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Recently, an increasing interest has arisen in factorization with respect to unique
representation of elements in an integral domain D, into elements distinct from ir-

reducible elements.

Motivated by McAdams and Swan work, Anderson and Frazier developed a
theory called the theory of 7-factorizations. It is a type of generalized factoriza-
tion theory on integral domains. They used symmetric relations (denoted by 7) on
the set of nonunit nonzero elements of an integral domain D (denoted by D*), in
order to define what they called a 7-factorization of an element of D*. They called
any factorization of an element x in D* of the form & = Az 25 - - - z,, where x;7x; for
all i # 7 with 1 <i,j <nand X\ € U(D), a 7-factorization of x. They classified
the results based on three types of relations: divisive, multiplicative and associated-
preserving relations. This theory has been studied by Hamon (2007), Ortiz (2008),
Reinkoester (2010) and Juett (2012).
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This work considered some preliminary definitions in order to study the
theory of 7-factorizations with respect to an element, and further develops the
most important types of relation of this theory. Several equivalences to the main
types of definitions were obtained and then used to prove known results from other
perspectives. In some cases, the results were more natural and their proofs were ea-
sier than the one provided in previous research works. It must be noted that this is
the first attempt to try to understand what divisive, multiplicative and associated-
preserving relations mean. All the work previously done considered such type of
relations, but the authors did not try to understand the nature of them. They
used them only to prove theorems, because these relations provided a good beha-
vior when the 7-factorizations were studied. Furthermore, this investigation studied
some sets with specific properties with respect to a symmetric relation on D¥ and
the connection with the 7-factorization theory. Finally, several examples were pro-
vided and some results were developed about the “7-sets” on usual commutative

ring properties.

11



Resumen de Dissertation Presentado a Escuela Graduada
de la Universidad de Puerto Rico como requisito parcial de los
Requerimientos para el grado de Master of Sciences

7-MULTIPLICATIVE SETS
Por
Adolfo Gustavo Vargas-Jimenez
May, 2014

Consejero: Reyes M. Ortiz-Albino, Ph.D
Departamento: Mathematical Sciences

Recientemente, un creciente interés a surgido en factorizacién con respecto a
representaciones tnicas de elementos en un dominio integral D, especialmente en

elementos distintos de elementos irreducibles.

Motivados por el trabajo de McAdams y Swan, Anderson y Frazier
desarrollaron una teoria llamada la teoria de 7-factorizaciones. Esta es un tipo
de teoria de factorizaciones generalizadas en dominios integrales. Ellos usaron
relaciones simétricas (denotadas por 7) en el conjunto de elementos diferentes de
cero y unidades de un dominio integral D (denotado por D?), para definir una
7- factorizacién de un elemento en D*. Ellos definieron una 7-factorizacién de un
elemento x en D* como una expresién de la forma z = A\xq - 25 - - - 2, donde TiTT;
para todo i # j con 1 <i,7 <ny A€ U(D). Anderson and Frazier (2006) clasi-
ficaron los resultados basados en tres tipos de relaciones; divisiva, multiplicativa
y una relaciéon que preserva asociados. Esta teoria ha sido estudiada por Hamon

(2007), Ortiz (2008), Reinkoester (2010) and Juett (2012).
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En este trabajo se consideraron algunas definiciones preliminares con el fin
de estudiar la teoria de 7-factorizaciones con respecto a un elemento y
desarrollar mas a fondo las m&s importantes definiciones acerca de esta teoria.
Fueron obtenidas algunas equivalencias de los principales tipos de relaciones y se
utilizaron para probar resultados conocidos desde otra perspectiva. En algunos
casos, los resultados fueron mas naturales y sus pruebas mas faciles que las presen-
tadas en trabajos previos. Este es el primer intento de tratar de entender el signifi-
cado de las relaciones divisivas, multiplicativas, y las relaciones preserva-asociados.
Toda las investigaciones previas consideraron esos tipos de relaciones, pero no estu-
diaron su naturaleza. Solo fueron usadas para probar teoremas, porque se nece-
sitaban. Ademads, esta investigacion estudié algunos conjuntos con propiedades es-
pecificas con respecto a una relacién simétrica en D* y la conexién con la teorfa de
T-factorizacion. Finalmente, varios ejemplos fueron proporcionados y algunos resul-
tados fueron desarrollados acerca de los “7-conjuntos” en usuales propiedades de

anillos conmutativos.
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Chapter 1
INTRODUCTION

The definitions of divisibility and prime integers in Z were analogously defined
over an integral domain D. Such concepts have been of special interest to algebraists,
motivating them to consider integral domains with convenient structures in order
to obtain similar results from the ring Z. For example, the Fundamental Theorem
of Arithmetic, every positive integer greater than 2 can be written uniquely (up to
order) into a product of primes. It is the type of desire structures due its uniqueness.
In an integral domain was defined with similar structure called a Unique Factoriza-
tion Domain. Another example are the Euclidean domains, which are domains that

satisfies the Euclidean Division Algorithm. See [7] for details.

In this thesis, D will be an integral domain with group of units U(D) and D*
the set of nonzero nonunits elements of D. An element z € D* is called an atom or
an irreducible element if it can not be factored as x = yz where y, 2 € D* and it is a
prime element if z | yz implies x | y or z | z. A lot of mathematicians that studied
factorizations (Anderson, Zafrullah, Cohn, etc) have been focused in factorizations
into atoms. Hence, an integral domain D is called atomic if each x € D* can be
expressed as a finite product of atoms and is called a unique factorization domain
(UFD) if in addition any atomic factorization of each element in D* is unique up to
associates and order of factors. Recently, algebraists have studied atomic domains

with properties weaker than UFD. An atomic domain D in which for each z € D



there is a natural number N, such that for any atomic factorization of x the num-
ber of factors is less than N,, is called a bounded factorization domain (BFD). D
satis fies the ascending chain condition on principal ideals (ACCP), if there does
not exist an infinite strictly ascending chain of principal ideals of D. An atomic
domain D is a hal f-factorial domain (HFD) if each atomic factorization of z € D?
has the same length. The connections of these structures is summarized in Figure

1-1 (appears in [4] and [12] Figure 1.1), for more details or proofs see [4].

/HFD\

UFD FFD BFD — ACCP — atomic
idf-domain

Figure 1-1: Usual factorization properties on integral domains

It must be noted that has been of great interest to generalize several concepts,
mostly to obtain unique representation of elements. Therefore the nature of factor-

ization into rigid elements, primal elements, etc. See [14] and [3].

For example, Stephen McAdam and Richard Swan [11] developed the definition
of comaximal factorization which is an example of a non-atomic factorization. For
xr € D! a comaximal factorization of z, is a factorization x = x; - a5 - - - x,, where
for all i # j, z; and z; are comaximal, that is, (z;,2;) = D. They created similar
definitions for atomic, unique factorization and atomic domain (pseudo-irreducible,
unique comaximal factorization domain (UCFD) and comaximal factorization do-
main (CFD), respectively). Inspired by McAdam and Swan’s work, in 2006, Ander-

son and Frazier [1] defined the theory of 7-factorization. They chose a symmetric



relation on the nonzero nonunit elements of D, and only allowed two or more ele-
ments to be multiplied if and only if they were pairwise related under the symmetric
relation. Formally, for a symmetric relation 7, a 7-factorization of an element x
in D! is an expression of the form x = Azq - 29 - - -2, where x;Tx; for all ¢ # j
with 1 < 4,7 < n and A € U(D) (the set of the units of D). For example, define
27y < (2;,7;) = D, then the comaximal product is obtained and if it is defined
7 = D! x DF, the usual product is obtained. In 2007, Hamon [6] developed some
topics about this theory using the relation 7 defined by x7y if and only if n | x — y;
and in 2008, Ortiz [2] presented a generalization of the T-factorization theory, called
the I'- factorization theory. This last theory was studied more carefully by Juett in

2012 [8, 9] and extended to cancelative monoids.

Let 7 be a symmetric relation on Df. The relation 7 is multiplicative, if for
any z,vy,2 € D* w7y and w7z imply w7yz; divisive if for any x,y, 2,y € D¥, x1y,
2’ | x and ' | y imply 2/7y’; and associated-preserving if for any z,y,t € D* with
x ~ t, then x7y imply t7y. With the divisive relations any 7-factorization obtained
by replacing a 7-factorization of a 7-factor is again a 7-factorization, and the unit
can be omitted in front. On the other hand, with the multiplicative relations any 7-
factorization can be expressed as the product of two 7-factors. Also the unit can be
omitted in front with the associated-preserving relations, and in this way it is more
general since any divisive relation is associated-preserving. Those are the principal
reasons of the introduction of these definitions. In [1] and [5] the authors were able
to establish the implication of usual weaker structures and the 7-structures defined
analogously. Figure 1-2 (Figure 1.2 [12]) provide a good summary of their main

results.



UFD FFD BFD ACCP atomic
|
* 7 -FFD .
/ \
7 -UFD 7 -BFD —— 7 -ACCP —— 7 -atomic
\ /
7 -HFD

Figure 1-2: 7-factorization properties in integral domains, where * means that 7 is a divisive
relation.

The author in [2] presented the same diagram for several different types of

frameworks of the general theory of 7-factorization.

The theory of 7-factorization could be visualized as a restriction of the usual
factorization theory, the difficulty in this theory arose in the fact of not knowing
when two elements are related, that is, they can not be 7-multiplied. Some of
the examples in [2], explain why this theory makes an important contribution, but
others are very synthetic (because they just allow a finite number of elements to
be related). Therefore, this investigation studied the set of elements related with
a specific element. Let € D*, the set Z,(r) = {y € D* : 27y} was called the 7-
centralizer of x. Using Z,(x), equivalent statements were found to the definitions of
multiplicative, divisive and associated-preserving relations. This is the first time this
type of relations are deeply studied or thought from a different point of view. These
equivalences will give a tool to understand why such relations are well behaved.
Approach to some results will be presented, the connections between the presented
definitions and the implications in the theory of 7-factorization in some known topics,
specially when it is considered 7 to be multiplicative or divisive. Similarly to a
multiplicative set, a set M C DF is defined to be T-multiplicative, if for each x,y €
M with x7y, xy € M. Other T-multiplicative were defined with specific properties

similar to saturated sets and ideals. They are called the 7-sets. With the 7-sets



considered on this work, some results and connections between them was established.
Several results of properties of quasi-local rings and Kaplansky-like theorems will
be presented. For future research, there are many sets to study and results with

respect to the structure properties.



1.1 Objectives

Find sufficient or sufficient and necessary conditions, using the 7-centralizers of
the elements of D and the 7-sets defined to connect the usual theory of the multi-
plicative sets, ideals and properties of domains, as well as the known 7-factorization

theory.

Specifics objectives

Get an equivalent definition to the definition of a 7-multiplicative relation, using

the 7-centralizers of the elements in D?.

Determine the connection and properties between the 7-sets.

Determine sufficient and necessary conditions using the 7-sets to get results about

a domain property.

Study and characterize ideals with 7-sets properties.

Define 7-multiplicative sets, with known properties in the usual theory in terms of

the T-factorization theory.



1.2 Chapters summary
In this work the theory of 7-factorization will be further developed and connec-

tions between this theory and usual topics of algebra will be found.

In the second chapter, the basic definitions of this theory and new additional
definitions will be introduced. Examples will be presented so the reader can become
more familiar with the notation. Also, there are several consequences and properties

that come along with the definitions.

In the third chapter, several equivalences about the most known and used def-
initions of types of relations for the theory 7-factorization will be presented. The
chapter introduces new approaches for known theorems, in order to obtain easier
ways to prove them. Moreover, these equivalent statements will give a new point of

view to study the theory of T-factorizations.

The fourth chapter provides a connection to the usual theory of commutative
rings. It will present consequences or results involving prime ideals, multiplicative
sets and local rings. Furthermore, it will provide results about what kind of proper-
ties are obtained when considering special known sets in the usual theory that also

have properties of 7-sets.

The last chapter will summarize the contributions obtained in the theory of
T-factorization, as well as in the commutative ring theory and introduce interesting

topics to study in the future.



Chapter 2
NOTIONS OF THE THEORY OF
7-FACTORIZATION

In this chapter, the reader will find an introduction to the basic notions of the
theory of T-factorization as in [1]. Also some examples are given to illustrate this

theory and make the reader more familiar with the notation and concepts.

2.1 Basic definitions of the theory of 7-factorization

Let D be an integral domain. The set of the nonzero nonunit elements of D is
denoted by D¥ and the set of the units of D by U(D). Let 7 be a symmetric relation
on DFf. The expression 27y or (x,%) € 7, means z is related to y. The authors in [1]

defined the following types of symmetric relations:

(1) The relation 7 is multiplicative, if Ty and x7z, then x7yz.
(2) The relation 7 is divisive, if whenever z7y, for each 2’,%’ in D* such that 2’ | =
and y' | y implies z'7y’.

3) The relation 7 to be associated-preserving, if y ~ v/ and z7y, then z7y .
y4 g, Ly~y Y Y

Let  be in D* and 7 a symmetric relation on Df. Any expression of the form
T = Ary - To- -, where z;7x; for all i # j in {1,...,n} and A € U(D), is called a
7-factorization of x. In this document, a 7-factorization of x is a 7-product of the
x; and z; is a 7-factor of x for each ¢. For simplicity, a 7-product will be denoted

by “." and usual product just by concatenation. That is, x - y will means that x7y



(1)

and zy is a product that is not necessarily z7y.

For any z,y € D*, x 7-divides y (denoted x |, y), if there is a 7-factorization of
y having z as a 7-factor, that is, y = A\ -xy - 29 - - -z, is a 7-factorization of y. The
expressions * = A(A\7'x) and x = z are called trivial 7-factorizations of z, for any
A € U(D). An element in D that does not have a non-associated 7-factor is called
T-atom or T-irreducible. For x € D x is T7-prime if whenever x | A\xy - x5+ - - 2,

where \x; - x5 -+ -, is a T-factorization, then z | z; for some i € {1,2,...,n}.

2.2 Examples
The following examples of symmetric relations will help the reader to familiarize
with the notation and definitions of 7-factorizations. They have been studied in [5],

[12] and [13]. Throughout the examples, D will be an integral domain.

Consider 7 = 0, it is divisive and multiplicative. Since no element x € D* has a
non-trivial 7-factorization, then each x is a 7-atom. Therefore z |, y if and only if

they are associates.

Take 7 = D* x D*. Note that 7 is a multiplicative and divisive symmetric relation.
Here, any element 7-prime and 7-irreducible is prime and irreducible respectively.
Note that with this symmetric relation, the usual notions of factorization and divisi-
vility on the nonzero nonunit elements, coincide with the notion of 7-factorizations

and 7-divisivility.

Suppose that M is any non-empty subset of D! and take 7 = M x M, then 7y
if and only if z,y € M. Here, 7 is multiplicative (respectively divisive) if and

only M is a multiplicative set (respectively closed under nonunit factors). This
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symmetric relation allows to obtain factorizations into special type of elements, by
taking M as the set of such elements. Observe that a 7-factorization here is just
a factorization of elements of M. For instance, take M the set of atoms in D?,
then a 7-factorization is just the usual irreducible factorizations. In the same way,
assume M is the set of prime elements, primary elements, rigid elements and other

elements studied before 2004.

Denote the greatest common divisor of = and y , by ged(z,y). Consider the sym-
metric relation 7 in D, defined by, x7y if and only if ged(z,y) = 1. Observe that
ift | x and s | y with d = ged(t, s), d also divides x and y. If 7y, any factor of z in
D* must be relative prime to v, so is related to y under 7). Thus, 77} is a divisive
relation and hence associated-preserving. Moreover, 7} is multiplicative only if for
x,y, z in D* such that ged(z,y) = 1 and ged(z, 2) = 1, then ged(x,yz) = 1. Unfor-
tunately this does not happen in many structures. Therefore, 7 is not necessarily

multiplicative. The relation 7 was investigated in [12] and [13].

Define f0g if and only if deg (f) = deg (g) on Dlx], where deg (f) is the degree
of f as defined in [7]. Of course, 0 is neither multiplicative nor divisive. Now,
suppose that fdg and let h be an associate of g, then h = \g for some unit \.
Observe, deg (h) = deg (\) +deg (g) =0+ deg (g) = deg (g) therefore, f0g. It
implies that the symmetric relation 0 is associated-preserving. This relation was

studied in [5].

Consider D = Z and define z7,y if and only if x = y mod n. The only case 7, is
associated-preserving is when n = 2. Observe that this symmetric relation is never
divisive. Suppose that 7 is divisive, then 7 must be associated-preserving. Let t € 7Z

be arbitrary, then £ € {0,1,...,n — 1}, where t = {s € Z | s7,,t}. Take any s € ¢,
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then s = ¢ + pn for some p € Z and st,,t. Now, since 7 is associated-preserving,
sTa(—t), i.e., s = —t + p'n for some p’ € Z. As a consequence t + pn = —t + p'n,
hence 2t = n(p’ — p). In conclusion 2t = 0 mod n for all ¢t € Z, but this only
happens if n = 2. If n > 2, 7,, is not divisive. For the case n = 2, note for example

that 87,10, but 4 is not m-related to 5. So, 7, is never divisive.

On the other hand, suppose that n # 2. Observe that 2 = 2 mod n, but 2 # 4
mod n. Hence 7, is not multiplicative. Now, suppose n = 2. Assume that z7y and
x12z. Observe that xmyy if and only if x, y are both even or x,y are both odd. If x
is even, then this forces y and z to be even and of course yz is even. Analogously,
if x is odd, then y, z and yz are odd. Hence, z7yz in either case. Therefore, 7, is

multiplicative only when n = 2. For more details on 7, see in [1],[5], [6] and [12].

Some of the most important concepts created in [1] and [5] are the concepts of
multiplicity and divisibility of symmetric relations. Most of the main results were

obtained assuming 7 multiplicative, divisive or both.

Theorem 2.1 (Theorem 2.2, [1]). Let D be an integral domain, and let T be a
symmetric relation on D¥.

(1) Suppose that T is divisive and let x € D* . Then v = Ay - 2o+, is a T-

factorization of x if and only if x = xy--- (Ax;) - - - x, i a T-factorization of x for

each 1.

(2) Suppose that T is divisive. Let x = xq1 - x5+, be a T-factorization of a, and let
Ti = Y1 - Yo Yn be a T-factorization of x; for some . Then v = x1--- ;1 Yy -

Yo Yn - Tig1 - Ty 1S again a T- factorization of x.
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(3) Suppose that T is multiplicative. Let x = Axy - xo9- - -, be a T-factorization of x.
Then x = xy -+ x; 1 (T;T441) - Tiga -+ Ty iS a T-factorization of x, where x;x;y1 is

a product of two elements.

Observe that if 7 is divisive, the replacement of a 7-factor on a 7-factorization
with a reduced T-factorization (see the definition a paragraph ahead) of the T-factor
gives again a 7-factorization. On the other hand, if 7 is multiplicative, it is possible
to combine 7-factors, doing this several times any 7-factorization can be express as
the 7-product of two 7-factors. From (1) if y ~ ¢/ and 7 is divisive, 7y < x7Y'.
If 7 is divisive then 7 is associated-preserving. In other words, the unit A can be
omitted.

In (2) the expression x = 1+ x;_1-Y1 Yo ** Yn Tit1 - Ty is called a 7-re finement
of x. Therefore, if 7 is divisive then D accepts 7-refinements. Must note that this
property of 7-refinements is the reason of why the authors in [1] and [5] obtained

most of their theorems.

The first authors developed this theory using a unit A as a factor in the 7-
factorizations. However, the theory was developed without this assumption by let-
ting a 7-factorization of an element x € D¥ to be x = x; - 25 - - - z,, where x;Tx; for
all ¢ # j. Such 7-factorizations are called reduced 7-factorizations, denoted ,7-
factorization to distinguish from the usual 7-factorizations. Considering the theory
from this perspective, an element € D* is a 7-atom or a ,7-atom if = has only the
trivial ,7-factorization x = x; and a .7-prime, if for any ,7-factorization xy - xs - - - x,,
such that x | xy - x9 -+ - x,, z | z; for some 7. In [2] the authors show that without
the associated-preserving property the ,7-factorizations, ,7-atoms, ,7 primes do not
behave well. So the authors suggested to assume associated-preserving in order to

avoid to deal with this type of inconvenient. On the other hand, the authors in
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[2], [6] and [12] studied the ,7-factorizations and the 7,-factorizations for n > 2 in
which are relations that not preserve associates. So, it seems that there has been an

interest in understanding the not well behaved cases of these ,7-factorizations.

2.3 Definitions created for our purpose
In this section, some sets are developed with specific properties that depend on
a symmetric relation 7. A generalization of a multiplicative set and of a saturated

set can be done using the definitions of 7-products or 7-factorizations as follows.

Definition 2.1. Let 7 be a symmetric relation on D and M C Dt

(1) M is T-multiplicative if x,y € M such that xTy implies xy € M.

(2) M is a T-ideal if for each x € M and y € D* such that x1y, y € M.

(3) M is co-tT-saturated if M is T-multiplicative and has the following property :
(Vo € M)(Vy € D*) {(z1y) = {(Vt € D*)(t | y) = (t € M)}}.

(4) Let x € D* be arbitrary. The set {y € D* | 7y} is called the T-centralizer of x

and denoted Z.(x).

(5) M is T-prime if for each T-factorization v = A\xy-x9- - x, € M, x; € M for some .

Given that in the most important results obtained by Anderson and Frazier [1],
they considered divisive and multiplicative symmetric relations, the work done in
this thesis is interested in symmetric relations that maintain these kind of properties
but from the point of view of just one element. Thus, the definition of sets that have

the property of been divisive, multiplicative or associated-preserving with respect
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to a given element.

Definition 2.2. Let 7 be a symmetric relation on D¥, S # () such that S C D* and

x € D¥, the relation:

(1) 7 is multiplicative with respect to x if whenever xty and x7z, xTyz. The set of

elements x € S such that T is multiplicative with respect to x is denoted by M.(.5).

(2) 7 is divisive with respect to x if for each y € D* with xTy, x7t, for each t € D*
such that t | y. The set of elements x € S such that T is divisive with respect to x

is denoted D.(S).

(3) 7 is associated-preserving with respect to x if for each y € D* such that x1y, 7Y
for all y ~y'. The set of elements x € S such that T is associated-preserving with

respect to x is denoted A;(S).

(4) Let S C D* be arbitrary. The set {x € D* | xTy,Vy € S} is called the T-centralizer

of S and denoted by Z.(S).

The definitions of M, (0), A,(0) and D,(() can be defined by D* or (), but both
cases gives some problems. Therefore, this work only use these definitions for non-
empty sets. Clearly Z,()) = () there is no problem considering it, but, it is kind
of useless. Let S C D* be arbitrary and assume that 7 is a symmetric relation on
D*. Consider S’ the set of elements of S with empty 7-centralizer. By definition
S" C M,(S), therefore, if x € S — M,(S), then Z.(z) # () and there are y,z € D*
with 7y and z7z, but yz ¢ Z,(x).

Let 8" = {x € S : whenever x1y x7z, 7Yz}, then M,(S) = S U S”. The same

analysis applies to D,(S) and A,(S), obtaining similar results. In (4)., if S = {z},
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then is easy to see that Z,(S) = Z,(x), which make sense completely.

The following proposition is a consequence of the previous definitions.

Proposition 1. Let T be a symmetric relation on an integral domain D*. Then
(1) 7 is associated-preserving if and only if T is associated-preserving with respect to
for all x € D¥,
(2) 7 is divisive if and only if T is divisive with respect to x for all x € D,

(3) 7 is multiplicative if and only if T is multiplicative with respect to x for all x € D¥.

2.3.1 Examples
Let D be an integral domain. The following examples would be of help for the

reader to understand the definitions and notation.

(1) Let n € N be fixed and consider D|[x] as our domain.
Take S = {f € D[z] : 1 < deg (f) < 2n} and define frg if and only if deg (f) =
deg (g) < n. Note that 7 is symmetric, and if (D[z])* = D[z] — {U(D) U {0}}
then S C (D[x])*. Suppose that f,g € S such that frg, then deg (fg) =
deg (f) +deg (9) < n+n = 2n. Therefore, S is a 7-multiplicative set. Let
f € S and g € (D|z])* be such that frg, then deg (f) = deg (g) < n, and there-

fore g € S. Hence, S is a 7-ideal and S is a co-7-saturated set.

Take f € (D[x])* such that deg (f) = 1, then f7f. However, f is not related to f2.
Therefore, 7 is not a multiplicative relation. Since deg (d) = 0 for all d € D¥ — {0},
D x D' C 7 and D,(S) = M,(S) = A.(S) = S for all S C D"
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Suppose n > 2 and f = (v+a)? where a € D, then frf. Note that z+a | (z+a)?
and (z + a)? | (x + a)?, but x + a is not related to (x + a)?>. Hence for n > 2, 7
can not be divisive. Suppose that n = 1 and let f, g € D* be such that frg, then
f,g € D* or deg (f) = deg (g) = 1. If f,g € D¥ any factor of f is going to be
related to any factor of g in D*. If deg (f) = deg (g) = 1, then df7g for all d € D*
but d is not related with ¢g. In conclusion, 7 is not divisive if n = 1. Finally, 7 is

multiplicative and divisive with respect to f if and only deg (f) = 0.

Let 2 € D* be arbitrary. Consider S, = (2) — {0} C D* where (z) is the ideal
generated by z. Define x7y if and only if x —y € (2) and x # y. Then 7 is sym-
metric and S, is a 7-multiplicative set. Furthermore, 7 is not necessarily divisive
or multiplicative. If x € S, and y € D* such that x7y, then * — y € (z) and

r—(x—y) € (z),y €S, In conclusion, S, is a T-ideal.

Let z € S,, then Z.(z) = S, — {z}. Now, take any y € cop:(S,), since S, U {0} is
a T-ideal, zy € S,. Hence xytt for all t € S, with ¢ # zy. Note that y | xy, but for
t # xy in S, y is not related to t. In conclusion, 7 is not divisive and S, is not a
co-T-saturated set. In fact, 7 is not divisive with respect to any element in S,. Let
x,y € S, be arbitrary, then zy # x and xy # y. Clearly x7xy and yrzy, but =,y
are not related to xy. In conclusion, 7 is not multiplicative. On the other hand,
suppose that there is x € S, such that x # yz for all y,z € S,, then 7 is multi-
plicative with respect to z. In fact, M (S) ={z € S, :x # yz for all y,z € S,}
forall S C S,.

If z € copt(S,), then 7 is not necessarily associated-preserving or multiplicative
with respect to z. For instance, take D = Z and Sg = (8)—{0}. Since 5—(—3) € Ss,

then 57 — 3. However, —3 ~ 3 but 5 — 3 = 2 ¢ Sg. Hence, 5 is not related to 3
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and 7 is not an associated-preserving relation. Furthermore, observe that 57 — 3,

but 5 is not related to 9. Then 7 is not a multiplicative relation.

Let x € S, be such that z7y, then y € S,. Since S, U {0} is an ideal, \y € S, for
all A € U(D), and z — Ay € S, for all A € U(D). In conclusion, if x € S,, 7 is

associated-preserving with respect to x.

Let S C D! and take 7¢ = S x S. Note that, S is a Tg-multiplicative set if and only
if S is a multiplicative set. Furthermore, in case S is a multiplicative set S is a
Tg-ideal. But S is not necessarily a co-Tg-saturated set. In this relation Z,,(z) = S
for all x € S and the only case S is a co-Tg-saturated set is when S'is closed under

proper factors.

Let I be a proper ideal in D, and take S = I — {0} C D*. Define atb if and only
if a ~ b. Note that 7 is symmetric. Since [ is an ideal, S is a 7-multiplicative set

and a 7-ideal. Then S does not necessarily satisfy the saturation property.

Let S ={2p:p € Z} C 7Z and consider the symmetric relation 7o, z7oy if and only
if z,y € (2), the ideal generated by 2. Since the product of even numbers is even,
then S is a 7-multiplicative set. If x7yy, then x,y are both even or both odd, so S

is a 7-ideal. Now, 67510 and 5 | 10 but 5 ¢ S, so S is not co-7T-saturated.

Let D = Z and take S, = (n) — {0} where n € N. Here D* = D — {#£1,0}. Define
o7,y if and only # —y € (n) and = # y. Let x € S, and y € D* such that z7,y,
then z —y € (n) and —y € (n), so y € S,. In conclusion, S, is a 7-ideal. On the

other hand, if n = 2, then 4,6 € S,, 4756, but 3 € Sy and 3 | 6. This shows that
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Ss 1s not a co-Ty-saturated set.

In (3) define 7., = cops(S) X copt(S). Note that, 7., is divisive if and only
cop:(S) is closed under proper factors. Assume 7., is a divisive relation. Let
x € cop:(S) be fixed but arbitrary, then x7,x. Since 7, is divisive, each pair of
factors of o in D* are related, and by definition they are in cop:(S), that is, cop:(S)
is closed under proper factors. Assume cop:(S) is closed under proper factors and
let 2,y € D* be such that x7,y, then z,y € cop:(S). By hypothesis all the factors
of x and y are in cop:(.S), that is, any factor of x is going to be related to any factor
of y. This prove that 7., is divisive. It is easy to prove that if additionally S is a

multiplicative set, then S is a 7g-ideal.

2.4 Understanding the new definitions

In the examples shown in the previous section, there were symmetric relations
that make a set S C D! a 7-ideal and a co-T-saturated set. However, there are ex-
amples of 7-ideal that are not necessarily co-T-saturated sets. In any of these cases,
however there is no co-T-saturated set that is not a 7-ideal. This can be observed

in the following theorem.

Theorem 2.2. Let D be an integral domain, T a symmetric relation on D' and
M C D*,

(1) If M is a co-T-saturated set, then M is a T-ideal.

(2) Assume T is also divisive. Then M is a co-T-saturated set if and only if M is a

T-1deal.

Proof. For (1) Suppose that M is a co-T-saturated set, then M is a 7-multiplicative.
Let z € M be arbitrary and suppose that there is y € D* such that z7y. Since

y | y, then y € M by hypothesis. Hence M is a 7-ideal. To show (2) suppose
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that 7 is divisive. For the other direction, suppose that M is a 7-ideal, then 7 is a
multiplicative set. Let o € M be arbitrary and suppose that there is y € D* such
that x7y. Since 7 is divisive, any proper factor of y is going to be related to x, and
since M is a 7-ideal each one of those factors is going to be in M. Hence M is a
co-T-saturated set.

O

It would be very interesting to find a non-empty symmetric relation in which
the 7-centralizer of each element in D is also non-empty, because if there are other
T-sets, then they can be useful to obtain connections with known properties in
abstract algebra. For instance, suppose that S C D such that S is a co-7-saturated
set and Z,(z) # ) for all x € S. Let x € S be arbitrary and let y € D* be such
that y | z. Then Z,(x) # 0 and there is t € D* such that x7t. This happens if
and only if 72, so y € S. In conclusion, for all ¥y € D* such that y | z, y € S.

Hence, if 7 is divisive and S is a 7-ideal, by Theorem 2.2 the same result is obtained.

A common question about these “absorption properties” in the previous para-
graph, is how far is a co-T-saturated set from being a saturated set. Since a saturated
set contains all the units of a ring (in particular on a domain), it’s not possible for a
co-T-saturated set to be saturated, even if the domain were in fact a field. But, the
properties of a saturated set in D¥ can be maintained, that is, a set that is closed

under factors in D?.

Theorem 2.3. Let S be a co-T-saturated set and Z,(x) N Z,(y) # 0 for allx,y € S.

Suppose that T is multiplicative, then S is a saturated set in DF.

Proof. Since Z.(x) N Z;(y) # 0 for all z,y € S, then Z,(z) # 0 for all x € S.
Hence the “absorption properties ” holds. Let x,y € S be arbitrary, then by

hypothesis Z,(z) N Z.(y) # 0. Therefore, there is p € S with prz and pry. Since 7
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is multiplicative, then prxy and by hypothesis xy € S. Hence S is a multiplicative
set.

On the other hand, suppose that S C D! is a co-r-saturated set, 7 is transitive and
Z(x)NZ(y) #Dforall z,y € S. Let x,y € S, then Z,(z)NZ.(y)NS # () and there
is t € S such that x7t and try. Since 7 is transitive, x7y. But 7 is multiplicative,
then xy € S. In conclusion, S is closed under proper factors and is a multiplicative
set.

]

The same result in Theorem 2.3 can be obtained replacing the condition of 7
being a multiplicative relation with 7 be a transitive relation and the existence of an
element = in S with S C Z,(z). Another good question about the connection of a
co-T-saturated set S and its complement cop:(S). The following are some cases with
their respective implications. If S is a 7-ideal set, the T-centralizer of any element in
S it is going to be contained in S. Then, it is important to know about how many
elements are related to each element in S because it gives information about how
big is S. In particular, if there is x € S with Z,(x) = D*, each y € D* is related to =
and y € S, therefore S = D*. If S is a t-ideal, then S D |J, g Z-(z). Furthermore,
if Z-(x) # 0 for all x € S, then S = |J,cq Z-(x). Hence, if 7 is a multiplicative
symmetric relation, Z,(x) is a multiplicative set for each x € S. Therefore S is the

union of multiplicative sets (in the usual sense).

The properties about a 7-ideal seem to be interesting when Z,(z) # ) for all
x € S is assumed. On the other hand, note that S is a co-T-saturated set where each
pair of elements are related with respect to the relation 7 if and only if S x .S C 7.
Hence, SUU(D) is saturated in the usual sense. Moreover, a partial previous results

can be obtained with a weaker hypothesis. For instance, if Z.(z) # 0 for all z € S,
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S is not necessarily a multiplicative set, but S is closed under factors on D¥.

It is known that the T-centralizer of each element in a 7-ideal set S is going to be
contained in S. The set S can be expressed as the union of two sets by considering

the set of elements of with empty 7-centralizer.

5= <U ZT<:U>> Ut €51 Zi(@) =0}

€S

For co-t-saturated sets similar results holds. On the other hand, the same can be

done with the complement of S with respect to D*. That is,

Dt —§ = U Z.(x) U{xEDﬁ—S|ZT($):@}

xeDi-S

Furthermore, if Z.(z) # () for all z € D* — S then D* — S = J,cp:_g5 Z-(2). If S
is a 7-ideal, then D* = P U P’, where P = (,cq Z-(2)) U{z € S | Z:(z) = 0}
and P' = J,cpi_g Zr(x) U{z € D* = S | Z,(z) = 0}. If Z,(x) # 0 for all z € D?,
D = (Uses Z (@) U (Usepr—s 2+ (7))

Theorem 2.4. Let D be an integral domain, M C D and 1, Ty symmetric relations
on Df. Assume 1y < To, that is 71 C Ty, then the following properties hold.

Z(x) C Z,,(x) for all x € DF.

Z (x) = Z,,(x) for all x € D* if and only if 71 = 7.

Let x € D*. If Z. (z) = Z,(x), then (Vy € D¥)(x |, y <= 2 |, ¥).

If M is a mo-multiplicative set, then M is a T -multiplicative set.

If M is a co-ty-saturated set, then M is a co-Ti-saturated set.

If M is a mo-ideal, then M is a T1-ideal.

If M is a mo-prime set, then M is a T, -prime set.
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Proof. For (1), let € D* and y € Z,,(x) be arbitrary. Then zmy or (z,y) € 7.
Since 71 C 7y, therefore xmy and y € Z,,(z). In conclusion, Z, (z) C Z,,(x). To
show (2), suppose that Z,, (z) = Z,,(z) for all x € D*. Let (x,y) € 71 be fixed but
arbitrary, then xmy and x € Z,, (y) = Z,,(y). Hence xmyy or equivalently (x,y) € 7.
Then 7 C 75 and similarly 7 C 77. Therefore 71 = 75. The converse follows by part
(1). To prove (3), suppose that z |, y, then there is a m-factorization Az - 2o - - -z,
such that y = Az - x9---x,. Therefore zs,..., 2, € Z, () = Z,(x), ie., xnx;
for all i € {2,...,n}. But 7 is transitive, so that z;7z; where i,j € {2,...,n}.
In conclusion, Axzy - - - x, is a p-factorization, i.e., x |, y. In other words for any
Ti-factorization Axq -xy - - -z, where x is one of x1, o, ..., x,, Ax1 29 -z, is in fact

a Ty-factorization. Analogously if x |, y then x |, .

For (4), let x,y € M such that xmy, then 7y and by hypothesis zy € M.
In consequence, M is a m-multiplicative set. Let x € M such that xmy for some
y € D*. Assume that t € D* with ¢ | y, must show that t € M. Since 7, < 7o, x70y.
Now, M is a co-my-saturated set, hence t € M. therefore M is a co--saturated set.
This shows (5). For (6), let # € M be such that 27y for some y € D*. Since 7y < 73,
x7y. But M is a m-ideal therefore y € M. So M is a 1-ideal set. Finally, to show
(7), let © = Axq - x2-- -2, € M be a 1y-factorization, then x;7x; for all i # j. By
hypothesis z;7oz; for all i # j, ie, x = A\xy - x9---2, € M is a m-factorization.
Since M is a mo-prime set, x; € M for some i. Hence M is a 1y-prime set.

]

The condition in (1) is also sufficient for 7 < 7. Suppose that Z ) € Z,,(x).
Let (z,y) € 71 , then zny, ie., y € Z,, (x) C Z,(x). Therefore, (x,y) € 1. So,

71 < 7. In conclusion, 7, < 7, if and only if Z,, (z) C Z,,(z) for all x € D"

In the definition 2.1 of a co-T-saturated set M, the property :
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(Vo € M)(Vy € D*) {(aty) = {(Vt € D*)(t | y) = (t € M)} }
is useful to obtain important information about M. For instance, see Example (3).
This property is called “the co-T-saturated property”. However, there are sets that
have this property but they are not 7-multiplicative sets. For example, let n € Z
with n > 1 fixed. Consider the set S = {m € Z : m | n} and define 7¢ = S x S.
Since ntgn and n is not related to n?, 7 is not a multiplicative relation. But S is
closed under proper factors, therefore S has the co-r-saturated property. Observe
that in example (3), the fact that S is closed under proper factors does not depend
on S being a T-multiplicative set, just on the fact that S has the co-7-saturated
property. Then, these properties can be useful to get information about a set that
just has the co-T-saturated property and also useful in obtaining properties of a

symmetric relation. The following theorem will show it.

Theorem 2.5. Let D be an integral domain, suppose that T is a multiplicative and

symmetric relation on D* and let x € D* be arbitrary. The following properties

holds.

) Z.(x) is a multiplicative set.

) If T is transitive, then Z,.(x) is a T-ideal.

) Z.(x) # 0 implies Z.(x) is infinite.

) Let x = xy - x9- -2, be a reduced T-factorization. If there ist € {1,2,...,n} such
that x;Tx:, then x;7x.

(5) Suppose that Z.(z) has the co-T-saturated properties for all = € DF, then T is

divisive.

(6) 7 is a transitive and divisive relation if and only if Z,(z) has the co-T-saturated

properties for all z € D¥.

(7) Suppose that S is a T-ideal and Z,(S) NS # 0. Then for each x € Z.(S)N S,

S =27 (x).
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Proof. For (1), assume that y,z € Z,(x). Then z7y and z7z, so yzrz, that is
yz € Z,(x). Hence Z,(x) is a multiplicative set. For (2), notice that by (1), Z,(x)
is a multiplicative set. Let y € Z,(z) and z € D* such that y7z. Then x7y and yrz.
Since 7 is a transitive relation, z7z and z € Z,(z). Hence, Z,(z) is a 7-ideal and

(2) holds.

To prove (3), assume that Z,(z) # 0. Then there is y € D* such that z7y.
Let’s prove by induction that y"7x for all n € N. For k = 1, x7y. Suppose that
it is true for k = n — 1, then x7y™ !, Since 7y and 7 is a multiplicative relation,
xTyy™ ! and hence z7y". Note that if n < m and y™ = y™, y"(1 — y™ ™) = 0,
hence 1 = ™" (D is an integral domain and y € D*). In conclusion, the elements
y,y?, ...y", ... are all distinct. This implies that Z.(z) is infinite. To show (4),
suppose that z € D* and let z; - 25 - - - 2, be a reduced 7-factorization of z. Then
Z(x) = Z(x1 - 29+ ) 2 () Z-(x;) (7 is multiplicative). Let ¢t € {1,...,n} be

such that x;7z;, then x; € () Z-(x;). In conclusion z; € Z.(x).

For (5), let ,y,2',y € D* such that 2’ | x, ¥/ | y and a7y, then y € Z.(x).
Since Z,(x) is a co-T-saturated set, y' € Z.(z), so x € Z.(y'). But, Z,(vy') is also
a co-T-saturated set, then ' € Z.(y'), that is, ' ~ 3. Therefore 7 is a divisive

relation.

To prove (6), suppose T is a transitive and divisive relation. Let z € D¥,
x € Z.(z) arbitrary and y € D* such that x7y. Let t | y for some t € D*. Since 7 is
divisive, x7t and using the fact 7 is transitive, t7z, i.e., t € Z.(2). Therefore Z,(z)
has the co-7-saturated properties for all z € Df. For the converse, suppose that
Z,(2) has the co-T-saturated properties for all z € Df. By (5), 7 is divisive. Let

x,y,2 € D* such that x7y and y7z, then y € Z.(x) and z € Z.(x) (Z.(x) has the
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co-T-saturated properties). So, 7 is a transitive relation. Finally, to prove (7), let
x € Z;(S)NS be arbitrary, then z € Z.(S) and x € S. By the first case, S C Z,.(z)
and by the second case, Z.(z) C S. Therefore S = Z.(z).

Note that in (7), if 7 is a multiplicative relation, S is a multiplicative set.

Theorem 2.1 shows that if 7 is a multiplicative relation is possible to express
any T-factorization as the 7-product of two 7-factors. However, the same result can
be obtain if for each 7-factorization 7 is multiplicative with respect to one of the
T-factors. Let Azy - z9---x, be a 7-factorization of y. If there is a 7-factor z; in
which 7 is multiplicative with respect to z;, then there is a 7-factorization for y of
the form y = Az;s for some s € Df. Assume there is a 7-factor x; in which 7 is
multiplicative with respect to z;, say x;. Since Axq - x5 - - - x, is a 7-factorization of
y, then zy7z; for all j € {2,3,...,n}. Furthermore using the fact that 7 is multi-

plicative, x17(xo -+ - 1,). Let s = 25+ -1, then y = A\z1s where s € D¥ and z,7s.

Consider a non-empty 7-centralizer of a subset S of D¥ then there is z € D*
with non-empty 7-centralizer that contains all the elements of S. However, it does
not give any information about the equality of S and Z,(5), even if z is in S or
its complement. Unless S has some additional property like being a 7-ideal or a
co-T-saturated set. On the other hand, if the additional properties are assumed
with respect to 7, the following theorem gives the connections between S, Z,(5)

and Z,(x) for all z € Z,(95).

Theorem 2.6. Let D be an integral domain, suppose that T is a symmetric relation
on D* and S C D*. Suppose x € D¥, then:

(1) S C Z,(x) if and only if x € Z,(95).
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(2) If T is a transitive relation and Z.(x) # 0, the following statements are equivalents:
(a) §C Z:(2),
(0) x € Z:(5),
(¢) Z:(z) € Z:(9).

(3) If T is a transitive relation and S is a T-ideal, then S = Z (x) = Z.(S) for all
x € Z:(S).

(4) S C Z(x) for all x € D* if and only D* = Z,(S).

Proof. (1) (=) Suppose S C Z,.(z). Given y € S fixed but arbitrary, y € Z,(x),

hence xTy. Then x7y for all y € S and x € Z.(S).

(«<=) Suppose x € Z,(5). Let y € S be fixed but arbitrary. Since z7t for all

t € S, in particular for ¢t =y, y € Z,(z). In conclusion S C Z,(x).

(2) By (1) parts (a) and (b) are equivalents. Suppose that Z.(z) C Z.(S). Let
t € S be fixed but arbitrary. Since Z,(x) # () there is p € Z,(x). By hypothesis
p € Z.(S) and by definition pry for all y € S. In particular for y = ¢, t7p. Since

prx and the transitivity of 7, t € Z.(z). Therefore S C Z,(x).

(3) Suppose 7 is a transitive relation and S is a 7-ideal. Let x € Z,.(S) be
fixed but arbitrary. By (2a) and (2¢), S C Z,(x) C Z,(5). If y € Z,(5), then yrt
for all t € S. But since S is a 7-ideal, y € S, therefore S O Z,(S). This implies

S =27.(x)=2.(S) for all z € Z.(S).

(4) (=) Suppose S C Z,(z) for all ¥ € D*. Let y € D* be fixed but arbitrary.

By hypothesis S C Z,(y), that is, y7t for all t € S. Hence D* C Z.(S).
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(<=) Suppose D* = Z.(S). Let & € D be fixed but arbitrary, then x € Z,(S5).
This implies that ¢t € Z,(z) for all t € S. Therefore S C Z,(z) for all x € DF,
[l

Example 2.4.1. Let D be an integral domain and a € D* arbitrary but fized. Let
S = {a} and define 7, = {(Aa,pa) | \,p € U(D)}. Since at,Aa for all X € U(D),
then Z. (a) # 0. If Mat,pa and pat,na, then \atyna. Hence, T is a transitive
relation. By previous theorem S C Z, (a) = {da | A € U(D)}, a € Z.,(S) and
2,,(0) € Zo,(S). In fact, Zs,(a) = Z,,(S) = {Aa | X € U(D)}.

Example 2.4.2. Let D be an integral domain and a € D* arbitrary but fized. Let
S = {a} and define 7, = {(Aa,ua) | \,p € U(D)}. Since at,Aa for all X € U(D),
then Z, (a) # 0. If Aat,pa and patyna, then Aat,na. Hence, T is transitive. By
Theorem 2.6, S C Z, (a) ={Xa | N € U(D)}, a € Z. (S) and Z,,(a) C Z,,(S). In
fact, Zr,(a) = Z-,(S) = {Xa | A € U(D)}.

The following example illustrate why the hypothesis of 7 being transitive in

Theorem 2.6 is necessary for theorem to holds.

Example 2.4.3. Let D be an integral domain and a,b € D* such that a is not
associated to b. Consider 7, and 7, as defined in FExample 2.4/.2. Define 7 =
7, U, U{(a,b)}. For any A € U(D), Aata and atb, but (Aa,b) ¢ 7. Then T
is not a transitive relation. Let S = {a,b}, then S is a T-ideal. But, Z,(a) = {)a |

AeU(D)} ¢ Z.(5).

In the following theorem the are some results that try to understand the be-

havior of D,(S5), M,(S), Z;(S) and A,(S) for a non-empty subset S.
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Theorem 2.7. Let D be an integral domain, T be a symmetric relation on D* and

S and E non-empty subsets of D* then:

If S C E then D.(S) C D.(E), M.(S) C M.(F) and A.(S) C A.(E).
~(D:(9)) = D-(S5).
(M (5)) = M-(S).
+(Ar(9)) = A-(5).
(Z,(F)) = Z.(F) for all F C D* if and only if T is a transitive relation.

Let A be an index set and Sy a family of non-empty subsets of D* with non-empty
intersection, then :
(a) Dr (Urer S3) = Usen Da (S2), Mz (Usen Sx) = Unen Ma (S) and
(U)\E/\ SA) = Unen Ax (
(b) D- (mAeA SA) Maen Dx (Sx), M- (ﬂ,\eA SA) = Mhen Ma (53) and
A ( )

ﬂAeAS)\
DT(E_S) :DT(E) _DT(S)7 for anys-,c«- E

Proof. (1) Suppose that S C E. Let z € D,(S) be arbitrary, then z € S and 7
is divisive with respect to x. By hypothesis x € F and 7 is divisive with respect
to x. Therefore x € D,(F) and D.(S) C D,(FE). Similarly M,(S) C M,(E) and
A.(S) C A(F).

(2) By definitions D, (D.(S)) is the set of elements in D, (S) for which 7 is divisive
with respect to such elements, then D, (D, (S)) C D.(S5). Let x € D,(S) be fixed
but arbitrary, then 7 is divisive with respect to x. By definition of D,(D,(5)),
z € D (D;(5)). Hence D.(S) C D,(D.(S)).

(3) and (4) are proved similarly.
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(5) (=) Suppose that Z.(Z.(F)) = Z.(F) for all F C D! Let x,y,2z € D*
be such that x7y and yrz, then z € Z,(y) and z € Z,(y). But by hypothesis,
x € Z.(Z;(y)), hence z7t for all t € Z.(y). In particular, x7z. Therefore, 7 is a

transitive relation.

(«<=) Suppose T is a transitive relation. Let z,y € Z,(F) be fixed but arbitraries,
then x7t and y7t for all t € F. For any element s € F', since 7 is transitive, z7s and
sTy, implies z7y. In conclusion, z7y for ally € Z.(F'), and so Z,(F) C Z,(Z.(F)).
Let x € Z,(Z.(F)) be arbitrary, then z7t for all t € Z (F). Take any y € Z.(F),
then x7y and y7s for all s € F. Since 7 is a transitive relation, x7s, for all s € F'.

In conclusion z € Z,(F), so Z.(Z,(F)) C Z.(F).

(6a) Let z € (Jycn Da (Sy) be a fixed but arbitrary element, then z € D) (Sy) for
some A € A, 7 is divisive with respect to x and z € S, C (UAE/\ S,\). Therefore
x €D, (U/\GA SA). In conclusion (J,., Dx (Sx) € D- (U,\e/\ S,\).

Let x € D, (U/\e A SA) be arbitrary, then 7 is divisive with respect to x and
t € Uyep S, then z € Sy for some A € A. In consequence x € D, (S)) for

some A € A. It implies that D: (Uyer Sa) € Uyen Da (Sh).

(6b) Let 2 € Dy (Nyen Sx) be a fixed but arbitrary element, then 7 is divisive with
respect to x and x € Sy, for all A € A. In consequence x € D, (S)) for all A € A.
It implies that D; (Nyen Sx) € Nacn D (Sy)-

Let € () cr DA (Sx) be arbitrary, then x € D, (Sy) for all A € A, 7 is divisive
with respect to z and z € Sy D (ﬂ/\e/\ S,\). Therefore x € D, (ﬂ)\e/\ S,\). In

conclusion Ny, Dx (S3) € Dy (Myep S)-
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(7) Let € D, (E — S) be a fixed but arbitrary element, then z € £ — S and 7 is
divisive with respect to . Hence x € F and = ¢ S. Note that x ¢ S implies by
definition that x ¢ D, (S), and the fact that x € S and 7 is divisive with respect
to x implies © € D, (F). Therefore z € D, (E) — D, (5).

Let x € D, (E) — D, (S) be arbitrary, then x € D, (E) and = ¢ D, (S5), ie.,
r € E, x ¢ S and 7 is divisive with respect to x. In summary, v € E — S and

7 is divisive with respect to x. In consequence x € D, (E —S) and therefore

D, (E) - D, (S) C D. (E - S).

]

The results of the previous theorem can be generalized as follows. Assume P
to be a T-property with respect to an element z in Df. Let S C D! a non-empty
set. The set of elements x € S such that 7 satisfies the property p with respect
to x is denoted as P.(S). This generalizes the idea of D.(S), M,(S) and A.(S),
where in these cases the 7-property P is the divisive (respectively multiplicative and

associated-preserving ) property with respect to given element in Dt

Theorem 2.8. Let D be an integral domain, T be a symmetric relation on D* and
S and E non-empty subsets of D*, then:
(1) If S C E then P.(S) C P, (E).
(2) P.(PA(S)) = P.(S).
(3) Let A be an index set and Sy a family of non-empty subsets of D* with non-empty
intersection, then
(@) Pr (Unen S3) = Unen Pr (S3):
(b) P (m,\eA SA) = Mxen Pr (Sh).
(¢) P.(E—S)= P (FE)— P.(S), forany S C E.
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Proof. (1) Suppose S C E. Let x € P,(S) be arbitrary, then x € S and 7 satisfies
the 7-property P with respect to z. But by hypothesis z € F, then = € P,(E).
Therefore P.(S) C P,(E).

(2) By definition P, (P;(S)) € P.(S). Let x € P,(S) be arbitrary, then 7-
satisfies the property P with respect to z, then by definition x € P,(P.(S)). In
conclusion P.(S) = P, (P.(5)).

(3) Let A be an index set and Sy a family of non-empty subsets of D* with
non-empty intersection.
(3a) Let z € P; (Uycp Sx) be arbitrary, then z € J,., Sx and 7 satisfies the prop-
erty P with respect to x. Hence x € S, for some A € A and = € P,(S)) for
some A € A, ie, 2 € Uyer Pr(S)). Then Py (Uyer S2) € Usen Pr(Sh). Let
r € Uyen Pr (Sy) be arbitrary, then x € P, (Sy) C Sy for some A € A. Hence

x € [Jyen Sx and 7 satisfies the property P with respect to z, i.e., x € P; (U/\EA SA),
therefore P, (UAGA SA) = Usen Pr (Sh)-

(3b) Let & € Py (Nyep Sx) be arbitrary, then = € (,., Sy and 7 satisfies the
property P with respect to z, hence x € Sy for all A € A. Then =z € P, (S5))
for all A € A, ie, 2 € Myer Pr(S)) and Pr(Nyen Sa) € Naen Pr(Sh). Let
r € (\yen Pr (Sx) be arbitrary, then € P, (S)) for all A € A, then z € Sy for
all X € A and 7 satisfies the property P with respect to 2. Therefore x € (), S\
and x € P, (ﬂ)\eA S)\). In conclusion P, (ﬂAEA SA) = aen Pr (Sh)-

(3c) Assume S C E where S and E are non-empty subsets of D*. Let z €
P.(E—S), then x € F—S and 7 satisfies the property P with respect to z, sox € £
and x ¢ S. Therefore v € P.(F) and x ¢ P,(S). In resume z € P.(E) — P.(95).
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Hence P, (E — S) C P,(E) — P;(S). Let © € P.(E) — P.(S), then x € P.(F) and
x ¢ P;(S). Hence v € E and = ¢ P,(S), so x € E — S and 7 satisfies the property
P with respec to x. Therefore z € P.(E — S), i.e., P.(E —S) = P,(E) — P.(S).

[

In this chapter, some properties of the theory of 7-factorizations depend on
symmetric relations, and on the divisive, multiplicative and associated-preserving
relations. If 7 is a divisive relation, any 7-factorization after a 7-refinement is again
a T-factorization. If 7 is a multiplicative relation, any 7-factorization can be ex-
pressed as the 7-product of lenght two, and if 7 is an associated-preserving relation,

the unit can be omitted. Also, a divisive relation is an associated-preserving relation.

The set A, (S) ( respectively D.(S) and M,(S)) where S C D*, is formed by
the elements with empty 7-centralizer and the elements in which 7 is associated-
preserving ( respectively divisive and multiplicative) with respect to such element.
Any co-T-saturated set is a 7-ideal. The converse is true when 7 is a divisive relation.
The properties obtained in the 7-sets were more interesting when considered with
non-empty 7-centralizers for each one of their elements, and 7 to be a multiplicative
or a divisive relation. The 7-set property can be inheritable, that means whenever

1 < T9, a Ty-set is a 7q-set.



Chapter 3
EQUIVALENCES

During the development of this work, equivalences with respect to the types of
relations considered in the theory of 7-factorization were found, using the definitions

of T-centralizer, D,(S), M.(S) and A,(S) for some non-empty subset S of D*.

3.1 Equivalences for a multiplicative relation

In this section, the equivalences to the definition of a multiplicative relation are

given in terms of Z,(z) and M,(S), where z € D* and () # S C DF.

Theorem 3.1. Let 7 be a symmetric relation on D*. Then T is a multiplicative

relation if and only if Z.(x) N Z.(y) C Z.(xy) for all x,y € D*.

Proof. (=) Suppose that 7 is a multiplicative relation. Let x,y € D* be fixed but
arbitrary elements and ¢ € Z,(xz) N Z-(y), then ¢t7x and t7y. Since 7 is a multiplica-

tive relation, tTxy. In consequence, Z,(x) N Z.(y) C Z,(zy) for all z,y € D*.

(«<=) Suppose that Z.(x) N Z,(y) C Z.(xy) for all z,y € D¥. Let x,y and z be
elements in D* such that x7y and x7z. By hypothesis, x € Z.(y) N Z.(2) C Z.(yz)
and x7yz. Thus, 7 is a multiplicative relation.

]

In Theorem 3.1, if x = Axy - 29 ---x, is a 7-factorization, this implies that for
any ¢ # j, x;7x;. If 2y is fixed, then xy € Z(x;) for all : € {2,...,n}. Therefore

x17(x2 - - x,) and x has a 7-factorization of length 2, when 7 is a multiplicative

33
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relation. This is a consequence of Proposition 2.2 in [1].

Theorem 3.2. A symmetric relation 7 is multiplicative if and only if T is contained

in M,(S) x M,(S) for some set S C D*.

Proof. If 7 =0, then 7 C M,.(S) x M.(S) for any S C D*. So assume 7 # .

(=) Assume 7 to be a multiplicative relation. Take S = |J,.p: Z-(x). Since 7 is
a multiplicative relation, S C M, (S). But M.(S) C S, so M,(S) = S. If (z,y) € T,
then z7y and x,y € S. Therefore (x,y) € S x S C M, (S) x M,(S). Consequently
T C M.(S) x M.(S).

(«<=) Assume 7 C M, (S) x M,(S) for some S C D*. Let z € D* be an element
with 27y and x7z. In particular, (z,y) € 7 C M,(S) x M.(S) for some S C D*.
Hence x € M, (S) and x7yz (by hypothesis). Thus, 7 is a multiplicative relation.

[

Theorem 3.3. A symmetric relation 7 is a multiplicative relation if and only if for

all z,y € D* there is S C D* such that Z.(x) N Z,(y) C M,(S).

Proof. If 7 = (), then Z.(z) N Z.(y) = 0 € M,(S) for any subset S of D. Hence,

assume 7 # ().

(=) Suppose that 7 is a multiplicative relation. Take S = |J,cp: Z-(x), then

by Theorem 2.7

M-(S) = MA|J Z(2))}

zeDH

(3.1)
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Since 7 is a multiplicative relation M {Z.(z)} = Z,(x) for all x € D*. In conclu-
sion, M,(S) = S. Let x,y € D* and t € Z,(z) N Z,(y) be fixed but arbitrary. In
particular, t € Z.(z) C S = M.(S). Consequently Z.(z) N Z,(y) C M,(S5).

(<=) Suppose that for all x,y € DF, there is S C D* such that Z.(x)NZ,(y) C
M,(S). Let z,y, z € D* such that 27y and 27z. Then x € Z,(z) N Z,(z) C M.(9S).
Therefore x € M,(S), and by the definition of M, (S), z7yz. Therefore, 7 is a
multiplicative relation.

]

Corollary 3.1. 7 is a multiplicative relation if and only if for all x € D there is

S C D* such that Z.(x) C M.(S).

Proof. If 7 = (). then Z,(z) = 0 for all z € D* and Z,(z) € M,(S) for all S C D*.
Hence assume 7 # (.

(=) Suppose that 7 is a multiplicative relation. Let # € D*. By Theorem 2.7,
there is S C D* such that Z,(z) = Z,(z) N Z.(x) C M,(S).

(<=) Suppose that for all x € D* there is S C D* such that Z,(z) C M,(S).
For all z,y € D* arbitrary, Z.(x) N Z.(y) C Z,(z) C S for some S C D Then it
follows from Theorem 3.3.

O

In the next equivalence, other condition between the concepts of the set M. ()

and a multiplicative relation was obtained.

Theorem 3.4. A symmetric relation T # O is multiplicative if and only if

M. (S) =S for all S C D"
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Proof. (=) Assume 7 to be a multiplicative relation. By definition M,(S) C S.
Let 2 € S be fixed but arbitrary. If Z,(x) = (), 7 is multiplicative with respect to x
vacuously, hence x € M,(S). So assume Z.(z) # (). For any y, 2z € D, if x7y and

x7z, then z7yz and x € M.(S).

(<=) Suppose that M.(S) = S for all S C D! Note that for all x € D
M.({z}) = {z}. Then the proof is concluded, because 7 is multiplicative with

respect to x for each x € Dt

3.2 Equivalences for a divisive relation
In this section, the equivalences to the definitions of a divisive relation is given
in terms of Z,(x) for x € D* and D,(S) where () # S C D* Must note that the

statements are very similar to those in the previous section.

Theorem 3.5. A symmetric relation 7 s divisive if and only if

Z(xy) C Z.(x) N Z.(y) for all z,y € D* and 7 is associated-preserving.

Proof. (=) Suppose 7 is a divisive relation. Let x,y € D* and t € Z,(zy) be
fixed but arbitrary. By definition, t7xy. Since 7 is a divisive relation, t7x and t7y.

Therefore Z.(zy) C Z.(z) N Z,(y).

(«<=) Assume Z,(zy) C Z,(x)N Z(y) for all 2,y € D*. Let x,y € D* arbitrary
but fixed such that z7y. Suppose 2',y" € D* such that ' | z and ¢ | y. Hence,
x =2t and y = y's for some t,s € D. Therefore there are 3 cases; when t,s € D,
t,s € U(D) and, t € D* and s € U(D). If t,s € D, then Z.(2't) C Z,(2') N Z.(t).
Since zTy, y € Z.(2't) and y € Z,(2'). Thus, 2’ € Z.(y) C Z.(v's) C Z,(y' )N Z.(s)
and z'7y’. In the second case since 7 is associate-preserving, z7z’ and y ~ 7/,

x2'Ty’. For the last case, note that y'7x, because 7 is associate-preserving. Now,
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y € Z(2't) C Z.(2') N Z,;(t) and 2'7y’. Therefore, in any case 2’7y’ and 7 is
divisive
]
The last theorem gives a similar result as when 7 is a multiplicative relation, this
time with the assumption that the 7-centralizer of the product of any two elements
in D* is contained in the intersection of their respective T-centralizers. However, the
hypothesis of 7 being an associated-preserving relation was needed. The following
theorem shows the connections between the definition of D, (S) of a subset S C D*

and a divisive relation.

Theorem 3.6. A symmetric relation T is divisive if and only if T C D.(S) x D,(5)

for some S C D¥.

Proof. If 7 =), then 7 C D.(S) x D.(S) for any S C D*. So assume 7 # (). (=)
Suppose T is a divisive relation and consider S = J,.p: Z-(x). Since 7 is a divisive
relation, S C D.(S). But, D.(S) € S, so D.(S) = S. Moreover, if z7y, z,y € S.
Therefore (z,y) € S x S = D,(S5) x D,(5), and consequently 7 C D, (S) x D.(S).

(<=) Suppose that 7 C D,(S) x D.(S) for some S C D*. Let x,y € D* such
that * € Z.(y) and t | y. For some t € D! (z,y) € 7 C D.(S) x D,(S) and
x € D;(5). Therefore t € Z,(x), and hence 7 is divisive.

O

Theorem 3.7. A symmetric relation T is divisive if and only if the following con-
dition holds:
(Vo € D)(vy € DIY{(y € Zi()) — {(¥t € DA)(t | y) — (¢ € Ze(2)}}.

Proof. Suppose that 7 is a divisive relation. Let x,y € D* such that y € Z,(z).

Suppose t € D* with t | y. By divisivility, since z |  and t | y, trz. Therefore
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t € Z,(x). For the converse, suppose the above property holds. Let z,y € D* such
that y € Z,(z). Let 2’,y’ € D* with 2’ | x and %/’ | y. By hypothesis, ¢’ € Z.(x), that
is, x € Z,(y'). Applying the hypothesis again, 2’ € Z,(y'), that is, 2'Ty’. Therefore,
T is a divisive relation.

]

Theorem 3.8. A symmetric relation T is a divisive relation if and only if for all
x,y € D* there is S C D! such that Z,(zy) C D.(S) and 7 is an associated-

preserving relation.

Proof. If 7 = 0 then Z,(zy) = 0 for all z,y € D*, hence Z.(xy) C D,(S) for any
S C DF and 7 is an associated-preserving relation.

(=) Suppose that 7 is a divisive relation. By Theorem 3.6, there is S C D* such
that 7 C D.(S) x D,(S). Let p € Z.(zy) be fixed but arbitrary, then (p,zy) € 7.
Hence p € D,(S), therefore Z.(zy) C D,(S5).

(<=) Assume 7 to be an associated-preserving relation and for all z,y € D*
there is a subset S C D* such that Z,(vy) C D,(S). Let 2,y € D* be fixed but
arbitrary and p € Z,(zy). By hypothesis, p € D,(S) for some S C D! and 7 is
divisive with respect to p. Since z,y | zy, x7p and y7p. Therefore p € Z.(z) N Z,(y)
and Z,(zvy) C Z,(z)NZ.(y) for all 2,y € D*. By Theorem 3.5 7 is a divisive relation.

O

Theorem 3.9. A symmetric relation T is divisive if and only if for all x € D* there

is a subset S C D* such that Z.(x) C D,(S).

Proof. If 7 = 0, then Z,(x) = () for all x € D*. Hence Z.(x) C S for any S C D*.
So, assume T # ().
(=) Suppose that 7 is divisive. By Theorem 3.6 there is an S C D* such that

7 C D.(S) x D,(S5). Let p € Z.(z) be fixed but arbitrary, then prz. Hence,



39

(p,x) € 7 C D,(S) x D(S) and p € D,(S). Therefore Z,(x) C D.(S).

(<=) Suppose that for all z € D? there is a subset S C D such that
Z.(r) C D.(S). Let y,z € D¥ be fixed but arbitrary. Take z = zy, by hypoth-
esis there is a subset S C D* such that Z.(zy) C D,(S). That is, for all z,y € D
there is S C D* such that Z,(zy) € D,(S). On the other hand, let z,y be two
elements D? such that z7y and t ~ y. Now, z € Z,(y) C D,(S) for some S C D,
and 7 is divisive with respect to x, so x7t. Therefore 7 is an associated-preserving

relation. By previous theorem 7 is a divisive relation.

]

Theorem 3.10. A symmetric relation 7 # () is divisive if and only if D;(S) = S
for all S C D* with S # ().

Proof. (=) Suppose that 7 is a divisive relation. Let S C D* be arbitrary. By
definition, D.(S) € S. To prove the other direction let x € S be arbitrary. If
Z.(r) = 0, then z € D,(S). So assume that Z,(z) # () and let y € D* such that
x7y. Since 7 is a divisive relation, any factor of y on D? is related to x. Hence

D.(S) = 5.

(<=) Suppose D.(S) = S for all S C D*. Let x € D* be fixed but arbitrary.
By hypothesis, D,(Z,(z)) = Z.(x). In conclusion, for all z € D*, there is S C D*
such that Z.(z) C D,(S). By Theorem 3.9, 7 is a divisive relation.

]

Corollary 3.2. Let 7 be a symmetric relation on D¥. Assume that T is associated-
preserving, then the following statements are equivalents.
(1) The relation T is a multiplicative and divisive relation.

(2) For all v,y € D*, Z.(xy) = Z,(x) N Z.(y).
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(3) For all ) # S C D* with D,(S) # 0 and M.(S) # 0 , M,(D.(S)) = S or
(4) For all® # S C D*, D.(S) = M.(S)=S.

Proof. 1t follows immediately from the previous theorems.

3.3 Equivalences for an associated-preserving relation

If 7 is an associated-preserving symmetric relation, each 7-factorization can be
written as a 7-reduced factorization and it is a way to dispense of the unit in front of
a T-factorization. In this section several equivalences will be presented with respect

to associated-preserving relations.

Theorem 3.11. A symmetric relation T is associated-preserving if and only if

A (S) =S forall S C D"

Proof. If 7 = (), then A,(S) = S vacuously. So assume 7 # ().

(=) Suppose that 7 is an associated-preserving relation. Let S C D? be fixed
but arbitrary. By definition, A,(S) is the set of elements x in S such that 7 is
associated-preserving with respect to x, then A.(S) C S. For z € S, 7 is associated-

preserving with respect to x, because 7 is an associated-preserving relation. There-

fore x € A,(5). In conclusion A,(S) =S

(<=) Assume A,(S) = S for all S C D*. Let x,y € D* such that x7y. Then
r € Z.(y) = A-(Z-(y)), that is, 7t for any ¢ ~ y. Therefore, 7 is an associated-

preserving relation.

O

Observe that any divisive relation is an associated-preserving relation, therefore

a symmetric relation is divisive if and only if A,(S) = D,(S) for any S C D*. But
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in general, D,(S) C A,(S) for any S C D*.

Theorem 3.12. A symmetric relation T is associated-preserving if and only if there

is a subset ) # S C D¥ such that 7 C A,(S) x A.(S).

Proof. If 7 =0, then 7 C A.(S) x A.(S) for any S C D*. So assume 7 # ().

(=) Suppose T is an associated-preserving relation. Take S = (J,p: Z-(2), then
by Theorem 3.11 A.(S) = S. If (z,y) € 7, then x € Z.(y) and y € Z.(x).
But Z,(x),Z,(y) € S, hence (z,y) € S x 5 = A.(5) x A.(S). In conclusion,
T C A (S) x A.(S).

(<=) Suppose there is a subset S C D* such that 7 C A,(S) x A,(S). Let
z,y € D* such that x7y. By hypothesis (z,y) € A,(S) x A.(S). In particular,
x € A;(S). Hence x € S and 7 is associated-preserving with respect to x. So, if
y ~ t then x7t. Thus, 7 is associated-preserving.

]

Theorem 3.13. A symmetric relation T is associated-preserving if and only if for

all z,y € D* there is a subset S C D* such that Z,(z) N Z.(y) C A.(9).

Proof. If 7 =0, then Z,(z) N Z.(y) =0 C A,(S) for any set. Hence, assume 7 # ().
(=) Suppose T is an associated-preserving relation. Let z,y € D* be fixed but
arbitrary. Take S = Z.(x), then Z,(z) N Z,(y) C Z.(z). By Theorem 3.11
A (Z () = Z,(z), therefore Z.(x)NZ,(y) C A,(S). In conclusion, for all z,y € D*
there is S = Z,(x) C D¥ such that Z.(x) N Z.(y) C A.(S).

(<=) Suppose for all x,y € D* there is S C D* such that Z,(z) N Z,(y) is a
subset of A,(S). Let 2,y € D* such that x7y. By hypothesis, there is S C D such

that Z.(y) N Z:(y) = Z:(y) C A;(S). Since z € Z,(y), T is associated-preserving
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with respect to x. Thus, x7t for all ¢t ~ y.
O

Theorem 3.14. A symmetric relation T is an associated-preserving relation if and

only if for all x € D* there is ) # S C D* such that Z,(x) C A,(S).

Proof. It 7 =0, Z,(z) =0 C A,(S). So assume 7 # 0.
(=) Suppose 7 is an associated-preserving relation. Let z € D* be fixed but arbi-

trary. By Theorem 3.11 Z.(z) = A;(Z;(x)). Then S = Z.(z) does the work.

(<=) Let x,y € D* be such that z7y, then there is a S C D* such that
Z:(y) € A,(S). Note that x € Z,(y) and 7 is associated-preserving with respect to
x. In conclusion, z7t for all t € D*. Thus, 7 is an associated-preserving relation.

]

Theorem 3.15. A symmetric relation T is an associated-preserving relation if and

only if Z.(x) = A, (z) for all z € D"

Proof. (=) Suppose 7 is an associated-preserving relation. Let p € Z,(z) be fixed

but arbitrary, then prz. Since 7 is an associated-preserving relation, x7p’ for all

p' ~p. Thus p € A (), so Z.(z) C A (x).

(<=) Let x,y € D* such that 27y, then y € Z.(x) = A,(z). By definition of
A (z), zry for all y ~ . Therefore, 7 is an associated-preserving relation.

]

Theorem 3.16. A symmetric relation T is associated-preserving if and only if

Z(x) = Z(t) for all x ~ t.

Proof. Suppose T is an associated-preserving relation. Let x,¢ € D* such that o ~ t.
Let p € Z,(z), then prx and by hypothesis prt. Thus, p € Z,(t) and Z,(x) C Z,(t).

The other containment is similar. Assume that z7y and ¢ ~ y. By hypothesis
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Z(x) = Z.(t). Now, x € Z.(y) and x € Z,(t), implies 7 is an associated-preserving
relation.

[]

The following theorem generalizes the result about some of the equivalences

found.

Theorem 3.17. Let D be an integral domain, T a symmetric relation on D* and P
a property with respect to T, then the following statements are equivalents:

(1) T satisfy the property P for each v € DF.

(2) T C P.(S) x P.(S) for some set S C D*,

(3) for all x € D*, there is S C D¥ such that Z.(x) C P.(S),

(4) P.(S) =S8 for all S C D"

Proof. ((1)== (2)) If 7 = ), then 7 C P,(S) x P,(S) for any S C D*. So assume
7 # 0. Suppose 7 is a divisive relation and consider S = J,.p: Z;(2). Since 7
satisfies the property P, S C P,(S). But by definition P.(S) C S, so P,(S) = S.
Moreover, if z1y, x,y € S. Therefore (x,y) € S x S = P.(S) x P(S), and conse-
quently 7 C P, (S) x Pr(S5).

(2= (3)) Let & € D* arbitrary and y € Z.(z), then by hypothesis
(y,x) € 7 C Pr(S) x Pr(S) for some S C P,(S) and y € P,(S). Therefore
Z,(z) C P.(S) for all x € D¥.

((3)= (4)) Let S C D* arbitrary. By definition P.(S) C S. Let z € S ar-
bitrary. If Z.(x) = 0 then x € P,(S). Assume Z,(z) # 0 then exist y € D* such
that z7y. But by hypothesis there is S C D! such that Z,(y) C P,(S'), hence

x € P,(5"). Therefore 7 satisfies the property P with respect to z and x € S, then
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z € P,(S). In conclusion P.(S) = S for all S C D*.

((4)== (1)) Note that for all x+ € D* P,({z}) = {z}. Then the proof is
concluded, because 7 satisfies the property P with respect to = for each x € DF.

]

3.4 New approach for known theorems

The most important results of the theory of 7-factorization were obtained when
multiplicative, associated-preserving and divisive relations were considered. The
equivalences can be used to obtain alternative proofs of the theorems in [1], but to
try to understand the nature of these types of relations. In some cases it is easier

to prove them using the equivalences.

Theorem 3.18. Let D be an integral domain and 7 a symmetric relation on DF.
Suppose T is a divisive relation.

(1) Let © = x1 - x5+ -z, be a T-factorization of x, and let x; = y1 - Y2+ yn be a
T-factorization of x; for some i. Then x = x1---x; 1 Y1 Y2 Yp - Tit1 - Ty 1S
again a T-factorization of x.

(2) Suppose T is a multiplicative relation. Let x = Axq - xo---x, be a T-factorization

of x. Then x = Xxy---x;_1 - (2;Ti11) - Tigo - Ty 1S a T-factorization of x.

Proof. Let x = xy---x, be a 7-factorization of x and x; = y;---y, be a 7-
factorization of z; for some i € {1,2,---n}, then x; € Z.(v;) = Z;(y1- - ym) for
all i # j. Since 7 is divisive Z(y1 -+ ym) € (rey Z-(yr), hence z; € (V) Zr(yk),
ie., z;Ty, for all j # 7. So the first statement holds. For the second part, let
T = A\ry - xo---x, be a T-factorization of . Then z; € Z, (x;) N Z;(x;y1) for all
k #i,i+ 1. But by hypothesis Z.(z;) N Z(x;41) C Z-(z;x:41) for all k £ 4,1+ 1.

Hence, x € Z,(x;x;41) for all k # i, j. Therefore, v = xy -+ x;_1 - (2;%i41) Tigo - - Ty
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is a T-factorization of z.

]

Theorem 3.19. Let 7 be a divisive symmetric relation on the integral domain D.
Let & € D be a T-prime element and y € D* a T-atom. Then either atb or ab is a

T-atom.

Proof. Suppose that is not a 7-atom. Let ab = xy - x5 ---x, be a 7-factorization,
then a | z; for some i € {1,2,...,n}, say a | z;. Write x; = ra, thenb =129 - x,.
If r is an unit, b = rxy. Note that z; = ra and b = rzs, and since 7 is associated-
preserving, ath. So, the reader may assume that r is not unit. Note that z,,...,x, €
Z:(x1) = Z-(ra) C Z.(r)NZ;(a). In consequence, xo, ..., x, € Z,(r),i.e,razy---x,
is a T-factorization. A contradiction because is a T-atom.

]

In this chapter equivalences for divisive, multiplicative and associated-preserving
relations were found, using Definition 2.2. These results are connections between the
theory of 7-factorization and our work, and it is possible to use them to analyse the

main type of relations known in the theory of 7-factorization from other perspective.



Chapter 4
OTHER RESULTS

The idea of prime ideal arose from the natural generalization of the notion of a
prime in the integers Z, and plays an important role in the theory of commutative
rings. The definition of a prime ideal can be recast in the follow way : [ is prime if
and only if M is multiplicative, where M is the complement of I, see [10]. From the
definition of a 7-multiplicative set, the definition of a 7-prime set was considered
based on such statement . Unit and zero elements were avoided in the theory of
T-factorization. For this definition would like to keep the property of a 7-prime ideal

as defined in [11], without most of the ideal or subring properties.

Theorem 4.1. Let D be an integral domain, T a multiplicative symmetric relation
on D¥ and M C D*. Then M is a T-prime set with respect to reduced 7-factorizations

if and only if cops(M) is a T-multiplicative set.

Proof. (=) Suppose that M is a T-prime set and let z,y € cop: (M) be such that
x7y. Since M is a 7-prime set xy € M implies © € M or y € M, which it is a

contradiction. Hence xy € cop:(M) and cop: (M) is a T-multiplicative set.

(<=) Suppose that cop: (M) is a T-multiplicative set and let zy - x5 - - -z, € M.
Suppose that z; € cop:(M) for all 1 < i < n, let’s prove by using induction that
Ty Xo- Xy € copr(M). If n = 1, there is nothing to prove. Consider n > 2. If
n = 2, then x17xs and w7 - xo is a 7-factorization. So that zyzy € cop:i(M) by

hypothesis. If n = 3, using the fact 7 is a multiplicative relation and xy - x5 - - - x,, is

46
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a T-factorization, r17zox3 and xyxexs € cops(M). Now, zy7(xy - - - x,_1) follows for
the fact that 7 is a multiplicative relation. But zy7x,, therefore z17(xg - x5 - - x,)
and 1 -z w3, € cop:(M)(as a product, and later as a T7-product because they
were originally related), which is a contradiction. In conclusion, M is a 7-prime set.

]

The above theorem focused only on reduced 7-factorizations because on it A = 1
is assumed . But if 7 is divisive or associated-preserving, such 7-factorizations can be
considered. The same result can be obtained instead considering 7 to be a divisive
relation to consider M — {0} to be a T-prime set, as is illustrated in the following

corollary.

Corollary 4.1. Let D be an integral domain, T a symmetric relation on D* and M
a proper ideal of D. Suppose that T is a multiplicative relation, then M — {0} is a

T-prime set if and only if cop:(M — {0}) is a T-multiplicative set.

Proof. Since M is and ideal, if Aay - as---a, € M — {0} is a T-factorization, then
aj - as---a, € M —{0}. Consequently, by Theorem 4.1 the proof is concluded.
O

Of course, if cop:(M — {0}) is a 7-ideal or a co-T-saturated set, it was going to
obtain also that M —{0} is a 7-prime set. Then it is possible to think that since these
two 7-sets are T-multiplicative sets the reciprocal is also true for arbitrary relations.
However, it is not true in general, but, there are relations where the reciprocal is

also true.

Ezxample 4.0.1. Take D =Z and I = (5). For any x,y € Z, define xTy if and only
if 2|z, y. Observe that 4 € cop:I and 4720, but 5|20 and 5 ¢ cop:(I). Since I is

a prime ideal, then I is a T-prime set, but cop:(I) is not a T-ideal. On the other
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hand, consider the relation 1, define as follows: xT,y if and only if t —y € (p). Now

consider S = (p) — {0}, and notice that S is a T,-ideal and also a T-prime set.

Theorem 4.2. Let M be a proper ideal of D and Z,(t) # @ for allt € M — {0},
then M = D* U {0} if and only if M — {0} is a co-T-saturated set.
Proof. Suppose that M = D*U{0} , so that M —{0} = D* and M —{0} is obviously
a co-T-saturated set. Conversely, since M is a proper ideal, then M C D*U{0}. Now
let # € D¥ and y € M — {0} be fixed but arbitrary, so zy € M — {0}. By hypothesis
Z,(zy) # @, then there exists t € D* such that xyrt. Therefore t € M — {0},
because M — {0} is a co-T-saturated set. But trxy, and since x | zy, * € D* and
M — {0} is a co-T-saturated set, x € M — {0}. In conclusion, D* U {0} C M.
[
In Theorem 4.2, M = D* U {0} implies that D is a quasi-local ring, that is,
a ring with a unique maximal ideal. Then 4.2 provide a sufficient and necessary

condition about an integral domain being a quasi-local ring.

FExample 4.0.2. Let p € Z be a fixed positive prime number. Consider,

Z, = {5eQbez- @)}
= {5 Q¢ m)
= {3 Qb

(4.1)

Zy s already an integral domain.

Let M = (p) and define the relation: x7y if and only if v = y. Clearly, T is a re-
flexive relation, so that Z,(t) # @ for allt € M —{0}. Let x € M —{0} andy € Z}
such that xTy, then x =y € M — {0}. Hence y € (p) with y # 0. Then M — {0}
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1
is a T-ideal. Let t |y be such that t € Z%. Ift ¢ (p), then 7 € Z,. So, t € U(Z,)
which is a contradiction. Finally t € M — {0}, so M — {0} is a co-T-saturated set.
By Theorem 4.2, M — {0} = Z} = (p) — {0}.

Theorem 4.3. Let D be an integral domain, let T be a symmetric relation on D*
and I a proper ideal of D. Suppose that I — {0} is a T-prime set, then S =1 — {0}

is a T-ideal if and only if cop:(S) is a co-T-saturated set.

Proof. (=) Suppose that S = I — {0} is a 7-ideal. By the fact that I is a 7-prime
set and Corollary 4.1 cops(.S) is a 7-multiplicative set. Let o € cop:(S) be fixed but
arbitrary and y € D* such that z7y. Suppose t | y for some t € D*. If t ¢ cops(S),
then t € S, so that y € S, because [ is an ideal. By hypothesis = € S, which is a

contradiction. So, cop:(S) is a co-T-saturated set.

(<=) Suppose cop:(S) is a co-T-saturated set. Since [ is an ideal, then I is a
r-multiplicative set. Let x € S and y € D* such that x7y. If y ¢ S, y € cop:(S).
Now x € cop:(S), which is a contradiction. Therefore S is a 7-ideal.

]

Taking away zero from an arbitrary prime ideal a 7-prime ideal is obtained. So,
Theorem 4.3 also holds if it is replaced prime ideal for a 7-prime ideal. It is not
difficult to show that if assume that cop:(S) is a 7-ideal instead of a co-T-saturated
set the same result is obtained, even without considering 7 to be a divisive relation.
In fact, the complement in D* of a proper ideal of an integral domain D is a 7-ideal

if and only if it is a co-T-saturated set.

Corollary 4.2. Let I be an ideal on an integral domain D and T a symmetric and

multiplicative relation, then the following statements are equivalents.
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(1) cops(I —{0}) is a T-ideal.
(2) I —{0} is a T-prime set and I — {0} is a T-ideal.

(3) copi(I —{0}) is a co-T-saturated set.

Proof. Observe that if cops (I — {0}) is a 7-ideal and there is y € cops(I — {0}) such
that Z,(y) # 0, t € cop:(I —{0}) for any factor ¢ of y (I is an ideal and cop: (I —{0})
is a 7-ideal ). So, (1) implies (2) and by Theorem (2.2), (2) implies (1). Finally, (2)
and (3) are equivalents by Theorem 4.3.

[

One of the objectives is to find connections between known theories and the
concepts defined, that gives other ways to understand the theory or 7-factorizations
and concepts in commutative ring theory, see for example Theorem 4.2. Connections

were also found using Definition 2.1(1), this time with the multiplicative sets.

Theorem 4.4. Let D be an integral domain, M a subset of D' and T a symmetric
relation on D*. Assume that Z.(x) # O for all x € cops(M). If cops(M) is a

co-T-saturated set, then M 1is a multiplicative set.

Proof. Let x,y € M be fixed but arbitrary. Suppose that xy € cop:(M), then by
hypothesis Z,(zy) # 0, i.e., there is t € D* such that tTay. Since cop:(M) is a
co-T-saturated set x,y € cop:(M), a contradiction. In conclusion, M is a multi-

plicative set.

O

Theorem 4.5. Let D be an integral domain, 7 a multiplicative symmetric relation
on D* and I a proper ideal of D.
(1) Suppose there ist € cop:(I—{0}) such that Z,(t) 2 cop:(I—{0}) and cop:(I—{0})

is a T-ideal, then I — {0} is a T-ideal and I is a prime ideal.
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(2) If copi(I) x cop:(I) € 7 and copi(I) is a T-multiplicative set, then I is a prime

1deal.

Proof. (1) Since 7 is a multiplicative relation and cop:(I — {0}) is a 7-ideal, by
Theorem 4.2, I — {0} is a 7-ideal. In fact, I —{0} is a 7-prime set. Let xy € I —{0}
be arbitrary. Suppose that x,y € cop:(I — {0}), then x7t and y7t. Since 7 is mul-

tiplicative, traxy and zy € cop:(I — {0}), which it is a contradiction.

(2) Let xy € I be arbitrary. Suppose neither x nor y are in I, then z,y €
copt(I) and by hypothesis z7y. Finally, since cop:(I —{0}) is a 7-multiplicative set,
xy € cop:(I —{0}), which is a contradiction. Observe that since z7y, neither x nor
b could be zero. Hence I a is prime ideal.

]

Theorem 4.6. Let D be an integral domain, T a symmetric relation on D* and M
a proper ideal of D. Assume that for any ideal I of D such that M C I, cops(I) is
a T-ideal. If Z(x) N Z.(y) # O for all x,y € D¥, then M is a mazimal ideal or D is

local.

Proof. Suppose that there is an ideal N such that M C N C D and M # N.
Let * € DF be fixed but arbitrary. Assume that x ¢ M, then x € cop:(M).
Let y € N — M be fixed but arbitrary. So x,y € cops(M) and by hypothesis
Z.(x) N Z:(y) # (0. Then there is an element t € Z.(z) N Z,(y) and therefore t7x
and tTy. Since cop:(N) is a 7-ideal, N — {0} is a 7-ideal, t € N and hence = € N.
Therefore D¥ C N. Then D* = N — {0} or D = N. Then D is local or M is

maximal.
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In commutative ring theory, if S is a multiplicative closed set and [ is an ideal
maximal with respect to the exclusion of S, then I is a prime ideal [10]. An analo-
gous of it was establish with 7-multiplicative sets and 7-prime ideals. The following

theorem is the result of the previous idea.

Theorem 4.7. Let D be an integral domain, T a symmetry multiplicative relation
on D¥ and I a proper ideal of D. Let M C D* be a T-multiplicative set such that
Z(M)YNM # 0 and suppose that I is mazximal ideal with respect to the exclusion of
Z.(M)N M, then I — {0} is a T-prime set.

Proof. Let Axy -2y ---x, € I —{0} be a 7-factorization, then =y -x5-- -z, € I —{0}.
Suppose x; ¢ [ — {0} for all i = 1,2,...,n, then (I,z;) 2 M for alli = 1,2,...,n.
By hypothesis (I,z;) N Z. (M) N M # 0, therefore for all i = 1,2,--- ,n there is
ri € (I,z;) N M such that M C Z,.(r;). So, ryrr; for all 4,5 = 1,2,...,n. Using
induction, the fact that M is a 7-multiplicative set and 7 is a multiplicative relation
(see proof of Theorem 4.1), []} r; € M, which is a contradiction.

O

Observations Let D be an integral domain, 7 a symmetric relation on D* and
M C D! a co-t-saturated set.

(1) If Z,(z) # 0 for all x € M, then for all y € D¥ such that y | z, y € M.

(2) If Z(x) N Z-(y) " M # () for all x,y € M and 7 is a multiplicative relation, then

M is a saturated set in DF.

This chapter presented connections between commutative ring theory and our
work. More specifically on how to use the 7-sets to obtain information about ideals,

prime ideals, saturated sets and quasi-local domains.



Chapter 5
CONCLUSIONS AND FUTURE WORK

In this chapter, the reader will find a summary of the main results, their im-
portance and suggested question for future research. In the future work section, the
author wanted to include some quick results on suggested alternative definitions for
the sets D.(S), M.(S) and A.(S), but leaves the rest to be studied later and opens

an invitation to the reader to study such sets.

5.1 Conclusions

Let 7 be a symmetric relation on D*. The 7-centralizer of an element x € D¥,
turns to be an essential tool to further develop the theory of 7-factorizations. Be-
cause it gives a more natural way to visualize the concepts and it is a key to un-
derstand the most important types of relations so far. Moreover, together with the
set P,(S) it suggested that any other type of relation depends of the 7-centralizer
of x or Z.(S) where x € S for some S C D It was possible to give a necessary
and sufficient condition for 7, so Z,(z) = Z,(S) = S for some x € D*. Theorem 2.5

gives a very good characterization of Z,(x) under several hypothesis.
During this investigation it was possible to characterize the main three types

of relations, known as: divisive, multiplicative and associated-preserving. The idea

emerged from the study of such properties locally at a singleton set, that is, looking
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for elements of D! with such properties. The results of this idea give several equiv-
alent statements to the definitions of a divisive, a multiplicative and an associated-
preserving relation. Moreover, some of the statements are very similar and provide
a generalization of this set for any type of relation. At the same time, this suggested
that there are other type of relations to consider. This coincides with the fact that
the author in [8] defined other types of relations as combinabled. Also, out of this
work suggested to study properties similar as the definitions of type of elements.
For example; a relation is called a prime relation if whenever x7yz, then 7y or z7z2.

Turns out that a divisive relation is a prime relation, but the converse is false.

Last, a connection between ideals, multiplicative closed sets and the usual com-
mutative ring theory with the theory of 7-factorizations and the 7-sets. The 7-sets
defined in this research are the first attempted to define what could be the analo-
gous of an ideal in terms of the 7-products. As a consequence several definitions
were considered. This reports only contains those 7-sets than give better results and

connections with the usual commutative ring theory.

5.2 Future work

It is suggested to keep finding not artificial (or synthetic) examples for multi-
plicative, divisive and associated-preserving relations, using the equivalences ob-
tained and study the implications of the 7-sets in the comaximal factorization,

bounded factorization domain, half-factorial domain, etc.

From the definition of an associated-preserving relation, for any element x of
D! with non-empty 7-centralizer is related to any element associated with some

element in Z,(z). However, there are elements with such property but not for all
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the elements in its 7-centralizer. Let x € D* be arbitrary and consider the set
Al (x) ={y € D* | ary’ for all y ~y}

. Let y € Al(x), by definition yrx and y € Z.(z). Then A’ (z) C Z.(z) for all

x € D! Analogously
D.(x) = {y € D* | zrt for all t|y with t € D*}

and

M (x) ={y € Z.(z) | xTyz for all z € Z,(x)}

are defined. Also D! (z) C Z.(x) and M.(z) C Z.(x) for all z € D*. The follow-

ing theorem attempt to provide an idea of the definitions of M’ (z), D.(z) and A/ (x).

Theorem 5.1. Let 7 be a symmetric relation on an integral domain D.
(1) The relation T is associated-preserving if and only if A’ (x) = Z,(z) for all x € DF.
(2) The relation T is divisive if and only if D'.(x) = Z,(z) for all x € D*,

(3) The relation T is multiplicative if and only if M'(x) = Z,(z) for all x € D"

Proof. (1) Suppose 7 is an associated-preserving relation. Let p € Z (x) be fixed
but arbitrary, then prz. Since 7 is an associated-preserving relation, x7p’ for all
p ~ p. Thus p € A (z), so Z,(x) C A’(x). For the converse, let z,y € D* be
such that z7y, then y € Z.(z) = A’ (z). By definition of A’ (z), z7y for all y ~ y/.

Therefore, 7 is an associated-preserving relation.

(2) Suppose T is a divisive relation. The containment D’ (z) C Z,(x) follows
from the definition. Let y € Z.(x), then yrx. By definition of a divisive relation, 7t
for all ¢ | y. Hence y € D’ (x). Conversely, suppose D.(z) = Z.(x) for all z € DF.

Let x,y € D* be arbitrary such that y € Z,(z). By hypothesis y € D’(x), then
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t € Z.(z) for all t | y with ¢ € D*. Therefore, by Theorem 3.7 7 is a divisive relation.

(3) Suppose 7 is a multiplicative relation. By definition, M/’(x) C Z,(x). Let
y € Z.(x), then yrz. Since 7 is a multiplicative relation z7yz for all x7z, then
y € M!(z). For the converse let x,y,z € D' such that x7y and x7z. Then y €
Z(x) = M.(z), z € Z;(x) and xTyz. Therefore 7 is a multiplicative relation.

]

Note that it would be nice to have a complete characterization of this new def-

nition.

The connections between A’ (z) (respectively) D, (x) and M!(x)) and the def-
initions of 7 to be associated-preserving (respectively divisive and multiplicative)

with respect to x is given in the following theorem.

Theorem 5.2. Let 7 be a symmetric relation on an integral domain D* and x € D*
fixed but arbitrary. Then

(1) 7 is associated-preserving with respect to x if and only if A’ (z) = Z,(x),

(2) 7 is divisive with respect to x if and only if D! (x) = Z.(x),

(3) 7 is multiplicative with respect to x if and only if M. (z) = Z,(x).

Proof. (1) Suppose 7 is associated-preserving with respect to x. Let y € Z.(z),
then z7y. By hypothesis 7y’ for all ¥ ~ y, hence y € A (x) and Z.(z) C Al (x).
Conversely, suppose A’ (x) = Z,(x). Assume yrz, then y € A’ (z). By definition

x7y’ for all y/ ~ y, therefore 7 is associated-preserving with respect to x.

(2) Suppose 7 is divisive with respect to x. Let y € Z,(x), then z7y and by
hypothesis z7t for all ¢ | y with t € D*. By definition y € D’(x) and Z,(z) C D’ ().

For the converse, assume 7y and t | y with t € D, By hypothesis y € Z,(z) =
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D! (zx), then x7t. Hence 7 is divisive with respect to x.

(3) Suppose 7 is multiplicative with respect to z. Let y € Z, (z), then x7y.
Since 7 is multiplicative with respect to x, x7yz for all z € Z (x). Therefore
Z.(r) € M!(x). For the other direction, let y, z € D* such that x7y and 27z, then
z,y € Z;(x) = M.(z). Therefore x7yz and 7 is multiplicative with respect to .

]

Using the definitions of A/ (x), D! (x) and M/ (x), A.(S), D.(S) and M.(S)
can be expressed, in the following way: A.(S) = S'U{z € S| A (z) = Z,(x)},
D.(S)=SU{zx eS| D (x)=Z(x)} and M.(S) =S"U{zx €S| M(x)=2Z(x)},

where S’ is the set of elements in S with empty 7-centralizer.

The author invites the reader to work on this sets and establish similar equi-
valent statements for divisive, multiplicative and associated-preserving relations as

the ones given in chapter 3.
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