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Abstract 

During high wind events thin-walled folded plates such as roof claddings suffer extensive 

damage due to fatigue failure at their screwed connections. Currently, damage prediction is 

based on fragility curves and semi-empirical models where there is no direct relation between 

loads and failure parameters. In this research a finite element model and fatigue criteria were 

validated in correlating a wind loading protocol to a specific fatigue failure mechanism. The 3D 

fatigue process was reduced to a one-dimensional problem by using one or two strain and stress 

parameters from the finite element model. These parameters were used on a fatigue stress-based 

and strain-based criteria to establish a fatigue failure mechanism. The fatigue life, and crack 

directions were predicted as a function of loading parameters and specific cladding 

configuration. As a result a roofing assembly can be evaluated and rated to withstand a specific 

wind resistance according to a specific loading protocol. 
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Resumen 

Los techos y cubiertas de placas de pared delgada de lámina metálica sufren daños considerables 

debido a fallas por fatiga en las conexiones atornilladas durante eventos de viento. Actualmente 

la predicción de daño está basada en curvas de fragilidad y modelos semi empíricos en donde no 

existe una relación directa entre carga y parámetros de falla. En esta investigación se validó un 

modelo de elementos finitos y un criterio de fatiga que correlacionan un protocolo de cargas de 

viento a un mecanismo de falla por fatiga. El proceso tridimensional se redujo a un problema 

unidimensional utilizando uno o dos parámetros de esfuerzo y deformación del modelo de 

elementos finitos. Estos parámetros se usaron en un criterio de fatiga basado en esfuerzos y 

deformaciones para establecer un mecanismo de daño por fatiga. La vida de fatiga y las 

direcciones de propagación de las grietas se predijeron en función de los parámetros de carga y la 

configuración especifica estudiada. Como resultado una cubierta de techo puede ser evaluada y 

calificada para resistir una carga de viento en específico de acuerdo a un protocolo de carga.  
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Chapter 1: Introduction 

1.1 Motivation 

The need to understand wind damage induced failure on roof cladding systems 

has come a long way since the advent of new materials and building practices. The recent 

development of more durable high resistance thin walled structural components imposes 

a challenge in the design of structures for high winds. It is necessary that thin walled 

structures are designed to withstand the impact that such events can cause as huge 

economical losses have been reported throughout the industry. Knowledge of how these 

structural components fail during high wind events will provide new insights on how to 

design more efficiently and as a result minimize damage and economical losses as well as 

provide a sense of security.  

There are several reasons that support further investigation on the behavior of 

these thin walled structural components during damaging wind storms. The first aspect is 

the difficulty in determining load fluctuations in time associated with these events. 

Although this research is not centered in determining loading variations in history, the 

nature of the load can significantly contribute to the complexity of the problem. Other 

challenges can arise if non-linear effects are considered on the static model. Once stress 

and strain components are determined from the static model, a new challenge arises in 

establishing successful fatigue criteria. There are further complications if one considers 

the phenomenon of three-dimensional fatigue and the wide margin of error attributable in 

making accurate predictions on the fatigue life. All of these factors introduce significant 

difficulties that establish a need to better understand the process associated with fatigue 

failure of thin walled structural components.  
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Although recent investigations have attempted to correlate static loading on steel 

claddings to wind induced failure, there is still a need to find a successful fatigue criterion 

that takes into account load fluctuations and cladding resistance to fatigue damage, based 

on analysis and understanding of the principles of stress and strain prediction as well as 

fatigue life. Knowledge of fatigue fracture parameters of different kinds of steels is now 

available in order to predict fatigue failure based on previously established criteria. This 

knowledge can be used in conjunction with finite element modeling and analysis of the 

stresses caused by the applied pressures and forces in order to predict capacity and hence 

failure. 

 

1.2 Significance of the Present Study 

Thin-walled roof claddings and structural components suffer the most when 

exposed to high winds due to their low weight to area ratio. The difference in pressure 

caused by wind can impose significant reaction loads on their screwed connections, 

causing high stress concentrations around them. Since industrial structures made out of 

these components are generally of low cost as compared to other building types, they 

often present deficiencies in design, which then imposes an imminent threat during wind 

events that occur mainly on tropical regions. Flying pieces of roof cladding can pose a 

threat to nearby property, as has been the case in numerous storms and hurricanes in the 

past. 

As new insight is gained from the fatigue behavior of these structural components 

due to wind, previously established fatigue criteria can be used to predict and prevent 

failure of these systems. The present research attempts to correlate fatigue criteria to wind 



3 
 

induced fatigue damage of thin walled steel components by linking current knowledge 

about fatigue failure and its application to thin walled steel claddings. 

 

1.3 Scope of the Research 

This investigation is limited to the behavior of thin-walled folded plates under 

fluctuating lateral loads. A specific geometric configuration of trapezoidal steel claddings 

is considered in this thesis, in which stress concentrations are considered in a localized 

zone. Other geometric configurations are not considered as the fatigue process is assumed 

to take place within a small, localized region. The research is only based on 

computational modeling and not on full-scale experimental studies, but results obtained 

have been compared to experimental results obtained by previous investigators in order to 

validate the analytical model. The present modeling employs a shell finite element in 

which elastic as well as plastic deformations are considered. From the finite element 

results, the analysis of multiaxial constitutive parameters aid in reducing the multiaxial 

state of stress and strain from a three dimensional fatigue problem into a one or two 

dimensional problem. Evaluation of fatigue criteria focuses on low-cycle fatigue and on 

criteria were fatigue parameters are already established for different kinds of steels. Out 

of all the possible loading configurations attributable to wind, a specific loading protocol 

is used to establish damage parameters caused by fatigue failure. 
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1.4 Objectives 

The primary goal of this research is to provide a plausible explanation for 

describing the failure mechanism of thin-walled folded plates caused by fatigue damage 

associated to wind fluctuations. In order to achieve this goal, several specific objectives 

are proposed in this research: 

1. To develop a two-scale model to evaluate stress fields in the local area 

of the connections in a folded plate under static lateral pressures. 

2. To identify appropriate existing fatigue models to represent 3-D fatigue 

processes in thin-walled components. 

3. To implement existing loading protocols used in fatigue testing into 

fatigue analysis. 

4. To provide explanations of fatigue mechanisms in folded plates based 

on computer modeling and parametric studies. 
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Chapter 2: Literature Review 

 

2.1 Previous Publications 

 It is common to observe wind induced damage of roof and wall steel cladding 

systems in the tropics and other high wind prone regions. The Canadian Standards 

Association (2004) developed a standard test method for the dynamic wind uplift 

resistance of mechanically attached membrane-roofing systems. The test method employs 

a wind loading protocol based on design wind pressures in accordance with local building 

codes. The dynamic protocol has five rating levels (identified as A to E) to evaluate a 

roof assembly for a specific wind resistance. Each level consists of eight load sequences 

with different pressure ranges representing different wind conditions (Baskaran et al. 

2006). The structure is then rated based on how many levels it is able to withstand before 

failing. Several investigators have implemented this sequence in the full-scale testing of 

cladding systems (Avilés 2006; García 2007; García 2008). Avilés (2006) proposed to 

modify the original Canadian loading protocol by multiplying the total number of cycles 

by five. The new SIDGERS-5 loading protocol would allow any given roofing assembly 

to be rated in terms of the original rating system but being able to withstand five times 

the damage.  

Research has been made in order to predict fatigue failure damage in steel 

cladding systems using empirical methods and fragility curves (Lee and Rosowsky 2004; 

García 2007; García 2008). García (2007) performed a series of tests on wood-zinc 

components in order to obtain the performance of a wood-zinc structure with a specific 

configuration. In his research, he sampled a variety of common configurations throughout 
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Puerto Rico and evaluated each configuration in terms of wind speed performance. He 

then calculated the roof performance index defined as the ratio of resistance to capacity 

based on the damage of individual components. Fragility curves are then obtained by 

plotting the probability of exceeding a given damage state versus wind speed. Based on 

the studies performed by García (2007), a specific structure can be rated to withstand a 

specific level of performance based on how well it is constructed. A contribution of this 

research is evaluating the performance of wood-zinc structures based on wind speed and 

construction practices, and to prove that these kinds of structures are able to withstand 

hurricane force winds if properly constructed. García (2008) based his research on what 

is called Component Based Fragility. In this approach, the individual capacities of each 

connection on a structure are found and compared to individual demands. According to a 

specific wind speed, the percent of capacities that are not able to withstand the demands 

are then found and a structure is then rated based on a specific level of damage. The 

probability of exceeding a given level of damage is then plotted versus wind speed and 

fragility curves are obtained. The main difference from García (2007) is that García 

(2008) studied construction practices used mainly on industrial buildings. In his research 

he performed full-scale tests of structural components, which are most vulnerable on 

these kinds of buildings, namely roof and wall steel claddings. Among empirical 

methods, Avilés (2006) performed similar tests on steel claddings and plotted the load 

versus number of cycles on a logarithmic scale in order to obtain a relationship for the 

fatigue life equation.  

Recent investigations in Australia have adopted analytical approaches using large-

scale experimental models and finite element analysis models of cladding systems. Such 
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investigations were successful in determining a strain criterion and design formula for 

static pull-through failures in crest-fixed steel claddings (Mahaarachchi and Mahendran 

2008, 2009).  

Although there is a wealth of information about wind induced failure of steel 

cladding systems, research is still needed to account for building practices in the US and 

Puerto Rico. Almost all analytical models dealing with steel cladding systems are aimed 

at Australian construction practices. The differences between Australian, European, and 

American construction practices has been highlighted as follows: “European and 

American recommendations for steel claddings cannot be used as compared with 

Australian steel claddings, they are made of thicker, deeper and softer steel cladding 

fastened at valleys while Australian steel claddings are commonly made of thin, high 

strength steel G550 and are crest-fixed” (Mahaarachchi and Mahendran 2009). A new 

approach is needed that considers valley-fixed steel claddings and fatigue loading in 

developing a working analytical model. 

The process of fatigue failure of thin-wall folded plates is governed by several 

factors discussed earlier. Before treating the process of fatigue failure of thin-wall folded 

plates, which is mostly considered based on observations and for which an analytical 

basis is not fairly grounded in the literature, it is first necessary to understand the 

behavior under static load. The static load case is well documented. Observations and 

analytical models have described static failure. The static analysis of an industrial 

building should consider the structural component that is most vulnerable to fatigue 

damage. These components are the thin metal roof claddings (Morgan and Beck 1977). 

Other studies have shown that among these components, stress concentrations around the 
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connections are responsible for low cycle fatigue failure (Beck and Stevens 1979), (Cook 

1990), and Mahendran (1990a, b, 1995). An investigation of the static load case was 

made when “An inspection of steel roofs made of trapezoidal steel sheeting (Reardon and 

Mahendran 1988) has shown that roofing has been split in the transverse direction under 

the screw heads due to the over tightening of screw fasteners either accidentally or by 

poor workmanship.” It is also postulated: “the splitting phenomenon does not depend on 

the fastener location and is essentially a localized effect” (Mahendran and Mahaarachchi 

2004). In previous studies, Mahaarachchi and Mahendran (2000) showed that splitting 

starts when “the longitudinal membrane tensile strain is greater that 60% of the total 

tensile strain at the edge of the fastener holes, and the total tensile strain is equal to the 

measured failure strain from tensile coupon tests of steel.” (Mahendran and 

Mahaarachchi 2004). Later studies (Mahaarachchi and Mahendran 2008) extensively 

evaluated the splitting resistance of steel claddings of different geometrical shapes and 

material properties and postulated a strain criterion based on their previous findings. A 

need for a strain criterion for the pull-through failure of steel claddings was made evident 

when “the finite element analyses could not predict the failure loads as elastic-perfect 

plastic material behavior with infinite ductility is assumed without any allowance for 

splitting since the local pull-through failures in the less ductile steel claddings are 

initiated by transverse splitting at the fastener hole.” (Mahaarachchi and Mahendran 

2008). This study also shows that although “tensile testing of steel coupons showed that it 

has very little strain hardening and failure strain is only about 2%,” type B roofing 

sustained considerable “local plastic deformations without any load increase” and could 

sustain even greater loads after plastic deformation in contrast with type A roofing which 
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sustained no load increase after plastic deformation. (Mahaarachchi and Mahendran 

2008). This shows that element geometry plays a critical role in the static behavior of 

plates. They also evaluated design equations based on their findings.  

With knowledge of the static failure of plates in mind, it is now necessary to 

establish a relationship between static failure and fatigue failure of plates. After 

Hurricane Tracey struck parts of Australia, research was made in order to discover the 

nature of the extensive damage caused by fatigue failure. “Morgan and Beck (1977) 

showed that the thin crest-fixed metal roof claddings suffered a fatigue failure of the 

sheeting in the vicinity of the fasteners under the action of sustained fluctuating wind 

loading.” (Mahendran 1995). A physical description of the low cycle fatigue failure of 

roof claddings and experimental results are given by Mahendran (1990a, b). “Field 

investigations and laboratory tests identified fatigue failure near the roof fasteners as the 

sole reason for the severe roofing damage (Beck and Stevens 1979).” (Xu 1995). Once it 

was determined that fatigue was essentially a localized effect subsequent research was 

aimed on small-scale tests. Mahendran and Mahaarachchi (2002) conducted small-scale 

constant amplitude load tests of steel cladding connections and compared the results to 

the static failure loads. They developed simple equations relating the static failure load to 

constant amplitude loads. They also performed multilevel cyclic test and proposed a 

modification factor to be used on Miner’s law in order to predict fatigue damage for 

variable amplitude loading. Although equations exists that relate static failure loads to 

fatigue damage loads, these equations are only applicable to a limited number of steel 

cladding configurations and materials. In order to be able to predict fatigue damage in all 

possible cases it is necessary to establish a solid theoretical basis that accounts for the 
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fatigue properties of different materials and is based on analytical models of the stresses 

and strains that are responsible for fatigue failure. Research is needed in relating existing 

fatigue criteria to fatigue damage observed on steel claddings.  

Emphasis is now given to different criteria in multiaxial fatigue. Several models 

have been established for describing multiaxial fatigue. There are stress based models, 

strain based models, and energy based models. “Brown and Miller (1982) reviewed much 

of the available multiaxial low-cycle fatigue literature with particular emphasis on the 

formation and early growth of cracks. Unlike octahedral shear stress, which in some 

cases has been shown to be effective when correlating high-cycle fatigue failure, 

octahedral shear strain and maximum shear strain are not effective in describing low-

cycle fatigue. Brown and Miller concluded that two strain parameters are needed to 

describe the fatigue process. They proposed that both the cyclic shear and normal strain 

on the plane of maximum shear must be considered. Brown and Miller also provided a 

comprehensive review of the literature in terms of strain. They considered the nucleation 

and growth of fatigue cracks and suggested the terms Case A and Case B cracks.” (Socie 

and Marquis 2000). They proposed separate criteria for each type of cracking which 

depend on loading configuration. In contrast with static failure of claddings in which 

failure was a function of only one parameter (membrane tensile strain), fatigue failure of 

claddings is a function of two parameters (cyclic shear and normal strain). 

Sufficient information has been gathered regarding the static failure of crest-fixed 

steel claddings and experiments have been made regarding fatigue failure of crest-fixed 

steel claddings but a connection is still missing between static failure parameters and 

fatigue failure observations. A successful fatigue model should be stated in terms of the 
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stress and strain tensor at a given point in the structure as compared to previous models 

which are stated in terms of static failure load at the connection for a given geometric 

configuration and material. Also valley-fixed claddings, which are common in the US 

and Puerto Rico, need to be treated. The scope of this research is to incorporate different 

geometric configurations into a simple model that could be used in the prediction of the 

fatigue life. 
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Chapter 3: Methodology 

 

3.1 Introduction 

There are several methods for the assessment of wind induced fatigue damage on 

structural components. The method to be used in each case depends on the purpose for 

which the data will be used. Methods can be classified as empirical, semi-empirical or 

analytical. Empirical methods, such as full scale testing, can be used to give a direct 

correlation between wind speed and total damage on a structure.  

 

Figure 1 Wind pressure simulation by means of air bags in the experiments by 

García, 2008, pp. 62. 
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One such method is based on full-scale wind pressure simulation, as shown in Figure 1. 

In order to perform the analysis and design of structural components based on existing 

knowledge on the processes that cause the failure of these components, such as fatigue 

damage, analytical and semi-empirical methods can provide a much faster and cheaper 

solution without the need for expensive and time consuming experimentation. 

The method used on this research is based on computational structural analysis 

solved by finite element methods and its application to the prediction of fatigue damage 

based on total life approaches. The use of this method only requires available fatigue data 

used to fit the fatigue models. The results obtained are compared to experimental data on 

the same structural component obtained from García (2008) in order to validate the 

analytical model.  

 

3.2 Overall Methodology  

Some detail is given concerning modeling screwed connections. Among thin 

metal roof cladding configurations, a two-span simply supported configuration is 

considered to be representative because it simulates a uniform wind uplift pressure and 

screw reactions can be estimated (Mahendran and Tang 1998). A type B wide rib 

cladding has been selected in this thesis as laboratory failure is well documented for this 

type of configuration (García 2008). The finite element software Abaqus Standard (2008) 

enables the user to create shell sections using CAD drawing utilities, which permits to 

construct the model from geometric properties. Other aspects, such as creating elastic-

perfectly plastic material definitions and linear and non-linear geometry analysis, are 
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necessary features in order to represent the complex behavior of the structural component 

subject to lateral wind pressures. 

The method for evaluating the fatigue life of the structure proposed can be 

resumed by two main activities. The first set of activities is to model the static 

phenomenon in the structure caused by the proposed wind load. The wind load is first 

modeled by a loading protocol established by the Canadian Standards Association and 

this load is reduced to a static load P, which acts upon the structure. The finite element 

analysis program Abaqus is used to calculate the stress and strain tensors, which are 

needed for the fatigue model. The second set of activities is to model the repetitive 

fatigue effect of this load on the structure. Although the structure is initially assumed to 

behave in a static manner, a dynamic load fluctuation is the cause investigated for fatigue 

damage. Existing multiaxial fatigue criteria are evaluated considering the strain tensor 

obtained from the finite element model and from available fatigue parameters for the 

material considered. Finally the fatigue life obtained from the fatigue criteria is compared 

with existing experimental data. 

 

3.3 Finite Element Mesh and Type of Elements 

Element description 

 In general, elements can be of any shape on which ξ, η, and ζ define local straight 

coordinates, which are used in the formulation of isoparametric elements. The need to 

transform from rectangular elements to an element of a more general shape is necessary 

in the formulation of curved shell elements. Refinement of the mesh is needed in order to 

mesh the zones near connections where stress concentration as well as geometry requires 
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Figure 2 Eight node shell element (S8R) and local coordinate system adopted. 

 

refined and special element shapes such as the triangular STRI65 element. Mindlin shell 

formulation (Cook, Malkus, Plesha, Witt  2002) is used to describe field quantities on 

elements. Shell normal displacements are interpolated as variables that are independent of 

cross-sectional rotation, whereas the curvatures depend on rotation and change in 

rotation. Consequently transverse shear strain is calculated as the mid-surface slope 

minus cross-sectional rotation. Nodal degrees of freedom include three translations and 

three rotations, totaling six degrees of freedom per node in accordance with thick shell 

formulation. For nonlinear geometry analysis and large displacements, the bending and 

membrane stiffness are coupled on the element stiffness matrix. Quadratic interpolation 

of geometry and field quantity is used on eight node elements. The Abaqus element 

library uses Mindlin formulation as standard for eight node elements with six degrees of 

freedom per node. A simpler formulation ignoring transverse shear strain could have 

been used given that element thickness can be regarded as thin. Element shape functions 

and displacements can be defined as in equations 1 and 2 as suggested by Cook, Malkus, 

Plesha, and Witt (2002). 
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Displacements {u} over an element are defined by shape function interpolation as given 

by equation 2. 
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Element geometry can be interpolated in a similar fashion where [μi] is a matrix of 

directional cosines defining element shape, α and β are nodal rotational degrees of 

freedom, and i refers to the node number going from one through eight. It can be shown 

that: 
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after making appropriate coordinate transformations, where [B] is the strain-displacement 

matrix dependent on the derivatives of [N] with respect to global coordinates x, y, and z. 
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According to the Mindlin-shell formulation, matrix [B] is defined as: 
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(eq. 4) 

where l, m, and n are directional cosines contained on [μi], and [H] and [J] are defined in 

the form: 
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The element stiffness matrix [k] is defined as: 

     
  


1

1

1

1

1

1

]det[]][[][  dddJBEBk T       (eq. 6) 

where [E] is the material property matrix defined for plane stress and homogeneous 

material by making the appropriate coordinate transformation for an equivalent state of 

stress and strain on local coordinates ξ, η, and ζ. 
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3.4 Static Model 

In the first part of this research, a finite element model of the proposed structure is 

constructed to identify the stresses and strains caused by the proposed wind pressure. 

 

Geometry definition 

The structure geometry is defined as a 3D shell with thickness varying from 

0.0299in. (0.759mm) to 0.0478in. (1.214mm) as defined in Figure 3b and Appendix A. 

Three basic cases are considered in the proposed geometry: screwed connections in 

valleys, screwed connections in crests and washer reinforced connections in valleys as 

shown in figures 3c and 3d. Because of symmetry considerations, only one fourth of the 

cladding defined in Figure 3b is represented in the finite element model as shown in 

Figure 3a. The blue lines in Figure 3 represent partitions for the load and element 

distribution, and the red lines represent axes of symmetry. Center holes at the right of 

Figure 3a are defined by creating a circular extrusion cut with radius defined as the inner 

radius in Figure 4. Table 1 lists the different configurations modeled. 

 

 

 

 

 

 

 

Figure 3a Geometry model 
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Figure 3b Geometry definition 
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Figure 3c Type B (WR) cladding with screwed connections at valleys 
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Figure 3d Type B (WR) cladding with screwed connections at crests 
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Table 1 Configuration definition 

Model Config.* 

# 

Deck Gauge Screw Locations 

(Figs. 3c-d) 

Load P 

(kip) 

1 3 22 1-2-3-4-5-6 

(valleys) 

2.0 

2 4 22 1-3-4-6 

(valleys) 

1.0 

3 5 22 1-2-3-4-5-6 

(valleys-washer) 

2.0 

4 6 22 1-3-4-6 

(valleys-washer) 

2.0 

5 13 18 1-3-4-6 

(valleys) 

1.5 

6 15 20 1-3-4-6 

(valleys) 

1.5 

7 17 20 1-3-4-6 

(valleys-washer) 

1.5 

8 18 18 1-3-4-6 

(valleys-washer) 

2.5 

9 19 18 1-2-3-4-5 

(crests) 

1.0 

10 20 20 1-3-5 

(crests) 

1.2 

11 21 22 1-3-5 

(crests) 

1.2 

12 24 18 1-3-5 

(crests) 

1.2 

*García (2008) 
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Figure 4a Detail of a center connection from shaded region in Figure 3c 

 

 

Figure 4b Direction of moments and forces acting on the section 
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Material and analysis 

Type BWR decks used in experimental study (García 2008) are roll formed from 

hot-dipped galvanized steel conforming to ASTM specification A653. Results are 

computed for two different material definitions. In the first one, the material is defined as 

elastic-perfectly plastic, with modulus of elasticity E = 29,000ksi (200Gpa), Poissons 

ratio ν = 0.3, and yield stress of 33ksi (228Mpa). In the second one, a third linear strain-

hardening zone is added with hardening modulus of 2Gpa after a strain of 0.02 and 

extending to a failure strain of 0.20 and true fracture stress of 590 Mpa as shown in 

Figure 5. The point at which the strain-hardening region begins is taken to be 15 to 20 

times the maximum elastic strain (Salmon, Johnson, Malhas 2009). Although realistic 

material behavior has a proportional limit lower than the yield strength, the flow stress 

starts at 2% strain, which is in good agreement with the elastic-perfectly plastic 

assumption (ASTM-A653 2009).  

 

Figure 5 Strain hardening material definition 
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In the linear analysis the material is defined as elastic and linear in geometry. 

Non-linearity in geometry is used to account for large displacements and geometric non-

linearity effects in the non-linear analysis.  

 

Loads and boundary conditions 

As an approximation, the total pressure is defined by means of an equivalent 

overall force applied to the complete panel, P, divided by the total area of the valleys 

where the pressure is assumed to act (3.5 x 56.5 x 12 = 2373 in2) (1.531 m2), as shown in 

the shaded region in Figure 3b. It is believed that this force evaluation is consistent with 

previous experimental studies, in which air bag pressure was applied at the valleys 

(García 2008). Screw holes are defined only on the center where the plate screws take 

most of the load, which is where the plate fails. The remaining screw holes are not 

defined on the plate and displacement restrictions on the three axes are defined as 

boundary conditions on a point where the center of the hole would be located. 

Refinement of the geometry of the plate near the holes with less load than the center 

holes is not considered to be necessary because stress and strain variations near the hole 

do not affect the stress fields on the other holes. At the center holes, displacement 

restrictions on the axis of the load are defined on the circumference of the circle defining 

the partition of the part around the hole (outer radius defined in Figure 4). This 

circumference defines the circumference of the screw head, which is responsible for the 

lateral reaction force per unit length in the plate. On washer reinforced connections this 

circumference defines the circumference of the washer which has a radius of 0.75 in. 
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(19.1mm). On the remaining screws, the reaction force is assumed to be a point load. 

Symmetry boundary conditions are defined as red lines in Figure 3. 

 

3.5 Modeling Screwed Connections 

 In the previous section two different models were used on the same screwed 

connection. The type of model depends on the accuracy that is required for the field 

quantity near the connection. In the first less accurate model, the reaction force from the 

screw was simply modeled as a point load. Although point loads are easy to work with 

they are the source of singular fields in a structural response and prevent accurate 

representation of the field quantities. Point loads acting on a plate does not cause 

discontinuities in the displacement field but produce discontinuities in the stress field, 

which is a derivative of the displacement field. For the center connections, where the 

stress and strain fields need to be calculated, more accurate representations of loads and 

geometry are needed.  

A better representation of the screw would involve an additional finite element 

model of the screw including different material properties and interaction between 

materials, such as contact stresses and friction forces. For the present case friction forces 

are neglected taking in consideration that the screws are not completely tight and the 

reaction force is assumed to be carried through the circumference of the screw head or 

washer by imposing displacement restrictions normal to the undeformed perimeter on a 

circle defining the circumference of the screw head or washer. Deformations in the other 

two directions in the plane of the plate are permitted as well as lateral deformation 

normal to the plate under the screw head or washer. In this way membrane action of the 
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plate under the screw head or washer, where stress concentration is caused by the screw 

hole, is modeled as well as bending action caused by the screw head or washer. 

Additional modeling of the screw is not carried out because failure occurs on the steel 

cladding and not on the screw itself. 

 

Finite element mesh 

Quadratic quadrilateral-dominated elements having a random distribution are 

defined in order to make a transition from the circular geometry of the hole to the 

rectangular geometry of the span, as shown in Figure 6.  

 

 

Figure 6a Complete mesh for ¼ of the cladding shown in Figure 3a corresponding to 5  

 

The random distribution is necessary where changes in geometry do not allow a strictly 

defined mesh pattern. A more refined distribution is assigned to a square region of 

88.9mm (3.5in) defined in Figure 4 surrounding the center screwed connections. The 
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general trend of the mesh being more refined closer to the center holes is made to take 

into account the stress concentration near the holes, as suggested by previous studies 

(Mahendran and Mahaarachchi 2004). Refinement of the mesh is carried out by 

increasing the total number of elements on the partition and then on the squared regions 

along the center holes. Five mesh refinements are considered by increasing the total 

number of elements from 1,082; 7,715; 12,827; 20,742 and 30,929 corresponding to 1 , 

2 , 3 , 4 , and 5  respectively. STRI65 and S8R shell elements from the ABAQUS 

element library are used.  

 

 

 

Figure 6b Mesh transition from a typical center screwed connection 
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Convergence and Error 

In order to test for convergence and discretization error, five different meshes are 

used in which an irregular refinement is made by adding more elements. Values of 

displacement and strain are evaluated at three different points within the mesh.  

The approximate element size h is plotted in figures 7 and 8 against the field 

quantity, which can be a displacement or one of its derivatives, such as a strain. Because 

the element distribution is not structured and subsequent mesh refinements do not 

preserve the original nodal positions, monotonic convergence is not guaranteed to occur. 

As the element size h decreases and approaches zero corresponding to an infinitely 

refined mesh, it is expected that the field quantity should approach the exact value. An 

approximate estimate may be calculated by the least squares method as the y-intercept in 

figures 7 and 8 corresponding to an element of size zero. Given the approximation of the 

exact value and the value obtained by a mesh with element size h, an estimate of the 

percentage of error has been calculated in Table 2.  

Points A, B and C are located near the center screw holes on the bottom face, as 

shown in Figure 4. Strains at points A and B were found to have a larger error than at 

point C, given that they are located closer to the hole where the gradient in the field 

quantity is larger. As expected, strains were found to have larger error than 

displacements. The trend of greater error in strains than in displacements is explained by 

the fact that strains depend on a higher derivative of the field quantity than displacements 

and thus converge at a lower rate.  
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Although mesh refinement has been performed, the results of figures 7 and 8 do not 
indicate convergence in a direct way. 
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Figure 7 Displacement convergence 
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Figure 8 Strain convergence 
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Table 2 Error estimate 

Error Estimate,     % %1005









e  

 Displacement Principal Strain 

Point A 0.17 9.8 

Point B 1.31 11.5 

Point C 1.34 1.85 

 
where 5  corresponds to the mesh with h = 0.8149 mm and   to the estimated condition 

approaching h = 0. 

Although singularities at the edge connections at the top of Figure 3b can cause 

greater error on field quantity predictions, there are no singularities at the center 

connections given that more accurate representation of the screws prevents large load 

reactions to appear at element nodes. Boundary conditions imposed on the screw head or 

washer can be the source of high linear reaction loads, which may yield unusually high 

values in derivatives of the field quantity. The error is attributable to the lowest degree 

term omitted in the interpolation function and depends on element size h, the degree of 

the highest complete polynomial in element field quantity p, and rth derivative of the field 

quantity as suggested by Cook, Malkus, Plesha, and Witt (2002) in the form:  

)( 1 rphO   

where O is a measure of the order of error. 

For quadratic elements p = 2, r = 0 for displacements, and r = 1 for strains. Considering 

the element formulation in Section 3.3, in which the field quantity is represented by 

interpolation functions in equation 1, the highest complete polynomial is of order 2 since 
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all the terms of order 2 are present, namely 2, , and 2. The error can then be traced to 

the omission of terms of order 3 in equation 1 given that a complete polynomial of order 

3 cannot be defined. As a result a recursive equation can be defined in terms of the field 

quantity and the order of error. 

nn e   

n

n
nn O

O
e




 1
1 * 

         (eq. 8) 

 

Using an order of error analysis, the order of error in each derivative of the field quantity 

is given for each mesh refinement in tables 3 and 4. The right column in tables 3 and 4 

gives how many times the error is reduced upon each subsequent mesh refinement where 

h is plotted in figures 7 and 8 against the field quantity. 

 

Table 3 Displacement order of error 

Order of Error )( 1 rphO  ; p = 2, r = 0. 

      O 1 = 116.9 

      O 2 = 4.33 

      O 3 = 1.83 

O 4 = 0.935  

O 5 = 0.541 

 
O 1 / O 2 = 27 
 
O 2 / O 3 = 2.37 

 
O 3 / O 4 = 1.95 

 
O 4 / O 5 = 1.73 
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Table 4 Strain order of error 

Order of Error )( 1 rphO  ; p = 2, r = 1. 

      O 1 = 23.9 

      O 2 = 2.66 

      O 3 = 1.49 

O 4 = 0.956  

O 5 = 0.664  

 
O 1 / O 2 = 9 
 
O 2 / O 3 = 1.78 

 
O 3 / O 4 = 1.56 

 
O 4 / O 5 = 1.44 

 

Since h is of degree 3 in displacements and 2 in strains in the order of error formulation, a 

linear relationship between error and element size h is not expected. Given this proof the 

method of error estimation in Table 5 should provide a more accurate error estimate than 

the method used on figures 7 and 8. The error in 1  in Table 5 is calculated by using n = 

1 on equation 8 where 1  and 2  are displacements and strains from figures 7 and 8. 

 

Table 5 Percent error 

Error en, Percent Error %e 

Displacement Point A (mm) Strain Point A (mm/mm) 

1      0.00293, 1.1% 

2      0.000109, 0.04% 

3      0.000046, 0.02% 

1      0.1895, 26.2% 

2      0.0211, 2.9% 

3     0.0118, 1.6% 

4   0.0076, 1.0% 
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By substituting the order of error from tables 3 and 4 and solving for  and e1, en can 

then be taken as 
1

1 *



n

n
n O

O
e




. The largest reduction in error occurs by reducing element 

size from 1  to 2  as shown on figures 7 and 8 and tables 3 and 4. From Table 5 

displacement converges in 1  with a 1% error while strain converges on 4 . As a result 

an element size h = 1mm corresponding to 4  meets convergence requirements. Figure 6 

is an example of 5 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



36 
 

Chapter 4: Results of Static Analysis 

 

4.1 Introduction 

 A basic case has been initially solved in this Chapter. Three different models are 

considered in the finite element analysis to understand the effects of non-linearity in 

material and in geometry. In the first model the material is defined as elastic with no 

plastic zone defined and linear in geometry. In the second model, non-linear elasticity is 

considered. In the third model, plasticity as well as non-linearity in its geometry are 

considered. 

 

4.2 Linear and Elastic Results 

 These results are calculated for configuration #3 defined in Table 1. For the linear 

case, the von Mises stresses and out-of-plane displacements are calculated. Figure 9 

shows out of plane displacements and von Mises stresses on the envelope (maximum 

values) of the top and bottom surfaces measured by the distance from the edge of the 

center hole on the x-axis, as defined in Figure 4. It can be seen that the out of plane 

displacement is zero at 5mm on boundary 1, corresponding to a boundary condition 

imposed on the screw head. Figure 9 also shows the stress concentration near to the hole 

at the peak of the curve. The values are unusually high (values higher than 1500 Mpa at 

5mm from the center hole) even for this dense finite element mesh; they will later be 

shown to be due to the assumption of elastic behavior made in the present model. Figure 

10 shows the same results on an axis parallel to the previous one, with 1.75in (44.5mm) 
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offset (boundary 3). In this figure the slopes are less pronounced given that less 

deformation and hence stresses exist at some distance away from the hole.  
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Figure 9 Linear results at boundary 1 in Figure 4 
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Figure 10 Linear results, boundary 3 in Figure 4 

 
 

Figure 4b shows the direction of the bending moments and forces that are plotted 

in figures 11 and 12. Figure 11 shows membrane stresses acting perpendicular to the 
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boundaries of Figure 4, where x = 0 represents the edge of the hole. Membrane stresses 

on boundaries one and three in Figure 11 are very similar except at a short distance from 

the hole, although boundary 1 is closer to the hole given that the reaction force of the 

screw is transmitted by bending and not by membrane stresses in a geometrically linear 

analysis not accounting for large defections. On the other hand, the stresses on boundary 

2 are much lower because most of the bending action is taken in the longitudinal 

direction, as in the beam model where transverse deformation is zero. At the location of 

boundary 3 the membrane stress field is almost uniform, indicating that it is not affected 

by the connection. This value is well below the yield stress.  

Figure 12 shows the bending moments on the axes of the boundaries. Figure 13 

shows the shear stresses on the plane of the plate. The results may be interpreted as 

follows: the membrane stresses are larger on boundaries along the x-axis given that 

bending of the cladding in the longitudinal direction causes it to behave as a beam with 

tension and compression acting at the outermost fibers. The results of Figure 12 indicate 

that the moment along the boundary 1 grows fast as the distance from the hole is 

decreased because in a linear-elastic model not accounting for large displacements all of 

the load is transferred by bending action. Figure 13 shows zero shear on boundary 1 

because of symmetry. The resultant force acting along the outer radius of a center 

connection in configuration #3 is 814-N acting perpendicular to the plate. This force 

represents the reaction force of the screw and displacements and forces in figures 11 to 

13 are proportional to this force given a linear-elastic model. These results show large 

displacements and stresses well beyond the linear range.  
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Figure 11 Linear results, membrane stress for load P 
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Figure 12 Linear results, moment for load P 
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Figure 13 Linear results, shear stress for load P 
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According to thin plate theory, geometric linearity is fully justified provided 

displacements are smaller than the plate thickness. The material yield strength is 33ksi 

(228 Mpa) and the von Mises stresses are ten times larger, as shown in figures 9 and 10.  

Because the results provide values that are in excess of linear theory, it is now 

justified to explore nonlinear behavior including geometric as well as material non-

linearity. 

 

4.3 Geometrically Non-linear and Elastic Analysis 

 In this section, the von Mises stresses are calculated on boundaries 1 and 3 as in 

figures 9 and 10 but now for the geometrically non-linear case as shown in figures 14 and 

15. Geometric non-linearity is a kinematic non-linear dependence of strains on 

displacements; this causes that the structure stiffness matrix becomes dependent on 

displacements. For plates with large displacements, membrane action may dominate over 

bending and is a consequence of the dependence of the stiffness matrix on the geometry 

of the structure.  

In order to solve a problem where the stiffness matrix is not known in advance, it 

is necessary to perform a series of linear increments, in which the initial stiffness matrix 

for the case of zero displacement is modified. At each increment, an initial estimate of the 

displacement is used to calculate the new stiffness matrix and then a new displacement 

can be calculated based on the increment size, which is the change in load required in 

order to reach equilibrium. In the execution of the ABAQUS model, the increment size is 

set to “automatic,” so that an algorithm determines an appropriate increment size based 

on the computed results.  
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Figure 14 Geometrically non-linear and elastic results at boundary 1 in Figure 4 
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Figure 15 Geometrically non-linear and elastic results at boundary 3 in Figure 4 
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The procedure is continued until equilibrium is reached and the calculated displacement 

is a small fraction of the original displacement. The solution technique used by ABAQUS 

is the full Newton’s method, in which the stiffness matrix used at each increment is 

modified by the current displacement estimate and an equivalent or tangent stiffness in 

the load versus displacement curve is used to calculate the new estimate. By comparing 

both analyses it is seen that displacements and stresses on the geometrically non-linear 

analysis are less than half of those computed in the linear analysis. This can be explained 

by the fact that membrane action provides additional stiffness not considered on the 

geometrically linear analysis. Because stresses are still well over the yield strength a non-

linear analysis is justified. 

 

4.4 Geometrically Non-linear and Elastic-Plastic Analysis 

 In this third analysis, two types of non-linearity are included simultaneously: 

namely material and geometric non-linearity. Material plasticity introduces additional 

complexity to the problem. When the yield strength is exceeded in an elastic-plastic 

material, the loading history plays an important part on the final state of the structure. For 

the present case the load is assumed to be statically applied and time independent.  

In order to perform an elastic-plastic analysis, three aspects must be taken in 

consideration: the yield criterion, the flow rule, and the hardening rule. Normally the 

yield criterion determines when the material starts yielding and it is stated in terms of the 

von Mises or effective stress. Once this point is reached, the flow rule relates the state of 

stress to the state of strain in the material. For an elastic perfectly plastic material there is 

no hardening and increments in stress beyond the yield point are not possible. In order to 
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determine the response of the structure, an incremental analysis is used in which the 

elastic modulus depends on the state of stress and elastic and plastic strains are treated 

independently.  

 

4.5 Geometrically Nonlinear Results Including Ideal Plasticity 

The finite element analysis of configuration #3 concluded with 23 increments, in 

which the occurrence of nonlinear behavior is evident as expected. Stress concentration 

occurred in the vicinity of the center holes with significant plasticity. Figures 16 and 17 

show displacement and von Mises stresses computed at the same place as in the previous 

linear results but now for the nonlinear and elastic-plastic assumption. The displacements 

in Figure 16 are nearly half the displacements plotted in Figure 9 and many times more 

than the shell thickness, indicating that a nonlinear analysis is necessary in order to 

predict a more representative behavior of the structure. As compared to Figure 14, 

displacements in Figure 16 are a bit higher considering ideal plasticity. On the other 

hand, the values of von Mises stresses demonstrate that plasticity spreads in a zone 

extending about 15 mm from the hole on the x-axis and 65 mm on the y-axis as defined in 

Figure 4 and Figure 18 using orange color. The von Mises stresses in this case are 

computed as the envelope (maximum stresses) of the top and bottom surfaces in figures 

16 and 17 and at the bottom surface in Figure 16.  

Using the static strain criterion formulated by Mahaarachchi and Mahendran 

(2008), which states that failure occurs when the membrane tensile strain is 60% of the 

maximum surface tensile strength and the maximum surface tensile strain is the failure 

strain in a tensile coupon test, in conjunction with the finite element model, it is 
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concluded that static failure has not occurred. The maximum tensile strain is the failure 

strain or elongation as given on the ASTM standard, which is 0.20, and the membrane 

tensile strain reached its peak at the edge of the hole as will be explained in the next 

section. 
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Figure 16 Non-linear results at boundary 1 
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Figure 17 Non-linear results along boundary 3, computed as the envelope of the top and 

bottom surfaces 
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Figure 18 Plastic zone for load P = 5.81 kPa evaluated at the bottom surface 

 

 

Figure 19 Plastic zone for load 0.25P at the bottom surface 
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4.6 Typical Center Connection 

In a typical screwed connection, the direction of the major principal strain results 

are shown in Figure 20, where x is the distance from the edge of the hole in the x-axis 

defined in Figure 4. The major principal strain corresponds to the radial strain in the x-

axis in every point, except for a small region around the circumference of the screw head, 

where the tangential strain corresponds to the major principal strain as can be seen in 

Figure 20 at a distance of about 5 mm from the hole. As a result, the maximum shear 

strain acts at 45 degrees from the principal direction in this configuration. The octahedral 

shear strain is defined in terms of the components of the strain tensor as: 

 

 
       222222
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3

12
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xzyzxyzxzyyxeq 


 


  

 

The equivalent or octahedral shear strain is expressed in terms of the normal and shear 

strain components of the strain tensor at a point on the structure as shown in Figure 21. 

The peak of the radial strain curve corresponds to a very steep slope or change of 

the radial strain in the top and bottom surfaces, which is equivalent to a change in radial 

moment. Consequently this change in moment can be expressed as a shear stress, 

according to plate theory, corresponding to the screw head reaction force acting at the 

position of the peak of the curve. The direction of the mayor principal strain corresponds 

to the x-axis in Figure 4 and its magnitude with the bottom surface where the wind 

pressure is applied. From this information the mechanism by which the steel cladding 

resists the reaction force of the screw is determined.  
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Figure 20a Strain concentration (major principal) at center connection, boundary 1 
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Figure 20b Strain concentration (components) at center connection, boundary 1 
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If the diameter of the screw head were to be increased, as by adding a washer, it 

would be equivalent to shifting the radial strain curve in Figure 20b to the right as 

discussed in Figure 20a where the peak of the curve is caused by the vertical reaction 

shear force of the screw head or washer. In other words, the washer has the effect of 

expanding the circumference where the vertical reaction force acts, thus lowering the 

vertical shear stress as it is distributed over a larger perimeter. Because shear can be 

expressed in terms of change in bending moment, the change in moment is also lowered. 

This would translate in a less pronounced peak on the radial strain curve. 
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Figure 21 Octahedral shear strain at center connection, boundary 1 

 

4.7 Discussion of Results 

In the previous section on modeling of screwed connections, a model of the 

connection was defined where bending as well as membrane stresses were taken into 

account and appropriate boundary conditions defined. Now we can see the role that 
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bending and membrane components play in resisting the reaction force from the screw 

and the effect of the screw hole on strains and stresses. Radial strains in the top and 

bottom surfaces, which are a measure of curvature, increase rapidly as they get closer to 

the circumference of the screw. Curvature in the radial direction (boundary 1) indicates 

that bending is responsible for high radial strains near the screw head. Strains on the mid-

surface are above the yield strain under the screw head and are amplified by a factor of 

three by stress concentration around the screw hole. Comparing the linear analysis results 

with the nonlinear results may highlight the effect that the membrane stresses have. The 

nonlinear results show that displacements are almost half of the displacements in the 

linear analysis when considering non-linearity in geometry given that membrane action 

provides additional stiffness not considered in a linear analysis. 
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Chapter 5: Results of Fatigue Analysis 

 

5.1 Fatigue Analysis Methodology 

 In order to predict fatigue life using total life approaches, several aspects need to 

be taken into consideration. First, it is necessary to determine if a stress-based or strain-

based approach is appropriate. In order to use either approach, multiaxial stress effects, 

mean stresses, and variable amplitude loading have to be taken into account.  
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Figure 22 Completely reversed loading cycle (R = -1)  

 

In general a loading cycle is composed of elastic and plastic deformation 

components as shown in Figure 22. For the present case it is assumed that loading is not 

completely reversed since the load P is defined to act always in the same direction and 

instead the stress ratio R = 0 is used for tension loading in the bottom of the plate. From 

the finite element model the maximum stresses and strains occur on the bottom surface 
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because of stress concentration at the edge of the hole on the center connections as 

defined in Appendix B. When loading is removed the stresses return to zero and 

permanent plastic deformation remains, as shown in Figure 23. The fatigue process 

depends on several variables depending on the fatigue model to be used. These are 

maximum normal stress and strain amplitude, octahedral shear stress amplitude and mean 

stresses. It is noted that fatigue damage is independent of mean strains and hence, total 

plastic deformation. Since loading and unloading does not cause further plastic 

deformation on any given loading sublevel we are left with the elastic part of the cyclic 

hysteretic loop depicted by the dark colored line on the right of Figure 23. It is noted that 

some metals exhibit cyclic hardening while others exhibit cyclic softening when 

subjected to repetitive loading as shown on the light colored lines in Figure 23. The 

curved line to the right represents cyclic softening behavior characterized by having a 

yield strength lower than the nominal value and plastic deformation taking place as 

cycling continues. In comparison, the light colored line to the left represents cyclic 

hardening in which higher loads eventually increase the yield strength but without cyclic 

plasticity taking place on the same load level. This will have an effect on the monotonic 

behavior as compared to the cyclic stress-strain response for a given material. 



57 
 

 

Strain

S
tr

es
s

 

Figure 23 Plastic deformation and hysteretic loop for tension loading (R = 0) on one 

sublevel of the Sidgers protocol defined in Figure 24 

 

If cyclic softening is considered one would expect to have a small increase on total 

plastic strain consisting of the sum of each individual plastic strain component taking 

place at each cycle until a stable behavior is achieved at a considerable portion of the 

fatigue life or by structural constraint along stress gradients or redundant equilibrium of 

forces on the structure. These plastic strain components are considered to be a small 

portion of the total strain amplitude and may be neglected on the fatigue damage 

predicted by equation 9. On the other hand if cyclic hardening is considered, the elastic 

strain amplitude may increase by a small amount at some fraction of the fatigue life until 
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reaching a stable behavior without having cyclic plastic strain. For metals with an 

ultimate strength to yield strength ratio between 1.2 and 1.4, which is the case here, a 

metal is said to be generally stable but may harden or soften (Mitchell 1992). A stable 

behavior in which there is no cyclic hardening or softening is considered for the present 

case based on the ultimate to yield strength ratio. 

In the strain-life curve also called the Coffin-Manson relationship, the strain 

amplitude a  is assumed as the sum of elastic and plastic components in the form: 

    cff
b

f
f

a NN
E

2'2
'




        (eq. 9) 

where b is the slope of the elastic part and c is the slope of the plastic part of the strain-

life curve on a logarithmic plot (Coffin 1971). If we eliminate the plastic component on 

the right side and multiply both sides by E, we are left with the classical stress-life 

equation as: 

  bffa N2'         (eq. 10) 

where a is the alternating stress and f' is the true fracture stress. In order to take into 

account mean stress effects, Morrow (1965) proposed to modify the number of cycles to 

failure as follows: 
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Substituting for fN in equation 9 gives: 
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where m  is the mean alternating stress. Upon eliminating the plastic component, we are 

left with the stress-life relationship that includes the mean stress effect. 

   bMmfa N2'         (eq. 13) 

Here the stress amplitude and mean stress are calculated from the major principal stress. 

Goodman (1899) proposed the following relation for addressing mean stresses: 

 1
u

m

am

a







        (eq. 14) 

where am  is the equivalent stress amplitude for completely reverse loading that 

addresses the mean stress effect and the stress amplitude and mean stress are calculated 

from the Von Mises stress. Using the classical stress-life equation in terms of am  and a 

modified number of cycles to failure GN : 

 bGfam N2'         (eq. 15) 

Substituting for am  from equation 14: 
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       (eq. 16) 

The Morrow equation is similar to that due to Goodman, except for using the true fracture 

stress instead of the ultimate strength.  

Another approach to the mean stress effect is due to the Smith, Watson, and 

Topper parameter (1970), which was developed for materials that fail predominantly on 

maximum tensile stress or strain planes. According to SWT the life for any situation of 

mean stresses depends on the product of maximum stress times strain amplitude on the 

principal plane and the resulting equation is: 
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where max  is the major principal stress and SWTN  is the corresponding number of cycles 

to failure. Upon eliminating the plastic component of strain the SWT equation results in: 
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Fatigue data collected for different materials shows that the fatigue process may 

be divided into three regions: nucleation, shear, and tension. The extent of each region in 

the fatigue life depends on the material and type of loading. As a result the choice of the 

fatigue model will also depend on these factors. Evidence shows that at a high number of 

cycles fatigue is dominated by tension and at low numbers by shear (Hua and Socie 1985; 

Socie et al. 1989; Bannantine and Socie 1985). Also at high lives or number of cycles, 

fatigue is dominated by elastic deformation as compared to plastic deformation at low 

lives as predicted by equation 9. Upon this premise it can be concluded that tension 

damage is dominated by elastic deformation and shear damage by plastic deformation. 

This fact is also seen in brittle materials, which fail in tension with no plastic 

deformation, as opposed to more ductile materials, which fail predominantly in shear and 

exhibit large plastic deformation.  

In our case, where there is a mean stress, there is an exception from the above 

discussion, which applies for completely reversed cycles with zero mean stress. In this 

case, considering only tension loading, fatigue will be dominated by elastic deformation 
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at low lives. This is a direct consequence of the mean stress effect given that mean 

stresses increase the fatigue damage caused by elastic deformation at low lives. As a 

result damage will be accumulated in the low cycle range and failure will occur before 

reaching the high cycle range. Tension models such as SWT should work better in 

predicting the fatigue life. Other critical plane models, such as Brown and Miller, and 

Fatemi and Socie, which were developed predominantly for shear damage require tension 

and torsion fatigue test data, which is not readily available. 

Finally the Palmgren-Miner rule is used in order to take into account variable 

amplitude loading. 

  
i if

i

N

n
1

)(
        (eq. 20) 

where n is the number of cycles at the stress level i at which Nf  cycles would cause 

failure. Palmgren-Miner’s linear damage rule has some limitations because the order in 

which distinct amplitude cycles are applied is found to have an effect on fatigue damage. 

Mahendran and Mahaarachchi (2002) suggested that Miner’s rule should be modified in 

order to take into account experimental evidence from multilevel cyclic tests performed 

on claddings. The modified Miner’s rule is as follows: 

 
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i F
N

n

K )(

1
       (eq. 21) 

where K is a modification factor equal to 0.7 and F equals the fatigue damage being zero 

for no damage and 1 for 100% damage, meaning that the fatigue life or number of cycles 

to failure has been reached. Although a better model can be constructed in which damage 

can be divided depending on the nature of loading, such as shear or tension, the total life 

is computed with just one model because in this case we are not dealing with combined 
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loading. In order to get the equivalent stress and strain amplitude, the load sequence 

shown in Figure 24 is used on the finite element model and the number of cycles in each 

sublevel is multiplied by 5. For any level greater than E, the same sequence as on level E 

is used but the maximum load is increased by 0.25 on each subsequent level (e.g. level F 

has the same number of cycles and the same sequence as level E but with a load P = 

2.25). For each load increment the cyclic stress-strain diagram has a specific path in 

which the order of load increments as well as loading history are necessary to determine 

the fatigue damage, as depicted in Figure 25. 

 

 

Figure 24 Load sequence used in Sidgers protocol (Baskaran et al. 2006) 
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Figure 25 Cyclic stress-strain diagram 

As the load increases in the first loading sequence, the equivalent strain passes the 

yield point until it reaches a plastic strain corresponding to a load of 0.25 P. When the 

load is removed in the first cycle the unloading path follows the second line until zero 

stress and permanent deformation remains. The loading and unloading cycle of the first 

load increment will remain on the second line as depicted in Figure 25 and considering a 

stable behavior as discussed in Figure 23. In the next load increment the process is 

repeated by shifting another half cycle to the right until the maximum increment 

corresponding to load P is reached on sublevel A4 of Figure 24. When the load is 

decreased on sublevel A5 from P to 0.25 P and then increased to 0.5 P the loading and 

unloading path remains as on sublevel A4, except that it will cover a smaller portion of 

stress and strain corresponding to 25 percent of the total trajectory. This is due to the 

strain hardening effect that the higher load had on the material and the stress and strain 

will be proportional to the load at any given unloading and reloading path for which the 

load does not exceeds the previously applied maximum load. The proportionality of the 

     0.25  0.5                0.75        P     1.25    
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stress and strain in the unloading and reloading paths can be proven since on any specific 

path the maximum strain range will not exceed the elastic strain range for the elastic-

plastic material definition on any given point in the structure. Because elastic strains are 

very small in comparison with plastic strains, the structure will not undergo large 

deformations beyond the previous permanent deformation in the elastic strain range. The 

element stiffness matrix will remain unchanged within any specific elastic strain range, 

and thus the proportionality assumption will remain valid. The remaining load increments 

on level A will remain on the same path but covering a greater portion depending on the 

amount the load is increased. For example consider load sublevel A6. Because the 

maximum load on sublevel A6 is 0.75P which is less than P from load sublevel A4, the 

loading and unloading path will remain as on sublevel A4 but the maximum stress will be 

75% of the maximum stress on load sublevel A4 and the minimum stress would be 25% 

as proportional to the load. Sublevels B2 and B3 will also remain on the same path as no 

further plastic deformation is taking place. Upon reaching sublevel B4 corresponding to 

1.25 P the loading path is continued until the total strain reaches the next cyclic step. The 

cyclic stress-strain diagram can be resumed by plastic and elastic strain components, 

where plastic strains correspond to horizontal lines and elastic strains to vertical lines in 

Figure 25. Because cyclic loading is not completely reversed and instead only tension 

loading acts at the bottom of the plate, where stress concentration occurs, only elastic 

strain plays an important role on fatigue. The other half cycles corresponding to 

transitions between load increments, where plastic deformation occurs, are ignored for 

determining the fatigue life, first because plastic fatigue parameters are unknown, and 
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second because the fatigue damage done on these half cycles is not believed to be 

significant.  

There are several methods for approximating fatigue parameters from monotonic 

tensile tests. The method of universal slopes (Manson 1965) is chosen in this thesis since 

it will be proven to yield good results later. From the method of universal slopes the 

fatigue strength coefficient and fatigue strength exponent are approximated from 

monotonic tensile tests parameters by the following equations. 

 uf  9018.1'   

 12.0b     

Another method, which only requires the ultimate strength, is the Uniform 

Material Law (Bäumel and Seeger 1990). From this method the fatigue parameters can be 

approximated by the following equations. 

 uf  5.1'   

 087.0b     

 

5.2 Fatigue Analysis Results 

 Using the total life approach, the strain-life method yields the same result as the 

stress-life method because of the load cycle occurring in the elastic regime. Results are 

compared for three different approaches of mean stress analysis and for two material 

definitions. Appendix C lists accumulated fatigue damage at each sublevel of the loading 

sequence for the elastic perfectly plastic material assumption and Appendix D is the same 

but with the strain hardening material assumption.  These three approaches considered, 
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namely Morrow, Goodman, and SWT, are based on the stress life equation 10, which 

accounts for the elastic strain range term of the strain-life equation. 

Twelve cladding configurations were studied and compared with results obtained 

by García (2008). In these configurations thickness, location and type of screwed 

connections, and load P were varied as described in Section 3.4. From these, four are 

valley fixed, four are crest fixed and four are washer reinforced valley fixed connections. 

Appendix C and D list the fatigue damage calculated at each loading sublevel for the 

elastic-plastic and strain hardening material definitions respectively. From the finite 

element and fatigue models all configurations that yielded in the first loading sublevel 

yielded the same results for the von Mises stresses and the elastic-plastic material 

definition in contrast with the strain hardening material definition given that after first 

yield the calculated von Mises stress is equal to the yield stress for every configuration in 

the elastic-plastic material definition. For this reason the fatigue damage calculated with 

the Goodman approach, which is used with the von Mises stress, is expected to yield the 

same fatigue damage for every configuration on a given sublevel that yielded in the first 

loading sublevel. 

For the comparison of fatigue models the reader is referred to Figure 26. The 

number of cycles to failure in this figure are MN for Morrow, GN for Goodman, and 

SWTN  for the Smith, Watson and Topper methods. The figure uses a mean stress of 113.8 

Mpa, which is half of the yield strength, and the universal slopes method. The horizontal 

line crosses the curves at an alternating stress equal to the mean stress of 113.8 Mpa for 

tension loading. At this alternating stress SWT falls between Goodman and Morrow. The 

Goodman approach is the most conservative taking into account that Goodman gives 
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good results for brittle materials and is more conservative for ductile materials. This 

should be the case given that the fatigue damage is being caused by elastic deformation 

and a brittle failure is expected.  

 

 

                                 (eq. 13) 
                                        (eq. 16) 

                                 (eq. 19) 

 

 

 

 

 

 

 

 

 

 

Number of Cycles to Failure 

Figure 26 Comparison of Fatigue Models for the universal slopes method 

 

 

5.3 Discussion of Results and Parametric Studies 

 Equation 10 is the basic stress-life equation that is used to calculate the fatigue 

life. In order to use this equation, the two parameters f'  and b, which are not provided 

in the ASTM standard, need to be calculated. The first one is the true fracture strength or 

fatigue strength coefficient and the second one is the slope of the log-log plot of the 
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elastic component of the equation or the fatigue strength exponent. These two parameters 

are approximated by the universal slopes method and the uniform material law and 

correlated to monotonic tensile test parameters. These parameters are usually used to fit 

the strain-life equation to the fatigue tests data. 

 Figure 27 shows the fatigue damage for the 12 configurations defined in Table 1 

calculated and plotted at the middle of the loading sublevel in which failure was observed 

in experiments performed by García (2008). Figure 28 shows the same results but with 

the strain hardening material definition instead. From these two figures it is concluded 

that the elastic-plastic material definition provides a better correlation for all three of the 

fatigue models than the strain hardening material definition since Figure 27 shows less 

scattering around the expected value of F = 1. 
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Figure 27 Comparison of fatigue models for the elastic-plastic material definition 
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Figure 28 Comparison of fatigue models for the strain hardening material definition 

 

 Figure 29 is an expansion of Figure 27 and Table 6 lists the average and standard 

deviation of the fatigue life computed for each model. From the last row of Table 6 it is 

concluded that SWT provides the best correlation with a value of dispersion of nearly 

half of the other two fatigue models since SWT uses two parameters from the stress-

strain tensor instead of one. 

 Figure 30 shows the SWT approach on Figure 29 for the different types of 

connections. From Figure 30 it is concluded that the fatigue damage calculated is 

independent of the type of connection, number of screws and configuration meaning that 

the SWT – elastic-plastic model works well with all 12 configurations predicting an 
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average fatigue damage of 0.875. This value suggests that the fatigue model should be 

modified in order to fit the experimental data for which the expected fatigue damage is 1. 
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Figure 29 Comparison of fatigue models for the elastic-plastic material definition 

 

Table 6 Fatigue damage average and standard deviation for the 12 configurations 

 Goodman Morrow SWT 

 1.269 0.623 0.875 

s 0.1296 0.0671 0.0392 

s/ 0.1021 0.1078 0.0448 

 
where  is the sample mean, s is the sample standard deviation and s/ is a measure of 

dispersion of the fatigue life F. 
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Figure 30 Comparison of connection types and fatigue damage 

 

5.4 Development of a Suitable Parameter Estimation Method 

 In the previous section a fatigue model and material definition was found that 

correlated with the experimental data. The fatigue parameters used in the previous section 

were calculated using the universal slopes method proposed by Manson (1965). This 

method was developed mainly for completely reversed loading (R = -1), for a wide range 

in the number of cycles, and for the classic strain-life equation 9. In this section a new 

parameter estimation method is proposed for tension loading (R = 0),  low cycle fatigue, 

and to be used with the SWT equation 19.  

In the previous section the dispersion was defined as the ratio of sample standard 

deviation to the mean in the calculated fatigue life for the 12 configurations. This ratio is 
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used in order to compare the dispersion of different models relative to the mean. In order 

to adjust the SWT – elastic-plastic model to more precisely fit the experimental data, the 

fatigue strength exponent b is changed using an iterative approach in order to minimize 

the dispersion. This parameter has to do with the shape of the curve in Figure 26. Once 

the dispersion is minimized, the true fracture stress f'  is changed using an iterative 

approach so that the mean of the calculated fatigue life of the 12 configurations reaches 

the expected value of 1. Changing the true fracture stress has the effect of stretching the 

curve in Figure 26 since it is a coefficient on equation 19 without affecting dispersion. 

Using this approach the fatigue parameters f'  and b were found. 

 uf  87.1'   

 12.0b   

 

Since the dispersion did not decreased by a significant amount by changing the fatigue 

strength exponent b then it is concluded that the value suggested by the universal slopes 

method of –0.12 is suitable to be used with the SWT fatigue model. 

Figure 31 and Table 7 show the same results as Figure 30 and Table 6 but with 

the values of the fatigue parameters used to fit the experimental data proposed in this new 

method. Results are listed in Appendix E. 

The fatigue damage calculated at the middle of the sublevel of the observed 

failure for the 12 configurations and for the proposed method varies between 0.948 and 

1.089 damage with a mean of 1 and sample standard deviation of 0.0448. This is the 

difference in fatigue damage between the experimental result and the computed result. By 

using the normal distribution and the mean and sample standard deviation of the 
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calculated fatigue damage, the range in fatigue damage for a 90% probability of failure is 

 0.074. For the proposed model to predict failure with a 90% confidence the calculated 

fatigue damage should fall between 0.926 and 1.074 or if an upper limit is not used 0.943 

or higher. 
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Figure 31 Comparison of connection types and fatigue damage for the proposed method 

 

Table 7 Fatigue life average and standard deviation for the proposed method 

 SWT 

 1 

S 0.0448 

s/ 0.0448 
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5.5 Fatigue failure 

Figure 32 shows failures of two screwed connections in valleys due to fatigue. 

The left image shows the failure with a screw head diameter of 15.2 mm (0.6 in.) whereas 

the right image shows the same connection but reinforced with a washer with diameter of 

38.1mm (1.5 in.). The failure in the right is dominated by vertical and horizontal cracks 

extending from the screw hole and the failure in the left is composed of smaller diagonal 

cracks. Once a crack forms, it will grow in mode I as predicted by previous studies (Socie 

and Marquis 2000). Under mode I loading a crack grows perpendicular to the major 

principal strain direction. The major principal strain, which corresponds to the tangential 

strain in Section 4.6, is always tangent to the screw hole. The difference between the two 

cases in Figure 32 is at the angle where the tangential strain is maximum. The finite 

element model shows that this angle is not the same for all 12 configurations meaning 

that the angle of crack propagation is dependent on the number of screwed connections, 

the thickness of the cladding, and the type of connection as shown in Figure B.1 in 

Appendix B.  

 

 

 

 

 

 

 

Figure 32 Failure of Screwed connections by García, 2008, pp. 65. 
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Another finding is that loading sublevels that go after higher amplitude levels 

cause less damage because elastic deformation is less after permanent plastic deformation 

requiring a larger load in order to reach the yield strength than before. This can be seen in 

Appendix C, where most of the damage is on the first four loading sublevels. By 

comparing the fatigue damage between screwed connections in valleys and the same 

connections reinforced with washers on the same loading sublevel it is found that adding 

a washer increases the fatigue life of the connection by an average of 18%. This can be 

seen by comparing the fatigue damage of configuration 5 with 3, 17 with 15, and 18 with 

13 on the same loading sublevel in Appendix C. 

 

5.6 Proposed Method for the Fatigue Life Prediction of Steel Thin-Walled Folded 

Plates Using an Analytical and Computational Approach 

 

 In this section a straightforward method of fatigue life prediction is proposed 

based on parametric studies done for 12 different cladding configurations. A step by step 

procedure is stated in terms of finite element modeling considerations and fatigue theory 

developed throughout this research. 

 

A. Construct a finite element model of the structure. 

 

1. Use symmetric boundary conditions when appropriate in order to reduce 

computational time as shown in Figure 3. 

2. Define the material as elastic perfectly plastic. 
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3. Identify critical connections carrying a higher load (center connections in this 

case). 

4. Model critical connections by defining the radius of the screw hole and the radius 

of the largest of the screw head or washer (if reinforced with washer) as defined 

in Figure 4. 

5. Impose displacement restrictions in the direction of the load at the perimeter of 

the screw head or washer. The other two directions are not restricted in order to 

model stress concentration around the hole. 

6. Define the load (pressure) acting normal to a single plane perpendicular to an axis 

passing through the center of the screws. The load magnitude has to be defined 

for each sublevel of the loading protocol for which the maximum load exceeds the 

previously applied maximum load starting from the first loading sublevel. As an 

example consider loading level A in Figure 24. In this case only loading sublevels 

A1, A2, A3 and A4 have to be defined since A5, A6, A7 and A8 do not exceed 

the load in sublevel A4. The next sublevel would be B4 since it exceeds the load 

in A4. A separate analysis will have to be run for each load magnitude considered. 

7. Choose an appropriate element type and size and construct a coarse mesh in a 

region surrounding the critical connections and less dense in the rest of the 

structure in order to reduce computational time. A quadratic shell element is 

recomended. 

8. Use a nonlinear geometric analysis in order to account for large displacements. 

9. Run a separate analysis for each load described in step 6 and determine the 

location of the highest maximum principal stress around the hole at the critical 
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connections. Normally this location is at the bottom surface where tension exists 

near the hole and the same location should be used for each load magnitude. If the 

location changes by changing the load magnitude then a location is chosen so that 

the calculated fatigue damage in step 14 is maximum. Ignore high stresses at the 

perimeter of the screw head or washer since in reality the reaction load is 

transmitted as a pressure and not as a line load and failure is documented to occur 

at the edge of the hole as explained in Section 5.4. Record the values of the 

maximum principal stress and maximum principal strain at this location. Reading 

the values at the element integration point is recommended. 

 

B. Calculate the fatigue damage. 

 

10.  Determine the fatigue parameters f'  and b as a function of the ultimate tensile 

strength from the equations proposed in this research. 

      uf  87.1'   

       12.0b   

11.  Determine the strain amplitude a  for each loading sublevel.  


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a P
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
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where max  is the maximum principal strain recorded in step 9, maxP  is the 

previously applied maximum load starting from the first loading sublevel being 

zero at the first sublevel as explained in step 6, maxsubP  is the maximum sublevel 

load, and minP  is the minimum sublevel load. It is noted that after first yield the 

strain amplitude is independent of the maximum principal strain and only depends 

on the loading sequence. 

12.  Determine the maximum stress max  for each loading sublevel. 

 pmaxmax                 ; maxmax PPsub   

 
max

max
maxmax P

Psub
prev  ; maxmax PPsub   

where pmax  is the maximum principal stress recorded in step 9 and prevmax  is 

the maximum previously applied maximum stress starting from the first loading 

sublevel. 

13.  Calculate the number of cycles to failure for each loading sublevel by solving for 

SWTN  in equation 19. 

  
    b

SWT
f

a N
E

2
2

max 2
'

        

where a  and max  were found for each loading sublevel in steps 11 and 12 

respectively and f'  and b were found in step 10. 

14.  Calculate the fatigue damage F by using equation 21. 

 
i if

i F
N

n

K )(

1
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where n is the number of cycles at loading sublevel i, K = 0.7 and Nf = SWTN  for 

each loading sublevel. This summation is continued for each loading level until 

the fatigue damage F exceeds 1 indicating that failure has occurred. Cracks will 

start at the location determined in step nine and will propagate in mode I 

(perpendicular to the maximum principal strain direction on the sublevel where F 

=1), which in most cases is perpendicular to the screw hole. 

15.  Go to step 9 and check that the location chosen, which is the same for every 

loading sublevel, gives the highest fatigue damage F. The process may have to be 

repeated for several locations. 
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Chapter 6: Conclusions 

 

6.1 Summary of Contributions  

In this research the stresses and strains that are responsible for steel cladding failures 

at the connections have been investigated using finite element analysis. The variable 

amplitude load associated with wind fluctuations has been reported in Figure 24. 

Previous studies by García (2008) approached this problem based on full-scale testing 

under alternating loads. A recent loading protocol established by the Canadian Standards 

Association has been implemented for rating a specific structure according to the level of 

wind damage it can withstand.  

Structural analysis was used to evaluate stresses under an assumed representation of 

the loads in the testing procedure. Different fatigue criteria were compared and one was 

validated in predicting the fatigue damage associated with wind fluctuations.  

 

6.2. Main Conclusions Derived from this Research 

From the results obtained in this thesis, several conclusions can be stated about the 

specific findings: 

 The low-cycle fatigue damage of steel cladding configurations is found to be 

caused by elastic deformation and not by plastic deformation according to the 

Sidgers protocol as shown in Section 5.1. Because for roof claddings pressure is 

only applied on the outside where the wind suction forces act, the load always 

acts in the same direction and only tension loading exists (R = 0).  
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 The order in which high amplitude and low amplitude cycles are applied is found 

to have an effect on the final fatigue damage predicted after initial yielding 

occurs. The results supporting this conclusion were presented in Section 5.5 of the 

thesis. If during the low amplitude cycles initial yielding is reached, then applying 

the low amplitude cycles first and the high amplitude cycles later will result in a 

higher fatigue damage than if the high amplitude cycles are applied first. 

 A fatigue parameter estimation method is developed which correlates the fatigue 

parameters with the monotonic tensile properties of the material. This method is 

developed for low cycle fatigue, tension loading (R = 0), and to be used with the 

Smith, Watson, and Topper fatigue model as shown in Section 5.4. 

 A method for the fatigue life prediction of steel thin-walled folded plates is 

developed using an analytical and computational approach. This method, which 

only requires the monotonic tensile properties of the material, can be used to 

predict a fatigue failure mechanism for different types of connections, thickness, 

and configurations as shown in Section 5.6. 

 

6.3. Original Contributions of this Thesis 

The approach of using analytical methods provides a new insight on the factors that 

are responsible for fatigue damage and is applicable to a larger selection of 

configurations and materials that would result too expensive and time consuming to be 

done by experimental methods. One of the contributions made in this research is to be 

able to predict the fatigue life of steel claddings under fluctuating wind loads by directly 

applying fatigue theory using total life approaches. This minimizes the need to perform 
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full-scale and small-scale testing. In order to perform this analysis a new methodology 

was developed, specifically the application of distinct fatigue and parameter estimation 

models. 

 

6.4. Recommendations for Further Research 

One of the limitations associated with fatigue analytical models is that one model 

is not applicable to all materials and kinds of loading since the methods presented here 

were developed specifically for low cycle fatigue and tension loading (R = 0). Future 

work should be aimed at exploring other materials and stress ratios ( R ). An improved 

finite element model of the connections can be investigated for a wider range of screws, 

washers and types of connections. Another important field of investigation associated 

with this research is the quantification of wind loading fluctuations associated with 

tropical storms and hurricanes, which are the main cause of steel cladding failure in 

Puerto Rico and the US. Other variables associated with uncertainties in the prediction of 

fatigue life such as manufacturing process and microstructure can be investigated. 
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Appendix 

 
A. Specifications for Steel Cladding Geometry and Configuration 

 

Table A.1 Type B wide rib (WR) (Matcor, 2007) cladding specifications 

Deck 
Gauge 

Design 
Thickness 

(in.) 

Fy 
 

(ksi) 

Weight 
Galv. 
(psf) 

Ie 
min. 
(in4) 

Sp 
Positive 
Bending 

(in3) 

Sn 
Negative 
Bending 

(in3) 

22 0.0299 33 1.47 0.1400 0.1853 0.1918 

20 0.0359 33 2.04 0.1833 0.2287 0.2390 

18 0.0478 33 2.70 0.2600 0.3083 0.3160 
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B. Finite Element Analysis Output Data for the Strain Hardening and Elastic-

Plastic Material Definitions (Abaqus 2008) 

Values read at element integration point at bottom surface 

 

Figure B.1 Abaqus output points on center holes (Figs. 3c-d) 

 

 

  Table B.1 Config. #3 strain hardening 

  
Location: Point A1 in Figure B.1 at column #5 in Figure 3c 
  

  Load (Mpa) S, Mises (Mpa) S, Max (Mpa) E, Max 

A1 
A2 
A3 
A4 
B4 
C4 
D4 

0.001453 
0.002905 
0.004358 
0.005810 
0.007263 
0.008715 
0.010168 

227.5 
227.5 
227.5 
231.9 
247.5 
264.9 
282.6 

 

259.4 
258.8 
257.0 
256.2 
257.1 
273.3 
291.8 

0.004049 
0.010550 
0.016600 
0.022080 
0.028160 
0.035280 
0.042580 
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  Table B.2 Config. #3 elastic-plastic 

  
Location: Point A1 in Figure B.1 at column #5 in Figure 3c 
  

  Load (Mpa) S, Mises (Mpa) S, Max (Mpa) E, Max 

A1 
A2 
A3 
A4 
B4 
C4 
D4 

0.001453 
0.002905 
0.004358 
0.005810 
0.007263 
0.008715 
0.010168 

227.5 
227.5 
227.5 
227.5 
227.5 
227.5 
227.5 

 

259.4 
258.8 
258.8 
258.8 
258.8 
258.8 
258.8 

0.004049 
0.010550 
0.016600 

 

 

  Table B.3 Config. #4 strain hardening 

  
Location: Point C1 in Figure B1 at column #6 in Figure 3c 
  

  Load (Mpa) S, Mises (Mpa) S, Max (Mpa) E, Max 

A1 
A2 
A3 
A4 
B4 
C4 
D4 
E4 

 

0.000726
0.001453
0.002179
0.002905
0.003631
0.004358
0.005084
0.005810

 

227.5
227.5
227.5
227.5
238.5
258.6
274.8
289.2

 

254.6
252.5
252.5
252.3
255.1
271.0
283.2
296.8

 

0.002796 
0.005641 
0.009122 
0.016290 
0.024430 
0.032660 
0.039240 
0.045020 

 

   

  Table B.4 Config. #4 elastic-plastic 

  
Location: Point A1 in Figure B1 at column #6 in Figure 3c 
  

  Load (Mpa) S, Mises (Mpa) S, Max (Mpa) E, Max 

A1 
A2 
A3 
A4 
B4 
C4 
D4 
E4 

 

0.000726
0.001453
0.002179
0.002905
0.003631
0.004358
0.005084
0.005810

 

227.5
227.5
227.5
227.5
227.5
227.5
227.5
227.5

 

258.9
257.6
254.5
255.4
255.4
255.4
255.4
255.4

 

0.003924 
0.008394 
0.010350 
0.011600 
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  Table B.5 Config. #5 strain hardening 

  
Location: Point A1 in Figure B1 at column #5 in Figure 3c 
  

  Load (Mpa) S, Mises (Mpa) S, Max (Mpa) E, Max 

A1 
A2 
A3 
A4 
B4 
C4 
D4 
E4 
F4 
G4 
H4 

 

0.001453 
0.002906 
0.004359 
0.005812 
0.007266 
0.008719 
0.010172 
0.011625 
0.013078 
0.014531 
0.015984 

 

227.6
227.6
227.6
227.6
227.6
227.6
227.6
250.3
275.8
296.0
315.3

 

240.6
242.4
244.1
245.8
247.5
249.3
249.5
261.3
280.1
303.4
327.0

 

0.001408
0.002347
0.003285
0.004224
0.005162
0.006101
0.019230
0.029250
0.039710
0.047980
0.055900

 

 

  Table B.6 Config. #5 elastic-plastic 

  
Location: Point B1 in Figure B1 at column #6 in Figure 3c 
  

  Load (Mpa) S, Mises (Mpa) S, Max (Mpa)  

A1 
A2 
A3 
A4 
B4 
C4 
D4 
E4 
F4 
G4 
H4 

 

0.001453 
0.002906 
0.004359 
0.005812 
0.007266 
0.008719 
0.010172 
0.011625 
0.013078 
0.014531 
0.015984 

 

227.6
227.6
227.6
227.6
227.6
227.6
227.6
227.6
227.6
227.6

 

199.5
262.7
267.7
262.6
262.6
262.6
262.6
262.6
262.6
262.6
262.6
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  Table B.7 Config. #6 strain hardening 

Location: Point A1 in Figure B1 at column #4 in Figure 3c 
 

  Load (Mpa) S, Mises (Mpa) S, Max (Mpa) E, Max 

A1 
A2 
A3 
A4 
B4 
C4 
D4 
E4 
F4 

 

0.001089 
0.002179 
0.003268 
0.004358 
0.005447 
0.006537 
0.007626 
0.008716 
0.009805 

 

227.5
227.5
227.5
227.5
250.4
276.5
296.6
319.0
341.6

 

254.0
252.8
251.6
250.4
258.8
283.5
309.7
332.9
355.6

 

0.001834
0.006096
0.010358
0.014620
0.029330
0.040030
0.048210
0.057410
0.066740

 

 

  Table B.8 Config. #6 elastic-plastic 

Location: Point B1 in Figure B1 at column #4 in Figure 3c 
 

  Load (Mpa) S, Mises (Mpa) S, Max (Mpa) E, Max 

A1 
A2 
A3 
A4 
B4 
C4 
D4 
E4 
F4 

 

0.001089 
0.002179 
0.003268 
0.004358 
0.005447 
0.006537 
0.007626 
0.008716 
0.009805 

 

227.5
227.5
227.5
227.5
227.5
227.5
227.5
227.5
227.5

 

262.1
261.4
260.8
260.2
260.2
260.2
260.2
260.2
260.2

 

0.001834
0.006096
0.010358
0.014620
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  Table B.9 Config. #13 strain hardening 

  
Location: Point B1 in Figure B.1 at column #4 in Figure 3c 
  

  Load (Mpa) S, Mises (Mpa) S, Max (Mpa) E, Max 

A1 
A2 
A3 
A4 
B4 
C4 
D4 
E4 

 

0.001089 
0.002179 
0.003268 
0.004358 
0.005447 
0.006537 
0.007626 
0.008715 

 
 

227.5
227.5
227.5
231.6
241.4
250.3
260.2
270.5

 
 

260.8
261.2
260.6
260.0
259.1
265.8
276.0
291.3

 
 

0.002283
0.007413
0.015480
0.021920
0.026810
0.031250
0.036170
0.041310

 

   

  Table B.10 Config. #13 elastic-plastic 

  
Location: Point B1 in Figure B.1 at column #4 in Figure 3c 
  

  Load (Mpa) S, Mises (Mpa) S, Max (Mpa) E, Max 

A1 
A2 
A3 
A4 
B4 
C4 
D4 
E4 

 

0.001089 
0.002179 
0.003268 
0.004358 
0.005447 
0.006537 
0.007626 
0.008715 

 
 

227.5
227.5
227.5
227.5
227.5
227.5
227.5
227.5

 
 

260.8
261.2
260.6
260.0
259.1
259.1
259.1
259.1

 
 

0.002283
0.007413
0.015480
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  Table B.11 Config. #15 strain hardening 

  
Location: Point C1 in Figure B.1 at column #6 in Figure 3c 
  

  Load (Mpa) S, Mises (Mpa) S, Max (Mpa) E, Max 

A1 
A2 
A3 
A4 
B4 
C4 

 

0.001089 
0.002179 
0.003268 
0.004358 
0.005447 
0.006537 

 
 

227.5
227.5
227.5
235.0
255.7
273.7

 
 

258.2
257.4
256.6
255.8
268.6
285.0

 
 

0.003757
0.007514
0.011271
0.023640
0.033980
0.042970

 

 

  Table B.12 Config. #15 elastic-plastic 

  
Location: Point B1 in Figure B.1 at column #4 in Figure 3c 
  

  Load (Mpa) S, Mises (Mpa) S, Max (Mpa) E, Max 

A1 
A2 
A3 
A4 
B4 
C4 

 

0.001089 
0.002179 
0.003268 
0.004358 
0.005447 
0.006537 

 
 

227.5
227.5
227.5
227.5
227.5
227.5

 
 

262.6
262.6
262.6
262.6
262.6
262.6

 
 

0.003267
0.018200
0.033133
0.048066
0.062999
0.018200
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  Table B.13 Config. #17 strain hardening 

  
Location: Point B1 in Figure B.1 at column #4 in Figure 3c 
  

  Load (Mpa) S, Mises (Mpa) S, Max (Mpa) E, Max 

A1 
A2 
A3 
A4 
B4 
C4 
D4 
E4 
F4 
G4 
H4 
I4 

 

0.001089 
0.002179 
0.003268 
0.004358 
0.005447 
0.006537 
0.007626 
0.008716 
0.009805 
0.010894 
0.011984 
0.013073 

 

227.5
227.5
227.5
227.5
227.5
227.5
227.5
241.8
259.4
274.5
287.9
300.6

 

247.4
248.0
248.7
249.3
249.9
250.5
251.1
252.9
264.1
280.6
298.1
313.0

 

0.001428
0.003973
0.006519
0.009064
0.011609
0.014155
0.016700
0.025800
0.033010
0.039160
0.044660

0.04989
 

 

  Table B.14 Config. #17 elastic-plastic 

  
Location: Point B1 in Figure B.1 at column #4 in Figure 3c 
  

  Load (Mpa) S, Mises (Mpa) S, Max (Mpa) E, Max 

A1 
A2 
A3 
A4 
B4 
C4 
D4 
E4 
F4 
G4 
H4 
I4 

 

0.001089 
0.002179 
0.003268 
0.004358 
0.005447 
0.006537 
0.007626 
0.008716 
0.009805 
0.010894 
0.011984 
0.013073 

 

227.5
227.5
227.5
227.5
227.5
227.5
227.5
227.5
227.5
227.5
227.5
227.5

 

247.4
248.0
248.7
249.3
249.9
250.5
251.1
251.1
251.1
251.1
251.1
251.1

 

0.001428
0.003973
0.006519
0.009064
0.011609
0.014155
0.016700
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  Table B.15 Config. #18 strain hardening 

  
Location: Point B1 in Figure B.1 at column #4 in Figure 3c 
  

  Load (Mpa) S, Mises (Mpa) S, Max (Mpa) E, Max 

A1 
A2 
A3 
A4 
B4 
C4 
D4 
E4 
F4 
G4 

 

0.001816 
0.003631 
0.005447 
0.007263 
0.009079 
0.010894 
0.012710 
0.014526 
0.016342 
0.018157 

 

227.5
227.5
227.5
227.5
227.5
227.5
241.0
261.2
279.5
295.6

 

252.6
252.6
252.5
252.5
252.4
253.0
252.0
263.7
286.0
306.2

 

0.001540
0.003680
0.005820
0.007960
0.010100
0.015850
0.025480
0.033720
0.041240
0.047840

 

 

  Table B.16 Config. #18 elastic-plastic 

  
Location: Point B1 in Figure B.1 at column #4 in Figure 3c 
  

  Load (Mpa) S, Mises (Mpa) S, Max (Mpa) E, Max 

A1 
A2 
A3 
A4 
B4 
C4 
D4 
E4 
F4 
G4 

 

0.001816 
0.003631 
0.005447 
0.007263 
0.009079 
0.010894 
0.012710 
0.014526 
0.016342 
0.018157 

 

227.5
227.5
227.5
227.5
227.5
227.5
241.0
261.2
279.5
295.6

 

252.6
252.6
252.5
252.5
252.4
252.4
252.4
252.4
252.4
252.4

 

0.001540
0.003680
0.005820
0.007960
0.010100
0.015850
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  Table B.17 Config. #19 strain hardening 

  
Location: Point B1 in Figure B.1 at column #5 in Figure 3d 
  

  Load (Mpa) S, Mises (Mpa) S, Max (Mpa) E, Max 

A1 
A2 
A3 
A4 
B4 
C4 
D4 
E4 
F4 
G4 
H4 
I4 
J4 
K4 

 

0.000726 
0.001453 
0.002179 
0.002905 
0.003631 
0.004358 
0.005084 
0.005810 
0.006537 
0.007263 
0.007989 
0.008716 
0.009442 
0.010168 

 

218.9
227.5
227.5
227.5
227.5
234.3
250.9
267.5
284.0
300.6
307.6
314.5
321.5
328.3

226.9
259.3
259.0
259.2
259.3
257.4
270.1
282.8
295.5
308.1
316.1
324.1
332.1
340.1

0.001110
0.002451
0.004311
0.008580
0.014070
0.022710
0.029500
0.036290
0.043080
0.049860
0.052710
0.055550
0.058390
0.061240

 

  Table B.18 Config. #19 elastic-plastic 

  
Location: Point B1 in Figure B.1 at column #5 in Figure 3d 
  

  Load (Mpa) S, Mises (Mpa) S, Max (Mpa) E, Max 

A1 
A2 
A3 
A4 
B4 
C4 
D4 
E4 
F4 
G4 
H4 
I4 
J4 
K4 

 

0.000726 
0.001453 
0.002179 
0.002905 
0.003631 
0.004358 
0.005084 
0.005810 
0.006537 
0.007263 
0.007989 
0.008716 
0.009442 
0.010168 

 

218.9
227.5
227.5
227.5
227.5
227.5
227.5
227.5
227.5
227.5
227.5
227.5
227.5
227.5

226.9
259.3
259.0
259.2
259.3
257.2
255.0
252.9
250.7
250.1
249.5
248.9
248.3
247.7

0.001110
0.002451
0.004311
0.008580
0.014070
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  Table B19 Config. #20 strain hardening 

  
Location: Point B1 in Figure B.1 at column #3 in Figure 3d 
  

  Load (Mpa) S, Mises (Mpa) S, Max (Mpa) E, Max 

A1 
A2 
A3 
A4 
B4 
C4 

 

0.000872 
0.001743 
0.002615 
0.003486 
0.004358 
0.005229 

 

227.5
227.5
227.5
234.9
243.8
245.8

 

257.8
259.8
257.8
257.0
258.6
261.2

 

0.001847
0.006436
0.014860
0.023600
0.028050
0.029060

 

  

  Table B20 Config. #20 elastic-plastic 

  
Location: Point B1 in Figure B.1 at column #3 in Figure 3d 
  

  Load (Mpa) S, Mises (Mpa) S, Max (Mpa) E, Max 

A1 
A2 
A3 
A4 
B4 
C4 

 

0.000872 
0.001743 
0.002615 
0.003486 
0.004358 
0.005229 

 

227.5
227.5
227.5
227.5
227.5
227.5

 

257.8
259.8
257.8
257.0
257.0
257.0

 

0.001847
0.006436
0.014860

 

 

 

  Table B.21 Config. #21 strain hardening 

  
Location: Point D1 in Figure B.1 at column #5 in Figure 3d 
  

  Load (Mpa) S, Mises (Mpa) S, Max (Mpa) E, Max 

A1 
A2 
A3 
A4 
B4 
C4 

 

0.000872 
0.001743 
0.002615 
0.003486 
0.004358 
0.005229 

 
 

227.5
227.5
227.5
230.0
236.1
235.9

 
 

262.7
262.7
262.7
262.9
269.3
269.2

 
 

0.002666
0.007885
0.013300
0.019090
0.021410
0.021340
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  Table B.22 Config. #21 elastic-plastic 

  
Location: Point D1 in Figure B.1 at column #5 in Figure 3d 
  

  Load (Mpa) S, Mises (Mpa) S, Max (Mpa) E, Max 

A1 
A2 
A3 
A4 
B4 
C4 

 

0.000872 
0.001743 
0.002615 
0.003486 
0.004358 
0.005229 

 
 

227.5
227.5
227.5
227.5
227.5
227.5

 
 

262.7
262.7
262.7
262.7
262.7
262.7

 
 

0.002666
0.007885
0.013300
0.019090

 

 
 
 
  Table B.23 Config. #24 strain hardening 

  
Location: Point B1 in Figure B.1 at column #5 in Figure 3d 
  

  Load (Mpa) S, Mises (Mpa) S, Max (Mpa) E, Max 

A1 
A2 
A3 
A4 
B4 
C4 
D4 
E4 
F4 
G4 

 

0.000872 
0.001743 
0.002615 
0.003486 
0.004358 
0.005229 
0.006101 
0.006972 
0.007844 
0.008716 

 

227.5
227.5
227.5
227.5
245.7
278.0
300.7
317.1
332.3
346.7

 

235.9
258.3
257.8
257.9
259.2
288.6
307.5
326.7
343.5
358.9

 

0.001230
0.003021
0.006977
0.014200
0.027390
0.040640
0.049930
0.056610
0.062910
0.068810
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  Table B.24 Config. #24 elastic-plastic 

  
Location: Point B1 in Figure B.1 at column #5 in Figure 3d 
  

  Load (Mpa) S, Mises (Mpa) S, Max (Mpa) E, Max 

A1 
A2 
A3 
A4 
B4 
C4 
D4 
E4 
F4 
G4 

 

0.000872 
0.001743 
0.002615 
0.003486 
0.004358 
0.005229 
0.006101 
0.006972 
0.007844 
0.008716 

 

227.5
227.5
227.5
227.5
227.5
227.5
227.5
227.5
227.5

 

209.4
262.6
262.4
262.3
262.2
262.2
262.2
262.1
262.1
262.1

 

0.001230
0.003021
0.006977
0.013940
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C. Fatigue Damage Results, Elastic-Plastic 

Table C.1 Config. #3 

 
max       m     max         n           MN      SWTN        GN           MF          SWTF      GF  

 

x 10-3 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

B2 

B3 

B4 

B6 

B7 

B8 

C2 

C3 

C4 

C6 

C7 

C8 

D2 

D3 

D4 

1.138 129.7 259.4 2000 19182 14576 10065 0.149 0.196 0.284

1.138 129.4 258.8 3500 19652 14715 10065 0.403 0.536 0.781

1.138 129.4 258.8 1000 19652 14715 10065 0.476 0.633 0.923

1.138 129.4 258.8 250 19652 14715 10065 0.494 0.657 0.958

0.285 97.1 129.4 2000 3599611629 85235994 # 0.494 0.657 0.958

0.569 129.4 194.1 2000 6338445 876229 3246250 0.495 0.660 0.959

0.854 161.8 258.8 125 117751 48789 30063 0.496 0.664 0.965

0.569 194.1 258.8 125 1795078 264265 188072 0.496 0.665 0.966

0.717 80.9 161.8 2500 2274833 715038 2599950 0.498 0.670 0.967

1.070 121.3 242.6 750 38902 24917 23176 0.525 0.713 1.013

1.138 129.4 258.8 250 19652 14715 10065 0.544 0.737 1.049

0.569 129.4 194.1 1750 6338445 876229 3246250 0.544 0.740 1.050

0.854 161.8 258.8 125 117751 48789 30063 0.546 0.744 1.056

0.569 194.1 258.8 125 1795078 264265 188072 0.546 0.744 1.057

0.683 77.6 155.3 1250 3369887 1038694 4031757 0.546 0.746 1.057

1.029 116.5 232.9 750 59566 34756 38710 0.564 0.777 1.085

1.138 129.4 258.8 250 19652 14715 10065 0.582 0.801 1.120

0.569 129.4 194.1 1500 6338445 876229 3246250 0.583 0.804 1.121

0.854 161.8 258.8 125 117751 48789 30063 0.584 0.807 1.127

0.569 194.1 258.8 125 1795078 264265 188072 0.584 0.808 1.128

0.668 75.5 151.0 1250 4415806 1283022 5444514 0.585 0.809 1.128

0.994 113.2 226.5 500 79725 45130 54824 0.594 0.825 1.141

1.138 129.4 258.8 250 19652 14715 10065 0.612 0.849 1.177
 

    D4 - first failure observed (García 2008) 

 

Tables C.1 through C.12 were calculated using the procedure in Section 5.6 where Column one is 

the strain range as defined in Section 5.6, columns two and three are the mean and maximum 

stresses as defined in Section 5.6, Column four is the number of cycles on each loading sublevel, 

columns five, six, and seven are calculated from equations 13, 16 and 19, and columns eight, nine 

and ten are calculated from equation 21. 
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Table C.2 Config. #4 

 
max       m     max         n           MN      SWTN        GN           MF          SWTF      GF  

 

x 10-3 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

B2 

B3 

B4 

B6 

B7 

B8 

C2 

C3 

C4 

C6 

C7 

C8 

D2 

D3 

D4 

D6 

D7 

D8 

E2 

E3 

E4 

E7 

E8 

1.138 129.5 258.9 2000 19571 14691 10066 0.146 0.194 0.284

1.138 128.8 257.6 3500 20651 15002 10066 0.388 0.528 0.781

1.138 127.3 254.5 1000 23491 15779 10066 0.449 0.618 0.923

1.138 127.3 254.5 250 23491 15779 10066 0.464 0.641 0.958

0.285 95.4 127.3 2000 4253180041 91399058 # 0.464 0.641 0.958

0.569 127.3 190.9 2000 7576637 939586 3246626 0.465 0.644 0.959

0.854 159.1 254.5 125 142642 52317 30067 0.466 0.647 0.965

0.569 190.9 254.5 125 2208448 283373 188103 0.466 0.648 0.966

0.717 79.5 159.1 2500 2673792 766739 2600197 0.467 0.653 0.967

1.070 119.3 238.6 750 46360 26719 23178 0.490 0.693 1.013

1.138 127.3 254.5 250 23491 15779 10066 0.505 0.715 1.049

0.569 127.3 190.9 1750 7576637 939586 3246626 0.506 0.718 1.050

0.854 159.1 254.5 125 142642 52317 30067 0.507 0.722 1.056

0.569 190.9 254.5 125 2208448 283373 188103 0.507 0.722 1.056

0.683 76.4 152.7 1250 3956894 1113798 4032136 0.508 0.724 1.057

1.029 114.5 229.1 750 70859 37270 38715 0.523 0.753 1.085

1.138 127.3 254.5 250 23491 15779 10066 0.538 0.775 1.120

0.569 127.3 190.9 1500 7576637 939586 3246626 0.538 0.777 1.121

0.854 159.1 254.5 125 142642 52317 30067 0.539 0.781 1.127

0.569 190.9 254.5 125 2208448 283373 188103 0.540 0.781 1.128

0.668 74.2 148.4 1250 5181542 1375792 5445022 0.540 0.783 1.128

0.994 111.3 222.7 500 94730 48393 54830 0.547 0.798 1.141

1.138 127.3 254.5 250 23491 15779 10066 0.563 0.820 1.176

0.569 127.3 190.9 250 7576637 939586 3246626 0.563 0.821 1.177

0.854 159.1 254.5 125 142642 52317 30067 0.564 0.824 1.183

0.569 190.9 254.5 125 2208448 283373 188103 0.564 0.825 1.183

0.650 72.7 145.4 1000 6304752 1672917 6770673 0.564 0.825 1.184

0.975 109.1 218.1 500 117078 57023 70572 0.570 0.838 1.194

1.138 127.3 254.5 250 23491 15779 10066 0.586 0.861 1.229

0.854 159.1 254.5 125 142642 52317 30067 0.587 0.864 1.235

0.569 190.9 254.5 125 2208448 283373 188103 0.587 0.865 1.236
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Cont. Table C.2 

 
max     m     max         n              MN     SWTN         GN        MF         SWTF      GF  

x 10-3 

F2 

*F3 
 

0.643 61.6 123.2 1000 29872449 3494340 37401242 0.587 0.865 1.236

0.962 92.2 184.3 500 635401 122076 508814 0.588 0.871 1.238
 

   * first failure observed (García 2008) 
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Table C.3 Config. #5 

 
max       m     max         n           MN      SWTN        GN           MF          SWTF      GF  

 

x 10-3 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

B2 

B3 

B4 

B6 

B7 

B8 

C2 

C3 

C4 

C6 

C7 

C8 

D2 

D3 

D4 

D6 

D7 

D8 

E2 

E3 

E4 

E7 

E8 

1.138 99.8 199.5 2000 289104 43518 10066 0.010 0.066 0.284

1.138 131.4 262.7 3500 16746 13826 10066 0.308 0.427 0.781

1.138 131.4 262.7 1000 16746 13826 10066 0.394 0.531 0.923

1.138 131.3 262.6 250 16814 13847 10066 0.415 0.556 0.958

0.285 98.5 131.3 2000 3111884196 80213258 # 0.415 0.556 0.958

0.569 131.3 197.0 2000 5423343 824595 3246626 0.416 0.560 0.959

0.854 164.1 262.6 125 99559 45914 30067 0.417 0.564 0.965

0.569 197.0 262.6 125 1496849 248693 188103 0.417 0.565 0.966

0.717 82.1 164.1 2500 1975803 672903 2600197 0.419 0.570 0.967

1.070 123.1 246.2 750 33376 23449 23178 0.451 0.616 1.013

1.138 131.3 262.6 250 16814 13847 10066 0.473 0.641 1.049

0.569 131.3 197.0 1750 5423343 824595 3246626 0.473 0.644 1.050

0.854 164.1 262.6 125 99559 45914 30067 0.475 0.648 1.056

0.569 197.0 262.6 125 1496849 248693 188103 0.475 0.649 1.056

0.683 78.8 157.6 1250 2929538 977487 4032136 0.476 0.651 1.057

1.029 118.2 236.3 750 51186 32708 38715 0.497 0.684 1.085

1.138 131.3 262.6 250 16814 13847 10066 0.518 0.709 1.120

0.569 131.3 197.0 1500 5423343 824595 3246626 0.518 0.712 1.121

0.854 164.1 262.6 125 99559 45914 30067 0.520 0.716 1.127

0.569 197.0 262.6 125 1496849 248693 188103 0.520 0.717 1.128

0.668 76.6 153.2 1250 3841063 1207416 5445022 0.521 0.718 1.128

0.994 114.9 229.8 500 68580 42471 54830 0.531 0.735 1.141

1.138 131.3 262.6 250 16814 13847 10066 0.552 0.761 1.176

0.569 131.3 197.0 250 5423343 824595 3246626 0.552 0.761 1.177

0.854 164.1 262.6 125 99559 45914 30067 0.554 0.765 1.183

0.569 197.0 262.6 125 1496849 248693 188103 0.554 0.766 1.183

0.650 75.0 150.0 1000 4677868 1468178 6770673 0.554 0.767 1.184

0.975 112.5 225.1 500 84891 50044 70572 0.563 0.781 1.194

1.138 131.3 262.6 250 16814 13847 10066 0.584 0.807 1.229

0.854 164.1 262.6 125 99559 45914 30067 0.586 0.811 1.235

0.569 197.0 262.6 125 1496849 248693 188103 0.586 0.811 1.236
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Cont. Table C.3 

 
max     m     max         n              MN     SWTN         GN        MF         SWTF      GF  

x 10-3 

F2 

F3 

F4 

F7 

F8 

G2 

G3 

G4 

G7 

G8 

H2 

H3 

H4 

H7 

H8 
 

0.643 63.6 127.2 1000 22305887 3066688 37401242 0.586 0.812 1.236

0.962 95.1 190.2 500 465873 107136 508814 0.588 0.818 1.238

1.138 131.3 262.6 250 16814 13847 10066 0.609 0.844 1.273

0.854 164.1 262.6 125 99559 45914 30067 0.611 0.848 1.279

0.569 197.0 262.6 125 1496849 248693 188103 0.611 0.849 1.280

0.632 52.8 105.7 1000 123637216 7119365 # 0.611 0.849 1.280

0.951 79.5 158.9 500 2698186 237343 3679806 0.611 0.852 1.280

1.138 131.3 262.6 250 16814 13847 10066 0.632 0.878 1.316

0.854 163.8 262.1 125 101773 46280 30067 0.634 0.882 1.322

0.569 196.6 262.1 125 1532948 250675 188103 0.634 0.882 1.323

0.628 43.9 87.7 1000 669166868 15877453 # 0.634 0.883 1.323

0.938 65.5 130.9 500 16962434 563482 27776585 0.634 0.884 1.323

1.138 131.3 262.6 250 16814 13847 10066 0.655 0.910 1.358

0.854 163.8 262.1 125 101773 46280 30067 0.657 0.913 1.364

0.569 196.6 262.1 125 1532948 250675 188103 0.657 0.914 1.365
 

   H - first failure observed (García 2008) 
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Table C.4 Config. #6 

 
max       m     max         n           MN      SWTN        GN           MF          SWTF      GF  

 

x 10-3 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

B2 

B3 

B4 

B6 

B7 

B8 

C2 

C3 

C4 

C6 

C7 

C8 

D2 

D3 

D4 

D6 

D7 

D8 

E2 

E3 

E4 

E7 

E8 

1.138 131.1 262.1 2000 17161 13958 10066 0.166 0.205 0.284

1.138 130.7 261.4 3500 17660 14114 10066 0.450 0.559 0.781

1.138 130.4 260.8 1000 18100 14250 10066 0.529 0.659 0.923

1.138 130.1 260.2 250 18551 14388 10066 0.548 0.684 0.958

0.285 97.6 130.1 2000 3410935578 83341334 # 0.548 0.684 0.958

0.569 130.1 195.2 2000 5983461 856752 3246626 0.548 0.687 0.959

0.854 162.6 260.2 125 110672 47705 30067 0.550 0.691 0.965

0.569 195.2 260.2 125 1678593 258391 188103 0.550 0.692 0.966

0.717 81.3 162.6 2500 2159299 699144 2600197 0.552 0.697 0.967

1.070 122.0 243.9 750 36760 24363 23178 0.581 0.741 1.013

1.138 130.1 260.2 250 18551 14388 10066 0.600 0.766 1.049

0.569 130.1 195.2 1750 5983461 856752 3246626 0.600 0.769 1.050

0.854 162.6 260.2 125 110672 47705 30067 0.602 0.772 1.056

0.569 195.2 260.2 125 1678593 258391 188103 0.602 0.773 1.056

0.683 78.1 156.1 1250 3199793 1015606 4032136 0.603 0.775 1.057

1.029 117.1 234.2 750 56319 33984 38715 0.622 0.806 1.085

1.138 130.1 260.2 250 18551 14388 10066 0.641 0.831 1.120

0.569 130.1 195.2 1500 5983461 856752 3246626 0.641 0.834 1.121

0.854 162.6 260.2 125 110672 47705 30067 0.643 0.837 1.127

0.569 195.2 260.2 125 1678593 258391 188103 0.643 0.838 1.128

0.668 75.9 151.8 1250 4193835 1254502 5445022 0.644 0.840 1.128

0.994 113.8 227.7 500 75408 44127 54830 0.653 0.856 1.141

1.138 130.1 260.2 250 18551 14388 10066 0.672 0.881 1.176

0.569 130.1 195.2 250 5983461 856752 3246626 0.672 0.881 1.177

0.854 162.6 260.2 125 110672 47705 30067 0.674 0.885 1.183

0.569 195.2 260.2 125 1678593 258391 188103 0.674 0.885 1.183

0.650 74.3 148.7 1000 5106139 1525433 6770673 0.674 0.886 1.184

0.975 111.5 223.0 500 93300 51996 70572 0.682 0.900 1.194

1.138 130.1 260.2 250 18551 14388 10066 0.701 0.925 1.229

0.854 162.6 260.2 125 110672 47705 30067 0.703 0.929 1.235

0.569 195.2 260.2 125 1678593 258391 188103 0.703 0.929 1.236
 

 



105 
 

Cont. Table C.4 

 
max     m     max         n              MN     SWTN         GN        MF         SWTF      GF  

x 10-3 

F2 

*F3 
 

0.643 63.0 126.0 1000 24301972 3186280 37401242 0.703 0.930 1.236

0.962 94.2 188.4 500 510325 111314 508814 0.704 0.936 1.236
 

   * first failure observed (García 2008) 
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Table C.5 Config. #13 

 
max       m     max         n           MN      SWTN        GN           MF          SWTF      GF  

 

x 10-3 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

B2 

B3 

B4 

B6 

B7 

B8 

C2 

C3 

C4 

C6 

C7 

C8 

D2 

D3 

D4 

D6 

D7 

D8 

E2 

E3 

*E4 

 

1.138 130.4 260.8 2000 18130 14260 10066 0.158 0.200 0.284

1.138 130.6 261.2 3500 17770 14149 10066 0.439 0.554 0.781

1.138 130.3 260.6 1000 18249 14296 10066 0.517 0.654 0.923

1.138 130.0 260.0 250 18704 14434 10066 0.536 0.678 0.958

0.285 97.5 130.0 2000 3437222388 83608779 3230672125 0.536 0.678 0.958

0.569 130.0 195.0 2000 6032847 859502 3246626 0.537 0.682 0.959

0.854 162.5 260.0 125 111655 47858 30067 0.538 0.686 0.965

0.569 195.0 260.0 125 1694740 259220 188103 0.539 0.686 0.966

0.717 81.3 162.5 2500 2175406 701387 2600197 0.540 0.691 0.967

1.070 121.9 243.8 750 37058 24442 23178 0.569 0.735 1.013

1.138 129.6 259.1 250 19410 14644 10066 0.587 0.760 1.049

0.569 129.6 194.3 1750 6260528 872010 3246626 0.588 0.762 1.050

0.854 161.9 259.1 125 116195 48555 30067 0.589 0.766 1.056

0.569 194.3 259.1 125 1769427 262992 188103 0.590 0.767 1.056

0.683 77.7 155.5 1250 3332626 1033692 4032136 0.590 0.768 1.057

1.029 116.6 233.2 750 58854 34589 38715 0.608 0.799 1.085

1.138 129.6 259.1 250 19410 14644 10066 0.627 0.824 1.120

0.569 129.6 194.3 1500 6260528 872010 3246626 0.627 0.826 1.121

0.854 161.9 259.1 125 116195 48555 30067 0.629 0.830 1.127

0.569 194.3 259.1 125 1769427 262992 188103 0.629 0.831 1.128

0.668 75.6 151.1 1250 4367185 1276843 5445022 0.629 0.832 1.128

0.994 113.4 226.7 500 78778 44913 54830 0.638 0.848 1.141

1.138 129.6 259.1 250 19410 14644 10066 0.657 0.872 1.176

0.569 129.6 194.3 250 6260528 872010 3246626 0.657 0.873 1.177

0.854 161.9 259.1 125 116195 48555 30067 0.658 0.876 1.183

0.569 194.3 259.1 125 1769427 262992 188103 0.658 0.877 1.183

0.650 74.0 148.0 1000 5316554 1552599 6770673 0.658 0.878 1.184

0.975 111.0 222.1 500 97449 52921 70572 0.666 0.892 1.194

1.138 129.6 259.1 250 19410 14644 10066 0.684 0.916 1.229
 

 * first failure observed (García 2008) 
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Table C.6 Config. #15 

 
max       m     max         n           MN      SWTN        GN           MF          SWTF      GF  

 

x 10-3 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

B2 

B3 

B4 

B6 

B7 

B8 

C2 

C3 

C4 

C7 

C8 

1.138 131.3 262.6 2000 16814 13847 10066 0.170 0.206 0.284

1.138 131.3 262.6 3500 16814 13847 10066 0.467 0.567 0.781

1.138 131.3 262.6 1000 16814 13847 10066 0.552 0.671 0.923

1.138 131.3 262.6 250 16814 13847 10066 0.573 0.696 0.958

0.285 98.5 131.3 2000 3111884196 80213258 # 0.573 0.696 0.958

0.569 131.3 197.0 2000 5423343 824595 3246626 0.574 0.700 0.959

0.854 164.1 262.6 125 99559 45914 30067 0.576 0.704 0.965

0.569 197.0 262.6 125 1496849 248693 188103 0.576 0.704 0.966

0.717 82.1 164.1 2500 1975803 672903 2600197 0.578 0.710 0.967

1.070 123.1 246.2 750 33376 23449 23178 0.610 0.755 1.013

1.138 131.3 262.6 250 16814 13847 10066 0.631 0.781 1.049

0.569 131.3 197.0 1750 5423343 824595 3246626 0.632 0.784 1.050

0.854 164.1 262.6 125 99559 45914 30067 0.633 0.788 1.056

0.569 197.0 262.6 125 1496849 248693 188103 0.633 0.789 1.056

0.683 78.8 157.6 1250 2929538 977487 4032136 0.634 0.791 1.057

1.029 118.2 236.3 750 51186 32708 38715 0.655 0.823 1.085

1.138 131.3 262.6 250 16814 13847 10066 0.676 0.849 1.120

0.569 131.3 197.0 125 5423343 824595 3246626 0.677 0.852 1.121

0.854 164.1 262.6 125 99559 45914 30067 0.678 0.856 1.127

 C - first failure observed (García 2008) 
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Table C.7 Config. #17 

 
max       m     max         n           MN      SWTN        GN           MF          SWTF      GF  

 

x 10-3 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

B2 

B3 

B4 

B6 

B7 

B8 

C2 

C3 

C4 

C6 

C7 

C8 

D2 

D3 

D4 

D6 

D7 

D8 

E2 

E3 

E4 

E7 

E8 

1.138 123.7 247.4 2000 31692 17753 10066 0.090 0.161 0.284

1.138 124.3 248.5 3500 30243 17428 10066 0.255 0.448 0.781

1.138 124.8 249.5 1000 28987 17138 10066 0.305 0.531 0.923

1.138 125.3 250.5 250 27787 16855 10066 0.318 0.552 0.958

0.285 93.9 125.3 2000 4977474649 97635695 # 0.318 0.552 0.958

0.569 125.3 187.9 2000 8962320 1003699 3246626 0.318 0.555 0.959

0.854 156.6 250.5 125 170812 55887 30067 0.319 0.558 0.965

0.569 187.9 250.5 125 2682417 302709 188103 0.319 0.559 0.966

0.717 78.3 156.6 2500 3113966 819058 2600197 0.320 0.563 0.967

1.070 117.4 234.8 750 54685 28542 23178 0.340 0.601 1.013

1.138 125.8 251.5 250 26639 16578 10066 0.353 0.622 1.049

0.569 125.8 188.6 1750 8592220 987175 3246626 0.353 0.625 1.050

0.854 157.2 251.5 125 163258 54967 30067 0.355 0.628 1.056

0.569 188.6 251.5 125 2554760 297725 188103 0.355 0.629 1.056

0.683 75.5 150.9 1250 4432063 1170210 4032136 0.355 0.630 1.057

1.029 113.2 226.4 750 80089 39157 38715 0.368 0.658 1.085

1.138 126.3 252.5 250 25542 16306 10066 0.382 0.680 1.120

0.569 126.3 189.4 1500 8238409 970986 3246626 0.383 0.682 1.121

0.854 157.8 252.5 125 156057 54066 30067 0.384 0.685 1.127

0.569 189.4 252.5 125 2433428 292843 188103 0.384 0.686 1.128

0.668 73.6 147.3 1250 5586033 1421770 5445022 0.384 0.687 1.128

0.994 110.5 220.9 500 102719 50010 54830 0.391 0.701 1.141

1.138 126.4 252.8 250 25223 16225 10066 0.405 0.723 1.176

0.569 126.4 189.6 250 8135327 966194 3246626 0.405 0.724 1.177

0.854 158.0 252.8 125 153963 53799 30067 0.407 0.727 1.183

0.569 189.6 252.8 125 2398213 291398 188103 0.407 0.728 1.183

0.650 72.2 144.4 1000 6719250 1720293 6770673 0.407 0.728 1.184

0.975 108.3 216.7 500 125375 58637 70572 0.413 0.741 1.194

1.138 126.6 253.2 250 24803 16119 10066 0.427 0.763 1.229

0.854 158.3 253.2 125 151216 53446 281401 0.428 0.766 1.230

0.569 189.9 253.2 125 2352084 289485 2601114 0.428 0.767 1.230
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Cont. Table C.7 

 
max     m     max         n              MN     SWTN         GN        MF         SWTF      GF  

x 10-3 

F2 

F3 

F4 

F7 

F8 

G2 

G3 

G4 

G7 

G8 

H2 

H3 

H4 

H7 

H8 

I2 

I3 

*I4 
 

0.643 61.2 122.4 1000 31794020 3593297 37401242 0.428 0.767 1.230

0.962 91.5 183.1 500 678855 125533 508814 0.429 0.773 1.231

1.138 126.8 253.5 250 24493 16040 10066 0.444 0.795 1.267

0.854 158.4 253.5 125 149190 53183 2539689 0.445 0.798 1.267

0.569 190.1 253.5 125 2318094 288060 31141824 0.445 0.799 1.267

0.632 50.9 101.7 1000 175007528 8341896 # 0.445 0.799 1.267

0.951 76.5 153.0 500 3887592 278099 3679806 0.445 0.802 1.267

1.138 126.9 253.8 250 24188 15961 10066 0.460 0.824 1.303

0.854 158.6 253.8 125 147193 52921 21841432 0.461 0.828 1.303

0.569 190.4 253.8 125 2284617 286644 # 0.461 0.828 1.303

0.628 42.2 84.4 1000 941918293 18603917 # 0.461 0.828 1.303

0.938 63.0 126.1 500 24207877 660242 27776585 0.461 0.829 1.303

1.138 127.1 254.1 250 23886 15882 10066 0.476 0.852 1.338

0.854 158.8 254.1 125 145224 52661 # 0.478 0.855 1.338

0.569 190.6 254.1 125 2251643 285236 # 0.478 0.856 1.338

0.621 34.4 68.8 1000 5878308923 46033988 # 0.478 0.856 1.338

0.931 51.6 103.1 500 154197241 1569103 # 0.478 0.856 1.338

1.138 127.2 254.4 250 23589 15804 10066 0.493 0.879 1.374
 

   * first failure observed (García 2008) 
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Table C.8 Config. #18 

 
max       m     max         n           MN      SWTN        GN           MF          SWTF      GF  

 

x 10-3 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

B2 

B3 

B4 

B6 

B7 

B8 

C2 

C3 

C4 

C6 

C7 

C8 

D2 

D3 

D4 

D6 

D7 

D8 

E2 

E3 

E4 

E7 

E8 

1.138 126.3 252.6 2000 25435 16279 10066 0.112 0.176 0.284

1.138 126.3 252.6 3500 25435 16279 10066 0.309 0.483 0.781

1.138 126.3 252.5 1000 25542 16306 10066 0.365 0.570 0.923

1.138 126.2 252.4 250 25650 16333 10066 0.379 0.592 0.958

0.285 94.7 126.2 2000 4618060881 94609599 ## 0.379 0.592 0.958

0.569 126.2 189.3 2000 8273079 972590 3246626 0.379 0.595 0.959

0.854 157.8 252.4 125 156762 54155 30067 0.380 0.598 0.965

0.569 189.3 252.4 125 2445287 293327 188103 0.380 0.599 0.966

0.717 78.9 157.8 2500 2895775 793672 2600197 0.382 0.604 0.967

1.070 118.3 236.6 750 50547 27658 23178 0.403 0.642 1.013

1.138 126.2 252.4 250 25650 16333 10066 0.417 0.664 1.049

0.569 126.2 189.3 1750 8273079 972590 3246626 0.417 0.667 1.050

0.854 157.8 252.4 125 156762 54155 30067 0.418 0.670 1.056

0.569 189.3 252.4 125 2445287 293327 188103 0.418 0.671 1.056

0.683 75.7 151.4 1250 4283296 1152922 4032136 0.419 0.672 1.057

1.029 113.6 227.2 750 77191 38579 38715 0.432 0.700 1.085

1.138 126.2 252.4 250 25650 16333 10066 0.446 0.722 1.120

0.569 126.2 189.3 1500 8273079 972590 3246626 0.447 0.724 1.121

0.854 157.8 252.4 125 156762 54155 30067 0.448 0.727 1.127

0.569 189.3 252.4 125 2445287 293327 188103 0.448 0.728 1.128

0.668 73.6 147.2 1250 5607141 1424119 5445022 0.448 0.729 1.128

0.994 110.4 220.9 500 103137 50093 54830 0.455 0.743 1.141

1.138 126.2 252.4 250 25650 16333 10066 0.469 0.765 1.176

0.569 126.2 189.3 250 8273079 972590 3246626 0.469 0.766 1.177

0.854 157.8 252.4 125 156762 54155 30067 0.470 0.769 1.183

0.569 189.3 252.4 125 2445287 293327 188103 0.470 0.770 1.183

0.650 72.1 144.2 1000 6821040 1731681 6770673 0.471 0.770 1.184

0.975 108.2 216.3 500 127417 59026 70572 0.476 0.782 1.194

1.138 126.2 252.4 250 25650 16333 10066 0.490 0.804 1.229

0.854 157.8 252.4 125 156762 54155 281401 0.491 0.808 1.230

0.569 189.3 252.4 125 2445287 293327 2601114 0.491 0.808 1.230
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Cont. Table C.8 

 
max     m     max         n              MN     SWTN         GN        MF         SWTF      GF  

x 10-3 

F2 

F3 

F4 

F7 

F8 

G2 

G3 

G4 

G7 

G8 
 

0.643 61.1 122.2 1000 32265568 3617084 37401242 0.491 0.809 1.230

0.962 91.4 182.8 500 689540 126364 508814 0.492 0.814 1.231

1.138 126.2 252.4 250 25650 16333 10066 0.506 0.836 1.267

0.854 157.8 252.4 125 156762 54155 2539689 0.507 0.839 1.267

0.569 189.3 252.4 125 2445287 293327 31141824 0.507 0.840 1.267

0.632 50.8 101.6 1000 177552966 8397118 # 0.507 0.840 1.267

0.951 76.4 152.7 500 3946977 279940 3679806 0.508 0.843 1.267

1.138 126.0 252.0 250 26085 16441 10066 0.521 0.865 1.303

0.854 157.5 252.0 125 159615 54514 21841432 0.522 0.868 1.303

0.569 189.0 252.0 125 2493325 295272 # 0.523 0.868 1.303
 

 E4 - visible cracking (García 2008) 
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Table C.9 Config. #19 

 
max       m     max         n           MN      SWTN        GN           MF          SWTF      GF  

 

x 10-3 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

B2 

B3 

B4 

B6 

B7 

B8 

C2 

C3 

C4 

C6 

C7 

C8 

D2 

D3 

D4 

D6 

D7 

D8 

E2 

E3 

E4 

E7 

E8 

113.5 113.5 226.9 2000 78109 28240 16622 0.037 0.101 0.172

129.7 129.7 259.3 3500 19251 14597 10066 0.296 0.444 0.669

129.5 129.5 259.0 1000 19490 14667 10066 0.370 0.541 0.811

129.6 129.6 259.2 250 19330 14620 10066 0.388 0.566 0.846

97.2 97.2 129.6 2000 3544579326 84689261 # 0.388 0.566 0.846

129.6 129.6 194.4 2000 6234783 870609 3246626 0.389 0.569 0.847

162.0 162.0 259.2 125 115681 48477 30067 0.390 0.573 0.853

194.4 194.4 259.2 125 1760962 262570 188103 0.390 0.573 0.854

81.0 81.0 162.0 2500 2241152 710451 2600197 0.392 0.578 0.855

121.5 121.5 243.0 750 38277 24758 23178 0.420 0.622 0.901

129.7 129.7 259.3 250 19251 14597 10066 0.438 0.646 0.937

129.7 129.7 194.5 1750 6209151 869211 3246626 0.439 0.649 0.938

162.1 162.1 259.3 125 115169 48399 30067 0.440 0.653 0.944

194.5 194.5 259.3 125 1752539 262148 188103 0.440 0.653 0.945

77.8 77.8 155.6 1250 3308035 1030374 4032136 0.441 0.655 0.945

116.7 116.7 233.4 750 58384 34478 38715 0.459 0.686 0.973

128.6 128.6 257.2 250 20995 15100 10066 0.476 0.710 1.008

128.6 128.6 192.9 1500 6771865 899166 3246626 0.477 0.712 1.009

160.8 160.8 257.2 125 126430 50067 30067 0.478 0.716 1.015

192.9 192.9 257.2 125 1938574 271183 188103 0.478 0.716 1.016

75.0 75.0 150.0 1250 4685279 1316607 5445022 0.478 0.718 1.016

112.5 112.5 225.1 500 84986 46311 54830 0.487 0.733 1.029

127.5 127.5 255.0 250 23006 15650 10066 0.502 0.756 1.065

127.5 127.5 191.3 250 7420227 931933 3246626 0.502 0.756 1.065

159.4 159.4 255.0 125 139482 51891 30067 0.504 0.760 1.071

191.3 191.3 255.0 125 2155666 281065 188103 0.504 0.760 1.072

72.9 72.9 145.7 1000 6188210 1659291 6770673 0.504 0.761 1.072

109.3 109.3 218.6 500 114751 56558 70572 0.510 0.774 1.082

126.5 126.5 252.9 250 25117 16199 10066 0.524 0.796 1.117

158.1 158.1 252.9 125 153271 53710 30067 0.526 0.799 1.123

189.7 189.7 252.9 125 2386593 290918 188103 0.526 0.800 1.124
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Cont. Table C.9 

 
max     m     max         n              MN     SWTN         GN        MF         SWTF      GF  

x 10-3 

F2 

F3 

F4 

F7 

F8 

G2 

G3 

G4 

G7 

G8 

H2 

H3 

H4 

H7 

H8 

I2 

I3 

I4 

I7 

I8 

J2 

J3 

J4 

J7 

J8 

K2 

K3 

K4 

K7 

K8 
 

0.643 61.5 122.9 1000 30567429 3530516 39119332 0.526 0.800 1.124

0.962 92.2 184.4 500 632012 121801 517083 0.527 0.806 1.126

1.138 125.4 250.7 250 27553 16799 10066 0.540 0.827 1.161

0.854 156.7 250.7 125 169272 55702 30067 0.541 0.831 1.167

0.569 188.0 250.7 125 2656364 301704 188103 0.541 0.831 1.168

0.632 51.2 102.5 1000 163696927 8091183 # 0.541 0.831 1.168

0.951 76.8 153.7 500 3722142 272887 3845889 0.541 0.834 1.168

1.138 125.1 250.1 250 28260 16968 10066 0.554 0.855 1.204

0.854 156.3 250.1 125 173936 56260 30067 0.555 0.858 1.210

0.569 187.6 250.1 125 2735328 304731 188103 0.555 0.859 1.211

0.628 42.3 84.5 1000 934248552 18533443 # 0.555 0.859 1.211

0.938 63.4 126.8 500 22942212 644602 28613377 0.555 0.860 1.211

1.138 124.8 249.5 250 28987 17138 10066 0.567 0.881 1.246

0.854 155.9 249.5 125 178735 56826 30067 0.568 0.884 1.252

0.569 187.1 249.5 125 2816745 307796 188103 0.568 0.885 1.253

0.621 34.6 69.2 1000 5582348775 44927942 # 0.568 0.885 1.253

0.931 51.9 103.7 500 146273281 1531793 # 0.568 0.885 1.253

1.138 124.5 248.9 250 29734 17311 10066 0.580 0.906 1.288

0.854 155.6 248.9 125 183675 57399 30067 0.581 0.909 1.294

0.569 186.7 248.9 125 2900696 310900 188103 0.581 0.909 1.295

0.618 28.1 56.2 1000 34697325916 108468242 # 0.581 0.909 1.295

0.926 42.1 84.3 500 958220241 3729848 # 0.581 0.910 1.295

1.138 124.2 248.3 250 30501 17486 10066 0.593 0.930 1.331

0.854 155.2 248.3 125 188759 57979 30067 0.594 0.933 1.337

0.569 186.2 248.3 125 2987262 314042 188103 0.594 0.934 1.338

0.613 22.7 45.4 1000 222765457835 274194362 # 0.594 0.934 1.338

0.921 34.0 68.1 500 6419921317 9274700 # 0.594 0.934 1.338

1.138 123.9 247.7 250 31290 17663 10066 0.606 0.954 1.373

0.854 154.8 247.7 125 193992 58567 30067 0.606 0.957 1.379

0.569 185.8 247.7 125 30567429 3530516 188103 0.607 0.958 1.380
 

   K - first failure observed (García 2008) 
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Table C.10 Config. #20 

 
max       m     max         n           MN      SWTN        GN           MF          SWTF      GF  

 

x 10-3 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

B2 

B3 

B4 

B6 

B7 

B8 

C2 

C3 

C4 

C6 

C7 

C8 

D2 

*D3 

1.138 131.4 262.7 2000 16746 13826 10066 0.171 0.207 0.284

1.138 131.3 262.5 3500 16883 13869 10066 0.467 0.567 0.781

1.138 131.2 262.4 1000 16952 13892 10066 0.551 0.670 0.923

1.138 131.2 262.3 250 17022 13914 10066 0.572 0.696 0.958

0.285 98.4 131.2 2000 3147666449 80596210 # 0.572 0.696 0.958

0.569 131.2 196.7 2000 5490191 828532 3246626 0.573 0.699 0.959

0.854 163.9 262.3 125 100881 46134 30067 0.574 0.703 0.965

0.569 196.7 262.3 125 1518401 249880 188103 0.574 0.704 0.966

0.717 82.0 163.9 2500 1997784 676115 2600197 0.576 0.709 0.967

1.070 123.0 245.9 750 33781 23561 23178 0.608 0.754 1.013

1.138 131.1 262.1 250 17161 13958 10066 0.629 0.780 1.049

0.569 131.1 196.6 1750 5535244 831170 3246626 0.629 0.783 1.050

0.854 163.8 262.1 125 101773 46280 30067 0.631 0.787 1.056

0.569 196.6 262.1 125 1532948 250675 188103 0.631 0.788 1.056

0.683 78.6 157.3 1250 2983723 985280 4032136 0.632 0.789 1.057

1.029 117.9 235.9 750 52212 32969 38715 0.652 0.822 1.085

1.138 131.0 262.0 250 17232 13980 10066 0.673 0.848 1.120

0.569 131.0 196.5 1500 5557918 832492 3246626 0.673 0.850 1.121

0.854 163.8 262.0 125 102222 46354 30067 0.675 0.854 1.127

0.569 196.5 262.0 125 1540275 251074 188103 0.675 0.855 1.128

0.668 76.4 152.8 1250 3926119 1218979 5445022 0.676 0.856 1.128

0.994 114.6 229.3 500 70222 42877 54830 0.686 0.873 1.141

 * first failure observed (García 2008) 
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Table C.11 Config. #21 

 
max       m     max         n           MN      SWTN        GN           MF          SWTF      GF  

 

x 10-3 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

B2 

B3 

B4 

B6 

B7 

B8 

C2 

C3 

C4 

C6 

C7 

C8 

D2 

*D3 

1.138 131.4 262.7 2000 16746 13826 10066 0.171 0.207 0.284

1.138 131.4 262.7 3500 16746 13826 10066 0.469 0.568 0.781

1.138 131.4 262.7 1000 16746 13826 10066 0.555 0.672 0.923

1.138 131.4 262.7 250 16746 13826 10066 0.576 0.697 0.958

0.285 98.5 131.4 2000 3100054596 80086109 ######### 0.576 0.698 0.958

0.569 131.4 197.0 2000 5401253 823288 3246626 0.576 0.701 0.959

0.854 164.2 262.7 125 99122 45842 30067 0.578 0.705 0.965

0.569 197.0 262.7 125 1489736 248298 188103 0.578 0.706 0.966

0.717 82.1 164.2 2500 1968534 671836 2600197 0.580 0.711 0.967

1.070 123.1 246.3 750 33243 23412 23178 0.612 0.757 1.013

1.138 131.4 262.7 250 16746 13826 10066 0.634 0.782 1.049

0.569 131.4 197.0 1750 5401253 823288 3246626 0.634 0.786 1.050

0.854 164.2 262.7 125 99122 45842 30067 0.636 0.789 1.056

0.569 197.0 262.7 125 1489736 248298 188103 0.636 0.790 1.056

0.683 78.8 157.6 1250 2918830 975937 4032136 0.637 0.792 1.057

1.029 118.2 236.4 750 50983 32657 38715 0.658 0.825 1.085

1.138 131.4 262.7 250 16746 13826 10066 0.679 0.851 1.120

0.569 131.4 197.0 1500 5401253 823288 3246626 0.679 0.853 1.121

0.854 164.2 262.7 125 99122 45842 30067 0.681 0.857 1.127

0.569 197.0 262.7 125 1489736 248298 188103 0.681 0.858 1.128

0.668 76.6 153.2 1250 3827083 1205503 5445022 0.682 0.859 1.128

0.994 114.9 229.9 500 68310 42403 54830 0.692 0.876 1.141

 * first failure observed (García 2008) 
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Table C.12 Config. #24 

 
max       m     max         n           MN      SWTN       MF          SWTF    

x 10-3 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

B2 

B3 

B4 

B6 

B7 

B8 

C2 

C3 

C4 

C6 

C7 

C8 

D2 

D3 

D4 

D6 

D7 

D8 

E2 

E3 

E4 

E7 

E8 

0.874 104.7 209.4 2000 177435 106618 0.016 0.027 

1.138 131.3 262.6 3500 16814 13847 0.313 0.388 

1.138 131.2 262.4 1000 16952 13892 0.398 0.491 

1.138 131.2 262.3 250 17022 13914 0.419 0.516 

0.285 98.4 131.2 2000 3147666449 80596210 0.419 0.516 

0.569 131.2 196.7 2000 5490191 828532 0.419 0.520 

0.854 163.9 262.3 125 100881 46134 0.421 0.524 

0.569 196.7 262.3 125 1518401 249880 0.421 0.524 

0.717 82.0 163.9 2500 1997784 676115 0.423 0.530 

1.070 123.0 245.9 750 33781 23561 0.455 0.575 

1.138 131.1 262.2 250 17091 13936 0.476 0.601 

0.569 131.1 196.7 1750 5512668 829850 0.476 0.604 

0.854 163.9 262.2 125 101326 46207 0.478 0.608 

0.569 196.7 262.2 125 1525656 250277 0.478 0.608 

0.683 78.7 157.3 1250 2972799 983715 0.478 0.610 

1.029 118.0 236.0 750 52005 32917 0.499 0.643 

1.138 131.1 262.2 250 17091 13936 0.520 0.668 

0.569 131.1 196.7 1500 5512668 829850 0.520 0.671 

0.854 163.9 262.2 125 101326 46207 0.522 0.675 

0.569 196.7 262.2 125 1525656 250277 0.522 0.676 

0.668 76.5 152.9 1250 3897541 1215110 0.523 0.677 

0.994 114.7 229.4 500 69670 42741 0.533 0.694 

1.138 131.1 262.2 250 17091 13936 0.554 0.719 

0.569 131.1 196.7 250 5512668 829850 0.554 0.720 

0.854 163.9 262.2 125 101326 46207 0.556 0.724 

0.569 196.7 262.2 125 1525656 250277 0.556 0.724 

0.650 74.9 149.8 1000 4746440 1477533 0.556 0.725 

0.975 112.4 224.7 500 86234 50363 0.564 0.740 

1.138 131.1 262.1 250 17161 13958 0.585 0.765 

0.854 163.8 262.1 125 101773 46280 0.587 0.769 

0.569 196.6 262.1 125 1532948 250675 0.587 0.770 
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Cont. Table C.12 

 
max     m     max         n              MN     SWTN        MF      SWTF    

x 10-3 

F2 

F3 

F4 

F7 

F8 

G2 

G3 

*G4 
 

0.643 63.2 126.4 1000 23582091 3143784 0.587 0.770 

0.962 94.8 189.6 500 479704 108459 0.589 0.777 

1.138 131.1 262.1 250 17161 13958 0.609 0.802 

0.854 163.8 262.1 125 101773 46280 0.611 0.806 

0.569 196.6 262.1 125 1532948 250675 0.611 0.807 

0.632 52.7 105.4 1000 126922418 7204877 0.611 0.807 

0.951 79.0 158.0 500 2848962 242995 0.612 0.810 

1.138 131.1 262.1 250 17161 13958 0.632 0.836 
 

       * first failure observed (García 2008)       
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D. Fatigue Damage Results, Strain Hardening 

Table D.1 Config. #3 

 
max       m     max         n           MN      SWTN        GN           MF          SWTF      GF  

 

x 10-3 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

B2 

B3 

B4 

B6 

B7 

B8 

C2 

C3 

C4 

C6 

C7 

C8 

D2 

D3 

D4 

1.138 129.7 259.4 2000 19182 14576 10065 0.149 0.196 0.284

1.138 129.4 258.8 3500 19685 14724 10065 0.403 0.536 0.781

1.138 128.5 257.0 1000 21170 15149 10065 0.470 0.630 0.923

1.159 128.1 256.2 250 21885 14221 7812 0.487 0.655 0.968

0.290 96.1 128.1 2000 3980618657 82377053 # 0.487 0.655 0.968

0.580 128.1 192.2 2000 7058741 846839 2519629 0.487 0.658 0.969

0.869 160.1 256.2 125 132195 47153 22337 0.489 0.662 0.977

0.580 192.2 256.2 125 2034282 255401 131359 0.489 0.663 0.979

0.730 80.1 160.1 2500 2507634 691054 2112509 0.490 0.668 0.981

1.089 120.1 240.2 750 43243 24082 18150 0.515 0.713 1.040

1.220 128.6 257.1 250 21083 11318 3227 0.532 0.744 1.150

0.610 128.6 192.8 1750 6799984 673965 1040887 0.532 0.748 1.153

0.915 160.7 257.1 125 126995 37527 7822 0.534 0.753 1.175

0.610 192.8 257.1 125 1947930 203263 36139 0.534 0.753 1.180

0.732 77.1 154.3 1250 3589782 798927 1620714 0.534 0.756 1.181

1.103 115.7 231.4 750 63781 26733 13265 0.551 0.796 1.262

1.292 136.7 273.3 250 10931 6909 1230 0.584 0.847 1.553

0.646 136.7 205.0 1500 3525827 411436 396802 0.584 0.853 1.558

0.969 170.8 273.3 125 62553 22909 2427 0.587 0.860 1.632

0.646 205.0 273.3 125 903583 124087 8158 0.587 0.862 1.653

0.758 79.7 159.4 1250 2617235 602447 1046023 0.588 0.865 1.655

1.128 119.6 239.1 500 45271 21191 7863 0.604 0.899 1.746

1.365 145.9 291.8 250 5334 4183 469 0.671 0.984 2.508
 

   D4 - first failure observed (García 2008) 

 

Tables D.1 through D.12 were calculated using the procedure in Section 5.6 where Column one is 

the strain range as defined in Section 5.6, columns two and three are the mean and maximum 

stresses as defined in Section 5.6, Column four is the number of cycles on each loading sublevel, 

columns five, six, and seven are calculated from equations 13, 16 and 19, and columns eight, nine 

and ten are calculated from equation 21. 
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Table D.2 Config. #4 

 
max       m     max         n           MN      SWTN        GN           MF          SWTF      GF  

 

x 10-3 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

B2 

B3 

B4 

B6 

B7 

B8 

C2 

C3 

C4 

C6 

C7 

C8 

D2 

D3 

D4 

D6 

D7 

D8 

E2 

E3 

E4 

E7 

E8 

1.138 127.3 254.6 2000 23393 15753 10065 0.122 0.181 0.284

1.138 126.3 252.5 3500 25542 16306 10065 0.318 0.488 0.781

1.138 126.3 252.5 1000 25542 16306 10065 0.374 0.576 0.923

1.138 126.2 252.3 250 25758 16360 10065 0.388 0.597 0.958

0.285 94.6 126.2 2000 4636260469 94765942 # 0.388 0.597 0.958

0.569 126.2 189.2 2000 8307906 974198 3246250 0.388 0.600 0.959

0.854 157.7 252.3 125 157470 54244 30063 0.389 0.604 0.965

0.569 189.2 252.3 125 2457205 293812 188072 0.389 0.604 0.966

0.717 78.8 157.7 2500 2906834 794984 2599950 0.390 0.609 0.967

1.070 118.3 236.5 750 50756 27703 23176 0.412 0.647 1.013

1.183 127.6 255.1 250 22910 13293 5360 0.427 0.674 1.080

0.592 127.6 191.3 1750 7389361 791586 1728904 0.428 0.678 1.082

0.887 159.4 255.1 125 138859 44076 14321 0.429 0.682 1.094

0.592 191.3 255.1 125 2145268 238737 76384 0.429 0.682 1.096

0.710 76.5 153.1 1250 3868686 938357 2426286 0.429 0.684 1.097

1.069 114.8 229.6 750 69154 31399 21367 0.445 0.718 1.147

1.265 135.5 271.0 250 11979 7815 1741 0.475 0.764 1.352

0.633 135.5 203.3 1500 3863824 465385 561385 0.475 0.769 1.356

0.949 169.4 271.0 125 69060 25913 3710 0.478 0.776 1.404

0.633 203.3 271.0 125 1006317 140357 14089 0.478 0.777 1.417

0.742 79.0 158.1 1250 2839121 681442 1364860 0.479 0.779 1.418

1.105 118.6 237.1 500 49447 23970 10806 0.493 0.809 1.484

1.332 141.6 283.2 250 7416 5246 716 0.541 0.877 1.983

0.666 141.6 212.4 250 2391894 312420 230977 0.541 0.878 1.985

0.999 177.0 283.2 125 41081 17396 1242 0.546 0.889 2.129

0.666 212.4 283.2 125 571087 94224 3384 0.546 0.891 2.181

0.761 80.9 161.8 1000 2265283 556259 874663 0.547 0.893 2.183

1.142 121.4 242.7 500 38725 18960 6347 0.565 0.931 2.295

1.390 148.4 296.8 250 4417 3613 328 0.646 1.030 3.384

1.043 185.5 296.8 125 23368 11980 463 0.654 1.045 3.769

0.695 222.6 296.8 125 307484 64887 888 0.654 1.047 3.970
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Cont. Table D.2 

 
max     m     max         n              MN     SWTN         GN        MF         SWTF      GF  

x 10-3 

F2 

*F3 
 

0.785 68.6 137.1 1000 10980928 972837 5284778 0.654 1.049 3.971

1.175 102.6 205.1 500 218763 33986 54961 0.658 1.070 3.984
 

   * first failure observed (García 2008) 
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Table D.3 Config. #5 

 
max       m     max         n           MN      SWTN        GN           MF          SWTF      GF  

 

x 10-3 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

B2 

B3 

B4 

B6 

B7 

B8 

C2 

C3 

C4 

C6 

C7 

C8 

D2 

D3 

D4 

D6 

D7 

D8 

E2 

E3 

E4 

E7 

E8 

1.138 120.3 240.5 2000 42587 19960 10065 0.067 0.143 0.284

1.138 121.1 242.3 3500 39518 19375 10065 0.194 0.401 0.781

1.138 122.0 244.0 1000 36673 18809 10065 0.233 0.477 0.923

1.138 122.9 245.7 250 34080 18270 10065 0.243 0.497 0.958

0.285 92.1 122.9 2000 6027547108 105832570 # 0.243 0.497 0.958

0.569 122.9 184.3 2000 10992226 1087963 3246250 0.243 0.499 0.959

0.854 153.6 245.7 125 212572 60579 30063 0.244 0.502 0.965

0.569 184.3 245.7 125 3394755 328123 188072 0.244 0.503 0.966

0.717 76.8 153.6 2500 3749124 887821 2599950 0.245 0.507 0.967

1.070 115.2 230.3 750 66847 30938 23176 0.261 0.542 1.013

1.138 123.7 247.4 250 31630 17739 10065 0.272 0.562 1.049

0.569 123.7 185.6 1750 10201909 1056326 3246250 0.273 0.564 1.050

0.854 154.7 247.4 125 196250 58817 30063 0.274 0.567 1.056

0.569 185.6 247.4 125 3115102 318581 188072 0.274 0.568 1.057

0.683 74.2 148.5 1250 5175571 1252183 4031757 0.274 0.569 1.057

1.029 111.4 222.7 750 94668 41900 38710 0.285 0.595 1.085

1.138 124.6 249.2 250 29396 17233 10065 0.297 0.615 1.120

0.569 124.6 186.9 1500 9481245 1026214 3246250 0.298 0.617 1.121

0.854 155.7 249.2 125 181436 57141 30063 0.299 0.621 1.127

0.569 186.9 249.2 125 2862621 309499 188072 0.299 0.621 1.128

0.668 72.7 145.3 1250 6338032 1502637 5444514 0.299 0.622 1.128

0.994 109.0 218.0 500 117674 52855 54824 0.305 0.636 1.141

1.138 124.7 249.4 250 29088 17162 10065 0.317 0.657 1.177

0.569 124.7 187.1 250 9382037 1021966 3246250 0.317 0.657 1.177

0.854 155.9 249.4 125 179402 56904 30063 0.318 0.660 1.183

0.569 187.1 249.4 125 2828064 308218 188072 0.318 0.661 1.184

0.650 71.3 142.5 1000 7635063 1819592 6770046 0.319 0.661 1.184

0.975 106.9 213.8 500 143823 62022 70564 0.324 0.673 1.194

1.231 130.6 261.2 250 17795 10205 2774 0.344 0.708 1.323

0.923 133.6 213.8 125 984071 77989 6523 0.345 0.713 1.350

0.616 160.3 213.8 125 17460773 422420 28791 0.346 0.714 1.356
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Cont. Table D.3 

 
max     m     max         n              MN     SWTN         GN        MF         SWTF      GF  

x 10-3 

F2 

F3 

F4 

F7 

F8 

G2 

G3 

G4 

G7 

G8 

H2 

H3 

*H4 
 

0.696 60.4 120.8 1000 36032127 2739781 37397911 0.346 0.715 1.356

1.040 90.3 180.6 500 775181 95715 508763 0.346 0.722 1.358

1.336 140.0 280.0 250 8400 5433 683 0.389 0.788 1.881

1.002 175.0 280.0 125 47031 18015 6523 0.393 0.798 1.908

0.668 210.0 280.0 125 662071 97576 28791 0.393 0.800 1.914

0.742 50.2 100.4 1000 197863294 4522401 # 0.393 0.800 1.914

1.116 75.5 150.9 500 4422114 150766 3679460 0.393 0.805 1.915

1.420 151.7 303.3 250 3463 3019 229 0.496 0.923 3.473

1.065 189.6 303.3 125 17913 10010 6523 0.506 0.941 3.500

0.710 227.5 303.3 125 229352 54218 28791 0.507 0.944 3.507

0.784 41.7 83.3 1000 1062887580 7822895 # 0.507 0.944 3.507

1.170 62.2 124.4 500 27446518 277630 27774095 0.507 0.947 3.507

1.500 163.4 326.9 250 1479 1759 81 0.749 1.150 7.906
 

   * first failure observed (García 2008) 
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Table D.4 Config. #6 

 
max       m     max         n           MN      SWTN        GN           MF          SWTF      GF  

 

x 10-3 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

B2 

B3 

B4 

B6 

B7 

B8 

C2 

C3 

C4 

C6 

C7 

C8 

D2 

D3 

D4 

D6 

D7 

D8 

E2 

E3 

E4 

E7 

E8 

1.138 127.0 254.0 2000 23986 15908 10065 0.119 0.180 0.284

1.138 126.4 252.8 3500 25223 16225 10065 0.317 0.488 0.781

1.138 125.8 251.6 1000 26527 16550 10065 0.371 0.574 0.923

1.138 125.2 250.4 250 27904 16883 10065 0.384 0.595 0.958

0.285 93.9 125.2 2000 4997211332 97798264 # 0.384 0.595 0.958

0.569 125.2 187.8 2000 9000257 1005370 3246250 0.384 0.598 0.959

0.854 156.5 250.4 125 171587 55980 30063 0.385 0.601 0.965

0.569 187.8 250.4 125 2695544 303213 188072 0.385 0.602 0.966

0.717 78.3 156.5 2500 3125935 820422 2599950 0.387 0.606 0.967

1.070 117.4 234.8 750 54913 28590 23176 0.406 0.644 1.013

1.232 129.4 258.8 250 19652 10571 2737 0.424 0.677 1.144

0.616 129.4 194.1 1750 6338445 629505 882861 0.425 0.681 1.147

0.924 161.8 258.8 125 117751 35052 6418 0.426 0.687 1.175

0.616 194.1 258.8 125 1795078 189855 28211 0.426 0.687 1.181

0.739 77.6 155.3 1250 3369887 746224 1423362 0.427 0.690 1.182

1.114 116.5 232.9 750 59566 24970 11368 0.445 0.733 1.276

1.340 141.8 283.5 250 7330 5095 651 0.494 0.803 1.825

0.670 141.8 212.6 1500 2364281 303380 210048 0.494 0.810 1.835

1.005 177.2 283.5 125 40566 16893 1103 0.499 0.821 1.997

0.670 212.6 283.5 125 563265 91497 2889 0.499 0.822 2.059

0.786 82.7 165.4 1250 1836827 444225 646653 0.500 0.827 2.062

1.170 124.0 248.1 500 30811 15625 4402 0.523 0.872 2.224

1.422 154.9 309.7 250 2741 2752 221 0.654 1.002 3.843

0.711 154.9 232.3 250 883973 163892 71139 0.654 1.004 3.848

1.067 193.6 309.7 125 13860 9126 278 0.667 1.024 4.491

0.711 232.3 309.7 125 172682 49429 432 0.668 1.027 4.904

0.813 88.5 177.0 1000 948759 291807 369307 0.669 1.032 4.908

1.219 132.7 265.4 500 14978 9946 2222 0.717 1.104 5.229

1.515 166.5 332.9 250 1198 1564 66 1.015 1.332 10.629

1.136 208.1 332.9 125 5565 5187 56 1.047 1.367 13.808

0.758 249.7 332.9 125 62419 28095 40 1.050 1.373 18.260
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Cont. Table D.4 

 
max     m     max         n              MN     SWTN         GN        MF         SWTF      GF  

x 10-3 

F2 

*F3 
 

0.856 75.0 150.0 1000 4699906 468112 2332955 1.050 1.376 18.261

1.280 112.2 224.3 500 87957 16354 21186 1.058 1.420 18.295
 

   * first failure observed (García 2008) 
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Table D.5 Config. #13 

 
max       m     max         n           MN      SWTN        GN           MF          SWTF      GF  

 

x 10-3 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

B2 

B3 

B4 

B6 

B7 

B8 

C2 

C3 

C4 

C6 

C7 

C8 

D2 

D3 

D4 

D6 

D7 

D8 

E2 

E3 

*E4 

 

1.138 130.4 260.8 2000 18130 14260 10065 0.158 0.200 0.284

1.138 130.6 261.2 3500 17770 14149 10065 0.439 0.554 0.781

1.138 130.3 260.6 1000 18249 14296 10065 0.517 0.654 0.923

1.157 130.0 260.0 250 18704 13471 7936 0.536 0.680 0.968

0.289 97.5 130.0 2000 3437222388 78034918 2625958138 0.536 0.680 0.968

0.579 130.0 195.0 2000 6032847 802202 2559828 0.537 0.684 0.969

0.868 162.5 260.0 125 111655 44668 22756 0.538 0.688 0.977

0.579 195.0 260.0 125 1694740 241939 134355 0.539 0.689 0.978

0.729 81.3 162.5 2500 2175406 654629 2140013 0.540 0.694 0.980

1.088 121.9 243.8 750 37058 22812 18430 0.569 0.741 1.038

1.207 129.6 259.1 250 19410 11459 4538 0.587 0.772 1.116

0.604 129.6 194.3 1750 6260528 682340 1463594 0.588 0.776 1.118

0.905 161.9 259.1 125 116195 37993 11751 0.589 0.780 1.133

0.604 194.3 259.1 125 1769427 205789 59885 0.590 0.781 1.136

0.724 77.7 155.5 1250 3332626 808854 2124070 0.590 0.784 1.137

1.091 116.6 233.2 750 58854 27066 18268 0.608 0.823 1.196

1.251 132.9 265.8 250 14761 8874 2753 0.632 0.863 1.326

0.626 132.9 199.4 1500 4760964 528416 887971 0.633 0.867 1.328

0.938 166.1 265.8 125 86519 29423 6463 0.635 0.874 1.356

0.626 199.4 265.8 125 1285489 159367 28458 0.635 0.875 1.362

0.734 77.5 155.0 1250 3419408 773735 1947534 0.636 0.877 1.363

1.093 116.3 232.6 500 60478 27216 16477 0.647 0.903 1.406

1.301 138.0 276.0 250 9808 6439 1593 0.684 0.959 1.630

0.651 138.0 207.0 250 3163425 383418 513915 0.684 0.960 1.631

0.976 172.5 276.0 125 55626 21349 3331 0.687 0.968 1.685

0.651 207.0 276.0 125 795133 115636 12274 0.687 0.970 1.699

0.743 78.9 157.7 1000 2899172 682669 1599529 0.688 0.972 1.700

1.115 118.3 236.6 500 50611 23269 13059 0.702 1.002 1.755

1.353 145.6 291.3 250 5443 4373 906 0.768 1.084 2.149
 

 * first failure observed (García 2008) 
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Table D.6 Config. #15 

 
max       m     max         n           MN      SWTN        GN           MF          SWTF      GF  

 

x 10-3 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

B2 

B3 

B4 

B6 

B7 

B8 

C2 

C3 

C4 

 

1.138 129.1 258.2 2000 20178 14867 10065 0.142 0.192 0.284

1.138 128.7 257.4 3500 20821 15051 10065 0.382 0.524 0.781

1.138 128.3 256.6 1000 21486 15237 10065 0.448 0.618 0.923

1.175 127.9 255.8 250 22269 13523 6542 0.464 0.645 0.977

0.294 95.9 127.9 2000 4045967212 78335143 # 0.464 0.645 0.977

0.588 127.9 191.8 2000 7182719 805288 2110048 0.465 0.648 0.979

0.881 159.9 255.8 125 134692 44839 18125 0.466 0.652 0.988

0.588 191.8 255.8 125 2075816 242870 101891 0.466 0.653 0.990

0.740 79.9 159.9 2500 2547500 657147 1827970 0.467 0.658 0.992

1.105 119.9 239.8 750 43990 22900 15298 0.492 0.705 1.062

1.279 134.3 268.6 250 13164 7741 2044 0.519 0.751 1.237

0.640 134.3 201.5 1750 4245841 460985 659127 0.520 0.757 1.241

0.959 167.9 268.6 125 76463 25668 4509 0.522 0.764 1.280

0.640 201.5 268.6 125 1124108 139030 18063 0.522 0.765 1.290

0.767 80.6 161.2 1250 2352682 546458 1131913 0.523 0.768 1.292

1.156 120.9 241.8 750 40350 18285 8649 0.549 0.827 1.416

1.369 142.5 285.0 250 6907 4556 760 0.601 0.905 1.885
 

 C4 - first failure observed (García 2008) 
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Table D.7 Config. #17 

 
max       m     max         n           MN      SWTN        GN           MF          SWTF      GF  

 

x 10-3 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

B2 

B3 

B4 

B6 

B7 

B8 

C2 

C3 

C4 

C6 

C7 

C8 

D2 

D3 

D4 

D6 

D7 

D8 

E2 

E3 

E4 

E7 

E8 

1.138 123.7 247.4 2000 31692 17753 10065 0.090 0.161 0.284

1.138 124.0 248.0 3500 30893 17575 10065 0.252 0.445 0.781

1.138 124.4 248.7 1000 29987 17369 10065 0.300 0.528 0.923

1.138 124.7 249.3 250 29234 17196 10065 0.312 0.548 0.958

0.285 93.5 124.7 2000 5219991587 99608867 # 0.312 0.548 0.958

0.569 124.7 187.0 2000 9429077 1023983 3246250 0.312 0.551 0.959

0.854 155.8 249.3 125 180366 57017 30063 0.313 0.554 0.965

0.569 187.0 249.3 125 2844443 308827 188072 0.313 0.555 0.966

0.717 77.9 155.8 2500 3260950 835611 2599950 0.314 0.559 0.967

1.070 116.9 233.7 750 57485 29119 23176 0.333 0.596 1.013

1.138 125.0 249.9 250 28500 17024 10065 0.345 0.617 1.049

0.569 125.0 187.4 1750 9192532 1013778 3246250 0.346 0.620 1.050

0.854 156.2 249.9 125 175520 56448 30063 0.347 0.623 1.056

0.569 187.4 249.9 125 2762191 305749 188072 0.347 0.623 1.057

0.683 75.0 149.9 1250 4710626 1201746 4031757 0.347 0.625 1.057

1.029 112.5 224.9 750 85533 40212 38710 0.360 0.651 1.085

1.138 125.3 250.5 250 27787 16855 10065 0.373 0.673 1.120

0.569 125.3 187.9 1500 8962320 1003699 3246250 0.373 0.675 1.121

0.854 156.6 250.5 125 170812 55887 30063 0.374 0.678 1.127

0.569 187.9 250.5 125 2682417 302709 188072 0.374 0.678 1.128

0.668 73.1 146.1 1250 6025185 1469669 5444514 0.374 0.680 1.128

0.994 109.6 219.2 500 111437 51695 54824 0.381 0.694 1.141

1.138 125.6 251.1 250 27092 16688 10065 0.394 0.715 1.177

0.569 125.6 188.3 250 8738262 993743 3246250 0.394 0.715 1.177

0.854 156.9 251.1 125 166237 55333 30063 0.395 0.719 1.183

0.569 188.3 251.1 125 2605045 299707 188072 0.395 0.719 1.184

0.650 71.7 143.5 1000 7163646 1769343 6770046 0.395 0.720 1.184

0.975 107.6 215.2 500 134307 60309 70564 0.401 0.732 1.194

1.196 126.5 252.9 250 25117 13168 4452 0.415 0.759 1.274

0.897 158.1 252.9 125 153271 43662 281367 0.416 0.763 1.275

0.598 189.7 252.9 125 2386593 236492 2600754 0.416 0.764 1.275
 

 



128 
 

Cont. Table D.7 

 
max     m     max         n              MN     SWTN         GN        MF         SWTF      GF  

x 10-3 

F2 

F3 

F4 

F7 

F8 

G2 

G3 

G4 

G7 

G8 

H2 

H3 

H4 

H7 

H8 

I2 

I3 

*I4 
 

0.676 60.8 121.6 1000 33851781 3004340 37397911 0.416 0.764 1.275

1.011 90.9 181.9 500 725545 104958 508763 0.417 0.771 1.276

1.269 132.1 264.1 250 15818 8588 1661 0.440 0.813 1.491

0.952 165.1 264.1 125 93216 28476 2539410 0.442 0.819 1.491

0.635 198.1 264.1 125 1393762 154238 31138032 0.442 0.820 1.491

0.705 50.5 101.0 1000 186110857 5448922 # 0.442 0.820 1.491

1.060 76.0 152.0 500 4146906 181654 3679460 0.442 0.824 1.492

1.331 140.3 280.6 250 8204 5469 730 0.485 0.890 1.981

0.998 175.4 280.6 125 45839 18134 21839218 0.489 0.899 1.981

0.666 210.5 280.6 125 643764 98222 # 0.490 0.901 1.981

0.735 41.9 83.9 1000 1000710705 9961660 # 0.490 0.901 1.981

1.097 62.6 125.2 500 25780207 353534 27774095 0.490 0.903 1.981

1.386 149.1 298.1 250 4207 3591 353 0.574 1.003 2.993

1.040 186.3 298.1 125 22157 11906 # 0.583 1.018 2.993

0.693 223.6 298.1 125 289993 64485 # 0.583 1.021 2.993

0.756 34.1 68.3 1000 6239902288 20822573 # 0.583 1.021 2.993

1.134 51.2 102.4 500 163993528 709753 # 0.583 1.022 2.993

1.439 156.5 313.0 250 2431 2506 178 0.730 1.164 5.005
 

   * first failure observed (García 2008) 
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Table D.8 Config. #18 

 
max       m     max         n           MN      SWTN        GN           MF          SWTF      GF  

 

x 10-3 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

B2 

B3 

B4 

B6 

B7 

B8 

C2 

C3 

C4 

C6 

C7 

C8 

D2 

D3 

D4 

D6 

D7 

D8 

E2 

E3 

E4 

E7 

E8 

1.138 126.3 252.6 2000 25435 16279 10065 0.112 0.176 0.284

1.138 126.3 252.6 3500 25435 16279 10065 0.309 0.483 0.781

1.138 126.3 252.6 1000 25435 16279 10065 0.365 0.570 0.923

1.138 126.3 252.6 250 25435 16279 10065 0.379 0.592 0.958

0.285 94.7 126.3 2000 4581893072 94297871 # 0.379 0.592 0.958

0.569 126.3 189.5 2000 8203894 969386 3246250 0.379 0.595 0.959

0.854 157.9 252.6 125 155356 53977 30063 0.381 0.599 0.965

0.569 189.5 252.6 125 2421630 292360 188072 0.381 0.599 0.966

0.717 78.9 157.9 2500 2873793 791057 2599950 0.382 0.604 0.967

1.070 118.4 236.8 750 50131 27566 23176 0.403 0.643 1.013

1.138 126.2 252.4 250 25650 16333 10065 0.417 0.664 1.049

0.569 126.2 189.3 1750 8273079 972590 3246250 0.418 0.667 1.050

0.854 157.8 252.4 125 156762 54155 30063 0.419 0.670 1.056

0.569 189.3 252.4 125 2445287 293327 188072 0.419 0.671 1.057

0.683 75.7 151.4 1250 4283296 1152922 4031757 0.419 0.673 1.057

1.029 113.6 227.2 750 77191 38579 38710 0.433 0.700 1.085

1.138 126.5 253.0 250 25012 16172 10065 0.447 0.722 1.120

0.569 126.5 189.8 1500 8067372 963016 3246250 0.448 0.725 1.121

0.854 158.1 253.0 125 152583 53622 30063 0.449 0.728 1.127

0.569 189.8 253.0 125 2375031 290439 188072 0.449 0.729 1.128

0.668 73.8 147.6 1250 5481780 1410099 5444514 0.449 0.730 1.128

0.994 110.7 221.4 500 100656 49600 54824 0.456 0.744 1.141

1.193 126.0 252.0 250 26085 13506 4652 0.470 0.771 1.218

0.597 126.0 189.0 250 8413327 804250 1500592 0.470 0.771 1.218

0.895 157.5 252.0 125 159615 44782 12105 0.471 0.775 1.233

0.597 189.0 252.0 125 2493325 242556 62118 0.471 0.776 1.236

0.682 72.0 144.0 1000 6924514 1431953 3669625 0.471 0.777 1.236

1.023 108.0 216.0 500 129496 48809 34690 0.477 0.791 1.257

1.276 131.9 263.7 250 16077 8447 1508 0.499 0.834 1.494

0.957 164.8 263.7 125 94865 28007 125599 0.501 0.840 1.495

0.638 197.8 263.7 125 1420509 151698 1022624 0.501 0.841 1.495
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Cont. Table D.8 

 
max     m     max         n              MN     SWTN         GN        MF         SWTF      GF  

x 10-3 

F2 

F3 

F4 

F7 

F8 

G2 

G3 

G4 
 

0.721 61.0 122.0 1000 32744787 2260010 20777085 0.501 0.842 1.495

1.078 91.3 182.5 500 700408 78954 262676 0.502 0.851 1.498

1.352 143.0 286.0 250 6656 4733 555 0.556 0.926 2.142

1.014 178.8 286.0 125 36531 15692 1224105 0.561 0.938 2.142

0.676 214.5 286.0 125 502237 84994 13792369 0.561 0.940 2.142

0.751 50.7 101.4 1000 180139165 4122780 # 0.561 0.940 2.142

1.130 76.2 152.5 500 4007352 137444 1974338 0.561 0.945 2.142

1.418 153.1 306.2 250 3115 2920 232 0.676 1.068 3.679
 

   E4 - visible cracking (García 2008) 
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Table D.9 Config. #19 

 
max       m     max         n           MN      SWTN        GN           MF          SWTF      GF  

 

x 10-3 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

B2 

B3 

B4 

B6 

B7 

B8 

C2 

C3 

C4 

C6 

C7 

C8 

D2 

D3 

D4 

D6 

D7 

D8 

E2 

E3 

E4 

E7 

E8 

1.110 113.5 226.9 2000 78109 28240 16622 0.037 0.101 0.172

1.138 129.7 259.3 3500 19251 14597 10066 0.296 0.444 0.669

1.138 129.5 259.0 1000 19490 14667 10066 0.370 0.541 0.811

1.138 129.6 259.2 250 19330 14620 10066 0.388 0.566 0.846

0.285 97.2 129.6 2000 3544579326 84689261 # 0.388 0.566 0.846

0.569 129.6 194.4 2000 6234783 870609 3246626 0.389 0.569 0.847

0.854 162.0 259.2 125 115681 48477 30067 0.390 0.573 0.853

0.569 194.4 259.2 125 1760962 262570 188103 0.390 0.573 0.854

0.717 81.0 162.0 2500 2241152 710451 2600197 0.392 0.578 0.855

1.070 121.5 243.0 750 38277 24758 23178 0.420 0.622 0.901

1.138 129.7 259.3 250 19251 14597 10066 0.438 0.646 0.937

0.569 129.7 194.5 1750 6209151 869211 3246626 0.439 0.649 0.938

0.854 162.1 259.3 125 115169 48399 30067 0.440 0.653 0.944

0.569 194.5 259.3 125 1752539 262148 188103 0.440 0.653 0.945

0.683 77.8 155.6 1250 3308035 1030374 4032136 0.441 0.655 0.945

1.029 116.7 233.4 750 58384 34478 38715 0.459 0.686 0.973

1.165 128.7 257.4 250 20822 13650 6809 0.476 0.712 1.025

0.583 128.7 193.1 1500 6715998 812833 2196121 0.477 0.715 1.026

0.874 160.9 257.4 125 125309 45260 19001 0.478 0.719 1.035

0.583 193.1 257.4 125 1920002 245145 107916 0.478 0.720 1.037

0.683 75.1 150.1 1250 4650636 1190193 3979737 0.479 0.721 1.038

1.017 112.6 225.2 500 84309 41865 38102 0.487 0.738 1.056

1.234 135.1 270.1 250 12418 8787 2669 0.516 0.779 1.190

0.617 135.1 202.6 250 4005333 523274 860746 0.516 0.779 1.191

0.926 168.8 270.1 125 71797 29137 6225 0.518 0.786 1.219

0.617 202.6 270.1 125 1049751 157816 27148 0.519 0.787 1.226

0.650 77.2 154.3 1000 3573061 1305633 2378267 0.519 0.788 1.226

0.975 115.8 231.5 500 63460 44503 20870 0.530 0.804 1.261

1.302 141.4 282.7 250 7561 5812 1067 0.578 0.865 1.595

0.977 176.7 282.7 125 41954 19269 2036 0.582 0.875 1.683

0.651 212.0 282.7 125 584373 104371 6492 0.582 0.876 1.711
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Cont. Table D.9 

 
max     m     max         n              MN     SWTN         GN        MF         SWTF      GF  

x 10-3 

F2 

F3 

F4 

F7 

F8 

G2 

G3 

G4 

G7 

G8 

H2 

H3 

H4 

H7 

H8 

I2 

I3 

I4 

I7 

I8 

J2 

J3 

J4 

J7 

J8 

K2 

K3 

K4 
 

0.643 65.1 130.2 1000 17866580 2778027 14362266 0.582 0.877 1.711

0.962 97.7 195.3 500 356943 95840 166848 0.584 0.884 1.715

1.370 147.7 295.4 250 4655 3914 435 0.661 0.975 2.537

1.028 184.6 295.4 125 24748 12978 663 0.668 0.989 2.806

0.685 221.6 295.4 125 327540 70297 1452 0.669 0.992 2.929

0.632 54.3 108.5 1000 96693722 6366641 91135018 0.669 0.992 2.929

0.951 81.4 162.8 500 2139699 214724 1328907 0.669 0.995 2.930

1.439 154.1 308.1 250 2906 2676 178 0.792 1.129 4.941

1.079 192.6 308.1 125 14778 8874 209 0.804 1.149 5.793

0.720 231.1 308.1 125 185402 48067 289 0.805 1.153 6.412

0.628 44.8 89.5 1000 556780502 14583254 # 0.805 1.153 6.412

0.938 67.1 134.3 500 13382532 507213 10429728 0.805 1.154 6.412

1.467 158.1 316.1 250 2173 2220 123 0.969 1.315 9.326

1.100 197.6 316.1 125 10740 7360 129 0.986 1.339 10.715

0.734 237.1 316.1 125 130113 39865 141 0.987 1.344 11.978

0.621 36.6 73.3 1000 3351541230 35352069 # 0.987 1.344 11.978

0.931 54.9 109.9 500 86346366 1205309 80604937 0.987 1.344 11.978

1.496 162.1 324.1 250 1633 1844 84 1.206 1.538 16.223

1.122 202.6 324.1 125 7837 6113 78 1.229 1.567 18.518

0.748 243.1 324.1 125 91579 33108 66 1.231 1.573 21.210

0.813 29.8 59.5 1000 # 27305201 # 1.231 1.573 21.210

1.217 44.6 89.3 500 571133133 938931 # 1.231 1.574 21.210

1.525 166.1 332.1 250 1232 1537 58 1.521 1.806 27.361

1.144 207.6 332.1 125 5740 5098 47 1.552 1.841 31.158

0.763 249.1 332.1 125 64625 27610 30 1.554 1.847 37.043

0.821 24.0 48.1 1000 # # # 1.554 1.847 37.043

1.234 36.1 72.1 500 # 2155261 # 1.554 1.848 37.043

1.553 170.1 340.1 250 934 1291 40 1.937 2.124 45.962
 

   K - first failure observed (García 2008) 
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Table D.10 Config. #20 

 
max       m     max         n           MN      SWTN        GN           MF          SWTF      GF  

 

x 10-3 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

B2 

B3 

B4 

B6 

B7 

B8 

C2 

C3 

C4 

C6 

C7 

C8 

D2 

*D3 

1.138 128.9 257.8 2000 20439 14942 1814 0.140 0.191 0.284

1.138 129.9 259.8 3500 18874 14485 1631 0.405 0.536 0.781

1.138 128.9 257.8 1000 18874 14942 1631 0.474 0.632 0.923

1.174 128.5 257.0 250 18874 13305 1631 0.491 0.659 0.977

0.294 96.4 128.5 2000 3466429783 77071741 674296866 0.491 0.659 0.977

0.587 128.5 192.8 2000 6087747 792301 525979 0.492 0.663 0.978

0.881 160.6 257.0 125 112748 44116 3427 0.493 0.667 0.988

0.587 192.8 257.0 125 1712712 238953 12728 0.493 0.667 0.990

0.740 80.3 160.6 2500 2193298 646549 600911 0.495 0.673 0.992

1.104 120.5 240.9 750 37390 22531 4030 0.520 0.720 1.062

1.219 129.3 258.6 250 18874 11085 1631 0.538 0.753 1.152

0.610 129.3 194.0 1750 6087747 660076 525979 0.539 0.756 1.154

0.914 161.6 258.6 125 112748 36754 3427 0.540 0.761 1.171

0.610 194.0 258.6 125 1712712 199075 12728 0.540 0.762 1.175

0.731 77.6 155.2 1250 3249854 782463 949521 0.541 0.764 1.176

1.102 116.4 232.7 750 57273 26183 7006 0.559 0.805 1.242

1.229 130.6 261.2 250 17795 10274 1507 0.579 0.840 1.343

0.615 130.6 195.9 1500 5739707 611804 485989 0.579 0.844 1.345

0.922 163.3 261.2 125 105827 34066 3112 0.581 0.849 1.366

0.615 195.9 261.2 125 1599181 184516 11244 0.581 0.850 1.370

0.721 76.2 152.4 1250 4040711 895837 1221585 0.581 0.852 1.371

1.073 114.3 228.6 500 72439 31511 9467 0.591 0.874 1.405
 

 * first failure observed (García 2008) 
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Table D.11 Config. #21 

 
max       m     max         n           MN      SWTN        GN           MF          SWTF      GF  

 

x 10-3 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

B2 

B3 

B4 

B6 

B7 

B8 

C2 

C3 

C4 

C6 

C7 

C8 

D2 

*D3 

1.138 131.4 262.7 2000 16746 13826 10065 0.171 0.207 0.284

1.138 131.4 262.7 3500 16746 13826 10065 0.469 0.568 0.781

1.138 131.4 262.7 1000 16746 13826 10065 0.555 0.672 0.923

1.138 131.5 262.9 250 16610 13782 8714 0.576 0.698 0.964

0.285 98.6 131.5 2000 3076540827 79832560 # 0.576 0.698 0.964

0.569 131.5 197.2 2000 5357362 820682 2810456 0.577 0.701 0.965

0.854 164.3 262.9 125 98255 45697 25393 0.578 0.705 0.972

0.569 197.2 262.9 125 1475615 247512 153424 0.578 0.706 0.973

0.717 82.2 164.3 2500 1954084 669709 2309980 0.580 0.711 0.974

1.070 123.2 246.5 750 32977 23338 20167 0.613 0.757 1.027

1.152 134.7 269.3 250 12822 11848 6144 0.641 0.787 1.086

0.576 134.7 202.0 1750 4135756 705545 1981741 0.641 0.791 1.087

0.864 168.3 269.3 125 74325 39286 16831 0.644 0.795 1.097

0.576 202.0 269.3 125 1089991 212788 93084 0.644 0.796 1.099

0.691 80.8 161.6 1250 2298050 836363 2706747 0.645 0.798 1.100

1.041 121.2 242.4 750 39334 27986 24297 0.672 0.836 1.144

1.151 134.6 269.2 250 12874 11910 6215 0.700 0.866 1.202

0.576 134.6 201.9 1500 4152374 709200 2004458 0.700 0.869 1.203

0.863 168.3 269.2 125 74647 39489 17060 0.702 0.874 1.213

0.576 201.9 269.2 125 1095132 213890 94627 0.703 0.875 1.215

0.675 78.5 157.0 1250 3027048 1038448 3700281 0.703 0.877 1.216

1.005 117.8 235.6 500 53003 36527 35003 0.717 0.896 1.236

 * first failure observed (García 2008) 
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Table D.12 Config. #24 

 
max       m     max         n           MN      SWTN       MF          SWTF    

x 10-3 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

B2 

B3 

B4 

B6 

B7 

B8 

C2 

C3 

C4 

C6 

C7 

C8 

D2 

D3 

D4 

D6 

D7 

D8 

E2 

E3 

E4 

E7 

E8 

0.874 118.0 235.9 2000 52189 64893 0.055 0.044 

1.138 129.2 258.3 3500 20061 14834 0.304 0.381 

1.138 128.9 257.8 1000 20480 14954 0.374 0.477 

1.138 129.0 257.9 250 20396 14930 0.391 0.501 

0.285 96.7 129.0 2000 3726839595 86482235 0.391 0.501 

0.569 129.0 193.4 2000 6578473 889041 0.392 0.504 

0.854 161.2 257.9 125 122553 49503 0.393 0.507 

0.569 193.4 257.9 125 1874378 268129 0.393 0.508 

0.717 80.6 161.2 2500 2352644 725493 0.395 0.513 

1.070 120.9 241.8 750 40350 25282 0.421 0.555 

1.212 129.6 259.2 250 19330 11245 0.440 0.587 

0.606 129.6 194.4 1750 6234783 669610 0.440 0.591 

0.909 162.0 259.2 125 115681 37285 0.442 0.596 

0.606 194.4 259.2 125 1760962 201950 0.442 0.597 

0.727 77.8 155.5 1250 3320306 793764 0.442 0.599 

1.096 116.6 233.3 750 58618 26561 0.461 0.639 

1.346 144.3 288.6 250 6025 4643 0.520 0.716 

0.673 144.3 216.5 1500 1943220 276464 0.521 0.724 

1.010 180.4 288.6 125 32778 15394 0.526 0.735 

0.673 216.5 288.6 125 445974 83380 0.527 0.738 

0.790 84.2 168.3 1250 1544946 404814 0.528 0.742 

1.176 126.3 252.5 500 25516 14239 0.556 0.792 

1.439 153.8 307.5 250 2970 2698 0.676 0.924 

0.720 153.8 230.6 250 958027 160677 0.677 0.927 

1.079 192.2 307.5 125 15139 8947 0.688 0.947 

0.720 230.6 307.5 125 190417 48459 0.689 0.950 

0.822 87.9 175.7 1000 1017396 286083 0.691 0.955 

1.233 131.8 263.6 500 16170 9751 0.735 1.029 

1.507 163.4 326.7 250 1490 1730 0.975 1.235 

1.130 204.2 326.7 125 7080 5735 1.000 1.266 

0.754 245.0 326.7 125 81748 31062 1.002 1.272 
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Cont. Table D.12 

 
max     m     max         n              MN     SWTN        MF      SWTF    

x 10-3 

F2 

F3 

F4 

F7 

F8 

G2 

G3 

*G4 
 

0.851 74.1 148.3 1000 5247994 502175 1.002 1.275 

1.273 111.2 222.4 500 96037 17325 1.010 1.316 

1.570 171.8 343.5 250 831 1183 1.440 1.618 

1.178 214.7 343.5 125 3704 3923 1.488 1.663 

0.785 257.6 343.5 125 39474 21251 1.492 1.672 

0.872 61.8 123.6 1000 29169863 970329 1.492 1.673 

1.312 92.7 185.3 500 602436 32726 1.494 1.695 

1.630 179.5 358.9 250 494 843 2.217 2.119 
 

 first failure observed (García 2008) 
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E. Fatigue Damage Results for the Proposed Parameter Estimation Method 

 

Table E.1 Fatigue damage calculated at the middle of the loading sublevel in which 

failure was observed by García (2008). 

Config. # SWTF Load level 

3 0.964 D4 

4 1.000 F3 

5 1.035 H 

6 1.075 F3 

13 1.041 E4 

15 0.948 C 

17 1.000 I4 

18 1.000 ~G8 

19 1.089 K 

20 0.996 D3 

21 1.000 D3 

24 0.948 G4 
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