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Mayagüez Campus

2006

Approved by:
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ABSTRACT

RECOVERY OF CLIENT QUERY WORK IN THE

NETTRAVELER MIDDLEWARE SYSTEM

By

Elliot Arturo Vargas-Figueroa

This thesis presents NetTraveler, a Database Middleware System for Wide Area Networks

that is designed to efficiently run queries over sites that are either mobile clients or enterprise

servers. NetTraveler is designed to cope with dynamic Wide Area Networks where data sources

go off-line, change location, have limited power capabilities, and form ad-hoc federations of sites.

This thesis presents how NetTraveler can continue running a query when the client posing the

query leaves, and then delivers the query results when the client returns. This thesis presents

an implementation experience of NetTraveler using Web Services. The ideas of the design and

implementation choices of NetTraveler are validated with a preliminary performance study. This

study shows that NetTraveler can complete more queries per unit of time than middleware systems

that cannot gracefully recover from contingencies during query execution caused by a client leaving

the system. This study also shows that NetTraveler can handle a larger query load when compared

to solutions based on previous approaches.
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RESUMEN

RECUPERACION DE CONSULTAS SOMETIDAS POR

CLIENTES EN EL SISTEMA TIPO MIDDLEWARE

NETTRAVELER

Por

Elliot Arturo Vargas-Figueroa

Esta tésis presenta a NetTraveler, un Sistema de Bases de Datos tipo “Middleware” para

Redes de Cobertura Amplia que esta diseñado para ejecutar eficientemente consultas que accesan

fuentes de datos que residen en clientes móviles o servidores de nivel empresarial. NetTraveler esta

diseñado para manejar Redes de Cobertura Amplia que son dinámicas, y en donde las fuentes de

datos se desconectan, cambian de localización, tienen limitaciones de potencia, y forman federa-

ciones de servidores de manera ad-hoc. Esta tésis presenta como NetTraveler puede continuar la

ejecución de una consulta cuando el cliente que somete la misma pierde su conexión de red, y como

los resultados son entregados al cliente cuando éste regresa. En ésta tésis también se detalla la

experiencia obtenida al implementar NetTraveler utilizando tecnoloǵıa de Servicios Web. Las ideas

del diseño y las decisiones de implementación sobre NetTraveler fueron validadas con un estudio

preliminar de rendimiento. Este estudio demuestra que NetTraveler puede resolver más consultas

por unidad de tiempo que un sistema de tipo “middleware” que no puede recuperarse de incontin-

gencias ocurridas durante la ejecución de una consulta causadas por un cliente que pierde conexión

al sistema. El estudio realizado también demuestra que NetTraveler puede manejar una carga de

consultas mayor en comparacion con soluciones basadas en otras métodologias.
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CHAPTER 1

Introduction

1.1 Overview

With the broad acceptance of mobile devices in our modern society, companies have been

forced to put more effort on the development of ever more powerful and accessible mobile devices.

Figure 1.1 depicts some of the top-notch mobile devices on the market. This new breed of devices,

ranging from laptops and Tablets PC to PDAs and smart cellphones, are designed with Internet

connectivity in mind and are capable of running all types of popular applications such as web

browsers, e-mail applications, word processors, spreadsheets and video games. However, the truly

revolutionary impact of these devices will come when they enable their users to have ubiquitous

access to the Internet from virtually anywhere a person can go. We are seeing now that the ever

increasing affordability of broadband and wireless technologies is making this once utopian dream

a tangible reality.

We are seeing that mobile computing devices have a dual role for their users as client

of modern networked environments. First, they continue to act as the client sites that run the

applications used to obtain content from the Internet. Second, they have become valuable sources

of information that users need to carry out with them as they move across geographic locations.

We can find data sources containing very diverse data sets such as MP3 files, lists of appointments,

1
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Figure 1.1: Modern mobile devices

phone directories, sensor readings, relational data, and XML files, among others. Therefore, new

distributed systems that support seamless data access to these sources are needed. In particular,

we will need data integration systems to organize mobile sites into a coherent wide-area information

system, which also incorporates more traditional data sources (e.g. relational databases) that are

residing on enterprise servers.

Unfortunately, current data integration solutions are inadequate to support efficient data

integration of mobile clients over dynamic Wide-Area Networks (WANs), such as the one depicted

in Figure 1.2. On one side, most of the work done to support data processing for mobile clients view

clients as “couch potatoes”, whose only role is to help the users digest data periodically produced

by various data sources [1]. Work on mobile database systems, for example [2], has only dealt

with the problem of replicated data synchronization, and supporting transaction in the presence

of databases that might be off-line at the moment that a transaction related to them is to be

committed. The issue of efficient and reliable query processing for mobile databases has been just

barely scratched. On the other side, existing database middleware solutions for data integration

[3, 4, 5] are designed for rather static systems, based on enterprise servers that are always on-

line, on a fixed-location, with continuous power sources, configured and administered by teams of

professionals, and organized into slow-changing federations of cooperative sites.
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Figure 1.2: Next generation WAN
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This thesis presents NetTraveler, a Database Middleware System for WANs that is de-

signed to efficiently run queries over sites that are either mobile clients or enterprise servers, taking

into consideration the nature of clients and hosts for query processing purposes. NetTraveler is

designed to cope with dynamic WANs where clients and data sources go off-line, change location,

have limited power capabilities, and form ad-hoc federations of sites that work together to complete

a given task and then go about their business independently. NetTraveler treats mobile devices as

bonafide data source sites and copes with the realities of their environments.

1.2 Problem Statement

Mobile devices have special characteristics that make them different from typical (e. g.

Desktops) middleware client devices. They have power limitations, intermittent connectivity, can

move across locations and may get connected through pricey Internet links. Therefore, if mobile

devices are to be fully supported in Database Middleware Systems, there is a need for middleware

that can take into consideration the limitations of these devices and that can find ways of attending

their request in an appropriate fashion. Most of the existing Database Middleware Systems treat

all query requests with the same policies, regardless of the nature of the computing device that

is holding the client application. In this sense, the middleware has little awareness of the specific

requirements that clients have due to the nature of their software, hardware or network link.

Execution engines in current middleware solutions have no knowledge of the capabilities

of the client posing a query and will abandon all efforts in solving a query at the first sign of error.

This leads to slow response times as queries need to be re-started from scratch. This results in

wasted resources, a decrease in system throughput (defined as the amount of queries solved per

unit of time) and an overall unsatisfactory user experience. Moreover, if by any chance the client

device was using a pricey internet link, like a 3G connection, the user will also end up paying extra

money due to the amount of extra time needed to complete the query. In an environment where a

considerable number of clients are expected to reside in mobile devices, disconnection failures are

expected to occur often due to clients losing battery power, going temporarily offline or changing
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network location. That is, moving from one Local Area Network (LAN) to another LAN in the

same WAN.

The work developed so far that concerns query execution in Database Middleware Systems

has been geared towards finding efficient ways of executing queries given the distributed nature of

the system. However, none of the existing middleware systems have dealt with the problem of also

finding efficient ways to recover the query work performed before a failure in the system. Because

the execution engines of middleware systems have resembled query execution engines of classical

Database Management Systems (DBMS), they have not been designed with the idea of mobile

clients in mind. This traditional middleware query execution scheme is not fitted for a system that

expects to have a large amount of clients residing in mobile, power-limited devices.

1.3 Proposed Solution

The NetTraveler Database Middleware System is currently being developed at the Uni-

versity of Puerto Rico, Mayagüez Campus. It is being designed as a vehicle for the research of

three specific issues within the realm of middleware applications: 1) Context-aware query pro-

cessing, 2) Server-side and Client-side query recovery and 3) System self-configuration.

Context-aware query processing deals with the issue of finding the most efficient plan for solving

a query, taking into consideration the characteristics of the client device that is submitting the

query. The work done so far related to context-aware query processing has dealt with the issue

of solving a query based on geographical position of the client. NetTraveler intends to go beyond

this paradigm and take into consideration other parameters, such as the physical properties of a

device or specific rules set by the client, at the moment of query execution. For example, a query

in NetTraveler might look like this: Find the nearest restaurant to my current position taking into

consideration that I am a PDA with 25% of battery left and that I am using a pricey Internet link.

In this case, the system will try to solve the query as soon as possible, or will generate the results

for the client while the client is offline and will deliver the results when the client returns.



6

Server-side and client-side query recovery deal with the problem of completing the com-

putation of a query when a server or a client goes offline in the middle of query execution. Current

middleware systems will abandon the execution of a query at the first sign of error, causing the lost

of the system resources that were invested in the computation. If the query has to be completed, its

computation must be re-started from scratch. NetTraveler is intended to detect errors that occur

in the middle of query execution, recover from those errors and complete the computation of the

query. Recovery of the query work will allow NetTraveler to complete a query without the need of

re-starting it.

System self-configuration deals with the issue of forming networks and execution environ-

ments of mobile devices, in combination with full-fledged servers, in automatic fashion. Automatic

and efficient mechanisms are needed for the formation of reliable ad-hoc networks for areas lacking

a network infrastructure, such as a disaster site. Relying on site administrators to configure and

manage such ad-hoc execution environments will be in most cases impractical, if not folly.

By attacking these three specific areas, NetTraveler is intended to deal with the arrival

of mobile devices as important players in wide-area environments. NetTraveler is being built on

top of the Soap communication protocol using Web Services technology, and is the first middle-

ware system implemented with a connectionless oriented architecture. A connectionless oriented

architecture can help in improving the evaluation of queries where parallelism can be exploited

in distributed systems. More importantly, a connectionless oriented architecture has benefits over

its counterpart in an environment where many of the clients posing queries reside in mobile de-

vices, since a disconnection failure will not necessarily imply the abortion of a query. By having

a connectionless architecture, NetTraveler is able to brake the paradigm of connection oriented

query engines in middleware architectures and be the first middleware system with the notion of

“persistent queries”. That is, queries that are active (persist) beyond disconnection failures.

This thesis focuses on the issues related to client-side query recovery and “persistent

queries”. The issues of context-aware query processing, server-side query recovery and system self-

configuration are being, or will be, researched apart from this work. Therefore, they have being
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left out of the scope of this thesis. In this thesis we shall see the components needed to allow the

recovery of the work of a client that suffered a disconnection in the middle of query execution.

NetTraveler is composed by 5 server applications:

1. Registration Server (RS) - This server application advertises metadata that describes re-

sources such as: query operators, local tables, global tables, data types, CPU cycles, data

sources, network bandwidth, and so on. The RS is responsible of coordinating automatic

configuration of clients and servers that enter and leave a NetTraveler federation. Also, two

or more RSs work as peers to exchange metadata.

2. Query Service Broker (QSB) - This server application takes on the responsibility of finding

the computational resources to extract data from the data sources to answer the queries posed

by the clients. QSBs perform query related tasks and exhibit Peer-to-Peer functionality.

3. Information Gateway (IG) - This server application has the role of providing access to the

wealth of information contained in the data sources.

4. Data Synchronization Server (DSS) - This server application helps clients in caching query

results, obtaining extra disk space, and keeping synchronized copies of data natively stored

by a client which also happens to behave as a data source from time to time. A DSS can

become a proxy for a client, gathering the results intended for the client if the client goes

offline or experiences some type of failure.

5. Data Processing Server (DPS) - This server application provides a commodity service for

computational tasks during query processing. These tasks include query execution, sorting,

or any other type of specific computational operation required.

In NetTraveler, the issue of client-side query recovery is addressed by leveraging on the

system architecture to enable the rerouting of the client-side execution of a query. The goal of

this thesis is to build the necessary infrastructure to investigate if a middleware system capable of

re-starting queries that have been interrupted due to a disconnection failure in the client will allow

for a greater throughput, defined as the amount of queries solved per unit of time, than a system

that lacks this capability.
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NetTraveler is currently a read-only system, only queries that retrieve data from the data

sources are supported. Updates queries are not supported since distributed updates are complex

operations that are still being researched. The topic of distributed updates is out of the scope

of this thesis. For the purpose of this work, it is assumed that each data source is administered

independently and that administrators take on the responsibility of updating the data sources.

1.4 Possible NetTraveler Applications

In this section, we shall see two sample scenarios that show possible applications that

could be built using the NetTraveler Middleware System. The scenarios are purely conceptual, and

a lot of technical implementation details are omitted for simplicity. The main purpose of these

examples is to help visualize the usefulness of NetTraveler.

1.4.1 City Guide Application

In this first scenario, we have a city that is covered by a broadband network managed by

the city administration. The administration has decided to implement an interactive city guide

application based on NetTraveler. The administration will provide the Registration Servers (RSs),

the Query Service Brokers (QSBs) and some Data Synchronization Servers (DSSs). Other DSSs

will be provided by private entities that might impose fees for extra services, like differentiated disk

space sizes, and bandwidths greater than those provided by the city administration. Information

Gateways (IGs) will be run by businesses, like restaurants, hotels and coffee shops, to expose their

services and products in the city guide. Examples of possible services or products to advertise are

dinner plate specials or rebates for electronic devices.

NetTraveler enabled client devices will automatically register themselves with an RS in the

city guide application when they enter the city federation. Once a client is configure, an interface

will be used to submit queries to the system and search for available services and products. Since

many of the clients of the city guide application are expected to be handheld devices like PDAs
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and cellphones, context-aware query processing can be used to enhance these clients experience.

For example, a user could search for services that are close to its geographical location, or could

specify that results should be returned under 1 minute or else the query should be aborted.

Let us assume that one of the services provided by the city guide application searches

for dinner plates at restaurants, makes a comparison between them based on parameters specified

by clients, and returns results sorted by relevance. Assuming that a client asks for a comparison

between the available dinner plates of all the american food restaurants in the city, and that the

city is medium- to large-sized, such query is likely to access an amount of data sources ranging in

the hundreds, which could make this query to take a considerable amount of time to complete. It

is unlikely that a user with a cellphone will wait for more than a minute for this query to complete.

In part because the user is most likely being charged extra money for accessing the Internet with

the phone, but mainly because waiting for a long period of time for this type of query is not worth

the hassle. After all, there are restaurant in almost every corner of a city, and appetite preferences

are easily suppressed.

Nonetheless, let us suppose that a female tourist has planned a day trip that ends with

dinner at an american food restaurant. With NetTraveler, she can submit the query in the morning,

and specify that she wishes the results to be handled by her DSS. The user will submit the query,

go about her day trip and, when dinner time is at hand, communicate with the DSS and retrieve

the results from it. The user could narrow the search further once the results are cached in the

client device. For example, the user can ask the client application to show only restaurants that

are close to her current location.

Finding dinner plates is just but an example of all the services that can be provided by

a NetTraveler-based city guide. Another service could be to have super markets to expose their

products and be able to compare the prices of meat, vegetables and other goods. A user could

submit the query before going to work in the morning, and then retrieve the results from her/his

DSS in the afternoon and decide the best market to buy from after work.
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1.4.2 Mail Delivery Tracking System

In this second scenario, we have a mail delivery company that has decided to track their

vehicles during the coverage of their delivery routes. The company is interested in monitoring the

current position of vehicles (and therefore of the packages they carry) not only when they arrive

at a delivery/pick-up station, but also when the vehicles are on the road. By implementing this

system, the company expects to measure, with good accuracy, the efficiency of their delivery system

and also expects to have a more accurate feedback system for itself and for its clients.

The company decided that each driver will carry a NetTraveler enabled handheld device

with satellite Internet connectivity and a Global Positioning System (GPS) receiver for the purpose

of implementing this system. The status of each package (e.g. delivered, on-route, etc.) on each

vehicle will be stored in a database on each device. Information Gateways (IGs) will be run in the

devices to give access to the information in their databases. The purpose of the devices is hence

twofold: (1) using the GPS in the devices, a map system will built and images of the vehicles will be

superimpose to have a visual image of the current position of each vehicle and (2) the system will

periodically query the devices in the vehicles to gather the status of packages. This way the company

expects to have almost realtime status of their vehicles and of packages. Using the devices in the

vehicles as data sources is different than the “classic” approach where devices broadcast their status

periodically whenever they get network connectivity. With NetTraveler, devices can be queried as

needed, avoiding the waste of resources in terms of bandwidth and battery consumption caused by

broadcast systems in mobile devices.

It is worth nothing that the data sources in the vehicles are mobile, and might be unreach-

able when the mail delivery tracking application tries to access them. To deal with this issue, IGs

running in the mobile devices will register themselves with the nearest Registration Server (RS) in

the mail delivery tracking application when they enter the federation. Every time the IGs register,

network routes for each device will be calculated to allow the devices in the vehicles to be queried.

Also, Data Synchronization Servers (DSSs) will be used to cache the data from the devices in the
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vehicles every time they enter the NetTraveler federation of the mail delivery tracking system. This

way, if a data source is not available at the moment of query execution, data from a DSS can be

used instead of the original data source.

The mail delivery tracking system will update the status of vehicles periodically in an

automatic fashion. Maybe every hour, the system will update the current location of all vehicles

using GPS and queries will be submitted to update the status of packages. If a query is submitted

to find the status of the packages being carried by a specific vehicle, and the device in the vehicle

is unreachable, and there is no DSS replicating the information of the device, the query can be

put in a suspended state until the device can be reached. This way, queries do not need to be re-

submitted for every vehicle that is unavailable. Clients of the mail delivery company could see the

exact location of their packages by using a Web-based interface. Nonetheless, for security reasons,

the mail delivery company could decide to show approximate locations and packages status through

the Web interface and use accurate locations and package status for internal purposes.

1.5 Objectives of this Thesis

The main goals of this thesis are:

• The design and implementation of the first components of the NetTraveler Middleware System

that will serve as the building blocks upon which the rest of the components, algorithms and

proposed objectives of the NetTraveler project will be developed.

• To implement the first connectionless query execution for a Database Middleware System.

This query engine will be used in further research issues concerning NetTraveler.

• The implementation of a client-side query recovery mechanism based on the connectionless

execution engine. This mechanism will enable a client that has suffered a failure that forced

it to lose network connectivity to complete the execution of a query without re-starting it.

• Investigate if a Database Middleware System capable of recovering the query work of a client

is able to solve more queries per unit of time than a system without this capability.
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1.6 Contributions

The major contributions of this thesis can be summarized as follows:

• The NetTraveler Architecture is presented and arguments are made about its benefits for sup-

porting query processing in Wide Area Networks. It is shown how NetTraveler can continue

running a query when the client leaves, and then delivers the query results when the client

returns.

• An implementation experience of NetTraveler using Web services is presented. To the best

of the author’s knowledge, no other query execution engine has been implemented in this

fashion.

• A preliminary performance study is carried out to start validating the design and implemen-

tation choices of NetTraveler. This study shows that NetTraveler can complete more queries

per unit of time than middleware systems that cannot recover from contingencies during query

execution caused by clients leaving the system. This study also shows that NetTraveler can

handle a larger query load when compared to solutions based on previous approaches.

1.7 Thesis Structure

The remainder of this thesis is structured as follows. Chapter 2 presents a survey of

the more relevant work related to this thesis. In Chapter 3, the NetTraveler system is presented

from an architectural point of view and each of the NetTraveler components is introduced and

explained in detail. Chapter 4 discusses the implementation details of NetTraveler, emphasizing in

the implementation of the client-side query recovery. Chapter 5 presents the experiments and the

results obtained. Finally, Chapter 6 presents the final conclusions and directions regarding future

work.



CHAPTER 2

Related Work

This chapter presents relevant work in the areas that form the basis of this thesis. These

areas include: Distributed Database Systems, Database Middleware Systems and Peer-to-Peer

Systems. An extensive amount of work has been carried out in these fields, hence this chapter

discuss only the works that are more important to this thesis.

2.1 Distributed Database Systems

A Distributed Database System is form by a collection of Database Management Sys-

tems (DBMS) that are physically apart and connected via a computer network. These Database

Management Systems have agreed to form a federation of sites that share their collections of data

and query processing capabilities. Several Distributed Database Systems have been prototyped in

the last decades; from among the most interesting we have R* [7] by IBM, Distributed Ingres [8]

developed by the Univeristy of California at Berkley, and Mariposa [9] developed by the Univeristy

of California at Berkley. Figure 2.1 shows the typical architectural organization of a Distributed

Database System.

In general, the following assumptions are made by the majority of the Distributed Database

Systems:

13
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Figure 2.1: Typical Distributed Database Architecture

• All sites are independent from one another and autonomous. No central authority dictates

what data should be stored at each site or how it should be accessed.

• All sites follow the same data model, typically the relational model.

• All sites run the same DBMS software or a DBMS for which there is a common communication

protocol like ODBC [10].

• Users should be able to ask queries without knowing or specifying where the relations are

located.

• Users should be able to perform transactions that affect data at several sites just as they

would execute transactions over a local Database Management System.

• The effects of a transaction across sites should be atomic; all the changes persist if the

transaction commits and none persist if it aborts.

The early Distributed Database Systems, like R*, assumed that all sites were full-fledged database

servers. Latter on, an approach in which the DBMS was divided into a client-server architecture

was introduced. In this architecture the server, or back-end component, is responsible for managing

the data and executing transactions. Meanwhile, the client, or front-end component, has the role

of interacting with users, requesting data from one or more servers. Servers are run in machines



15

with very fast disks, multiple processors and lots of memory, while clients are run on a vast array

of machines ranging from workstations all the way to handheld devices. Almost all of the existing

commercial DBMS (Oracle, IBM and Microsoft) follow this architecture. This client-server DBMS

architecture became the most studied in the past two decades because of its simplicity of imple-

mentation due to the clear separation of functionality between client and server. The bulk of the

work done has been related to server-side replication and client-side caching techniques ([11, 12]).

The idea behind these techniques is to minimize communication costs by reducing network access.

Query optimization techniques in Distributed Database Systems have resembled that of

traditional DBMSs, pioneered by the System R prototype [13] developed by IBM. This optimization

strategy, described in [14], is based on dynamic programming and follows a cost-based model to

calculate total resource consumption for a query. Each operator in the plan is given a cost and the

overall cheapest plan, calculated by adding the cost of each operator, is always selected. In a typical,

single-site DBMS the cost estimate is dominated by disk access time. In a distributed environment,

however, other factors such as communication costs and differences in local computational costs

must also be taken into consideration. The R* prototype system was one of the very first to

introduced these additional factors into the cost model. The “classic” cost-model has been proven

useful in optimizing the overall throughput of a system. However, this type of optimizer will

not always find the plan with the lowest response time for a query in cases where the machines

are lightly loaded and the communication channel is fast, since it cannot take into consideration

intraquery parallelism [15]. Intraquery parallelism occurs when a query plan has several operators

that can be evaluated in parallel because they can be evaluated at different sites. Figure 2.2

shows a plan that exhibits intraquery parallelism. Another model that does take into consideration

intraquery parallelism is the response-time model [15]. This model has been successfully used for

query optimization in [16].

The main issue in distributed query execution has been finding the optimum location

for the execution of each query operator. The first Distributed Database Systems started using

two techniques to evaluate operators: query shipping and data shipping. In query shipping all
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Figure 2.2: Distributed query plan that exhibits intraquery parallelism

operators are executed at the site where the data resides and join operations between relations

stored at different sites must be evaluated using some distributed join algorithm like the semi-

join [17] or the 2-way semi-join [18] operators. Query shipping reduces the amount of data sent

over the network but might cause the servers to become overloaded because the amount of data

processing. The exact opposite of this strategy is data-shipping where all operators are evaluated

at the client machine. All data is gathered from the servers and cached in the client’s main memory

or disk. Cached data is used to execute subsequent queries, off-loading the servers, but increasing

the amount of load in the communication network because the data is being transmitted “raw”.

The work in [16] argues that none of this strategies is the best policy in all situations and combines

both approaches into a hybrid-shipping architecture. Experiments showed that the performance

of hybrid-shipping is superior, or at least equal, to that of the other two policies. Garlic [5] and

MOCHA [3] are both systems that employ hybrid-shipping.

2.2 Database Middleware Systems

The goal of a Database Middleware System is to integrate data sources with very different

characteristics in terms of data model, database server and query processing capabilities. Database
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Middleware Systems follow an architecture that provides seamless access and an unified view of

the data. This means that the data sources accessed by a single Database Middleware System

might include relational database servers, object-relational database servers, file systems (e.g. Mac

OS, Linux, Windows), Web servers, image servers, and many others. The middleware architecture

is designed to allow a single query to span these data sources without requiring every source to

be capable of managing multi-site execution strategies. Middleware systems have been attractive

when integrating legacy systems or systems whose capabilities cannot be further extended. Figure

2.3 depicts the architecture commonly employed by Database Middleware Systems.
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Translator

Client
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XML

Translator

Text Files
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Figure 2.3: Typical Middleware Database System Architecture

The Database Middleware System is implemented as a layer of software between the clients

and the data sources. This layer of software is a special server, typically called the integration server,

that coordinates the execution of queries over several independent data sources. The integration

server typically executes relational query operators (e.g. joins, selections, projections) over the

data obtained from the sources. In its most basic form, the middleware can be made by software
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modules known as database gateways. A database gateway allows a single-site DBMS to access data

managed by other database servers, typically from other vendors, and used this data as if it has

come from its local tables. Thus, the DBMS acts as the integration server for its clients. Database

gateways are provided by the major database vendors such as Oracle [19] and Sybase [20].

Another type of middleware implementation is the mediator type. In this system, a server

application known as the mediator acts as the integration server for the clients. The mediator is

specifically designed to handle data translation and schema mapping, and it provides many of the

services of a typical DBMS such as query parsing, query optimization and query execution. The

mediator also provides a common data model required to resolve conflicts between different schemas

used by the data sources. To retrieve the data from the data sources the meditator uses another

piece of software known as the wrapper. Wrappers typically reside as a stand-alone application or

stored procedure near the data sources. They receive requests from the mediator and convert them

into queries or procedure calls that the data source can handle in order to get the data needed. Data

retrieved from the data sources are translated from the local schema of the data source to the global

schema imposed by the mediator before being transferred to the mediator for further processing.

Some example of mediator systems are Pegasus [21], TSIMMIS [4], Garlic [5] and MOCHA [3].

Query optimization has not received as much emphasis as data integration in the context

of middleware applications. The vast majority of the query processing typically occurs at the

integration server with little or no data processing at the data sources. The most extensive work

in query optimization in middleware systems has been performed by the Garlic and the MOCHA

projects. In Garlic, a dynamic optimization framework in which the wrappers cooperate with

the mediator to determine the capabilities of a data source is proposed. Any operator that the

data source can execute is “pushed” for execution at the data source and operators that are not

available at the data source are evaluated by the mediator. In MOCHA a cost-based optimization

is used where each query operator is assigned a cost named the Volume Reduction Factor. This

factor determines the amount of data to be transmitted through the network after applying a

query operator. If the amount of data after applying a query operator is less that the amount of
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data before, the operator is evaluated at the data source. Meanwhile, if the amount of data after

applying a query operator is greater that the amount of data before, the operator is evaluated at

the mediator. MOCHA employs an extension of the hybrid-shipping query evaluation technique

called code-shipping. In code-shipping, the code needed to execute an operator is sent to the data

source if the data source lacks the capability to execute the given operator.

2.3 Peer-to-Peer Systems

In a Peer-to-Peer (P2P) system there is no centralized authority that dictates how the

resources of each computer in the network are utilized. Each computer is totally independent from

the others and computers can communicate, exchange information and share resources with each

other without the need of any type of centralized coordination authority. A computer in a P2P

network can act as a server at a given time and as a client at another time. Furthermore, because

P2P systems lack a centralized server they minimize system bottlenecks and eliminate single points

of failure. Depending on how the P2P network is constructed it can be unstructured or structured.

An unstructured P2P network is formed in a pure ad hoc fashion using a protocol like Gnutella

[22]. A structured P2P network is formed by following strict rules, and the resulting topology of the

network is one that is controlled. Chord [23] is a P2P system that exhibits a structured formation.

P2P systems have been mainly used in the context of content distribution. A P2P content

distribution system “creates a storage medium that allows for publishing, searching, and retrieval

of files by members of its network”, as defined in [24]. Many content distribution systems are

currently deployed, and by far the most famous are used for file sharing. Examples of such systems

include Limewire [25], Kazaa [26] and eMule [27]. Another type of P2P system that has also gain

much popularity is related to distributed computation. Distributed computation P2P systems are

aimed at taking advantage of available CPU time by breaking down a computer-intensive task into

small units of work which are distributed to different peers in the network. Each peer will compute

a given task and return the results to the task originator. The most famous of this type of P2P

systems currently deployed is the Seti@home [28] project.
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In the context of query processing, P2P systems have been used to perform searches over

wide area networks organized as very large P2P networks. The work in [29] proposes a P2P system

for searching data over the Internet using an XML search engine. Nodes in the network exchange

messages and advertise their data contents using XML messages. Peers maintain indexes (the peer

index ) of data stored in other peers to speed searches up. A peer in the network cannot know every

other peer in the network for scalability reasons. Hence, the number of peers that each peer in the

network knows is limited by enforcing horizons. The horizon of a peer is the maximum number

of peers with which it will communicate. Other works related to databases and P2P networks

include the work in [30]. Here, the authors proposed the Local Relation Model. In this model it

is assumed that the set of all data in a P2P network consist of local databases, each with a set of

“acquaintances” (peers). For each pair of peers there are translation rules between data items and

semantic definitions of dependencies between the databases of each peer. The main goal of this

data model is to support semantic interoperability in the absence of a global schema.



CHAPTER 3

NetTraveler Architecture

3.1 Overview

This chapter presents the NetTraveler Middleware System from an architectural point

of view. It starts by presenting how Wide Area Networks (WANs) are modeled in NetTraveler.

Then, the NetTraveler components and their corresponding roles are explain in detail. Finally, this

chapter discusses the query execution framework of NetTraveler and gives an overview of query

execution.

3.2 Architecture Overview

NetTraveler is a middleware system designed for Wide Area Networks (WANs). WANs are

modeled in NetTraveler as a collection of applications H = {h1, h2, ..., hn}, each having a specific

role in helping a client to solve a given query. The collection of applications H is running on host

computers spread over a group of LANs that conform the entire WAN environment, as shown in

Figure 3.1. These LANs can be made of wired or wireless technologies, such as Ethernet, DSL,

IEEE 802.11b, and 3G networks.

From the set H we have a subset of applications C = {c1, c2, ..., ci}, i < n, which have

21
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client capabilities to submit queries. These capabilities come from running a given interface (most

likely a GUI) that the end-user can use to pose queries to the system. The data to answer those

queries comes from another subset S ⊂ H known as the data sources S = {s1, s2, ..., sj}, j < n.

Each data source s ∈ S is an application such as a DBMS, Web Server, XML-based data server, or

some other customized server application. When a client c ∈ C needs to pose a query to sources in

S, it needs to contact a server application known as the Query Service Broker.

A collection of Query Service Brokers (QSBs) B ⊂ H,B = {b1, b2, ..., bk}, k < n take on

the responsibility of finding the computational resources (data, disk access, CPU time, network

time, etc.) required to extract data from the target data sources in S to answer the queries posed

by the clients in C. QSBs perform query related tasks such as query parsing, query optimization

and query execution. Also, QSBs exhibit Peer-to-Peer behavior since a broker b ∈ B might contact

other brokers in B to help it solve a given query. This is done to prevent a centralized operational

model, in which a central broker needs to know all data sources, and becomes a focal point through

which all queries must pass. This would make the system unreliable and inefficient as the central

broker site becomes a single-point of failure and a performance bottleneck. The QSBs in B can

access the data sources in S by means of a server application known as the Information Gateway.

A collection of Information Gateways (IGs) G ⊂ H,G = {g1, g2, ..., gm},m < n have

the role of providing access to the wealth of information contained in the data sources in S. It

is at this level, of the IGs, that data extraction occurs. IGs can currently extract data from

relational databases such as PostgreSQL and MySQL. In addition, IGs can execute query operators,

particularly those that can filter out unwanted results, such as predicates. Clearly, metadata is

needed for the brokers to be able to find the required data sources and their associated Information

Gateways. These metadata must be spread throughout the system to advertise the availability of

resources. The responsibility for these metadata dissemination is given to a type of server known

as the Registration Server (RS).

A collection of Registration Servers (RSs), R ⊂ H,R = {r1, r2, ..., rp}, p < n deals with the

problem of advertising metadata, encoded in XML, describing resources such as: query operators,
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local tables, global tables, data types, CPU cycles, data sources, network bandwidth, disk space,

and so on. Two or more RSs work as peers to exchange these metadata, just as network routers

advertise routes to each other to enable future packet forwarding decisions. The last two elements

in NetTraveler are known as the Data Synchronization Server and the Data Processing Server.

A collection of Data Synchronization Servers (DSSs) D ⊂ H,D = {d1, d2, ..., dt}, t < n

groups server applications that help clients in caching query results, obtaining extra disk space, and

keeping synchronized copies of data natively stored by a client which also happens to behave as a

data source from time to time. More importantly, a DSS d ∈ D can become a proxy for a client

c ∈ C, gathering the results intended for client c if the client goes offline or experiences some type of

failure. Finally, a collection of Data Processing Severs (DPSs) P ⊂ H,P = {ρ1, ρ2, ..., ρv} contains

the server applications that provide a commodity service for computational tasks during query

processing. These tasks include query execution, sorting, or any other type of specific computational

operation required.

The elements in NetTraveler are logically organized into groups of cooperative applications

known as ad-hoc federations. Federations are ad-hoc because they can be formed or dissolved over

time, based on the decisions taken by its members. A federation can spawn more than one LAN,

and a LAN can have elements that belong to more than one federation. The simplest federation

is one made out of one local group, which consists of one QSB, one or more data sources and their

associated IGs, one or more clients, one RS, one DSS, and one DPS. In some instances, having a

Data Processing Server might be optional, particularly in cases where the applications only require

simple queries to the data sources. DPSs will be most likely used in environments that require

complex processing capabilities, or which have many low-powered devices.

Two local groups L1 and L2 can be combined to form a cluster by making the data broker

from L1, bL1 , become a peer of the broker of L2, bL2 . In our framework, Peer relationship is bi-

directional, hence bL2 becomes a peer for bL1 . As a consequence of these events, the RS in each

local group becomes the peer of its counterpart in the other local group, and they begin exchanging

metadata about the resources available in each local group. A cluster of three local groups can
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be made by adding a third local group L3 and making its broker, bL3 , become the peer of either

bL1 , bL2 , or both. The same happens with the RSs in each one of these groups. Larger and more

complex clusters can be constructed in this fashion and, as you can see, clusters represent complex

federations with multiple brokers cooperating to share access to the data.

3.3 NetTraveler Query Services

The minimum set of components needed for query execution to take place in NetTraveler

are: the Query Service Broker (QSB), the Information Gateway (IG), the Data Synchronization

Server (DSS) and the Data Processing Server (DPS). The last two elements will participate in

query processing only under special circumstances. The DSS allows a query submitted by a client

that has suffered a disconnection to be completed albeit the client is unreachable. This process,

known as query rerouting, is a subject that is further discussed in Section 4.3. The DPS is helpful

in cases where extra computational resources are needed, however it is not absolutely necessary to

carry out query execution.

The QSB, the IG and the DSS are the elements that must be implemented first in order

to test the query execution framework of NetTraveler. The term Query Service is used to refer to

any of these components since they participate in query execution. In the remainder of this thesis,

there will be no further discussion about the functionalities of the RS and the DPS other than what

has already being addressed. Additional information about both of these components can be found

in [31] and in [32]. The following subsections describe the inner workings of the QSB, the IG and

the DSS.

3.3.1 Query Services Broker (QSB)

Figure 3.2 shows a layered view of the internal components of the QSB and their orga-

nization. The Client Service API serves as the entry point for clients and other Query Services

that need to communicate with the QSB. Requests received at the Client Service API are handed
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to the Execution Management layer. This layer is in charge of coordinating the execution of every

request by allocating the necessary resources and invoking the appropriate underlying components.

For example, a query request received from a client has to be parsed first, by invoking the Query

Parser, to obtain a new representation of the query known as the parse tree. Then, this parse

tree is used by the Query Optimizer, who uses metadata information stored in a catalog, to build

another representation of the query that is used by the Execution Engine. This representation of

the query is known as the query plan. The query plan is used by the Execution Engine to solve the

given query. All of these steps are not necessary for a query request received from a peer QSB. In

this latter case, the query request will already include the operations (e.g. a query sub-plan) that

must be carried out by the Execution Engine.

Client Service API

Remote Service API

Execution Engine

Execution Management

Catalog Manager

Query Optimizer

SQL Parser

Figure 3.2: QSB internal organization

Figure 3.3 depicts the interaction between a client and a QSB and also between a QSB and

one peer. Client C submits the query Q to QSB1. Meanwhile, QSB2 receives Q1 from QSB1. Q1 is

the part of the query Q that QSB2 must execute. QSB1 in the figure is known as the coordinator

of the query since it received the query, generated the plan to execute it, and will return the result

tuples to the client.

As its name suggest, the SQL Parser in the QSB processes queries expressed in SQL

syntax. Native support for other type of query languages (e.g. XML Query Language) is also

intended, but has been left as future work. The Query Optimizer is perhaps the most complicated



27

QSB1

C

QSB2

Q

Q1

Figure 3.3: QSB interacting with a client and a peer

component in the QSB. In fact, the development of a query optimizer for a system like NetTraveler

is a matter that demands a research on its own, and has been left out of the scope of this thesis.

However, the generation of at least “naive” query plans was needed to test the execution of queries

inside the NetTraveler framework. Therefore, the QSB currently uses a simplified version of the

Query Optimizer. As we shall see in detail in Section 3.4.2, the current query optimizer generates

left-deep query plans in which each node, or operation, in the plan has an annotation of where it

must be executed (QSB or IG).

The optimizer uses metadata from a catalog to build the query plans. The interface to

access this catalog is provided by the Catalog Manager. The current catalog implementation stores

information of a NetTraveler federation that is fixed, and whose topology will not change until

the federation is dissolved. Also, the catalog is replicated at each QSB in the federation. These

simplifications to the catalog were needed to test the execution framework of NetTraveler without

dealing with the issues of metadata dissemination and catalog updates in distributed systems,

which are problems that are out of the scope of this thesis. Section 3.4.2.1 further discusses the

implementation of the catalog.

The query plan that is generated by the optimizer is a tree where each node describes

a relational operator that must be carried out to solve the query. Each node in the tree has

annotations that include the site where the operator must be executed, the maximum number of

tuples to return per iteration and, in the case of joins, the algorithm to be used for an operation.
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Operators that filter tuples, such as predicates, are pushed to the IGs and peer QSBs. Other

operators are evaluated in the QSB that received the query request. This approach is very similar

to the one employed in [3].

To execute a query, the QSB must load the classes that execute each of the operations

described by the nodes of the query plan. The Execution Engine is responsible of loading the

appropriate classes. Each relational operator is implemented by a class that has an iterative func-

tionality. The set of classes that implement the relational operators are known as the iterators.

There are iterators for performing local selections, projections and joins as well as for fetching

tuples from remote sources. The Remote Service API provides the interface that is used by the

QSB to communicate with peer QSBs and IGs.

Each query submitted to the QSB is run in its own thread of execution. Also, the results

of a query are produced independently of whether there is someone consuming them or not. Of

course, only a limited amount of results are produced if no one consumes them in a while. The

results produced are cached, and the thread of execution is put in a dormant state until a client or

a peer QSB request them. What is important to notice here is that the execution of the query has

not been stopped, the query is still being executed but it will be in a suspended state because no

one is consuming the results produced.

3.3.2 Information Gateway (IG)

The IG runs in the same site (e.g. in the same machine) where the data source that it will

be accessing is running. The IG is similar to a wrapper in a mediator system [5] in the sense that

it provides the QSB with an uniform representation of a remote data source. The organization of

the IG is depicted in Figure 3.4. In general, the Client Service API, the Execution Management,

and the Execution Engine layers play the same role in the IG as they do in the QSB. The Client

Service API, however, accepts request from QSBs only. All the requests received are also actually

processed by the Execution Management layer.
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Client Service API

Execution Engine

Execution Management

Data Access

JDBC Java IO

Figure 3.4: IG internal organization

The query requests that the IG receives from the QSB specify the part of the query that

the IG must execute. The IG contains an iterator-based Execution Engine that it uses to execute

the relational operators defined in the query sub-plan received from the QSB. Typically, these

operations will include selections and projections that help in reducing the amount of data to be

transfered over the network. The Execution Engine of the IG follows the same design patterns as

the QSB’s execution engine. Also, each request received by the IG is executed in its own execution

thread. Figure 3.5 shows the interaction between the IG and the QSB. The elements in Figure 3.3

have been added to better understand how query execution takes place in a NetTraveler federation.

It can be seen from the figure how the IGs receive from the QSBs the part of the query that they

must execute.

The Data Access layer provides the interface to access different types of data sources

such as text files, XML files or relational data. This layer of functionality is shared by both the

Information Gateway and the Data Synchronization Server (DSS). The IG is currently limited to

data sources that store data using a Relational Database Management System (RDBMS). The

access mechanism for RDBMSs was build on top of JDBC [33]. The Data Access layer can also

access data that is stored in OS files using the native Java I/O libraries, but this is not currently

used in the IG. Whenever possible, the IG will leverage on the capabilities of the underlying data

source when executing part of the query. The idea behind this scheme is that data sources with

query processing capabilities can be exploited and not just used as mere data containers. The

current implementation of the IG takes advantage of RDBMS data sources by converting part of
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QSB1

C

QSB2

Q

Q1

IG1 IG2

Q2 Q1a

Figure 3.5: IGs interaction in a NetTraveler federation

the query sub-plan into an SQL query that is executed directly by the RDBMS.

3.3.3 Data Synchronization Server (DSS)

NetTraveler has been envisioned as a system that will efficiently harvest data sources and

that will efficiently support query processing in Wide Area Networks were a considerable amount of

clients and servers are running on mobile devices. In this sense, NetTraveler expects to cope with

the problems of databases that go offline in the middle of query execution and also with the issue

of continuing with the execution of queries when disconnections occur at the participating parties.

The DSS was designed with these goals in mind. This thesis focuses on how to provide efficient

query processing in the presence of mobile clients that experiment frequent network disconnections.

This thesis does not deal with the issue of servers that go offline in the middle of query execution.

Nonetheless, the implementation of the DSS provides the infrastructure upon which recovery of the

server-side of a query can be built.

The DSS is the Query Service that allows NetTraveler to recover a client’s query work in

the case of a disconnection failure. In current middleware solutions, if a failure that produces a
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disconnection at the client occurs while a query is being executed, the work performed before the

failure is lost. Upon recovering from the contingency, the client has to resubmit the query and the

system has to execute the whole query again. Clearly, this is a waste of system resources in terms

of CPU cycles, disk access time and network access time. Furthermore, for clients accessing the

system via pricey Internet links or with limited battery resources this scheme is just unacceptable.

With the aid of the DSS, NetTraveler is capable of recovering the query work of a client

from the moment this client suffers a disconnection; continuing with query execution albeit the client

being absent. When a client submits a query for execution to a QSB it also submits information

of a DSS that is willing to work on the client’s behalf. The client also submits a time value ti that

is known as the idle threshold time. This time is defined as the maximum amount of time that a

client is expected to be idle. Thus, this is the maximum amount of time during which the client will

not be requesting any result tuples for a query that it submitted. A QSB will monitor the queries

that it is coordinating (queries that it received from clients) to see if it finds a query that goes idle

beyond ti. If it finds one, the QSB will communicate with the DSS that is willing to work on behalf

of the client and will send to it the information of the query. The DSS will then proceed to work

on behalf of the client by gathering the results intended for it. Figure 3.6 depicts how the client

C suffers a disconnection and how the DSS gathers the results intended for the client. Figure 3.7

shows how the client C gathers the results from the DSS after recovering from the disconnection.

We shall see in detail how this recovery process is implemented in Section 4.3.

The current organization of the internal components of the DSS is depicted in Figure

3.8. Again, we have the common Client Service API, Execution Management and and Execution

Engine layers. Through the Client Service API, the DSS can receive request from both, clients

and QSBs. QSBs submit requests to the DSS to ask the DSS to work on behalf of a client. Clients

communicate with the DSS to gather the results of a query that the DSS has executed on their

behalf. The Remote Service API is used by the DSS to communicate with the QSB.

The DSS has its own Execution Engine. The decision of implementing an execution

engine in the DSS arose from the fact that the DSS can also work on behalf of an IG. However, the
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Figure 3.6: DSS gathering results on behalf of a client

C

DSS

R

Figure 3.7: Client gathering results from a DSS

Client Service API

Execution Engine

Execution Management

Remote Service 
API

Data Access

JDBC Java IO

Figure 3.8: DSS internal organization
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implementation of this functionality of the DSS was not needed to achieve the goals of the work

proposed in this thesis and was therefore left for future work. The Data Access layer is implemented

in exactly the same way as it was implemented in the IG. The Data Access layer is used by the DSS

to materialize the results of a query to disk files. Currently, the DSS stores materialized relations

in OS files using the Java I/O libraries. The DSS can also access Relational Database Management

Systems (RDBMSs) using JDBC.

3.4 Query Processing Framework

Figure 3.9 shows a simplified representation of the architecture of a Database Manage-

ment System (DBMS) query processor. This architecture is typically used in both centralized and

distributed database systems. The following subsections briefly describe each of these components,

emphasizing on the Execution Engine.

QUERY PARSER

SQL QUERY

CATALOG

RESULTS

DATA

QUERY OPTIMIZER

RELATIONAL OPERATORS

EXECUTION ENGINE

Figure 3.9: Simplified Query Processor Architecture
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3.4.1 Query Parser

The query parser translates a submitted SQL query into an internal representation that

can be processed by the later phases. This internal representation is commonly known as the query

graph. Parser construction is a well understood matter [34] and many existing tools (e.g. Bison,

JavaCC, JLex, Javacup) can be used to construct them. In NetTraveler the parser resides inside

the Query Service Broker (QSB).

3.4.2 Query Optimizer

The query optimizer is responsible of finding the best strategy to solve each query that is

posed to the system. The optimizer must decide which access method (e.g. scan, index scan) will be

used for each relation involved in the query and the order in which joins, selections, aggregates and

projections must be executed. Optimizers will typically use a cost estimation model that optimizes

for a specific metric (e.g. response time, system throughput). Using statistics stored in the catalog,

the optimizer will build the best plan specific to that cost model. The output of the optimizer

is a query plan, represented as a tree, that tells exactly how the query will be executed. Nodes

in the plan represent operators that carry out relational operations (e.g. joins, scans, projections)

and each node is annotated with information regarding particular algorithms for operations (e.g.

nested-loops join, hash join, etc). If the system is distributed, nodes will also be annotated with

the site where each operator is to be executed.

Figure 3.10 shows two types of query plans represented as trees. As can be seen, a left-deep

plan is one in which the inner relation of a join operator is always a base relation.1 Bushy plans

are more general, there are no restrictions in terms of the input relations for joins. Hence, in bushy

plans joins could be performed between two base relations or between the results of two previous

joins. During the development of the optimizer for the System R [13] project it was found that

enumerating only left-deep plans greatly reduces the search space of possible plans for a query,

1 The left side of the join operation is commonly known as the outer relation while the right side as the inner
relation.
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which in turn simplifies the implementation of the optimizer. Following this lead, most of the

commercially available DBMSs have optimizers that enumerates only left-deep plans.

SCAN
A

SCAN
B

SCAN
CJOIN

JOIN

(a) Left-deep plan

SCAN
A

SCAN
B

SCAN
C

JOIN

JOIN

SCAN 
D

JOIN

(b) Bushy plan

Figure 3.10: Tree representation of query plans

The development of an optimizer is not an easy task. In fact, many dissertations have

been written on that subject alone. The focus of the work during the course of this thesis was the

development of NetTraveler’s query execution engine (Section 3.4.3). However, in order to test the

execution engine, at least a simple optimizer capable of generating sub-optimal query plans was

needed.

3.4.2.1 Simplified System Catalog

The catalog of a typical DBMS contains information about every table and index that the

system contains. This information includes, but is not limited to, the names of the relations, the

names of the columns in each relation and the type of file implementation used for each relation.

Besides this information, the catalog also stores statistical data, such as the cardinality (number of

tuples) of each relation. All this information is used by the query optimizer to generate the plans

to solve each query submitted to the system.

A distributed system must deal with the issue of where shall the catalog be stored. If

the catalog is stored in a single site, it is easier to disseminate metadata and to perform lookups
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and catalog updates. However, this scheme is susceptible to failure of the site that holds the

catalog. Another approach is to distribute the catalog among the participating sites of the system.

However, this makes the task of keeping the catalog up-to-date more difficult, since multiple updates

operations are necessary. Finding the best way to deal with these issues is out of the scope of this

thesis and further research is needed to establish the final organization of the catalog in NetTraveler.

The catalog used for the purpose of completing the work proposed in this thesis is a

considerable simplification of a catalog for a distributed system. The current catalog stores in-

formation concerning a specific federation, and it is assumed that the federation does not change

until it is dissolved. Hence, a catalog is generated for each federation that is formed. The catalog

is replicated at all QBSs in the federation and it is stored by each QSB in tables that are part of

a database. A relational DBMS engine is used for this purpose. The current catalog stores the

following information:

• The ip address, port, service type (e.g. IG or QSB) and implementation type of each IG and

QSB in the federation. Implementation type tells how an IG or QSB service is implemented. 2

• The peers for each QSB.

• The IGs that each QSB has access to.

• The name of each relation (table) in the federation.

• The name and type of each attribute of every relation in the federation.

• The relations that are stored at each IG.

3.4.2.2 Simplified Query Optimizer

The current NetTraveler query optimizer is provisional, and uses a simplification of the

dynamic programming algorithm for query optimization. The algorithm is multi-pass and builds

only left-deep plans with projections and selections applied as early as possible. All optimizations

are done inside the Query Service BrokerQSB. The following example shows how the algorithm

2 All services are currently implemented as Java Web Services using the Apache Axis Toolkit [35].



37

works. Suppose that the query in Figure 3.11(a) is posed to the NetTraveler federation in Figure

3.11(b). This federation is formed by two QSBs and four IGs (the rest of the components have

been removed for simplicity) and has three relations: A, B and C. Relation A is partitioned in two

(A1 and A2) and each partition is stored at a different IG.

SELECT A.a, B.a, C.a
FROM A, B, C
WHERE A.b = B.b
AND B.c = C.b
AND A.c > 15

(a) Example query

QSB 1

IG 1

Client

A1

Catalog

IG 2

A2

IG 3

B

QSB 2

IG 4

C

Catalog

(b) Example federation

Figure 3.11: Federation and query for optimization example

The algorithm will proceed as follows:

• Pass 1: The algorithm starts with the first relation (from left to right) in the FROM clause

(A in this example). First, those conditions in the WHERE clause with attributes that apply

only to A are identified. These conditions are the selection operations that will be applied

to A before any join. Then, all attributes of A that are mentioned in the SELECT clause
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or in conditions of the WHERE clause involving attributes of other relations are identified.

These attributes are projected before any join takes place. A scan operation is selected as the

access method for A. All these operations must be scheduled to occur at the IG near the data

source. Therefore, the route to the destination IG must be found (see Section 3.6 for details of

this procedure). After the route is identified, a special fetch operation is introduced for every

network hop needed. Figure 3.12 shows the query plan with its corresponding annotations

and fetch operations. The fetch operation is added after the last operator applied to A, which

in this case is the projection operator. If more than one fetch operation is needed it is added

over the previous fetch operation. If the relation is partitioned, the same steps are repeated

for each partition and the relation is reconstructed with an union plan near the site where

the join will take place.

scan 
A1

scan
A2

union

select
A1.c > 

15

select
A2.c > 

15

project
A1.a, 
A1.b

project
A2.a, 
A2.b

fetch fetchSite: QSB 1 Site: QSB 1

Site: IG 1

Site: IG 1 Site: IG 2

Site: IG 2

Site: QSB 1

Site: IG 1 Site: IG 2

Figure 3.12: Plan after first pass of the optimization algorithm

• Pass 2: A two-relation plan (join) is build by considering the single-relation plan obtained

after Pass 1 as the outer relation and the next relation in the WHERE clause (B in our

example) as the inner relation. First, an access plan for B is found exactly as was done for A

in Pass 1. Then, all selection conditions in the WHERE clause involving only A and B are
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identified in order to build the join between them. The join method used is a page-at-a-time

implementation of the nested loops join. This join implementation materializes the inner

relation to a file after it is read for the first time. Subsequent reads of the inner relation are

done by scanning the file. Figure 3.13 shows the query plan after the second pass.

scan 
A1

scan
A2

union

select
A1.c > 

15

select
A2.c > 

15

project
A1.a, 
A1.b

project
A2.a, 
A2.b

fetch fetchSite: QSB 1 Site: QSB 1

Site: IG 1

Site: IG 1 Site: IG 2

Site: IG 2

Site: QSB 1

Site: IG 1 Site: IG 2

join
A.b 

= B.b

scan 
B

project
B.a, 
B.b,
B.c

fetch Site: QSB 2

Site: IG 3

Site: IG 3

fetch Site: QSB 1

Site: QSB 1
NLJ

Figure 3.13: Plan after second pass of the optimization algorithm

• Pass 3: A three-relation plan is now generated using the plan obtained after Pass 2 as the

outer relation and the next relation (C in our example) as the inner relation. The plan is

generated proceeding exactly as in Pass 2 of the algorithm. If all relations in the query have

been used, an additional projection operation is added at the end if necessary. Figure 3.14

shows the query plan after the third pass.

• Additional Passes: The process is repeated with additional passes until a plan that includes

all the relations found in the query is produced. The output of the algorithm is a query plan

that is ready for execution.



40

scan 
A1

scan
A2

union

select
A1.c > 

15

select
A2.c > 

15

project
A1.a, 
A1.b

project
A2.a, 
A2.b

fetch fetchSite: QSB 1 Site: QSB 1

Site: IG 1

Site: IG 1 Site: IG 2

Site: IG 2

Site: QSB 1

Site: IG 1 Site: IG 2

join
A.b 

= B.b

scan 
B

project
B.a, 
B.b,
B.c

fetch Site: QSB 2

Site: IG 3

Site: IG 3

fetch Site: QSB 1

Site: QSB 1
NLJ

scan 
C

project
C.a, 
C.b

fetch Site: QSB 2

Site: IG 4

Site: IG 4

fetch Site: QSB 1

join
B.c 

= C.b

Site: QSB 1
NLJ

project
A.a, 
B.a,
C.a

Figure 3.14: Plan ready for execution
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3.4.3 Query Execution Engine

The plan that is generated by the optimizer is commonly called the physical query plan

because it defines precisely how the query is to be executed. However, to actually execute the plan,

it must be converted into code that implements the relational operators in the plan and that has the

mechanisms for coordination and cooperation among multiple such operators. The query execution

engine is the implementation of the relational operators needed to execute queries in such a way

that they can be scheduled to run inside the DBMS. The vast majority of database middleware

systems developed so far have query execution engines that closely resemble the execution engine

of a single-site DBMS. This type of query execution engine is based on the iterator model [36],

where each relational query operator is implemented with an iterative functionality.

The operation of the iterators is separated into three steps: (a) preparation of the iterator

to produce results, (b) production of items, and (c) release of resources used. These functions have

been named open(), next() and close(), respectively, since they emulate the operations performed by

an operating system to scan a file. Because all iterators share these functions, they are implemented

following a common programming interface that defines these operations. This allows for pipelining

of any two iterators together to form complex expressions, which in turn allows for combinations of

multiple iterators to execute any type of query plan. Figure 3.15(b) shows how the plan in Figure

3.10(a) (conveniently repeated in Figure 3.15(a)) is converted into iterators that are plugged into

one another to execute the plan. As can be seen in Figure 3.15(b), the results produced by an

iterator can be pipelined into another iterator without the need of writing temporary results in a

file in disk. This improves execution performance considerably.

The iterator model is the state-of-the-art implementation for query execution engines in

most of the prototyped and commercially available DBMSs. Hence, NetTraveler’s execution engine

implementation follows this model. Of course, for distributed environments where communication

between remote computers occurs, there is a need for special iterators to handle the passing of tuples

through the network. In NetTraveler, an iterator named the fetch iterator is used to get tuples
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(a) Tree representation of a left-deep
plan

nlj

nlj

scan

C

scan scan

A B
(b) Iterator representation of a left deep plan

Figure 3.15: Plan represented as a tree and its corresponding iterator representation

from remote data sources. Figure 3.16 shows a distributed query plan that has been converted into

iterators and that includes fetch iterators that get tuples from remote sources.

nlj

nlj

QSB 1

fetch

scan

IG 3

C

fetch fetch

scan

IG 1

A

scan

IG 2

B

Figure 3.16: Iterator representation of a distributed query plan

3.5 Overview of Query Execution

We shall now see how query execution has been carried out traditionally in Middleware

Database Systems and how NetTraveler proposes a new model for query execution. The model of

query execution that has been used in middleware systems is the connection oriented model. In
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NetTraveler, a connectionless oriented query execution model is used.

3.5.1 Connection Oriented Query Execution

Query execution engines in Middleware Database Systems implemented so far have fol-

lowed a connection oriented approach. To execute a query in these type of systems, a connection

must be first established between the client and the server using a connection oriented protocol

(e.g. TCP). Then, typically using an API that provides an iterator-like interface to communicate

with the server, the client will perform the following steps:

1. Submit a query for execution by invoking an operation in the API that is analogous to the

open() operation of an iterator.

2. Request the results by repeatedly calling next() until all tuples that satisfy the query are

obtained.

3. Submit another query to the server, repeating steps 1 and 2, or release the connection by

calling the close() operation.

Query execution takes place in a request-driven fashion. The server will not produce results

until the client explicitly ask for them by issuing a next() request. Figure 3.17 shows an example of

query execution in a connection oriented system. In this example, the client API provides iterators

for submitting queries to the server and for displaying the resulting tuples. A next() request issued

by a client is propagated to the server, which in turn propagates the next() call to the top-most

iterator in the query plan. This iterator further propagates the call until the deepest iterator in the

plan is reached. The propagation of the next() request can be seen in Figure 3.17(a). The numbers

in the figure denote the order in which each event occurs and the arrows denote the direction of the

propagation of the call. Results are generated in the deepest iterator and then forwarded to the

upper iterators. Iterators continue processing the results and forwarding them up until the results

reach the client. Figure 3.17(b) shows how the results are produced and returned to the client. The

numbers also denote the order in which the events occur and the arrows indicate the direction of

the results, which are exactly the opposite as how the next() request propagates.
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(a) Propagation of next request

Client
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join
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(step 2)(step 1)

(step 3)

(step 4)

(b) Returning of results after next request

Figure 3.17: Connection oriented query execution

One drawback of such connection oriented implementation is that the execution of a query

will be aborted if any unexpected failure (e.g lost of power) or condition that causes the interruption

of network connectivity occurs at the client. In the presence of any failure, the query will be

dropped by the system and it will have to be submitted again. This leads to excessive waste of

system resources such as CPU cycles, disk time, network bandwidth, etc. Also, the request-driven

functionality of this type of query engine does not scale well to Wide Area Environments. If a

plan must access several data sources that are located at different sites, each next() request that

is issued will cause calls to many computers in the network, increasing the query execution time

considerably.

3.5.2 Connectionless Query Execution

From the discussion of the previous section we can see that a connection oriented query

execution engine is not the best option for an environment were the majority of clients will be mobile

devices. Hence, NetTraveler’s query execution engine was implemented following a connectionless
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oriented approach. In a connectionless query execution engine there is no need to maintain an

open connection during the entire execution of a query. Rather, a connectionless communication

protocol based on requests and responses, like HTTP, is used. Clients submit queries for execution

using an API that provides a set of methods that are equivalent to those provided by a connection

oriented system. Each method that is invoked causes a request/response pair of messages to be

transmitted between the client and the server. Hence, an execute request by a client is followed by

an execute response from a server. The query that the client submits to the server and the tuples

that the server returns to the client are all contained in a pair of request and response messages.

We shall now see how a query is executed in a connectionless query execution engine.

Figure 3.18(a) shows the chain of events that occur when a client submits a query to a

server in a connectionless oriented system. Step 1 in the figure shows how the Application running

in the client submits a query for execution using a special iterator provided by the client API.

The query is sent to the server inside a request message, as denoted by step 2 in the figure. As

can be seen, the server receives the request and starts processing it in a new thread of execution.

This thread, the one that processes the request, have been named the Query Manager thread. The

Query Manager thread will first parse and optimize the query to obtain the query plan that defines

the operations that are needed to be carried out in order to solve the query. This is shown in step

3 of the figure. Once the plan is built, the server will store information regarding the state of the

query inside a data structure, as denoted by step 4. This data structure have been named the

Query Table for this example.

Execution of the query in the server will take place in a new thread of execution. This

new thread has been named the Query Worker thread for this example. Step 5 of Figure 3.18(a)

denotes how the Query Worker thread gets the query plan to be executed from the Query Table.

The Query Table data structure serves as a shared object were both the Query Manager and the

Query Worker threads will synchronize during the execution of the query. The Query Worker will

be writing result tuples to the Query Table and the Query Manager will be reading tuples from the

Query Table. Once the query is ready to be executed, the server will return an acknowledgment
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Figure 3.18: Query submitted to a connectionless system
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response message to the client.

Figure 3.18(b) shows the events that occur when the server returns the acknowledgment

response message for the execute request sent by the client. As denoted by step 1 ′ in figure, the

server will include a unique query id qid as part of the information contained in this response

message. The id qid is used to identify the query inside the server for the purpose of attending

future requests regarding the same query. Any information that the server finds relevant for the

client might be included in the response message as well. The Query Worker thread will begin

to execute the query at the same time that the response message is returned to the client by the

Query Manager thread. Step 1 ′ and step 1 ′′ of Figure 3.18(b) occur in parallel, as well as step 2 ′

and step 2 ′′.

The client can start gathering the results for the query once it has received the id qid of

the query from the server. Figure 3.19(a) shows the events that occur when the client issues a

next() request to the server. When asking for results, the client has to submit the query id qid to

the server inside each request message, as denoted by step 3 ′. Notice that the server will perform

operations in parallel and will not wait for the client to issue a next() request to start generating

results, as in the case with a connection oriented query execution engine. Instead, by the time the

client issues a next() request, the Query Worker in the server will be already executing the query

by issuing next() calls to the iterators that implement the plan.

The Query Worker will store the results that are generated in the Query Table. The

Query Manager thread will gather the tuples intended for the client from the Query Table data

structure. Events that occur in parallel in Figure 3.19(a) are step 2 ′ and step 2 ′′, step 3 ′ and

step 3 ′′, and step 4 ′ and step 4 ′′. Figure 3.19(b) shows the steps performed by the server when

returning result tuples to the client. As can be seen from the figure, the Query Worker thread will

continue to produce results for the query at the same time that the Query Manager thread returns

the response of the next() request to the client. Execution will continue in this fashion until all

results are gathered by the client. Once the query has been completely executed the server will

discard all objects used to hold information of the query from the Query Table data structure.
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As we can see, for mobile clients in a Wide Area Environment, a connectionless oriented

query execution engine provides several benefits over a connection oriented engine. For one part,

the execution of queries that must access several data sources is greatly improved because the

execution of query operators in parallel is maximized. Also, servers do not have to wait for a client

(or a peer) to issue a next() request to produce result tuples. Rather, each server will execute

the part of the query that is assigned to it independently (whenever possible). Obviously, a server

cannot execute its part of the query in complete independence if the operations that it must perform

depend on tuples generated by other servers. Nonetheless, this query execution scheme can help

in improving the execution of queries in Wide Area Networks. For example, in environments were

the network latency is considerable or where there are slow servers, this scheme is beneficial since

the amount of time that must be waited for a server to produce results at the moment of issuing a

next() request is minimized. Also, servers return result tuples from cache, which helps in improving

query execution.

Another feature of a connectionless query execution is that a disconnection failure in the

client or in one of the servers will not necessarily imply the abortion of a query. Parties participating

in the execution of a query could reconnect after a failure and use the query id qid as a mechanism

to attempt to re-establish the computation of a query from the moment of a failure. Having

the possibility of servers that suffer disconnections in the middle of query execution lifts up the

issue of confidence in the solution, or knowing the level of accuracy for the solution of a query.

Let us suppose that each server is replicated in the system and that the system has a recovery

mechanism were data from the replicas is used when a main server goes offline in the middle of

query execution. If the replicas are not synchronized periodically, there is a chance that a client

might end up receiving an incomplete or unasserted solution for a query. There must be a way to

make the client aware that the solution might be incomplete, or even incorrect.

In the case of a join operation (or any other operation that requires tuples from two or

more relations) the problem is easily dealt with if a server is missing and is not replicated. In this

case, the operation will not get completed because one of the relations is missing, and the client
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will end up without any results at all. The system could send a message to the client stating that

an error has occurred, and might even encourage the client to try again later. In the case that all

servers are replicated, or in the case of a seletion operation that requires data from a single relation

that is partitioned across several sites, a missing server does not necessarily imply that the client

will not receive any results.

A straight solution to this problem is to include a flag in the response message that is

returned by the system to the client indicating that the solution is not complete or is unasserted.

This will not necessarily comfort the user of the client application, but it will at least create

awareness of the problem, and will left to the user or client application to decide whether to accept

or reject the solution. A more interesting solution would be to have a metric of confidence for the

solutions provided by the system. In this sense, a client could be told that the present solution is

accurate with a 85% of confidence. Client applications could be tweaked to accept only solutions

that are over a certain degree of confidence. In this thesis, only ideas of possible ways to deal with

the issue of confidence of the solution is given. However, this thesis does not provide a concrete

solution for the problem. Dealing with this issue is out of the scope of this thesis and has been left

as future work.

3.6 Simplified Search of Data Sources Routes

The query optimizer must find the route to each of the data sources (and corresponding

IG) needed for each query submitted to a NetTraveler federation. To achieve this, the QSBs use the

information in the catalog to model the federation as an undirected weighted graph where all edges

are given a weight of one. To find the routes, each QSB applies the Breadth-First Search (BFS )

algorithm over an adjacency list representation of the graph using its own position as the starting

point. Notice that it might be possible to obtain several routes for each data source. However, only

the cheapest route (e.g shortest) is kept for each one. An in-depth discussion of graph theory and

network algorithms is out of the scope of this thesis. The interested reader is referred to [37] for a

comprehensive discussion of theory of graphs and the BFS algorithm.
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Figures 3.20(a) and 3.20(b) show a federation modeled as a graph and the graph’s adja-

cency list representation, respectively. Some of the federation’s components have been removed for

simplicity. The routes to each data source are stored by each QSB in a hashtable after applying

the search algorithm. The routes are stored as linked lists where the tail node n contains the

information of the IG holding the desired data source. Every node from the head of the list to the

n − 1 node represents a hop in the network. Each hop represents a fetch operation that must be

scheduled at the moment of query optimization (see Section 3.4.2.2). Table 3.1 shows the table of

routes of QSB 4 for this particular example.
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(a) NetTraveler federation as a graph
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(b) Adjacency list representation of graph

Figure 3.20: NetTraveler federation represented as a graph and its corresponding adjacency list
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Data Sources Routes Table
key entry
IG 1 QSB 3 → QSB 2 → QSB 1 → IG 1

IG 2 QSB 3 → QSB 2 → IG 2

IG 3 QSB 3 → IG 3

IG 4 QSB 3 → IG 4

Table 3.1: Routes table for QSB 4



CHAPTER 4

Implementation of the NetTraveler

Framework

4.1 Overview

This chapter discusses the implementation details of the NetTraveler Middleware System.

It begins by discussing the NetTraveler Query Services. The NetTraveler server applications known

as the Query Services are the Query Service Broker (QSB), the Information Gateway (IG), the

Data Synchronization Server (DSS) and the Data Processing Server (DPS). In this thesis we shall

only discuss the QSB, the IG and the DSS. This chapter continues by discussing the mechanisms

employed to recover the client-side execution of a query when a client suffers a disconnection.

Finally, this chapter discusses the communication protocol used in NetTraveler.

4.2 Query Services Implementation

The responsibilities of the Query Service Broker (QSB), the Information Gateway (IG)

and the Data Synchronization Server (DSS), inside a NetTraveler federation are logically different.

The QSB is responsible of coordinating the execution of queries that are submitted by clients and

53
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provides services such as query parsing and query optimization. The QSB has also the responsibility

of helping other QSBs in solving queries by allowing access to data sources that are otherwise

unreachable for these other QSBs. The IG is responsible of giving access to the QSBs to data

stored in different types of data sources. Besides, IGs can also participate in query execution. The

DSS helps in caching results intended for a client that is unreachable for some reason, like the lost

in network connectivity, and that will request those results later.

However different the QSB, IG and DSS are conceptually, they are related in two ways.

First, they are server applications belonging to NetTraveler. Second, they are server applications

that participate in query execution. Java interfaces [38] were used to capture the relationships that

exist between the QSB, IG and DSS. Java interfaces are types in the Java language, just like Java

classes. However, they can only define methods but cannot implement them. The methods that

are defined in the interface are actually implemented in a Java class that agrees to comply with

the interface. In this sense, a Java interface serves as a contract that classes agree to comply with

by implementing the methods.

Figure 4.1 depicts how the QSB, the IG and the DSS are related. The double-headed

arrows represent relations by inheritance while the single-headed arrows represent relations by

implementation of interfaces. As the figure shows, in Java an interface can inherit from another

interface just as a class can inherit from another class. The NetTravelerService interface serves as

the definition for all the NetTraveler components defined in Section 3.2. This interface defines the

methods that must be equally supported by all the server applications in NetTraveler. Currently,

this interface defines the initialization and cleanup routines that must be carried out by all servers.

However, it is expected that this interface will change in the future as more server applications are

implemented and new operations that are common to all servers appear.

The QSB, IG and DSS achieve the completion of their corresponding tasks by following

a common iterator-like approach of execution. All three of these server applications provide a

method for submitting a query-related task to them and a method for gathering the tuples that

result from completing such task. The QueryService interface is responsible of defining these
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Figure 4.1: Query Services class hierarchy

methods. This interface extends the NetTravelerService interface and serves as the definition for

all the NetTraveler server applications that participate in query execution. The methods that are

defined in the QueryService interface are named execute() and next(). The following list details the

functionality that classes implementing the QueryService interface must provide for each of these

methods:

• execute() - This method is used to submit a query request to a Query Service. In the QSB

this method can receive requests from clients and peer QSBs. In the DSS and the IG this

method is limited to receiving requests only from the QSB.

• next() - This method is used to retrieve the results of a query that is being executed by a

Query Service. This method must return a limited number of tuples each time it is invoked.

This method must be called iteratively until all the results of a query are gathered.

The QSB server application further extends the QueryService interface by defining a method named

reroute(). This method can be invoked by clients to ask the QSB to reroute the client-side execution

of a query to a DSS known by the client.
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The functionality that is equal for all the Query Services is implemented in the Abstrac-

tQueryService abstract class. The three servers, QSB, IG and DSS, inherit from this class. In

fact, the differences in implementation between these three server applications strictly relies on the

types of data structures they used and in the way they are initialized. Each server has a specialized

initialization routine that differs from the other servers. For example, the IG has to open a pool of

connections to the data source it will be accessing when initializing, which is not required by the

QSB or the DSS. The QSB in turn must open a connection to a catalog that contains information

regarding the federation to which the QSB currently belongs. Beside these differences in initializa-

tion routines, the Query Services attend both execute() and next() calls in the same way. They use

a multithreaded scheme that relies on two entities known as the query coordinator and the query

worker.

4.2.1 The Query Coordinator and the Query Worker

The query coordinators are set of specialized classes that are in charge of attending all

types of requests that are received by a QSB, an IG or a DSS. The query workers are a set of

classes that are in charge of actually executing queries inside the QSB, the IG or the DSS. Figure

4.2 depicts how the query coordinators are implemented. The QueryCoordinator interface defines

the methods that all query coordinators must implement. The AbstractQueryCoordinator is an

abstract class were the functionality that is shared by all query coordinators is implemented. The

actual query coordinator classes for each Query Service inherit from this abstract class. The QSB,

the IG and the DSS make use of query coordinators and query workers in almost the same way.

Therefore, we will discuss every aspect of these components using the QSB as an example. Any

differences between the QSB and the IG or the DSS will be noted when relevant.

When a QSB is initialized, a main thread of execution is generated. This thread, in turn,

generates a group of query coordinators and assigns each one to a new thread of execution. The

type of query coordinator generated will depend on the type of Query Service being initialized. For

example, if the Query Service is an IG, a group of IGCoordinators is generated. For this case, the
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query coordinators are of type QSBCoordinators. Figure 4.3 shows a generalized representation

of a QSB immediately after initialization. As can be seen, the generated query coordinators are

stored inside a queue from where they are removed by the main thread when any request needs to

be processed. The threads in which the query coordinators run are kept in a dormant state while

the query coordinators are in the queue.

Along with the query coordinators, a group of query workers is also generated when a

QSB is initialized. As already stated, the responsibility of the query workers is to actually execute

the part a query that corresponds to a specific Query Service. Each query worker generated will

run it is own thread of execution. As Figure 4.3 shows, query workers look for queries to execute

in a Query Queue. It is responsibility of the query coordinators to put queries that are ready for

execution in the Query Queue. Query workers are put to sleep if they arrive at the Query Queue

and there are no queries pending to be executed (e.g. the queue is empty). For instance, all the

query workers shown in Figure 4.3 are in a dormant state.

We will now see how the query coordinators and the query workers are used by a QSB

to execute a query. Figure 4.4 shows the steps performed by a QSB when it receives an execute()

request. Coordinators sort out requests that are not allowed in a specific Query Service. For ex-

ample, execute() requests submitted by clients are only accepted in the QSB. Meanwhile, execute()
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request submitted by Query Services are accepted by QSBs and IGs. The Client in Figure 4.4 can

represent either a QSB or a pure client application, since only these components can send execute()

requests. The main thread of execution is responsible of receiving the execute() request, as denoted

by step 1 in the figure. Then, as denoted by step 2, the main thread will proceed to remove a

query coordinator from the queue and will handle the received request to it. Requests are always

attended in their own threads of execution since each query coordinator runs in its own thread of

execution.

The query coordinator will proceed to prepare the query for execution. Its first task is

to generate a unique query id qid for the received query. If the query was submitted by a client,

the query coordinator will parse the query and will build a plan for the query by calling the query

optimizer. Query optimization was discussed in Section 3.4.2. Parsing and optimization are steps

that are not necessary if the query comes from a peer QSB, since the received request will already

include the part of the query that the QSB must execute. After this, the query coordinator will

generate an object to hold state information about the query. This state object is also used to

cache tuples that result from the execution of the part of the query that corresponds to the Query

Service receiving the execute() request.
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The generated status object is put in the Query Table and a reference to it is inserted in

the Query Queue. Step 3 and step 4 in Figure 4.4 denote these events. One of the sleeping query

workers is notified when the query status object is inserted in the Query Queue. As denoted by

step 5 ′, the query worker will wake up and will remove the query from the queue to start executing

it. The query id qid that was generated by the query coordinator is then returned to the client or

peer QSB that submitted the query. This id qid must be submitted to the QSB with each next()

request that is issued to gather the result tuples of the query. It should be noticed that step 5 and

step 5 ′ in Figure 4.4 occur in parallel. A query coordinator in the IG will process an execute()

request in the same way that a query coordinator in the QSB process an execute() request sent

by a peer QSB. A query coordinator in the DSS will also process an execute() request in the same

manner, with the difference that it will not generate a new query id qid for every execute() request.

Rather, the query coordinator in the DSS will use an id that will be handed to it by a QSB.

Figure 4.5 shows the chain of events that occur when a query is ready to be executed.
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The query coordinator is returned to its corresponding queue and the thread in which it is running

is put in a dormant state, as denoted by step 1. At the same time, the query worker will obtain

the query plan that must be executed from the query status object. This plan is converted by the

query worker into an executable instance of the plan (e.g. iterators). Step 1 ′ in the figure denotes

this event, which occurs in parallel with step 1. The query worker will then begin to execute the

part of the query plan that corresponds to the QSB. Tuples that result from executing the plan are

written to a cache in the query status object, as denoted by step 2 ′ . If the Query Service is a DSS,

the query worker will not actually execute a query plan but will rather just issue next() requests

to a QSB.
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Main 

Thread
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Executable Plan
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Figure 4.5: Query worker executing a query plan

The steps incurred by a QSB when a next() request is received are shown in Figure 4.6.

The Client in this case can be a pure client application, a QSB or a DSS since they all can send

next() requests. The next() request is received by the QSB exactly as the execute() request was

received. The main thread of execution will get the request and will remove a query coordinator

from the queue to hand the request to it. Notice how the query worker that is executing the query is

generating result tuples in parallel with the arrival of the next() request. As with previous figures,

parallel execution is denoted in the figure by two steps with same number but one of them having
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an apostrophe. Hence, step 1 and step 1 ′ are events that occur in parallel, as well as step 2 and

step 2 ′.
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Figure 4.6: Query Service processing a next request

The query coordinator will get the appropriate query status object from the Query Table

using the query id qid that is submitted in the next() request. This is denoted by step 3 in Figure

4.6. Then, the query coordinator will read tuples from the cache in the query status object and will

return result tuples inside a response message. Steps 4 and 5 in the figure denote these operations,

respectively. The query coordinator is returned to the queue of query coordinators after returning

the response message to the client. The query worker will write tuples in the cache of the query

status object until no more tuples are returned by the iterators that implement the query. At this

point, the query worker will close the iterators and will search for more work in the Query Queue.
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The client will continue to send next() request messages consecutively until all the result tuples are

returned by the QSB.

4.3 Client-Side Query Recovery

We shall now discuss the mechanisms employed by NetTraveler to recover the client-side

work of a query when the query is aborted by the client. But before, and for the sake of the

following discussion, let us quickly and broadly refresh how a query is executed in NetTraveler.

First, a client submits a query to a QSB by calling its execute() method. If the QSB receives

the query, and is able to process it without errors, it will return an acknowledgment response to

the client. After receiving the response, the client will repeatedly call the next() method of the

QSB until it gathers all the result tuples of the query. The actions of calling the execute() and

next() methods performed by the client when interacting with the QSB are known as the client-side

execution of the query.

4.3.1 Motivation

A network failure, the lost of power, or a software crash can all cause a client device to

lose network connectivity, disrupting the client-side execution of a query. In current middleware

solutions, the query being processed before the disconnection is aborted, and the client needs to

re-submit the query. This leads to slow response times as the query needs to be re-started from

scratch. More importantly, the resources invested in processing the query are lost.

To give an example, let us assume that there is a relational schema with information

about police precincts. This schema is presented in Table 4.1. The relations in this schema hold

information about precincts, the police officers assigned to each precinct, the traffic tickets given

by police officers to drivers, and the cars own by the drivers with traffic tickets. Let us also assume

that there is one police precinct per city, and that each one has a local database that follows this

schema. The database in each precinct is used to store data specific to the precinct. Hence, a
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precinct in the city of Ponce will only contain information of traffic tickets given in Ponce. A

middleware system is used to interconnect the data of three precincts located in three different

cities: San Juan, Ponce and Mayagüez. For simplicity we will assume that this middleware is

modeled exactly as NetTraveler, and that the components of this middleware have the same names

as the ones in NetTraveler. Hence, a QSB receives all query requests and IGs retrieve data from

the databases.

Relation Description
Precinct(pid:Integer, addr:String) Stores information about a precinct

Officer(oid:Integer, pid:Integer, fname:String,
lname:String, birthday:Date)

Stores police officers information

Driver(did:Integer, fname:String, lname:String,
addr:String, birthday:Date)

Stores information about drivers

Car(cid:Integer, did:Integer, plate:String,
make:String, year:Integer)

Stores cars information

Ticket(tid:Integer, cid:Integer, did:Integer,
oid:Integer, date:Date, viol:String,

dept:Numeric)
Stores tickets information

Table 4.1: Schema of police precincts

Consider a user with a PDA in the city of San Juan that is interested in submitting the

following query to the system: “Get the names of all drivers that have received at least one fine of

over $100 in any police precinct”. The client application running in the PDA will send this query

encoded in SQL as follows 1:

SELECT D.fname, D.lname
FROM Driver as D, Ticket as T
WHERE T.did = D.did;

By looking at the SQL query we quickly notice that, in order to answer this query, three

geographically-apart databases must be accessed, one for the Mayagüez precinct, one for the Ponce

precinct and one for the San Juan precinct. Figure 4.7 depicts this scenario. It is assumed for

simplicity that the QSB in San Juan has direct access to the IGs at Ponce and Mayagüez (and of

1For simplicity, duplicate elimination was not taken into consideration.
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course to the IG in San Juan). Another possible scenario would have been that the QSB in San

Juan had to talk to a QSB in Ponce and to another QSB in Mayagüez, but this is irrelevant for

the purpose of this example.

QSB
(San Juan)

C

Q

IG
(Ponce)

Q2

IG
(San Juan)

IG
(Mayagüez)

Q1 Q3

Figure 4.7: QSB that must access three data sources to solve a client’s query

As can be seen in the figure, the query is received by the QSB in San Juan, who generates

a plan to solve it and sends to each IG with access to the needed databases the part of the plan that

they must execute. For each database, two different relations must be scanned and a join operation

must be executed. Furthermore, the results must be shipped to the site that received the query

before they can be served to the client. We must take into consideration that joins are expensive

operations that require the employment of considerable amounts of resources in a machine. This is

true even if we assume that joins are executed independently at each site and no distributed join

[17] [18] is carried out. Also, if the result of the join is bigger than any of the two original relations,

the cost of shipping the results to the site that received the query is also quite expensive.

Suppose that the expected query result is 1 MB. If a failure that causes the client to lose

network connectivity occurs after the client has received some data, say 500 KB, the query will be

aborted and the client will have to re-submit the query. Hence, the client will receive the results
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from the beginning, downloading the first 500 KB again. The client will end up downloading 1.5

MB worth of data, since the failure made some of the work to be redone. Not only has the client

downloaded more data than the necessary, but it has also wasted resources in terms of battery,

CPU cycles, access to memory, and others, unnecessarily. Moreover, if by any chance the client

device was using a pricey internet link, like a 3G connection, the user will also end up paying extra

money due to the amount of extra time needed to complete the query thanks to the disconnection.

Now, imagine this scenario repeating itself frequently. For the user of a client device with limited

resources, like the PDA we have just seen, this situation is just unbearable.

The situation is not less unpleasant for the middleware system per se. Having to re-start

this query several times is a clear waste of system resources. For example, a great deal of system

resources are wasted in parsing, optimizing and building a plan for the same query, again and again,

without ever completing the execution of the same. Not to mention the amount of resources that

are employed in executing complex query operators, like joins, and in transferring large amounts

of data over the network. CPU cycles, disk access, memory allocation, network sockets, are all but

an example of the resources employed to execute a query of this type and that get wasted every

time a disconnection in the client occurs. As if this was not enough, the system must also reclaim

the resources in a timely manner to be able to continue attending new requests. This is not an

easy task when you are spending a great deal of resources in executing complex queries that will

not get completed.

Clearly, this traditional middleware query execution scheme is not fitted for a system that

expects to have a large amount of clients residing in mobile, power-limited devices. In NetTraveler,

this issue is addressed by leveraging on the system architecture to enable the rerouting of the

client-side execution of a query.

4.3.2 Implementation of Client-Side Recovery

Recovery of the client-side execution of a query is achieved by rerouting the client-side

execution of the query to another entity willing to work on behalf of a client. In NetTraveler, this is
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achieved thanks to the Data Synchronization Server (DSS). As stated in Section 3.2, the DSS is a

server application that, among other things, can become a proxy for a client, gathering the results

intended for it. There are two possible scenarios for client-side query recovery in NetTraveler.

Automatic recovery and explicit recovery. In both cases, rerouting of the client-side execution of

the query is used to achieve query recovery. We shall see each of this two scenarios in detail in the

following sections.

4.3.2.1 Automatic Rerouting

Automatic rerouting of the client-side execution of a query occurs when a QSB finds a

query that has been idle beyond an idle threshold time value ti. This time value ti is defined as

the maximum amount of time that a client expects to wait between successive next() calls to the

QSB that is executing the query. The time value ti is specified by clients for each query that they

submit for execution to a QSB. With each query, clients also include the information of a DSS that

is willing to work on their behalf. A QSB that receives a query for execution will store the idle

time ti, along with the information of the DSS, as part of the state information of the query.

A QSB cannot instantly notice when a client suffers a disconnection, since a connectionless

oriented protocol is used for communication. An established connection between two components

in NetTraveler, for example between a client and a QSB, will be opened for the amount of time

that it takes for one component to send a request and for the other component to return a response.

That is why the QSB depends on the idle time ti and on receiving next() requests to know that

a client is still connected to the network. Every time that a client issues a next() call, the QSB

stores a time stamp of the moment the call was received. The QSB contains a monitor thread that

periodically monitors all queries for the purpose of finding queries that have become idle pass the

idle threshold time ti that was specified for the query when it was submitted. Using the time stamp

of the query, the monitor thread calculates the amount of time that passed since the last next()

call was made. If this calculated time is greater than the idle threshold time ti specified by the

client, the query is said to be in an idle state, or simply idle. For each query that is found idle, the
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monitor thread in the QSB is responsible of coordinating the rerouting of the client-side execution

of the query.

To see automatic recovery in action let us use an example. Let us suppose that we have

the same scenario that was used in Section 4.3.1 and that was depicted in Figure 4.7. Here, a PDA

client device submits a query to a QSB in the city of San Juan to ask for information about drivers

with tickets in the cities of Ponce, San Juan and Mayagüez. The amount of data in the result of

this query is 1 MB. The user of the PDA sets the idle threshold time ti to be 15 seconds. Also, the

user has access to a DSS in the city of San Juan which information it includes when submitting

the query to the QSB. Now, let us assume that when 500 KB of data have already being received

by the user, the PDA goes out of battery. Figure 4.8 shows the moment in which the client loses

connectivity to the network. Notice that the QSB will not immediately detect this disconnection.

C

disconnection

QSB
(San Juan)

R2R1 R3

IG
(Ponce)

IG
(San Juan)

IG
(Mayagüez)

Figure 4.8: Client that suffers a disconnection in the middle of query execution

Figure 4.9 shows the steps that occur internally in the QSB when automatic rerouting is set

in motion. Step 1 depicts the moment in which the monitor thread inspect the query table and finds

that the query has become idle. Remember from Section 4.2.1, that the QSB implementation of the



68

Coordinator interface has an extra method named reroute() that is specifically tailored to manage

the rerouting of queries in the QSB. Hence, the monitor thread will remove a query coordinator from

their queue and will invoke the reroute() method of the query coordinator, passing it a reference of

the state information of the query that must be rerouted. This is denoted by step 2 in the figure.

The query coordinator will get the information about the DSS to be contacted from the

state information of the query and will communicate with the DSS, as denoted by step 3, to request

that it continues with the client-side execution of the query. When requesting a reroute in the DSS,

the query coordinator will submit the id of the client, the id of the query and the address of the

QSB. If the DSS successfully receives the reroute() request, it will return a response to the query

coordinator with an acknowledgment. After receiving the acknowledge from the DSS, the query

coordinator will proceed to mark the query as rerouted.

ID QS

Query Table
Query Coordinators

Main 
Thread C

DSS

id1 qs1

reroute(qs1)

reroute()

(step 1)
(step 2)

(step 3)

C CC

Query Service 
Broker

M

Monitor Thread

get(id1)

Figure 4.9: Monitor thread rerouting an idle query

When receiving a request to continue with the client-side execution of a query, a DSS will

first authenticate the client using the information provided by the QSB. If the client is successfully

authenticated, the DSS will begin to fetch tuples on behalf of the client by repeatedly performing
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next() calls on the QSB. Figure 4.10 shows a DSS that is executing the client-side of a query after a

reroute operation. A next() call issued by a DSS is seen by the QSB that is coordinating the query

as a next() call issued by the client that originally submitted the query. The DSS is just acting as

a proxy for the client. The DSS will store the remaining 500 KB of data intended for the client

until the client regains connectivity.
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Figure 4.10: DSS executing the client-side work of a query

Figure 4.11 shows the chain of events that occur when the client recovers from the dis-

connection. The client will first issue a next() call on the QSB that was executing the query. The

QSB will inform the client that the query has been rerouted to the DSS specified by the client.

This is denoted by step 1 in the figure. The client will then contact the DSS that is working on

its behalf and will fetch the remaining 500 KB of data for the query, as denoted by step 2. This

effectively completes query execution, from the point where the disconnection in the client occurred

and without restarting the query.
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Figure 4.11: Client recovering from disconnection and gathering the result from a DSS

4.3.2.2 Explicit Rerouting

The second scenario for client-side query rerouting is that the client application explicitly

issues a reroute() request to the QSB that is coordinating the execution of the query. In this case,

the client application will determine that it must abandon the execution of the current query based

on some criteria specified by the user. It may be that the user specified a maximum amount of

time to wait for the completion of the query or it may be that the device determines that it must

shut down because it is running low on battery. In any case, the logic in the client application will

trigger an event that will issue a reroute() call on the QSB that is coordinating the query.

Let us see how explicit rerouting occurs using the same example of the previous section,

where a user with a PDA submits a query to a NetTraveler federation. Again, the result of the query

is about 1 MB of data. We already saw how recovery was achieved when the PDA lost its network

connection abruptly because it went out of battery. Now, suppose that the client application

running on the PDA monitors the battery percentage of the PDA and that it is configure to trigger

a reroute event if the battery percentage goes below 10 in the middle of a query. Suppose that the

client submits a query for execution and when 500 KB of data have been downloaded the battery

goes below the specified threshold. This causes the client application to issue reroute() call on the

QSB.

Figure 4.12 shows the events that occur when a client application explicitly issues a

reroute() request. As denoted by step 1, the main thread of execution in the QSB receives the

reroute() request from the client. Then, it removes a query coordinator from their queue and hands

it over the request, as denoted by step 2. In automatic rerouting, the monitor thread forwards the

information of the query to be rerouted to the query coordinator. In explicit rerouting, the query
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coordinator looks for this information in the table of queries. This operation is denoted by step 3.

Once the query coordinator has all the information needed, it proceeds to make a reroute call to

the DSS just as in automatic rerouting. Step 4 denotes this operation.

Query Table

Query Coordinators
Main 

Thread

C DSS

ID QS

id1 qs1

reroute(id1)

reroute()

(step 1)

(step 2)

(step 3)

C CC

Query Service 
Broker

get(id1)

Client

reroute(id1)

(step 4)

Figure 4.12: Explicit rerouting of the client-side execution of a query

If the DSS successfully receives the reroute() request and is able to authenticate the client,

the query will continue to be executed with the DSS acting as a proxy for the client. When the

client recovers from the disconnection, it will not communicate with the QSB that was coordinating

the query as in the case of automatic rerouting. This is an obvious course of action since the client

explicitly issued the reroute operation and knows that the remaining results of the query are in the

DSS. Instead, the client application will communicate directly with the DSS that has the results

and will gather the remaining 500 KB of data from it.

4.3.3 Summary of Client-Side Query Recovery

As we have seen, in current middleware solutions all efforts for completing a query are

abandoned at the first sign of a disconnection by a client. Dropping queries in this manner wastes
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both system and client computational resources every time a query is re-started. With rerouting

of the client-side execution of a query system and client resources are not wasted since queries that

suffer a client-side disconnection are never re-started. Also, clients do not end up downloading

more data than what they really needed when a disconnection occurs.

4.4 Query Services Communication

In this section, the details of how the Query Services communicate with each other and

with clients are discussed. The section begins by describing the different request and response

objects that are used. Then, the section continues by discussing how the Query Services were

implemented as Web Services using the Axis Soap Toolkit. Finally, the issues found with the Axis

Soap implementation, and how they were circumvented, are detailed.

4.4.1 Requests and Responses

A single method of a Query Service can receive more than one type of request message.

For example, the execute() method of the QSB can receive requests that come from a client and

can also receive requests that come from another QSB. Therefore, each of the Query Services needs

to differentiate between the types of request that they receive. This is accomplished thanks to a

hierarchy of request and response message objects. Figure 4.13 depicts the different requests and

responses objects and how they are related. Single-headed arrows in the figure indicate relations

by class inheritance. As their names suggest, requests that inherit from the ClientRequest class

are sent by clients and requests that inherit from the ServiceRequest class are sent by the Query

Services. The Response message objects are strictly sent by the Query Services only.

The ClientExecuteRequest message object is sent by clients when invoking the execute()

method of a QSB to submit a query for execution. As part of this request, a client will send a query

q, encoded in SQL, a profile object p and the information of a DSS d that is known by the client.

The profile object p contains a client id cid, that is used to identify the client in future requests



73

Request

Client 
Request

Service 
Request

Next Request

Client 
Execute 
Request

Client 
Reroute 
Request

Service 
Execute 
Request

Service 
Reroute 
Request

abstract 
class

class

(a) Request hierarchy

Response

Execute
Response

Reroute 
Response

Next
Response

abstract 
class

class

(b) Response hierarchy

Figure 4.13: Request and response hierarchy
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regarding the same query, and an idle time ti. The idle time ti is defined as the maximum amount

of time that a client expects to wait between successive next() calls to the QSB that is executing the

query. This idle threshold value ti is used by the QSB to determine if the client-side execution of a

query must be rerouted to the DSS d. As we shall see in Section 4.3, the QSB contains a specialized

thread of execution that constantly monitors all active queries for the purpose of finding queries

that become idle pass the idle threshold time ti.

The ServiceRerouteRequest message object is sent by a QSB to ask a DSS to continue

with the client-side execution of a query on behalf of a client. The ServiceRerouteRequest is sent

when invoking the execute() method of the DSS. Another way in which the client-side execution

of a query can be rerouted is if the client explicitly asks for it. The ClientRerouteRequest message

object is used by clients for this purpose and is sent when invoking the reroute() method of the

QSB. The ServiceExecuteRequest message object is sent by QSBs issuing execute() requests to an

IG or a peer QSB. As part of this request, a QSB will send the full query plan, the sub-plan that

the receiving QSB or IG must execute and its own service id sid. The purpose of the service id sid

is the same as of the client id cid; to enable IGs and peer QSBs to identify the QSB that submitted

the query when it issues next() calls at a later time. As can be seen, the execute() method of the

QSB receives both ClientExecuteRequest and ServerExecuteRequest message objects.

The NextRequest message object is sent when a next() call is submitted to a QSB, IG

or DSS. This message object is sent by clients, QSBs and DSSs when asking for the results of a

query. Information that must be submitted as part of this request includes the query id qid of the

query for which results are desired, the id of the requester and the maximum number of results

that should be returned in the corresponding response message. Recall that the query id qid is

generated by a QSB or an IG when they receive an execute() request. The query ids generated by

QSBs and IGs are returned inside an ExecuteResponse message object, which is one of the three

types of response objects that exists in NetTraveler. The hierarchy of response objects used by the

NetTraveler Query Services is depicted in Figure 4.13(b), conveniently repeated in Figure 4.14.

The NextResponse message object is returned by a Query Service after receiving a Nex-
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Figure 4.14: Response message hierarchy

tRequest. Tuples that result from the execution of the query are returned inside a NextResponse

object. The RerouteResponse message object is returned by the QSB as the response for a reroute()

call made by a client. All response objects contain a code that serves as information regarding the

state of an operation. For example, if a ClientExecuteRequest message object is successfully re-

ceived and processed by a QSB, then an OK code is returned inside the ExecuteResponse message

object. However, if an error occurs during the evaluation of the request, an ERROR code is sent

back in the response message. These two code objects are also returned inside the NextResponse

and the RerouteResponse message objects. Other message codes used are the DONE code and

the REROUTE code. The DONE code is returned in a NextResponse message object when the

execution of a query is completed. The REROUTE message code is also sent inside a NextResponse

object. It tells a client that the query was rerouted, and that the results of a query are being held

by the DSS that the client explicitly specified in the ClientExecuteRequest message object.

4.4.2 Communication Implementation

The implementation of the Query Services is not attached to any communication protocol.

In fact, the Query Services were specifically implemented as server objects independent of a specific

communication mechanism. The communication protocol to be used must be provided by another

layer of functionality that must be attached to each of the Query Services. The Query Services were

implemented in this way to allow flexibility at the moment of deciding a communication protocol

to use. As part of this thesis, only one type of communication protocol layer was implemented
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for the Query Services. The communication protocol used by this layer is Soap over HTTP. The

communication layer was implemented using the Apache Axis Soap Toolkit for Java Web services.

Web services were chosen since they allow us to leverage on many tools for resource discovery,

metadata representation, networking communications and security infrastructure.

The layered organization of the Query Services slightly variates when they are published

as Web services. As an example, look at Figure 4.15 (which is the same Figure 3.2 from Chapter

3) and compare it to Figure 4.16. Figure 4.15 shows the internal organization of the QSB

Client Service API

Remote Service API

Execution Engine

Execution Management

Catalog Manager

Query Optimizer

SQL Parser

Figure 4.15: QSB internal organization

without any communication layer attached to it. Figure 4.16 shows the internal organization of

the QSB with the layers for Soap communication added. The Soap Server Engine layer contains

an instance of the Axis Soap Server Engine. The Soap Server Engine decodes the Soap request

messages that are received by the QSB, generates the Java objects specific to each type of request

(e.g. ClientExecuteRequest, ServiceExecuteRequest, etc) and hands these Java objects to the Client

Service API layer. In the same manner, the Client Service API layer returns the response messages

as Java objects to the Soap Server Engine which encodes them as Soap response messages and

returns them. The Soap Client Engine contains an instance of the Axis Soap Client Engine.

It encodes the requests objects that are sent by the QSB to other components as Soap request

messages. It also decodes to Java objects the Soap response messages that the QSB receives.
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Figure 4.16: QSB internal organization with Soap layers added

These same two layers were added to the internal components of the IG and the DSS to publish

them as Web services.

Figure 4.17 depicts how the QSB is implemented as a Web service. As can be seen in

the figure, the Java class that is actually published as a Web service acts as a wrapper for the

QSB. The same wrapper was used for the QSB, the IG and the DSS. This means that the reroute()

method is actually present for all three Query Services when published as Web services. However,

the wrapper class is aware of the type of Query Service that it is wrapping and rejects reroute()

requests submitted to IGs and DSSs. There is a single WSDL [39] file that contains the information

needed to access the QSB, the IG and the DSS when they are published as a Web services. This

information includes the service namespace, the service name, the port name and the signatures of

the methods that can be invoked in the Web service. The implementation of a specific Soap client

object for each Query Service was not needed. Rather, a single client implementation was done

using the WSDL file. This client object can be used to communicate with any Query Service.

The NetTraveler Query Services currently communicate with each other by exchanging

Soap Document/Literal messages based on remote procedure calls (RPC). In this type of Web

service implementation, the Soap messages exchanged are a direct mapping of the signature of the
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Figure 4.17: QSB as a Web service

methods defined in the Java class that is published as a Web service. This is done by using an

XML struct to represent the call to the specific method and another XML struct to represent the

value returned by the method. For example, if a class a class that defines the following method is

published as a Web service :

public String reverseString(String s)

The Soap request message for this method will look something like this:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">
<soap:Body>

<m:reverseString xmlns:m="urn:myns">
<s xsi:type="xsd:string">Elliot</s>

</m:reverseString>
</soap:Body>

</soap:Envelope>

It can be seen how the method name has been translated into XML and how the method invocation

is encoded as a struct. Each argument passed to the method is passed as an XML element inside the

element that represents the method. The Soap response message that corresponds to the invocation
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of this method will look like this:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">
<soap:Body>

<m:reverseStringResponse xmlns:m="urn:myns">
<rev xsi:type="xsd:string">Toille</rev>

</m:reverseStringResponse>
</soap:Body>

</soap:Envelope>

The Query Services have also support for Soap messages with attachments. We felt that support

for attachments was necessary to eventually exchange not only XML messages but different types

of data, such as binary files and images, as well. Nonetheless, the current performance of the Axis

Web Services forced us to use attachments for a purpose different than the originally intended as

we shall see in the next section.

4.4.3 Soap Performance Issues in Axis

The message objects discussed in Section 4.4.1 were implemented as Java Beans. Java

Beans are classes that contain a pair of getter and setter methods for each attribute in the class.

Another characteristic of Java Beans is that they must have an empty constructor. Using a descrip-

tion file, the Axis Soap Toolkit can map Java Beans to an encoded representation in XML format.

This way, the Axis Soap engine can automatically serialize a Java Bean into XML and embed it

in a Soap message. A Java Bean can also be deserialized and reconstructed from a Soap mes-

sage. The process of serializing a Java Bean into its XML representation is known as marshalling.

Deserializing a Java Bean from XML is known as unmarshalling.

Marshalling and unmarshalling of Java objects is still a very expensive operation. The rea-

son is that Axis relies heavily on the Java Reflection mechanism. Reflection is the Java mechanism

to dynamically load classes into memory at runtime. The use of this mechanism causes multiple

objects to be instantiated by the Axis Soap Engine when it has to marshall and unmarshall request
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and response message objects. Axis has to instantiate the objects that represents the Soap mes-

sages per se. Besides, it also has to instantiate the objects that represent the request and response

message objects that travel inside the Soap messages. Not to mention that it also has to instantiate

the objects that are members of these message objects. In the end, up to thousands of objects can

be instantiated when multiple requests messages are received concurrently by a Query Service.

These objects end up being used only once and then reclaimed by the Java Garbage

Collector. The performance of the Java Garbage Collector decreases considerably as more and

more request are processed concurrently by a Query Service. Remember that for every request

received there is a corresponding response returned. This decrease in performance continues until

eventually the maximum amount of memory available to the Java Virtual Machine is reached. At

this point, the Query Services start to behave erratically, dropping all incoming requests, and barely

being able to complete the execution of queries that were already running. The situation cannot

be alleviated by increasing the amount of available memory to the Java Virtual Machine, since

eventually the saturation point is reached again.

To deal with this situation, all request and response message objects are sent as attach-

ments in the Soap messages exchanged. Figure 4.18 shows an example of a QSB exchanging Soap

messages with an IG. Suppose that the QSB will send a ServiceExecuteRequest message object to

an IG. After the message object is constructed, the QSB will convert it into bytes using the Java

serialization mechanisms. Then, the QSB will attach these bytes to the outgoing Soap request

message. The IG, in turn, will get the bytes from the attachment in the Soap request message

and will reconstruct the ServiceExecuteRequest message object. Once the IG finishes processing

the request, it will generate a new ExecuteResponse message object. As with the request object,

this response object is converted into bytes and attached to the Soap response message. Finally,

the QSB can see the result of the operation by reconstructing the response object from the Soap

response message.

Attachments in Soap messages are not processed by the Axis Soap Engine. Thanks to this

fact, only the objects that are used to represents the Soap messages are instantiated. This reduces
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Figure 4.18: QSB and IG exchanging Soap messages with attachments

instantiation overhead considerably, since these objects are small and are handed efficiently by

the Java Virtual Machine. The Query Services are able to handle a greater amount of concurrent

requests using attachments than by sending request and response message objects encoded as

XML. Nonetheless, these unconventional use of attachments is expected to be eliminated once

the performance of Axis, or another Java Soap implementation comparable to Axis, achieves an

acceptable performance level.



CHAPTER 5

Experimental Results

5.1 Introduction

This chapter presents the experiments that were carried out in order to validate the ideas

presented in this thesis about a connectionless query execution engine and query recovery. The

specific purpose of the experiments were to test:

1. If in the presence of disconnections by clients, NetTraveler can achieve a greater throughput,

defined as the number of queries solved per unit of time, than a system that lacks the capability

of recovering the query work of a client.

2. If the P2P architecture of the QSBs actually allows NetTraveler to withstand greater work-

loads than a typical middleware system that has a centralized architecture and that lacks any

mechanism for query recovery.

An experiment was setup with a federation having a fixed number of clients and a fixed

topology organization to test the first point. Using this federation, the number of disconnections

per client was varied between 0, 3, 5 and 10. Also, the experiments were ran with query recovery

and then without query recovery for each number of disconnections per client. This experiment is

detailed in Section 5.2.1.
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The second point was tested by performing two experiments. In the first one, the behavior

of a NetTraveler federation was tested by organizing it using different topologies. Basically, this

experiment tested if there appears to be a topology configuration for a federation that is superior to

others. For each topology organization, there was a fixed number of disconnections per client and

the number of clients for each topology was varied between 5 and 10. This experiment is detailed

in Section 5.2.2. In the second experiment carried out to test the second point, a federation with

a centralized architecture, only one QSB, was setup to compare the performance of NetTraveler

against a centralized system that lacks query recovery. This experiment is detailed in Section 5.2.3.

Several assumptions and simplifications were made to carried out these experiments:

• A federation will not be dissolved or changed at any time during the experiments.

• Delays introduced by network connections in a Wide Area Network were not taken into

consideration.

• The threshold idle time ti, the time that a client expects to be without issuing a next ()

request, was set to 30 seconds for all clients in all experiments.

• A connection-oriented middleware system was simulated by “turning off” recovery in Net-

Traveler.

To “turn off” query recovery we set the thread that monitors all queries in a QSB (Section

4.3.2) to sleep for half of the minimum amount of time that clients expect to be without issuing

a next() request for a query, 15 seconds. The monitoring thread removed any query that it found

idle beyond the threshold value ti when it waked up. Disconnection failures were distributed by

each client randomly in time. The time of each disconnection was chose randomly between 30 and

90 seconds.

The number of components used for the experiments, with the exception of when a cen-

tralized topology was used, was 4 QSBs, 8 IGs and 1 DSS. Each QSB had access to 2 IGs and all

clients used the same DSS. In the cases where a centralized topology was used, a single QSB knew

how to access the 8 IGs. Each run in an experiment lasted 20 minutes and was repeated 3 times.
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The average of the repetitions was used as the result values. Each Query Service and every client

was ran in a different machine. The specifications of the machines used and what services were ran

on them, one per machine, are in Table 5.1.

Machine Specs Query Service
Dell PowerEdge 2865, 3.0 GHz Intel Xeon, 1 or 2 GB RAM 4 QSBs and 2 IGs

Dell Precision 360, 3.2 GHz Pentium 4, 1 GB RAM 6 IGs, 1 DSS and all clients

Table 5.1: Machines used for the experiments

5.1.1 Experimental Data

The data used for the experiments followed a schema based on information about police

precincts. This schema is detailed in Table 5.2. The Precinct relation holds information about

a police precinct. Each precinct has information about police Officers and the Tickets that they

have given. For each ticket there is an associated Car and Driver. For simplicity, it was assumed

that all drivers with tickets are car owners, and that they were given tickets driving their own cars.

There are no drivers that were given tickets using cars that were borrowed, rented or acquired by

any other means. Hence, the amount of drivers and cars in the database is the same.

We simulated a federation were each IG contained information regarding a single police

precinct. To do this, relations were stored by horizontally fragmenting them inside the federation.

This means that all IGs in a federation had a subset of the records of each relation. Table 5.3 depicts

an example of how the Officer relation was horizontally fragmented. The attribute pid is the id of

the precinct to where each officer is assigned. The relation was partitioned so the information in

each IG is specific to a precinct. This way, the simulated federation represents a group of police

precincts that are geographically apart, each having information specific to their geographical area,

that were united by NetTraveler to obtain a unified representation of information spread over a

wide area without having to move all the information to a centralized, bloated, database. The

union operator is used to reconstruct each of the original relations. The PostgreSQL 8.1 relational

database management system (RDBMS) was used as the data source for each site. It was also used
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Relation Description Cardinality Size

Precinct(pid:Integer, addr:String)
Stores information
about a precinct

8 184 B

Officer(oid:Integer, pid:Integer,
fname:String, lname:String,

birthday:Date)

Stores police
officers information

480 28.1 KB

Driver(did:Integer, fname:String,
lname:String, addr:String,

birthday:Date)

Stores information
about drivers

2400 375 KB

Car(cid:Integer, did:Integer,
plate:String, make:String,

year:Integer)

Stores cars
information

2400 84.4 KB

Ticket(tid:Integer, cid:Integer,
did:Integer, oid:Integer,
date:Date, viol:String,

dept:Numeric)

Stores tickets
information

6151 504.6 KB

Table 5.2: Experiments database schema

to stored the catalogs used by the QSBs.

Officer
IG oid pid fname lname birthday

IG 1 45033 1 Dennise Medalla 1975-10-28

45154 1 Bart Aniston 1959-03-21
IG 2 45103 2 Alf Iverson 1979-09-03

45148 2 Nestor Vargas 1978-04-27
IG 3 45074 3 Peter Parker 1980-09-10

45156 3 Wilson Ginobili 1981-09-12

Table 5.3: Officer relation showing horizontal fragmentation

5.1.2 Experiment Queries

Table 5.4 shows the queries that were used for the experiments. The table also shows the

number of results and the amount of data returned by each query. Query 1 gets the information

of all the police officers of all precincts. This query returns 28.1 KB of data and in average takes

5.56 seconds to complete. Query 2 gets information of all the tickets that have been given in

all the precincts. This query returns 504.6 KB of data and on average takes 65.04 seconds to
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complete. Query 3 is the most complex query and gets the information of all drivers that own cars.

The complexity of this query relies on the fact that a join operation must be carried out. Join

operations are always performed in the QSB that is coordinating the query. This query returns

121.9 KB of data. Nonetheless, because a join operation must be carried out, this query takes 64.08

seconds to complete, almost the same time as Query 2, which returns almost 5 times more data.

Name Query Cardinality Size Time
Query 1 SELECT * FROM Officer 480 28.1 KB 5.56 s

Query 2
SELECT cid, date, viol, debt

FROM Ticket
6151 504.6 KB 65.04 s

Query 3
SELECT D.fname, D.lname, D.did

FROM driver as D, car as C
WHERE D.did = C.did

2400 121.9 KB 64.08 s

Table 5.4: Queries used for the experiments

5.2 Experiments

We shall now turn our attention to the discussion of the experiments that were carried

out to validate the ideas presented in this thesis.

5.2.1 Throughput Experiment

The goal of this experiment was to test the following hypothesis: “In the presence of

disconnections suffered by clients NetTraveler can achieve a greater throughput, defined as the

number of queries solved per unit of time, than a system that lacks the capability to recover the

query work of a client”.

5.2.1.1 Methodology

For this experiment we set up a NetTraveler federation with 4 QSBs, 8 IGs and 1 DSS

organized in a mesh topology. Figure 5.1 depicts the organization of the federation for this exper-
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iment. The topology of the federation is denoted by how the QSBs are organized. Figure 5.1(a)

shows a view of the federation for this experiment with the QSBs only. Each QSB had access to

2 data sources through an IG, as depicted by Figure 5.1(b). The DSS is not shown in the figure

for simplicity. Five clients were used for this experiment and clients choose a QSB randomly each

time they submitted a query. All of the queries in Table 5.4 were used for this experiment. For

each query we ran the experiment with 0, 3, 5 and 10 disconnections per client. For each of the

disconnection values we ran the experiment with query recovery and then without query recovery.

QSB 2

QSB 4

QSB 1

QSB 3

(a) Mesh topology without IGs

IG 8

IG 7

QSB 2

QSB 4

QSB 1

QSB 3

IG 1

IG 3IG 2

IG 4

IG 6

IG 5

(b) Mesh topology with IGs

Figure 5.1: NetTraveler federation with a mesh organization

5.2.1.2 Results

Figure 5.2 shows the results for Query 1 in both graphical chart and table representations.

As can be seen in the chart of Figure 5.2(a), the throughput of the system with and without

recovery, denoted by the grey (NT) and the black (NONT) bars respectively, is almost the same

when the clients did not suffered any disconnection. However, as disconnections per client increased,

the throughput of the system decreased. The decrease in throughput is more significant without

recovery than with recovery. Without recovery, the throughput falls from an average of 34.95



88

0

100

200

300

400

500

600

700

Q
u

e
ri

e
s
 C

o
m

p
le

te
d

0 3 5 10
Disconnections

NONT
NT

(a) Throughput

Disconnections Scheme Submitted Completed %Completed Throughput
0 NONT 705 699 99 34.95

NT 694 688 99 34.4
3 NONT 575 561 98 28.05

NT 590 584 99 29.2
5 NONT 523 444 85 22.2

NT 536 531 99 26.55
10 NONT 511 179 35 8.95
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Figure 5.2: Throughput results for Q1
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queries per minute with 0 disconnections to 8.95 queries per minute with 10 disconnections per

client. With recovery, the throughput decreased from 34.4 queries per minute to 18.25 queries per

minute. By using query recovery in the presence of 10 disconnections per client NetTraveler can

complete 49 percent more queries than without query recovery for this first query.

Table 5.2(b) has the detailed results obtained for Query 1. The column named %Completed

is the percentage of queries completed from the total of queries submitted for each of the different

possible number of disconnections per client. As we can see, in the presence of disconnections the

percentage of completed queries is always greater with query recovery, staying almost always above

90 percent. This percentage decreases from 99 percent with 0 disconnections to 35 percent with 10

disconnections without query recovery.

The results obtained when using Query 2 in this experiment are presented in Figure 5.3.

Basically, the results followed the same pattern as for Query 1. For 0 disconnections the system

achieved a similar throughput with and without query recovery. However, the throughput of the

system when disconnections existed was always greater with query recovery. For example, for

10 disconnections and without query recovery the system achieved a throughput of .45 queries

per minute. With query recovery and the same number of disconnections the system achieved

a throughput of 2.6 queries per minute. Also, the percentage of completed queries with query

recovery was always greater, or at least equal, than the percentage of completed queries without

query recovery.

For Query 3 we also see a similar patter in the results as we did for Query 1 and Query

2. The details of the results can be seen in Figure 5.4. We can see that, when disconnections were

present, the throughput of the system for this query was greater when query recovery was used

than without query recovery. Also, in the presence of disconnections, the percentage of completed

queries was greater when query recovery was used. As expected, the amount of submitted and

completed queries for all cases of this query is similar to the average found for Query 2 since both

queries take almost the same time to complete.
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The results of this experiment show that NetTraveler is able to solve more queries per

unit of time than a system that lacks a query recovery mechanism. The percentage of completed

queries for all queries was always greater than 90 percent when recovery was “turned on”. It was

also noticed that in cases where clients suffered 5 or more disconnections, the system behaved

erratically without query recovery. The issue was more noticeable for queries that took longer to

complete, such as Query 2 and Query 3. For Query 1, the issue appeared when each client suffered

10 disconnections, in which case the percentage of completed queries was 35. In both, Query 2 and

Query 3, the issue appeared when clients suffered more than 5 disconnections. The percentage of

completed queries for Query 2 and Query 3 when more than 5 disconnections per client existed

was always lower than 27 percent and in one case it was as low as 5 percent.

The reason for this erratical behavior was caused by the presence of multiple disconnections

that overlapped each other when the system was already executing multiple queries. The system

was not able to release the resources employed to execute queries that suffered disconnections in a

timely manner to attend new queries. We can say that this is the saturation point of the system.

From the saturation point on, queries that are submitted by clients are either rejected or are dropped

in the middle of execution because of the lack of resources. The result is an extreme decrease in the

percentage of completed queries as the result tables for all three queries in this experiment have

shown. Nonetheless, in all cases that disconnections were present, and it was noticeable that the

system did not reached a saturation point, the system was able to complete a greater percentage

of queries using query recovery. Results obtained for Query 1 with 5 disconnections, Query 2 with

3 disconnections and Query 3 with 3 disconnections are a prove of this.

5.2.2 Topology Experiment 1

The purpose of this experiment was to test the performance of NetTraveler’s P2P ar-

chitecture under different topology organizations. The experiment was also used to compare the

performance of a P2P topology organization using query recovery against a centralized topology

organization also using query recovery.
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5.2.2.1 Methodology

For this experiment we organized the federation for the tests using 4 different topologies.

These topologies were:

• Mesh - This is the same topology organization used for the throughput experiment presented

in the previous section and is depicted in Figure 5.1.

• Ring - Figure 5.5 shows how the federation was organized for this topology. The actual ring

is form by how the QSBs are organized. Figure 5.5(a) shows the QSBs forming a ring. The

complete federation for this topology organization is shown in Figure 5.5(b). The DSS is not

shown for simplicity.

• Tree - The federation organized as a tree is depicted in Figure 5.6. As before, the actual tree is

formed by how the QSBs are organized. Figure 5.6(a) shows the QSBs in a tree topology. The

complete federation, organized as a tree and not showing the DSS for simplicity, is depicted

in Figure 5.6(b).

• Centralized - To organize the federation as a centralized system we removed 3 of the QSBs.

A single QSB is responsible of receiving all the query requests and of accessing all the IGs.

Figure 5.7 shows the federation organized in a centralized topology. The DSS is not shown

for simplicity.

All the runs in this experiment were done with query recovery “turned on”. The number

of disconnections was fixed at 5 per client. It was decided that only 1 query was going to be used

for this test and that the same query was going to be used across all topologies. Query 2 was

arbitrarily selected as the query to be used for this experiment. For each topology selected we

repeated each run 3 times with 5 clients and then 3 times with 10 clients. Clients choose a QSB

randomly each time they submitted a query.
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(b) Ring topology with IGs

Figure 5.5: NetTraveler federation organized in a ring topology
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(b) Tree topology with IGs

Figure 5.6: NetTraveler federation organized in a tree topology
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Figure 5.7: NetTraveler federation organized in a centralized topology

5.2.2.2 Results

From the result chart and table for this experiment, shown in Figure 5.8, we see that

all topologies performed almost equally when query recovery was “turned on”. The throughput

achieved by all topology organizations is almost equal when 5 or 10 clients submitted queries with 5

disconnections each. Even the centralized topology organization achieve a good level of performance

in comparison with the other topology organizations. The throughput for all organizations with 5

clients was on average 3.36 queries per minute. With 10 clients the average throughput was 6.45

queries per minute. In all cases the percentage of completed queries was greater than 88 percent.

The reason for these numbers is that with query recovery the system never reached its saturation

point with the number of clients and disconnections per client that we selected for this experiment.

This does not implies that the system lacks a saturation point. More research and work is needed

to further study the impact of federation organization on throughput.

5.2.3 Topology Experiment 2

In this experiment we wanted to compare the performance of NetTraveler, in terms of

achievable throughput, against that of a middleware system that is centralized and that lacks a
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query recovery mechanism. We part from the throughput results obtained in the second experiment

(Section 5.2.2) for several topologies that used query recovery, including a system with a centralized

architecture.

5.2.3.1 Methodology

For this experiment the federation was organized using a centralized topology, exactly

as the one used for the second experiment (Section 5.2.2), but with query recovery “turned off”.

The organization of the federation for this experiment is depicted in Figure 5.7. Disconnections

were held constant at 5 per client and the number of clients was varied, starting with 5 and then

10 clients. Clients choose a QSB randomly each time they submitted a query. Clients submitted

queries of type Query 2 only in order to be consistent with the results obtained in the second

experiment.

5.2.3.2 Results

The results for this experiment are shown in Figure 5.9. This results also include the

results that where obtained from the second experiment. We can see that the throughput and the

percentage of completed queries for a centralized topology without query recovery, denoted by the

bars labeled Centralized NONT in the x axis of the graph in Figure 5.9(a), are much lower than

for any of the other topologies tested in the second experiment, including a centralized topology

with query recovery. When the centralized topology was used with query recovery the average

throughput for 5 clients was 3.3 queries per minute. Without query recovery the same topology

yielded a throughput of 1.1 queries per minute, 33 percent less queries per minute than with query

recovery.

For 10 clients the throughput of the centralized topology with query recovery was .95

queries per minute, less than 1 query per minute. With query recovery, the throughput for the

same topology was 6.35 queries per minute when 10 clients submitted queries. A throughput

improvement of 668 percent. Looking at the percentage of completed queries in the %Completed
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column of Table 5.9(b) we see that for a centralized topology without query recovery (NONT

Centralized) the system reached the saturation point in the presence of 5 and 10 clients. When

query recovery was used the system did not reached a saturation point in any of the topologies

tested.

5.3 Summary of Experimental Results

The experiments carried out showed that NetTraveler was able to solve more queries per

unite of time when using query recovery than without it. Also, it was found that when query

recovery was not used the system quickly reached a saturation point. From the saturation point

on the system behave erratically. The saturation point was not reached in the experiments where

query recovery was used. Hence, the system appears more stable when query recovery is enabled

in the presence of many client disconnections. However, this does not imply that there is not a

saturation point with query recovery, only that it was not found through the experiments that

were carried out. The results found after these experimental tests to the first implementation of

NetTraveler are encouraging. They are a motivation to continue with the implementation of the

NetTraveler system and also to further investigate the capabilities of NetTraveler’s connectionless

query execution engine through experimentation.



CHAPTER 6

Conclusion and Future Work

With the broad acceptance of mobile devices in our modern society, companies have been

led to put more effort on the development of more powerful and accessible mobile devices than ever.

This new breed of devices, ranging from laptops and Tablets PC to PDAs and smart cellphones, are

designed with Internet connectivity in mind. With the ever increasing affordability of broadband

networks, we can expect these type of devices to be playing a more active role as clients of Database

Middleware Systems.

Most of the existing Database Middleware Systems treat all query request with the same

policies, regardless of the nature of the computing device that is holding the client application.

However, mobile devices have power limitations, intermittent connectivity and may get connected

through pricey Internet links. A network failure, the lost of power or a software crash are all

conditions that can cause a mobile device to lose network connectivity, disrupting the client-side

execution of a query. In current middleware solutions, the query being processed before the dis-

connection is aborted and the query must be re-computed. This leads to slow response times as

the query needs to be re-started from scratch. More importantly, the resources invested by both

the client and the server in processing the query are lost.

This thesis has presented NetTraveler, a Database Middleware System for Wide Area

Networks designed to overcome these limitations. WANs are modeled in NetTraveler as a collection
100
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of applications, each having a specific role in helping a client to solve a given query. The elements

in NetTraveler are logically organized into groups of cooperative applications known as ad-hoc

federations. Federations are ad-hoc because they can be formed or dissolved over time, based on

the decisions taken by its members. A federation can spawn one or more Local Area Networks

(LAN), and a LAN can have elements that belong to more than one federation.

NetTraveler relies on a connectionless query execution engine to execute queries submitted

by clients. This execution engine allowed the implementation of a query recovery mechanism where

queries that are interrupted due to a failure in a client can be resumed from the point of the

failure, and without having to restart the query from scratch. NetTraveler also exhibits Peer-to-

Peer functionality to prevent a centralized operational model, in which a central broker needs to

know all data sources and becomes a focal point through which all queries must pass.

In the rest of this chapter we shall see a summary of the major contributions of this thesis

and also a discussion of the direction in which work concerning NetTraveler shall be directed in the

near future.

6.1 Summary of Contributions

In Chapter 3, we saw the NetTraveler Middleware System from an architectural point

of view. The chapter began by presenting how Wide Area Networks (WANs) are modeled in

NetTraveler and then introduced each of the server components in the framework. In order to

achieve the goals of this thesis, it was necessary to identify the minimum set of components needed

for query execution to take place. These components, which are called the Query Services, are:

• Query Service Broker (QSB) - Takes on the responsibility of finding the computational re-

sources (data, disk access, CPU time, network time, etc.) required to extract from the data

sources the data to answer the queries posed by clients. QSBs perform query tasks such as

query parsing, query optimization and query execution. QSBs exhibit Peer-to-Peer behavior

since a broker might contact other brokers in a federation to help it solve a given query.
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• Information Gateway (IG) - Has the role of providing access to the wealth of information

contained in the data sources. IGs extract data from the data sources and can execute query

operators, particularly those that can filter out unwanted results, such as predicates.

• Data Synchronization Server (DSS) - Helps clients in caching query results and in obtaining

extra disk space. More importantly, a DSS can become a proxy for a client, gathering the

results intended for the client if it goes offline or experiences some type of failure that causes

it to lose network connectivity.

We also saw an overview of query execution in Chapter 3. The model of query execution

that has been used in middleware systems is the connection-oriented model. In NetTraveler, a

connectionless oriented query execution model is used. We saw that for mobile clients in a Wide

Area Environment, a connectionless oriented query execution engine provides several benefits over

a connection oriented engine. For one part, the execution of queries that must access several data

sources is greatly improved because the execution of query operators in parallel is maximized.

Also, a disconnection failure will not necessarily imply the abortion of a query, since the parties

can reconnect and attempt to reestablish the computation of a query.

In Chapter 4, we saw the implementation details of the NetTraveler components that were

identified as indispensable to achieve the goals of this thesis. We saw that the QSB, IG and DSS

achieve the completion of their corresponding tasks by following a common iterator-like approach

of execution. The methods defined by each component are:

• execute() - Used to submit a query request to a QSB, IG or DSS.

• next() - Used to retrieve the results of a query that is being executed by a QSB or IG. This

method is also used by clients to get results from a DSS.

The QSB defines an extra method named reroute(). A call to this method will cause the client-

side execution of a query to be rerouted to a DSS. We saw that the Query Services rely on a

multithreaded scheme that uses two entities, known as the Query Coordinator and the Query

Worker, to actually execute the part of the query that corresponds to them.
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Chapter 4 also detailed how recovery of the client-side work of a query is performed in

NetTraveler. Recovery of the client-side execution of a query is achieved by rerouting the client-side

execution of a query to a DSS. There are two possible scenarios for client-side query recovery in

NetTraveler: (1) automatic recovery and (2) explicit recovery. Automatic recovery occurs when a

QSB finds a query that has been idle beyond a threshold time value ti. This time value ti is defined

as the maximum amount of time that a client expects to wait between successive next() calls for a

query. The QSB contains a monitor thread that periodically monitors all queries being executed.

For each query that is found idle, the monitor thread in the QSB coordinates the rerouting of

the client-side execution of the query. In explicit rerouting, the client application will determine

that it must abandon the execution of the current query, based on some criteria specified by the

user, and will trigger an event that will issue a reroute() call on the QSB. With rerouting of the

client-side execution of a query, system and client resources are not wasted since queries that suffer

a client-side disconnection are never re-started.

In Chapter 5, we discussed the experiments that were carried out in order to validate the

ideas presented in this thesis about a connectionless query execution engine and query recovery.

The experiments showed that NetTraveler achieved a greater throughput, defined as the number of

completed queries per unite of time, when using query recovery than without it. Also, it was found

that when query recovery was not used the system quickly reached a saturation point. From this

saturation point on the system behaves erratically. The saturation point was not reached in the

experiments where query recovery was used. Hence, the system appears more stable when query

recovery is enabled in the presence of many client disconnections. However, this does not imply

that there is not a saturation point with query recovery, only that it was not found through the

experiments that were carried out. Hence, the saturation point might be reached with a far larger

set of clients.
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6.2 Future Work

This section gives directions for future work concerning the NetTraveler middleware sys-

tem:

• Implementation of the Registration Server (RS) and the Data Processing Server (DPS). The

RS is needed to actually allow dynamic ad-hoc formation of federations, dissolution of fed-

erations and metadata dissemination. The DPS component is needed to test the possible

advantages of using a dedicated server when performing complex computations in queries.

• Native support for other type of query languages such as XML Query Language.

• Implementation of a full-fledged query optimizer. Research is being carried towards developing

a query optimizer suited for a system like NetTraveler. This query optimizer will use a

randomized optimization model to build a query plan that has the unique characteristic of

being dynamic, in the sense that it can be changed in the middle of execution. In this manner,

the optimization process ends when the query completes execution.

• Design and implementation of server-side query recovery based on dynamic query plans.

With the ability to reroute the execution of any node in the query plan, NetTraveler will be

able to recover from failures suffered by server applications. A node in the plan can also be

rerouted for any other reason, such as specific rules set for each operation. NetTraveler will

be the first system with the novel approach of dynamic query plans.

• Implementation of the DSS query execution engine. This will allow the DSS to work on behalf

of QBSs and IGs. This will be helpful for the implementation of server-side query recovery

and of dynamic query plans in general.
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