1 /2 1 /2j i i jx x x x

ij ij jiD D D
+ − + −

=  (A.3) 

Here 0 ijD is the diffusion coefficient at infinite dilution, this is calculated using any correlation 

from table 4.2 in Taylor and Krishna60. The thermodynamic factor Γ, 

 
,

1,ln
0,

i
ij ij i ij

j T P

i j
x

i jx
γδ δ

=⎧∂
Γ = + = ⎨ ≠∂ ⎩

 (A.4) 

The density of liquid mixture is estimated using the Hankinson-Brobst-Thomson (HBT) 

technique70. The density of the gas mixture and the residual properties (ΔHRes, ΔCpRes) are 

estimated using the Lee and Kesler correlation71. The surface tension (σ) is estimated using the 

Macleod-Sugden correlation70. The viscosity (μ) of gas mixture is calculated by Lucas 
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Method70. The vapor pressure ( )sat
iP , liquid and vapor enthalpy (ΔH), and the heat capacity at 

constant pressure (CP) are estimated using the correlation parameters from the Chemical 

Properties Handbook72. The liquid thermal conductivity (λ) of liquid mixture is calculated 

using the Li and Latini Methods70. 

 

The mass transfer coefficients are obtained using the AIChE method57 with the modification of 

Bennett et al.58, as follows, 

 
1V VRκ

−
⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦  (A.5) 

 [ ]1L LRκ
−

⎡ ⎤ ⎡ ⎤= Γ⎣ ⎦ ⎣ ⎦  (A.6) 

 
1

1 1

n
V i k
ii V V

kin ik
k iV

V
ij i V V

ij in

y yR

R

R y

κ κ

κ κ

=
≠

⎧
= +⎪

⎪
⎡ ⎤ = ⎨⎣ ⎦

⎛ ⎞⎪
= − −⎜ ⎟⎪ ⎜ ⎟

⎝ ⎠⎩

∑
 (A.7) 

 
1

1 1

n
L i k
ii L L

kin ik
k iL

L
ij i L L

ij in

x xR

R

R x

κ κ

κ κ

=
≠

⎧
= +⎪

⎪
⎡ ⎤ = ⎨⎣ ⎦

⎛ ⎞⎪
= − −⎜ ⎟⎪ ⎜ ⎟

⎝ ⎠⎩

∑
 (A.8) 

 
V
ij sV

ij
f

u
ah

κ
ℵ

=  (A.9) 

 
( )/L

ij LL
ij

f

Q W
ah Z

κ
ℵ

=  (A.10) 

 V V
t

VQ
c

=  (A.11) 
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 L L
t

LQ
c

=  (A.12) 

 0.50.776 4.567 0.238 104 ScV L
ij w s ij

Qh F v
W

−⎛ ⎞⎛ ⎞ℵ = + − + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (A.13) 

 Sc
V
i

ij V V
t ij

v
D

μ
ρ

=  (A.14) 

 ( ) ( )0.5
19700 0.4 0.17L L

ij ij s LD F tℵ = +  (A.15) 

 L
L

L

h ZWt
Q

=  (A.16) 

The liquid heat transfer coefficient is obtained using the penetration model60 and the vapor heat 

transfer coefficient is calculated using the Chilton-Colburn analogy60, as follows 

 2L
t p

t p e

C
C t

λρ
ρ π

=h  (A.17) 

Where te is the exposure time. It is better to express the heat transfer coefficient as function of 

dimensional numbers. Lewis number
Pr
ScLe =  were Sc is the Schmidt number 

Dt

Sc
ρ

μ
=  and 

Pr is the Prandtl number
λ

μpC
=Pr . Replacing Sc and Pr numbers in Le, 

pt DCρ
λ

=Le , and 

substituting the new expression for Le in (A.17) we get,: 

 2 LeL
t p

e

DC
t

ρ
π

=h  (A.18) 

The average mass transfer coefficient can be defined as
et

D
π

κ 2= , substituting κ  in (A.18): 

 1/2LeL L
t pCκρ=h  (A.19) 

The vapor heat transfer coefficient is obtained using the Chilton-Colburn analogy, 
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 D Hj j=  (A.20) 

 2/3St ScDj =  (A.21) 

 2/3St  PrH Hj =  (A.22) 

St is the Stanton number 
u
κ

=St , where u  is mean velocity for flow. StH is the Stanton number 

for heat transfer St
V

H
t pC uρ

=
h  

Substituting (A.21) and (A.22) in (A.20): 

 2/3 2/3St Sc St  PrH=  (A.23) 

 
2/3ScSt St  

PrH
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (A.24) 

 
2/3ScSt  

Pr

V

t pC uρ
⎛ ⎞= ⎜ ⎟
⎝ ⎠

h  (A.25) 

 
2/3ScSt  

Pr
V

t pu Cρ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

h  (A.26) 

 2/3LeV V
t pCκρ=h  (A.27) 

 

The calculation of the enthalpy of a component is calculated taking 295 K and 1 atm as 

elemental reference state. A schematic representation is showed in the Figure A-1. 

Now, the calculation of the enthalpy of the liquid and vapor mixture are: 
  

 mix mix
1

c
L L L

i i
i

H x H H
=

= + Δ∑  (A.28) 

 mix mix
1

c
V V V

i i
i

H y H H
=

= + Δ∑  (A.29) 
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where iH  is the enthalpy of component in the respective phase, and mixHΔ  is the mixing 
enthalpy, in this work mixHΔ  is not considered.   
 

 

Figure A-1. Calculation of the enthalpy of a component. 
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Appendix B. Tray Design Procedure 
 

The tray design procedure is briefly described in this appendix. We follow the procedure 

described in Locket68 and Kooijman73. Fixing the tray spacing sT  , the number of passes 

passesN ,  the weir height wh , the fractional perforated tray area φ , the downcomer clearance hc 

and the hole diameter hd , the tray thickness tt  will be given by 0.43t ht d= . 

 

The volumetric liquid flow LQ is known and this enables us to calculate the downcomer area 

dA  and du  the liquid velocity in downcomer on vapor free basis using the relationship 

 ( ) ( )0.50.50.0081 L VL
d s t t

d

Qu T
A

ρ ρ= = −  (B.1) 

FP the flow parameter is then calculated as  

 ( ) ( )0.5
/ /V L

L V t tFP M M ρ ρ=  (B.2) 

where if FP is found to be  less than 0.1it  was rounded to 0.1. The capacity factor based on the 

tray spacing (CF’’) is given by  

 ( ) ( )( )1
10'' 0.0744 0.0117 log 0.0304 0.0153s sCF T FP T−= + + +  (B.3) 

while the capacity factor CF’ based on the net area for the liquid disengagement above the tray 

(An) is defined by the expression 

 
0.2 0.44

' ''
0.02 0.1

CF CF σ φ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (B.4) 

The expression for CF’ in Locket68 is used to obtain '
su  
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0.5V

t
L V
t t

' 'sCF u ρ
ρ ρ

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

 (B.5) 

and the expression '
su = V

n

Q
A

 is used to calculate nA  

 b n dA A A= −  (B.6) 

the total area of the tray is given by total 2b dA A A= +  

The total diameter (Dtotal) is estimated by  

 
0.5

total
total

4AD
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (B.7) 

the liquid flow path length (Z) and the weir length (W) are determined as follows. 

defining 1
total

( ) *100Wx
D

=  , 1
total

*100dAy
A

=  and 2
total

*100dwy
D

=  we use the expressions from 

Figure 8.69 in Ludwig74, 

 4 3 2
1 1 1 1 10.0004 0.026 0.6345 8.4998 29.408x y y y y= − + − + +  (B.8) 

 5 3 2
2 1 1 19*10 0.0113 0.7328 12.991y x x x−= − + −  (B.9) 

to obtain W, wd and Z by equations:  

 1 total* D /100W x=  (B.10) 

 2 total* D /100dw y=  (B.11) 

 totalD 2* dZ w= −  (B.12) 

The weir load ( )/LQ W  must be less or equal that maximum weir load ( )max
/LQ W , and this 

maximum value is estimated using the correlation in locket68 

 ( )max
/ 0.087 0.0204L sQ W T= −  (B.13) 

If the weir load is more that the maximum value, the number of passes is incremented.  



 

 

80

With the superficial vapor velocity 
b

V
S A

Q
u = , the clear liquid height hL is computed using 

expressions from  Bennett et al.58: 

 ( )( ){ }0.67
/L e w L eh h C Q Wα α= +  (B.14) 

where  

 ( ){ }( )0.910.5
exp 12.55 /V L V

e s t t tuα ρ ρ ρ
⎧ ⎫

= − −⎨ ⎬
⎩ ⎭

 (B.15) 

and  

 ( )0.5 0.438exp 137.8 wC h= + −  (B.16) 

To avoid weeping it is crucial to establish a suitable free area ratio such that the Froude number 

Frh based on uh which should be less or equal to 2/3. It is necessary to keep  φ in the range 

( 0.05 0.2φ< < ). The Frh is obtained with the expression 

 ( )

0.5

Fr
V
t

h h L V
L t t

u
gh

ρ
ρ ρ

⎛ ⎞
⎜ ⎟=
⎜ ⎟−⎝ ⎠

 (B.17) 

where  

 V
h

h

Qu
A

=  (B.18) 

We start with  

 h

b

A
A

φ =  (B.19) 

and obtain hA . This is used to find hu which is used to obtain the Froude number Frh. If the 

Froude number Frh is not suitable a new value of φ  is chosen and the procedure is repeated.  
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The parameter ahf (a is the interfacial area per unit volume of froth and hf is the froth height) is 

calculated using the Zuiderweg method59, which takes into account the nature of the flow 

regime (spray or mixed froth emulsion). For spray regime: 

 
0.372 *

0.3
40 V

s t L
f

u h FPah ρ
φ σ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (B.20) 

for mixed froth emulsion flow regime: 

 
0.532 *

0.3
43 V

s t L
f

u h FPah ρ
φ σ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (B.21) 

the transition from spray to froth emulsion flow occurs if *3.0 LFP bh> , where b is the weir 

length per unit bubbling area 

 
b

Wb
A

=  (B.22) 

σ is the surface tension and *
Lh  is the clear liquid height, give by the Zuiderweg correlation59  

 
0.25

* 0.50.6L w
pFPh h

b
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (B.23) 

p is the hole pitch, for 60° triangular pitch perforations, and is calculated as 

 
0.52

2 3
hdp π

ϕ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (B.24) 

The liquid holdup fraction (α) is also calculated based on the regime type, as shown by 

Colwell75.  

 For the froth regime we have  

 1
1

α
η

=
+

 (B.25) 

 ( )0.4 0.2512.6 Fr'η φ −=  (B.26) 
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2

Fr'
V

s t
L V

L t t

u
gh

ρ
ρ ρ

=
−

 (B.27) 

while the correlation given by Stichlmair68 is used for the  spray regime. This correlation is  

 
,max

1 s

s

F
F

α
⎛ ⎞

= − ⎜ ⎟⎜ ⎟
⎝ ⎠

 (B.28) 

 ( )0.5V
s s tF u ρ=  (B.29) 

 ( )( )0.252
,max 2.5 L V

s t tF gφ σ ρ ρ= −  (B.30) 

where g is the acceleration due to gravity and Fs is the superficial flow factor. 

The froth height hf  is given by  

 L
f

hh
α

=  (B.31) 

the liquid and vapor holdups and the net interfacial area are calculated using the equations  

 L L
b L tA h cε =  (B.32) 

 1V Lαε ε
α
−

=  (B.33) 

and  

 net f ba ah A=  (B.34) 

To determine the downcomer backup 

 ( )WT cli udc n
fd

d

h h h h
h

α
+ + +

=  (B.35) 

 
2

1
2

L
udc

L d

Qh
g Wh C

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (B.36) 

0.54 or 0.60dC =  
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 cli ih h=  (B.37) 

From Figure 5.10 in Locket68: 

 2
L V
t tx ρ ρ= −  (B.38) 

 3 2
2 2 25 9 5 6 0.0013 0.4571d E x E x xα = − − + − − +  (B.39) 

 2 2200 577, if 577,  then 0.6dx x α≤ ≤ > =  (B.40) 

 
0.52 222 1 1

3
fL

i
L c

hQh
g W h h

α⎡ ⎤⎛ ⎞⎛ ⎞= − +⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

 (B.41) 

 

nh is almost always neglected in calculating downcomer backup at the design stage because it 

acts conventionally and reduces backup68. 

 

The design condition for height of clear liquid in the downcomer for flooding is usually set a 

0.6 to 0.8 of Ws hT +  

 

To determine the total tray pressure drop 

 WT DT L Rh h h h= + +  (B.42) 

 
2

2

V
t h

DT L
t

uh
g

ξρ
ρ

=  (B.43) 

 2
dCξ −=  (B.44) 

 
0.332/3

6
1.27

L V
t t

R L
t h

h
g d
σ ρ ρ

ρ
⎛ ⎞ ⎛ ⎞⎛ ⎞ −

= ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 (B.45) 

 



 

 

84

 

Nomenclature 
 

neta   net interfacial area, m2 

bA   bubbling area of the tray, m2 

dA   downcomer area, m2 

hA   total area of the holes, m2 

nA   net area for liquid disengagement above tray, m2 

totalA   total cross sectional area, m2 

dC   discharge coefficient 

pC   Heat capacity, kJ kg-1 K-1 

tc   total concentration, kmol m-3 

'CF   capacity factor based on An 

d   some characteristic dimension of the equipment, m 

hd   hole diameter, m 

D   Fick diffusivity, m2 s-1 

D   Maxwell-Estefan diffusivity, m2 s-1 

totalD   column diameter, m 

D   average Fick diffusivity, m2 s-1 

hFr   Froude number 

sF   supercritical F factor 



 

 

85

FF   flood factor or fractional approach to flooding 

g   acceleration due to gravity, 9.80 m s-2 

h   heat transfer coefficient, W m-2 K-1 

clih   clear liquid height at liquid entry, m 

fh   froth height, m 

fdh   downcomer backup, m 

ih   depth of liquid at liquid entry, m 

nh   pressure increase across the nappe, m 

udch   pressure drop under the downcomer, m 

wh   exit weir height, m 

DTh   dry tray pressure drop, m 

Lh   clear liquid height, m 

Rh   residual pressure drop, m 

WTh   wet or total tray pressure drop, m 

H   molar enthalpy, J kmol-1 

H   partial molar enthalpy, J kmol-1 

LM   liquid flow rate, kg s-1 

VM   vapor flow rate, kg s-1 

p   hole pitch, m 

rP   Prandtl number 

( )maxLQ / W  maximum weir load 
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LQ   volumetric liquid flow rate, m3 s-1 

VQ   volumetric vapor flow rate, m3 s-1 

  gas constant, J kmol-1 K-1 

Re   Reynolds number 

HSt   Stanton number 

tt   tray thickness, m 

sT   tray spacing, m 

u   velocity, m s-1 

du   liquid velocity in downcomer on vapor-free basis, m s-1 

hu   vapor velocity through holes, m s-1 

su   supercritical vapor velocity based on the bubbling area of the tray, m s-1 

W   weir length, m 

dw   downcomer width, m 

Z   liquid flow path length, m 

 

Greek 

 
α   liquid holdup fraction 

dα   mean liquid volume fraction in the downcomer 

ε   reaction holdup, kmol 

gε   gas holdup fraction 

κ   average mass transfer coefficient, m s-1 
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μ    chemical potential, J kmol-1 

μ   viscosity, N s m-2 

λ   thermal conductivity, W m-1 K-1 

,i mν   stoichiometric coefficient of component i in reaction m 

ξ   orifice coefficient 

η   distance along diffusion path, dimensionless 

σ   surface tension, N m-1 

ϕ   fractional perforated tray area 

ℵ   number of transfer units 

 

Subscripts 

 
i  component index 

I  referring to interface 

j   stage index 

k  index 

m  reaction index 

 

Superscripts 

 
F  referring to feed stream 

I  referring to interface 

L  referring to liquid phase 

V  referring to vapor phase 
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