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Recently, an increasing interest has arisen in factorization with respect to unique

representation of elements in an integral domain D, into elements distinct from ir-

reducible elements.

Motivated by McAdams and Swan work, Anderson and Frazier developed a

theory called the theory of τ -factorizations. It is a type of generalized factoriza-

tion theory on integral domains. They used symmetric relations (denoted by τ) on

the set of nonunit nonzero elements of an integral domain D (denoted by D]), in

order to define what they called a τ -factorization of an element of D]. They called

any factorization of an element x in D] of the form x = λx1 ·x2 · · ·xn where xiτxj for

all i 6= j with 1 ≤ i, j ≤ n and λ ∈ U(D), a τ -factorization of x. They classified

the results based on three types of relations: divisive, multiplicative and associated-

preserving relations. This theory has been studied by Hamon (2007), Ortiz (2008),

Reinkoester (2010) and Juett (2012).
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This work considered some preliminary definitions in order to study the

theory of τ -factorizations with respect to an element, and further develops the

most important types of relation of this theory. Several equivalences to the main

types of definitions were obtained and then used to prove known results from other

perspectives. In some cases, the results were more natural and their proofs were ea-

sier than the one provided in previous research works. It must be noted that this is

the first attempt to try to understand what divisive, multiplicative and associated-

preserving relations mean. All the work previously done considered such type of

relations, but the authors did not try to understand the nature of them. They

used them only to prove theorems, because these relations provided a good beha-

vior when the τ -factorizations were studied. Furthermore, this investigation studied

some sets with specific properties with respect to a symmetric relation on D] and

the connection with the τ -factorization theory. Finally, several examples were pro-

vided and some results were developed about the τ -sets˝ on usual commutative

ring properties.
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Recientemente, un creciente interés a surgido en factorización con respecto a

representaciones únicas de elementos en un dominio integral D, especialmente en

elementos distintos de elementos irreducibles.

Motivados por el trabajo de McAdams y Swan, Anderson y Frazier

desarrollaron una teoŕıa llamada la teoŕıa de τ -factorizaciones. Esta es un tipo

de teoŕıa de factorizaciones generalizadas en dominios integrales. Ellos usaron

relaciones simétricas (denotadas por τ) en el conjunto de elementos diferentes de

cero y unidades de un dominio integral D (denotado por D]), para definir una

τ -factorización de un elemento en D]. Ellos definieron una τ -factorización de un

elemento x en D] como una expresión de la forma x = λx1 · x2 · · ·xn donde xiτxj

para todo i 6= j con 1 ≤ i, j ≤ n y λ ∈ U(D). Anderson and Frazier (2006) clasi-

ficaron los resultados basados en tres tipos de relaciones; divisiva, multiplicativa

y una relación que preserva asociados. Esta teoŕıa ha sido estudiada por Hamon

(2007), Ortiz (2008), Reinkoester (2010) and Juett (2012).
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En este trabajo se consideraron algunas definiciones preliminares con el fin

de estudiar la teoŕıa de τ -factorizaciones con respecto a un elemento y

desarrollar más a fondo las más importantes definiciones acerca de esta teoŕıa.

Fueron obtenidas algunas equivalencias de los principales tipos de relaciones y se

utilizaron para probar resultados conocidos desde otra perspectiva. En algunos

casos, los resultados fueron más naturales y sus pruebas más fáciles que las presen-

tadas en trabajos previos. Este es el primer intento de tratar de entender el signifi-

cado de las relaciones divisivas, multiplicativas, y las relaciones preserva-asociados.

Toda las investigaciones previas consideraron esos tipos de relaciones, pero no estu-

diaron su naturaleza. Solo fueron usadas para probar teoremas, porque se nece-

sitaban. Además, esta investigación estudió algunos conjuntos con propiedades es-

pećıficas con respecto a una relación simétrica en D] y la conexión con la teoŕıa de

τ -factorización. Finalmente, varios ejemplos fueron proporcionados y algunos resul-

tados fueron desarrollados acerca de los τ -conjuntos˝ en usuales propiedades de

anillos conmutativos.
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por todo el apoyo, paciencia y dedicación que siempre han tenido. A mi bella

esposa Vanessa Torres, que con su amor y compañ́ıa ha sido siempre mi soporte.
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Notations

R Ring.
D Integral domain.
D] Set of the nonunit nonzero elements of D.
U(D) Set of the units of D.
τ Symmetric relation.
λ Unit on D.
xτy x is related with y.
t |τ x t τ -divide to y.
x ∼ y x is associate to y.
Zτ (x) τ centralizer of x.
Aτ (S) Set of points in S in which τ is associated-preserving.
Mτ (S) Set of points in S in which τ is multiplicative.
Dτ (S) Set of points in S in which τ is divisive.
coD](S) Complement of S on D].
gcd(x, y) The greatest common divisor of x and y.
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Chapter 1

INTRODUCTION

The definitions of divisibility and prime integers in Z were analogously defined

over an integral domain D. Such concepts have been of special interest to algebraists,

motivating them to consider integral domains with convenient structures in order

to obtain similar results from the ring Z. For example, the Fundamental Theorem

of Arithmetic, every positive integer greater than 2 can be written uniquely (up to

order) into a product of primes. It is the type of desire structures due its uniqueness.

In an integral domain was defined with similar structure called a Unique Factoriza-

tion Domain. Another example are the Euclidean domains, which are domains that

satisfies the Euclidean Division Algorithm. See [7] for details.

In this thesis, D will be an integral domain with group of units U(D) and D]

the set of nonzero nonunits elements of D. An element x ∈ D] is called an atom or

an irreducible element if it can not be factored as x = yz where y, z ∈ D] and it is a

prime element if x | yz implies x | y or x | z. A lot of mathematicians that studied

factorizations (Anderson, Zafrullah, Cohn, etc) have been focused in factorizations

into atoms. Hence, an integral domain D is called atomic if each x ∈ D] can be

expressed as a finite product of atoms and is called a unique factorization domain

(UFD) if in addition any atomic factorization of each element in D] is unique up to

associates and order of factors. Recently, algebraists have studied atomic domains

with properties weaker than UFD. An atomic domain D in which for each x ∈ D],

1
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there is a natural number Nx such that for any atomic factorization of x the num-

ber of factors is less than Nx, is called a bounded factorization domain (BFD). D

satisfies the ascending chain condition on principal ideals (ACCP), if there does

not exist an infinite strictly ascending chain of principal ideals of D. An atomic

domain D is a half -factorial domain (HFD) if each atomic factorization of x ∈ D]

has the same length. The connections of these structures is summarized in Figure

1–1 (appears in [4] and [12] Figure 1.1), for more details or proofs see [4].

HFD

%%KKKKKKKKKK

UFD

99ssssssssss

%%KKKKKKKKKK
// FFD

��

// BFD // ACCP // atomic

idf-domain

Figure 1–1: Usual factorization properties on integral domains

It must be noted that has been of great interest to generalize several concepts,

mostly to obtain unique representation of elements. Therefore the nature of factor-

ization into rigid elements, primal elements, etc. See [14] and [3].

For example, Stephen McAdam and Richard Swan [11] developed the definition

of comaximal factorization which is an example of a non-atomic factorization. For

x ∈ D], a comaximal factorization of x, is a factorization x = x1 · x2 · · ·xn where

for all i 6= j, xi and xj are comaximal, that is, (xi, xj) = D. They created similar

definitions for atomic, unique factorization and atomic domain (pseudo-irreducible,

unique comaximal factorization domain (UCFD) and comaximal factorization do-

main (CFD), respectively). Inspired by McAdam and Swan’s work, in 2006, Ander-

son and Frazier [1] defined the theory of τ -factorization. They chose a symmetric
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relation on the nonzero nonunit elements of D, and only allowed two or more ele-

ments to be multiplied if and only if they were pairwise related under the symmetric

relation. Formally, for a symmetric relation τ , a τ -factorization of an element x

in D] is an expression of the form x = λx1 · x2 · · ·xn where xiτxj for all i 6= j

with 1 ≤ i, j ≤ n and λ ∈ U(D) (the set of the units of D). For example, define

xτy ⇔ (xi, xj) = D, then the comaximal product is obtained and if it is defined

τ = D] × D], the usual product is obtained. In 2007, Hamon [6] developed some

topics about this theory using the relation τ defined by xτy if and only if n | x− y;

and in 2008, Ortiz [2] presented a generalization of the τ -factorization theory, called

the Γ-factorization theory. This last theory was studied more carefully by Juett in

2012 [8, 9] and extended to cancelative monoids.

Let τ be a symmetric relation on D]. The relation τ is multiplicative, if for

any x, y, z ∈ D], xτy and xτz imply xτyz; divisive if for any x, y, x′, y′ ∈ D], xτy,

x′ | x and y′ | y imply x′τy′; and associated-preserving if for any x, y, t ∈ D] with

x ∼ t, then xτy imply tτy. With the divisive relations any τ -factorization obtained

by replacing a τ -factorization of a τ -factor is again a τ -factorization, and the unit

can be omitted in front. On the other hand, with the multiplicative relations any τ -

factorization can be expressed as the product of two τ -factors. Also the unit can be

omitted in front with the associated-preserving relations, and in this way it is more

general since any divisive relation is associated-preserving. Those are the principal

reasons of the introduction of these definitions. In [1] and [5] the authors were able

to establish the implication of usual weaker structures and the τ -structures defined

analogously. Figure 1–2 (Figure 1.2 [12]) provide a good summary of their main

results.
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UFD //

∗

��

FFD //

∗
��

BFD //

∗

��

ACCP //

��

atomic

τ -FFD

&&MMMMMMMMMMM

τ -UFD

88qqqqqqqqqqq

&&MMMMMMMMMMM τ -BFD
∗ // τ -ACCP

∗ // τ -atomic

τ -HFD

88qqqqqqqqqqq

Figure 1–2: τ -factorization properties in integral domains, where ∗ means that τ is a divisive
relation.

The author in [2] presented the same diagram for several different types of

frameworks of the general theory of τ -factorization.

The theory of τ -factorization could be visualized as a restriction of the usual

factorization theory, the difficulty in this theory arose in the fact of not knowing

when two elements are related, that is, they can not be τ -multiplied. Some of

the examples in [2], explain why this theory makes an important contribution, but

others are very synthetic (because they just allow a finite number of elements to

be related). Therefore, this investigation studied the set of elements related with

a specific element. Let x ∈ D], the set Zτ (x) = {y ∈ D] : xτy} was called the τ -

centralizer of x. Using Zτ (x), equivalent statements were found to the definitions of

multiplicative, divisive and associated-preserving relations. This is the first time this

type of relations are deeply studied or thought from a different point of view. These

equivalences will give a tool to understand why such relations are well behaved.

Approach to some results will be presented, the connections between the presented

definitions and the implications in the theory of τ -factorization in some known topics,

specially when it is considered τ to be multiplicative or divisive. Similarly to a

multiplicative set, a set M ⊆ D] is defined to be τ -multiplicative, if for each x, y ∈

M with xτy, xy ∈ M . Other τ -multiplicative were defined with specific properties

similar to saturated sets and ideals. They are called the τ -sets. With the τ -sets
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considered on this work, some results and connections between them was established.

Several results of properties of quasi-local rings and Kaplansky-like theorems will

be presented. For future research, there are many sets to study and results with

respect to the structure properties.
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1.1 Objectives

Find sufficient or sufficient and necessary conditions, using the τ -centralizers of

the elements of D] and the τ -sets defined to connect the usual theory of the multi-

plicative sets, ideals and properties of domains, as well as the known τ -factorization

theory.

Specifics objectives

• Get an equivalent definition to the definition of a τ -multiplicative relation, using

the τ -centralizers of the elements in D].

• Determine the connection and properties between the τ -sets.

• Determine sufficient and necessary conditions using the τ -sets to get results about

a domain property.

• Study and characterize ideals with τ -sets properties.

• Define τ -multiplicative sets, with known properties in the usual theory in terms of

the τ -factorization theory.



7

1.2 Chapters summary

In this work the theory of τ -factorization will be further developed and connec-

tions between this theory and usual topics of algebra will be found.

In the second chapter, the basic definitions of this theory and new additional

definitions will be introduced. Examples will be presented so the reader can become

more familiar with the notation. Also, there are several consequences and properties

that come along with the definitions.

In the third chapter, several equivalences about the most known and used def-

initions of types of relations for the theory τ -factorization will be presented. The

chapter introduces new approaches for known theorems, in order to obtain easier

ways to prove them. Moreover, these equivalent statements will give a new point of

view to study the theory of τ -factorizations.

The fourth chapter provides a connection to the usual theory of commutative

rings. It will present consequences or results involving prime ideals, multiplicative

sets and local rings. Furthermore, it will provide results about what kind of proper-

ties are obtained when considering special known sets in the usual theory that also

have properties of τ -sets.

The last chapter will summarize the contributions obtained in the theory of

τ -factorization, as well as in the commutative ring theory and introduce interesting

topics to study in the future.



Chapter 2

NOTIONS OF THE THEORY OF

τ-FACTORIZATION

In this chapter, the reader will find an introduction to the basic notions of the

theory of τ -factorization as in [1]. Also some examples are given to illustrate this

theory and make the reader more familiar with the notation and concepts.

2.1 Basic definitions of the theory of τ-factorization

Let D be an integral domain. The set of the nonzero nonunit elements of D is

denoted by D] and the set of the units of D by U(D). Let τ be a symmetric relation

on D]. The expression xτy or (x, y) ∈ τ , means x is related to y. The authors in [1]

defined the following types of symmetric relations:

(1) The relation τ is multiplicative, if xτy and xτz, then xτyz.

(2) The relation τ is divisive, if whenever xτy, for each x′, y′ in D] such that x′ | x

and y′ | y implies x′τy′.

(3) The relation τ to be associated-preserving, if y ∼ y′ and xτy, then xτy
′
.

Let x be in D] and τ a symmetric relation on D]. Any expression of the form

x = λx1 · x2 · · ·xn where xiτxj for all i 6= j in {1, . . . , n} and λ ∈ U(D), is called a

τ -factorization of x. In this document, a τ -factorization of x is a τ -product of the

xi and xi is a τ -factor of x for each i. For simplicity, a τ -product will be denoted

by ˝. and usual product just by concatenation. That is, x · y will means that xτy

8
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and xy is a product that is not necessarily xτy.

For any x, y ∈ D], x τ -divides y (denoted x |τ y), if there is a τ -factorization of

y having x as a τ -factor, that is, y = λx ·x1 ·x2 · · ·xn is a τ -factorization of y. The

expressions x = λ(λ−1x) and x = x are called trivial τ -factorizations of x, for any

λ ∈ U(D). An element in D] that does not have a non-associated τ -factor is called

τ -atom or τ -irreducible. For x ∈ D], x is τ -prime if whenever x | λx1 · x2 · · ·xn,

where λx1 · x2 · · ·xn is a τ -factorization, then x | xi for some i ∈ {1, 2, . . . , n}.

2.2 Examples

The following examples of symmetric relations will help the reader to familiarize

with the notation and definitions of τ -factorizations. They have been studied in [5],

[12] and [13]. Throughout the examples, D will be an integral domain.

(1) Consider τ = ∅, it is divisive and multiplicative. Since no element x ∈ D] has a

non-trivial τ -factorization, then each x is a τ -atom. Therefore x |τ y if and only if

they are associates.

(2) Take τ = D]×D]. Note that τ is a multiplicative and divisive symmetric relation.

Here, any element τ -prime and τ -irreducible is prime and irreducible respectively.

Note that with this symmetric relation, the usual notions of factorization and divisi-

vility on the nonzero nonunit elements, coincide with the notion of τ -factorizations

and τ -divisivility.

(3) Suppose that M is any non-empty subset of D] and take τ = M ×M , then xτy

if and only if x, y ∈ M . Here, τ is multiplicative (respectively divisive) if and

only M is a multiplicative set (respectively closed under nonunit factors). This
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symmetric relation allows to obtain factorizations into special type of elements, by

taking M as the set of such elements. Observe that a τ -factorization here is just

a factorization of elements of M . For instance, take M the set of atoms in D],

then a τ -factorization is just the usual irreducible factorizations. In the same way,

assume M is the set of prime elements, primary elements, rigid elements and other

elements studied before 2004.

(4) Denote the greatest common divisor of x and y , by gcd(x, y). Consider the sym-

metric relation τ in D], defined by, xτy if and only if gcd(x, y) = 1. Observe that

if t | x and s | y with d = gcd(t, s), d also divides x and y. If xτy, any factor of x in

D] must be relative prime to y, so is related to y under τ[ ]. Thus, τ[ ] is a divisive

relation and hence associated-preserving. Moreover, τ[ ] is multiplicative only if for

x, y, z in D] such that gcd(x, y) = 1 and gcd(x, z) = 1, then gcd(x, yz) = 1. Unfor-

tunately this does not happen in many structures. Therefore, τ is not necessarily

multiplicative. The relation τ was investigated in [12] and [13].

(5) Define f∂g if and only if deg (f) = deg (g) on D[x], where deg (f) is the degree

of f as defined in [7]. Of course, ∂ is neither multiplicative nor divisive. Now,

suppose that f∂g and let h be an associate of g, then h = λg for some unit λ.

Observe, deg (h) = deg (λ) + deg (g) = 0 + deg (g) = deg (g) therefore, f∂g. It

implies that the symmetric relation ∂ is associated-preserving. This relation was

studied in [5].

(6) Consider D = Z and define xτny if and only if x ≡ y mod n. The only case τn is

associated-preserving is when n = 2. Observe that this symmetric relation is never

divisive. Suppose that τ is divisive, then τ must be associated-preserving. Let t ∈ Z

be arbitrary, then t ∈ {0, 1, . . . , n− 1}, where t = {s ∈ Z | sτnt}. Take any s ∈ t,
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then s = t + pn for some p ∈ Z and sτnt. Now, since τ is associated-preserving,

sτn(−t), i.e., s = −t + p′n for some p′ ∈ Z. As a consequence t + pn = −t + p′n,

hence 2t = n(p′ − p). In conclusion 2t ≡ 0 mod n for all t ∈ Z, but this only

happens if n = 2. If n > 2, τn is not divisive. For the case n = 2, note for example

that 8τ210, but 4 is not τ2-related to 5. So, τn is never divisive.

On the other hand, suppose that n 6= 2. Observe that 2 ≡ 2 mod n, but 2 6= 4

mod n. Hence τn is not multiplicative. Now, suppose n = 2. Assume that xτ2y and

xτ2z. Observe that xτ2y if and only if x, y are both even or x, y are both odd. If x

is even, then this forces y and z to be even and of course yz is even. Analogously,

if x is odd, then y, z and yz are odd. Hence, xτ2yz in either case. Therefore, τn is

multiplicative only when n = 2. For more details on τn see in [1],[5], [6] and [12].

Some of the most important concepts created in [1] and [5] are the concepts of

multiplicity and divisibility of symmetric relations. Most of the main results were

obtained assuming τ multiplicative, divisive or both.

Theorem 2.1 (Theorem 2.2, [1]). Let D be an integral domain, and let τ be a

symmetric relation on D].

(1) Suppose that τ is divisive and let x ∈ D] . Then x = λx1 · x2 · · ·xn is a τ -

factorization of x if and only if x = x1 · · · (λxi) · · ·xn is a τ -factorization of x for

each i.

(2) Suppose that τ is divisive. Let x = x1 · x2 · · ·xn be a τ -factorization of a, and let

xi = y1 · y2 · · · yn be a τ -factorization of xi for some i. Then x = x1 · · ·xi−1 · y1 ·

y2 · · · yn · xi+1 · · · xn is again a τ - factorization of x.
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(3) Suppose that τ is multiplicative. Let x = λx1 · x2 · · ·xn be a τ -factorization of x.

Then x = x1 · · · xi−1 · (xixi+1) · xi+2 · · · xn is a τ -factorization of x, where xixi+1 is

a product of two elements.

Observe that if τ is divisive, the replacement of a τ -factor on a τ -factorization

with a reduced τ -factorization (see the definition a paragraph ahead) of the τ -factor

gives again a τ -factorization. On the other hand, if τ is multiplicative, it is possible

to combine τ -factors, doing this several times any τ -factorization can be express as

the τ -product of two τ -factors. From (1) if y ∼ y′ and τ is divisive, xτy ⇔ xτy′.

If τ is divisive then τ is associated-preserving. In other words, the unit λ can be

omitted.

In (2) the expression x = x1 · · ·xi−1 ·y1 ·y2 · · · yn ·xi+1 · · ·xn is called a τ -refinement

of x. Therefore, if τ is divisive then D accepts τ -refinements. Must note that this

property of τ -refinements is the reason of why the authors in [1] and [5] obtained

most of their theorems.

The first authors developed this theory using a unit λ as a factor in the τ -

factorizations. However, the theory was developed without this assumption by let-

ting a τ -factorization of an element x ∈ D] to be x = x1 · x2 · · ·xn where xiτxj for

all i 6= j. Such τ -factorizations are called reduced τ -factorizations, denoted rτ -

factorization to distinguish from the usual τ -factorizations. Considering the theory

from this perspective, an element x ∈ D] is a τ -atom or a rτ -atom if x has only the

trivial rτ -factorization x = x; and a rτ -prime, if for any rτ -factorization x1 ·x2 · · ·xn

such that x | x1 · x2 · · ·xn, x | xi for some i. In [2] the authors show that without

the associated-preserving property the rτ -factorizations, rτ -atoms, rτ primes do not

behave well. So the authors suggested to assume associated-preserving in order to

avoid to deal with this type of inconvenient. On the other hand, the authors in
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[2], [6] and [12] studied the rτ -factorizations and the τn-factorizations for n > 2 in

which are relations that not preserve associates. So, it seems that there has been an

interest in understanding the not well behaved cases of these rτ -factorizations.

2.3 Definitions created for our purpose

In this section, some sets are developed with specific properties that depend on

a symmetric relation τ . A generalization of a multiplicative set and of a saturated

set can be done using the definitions of τ -products or τ -factorizations as follows.

Definition 2.1. Let τ be a symmetric relation on D] and M ⊆ D].

(1) M is τ -multiplicative if x,y ∈M such that xτy implies xy ∈M .

(2) M is a τ -ideal if for each x ∈M and y ∈ D] such that xτy, y ∈M .

(3) M is co-τ -saturated if M is τ -multiplicative and has the following property :

(∀x ∈M)(∀y ∈ D])
{

(xτy) =⇒
{

(∀t ∈ D])(t | y)⇒ (t ∈M)
}}

.

(4) Let x ∈ D] be arbitrary. The set {y ∈ D] | xτy} is called the τ -centralizer of x

and denoted Zτ (x).

(5) M is τ -prime if for each τ -factorization x = λx1·x2 · · · xn ∈M , xi ∈M for some i.

Given that in the most important results obtained by Anderson and Frazier [1],

they considered divisive and multiplicative symmetric relations, the work done in

this thesis is interested in symmetric relations that maintain these kind of properties

but from the point of view of just one element. Thus, the definition of sets that have

the property of been divisive, multiplicative or associated-preserving with respect
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to a given element.

Definition 2.2. Let τ be a symmetric relation on D], S 6= ∅ such that S ⊆ D] and

x ∈ D], the relation:

(1) τ is multiplicative with respect to x if whenever xτy and xτz, xτyz. The set of

elements x ∈ S such that τ is multiplicative with respect to x is denoted by Mτ (S).

(2) τ is divisive with respect to x if for each y ∈ D] with xτy, xτt, for each t ∈ D]

such that t | y. The set of elements x ∈ S such that τ is divisive with respect to x

is denoted Dτ (S).

(3) τ is associated-preserving with respect to x if for each y ∈ D] such that xτy, xτy′

for all y ∼ y′. The set of elements x ∈ S such that τ is associated-preserving with

respect to x is denoted Aτ (S).

(4) Let S ⊆ D] be arbitrary. The set {x ∈ D] | xτy,∀y ∈ S} is called the τ -centralizer

of S and denoted by Zτ (S).

The definitions of Mτ (∅), Aτ (∅) and Dτ (∅) can be defined by D] or ∅, but both

cases gives some problems. Therefore, this work only use these definitions for non-

empty sets. Clearly Zτ (∅) = ∅ there is no problem considering it, but, it is kind

of useless. Let S ⊆ D] be arbitrary and assume that τ is a symmetric relation on

D]. Consider S ′ the set of elements of S with empty τ -centralizer. By definition

S ′ ⊆ Mτ (S), therefore, if x ∈ S −Mτ (S), then Zτ (x) 6= ∅ and there are y, z ∈ D]

with xτy and xτz, but yz /∈ Zτ (x).

Let S ′′ = {x ∈ S : whenever xτy xτz, xτyz}, then Mτ (S) = S ′ ∪ S ′′. The same

analysis applies to Dτ (S) and Aτ (S), obtaining similar results. In (4)., if S = {x},
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then is easy to see that Zτ (S) = Zτ (x), which make sense completely.

The following proposition is a consequence of the previous definitions.

Proposition 1. Let τ be a symmetric relation on an integral domain D]. Then

(1) τ is associated-preserving if and only if τ is associated-preserving with respect to x

for all x ∈ D],

(2) τ is divisive if and only if τ is divisive with respect to x for all x ∈ D],

(3) τ is multiplicative if and only if τ is multiplicative with respect to x for all x ∈ D].

2.3.1 Examples

Let D be an integral domain. The following examples would be of help for the

reader to understand the definitions and notation.

(1) Let n ∈ N be fixed and consider D[x] as our domain.

Take S = {f ∈ D[x] : 1 ≤ deg (f) ≤ 2n} and define fτg if and only if deg (f) =

deg (g) ≤ n. Note that τ is symmetric, and if (D[x])] = D[x] − {U(D) ∪ {0}}

then S ⊆ (D[x])]. Suppose that f, g ∈ S such that fτg, then deg (fg) =

deg (f) + deg (g) ≤ n + n = 2n. Therefore, S is a τ -multiplicative set. Let

f ∈ S and g ∈ (D[x])] be such that fτg, then deg (f) = deg (g) ≤ n, and there-

fore g ∈ S. Hence, S is a τ -ideal and S is a co-τ -saturated set.

Take f ∈ (D[x])] such that deg (f) = 1, then fτf . However, f is not related to f 2.

Therefore, τ is not a multiplicative relation. Since deg (d) = 0 for all d ∈ D]−{0},

D] ×D] ⊆ τ and Dτ (S) = Mτ (S) = Aτ (S) = S for all S ⊆ D].
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Suppose n ≥ 2 and f = (x+a)2 where a ∈ D], then fτf . Note that x+a | (x+a)2

and (x + a)2 | (x + a)2, but x + a is not related to (x + a)2. Hence for n ≥ 2, τ

can not be divisive. Suppose that n = 1 and let f, g ∈ D] be such that fτg, then

f, g ∈ D] or deg (f) = deg (g) = 1. If f, g ∈ D], any factor of f is going to be

related to any factor of g in D]. If deg (f) = deg (g) = 1, then dfτg for all d ∈ D]

but d is not related with g. In conclusion, τ is not divisive if n = 1. Finally, τ is

multiplicative and divisive with respect to f if and only deg (f) = 0.

(2) Let z ∈ D] be arbitrary. Consider Sz = (z) − {0} ⊆ D] where (z) is the ideal

generated by z. Define xτy if and only if x − y ∈ (z) and x 6= y. Then τ is sym-

metric and Sz is a τ -multiplicative set. Furthermore, τ is not necessarily divisive

or multiplicative. If x ∈ Sz and y ∈ D] such that xτy, then x − y ∈ (z) and

x− (x− y) ∈ (z), y ∈ Sz. In conclusion, Sz is a τ -ideal.

Let x ∈ Sz, then Zτ (x) = Sz − {x}. Now, take any y ∈ coD](Sz), since Sz ∪ {0} is

a τ -ideal, xy ∈ Sz. Hence xyτt for all t ∈ Sz with t 6= xy. Note that y | xy, but for

t 6= xy in Sz y is not related to t. In conclusion, τ is not divisive and Sz is not a

co-τ -saturated set. In fact, τ is not divisive with respect to any element in Sz. Let

x, y ∈ Sz be arbitrary, then xy 6= x and xy 6= y. Clearly xτxy and yτxy, but x, y

are not related to xy. In conclusion, τ is not multiplicative. On the other hand,

suppose that there is x ∈ Sz such that x 6= yz for all y, z ∈ Sz, then τ is multi-

plicative with respect to x. In fact, Mτ (S) = {x ∈ Sz : x 6= yz for all y, z ∈ Sz}

for all S ⊆ Sz.

If x ∈ coD](Sz), then τ is not necessarily associated-preserving or multiplicative

with respect to x. For instance, takeD = Z and S8 = (8)−{0}. Since 5−(−3) ∈ S8,

then 5τ − 3. However, −3 ∼ 3 but 5 − 3 = 2 /∈ S8. Hence, 5 is not related to 3
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and τ is not an associated-preserving relation. Furthermore, observe that 5τ − 3,

but 5 is not related to 9. Then τ is not a multiplicative relation.

Let x ∈ Sz be such that xτy, then y ∈ Sz. Since Sz ∪ {0} is an ideal, λy ∈ Sz for

all λ ∈ U(D), and x − λy ∈ Sz for all λ ∈ U(D). In conclusion, if x ∈ Sz, τ is

associated-preserving with respect to x.

(3) Let S ⊆ D] and take τS = S×S. Note that, S is a τS-multiplicative set if and only

if S is a multiplicative set. Furthermore, in case S is a multiplicative set S is a

τS-ideal. But S is not necessarily a co-τS-saturated set. In this relation ZτS(x) = S

for all x ∈ S and the only case S is a co-τS-saturated set is when S is closed under

proper factors.

(4) Let I be a proper ideal in D, and take S = I − {0} ⊆ D]. Define aτb if and only

if a ∼ b. Note that τ is symmetric. Since I is an ideal, S is a τ -multiplicative set

and a τ -ideal. Then S does not necessarily satisfy the saturation property.

(5) Let S = {2p : p ∈ Z} ⊆ Z and consider the symmetric relation τ2, xτ2y if and only

if x, y ∈ (2), the ideal generated by 2. Since the product of even numbers is even,

then S is a τ -multiplicative set. If xτ2y, then x, y are both even or both odd, so S

is a τ -ideal. Now, 6τ210 and 5 | 10 but 5 /∈ S, so S is not co-τ -saturated.

(6) Let D = Z and take Sn = (n)−{0} where n ∈ N. Here D] = D−{±1, 0}. Define

xτny if and only x − y ∈ (n) and x 6= y. Let x ∈ Sn and y ∈ D] such that xτny,

then x− y ∈ (n) and −y ∈ (n), so y ∈ Sn. In conclusion, Sn is a τ -ideal. On the

other hand, if n = 2, then 4, 6 ∈ S2, 4τ26, but 3 ∈ S2 and 3 | 6. This shows that
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S2 is not a co-τ2-saturated set.

In (3) define τco = coD](S) × coD](S). Note that, τco is divisive if and only

coD](S) is closed under proper factors. Assume τco is a divisive relation. Let

x ∈ coD](S) be fixed but arbitrary, then xτcox. Since τco is divisive, each pair of

factors of x in D] are related, and by definition they are in coD](S), that is, coD](S)

is closed under proper factors. Assume coD](S) is closed under proper factors and

let x, y ∈ D] be such that xτcoy, then x, y ∈ coD](S). By hypothesis all the factors

of x and y are in coD](S), that is, any factor of x is going to be related to any factor

of y. This prove that τco is divisive. It is easy to prove that if additionally S is a

multiplicative set, then S is a τS-ideal.

2.4 Understanding the new definitions

In the examples shown in the previous section, there were symmetric relations

that make a set S ⊆ D] a τ -ideal and a co-τ -saturated set. However, there are ex-

amples of τ -ideal that are not necessarily co-τ -saturated sets. In any of these cases,

however there is no co-τ -saturated set that is not a τ -ideal. This can be observed

in the following theorem.

Theorem 2.2. Let D be an integral domain, τ a symmetric relation on D] and

M ⊆ D].

(1) If M is a co-τ -saturated set, then M is a τ -ideal.

(2) Assume τ is also divisive. Then M is a co-τ -saturated set if and only if M is a

τ -ideal.

Proof. For (1) Suppose that M is a co-τ -saturated set, then M is a τ -multiplicative.

Let x ∈ M be arbitrary and suppose that there is y ∈ D] such that xτy. Since

y | y, then y ∈ M by hypothesis. Hence M is a τ -ideal. To show (2) suppose
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that τ is divisive. For the other direction, suppose that M is a τ -ideal, then τ is a

multiplicative set. Let x ∈ M be arbitrary and suppose that there is y ∈ D] such

that xτy. Since τ is divisive, any proper factor of y is going to be related to x, and

since M is a τ -ideal each one of those factors is going to be in M . Hence M is a

co-τ -saturated set.

It would be very interesting to find a non-empty symmetric relation in which

the τ -centralizer of each element in D] is also non-empty, because if there are other

τ -sets, then they can be useful to obtain connections with known properties in

abstract algebra. For instance, suppose that S ⊆ D] such that S is a co-τ -saturated

set and Zτ (x) 6= ∅ for all x ∈ S. Let x ∈ S be arbitrary and let y ∈ D] be such

that y | x. Then Zτ (x) 6= ∅ and there is t ∈ D] such that xτt. This happens if

and only if tτx, so y ∈ S. In conclusion, for all y ∈ D] such that y | x, y ∈ S.

Hence, if τ is divisive and S is a τ -ideal, by Theorem 2.2 the same result is obtained.

A common question about these absorption properties˝ in the previous para-

graph, is how far is a co-τ -saturated set from being a saturated set. Since a saturated

set contains all the units of a ring (in particular on a domain), it’s not possible for a

co-τ -saturated set to be saturated, even if the domain were in fact a field. But, the

properties of a saturated set in D] can be maintained, that is, a set that is closed

under factors in D].

Theorem 2.3. Let S be a co-τ -saturated set and Zτ (x)∩Zτ (y) 6= ∅ for all x, y ∈ S.

Suppose that τ is multiplicative, then S is a saturated set in D].

Proof. Since Zτ (x) ∩ Zτ (y) 6= ∅ for all x, y ∈ S, then Zτ (x) 6= ∅ for all x ∈ S.

Hence the absorption properties ˝ holds. Let x, y ∈ S be arbitrary, then by

hypothesis Zτ (x) ∩ Zτ (y) 6= ∅. Therefore, there is p ∈ S with pτx and pτy. Since τ
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is multiplicative, then pτxy and by hypothesis xy ∈ S. Hence S is a multiplicative

set.

On the other hand, suppose that S ⊂ D] is a co-τ -saturated set, τ is transitive and

Zτ (x)∩Zτ (y) 6= ∅ for all x, y ∈ S. Let x, y ∈ S, then Zτ (x)∩Zτ (y)∩S 6= ∅ and there

is t ∈ S such that xτt and tτy. Since τ is transitive, xτy. But τ is multiplicative,

then xy ∈ S. In conclusion, S is closed under proper factors and is a multiplicative

set.

The same result in Theorem 2.3 can be obtained replacing the condition of τ

being a multiplicative relation with τ be a transitive relation and the existence of an

element x in S with S ⊆ Zτ (x). Another good question about the connection of a

co-τ -saturated set S and its complement coD](S). The following are some cases with

their respective implications. If S is a τ -ideal set, the τ -centralizer of any element in

S it is going to be contained in S. Then, it is important to know about how many

elements are related to each element in S because it gives information about how

big is S. In particular, if there is x ∈ S with Zτ (x) = D], each y ∈ D] is related to x

and y ∈ S, therefore S = D]. If S is a τ -ideal, then S ⊃
⋃
x∈S Zτ (x). Furthermore,

if Zτ (x) 6= ∅ for all x ∈ S, then S =
⋃
x∈S Zτ (x). Hence, if τ is a multiplicative

symmetric relation, Zτ (x) is a multiplicative set for each x ∈ S. Therefore S is the

union of multiplicative sets (in the usual sense).

The properties about a τ -ideal seem to be interesting when Zτ (x) 6= ∅ for all

x ∈ S is assumed. On the other hand, note that S is a co-τ -saturated set where each

pair of elements are related with respect to the relation τ if and only if S × S ⊆ τ .

Hence, S∪U(D) is saturated in the usual sense. Moreover, a partial previous results

can be obtained with a weaker hypothesis. For instance, if Zτ (x) 6= ∅ for all x ∈ S,
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S is not necessarily a multiplicative set, but S is closed under factors on D].

It is known that the τ -centralizer of each element in a τ -ideal set S is going to be

contained in S. The set S can be expressed as the union of two sets by considering

the set of elements of with empty τ -centralizer.

S =

(⋃
x∈S

Zτ (x)

)⋃
{x ∈ S | Zτ (x) = ∅}

.

For co-τ -saturated sets similar results holds. On the other hand, the same can be

done with the complement of S with respect to D]. That is,

D] − S =

 ⋃
x∈D]−S

Zτ (x)

⋃{x ∈ D] − S | Zτ (x) = ∅}

.

Furthermore, if Zτ (x) 6= ∅ for all x ∈ D] − S then D] − S =
⋃
x∈D]−S Zτ (x). If S

is a τ -ideal, then D] = P ∪ P ′, where P =
(⋃

x∈S Zτ (x)
)⋃
{x ∈ S | Zτ (x) = ∅}

and P ′ =
⋃
x∈D]−S Zτ (x)

⋃
{x ∈ D] − S | Zτ (x) = ∅}. If Zτ (x) 6= ∅ for all x ∈ D],

D] =
(⋃

x∈S Zτ (x)
)⋃ (⋃

x∈D]−S Zτ (x)
)
.

Theorem 2.4. Let D be an integral domain, M ⊆ D and τ1, τ2 symmetric relations

on D]. Assume τ1 ≤ τ2, that is τ1 ⊆ τ2, then the following properties hold.

(1) Zτ1(x) ⊆ Zτ2(x) for all x ∈ D].

(2) Zτ1(x) = Zτ2(x) for all x ∈ D] if and only if τ1 = τ2.

(3) Let x ∈ D]. If Zτ1(x) = Zτ2(x), then (∀y ∈ D])(x |τ1 y ⇐⇒ x |τ2 y).

(4) If M is a τ2-multiplicative set, then M is a τ1-multiplicative set.

(5) If M is a co-τ2-saturated set, then M is a co-τ1-saturated set.

(6) If M is a τ2-ideal, then M is a τ1-ideal.

(7) If M is a τ2-prime set, then M is a τ1-prime set.
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Proof. For (1), let x ∈ D] and y ∈ Zτ1(x) be arbitrary. Then xτ1y or (x, y) ∈ τ1.

Since τ1 ⊆ τ2, therefore xτ2y and y ∈ Zτ2(x). In conclusion, Zτ1(x) ⊆ Zτ2(x). To

show (2), suppose that Zτ1(x) = Zτ2(x) for all x ∈ D]. Let (x, y) ∈ τ1 be fixed but

arbitrary, then xτ1y and x ∈ Zτ1(y) = Zτ2(y). Hence xτ2y or equivalently (x, y) ∈ τ2.

Then τ1 ⊆ τ2 and similarly τ2 ⊆ τ1. Therefore τ1 = τ2. The converse follows by part

(1). To prove (3), suppose that x |τ1 y, then there is a τ1-factorization λx · x2 · · ·xn

such that y = λx · x2 · · ·xn. Therefore x2, . . . , xn ∈ Zτ1(x) = Zτ2(x), i.e., xτ2xi

for all i ∈ {2, . . . , n}. But τ is transitive, so that xiτ2xj where i, j ∈ {2, . . . , n}.

In conclusion, λxx2 · · ·xn is a τ2-factorization, i.e., x |τ2 y. In other words for any

τ1-factorization λx1 ·x2 · · · xn where x is one of x1, x2, . . . , xn, λx1 ·x2 · · ·xn is in fact

a τ2-factorization. Analogously if x |τ2 y then x |τ1 y.

For (4), let x, y ∈ M such that xτ1y, then xτ2y and by hypothesis xy ∈ M .

In consequence, M is a τ1-multiplicative set. Let x ∈ M such that xτ1y for some

y ∈ D]. Assume that t ∈ D] with t | y, must show that t ∈M . Since τ1 6 τ2, xτ2y.

Now, M is a co-τ2-saturated set, hence t ∈M . therefore M is a co-τ1-saturated set.

This shows (5). For (6), let x ∈M be such that xτ1y for some y ∈ D]. Since τ1 6 τ2,

xτ2y. But M is a τ2-ideal therefore y ∈M . So M is a τ1-ideal set. Finally, to show

(7), let x = λx1 · x2 · · ·xn ∈ M be a τ1-factorization, then xiτ1xj for all i 6= j. By

hypothesis xiτ2xj for all i 6= j, i.e., x = λx1 · x2 · · ·xn ∈ M is a τ2-factorization.

Since M is a τ2-prime set, xi ∈M for some i. Hence M is a τ1-prime set.

The condition in (1) is also sufficient for τ1 ≤ τ2. Suppose that Zτ1(x) ⊆ Zτ2(x).

Let (x, y) ∈ τ1 , then xτ1y, i.e., y ∈ Zτ1(x) ⊆ Zτ2(x). Therefore, (x, y) ∈ τ2. So,

τ1 ≤ τ2. In conclusion, τ1 ≤ τ2 if and only if Zτ1(x) ⊆ Zτ2(x) for all x ∈ D].

In the definition 2.1 of a co-τ -saturated set M , the property :
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(∀x ∈M)(∀y ∈ D])
{

(xτy) =⇒
{

(∀t ∈ D])(t | y)⇒ (t ∈M)
}}

is useful to obtain important information about M . For instance, see Example (3).

This property is called “the co-τ -saturated property”. However, there are sets that

have this property but they are not τ -multiplicative sets. For example, let n ∈ Z

with n > 1 fixed. Consider the set S = {m ∈ Z : m | n} and define τS = S × S.

Since nτSn and n is not related to n2, τ is not a multiplicative relation. But S is

closed under proper factors, therefore S has the co-τ -saturated property. Observe

that in example (3), the fact that S is closed under proper factors does not depend

on S being a τ -multiplicative set, just on the fact that S has the co-τ -saturated

property. Then, these properties can be useful to get information about a set that

just has the co-τ -saturated property and also useful in obtaining properties of a

symmetric relation. The following theorem will show it.

Theorem 2.5. Let D be an integral domain, suppose that τ is a multiplicative and

symmetric relation on D] and let x ∈ D] be arbitrary. The following properties

holds.

(1) Zτ (x) is a multiplicative set.

(2) If τ is transitive, then Zτ (x) is a τ -ideal.

(3) Zτ (x) 6= ∅ implies Zτ (x) is infinite.

(4) Let x = x1 · x2 · · ·xn be a reduced τ -factorization. If there is t ∈ {1, 2, . . . , n} such

that xtτxt, then xtτx.

(5) Suppose that Zτ (z) has the co-τ -saturated properties for all z ∈ D], then τ is

divisive.

(6) τ is a transitive and divisive relation if and only if Zτ (z) has the co-τ -saturated

properties for all z ∈ D].

(7) Suppose that S is a τ -ideal and Zτ (S) ∩ S 6= ∅. Then for each x ∈ Zτ (S) ∩ S,

S = Zτ (x).
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Proof. For (1), assume that y, z ∈ Zτ (x). Then xτy and xτz, so yzτx, that is

yz ∈ Zτ (x). Hence Zτ (x) is a multiplicative set. For (2), notice that by (1), Zτ (x)

is a multiplicative set. Let y ∈ Zτ (x) and z ∈ D] such that yτz. Then xτy and yτz.

Since τ is a transitive relation, xτz and z ∈ Zτ (x). Hence, Zτ (x) is a τ -ideal and

(2) holds.

To prove (3), assume that Zτ (x) 6= ∅. Then there is y ∈ D] such that xτy.

Let’s prove by induction that ynτx for all n ∈ N. For k = 1, xτy. Suppose that

it is true for k = n − 1, then xτyn−1. Since xτy and τ is a multiplicative relation,

xτyyn−1 and hence xτyn. Note that if n < m and yn = ym, yn(1 − ym−n) = 0,

hence 1 = ym−n (D is an integral domain and y ∈ D]). In conclusion, the elements

y, y2, . . . yn, . . . are all distinct. This implies that Zτ (x) is infinite. To show (4),

suppose that x ∈ D] and let x1 · x2 · · · xn be a reduced τ -factorization of x. Then

Zτ (x) = Zτ (x1 · x2 · · ·xn) ⊇
⋂n
i Zτ (xi) (τ is multiplicative). Let t ∈ {1, . . . , n} be

such that xtτxt, then xt ∈
⋂n
i Zτ (xi). In conclusion xt ∈ Zτ (x).

For (5), let x, y, x′, y′ ∈ D] such that x′ | x, y′ | y and xτy, then y ∈ Zτ (x).

Since Zτ (x) is a co-τ -saturated set, y′ ∈ Zτ (x), so x ∈ Zτ (y′). But, Zτ (y
′) is also

a co-τ -saturated set, then x′ ∈ Zτ (y
′), that is, x′ ∼ y′. Therefore τ is a divisive

relation.

To prove (6), suppose τ is a transitive and divisive relation. Let z ∈ D],

x ∈ Zτ (z) arbitrary and y ∈ D] such that xτy. Let t | y for some t ∈ D]. Since τ is

divisive, xτt and using the fact τ is transitive, tτz, i.e., t ∈ Zτ (z). Therefore Zτ (z)

has the co-τ -saturated properties for all z ∈ D]. For the converse, suppose that

Zτ (z) has the co-τ -saturated properties for all z ∈ D]. By (5), τ is divisive. Let

x, y, z ∈ D] such that xτy and yτz, then y ∈ Zτ (x) and z ∈ Zτ (x) (Zτ (x) has the
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co-τ -saturated properties). So, τ is a transitive relation. Finally, to prove (7), let

x ∈ Zτ (S)∩S be arbitrary, then x ∈ Zτ (S) and x ∈ S. By the first case, S ⊆ Zτ (x)

and by the second case, Zτ (x) ⊆ S. Therefore S = Zτ (x).

Note that in (7), if τ is a multiplicative relation, S is a multiplicative set.

Theorem 2.1 shows that if τ is a multiplicative relation is possible to express

any τ -factorization as the τ -product of two τ -factors. However, the same result can

be obtain if for each τ -factorization τ is multiplicative with respect to one of the

τ -factors. Let λx1 · x2 · · ·xn be a τ -factorization of y. If there is a τ -factor xi in

which τ is multiplicative with respect to xi, then there is a τ -factorization for y of

the form y = λxis for some s ∈ D]. Assume there is a τ -factor xi in which τ is

multiplicative with respect to xi, say x1. Since λx1 · x2 · · ·xn is a τ -factorization of

y, then x1τxj for all j ∈ {2, 3, . . . , n}. Furthermore using the fact that τ is multi-

plicative, x1τ(x2 · · ·xn). Let s = x2 · · ·xn, then y = λx1s where s ∈ D] and x1τs.

Consider a non-empty τ -centralizer of a subset S of D], then there is x ∈ D]

with non-empty τ -centralizer that contains all the elements of S. However, it does

not give any information about the equality of S and Zτ (S), even if x is in S or

its complement. Unless S has some additional property like being a τ -ideal or a

co-τ -saturated set. On the other hand, if the additional properties are assumed

with respect to τ , the following theorem gives the connections between S, Zτ (S)

and Zτ (x) for all x ∈ Zτ (S).

Theorem 2.6. Let D be an integral domain, suppose that τ is a symmetric relation

on D] and S ⊆ D]. Suppose x ∈ D], then:

(1) S ⊆ Zτ (x) if and only if x ∈ Zτ (S).



26

(2) If τ is a transitive relation and Zτ (x) 6= ∅, the following statements are equivalents:

(a) S ⊆ Zτ (x),

(b) x ∈ Zτ (S),

(c) Zτ (x) ⊆ Zτ (S).

(3) If τ is a transitive relation and S is a τ -ideal, then S = Zτ (x) = Zτ (S) for all

x ∈ Zτ (S).

(4) S ⊆ Zτ (x) for all x ∈ D] if and only D] = Zτ (S).

Proof. (1) (=⇒) Suppose S ⊆ Zτ (x). Given y ∈ S fixed but arbitrary, y ∈ Zτ (x),

hence xτy. Then xτy for all y ∈ S and x ∈ Zτ (S).

(⇐=) Suppose x ∈ Zτ (S). Let y ∈ S be fixed but arbitrary. Since xτt for all

t ∈ S, in particular for t = y, y ∈ Zτ (x). In conclusion S ⊆ Zτ (x).

(2) By (1) parts (a) and (b) are equivalents. Suppose that Zτ (x) ⊆ Zτ (S). Let

t ∈ S be fixed but arbitrary. Since Zτ (x) 6= ∅ there is p ∈ Zτ (x). By hypothesis

p ∈ Zτ (S) and by definition pτy for all y ∈ S. In particular for y = t, tτp. Since

pτx and the transitivity of τ , t ∈ Zτ (x). Therefore S ⊆ Zτ (x).

(3) Suppose τ is a transitive relation and S is a τ -ideal. Let x ∈ Zτ (S) be

fixed but arbitrary. By (2a) and (2c), S ⊆ Zτ (x) ⊆ Zτ (S). If y ∈ Zτ (S), then yτt

for all t ∈ S. But since S is a τ -ideal, y ∈ S, therefore S ⊇ Zτ (S). This implies

S = Zτ (x) = Zτ (S) for all x ∈ Zτ (S).

(4) (=⇒) Suppose S ⊆ Zτ (x) for all x ∈ D]. Let y ∈ D] be fixed but arbitrary.

By hypothesis S ⊆ Zτ (y), that is, yτt for all t ∈ S. Hence D] ⊆ Zτ (S).
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(⇐=) Suppose D] = Zτ (S). Let x ∈ D] be fixed but arbitrary, then x ∈ Zτ (S).

This implies that t ∈ Zτ (x) for all t ∈ S. Therefore S ⊆ Zτ (x) for all x ∈ D].

Example 2.4.1. Let D be an integral domain and a ∈ D] arbitrary but fixed. Let

S = {a} and define τa = {(λa, µa) | λ, µ ∈ U(D)}. Since aτaλa for all λ ∈ U(D),

then Zτa(a) 6= ∅. If λaτaµa and µaτaηa, then λaτaηa. Hence, τ is a transitive

relation. By previous theorem S ⊆ Zτa(a) = {λa | λ ∈ U(D)}, a ∈ Zτa(S) and

Zτa(a) ⊆ Zτa(S). In fact, Zτa(a) = Zτa(S) = {λa | λ ∈ U(D)}.

Example 2.4.2. Let D be an integral domain and a ∈ D] arbitrary but fixed. Let

S = {a} and define τa = {(λa, µa) | λ, µ ∈ U(D)}. Since aτaλa for all λ ∈ U(D),

then Zτa(a) 6= ∅. If λaτaµa and µaτaηa, then λaτaηa. Hence, τ is transitive. By

Theorem 2.6, S ⊆ Zτa(a) = {λa | λ ∈ U(D)}, a ∈ Zτa(S) and Zτa(a) ⊆ Zτa(S). In

fact, Zτa(a) = Zτa(S) = {λa | λ ∈ U(D)}.

The following example illustrate why the hypothesis of τ being transitive in

Theorem 2.6 is necessary for theorem to holds.

Example 2.4.3. Let D be an integral domain and a, b ∈ D] such that a is not

associated to b. Consider τa and τb as defined in Example 2.4.2. Define τ =

τa ∪ τb ∪ {(a, b)}. For any λ ∈ U(D), λaτa and aτb, but (λa, b) /∈ τ . Then τ

is not a transitive relation. Let S = {a, b}, then S is a τ -ideal. But, Zτ (a) = {λa |

λ ∈ U(D)} * Zτ (S).

In the following theorem the are some results that try to understand the be-

havior of Dτ (S), Mτ (S), Zτ (S) and Aτ (S) for a non-empty subset S.
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Theorem 2.7. Let D be an integral domain, τ be a symmetric relation on D] and

S and E non-empty subsets of D] then:

(1) If S ⊆ E then Dτ (S) ⊆ Dτ (E), Mτ (S) ⊆Mτ (E) and Aτ (S) ⊆ Aτ (E).

(2) Dτ (Dτ (S)) = Dτ (S).

(3) Mτ (Mτ (S)) = Mτ (S).

(4) Aτ (Aτ (S)) = Aτ (S).

(5) Zτ (Zτ (F )) = Zτ (F ) for all F ⊆ D] if and only if τ is a transitive relation.

(6) Let ∧ be an index set and Sλ a family of non-empty subsets of D] with non-empty

intersection, then :

(a) Dτ

(⋃
λ∈∧ Sλ

)
=
⋃
λ∈∧Dλ (Sλ), Mτ

(⋃
λ∈∧ Sλ

)
=
⋃
λ∈∧Mλ (Sλ) and

Aτ
(⋃

λ∈∧ Sλ
)

=
⋃
λ∈∧Aλ (Sλ).

(b) Dτ

(⋂
λ∈∧ Sλ

)
=
⋂
λ∈∧Dλ (Sλ), Mτ

(⋂
λ∈∧ Sλ

)
=
⋂
λ∈∧Mλ (Sλ) and

Aτ
(⋂

λ∈∧ Sλ
)

=
⋂
λ∈∧Aλ (Sλ).

(7) Dτ (E − S) = Dτ (E)−Dτ (S), for any S ( E

Proof. (1) Suppose that S ⊆ E. Let x ∈ Dτ (S) be arbitrary, then x ∈ S and τ

is divisive with respect to x. By hypothesis x ∈ E and τ is divisive with respect

to x. Therefore x ∈ Dτ (E) and Dτ (S) ⊆ Dτ (E). Similarly Mτ (S) ⊆ Mτ (E) and

Aτ (S) ⊆ Aτ (E).

(2) By definitions Dτ (Dτ (S)) is the set of elements in Dτ (S) for which τ is divisive

with respect to such elements, then Dτ (Dτ (S)) ⊆ Dτ (S). Let x ∈ Dτ (S) be fixed

but arbitrary, then τ is divisive with respect to x. By definition of Dτ (Dτ (S)),

x ∈ Dτ (Dτ (S)). Hence Dτ (S) ⊆ Dτ (Dτ (S)).

(3) and (4) are proved similarly.
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(5) (=⇒) Suppose that Zτ (Zτ (F )) = Zτ (F ) for all F ⊆ D]. Let x, y, z ∈ D]

be such that xτy and yτz, then x ∈ Zτ (y) and z ∈ Zτ (y). But by hypothesis,

x ∈ Zτ (Zτ (y)), hence xτt for all t ∈ Zτ (y). In particular, xτz. Therefore, τ is a

transitive relation.

(⇐=) Suppose τ is a transitive relation. Let x, y ∈ Zτ (F ) be fixed but arbitraries,

then xτt and yτt for all t ∈ F . For any element s ∈ F , since τ is transitive, xτs and

sτy, implies xτy. In conclusion, xτy for all y ∈ Zτ (F ), and so Zτ (F ) ⊆ Zτ (Zτ (F )).

Let x ∈ Zτ (Zτ (F )) be arbitrary, then xτt for all t ∈ Zτ (F ). Take any y ∈ Zτ (F ),

then xτy and yτs for all s ∈ F . Since τ is a transitive relation, xτs, for all s ∈ F .

In conclusion x ∈ Zτ (F ), so Zτ (Zτ (F )) ⊆ Zτ (F ).

(6a) Let x ∈
⋃
λ∈∧Dλ (Sλ) be a fixed but arbitrary element, then x ∈ Dλ (Sλ) for

some λ ∈ ∧, τ is divisive with respect to x and x ∈ Sλ ⊆
(⋃

λ∈∧ Sλ
)
. Therefore

x ∈ Dτ

(⋃
λ∈∧ Sλ

)
. In conclusion

⋃
λ∈∧Dλ (Sλ) ⊆ Dτ

(⋃
λ∈∧ Sλ

)
.

Let x ∈ Dτ

(⋃
λ∈∧ Sλ

)
be arbitrary, then τ is divisive with respect to x and

x ∈
⋃
λ∈∧ Sλ, then x ∈ Sλ for some λ ∈ ∧. In consequence x ∈ Dλ (Sλ) for

some λ ∈ ∧. It implies that Dτ

(⋃
λ∈∧ Sλ

)
⊆
⋃
λ∈∧Dλ (Sλ).

(6b) Let x ∈ Dτ

(⋂
λ∈∧ Sλ

)
be a fixed but arbitrary element, then τ is divisive with

respect to x and x ∈ Sλ for all λ ∈ ∧. In consequence x ∈ Dλ (Sλ) for all λ ∈ ∧.

It implies that Dτ

(⋂
λ∈∧ Sλ

)
⊆
⋂
λ∈∧Dλ (Sλ).

Let x ∈
⋂
λ∈∧Dλ (Sλ) be arbitrary, then x ∈ Dλ (Sλ) for all λ ∈ ∧, τ is divisive

with respect to x and x ∈ Sλ ⊇
(⋂

λ∈∧ Sλ
)
. Therefore x ∈ Dτ

(⋂
λ∈∧ Sλ

)
. In

conclusion
⋂
λ∈∧Dλ (Sλ) ⊆ Dτ

(⋂
λ∈∧ Sλ

)
.
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(7) Let x ∈ Dτ (E − S) be a fixed but arbitrary element, then x ∈ E − S and τ is

divisive with respect to x. Hence x ∈ E and x /∈ S. Note that x /∈ S implies by

definition that x /∈ Dτ (S), and the fact that x ∈ S and τ is divisive with respect

to x implies x ∈ Dτ (E). Therefore x ∈ Dτ (E)−Dτ (S).

Let x ∈ Dτ (E) − Dτ (S) be arbitrary, then x ∈ Dτ (E) and x /∈ Dτ (S), i.e.,

x ∈ E, x /∈ S and τ is divisive with respect to x. In summary, x ∈ E − S and

τ is divisive with respect to x. In consequence x ∈ Dτ (E − S) and therefore

Dτ (E)−Dτ (S) ⊆ Dτ (E − S).

The results of the previous theorem can be generalized as follows. Assume P

to be a τ -property with respect to an element x in D]. Let S ⊆ D] a non-empty

set. The set of elements x ∈ S such that τ satisfies the property p with respect

to x is denoted as Pτ (S). This generalizes the idea of Dτ (S), Mτ (S) and Aτ (S),

where in these cases the τ -property P is the divisive (respectively multiplicative and

associated-preserving ) property with respect to given element in D].

Theorem 2.8. Let D be an integral domain, τ be a symmetric relation on D] and

S and E non-empty subsets of D], then:

(1) If S ⊆ E then Pτ (S) ⊆ Pτ (E).

(2) Pτ (Pτ (S)) = Pτ (S).

(3) Let ∧ be an index set and Sλ a family of non-empty subsets of D] with non-empty

intersection, then

(a) Pτ
(⋃

λ∈∧ Sλ
)

=
⋃
λ∈∧ Pτ (Sλ).

(b) Pτ
(⋂

λ∈∧ Sλ
)

=
⋂
λ∈∧ Pτ (Sλ).

(c) Pτ (E − S) = Pτ (E)− Pτ (S), for any S ( E.
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Proof. (1) Suppose S ⊆ E. Let x ∈ Pτ (S) be arbitrary, then x ∈ S and τ satisfies

the τ -property P with respect to x. But by hypothesis x ∈ E, then x ∈ Pτ (E).

Therefore Pτ (S) ⊆ Pτ (E).

(2) By definition Pτ (Pτ (S)) ⊆ Pτ (S). Let x ∈ Pτ (S) be arbitrary, then τ -

satisfies the property P with respect to x, then by definition x ∈ Pτ (Pτ (S)). In

conclusion Pτ (S) = Pτ (Pτ (S)).

(3) Let ∧ be an index set and Sλ a family of non-empty subsets of D] with

non-empty intersection.

(3a) Let x ∈ Pτ
(⋃

λ∈∧ Sλ
)

be arbitrary, then x ∈
⋃
λ∈∧ Sλ and τ satisfies the prop-

erty P with respect to x. Hence x ∈ Sλ for some λ ∈ ∧ and x ∈ Pτ (Sλ) for

some λ ∈ ∧, i.e., x ∈
⋃
λ∈∧ Pτ (Sλ). Then Pτ

(⋃
λ∈∧ Sλ

)
⊆
⋃
λ∈∧ Pτ (Sλ). Let

x ∈
⋃
λ∈∧ Pτ (Sλ) be arbitrary, then x ∈ Pτ (Sλ) ⊆ Sλ for some λ ∈ ∧. Hence

x ∈
⋃
λ∈∧ Sλ and τ satisfies the property P with respect to x, i.e., x ∈ Pτ

(⋃
λ∈∧ Sλ

)
,

therefore Pτ
(⋃

λ∈∧ Sλ
)

=
⋃
λ∈∧ Pτ (Sλ).

(3b) Let x ∈ Pτ
(⋂

λ∈∧ Sλ
)

be arbitrary, then x ∈
⋂
λ∈∧ Sλ and τ satisfies the

property P with respect to x, hence x ∈ Sλ for all λ ∈ ∧. Then x ∈ Pτ (Sλ)

for all λ ∈ ∧, i.e., x ∈
⋂
λ∈∧ Pτ (Sλ) and Pτ

(⋂
λ∈∧ Sλ

)
⊆
⋂
λ∈∧ Pτ (Sλ). Let

x ∈
⋂
λ∈∧ Pτ (Sλ) be arbitrary, then x ∈ Pτ (Sλ) for all λ ∈ ∧, then x ∈ Sλ for

all λ ∈ ∧ and τ satisfies the property P with respect to x. Therefore x ∈
⋂
λ∈∧ Sλ

and x ∈ Pτ
(⋂

λ∈∧ Sλ
)
. In conclusion Pτ

(⋂
λ∈∧ Sλ

)
=
⋂
λ∈∧ Pτ (Sλ).

(3c) Assume S ( E where S and E are non-empty subsets of D]. Let x ∈

Pτ (E−S), then x ∈ E−S and τ satisfies the property P with respect to x, so x ∈ E

and x /∈ S. Therefore x ∈ Pτ (E) and x /∈ Pτ (S). In resume x ∈ Pτ (E) − Pτ (S).
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Hence Pτ (E − S) ⊆ Pτ (E) − Pτ (S). Let x ∈ Pτ (E) − Pτ (S), then x ∈ Pτ (E) and

x /∈ Pτ (S). Hence x ∈ E and x /∈ Pτ (S), so x ∈ E − S and τ satisfies the property

P with respec to x. Therefore x ∈ Pτ (E − S), i.e., Pτ (E − S) = Pτ (E)− Pτ (S).

In this chapter, some properties of the theory of τ -factorizations depend on

symmetric relations, and on the divisive, multiplicative and associated-preserving

relations. If τ is a divisive relation, any τ -factorization after a τ -refinement is again

a τ -factorization. If τ is a multiplicative relation, any τ -factorization can be ex-

pressed as the τ -product of lenght two, and if τ is an associated-preserving relation,

the unit can be omitted. Also, a divisive relation is an associated-preserving relation.

The set Aτ (S) ( respectively Dτ (S) and Mτ (S)) where S ⊆ D], is formed by

the elements with empty τ -centralizer and the elements in which τ is associated-

preserving ( respectively divisive and multiplicative) with respect to such element.

Any co-τ -saturated set is a τ -ideal. The converse is true when τ is a divisive relation.

The properties obtained in the τ -sets were more interesting when considered with

non-empty τ -centralizers for each one of their elements, and τ to be a multiplicative

or a divisive relation. The τ -set property can be inheritable, that means whenever

τ1 ≤ τ2, a τ2-set is a τ1-set.



Chapter 3

EQUIVALENCES

During the development of this work, equivalences with respect to the types of

relations considered in the theory of τ -factorization were found, using the definitions

of τ -centralizer, Dτ (S), Mτ (S) and Aτ (S) for some non-empty subset S of D].

3.1 Equivalences for a multiplicative relation

In this section, the equivalences to the definition of a multiplicative relation are

given in terms of Zτ (x) and Mτ (S), where x ∈ D] and ∅ 6= S ⊆ D].

Theorem 3.1. Let τ be a symmetric relation on D]. Then τ is a multiplicative

relation if and only if Zτ (x) ∩ Zτ (y) ⊆ Zτ (xy) for all x, y ∈ D].

Proof. (=⇒) Suppose that τ is a multiplicative relation. Let x, y ∈ D] be fixed but

arbitrary elements and t ∈ Zτ (x)∩Zτ (y), then tτx and tτy. Since τ is a multiplica-

tive relation, tτxy. In consequence, Zτ (x) ∩ Zτ (y) ⊆ Zτ (xy) for all x, y ∈ D].

(⇐=) Suppose that Zτ (x)∩Zτ (y) ⊆ Zτ (xy) for all x, y ∈ D]. Let x, y and z be

elements in D] such that xτy and xτz. By hypothesis, x ∈ Zτ (y) ∩ Zτ (z) ⊆ Zτ (yz)

and xτyz. Thus, τ is a multiplicative relation.

In Theorem 3.1, if x = λx1 · x2 · · ·xn is a τ -factorization, this implies that for

any i 6= j, xiτxj. If x1 is fixed, then x1 ∈ Zτ (xi) for all i ∈ {2, . . . , n}. Therefore

x1τ(x2 · · ·xn) and x has a τ -factorization of length 2, when τ is a multiplicative

33
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relation. This is a consequence of Proposition 2.2 in [1].

Theorem 3.2. A symmetric relation τ is multiplicative if and only if τ is contained

in Mτ (S)×Mτ (S) for some set S ⊆ D].

Proof. If τ = ∅, then τ ⊆Mτ (S)×Mτ (S) for any S ⊆ D]. So assume τ 6= ∅.

(=⇒) Assume τ to be a multiplicative relation. Take S =
⋃
x∈D] Zτ (x). Since τ is

a multiplicative relation, S ⊆Mτ (S). But Mτ (S) ⊆ S, so Mτ (S) = S. If (x, y) ∈ τ ,

then xτy and x, y ∈ S. Therefore (x, y) ∈ S × S ⊆ Mτ (S)×Mτ (S). Consequently

τ ⊆Mτ (S)×Mτ (S).

(⇐=) Assume τ ⊆Mτ (S)×Mτ (S) for some S ⊆ D]. Let x ∈ D] be an element

with xτy and xτz. In particular, (x, y) ∈ τ ⊆ Mτ (S) ×Mτ (S) for some S ⊆ D].

Hence x ∈Mτ (S) and xτyz (by hypothesis). Thus, τ is a multiplicative relation.

Theorem 3.3. A symmetric relation τ is a multiplicative relation if and only if for

all x, y ∈ D] there is S ⊆ D] such that Zτ (x) ∩ Zτ (y) ⊆Mτ (S).

Proof. If τ = ∅, then Zτ (x) ∩ Zτ (y) = ∅ ⊆ Mτ (S) for any subset S of D]. Hence,

assume τ 6= ∅.

(=⇒) Suppose that τ is a multiplicative relation. Take S =
⋃
x∈D] Zτ (x), then

by Theorem 2.7

Mτ (S) = Mτ{
⋃
x∈D]

Zτ (x))}

=
⋃
x∈D]

Mτ{Zτ (x)}

(3.1)
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Since τ is a multiplicative relation Mτ{Zτ (x)} = Zτ (x) for all x ∈ D]. In conclu-

sion, Mτ (S) = S. Let x, y ∈ D] and t ∈ Zτ (x) ∩ Zτ (y) be fixed but arbitrary. In

particular, t ∈ Zτ (x) ⊆ S = Mτ (S). Consequently Zτ (x) ∩ Zτ (y) ⊆Mτ (S).

(⇐=) Suppose that for all x, y ∈ D], there is S ⊆ D] such that Zτ (x)∩Zτ (y) ⊆

Mτ (S). Let x, y, z ∈ D] such that xτy and xτz. Then x ∈ Zτ (x) ∩ Zτ (z) ⊆Mτ (S).

Therefore x ∈ Mτ (S), and by the definition of Mτ (S), xτyz. Therefore, τ is a

multiplicative relation.

Corollary 3.1. τ is a multiplicative relation if and only if for all x ∈ D] there is

S ⊆ D] such that Zτ (x) ⊆Mτ (S).

Proof. If τ = ∅. then Zτ (x) = ∅ for all x ∈ D] and Zτ (x) ⊆ Mτ (S) for all S ⊆ D].

Hence assume τ 6= ∅.

(=⇒) Suppose that τ is a multiplicative relation. Let x ∈ D]. By Theorem 2.7,

there is S ⊆ D] such that Zτ (x) = Zτ (x) ∩ Zτ (x) ⊆Mτ (S).

(⇐=) Suppose that for all x ∈ D] there is S ⊆ D] such that Zτ (x) ⊆Mτ (S).

For all x, y ∈ D] arbitrary, Zτ (x) ∩ Zτ (y) ⊆ Zτ (x) ⊆ S for some S ⊆ D]. Then it

follows from Theorem 3.3.

In the next equivalence, other condition between the concepts of the set Mτ (S)

and a multiplicative relation was obtained.

Theorem 3.4. A symmetric relation τ 6= ∅ is multiplicative if and only if

Mτ (S) = S for all S ⊆ D].
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Proof. (=⇒) Assume τ to be a multiplicative relation. By definition Mτ (S) ⊆ S.

Let x ∈ S be fixed but arbitrary. If Zτ (x) = ∅, τ is multiplicative with respect to x

vacuously, hence x ∈ Mτ (S). So assume Zτ (x) 6= ∅. For any y, z ∈ D], if xτy and

xτz, then xτyz and x ∈Mτ (S).

(⇐=) Suppose that Mτ (S) = S for all S ⊆ D]. Note that for all x ∈ D],

Mτ ({x}) = {x}. Then the proof is concluded, because τ is multiplicative with

respect to x for each x ∈ D].

3.2 Equivalences for a divisive relation

In this section, the equivalences to the definitions of a divisive relation is given

in terms of Zτ (x) for x ∈ D] and Dτ (S) where ∅ 6= S ⊆ D]. Must note that the

statements are very similar to those in the previous section.

Theorem 3.5. A symmetric relation τ is divisive if and only if

Zτ (xy) ⊆ Zτ (x) ∩ Zτ (y) for all x, y ∈ D] and τ is associated-preserving.

Proof. (=⇒) Suppose τ is a divisive relation. Let x, y ∈ D] and t ∈ Zτ (xy) be

fixed but arbitrary. By definition, tτxy. Since τ is a divisive relation, tτx and tτy.

Therefore Zτ (xy) ⊆ Zτ (x) ∩ Zτ (y).

(⇐=) Assume Zτ (xy) ⊆ Zτ (x)∩Zτ (y) for all x, y ∈ D]. Let x, y ∈ D] arbitrary

but fixed such that xτy. Suppose x
′
, y

′ ∈ D] such that x
′ | x and y

′ | y. Hence,

x = x
′
t and y = y

′
s for some t, s ∈ D. Therefore there are 3 cases; when t, s ∈ D],

t, s ∈ U(D) and, t ∈ D] and s ∈ U(D). If t, s ∈ D], then Zτ (x
′t) ⊆ Zτ (x

′) ∩ Zτ (t).

Since xτy, y ∈ Zτ (x′t) and y ∈ Zτ (x′). Thus, x′ ∈ Zτ (y) ⊆ Zτ (y
′s) ⊆ Zτ (y

′)∩Zτ (s)

and x′τy′. In the second case since τ is associate-preserving, xτx′ and y ∼ y′,

x′τy′. For the last case, note that y′τx, because τ is associate-preserving. Now,
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y′ ∈ Zτ (x
′t) ⊆ Zτ (x

′) ∩ Zτ (t) and x′τy′. Therefore, in any case x′τy′ and τ is

divisive

The last theorem gives a similar result as when τ is a multiplicative relation, this

time with the assumption that the τ -centralizer of the product of any two elements

in D] is contained in the intersection of their respective τ -centralizers. However, the

hypothesis of τ being an associated-preserving relation was needed. The following

theorem shows the connections between the definition of Dτ (S) of a subset S ⊆ D]

and a divisive relation.

Theorem 3.6. A symmetric relation τ is divisive if and only if τ ⊆ Dτ (S)×Dτ (S)

for some S ⊆ D].

Proof. If τ = ∅, then τ ⊆ Dτ (S)×Dτ (S) for any S ⊆ D]. So assume τ 6= ∅. (=⇒)

Suppose τ is a divisive relation and consider S =
⋃
x∈D] Zτ (x). Since τ is a divisive

relation, S ⊆ Dτ (S). But, Dτ (S) ⊆ S, so Dτ (S) = S. Moreover, if xτy, x, y ∈ S.

Therefore (x, y) ∈ S × S = Dτ (S)×Dτ (S), and consequently τ ⊆ Dτ (S)×Dτ (S).

(⇐=) Suppose that τ ⊆ Dτ (S) ×Dτ (S) for some S ⊆ D]. Let x, y ∈ D] such

that x ∈ Zτ (y) and t | y. For some t ∈ D], (x, y) ∈ τ ⊆ Dτ (S) × Dτ (S) and

x ∈ Dτ (S). Therefore t ∈ Zτ (x), and hence τ is divisive.

Theorem 3.7. A symmetric relation τ is divisive if and only if the following con-

dition holds:

(∀x ∈ D])(∀y ∈ D]){(y ∈ Zτ (x)) =⇒ {(∀t ∈ D])(t | y) =⇒ (t ∈ Zτ (x)}}.

Proof. Suppose that τ is a divisive relation. Let x, y ∈ D] such that y ∈ Zτ (x).

Suppose t ∈ D] with t | y. By divisivility, since x | x and t | y, tτx. Therefore
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t ∈ Zτ (x). For the converse, suppose the above property holds. Let x, y ∈ D] such

that y ∈ Zτ (x). Let x′, y′ ∈ D] with x′ | x and y′ | y. By hypothesis, y′ ∈ Zτ (x), that

is, x ∈ Zτ (y′). Applying the hypothesis again, x′ ∈ Zτ (y′), that is, x′τy′. Therefore,

τ is a divisive relation.

Theorem 3.8. A symmetric relation τ is a divisive relation if and only if for all

x, y ∈ D] there is S ⊆ D] such that Zτ (xy) ⊆ Dτ (S) and τ is an associated-

preserving relation.

Proof. If τ = ∅ then Zτ (xy) = ∅ for all x, y ∈ D], hence Zτ (xy) ⊆ Dτ (S) for any

S ⊆ D] and τ is an associated-preserving relation.

(=⇒) Suppose that τ is a divisive relation. By Theorem 3.6, there is S ⊆ D] such

that τ ⊆ Dτ (S) × Dτ (S). Let p ∈ Zτ (xy) be fixed but arbitrary, then (p, xy) ∈ τ .

Hence p ∈ Dτ (S), therefore Zτ (xy) ⊆ Dτ (S).

(⇐=) Assume τ to be an associated-preserving relation and for all x, y ∈ D]

there is a subset S ⊆ D] such that Zτ (xy) ⊆ Dτ (S). Let x, y ∈ D] be fixed but

arbitrary and p ∈ Zτ (xy). By hypothesis, p ∈ Dτ (S) for some S ⊆ D] and τ is

divisive with respect to p. Since x, y | xy, xτp and yτp. Therefore p ∈ Zτ (x)∩Zτ (y)

and Zτ (xy) ⊆ Zτ (x)∩Zτ (y) for all x, y ∈ D]. By Theorem 3.5 τ is a divisive relation.

Theorem 3.9. A symmetric relation τ is divisive if and only if for all x ∈ D] there

is a subset S ⊆ D] such that Zτ (x) ⊆ Dτ (S).

Proof. If τ = ∅, then Zτ (x) = ∅ for all x ∈ D]. Hence Zτ (x) ⊆ S for any S ⊆ D].

So, assume τ 6= ∅.

(=⇒) Suppose that τ is divisive. By Theorem 3.6 there is an S ⊆ D] such that

τ ⊆ Dτ (S) × Dτ (S). Let p ∈ Zτ (x) be fixed but arbitrary, then pτx. Hence,
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(p, x) ∈ τ ⊆ Dτ (S)×Dτ (S) and p ∈ Dτ (S). Therefore Zτ (x) ⊆ Dτ (S).

(⇐=) Suppose that for all x ∈ D] there is a subset S ⊆ D] such that

Zτ (x) ⊆ Dτ (S). Let y, z ∈ D] be fixed but arbitrary. Take x = zy, by hypoth-

esis there is a subset S ⊆ D] such that Zτ (zy) ⊆ Dτ (S). That is, for all z, y ∈ D]

there is S ⊆ D] such that Zτ (zy) ⊆ Dτ (S). On the other hand, let x, y be two

elements D] such that xτy and t ∼ y. Now, x ∈ Zτ (y) ⊆ Dτ (S) for some S ⊆ D],

and τ is divisive with respect to x, so xτt. Therefore τ is an associated-preserving

relation. By previous theorem τ is a divisive relation.

Theorem 3.10. A symmetric relation τ 6= ∅ is divisive if and only if Dτ (S) = S

for all S ⊆ D] with S 6= ∅.

Proof. (=⇒) Suppose that τ is a divisive relation. Let S ⊆ D] be arbitrary. By

definition, Dτ (S) ⊆ S. To prove the other direction let x ∈ S be arbitrary. If

Zτ (x) = ∅, then x ∈ Dτ (S). So assume that Zτ (x) 6= ∅ and let y ∈ D] such that

xτy. Since τ is a divisive relation, any factor of y on D] is related to x. Hence

Dτ (S) = S.

(⇐=) Suppose Dτ (S) = S for all S ⊆ D]. Let x ∈ D] be fixed but arbitrary.

By hypothesis, Dτ (Zτ (x)) = Zτ (x). In conclusion, for all x ∈ D], there is S ⊆ D]

such that Zτ (x) ⊆ Dτ (S). By Theorem 3.9, τ is a divisive relation.

Corollary 3.2. Let τ be a symmetric relation on D]. Assume that τ is associated-

preserving, then the following statements are equivalents.

(1) The relation τ is a multiplicative and divisive relation.

(2) For all x, y ∈ D], Zτ (xy) = Zτ (x) ∩ Zτ (y).
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(3) For all ∅ 6= S ⊆ D] with Dτ (S) 6= ∅ and Mτ (S) 6= ∅ , Mτ (Dτ (S)) = S or

Dτ (Mτ (S)) = S.

(4) For all ∅ 6= S ⊆ D], Dτ (S) = Mτ (S) = S.

Proof. It follows immediately from the previous theorems.

3.3 Equivalences for an associated-preserving relation

If τ is an associated-preserving symmetric relation, each τ -factorization can be

written as a τ -reduced factorization and it is a way to dispense of the unit in front of

a τ -factorization. In this section several equivalences will be presented with respect

to associated-preserving relations.

Theorem 3.11. A symmetric relation τ is associated-preserving if and only if

Aτ (S) = S for all S ⊆ D].

Proof. If τ = ∅, then Aτ (S) = S vacuously. So assume τ 6= ∅.

(=⇒) Suppose that τ is an associated-preserving relation. Let S ⊆ D] be fixed

but arbitrary. By definition, Aτ (S) is the set of elements x in S such that τ is

associated-preserving with respect to x, then Aτ (S) ⊆ S. For x ∈ S, τ is associated-

preserving with respect to x, because τ is an associated-preserving relation. There-

fore x ∈ Aτ (S). In conclusion Aτ (S) = S

(⇐=) Assume Aτ (S) = S for all S ⊆ D]. Let x, y ∈ D] such that xτy. Then

x ∈ Zτ (y) = Aτ (Zτ (y)), that is, xτt for any t ∼ y. Therefore, τ is an associated-

preserving relation.

Observe that any divisive relation is an associated-preserving relation, therefore

a symmetric relation is divisive if and only if Aτ (S) = Dτ (S) for any S ⊆ D]. But
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in general, Dτ (S) ⊆ Aτ (S) for any S ⊆ D].

Theorem 3.12. A symmetric relation τ is associated-preserving if and only if there

is a subset ∅ 6= S ⊆ D] such that τ ⊆ Aτ (S)× Aτ (S).

Proof. If τ = ∅, then τ ⊆ Aτ (S)× Aτ (S) for any S ⊆ D]. So assume τ 6= ∅.

(=⇒) Suppose τ is an associated-preserving relation. Take S =
⋃
x∈D] Zτ (x), then

by Theorem 3.11 Aτ (S) = S. If (x, y) ∈ τ , then x ∈ Zτ (y) and y ∈ Zτ (x).

But Zτ (x), Zτ (y) ⊆ S, hence (x, y) ∈ S × S = Aτ (S) × Aτ (S). In conclusion,

τ ⊆ Aτ (S)× Aτ (S).

(⇐=) Suppose there is a subset S ⊆ D] such that τ ⊆ Aτ (S) × Aτ (S). Let

x, y ∈ D] such that xτy. By hypothesis (x, y) ∈ Aτ (S) × Aτ (S). In particular,

x ∈ Aτ (S). Hence x ∈ S and τ is associated-preserving with respect to x. So, if

y ∼ t then xτt. Thus, τ is associated-preserving.

Theorem 3.13. A symmetric relation τ is associated-preserving if and only if for

all x, y ∈ D] there is a subset S ⊆ D] such that Zτ (x) ∩ Zτ (y) ⊆ Aτ (S).

Proof. If τ = ∅, then Zτ (x) ∩ Zτ (y) = ∅ ⊆ Aτ (S) for any set. Hence, assume τ 6= ∅.

(=⇒) Suppose τ is an associated-preserving relation. Let x, y ∈ D] be fixed but

arbitrary. Take S = Zτ (x), then Zτ (x) ∩ Zτ (y) ⊆ Zτ (x). By Theorem 3.11

Aτ (Zτ (x)) = Zτ (x), therefore Zτ (x)∩Zτ (y) ⊆ Aτ (S). In conclusion, for all x, y ∈ D]

there is S = Zτ (x) ⊆ D] such that Zτ (x) ∩ Zτ (y) ⊆ Aτ (S).

(⇐=) Suppose for all x, y ∈ D] there is S ⊆ D] such that Zτ (x) ∩ Zτ (y) is a

subset of Aτ (S). Let x, y ∈ D] such that xτy. By hypothesis, there is S ⊆ D] such

that Zτ (y) ∩ Zτ (y) = Zτ (y) ⊆ Aτ (S). Since x ∈ Zτ (y), τ is associated-preserving
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with respect to x. Thus, xτt for all t ∼ y.

Theorem 3.14. A symmetric relation τ is an associated-preserving relation if and

only if for all x ∈ D] there is ∅ 6= S ⊆ D] such that Zτ (x) ⊆ Aτ (S).

Proof. If τ = ∅, Zτ (x) = ∅ ⊆ Aτ (S). So assume τ 6= ∅.

(=⇒) Suppose τ is an associated-preserving relation. Let x ∈ D] be fixed but arbi-

trary. By Theorem 3.11 Zτ (x) = Aτ (Zτ (x)). Then S = Zτ (x) does the work.

(⇐=) Let x, y ∈ D] be such that xτy, then there is a S ⊆ D] such that

Zτ (y) ⊆ Aτ (S). Note that x ∈ Zτ (y) and τ is associated-preserving with respect to

x. In conclusion, xτt for all t ∈ D]. Thus, τ is an associated-preserving relation.

Theorem 3.15. A symmetric relation τ is an associated-preserving relation if and

only if Zτ (x) = Aτ (x) for all x ∈ D].

Proof. (=⇒) Suppose τ is an associated-preserving relation. Let p ∈ Zτ (x) be fixed

but arbitrary, then pτx. Since τ is an associated-preserving relation, xτp′ for all

p′ ∼ p. Thus p ∈ Aτ (x), so Zτ (x) ⊆ Aτ (x).

(⇐=) Let x, y ∈ D] such that xτy, then y ∈ Zτ (x) = Aτ (x). By definition of

Aτ (x), xτy for all y ∼ y′. Therefore, τ is an associated-preserving relation.

Theorem 3.16. A symmetric relation τ is associated-preserving if and only if

Zτ (x) = Zτ (t) for all x ∼ t.

Proof. Suppose τ is an associated-preserving relation. Let x, t ∈ D] such that x ∼ t.

Let p ∈ Zτ (x), then pτx and by hypothesis pτt. Thus, p ∈ Zτ (t) and Zτ (x) ⊆ Zτ (t).

The other containment is similar. Assume that xτy and t ∼ y. By hypothesis
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Zτ (x) = Zτ (t). Now, x ∈ Zτ (y) and x ∈ Zτ (t), implies τ is an associated-preserving

relation.

The following theorem generalizes the result about some of the equivalences

found.

Theorem 3.17. Let D be an integral domain, τ a symmetric relation on D] and P

a property with respect to τ , then the following statements are equivalents:

(1) τ satisfy the property P for each x ∈ D].

(2) τ ⊆ Pτ (S)× Pτ (S) for some set S ⊆ D],

(3) for all x ∈ D], there is S ⊆ D] such that Zτ (x) ⊆ Pτ (S),

(4) Pτ (S) = S for all S ⊆ D].

Proof. ((1)=⇒ (2)) If τ = ∅, then τ ⊆ Pτ (S) × Pτ (S) for any S ⊆ D]. So assume

τ 6= ∅. Suppose τ is a divisive relation and consider S =
⋃
x∈D] Zτ (x). Since τ

satisfies the property P , S ⊆ Pτ (S). But by definition Pτ (S) ⊆ S, so Pτ (S) = S.

Moreover, if xτy, x, y ∈ S. Therefore (x, y) ∈ S × S = Pτ (S) × Pτ (S), and conse-

quently τ ⊆ Pτ (S)× Pτ (S).

((2)=⇒ (3)) Let x ∈ D] arbitrary and y ∈ Zτ (x), then by hypothesis

(y, x) ∈ τ ⊆ Pτ (S) × Pτ (S) for some S ⊆ Pτ (S) and y ∈ Pτ (S). Therefore

Zτ (x) ⊆ Pτ (S) for all x ∈ D].

((3)=⇒ (4)) Let S ⊆ D] arbitrary. By definition Pτ (S) ⊆ S. Let x ∈ S ar-

bitrary. If Zτ (x) = ∅ then x ∈ Pτ (S). Assume Zτ (x) 6= ∅ then exist y ∈ D] such

that xτy. But by hypothesis there is S ′ ⊆ D] such that Zτ (y) ⊆ Pτ (S
′), hence

x ∈ Pτ (S ′). Therefore τ satisfies the property P with respect to x and x ∈ S, then
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x ∈ Pτ (S). In conclusion Pτ (S) = S for all S ⊆ D].

((4)=⇒ (1)) Note that for all x ∈ D], Pτ ({x}) = {x}. Then the proof is

concluded, because τ satisfies the property P with respect to x for each x ∈ D].

3.4 New approach for known theorems

The most important results of the theory of τ -factorization were obtained when

multiplicative, associated-preserving and divisive relations were considered. The

equivalences can be used to obtain alternative proofs of the theorems in [1], but to

try to understand the nature of these types of relations. In some cases it is easier

to prove them using the equivalences.

Theorem 3.18. Let D be an integral domain and τ a symmetric relation on D].

Suppose τ is a divisive relation.

(1) Let x = x1 · x2 · · ·xn be a τ -factorization of x, and let xi = y1 · y2 · · · yn be a

τ -factorization of xi for some i. Then x = x1 · · ·xi−1 · y1 · y2 · · · yn · xi+1 · · ·xn is

again a τ -factorization of x.

(2) Suppose τ is a multiplicative relation. Let x = λx1 · x2 · · ·xn be a τ -factorization

of x. Then x = λx1 · · ·xi−1 · (xixi+1) · xi+2 · · ·xn is a τ -factorization of x.

Proof. Let x = x1 · · ·xn be a τ -factorization of x and xi = y1 · · · ym be a τ -

factorization of xi for some i ∈ {1, 2, · · ·n}, then xj ∈ Zτ (xi) = Zτ (y1 · · · ym) for

all i 6= j. Since τ is divisive Zτ (y1 · · · ym) ⊆
⋂m
k=1 Zτ (yk), hence xj ∈

⋂m
k=1 Zτ (yk),

i.e., xjτyk for all j 6= i. So the first statement holds. For the second part, let

x = λx1 · x2 · · · xn be a τ -factorization of x. Then xk ∈ Zτ (xi) ∩ Zτ (xi+1) for all

k 6= i, i + 1. But by hypothesis Zτ (xi) ∩ Zτ (xi+1) ⊆ Zτ (xixi+1) for all k 6= i, i + 1.

Hence, xk ∈ Zτ (xixi+1) for all k 6= i, j. Therefore, x = x1 · · ·xi−1 ·(xixi+1)·xi+2 · · ·xn



45

is a τ -factorization of x.

Theorem 3.19. Let τ be a divisive symmetric relation on the integral domain D.

Let x ∈ D] be a τ -prime element and y ∈ D] a τ -atom. Then either aτb or ab is a

τ -atom.

Proof. Suppose that is not a τ -atom. Let ab = x1 · x2 · · ·xn be a τ -factorization,

then a | xi for some i ∈ {1, 2, . . . , n}, say a | x1. Write x1 = ra, then b = r ·x2 · · ·xn.

If r is an unit, b = rx2. Note that x1 = ra and b = rx2, and since τ is associated-

preserving, aτb. So, the reader may assume that r is not unit. Note that x2, . . . , xn ∈

Zτ (x1) = Zτ (ra) ⊆ Zτ (r)∩Zτ (a). In consequence, x2, . . . , xn ∈ Zτ (r), i.e., r·x2 · · ·xn

is a τ -factorization. A contradiction because is a τ -atom.

In this chapter equivalences for divisive, multiplicative and associated-preserving

relations were found, using Definition 2.2. These results are connections between the

theory of τ -factorization and our work, and it is possible to use them to analyse the

main type of relations known in the theory of τ -factorization from other perspective.



Chapter 4

OTHER RESULTS

The idea of prime ideal arose from the natural generalization of the notion of a

prime in the integers Z, and plays an important role in the theory of commutative

rings. The definition of a prime ideal can be recast in the follow way : I is prime if

and only if M is multiplicative, where M is the complement of I, see [10]. From the

definition of a τ -multiplicative set, the definition of a τ -prime set was considered

based on such statement . Unit and zero elements were avoided in the theory of

τ -factorization. For this definition would like to keep the property of a τ -prime ideal

as defined in [11], without most of the ideal or subring properties.

Theorem 4.1. Let D be an integral domain, τ a multiplicative symmetric relation

on D] and M ⊆ D]. Then M is a τ -prime set with respect to reduced τ -factorizations

if and only if coD](M) is a τ -multiplicative set.

Proof. (=⇒) Suppose that M is a τ -prime set and let x, y ∈ coD](M) be such that

xτy. Since M is a τ -prime set xy ∈ M implies x ∈ M or y ∈ M , which it is a

contradiction. Hence xy ∈ coD](M) and coD](M) is a τ -multiplicative set.

(⇐=) Suppose that coD](M) is a τ -multiplicative set and let x1 · x2 · · · xn ∈M .

Suppose that xi ∈ coD](M) for all 1 ≤ i ≤ n, let’s prove by using induction that

x1 · x2 · · ·xn ∈ coD](M). If n = 1, there is nothing to prove. Consider n ≥ 2. If

n = 2, then x1τx2 and x1 · x2 is a τ -factorization. So that x1x2 ∈ coD](M) by

hypothesis. If n = 3, using the fact τ is a multiplicative relation and x1 · x2 · · ·xn is

46
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a τ -factorization, x1τx2x3 and x1x2x3 ∈ coD](M). Now, x1τ(x2 · · ·xn−1) follows for

the fact that τ is a multiplicative relation. But x1τxn, therefore x1τ(x2 · x3 · · ·xn)

and x1 ·x2 ·x3 · · ·xn ∈ coD](M)(as a product, and later as a τ -product because they

were originally related), which is a contradiction. In conclusion, M is a τ -prime set.

The above theorem focused only on reduced τ -factorizations because on it λ = 1

is assumed . But if τ is divisive or associated-preserving, such τ -factorizations can be

considered. The same result can be obtained instead considering τ to be a divisive

relation to consider M − {0} to be a τ -prime set, as is illustrated in the following

corollary.

Corollary 4.1. Let D be an integral domain, τ a symmetric relation on D] and M

a proper ideal of D. Suppose that τ is a multiplicative relation, then M − {0} is a

τ -prime set if and only if coD](M − {0}) is a τ -multiplicative set.

Proof. Since M is and ideal, if λa1 · a2 · · · an ∈ M − {0} is a τ -factorization, then

a1 · a2 · · · an ∈M − {0}. Consequently, by Theorem 4.1 the proof is concluded.

Of course, if coD](M − {0}) is a τ -ideal or a co-τ -saturated set, it was going to

obtain also that M−{0} is a τ -prime set. Then it is possible to think that since these

two τ -sets are τ -multiplicative sets the reciprocal is also true for arbitrary relations.

However, it is not true in general, but, there are relations where the reciprocal is

also true.

Example 4.0.1. Take D = Z and I = (5). For any x, y ∈ Z, define xτy if and only

if 2|x, y. Observe that 4 ∈ coD]I and 4τ20, but 5|20 and 5 /∈ coD](I). Since I is

a prime ideal, then I is a τ -prime set, but coD](I) is not a τ -ideal. On the other
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hand, consider the relation τp define as follows: xτpy if and only if x−y ∈ (p). Now

consider S = (p)− {0}, and notice that S is a τp-ideal and also a τ -prime set.

Theorem 4.2. Let M be a proper ideal of D and Zτ (t) 6= ∅ for all t ∈ M − {0},

then M = D] ∪ {0} if and only if M − {0} is a co-τ -saturated set.

Proof. Suppose that M = D]∪{0} , so that M−{0} = D] and M−{0} is obviously

a co-τ -saturated set. Conversely, since M is a proper ideal, then M ⊆ D]∪{0}. Now

let x ∈ D] and y ∈M −{0} be fixed but arbitrary, so xy ∈M −{0}. By hypothesis

Zτ (xy) 6= ∅, then there exists t ∈ D] such that xyτt. Therefore t ∈ M − {0},

because M − {0} is a co-τ -saturated set. But tτxy, and since x | xy, x ∈ D] and

M − {0} is a co-τ -saturated set, x ∈M − {0}. In conclusion, D] ∪ {0} ⊆M .

In Theorem 4.2, M = D] ∪ {0} implies that D is a quasi-local ring, that is,

a ring with a unique maximal ideal. Then 4.2 provide a sufficient and necessary

condition about an integral domain being a quasi-local ring.

Example 4.0.2. Let p ∈ Z be a fixed positive prime number. Consider,

Zp = {a
b
∈ Q|b ∈ Z − (p)}

= {a
b
∈ Q|b /∈ (p)}

= {a
b
∈ Q|p - b}

(4.1)

Zp is already an integral domain.

Let M = (p) and define the relation: xτy if and only if x = y. Clearly, τ is a re-

flexive relation, so that Zτ (t) 6= ∅ for all t ∈M −{0}. Let x ∈M −{0} and y ∈ Z]
p

such that xτy, then x = y ∈ M − {0}. Hence y ∈ (p) with y 6= 0. Then M − {0}
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is a τ -ideal. Let t | y be such that t ∈ Z]
p. If t /∈ (p), then

1

t
∈ Zp. So, t ∈ U(Zp)

which is a contradiction. Finally t ∈ M − {0}, so M − {0} is a co-τ -saturated set.

By Theorem 4.2, M − {0} = Z]
p = (p)− {0}.

Theorem 4.3. Let D be an integral domain, let τ be a symmetric relation on D]

and I a proper ideal of D. Suppose that I − {0} is a τ -prime set, then S = I − {0}

is a τ -ideal if and only if coD](S) is a co-τ -saturated set.

Proof. (=⇒) Suppose that S = I − {0} is a τ -ideal. By the fact that I is a τ -prime

set and Corollary 4.1 coD](S) is a τ -multiplicative set. Let x ∈ coD](S) be fixed but

arbitrary and y ∈ D] such that xτy. Suppose t | y for some t ∈ D]. If t /∈ coD](S),

then t ∈ S, so that y ∈ S, because I is an ideal. By hypothesis x ∈ S, which is a

contradiction. So, coD](S) is a co-τ -saturated set.

(⇐=) Suppose coD](S) is a co-τ -saturated set. Since I is an ideal, then I is a

τ -multiplicative set. Let x ∈ S and y ∈ D] such that xτy. If y /∈ S, y ∈ coD](S).

Now x ∈ coD](S), which is a contradiction. Therefore S is a τ -ideal.

Taking away zero from an arbitrary prime ideal a τ -prime ideal is obtained. So,

Theorem 4.3 also holds if it is replaced prime ideal for a τ -prime ideal. It is not

difficult to show that if assume that coD](S) is a τ -ideal instead of a co-τ -saturated

set the same result is obtained, even without considering τ to be a divisive relation.

In fact, the complement in D] of a proper ideal of an integral domain D is a τ -ideal

if and only if it is a co-τ -saturated set.

Corollary 4.2. Let I be an ideal on an integral domain D and τ a symmetric and

multiplicative relation, then the following statements are equivalents.
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(1) coD](I − {0}) is a τ -ideal.

(2) I − {0} is a τ -prime set and I − {0} is a τ -ideal.

(3) coD](I − {0}) is a co-τ -saturated set.

Proof. Observe that if coD](I −{0}) is a τ -ideal and there is y ∈ coD](I −{0}) such

that Zτ (y) 6= ∅, t ∈ coD](I−{0}) for any factor t of y (I is an ideal and coD](I−{0})

is a τ -ideal ). So, (1) implies (2) and by Theorem (2.2), (2) implies (1). Finally, (2)

and (3) are equivalents by Theorem 4.3.

One of the objectives is to find connections between known theories and the

concepts defined, that gives other ways to understand the theory or τ -factorizations

and concepts in commutative ring theory, see for example Theorem 4.2. Connections

were also found using Definition 2.1(1), this time with the multiplicative sets.

Theorem 4.4. Let D be an integral domain, M a subset of D] and τ a symmetric

relation on D]. Assume that Zτ (x) 6= ∅ for all x ∈ coD](M). If coD](M) is a

co-τ -saturated set, then M is a multiplicative set.

Proof. Let x, y ∈ M be fixed but arbitrary. Suppose that xy ∈ coD](M), then by

hypothesis Zτ (xy) 6= ∅, i.e., there is t ∈ D] such that tτxy. Since coD](M) is a

co-τ -saturated set x, y ∈ coD](M), a contradiction. In conclusion, M is a multi-

plicative set.

Theorem 4.5. Let D be an integral domain, τ a multiplicative symmetric relation

on D] and I a proper ideal of D.

(1) Suppose there is t ∈ coD](I−{0}) such that Zτ (t) ⊇ coD](I−{0}) and coD](I−{0})

is a τ -ideal, then I − {0} is a τ -ideal and I is a prime ideal.
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(2) If coD](I) × coD](I) ⊆ τ and coD](I) is a τ -multiplicative set, then I is a prime

ideal.

Proof. (1) Since τ is a multiplicative relation and coD](I − {0}) is a τ -ideal, by

Theorem 4.2, I−{0} is a τ -ideal. In fact, I−{0} is a τ -prime set. Let xy ∈ I−{0}

be arbitrary. Suppose that x, y ∈ coD](I − {0}), then xτt and yτt. Since τ is mul-

tiplicative, tτxy and xy ∈ coD](I − {0}), which it is a contradiction.

(2) Let xy ∈ I be arbitrary. Suppose neither x nor y are in I, then x, y ∈

coD](I) and by hypothesis xτy. Finally, since coD](I−{0}) is a τ -multiplicative set,

xy ∈ coD](I − {0}), which is a contradiction. Observe that since xτy, neither x nor

b could be zero. Hence I a is prime ideal.

Theorem 4.6. Let D be an integral domain, τ a symmetric relation on D] and M

a proper ideal of D. Assume that for any ideal I of D such that M ⊆ I, coD](I) is

a τ -ideal. If Zτ (x)∩Zτ (y) 6= ∅ for all x, y ∈ D], then M is a maximal ideal or D is

local.

Proof. Suppose that there is an ideal N such that M ⊆ N ⊆ D and M 6= N .

Let x ∈ D] be fixed but arbitrary. Assume that x /∈ M , then x ∈ coD](M).

Let y ∈ N − M be fixed but arbitrary. So x, y ∈ coD](M) and by hypothesis

Zτ (x) ∩ Zτ (y) 6= ∅. Then there is an element t ∈ Zτ (x) ∩ Zτ (y) and therefore tτx

and tτy. Since coD](N) is a τ -ideal, N − {0} is a τ -ideal, t ∈ N and hence x ∈ N .

Therefore D] ⊆ N . Then D] = N − {0} or D = N . Then D is local or M is

maximal.
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In commutative ring theory, if S is a multiplicative closed set and I is an ideal

maximal with respect to the exclusion of S, then I is a prime ideal [10]. An analo-

gous of it was establish with τ -multiplicative sets and τ -prime ideals. The following

theorem is the result of the previous idea.

Theorem 4.7. Let D be an integral domain, τ a symmetry multiplicative relation

on D] and I a proper ideal of D. Let M ⊆ D] be a τ -multiplicative set such that

Zτ (M)∩M 6= ∅ and suppose that I is maximal ideal with respect to the exclusion of

Zτ (M) ∩M , then I − {0} is a τ -prime set.

Proof. Let λx1 ·x2 · · ·xn ∈ I−{0} be a τ -factorization, then x1 ·x2 · · ·xn ∈ I−{0}.

Suppose xi /∈ I − {0} for all i = 1, 2, . . . , n, then (I, xi) % M for all i = 1, 2, . . . , n.

By hypothesis (I, xi) ∩ Zτ (M) ∩M 6= ∅, therefore for all i = 1, 2, · · · , n there is

ri ∈ (I, xi) ∩M such that M ⊆ Zτ (ri). So, riτrj for all i, j = 1, 2, . . . , n. Using

induction, the fact that M is a τ -multiplicative set and τ is a multiplicative relation

(see proof of Theorem 4.1),
∏n

1 ri ∈M , which is a contradiction.

Observations Let D be an integral domain, τ a symmetric relation on D] and

M ⊆ D] a co-τ -saturated set.

(1) If Zτ (x) 6= ∅ for all x ∈M , then for all y ∈ D] such that y | x, y ∈M .

(2) If Zτ (x) ∩ Zτ (y) ∩M 6= ∅ for all x, y ∈ M and τ is a multiplicative relation, then

M is a saturated set in D].

This chapter presented connections between commutative ring theory and our

work. More specifically on how to use the τ -sets to obtain information about ideals,

prime ideals, saturated sets and quasi-local domains.



Chapter 5

CONCLUSIONS AND FUTURE WORK

In this chapter, the reader will find a summary of the main results, their im-

portance and suggested question for future research. In the future work section, the

author wanted to include some quick results on suggested alternative definitions for

the sets Dτ (S), Mτ (S) and Aτ (S), but leaves the rest to be studied later and opens

an invitation to the reader to study such sets.

5.1 Conclusions

Let τ be a symmetric relation on D]. The τ -centralizer of an element x ∈ D],

turns to be an essential tool to further develop the theory of τ -factorizations. Be-

cause it gives a more natural way to visualize the concepts and it is a key to un-

derstand the most important types of relations so far. Moreover, together with the

set Pτ (S) it suggested that any other type of relation depends of the τ -centralizer

of x or Zτ (S) where x ∈ S for some S ⊆ D]. It was possible to give a necessary

and sufficient condition for τ , so Zτ (x) = Zτ (S) = S for some x ∈ D]. Theorem 2.5

gives a very good characterization of Zτ (x) under several hypothesis.

During this investigation it was possible to characterize the main three types

of relations, known as: divisive, multiplicative and associated-preserving. The idea

emerged from the study of such properties locally at a singleton set, that is, looking
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for elements of D] with such properties. The results of this idea give several equiv-

alent statements to the definitions of a divisive, a multiplicative and an associated-

preserving relation. Moreover, some of the statements are very similar and provide

a generalization of this set for any type of relation. At the same time, this suggested

that there are other type of relations to consider. This coincides with the fact that

the author in [8] defined other types of relations as combinabled. Also, out of this

work suggested to study properties similar as the definitions of type of elements.

For example; a relation is called a prime relation if whenever xτyz, then xτy or xτz.

Turns out that a divisive relation is a prime relation, but the converse is false.

Last, a connection between ideals, multiplicative closed sets and the usual com-

mutative ring theory with the theory of τ -factorizations and the τ -sets. The τ -sets

defined in this research are the first attempted to define what could be the analo-

gous of an ideal in terms of the τ -products. As a consequence several definitions

were considered. This reports only contains those τ -sets than give better results and

connections with the usual commutative ring theory.

5.2 Future work

It is suggested to keep finding not artificial (or synthetic) examples for multi-

plicative, divisive and associated-preserving relations, using the equivalences ob-

tained and study the implications of the τ -sets in the comaximal factorization,

bounded factorization domain, half-factorial domain, etc.

From the definition of an associated-preserving relation, for any element x of

D] with non-empty τ -centralizer is related to any element associated with some

element in Zτ (x). However, there are elements with such property but not for all
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the elements in its τ -centralizer. Let x ∈ D] be arbitrary and consider the set

A′τ (x) = {y ∈ D] | xτy′ for all y′ ∼ y}

. Let y ∈ A′τ (x), by definition yτx and y ∈ Zτ (x). Then A′τ (x) ⊆ Zτ (x) for all

x ∈ D]. Analogously

D′τ (x) = {y ∈ D] | xτt for all t | y with t ∈ D]}

and

M ′
τ (x) = {y ∈ Zτ (x) | xτyz for all z ∈ Zτ (x)}

are defined. Also D′τ (x) ⊆ Zτ (x) and M ′
τ (x) ⊆ Zτ (x) for all x ∈ D]. The follow-

ing theorem attempt to provide an idea of the definitions of M ′
τ (x), D′τ (x) and A′τ (x).

Theorem 5.1. Let τ be a symmetric relation on an integral domain D.

(1) The relation τ is associated-preserving if and only if A′τ (x) = Zτ (x) for all x ∈ D].

(2) The relation τ is divisive if and only if D′τ (x) = Zτ (x) for all x ∈ D].

(3) The relation τ is multiplicative if and only if M ′
τ (x) = Zτ (x) for all x ∈ D].

Proof. (1) Suppose τ is an associated-preserving relation. Let p ∈ Zτ (x) be fixed

but arbitrary, then pτx. Since τ is an associated-preserving relation, xτp′ for all

p′ ∼ p. Thus p ∈ A′τ (x), so Zτ (x) ⊆ A′τ (x). For the converse, let x, y ∈ D] be

such that xτy, then y ∈ Zτ (x) = A′τ (x). By definition of A′τ (x), xτy for all y ∼ y′.

Therefore, τ is an associated-preserving relation.

(2) Suppose τ is a divisive relation. The containment D′τ (x) ⊆ Zτ (x) follows

from the definition. Let y ∈ Zτ (x), then yτx. By definition of a divisive relation, xτt

for all t | y. Hence y ∈ D′τ (x). Conversely, suppose D′τ (x) = Zτ (x) for all x ∈ D].

Let x, y ∈ D] be arbitrary such that y ∈ Zτ (x). By hypothesis y ∈ D′τ (x), then
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t ∈ Zτ (x) for all t | y with t ∈ D]. Therefore, by Theorem 3.7 τ is a divisive relation.

(3) Suppose τ is a multiplicative relation. By definition, M ′
τ (x) ⊆ Zτ (x). Let

y ∈ Zτ (x), then yτx. Since τ is a multiplicative relation xτyz for all xτz, then

y ∈ M ′
τ (x). For the converse let x, y, z ∈ D] such that xτy and xτz. Then y ∈

Zτ (x) = M ′
τ (x), z ∈ Zτ (x) and xτyz. Therefore τ is a multiplicative relation.

Note that it would be nice to have a complete characterization of this new def-

inition.

The connections between A′τ (x) (respectively) D′τ (x) and M ′
τ (x)) and the def-

initions of τ to be associated-preserving (respectively divisive and multiplicative)

with respect to x is given in the following theorem.

Theorem 5.2. Let τ be a symmetric relation on an integral domain D] and x ∈ D]

fixed but arbitrary. Then

(1) τ is associated-preserving with respect to x if and only if A′τ (x) = Zτ (x),

(2) τ is divisive with respect to x if and only if D′τ (x) = Zτ (x),

(3) τ is multiplicative with respect to x if and only if M ′
τ (x) = Zτ (x).

Proof. (1) Suppose τ is associated-preserving with respect to x. Let y ∈ Zτ (x),

then xτy. By hypothesis xτy′ for all y′ ∼ y, hence y ∈ A′τ (x) and Zτ (x) ⊆ A′τ (x).

Conversely, suppose A′τ (x) = Zτ (x). Assume yτx, then y ∈ A′τ (x). By definition

xτy′ for all y′ ∼ y, therefore τ is associated-preserving with respect to x.

(2) Suppose τ is divisive with respect to x. Let y ∈ Zτ (x), then xτy and by

hypothesis xτt for all t | y with t ∈ D]. By definition y ∈ D′τ (x) and Zτ (x) ⊆ D′τ (x).

For the converse, assume xτy and t | y with t ∈ D]. By hypothesis y ∈ Zτ (x) =
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D′τ (x), then xτt. Hence τ is divisive with respect to x.

(3) Suppose τ is multiplicative with respect to x. Let y ∈ Zτ (x), then xτy.

Since τ is multiplicative with respect to x, xτyz for all z ∈ Zτ (x). Therefore

Zτ (x) ⊆ M ′
τ (x). For the other direction, let y, z ∈ D] such that xτy and xτz, then

x, y ∈ Zτ (x) = M ′
τ (x). Therefore xτyz and τ is multiplicative with respect to x.

Using the definitions of A′τ (x), D′τ (x) and M ′
τ (x), Aτ (S), Dτ (S) and Mτ (S)

can be expressed, in the following way: Aτ (S) = S ′ ∪ {x ∈ S | A′τ (x) = Zτ (x)},

Dτ (S) = S ′ ∪{x ∈ S | D′τ (x) = Zτ (x)} and Mτ (S) = S ′ ∪{x ∈ S |M ′
τ (x) = Zτ (x)},

where S ′ is the set of elements in S with empty τ -centralizer.

The author invites the reader to work on this sets and establish similar equi-

valent statements for divisive, multiplicative and associated-preserving relations as

the ones given in chapter 3.
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