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Abstract 

This study developed a novel real-time monitoring diagnostic method of determining the position 

and depth of a transverse open crack on a rotating shaft, which vibrates in bending due to the 

harmonic excitation force induced by an unbalanced disk coupled at the midspan.  

The development of a new wireless sensor capable of being mounted directly on the shaft 

allowed modeling of the dynamic system using the data obtained at different points of interest of 

the structure in the rotating coordinate system.  

Vibration parameters were obtained first from a simulation employing the Finite Element 

Method and then experimentally using Modal Analysis for different crack positions and depths. 

The unique relation between the vibration parameters and crack characteristics found was 

employed to solve the inverse problem; relate failure patterns of acceleration at different points 

of the shaft with the crack size and location by means of Artificial Neural Networks Method 

working as function approximator. 

The predictive neural networks were selected experimentally and then validated showing that the 

damage detection sensitivity parameters used depended on the acceleration signals at different 

points of the shaft.   
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Resumen 

Este estudio desarrolló un nuevo método de monitoreo en tiempo real de la posición y 

profundidad de una fractura transversal abierta en un eje en rotación, el cual vibra en flexión 

debido a la fuerza de excitación inducida por un disco desbalanceado acoplado en el medio. El 

desarrollo de un nuevo sensor permitió realizar el análisis dinámico en coordenadas rotacionales 

mediante la obtención de parámetros de vibración en diferentes puntos de interés del eje. 

Los parámetros de vibración fueron obtenidos primero por una simulación empleando el Método 

de Elementos Finitos y luego experimentalmente usando Análisis Modal para diferentes 

posiciones y profundidades de fractura. La relación única encontrada entre los parámetros de 

vibración y las características de la fractura fue empleada para resolver el problema inverso; 

relacionar patrones de falla de aceleraciones en diferentes puntos del eje con el tamaño y la 

localización de la fractura mediante el método de Redes Neuronales Artificiales trabajando como 

aproximador de funciones.  

Las redes neuronales predictivas fueron seleccionadas experimentalmente y luego validadas 

mostrando que los parámetros de sensitividad de falla utilizados dependieron de las señales de 

aceleración en diferentes puntos del eje.  

 

 

 

 

 

 

 



 iv

Dedications 

To my family, for the constant support, for being my inspiration and my biggest treasure. To my 

beloved Paito who give me the force to all the projects of my life. To my first pretty niece 

Gabriela, who was born in the moment I finished this research. To my closest friends who 

always remain with me regardless the time and distance. To this amazing planet earth, marvel of 

God, by which I will always do my best to construct a better place to live. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 v

Acknowledgments 

I would like to take this opportunity to express my sincere gratitude to Professor Dr. Yi Jia for 

his constant guidance, support and valuable advice throughout this research and my Master’s 

studies in general. I also would like to thank the members of my committee: Dr. Frederick Just 

and Dr. David Serrano for dedicating time to providing valuable ideas on this work.  

The author would like to thank the Mechanical Engineering Department of the University of 

Puerto Rico for giving me the opportunity of pursuing my graduate studies and providing 

economic assistance during my graduate studies. I am grateful to National Science Foundation 

and Department of Energy for the support of this research under grant 0549338 and DE-FG26-

07NT43061. 

Particular thanks are due to Paola Hernandez, Luis Quintero and Sun Ke, who provided valuable 

assistance in this project. Thank you all for your kindness and friendship. 

Finally, I would like to thank my family for their constant support and good energy given during 

my graduate studies. 

 

 

 

 

 

 

 

 

 



 vi

Table of Contents 

Abstract ........................................................................................................................................... ii 

Resumen......................................................................................................................................... iii 

Dedications .................................................................................................................................... iv 

Acknowledgments........................................................................................................................... v 

Table of Contents........................................................................................................................... vi 

List of Figures ................................................................................................................................ ix 

List of Tables ................................................................................................................................. xi 

Index of Symbols .......................................................................................................................... xii 

1 Introduction............................................................................................................................. 1 

1.1 Objectives ....................................................................................................................................................2 

2 Literature Review.................................................................................................................... 3 

2.1 Model Based Methods..................................................................................................................................3 

2.2 Experimental Methods .................................................................................................................................6 

2.3 Overall Approach ........................................................................................................................................9 

2.4 General Description of the System ............................................................................................................10 

3 Mathematical Modeling of the Dynamic System ................................................................. 11 

3.1 Derivation of the Harmonic Force ............................................................................................................11 

3.2 Dynamic Analysis of the Uncracked Shaft in Forced Flexural Vibration .................................................17 
3.2.1 Solution of the Equation of Motion in Free Vibration.........................................................................18 
3.2.2 Eigen Value Problem for the Shaft with Both Ends Fixed ..................................................................19 
3.2.3 Eigen Values Estimation......................................................................................................................20 
3.2.4 Mode Shapes of the Shaft with Fixed Ends .........................................................................................21 
3.2.5 Shaft under Forced Vibration...............................................................................................................22 



 vii

3.3 Random Signal Analysis ............................................................................................................................27 

3.4 Conclusions ...............................................................................................................................................29 

4 Finite Element Model of the Rotating Cracked Shaft........................................................... 30 

4.1 Derivation of the Element Stiffness Matrix ................................................................................................31 

4.2 Derivation of the Consistent Element Mass Matrix ...................................................................................35 

4.3 Reduction of Dynamic Global Matrices ....................................................................................................35 
4.3.1 Assembly of the System Stiffness Matrix............................................................................................36 
4.3.2 System Mass Matrix ............................................................................................................................37 

4.3.2.1 Eigen Values Estimation ............................................................................................................39 
4.3.2.2 Modal Shapes Estimation...........................................................................................................39 
4.3.2.3 Modal Matrix Assemble.............................................................................................................40 

4.4 The Steady State Response Estimation ......................................................................................................40 

4.5 Results from the Finite Element Model......................................................................................................41 
4.5.1 Changes of the Vibration Parameters...................................................................................................41 

5 Identification of Crack Size and Location Based on Neural Networks Method................... 46 

5.1.1 Assemble of the training data ..............................................................................................................47 
5.1.2 Creation of the Neural Network Object ...............................................................................................48 

6 Experimental Study............................................................................................................... 53 

6.1 Signal Processing ......................................................................................................................................53 
6.1.1 The Fast Fourier Transform.................................................................................................................53 
6.1.2 Errors ...................................................................................................................................................54 

6.1.2.1 Aliasing ......................................................................................................................................54 
6.1.2.2 Leakage ......................................................................................................................................55 

6.2 Wireless Sensor Development....................................................................................................................55 
6.2.1 Circuit Design Process.........................................................................................................................56 
6.2.2 Exposing the Pre-sensitized P.C.B.......................................................................................................57 
6.2.3 Developing...........................................................................................................................................57 
6.2.4 Etching.................................................................................................................................................57 
6.2.5 Soldering the Circuit............................................................................................................................57 
6.2.6 Sensitivity of the wireless sensor.........................................................................................................58 
6.2.7 Data Acquisition System and Experimental Setup ..............................................................................59 



 viii

6.3 Experimental Results .................................................................................................................................60 

6.4 Comparison between theoretical and experimental results .......................................................................64 

7 Results and conclusions ........................................................................................................ 65 

8 Future Work .......................................................................................................................... 68 

References..................................................................................................................................... 69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 ix

List of Figures 
Figure 1. Overall Scheme of the Crack Diagnostic Approach.......................................................................................9 
Figure 2. (a) Pelton drawing (www.newmillshydro.com) (b) The Jeffcott Rotor........................................................10 
Figure 3 (a) Simplified System Scheme (b) Section of the unbalanced disk ...............................................................11 
Figure 4. Vectorial triangle..........................................................................................................................................14 
Figure 5. Free body diagram of a simplified SDOF system ........................................................................................15 
Figure 6.  Maximum Deflection in the Middle of the Shaft ........................................................................................16 
Figure 7. Shaft in forced vibration – Generalized case................................................................................................17 
Figure 8. Eigen values estimated graphically ..............................................................................................................20 
Figure 9. First mode shape of the uncracked shaft ......................................................................................................21 
Figure 10. Second mode shape of the uncracked shaft ................................................................................................22 
Figure 11. Third mode shape of the uncracked shaft...................................................................................................22 
Figure 12. Deflection of the shaft at different times ....................................................................................................27 
Figure 13. PSD Acceleration Amplitudes at different position of the shaft rotating at 4 Hz.......................................28 
Figure 14. Cracked Shaft Model..................................................................................................................................30 
Figure 15. Euler Bernoulli Beam Finite Element ........................................................................................................31 
Figure 16. Static deflection curves due to unit displacement at nodal coordinate 1 ....................................................32 
Figure 17. Fixed shaft divided in six elements and its nodal coordinates....................................................................36 
Figure 18 Second moments of inertia of the cracked and uncracked shaft..................................................................36 
Figure 19. Change in frequency for different crack depths and positions (a) First harmonic (b) Frequency difference 

between cracked and uncracked shaft ................................................................................................................42 
Figure 20. Mode Shapes of the shaft with crack depth =4.76 mm, crack position =140 mm......................................42 
Figure 21. Amplitude of acceleration at the nodal coordinates of the shaft with crack depth =4.76 mm at 4.8 Hz 

driving frequency (a) crack position=76 mm (b) crack position =140 mm........................................................43 
Figure 22. Acceleration of the shaft at node 4 with crack depth =4.76 mm and                                                         a 

driving frequency of 4.8 Hz (a) crack position=76 mm (b) crack position =140 mm........................................43 
Figure 23 PSD of acceleration signals at node 4 for the shaft with crack depth =4.76 mm and driving frequency of 

4.8 Hz (a) Crack at 76 mm (b) Crack at 140 mm...............................................................................................44 
Figure 24 Difference in PSD-Amplitudes of acceleration for (a) Different crack positions                                         

(b) Different crack depths ..................................................................................................................................44 
Figure 25 Response Surfaces of the Power Spectral Density Difference between Cracked and Uncracked shaft       

(a) Node 4 and (b) Node 5..................................................................................................................................45 
Figure 26. Training data sets: Inputs = (amplitudes of acceleration frequency response at nodes 4, 5 and 6,  and 

Outputs = (crack positions and depths) ..............................................................................................................48 
Figure 27. Predicted average error from simulated data (a) Crack position with a sigmoidal transfer function (b) 

Crack depth with sigmoidal transfer function ....................................................................................................50 



 x

Figure 28. Predicted average error from simulated data (c) Crack position with a hyperbolic tangent function (d) 

Crack depth with a hyperbolic tangent function ................................................................................................50 
Figure 29. Predicted average error from simulated data (e) Predicted total error with Sigmoidal transfer function    

(f) Predicted total error with  Hyperbolic tangent transfer function...................................................................50 
Figure 30. Neural network structure for the predictive model with simulated data.....................................................51 
Figure 31. Performance of the network predictor (a) Crack positions (b) Crack depths .............................................52 
Figure 32. Representation of the Accelerometer and duty cycle [3] (a) Accelerometer (b) Analog duty cycle signal56 
Figure 33. (a) Circuit designs for the PCB  (b) Accelerometer block diagram taken from [3]....................................57 
Figure 34 (a) Accelerometer and transmitter circuits (b) Receiver circuit ..................................................................58 
Figure 35. Data Acquisition System and Experimental Setup.....................................................................................59 
Figure 36. Signal processing (a) Duty Cycle Signal (b) Acceleration Signal in the time............................................60 
Figure 37. (a) Acceleration filtered signal (b) Acceleration Power Spectral Density..................................................60 
Figure 38. Experimental power spectral density amplitude differences ......................................................................61 
Figure 39. Predicted average error from experimental data (a) Crack position with a sigmoidal transfer function (b) 

Crack depth with sigmoidal transfer function ....................................................................................................62 
Figure 40. Predicted average error from experimental data (c) Crack position with a hyperbolic tangent function (d) 

crack depth with a hyperbolic tangent function .................................................................................................62 
Figure 41. Predicted average error from experimental data (e) Total error with sigmoidal transfer function (f) Total 

error with hyperbolic tangent transfer function..................................................................................................62 
Figure 42. Neural network structure schematic for the predictive model for the experimental data ...........................63 
Figure 43. Performance of the predictor network (a) Crack positions (b) Crack depths .............................................63 

 

 

 

 

 

 

 

 



 xi

List of Tables 
Table 1. Properties of the Shaft and the Disk ..............................................................................................................10 
Table 2. Simulation Data Sets .....................................................................................................................................41 
Table 3. Analysis of variance for the Total Error of the simulated data ......................................................................49 
Table 4. Performance of the neural network for the simulating data...........................................................................52 
Table 5. Analysis of variance for the Total Error of the experimental data.................................................................61 
Table 6. Performance of the neural network for experimental data.............................................................................64 
Table 7. Comparison between theoretical and experimental PSDA ............................................................................64 
Table 8. Comparison between theoretical and experimental predicted data................................................................64 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xii

Index of Symbols 

X, Y   - General Coordinates 

i, j   - Rotating Coordinates 

t   - Time in [seconds] 

g   - Gravity [m/s2] 

E   - Modulus of elasticity [N/m2] 

e   - Eccentricity [mm]  

ω           - Driving frequency in [Hz] 

ωn   - Natural frequency in [Hz] 

θ   - Rotating angle [radians] 

m    - Mass [Kg] 

m    - Mass per unit length [Kg/mm] 

ρ   - Specific mass [Kg/m3] 

r   - Radius of the shaft [mm]  

A   - Cross sectional area [mm2] 

I   - Moment of inertia [mm4] 

L   -Length of the shaft [mm] 

l   - Length of the finite element [mm] 

c   - Damping factor [N-seg/m] 

ξ   - Damping ratio 

K   - Stiffness [N/m] 

φ    - Phase angle [radians] 

τ    - Period [seconds] 

PSD    - Power Spectral Density [g2/Hz] 

PSDAA - Power Spectral Density Amplitude of Acceleration [g2/Hz] 



 xiii

a   - Array of neuron output 

W          - Array of connection weights 

b    - Array of biases  

f   - Transfer function 

s    - Sensitivity 

F    - Jacobian 

k    - Iteration number 

α   - Learning rate   

 

 

 

 

 

 



 1

1 Introduction 

Rotating shafts carrying disks are broadly used in many mechanical applications like pumps, 

engines and turbines. It is observed that high speed and heavy duty shafts develop transverse 

cross-sectional cracks due to fatigue at some time during their life period. Cracks may be caused 

by mechanical stress raisers, such as sharp keyways, abrupt cross sectional changes, 

metallurgical factors, heavy shrink fits, grooves, and other stress concentration factors that 

promote the crack initiation.  

Once a crack is initiated it propagates and the stress required for propagation is smaller than that 

required for crack initiation. After many cycles operating stresses may be sufficient to propagate 

the crack. The crack propagation takes place over a certain depth when it is sufficient to create 

unstable conditions and fracture take place. It is important to develop new non-destructive 

techniques real time based diagnosis methods to predict the behavior of a crack in order to avoid 

human and economical disasters. 

Transverse cracks modifies the dynamic behavior of the system generating in an horizontal shaft 

a reduction of the rotor stiffness, which change the modal parameters and the acceleration 

amplitudes along the shaft. Establishing a relation between these vibration parameters and the 

failure characteristics of the system will leave us to characterize and predict a failure in a rotor 

system. This research developed a novel real time monitoring method based artificial neural 

networks method working as a function approximator to predict the crack location and size of a 

rotating shaft by using wireless sensor technology directly mounted on the shaft.  

Monitoring techniques to detect transversal cracks in rotating mechanical shafts during operation 

are necessary, since the conventional NDT techniques such as ultrasonic, dye penetrants or 

magnetic particles require the equipment to be taken out of service for some period of time. 

Vibration analysis with proximity sensors like eddy current, requires them to be mounted on 

special fixtures that should be fixed close to the rotor structure, therefore the shaft should be 

dismounted from the operation place.  

Mounting wireless sensors directly on the shaft permits to get vibration parameters in specific 

points of the rotating shaft without the need of dismounting the shaft. Using wireless 
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accelerometers allows greater amplitudes of vibration than the conventional methods like eddy 

current proximity sensors, where the distance between the rotating shaft and the proximity sensor 

is limited. 

Machinery diagnostics for maintenance of a structure or machine can be done using wireless 

accelerometers by monitoring its amplitudes of frequency response. A shift in the acceleration 

pattern or some other parameter will indicate a pending failure that could happen in the presence 

of a crack. 

Different types of rotating components like eccentric parts which lead to unbalanced rotor 

systems like crankshafts, cams and linkages, etc could be monitored by employing wireless 

accelerometers for modal analysis. Knowing the crack location and size, a future forecasting 

method can estimate the residual amount of time left in the shaft based on past and current states. 

1.1 Objectives 

In order to fulfill the development of a new wireless sensor and the online prediction model to 

detect the location and size of a transverse crack on a rotating shaft, the following specific tasks 

are required: 

Simulate the dynamic system and extract the vibration parameters from a cracked and uncracked 

shaft by means of Finite Element Analysis. 

Apply a Neural Network Model to correlate vibration signals with crack positions and depths for 

the theoretical and experimental data. 

Design and fabricate a new wireless accelerometer capable of obtaining the vibration signal of a 

rotating shaft and converting it to digital signal for further processing. 

Predict the response of the system employing signal processing techniques to extract the 

vibration parameters of the cracked and uncracked shafts. 

Carry out design of experiments to select the best architecture used as network predictor and 

compare the experimental and analytical models employed for the crack characterization.  
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2 Literature Review  

Literature on crack detection and diagnostics was focused on the vibration-based method 

technique, which can be classified into signal-based and model-based methods.  

Model-based methods are based on analytical or numerical models to simulate the behavior of 

cracked shafts during operation and attempt to correlate the observed vibration signature with the 

presence of a crack at discrete locations on the shaft.  

Experimental-based methods commonly employ vibration monitoring equipment (such as 

proximity probes, phase reference, and spectrum analyzers) with or without additional systems, 

such as torsional vibration measurement, etc. Steady-state and/or transient vibration data are 

analyzed for known indicators of cracks.  

2.1 Model Based Methods  

 In 1976, I.W. Mayes and W.G. Davis [17] stated that the crack in a shaft could be theoretically 

modeled using the virtual work principle, by applying the conservation of energy to describe the 

crack behavior. The stress distribution and the bending moment around the area of the crack 

were needed in order to perform this approach. It was found that the equations of motion for the 

system are nonlinear, due to the unbalanced forces acting on the crack.  

The theory showed that the response due to a crack may be zero, or unbalanced by 180 degrees 

out of phase with the crack. In addition, it was shown that the response due to the crack is the 

same as if one would add an extra unbalanced force of predetermined magnitude and angle to the 

original unbalance. 

Mayes in 1984 utilized standard linear rotor dynamics response programs to solve the typical 

rotor dynamics equation, where the coordinates are in a fixed coordinate system in space and the 

change in the shaft stiffness matrix appeared as an applied external sinusoidal force to the 

system. This applied external sinusoidal force was found to be a function of the change in the 

area moment of inertia of the rotor as a result of the crack, as well as the rotating axis respect to 

the fixed coordinate system.  
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In 1983 Dimarogonas [17] analyzed a Laval rotor system, and modeled the breathing effect of a 

crack using bi-linear and analytical methods for an open crack. As a result, crack flexibility 

functions for the rotor were developed. In addition, with the assumption that the shaft undergoes 

large static deflections, the crack flexibility matrix was obtained for a closed crack. Finally, 

Dimarogonas created a flexibility function based on empirical data in the form of a truncated 

Fourier series. 

Petroski, Papadopoulos and Dimarogonas (1987, 1988, 1992) [2] published a series of papers on 

rotating and non-rotating shafts with an open crack. They derived a local flexibility matrix that 

depends on the crack depth. The no diagonal terms of this matrix cause coupling between the 

longitudinal, torsional, and bending vibrations. The stiffness of the system depends on the crack 

depth and the slenderness of rotating shaft during passage through a critical speed.  

Narkis Y. in 1992 [18] derived a continuous equation to determine the location of a crack on a 

homogeneous, symmetric rotor. The location of the crack was determined to be one of two 

places, since the equation’s location is symmetric from the middle of the rotor. The crack was 

simulated by an equivalent spring, connecting the two segments of the beam.  

Narkis used algebraic equations which relate natural frequencies to beam and crack 

characteristics. It was found that the only information required for accurate crack identification is 

the variation of the first two natural frequencies due to the crack. The reliability of the proposed 

method was evaluated with finite element method using ANSYS software giving acceptable 

results, however the side were the crack was located was not uniquely defined by this method. 

Sekhar in 2001 [22] studied a method based on online identification of cracks in a rotor while it 

is passing through its flexural critical speed. The fault induced change of the rotor system was 

taken into account by equivalent loads in a mathematical model.  

The equivalent loads are virtual forces and moments acting on the linear undamaged system to 

generate a dynamic behavior identical to the measured one of the damaged system. The rotor was 

modeled using FEM, while the crack is considered through local flexibility change.  
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The crack was identified for its depth and location on the shaft for different rotor accelerations. 

The nature and symptoms of the fault crack are further ascertained using continuous wavelet 

transform.  

Bikri K. El, Benamar R. and Bennouna M.M. in 2006 [5] performed a theoretical investigation of 

the geometrically non-linear free vibrations of a clamped–clamped beam containing an open 

crack. The approach used a semi-analytical model based on an extension of the Rayleigh–Ritz 

method to non-linear vibrations, which is mainly influenced by the choice of the admissible 

functions.  

The general formulation was established using new admissible functions, called ‘‘cracked beam 

functions’’, and denoted as ‘‘CBF’’, which satisfy the natural and geometrical end conditions, as 

well as the inner boundary conditions at the crack location.  

Iterative solution of a set of non-linear algebraic equations was obtained numerically, which 

leads to the basic function contribution coefficients to the displacement response function. Then, 

an explicit solution is derived and proposed as an alternative procedure, simple and ready to use 

for engineering applications.  

Emphasis was made on the backbone curves, i.e. amplitude-frequency dependence, obtained for 

various crack depth, and the effect of the vibration amplitudes upon the non-linear mode shapes 

of a cracked beam was examined. The work was restricted to the fundamental mode in order to 

concentrate on the study of the influence of the crack on the non-linear dynamic response near to 

the fundamental resonance. 

Most of the literature review on model based methods treated the problem of crack identification 

analyzing the system in the static frame of coordinates to estimate the changes in natural 

frequencies, mode shapes and damping ratios of the shaft due to a reduction in local stiffness 

provoked by the presence of a crack. These methods require enormous amounts of computational 

time and effort. Furthermore, it is not easy to obtain an accurate measure of the crack effects 

using an analytical approach.  
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The simulating study presented in this thesis introduces the analysis of the dynamic system in the 

rotating coordinates based on the failure pattern of acceleration signals at different points of the 

shaft rotating at a constant driving frequency.  

2.2 Experimental Methods 

Gasch in 1976 [25] studied the stability behavior of the Laval rotor with a crack, and the forced 

vibration due to imbalance and crack. He replaced the crack mechanism by an additional 

flexibility and switched it on and off according to whether the crack was closed or open. The 

results showed that the recognition of cracks is very difficult because the significant double and 

triple frequency vibration are only very slightly involved in the crack response. 

Grabowski B. in 1980 [1][12] used modal analysis to study the vibration behavior of a turbine 

rotor containing a transverse crack. His results showed that a crack causes important changes in 

shaft vibration. He reported that the crack excites 1X and 2X vibrations, which are independent 

of the out of balance but depend on the crack locations.  

Tsai T. C. And Wang Y. Z. in 1996 [24] studied a diagnostic method of determining the position 

and size of a transverse open crack on a stationary shaft without disengaging it from the 

machine. The crack was modeled as a joint of a local spring. To obtain the dynamic 

characteristics of a stepped shaft and a multi-disc shaft, the transfer matrix method was 

employed on the basis of Timoshenko beam theory.   

The simplest model of the so-called Laval rotor, which is an elastic but mass-less shaft with an 

unbalanced disc and an always open transverse crack was taken to provide an equation of motion 

for a cracked shaft, enabling to estimate the natural frequencies, amplitudes of forced vibrations 

and areas of dynamic stability change related to the crack conditions at various rotational speeds.  

The open crack is regarded as a local spring with a constant value that is derived from the 

relationship between the strain energy and stress intensity factor in fracture mechanics. Crack 

positions were identified from comparing the fundamental mode shapes of the shaft with and 

without crack and the depth was obtained by the change of natural frequency of the shaft with 

and without a crack.  
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Experiments were conduced with a impact test carried out with a signal processing apparatus 

composed by a dual channel spectrum analyzer, a hammer, an accelerometer and a charge 

amplifier. The investigation presented excellent results in crack position identification.   

Feldman and Seibold in 1998 [10] used the Hilbert transform (HT) to detect non-linearity’s from 

the measured vibration of a rotor. The HT converts the signal into a slowly-varying envelope 

type signal and a phase angle. Basic vibration data, such as stiffness, system damping, etc., can 

be deduced from this. Identification algorithms, based on the extended Kalman filter (EKF) and 

the instrumental variables method can then be applied to the transformed data to detect cracks. 

The EKF is a time domain identification algorithm and Seibold and Weinert show that the depth 

of the crack can be calculated correctly, even if the measurement information is incomplete. The 

localization is performed by designing a bank of EKFs, in which each filter is tuned to a different 

damage hypothesis, i.e. in this case the specific crack location. By calculating the probabilities of 

the different hypotheses, the crack can be localized and its depth can be determined.  

Owolabi G. M. in 2002 [19] studied the vibration behavior of aluminum beams based on changes 

in the natural frequencies and amplitudes of the FRFs. Galerkin’s method was utilized to solve 

for the frequencies and vibration modes in a simulating model. Modal analysis was performed in 

the experimental work employing a dual channel signal analyzer and seven light accelerometers 

placed at different points of the beam. Results have shown that vibration behavior of the beams 

are very sensitive to the crack location, crack depth and mode number.  

This study illustrates that measured parameters of frequencies and response amplitudes are 

unique values, which remain the same (within a tolerance range), whether similar beams are 

tested and responses measured. The unique values of the crack location and crack depth were 

obtained by plotting the contour lines of the first three modes of the fixed beam.  

Fan Yimin and Li C. James in 2000 [9] used an embedded modeling approach to identify the 

change in stiffness of a shaft as a result of a crack. They worked with a new methodology to 

identify multi-degree of freedom nonlinear systems from the system’s operating data.  

The methodology includes a new nonlinear model architecture which embeds feedforward neural 

networks to represent unknown nonlinearities in a lumped parameter model, and a learning 
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algorithm to train the embedded neural networks as well as model parameters to obtain model 

fidelity. The change in stiffness of the shaft was approximated using neural network, which is 

then, in turn, embedded in a lumped parameter model of the shaft.  

The neural network is refined iteratively with a solution method to minimize a cost function 

based on the difference in the response of an embedded model and the data collected from the 

cracked system. The finite element model used was basically a two-dimensional one in the XZ 

plane and in the YZ plane, where Z is the longitudinal axis of the shaft. The procedure was 

applied to a simulated rotor and also to a test rig.  

Sinha Jyoti K. in 2006 [23] used bi-spectrum tool in the signal processing for identification of 

non-linear dynamic behavior. This investigation shows breathing of a crack during shaft rotation 

also on a non-linear behavior. The bi-spectrum results are found to be encouraging to distinguish 

the faults based on few experiments conducted on a small experimental rig.  

The crack and the misalignment in the shaft is detected and distinguished using orbit plots during 

machine transient operation (run-up or run-down) though both the faults generate higher 

harmonics in the shaft responses. Measurements in both the vertical and horizontal directions on 

a fixed ware frame were required. 

In this research, an attempt has been made to detect the presence of a crack in a rotating shaft, 

and determine its location and size, based on experimental modal analysis. Previews 

experimental methods require high speeds to extract modal parameters like natural frequencies 

and frequency response amplitudes.  

The advantage of the proposed method is that the system can be safety monitored online without 

the need to reach the fundamental frequency avoiding extreme operational conditions for 

diagnosis. Besides the crack can be identified and characterized in operational condition without 

the need of dismounting the shaft. 
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2.3 Overall Approach 

This work presents a novel real time monitoring technology which relates a set of frequency 

response amplitudes of acceleration of a shaft rotating at a fixed driving frequency with different 

crack positions and depths.  

A fault simulator machine is employed to simulate the system, where a shaft is supported on two 

bearings and a disk is attached at the midspan. The shaft is rotated by an electrical motor coupled 

to the shaft on one side. The rotating shaft vibrates in bending due to the harmonic excitation 

force induced by the unbalanced disk. Overall of this study is explained as follows:  

The simulating study begins with the analytical derivation of the ordinary differential equation 

that describes the vibrating system. Modal parameters were calculated for an uncracked shaft 

employing separation of variables method. 

Finite element method was used to calculate the modal parameters of the cracked shaft for 

known crack depths and positions. Then the best artificial neural network trained with 

Backpropagation algorithm is found from a design of experiment to solve the inverse problem: 

from the modal parameters estimate the crack characteristics.  

The experimental study starts with the wireless accelerometer development, and then, signals 

conditioning and signal processing is applied to the signal to obtain the acceleration signal in the 

radial direction of the shaft for three different points. Finally the best diagnostic network is 

selected to associate the acceleration signal with the crack depth and position.  

 

Figure 1. Overall Scheme of the Crack Diagnostic Approach 
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2.4 General Description of the System 

A complex system like a Pelton turbine similar to that shown in the Figure 2(a) can be 

represented by a Jeffcott Rotor in Figure 2 (b), where the rotating shaft-disk system is modeled 

assuming that the bearings are rigid and provide no damping to the system. The shaft is assumed 

to be elastic and will deflect with respect to its equilibrium position in the presence of external 

mass unbalance due to the eccentricity of a rigid circular disk mounted at the midspan.   

                     

                                               (a)                                                                                   (b) 

Figure 2. (a) Pelton drawing (www.newmillshydro.com) (b) The Jeffcott Rotor 

A slender plastic shaft was selected with a heavy steel disk in order to vibrate the system at low 

frequencies in the experimental work. A driving frequency ω = 4.8 Hz and an eccentricity of 1.2 

mm were selected for the simulation study. The properties of the shaft and the disk are 

summarized in the following table: 

Table 1. Properties of the Shaft and the Disk 

Material Diameter 
[mm]

Length 
[mm]

Density 
[g/cc]

Young's Modulus 
''E'' [Mpa]

Material Diameter 
[mm]

Width[
mm]

Weight 
[Kg]

Acetal Delrin (Homopolymer) 9.53 330.20 1.41 3103.45 Steel AISI 102 101.6 15.9 7.76

SHAFT DISK

 



 11

3 Mathematical Modeling of the Dynamic System 

Understanding the dynamic behavior of the uncracked rotating shaft harmonically excited by an 

unbalance disk is the first step before modeling the cracked shaft scenario. The system was 

analyzed in the rotating system of coordinates because the wireless sensor developed rotates 

attached to the shaft. 

First the harmonic force of the unbalanced disk was derived in a reduced two degrees of freedom 

system; r and θ, to a single degree of freedom in the radial direction of the shaft. Then a 

continuous shaft with harmonic force acting in the middle was analyzed. 

The shaft was modeled mathematically using mechanics of materials principles based on the 

Euler Bernoulli theory to derive the partial differential equations that describe the uncracked 

vibrating shaft. Then the method of separation of variables was employed to solve the eigen 

value problem in order to find the vibration parameters such as: natural frequencies, mode shape 

functions, displacement and acceleration equations.  

3.1 Derivation of the Harmonic Force  

The analysis of the harmonic force F(ωt) induced by the unbalance rotating disk is done by 

taking the section of the rotating disk as shown in Figure 3(a) and (b) :  

       
                                                 (a)                                                                                      (b) 

Figure 3 (a) Simplified System Scheme (b) Section of the unbalanced disk    
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O is the rotating center and origin of the inertial system X, Y. The center of the disk-mass is C, 

which is at a distance e (eccentricity) from the geometrical center of the disk at S. The disk is 

rotating at a constant driving frequency ω with a deflection r. 

The vectors of motion involving the mass center C are calculated as: 

/ / /c s c s c s c s c s c s

Position Velocity Acceleration
p p p v v v a a a= + = + = +

                            (1) 

Position, velocity and acceleration vector components of point S in the fixed coordinate system 

‘’X’’ and ‘’Y’’ are:  

 

2

2

: cos
sin

: cos sin
sin sin

: [ ]cos [2 ]sin

[2 ]cos [ ]sin

s

s

s

s

s

s

Position X r
Y r

Velocity X r r
Y r r

Acceleration X r r r r

Y r r r r

θ
θ

θ θ θ

θ θ θ

θ θ θ θ θ

θ θ θ θ θ

=
=

= −

= +

= − − +

= + + −

 (2) 

Translating velocities and accelerations into the rotating coordinate system ‘’r  ’’ and 

‘’θ ’’gives: 

 
2 2

2 2

: cos sin

cos sin cos sin cos sin
cos sin

sin cos cos cos sin sin

Si S S

Sj S S

Velocity V X Y

r r r r r
V Y X

r r r r r

θ θ

θ θ θ θ θ θ θ θ
θ θ

θ θ θ θ θ θ θ θ θ

= +

= − + + =

= −

= + − + =

                 (3) 

2 2

2 2 2 2 2 2

2 2

: cos sin

[ ]cos [2 ]sin cos [2 ]cos sin
[ ]sin [ ][cos sin ]

sin cos

[ ]cos sin [2 ]sin [

Si

Sj

Acceleration a X Y

r r r r r r
r r r r r r

a X Y

r r r r

θ θ

θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ
θ θ

θ θ θ θ θ θ

= +

= − − + + +

+ − = − + = −

= − +

= − − + + + 2

2 2 2

2 ]cos
[ ]sin cos [2 ][sin cos ] 2

r r
r r r r r r

θ θ θ

θ θ θ θ θ θ θ θ θ

+

+ − = + + = +

            (4) 
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Relative accelerations of the center of gravity of the disk at C with respect to the center of the 

disk /C Sa  in the rotating coordinates are derived as follows:  

 
/ /

/ /
2 2

/ /

: cos( ), sin( )
: sin( ), cos( )

: cos( ), sin( )

C S C S

C S C S

C S C S

Position X e t Y e t
Velocity X e t Y e t

Acceleration X e t Y e t

ω ω
ω ω ω ω

ω ω ω ω

= =

= − =

= − = −

                         (5) 

Translating the accelerations into the rotating coordinate system ‘’r  ’’ and ‘’θ  ’’ we have: 

 

( / ) ( / ) ( / )

2 2 2

( / ) ( / ) ( / )

2 2 2

cos sin

cos( )cos( ) sin( )sin( ) cos( )
sin cos

cos( )sin( ) sin( )cos( ) sin( )

C S i C S C S

C S j C S C S

a X Y

e t e t e t
a X Y

e t e t e t

θ θ

ω ω θ ω ω θ ω ω θ
θ θ

ω ω θ ω ω θ ω ω θ

= +

= − − = − −

= +

= − − = − −

                 (6) 

Replacing terms from equations (4) and (6) in equation (1) for the accelerations of the center of 

gravity Ca of the disk in the radial and tangential direction gives: 

2 2

2

cos( )

2 sin( )
Ci

Cj

a r r e t

a r r e t

θ ω ω θ

θ θ ω ω θ

= − − −

= + − −
                                            (7) 

Applying Newton’s second law the equations of motion resolved in the radial and tangential 

directions become: 

 2 2[ cos( )]dKr cr m r r e tθ ω ω θ− − = − − −                                            (8) 

 2[ 2 sin( )dcr m r r e tθ θ θ ω ω θ− = + − −                                               (9) 

Last two equations can be rearranged  

( )2 2( ) cos
d dm m

c kr r r e tθ ω ω θ+ + − = −                                    (10) 

( )2( 2 ) sin
dm

cr r r e tθ θ ω ω θ+ + = −                                               (11)                            
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From the right part of equation (10)  we get the harmonic force in the sensor sensitivity direction:  

2
( ) cos( )

d
F t m e tω ω ω θ= −                                                 (12)    

In steady state synchronous whirl we have  

 0and r rθ ω θ= = = =                                                          (13) 

Integrating we get 

 tθ ω φ= −                                                     (14) 

Where φ  is the phase angle between e and r. From (13) equations (10) and (11) reduce to: 

 

2 2

2

cos

sin

d

d

K r e
m
c r e

m

ω ω φ

ω ω φ

⎛ ⎞
− =⎜ ⎟

⎝ ⎠

=

                                                               (15) 

From last equations we have the following vectorial triangle: 

 

Figure 4. Vectorial triangle 

The phase angle and the trigonometric expression of the first equation of (15) are obtained from 

the vectorial triangle as follows: 

  

2

2 22
2

tan cosd d

d
d d

c K
m m

K K c
m m m

ω ω
φ φ

ω ω ω

−
= =

⎛ ⎞ ⎛ ⎞− − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                 (16)  
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 Substituting the cosine term of (16) in the equation of motion in the radial direction, and solving 

for r we obtain the amplitude of motion for the SDOF system: 

 
( )

2

22 2( )
d

d d

m er
K m cm

ω

ω
=

− +
                                                                 (17) 

The wireless accelerometer mounted on the shaft allows modeling of the system in the rotating 

coordinate system because it is sensitive only in the radial direction r , where the vibration 

parameters are involved due to the bending behavior of the shaft in that direction. This condition 

allows us to model the system in a fixed coordinate system relative to the accelerometer 

assuming the shaft fixed at the ends, and the rotation of the shaft is replaced by the harmonic 

force F(ωt) caused by the rotating unbalanced disk, which excites the system at the middle as 

shown before in Figure 3 (a). 

This system can be represented with a free body diagram for a single degree of freedom system, 

where md is the mass of the disk and K is the stiffness of the shaft, which can be modeled as a 

spring as shown in Figure 5. 

 

 Figure 5. Free body diagram of a simplified SDOF system 

The magnitude of the maximum deflection in the middle of the shaft shown in the Figure 6 can 

be obtained from the condition of equilibrium of the force P of the deflected shaft. This force is 

proportional to the deflection and can be represented as P=Kδ. The maximum deflection for a 

shaft fixed at both ends is well demonstrated at [11] Gere and Timoshenko. 
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Figure 6.  Maximum Deflection in the Middle of the Shaft 

The stiffness of the shaft can be obtained from the last relation for a single degree of freedom 

system as 

 
4

3

192
4

EI rK where I
L

π
= =                                                                  (18) 

The critical speed of the shaft is that speed at which the number of revolutions per second of the 

shaft is equal to the frequency of its first natural vibration is calculated taken the properties and 

geometry of the shaft from Table 1. 

 64.6608[ / ]a
K rad seg
m

ω = =                                                               (19) 

 

The critical speed is usually expressed in Hz : 

 
 

 3

1 192 10.2911[ ]
2c

EI Hz
L m

ω
π

= =                                                                     (20) 
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3.2 Dynamic Analysis of the Uncracked Shaft in Forced Flexural Vibration 

Once the harmonic force acting on the shaft due to the unbalance disk is derived for the rotating 

coordinate system in the radial direction, the vibration parameters and the flexural vibration of 

the shaft at any position and any time are derived employing the Euler – Bernoulli theory, which 

consider only lateral flexural deflections and that the plane cross section on a beam remains a 

plane during flexure. The generalized problem is considered as shown in the next figure: 

 

Figure 7. Shaft in forced vibration – Generalized case 

The equation of motion perpendicular to the X axis of the deflected beam was obtained by 

equating to zero the sum of the forces in the free body diagram shown in Figure 7.  

2_

( , )2 x t
V ym P
x t

∂ ∂+ =
∂ ∂

                                                                   (21)        

From the bending theory, we have the relations:   

2 3

2 3
yM yMV EI V EIx x x

= ∂∂ ∂= =∂ ∂ ∂
                                                           (22) 

Where, E = Young’s Modulus of Elasticity and I = Moment of inertia of the cross section and 

were considered constant. Replacing (22) in (21):  

   
4 2

( , )4 2 x t
y yEI m P

x t
∂ ∂+ =
∂ ∂

                                                                (23)                           
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It is seen that equation (23) is a partial differential equation of fourth order that describes the 

vibration of the rotating shaft in the rotating coordinate system. Only lateral flexural deflections 

were considered. The homogeneous differential equation was solved by separation of variables 

giving the modal deflection of the shaft at any position and time. 

3.2.1 Solution of the Equation of Motion in Free Vibration 

For free vibration (p(x,t) = 0) reduces to the homogeneous differential equation: 

 
4 2

4 2
0

y y
E I m

x t
∂ ∂

+ =
∂ ∂

                                (24) 

Applying the method of separation of variables assuming a product solution  

 ( , ) ( ) ( )y x t x f t=Φ                                                              (25) 

Substituting in (24) yields: 

 
4 2

( ) ( ) 2
( )4 2( ) x t

nx
f

EI f t m
x x

ω
∂ Φ ∂

⋅ + ⋅Φ =
∂ ∂

                                     (26) 

 
2

( ) 2
21 : t

n
d

ODE
f

f
dx

ω= −                                       (27) 

The characteristic equation is:  

 2 2
1,20n nr irω ω±+ = → =                                    (28) 

The solution is:   

                       1 2( ) cos( ) sin( )n nf t C t C tω ω= +                                     (29) 

4
( ) 2 2 2

( ) ( )4 ,2 : x
n nx x

d mc
EI

mODE c
EIdx

ω ω =
Φ

= ⋅ Φ = Φ                 (30) 

The characteristic equation is:  
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4 2 2 2 2

1,2 3,4

0 ( )( )n n n

n n

r c r c r c
r i c r c

ω ω ω

ω ω± ±

+ −− = →

∴ = =
                                     (31) 

The solution of this equation is: 

( ) 3 4 5 6cos( ) sin( ) cosh( ) sinh( )x n n n nC cx C cx C cx C cxω ω ω ωΦ = + + +            (32) 

( ) 3 4 5 6
'' cos( ) sin( ) cosh( ) sinh( )x n n n n n n n nC c cx C c cx C c cx C c cxω ω ω ω ω ω ω ωΦ =− + + +             (33)                             

3.2.2 Eigen Value Problem for the Shaft with Both Ends Fixed 

The boundary conditions at X=0 for the shaft with both ends fixed are: 

(0, ) (0)

(0, ) (0)

0 0,

' 0 ' 0
t

t

Y

Y

= Φ =

= Φ =
                             (34) 

Applying the boundary conditions into equations (32) and (33) gives: 

(0) 3 5 5 30C C C CΦ = + = ⇒ = −     (35) 

( ) 3 4 6[cos( ) cosh( )] sin( ) sinh( )x n n n nC cx cx C cx C cxω ω ω ωΦ = − + +  

{ }( ) 3 4 6' [ sin( ) sinh( )] cos( ) cosh( )x n n n n nc C cx cx C cx C cxω ω ω ω ωΦ = − − + +  

(0) 4 6 6 40C C C CΦ = + = ⇒ = −                                (36) 

( ) 3 4[cos( ) cosh( )] [sin( ) sinh( )]x n n n nC cx cx C cx cxω ω ω ωΦ = − + −                                             (37) 

{ }( ) 3 4' [ sin( ) sinh( )] [cos( ) cosh( )]x n n n n nc C cx cx C cx cxω ω ω ω ωΦ = − − + −  

( , ) ( )

( , ) ( )

At X=L 0 0,

' 0 ' 0
L t L

L t L

Y

Y

= Φ =

= Φ =
    (38) 

Applying the boundary conditions into equations (32) and (33) gives: 

( ) 3 4[cos( ) cosh( )] [sin( ) sinh( )] 0L n n n nC cL cL C cL cLω ω ω ωΦ = − + − =  (39) 

( ) 3 4' [ sin( ) sinh( )] [cos( ) cosh( )] 0L n n n nC cL cL C cL cLω ω ω ωΦ = − − + − =  (40) 
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Equating the determinant of the system above we have: 

 
2 2

2 2

0 cos ( ) cos( ) cosh( ) cosh( ) cos( ) cosh ( )

  [ sin ( ) sin( )sinh( ) sinh( )sin( ) sinh ( )]
n n n n n n

n n n n n n

cL cL cL cL cL cL

cL cL cL cL cL cL

ω ω ω ω ω ω

ω ω ω ω ω ω

= − − +

− − + − +
    

(41) 

2 2

2 2

0 1 2cos( ) cosh( ) cosh ( ) sinh ( )

cosh ( ) sinh ( ) 1,
n n n n

n n

cL cL cL cL

As cL cL then

ω ω ω ω

ω ω

= − + −

− =
             (42) 

  2cos( ) cosh( ) 2 0n ncL cLω ω− + =                                                        (43) 

 cos( )cosh( ) 1 0n ncL cLω ω∴ − =                                                          (44) 

3.2.3 Eigen Values Estimation  

Equation (43) is a transcendental equation for the positive eigenvalues ncLω . The eigen values 

must satisfy last expression in the intercepts of the curves given by the next functions: 

 
1 cos( )

cosh( ) n
n

Z and Z cL
cL

ω
ω

= =                                       (45) 

The values of the intercepts are used to calculate a relation for the eigen values and the natural 

frequencies as shown in the next figure:  

 

Figure 8. Eigen values estimated graphically 
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Finding a relation for the eigen values that intersect both curves gives the following expression 

for the natural frequencies: 

2(2 1)
2n

n EI
L m

πω +⎛ ⎞= ⎜ ⎟
⎝ ⎠

                   (46) 

3.2.4 Mode Shapes of the Shaft with Fixed Ends  

From equation (39) , it follows that 

3 4

(cos cosh ) 1
sin sinh

n n

n n

cL cL
C C

cL cL
ω ω
ω ω

− −
=

−
    (47) 

C4 is arbitrary and can be assumed as 1. To each value of natural frequency obtained in (46) 

there corresponds a normal mode  

( ) cosh( ) cos( ) (sinh( ) sin( ))n n n n n nx cx cx cx cxω ω σ ω ωΦ = − − −  (48) 

Where: 

cosh( ) cos( )
sinh( ) sin( )

n n
n

n n

cL cL
cL cL

ω ω
σ

ω ω
−

=
−

    (49) 

The following figures show the first three mode shapes for the shaft with the both ends fixed in 

the rotating coordinate system relative to the accelerometer:   

 

Figure 9. First mode shape of the uncracked shaft  
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Figure 10. Second mode shape of the uncracked shaft 

 

 

Figure 11. Third mode shape of the uncracked shaft 

3.2.5 Shaft under Forced Vibration 

Once the homogeneous problem is solved, the modal function ( )xΦ   is used to solve the forced 

vibration problem of the beam subjected to a harmonic force ( , )x tP . 

 2 2
0 0( ) cos( ) cos( )d dtP m e t P t where P m eω ω θ ω θ ω= − = − =  (50) 

The partial differential equation becomes: 

 2
0 0

4 2

4 2 cos( ) dt P m ey yEI m P
x t

ω θ ω− =
∂ ∂+ =
∂ ∂

 (51) 

dm  is the mass of the disk mounted on the rotating shaft, e is the eccentricity and ω is  the 

driving frequency. 
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Assuming that the general solution of this equation may be expressed by the summation of the 

products of normal modes ( )xΦ  multiplied by the factors ( )n tZ  which are to be determined. 

Hence we have the product solutions: 

        ( , ) ( ) ( )
1

x t n x n t
n

Y Z
∞

=

= Φ∑                                                      (52) 

Where the normal modes ( )n xΦ  satisfy the differential equation (30) rewritten down: 

 
4

( ) 2 2 2
( ) ( )4 ,n x

n nn x n x
mc
EI

m c
EIx

ω ω =
∂ Φ

= ⋅ Φ = Φ
∂

                    (53) 

The normal modes should also satisfy the specific force boundary conditions at the ends of the 

shaft. Substitution of (52) in (51) gives: 

 ( ) ( ) ( , ) ( ) ( )
IV
n x n t x t n x n t

n n

EI Z P m ZΦ = − Φ∑ ∑                                       (54) 

From (53) we have:  

 
4

( ) 2
( )4

n x
n n xEI m

x
ω ⋅

∂ Φ
= ⋅ Φ

∂
 (55) 

Multiplying both sides by ( )m x dxΦ  and integrating between 0 and L results in  

 2 2
( ) ( )

2
( ) ( ) ( , ) ( )

0 0 0
m x m x

L L L

m m t m x x t n tZ m dx P dx Z m dxω Φ = Φ − ⋅ Φ∫ ∫ ∫                         (56)                         

All terms which contain products of different indices ( n m≠ ) vanish from the summation in 

(56) due to the orthogonality conditions between normal modes. Equation (56) can be written as: 

 
2

( ) ( ) ( ), 1,2,3...n n t n n n t n t nM Z M Z Fω =+ =                       (57) 

Where: 
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2

( ) ( ) ( / 2) ( , )
0 0

m x

L L

n n t m x L tM m dx and F P dxω== Φ = Φ∫ ∫             (58) 

nM  is the modal mass and ( )n tF  the modal force. Last equation is analogous to the modal 

equation for discrete systems. Modal damping could certainly be introduced by simply adding 

the damping term in equation (57)  as follows: 

2
( ) ( ) ( ) ( ), ...1,2,3n n t n n t n n n t n t nM Z C Z M Z Fω =+ + =                    (59) 

Or            

( )2
( ) ( ) ( ) 1, 2, 3...2 n t

n t n n n t n n t
n

n
F

Z Z Z
M

ξ ω ω =+ + =                   (60) 

Where n
n

ncr

C
C

ξ =  is the modal damping and 2
n nK M ω=  the modal stiffness. 

Replacing ( , )tPω from equation (51) into the modal force term of equation (60) then the modal 

force term becomes: 

 
2

( / 2)
( ) 0

0

( )
0

cos( ) , :

L

n x L
n t

n n L
n

n x

dx
F

I P t dx where I
M

m dx
ω θ

=Φ
= + =

Φ

∫

∫
               (61)                 

Neglecting damping, the equation (61) becomes: 

 
2

( ) ( ) 0 cos( )n t n n t nZ Z I P tω ω θ+ = −                                   (62)                             

The last equation is solved using the method of the undetermined coefficients for the initial 

conditions: 
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(0)
(0)

( ) 0
dZ

Z f x
dt

= =                                             (63) 

The characteristic equation of the homogeneous differential equation is:    

 2 2 0n nr r iω ω+ = = ±                                                (64) 

The solution of the homogeneous problem gives us the complementary function: 

 ( ) 7 8cos( ) sin( )c t n nZ C t C tω ω= +                                                      (65) 

In order to get a particular solution we assume a solution: 

 ( ) cos( ) sin( )p tZ A t B tω θ ω θ= − + −                                                (66) 

 ( )

2 2
( )

sin( ) cos( )

cos( ) sin( )
p t

p t

Z A t B t

Z A t B t

ω ω θ ω ω θ

ω ω θ ω ω θ

= − − + −

= − − − −
                         (67) 

Replacing last terms in the differential equation we have: 

2 2
( ) ( )

0

cos( ) sin( ) [ cos( ) sin( )]

cos( )
n t n n t n

n

Z Z A t B t A t B t

I P t

ω ω θ ω θ ω ω θ ω θ

ω θ

+ = − − − − + − − −

= −
 (68) 

Equating coefficients we have: 

 2 2 0
0 2 20

( )
n

n n
n

P IB and A A P I Aω ω
ω ω

= − + = → =
−

                                 (69) 

Then, the particular solution is:             0
( ) 2 2 cos( )

( )
n

p t
n

P IZ tω θ
ω ω

= −
−

                                   (70) 

The general solution is the sum of the complementary and the particular solution, then: 

 0
( ) 7 8 2 2cos( ) sin( ) cos( )

( )
n

n t n n
n

P IZ C t C t tω ω ω θ
ω ω

= + + −
−

                          (71) 



 26

Applying the initial conditions we have: 

0
(0) 7 2 2

0 0
( ) 82 2 2 2

( ) ( ) cos( )
( )

[ ( ) cos( )]cos( ) sin( ) cos( )
( ) ( )

n

n

n n
n t n n

n n

P IZ f x C f x

P I P IZ f x t C t t

θ
ω ω

θ ω ω ω θ
ω ω ω ω

= → = +
−

∴ = + + + −
− −

  (72) 

  
(0) 8

0
( ) 8 2 2

0 0

( ) cos( ) sin( ) [cos( ) cos( )]
( )

n
n t n n n

n

Z C

P IZ f x t C t t tω ω ω ω θ
ω ω

= → =

∴ = + + − −
−

                  (73) 

0
( ) 2 2( ) cos( ) [cos cos( ) cos( )]

( )
n

n t n n
n

P IZ f x t t tω θ ω ω θ
ω ω

∴ = + ⋅ + −
−

                   (74) 

The modal deflection at any section of the shaft at any time is given by the product solution: 

 ( , ) ( ) ( )n x t n x n ty Zφ=                                                    (75) 

In which ( )n xφ  is the modal shape defined for a fixed shaft by equation (4.43) and ( )n tZ  is the 

modal response. Substitution of both equations becomes: 

0
( , ) ( ) 2 2

1
{ ( )cos( ) [cos cos( ) cos( )]}

( )
n

n nn x t n x
n n

P Iy f x t t tφ ω θ ω ω θ
ω ω

∞

=
= + ⋅ + −

−∑            (76) 

2

2

2( )3
20 0

0

( )
0

( )
0

, ( ) cosh( ) cos( ) (sinh( ) sin( ))

(2 1)( )
192 2

cos( ) cosh( )
2sin( ) sinh( )
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The solution of the non-homogeneous partial differential modal equation derived constitutes the 

displacement of any point of the shaft at any time at certain driving frequency. 
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Solution of the equation at three different times is shown in the Figure 12 for a driving frequency 

of 4 Hz and taking the properties of the shaft and disk indicated in Table 1. 

 

Figure 12. Deflection of the shaft at different times 

The acceleration expression is given by the second derivative in the time for the equation (76) as: 

 
2

2 0
( , ) ( ) 2 2

1
{ ( ) cos( ) [cos cos( ) cos( )]}

( )
n

n
n

n nn x t n x
n n

Y
P If x t t tωφ ω ω θ ω ω θ
ω ω

∞

=
= − − ⋅ + −

−∑              (77) 

 

3.3 Random Signal Analysis 

The accelerometer used to measure the acceleration signal of the system contains noise, which 

introduces random components that make it difficult to measure data in a deterministic fashion. 

The value τ  is the time difference between the values at which the signal x(t) is sampled. The 

autocorrelation function of a stationary sample function denoted as Rxx(т) is the expect value of 

the product ( ) ( )x t x t τ+ computed along the time axis, this is interpreted as the average of this 

product for many record data. The prefix auto refers to the fact that term ( ) ( )x t x t τ+ is the terms of 

the values of the same sample at two different times. 

 
0

( ) [ ( ) ( )] 1( ) lim ( ) ( )xx xx

T
R E x t x t or R x t x t dt

Tτ
τ τ τ τ

→∞
= + = +∫i                  (78) 

Acceleration signal at the nodes of the shaft were brought to the frequency domain using the 

power spectral density function, which provides the frequency description of the harmonic 

acceleration signal. Noise is reduced when the signal is averaged with the autocorrelation 

function in order to obtain a parameter that represents better the stationary random (noisy) signal. 
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The Fourier transform of a function x(t) is denoted by X(ω) and is defined by 

 ( ) ( ) j tX x t e dtωω
∞

−

−∞

= ∫                                                             (79) 

Last expression transforms the variable x(t) from a function of time into a function of frequency 

ω. The inversion of this transform is performed by 

 
1( ) ( )

2
j tx t X e dωω ω

π

∞

−∞

= ∫                                                              (80) 

The Fourier transform of the autocorrelation function Rxx(т) defines the power spectra density 

(PSD) denoted by                     

 
1( ) ( )

2
j t

xx xxS R e dωω τ τ
π

∞
−

−∞

= ∫                                                  (81)  

Power Spectral Density Amplitudes (PSDA) of the shaft provide the frequency description of the 

noisy acceleration signal, therefore they were taken as the vibration parameter at three different 

positions of the shaft. 

Next figure corresponds to the Power Spectral Density Amplitudes of Acceleration (PSDAA) at 

different positions of the shaft estimated applying the PSD to the simulated signal described by 

the equation (77) introducing the properties indicated in Table 1 and vibrating at a driving 

frequency of 4 Hz.  

 

 

Figure 13. PSD Acceleration Amplitudes at different position of the shaft rotating at 4 Hz 
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3.4 Conclusions 

The harmonic excitation force of the unbalanced disk was derived from a vectorial analysis 

based on two degrees of freedom system and then reduced to one degree of freedom in the 

direction of sensitivity of the accelerometer.  

A partial differential equation of the loaded vibration shaft in the rotating coordinate was derived 

from the theory of mechanics of materials based on the Euler Bernoulli theory for the uncracked 

shaft considered fixed in both ends relative to the accelerometer.  

The solution of the homogeneous problem was obtained by means of separation of variables 

method to solve the eigen value problem, whereby vibration parameter expressions such as: 

natural frequencies, mode shape functions, deflections, and accelerations were derived. The 

modal function solution obtained by this method was employed within the undetermined 

coefficient method to solve the non-homogeneous problem due to the harmonic force induced by 

the unbalance disk in the middle of the shaft. 

For a given driving frequency, the Power Spectral Density Amplitudes of Acceleration (PSDAA) 

obtained at different points of the shaft resulted to be function of the mode shapes and constitute 

a vibration characteristic of the continuous shaft as shown in Figure 13. 

From equation (46) the first three natural frequencies of the shaft were estimated: 5.8295 Hz, 

16.1932 Hz and 31.7386 Hz.  

These results gave the insight to model the cracked shaft employing the finite element method to 

obtain the amplitudes of acceleration signals at the boundaries of discretized elements of the 

shaft including the crack element aimed to obtain the sensitivity vibration parameters to be 

associated with the crack positions and depths. 
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4 Finite Element Model of the Rotating Cracked Shaft 

Finite Element Method was employed to model the cracked and uncracked shaft rotating with the 

unbalance disk acting on the shaft as a constant harmonic force in order to verify theoretically 

the sensitivity and uniqueness of the acceleration response in the frequency domain for different 

crack positions and depths. A code was built employing the software MATLAB 7.1 for the data 

estimation. These parameters were used to solve the inverse problem; knowing the frequency 

response amplitude of acceleration at three different points of the shaft, find the crack 

characteristics by means of Neural Networks. 

 The crack propagation is a slow process, it takes several cycles of rotation for the crack to 

advance a small distance over microns, therefore the shaft was considered with a transverse open 

crack of 0.8 mm width for the purpose of the dynamic analysis as shown in the Figure 14. 

 

Figure 14. Cracked Shaft Model 

The open crack was considered as a small element with reduced stiffness within the finite 

element model. Only one crack is assumed for this study, and external damping was neglected. 

Wireless sensor directly mounted on the shaft allow to analyze the rotating system in a static 

frame relative to the sensor, therefore the model is assumed as a fixed beam carrying the disk and 

experiencing mainly flexural stresses due to the harmonic excitation of the disk at the midspan. 
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4.1 Derivation of the Element Stiffness Matrix 

The model used to simulate the rotor system was constructed using the Euler-Beam Finite 

Element Analysis. Each element’s mode shape was approximated using a cubic equation, in 

order to ensure the continuity of the deflection and the slope at the nodes of the model.  

Figure 15 illustrates a uniform beam segment with distributed inertial and stiffness properties, 

the displacements and rotations are identified and the beam’s mass is assumed uniformly 

distributed throughout its length.  

 

Figure 15. Euler Bernoulli Beam Finite Element 

The stiffness matrix for a beam segment is obtained by establishing the relation between static 

forces and moments designated as P1, P2, P3 and P4 with the corresponding linear and angular 

displacements δ1, δ2, δ3 and δ4 at the end of the beam segment as indicated in the last figure. 

These parameters are called the nodal coordinates. The differential equation for small transverse 

displacement of a beam is given by: 

 
2

2 ( )d yEI M x
dx

=                                                              (82)                             

Where M(x) is the bending moment and y is the transverse displacement. This equation is 

equivalent to: 

4

4 ( )d yEI P x
dx

=                                                      (83)                        

             ( ) ( )( ) ( )dM x dV xSince V x P x
dx dx

= =                                       (84)                        
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Where P(x) is the beam load per unit length and V(x) is the shear force. 

The stiffness coefficient kij is defined as the force at nodal coordinate i due to a unit 

displacement at nodal coordinate j while all other nodal coordinates are maintained at zero 

displacement. In order to find the expressions of the stiffness coefficients the static deflection 

curves due to a unit displacement at nodal coordinate should be found considering the element 

free of loads P(x)=0, except for the forces in the nodes P1, P2, P3 and P4. In this case equation 

(83) is reduced to:      

     
4

4 0d y
dx

=                                                                     (85)                        

Successive integrations of equation  (85) yields 

3 2
2 3 2

1 1 2 1 2 3 1 2 3 43 2

1 1 1, , ,
2 6 2

d y d y dyC C x C C x C x C y C x C x C x C
dx dx dx

= = + = + + = + + +                         

(86)                        

The constants of integration are calculated using the boundary conditions for each static 

deflection curve resulting in an algebraic system of four equations to determine the constants C1, 

C2, C3 and C4. 

    

Figure 16. Static deflection curves due to unit displacement at nodal coordinate 1 

The boundary conditions to obtain the function ψ1(x) shown in Figure 16 (a) are as follows: 

          (0)0 (0) 1 0dyat x y and
dx

= = =                                      (87)                         
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( )( ) 0 0dy Lat x L y L and
dx

= = =                                    (88)                         

Substituting last boundary conditions in the equation (86) and solving the algebraic system we 

get the deflected curve equation of the beam segment shown in the Figure 16 (a). 

  
2 3

1( ) 1 3 2x xx
L L

ψ ⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (89) 

Proceeding in the same manner, we obtain the equations of the deflected curves for the other 

cases. 

 
2 2 3 2

2 3 4( ) 1 , ( ) 3 2 , ( ) 1x x x x xx x x x
L L L L L

ψ ψ ψ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (90) 

These functions are called the Hermitian shape functions and the displacement resulting from an 

arbitrary nodal displacement δi=1 is ψi(x) δi. Thus the total deflection y(x) due to arbitrary 

displacements at the nodal coordinates of the beam is obtained by superposition as 

1 1 2 2 3 3 4 4( ) ( ) ( ) ( ) ( )y x x x x xψ δ ψ δ ψ δ ψ δ= + + +                                   (91)                        

Applying the principle of virtual work, which states that for an elastic system in equilibrium, the 

work done by the external forces is equal to the work of internal forces during the virtual 

displacement. The external work WE is equal to the product of the force kij displaced by δ1=1, 

that is 

             12 1EW k δ=                                                                   (92)                        

Considering the work performed by the bending moment, we obtain for the internal work 

              
0

( )
L

IW M x dθ= ∫                                                             (93)                         

 The transverse deflection of the beam is given by the equation (89), which is related to the 

bending moment through the differential equation. Substituting the second derivative we get 
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2 ''( ) ( )EI x M xψ =                                                                    (94)                             

The angular deflection dθ produced during the virtual displacement is related to the resulting 

transverse deflection of the beam ψ1(x) by 

     
2

1
1 12

( ) ''( ) ''( )d xd x d x dx
dx dx

ψθ ψ θ ψ= = ⇒ =                                        (95)                             

Equating the external virtual work WE with the internal virtual work WI from above equations 

give the stiffness coefficient as 

'' ''
12 1 2

0

( ) ( )
L

k EI x x dxψ ψ= ∫                                                          (96)                             

Taking the derivative twice for the expressions ψ1 and ψ2 and replacing them in the last equation 

we get 

12 122 3 2 2
0

6 12 4 6 6L x x EIk EI k
L L L L L
− −⎛ ⎞⎛ ⎞= + + ⇒ =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠∫                        (97)                             

In general, any stiffness coefficient associated with the beam flexure can be expressed as 

        
'' ''

0

( ) ( )
L

ij i jk E I x x d xψ ψ= ∫                                       (98)                         

Evaluating all the coefficients of the stiffness matrix will result in the relation between the forces 

{P} and the displacement vector {δ} at the nodal coordinates with the beam element stiffness 

matrix [k] as shown 

1 1
2 2

2 2
3

3 3
2 2

4 4

12 6 12 6
6 4 6 2

{ } [ ]{ }
12 6 12 6

6 2 6 4

P L L
P L L L LEI or P k
P L LL

L L L LP

δ
δ

δ
δ
δ

−⎧ ⎫ ⎧ ⎫⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥−⎪ ⎪ ⎪ ⎪⎢ ⎥= =⎨ ⎬ ⎨ ⎬⎢ ⎥− − −⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪−⎣ ⎦⎩ ⎭ ⎩ ⎭

                    (99)                             
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4.2 Derivation of the Consistent Element Mass Matrix 

The mass coefficients mij corresponding to the nodal coordinates of a beam element are defined 

as the force at the nodal coordinate i due to unit acceleration at nodal coordinate j while the other 

coordinates remain at zero acceleration. They are derived in the same fashion as the element 

stiffness coefficients. In the consistent mass method, it is assumed that the deflections resulting 

from unit dynamic displacements at the nodal coordinates of the beam element are given by the 

same shape functions ψ1(x), ψ2(x), ψ3(x) and ψ4(x). Equating the external and internal virtual 

work results in the elemental mass coefficient expression 

0

( )
L

ij i jm m x dxψψ= ∫                                                   (100)                         

Calculating each beam mass coefficient using the last equation gives the following relation 

between inertial forces and acceleration at nodal coordinates 

1
1

2 2
22

3
3

2 2
4

4

156 22 54 13
22 4 13 3
54 13 156 22420
13 3 22 4

P L L
P L L L LmL
P L L

L L L LP

δ

δ

δ

δ

••

••

••

••

⎧ ⎫
⎪ ⎪−⎧ ⎫ ⎡ ⎤
⎪ ⎪⎪ ⎪ ⎢ ⎥−⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥−⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪− − −⎣ ⎦⎩ ⎭ ⎪ ⎪
⎩ ⎭

                        (101)                       

4.3 Reduction of Dynamic Global Matrices 

The system is discretized into six numbered elements represented in circles, degrees of freedom 

are shown with arrows and the connectivity nodes with points as shown in Figure 17. The 

dynamic condensation method proposed by Paz (1984) [20] as an extension of the Static 

Condensation Method is applied. Fixed degrees of freedom are reduced by expressing them in 

terms of the independent or primary degrees of freedom, the secondary degrees of freedom {Ys} 

(slopes 1-5 ) are condensed, and the primary degrees of freedom {Yp} are retained (deflections 

6-10). The secondary degrees of freedom are arranged at the first s coordinates and the primary 

degrees of freedom are the last p coordinates. Thus the degrees of freedom are numbered leaving 
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the fixed nodal coordinates at last. In this case four of the nodal coordinates named as eleven are 

constrained and we have ten free coordinates corresponding to slope and displacement. 

 

Figure 17. Fixed shaft divided in six elements and its nodal coordinates 

4.3.1 Assembly of the System Stiffness Matrix 

After establishing the stiffness equations for a uniform beam element, the relation between nodal 

displacement and nodal forces and moments is established for the entire structure considering the 

crack as a small element as shown in the Figure 17. The crack is represented by the element two, 

which has different second moment of inertia from the other elements as shown in the next figure 

for the cracked and uncracked shaft:  

 

Figure 18 Second moments of inertia of the cracked and uncracked shaft 
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In order to increase the deflection of the rotating shaft, there was selected a plastic shaft of 

Acetal Delrin with the properties indicated in Table 1. 

The stiffness matrix for each element is obtained systematically using the equation (99) and the 

corresponding indexes are assigned in order to obtain the system stiffness coefficients of the 

system as follows 

 

      (102)   

The system stiffness matrix is  

 (k1(4,4)+k2(2,2))    k2(4,2)              0                  0                 0                (k1(3,4)+k2(1,2))      k2(3,2)               0                 0                 0

 k2(2,4)           

K =

(k2(4,4)+k3(2,2))  k3(4,2)            0                 0                  k2(1,4)          (k2(3,4)+k3(1,2))      k3(3,2)           0                 0

 0                 k3(2,4)           (k3(4,4)+k4(2,2))  k4(4,2)           0                   0                 k3(1,4)          (k3(3,4)+k4(1,2))      k4(3,2)           0

 0                 0                 k4(2,4)           (k4(4,4)+k5(2,2))   k5(4,2)            0                 0                k4(1,4)           (k4(3,4)+k5(1,2)) k5(3,2)

 0                 0                 0                 k5(2,4)           (k5(4,4)+k6(2,2))        0                 0                0                k5(1,4)           (k5(3,4)+k6(1,2))

 (k1(4,3)+k2(2,1))     k2(4,1)           0                 0                 0                 (k1(3,3)+k2(1,1))         k2(3,1)             0                    0                  0

 k2(2,3)           (k2(4,3)+k3(2,1)) k3(4,1)           0                 0                  k2(1,3)         (k2(3,3)+k3(1,1))       k3(3,1)              0                  0

 0                 k3(2,3)      (k3(4,3)+k4(2,1))      k4(4,1)           0                  0                   k3(1,3)         (k3(3,3)+k4(1,1))       k4(3,1)             0

 0                 0                 k4(2,3)        (k4(4,3)+k5(2,1))    k5(4,1)            0                0                k4(1,3)           (k4(3,3)+k5(1,1))    k5(3,1)

 0                 0                 0                  k5(2,3)          (k5(4,3)+k6(2,1))      0                0                0                   k5(1,3)          (k5(3,3)+k6(1,1))

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (103) 

4.3.2 System Mass Matrix 

After evaluating the elemental mass coefficients the entire system is assembled exactly in the 

same procedure as the stiffness matrix for the system giving: 
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(m1(4,4)+m2(2,2))    m2(4,2)             0                     0                 0                (m1(3,4)+m2(1,2))    m2(3,2)                          0                 0                    0
m2(2,4

M=

)         (m2(4,4)+m3(2,2))   m3(4,2)               0                 0                 m2(1,4)      (m2(3,4)+m3(1,2))                 m3(3,2)           0                    0
0                       m3(2,4)   (m3(4,4)+m4(2,2))          m4(4,2)         0                   0                             m3(1,4)          (m3(3,4)+m4(1,2)) m4(3,2)           0
0                       0               m4(2,4)       (m4(4,4)+m5(2,2))          m5(4,2)         0                 0                m4(1,4)           (m4(3,4)+m5(1,2))        m5(3,2)
0                       0                 0                 m5(2,4)           (m5(4,4)+m6(2,2))        0                 0                0                 m5(1,4)              (m5(3,4)+m6(1,2))
(m1(4,3)+m2(2,1))         m2(4,1)           0                 0                      0                 (m1(3,3)+m2(1,1))           m2(3,1)                 0                 0                 0
m2(2,3)           (m2(4,3)+m3(2,1))    m3(4,1)           0                      0                  m2(1,3)         (m2(3,3)+m3(1,1))            m3(3,1)           0                  0
0                     m3(2,3)           (m3(4,3)+m4(2,1))     m4(4,1)           0                  0                m3(1,3)         (m3(3,3)+m4(1,1))            m4(3,1)             0
0                      0                 m4(2,3)     (m4(4,3)+m5(2,1))          m5(4,1)            0                0                m4(1,3)         (m4(3,3)+m5(1,1))          m5(3,1)
0                      0                 0                  m5(2,3)          (m5(4,3)+m6(2,1))           0                0                  0                m5(1,3)             (m5(3,3)+m6(1,1))

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (104) 

Once global stiffness and mass matrices are constructed the equations of free motion can be 

written in partitioned matrix form as 

 
[ ] [ ][ ] { } [ ] { } {0}| |

[ ] [ ] [ ] [ ] { } {0}{ }

sp spss s ss s

ps pp ps pp p
p

M KM Y K Y
M M K K YY

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪+ =⎢ ⎥ ⎢ ⎥⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎢ ⎥ ⎢ ⎥ ⎩ ⎭⎪ ⎪⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎩ ⎭⎩ ⎭

ii

ii                                 (105)                       

Substituting {y}={Y}cos(ωt-θ ) in the last equation results in the generalized eigen-problem 

22

2 2

[ ] [ ][ ] [ ] { } {0}|
[ ] [ ] [ ] [ ] { } {0}

sp i spss i ss s

ps i ps pp i pp p

K MK M Y
K M K M Y

ωω
ω ω

⎡ ⎤ ⎧ ⎫− ⎧ ⎫− ⎪ ⎪ =⎢ ⎥ ⎨ ⎬ ⎨ ⎬− −⎢ ⎥ ⎩ ⎭⎪ ⎪⎣ ⎦ ⎩ ⎭
                                (106)                

 

The first step for obtaining the natural frequencies is the elimination of the secondary coordinates 

{Ys} employing the Gauss-Jordan elimination. Then the equation (106) is reduced to 

      
{ }[ ] [ ] {0}|

[ ] { } {0}[ ]

i s

pi

YI T
O YD

−

−

⎡ ⎤ ⎧ ⎫ ⎧ ⎫− ⎪ ⎪⎢ ⎥ =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎩ ⎭⎪ ⎪⎩ ⎭⎣ ⎦
                                                              (107)                           

The last equation can be written as 

{ } [ ]{ }is pY T Y
−

=                                                                (108)                         

The ith modal shape {Y}i can be expressed as  
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[ ] { } { }

{ }{ } [ ]{ } : [ ] i s
i i p i i

p

T Y
Y T Y where T and Y

I Y

⎧ ⎫⎡ ⎤⎡ ⎤ ⎪ ⎪⎣ ⎦= = =⎢ ⎥ ⎨ ⎬
⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎩ ⎭

 (109) 

The reduced stiffness and mass matrices are calculated as 

[ ]2
T

i i i i i iK D M and M T M Tω
− − − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                                      (110)       

                            

4.3.2.1 Eigen Values Estimation 

The natural frequencies and modal shapes are found by solving the undamped free vibration 

problem, that is 

    { } { }2 0iiK M aω
− −⎡ ⎤⎡ ⎤ ⎡ ⎤− =⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

                                                      (111)                            

                            

Requiring for a nontrivial solution that       

                      2[ ] [ ] 0K Mω
− −

− =                                                                     (112)                             

Substituting in this last equation [ K ] and [ ]M  respectively, and obtaining the cubic expression 

of the determinant in terms of ω, the first five modal frequencies of the system { ω } are found 

by solving the roots of the cubic equation.  

4.3.2.2 Modal Shapes Estimation 

The modal shapes are determined by solving two of the equations in (111) after substituting the 

obtained natural frequencies and letting the first element for each modal shape equal to one 

2

3

1
{ }i i

i

a a
a

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

                                                                        (113)                             
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The modal shapes are normalized by dividing each element of the modal shapes by the 

corresponding values of
2

i ijm a∑ . 

4.3.2.3 Modal Matrix Assemble 

The normalized modal shapes are arranged in columns to form the modal matrix 

[ ]1 2 3[ ] { }{ }{ }p a a aΦ =                                                 (114) 

The modal shapes in terms of the 10 original coordinates are obtained by 

[ ] [ ] [ ]pTΦ = Φ                                                            (115)                             

4.4 The Steady State Response Estimation 

The force vector of the system and the modal matrix are employed to estimate the steady state 

response of the shaft subjected to the harmonic force 0 cos( )F tω θ− acting on the node 4 due to 

the unbalance disk. The force vector is assembled as follows.  

{ }00 0 cos( ) 0 0 'F F tω θ= −                                                       (116)                            

                        

Neglecting damping and assuming 0θ = , the system can be represented with the normal equation 

2 1
0

1
cos( )

N

n n n n n i
i

Z Z P t where P Fω ω −

=

+ = = Φ∑                                (117)                        

Solving the nonhomegeneous ordinary differential equation (117) employing the undetermined 

coefficient method as explained in [26] and applying the initial conditions we have the deflection 

solution of the nodal coordinates in the time as follows:                                             

2 2 [cos( ) cos( )]n
n n

n

PZ t tω ω
ω ω

= −
−

                                           (118)           

The deflection of the nodal coordinates are found from the transformation  
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{ } [ ]{ } [ ]ny Z where is the modal matrix= Φ Φ                         (119)                         

2 2
2 2 [ cos( ) cos( )]

( )n n n
n

PnZ t tω ω ω ω
ω ω

= −
−

                                 (120)  

 { } [ ]{ } [ ]ny Z where is the modal matrix= Φ Φ                        (121) 

Substituting the values of { }nZ  into equation (119) gives the amplitudes of deflection at the 

nodal coordinates. The second derivative corresponds to the amplitudes of acceleration at the 

nodal coordinates, equation (121). 

4.5 Results from the Finite Element Model 

Three sets of data were considered for the simulation as shown in Table 2 : Case 1 and 2 where 

considered for the neural network architecture selection. Case 3 was considered for evaluate the 

predictive neural network performance.  

Table 2. Simulation Data Sets  

CASE # Crack 
Depths

Crack Depth 
Increment [mm]

# Crack 
Positions

Crack Position 
Increment [mm]

Driving 
Frequency [Hz]

Total Number of 
Data

1 4 1.19 9 12.7 4.8 36
2 4 1.19 6 25.4 4.8 24
3 4 1 6 25.4 4.8 24  

Both; mechanical properties of the shaft (taken from the technical chart of the fabricant) and 

geometrical properties were given as indicated in the Table 1. Simulation study was conduced 

developing a code in Matlab 7.1 and the Signal Processing Toolbox. The driving frequency of 

4.8 Hz was taken as close to the first natural frequency as possible, but within the rage of 

sensitivity of the accelerometer for all cases.  

4.5.1 Changes of the Vibration Parameters 

The first three natural frequencies of the uncracked shaft were estimated with the finite element 

model giving 10 Hz, 34.6 Hz and 72.3 Hz respectively. In this study only the first mode of 

vibration was considered. Figure 19 (a) and (b) show how the first natural frequency decreases at 
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different crack scenarios, also how crack position is more sensitive to frequency reduction than 

crack depth.   

                      

                                              (a)                                                                                           (b) 

Figure 19. Change in frequency for different crack depths and positions (a) First harmonic 

(b) Frequency difference between cracked and uncracked shaft 

The following plots show how the vibration parameters: mode shapes, acceleration amplitudes 

and its corresponding PSDAA change between the cracked and uncracked shaft at the nodal 

coordinates. 7 connectivity nodes were considered numbered from left to right as shown in 

Figure 17. Nodes 2 and 3 were moved with the crack position and the rest remained at the same 

position for the simulation.  

 

Figure 20. Mode Shapes of the shaft with crack depth =4.76 mm, crack position =140 mm 
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Dashed lines represent the cracked shaft and continuous lines represent the uncracked shaft. 

Nodes 4, 5 and 6 were considered the places for extracting the amplitudes of acceleration from 

the shaft.  

                                     
                                             (a)                                                                                               (b)                                              

Figure 21. Amplitude of acceleration at the nodal coordinates of the shaft with                   

crack depth =4.76 mm at 4.8 Hz driving frequency (a) crack position=76 mm 

(b) crack position =140 mm 

The following plots show two acceleration signals in the time obtained from the analytical model 

from nodes 4 and 6. Figure 22 (b) shows how amplitude of acceleration response decreases with 

the presence of crack and how this change increases when the crack approaches to the middle. 

                
                                                 (a)                                                                                      (b) 

Figure 22. Acceleration of the shaft at node 4 with crack depth =4.76 mm and                        

a driving frequency of 4.8 Hz (a) crack position=76 mm (b) crack position =140 

mm 
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The auto spectral density frequency response amplitudes at three nodes of the structure were 

taken as the vibrating parameters as shown in the next figures for signal simulated at the node 4 

at two different crack positions: 

         

                                           (a)                                                                        (b) 

Figure 23 PSD of acceleration signals at node 4 for the shaft with crack depth =4.76 mm 

and driving frequency of 4.8 Hz (a) Crack at 76 mm (b) Crack at 140 mm 

The following plot shows the behavior of the PSD frequency response amplitude difference 

between the cracked and uncracked shaft for different crack depths and positions. 

    
                                            (a)                                                                                            (b) 

Figure 24 Difference in PSD-Amplitudes of acceleration for (a) Different crack positions  

(b) Different crack depths 
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                                             (a)                                                                                                 (b) 

Figure 25 Response Surfaces of the Power Spectral Density Difference between               

Cracked and Uncracked shaft (a) Node 4 and (b) Node 5 

Simulated results obtained by the finite element method shown in Figure 24 and Figure 25 

demonstrate the uniqueness of the amplitudes of the power spectral densities difference between 

cracked and uncracked shaft for different crack depths and positions within a range of 63-140 

mm. However, very low sensitivity results were obtained when the crack approached to the fixed 

end of the shaft within the range of 25.4 - 63 mm for the three nodes evaluated.   
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5 Identification of Crack Size and Location Based on Neural 
Networks Method 

 

Multilayer feedforward neural networks with Backpropagation algorithm were employed in this 

study as a non linear function approximator to establish a relationship between input vectors and 

target values. MATLAB 7.1 Neural Network Toolbox functions were used for developing the 

four steps of the Backpropagation training: Assemble of the training data, creation of the neural 

network object, training the network, simulating the network to new inputs. The performance of 

the network is measured by comparing the output of the network with the corresponding target 

value. 

The Backpropagation algorithm is an extension of the steepest descendent algorithm in which the 

performance index is the mean square error, and can be used to train multilayer networks for 

minimizing the squared error. The Backpropagation algorithm uses the chain rule in order to 

compute the derivatives of the squared error with respect to the weights and biases in the hidden 

layers. It is called Backpropagation because the derivatives are computed first at the last layer of 

the network, and then propagated backward through the network, using the chain rule, to 

compute the derivatives in the hidden layers. 

The index that measures the neural network performance is given by the mean squared error. The 

algorithm should adjust the network parameters in order to minimize the mean square error:  

 
2 2( ) [ ] [( ) ]F x E e E t a= = −                                              (122) 

Where x is the vector of network weights and biases, E is the expectation and e is the error 

vector defined as the difference between the targets and the output of the network. For multiple 

outputs this generalizes: 

2( ) [ ] [( ) ( )]TF x E e e E t a t a= = − −                                      (123) 

The expectation of the squared error is replaced by the squared error at iteration k as follows: 

 ˆ ( ) ( ( ) ( )) ( ( ) ( )) ( ) ( )T TF x t k a k t k a k e k e k= − − =                                 (124) 
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A neural network is trained when the learning algorithm find the weight matrices and bias vector 

in such way that the ˆ ( )F x at the kth iteration is minimized.  

The Backpropagation training algorithm has the following steps: 

1. The input propagated forward through the network: 

 0a P=                           (125) 

 1 1 1 1( ) 0,1,..., 1m m m m ma f W a b for m M+ + + += + = −  (126) 

 Ma a=  (127) 

2. The sensitivities are propagated backward through the network. 

 - First the last layer sensitivity is computed: 

 2 ( )( )M Ms F n t a= − −  (128) 

- The other sensitivities are computed by backpropagating the sensitivity of the last layer: 

 1 1( )( ) , 1,..., 2,1.m m m m T ms F n W s for m M+ += = −  (129) 

3. The weights and biases are updated using the approximate steepest descendent rule: 

 

1( 1) ( ) ( )
( 1) ( )

, ,

m m m m T

m m m

W k W k s a
b k b k s

m number of layer k iteration number learning rate

α

α
α

−+ = −

+ = −
= = =

 (130) 

Last iteration process stops when until the difference of the network response and data selected 

for training reaches some acceptable level. 

5.1.1 Assemble of the training data 

Known inputs P and targets T were obtained first theoretically by the simulation with finite 

element method and then experimentally employing the wireless accelerometer. The input vector 

(P) was created from the difference in the amplitudes of acceleration response between cracked 

and uncracked shaft at nodes 4, 5 and 6. Target matrices (T) were constructed by considering 
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known locations and depths of the crack to be associated to the pattern of amplitudes of 

acceleration response differences.  

 

Figure 26. Training data sets: Inputs = (amplitudes of acceleration frequency response at 

nodes 4, 5 and 6,  and Outputs = (crack positions and depths) 

There was considered two sizes for the input matrices and target vectors for training in order to 

determine its significance in the performance of the network: one with 6 positions and 4 depths 

for 24 total points and another with 9 positions and 4 depths for 36 total points. 

5.1.2 Creation of the Neural Network Object 

A network with two layers was studied considering that for a network to be able to generalize, it 

should have fewer parameters than the data points used for training, and that it have been shown 

that two layer networks with a nonlinear transfer function in the hidden layer and a linear transfer 

function in the output layer can approximate virtually any function of interest to any degree of 

accuracy as established by Hagan [6]. 

A factorial experimental design was performed to identify the parameters that affect the 

performance of the nonlinear response of the network in order to find the rules for the neural 

network model identification. This technique was based on the study made by Ramirez Beltran 

[21]. A three factorial design was developed considering: (1) the number of input points that will 

be used for training the network within 2 levels: 24 and 36 points, which corresponds to 6 and 9 

crack positions with 4 crack depths.(2) the type of transfer function used in the hidden layer 

considering 2 levels for this qualitative factor: a Sigmoidal and a Hyperbolic Tangent transfer 
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function, and (3) the number of neurons in the hidden layer, considering 8 levels for this factor. 

The transfer functions employed in the hidden layer were: 

1 2

1: ( ) : ( )
1

n n

n n n

e eSigmoidal function f n Tangent function f n
e e e

n network input

−

− −

−
= =

+ +
=

          (131)  

Simulated data obtained by the finite element model where used first for training and then for 

testing the network. Deviations in crack depth and crack position were integrated in one variable 

named “Total Error” which was defined as the square root of the summation of the squared 

errors. The “Total Error” was assumed as the response variable of the system, which were treated 

for the analysis of variance (ANOVA). Five replications were obtained for each treatment 

combination for a total of (2)x(2)x(8)x(5)=160 experiments. The experiment was conducted to 

establish statistically the rules to identify the structure of the network. Matlab 7.1 and the neural 

networks toolbox functions were employed to develop a code for training the network with the 

Backpropagation algorithm. Experiment results in Table 3 corresponding to the analysis of 

variance made in Minitab 14 shown that the performance of the network depends simultaneously 

on the number of data, number of neurons and the interaction of both.   

Table 3. Analysis of variance for the Total Error of the simulated data 

Source DF Seq SS Adj SS Adj MS F P
NumData 1 24.764 24.764 24.764 19.98 0
Function 1 0.109 0.109 0.109 0.09 0.768
Neurons 7 81.319 81.319 11.617 9.37 0
NumData*Function 1 0.006 0.006 0.006 0.01 0.942
NumData*Neurons 7 34.646 34.646 4.949 3.99 0.001
Function*Neurons 7 20.221 20.221 2.889 2.33 0.029
NumData*Function*Neurons 7 11.168 11.168 1.595 1.29 0.262
Error 128 158.664 158.664 1.24
Total 159 330.898  

 

Next figures show that performance of the network is good when only few neurons and higher 

set of training data are used, whereas, poor consistency is exhibited when a large number of 

neurons are used. 
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(a)    (b)    

  Figure 27. Predicted average error from simulated data (a) Crack position with a 

sigmoidal transfer function (b) Crack depth with sigmoidal transfer function 
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(c )                                                                                      (d) 

Figure 28. Predicted average error from simulated data (c) Crack position with a 

hyperbolic tangent function (d) Crack depth with a hyperbolic tangent 

function 
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                                                (e)                                                                                        (f) 

Figure 29. Predicted average error from simulated data (e) Predicted total error with 

Sigmoidal transfer function (f) Predicted total error with  Hyperbolic tangent 

transfer function 
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Simulating results indicate that the best structure is the one that reveals the lowest average error 

with the smallest number of neurons, therefore a single neuron in the hidden layer was 

considered with a sigmoidal transfer function for the network with one input vector P of 3 x 1 

with three differences in amplitude of acceleration spectral densities: P1,P2 and P3 , and two 

neurons with linear transfer functions in the output layer that give the output vector 
a corresponding to crack depth and position.  

 

Figure 30. Neural network structure for the predictive model with simulated data 

The icons and notation presented in this figure were taken from Hagan [6], where W(m)  

represents the weight matrix of the mth layer, b(m) is the bias vector of the mth layer, n(m) is the 

net input vector to the network in the mth layer, a(m) is the net output of the network in the mth 

layer. Thus the output of the network can be expressed by the following nested function: 

 (2) (2) (2) (1) (1) (1) (2){ ( ) }a f w f w P b b= + +                                                      (132) 

The output of the predictive network is a(2), and f(m) is the transfer function of the mth layer. 

New simulated data unknown for the selected network was tested with the selected neural 

network and the performance is shown in the next figures: 



 52

     

                                   (a)                                                                             (b) 

Figure 31. Performance of the network predictor (a) Crack positions (b) Crack depths 

Figure 31 shows higher differences in crack position predictions close to the shaft support. This 

behavior can be attributed to the low sensitivity of the vibration parameters obtained in the 

simulating experiment. 

Next table summarizes the performance of the selected artificial neural network: 

Table 4. Performance of the neural network for the simulating data 

Average 
error in 
positon

Minimal 
error in 
position 

Maximal 
error in 
position

Average 
error in 
depth

Minimal 
error in 
depth 

Maximal 
error in 
depth 

7.2119 0.0178 16.8989 0.6578 0.1257 2.0365

NEURAL NETWORK PERFORMACE (IN MILIMETERS)
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6 Experimental Study 

Experimental modal analysis was used in this research to extract differences in magnitude of the 

spectral density of acceleration frequency response from the linear and time invariant rotating 

shaft working at a constant driving frequency below the first harmonic. Extracted data were 

arranged in matrices and introduced into the Neural Network model to solve the inverse problem 

of relating the acceleration amplitude frequency responses at three different positions of the shaft 

with the failure characteristics: crack depth and position. The process of determining the 

amplitudes of the frequency response from the experimental model involved signal processing 

and random signal analysis. 

6.1 Signal Processing 

The primary concern of signal processing is the conversion of the analog signals of the 

accelerometer into a corresponding sequence of digital values that accurately describe the time 

varying characteristics of the inputs to, and responses from the system. 

6.1.1 The Fast Fourier Transform 

Once the digital record of the signal is available, the discrete version of the Fourier transform is 

performed to transform the data from time domain to the frequency domain. This transform 

provides a series of discrete time history value by accomplishing the series defined by 

0
( )

/ 2

12
2 2( cos( ) sin( ) 1,2,...

kt

N
k k

i i
i

ax
it ita b k N

T T
π π

=
= + + =∑              (133)                         

Where the digital coefficients are given by 

0
1 1 1

1 1 2 1 2cos( ) sin( )
N N N

k i k i k
k k k

ik ika x a x b x
N N N N N

π π
= = =

= = =∑ ∑ ∑        (134)                        

The software Matlab 7.1 and the signal processing toolbox were used as analyzer in this study to 

calculate the coefficients of equation (134) given the digital record ( )kt
x for the measured signal. 

The number of samples is fixed for the analyzer and in this study N is 240 samples. 
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Last equations can also be written in matrix form as 

{ } [ ]{ }x C a=                                                     (135)                         

Where {x} is the vector of samples with elements ( )kt
x and {a} is the vector of the spectral 

coefficients: a0, ai and bi. The matrix C consists of elements containing the cosine and sine 

coefficients as indicated in equation (133).  The solution of the system for the spectral 

coefficients is given by 

1{ } [ ] { }a C x−=                                                     (136) 

The computation of the inverse matrix [C]-1 is called the Fast Fourier Transform (FFT). While 

{x} represents the digital version, {a} represents the spectral coefficients of the frequency 

content of the signal response.  

6.1.2 Errors 

The accurate measurement of frequency response measurements depends heavily on minimizing 

the errors (noise) involved with the digital signal processing. These errors are generally grouped 

in two categories: variance and bias. The variance part of the error is due to random deviation of 

each sample function from the mean. Statistically, if sufficient sample measurements are 

evaluated (averages), the averaged estimate will closely approximate the expected function with 

a high degree of confidence. The bias portion of the error, on the other hand is due to a system 

characteristic or measure procedure consistently resulting in an incorrect estimate.  The general 

errors are aliasing and leakage. Knowledge of the form and origin of these errors were very 

important in reducing the resultant effect in the frequency response amplitudes estimation. 

6.1.2.1 Aliasing 

A typical error introduced in digital signal processing due to an improper sampling time is called 

aliasing, which results from the A/D conversion and refers to the misrepresentation of the analog 

signal the digital record, this error is classified as bias. Since any measurement instrument is 

limited in time resolution, or frequency bandwidth, and if the sampling rate is too slow to catch 
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the details of the analog signal, the digital representation will cause high frequencies to appear as 

low frequencies. For the reduction of this error the sampling frequency is two times as high as 

the maximum natural frequency of the system as stated by the Shannon’s Sampling Theorem. 

max
1 2samp Nyq NyqF F F F
t

= = ⋅ ≥
∆

                                     (137)                 

The Nyquist frequency is the theoretical limit for the maximum frequency. In this study, the 

sampling frequency is 1000(Hz) and the natural frequency is lower than 100(Hz), therefore, this 

sampling frequency is high enough to reduce aliasing error and satisfy the requirement of the 

data acquisition.  

6.1.2.2 Leakage 

The leakage error is produced by the truncation of the signal in the time domain(T), which  

violates the condition for the Fast Fourier Transform algorithm where the periodic signal must be 

sampled over a finite time multiple of its period. Erroneous frequencies appear in the digital 

representation if the signal is cut off inside a period because the digital Fourier transform of the 

finite length of signal assumes that the signal is periodic within the sample record length. Thus 

the actual frequency will “leak” into a number of fictitious frequencies. 

This problem can be reduced by using a window function, which involves multiplying the 

original signal by a weighting signal to be zero outside the sampling period. In this study 

Hanning window is employed using the software Matlab 7.1. 

6.2 Wireless Sensor Development 

An accelerometer ADXL202E with duty cycle output was conditioned to work wireless by 

means of the transmitter TXM-418-LC and the receiver RXM-418-LC-C. The accelerometer 

used is capable of measuring positive and negative absolute accelerations at least +/- 2g. The 

sensor is a surface micro-machined polysilicon structure built on top of silicon waffer. 

Polysilicon springs suspended the structure over the surface of the waffer and provoke a 

resistance against acceleration forces. Deflection of the structure is measured using a differential 

capacitor that consists of independent fixed plates and central plates attached to the moving mass 



 56

as shown in the Figure 32 (a). The resulting output is a square wave whose amplitude is 

proportional to acceleration as shown in the Figure 32 (b). 

                            

                                    (a)                                                                         (b)  

Figure 32. Representation of the Accelerometer and duty cycle [3] (a) Accelerometer                        

(b) Analog duty cycle signal  

Acceleration will deflect the suspension blades and unbalance the differential capacitor. 

Accelerometer is made on a single IC Chip 5mm x 5 mm x 2 mm operating with voltage rage of 

3V to 5.25 V DC. The photolithography technique was employed for the fabrication of the 

circuits. The duty cycle period was adjusted with the resistor (Rset) of 250 KΩ and the capacitors 

of 0.1 µF were selected as a physical low pass filter limiting frequencies over 50 Hz.  

6.2.1 Circuit Design Process 

In the first step the lay out of each circuit is made employing CAD software AutoCAD 2005. 

The circuits are distributed on the area of the presensitized PCB board to optimize the process, 

the connections were made in black and the background was white for all the circuits as shown 

and the circuits are printed on a transparence film as shown in Figure 33 which is used as a 

protection film for the next step of the circuit fabrication. 
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(a) (b) 

Figure 33. (a) Circuit designs for the PCB  (b) Accelerometer block diagram taken from [3]  

6.2.2 Exposing the Pre-sensitized P.C.B 

The black protection of the PCB board is removed. The board is exposed in Kinsten Exposure 

Box for 60-90 seconds. Circuit transparency is put on top of the board then a glass sheet in the 

top press them like a sandwich and the vacuum pump is turned on in order to obtain good contact 

between the film and the board. The UV light is turned on for 8-10 minutes.  

6.2.3 Developing 

The board immersed in AZ developer and deionized water. The board is held with tweezers and 

agitated mildly until the photoresist exposed to the UV light has been fully dissolved till the 

patterned part on the copper become legible, the same as the mask pattern. The board is rinsed 

with running water.  

6.2.4 Etching 

Board is etched into etchant E1-G PCB with artwork up. The board is agitated gently, till the 

unwanted copper foil etched away, only the circuit pattern left (It takes15-60 minutes). The 

board is rinsed with plenty water. 

6.2.5 Soldering the Circuit 

 After the PCB board is ready, each circuit board is cut with a saw and then the integrated 

circuits are soldered according to the corresponding circuit design. The analog voltage signal of 
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the accelerometer shown in Figure 34 (a) is sent by the transmitter module in radio frequency 

waves at 418 KHz. This radio frequency signal is acquired by the receiver module shown in 

Figure 34 (b) and sent to the oscilloscope in parallel to the analyzer through a data acquisition 

board and data acquisition card as shown below in Figure 35. The signal is sampled at 10000 

KHz by the acquisition board NI-6024E and the recorded data is then processed with Matlab to 

obtain a digital acceleration signal record. 

         
                                         (a)                                                                                          (b) 

Figure 34 (a) Accelerometer and transmitter circuits (b) Receiver circuit 

 There were developed two accelerometers working at different frequencies at the same time, but 

only one of them was employed in order to reduce errors coming from two different sources in 

the experiment.  

After some tests, the shape of the antenna was modified and located closer to the fault simulator 

to reduce noise. 

6.2.6 Sensitivity of the wireless sensor  

The wireless sensor sensitivity was calculated pointing the axis directly to the earth with a help 

of a thin wire and a weight. The 1 g accelerometer output was saved and then the sensor was 

turned 180ο to measure -1 g. Using the two duty cycle readings from the oscilloscope the 

sensitivity was estimated as: 

 
54% 47% 3.5%

2
Sensitivity g g−⎡ ⎤= =⎢ ⎥⎣ ⎦

                                        (138) 
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6.2.7 Data Acquisition System and Experimental Setup 

The data acquisition system consists of an acquisition board National Instruments CB-68LP, 

which connects the receiver circuit with the data acquisition board NI6024E. The data 

acquisition board is connected to the communication port of a processor. Analog signal is sent by 

the transmitter as radio frequency waves at 418 KHz, which is launched by the receiver to the 

data acquisition board and data acquisition card. A set of this signal is recorded by means of the 

data acquisition card connected to the processor. This card was configured to work with the 

software Matlab 7.1 and the signal processing toolbox. The signal was also monitored by a 

oscilloscope connected in parallel to the receiver circuit during the sampling.  

 

Figure 35. Data Acquisition System and Experimental Setup 

The transmitter circuit is screwed to the disk and wired to the accelerometer. Both, accelerometer 

and transmitter rotate with the system. The receiver is connected to data acquisition hardware, 

which provides digital signal of the sensor to the processor. Data acquisition software Matlab 7.1 

with the Signal Processing Toolbox [16] is employed to process the acceleration frequency 

response of the accelerometer. 

Transverse cracks at different positions and sizes were machined on the Delrin shafts to complete 

the same cases of data sets indicated in Table 2 for the simulation study. 
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6.3 Experimental Results 

The analog signal in terms of voltage duty cycle signal proportional to acceleration was 

successfully obtained from the wireless accelerometer as shown in the Figure 36 (a), this signal 

was conditioned and converted to digital employing a code in Matlab 7.1 to obtain the 

acceleration signal in the time. Figure 36 (b) shows a noisy sample in order to demonstrate the 

performance of the filters used for signal conditioning.  

                
                                          (a)                                                                                          (b) 

Figure 36. Signal processing (a) Duty Cycle Signal (b) Acceleration Signal in the time 

A capacitor of 0.05 µF working in the output of the accelerometer filters the signal from noise 

limiting the bandwidth to 100 Hz reducing aliasing and noise. Digital filters Sgolay and Hanning 

window were applied to the acceleration signal in the time to reduce noise as shown below in 

Figure 37(a).Then the filtered signal was brought to the frequency domain by means of the 

power spectral density of the acceleration as shown in the Figure 37(b). 

           

                                               (a)                                                                                          (b)   

Figure 37. (a) Acceleration filtered signal (b) Acceleration Power Spectral Density 
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Difference in PSD amplitudes for uncracked and cracked shaft at different crack depths and 

positions for experimental data are shown in the next figures for the nodes 4 and 5. 

         

Figure 38. Experimental power spectral density amplitude differences  

The differences in PSDAA between cracked and uncracked shaft at nodes 4, 5 and 6 obtained 

experimentally were stored as an input pattern matrix and then used for training the network that 

was used to predict the failure of the dynamic system for unknown data in the same manner as in 

the simulated part of this study. Experiment results in Table 5 corresponding to the analysis of 

variance made in Minitab 14 shown that the performance of the network depends simultaneously 

on the number of data, the transfer function, the number of neurons, the interaction of number of 

data with the transfer function and the  interaction of number of data with number of neurons.   

Table 5. Analysis of variance for the Total Error of the experimental data 

Source DF Seq SS Adj SS Adj MS F P
NumData 1 50.1098 50.1098 50.1098 248.99 0
Function 1 4.1686 4.1686 4.1686 20.71 0
Neurons 7 6.7383 6.7383 0.9626 4.78 0
NumData*Function 1 1.4141 1.4141 1.4141 7.03 0.009
NumData*Neurons 7 21.354 21.354 3.0506 15.16 0
Function*Neurons 7 2.4587 2.4587 0.3512 1.75 0.104
NumData*Function*Neurons 7 2.5356 2.5356 0.3622 1.8 0.093
Error 128 25.7604 25.7604 0.2013
Total 159 114.5395  

Next figures show that performance of the network is good when 5 to 7 neurons and higher set of 

training data are used, whereas, poor consistency is exhibited when a small number of neurons 

are used. 



 62

CRACK POSITION AVERAGE ERROR
EXPERIMENTAL DATA 

0

5

10

15

20

1 2 3 4 5 6 7 8

NUMBER OF NEURONS IN THE HIDDEN LAYER

AV
ER

AG
E

 E
RR

O
R

 (m
m

)

24 POINTS & SIGMOIDAL FCN
36 POINTS & SIGMOIDAL FCN

   

CRACK DEPTH AVERAGE ERROR
EXPERIMENTAL DATA 

0

1

2

3

1 2 3 4 5 6 7 8
NUMBER OF NEURONS IN THE HIDDEN LAYER

AV
ER

AG
E

 E
RR

O
R

 (m
m

)

24 POINTS & SIGMOIDAL FCN
36 POINTS & SIGMOIDAL FCN

 

(a) (b)    

Figure 39. Predicted average error from experimental data (a) Crack position with a 

sigmoidal transfer function (b) Crack depth with sigmoidal transfer function 
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(c )                                                                                      (d) 

Figure 40. Predicted average error from experimental data (c) Crack position with a 

hyperbolic tangent function (d) crack depth with a hyperbolic tangent function 
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                                                (e)                                                                                        (f) 

Figure 41. Predicted average error from experimental data (e) Total error with sigmoidal 

transfer function (f) Total error with hyperbolic tangent transfer function. 

Results of the experiment indicate that the structure revealing the lowest average error with the 

smallest number of neurons is the one with five neurons in the hidden layer, therefore there was 
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considered a network with a sigmoidal transfer functions with one input vector P of 3 x 1, and 

two neurons with linear transfer functions in the output layer that give the output vector 
a corresponding to crack depth and position as shown in the next schematic. 

 

Figure 42. Neural network structure schematic for the predictive model for the 

experimental data 

New experimental data unknown for the selected network was tested and the performance is 

shown in the next figures: 

           

                                     (a)                                                                            (b) 

Figure 43. Performance of the predictor network (a) Crack positions (b) Crack depths 
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Figure 43 shows a tendency of error reduction in prediction when the crack approaches to the 

middle of the shaft. This behavior can be attributed to the low sensitivity of the vibration 

parameters obtained from PSDAA differences obtained from at the nodes of analysis of the 

structure. Next table summarizes the performance of the selected artificial neural network: 

Table 6. Performance of the neural network for experimental data 

Average 
error in 
positon

Minimal 
error in 
position 

Maximal 
error in 
position

Average 
error in 
depth

Minimal 
error in 
depth 

Maximal 
error in 
depth 

7.7990 0.3636 26.5853 0.9678 0.1216 2.1658

NEURAL NETWORK PERFORMACE (IN MILIMETERS)

 

6.4 Comparison between theoretical and experimental results 

Difference between the experimental and theoretical PSDAA are shown in   

Table 7. Comparison between theoretical and experimental PSDA 

1.19 2.38 3.57 4.76 1.19 2.38 3.57 4.76 1.19 2.38 3.57 4.76
25.4 -3.925424 -4.721831 -6.39486 -7.4235 -3.071822 -5.362959 -5.865995 -7.142771 -2.828065 -4.859844 -5.801755 -6.791561
38.1 -5.271229 -7.370456 -9.559601 -9.737246 -4.434037 -7.103959 -8.568266 -9.21773 -3.867232 -5.626536 -6.14265 -7.379665
50.8 -6.499213 -6.565589 -9.030416 -9.609085 -6.2965 -6.504035 -8.954275 -9.231728 -6.213897 -6.449919 -6.624946 -7.754164
63.5 -8.60539 -9.295917 -8.643425 -8.840988 -8.436717 -8.965466 -9.112119 -9.387387 -8.25128 -8.791012 -9.139241 -10.48889
76.2 -9.74085 -9.815036 -8.706548 -8.49885 -9.363593 -10.39574 -9.924682 -12.05079 -8.021926 -8.476786 -8.479054 -9.404616
88.9 -10.42743 -8.53316 -7.017799 -4.887284 -10.45754 -10.30304 -9.536457 -9.22341 -9.805796 -10.41037 -11.23718 -12.1026

101.6 -10.1509 -7.583684 -3.427432 0.95746 -6.917364 -5.129932 -3.053277 -3.198505 -4.905924 -6.200659 -7.758333 -7.655451
114.3 -10.24869 -6.501484 -0.222513 5.45857 -11.02244 -10.91113 -8.959647 -5.65484 -10.31723 -11.08229 -12.86123 -13.02094
127 -16.07791 -9.091614 -4.406515 1.449949 -18.09372 -14.66119 -14.92334 -12.7063 -15.30817 -15.75888 -16.61874 -18.16559

139.7 -16.87258 -11.34745 -0.301542 10.23585 -19.19223 -14.52632 -12.73987 -8.146211 -17.80837 -21.44047 -24.71216 -28.83914

Power Spectral Density Differences Between Theoretical and Experimental Results in (g^2/Hz)Crack 
Positions 

[mm]
Crack Depths for Node 4 (Milimeters) Crack Depths for Node 5  (Milimeters) Crack Depths for Node 6  (Milimeters)

 

Last table shows how the differences became higher as the crack is closer to the middle of the 

shaft where the vibration signal is larger. This behavior could be associated with the plastic 

deformation of the shaft vibrating close to the critical speed where the deflections and internal 

stresses are higher.  

Table 8. Comparison between theoretical and experimental predicted data 

Average 
error in 
positon

Minimal 
error in 
position 

Maximal 
error in 
position

Average 
error in 
depth

Minimal 
error in 
depth 

Maximal 
error in 
depth 

Theoretical 7.2119 0.0178 16.8989 0.6578 0.1257 2.0365
Experimental 7.7990 0.3636 26.5853 0.9678 0.1216 2.1658

Difference 0.5871 0.3458 9.6865 0.3099 -0.0042 0.1294

NEURAL NETWORK PERFORMACE (IN MILIMETERS)
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7 Results and conclusions 

This study developed a method for online failure diagnosis on a shaft rotating with an unbalance 

disk at the midspan. A unique pattern of acceleration signals acquired from a new wireless sensor 

capable of being mounted at different positions of the shaft allow the development of neural 

network performing as a predictor in order to associate the crack characteristics from the 

vibration parameters. The selection of the predictor network architecture was based on its 

performance in pattern recognition. A simulating study was carried out employing the finite 

element method to model the problem before experimental application. The method was 

successfully implemented within a degree of accuracy to diagnose the crack depth and position 

in a rotating shaft demonstrating the effectiveness of the artificial neural networks predictor 

working in combination with the wireless sensor giving a signal in the rotating coordinates.  

Results of the simulating study: 

The harmonic force induced by the unbalance disk in the middle of the shaft was derived for the 

dynamic system considering a single degree of freedom for the rotating coordinate system 

relative to the wireless accelerometer. Deflection and acceleration equations as a function of the 

mode shape functions were obtained first analyzing the uncracked shaft for any time and position 

in the shaft modeling a continuous shaft in bending vibration and then for the cracked shaft by 

means of the finite element method. The first natural frequency estimated in the mathematical 

model resulted very close to those estimated with the finite element model employing the 

consistent mass matrix in stead of the lumped mass matrix.  

Conclusions of the simulating study: 

Modal parameters such as mode shapes and natural frequencies obtained from the finite element 

model resulted to be very sensitive to crack depth and crack location. 

 The differences of PSDAA between the cracked and uncracked shaft at three different positions 

have shown to be a unique pattern of the failure scenario, except in crack positions close to the 

shaft support. This unique characteristic was successfully employed as the diagnostic input 

sensitive parameter to find a function approximator networks able to correlate this pattern with 

the failure characteristics employing the Backpropagation training algorithm.  
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Experimental results of simulating data in Table 3 corresponding to the analysis of variance 

show that the performance of the network predictor depends simultaneously on the number of 

data, number of neurons and the interaction of both.   

A predictive structure revealing the lowest error with the smallest number of neurons was 

identified from the results of the experiment. A single neuron in the hidden layer was considered 

working with a sigmoidal transfer function and two neurons with linear transfer functions in the 

output layer. 

Differences in crack position predictions close to the shaft support were found due to the low 

sensitivity of the vibration parameters obtained from the three points selected. 

Results of the experimental study: 

A new wireless sensor was designed and fabricated for extracting the vibration signals from a 

rotating shaft at different positions. The power spectral densities of the acceleration signals were 

successfully acquired by means of the signal conditioning and signal processing systems 

developed for the study.  

Low signal sensitivity was found when the crack approached to the supports, where the 

deflections are small. 

Acceleration range of the sensor limited the experiment to frequencies lower than the first 

harmonic increasing the noise amount in the signal. 

Conclusions of the experimental study: 

Experiment results in Table 5 corresponding to the analysis of variance of the errors in prediction 

show that the performance of the network predictor depends simultaneously on the number of 

data, the transfer function, the number of neurons and the interaction of number of data, the 

transfer function and the number of neurons. 

The results of the experiment indicated that the structure revealing the lowest average error with 

the smallest number of neurons was the one with five neurons in the hidden layer, therefore there 
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was considered a network with a sigmoidal transfer functions with two neurons and two linear 

transfer functions in the output layer. 

Low sensitivity was found in PSDAA signals for both cases; simulating and experimental work, 

when the crack approached to the shaft support between 0 - 45 mm affecting the performance of 

the predictor neural network in this range of crack location. However, increasing the number of 

data set for training resulted in accuracy of the predictor network.  

Possible causes of difference between the theoretical and experimental data results are attributed 

to plastic deformations due to non elastic behavior of the shaft material when they were under 

bending vibration condition near the fundamental frequency. 

The small error differences between actual and predicted data in the simulated and experimental 

studies demonstrated the consistency of the proposed method in the diagnosis of a failure in the 

shaft employing wireless sensors and artificial neural networks method in a real system. 

 

 

 

 

 

 

 

 

 

 



 68

8 Future Work 

This study can be extended to a closed crack considering the breathing behavior of the crack and 

assuming the crack as a spring in the FEA model.  

More than one crack can be studied, both the shaft and the crack may include different type of 

cross sections and more than one disk can be added to the model. 

Acceleration signals obtained in the rotating coordinates from the wireless accelerometer can be 

employed to analyze the orbits of the shaft at different locations in order to find additional failure 

patterns that can improve the method.  

Vibration acceleration signals can be obtained at higher frequencies closer to the fundamental 

frequency increasing the range of acceleration of the sensor in order to reduce noise and increase 

accuracy.  

Knowing the crack location and size, a future forecasting method based on fracture mechanics 

and fatigue can be developed to estimate the residual amount of time left in the shaft working in 

real time with the selected network. 
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