SEQUENCE DIVERSITY AND EXPRESSION OF NOVEL BACTERIAL NITROUS OXIDE REDUCTASE (nosZ) GENES IN TROPICAL ENVIRONMENTS

By
Gina Paola Rodríguez-Castaño

A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE

in

BIOLOGY
UNIVERSITY OF PUERTO RICO
MAYAGÜEZ CAMPUS

June, 2008

Approved by:

Frank E.Loeffler, Ph.D.
Member, Graduate Committee

Rafael R. Montalvo-Rodríguez, Ph.D.
Member, Graduate Committee

Carlos A. Muñoz, Ph.D.
Member, Graduate Committee

Arturo A. Massol-Deyá, Ph.D.
President, Graduate Committee

Jorge E. Corredor, Ph.D.
Representative of Graduate Studies

Lucy Bunkley-Williams, Ph.D.
Date
Chairperson of the Department

Abstract

Nitrous oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$ is produced in different microbial processes including denitrification, nitrification and dissimilatory nitrate reduction to ammonia (DNRA) (Kelso et al. 1999). It has been suggested that nitrification is the main source of $\mathrm{N}_{2} \mathrm{O}$. Understanding the mechanisms that control the flux of $\mathrm{N}_{2} \mathrm{O}$ is crucial to predict and manage emissions of this powerful greenhouse gas. Amplification of genes (nosZ) coding for nitrous oxide reductases $\left(\mathrm{N}_{2} \mathrm{ORs}\right)$ from denitrifiers and N_{2} - fixers has been obtained by PCR methods. In this thesis, we refer to these sequences as "traditional" nosZ sequences; on the other hand, the nos Z genes from microaerophilic Anaeromyxobacter spp. and Magnetospirillum spp., and other obligate anaerobic microorganisms, such as Wolinella spp., Desulfitobacterium spp and Dechloromonas spp. have not been well studied. Their primary $\mathrm{N}_{2} \mathrm{OR}$ sequences diverge from the traditional ones and therefore, different primer sets must be developed to better understand their diversity and distribution in nature. This study developed oligonucleotides for amplifying a broader range of nos Z genes to assess their diversity in soil and bioreactors by cultureindependent techniques. nos Z sequences obtained from environmental samples were different from traditional nos Z sequences. None of the clone sequences shared more than 62% amino acid similarity with traditional NosZ. Additionally, this analysis revealed the presence of conserved histidine residues essential for function of a mature $\mathrm{N}_{2} \mathrm{OR}$ protein. Through a phylogenetic analysis using Neighbor-Joining, Maximum Parsimony, Maximum Likelihood, and Bayesian Inference methods, nine clades of NosZ variants were identified. Neither of the clone sequences fell into the traditional NosZ phylogenetic

clades, but grouped with Anaeromyxobacter spp., Magnetospirillum spp., Desulfitobacterium hafniense, and Dechloromonas aromatica. The detection of nosZ genes was achieved by ISRT-PCR/FISH using an internal fluorescently-labeled NosZ943 probe. This constitutes the first published report of probing nos Z amplicons inside of active microbial cells using an optimized In Situ Reverse Transcriptase-PCR/Fluorescent In Situ Hybridization (ISRT-PCR/FISH) protocol. Our results show that a clone carrying the partial Anaeromyxobacter nos Z gene emits a strong fluorescent signal when detected with NosZ943 probe, but not with Nos1527 probe; while a clone carrying the partial Pseudomonas gene did not emit any fluorescent signal with the NosZ943 probe. ISRTPCR was further applied to natural samples from an anoxic bioreactor. Approximately 4% of total cell counts were expressing the novel nosZ genes. We demonstrate the existence of many variants of nos Z gene that are not yet represented by cultured organisms. These variants could represent a high functional diversity for reducing $\mathrm{N}_{2} \mathrm{O}$ in the environment. Therefore, the diversity of nos Z genes in nature and their contribution to the $\mathrm{N}_{2} \mathrm{O}$ budget warrants further exploration.

RESUMEN

El óxido nitroso $\left(\mathrm{N}_{2} \mathrm{O}\right)$ es producido en diferentes procesos microbianos incluyendo desnitrificación, nitrificación y reducción desasimilativa del nitrato a amonio (DNRA) (Kelso et al. 1999). La denitrificación se ha sugerido es la fuente principal de $\mathrm{N}_{2} \mathrm{O}$ (Wolf and Russow, 2000). Entender los mecanismos que controlan el flujo de $\mathrm{N}_{2} \mathrm{O}$ es crucial para predecir y tratar las emisiones de este poderoso gas de invernadero. La amplificación de los genes (nosZ) que codifican para las óxido nitroso reductasas $\left(\mathrm{N}_{2} \mathrm{ORs}\right)$ de desnitrificadores y fijadores de N_{2} ha sido obtenida por métodos de PCR. En esta tesis se refiere a estas secuencias como las secuencias nosZ "tradicionales"; por otro lado, los genes nosZ de microerófílos como Anaeromyxobacter spp., Magnetospirillum spp. y otros microoganismos anaerobios obligados Wolinella spp., Desulfitobacterium spp. y Dechloromonas spp. no han sido bien estudiados. La secuencia primaria de sus $\mathrm{N}_{2} \mathrm{ORs}$ diverge de las tradicionales y, por lo tanto, diferentes parejas de cebadores deben ser desarrollados para entender mejor su diversidad y distribución en la naturaleza. Este estudio desarrolló oligonucleótidos para amplificar un rango más amplio de genes nos Z para evaluar su diversidad en suelo y bioreactores por técnicas independientes de cultivo. Las secuencias nos Z obtenidas de muestras ambientales fueron diferentes de las secuencias nos Z tradicionales. Ninguna secuencia de aminoácidos de los clones compartió más del 62% de similaridad con las NosZ tradicionales. Adicionalmente, este análisis reveló la presencia de residuos de histidina conservados esenciales para el funcionamiento de la proteína $\mathrm{N}_{2} \mathrm{OR}$ madura. A través de un análisis filogenético utilizando los métodos del vecino más cercano, máxima parsimonia, máxima
verosimilitud e inferencia bayesiana, nueve clados de variantes del NosZ fueron identificados. Ninguna de las secuencias de los clones se ubicó dentro de los clados de los NosZ tradicionales, pero se agruparon con Anaeromyxobacter spp., Magnetospirillum spp., Desulfitobacterium hafniense, y Dechloromonas aromatica. La detección de los genes nosZ fue lograda por ISRT-PCR/FISH usando una sonda interna NosZ943 marcada fluorescentemente. Este representa el primer informe publicado del sondaje de amplificaciones del nos Z dentro de células microbianas activas usando un protocolo optimizado de In Situ PCR de Transcripción Reversa/Hibridización In Situ Fluorescente (ISRT-PCR/FISH). Nuestros resultados muestran que un clon con la secuencia parcial del gen nos Z de Anaeromyxobacter emitía una fuerte señal fluorescente cuando era detectado con la sonda NosZ943 pero no con la sonda Nos1527; mientras que un clon con la secuencia parcial del gen nos Z de Pseudomonas no emitió ninguna señal fluorescente con la sonda NosZ943. El ISRT-PCR fue también empleado para muestras naturales de un bioreactor anóxico. Aproximadamente 4\% del conteo total de células estaban expresando los genes nosZ novel. Nosotros demostramos la existencia de numerosas variantes del gen nos Z que aún no están representadas por organismos cultivables. Estas variantes pueden representar una alta diversidad funcional para reducir $\mathrm{N}_{2} \mathrm{O}$ en el ambiente. Por lo tanto, la diversidad de los genes nos Z en la naturaleza y su contribución al monto de $\mathrm{N}_{2} \mathrm{O}$ requiere más exploración.

DEDICATORY

To the heaven in my hands, Eva and Alejandro

ACKNOWLEDGMENTS

Specially thanks to my husband Alejandro Caro for his priceless contribution to this work.

Thanks to my parents that gave me their comprehension, love and a lot of time.
I would like to express gratitude to Dr. Arturo Massol-Deyá for his advice, critically reading of this manuscript, and his support in difficult months.

I would like to express gratitude to Mrs. Gladys Toro for her technical support, research assistance and frienship.

Thanks to Dr. Frank Loeffler for his mentoring during my summer internship in GeorgiaTech, for his guidance and critical comments of the manuscript.

Thanks to Dr. Carlos Muñoz for being part of my graduate committee and all his suggestions to this manuscript.

I would like to show my appreciation to Dr. Rafael R. Montalvo-Rodríguez for all the things I learnt from him.

Specially thanks to Alexis Valentín, Dubiezel Medina, Paola Bracho, Katherine Carrero, and Ivette Ludeña for kindly providing me with DNA extractions and for their friendship. Thanks to José Almodovar for his assistance with fluorescence microscopy.

Thanks to Idaris from Dr. Nanette Diffoot lab for making available some of the equipment needed for this research.

TABLE OF CONTENTS

Abbreviations 1
List of Tables 3
List of Figures 4
List of Appendixes 15
Introduction 16
Objectives. 17
Literature review
Nitrogen Cycle. 18
Nitrous oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$ gas. 19
Nitrous oxide reductase ($\mathrm{N}_{2} \mathrm{OR}$) 20
Strains harboring a "divergent" $\mathrm{N}_{2} \mathrm{OR}$ 22
Molecular biology techniques 24
Phylogenetic analysis. 28
Materials and methods
Bacterial cultures and growth conditions. 32
DNA and RNA extractions 33
Development of PCR primers 34
Amplification of nos Z genes. 35
Cloning of nosZ PCR products and sequencing. 36
Sequence and Phylogenetic analysis. 38
Terminal Restriction Fragment Length Polymorphism of nosZ amplicons. 40
In Situ RT-PCR 41
Bacterial cell fixation 42
Cell permeabilization 42
ISRT-PCR protocol. 44
Detection of amplified gene products by fluorescent in situ hybridization (FISH). 44
ISRT-PCR protocol-Environmental samples 46
Results
Development of PCR primers 47
Primers specific to nos Z from Anaeromyxobacter spp 47
Primers specific to novel nos Z genes. 49
Environmental nosZ-gene libraries 52
Phylogenetic analysis of nos Z genes 55
Diversity indexes and Richness estimators of nosZ-gene libraries 58
Terminal Restriction Fragment Length Polymorphism of nosZ Amplicons. 59
In Situ-PCR. 60
Cell Permeabilization. 61
In Situ RT-PCR 62
Discussion
Primers specific to nos Z from Anaeromyxobacter spp 65
Primers Specific to novel nos Z Genes and Environmental Analysis 66
Phylogenetic analysis of nos Z genes 68
Diversity indexes and Richness estimators of nosZ-gene libraries. 73
Terminal Restriction Fragment Length Polymorphism of nosZ Amplicons 75
In Situ-PCR 77
Cell Permeabilization 77
In Situ RT-PCR 78
Literature cited 81
Figures 93
Appendix 1 148
Appendix 2 171

```
                    ABBREVIATIONS
4',6'-diamidino-2-phenylindole (DAPI)
Abundance-based coverage estimator (ACE)
Aerobic station of Mayagüez Wastewater Treatment Plant (AES)
Ammonium (NH4+
Anaerobic station of Mayagüez Wastewater Treatment Plant (ANS)
Basepair (bp)
Basic local alignment search tool (BLAST)
Bayesian Inference (BI)
Commonwealth Refining Company (CORCO)
Cyanine dye 3 (Cy3)
Dinitrogen (N2)
Dinucleotide-triphosphate (dNTP)
Dissimilatory nitrate reduction to ammonia (DNRA)
Distance-based OTU and Richness (DOTUR)
DNA nuclease (DNAse)
Double distilled water ( }\mp@subsup{\textrm{ddH}}{2}{}\textrm{O}
Fluidized bed reactor (FBR)
Fluorescent In Situ Hybridization (FISH)
InfraRedDye (IRDye)
In Situ -PCR (IS-PCR)
In Situ Reverse Transcriptase-PCR/Fluorescent In Situ Hybridization (IS RT-PCR/FISH)
Joint Genome Institute (JGI)
```

Luria Bertani (LB)
Maximum Likelihood (ML)
Maximum Parsimony (MP)
Mayagüez wastewater treatment plant (MWWT)
Melting temperature (Tm)
Magnesium (Mg)
National Center for Biotechnology Information (NCBI)
Neighbor-Joining (NJ)
Nitrate $\left(\mathrm{NO}_{3}{ }^{-}\right)$
Nitric oxide (NO)
Nitrite $\left(\mathrm{NO}_{2}{ }^{-}\right)$
Nitrogen (N)
Nitrous oxide ($\mathrm{N}_{2} \mathrm{O}$)
Nitrous oxide reductase ($\mathrm{N}_{2} \mathrm{Or}$ or NosZ)
Operational taxonomic unit (OTU)
Optical Density (OD)
Phosphate-buffered saline (PBS)
Pipeline Functional Gene/ Repository (PFGR)
Polymerase Chain Reaction (PCR)
Polyvinylpolypyrrolidone (PVPP)
Reverse Transcriptase-PCR (RT-PCR)
RNA nuclease (RNase)
Terminal restriction fragment length polymorphism (T-RFLP)

LIST OF TABLES

Table 1. Environmental samples used in this study

Table 2. Primer sequences and designation

Table 3. Characteristics and PCR conditions for primer pairs.

Table 4. Similarity matrix of amino acid sequences from non-denitrifying nos Z group and environmental clones.

Table 5. Similarity matrix of amino acid sequences from traditional-nos Z group.

Table 6. Diversity indexes and Richness estimators.

Table 7. Expected nosZ amplicons based on HinPI, NlaIII, and RsaI T-RF fragment lengths for MWWT clones.

Table 8. Expected nosZ-amplicon based HinPI, NlaIII, and RsaI T-RF fragments lengths for reference organisms carrying a non-denitrifying nosZ gene (NosZ943F/NosZ1789R primer pair).

LIST OF APPENDIXES

Appendix 1. Partial sequences of the nosZ-gene of environmental clones and A. dehalogenans strain 2CP-3 and Anaeromyxobacter sp. strain R.

Appendix 2. Nucleotide accession numbers for reference organsims used in this study (protein and nucleotide sequences were obtained from the Pipeline Functional Gene/ Repository [PFGR] [http://flyingcloud.cme.msu.edu/fungene/]).

LIST OF FIGURES

Figure 1. Denitrification, DNRA and nitrification: three known pathways involved in nitrous oxide production (modified from Kelso et al., 1997).

Figure 2. Graphic depiction of primer binding sites along the 1863 bp nosZ gene sequence of A. dehalogenans strain 2CP-C.

Figure 3. Partial multiple nos Z nucleotide sequence alignments showing priming sites for forward (upper) and reverse (lower) primers.

Figure 4. Partial multiple nos Z amino acid sequences alignments showing priming sites for forward (upper) and reverse (lower) primers.

Figure 5. Optimization of PCR conditions for amplification with primer pair NosZ943F/1789R. Results from A. dehalogenans 2CP-C genomic DNA amplifications using PCR annealing temperatures of $40,41.2,43.3,46.3,49.8,52.8,54.9$, and $56^{\circ} \mathrm{C}$ (Lanes 1-8). Five microlitres of each amplification reaction were loaded onto an agarose gel (1\%). MW, 1 Kb DNA ladder (Promega). NosZ943F/1789R amplicons with the expected size of 873 bp were obtained at $52.8,54.9$, and $56^{\circ} \mathrm{C}$ (Lanes $6-8$). Unspecific amplifcation occurred at lower temperatures (Lanes 1-5).

Figure 6. Optimization of PCR conditions for primer pair NosZ943F/1789R. Results from A. dehalogenans 2CP-C DNA amplifications using PCR annealing temperatures of 56, 57.3, 58.4, 59.7, 60.8, 61.6 and $62{ }^{\circ} \mathrm{C}$ (Lanes 1-7). Five microlitres of each amplification reaction were loaded onto the agarose gel (1\%). MW, 1 Kb DNA ladder (Promega). Primer pair NosZ943F/1789R generated an amplicon of 873bp.

Figure 7. Analysis of PCR amplifications with primer pair NosZ256F/718R. Five microlitres of each amplification reaction were loaded onto the agarose gel (1\%). MW, 1 Kb plus DNA ladder (Invitrogen). Primer pair NosZ256F/718R generated an amplicon of 483 bp . A PCR annealing temperature of $68^{\circ} \mathrm{C}$ and a magnesium concentration of 2 mM were used. Lanes 1-4, Anaeromyxobacter dehalogenans strains Lane 1, strain 2CP-C DNA amplification. Lane 2, strain 2CP-1 DNA amplification. Lane 3, strain 2CP-3 DNA amplification. Lane 4, strain R DNA amplification. Lane 5, Desulfitobacterium sp. PCE-1 DNA amplification. Lane 6, D. hafniense DNA amplification. Lane 7, Desulfitobacterium chlororespirans Co23 DNA amplification. Lane 8, W.succinogenes DNA amplification. Lane 9, Dehalococcoides ethenogenes BAV1 DNA amplification. Lane 10, Myxococcus xanthus DNA amplification.

Figure 8. PCR amplifications with primer pair NosZ903F/1789R targeting the Anaeromyxobacter spp. nos Z gene and species of the non-denitrifying group. Five microlitres of each amplification reaction were loaded onto the agarose gel (1\%). MW, 1 Kb plus DNA ladder (Invitrogen). Primer pair NosZ903F/1789R generated an amplicon of 913 bp . PCR annealing temperatures of $63^{\circ} \mathrm{C}$ and magnesium concentration of 2.5 mM
were used. Lane 1, A. dehalogenans 2CP-C DNA amplification. Lane 2, A. dehalogenans 2CP-1 DNA amplification. Lane 3, A. dehalogenans 2CP-3 DNA amplification. Lane 4, Anaeromyxobacter sp. strain R DNA amplification. Lane 5, D. hafniense DNA amplification. Lane 6, Desulfitobacterium chlororespirans Co23 DNA amplification. Lane 7, W. succinogenes DNA amplification. Lane 8, Dehalococcoides sp. BAV1 DNA amplification.

Figure 9. Partial multiple non-denitrifying (first 8 sequences) and traditional- nos Z (last 10 sequences) nucleotide sequences alignments showing priming sites for degenerate primers.

Figure 10. Analysis of PCR amplification of primer pair NosZ943F/1789R with DNA of species of the non-denitrifying group. The PCR annealing temperature was $59^{\circ} \mathrm{C}$ and the reactions contained 2.5 mM magnesium. Five microlitres of each amplification reaction were loaded onto the agarose gel (1\%). MW, Lambda DNA plus EcoRI/HindIII molecular weight marker. Primer pair NosZ943F/1789R generated an amplicon of 873 bp . Lane 1, A. dehalogenans 2CP-C DNA amplification. Lane 2, A. dehalogenans 2CP-3 DNA amplification. Lane 3, Anaeromyxobacter sp. strain R DNA amplification. Lane 4, Pseudomonas stutzeri OX1. Lane 5, Desulfitobacterium chlororespirans Co23 DNA amplification. Lane 6, D. hafniense DNA amplification. Lane 7, Desulfitobacterium sp. strain PCE-1 DNA amplification.

Figure 11. Optimization of PCR conditions for $\operatorname{nos} Z$ amplification with primer pair NosZ334F/1789R. Five microlitres of each amplification reaction were loaded onto the agarose gel (1\%). MW1, Lambda DNA plus EcoRI/HindIII molecular weight marker. MW2, 1 Kb plus DNA ladder (Invitrogen). Primer pair NosZ334F/1789R generated an amplicon of 1482 bp . A PCR annealing temperature of $57^{\circ} \mathrm{C}$ and a magnesium concentration of 2.5 mM were used. Lane 1, A. dehalogenans 2CP-C DNA amplification. Lane 2, A. dehalogenans 2CP-3 DNA amplification. Lane 3, Anaeromyxobacter sp. strain R DNA amplification. Lane 4, D. chlororespirans Co23 DNA amplification. Lane $5, D$. hafniense DNA amplification. Lane 6, Desulfitobacterium sp. PCE-1 DNA second PCR amplification using $1 \mu \mathrm{l}$ of product from the first round of PCR amplification. Lane 7, A. dehalogenans 2CP-C DNA amplification. Lane 8, A. dehalogenans 2CP-3 DNA amplification. Lane 9, Anaeromyxobacter sp. strain R DNA amplification. Lane 10, D. chlororespirans Co23 DNA amplification. Lane 11, D. hafniense DNA amplification. Lane 12, W. succinogenes DNA amplification.

Figure 12. Analysis of PCR amplification with total community DNA of environmental samples. Five microlitres of each amplification reaction were loaded onto the agarose gel (1\%). MW1, Lambda DNA plus HindIII/EcoRI molecular weight marker. MW2, 1 Kb DNA ladder (Promega). Lanes 1-8, PCR amplification with primer pair NosZ334F/1789R Mayagüez Wastewater Treatment Plant (MWWT). Primer pair NosZ334F/1789R generated an amplicon of 1482bp. A PCR with 25 cycles and magnesium concentration of 2.5 mM were used. AES, aerobic station; ANS; anaerobic station. Lane 1, AES-January. Lane 2, ANS-January. Lane 3, AES-February. Lane 4,

ANS-February. Lane 5, AES-April. Lane 6, ANS-April. Lane 7, AES-May. Lane 8, ANS-May. Lanes 9-20, PCR amplification with primer pair NosZ943F/1789R using DNA of different tropical environments. Primer pair NosZ943F/1789R generated an amplicon of 873 bp . A PCR annealing temperature of $57^{\circ} \mathrm{C}$ and 2.5 mM magnesium were used. Even lanes are replicates of the previous odd lane but with addition of Anaeromyxobacter dehalogenans strain 2CP-C genomic DNA. Lane 9-10, Pueblo Forest (bottom core 5-10 cm). Lane 11-12, Pueblo Forest (top core 0-5 cm). Lane 13-14, CORCO soil. Lane 15-16, CORCO soil with addition of hydrocarbons. Lane 17-18, Mayagüez Bay; Lane 19-20, Fluidized Bed Reactor (May).

Figure 13. Analysis of colony PCR amplification of primer pair NosZ943F/1789R with environmental clones from CORCO DNA sample. PCR was performed with T7 promoter and SP6 promoter primer pair. Five μl of each amplification reaction were loaded onto the agarose gel (1\%). MW, Lambda DNA plus EcoRI/HindIII molecular weight marker. Primer pair T7 promoter/SP6 promoter generated an amplicon of approx. 1034bp. Lane 1 to 11 correspond to $\mathrm{CORCO} 18, \mathrm{CORCO} 22, \mathrm{CORCO} 24, \mathrm{CORCO} 25, \mathrm{CORCO} 26$, CORCO28, CORCO29, CORCO30, CORCO31, CORCO32, and CORCO33 clones.

Figure 14. Alignment of NosZ amino acid sequences generated with Clustal W (Thompson et al. 1994) and edited using BioEdit Sequence Alignment Editor (Hall 1999). The shaded graphic view show only similar residues within non-denitrifying nos Z sequences and Pseudomonas denitrificans. All nos Z sequences used in the phylogenetic analysis were included in the analysis but not all are included in the alignment shown.

Pseudomonas, Ps. denitrificans; Anaeromyxobacter 1, A. dehalogenans 2CP-C; Anaeromyxobacter 2, Anaeromyxobacter sp. Fw109-5; Desulfitobacterium, D. hafniense; Geobacillus, G. thermodenitrificans; Psychroflexus, P. torquis; Robiginitalea, R. biformata; Magnetospirillum 1, M. gryphiswaldense; Magnetospirillum 2, M. magneticum; Magnetospirillum 3, M. magnetotacticum; Campylobacter, C. fetus; Thiomicrospira, Tm. denitrificans; Wolinella, W. succinogenes. Symbols \ddagger and $*$ show the calcium and chloride ion ligands and the conserve histidine residues, respectively.

Figure15. Rooted neighbor-joining (NJ) tree of partial nosZ gene sequences (1000 bootstraps). The trees were generated based on the alignment of 180 nucleotides of truncated nos Z sequences retrieved from Pipeline Functional Gene and environmental clone sequences from FBR, CORCO, and MWWT libraries. C. crenilabis served as an outgroup. Branch lines have distinct colors, in blue are traditional-nos Z sequences, in green are non-denitrifying $\operatorname{nos} Z$ sequences, in red are archaeal nos Z sequences, and in yellow are nos Z sequences from Flavobacteria. The bar represents 0.05 nucleotide substitutions per nucleotide.

Figure 16. Strict consensus (Lenght $=1898$, Consistency Index $=0.48$, Retention Index $=0.75$) of 8 most parsimonious trees (Lenght $=1895$, Consistency Index $=0.48$, Retention Index $=0.75$) from nos Z gene dataset. The sequence of C. crenilabis served as the root. Numbers above the branches represent the percentage of 1,000 bootstrap replications. Branch lengths correspond with numbers of amino acid replacements. The
bar represents 20 replacements. Tree is based on the non-gapped multiple sequence alignment of 90 amino acids.

Figure 17. Rooted maximum likelihood tree from $\operatorname{nos} Z$ gene dataset. The sequence of C.crenilabis served as the root. Numbers above the branches represent the percentage of 1000 bootstrap replications, values less than 50% are not shown, and those nodes are collapsed. Scale bar represents 0.1 substitutions per amino acid position. Tree is based on the non-gapped multiple sequence alignment of 90 amino acids.

Figure 18. Bayesian phylogenetic tree from nos Z gene dataset after 500,000 generations of MCMCMC chains. Values to the right of the branches correspond to the posterior probabilities. The horizontal bar at the base represents 0.1 substitutions/site. Trees are based on the non-gapped multiple sequence alignment of 90 amino acids.

Figure 19. Rarefaction curves of nos Z clone sequences for the clone libraries FBR , CORCO and MWWT at 27-29\% distance level.

Figure 20. Pseudomonas stutzeri cells permeabilized by electroporation and stained with DAPI (blue) were observed by confocal microscopy. (Upper panels) Permeabilized cells showing cell integrity. (Lower panels) Permeabilized cells with RNase and DNase treatment. (A and D) Cells electroporated during 50 ms . (B and E) Cells electroporated during 100 ms . (C and F) Cells electroporated during 200 ms .

Figure 21. Confocal images of ISRT-PCR FISH of nirS in a co-culture of P. stutzeri with a non-denitrifying rod, Cy3 signal (orange) was superposed on the corresponding DAPI signal (blue). (A) Detection of nirS gene with a Cy3 labeled probe in a co-culture of P. stutzeri with a non-denitrifying rod. B, P. stutzeri cells treated with $1 \mathrm{mg} / \mathrm{ml}$ RNase A for 1 h after permeabilization.

Figure 22. Analysis of RT-PCR amplification. PCR annealing temperatures of $56^{\circ} \mathrm{C}$. Ten microlitres of each amplification reaction were loaded into the wells of the agarose gel (1\%). MW1, 1 Kb DNA ladder (Promega); MW2, Lambda DNA plus HindIII/EcoRI molecular weight marker. Primer pair NosZ1366F/1773R generated an amplicon of 407 bp ; primer pair Nos661F/1773R generated an amplicon of 1113bp; primer pair $27 \mathrm{~F} / 1392 \mathrm{R}$ generated an amplicon of 1394bp. Lane 1, 16S rRNA RT-PCR with primers 27F/1392R with RNA from P. stutzeri grown Nitrate broth; Lane 2, 16S rRNA RT-PCR with primers $27 \mathrm{~F} / 1392 \mathrm{R}$ with RNA from P. stutzeri grown in BLK medium with histidine; Lane 3, nosZ RT-PCR with primers NosZ1366F/1773R from P. stutzeri grown in Nitrate broth; Lane 4, nosZ RT-PCR with primers NosZ1366F/1773R from P. stutzeri grown in BLK medium with histidine; Lane 5, nosZ RT-PCR with primers Nos661F/1773R (Scala and Kerkhof, 1998) from P. stutzeri grown in Nitrate broth; Lane 6, nosZ RT-PCR with primers Nos661F/1773R (Scala and Kerkhof, 1998) from E. coli grown in Nitrate broth.

Figure 23. ISRT-PCR/FISH of nosZ gene of P.stutzeri. A-B; C-D; E-F, Confocal images corresponding to the same microscopic section. A, C, E, DAPI signal emitting-cells
(blue). B, D, F, Cy3 signal emitting-cells (orange). A-B, ISRT-PCR/FISH of nosZ gene of P. stutzeri grown in BLK medium with histidine as only nitrogen source. C-D, ISRTPCR/FISH of nosZ gene of P. stutzeri grown in Nitrate broth. E-F, ISRT-PCR/FISH of nos Z gene of P. stutzeri grown in Nitrate broth but with a RNase treatment after the enzymatic permeabilization and before PCR reaction.

Figure 24. IS-PCR/FISH of E.coli DH5 α clones harboring nos Z genes in pGEM. A-B; C-D; E-F; G-H, Confocal images corresponding to the same microscopic section. A, C, E, G, DAPI signal emitting-cells (blue). B, D, F, H, Cy3 signal emitting-cells (orange). A-B, IS-PCR/FISH of E.coli DH5 α clone harboring in pGEM the partial nos Z gene of A. dehalogenans 2CP-C obtained by PCR with primers NosZ256F/1807R, Probe943 was used for FISH and primers NosZ334F/1789R were used for PCR. C-D, IS-PCR/FISH of E.coli $\mathrm{DH} 5 \alpha$ clone harboring in pGEM the partial nos Z gene of A.dehalogenans 2CP-C obtained by PCR with primers NosZ256F/1807, Probe1527 was used for FISH and primers NosZ334F/1789R were used for PCR. E-F, IS-PCR/FISH of E.coli DH5 α, Probe943 was used for FISH and primers NosZ334F/1789R were used for PCR. G-H, ISPCR/FISH of E.coli DH5 α clone harboring in pGEM the partial nosZ gene of P. stutzeri obtained by PCR with primers Nos661/1773R, Probe943 was used for FISH and primers Nos661F/1773R were used for PCR.

Figure 25. Figure 25. ISRT-PCR/FISH of nosZ genes in environmental samples from an anaerobic bioreactor. A-B, 1000X epifluorescence images corresponding to the same microscopic section. A and B, DAPI (blue) and Cy3 (orange) signal emitting-cells,
respectively, of a ISRT-PCR/FISH of nosZ gene in a MWTP sample immobilized in a $0.2 \mu \mathrm{~m}$-pore-size filter. C-D, Confocal 1000 X images corresponding to the same microscopic section. C section showing only DAPI signal emitting-cells (blue), while D section showing Cy3 signal (orange) superposed on the corresponding DAPI signal (blue). E-F, Confocal 600X images corresponding to the same microscopic section. E section shows DAPI signal emitting-cells (blue), while F section shows Cy3 signal (orange). G-H, 1000X epifluorescence images corresponding to the same microscopic section. G and H, DAPI (blue) and Cy3 (orange) signal, respectively, of a ISRTPCR/FISH with a RNase treatment after the enzymatic permeabilization and before PCR reaction. C-D, E-F and G-H, ISRT-PCR/FISH of nosZ gene in a MWWT sample immobilized in glass slide.

Figure 26. nosZ-based $\operatorname{HinPI}(1,4,7)$, NlaIII (2, 5, 8), and RsaI (3, 6, 9) T-RFLP fingerprint patterns of Mayaguez Wastewater Treatment Plant (MWWT) anaerobic reactor sample (1-6) and MWWT34 clone (7-9). MW, molecular sizing standard. KBPlus-LICOR (50-700bp).

Figure 27. Comparison of electropherograms profiles generated with HinPI for Aerobic station (A), Anaerobic station (B) of Mayagüez Wastewater Treatment Plant samples and clone MWWT34 (C).

Figure 28. Comparison of electropherograms profiles generated with NlaIII for Aerobic station (A), Anaerobic station (B) of Mayagüez Wastewater Treatment Plant samples and clone MWWT34 (C).

Figure 29. Comparison of electropherograms profiles generated with RsaI for Aerobic station (A), Anaerobic station (B) of Mayagüez Wastewater Treatment Plant samples and clone MWWT34 (C).

INTRODUCTION

Denitrification contributes to greenhouse gas production through the release of nitrous oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$ and nitric oxide (NO). Key enzymes involved in catalyzing various steps of the denitrification process are nitrate reductase (coded by nar and nap genes, which catalyze the reduction of $\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}_{2}^{-}$), nitrite reductase (coded by nirK and nirS genes, which catalyze the reduction of $\mathrm{NO}_{2}{ }^{-} \rightarrow \mathrm{NO}$), nitric oxide reductase (coded by norB gene, which catalyzes the reduction of $\mathrm{NO} \rightarrow \mathrm{N}_{2} \mathrm{O}$), and nitrous oxide reductase $\left(\mathrm{N}_{2} \mathrm{OR}\right)$ (coded by $\operatorname{nos} Z$ gene, which catalyzes the reduction of $\mathrm{N}_{2} \mathrm{O} \rightarrow \mathrm{N}_{2}$). However, denitrification is often incomplete and NO and $\mathrm{N}_{2} \mathrm{O}$ are released to the atmosphere (Wolf and Russow, 2000). Figure 1 shows that $\mathrm{N}_{2} \mathrm{O}$ is also produced in other pathways, such as nitrification and dissimilatory nitrate reduction to ammonia (DNRA).
$\mathrm{N}_{2} \mathrm{O}$ reduction has been evaluated in bacterial cultures and manipulated soil systems (Kelso et al., 1997; Wolf and Russo, 2000; Trimmer et al., 2003; Trimmer et al., 2005). Generally, these experiments use the kinetics of ${ }^{15} \mathrm{~N}$ and ${ }^{14} \mathrm{~N}$ isotopes to quantify the formation of different N species. The study of N -cycling with molecular biology approaches promises to provide important insights, to characterize the genetic diversity of N-cycling genes, and to elucidate the activity of $\mathrm{N}_{2} \mathrm{ORs}$ under certain environmental conditions.

The Polymerase Chain Reaction (PCR) technique has allowed the amplification of nosZ genes from denitrifiers, nitrifiers and N_{2}-fixers (Scala and Kerkhof, 1998; Rösch et al.,
2002). Nonetheless, biased PCR amplification of proteobacterial nos Z genes has limited the discovery of NosZ variants. nos Z from some dissimilatory nitrate reduction to ammonia (DNRA) bacteria such as Anaeromyxobacter spp., Wolinella succinogenes, and Desulfitobacterium spp. differ significantly in their sequences from those sequences obtained by PCR technique. Teraguchi and Hollocher (1989) described the enzyme $\mathrm{N}_{2} \mathrm{OR}$ of these non-denitrifiers as "divergent" from other known $\mathrm{N}_{2} \mathrm{OR}$. In order to determine the significance of NosZ diversity, new priming sites to amplify preferentially this functional group are necessary as well as new tools for better understanding the distribution of a broad range of $\operatorname{nos} Z$ genes in nature.

OBJECTIVES

- To identify, design and test PCR primers and linear hybridization probes for detecting of novel nos Z genes.
- To asses nosZ gene diversity using clone libraries, DNA sequence analysis, and T-RFLP.
- To develop and validate an In Situ PCR technique to prove the presence and expression of novel nos Z genes inside microbial cells.

LITERATURE REVIEW

Nitrogen Cycle

Nitrogen (N) exists in eight oxidation states $(+5,+4,+3,+2,+1,0,-3,-4)$ and it can be present as gaseous $\left(\mathrm{NO}, \mathrm{N}_{2} \mathrm{O}, \mathrm{N}_{2}\right)$ or dissolved organic (chemicals in which N is bound to carbon) and inorganic $\left(\mathrm{NO}_{3}^{-}, \mathrm{NO}_{2}^{-}, \mathrm{NH}_{3} / \mathrm{NH}_{4}{ }^{+}\right)$species. Among these species, nitrate $\left(\mathrm{NO}_{3}{ }^{-}\right)$, nitrite $\left(\mathrm{NO}_{2}{ }^{-}\right)$, ammonia $\left(\mathrm{NH}_{3}\right)$, nitric oxide (NO), and nitrous oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$ are forms of N of environmental concern, while dinitrogen $\left(\mathrm{N}_{2}\right)$ is an innocuous gas (Zumft, 1997). The abundance of $\mathrm{NO}_{3}{ }^{-}$in water bodies is challenging because it promotes eutrophication, as does the deposition of atmospheric NH_{3}. The Clean Water Act regulates nitrite because it is toxic for many organisms. The concentration of NO_{2}^{-}in freshwaters worldwide was estimated to be near $1 \mu \mathrm{~g}$ per litre. However, recent studies in German and Northern Ireland rivers revealed much higher concentrations between 100 and $200 \mu \mathrm{~g}$ of N per litre (Kelso et al., 1997). Other forms of nitrogen such as NO and $\mathrm{N}_{2} \mathrm{O}$ are gaseous species are greenhouse gases and contribute to global warming.

Microbial denitrification, nitrification, dissimilatory nitrate reduction to ammonia (DNRA), anaerobic ammonium oxidation (ANAMMOX), N -fixation, and ammonification are key processes involved in the N cycle. Several of these processes can be coupled and are occurring simultaneously, adding complexity to the understanding of biogeochemical N cycling (Trimmer et al., 2003).

Nitrous oxide ($\mathrm{N}_{2} \mathrm{O}$) gas

During the last ice age the atmospheric concentrations of $\mathrm{N}_{2} \mathrm{O}$ rose to $\sim 275 \mathrm{ppb}$ and stayed constant until the 19th century (Trogler, 1999). Currently, the level of $\mathrm{N}_{2} \mathrm{O}$ has reached 315 ppb and increases 0.25% per year (Dong et al., 2002). Even a small change in its concentration could cause a big perturbation that will likely last for centuries. The $\mathrm{N}_{2} \mathrm{O}$ lifetime is around 150 years with a high warming potential 310 times greater than that of CO_{2} (Trogler, 1999). $\mathrm{N}_{2} \mathrm{O}$ has many anthropogenic sources including its use as a propellant (e.g., in canned whipping cream), fuel additive in racing cars, anesthetic, and prime material for the production of nylon, fertilizers and explosives (Bouwman et al., 1995; Trogler, 1999). However, rather than direct inputs due to manufacture and use, it has been suggested that the main source of $\mathrm{N}_{2} \mathrm{O}$ is from microbial activity. Major changes in land-use and associated changes in microbial activity may be the main reason for increased $\mathrm{N}_{2} \mathrm{O}$ concentrations in the atmosphere (Avrahami et al., 2002).

Agricultural production (i.e., feedstock waste and fertilizers) have influenced the atmospheric levels of $\mathrm{N}_{2} \mathrm{O}$ (Bouwman et al., 1995). Fertilization increases the availability of nitrogen in soils and waters, thus promoting biological processes demanding $\mathrm{NO}_{3}{ }^{-}$, $\mathrm{NO}_{2}{ }^{-}$, and ammonium $\left(\mathrm{NH}_{4}{ }^{+}\right)$as substrates and that produce $\mathrm{N}_{2} \mathrm{O}$ (García-Ruiz, Pattinson, and Whitton, 1998). After winter, freezing and thawing periods can account for more than 70% of the total $\mathrm{N}_{2} \mathrm{O}$ loss from soil in temperate climates (Müller et al., 2002). Estuarine and coastal sources contribute nearly 60% of the global marine $\mathrm{N}_{2} \mathrm{O}$ flux (Dong et al., 2002), which is up to 20% of the global budget (Barnes and Owens, 1998).

Nitrous oxide is emitted from at least two microbial processes: denitrification and nitrification. Denitrification is often incomplete and large amounts of $\mathrm{N}_{2} \mathrm{O}$ are released to the atmosphere. In nitrification, $\mathrm{N}_{2} \mathrm{O}$ is a by-product. There is general agreement that a third process, DNRA, produces $\mathrm{N}_{2} \mathrm{O}$ as a by-product when NO_{2}^{-}is reduced to NH_{4}^{+} (Figure 1) (Smith and Zimmerman, 1981; Smith, 1982; Kelso et al., 1997), but Simon (2002) has recently reported that $\mathrm{NH}_{4}{ }^{+}$is the only product of DNRA. Clearly, the intermediates and by-products between NO_{2}^{-}and N_{2} have not been conclusively established.

Nitrous oxide reductase ($\mathrm{N}_{2} \mathrm{OR}$)

Microbial nitrogen metabolism may also serve as a sink for atmospheric $\mathrm{N}_{2} \mathrm{O}$. Firestone and Tiedje (1979) found that the antibiotic chloramphenicol could affect the rate of $\mathrm{N}_{2} \mathrm{O}$ reduction in soils incubated anaerobically. This chemical inhibits bacterial protein biosynthesis suggesting that de novo synthesis of enzymes is involved in the $\mathrm{N}_{2} \mathrm{O}$ reducing activity. Nowadays, the enzyme that catalyzes the two-electron reduction of $\mathrm{N}_{2} \mathrm{O}$ to N_{2} is known as nitrous oxide reductase $\left(\mathrm{N}_{2} \mathrm{OR}\right)$, and was first isolated in 1982 by Zumft and Matsubara (1982). Microorganisms that harbor this enzymatic capability carry out denitrification, N-fixation or DNRA (Rösch et al., 2002; Simon et al., 2004).

In denitrification, $\mathrm{NO}_{3}{ }^{-}$is reduced to N_{2} via $\mathrm{NO}_{2}{ }^{-}$, NO , and $\mathrm{N}_{2} \mathrm{O}$ catalyzed by nitrite reductase (cytochrome $c d_{1}$ - or Cu -containing, depending on the species), NO reductase, and $\mathrm{N}_{2} \mathrm{O}$ reductase, respectively. When $\mathrm{NO}_{3}{ }^{-}$or $\mathrm{NO}_{2}{ }^{-}$are not completely reduced, NO and
$\mathrm{N}_{2} \mathrm{O}$ are released to the atmosphere (Rösch et al., 2002). Wolf and Russow (2000) report that N_{2} emissions exceed $\mathrm{N}_{2} \mathrm{O}$ emissions by a factor of 3 . However, there are some denitrifiers that reduce $\mathrm{NO}_{3}{ }^{-}$to $\mathrm{N}_{2} \mathrm{O}$ as an end product. In DNRA, cytochrome c nitrite reductase reduces NO_{2}^{-}to NH_{4}^{+}. Additionally some DNRA bacteria, for example Wolinella succinogenes, posses the ability to reduce $\mathrm{N}_{2} \mathrm{O}$ to N_{2} (Simon et al., 2004). Bradyrhizobium japonicum, Sinorhizobium meliloti, and Rhizobium meliloti are N-fixing bacteria, which also posses a $\mathrm{N}_{2} \mathrm{O}$-reducing activity (Sameshima-Saito, Chiba, and Minamisawa, 2006; Chan and Wheatcroft, 1993; Chan and McCormick, 2004). Although these diazotrophs posses the gene that encodes $\mathrm{N}_{2} \mathrm{OR}$ (nos Z), it is also possible that nitrogenase, which catalyzes N_{2} reduction, has $\mathrm{N}_{2} \mathrm{O}$ as an alternative substrate (Rösch et al., 2002).

Nitrous oxide reductase is a periplasmic homodimeric multicopper enzyme with a molecular mass of 65 kDa per subunit. Early studies showed that $\mathrm{N}_{2} \mathrm{OR}$ has certain unusual properties compared to other copper proteins (Matsubara et al., 1982; Coyle et al., 1985). The crystal structure of $\mathrm{N}_{2} \mathrm{OR}$ reveals that each subunit consists of two domains, designated as Cu_{A} and Cu_{Z}. The former is a binuclear copper centre and the electron entry site, and it is structurally homologous to the Cu_{A} centre of cytochrome c oxidase. The two enzymes revealed a conserved set of potential copper ligands, but there is no overall sequence homology. Cu_{z} is a novel tetranuclear copper site that might be coordinated by multiple histidine residues, and it is the catalytic site (Rasmussen et al., 2002).

The $\mathrm{N}_{2} \mathrm{OR}$ of the non-denitrifier W. succinogenes diverges from other known $\mathrm{N}_{2} \mathrm{ORs}$
(Teraguchi and Hollocher, 1989). This enzyme possesses only three metal transition atoms per subunit, and has a carboxy terminal extension that carries a heme cytochrome c motif (CNGCH) that could be an electron donor. All the important ligands of the Cu_{A} and Cu_{Z} of traditional $\mathrm{N}_{2} \mathrm{OR}$ are found in the primary sequence of W. succinogenes protein, except for a tryptophane residue between two cysteines in Cu_{A}. Comparative genome analysis revealed sequence similarities to this $\mathrm{N}_{2} \mathrm{OR}$ in databases. For example, amino acid sequences from Dechloromonas aromatica, Magnetospirillum magneticum, Desulfitobacterium hafniense, and Anaeromyxobacter dehalogenans are 67, 66, 44, 43\% similar, respectively. NosZ sequences from this group clearly diverge from the traditional NosZ protein sequences, especially after the third and fourth histidine residues in Cu_{Z}. The conserved histidine after the two first histidines in Cu_{Z} is replaced by asparagine and alanine in the amino acid sequences of these organisms (Simon et al., 2004).

Strains harboring a "divergent" $\mathrm{N}_{2} \mathrm{OR}$

W. succinogenes, D. aromatica, and D. hafniense are obligate anaerobes, while M. magneticum and A. dehalogenans are microaerophiles. W. succinogenes is an ε proteobacterium that lives in rumen of cows and grows by different modes of anaerobic respiration, as well as in the presence of 2% of oxygen (Baar et al., 2003). The study of this DNRA bacterium has been of high relevance because it has the capacity to reduce $\mathrm{N}_{2} \mathrm{O}$, eventhough it does not have $\mathrm{N}_{2} \mathrm{O}$ producing capacity. It is possible that free-living microorganisms with similar physiological capabilities may exist in soils; this hypothesis merits further investigation. Furthermore the sequences that could code for a nitrite
reductase or NO reductase have not been found (Simon et al., 2004). D. aromatica is a β proteobacterium involved in the anaerobic degradation of benzene using $\mathrm{NO}_{3}{ }^{-}$as the electron acceptor (Coates et al., 2001). Members of the Desulfitobacterium genus are gram positive bacteria involved in respiratory reductive dechlorination of halophenols and chlorinated ethenes, and include Desulfitobacterium hafniense strain PCE1, Desulfitobacterium chlororespirans, and Desulfitobacterium dehalogenans (Sanford et al., 1996; Mackiewicz and Wiegel, 1998, Lee et al., 2001). Magnetospirillum magnetotacticum is a microaerophilic spirillum of the α class within the phylum Proteobacteria, and is involved in the formation of crystals of the iron mineral magnetite $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$. Magnetospirillum species have been reported as N_{2} fixers as well as denitrifiers (Bazylinski et al., 2000; Shinoda et al., 2005), and some species can grow on toluene, phenol, and other aromatic compounds (Shinoda et al., 2005; Kawaguchi et al., 2006). Finally, A. dehalogenans is a microaerophilic δ-proteobacterium recently characterized as a member of the Myxococcales order, and uses several compounds as electron donors (e.g. acetate, hydrogen) and acceptors (e.g. ortho-halophenols, reduced metals and $\mathrm{NO}_{3}{ }^{-}$) (Sanford et al., 2002). Anaeromyxobacter spp. 16S rRNA gene sequences have been found in subsurface samples from the uranium-contaminated U.S. DOE-NABIR Field Research Center (Oak Ridge, TN) and in flooded rice field soils (Treude et al., 2003; Petrie et al., 2003).

Physiological studies confirmed the capacity of W. succinogenes to reduce $\mathrm{NO}_{3}{ }^{-}$to $\mathrm{NH}_{4}{ }^{+}$, and $\mathrm{N}_{2} \mathrm{O}$ to N_{2}, without producing $\mathrm{N}_{2} \mathrm{O}$ from NO (Yoshinari, 1980). However, these kinds of studies that measure simultaneously several N species $\left(\mathrm{NO}_{3}{ }^{-}, \mathrm{NO}_{2}{ }^{-}, \mathrm{NH}_{4}{ }^{+}, \mathrm{NO}\right.$,
$\mathrm{N}_{2} \mathrm{O}$, and N_{2}) have not been carried out in other bacteria mentioned above.

Molecular biology techniques

Cultivation provides information about the physiological capabilities of a small fraction of microorganisms because the majority of microbes cannot be grown in the laboratory. It has been estimated that nearly 99% of naturally occurring microbes cannot be cultured (Hughes et al., 2001). An alternative to overcome the limitations of culturability is provided by molecular biology techniques, since gene sequences coding for different enzymes involved in the biological N cycling can be obtained directly from natural samples (Rösch et al., 2002).

Several oligonucleotide primers have been designed to amplify the nos Z genes by Polymerase Chain Reaction (PCR) technique (Scala and Kerkhof, 1998). This molecular method enables researchers to produce millions of copies of a specific DNA sequence using a thermostable DNA-copying enzyme, called DNA polymerase. The polymerase recognizes a short oligonucleotide (primer) bound to the DNA template (usually a genomic DNA), and begins to use free nucleotides available to synthesize a new DNA strand complementary to the template. Generally, in PCR a nucleic acid extraction from cells lyzed by different methods can be used as a template. The accurate design of two primers -called the forward and reverse primer pair-, which are complementary to the beginning and the end of the DNA sequence to be amplified, is the key factor to achieve the amplification of only the DNA sequence that is being targeted.

A suitable genetic target should have two conserved regions for the anneling of the primer pair and, between these conserved ends, a variable region that can be used for phylogenetic differentiation (Nocker et al., 2007). Each amplicon in the pool of PCR products can be cloned individually in a cloning host like Escherichia coli. An individual PCR-amplified sequence is inserted in a genetic vector and introduced into a bacterial receptor, which then is grown on agar slants with a rich nutrient medium. Usually, one bacterial colony corresponds to a clonal population in which each cell harbors a vector with one PCR product. The identification of the PCR product is done by sequencing, which is the basis for the construction of phylogenetic trees (Nocker et al., 2007). Through sequencing, one can identify sequences that are similar to those already published in databases, but also novel sequence information can also be genetared.

Culture-independent molecular approaches have also demonstrated the disparity between culturable and the actual microbial diversity (Nocker et al., 2007). Microbial ecologists sample natural communities to assess the "true" diversity of microbes. The term diversity usually means richness, or the number of different types, and its unit of measurement is the operational taxonomic unit (OTU), that can be understood as an species. Usually, 16 S ribosomal rRNA gene sequences with greater than 97% sequence identity are typically assigned to the same species, but also a unique terminal restriction fragment can be regarded as an OTU. In any community, the number of types of organisms observed increases with sampling effort until all types (OTUs) are observed. The relationship between the number of types observed and sampling effort gives information about the total diversity of the sampled community. Statistical approaches have been developed to
compare and estimate microbial species richness and there are methods available to assign sequences to OTUs (Hughes et al., 2001). Schloss and Handelsman (2005) developed DOTUR (Distance-Based OTU and Richness) program, which calculates values that are used to construct rarefaction curves, diversity indexes, and richness estimators.

A rarefaction curve compares the observed richness among habitats that have been unequally sampled. An accumulation curve is constructed by plotting the cumulative number of types observed versus sampling effort. If the sampling continued, the curves would eventually reach an asymptote at the actual community richness. A rarefied curve results from averaging randomizations of the observed accumulation curve. Shannon and Simpson are diversity indexes that have been used in microbial ecology (Hughes et al., 2001). Shannon describes the average degree of uncertainty of predicting the specie of an individual picked at random from the community. If the diversity of a habitat is low, the certainty of finding the same species again is high. High diversity means high uncertainty. Simpson includes the probability that two individuals randomly selected from a sample will belong to the same species. The richness estimators Chao and ACE (abundance-based coverage estimators) are particularly useful for datasets that tend to types of low abundance, as it happens for microorganisms.

PCR products can also be used for genetic profiling methods, such as the terminal restriction fragment length polymorphism (T-RFLP) technique that analyzes many PCR fragments in a single run, providing snapshots of a community (Nocker et al., 2007). This
technique relies on the sequence variation of species-specific amplicons. The pool of PCR products will be differentially cut with a restriction enzyme [cleaves DNA molecules at a precisely defined site(s)], generating different lenghts of restriction enzyme products. In T-RFLP, only the terminal fragment carrying the fluorescent label from the primer is visualized. Different species can yield identical terminal restriction patterns when only one restriction enzyme is used, therefore, the use of more than one restriction enzyme will be necessary to correctly discern different species. A community profile is obtained by the electrophoretic separation of fluorescently labeled terminal restriction fragments detected by an automated system (Nocker et al., 2007).

The temporal and spatial variability of nos Z genotypes have been studied by T-RFLP in the intertidal rocky biofilms and sediment sites of the Douro River estuary (Portugal) (Magalhães et al., 2007) and in the continental shelf sediments of Tuckerton (NJ) (Scala and Kerkhof, 2000). Thirteen distinct nosZ T-RFLP patterns were detected in the estuary, while 71 were found in the continental shelf.

PCR has many variants that offer distinct advantages. One of those variants is In Situ PCR (IS-PCR) that offers a direct detection of even single copy genes inside the host cell without DNA or RNA extraction (Nuovo, 1996). IS-PCR has to be carried out inside the cell and, in the case of bacteria, their cell wall has to be permeabilized in order to allow PCR reactants to enter the cell. Commonly, the IS-PCR reaction is performed on glass slides (Nuovo, 1996). Microbial ecologists use the IS-PCR technique to determine the identity, activity, and distribution of the bacterial species in a specific niche. This may be possible if the 16 S rRNA and functional gene transcripts are detected simultaneously
(Chen et al., 1997). PCR amplification with only one primer can also be used to generated a larger DNA amplicon, which prevents leaking of short amplicons in permeabilized cells (Kenzaka et al., 2005). The technique can be applied to detect genetic expression when combining it with Reverse Transcription PCR (RT-PCR) (Hodson et al., 1995; Tani et al., 1998), in which an enzyme called reverse transcriptase synthesizes double stranded DNA from single stranded RNA templates. Following the initial RT step, a regular PCR can be carried out to increase the number of DNA copies. Population density measurements and cell morphology, for example, can be obtained by observing cells with fluorescently labeled RNA or DNA, which emit a signal under an epifluorescence microscope. To increase the specificity of the technique, instead of using labeled nucleotides in PCR, Fluorescent In Situ Hibridization (FISH) can be used. FISH employs a fluorescent probe targeted to a specific PCR amplicon, avoiding detection of non-specific PCR products that are generated when primers bind to non desired DNA sequences (Tani et al., 1998). Multiple labeled fluorescent probes can also be used reducing background signal interference (Kenzaka et al., 2005).

Phylogenetic analysis

Sequence databases have allowed the comparison of protein structures, genes and entire genomes. Proteins with significant sequence similarity and/or with similar structure and function, belong to the same protein family, and share a strong evolutionary relationship. Proteins that do not share a common ancestor are very unlikely to show statistically significant sequence similarity, making sequence alignment a powerful tool for
identifying the members of protein families. Proteins that are evolutionarily related and that perform the same function in different species are called homologous proteins. Some sequence variation among organisms is possible and it may have have little or no effect on the function of the protein, but other regions essential to the function are conserved (Nelson and Cox, 2000).

With the extensive amount of data present in databases, it is now common for bioinformaticians to describe each gene by its closest match in the database (usually using the BLAST program). While this practice is useful as a first cut, a robust phylogenetic analysis is required to confidently identify related sequences (Logsdon and Faguy, 1999). Phylogenetic trees constructed using DNA or protein sequence data are very important tools to clarify phylogenetic relationships among organisms. Taxonomic relationships (based on 16S ans 18S rRNA genes) have demonstrated that, in general, the number of residues that differ in homologous proteins between two species is proportional to the phylogenetic difference between those species. This information allows the construction of evolutionary trees that show the origin and sequence of appereance of different species during the course of evolution (Nelson and Cox, 2000).

In molecular phylogeny, the data usually consists of multiple gene or protein sequence alignments that can be generated using programs like clustalW. The topology of the tree represents the degree of relatedness among different sequences, and the length of the branches of the tree corresponds to the distance between them. The external nodes are the sequences we are studying, and the internal nodes are inferred ancestors. Currently, there
are three major categories of tree-building methods: distance method, maximum parsimony, and maximum likelihood method (Abascal, n.d.).

In the distance method called Neighbor-Joining (NJ), the best phylogenetic tree is the one that minimizes the total tree length (i.e. the sum of the length of all branches in the tree). A distance for each pair of sequences is calculated from the multiple alignment. This method is extremely fast and useful as a preliminary inference. The NJ method generates an unrooted tree, and an outgroup (e.g., a homologous sequence, or a closely related species but from other taxonomic group) must be included to identify a common ancestor. The use of an outgroup could be explained with an analogy. If we had a circular book and we wanted to know which is the first page, an outgroup would be the hardcover (Abascal, n.d.).

In Maximum Parsimony (MP) method, the most probable tree is the one that represents the lower number of changes. However, if we have many sequences to analyze, the number of possible trees will be greater the amount of atoms in the universe. For this reason, the method to find the most parsimonious tree is approximated and not exhaustive, and this method does not guarantee finding the optimal solution; however, the analysis can be accomplished in reasonable time periods (Abascal, n.d.).

The Maximum Likelihood (ML) method needs an evolution model to calculate the probabilities of seeing the observed data. Some factors that have been taken in account by models of protein evolution are different frequencies of amino acid substitutions,
evolution rate heterogeneity among different species, and invariant and very variable sites along the same sequence. Different bioinformatic programs are available to study evolutionary history: ModelTest, ModelGenerator, and ProtTest. ML considers all the positions (each amino acid residue position) in the multiple alignments, and finds the tree that generated the data with the highest probability (Abascal, n.d.).

While ML works with the probability of seeing the observed data given a model, the Bayesian inference works on the probability that the model is correct given the observed data. The Bayesian method starts with a random tree and parameters, and each generation it randomly proposes a new tree topology or a new model parameter value. If the new tree has a higher probability that the previous model, then it is accepted and the process repeateded; if, in the other hand, the new tree has a lower probability, it is accepted but with a probability proportional to the worsening produced. After a cumulative probability has been reached, the sampled trees are sorted based on probability and the best tree is selected (Abascal, n.d.).

Phylogenetic trees usually include a support value at every node of the tree, and commonly a bootstrap value is used. The bootstrap test can be used to statistically test the reliability of the phylogenetic tree constructed. Bootstrap values can be computed by resampling the characters (DNA or protein sequence data) randomly a number of times, and computing the frequency with which a node returns in the pooled results (Liu 2005). The use of an inappropriate evolutionary model could lead to low bootstrap supports ($<50 \%$) This node could be collapsed during the computing of a consensus tree. A
collapsed branch is a branch that is not present in a number of replicate trees analyzed.

MATERIALS AND METHODS

Bacterial Cultures and Growth Conditions

Axenic cultures of Anaeromyxobacter spp, Desulfitobacterium spp., and Wolinella succinogenes were used in this study as reference cultures harboring nos Z genes. Anaeromyxobacter species were grown statically in anoxic R2A broth amended with acetate and pyruvate (10 mM each) (Sanford et al., 2002). Desulfitobacterium species were grown in bicarbonate-buffered basal salts medium amended with pyruvate (30 mM) and vitamin solution (Wolin et al., 1963). W. succinogenes was grown in Wolinella medium (as previously described by the German Collection of Microorganisms and Cell Cultures, DSMZ). Cultures were grown in 160 ml serum bottles with boiled degassed medium and closed with butyl rubber stoppers. Pseudomonas stutzeri OX1 was grown in Luria Bertani (LB) broth and used as a denitrifying reference strain. Strains used in this study were provided by Dr. Frank Löffler, School of Civil \& Environmental Engineering, Georgia Institute of Technology, Atlanta, GA. Denitrifying microorganisms were provided by the Center for Microbial Ecology (CME) at Michigan State University (East Lansing, MI), and the Tropical Microbial Ecology Laboratory (TMEL) (University of Puerto Rico at Mayagüez).

DNA and RNA extractions

Both pure and environmental samples were used in this study. For pure cultures, 1 ml of each fully-grown bacterial culture (two-day-culture for Wolinella and Anaeromyxobacter, and seven-day-culture for Desulfitobacterium) was used for extraction and purification of total DNA using the Instagene Matrix method (BioRad). Before PCR amplification, purified DNA was centrifuged at $11,000 \mathrm{rpm}$ for 2 min . A. dehalogenans strain $2 \mathrm{CP}-\mathrm{C}$ DNA was extracted using QIAGEN Genomic-tip (100ml of a two-day-culture in R2A anoxic medium with fumarate). For environmental samples, total community DNA (Table 1) was extracted using the PowerSoil ${ }^{\mathrm{TM}}$ DNA Isolation Kit (MoBio Laboratories, Inc).

RNA extractions were done with RNeasy mini kit (QIAGEN) with an additional DNAseI (530kunits $/ \mathrm{mg}$ solid) (Sigma) treatment after RW1 buffer ($10 \mu 1$ of DNaseI [100U/ml] stock solution was added to 70μ l DNase buffer [40 mM Tris $\cdot \mathrm{HCl} \mathrm{pH} 7.9,10 \mathrm{mM} \mathrm{NaCl}$, $6 \mathrm{mM} \mathrm{MgCl} 2,0.1 \mathrm{mM} \mathrm{CaCl} 2$] and mixed by pipetting only directly onto the RNeasy membrane, and incubated at room temperature for 15 min). DNA and RNA concentrations were measured spectrophotometically at 260 nm .

Development of PCR Primers

Thirty two nucleotide sequences were retrieved from Pipeline Functional Gene/ Repository (PFGR) (http://flyingcloud.cme.msu.edu/fungene/) and aligned using ClustalW (Thompson et al., 1994) (ftp://ftp.ebi.ac.uk/pub/software/unix/clustalw/), and

BioEdit Sequence Alignment Editor (Hall, 1999). Primer Select Program (DNASTAR, Inc, Madison, WI) was used to obtain an initial primer set. In silico amplifications were performed using FastPCR 4.0.27 (Kalendar, 2004) and insilico.ehu.es (http://insilico.ehu.es/PCR/). Nucleotide sequences and their accession number are listed in Appendix 2.

The design of nosZ priming sequences specific for Anaeromyxobacter dehalogenans strain 2CP-C was obtained using Primer Select Program. A total of 113 forward primers and 119 reverse primers were identified by this program. The specificity of each primer binding site was evaluated using basic local alignment search tool (BLAST) from Joint Genome Institute (JGI) (http://genome.jgi-psf.org/cgibin/runAlignment? $\mathrm{db}=$ anade\&advanced=1) and National Center for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/BLAST). Only those primer sites showing the fewest hits against the BLAST database were selected.

The level of conservancy was evaluated for each primer with few hits in BLAST. Characteristics such as a length of 17 bp or more, high melting temperature (Tm , temperature at which half of the primer population is denatured), and high GC near the 3^{\prime} end were preferred. The primer pairs were chosen based on the product length ($>400 \mathrm{bp}$) and a Tm difference $\left(<5^{\circ} \mathrm{C}\right)$ between both primers of a primer pair. Potential dimer formation was evaluated using FastPCR 4.0.27.

Due to the differences in the codon usage of different organisms, the design of nos Z priming sequences specific for nos Z sequences, such as the ones of W. succinogenes, D. aromatica, A. dehalogenans, M. magneticum, and D. hafniense, was achieved through degenerated primers. These are DNA fragments in which some base positions exhibit flexibility resulting in several primer sequence options. The universal degenerate code is: $\mathrm{M}=(\mathrm{A} / \mathrm{C}), \mathrm{R}=(\mathrm{A} / \mathrm{G}), \mathrm{W}=(\mathrm{A} / \mathrm{T}), \mathrm{S}=(\mathrm{G} / \mathrm{C}), \mathrm{Y}=(\mathrm{C} / \mathrm{T}), \mathrm{K}=(\mathrm{G} / \mathrm{T}), \mathrm{V}=(\mathrm{A} / \mathrm{G} / \mathrm{C}), \mathrm{H}=(\mathrm{A} / \mathrm{C} / \mathrm{T})$, $\mathrm{D}=(\mathrm{A} / \mathrm{G} / \mathrm{T}), \quad \mathrm{B}=(\mathrm{C} / \mathrm{G} / \mathrm{T}), \quad \mathrm{N}=(\mathrm{A} / \mathrm{G} / \mathrm{C} / \mathrm{T})$. For example, GCTNATCSGTBT has 24 degeneracies $(4 * 2 * 3)$. Less than 1024 degeneracies were preferred. Primer binding sites were verified manually. Numbers used for naming primers are relative to the nos Z sequence gene of A. dehalogenans strain 2CP-C (Figure 2).

Amplification of nosZ Genes

All oligonucleotide primers were synthesized by Integrated DNA Technologies (IDT, Coralville, IA). To evaluate the effectiveness of in silico designed primers, a temperature gradient was used to test each primer pair in a gradient thermocycler (MasterCycler, Eppendorf). The temperature gradient was established based the Tm (reported by the manufacture of the oligonucleotides, IDT), setting the limits of the gradient $3^{\circ} \mathrm{C}$ above and below the Tm. A. dehalogenans strain 2CP-C DNA was used as a model unit to optimize the annealing temperature. The following steps were employed in the PCR (Scala and Kerkhof, 1998): 1 cycle at $94^{\circ} \mathrm{C}$ for 5 min ; 35 cycles, each consisting of $95^{\circ} \mathrm{C}$ for 0.5 min , annealing for 1.5 min , and $72^{\circ} \mathrm{C}$ for 2 min ; and a final extension of $72^{\circ} \mathrm{C}$ for 10 min .

For PCR amplifications approx. 150ng of DNA template, 1X Taq polymerase reaction buffer, $0.2 \mathrm{pmol} / \mu \mathrm{l}$ of each primer ($0.4-0.8 \mathrm{pmol} / \mu \mathrm{l}$ for degenerate primers), and 2.5 mM of each dNTP were used in a $20-25 \mu \mathrm{l}$ reaction volume. Different magnesium chloride $\left(\mathrm{MgCl}_{2}\right)$ concentrations were evaluated $(1.5,2.0,2.5,3.0,3.5 \mathrm{mM})$. The amplification product was visualized in 1% agarose-gel electrophoresis. Gels were run at 90 V for 30 min , and DNA bands were stained with ethidium bromide and observed using a ultraviolet transilluminator. After setting these parameters, degenerated primer pairs were tested with DNA from other organisms: A. dehalogenans 2CP-1, A. dehalogenans 2CP-3, Anaeromyxobacter strain R, Desulfitobacterium hafniense, Desulfitobacterium chlororespirans Co23, Desulfitobacterium strain PCE1, Wolinella succinogenes, and Pseudomonas stutzeri.

Cloning of nosZ PCR Products and Sequencing

Total community DNA of environmental samples from a fluidized bed reactor (FBR), the Mayagüez wastewater treatment plant (MWWT) and from from the petrochemical complex of the Commonwealth Refining Company, Inc. (CORCO) (Table 1) were PCR amplified with NosZ943F/NosZ1789R primer pair and cloned using pGEM (R)-T Vector System (Promega). In the same way, PCR products from genomic DNA from bacterial cultures of A. dehalogenans strain 2CP-C and P. stutzeri generated using NosZ256F/NosZ1807R, and Nos661/Nos1773 (Scala and Kerkhof, 1998) primer pairs, respectively, were cloned. For the environmental samples, JM109 competent cells
provided with the cloning kit were used, while Escherichia coli DH5 α was made competent by cold 50 mM CaCl 2 treatment and used for cloning of PCR products from bacterial cultures.

For preparing CaCl_{2} competent cell stock, one fresh colony of E. coli $\mathrm{DH} 5 \alpha$ was transferred in 5 ml of LB broth and $37^{\circ} \mathrm{C}$ at 150 rpm . After an overnight incubation, $250 \mu \mathrm{l}$ were transferred to 25 ml of LB broth and grown for 4 h at $37^{\circ} \mathrm{C}$ and 150 rpm ; centrifuged at $2,500 \mathrm{rpm}$ for 10 min , and the supernatant was discarded. The pellet was gently resuspended in 12.5 ml of cold 50 mM CaCl 2 and maintained on ice for 30 min , centrifuged at $2,500 \mathrm{rpm}$ for 10 min and the supernatant was discarded and maintaning the pellet in ice until 1.5 ml of $50 \mathrm{mM} \mathrm{CaCl}_{2}$ plus 20% glycerol were added. Aliquots of $100 \mu 1$ were prepared and kept at $-80^{\circ} \mathrm{C}$.

The molar ratio of PCR product to vector was $3: 1$, except for the MWWT clone library, for which 10:1 and 5:1 ratios were used. Positive clones were identified by white/blue selection (clones that contain PCR products produce white colonies) in Luria Bertani agar with $100 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin, 0.5 mM IPTG, and $80 \mu \mathrm{~g} / \mathrm{ml} \mathrm{X-Gal} \mathrm{(LB/Amp/IPTG/X-gal)}$. White colonies were picked and transfered to $10 \mu \mathrm{l}$ double distillated water $\left(\mathrm{ddH}_{2} \mathrm{O}\right)$, and isolated in LB/Amp/IPTG/X-gal.. The selected colonies were heated to $100^{\circ} \mathrm{C}$ for 10 min , centrifuged at $16,000 g$ for 5 min , and used as DNA template $(1 \mu \mathrm{l})$ in a colony-PCR using either T7 promoter and SP6 promoter, or M13F(-20) and M13R(-27) vector primer sets. For PCR amplifications, 1X Taq polymerase reaction buffer, 1 pmol of each primer, 2.5 mM of MgCl_{2}, and 2.5 mM of each dNTP were used in a $50 \mu 1$ reaction volume. The
following steps were employed in the PCR: 1 cycle at $94^{\circ} \mathrm{C}$ for $2 \mathrm{~min} ; 20$ cycles each consisting of $94^{\circ} \mathrm{C}$ for $0.5 \mathrm{~min}, 52^{\circ} \mathrm{C}$ for 2 min , and $72^{\circ} \mathrm{C}$ for 2 min ; and a final extension of $72^{\circ} \mathrm{C}$ for 10 min . Inserts of the correct size were examined by agarose-gel electrophoresis. Positive clones were sequenced using Nevada Genomics Center services. For sequencing, only 20 cycles were performed for each PCR amplification (to prevent accumulation of mistakes by Taq polymerase), and two replicates of $50 \mu 1$ were prepared. Replicates were mixed and PCR products were purified using the Wizard ${ }^{\circledR}$ SV Gel and PCR Clean-Up System (Promega). The DNA concentration of clean PCR products was measured spectophotometrically at 260 nm .

Sequence and Phylogenetic Analysis

The identities of clone sequence data from FBR, CORCO, and MWWT libraries were compared with sequences in the Genbank using BLASTn. Sequences were edited manually using BioEdit; vector sequences were deleted and in the case of sequences that were inserted in a reverse orientation during pGEM cloning, their reverse-complement sequences were used. Clone sequences with hits within nos Z genes sequences were subjected to unique genotypes analysis for each clone library using the PHYLIP package (Felsenstein, 1989) and coverage analysis using ASLO program (http://www.aslo.org/lomethods/free/2004/0114a.html) (Kemp and Aller, 2004) under the default parameters. Each clone sequence library was aligned independently using ClustalW (Thompson et al., 1994) and each file *.aln was used to construct a distance matrix by using DNADIST (PHYLIP
http://evolution.genetics.washington.edu/phylip.html). Each outfile was then used in DOTUR 1.53 software (Schloss and Handelsman, 2005) applying the furthest-neighbor algorithm to assign sequences genotypes. Rarefaction curves were constructed for each distance level (http://www.plantpath.wisc.edu/fac/joh/dotur.html), and richness estimators and diversity indexes were calculated (Table 6). Only clones that represent a unique genotype with less than $97-99 \%$ of sequence similarity with other genotypes were subjected to a second round of sequencing in the opposite direction (Nevada Genomics Center).

Sequences were translated in silico using BioEdit Sequence Alignment Editor (Hall, 1999) and a protein similarity matrix was generated using MatGat Matrix Global Alignment Tool (Campanella et al., 2003). Only the region of approximately 290 amino acids flanked by primers NosZ943F and NosZ1789R was analyzed. Blosum62 was used as the similarity matrix.

Neighbor-joining (NJ) phylogenetic analysis was conducted using MEGA version 3.1 (Kumar et al., 2004) using 1,000 replicate trees based on the alignment of approx. 180 nucleotides and 60 amino acid residues of the NosZ fragments. After this preliminary NJ analysis, the dataset were subjected to a Maximum Parsimony (MP), Maximum Likelihood (ML), and Bayesian Inference (BI) phylogenetic analysis. For MP phylogenetic analysis, MEGA 3.1 program (Kumar et al., 2004) was used with 1000 bootstrapings. To generate the ML phylogenetic tree, the optimal evolutionary model (WAG+I+G) was obtained from ProtTest 1.4 (Abascal et al. 2005), then Seqboot and

Protmlk from Phylip 3.67 package (Felsenstein, 1989) were used for bootstraping and for ML analysis. BI analysis was done using Mr. Bayes, with WAG $+\mathrm{I}+\mathrm{G}$ as evolutionary model. The following parameters were used: 500,000 generations, Nrun=4, Nchains=4, Temp $=0.2$, Swapfreq $=1$, samplefreq $=100$, relburnin $=y e s$, burininfrac $=0.25$. Phylogenetic trees were viewed using Treeview (Roderick 2000).

Terminal Restriction Fragment Length Polymorphism of nosZ Amplicons

Reverse primer NosZ1789R was labeled with the fluorophor InfraRedDye700 (LI-COR, Lincoln, NE). Total community DNA from the aerobic and anaerobic stations of the Mayagüez wastewater treatment plant (MWWT) collected in May 2007 was PCR amplified with NosZ943F/NosZ1789R primer set as previously described. Additionally, clone MWWT34 containing an amplicon generated with primer pair NosZ943F/NosZ1789R was included as a control. Two replicates were done, and electrophoresed in 1% agarose gels. The bands were cut out of the gel, and then replicates were mixed and purified using Spin Columns and Elution Tubes (Ambion, Austin, TX).

Most suitable restriction enzymes for amplicons generated with NosZ943F/1789R were identified by an in silico analysis using BioEdit restriction map tool. All 4-base cutter enzymes were evaluated, and enzymes that cut all amplicons (Table 7 and 8) and generate terminal fragments between 50 and 700 bp were preferred. PCR products were used for separate restriction digests with the following enzymes: HinPI, NlaIII, and RsaI. Each digestion reaction consisted of $0.25 \mu \mathrm{l}$ of 10 X reaction buffer, 1unit of each restriction enzyme and $2 \mu \mathrm{l}$ of PCR product added for a total reaction volume of $2.5 \mu \mathrm{l}$. The digestions were incubated at $37^{\circ} \mathrm{C}$ for 4 h followed by 10 min at $65^{\circ} \mathrm{C}$ to inactivate the
enzymes. A volume of $2 \mu 1$ of each restriction reaction was mixed 1:1 with IR2 stop solution (LI-COR, Lincoln, NE) and electrophoresed using the services of the Sequencing and Genotyping facility (SGf) (University of Puerto Rico, Rio Piedras Campus). $\mathrm{KB}^{\text {Plus }}$-LICOR ($50-700 \mathrm{bp}$) was used as a molecular sizing standard. The TRFLP fingerprints were collected as a TIF image and analyzed using Gel Pro Analyser (Media Cybernetics, Silver Spring, Maryland, USA).

In Situ RT-PCR

In Situ RT-PCR (ISRT-PCR) allows the detection of gene expression inside the cell. This is accomplished by cell permeabilization, after which PCR and hybridization reactants can pass through the cell wall and enter the complex cell matrix. To achieve specificity and sensitivity this procedure has to be carefully optimized. Several key steps are: protease digestion, which can define the intensity of the signal; one-step RT-PCR systems, which allow reproducible amplification; and FISH as a downstream procedure, in which an internal, fluorescently labeled probe is specific to the PCR product generated in the previous step and this allows a more specific detection.

The ISRT-PCR protocol used in this study was previously described by Cordero (2003) with modifications to optimize the procedure. In Situ RT-PCR was developed in an RNase-free environment, cleaning equipment and lab bench daily with Eliminase (Decon Labs), treating all solutions with 0.1% (v/v) DEPC, oven baking glassware at $240^{\circ} \mathrm{C}$ overnight, and rinsing plasticware with Eliminase and DEPC-treated ddH $\mathrm{H}_{2} \mathrm{O}$.

Bacterial cell fixation. Bacterial samples were mixed with RNAprotect Bacteria Reagent (QIAGEN) for 5 min at room temperature. The cells were treated with 50 ml freshly prepared 4% paraformaldehyde and incubated for 2 h . After paraformaldehyde treatment, cells were harvested by centrifugation at $5,000 \mathrm{rpm}$ for 5 min and washed with 50% ethanol in 1X phosphate-buffered saline (PBS: 120 mM NaCl and 2.7 mM KCl in 10 mM phosphate buffer $[\mathrm{pH} 7.6]$). Cell were centrifuged again at $5,000 \mathrm{rpm}$ for 5 min , resuspended in absolute ethanol, and stored at $-80^{\circ} \mathrm{C}$ until analysis. Fixed cells were used before one week of storage. Cells were recovered by centrifugation and resuspended in 5 ml 1 X PBS, and $10 \mu 1$ of cell suspension were spotted on IS-PCR designed glass slides (Applied Biosystems, Foster City, CA). Slides were incubated in 0.1% fresh DEPC for 12 min at room temperature, and immersed for 2 to 3 s in 0.5% metaphor agarose at $37^{\circ} \mathrm{C}$, and placed on ice until the agarose had solidified. Excess agarose on the back side of the slides was removed, and the samples were dehydrated in 50,80 , and $96 \%(\mathrm{vol} / \mathrm{vol})$ ethanol for 5 min each (Daims et al., 2001).

Cell permeabilization. A range of conditions were evaluated to optimize cell permeabilization by either electroporation or enzymatic treatment with lyzozyme/proteinase K. An overnight RNA- and DNA-nuclease treatment was explored to quickly test the effectiveness of these treatments on cell integrity, using $1 \mathrm{mg} / \mathrm{ml}$ RNase A and $100 \mathrm{U} / \mathrm{ml}$ DNase with a subsequent staining of samples with $10 \mathrm{ng} / \mu 1$ of $4^{\prime}, 6^{\prime}-$ diamidino-2-phenylindole (DAPI) (Sigma, St. Louis, MO) for 5min (Hodson et al., 1995). Removal of nucleic acids (lack of fluorescence) caused by the entrance of
nucleases through the cell envelope was used as one criterion of permeabilization success. All samples were examined by epifluorescence microscopy (Olympus BH2RFCA, Olympus, Japan).

Permeabilization by electroporation was evaluated as follows: a density of 10^{7} fixed cells $/ \mathrm{ml}$ was washed twice with $\mathrm{ddH}_{2} \mathrm{O}$ and subjected to successive pulses with electroporation time constants of $10,25,50,100$, or 200 ms at $2.5 \mathrm{kV}, 25 \mu \mathrm{~F}$, and 1000Ω. Cold water and 1 mm gap electroporation cuvettes (Molecular Bioproducts) were used.

Enzymatic cell permeabilization was evaluated by three parameters: (i) varying the time of exposure to paraformaldehyde between 2 and 24 h ; (ii) the time of exposure to $1 \mathrm{mg} / \mathrm{ml}$ lyzozyme from 15 to 30 min at $37^{\circ} \mathrm{C}$; and (iii) using proteinase $\mathrm{K}(0.5,1,2$, 5 , and $10 \mu \mathrm{~g} / \mathrm{ml}$ final concentration) for 10 min at $37^{\circ} \mathrm{C}$. A $10 \mu \mathrm{l}$ of cell suspension was spotted on a glass slide and incubated with the enzyme mixture. After the incubation, reagents were removed by three consecutive washes in coupling jars with 1 X PBS and a final wash with absolute ethanol. Proteolytic enzymes were inactivated by heating the slides for 2 min at $94^{\circ} \mathrm{C}$ (Hodson et al., 1995). After complete processing of samples by ISRT-PCR and FISH detection (see below), the fluorescent intensity and cell morphology were used to identify the gentlest effective treatment for further analysis.

ISRT-PCR protocol. PCR amplification of nos Z gene fragments was performed using the QIAGEN OneStep RT-PCR Kit and the primer pair NosZ334F/1789R. The spotted cells were then covered with $50 \mu \mathrm{l}$ of reaction mixture $(30 \mu \mathrm{l}$ of RNase free water, $10 \mu \mathrm{l}$ of 5X RT-PCR Buffer, $2 \mu \mathrm{l}$ of dNTP Mix 10 mM each, $0.6 \mu \mathrm{M}$ of each primer, and $2 \mu \mathrm{l}$ of

RT-PCR Enzyme Mix) and sealed using the assembly tool (Perkin Elmer, Norwalk, CT) to create a micro-humid chamber. The reactions were performed in an automated in situ PCR thermal cycler (Gene Amp In Situ PCR System 1000 Perkin Elmer, Norwalk, CT). The following temperatures and time profiles were used: reverse transcription at $50^{\circ} \mathrm{C}$ for 30 min , a hotstart activation step at $95^{\circ} \mathrm{C}$ for 15 min ; followed by 35 cycles each consisting of melting at $94^{\circ} \mathrm{C}$ for 0.5 min , annealing at $57^{\circ} \mathrm{C}$ for 1.5 min and extension at $72^{\circ} \mathrm{C}$ for 2 min ; and a final extension was performed at $72^{\circ} \mathrm{C}$ for 10 min . After amplification, the slides were washed twice with 1X PBS.

Detection of amplified gene products by fluorescent in situ hybridization (FISH).

 After ISRT-PCR, slides were incubated in denaturation buffer $(0.5 \mathrm{M} \mathrm{NaOH} / 1.5 \mathrm{M} \mathrm{NaCl})$ at room temperature for 10 min . Subsequently, samples were transfered to neutralizing buffer (1 M Tris- $\mathrm{HCl}[\mathrm{pH} 8.0] 1.5 \mathrm{M} \mathrm{NaCl}$) for 5 min at room temperature and then serially dehydrated with ethanol (50, 80, and 100%). The slides were prehybridized in DIG Easy Hybridization Solution (Roche Applied Science, Germany) for 30min. The cyanine dye (Cy3) labeled NosZ943 probe (probe Nos1527 [Scala and Kerkhof, 1998] was used for negative controls) was boiled for 5 min and kept at $4^{\circ} \mathrm{C}$. Prior to use, the probe was diluted 1:10 in DIG Easy hyb solution to achieve a final concentration of $5 \mathrm{ng} / \mu \mathrm{l}$. The spotted cells were then covered with $30 \mu \mathrm{l}$ of the hybridization mixture, sealed using the assembly tool (Perkin Elmer, Norwalk, CT) and incubated 24 (nirS) -48 h (nosZ) at $41^{\circ} \mathrm{C}$. After hybridization, the slides were washed twice at $41^{\circ} \mathrm{C}$ with pre-warmed hybridization buffer ($900 \mathrm{mM} \mathrm{NaCl}, 20 \mathrm{mM}$ Tris- $\mathrm{HCl}[\mathrm{pH} 7.2]$ and $0.01 \% \mathrm{SDS}$) at $48^{\circ} \mathrm{C}$ for 20 min . Finally, the slides were washed with washing buffer $(900 \mathrm{mM} \mathrm{NaCl} / 100 \mathrm{mM}$ Tris- HCl[pH 7.2] for 5 min at $41^{\circ} \mathrm{C}$. Samples were counterstained with DAPI ($10 \mathrm{ng} / \mu \mathrm{l}$ for 5 min) and let air dry. Slides were covered with a drop of UV mount media and a coverslip with nail polish around its periphey. Finally, they were examined under epifluorescence microscopy (Olympus BH2-RFCA, Olympus, Japan). Photographs were taken using a digital SPOT Insight Color Camera and the corresponding SPOT Advanced software V 3.2 (Diagnostic Instruments, USA). UG-1 filter (Olympus, Japan) and XF108-2 filter set (Omega Optical, Brattleboro, Vermont) were used to visualize DAPI and Cy3 signals, respectively. Samples were also examined using a Laser Confocal Microscope model Olympus FluoView 300 at the UPRM.

In order to evaluate the group specificity of each probe, two clones of E. coli $\mathrm{DH} 5 \alpha$ were generated which carry the A. dehalogenans strain 2CP-C and the P. stutzeri nos Z gen fragments, respectively, generated as described in "cloning of nosZ PCR products and sequencing". Hybridization conditions were examined including probe concentration (5 and $25 \mathrm{ng} / \mu \mathrm{l}$), hybridization time (24 and 48 h ; as recommended for degenerated probes) (Sambrook et al., 1989, p 11.45), and washing stringency (2 min room temperature following by 2 min at hybridization temperature; and 10 min at $48^{\circ} \mathrm{C}$).

ISRT-PCR protocol-Environmental samples. Modifications were made to apply the protocol to environmental samples. At the moment of sampling, a $500 \mu \mathrm{l}$ aliquot of the bioreactor was removed and mixed 1:1 with RNAprotect Bacteria Reagent (QIAGEN), or it was filtered through a Isopore ${ }^{\mathrm{TM}}$ polycarbonate membrane filter (pore size, $0.2 \mu \mathrm{~m}$) (Millipore Corp., Bedford, MA) or through a black polycarbonate membrane filter (pore
size, $0.2 \mu \mathrm{~m}$) (Poretics Corp., Livermore, CA) (only a small volume of approx. $100 \mu \mathrm{l}$ passed through the filter), then the membrane filter was removed and inmmersed in RNAprotect Bacteria Reagent. The suspension or the membrane filter were treated with 50 ml of 4% paraformaldehyde for 2 h . In the case of the cell suspension, it was stirred constantly on a magnetic stirring hot plate and cells were recovered by centrifugation at $5,000 \mathrm{rpm}$ for 5 min , they were resuspended in 10 ml of 1 X PBS , and $10 \mu \mathrm{l}$ of cell suspension was spotted on IS-PCR designed glass slides and let dry in a $55^{\circ} \mathrm{C}$ incubator. Slides and membrane filters were treated with 0.1% DEPC, immersed in agarose, dehydrated in ethanol, and cell permeabilized with lyzozyme and proteinase K, as described previously. After cell permeabilization, slides and membrane filters were boiled in 10\% acid-washed polyvinylpolypyrrolidone (PVPP) (Sigma) in distilled water for 10 min (PVPP reduces PCR inhibition) (Holben et al., 1988; Morgan et al., 1998). In the case of glass slides, they were sealed using an assembly tool (Perkin Elmer, Norwalk, CT) and they were heated in an In Situ PCR thermal cycler (GeneAmp In Situ PCR System 1000 Perkin Elmer, Norwalk, CT). PVPP was removed by three consecutive washes with 1X PBS, and then glass slides and membrane filters were serially dehydrated with ethanol (50, 80, and 100%) for 3 min each. PCR and FISH were performed as described previously. In the case of membrane filters, PCR and FISH were performed in PCR tubes in a Perkin Elmer model 2400 thermal cycler (GenAmp PCR System). After DAPI counterstaining, membrane filters were placed onto glass slides and covered with UV mount media and a coverslip.

RESULTS

Development of PCR primers

Primers specific to nos Z from Anaeromyxobacter spp.

Identification in silico of specific priming sites to amplify Anaeromyxobacter nos Z gene sequences was accomplished by Primer Select Software (DNAstar), with the exception of primers NosZ256F and NosZ1366F which were designed manually. Among 113 suggested forward and 119 reverse primers, only six sites were selected for further analysis (Table 2). The selection of primers was based on length (17 to 27bp), high Tm, higher GC content near the 3^{\prime} end, and specificity suggested by BLAST analysis. Importantly, a region of high similarity of nucleotides (Figure 3) among Anaeromyxobacter and other non-denitrifying strains was used as a critical parameter. The presence of unique bases to enhance the probability that the primers work for all Anaeromyxobacter strains but not for other species was considered as well.

For primer testing, genomic DNA was used from several Anaeromyxobacter species (A. dehalogenans strain 2CP-C, A. dehalogenans strain 2CP-1, A. dehalogenans strain 2CP3, and Anaeromyxobacter strain R), as well as from other members of the nondenitrifying group (W. succinogenes, and Desulfitobacterium spp), from one organism phylogenetically related to Anaeromyxobacter spp. (Myxococcus xanthus), and from an organism lacking the nos Z gene (Dehalococcoides sp. strain BAV1). Optimal PCR conditions were achieved for seven primer pairs (Table 3): NosZ187F/1207R,

NosZ256F/718R, NosZ334F/1789R, NosZ903F/1207R, NosZ903F/1789R, NosZ903F/1807R, and NosZ943F/1789R. Figures 5 and 6 show an example of a gradient PCR product specifically for primer pair NosZ943F/1789R. Results for each primer pair will be described in decreasing order of importance to the project.

The use of primer pair NosZ903F/1789R (Figure 8) yielded the expected 913bp PCR product using any of the annealing temperatures tested $\left(55-65^{\circ} \mathrm{C}\right)$. A temperature of $63^{\circ} \mathrm{C}$ worked best for this primer pair. Using this primer set, successful and specific amplification for a nosZ fragment from all Anaeromyxobacter strains occurred, and no PCR products from other non-denitrifying organisms were observed (M. xanthus was not tested). The optimum magnesium concentration was 2.5 mM .

PCRs using primer pair NosZ256F/718R (Figure 7 and Table 3) yielded a PCR product of the expected size $(483 \mathrm{bp})$ at all tested annealing temperatures $\left(55-68^{\circ} \mathrm{C}\right)$; however, higher temperatures within this range generated better amplification yields (brighter bands). For this primer pair, $68^{\circ} \mathrm{C}$ was selected for further applications. This primer set generated the expected amplicon with genomic DNA from all Anaeromyxobacter strains, although for A. dehalogenans strain 2CP-1 a low yield was obtained. Along other nondenitrifying organisms, D. hafniense and D. chlororespirans yielded a very weak PCR product as well. A strong amplification product was obtained for M. xanthus whereas amplification with W. succinogenes and D. ethenogenes DNA yielded no products. Figure 3 shows that for the forward primer NosZ256F, D. hafniense shares many of the
bases along the priming site, while priming site for NosZ718R differs more. The optimum magnesium concentration was 2 mM .

PCR conditions for NosZ187F/1207R, NosZ903F/1207R, NosZ903F/1807R are also described in Table 3. The PCR products of the expected size were obtained for each primer pair, and were 1043 , 924 , and 327 bp in length, respectively, with DNA from Anaeromyxobacter strains. Primer set NosZ903F/1807R and NosZ903F/1207R amplified W. succinogeness nosZ gene robustly. In contrast, NosZ187F/1207R generated multiple unspecific fragments in D. hafniense, D. chlororespirans Co23, W. succinogenes, and D. ethenogenes. No other primer pair generated an amplicon for D. ethenogenes.

Primers specific to novel nos Z genes

In order to retrieve nos Z sequences from environmental samples, degenerate primers were designed based on A. dehalogenans strain 2CP-C, W. succinogenes, D. hafniense, D. aromatica and M. magnetotacticum nos Z sequences. Only these nos Z sequences from non-denitrifying strains were available in public databases at the beginning of this study. A primer binding site suitable for amplification of all nos Z varieties, including traditional ones could not be established (sequences used in the multiple sequence alignment can be found in Appendix 2). Due to observed differences in codon usage, Primer Select program failed to identify a region of conserved nucleotides long enough to serve as a primer binding site. Therefore, target priming sites were located manually (Figure 9).

In order to identify PCR primers suitable for nos Z genes from a wide range of taxonomic groups, degenerate primers were designed. Primer pair NosZ334F/1789R generated a larger amplicon of approx. 1485 bp , while NosZ943F/1789R produced a smaller amplicon of approx. 870 bp . Figure 9 shows the priming sites for these degenerate primers in an alignment of partial nos Z sequences of members from the non-denitrifying nos Z group. Figure 9 also shows major priming differences with members of the traditional-nos Z group (Achromobacter cycloclastes, Bradyrhizobium japonicum, Brucella spp., Burkholderia spp., Paracoccus pantotrophus, Pseudomonas spp., Sinorhizobium meliloti, among others).

The amplification reaction using primer pair NosZ334F/1789R (Figure 11) generated a PCR product of the expected size (1482 bp) with a wide range of annealing temperatures (57 to $65^{\circ} \mathrm{C}$); $57^{\circ} \mathrm{C}$ was selected as optimal, while $66^{\circ} \mathrm{C}$ yielded no amplification. All Anaeromyxobacter and Desulfitobacterium strains yielded amplicons, although Desulfitobacterium PCE-1 DNA required a second round of PCR with the same primer pair for its detection. For W. succinogenes, a larger PCR fragment of nearly 3000bp was obtained. Using an in silico PCR software (http://insilico.ehu.es/PCR/), these primers were evaluated against the W. succinogenes genome (insilico.ehu.es). According to the genome sequence, NosZ334F/1789R should produce an amplicon of 2844 bp in length (positions 870868-873711), which matches the size of the electrophoresis gel band of about 3000bp (Figure 11, lane 7). The same type of in silico amplification with A. dehalogenans strain 2CP-C genome generated a 1481 bp long product (positions 2709144-2710624), also in agreement with the experimental PCR results.

Optimization of the annealing temperature was a critical aspect for primer pair NosZ943F/1789R, since at lower annealing temperatures the main observed PCR product was larger than the expected (Figure 5, lanes 1-4, correspond to $40,41.2,43.3,46.3^{\circ} \mathrm{C}$). Temperatures between 52 to $62^{\circ} \mathrm{C}$ (Figure 5, lanes 6-8; and Figure 6 lanes 1-7) generated a PCR product of the predicted size (873 bp), with $59^{\circ} \mathrm{C}$ as the best annealing temperature for this primer pair. However, due to the high level of degeneracy of primer NosZ943F (144 degenerate positions), additional amplicons were always observed, and the specificity could not be improved by varying the magnesium concentration (1.5, 2, 2.5, 3, and 3.5 mM$)$. Therefore, this PCR product required clean-up steps of the desired fragment before further analysis could be done. Among the other non-denitrifying organisms, NosZ943F/1789R produced an amplicon of the correct size with DNA from Desulfitobacterium spp. (W. succinogenes was not tested).

The primer pair NosZ943F/1789R was also used to evaluate environmental DNA samples obtained from a fluidized bed reactor (FBR) treating diesel contaminated groundwater, soil samples from a petrochemical complex (CORCO), activated sludge from the largest secondary wastewater treatment unit operated in Puerto Rico (MWWT), marine communities from the Mayaguez Bay, and soil samples from the "Bosque del Pueblo" rainforest. Since it is common to find humic acids in environmental samples which are inhibitory for PCR amplifications, replicates of PCR reactions were prepared for each environmental sample, one with total environmental DNA, and the other reaction with total environmental DNA combined with A. dehalogenans strain 2CP-C DNA. All
samples generated amplicons of the expected size with the exception of the marine bacterioplankton community from Mayagüez Bay, thus demonstrating widespread distribution of novel nosZ genes in nature (Figure 12, lanes 9-20). NosZ334F/1789R primer pair was also tested with monthly samples from Mayagüez Wastewater Treatment Plant (MWWT) (Figure 12, lanes 1-8) and yielded positive amplification (Figure 13, lanes 5-5).

Finally, primer pair NosZ943F/1789R was chosen for assessing diversity of nosZ in environmental samples by clone sequencing and by T-RFLP. Figure 13 shows the screening of positive clones using this primer pair.

Environmental nosZ-gene libraries

The nosZ gene family appears to be widely distributed and highly diverse in nature (Rösch et al., 2002), but little information is available for the non-denitrifying NosZ group. Using degenerate primers, a broad range of nos Z sequences were sought in order to compare environmental sequences from Puerto Rico with those previously published and available in public databases. A total of 104 sequences of approx. 870bp was obtained: 12 from the FBR, 24 from CORCO, and 68 from MWWT. Based on nucleotide sequences from reference strains, a protein prediction was prepared for clone sequences using BioEdit Sequence Alignment Editor. The priming regions were deleted in order to avoid mistranslations, since only a one-base error during sequencing may result in a different protein. To prevent these mistakes, only clones that were sequenced in both
directions were included in this analysis. The second-round sequencing did not yield the complete PCR fragment and a stretch of approx. 400bp was represented by a double strand sequence. Translated nos Z genes revealed the presence of conserved histidine residues in all the environmental gene sequences (Simon et al., 2004) (Figure 14).

Through a Similarity Matrix analysis (MatGat) (Table 4), protein similarities were established for clone sequences and reference sequences. FBR1, FBR13, FBR31, FBR35, CORCO6, MWWT29, MWWT31, MWWT43, MWWT72, MWWT73, MWWT82, MWWT83, MWWT86, MWWT90, MWWT94, and MWWT102 had a percentage of similarity of $94,94,96,94,95,94,97,84,93,94,93,92,97,93,92$, and 89%, respectively, with D. aromatica. FBR15, FBR25, FBR28, CORCO8, CORCO26, CORCO30, and MWWT24 had a protein similarity with NosZ from Anaeromyxobacter dehalogenans strain 2CP-C of $96,91,96,88,82,88$, and 87%, respectively. The highest protein similarity of CORCO7 was 68% with M. gryphawaldense. CORCO18 has a protein similarity of 71% with C. fetus and M. gryphawaldense. Clones CORCO32 and CORCO33 have 86% similarity with each other. The highest protein similarities with a reference strain were 66 and 67%, respectively, with M. gryphawaldense.

A Similarity Matrix Analysis was performed to reference traditional-nos Z sequences (Table 5). Members of the order Rhizobiales (Sinorhizobium melilloti, Brucella ovis, Rhodopseudomonas palustris, Bradyrhizobium japonicum, Methylobacterium sp.) shared between 89 to 96% similarity, while similarity percentages in Rhodobacterales (Stappia aggregata, Silicibacter pomeroyi, Roseovarius spp., Dinoroseobacter shibae, and

Rhodobacter sphaeroides) ranged between 84 to 92 . Members of α-Proteobacteria, such as Rhizobiales (Sinorhizobium melilloti, Brucella ovis, Rhodopseudomonas palustris, Bradyrhizobium japonicum, Methylobacterium sp.) and Rhodobacterales (Paracoccus pantotrophus, Stappia aggregata, Silicibacter pomeroyi, Roseovarius sp., Dinoroseobacter shibae, and Rhodobacter sphaeroides) tend to share only 77 to 84% protein similarity. Members of the β-Proteobacteria including Burkholderia pseudomallei, Cupriavidus necator, Azoarcus sp., Thiobacillus denitrificans (Tm. denitrificans), and Acidovorax sp. share a protein similarity between 81-95\%. Representatives of the γ-Proteobacteria such as Alkalilimnicola ehrlichei, Reinekea sp., Psychromonas ingrahamii, Colwellia psychrerythraea, Photobacterium profundum, Shewanella loihica, Marinobacter sp., Hahella chejuensis, and Pseudomonas aeruginosa, share $83-96 \%$ of protein similarity. Some members of different divisions within the Proteobacteria share more than 90% protein similarity. This is the case of Paracoccus pantotrophus, an α-proteobacterium whose NosZ is more similar to that of γ Proteobacteria Pseudomonas aeruginosa (92\%), Pseudomonas fluorescens (92\%), and Pseudomonas denitrificans (Ps. denitrificans) (97\%), while protein similarity ranges 70$75 \%$ relative to the Rhodobacterales previously described. This is also the case for Achromobacter cycloclastes, which belongs to the order Burkholderiales, and only shares $67-68 \%$ similarity to other Burkholderiales, like Burkholderia pseudomallei, Cupriavidus necator, and Acidovorax sp.

Phylogenetic analysis of nosZ genes

The phylogenetic analysis revealed that the new sequences from environmental samples were different from traditional-nos Z sequences, while exhibiting more similarity relative to the non-denitrifying NosZ group. None of the clonal sequences shares more than 62% of protein similarity with traditional-nos Z sequences (similarity matrix not shown). To further confirm the identity of environmental sequences, a phylogenetic analysis was conducted for the NosZ family based on 46 nearly full-length sequences available in PFGR (http://flyingcloud.cme.msu.edu/fungene/). The inclusion of sequences from the environmental clone libraries is especially useful, since traditional and non-denitrifying N_{2} ORs have distinctive traits, and larger number of sequences could give insights into their evolution. The amino acid and the nucleotide sequences were analyzed independently, and most branches were very well supported, based on bootstrap analysis (1000 replicates). First, phylogenetic neighbor-joining trees were constructed with nos Z full-length sequences without clone sequences; then the 46 full-length sequences of reference were truncated in the same region for which clone sequence information is available (approx. 0.9 kb). Another phylogenetic tree was constructed based on the NosZ region available for the bone fish Crenimugil crenilabis, for which a nos Z conserved domain of about 90 amino acids was identified with NCBI Conserved Domain Search tool (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi?). To accomplish this goal, all sequences including clone sequences were truncated to approximately 0.2 kb (corresponding to the C. crenilabis 90 amino acid domain) and all characters where gaps appeared were deleted (Figure 15). The topologies of 0.9 and 0.2 kb based trees were congruent, and fit the topology of trees constructed with full-length sequences (not shown). The addition of clone sequences did not change the overall phylogenetic
relationships between reference sequences in consensus trees, but largely amplified the information obtained for nos Z genes.

A phylogenetic analysis with Maximum Parsimony (MP), Maximum Likelihood (ML), and Bayesian Inference (BI) algorithms was followed (Figure 16, 17, and 18, respectively). Through the phylogenetic analysis, 9 clades of nos Z variants were identified with the 3 models: Clade I, Dechloromonas aromatica, FBR31, FBR35, FBR13, CORCO6, FBR1, FBR4, MWWT31, MWWT90, MWWT82, MWWT72, MWWT94, MWWT83, MWWT73, MWWT29, MWWT86; Clade II, Magnetospirillum gryphiswaldense, Magnetospirillum magneticum, Magnetospirillum magnetotacticum; Clade III, Thiomicrospira denitrificans, Wolinella succinogenes, Campylobacter fetus; Clade IV, CORCO32, CORCO33, CORCO7; Clade V, Psychroflexus torquis, Robiginitalea biformata, CORCO47, Desulfitobacterium hafniense, Geobacillus thermodenitrificans, Gramella forsetii; Clade VI, Anaeromyxobacter dehalogenans strain 2CP-C, Anaeromyxobacter sp. strain Fw109-5, CORCO8, CORCO26, CORCO30, FBR15, FBR25, FBR28, MWWT24; Clade VII, Halorubrum lacusprofundi and Haloarcula marismortui; Clade VIII, Azoarcus sp., Thiobacillus denitrificans, Burkholderia pseudomallei, Acidovorax sp, Cupriavidus necator; and Clade IX, Achromobacter cycloclastes, Alkalilimnicola ehrlichei, Bradyrhizobium japonicum, Brucella ovis, Colwellia psychrerythraea, Dinoroseobacter shibae, Hahella chejuensis, Marinobacter sp, Methylobacterium sp, Paracoccus pantotrophus, Photobacterium profundum, Pseudomonas aeruginosa, Pseudomonas denitrificans, Pseudomonas stutzeri, Psychromonas ingrahamii, Reinekea sp., Rhodobacter sphaeroides,

Rhodopseudomonas palustris, Roseovarius sp, Shewanella loihica, Silicibacter pomeroyi, Sinorhizobium meliloti, Stappia aggregata. Clones CORCO18, MWWT102, MWWT43 and Pyrobaculum calidifontis were not included in any particular clade as their phylogenetic relationship varies among the different models.

With the similarity matrix made using MatGat, protein similarity percentage can be analyzed for each clade in the MP phylogenetic tree (Figure 17). Protein similarity for each clade was as follows: $91-100 \%$ for clade I; $89-99 \%$ for clade II; $83-91 \%$ for clade III; 75-86\% for clade IV; 59-90\% for clade V; 81-96\% for clade VI; 77\% for clade VII; 81-95\% for clade VIII; and 70-97\% for clade IX. P. calidifontis and CORCO18, which were not included in any particular clade, show a protein similarity of 70\%. CORCO47, which belongs to clade V , show its highest protein similarity with members of the clade VI (71-75\%).

Traditional reference nos Z sequences belong to clades VIII and IX. Clade VII consisted of two archaeas, Halorubrum lacusprofundi and Haloarcula marismortui. The majority of environmental clone sequences fell into clades I, IV, V, and VI, and did not follow a geographical pattern (except for clade IV). Clade IV was composed exclusively of CORCO clones. Clone CORCO18 by ML and BI models show a close relationship with the archaea Pyrobaculum calidifontis, while CORCO47 was most related to Flavobacteria. Clones MWWT43 and MWWT102 fell in two distinct clades (I and II) most closely related to either D. aromatica or Magnetospirillum spp. Clades I and VI lost resolution in ML and BI models, respectively. Since these clades kept the same overall
topology in the other models, this may indicate that the support value is not high enough thus collapsing during the inquiry, and more sequence data is needed.

Diversity indexes and richness estimators of nosZ-gene libraries

Since all environmental clones were randomly sequenced without any previous selection, CORCO, FBR, and MWWT libraries could be subjected to a diversity and richness analysis using PHYLIP package. Nine (9), 14, and 30 unique genotypes were identified for FBR ($\alpha 0.03$), CORCO ($\alpha 0.04$), and MWWT ($\alpha 0.04$), respectively. The estimated coverage was 33 , 54 , and 72% for FBR, CORCO, and MWWT nosZ-gene libraries.

Rarefaction curves (Figure 19) are used to determine differences in relative richness between libraries that would be observed if sampling were to be continued. If the slope of the curve is too steep, the sampling and sequencing efforts were incomplete. For CORCO library, it was observed that when a distance of 27% was used to define an OTU, the sampling was not completed. However, when a distance of 21% was used to define an OTU for FBR library, the rarefaction curve began to stabilize, showing that this library could harbor a lower number of OTUs.

DOTUR (Distance-based OTU and Richness) is a method used to compare libraries statistically. It defines an OTU using every possible distance between sequences, and it calculates Shannon-Weaver and Simpson diversity indexes (Magurran 1988), and the abundance-based coverage estimator (ACE) (Chao and Lee 1992; Chao and Yang 1993), bias-corrected Chaol (Chao 1984), interpolated jackknife (Burnham and Overton 1979),
and bootstrap (Smith and van Belle 1984) richness estimators. The estimated indexes are shown in Table 6. This analysis shows that the Shannon and Simpson diversity indexes (representing the richness and evenness of a sample, respectively) are higher for CORCO than for FBR library, even when a 4% of difference between OTU's is considered in CORCO clonal library instead of 3%, as for FBR clonal library. The most exhaustively sampling effort was accomplished for the wastewater treatment unit (MWWT). The sampling disparity could influence the richness found for MWWT gene library, which has the highest richness within the three clonal libraries. It also has the highest number of genotypes based on ACE, Boot, Chao, and Jack estimators. Nevertheless, the evenness for MWWT clone library was the lowest. This suggests that even though that MWWT library has the highest number of OTU's, there are sharp differences between the relative abundances of individual OTUs, only a few predominating in the population.

Terminal Restriction Fragment Length Polymorphism of nosZ Amplicons

Figure 26, 27, and 28 show the electropherogram (a plot of results from an analysis done by electrophoresis) profiles generated with HinPI, NlaIII, and RsaI, respectively, for the aerobic (AES) and anaerobic (ANS) stations of Mayagüez Wastewater Treatment Plant samples in May 2007. As a restriction control, clone MWWT34 was also digested with the same restriction enzymes. The T-RF profiles show a higher number of peaks for the ANS sample. In RsaI digests, the AES pattern presented 16 distinct peaks, while ANS patterns showed 30 peaks. Among the 16 peaks, only one was unique for the AES, while 15 were unique for ANS. Clone MWWT34 was represented by the peak with a fragment
length of 223 b , which was present in AES and ANS, and corresponds to the fragment length expected by the in silico restriction (Table 7).

In NlaIII digests, the AES pattern presented 12 distinct peaks, while ANS pattern showed 18 peaks. Only the ANS pattern showed unique peaks (Figure 27). Clone MWWT34 was represented by the peak with molecular weight 124 bp , which was present in AES and ANS; but in the in silico restriction, the T-RF fragment lenght expected was 117 bp (Table 7), which is 7bp shorter than the observed fragment. The reason could be a gel distorsion commonly called the "smiley effect".

In HinPI digests, the AES pattern presented 13 distinct peaks, while ANS pattern showed 19 peaks (Figure 28). Among the 13 peaks, only one was unique for the AES, while 8 were unique for ANS. Clone MWWT34 was represented by the peak with molecular weight 274 bp , which was presented only in ANS, and corresponds to the molecular weight expected by the in silico restriction (275bp) (Table 7).

In Situ-PCR

Cell Permeabilization

Enzyme permeabilization and electroporation were evaluated for their effectiveness to make stable pores in the cell wall, large enough to allow access of both RNase (approx. $13,000 \mathrm{Da}$) and DNase (approx. $33,000 \mathrm{Da}$) into the cells, while preserving the intact
overall morphology. Both enzymatic treatments and electroproporation were performed after cells were fixed with 4% paraformaldehyde. This pre-treatment rigidly fixes cell wall proteins preventing closure of pores after permeabilization (Nuovo 1996; Hixson et al. 1981). The ability of RNases and DNases to cross the cell membranes and to destroy nucleic acids after an overnight incubation was evaluated with DAPI staining, which binds strongly to nucleic acids, and can be observed as a blue fluorescence. The electroporation treatment of 50 ms (Figure 20 A and B) was insufficient to promote effective entry of enzymes, since numerous DAPI-emitting cells were observed after nuclease treatment. On the contrary, 200 ms (Figure 20 E and F) resulted in no cells being detected with or without nuclease treatment, demonstrating the destruction of all cells. Treatment with 100 ms (Figure 20 C and D) provided enough electroporation time to generate large pores that enable the entry of nucleases while the proper cell morphology was retained. This assay was used to test enzymatic permeabilization treatments as well.

The most effective enzymatic cell permeabilization protocol was observed with $1 \mathrm{mg} / \mathrm{ml}$ lyzozyme treatment during 30 min of incubation. In addittion, proteinase K at $0.5 \mu \mathrm{~g} / \mathrm{ml}$ was effective with cells fixed for 2 h in 4% paraformaldehyde, while $2 \mu \mathrm{~g} / \mathrm{ml}$ were required for $24 h$-fixed cells. Nouvo (1996) documented needs for higher concentrations of pronase when digesting cells fixed for longer periods. Nonetheless, the best permeabilization condition was achieved with 2 h -fixed cells incubated for 30 min with a lyzozyme solution and $0.5 \mu \mathrm{~g} / \mathrm{ml}$ of proteinase K. Although electroporation appears to work as well, the enzymatic permeabilization protocol was chosen for ISRT-PCR.

ISRT-PCR

Prior to nosZ in situ detection, nirS was tested (Figure 21). This gene has been previously used in our lab for the detection of denitrifying populations (Cordero, 2003). After evaluating several cell permeabilization parameters, specificity of the nirS-specific primers with pure and mixed cultures was tested. ISRT-PCR amplification was performed and successfully achieved for exponentially growing denitrifying cultures of P. stutzeri while background signal was not observed in RNase negative controls (Figure 21 B). When ISRT-PCR was tested with a co-culture of P. stutzeri and a non-denitrifying rod, only Pseudomonas cells were detected by fluorescence microscopy (Figure 21 A).

After nirS ISRT-PCR was optimized and validated, this approach was used for detecting nos Z gene products inside active cells. Expression of nos Z gene was first analyzed by RT-PCR through RNA extraction and gel-electrophoresis (Figure 22). Results showed robust amplification from P. stutzeri cells grown in nitrate broth, and a weak band when cells were grown in BLK (Nitrogen-free medium) with histidine (Figure 22). E. coli DH5 α generated a weak band as well (Figure 22, lane 6). After this preliminary assay, the nos Z gene of P. stutzeri was examined by an in situ technique. P. stutzeri was grown in nitrate broth and BLK plus histidine, fixed with 4\% paraformaldehyde, spotted in glass slides, permeabilized enzymatically, and subjected to ISRT-PCR with primers Nos661F and Nos1773R (Scala and Kerkhof, 1998) with unlabeled nucleotides. After these steps, FISH was used to target an internal region of the previous PCR amplicon with Cy3labeled Nos1527 probe (Scala and Kerkhof, 1998), and signal-emitting cells were
detected with fluorescence microscopy. A strong Cy3 signal was observed for P. stutzeri cells grown in nitrate broth, while a weak Cy3 signal was observed in P. stutzeri cells grown in BLK plus histidine as the only nitrogen source (Figure 23 B), but no Cy 3 signal was observed in RNase negative control (Figure 23 F).

The detection of novel nos Z genes was also achieved by IS-PCR. For this, two E. coli DH5 α clones were constructed with pGEM Easy Vector (Promega), one carrying a partial nos Z gene from P. stutzeri and the other carrying the partial nos Z gene from A. dehalogenans strain 2CP-C. The following controls were used: (i) E. coli $\mathrm{DH} 5 \alpha$ without pGEM vector, against Probe943 after PCR with NosZ334F/NosZ1789R primer pair, to ensure that E. coli genome is not responsible for the detection signal; (ii) clone carrying Pseduomonas nosZ partial gene against Probe943 after PCR with Nos661/Nos1773 primer pair, to demonstrate specificity of Probe943; (iii) clone carrying Anaeromyxobacter nosZ partial gene against Probe1527 after PCR with NosZ334F/NosZ1789R primer pair, to demonstrate that Probe1527 is not suitable to detect this type of non-denitrifying sequence. IS-PCR of genomic DNA typically fails due to the highly super-coiled structure of this molecule embedded in a dense matrix of proteins and cell structures (Nuovo, 1996). Since pGEM is a high copy vector, it was expected that, through IS-PCR, the insert could be directly detected without the need of the RT step. Results showed that the clone carrying the Anaeromyxobacter nos Z gene emits a strong Cy3 signal when detected with Probe943, but not with Probe1527 (Figure 24 B and 25 D, respectively). On the other hand, the clone harboring the Pseudomonas gene did not emit a Cy3 signal when detected with Probe943 nor did E. coli DH5 α (Figure 24 H and 24 F , respectively).

ISRT-PCR was further assayed with environmental samples obtained at the wastewater treatment plant operated to remove nitrogen by biological means. With laboratory cultures, Cy3-emitting cells could account for all or nearly all cells detected, based on DAPI detection. However, with natural samples the detection was considerably loweraround 4% of Cy3-emitting cells account for all possible cells detected by DAPI staining in the sample (only cells that were clearly distinguished from background signal were counted). The objective was not to prove exhaustively the abundance of these genes in the environment, but to prove that the designed primers could amplify genes that are harbored by bacteria in environmental samples. Figure 25 B shows at least three rods emitting Cy3 signal, while sections 25 D and F show a higher number of cells emitting Cy3 signal. Figures 25 A and 25 B show a high fluorescence background that was observed whenever polycarbonate filters were used. Polycarbonate black filters did not eliminate the background fluorescence. Figure 25 F shows acceptable background levels obtained when glass slides were used.

DISCUSSION

Primers specific to nosZ from Anaeromyxobacter spp.

Development of specific-primers for Anaeromyxobacter nos Z gene sequence is useful for molecular monitoring of $\mathrm{N}_{2} \mathrm{O}$ reduction by bacterial populations. For example, quantitative molecular studies demonstrate that Anaeromyxobacter 16S rRNA gene
sequences are the most abundant group in agricultural soils, rice fields, and contaminated sites (e.g., the uranium and $\mathrm{NO}_{3}{ }^{-}$contaminated Field Research Center site in Oak Ridge, $\mathrm{TN})$. The selection of primer pairs was based on their specificity suggested by BLAST analysis and empirical results. Those that selectively amplify Anaeromyxobacter targets were preferred. The primer pair NosZ903F/1789R (Figure 6) provided enough specificity to amplify all Anaeromyxobacter strains, while not amplifying Desulfitobacterium spp. Since primer NosZ1789R was designed to amplify non-denitrifying nos Z sequences, the specificity must be given by the differences between non-denitrifying sequences and Anaeromyxobacter sequences along the priming site of NosZ903F. These two types of sequences indeed have marked differences (Figure 3). For example, five basepairs differentiate A. dehalogenans strain 2CP-C priming sequence from D. hafniense nosZsequence, the most similar known specie among the non-denitrifying nos Z priming region. The region in A. dehalogenans strain 2CP-C (PFGR), Anaeromyxobacter sp . Fw109-5 (PFGR), A. dehalogenans strain 2CP-3 (this study, see Appendix 1), and Anaeromyxobacter strain R (this study, see Appendix 1) nos Z sequences varied in only one position along the 18 nucleotide-long primer.

Differences in the amplification yields were observed for NosZ256F/718R primer pair (Figure 5) among Anaeromyxobacter strains. It was therefore predicted that some regions of their NosZ domain differ among these strains. Actually, it was observed through the sequencing of the partial nosZ-sequence of Anaeromyxobacter strain R and A. dehalogenans strain 2CP-3, and through their comparison with A. dehalogenans strain 2CP-C (PFGR) and Anaeromyxobacter sp. strain Fw109-5 (PFGR) nosZ-sequences, that
they differ in some bases. With these four nosZ-sequences now available for Anaeromyxobacter spp. it is possible to optimize primer design.

Primers Specific to novel nosZ Genes and environmental analysis

Discrimination of nos Z varieties of the traditional- and the non-denitrifying group was successfully accomplished with primer pairs NosZ334F/1789R and NosZ943F/1789R. Partial nos Z sequences retrieved directly from environmental samples captured new sequences while traditional nos Z sequences were selectively excluded. Therefore, fieldbased studies with emphasis on specific functional microbial groups affecting the $\mathrm{N}_{2} \mathrm{O}$ budget are now possible by employing these primers.

Evidence that strongly supports that these nos Z gene fragments are involved in $\mathrm{N}_{2} \mathrm{O}$ reduction in the environment includes: (i) the presence of the NosZ domain; (ii) the presence of conserved histidine residues, essential for function and structure of $\mathrm{N}_{2} \mathrm{OR}$ (Simon et al., 2004) (Figure 14) in all environmental gene sequences; (iii) fragments of the expected size; (iv) high similarity index to $\operatorname{nos} Z$ sequences from cultured organisms; and (v) detection of microbial cells harboring nos Z mRNA by ISRT-PCR using the newly designed primers.

Horn and coworkers (2006) determined that approximately 90% of any two denitrifiers that share $>97 \%$ 16S rRNA sequence similarity, will also share higher than 90% NosZ protein similarity (65% for nucleic acid similarity). In addition, they predicted that
similarity levels of a translated $\operatorname{nos} Z$ gene below 68% (or 48% nucleic acid similarity) could be associated to uncultured organisms. Since cloned sequences FBR1, FBR13, FBR31, FBR35, CORCO6, MWWT29, MWWT31, MWWT72, MWWT73, MWWT82, MWWT83, MWWT86, MWWT90 and MWWT94 had a protein similarity of 92-97\% relative to D. aromatica, and FBR15, FBR25 and FBR28 were $91-96 \%$ similar to Anaeromyxobacter sp., it is also possible that they share higher than 97% 16S rRNA sequence similarity, and therefore, they could belong to the same genus or to genera closely related to Dechloromonas and Anaeromyxobacter, respectively. This is the case for some traditional-nos Z members of the order Rhizobiales and Rhodobacterales of the α-Proteobacteria, which share $89-96 \%$ and $84-92 \%$, respectively, within the members of their taxonomic order. On the contrary, similarity levels for clones CORCO7, CORCO32, and CORCO33 were 68,66 , and 67%, respectively, with their most similar cultured organism. Perhaps these gene sequences are carried by unique and yet to be cultured organisms in the environment.

A protein similarity of 84% to the NosZ of D. aromatica was observed for clone MWWT43, while MWWT24, CORCO8, CORCO26 and CORCO30 shared between 82$88 \%$ protein similarity to NosZ of Anaeromyxobacter spp. At this point, the identity of the taxonomic groups carrying these novel nos Z genes is unclear, but these similarity percentages suggest that these clones belong to the classes β - (MWWT43) and δ Proteobacteria (MWWT24, CORCO8, CORCO26 and CORCO30). A similar inference can be made for members within the α-Proteobacteria belonging to different orders
(Rhizobiales and Rhodobacterales), which tend to share between $77-84 \%$ of protein similarity (Table 5).

Phylogenetic analysis of nosZ genes

Through the construction of phylogenetic trees using three models (MP, ML, and BI), it was observed that traditional-nos Z genes were very related to each other and belong to clades VIII and IX. Unexpectedly, clade VII, composed of two Euryarcheota (Halorubrum lacusprofundi and Haloarcula marismortui), was the next most closely related clade. Additional archaeal sequences will be necessary to confirm this observed relationship. These three clades (VII, VIII, and IX) form a major distinctive cluster.

Clades V and VI were more related to each other than to any other clade. Clade V includes Flavobacteria and Firmicutes nos Z sequences, while clade VI includes species of the δ-proteobacterium Anaeromyxobacter. According to the MP model, clades I, II, III, and IV were more related to each other. Their phylogenetic relationships varied among the three models used. The collapse in fewer branches, perhaps due to little support values in BI and ML models, indicates that the most informative model was the MP. This collapsing process suggests that there are still key missing nos Z genes that will further clarify the phylogenetic relationships among these clades. Moreover, clade IV showed lack of relatedness to known reference sequences; six clones for the CORCO site were found (only three OTU representatives are shown in the phylogenetic tree), suggesting a newly discovered divergent NosZ variant.

Among the nine distinctive clades, there were groups which shared a low protein similarity to each other, such as clade IV and V, as well as between P. calidifontis and CORCO18. These clades will require additional sequence information for better resolution, as subclades within these major groups are predicted.

Sequence similarities among nos Z genes have been previously correlated to taxonomic relatedness (Horn et al., 2006). However, in the case of the non-denitrifying nosZ group, their taxonomic relatedness is unclear, with a few representatives associated to various taxonomic families. The exception to this rule is found with W. succinogenes, Campylobacter fetus, and Tm. denitrificans all of which are members of the ε Proteobacteria (Gupta, 2006); Anaeromyxobacter dehalogenans strain 2CP-C and Anaeromyxobacter sp. strain Fw109-5, which belong to the same genera; Desulfitobacterium and Geobacillus of the phylum Firmicutes; and Robiginitalea, Psychroflexus and Gramella, all members of Flavobacteria class. In the phylogenetic analysis these organisms group together in the same clade as their taxonomic relative(s). Notably, those oligonucleotides specifically designed for Anaeromyxobacter spp. were not suitable for PCR amplification of Desulfitobacterium spp. and W. succinogenes nosZ genes. However, they were suitable for PCR amplification from M. xanthus genomic DNA (Figure 5), a species belonging to the same class as A. dehalogenans (δ Proteobacteria).

There are genes with difficult evolutionary history due to possible lateral gene transfer. For example, Thermotoga maritima contains significant amounts of 'archaeal-like' genes, which have been associated to energy metabolism or transport of macromolecules (Nelson et al., 1999). Similarly, the nos Z gene could have conferred a strong selective advantage in terms of energy and therefore, lateral gene transfer has been suggested as a mechanism involved in the widespread distribution of this gene in nature. For example, different strains of Bradyrhizobium japonicum could be $\mathrm{N}_{2} \mathrm{O}$ producers and N_{2} producers (Sameshima-Saito, Chiba, and Minamisawa, 2006). Furthermore, Dechloromonas aromatica and Dechloromonas denitrificans are members of the non-denitrifying nos Z and traditional nos Z groups, respectively (Horn et al., 2006). This apparent conflict could be explained by means of lateral nos Z gene transfer from W. succinogenes to M. magnetotacticum or D. aromatica (Zumft and Kroneck, 2006). However, the core nos genes, nosZDFYL, share a common phylogeny and in general, these taxonomic groups employ a similar biochemical pattern with great phylogenetic correspondence according to 16 S rRNA sequence analysis (Zumft and Kroneck, 2006).

Environmental clone sequences of nos Z genes may reflect the presence of diverse taxonomic groups of organisms according to their phylogenetic analysis. Several environmental clones were related to A. dehalogenans and others to D. aromatica. CORCO47 was more related to the Flavobacteria; however this relatedness was not supported by BI model. CORCO18 was more related to the Crenarcheota P. calidifontis; however, similar to the case of CORCO47, this relatedness was not supported by MP model and it will require further analysis. CORCO32, CORCO33 and CORCO7 were
overly unrelated to any reference strain in the current database, but more related to the non-denitrifying nos Z sequences. Furthermore, the substantial branch lengths support the idea that some of the sequences may come from distinctive genera whose nos Z genes are yet to be described. This divergence was observed in cases such as CORCO7, CORCO8, CORCO18, CORCO26, CORCO30, CORCO32, CORCO33, CORCO47, MWWT24, MWWT43 and MWWT102.

CORCO, MWWT, and FBR clone sequences belong to a major clade together with all known non-denitrifying nos Z members. However, the branch location of these environmental sequences does not follow a geographical pattern, except for clones CORCO7, CORCO32, and CORCO33, which do not have a close relative among sequences retrieved from the bioreactor samples (FBR and MWWT). BLAST tool showed that the NosZ1789R primer has a high degree of identity with some unidentified bacteria from maize planted fertilized soil (Dambreville et al., 2006), suggesting that additional non-denitrifying nosZ bacteria may be identified in other environmental samples. Agricultural areas may be promising areas to find novel nos Z sequences, since petrochemical complex CORCO has a history of sugar cane cultivation and prove to harbor many different nos Z genotypes. Also, 16 S rRNA gene sequences related to Anaeromyxobacter have been found in several agricultural sample soils (F. Löffler personal communication), and in Europe 75% of the $\mathrm{N}_{2} \mathrm{O}$ is derived from agricultural fields (Freibauer and Kaltschmitt, 2003). In the presence of substrates like $\mathrm{NO}_{3}{ }^{-}, \mathrm{NO}_{2}{ }^{-}$, $\mathrm{NH}_{4}{ }^{+}$, abundant carbon sources in agricultural fields, physiological changes might be triggered, thus impacting the sources and sinks of $\mathrm{N}_{2} \mathrm{O}$ in the environment. Better
understanding of communities that reduce $\mathrm{N}_{2} \mathrm{O}$ could be very useful for agricultural applications for which fertilizers can be avoided or their application rate reduced (Avrahami et al., 2002).

Zumft and Kroneck (2006) suggest that evolution of $\mathrm{N}_{2} \mathrm{O}$ respiration took place before the separation of the domains Bacteria and Archaea. For this reason, an Eukaryote outgroup was chosen for this phylogenetic analysis. Crenimugil crenilabis is a bone fish whose mitochondria harbor a nosZ domain. Animal mitochondrial DNA is less variable in size and organization than mtDNA from unicellular organisms. It has been proposed that mitochondria originated from symbiosis of an organism having a physiology comparable to that of modern Paracoccus denitrificans (Pa. denitrificans) (Kurland and Andersson, 2000); thus, it might resemble an ancient nos Z from the time before the separation of the domains Bacteria and Archaea.

The diversification of $\operatorname{nos} Z$ genes into at least 9 clades could have had its origin on early Earth when the oxygen levels began to increase and a strong selective pressure could have driven the evolution of NosZ into different structural variants. Teraguchi and Hollocher (1989) identified several differences between the $\mathrm{N}_{2} \mathrm{OR}$ of W. succinogenes and Pa.denitrificans, including the molecular weight, copper atoms per subunit, and an iron atom and cytochrome c covalently associated with the enzyme. An explanation for nos Z sequence diversification could have its bases on the oxygen recruitments of the organisms carrying over $\mathrm{N}_{2} \mathrm{O}$ reduction. It is known that organisms harboring non-
denitrifying nos Z sequences are obligate anaerobes or microaerophilic bacteria; perhaps this feature was once a driving evolutionary force selecting for different classes of $\mathrm{N}_{2} \mathrm{OR}$.

Diversity indexes and Richness estimators of nosZ-gene libraries

DOTUR (Distance-based OTU and Richness) defines an OTU using every possible distance between sequences. For 16 S rRNA gene, a distance value of 0.03 is commonly used to differentiate at the species level; 0.05 at the genus level; 0.10 at the family/class level; and 0.20 at the phylum level (Schloss and Handelsman, 2005). For other genes of phylogenetic relatedness, such as β-subunit RNA polymerase gene (rpoB), a 0.20 distance value is used to differentiate between species (Schloss and Handelsman, 2005). This apparent discrepancy demonstrates a wide range of criteria to link genetic distance and phylogenetic relationships. According to Horn and coworkers (2006), approximately 0.10 may be used to differentiate $\operatorname{nos} Z$ genes at the species level. This group suggested that any two denitrifiers that shared higher than 97% 16S rRNA sequence similarity will share more than 90% NosZ protein similarity as well (which corresponds to a 0.1 distance value). Table 6 shows diversity indexes and richness estimators using a 0.03 0.04 distance value in order to compare the three $\operatorname{nos} Z$ gene libraries (the next most similar distance values among the gene libraries were $0.09,0.1$, and 0.13 for CORCO, MWWT, and FBR, respectively). Nevertheless, a higher distance value (0.27-0.29) was used for rarefaction curves comparison. At this distance value, it can be seen that CORCO nosZ gene library has the higher number of OTU's.

In clone libraries obtained from FBR and CORCO samples, the number of different OTUs was less than twice the square root of the total Chaol richness. This value is indicative of a low correlation between richness and sequencing efforts. However, Schloss and Handelsman (2005) demonstrated that only after 690 16S rRNA DNA sequences, the Chaol richness estimator at the 3% difference level began to stabilize in a Sargasso Sea collection. On the contrary, the number of clones sequenced from the MWWT library was satisfactory. Both, diversity indexes and richness estimators gave insights of the relative complexity of the communities. Perhaps, microbial communities at the CORCO site were represented by many populations with different nos Z genes. On the contrary, in the bioreactors some species appear to be enriched by the continuous growth conditions, especially a hydrocarbon-degrading community in the fluidized bed reactor (FBR) and a high organic matter-degrading community in the anaerobic station of Mayagüez wastewater treatment plant (MWWT). Competitive exclusion after natural enrichment could explain lower nos Z diversity gene indexes as compared to the CORCO soil community.

To measure how well the sample represents the whole environment, the Good Coverage Index was calculated (www.aslo.org/lomethods/free/2004/0114a.html). The low values of coverage (33% for FBR, 54% for CORCO and 72% for MWWT) show that the diversity of nosZ variants is higher than that recovered in this study. These values suggest that a clone library of at least 40 clones will be necessary for FBR unit, 50 for CORCO, and more than 80 clones for MWWT to scrutinize the nos Z gene diversity of these three environments.

In previous works, Rodríguez-Martínez and coworkers (2006) detected nosZ genes in a Functional Gene Microarrays (FGA) analysis. This is not surprising, since the uptake of oxygen, $\mathrm{NO}_{3}{ }^{-}$, and sulfate in this fluidized bed reactor of Vega Baja were indicative of both aerobic and anaerobic respiration. In general, they found that 19% of cultures partially sequenced were closely related to the Actinobacteria division, 37\% belonged to Bacilli division, and 44% to $\alpha-, \beta$-, and γ - proteobacteria subdivions; no ε-proteobacteria were detected. In the present study did not find any $\operatorname{nos} Z$ gene related to the $n o s Z$ of ε Proteobacteria Wolinella, Thiomicrospira, or Campylobacter. Given that the primers worked well for W. succinogenes genomic DNA, the number of ε-Proteobacteria $n o s Z$ like genes may be low or absent in these environments.

Terminal Restriction Fragment Length Polymorphism of nosZ Amplicons

T-RFLP and the phylogenetic analysis revealed that nos Z can not be used for setting taxonomic relationships. A band in the T-RFLP fingerprint pattern can not be understood as an OTU, but it certainly represents a group of $\operatorname{nos} Z$ genes that fragments in a similar way, based on its DNA sequence. Among the expected peaks for reference organisms carrying an non-denitrifying nos Z gene (Table 8), only those for M. magneticum and D. aromatica could be represented by the electropherograms obtained (Figure 26, 27, and 28). However, the nosZ-amplicon of these organisms will generate a RsaI-restriction product of 21 bp that can not be analyzed, since the molecular weight standard has a lowest band of 50bp, and also these small fragments will be confused with fluorescent
unbounded NosZ1789R primers (27bp). This is in line with the results of the phylogenetic analysis, in which D. aromatica and Magnetospirillum spp. were the most related organisms to the clonal sequences.

T-RF peaks expected for each MWWT clone analyzed in silico (Table 7) were visualized in each electropherograms, except for the expected peaks of MWWT20 with HinPI (167bp), MWWT93 with HinPI (521bp), and MWWT94 with RsaI (416bp). Although only 26 MWWT clones could be analyzed by an in silico restriction, we can compare the information provided by the MWWT clonal library and the T-RFLP analysis. Some redundancies between these two analyses were observed. In Table 7 we can find some fragment lengths that are repeated among several clones. For HinPI, the fragment 134137 bp can be found in 12 clones; this fragment could be represented by the 136bp T-RF peak, which has the highest value of Optical Denisity (OD) in the AES and ANS electropherograms. For NlaIII, the fragments $86-87 \mathrm{bp}$ and $116-117 \mathrm{bp}$ can each be found in 7 clones, while the fragment of 397 bp can be found in 5 clones; these three fragments are represented by T-RF peaks with high OD values. For RsaI, the fragment 516-517bp is presented in 5 clones; this fragment could be represented by the 515bp T-RF peak, which has the highest value of OD in the AES and ANS electropherograms.

Although the reference organisms that carry non-denitrifying nos Z genes are microaerophilic and obligate anaerobic organisms, it is possible that these gene-variants could be carried by facultative organisms, since many of the variants were found in the aerobic station (AES) of the treatment plant, which has a constant injection of oxygen. In
this plant, the wastewater treatment includes a seed consortium that is recycled continuously; therefore, it is possible that facultative organisms are being selected in this consortium, and could function either in anoxic conditions or under an oxygen atmosphere.

By applying this technique, we proved that many variants of the non-denitrifying nos Z gene exist that are not yet represented by cultured organisms. These variants could represent a high functional diversity for reducing $\mathrm{N}_{2} \mathrm{O}$ in the environment.

IN SITU PCR

Cell Permeabilization

An insufficient permeabilization can result in false negatives, since PCR and FISH reactants cannot entry the cell. On the contrary, excessive permeabilization can result in either false positives, when leaking of amplicons can entry inside negatively permeabilized cells, and false negatives, when leaking of amplicons leave positive cells. Our results showed that electroporation, a faster and more economical procedure, could be employed for IS-PCR. Nonetheless, a limitation with electroporation is the low cell density requirement (10^{7} cells $/ \mathrm{ml}$), from which $10 \mu \mathrm{l}$ are used to spot on in situ PCR slides. Since natural cell losses are expected during washes of IS-PCR, a cell concentration technique, such as centrifugation, could be necessary. This additional step
can potentially compromise the integrity of already weakened cells in the IS-PCR protocol.

ISRT-PCR

Despite controlled fixation and permeabilization, direct IS-PCR or ISRT-PCR with labeled nucleotides will yield non-specific amplification products and therefore, a high frequency of false positive results (Komminoth and Long 1993 and 1995; Chen et al., 1999). Weak primer annealing during PCR amplification can also result in a number of non-specific amplicons with detectable signal. Therefore, the detection of in situ PCR products could be more effectively assessed by performing a FISH step using a fluorescently labeled DNA oligonucleotide probe targeting an internal region of the amplicon.

Although it is probable that not all cells in exponentially growing cultures are actually active, false negatives could result for various reasons as previously observed by Long and co-workers (1993). Possible explanations for the false negative results include: (i) cell to cell variations in the amplification efficiency due to differences in membrane permeability; (ii) associated proteins causing non-accessibility of mRNA; (iii) cell fixation or permeabilization biases in older cultures; and (iv) loss of amplification products during washing steps in the detection procedures.

Results show a RT-PCR amplification from P. stutzeri cells grown either in nitrate broth or BLK (nitrogen-free medium) with histidine, as well as a weak amplification from E. coli cells (Figure 22, lane 6). This could be due to non-specific binding of primers Nos661F/Nos1773R (Scala and Kerkhof, 1998). In contrast, ISRT-PCR amplification showed a Cy3 signal from P. stutzeri cells grown in either nitrate broth or BLK with histidine, but no signal from E. coli cells, demonstrating a more specific detection using the internal probe Nos1527. In both cases (RT or ISRT), the amplification from P. stutzeri cells grown in BLK with histidine was very weak. Härtig and Zumft (1999) report that the induction of nos Z gene expression in P. stutzeri was in response to low oxygen tension, and the presence of $\mathrm{NO}_{3}{ }^{-}$and $\mathrm{NO}_{2}{ }^{-}$. This weak amplification could be due to the basal expression of the gene, since the pathway for histidine utilization in Pseudomomas sp. does not require the presence of $\mathrm{NO}_{3}{ }^{-}$or $\mathrm{NO}_{2}{ }^{-}$(Lessie and Neidhardt, 1967).

IS-PCR was used to prove that probe NosZ943 was specific enough to detect the nosZ gene from A. dehalogenans strain 2CP-C, but not the traditional nosZ gene from P.stutzeri. An in silico analysis showed that Probe943 will find 5 mismatches along its 17 bp if it were to be hybridized against the Pseudomonas nos Z sequence. Similarly, 4 mismatches could be found between the 19bp of probe Nos1527 (Scala and Kerkhof 1998) and the 'potential' probing site of A. dehalogenans sequence. During the hybridization between Probe943 and the PCR-amplified Pseudomonas partial nosZ sequence, and Nos1527 and the PCR-amplified A. dehalogenans partial nos Z sequence,
the probes may find a partial complementary target, but they will be unbound and washed away during the washing step.

The low percentage of cells ($\sim 4 \%$) that were observed expressing nos Z genes in the ISRT-PCR from natural samples could befor several reasons. Firstly, there was a high background signal; it is possible that the PCR amplicons leak from positive cells and they get trapped in a dense matrix of debris, resulting in fluorescent clumps that hide positive cells. Secondly, there may be nonspecific binding of fluorescent probes to organic matter (Thomas et al., 1997). Finally, permeabilization conditions for some microbial cells in the sample may have been supotimal. For futher optimization of this technique, multilaballed probes could be used to facilitate the distinguishing of positive cells, also the simultaneous detection of 16 S rRNA genes and nos Z genes with two different fluorescent dyes could be used for a more unambiguous detection. Additional steps for disruption of debris clumps will favor the visualization of positive cells, since signal-emitting free cells can be easily observed. Although further studies are necessary to optimize and validate this approach at this scale, this preliminary assay documented the potential application of ISRT-PCR to study gene expression in natural systems.

LITERATURE CITED

Abascal, F. No date. Introducción a la Filogenia Molecular.
http://www.cnb.uam.es/~fabascal/Filogenia_molecular/Filogenia-resumen.pdf
Abascal, F., R. Zardoya, D. Posada. 2005. ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21: 2104-2105.

Avrahami S., R. Conrad, and G. Braker. 2002. Effect of Soil Ammonium Concentration on $\mathrm{N}_{2} \mathrm{O}$ Release and on the Community Structure of Ammonia Oxidizers and Denitrifiers. Appl. Environ. Microbiol. 68: 5685-5692.

Baar, C., M. Eppinger, G. Raddatz, J. Simon, C. Lanz, O. Klimmek, R. Nandakumar, R. Gross, A. Rosinus, H. Keller, P. Jagtap, B. Linke, F. Meyer, H. Lederer, and S.C. Schuster. 2003. Complete genome sequence and analysis of Wolinella succinogenes. Proc. Natl. Acad. Sci. U.S.A. 100: 11690-11695.

Barnes, J., and N. J. P. Owens. 1998. Denitrification and Nitrous Oxide Concentrations in the Humber Estuary, UK, and Adjacent Coastal Zones. Mar. Pollut. Bull.37: 247-260.

Bazylinski, D.A., A. J. Dean, D. Schüler, E. J. P. Phillips, D.R. Lovley. 2000. N2dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species. Environ. Microbiol. 2: 266-273.

Bouwman, A.F., K.W. Van der Hoek, and J.G.J. Olivier. 1995. Uncertainties in the global source distribution of nitrous oxide, J. Geophys. Res., 100: 2785-2800.

Burnham, K.P., and W.S. Overton. 1979. Robust estimation of population size when capture probabilities vary among animals. Ecology 60: 927-936.

Campanella, J.J., Bitincka L., and J. Smalley. 2003. MatGAT: An application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics 4: 29.

Chan, Y.-K. and R. Wheatcroft. 1993. Detection of a Nitrous Oxide Reductase Structural Gene in Rhizobium meliloti Strains and Its Location on the nod Megaplasmid of JJ1c1O and SU47t. J. Bacteriol. 175: 19-26.

Chan, Y.-K., and W.A. McCormick. 2004. Experimental evidence for plasmid-borne nornir genes in Sinorhizobium meliloti JJ1c10. Can. J. Microbiol. 50: 657-667.

Chao, A. 1984. Non-parametric estimation of the number of classes in a population. Scand. J. Stat. 11: 265-270.

Chao, A., and S.M. Lee. 1992. Estimating the number of classes via sample coverage. J. Am. Stat. Assoc. 87: 210-217.

Chao, A., M.C. Ma, and M.C.K. Yang. 1993. Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika 80: 193-201.

Chen, F., W. A. Dustman, and R. E. Hodson. 1999. Microscopic detection of the toluene dioxygenase gene and its expression inside bacterial cells in seawater using prokaryotic in situ PCR. Hydrobiologia. 401: 131-138.

Chen, F., J. M. Gonzalez, W. A. Dustman, M. A. Moran, and R. E. Hodson. 1997. In Situ Reverse Transcription, an Approach To Characterize Genetic Diversity and Activities of Prokaryotes. Appl. Environ. Microbiol. 63: 4907-4913.

Coates, J. D., R. Chakraborty, J. G. Lack, S. M. O'Connor, K. A. Cole, K. S. Bender, and L. A. Achenbach. 2001. Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature 411: 1039-1043.

Cordero-Rodríguez, C. 2003. Isolation, Characterization and Detection by In Situ Gene Amplification of Marine Denitrifying Bacteria. Thesis submitted for a M.S. degree at the University of Puerto Rico, Mayagüez.

Coyle, C. L. W.G. Zumft, P. M. H. Kroneck, H. Korner, and W. Jakob. 1985. Nitrous oxide reductase from denitrifying Pseudomonas perfectomarina Purification and properties of a novel multicopper enzyme. Eur. J. Biochem 153: 459-467.

Daims, H. N. B. Ramsing, K.-H. Schleifer, and M. Wagner. 2001. CultivationIndependent, Semiautomatic Determination of Absolute Bacterial Cell Numbers in Environmental Samples by Fluorescence In Situ Hybridization. Appl. Environ. Microbiol. 67: 5810-5818.

Dambreville, C., S. Hallet, C. Nguyen, T. Morvan, J.-C. Germon, and L. Philippot. 2006. Structure and activity of the denitrifying community in a maize-cropped field fertilized with composted pig manure or ammonium nitrate. FEMS Microbiol. Ecol. 56: 119-131.

Dong, L. F., D. B. Nedwell, G. J. C. Underwood, D. C. O. Thornton, I. Rusmana. 2002. Nitrous Oxide Formation in the Colne Estuary, England: the Central Role of Nitrite. Appl. Environ. Microbiol. 68: 1240-1249.

Felsenstein, J. 1989. PHYLIP - Phylogeny Inference Package Version 3.2). Cladistics 5: 164-166.

Firestone, M. K. and Tiedje J. M. 1979. Temporal Change in Nitrous Oxide and Dinitrogen from Denitrification Following Onset of Anaerobiosis. Appl. Environ. Microbiol. 38: 673-679.

Freibauer, A. and M. Kaltschmitt. 2003. Nitrous oxide emissions from agricultural mineral soils in Europe - controls and models. Biogeochemistry 63: 93-115.

Gallagher, E., L. McGuinness, C. Phelps, L. Y. Young, and L. J. Kerkhof. 2005. ${ }^{13}$ CCarrier DNA Shortens the Incubation Time Needed To Detect Benzoate-Utilizing Denitrifying Bacteria by Stable-Isotope Probing. Appl. Environ. Microbiol. 71: 51925196.

García-Ruiz, R., S. N. Pattinson, and B. A. Whitton. 1998. Kinetic Parameters of Denitrification in a River Continuum. Appl. Environ. Microbiol. 64: 2533-2538.

Gupta, R. S. 2006. Molecular signatures unique proteins and conserved Indels) that are specific for the epsilon proteobacteria Campylobacterales). BMC Genomics 7: 167.

Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41: 95-98.

Härtig, E., and W. G. Zumft. 1999. Kinetics of nirS Expression (Cytochrome cd ${ }_{1}$ Nitrite Reductase) in Pseudomonas stutzeri during the Transition from Aerobic Respiration to Denitrification: Evidence for a Denitrification-Specific Nitrate- and NitriteResponsive Regulatory System. J. Bacteriol. 181: 161-166.

Hixson, D. C., J. M. Yep, J. R. Glenney, Jr., T. Hayes, and E. F. Walborg, Jr. 1981. Evaluation of Periodate/Lysine/Paraformaldehyde Fixation as a Method for Crosslinking Plasma Membrane Glycoproteins. J. Histochem. Cytochem. 29: 561-566.

Hodson, R. E., W. A. Dustman, R. P. Garg, and M. A. Moran. 1995. In situ PCR for visualization of microscale distribution of specific genes and gene products in prokaryotic communities. Appl. Environ. Microbiol. 61: 4074-4082.

Holben, W. E., J. K. Jansson, B. K. Chelm, and J. M. Tiedjel. 1988. DNA Probe Method for the Detection of Specific Microorganisms in the Soil Bacterial Community. Appl. Environ. Microbiol. 54: 703-711.

Horn, M. A., H. L. Drake, and A. Schramm. 2006. Nitrous Oxide Reductase Genes nosZ) of Denitrifying Microbial Populations in Soil and the Earthworm Gut Are Phylogenetically Similar. Appl. Environ. Microbiol. 72: 1019-1026.

Hughes, J. B., J. J. Hellmann, T. H. Ricketts, and B. J. M. Bohannan. 2001. Counting the Uncountable: Statistical Approaches to Estimating Microbial Diversity. Appl. Environ. Microbiol. 67: 4399-4406.

Kalendar, R. 2004. FastPCR, PCR primer design, DNA and protein tools, repeats and own database searches program. http://www.biocenter.helsinki.fi/bi/bare1_html/fastpcr.htm.

Kawaguchi, K., Y.i Shinoda, H. Yurimoto, Y. Sakai, and N. Kato. 2006. Purification and characterization of benzoate-CoA ligase from Magnetospirillum sp. strain TS-6 capable of aerobic and anaerobic degradation of aromatic compounds. FEMS microbiol. lett. 257: 208-213.

Kelso, B., R. V. Smith, R. J. Laughlin, and S. D. Lennox. 1997. Dissimilatory Nitrate Reduction in Anaerobic Sediments Leading to River Nitrite Accumulation. Appl. Environ. Microbiol. 63: 4679-4685.

Kemp, P. F., and J. Y. Aller. 2004. Estimating prokaryotic diversity: When are 16S rDNA libraries large enough?. Limnol. Oceanogr. Methods. 2: 114-125.

Kenzaka, T., S. Tamaki, N. Yamaguchi, K. Tani, and M. Nasu. 2005. Recognition of Individual Genes in Diverse Microorganisms by Cycling Primed In Situ Amplification. Appl. Environ. Microbiol. 71: 7236-7244.

Komminoth, P., and A. A. Long. 1993. In situ polymerase chain reaction: an overview of methods, applications and limitations of a new molecular technique. Virchows Arch. B Cell Pathol. 64: 67-73.

Komminoth, P. and Long, A. A. 1995. In situ polymerase chain reaction-methodology, applications and non-specific pathways. Boehringer Mannheim, ed. PCR application manual. Mannheim, Germany. p. 97-106.

Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief. Bioinformatics 5: 150-163.

Kurland, C. G. and S. G. E. Anderson. 2000. Origin and Evolution of the Mitochondrial Proteome. Microbiol. Mol. Biol. Rev. 64: 786-820.

Lee, T., T. Tokunaga, A. Suyama, K. Furukawa. 2001. Efficient dechlorination of tetrachloroethylene in soil slurry by combined use of an anaerobic Desulfitobacterium sp. strain Y-51 and zero-valent iron. J. Biosci. Bioeng. 92: 453-458.

Lessie, T. G., and F. C. Neidhardt. 1967. Formation and Operation of the Histidinedegrading Pathway in Pseudomonas aeruginosa. J. Bacteriol. 93: 1800-1810.

Liu, X. 2005. Do Neighbor-joining and Maximum Likelihood Methods Produce Similar Bootstrap Consensus Trees?. An internship report submitted for a M.S. degree at the Arizona State University.

Logsdon, J. M., and D. M. Faguy. 1999. Evolutionary genomics: Thermotoga heats up lateral gene transfer. Curr. Biol. 9: 747-751.

Long, A. A., P. Komminoth, and H. Wolfe. 1993. Comparison of indirect and direct in situ polymerase chain reaction in cell preparations and tissue sections. Histochemistry 99: 151-162.

Ludeña-Hinojosa, Y. 2007. Cianobacterias en la Bahía de Mayagüez: Abundancia, Distribución y su Relación con las Propiedades Bio-Ópticas. Thesis submitted for a M.S. degree at the University of Puerto Rico, Mayagüez.

Mackiewicz, M. and J. Wiegel. 1998. Comparison of Energy and Growth Yields for Desulfitobacterium dehalogenans during Utilization of Chlorophenol and Various Traditional Electron Acceptors. Appl. Environ. Microbiol. 64: 352-355.

Magurran, A. E. 1988. Ecological diversity and its measurement. Princeton University Press, Princeton, N.J.

Magalhães, C., N. Bano, W. J. Wiebe, A. A. Bordalo, J. T. Hollibaugh. 2007. Dynamics of Nitrous Oxide Reductase Genes (nos Z) in Intertidal Rocky Biofilms and Sediments of the Douro River Estuary (Portugal), and their Relation to N-biogeochemistry. Microb. Ecol. 55: 259-269.

Matsubara, T., K. Frunzke, W. G. Zumft. 1982. Modulation by copper of the products of nitrite respiration in Pseudomonas perfectomarinus. J Bacteriol. 149: 816-823.

Morgan, U. M., L. Pallant, B. W. Dwyer, D. A. Forbes, G. Rich, and R. C. A. Thompson. 1998. Comparison of PCR and Microscopy for Detection of Cryptosporidium parvum in Human Fecal Specimens: Clinical Trial. J. Clin. Microbiol. 36: 995-998.

Müller C., M. Martin, R.J. Stevens, R.J. Laughlin, C._Kammann, J. C. G. Ottow, and H. J. Jäger. 2002. Processes leading to $\mathrm{N}_{2} \mathrm{O}$ emissions in grassland soil during freezing and thawing. Soil Biol. Biochem. 34: 1325-1331.

Muñoz-Hincapié, M., J. M. Morell, J. E. Corredor. Increase of nitrous oxide flux to the atmosphere upon nitrogen addition to red mangroves sediments. Mar. Pollut. Bull. 44: 992-996.

Nelson, D. L. and M. M. Cox. Lehninger Principles of Biochemistry. 3rd ed., p. 138-140, 183-189, Worth Publishers, 2000.

Nelson, K. E. , R. A. Clayton, S. R. Gill, M. L. Gwinn, R. J. Dodson, D. H. Haft, E. K. Hickey, J. D. Peterson, W. C. Nelson, K. A. Ketchum, L. McDonald, T. R. Utterback, J. A. Malek, K. D. Linher, M. M. Garrett, A. M. Stewart, M. D. Cotton, M. S. Pratt, C. A. Phillips, D. Richardson, J. Heidelberg, G. G. Sutton, R. D. Fleischmann, J. A. Eisen, O. White, S. L. Salzberg, H. O. Smith, J. C.Venter, and C. M. Fraser. 1999. Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399: 323-329.

Nocker, A., M. Burr, A. K. Camper. 2007. Genotypic Microbial Community Profiling: A Critical Technical Review. Microb. Ecol. 54: 276-289.

Nuovo, G.J. 1996. The foundation of successful RT In Situ PCR. Front. Biosci. 1: c4-c15.
Petrie, L., N. N. North, S. L. Dollhopf, D. L. Balkwill, and J. E. Kostka. 2003. Enumeration and Characterization of Iron(III)-Reducing Microbial Communities from Acidic Subsurface Sediments Contaminated with Uranium(VI). Appl. Environ. Microbiol. 69: 7467-7479.

Rasmussen, T., B. C. Berks, J. N. Butt, and A. J. Thomson. 2002. Multiple forms of the catalytic centre, CuZ, in the enzyme nitrous oxide reductase from Paracoccus pantotrophus. Biochem. J. 364: 807-815.

Rodríguez-Martínez, E., E. X. Pérez, C. W. Schadt, J. Zhou, and A. Massol-Deyá. 2006. Microbial Diversity and Bioremediation of a Hydrocarbon-Contaminated Aquifer in Vega Baja, Puerto Rico. Int J Environ Res Public Health. 3: 292-300.

Rösch, C., A. Mergel, and H. Bothe. 2002. Biodiversity of Denitrifying and DinitrogenFixing Bacteria in an Acid-Forest Soil. Appl. Environ. Microbiol. 68: 3818-3829.

Sambrook, J., E.F. Fritsch, and T. Maniatis. Molecular Cloning: A Laboratory Manual 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1989.

Sameshima-Saito, R., K. Chiba, and K. Minamisawa. 2006. Correlation of Denitrifying Capability with the Existence of nap, nir, nor and nos Genes in Diverse Strains of Soybean Bradyrhizobia. Microbes Environ. 21: 174-184.

Sanford, R. A., J. R. Cole, F. E. Löffler, and J. M. Tiedje. 1996. Characterization of Desulfitobacterium chlororespirans sp. nov., Which Grows by Coupling the Oxidation of Lactate to the Reductive Dechlorination of 3-Chloro-4Hydroxybenzoate. Appl. Environ. Microbiol. 62: 3800-3808.

Sanford, R. A., J. R. Cole, and J. M. Tiedje. 2002. Characterization and Description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an Aryl-Halorespiring Facultative Anaerobic Myxobacterium. Appl. Environ. Microbiol. 68: 893-900.

Scala, D. J., and L. J. Kerkhof. 2000. Horizontal Heterogeneity of Denitrifying Bacterial Communities in Marine Sediments by Terminal Restriction Fragment Length Polymorphism Analysis. Appl. Environ. Microbiol. 66: 1980-1986.

Scala, D. J., and L. J. Kerkhof. 1998. Nitrous Oxide Reductase nosZ Gene-specific PCR primers for detection of denitrifiers and three nos Z genes from marine sediments. FEMS Microbiol. Lett. 162: 61-68.

Schloss, P. D., and J. Handelsman. 2005. Introducing DOTUR, a Computer Program for Defining Operational Taxonomic Units and Estimating Species Richness. Appl. Environ. Microbiol. 71: 1501-1506.

Shinoda, Y., J. Akagi, Y. Uchihashi, A. Hiraishi, H. Yukawa, H. Yurimoto, Y. Sakai, N. Kato. 2005. Anaerobic degradation of aromatic compounds by Magnetospirillum strains: isolation and degradation genes. Biosci. Biotechnol. Biochem. 69: 1483-1491.

Simon, J. 2002. Enzymology and bioenergetics of respiratory nitrite ammonification. FEMS Microbiol. Rev. 26: 285-309.

Simon, J., O. Einsle, P. M. H. Kroneck, and W. G. Zumft. 2004. The unprecedent nos gene cluster of Wolinella succinogenes encodes a novel respiratory electron transfer pathway to cytochrome c nitrous oxide reductase. FEBS Lett. 569: 7-12.

Smith, E. P., and G. van Belle. 1984. Nonparametric estimation of species richness. Biometrics 40: 119-129.

Smith, M. S. 1982. Dissimilatory Reduction of NO_{2}^{-}to NH_{4}^{+}and $\mathrm{N}_{2} \mathrm{O}$ by a Soil Citrobacter sp. Appl. Environ. Microbiol. 43: 854-860.

Smith, M.S., and K. Zimmerman. 1981. Nitrous oxide Production by Nondenitrifying Soil Nitrate Reducers. Soil Sci. Soc. Am. J. 45: 865-871.

Tani, K., Kurokawa K., and M. Nasu. 1998. Development of a Direct In Situ PCR Method for Detection of Specific Bacteria in Natural Environments. Appl. Environ. Microbiol. 64: 1536-1540.

Teraguchi, S., and T. C. Hollocher. 1989. Purification and Some Characteristics of a Cytochrome c-containing-Nitrous Oxide Reductase from Wolinella succinogenes. J. Biol. Chem. 264: 1972-1979.

Thomas, J. C., M. Desrosiers, Y. St-Pierre, P. Lirette, J.-G. Bisaillon, R. Beaudet, R. Villemur. 1997. Quantitative flow cytometric detection of specific microorganisms in soil samples using rRNA targeted fluorescent probes and ethidium bromide. Cytometry 27: 224-232.

Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 46734680.

Treude, N., D. Rosencrantz, W. Liesack, S. Schnell. 2003. Strain FAc12, a dissimilatory iron-reducing member of the Anaeromyxobacter subgroup of Myxococcales. FEMS Microbiol. Ecol. 44: 261-269.

Trimmer, M., J. C. Nicholls, and B. Deflandre. 2003. Anaerobic Ammonium Oxidation Measured in Sediments along the Thames Estuary, United Kingdom. Appl. Environ. Microbiol. 69: 6447-6454.

Trimmer, M., J. C. Nicholls, N. Morley, C. A. Davies, and J. Aldridge. 2005. Biphasic Behavior of Anammox Regulated by Nitrite and Nitrate in an Estuarine Sediment. Appl. Environ. Microbiol. 71: 1923-1930.

Trogler, W. C. 1999. Physical properties and mechanisms of formation of nitrous oxide. Coord. Chem. Rev. 187: 303-327.

Wolf, I., and R. Russow. 2000. Different pathways of formation of $\mathrm{N}_{2} \mathrm{O}, \mathrm{N}_{2}$ and NO in black earth soil. Soil Biol. Biochem. 32: 229-239.

Wolin, E. A., M. J. Wolin, R. S. Wolfe. 1963. Formation of methane by bacterial extracts. J. Biol. Chem. 238: 2882-2886.

Yoshinari, T. 1980. $\mathrm{N}_{2} \mathrm{O}$ Reduction by Vibrio succinogenes. Appl. Environ. Microbiol. 39: 81-84.

Zumft, W. G. 1997. Cell Biology and Molecular Basis of Denitrification. Microbiol. Mol. Biol. Rev. 61: 533-616.

Zumft, W. G., and P. M. Kroneck. 2006. Respiratory transformation of nitrous oxide (n(2)o) to dinitrogen by bacteria and archaea. Adv. Microb. Physiol. 52: 107-227.

Zumft, W. G., and T. Matsubara. 1982. A novel kind of multi-copper protein as terminal oxidoreductase of nitrous oxide respiration in Pseudomonas perfectomarinus. FEBS Lett. 148: 107-112.

FIGURES

Figure 1. Denitrification, DNRA and nitrification: three known pathways involved in nitrous oxide production (modified from Kelso et al., 1997).

Figure 2. Graphic depiction of primer binding sites along the 1863 bp nosZ gene sequence of A. dehalogenans strain 2CP-C.

Figure 3. Partial multiple nos Z nucleotide sequence alignments showing priming sites for forward (upper) and reverse (lower) primers.

	NosZ187F	NosZ334F	NosZ256F	NosZ903F	NosZ943F	NosZ1135F
Anaeromyxobacter_dehalogenans	FSSEG	TEDV1	TPTESPYS	WVPGLTM	PHEG	EPLHIT0
Anaeromyxobacter_Fw109-5	SSEEHS	BDV	FgryP	KVPGLYY	HEV	BPLHTQEG:
Campylobacter_fetus	ESSBEQS	T	FTPEP	VARHAL	H8YD	LHHT
Desulfitobacterium hafniense	ASEPHS	HDVH	YETPES	DVPGSUY	PHETD	PLHTOPD
Magnetospirillum magneticum	ESSEEQS	EDTH	VFTPEP	VKEGILV	HEA	PLHTOYD
Magnetospirillum_gryphiswalden	FSSEEQS	T	UPTPE	KHIALL	H64	Qy
Thiomicrospira_denitrificans	ISSAPOA	3 DT	PE	VKEGMLY	15t	PLHTQYD
Holinella_succinogenes	ESSEEQS	T	HPTPE	VKAGALE		.
Pseudomonas stutzeri	ENSEEHQ	HBDCHIH	Henvos.	KDSEFTR	C13	BPLHTTED

	NosZ718R	NosZ1207R	NosZ1789R	NosZ1807R
Anaeromyxobacter_dehalogenans		KLG------TWF	PYYCTHEC	MECSALHOE
Anaeromyxobacter_Fw109-5	VSDE-MMEL	KLG------TW2	PYMCTHEC	MECSALHOM
Campylobacter_fetus	ESME-NGET	DYK------NLE	PYYCTERC	EFCSALHLE
Desulfitobacterimnhafniense		SLD------TF12	Prycturc	MECSALHOW
Magnetospirillum magneticum	PSDE-NSET	DYC------EGK	PYYCTEPC	ETCSALHLE
Magnetospirillumgryphiswalden	SEI	HYK------TL	PYMCTEPC	EECSALHLE
Thiomicrospira_denitrificans	VSDE-HGET	DFC------EGK	PYYCTERC	EICCSALHLE
Holinella_succinogenes	ESFP-NAET	DYK------MLK	YYCTERC	EFCSALHLEM
Pseudomonas stutzeri	DYTERETAS	MMADAVRAYKGE	HYYCSHEC	MTCHALHMIE

Figure 4. Partial multiple nos Z amino acid sequences alignments showing priming sites for forward (upper) and reverse (lower) primers.

Figure 5. Optimization of PCR conditions for amplification with primer pair NosZ943F/1789R. Results from A. dehalogenans 2CP-C genomic DNA amplifications using PCR annealing temperatures of $40,41.2,43.3,46.3,49.8,52.8,54.9$, and $56^{\circ} \mathrm{C}$ (Lanes 1-8). Five microlitres of each amplification reaction were loaded onto an agarose gel (1\%). MW, 1 Kb DNA ladder (Promega). NosZ943F/1789R amplicons with the expected size of 873 bp were obtained at $52.8,54.9$, and $56^{\circ} \mathrm{C}$ (Lanes $6-8$). Unspecific amplifcation occurred at lower temperatures (Lanes 1-5).

Figure 6. Optimization of PCR conditions for primer pair NosZ943F/1789R. Results from A. dehalogenans 2CP-C DNA amplifications using PCR annealing temperatures of 56, 57.3, 58.4, 59.7, 60.8, 61.6 and $62{ }^{\circ} \mathrm{C}$ (Lanes 1-7). Five microlitres of each amplification reaction were loaded onto the agarose gel (1\%). MW, 1 Kb DNA ladder (Promega). Primer pair NosZ943F/1789R generated an amplicon of 873bp.

Figure 7. Analysis of PCR amplifications with primer pair NosZ256F/718R. Five microlitres of each amplification reaction were loaded onto the agarose gel (1\%). MW, 1 Kb plus DNA ladder (Invitrogen). Primer pair NosZ256F/718R generated an amplicon of 483 bp . A PCR annealing temperature of $68^{\circ} \mathrm{C}$ and a magnesium concentration of 2 mM were used. Lanes 1-4, Anaeromyxobacter dehalogenans strains Lane 1, strain 2CP-C DNA amplification. Lane 2, strain 2CP-1 DNA amplification. Lane 3, strain 2CP-3 DNA amplification. Lane 4, strain R DNA amplification. Lane

5, Desulfitobacterium sp. PCE-1 DNA amplification. Lane 6, D. hafniense DNA amplification. Lane 7, Desulfitobacterium chlororespirans Co23 DNA amplification. Lane 8, W.succinogenes DNA amplification. Lane 9, Dehalococcoides ethenogenes BAV1 DNA amplification. Lane 10, Myxococcus xanthus DNA amplification.

Figure 8. PCR amplifications with primer pair NosZ903F/1789R targeting the Anaeromyxobacter spp. nos Z gene and species of the non-denitrifying group. Five microlitres of each amplification reaction were loaded onto the agarose gel (1\%). MW, 1 Kb plus DNA ladder (Invitrogen). Primer pair NosZ903F/1789R generated an amplicon of 913 bp . PCR annealing temperatures of $63^{\circ} \mathrm{C}$ and magnesium concentration of 2.5 mM were used. Lane 1, A. dehalogenans 2CP-C DNA amplification. Lane 2, A. dehalogenans

2CP-1 DNA amplification. Lane 3, A. dehalogenans 2CP-3 DNA amplification. Lane 4, Anaeromyxobacter sp. strain R DNA amplification. Lane 5, D. hafniense DNA amplification. Lane 6, Desulfitobacterium chlororespirans Co23 DNA amplification. Lane 7, W. succinogenes DNA amplification. Lane 8, Dehalococcoides sp. BAV1 DNA amplification.

Figure 9. Partial multiple non-denitrifying (first 8 sequences) and traditional- nosZ (last
10 sequences) nucleotide sequences alignments showing priming sites for degenerate primers.

Figure 10. Analysis of PCR amplification of primer pair NosZ943F/1789R with DNA of species of the non-denitrifying group. The PCR annealing temperature was $59^{\circ} \mathrm{C}$ and the reactions contained 2.5 mM magnesium. Five microlitres of each amplification reaction were loaded onto the agarose gel (1\%). MW, Lambda DNA plus EcoRI/HindIII molecular weight marker. Primer pair NosZ943F/1789R generated an amplicon of 873 bp . Lane 1, A. dehalogenans 2CP-C DNA amplification. Lane 2, A. dehalogenans 2CP-3 DNA amplification. Lane 3, Anaeromyxobacter sp. strain R DNA amplification. Lane 4, Desulfitobacterium chlororespirans Co23 DNA amplification. Lane 5, D. hafniense DNA amplification. Lane 6, Desulfitobacterium sp. strain PCE-1 DNA amplification.

Figure 11. Optimization of PCR conditions for nos Z amplification with primer pair NosZ334F/1789R. Five microlitres of each amplification reaction were loaded onto the agarose gel (1\%). MW1, Lambda DNA plus EcoRI/HindIII molecular weight marker. MW2, 1 Kb plus DNA ladder (Invitrogen). Primer pair NosZ334F/1789R generated an amplicon of 1482bp. A PCR annealing temperature of $57^{\circ} \mathrm{C}$ and a magnesium concentration of 2.5 mM were used. Lane 1, A. dehalogenans 2CP-C DNA amplification. Lane 2, A. dehalogenans 2CP-3 DNA amplification. Lane 3, Anaeromyxobacter sp. strain R DNA amplification. Lane 4, D. chlororespirans Co23 DNA amplification. Lane 5, D. hafniense DNA amplification. Lane 6, Desulfitobacterium sp. PCE-1 DNA second PCR amplification using $1 \mu \mathrm{l}$ of product from the first round of PCR amplification. Lane 7, A. dehalogenans 2CP-C DNA amplification. Lane 8, A. dehalogenans 2CP-3 DNA amplification. Lane 9, Anaeromyxobacter sp. strain R DNA
amplification. Lane 10, D. chlororespirans Co23 DNA amplification. Lane 11, D. hafniense DNA amplification. Lane 12, W. succinogenes DNA amplification.

Figure 12. Analysis of PCR amplification with total community DNA of environmental samples. Five microlitres of each amplification reaction were loaded onto the agarose gel (1\%). MW1, Lambda DNA plus HindIII/EcoRI molecular weight marker. MW2, 1 Kb DNA ladder (Promega). Lanes 1-8, PCR amplification with primer pair NosZ334F/1789R Mayagüez Wastewater Treatment Plant (MWWT). Primer pair NosZ334F/1789R generated an amplicon of 1482 bp . A PCR with 25 cycles and magnesium concentration of 2.5 mM were used. AES, aerobic station; ANS; anaerobic station. Lane 1, AES-January. Lane 2, ANSJanuary. Lane 3, AES-February. Lane 4, ANS-February. Lane 5, AES-April. Lane 6, ANSApril. Lane 7, AES-May. Lane 8, ANS-May. Lanes 9-20, PCR amplification with primer pair NosZ943F/1789R using DNA of different tropical environments. Primer pair NosZ943F/1789R generated an amplicon of 873 bp . A PCR annealing temperature of $57{ }^{\circ} \mathrm{C}$ and 2.5 mM magnesium were used. Even lanes are replicates of the previous odd lane but with addition of Anaeromyxobacter dehalogenans strain 2CP-C genomic DNA. Lane 9-10, Pueblo Forest (bottom core 5-10 cm). Lane 11-12, Pueblo Forest (top core $0-5 \mathrm{~cm}$). Lane 13-

14, CORCO soil. Lane 15-16, CORCO soil with addition of hydrocarbons. Lane 17-18, Mayagüez Bay; Lane 19-20, Fluidized Bed Reactor (May).

Figure 13. Analysis of colony PCR amplification of primer pair NosZ943F/1789R with environmental clones from CORCO DNA sample. PCR was performed with T7 promoter and SP6 promoter primer pair. Five $\mu \mathrm{l}$ of each amplification reaction were loaded onto the agarose gel (1\%). MW, Lambda DNA plus EcoRI/HindIII molecular weight marker. Primer pair T7 promoter/SP6 promoter generated an amplicon of approx. 1034bp. Lane 1 to 11 correspond to CORCO18, CORCO22, CORCO24, CORCO25, CORCO26, CORCO28, CORCO29, CORCO30, CORCO31, CORCO32, and CORCO33 clones.

Pseudomonas Anaeromyxobacter 1
Anaeromyrobacter 2
Desulfitobacterium
Geobacillus
Psychroflexus
Gramella forsetii
Robiginitalea
Dechloromonas
Magnetospirillum 1
Magnetospirillum 2
Magnetospirillum 3
Campylobacter
Thiomicrospira
Wolinella
FBr1
FBR13
FBR15
FBR25
FBR28
FBR31
FBR34
FBR35
C0RC06
CORC07
corcos
corcols
corcoz6
corcoso
CORCO32
corcos3
corco47
ми\%тT24
ми\%才T29
MuNT31
мпшт 34
mıwT43
MuwT72
мппт 73
muwTs3
миптт9
мпптT94
ตกwт102

Figure 14. Alignment of NosZ amino acid sequences generated with Clustal W (Thompson et al. 1994)
and edited using BioEdit Sequence Alignment Editor (Hall 1999). The shaded graphic view show only similar residues within non-denitrifying nos Z sequences and Pseudomonas denitrificans. All nos Z sequences used in the phylogenetic analysis were included in the analysis but not all are included in the alignment shown. Pseudomonas, Ps. denitrificans; Anaeromyxobacter 1, A. dehalogenans 2CP-C;

Anaeromyxobacter 2, Anaeromyxobacter sp. Fw109-5; Desulfitobacterium, D. hafniense; Geobacillus, G. thermodenitrificans; Psychroflexus, P. torquis; Robiginitalea, R. biformata; Magnetospirillum 1, M. gryphiswaldense; Magnetospirillum 2, M. magneticum; Magnetospirillum 3, M. magnetotacticum; Campylobacter, C. fetus; Thiomicrospira, Tm. denitrificans; Wolinella, W. succinogenes. Symbols \ddagger and * show the calcium and chloride ion ligands and the conserve histidine residues, respectively.

Figure15. Rooted neighbor-joining (NJ) tree of partial nosZ gene sequences (1000 bootstraps). The trees were generated based on the alignment of 180 nucleotides of truncated nos Z sequences retrieved from Pipeline Functional Gene and environmental
clone sequences from FBR, CORCO, and MWWT libraries. Crenimugil crenilabis served as an outgroup. Branch lines have distinct colors, in blue are traditional-nos Z sequences, in green are non-denitrifying nos Z sequences, in red are archaeal nos Z sequences, and in yellow are $\operatorname{nos} Z$ sequences from Flavobacteria. The bar represents 0.05 nucleotide substitutions per nucleotide.

Figure 16. Strict consensus (Lenght $=1898$, Consistency Index $=0.48$, Retention Index $=0.75$) of 8 most parsimonious trees (Lenght $=1895$, Consistency Index $=0.48$, Retention Index $=0.75$) from nos Z gene dataset. The sequence of Crenimugil crenilabis served as the root. Numbers above the branches represent the percentage of 1,000 bootstrap replications. Branch lengths correspond with numbers of amino acid replacements. The bar represents 20 replacements. Tree is based on the non-gapped multiple sequence alignment of 90 amino acids.

Figure 17. Rooted maximum likelihood tree from $\operatorname{nos} Z$ gene dataset. The sequence of Crenimugil crenilabis served as the root. Numbers above the branches represent the percentage of 1000 bootstrap replications, values less than 50% are not shown, and those nodes are collapsed. Scale bar represents 0.1 substitutions per amino acid position. Tree is based on the non-gapped multiple sequence alignment of 90 amino acids.

Figure 18. Bayesian phylogenetic tree from nos Z gene dataset after 500,000 generations of MCMCMC chains. Values to the right of the branches correspond to the posterior probabilities. The horizontal bar at the base represents 0.1 substitutions/site. Trees are based on the non-gapped multiple sequence alignment of 90 amino acids.

Figure 19. Rarefaction curves of $\operatorname{nos} Z$ clone sequences for the clone libraries FBR, CORCO and MWWT at 27-29\% distance level.

Figure 20. Pseudomonas stutzeri cells permeabilized by electroporation and stained with DAPI (blue) were observed by confocal microscopy. (Upper panels) Permeabilized cells showing cell integrity. (Lower panels) Permeabilized cells with RNase and DNase treatment. (A and D) Cells electroporated during 50 ms . (B and E) Cells electroporated during 100 ms . (C and F) Cells electroporated during 200 ms .

Figure 21. Confocal images of ISRT-PCR FISH of nirS in a co-culture of P. stutzeri with a non-denitrifying rod, Cy3 signal (orange) was superposed on the corresponding DAPI signal (blue). (A) Detection of nirS gene with a Cy3 labeled probe in a co-culture of P. stutzeri with a non-denitrifying rod. B, P. stutzeri cells treated with $1 \mathrm{mg} / \mathrm{ml}$ RNase A for 1 h after permeabilization.

Figure 22. Analysis of RT-PCR amplification. PCR annealing temperatures of $56^{\circ} \mathrm{C}$. Ten microlitres of each amplification reaction were loaded into the wells of the agarose gel (1\%). MW1, 1 Kb DNA ladder (Promega); MW2, Lambda DNA plus HindIII/EcoRI molecular weight marker. Primer pair NosZ1366F/1773R generated an amplicon of 407bp; primer pair Nos661F/1773R generated an amplicon of 1113bp; primer pair 27F/1392R generated an amplicon of 1394bp. Lane 1, 16S rRNA RT-PCR with primers 27F/1392R with RNA from P. stutzeri grown Nitrate broth; Lane 2, 16S rRNA RT-PCR with primers $27 \mathrm{~F} / 1392 \mathrm{R}$ with RNA from P. stutzeri grown in BLK medium with histidine; Lane 3, nosZ RT-PCR with primers NosZ1366F/1773R from P. stutzeri grown in Nitrate broth; Lane 4, nosZ RT-PCR with primers NosZ1366F/1773R from P. stutzeri grown in BLK medium with histidine; Lane 5, nosZ RT-PCR with primers Nos661F/1773R (Scala and Kerkhof, 1998) from P. stutzeri grown in Nitrate broth; Lane

6, nosZ RT-PCR with primers Nos661F/1773R (Scala and Kerkhof, 1998) from E. coli grown in Nitrate broth.

Figure 23. ISRT-PCR/FISH of nosZ gene of P.stutzeri. A-B; C-D; E-F, Confocal images corresponding to the same microscopic section. A, C, E, DAPI signal emitting-cells (blue). B, D, F, Cy3 signal emitting-cells (orange). A-B, ISRT-PCR/FISH of nosZ gene of P. stutzeri grown in BLK medium with histidine as only nitrogen source. C-D, ISRT-

PCR/FISH of nosZ gene of P. stutzeri grown in Nitrate broth. E-F, ISRT-PCR/FISH of nos Z gene of P. stutzeri grown in Nitrate broth but with a RNase treatment after the enzymatic permeabilization and before PCR reaction.

Figure 24. IS-PCR/FISH of E.coli DH5 α clones harboring nos Z genes in pGEM. A-B; C-D; E-F; G-H, Confocal images corresponding to the same microscopic section. A, C, E, G, DAPI signal emitting-cells (blue). B, D, F, H, Cy3 signal emitting-cells (orange). A-B, IS-PCR/FISH of E.coli DH5 α clone harboring in pGEM the partial nosZ gene of A. dehalogenans 2CP-C obtained by PCR with primers NosZ256F/1807R, Probe943 was used for FISH and primers NosZ334F/1789R were used for PCR. C-D, IS-PCR/FISH of E.coli DH5 α clone harboring in pGEM the partial nosZ gene of A.dehalogenans 2CP-C obtained by PCR with primers NosZ256F/1807, Probe1527 was used for FISH and primers NosZ334F/1789R were used for PCR. E-F, IS-PCR/FISH of E.coli DH5 α, Probe943 was used for FISH and primers NosZ334F/1789R were used for PCR. GH, IS-PCR/FISH of E.coli DH5 α clone harboring in pGEM the partial nos Z gene of P. stutzeri obtained by PCR with primers Nos661/1773R, Probe943 was used for FISH and primers Nos661F/1773R were used for PCR.

Figure 25. ISRT-PCR/FISH of nos Z genes in environmental samples from an anaerobic bioreactor. A-B, 1000X epifluorescence images corresponding to the same microscopic section. A and B, DAPI (blue) and Cy3 (orange) signal emitting-cells, respectively, of a ISRT-PCR/FISH of nos Z gene in a MWTP sample immobilized in a 0.2μ m-pore-size filter. C-D, Confocal 1000X images corresponding to the same microscopic section. C section showing only DAPI signal emitting-cells (blue), while D section showing Cy3 signal (orange) superposed on the corresponding DAPI signal (blue). E-F, Confocal 600X images corresponding to the same microscopic section. E section shows DAPI signal emitting-cells (blue), while F section shows Cy3 signal (orange). G-H, 1000X epifluorescence images corresponding to the same microscopic section. G and H, DAPI (blue) and Cy3 (orange) signal, respectively, of a ISRT-PCR/FISH with a RNase treatment after the enzymatic permeabilization and before PCR reaction. C-D, E-F and GH, ISRT-PCR/FISH of nosZ gene in a MWWT sample immobilized in glass slide.

Figure 26. nosZ-based $\operatorname{HinPI}(1,4,7)$, NlaIII (2, 5, 8), and RsaI (3, 6, 9) T-RFLP fingerprint patterns of Mayaguez Wastewater Treatment Plant (MWWT) anaerobic reactor sample (1-6) and MWWT34 clone (7-9). MW, molecular sizing standard. KBPlus-LICOR (50-700bp).

Figure 27. Comparison of electropherograms profiles generated with HinPI for Aerobic station (A), Anaerobic station (B) of Mayagüez Wastewater Treatment Plant samples and clone MWWT34 (C).

Figure 28. Comparison of electropherograms profiles generated with NlaIII for Aerobic station (A), Anaerobic station (B) of Mayagüez Wastewater Treatment Plant samples and clone MWWT34 (C).

Figure 29. Comparison of electropherograms profiles generated with RsaI for Aerobic station (A), Anaerobic station (B) of Mayagüez Wastewater Treatment Plant samples and clone MWWT34 (C).
Table 1. Environmental samples used in this study
$\left.\begin{array}{cccc}\hline \text { Sample Designation } & \text { Sample Description } & \text { Sampling Site } & \text { Reference } \\ \text { CORCO } & 0.5 \text { gr of soil } & \text { Guayanilla } & \begin{array}{c}\text { A. Massol- } \\ \text { Deyá, TMEL } \\ \text { Rodríguez- } \\ \text { Martínez et } \\ \text { al., 2006 }\end{array} \\ \text { FBR } & \begin{array}{c}5 \text { gr of activated carbon of a fluidized-bed } \\ \text { bioreactor treating diesel-contaminated } \\ \text { groundwater at Hydro Gas Station } \\ \text { activated sludge from aerobic and }\end{array} & \text { Vega Baja } & \text { Mayagüez }\end{array} \begin{array}{c}\text { A. Massol- } \\ \text { DWWT } \\ \text { anaerobic units of the Mayaguez Regional }\end{array}\right)$

Table 2. Primer sequences and designation

Primer Designation	Oligonucleotide sequence
NosZ187F	ttctcgtccggcgggcactcc
NosZ256F	atcccggtgttctccccgtac
NosZ334F	tggggbgayryvcaycaycc
NosZ903F	cgtccccggcctcgtgta
NosZ943F	ccbcayggbgysgaygt
NosZ1135F	gggccgctccacacgcagtt
NosZ1366F	ggcaagctntcncc
NosZ718R	ggaagaaccagccetcggacag
NosZ1207R	tcccacgtcccgagettccactt
NosZ1789R	gagcagaantrsgtgcagtagtangg
NosZ1807R	tggtggagcgcggagcagaa
(F, forward; R, reverse)	
a for traditional-nosZ sequences	

Table 3. Characteristics and PCR conditions for primer pairs.
 かずすぶがにのひ菲がすごすズふぞの ぞにのそ菲にのすそする
 당 ：：\＆：：：\＆t

The matrix was generated using MatGat Matrix Global Alignment Tool (Campanella et al. 2003) using Blosum62. A2CP-C,
Anaeromyxobacter dehalogenans 2CP-C; AFW109-5, Anaeromyxobacter sp. FW109-5; CFETUS, Campylobacter fetus; TDENIT,
Thiomicrospira denitrificans; WSUCCI, Wolinella succinogenes; DAROMA, Dechloromonas aromatica; DHAFNI, Desulfitobacterium
hafniense Y51; GTHERMO, Geobacillus thermodenitrificans; MGRYPHIS, Magnetospirillum gryphiswaldense MSR-1; MMAGNETI,
Magnetospirillum magneticum AMB-1; MMAGNETO, Magnetospirillum magnetotacticum MS-1; GFORSETII, Gramella forsetii;
RBIFORMA, Robiginitalea biformata; PTORQUIS, Psychroflexus torquis; PCALIDIFO, Pyrobaculum calidifontis.
Table 5. Similarity matrix of amino acid sequences from traditional-nos \boldsymbol{Z} group.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
1. Paracoccus pantotrophus																															
2. Sinorhizobium meliloti	80																														
3. Brucella ovis	81	94																													
4. Rhodopseudomonas palustris	79	90	90																												
5. Bradyrhizobium japonicum	80	89	89	96																											
6. Methylobacterium sp.	80	90	91	95	95																										
7. Stappia aggregataI	75	83	81	83	83	83																									
8. Silicibacter pomeroyi	74	82	81	84	84	85	92																								
9. Roseovarius sp.	73	82	80	79	81	80	83	84																							
10. Dinoroseobacter shibae	70	78	77	80	79	82	84	85	87																						
11. Rhodobacter sphaeroides	74	82	81	83	82	83	87	86	86	86																					
12. Achromobacter cycloclastes	72	79	79	79	78	79	83	83	83	83	89																				
13. Alkalilimnicola ehrlichei	85	79	79	82	81	81	77	76	74	71	76	74																			
14. Reinekea sp.	83	82	82	82	82	83	80	80	77	72	80	76	86																		
15. Psychromonas ingrahamii	83	83	83	82	83	82	78	78	76	74	79	75	83	89																	
16. Colwellia psychrerythraea	86	83	83	81	83	82	78	77	76	72	78	76	84	88	91																
17. Photobacterium profundum	83	84	85	83	84	83	80	80	78	75	81	77	84	91	94	95															
18. Shewanella loihica	83	83	84	83	83	83	79	79	76	75	79	76	85	88	92	93	96														
19. Marinobacter sp.	86	81	82	81	82	82	78	78	75	73	76	74	86	87	86	85	85	84													
20. Marinobacter hydrocarbonoclasticus	86	82	81	82	82	81	77	78	74	72	76	74	88	88	88	86	87	84	93												
21. Hahella chejuensis	86	82	82	81	81	81	76	77	75	72	77	74	85	87	87	86	87	87	91	92											
22. Pseudomonas aeruginosa	92	80	80	80	81	81	78	79	74	72	77	76	87	86	84	86	85	85	88	88	89										
23. Pseudomonas denitrificans	97	81	81	80	80	81	76	75	74	71	75	73	85	84	85	87	85	85	87	87	87	93									
24. Pseudomonas fluorescens	92	80	81	81	82	82	77	77	74	71	77	75	87	87	87	88	87	86	88	88	89	91	93								
25. Pseudomonas stutzeri	89	81	80	80	81	81	78	78	75	72	79	75	88	87	84	87	85	84	86	87	87	92	91	91							
26. Burkholderia pseudomallei	73	71	71	73	72	73	69	70	68	65	69	68	73	74	72	73	73	73	74	72	73	74	75	73	76						
27. Cupriavidus necator	69	67	66	68	67	67	66	67	66	62	69	68	72	71	68	71	70	70	73	72	72	71	70	73	74	82					
28. Azoarcus sp.	69	70	69	70	70	69	66	68	67	62	66	66	71	72	71	70	71	71	73	71	71	72	70	71	72	89	83				
29. Thiobacillus denitrificans	69	67	67	70	70	68	67	68	66	61	67	66	71	71	70	69	70	70	71	69	67	71	70	69	72	90	83	93			
30. Acidovorax sp.	69	67	66	67	68	68	67	67	66	63	67	67	71	69	68	71	69	70	73	70	70	70	70	72	74	83	95	82	81		
31. Haloarcula marismortui	64	61	61	62	62	65	61	63	59	60	61	60	67	61	61	62	62	62	64	64	62	64	65	65	66	67	66	66	65	66	
32. Halorubrum lacusprofundi	62	64	63	63	63	64	64	64	59	61	59	59	64	61	61	60	61	63	64	64	62	62	63	63	62	64	64	64	64	64	77

Table 6. Diversity indexes and Richness estimators.

Library	Total No. of sequences	No. of unique OTUs	Index of diversity		Estimated no. of genotypes			
			Shannon	Simpson	ACE	Boot	Chao	Jack
FBR	12	9	2.13833	0.045455	18	11.4484	12.75	15
MWWT	60	30	3.14965	0.039548	57.4095	37.1583	49.4286	48.927
CORCO	24	14	2.49906	0.054348	22.6957	17.3461	21	22

estimator (ACE) (Chao and Lee 1992; Chao and Yang 1993), and the bias-corrected Chao1 (Chao
1984), interpolated jackknife (Burnham and Overton 1979), and bootstrap (Smith and van Belle 1984)
richness estimators with a 95% confidence interval (CI). Distance values were 0.03 for FBR, 0.04 for
MWWT, and 0.04 for CORCO library.
Table 7. Expected nos Z amplicons based on
HinPI, NlaIII, and RsaI T-RF fragment lengths

MWWT 89	253	87	21
MWWT 90	137	87	642
MWWT 93	521	781	405
MWWT 94	146	98	416
MWWT 102	54	411	237

Table 8. Expected nosZ-amplicon based HinPI, NlaIII, and RsaI
T-RF fragments lengths for reference organisms carrying a non-
denitrifying nosZ gene (NosZ943F/NosZ1789R primer pair).
Organism
A. dehalogenans 2CP-C
Anaeromyxobacter sp. FW109-5
D. hafniense
G.thermodenitrificans
M.gryphiswaldense
M.magneticum
M.magnetotacticum
D.aromatica
N.R., no restriction product.

APPENDIX

APPENDIX 1

Partial sequences of the nosZ-gene of environmental clones and A. dehalogenans

2CP-3 and Anaeromyxobacter sp. strain R.

Abstract

$>$ Anaeromyxobacter sp . strain R cccggtgttcgcgccgtactcgggcaccggctacggettcgacgacgagtcgaaggccatgctcggcaacctgacctggggt gacgtgcaccacccggcgctctccgagaccggcggcgactacgacgggcgctggctgttcgtgaacgagatgaacgggcgc gtggcgcgcatcgacctgcgcgacttcaagacgcggcagatcatcgggccggtgccgaacatctcgggcaaccacgggtcc accttcatcacgccgaacagcgagtacatcctcatgtcctcgeggttctccatccccatccccaaggggaaggcggtgtcgatc gaccggtacgccagcgagtacaagggcgtcgcggccgggatcaaggtcgacccgaagtccggccagatgtcgctgggctg gcaggtgctcctgccgccgttcgactgggacctcggggacgccggcaagaagctgtcggagggctggttcttcctcacctgct acaactccgagcgcgccaccgggaagctcgaggtcaccgcctcgcagcgegaccgcgactacatcgcggccatcgactggc gcctggccgagaaggcggcggcggaggggaagggcgagctgatcggcggcgtgaaggtgctcgatccgaagaccgtccc cgggctcgtgtacctgctgccetgcgggaagtcgccgcacggcgtggacgtctcgcccgacggcaagtacgtggtcggctcc ggcaagctccagggcgtcaccaccgccttcaacttcgagaaggtcctcaccgccatcaagaacaaggacttcgccggcgagg aggacggcatcccggtcctcaagtacgagtccatcaaggacgcggaggtgccggtggggctcgggccgctgcacacgcagt tcgggccegacggg $>$ A. dehalogenans strain 2CP-3 ctcacctggggtgacgtgcaccacccggcgctctccgagaccggcggcgactacgacgggcgctggctgttcgtgaacgag atgaacgggcgggtggcgcgcatcgacctgcgcgacttcaagacccggcagatcctcgggccggtgccgaacatctccggc aaccacgggtccaccttcatcaccccgaacagcgagtacatcctcatgtcctcgcggttctccatccccatcccgaaggggcgg gcggtgtccatcgaccgctacgccagcgagtacaagggcgtcgcggccggcatcaaggtcgatccgaagaccggcgagatg tccetgggctggcaggtgctgctgccgccettcgactgggacctcggcgacgcgggcaagaagctgtccgagggctggttctt cctcacctgctacaactcggagcgcgccaccggcaagctcgaggtcaccgcctcgcagcgcgaccgcgactacatcgcggc catcgactggcgcctcgcggagaaggccgcggcggaggggaaagggcgagctcatcggcggcgtgaaggtgctcgacccg aagaacgtccccggcctcgtgtacctgatgccetgcgggaagtcgccgcacggcgtggacgtctcgccegacggcaagtacg tggtcggctcgggcaagctccaggcgtcaccaccgccttcaacttcgagaaggtcctcaccgccatcnnnnnnnnnnnnn nn nn nnnnnnnnagctcgggacgtgggaggtgctggacaaggtcccgatgtcctactcgaccggccacctcgccgcggccgagg gcgacacggtgtcgccggacgggaagtggctggtgggcctcaacaagctgtcgcacggccggcacctctcggtcggccegt cgcagcccgagtcctcgcagctcgtggacatctcgggcgacaagatgaagctggtctacgacgcgttcaccgagcccgagcc gcactacgegcagatcatcaaggcggacaagctgaagccgatcgaggtctaccccaaggaggagaacaagcaccegctggc gatctgggacgtgaaggacgccggggtgacgcgcaaggggaccgaggtgctggcgaaggtggtggtggtgcgctccagca tgacgccggcgctcatcgaggtgaacgagggcgacacggtgaaggtggcgctcaccaacatcgagcagaccaccgacgag ctccacggettcggcetgctcgactacaacatcaacatcgtcetcgatcceggegagaccaagaccgtcacgtcaa $>$ fbrl ccgcacggtgtggacgtgtctccggatggcaagatgctggtcgtgtcgggcaagctggacacgcacgtgtcggtgtacagctt cgagaagattcaggcggcgatcaaggccgagaagttcgaatcgaaggacccgtacggcatcccggtgatcgggatgaagga cgcgctgcacacgcaggtgcaactgggcctgggcccgctgcacacgcaatacgactcgaagaactgcgtcgcctacacgtcg

ctgtacgtggacagccaggtcgccaagtggaacttctgcgaaggcaaggtgctggacaagatctcggtgcactacaacatcgg tcacctgatgacgatggaaggcgactcggtcgatccgaagggccgctacctggtggcgctgaacaagctgtcgatcgaccgct tcaacccggtggggccgctgcacccgcagaaccaccagctgatcgacatctcgaacgacaagatgcagctcttgtacgacatg ccgctgccgctgggcgaaccgcactacgtggtggcgatcgaagcgtcgaagctgaagccgggcgtgcgctacaaggtcggc accaacagccggacggacaagccgcacccgggcgcggtgcgtgcgggcgaagagcggatcgagaagaagggcaacaag atcacggtgtatggcacgctgatccgttcgcacatcacgccggagacgatcgaagcggaagtcggggatgaagtgacgatcc acctgaccaacctcgaacgggcacaggacgagacgcacggettcacggtgtcgacgtacaacgtgcatgcgtcggtcgagce gggcaagacggtgacggtgaaggtcaaggccgacaaggaaggcgtgtaaccttactactgcacccat $>$ fbr13
gatgtgtcgccggacggcaagtacatggtcgtctccggcaagctcgacacccatgtctcggtctacagcttcgagaagatccag gcggccatcaaggcggggaaattcgagagcaaggacccctacggcatcccggtgatcggcetgaaggacgccetgcacgtg caggtgccgetcggcctcggaccectgcacacgcagtatgactccaagccetgcgtcgectacacctcgetgtacgtcgactcc caggtcgccaagtggaacttctgcgaaggcaaggtgctcgacaagatcagcgtgcactacaacatcggccacctgatgaccat ggagggcgactccaccaagccggccggcaagtatctcgtcgcgctgaacaagctggcgatcgaccgtttcgtgccggtcggc ccgctgcatccgcagaaccaccagctcatcgacatcagcaacgacaagatgcagctgctctacgacacgccgctgccgetgg gcgagccgcactatgccgtctccatcgccgcgaccaagctgaagccgggcgtgcgctacaaggtcggcaccgacagccgca ccgacaaaccgcatccgggcyccgtgcgcgccggcgaggagaagaccgagaagaagggcaacaaggtcacggtctgggg caccetgatccgctcgcacatcacgccggagaccatcgaggcggaagtgggcgacgagatcaccatccgcetgaccaacctc gagcgcgcccaggacgagacccacggcttcacggtgtcgaccttcaacacccacgcctcggtcgagccgggcaagacggtc acggtcaagttcaaggccgacaaggaaggcgtctatccgtactactgcacgtacttctgctc
$>$ fbrl4
atgtggactcgccagtggcgaagtggaactactgcgaaggcaaggtgctggacaagatcagcgtgcactacaacatcggcca cctgatgaccatggaaggcgattcgaccaagccggccggcaagtacctggtggcgctgaacaagctggcgatcgatcgcttc gtgccggtgggeccgctgcatccgcagaaccaccagctgatcgacatcagcggcgacaagatgcagttgctctacgacatgc ccgtgccgctgggtgagccgcactacgtggtggccatcgatgccaagaagctgaagccggccgtgcgctacaaggtcggca ccgacagccgcaccgacaaggcgcatccgggcgcagtgcgcgccggcgaggagaagatcgtcaagaagggcaacaaggt cgaagtcttcgccaccetgatccgttcgcacatcacgccggagaccatcgaagtcgatgtcggcgacgaggtgacgatcaacc tgaccaacctcgaacgggcgcaggacgagacgcacggettcacggtctcgacctacaacgtgcatgcctcggtcgaaccggg caagacggtccaggtcaagttcaaggccgacaaggaaggcgtctatccttgctactgcacctaattctgctc $>f b r 15$
ccgcatggggtcgatgtctggcccgacggcaagtacatcatcggctccggcaagctccagggcgtcaccaccgccttcaactt cgagaaggtgatgacggcgatcaagaacaaggacttcgccggcgacgaggacggcatccccgtcctcaagtacgagtcgat caaggacgccgaggtccccgtcggcctcgggccgctccacacgcagttcggcccgaacggcggggcctacacgtcgctctt cgtcgactcggcgatcgcgaagtggaagctcgggacctgggaggtcatcgacaagatcccggtctcctactccgtcggccacc tgaccgccgccgagggcgactccgtcagcccggacggcaagtacctcgtcagcctgaacaagctctcccacggtcggcacct ctcggtgggccegtcgcagcccgagtcgtcccagctcatcgacatcggcgaggagaagatgaagctcctctacgacgcettca ccgagccggagccccactacgcccagatgatcaaggcggacaagatcaagccgatcgaggtctacccgaaggaggagaac aagcacccgctcgcggtctgggacgtcaaggacgccgtcccgacgcgcacggggagcgaggtcctcgtcaagatggtcctc gtccggtcgaccatcactccgaccgtcatcgaggtgaaccggggcgacaccgtcaaggtcgcgatgacgaacatcgagcaga cgacggacgagctccacggcttcgggctcctcgactacaacatcaacgtcgtcgtcgacccgggcgagacgaagacggtcac gttcaaggccgacaagccgggegtcttccegtactactgcacgtcacttctgctc
$>f b r 2$
ggatgtctgtccagatggcaagtacgtcatcggctccggcaagctccagggcgtcacgaccgcettcaacttcgagaaggtcct caccgcgatccggaacaaggacttctcgggcgaggaggacgggatccccgtcctgaagtacgagtcgatcaaggacgccga ggtcccegtcggcctcggcccgctccacacgcagttcgggccegacggatacgcctacacctcgctcttcgtcgactcggcgg tcgcgaagtggaagctcgggacctgggaggtcgtcgacaagatcccggtctcgtactccatcggccacctctgcgccgecgaa
ggggacaccgtcagccccgacgggaagtacctcgtcgccctcaacaagctctcgcacggccggcacctctccgtcgggecgt cgcagcccgagtcgtcgcagcttatcgacatcaccgaggagaagatgaagctcctctacgacgccttcaccgagcccgagcc gcactacgccgtcatggtgaaggccgacaagctcaagccgatcgaggtctacccgaaggaggagaacaggaaccccctcgc ggtctgggacgtaaaggatgccggcgtgacgcgcaaggggagcgaggtcctcgccagggtcgtcctcgtccgctccacgatc accccgcaggcgatcgaggtccagcagggggacaccetgaaggtcgcgatcacgaacatcgag $>f b r 25$ gacgtgtgaccggatgggaagtacatcatcggctcgggcaagctgcagggcgtgaccacggccttcaactgggagaaggtcc agaccgccatgcgcaacaaggacttcagcggcgaggaggacggcatccccgtgctgaagtacgagtcgatcaaggacgccg aggtgccggtggggctgggccegctgcacacccagttcggccccgacggctacgcctacacgtcgctgttcgtggacagcgc catcgccaagtggaagctcggcacctgggaggtggtcgacaaggtccccatgtcctactcgatcggccacctcacggcggcc cacggcgacaccgtcaagccccacggcaagtacctggtgggcctcaacaagctctcccacgggcggcacctcaacgtcggc ccctcgcagccegagtcgagccaactggtcgacatcagcgaggagaagatgaagctgctgctcgacttcttcacggagcccg agccgcactacgcccagatcgtcaaggccgacgtgctcaaaccgatcgaggtctacccgaaggaggtgaacaagcacccgct ggcgatctgggacgtcaaggacgccggcgtgaccaggaacggcaacaaggtcacggtcaagatggtggcggtgcgctcga ccctgacccccaccgacttcgagatcaaggaaggcgacgagatcacgatcgccatcacgaacatcgagcagaccaccgacg agctgcacggccttggcatcctcgactacaacatcaacatcgtggtggaccegggcgagaccaagacggtcacgttcaaggcc aggaagaagggtgtctaccccgtactactgcacccacttctgctc
$>f b r 28$
cctcacggggcggatgtgacaccagatggcaagtacgtcatcggctccggcaagctccagggcgtcacgaccgccttcaactt cgagaaggtcctcaccgcgatccggaacaaggacttctcgggcgaggaggacgggatcccegtcctgaagtacgagtcgatc gaggacgccgaggtccccgtcggcctcggcccgctccacacgcagttcgggcccgacggatacgcctacacctcgctcttcg tcgactcggcggtcgcgaagtggaagctcgggacctgggaggtcgtcgacaagatcccggtctcgtactccatcggccacctc tgcgccgccgaaggggacaccgtcagccccgacgggaagtacctcgtcgccetcaacaagctctcgcacggccggcacctc tccgtcgggccgtcgcagccegagtcgtcgcagctcatcgacatcaccgaggagaagatgaagctcctctacgacgecttcac cgagcccgagccgcactacgccgtcatggtgaaggccgacaagctcaagccgatcgaggtctacccgaaggaggagaacg ggaaccccctcgcggtctgggacgtaaaggacgccggcgtgacgcgcaaggggagcgaggtcctcgccagggtcgtcctc gtccgctccacgatcaccccgcaggcgatcgaggtccagcagggggacaccetgaaggtcgcgatcacgaacatcgagcag acgacggacgagctccacggctgggggctcctcgactacaacatcaacatcgtcgtcgaccegggcgagacgaaggtcgtca cgttcaaggtggacaagcceggcgtctaccccetactactgcacccagttctgctc
$>f b r 31$
gacgtgtctccggatggcaagttcatcaccgtttccggcaagctggacacccacgtttccgtctattccttcgagaagatccaggc cgccatcaaggccggcaagttcgaatccaaggatccgtacggcattccggtcatcaacatgaaggatgccetgcacacccagg ttcaactgggtcttggccecctccacacccagtacgactcgaagaagtgcgtcgcctacacctccetgtatgtcgactcgcaggt cgtcaagtgggatcactgcgaaggcaaggttctcgacaagatctcggtgcactacaacatcggtcacctgatgaccatggaagg tgactccatggatccgaagggccgctatctggtcgccetgaacaagctgtcgatcgatcgcttcaacccggttggccegctgcat ccgcagaaccaccagttgatcgacatcaccagcgacaagatgcagctgctgtacgacatgccgttgccgctgggtgagccgca ctacgtcgtggccatcgaagcttccaagctgaagccgggtgtccgctacaaggtcggtaccgattcccgtacggacaagccgc atccgggcgccgtccgtgccggcgaagaagtaacgaccaagaagggcaacaagatcgaagtcaagggtacgttgatccgct cgcacatcacgccggaaaccatcgaggcggaagtgggcgacgaaatcaccatccacctgaccaacctcgagcgtgcccagg acgaaacccacggtttcaccgtgtcgacctacaacgtccatgcgtcggtcgagccgggcaagaccgtcacggtcaagttcaag gctgacaaggaaggegtctatcceatactactgcacceagttctgctc
$>f b r 34$
tccettgcatacceagtacgacagcaagcaatgcgtggcctacacctcgctgtatgtggactcgcaagtggcgaagtggaacta ctgcgaaggcaaggtgctggacaagatcagcgtgcactacaacatcggccacctgatgaccatggaaggcgattcgaccaag ccggccggcaagtacctggtggcgctgaacaagctggcgatcgatcgcttcgtgccggtgggcccgctgcatccgcagaacc accagctgatcgacatcagcggcgacaagatgcagttgctctacgacatgccegtgccgctgggtgagccgcactacgtggtg
gccatcgacgccaagaagctgaagccggccgtgcgctacaaggtcggcaccgacagccgcaccgacaaggcgcatccggg cgcagtgcgegccggcgaggagaagatcgtcaagaagggcaacaaggtcgaagtcttcgccaccctgatccgttcgcacatc acgccggagaccatcgaagtcgatgtcggcgacgaggtgacgatcaacctgaccaacctcgaacgggcgcaggacgagac gcacggcttcacggtctcgacctacaacgtgcatgcctcggtcgaaccgggcaagacggtccaggtcaagttcaaggccgac aaggaaggegtctatccettactactgcacctaattctgctc
$>$ fbr35
ccgcacggtgtcgacgtgagaccggatggcaagttcatcatcgtctccggcaagctcgatacccacacttcggtgtatagcttcg agaagctgcaggccgccatcagcgccggcaagttcgagtccaaggaccegtacggtgtgcccgtcatcggcatgaaggatgc gctggacaagcaggtgcagctcggcctcggccccctgcatacccagtacgattcgaagccgtgtatcgcctatacctccctttat gtggattcccaggtcgccaagtggaactattgcgagggcaaggtggtggacaagatttccgtccattacaacatcggtcacctga tgaccatggaaggcgattccatggatccgaaggggcgttacctggtggcgetgaacaagctggccatcgaccgtttcgtgccg gtcggccecctgcatccgcagaaccatcagctgatcgacatttcaaacgacaagatgcagttgttgtacgacatgccgctgccg ctgggtgagccgcactacgccgtcgccatcgaggcttcgaagctgaagccgggcgtccgctacaaggtgggtaccgattccc ggaccgacaagccgcacccgggtgccgtccgtgccggcgaggagaagattgtcaagaagggtaacaagatcgaggtcttcg ggaccetgatccgttcccacatcactccggaaaccatcgaggctgatgtcggcgacgaggtcacggtgcatctgaccaacctc gagcgtgcccaggacgagacccacggcttcaccgtctccacctacaacgtccatgegtccatcgagccgggcaagaccgtca ccgtcaagttcaaggetgacaaggaaggcgtctatccgtactactgcacctagttct
$>f b r 4$
ccgcacggtgtggatgtcagaccggatggcaagttcctcaccgtcgccggcaagctcgacacgcacgtgtccgtctattccttc gagaagatccaggccgcgatcaaggccggcaagttcgaatccaaggatccctacggcatcccggtgatcggcatgaaggac gcgetgcacacgcaggtatcgctgggcctgggtccettgcatacccagtacgacagcaagcaatgcgtggcctacacctcgct gtatgtggactcgcaagtggcgaagtggaactactgcgaaggcaaggtgctggacaagatcagcgtgcactacaacatcggc cacctgatgaccatggaaggcgattcgaccaagccggccggcaagtacctggtggcgetgaacaagctggcgatcgatcgctt cgtgccggtgggcccgctgcatccgcagaaccaccagctgatcgacatcagcggcgacaagatgcagttgctctacgacatg cccgtgccgetgggtgagccgcactacgtggtggccatcgacgccaagaagctgaagccggccgtgcgctacaaggtcggc accgacagccgcaccgacaaggcgcatccgggcgcagtgcgcgccggcgaggagaagatcgtcaagaagggcaacaag gtcgaagtcttcgccaccetgatccgttcgcacatcacgccggagaccatcgaagtcgatgtcggcgacgaggtgacgatcaa cctgaccaacctcgaacgggcgcaggacgagacgcacggcttcacggtctcgacctacaacgtgcatgcctcggtcgaaccg ggcaagacggtccaggtcaagttcaaggccgacaaggaaggcgtctatccettactactgcacctaattctgctc >fbr6
agatggcaagtacatcgccgtgggcggcaagctggacacgcatgcgtcggtgtatagcttcgagaagatccaggccgcgatc caggcgggcaagttcgaatcgaaggacccctacggcgtgccggtgatcggcatgaaggaagcgctgcacacgcaagtgcaa ctgggcettggccegctgcacacgcagtacgactcgaagccgtgcgtggcctacacgtcgatgtacgtggacagccaggtgg cgaagtgggactactgtcagggcaaggtgctggacaagatcagcgtgcactacaacatcggtcacctgatgacgatggaaggt gactctgccgatccgaagggccgttacctggtggcgccgaacaagctggcgatcgaccgtttcgtgccggtgggcccgctgca cccgcagaaccaccagctgatcgacatcagcaacgacaagatgcaactgctgtacgacatgccgctgccgctgggcgagccg cactacgtggttgccatcgaagcgacgaagctgaagccgggcgtgcgctacaaggtgggcacggacagccgtacggacaag ccgcacccgggtgccgttcgcgccggcgaagagacgacgacgaaaaagggcaacaagatcgaggtgaagggcacgctgat ccgctcgcacatcacg
$>$ fbr9
ctacacctcgctgtatgtcgactcccaggtcgccaagtggaacttctgcgagggcaaggtgctcgacaagatcagcgtgcacta caacatcggccacctgatgaccatggagggcgactccaccaagccggccggcaagtatctcgtcgcgetgaacaagctggcg atcgaccgcttcgtgccggtggggccgctgcatccgcagaaccaccagctcatcgacatcagcaacgacaagatgcagctgct ctacgacatgccgctgccgctgggcgagccgcactatgccgtctccatcgccgccagcaagctcaagccgggcgtgcgctac aaggtcggcaccgacagccgcaccgacaagccgcatccgggcgccgtgcgcgccggcgaggagaagaccgagaagaag ggcaacaaggtcacggtctggggtacgctgatccgctcgcacatcacgcccgagacgatcgaggcggaagtgggcgacgag
gtcaccatccacctgaccaacctcgagcgcgcgcaggacgagacccacggcttcacggtgtcgaccttcaacacgcacgcet cggtcgagcccggcaagacggtgacggtcaagttcaaggccgacaaggaaggegtctatccgtactactgcacctacttctgct c
$>$ corcol 0
ccgcatggggcggatgtcaggccagatggcaagtttgtggtcgtttccgggaaactcgacccgcacgtgacggtctactccgc cgagaagatccgcaaggcgatggccgggaagaagtattcaggatccgatgaatatggggtcccgatcctcgacttcgactcco tcaaggaggcgcaggctgaagtcggtctgggcccgctgcacacccagtttgacgacaaggggcaggcetacacctccetgttc ctggactcggcggtggccegctggacgctgggggggcgacttcaccaagctccacggccagcagccetggaccatggtccac aagacgccggtgcagtacaacatcgggcacctggtggcggccgaaggcgactcggtgagccccgacgggcggtacctggt ctcgatgtccaagtggtcggtggaccgcttcttcccgccgggtccgctgcttccgcagaacttccagctcctggacatctccggg tccggggecgacatgccegtcatctacgatgcgcccatcggcgtgggcgagccgcactacgeggtgatgatcaaggccgaca agctcaagccetggacggtgtatccggaggtggggtggaatccgcacacccagatgctggatccagcctcgccgcgtc $>$ corcoll
ccgcatggggeggatgtcaggccagatggcaagtttgtggtcgtttccgggaaactcgacccgcacgtgacggtctactccgc cgagaagatccgcaaggcgatggccgggaagaagtattcaggatccgatgaatatggggtcccgatcctcgacttcgactccg tcaaggaggcgcaggctgaagtcggtctgggcccgctgcacacccagtttgacgacaaggggcaggcctacacctccetgttc ctggactcggcggtggcccgctggacgctgggggggcgacttcaccaagctccacggccagcagccetggaccatggtccac aagacgccggtgcagtacaacatcgggcacctggtggcggccgaaggcgactcggtgagccccgacgggcggtacctggt ctcgatgtccaagtggtcggtggaccgettcttcccgccgggtccgetgettccgcagaacttccagctcctggacatctccggg tccggggecgacatgccegtcatctacgatgcgcccatcggcgtgggegagccgcactacgeggtgatgatcaaggccgaca agctcaagccetggacggtgtatccggaggtggggtggaatccgcacacccagatgctgg
$>$ corcol4
cgtgactcccgatgggaaatggatagtcggcggcggtaagctggccgccgttgcctgcgtacatagctttgaaaagatgcagg aagccattagtaaaggcgattttgacggagaggttatgggaatacccattctaaagtacgaaacggtcagagtcgccgaggttcc gataggettgggtcctctgcacacccagtttgacgaccagggatatgcttatacttctttattcctggactcagccgttgccaagtgg aagctgggtacttgggaagtagtggataagataccggtttactataacatcggacaccttgccgcagtccatggagacaccgcta aaccccggggeccagtacgtcctggccatgaataaaatcgccaagggcagatacctgcccgttggaccttcccatccggagagc gcacagcttatcgacatatccgggaagaagatggaattgctgctcgatttccetacgcaggtagagcctcactacggtcaaataat cgatgctaccttgataaagcccgtgctcgtatatccacttgaagagaataaccaccettacgccattaagagcgcagaccagget cgtgtggaaaggaacggaaatagagtggacgtttacatgctggcaataagaagccatttcactcctcatctctttgagttt
>corcol6
cgtgactcccgatgggaaatggatagtcggcggcggtaagctggccgccgttgcctgcgtacatagctttgaaaagatgcagg aagccattagtaaaggcgattttgacggagaggttatgggaatacccattctaaagtacgaaacggtcagagtcgccgaggttcc gataggcttgggtcctctgcacacccagtttgacgaccagggatatgcttatacttctttattcctggactcagccgttgccaagtgg aagctgggtacttgggaagtagtggataagataccggtttactataacatcggacaccttgccgcagtccatggagacaccgcta aaccccggggeccagtacgtcctggccatgaataaaatcgccaagggcagatacctgcccgttggaccttcccatccggagagc gcacagcttatcgacatatccgggaagaagatggaattgctgctcgatttccctacgcaggtagagcctcactacggtcaaataat cgatgctaccttgataaagcccgtgctcgtatatccacttgaagagaataaccaccettacgccattaagagcgcagaccagget cgtgtggaaaggaacggaaatagagtggacgtttacatgctggcaataagaaagcatttcactcctcatct
>corco17
agatggcaaatacttcatcggcggcggcaagctgcaatcaatcaccactgcctacaactttgaaaaaatgatgacggccattcag aacagggatttttccggcaacgaagatggcatacctgtgttgaattacgacagcgtcaaggatgccgaagtcaatgtcggtctgg ggccgttgcatacccagtttgatgatcaggggtacgcctacaccagcctgtttgtcgaaagcgcagtcgccaaatggaaactcg gcagtcgggaagtcgccgacaagattcccgtcagttacaacatcggccacctttgcacggccgaaggcgatacggtcaatcceg gacggcaaattcctgatcgcgctcaataaactctcgcacggacggcatctcagcgtcggtccetcgcaaccggaaagctcgca attgatcaacatcggcggcgaaaagatgaagcttctgtatgacgctttcaccgaacccgaaccgcattatgcgcagatgatcagg
gccgacaagctgaaaccgattgaggtttatccaaaagaggagaacaaaaacccgagcgccatttgggatgtcaaggacgcca gggtcgggcgcagcggaaatacggtgatcgccaaagtgctggctgtacgcagcacgattgaac >corcol8
ccgcacggcgccgacgtgagccccgatggccggttcatcatcgtttccggcaagctggacccgcacgtgacgctctactcgtg ggagaagattcagcaggccatccgcgaccggaatttcgcggagaacgaccgctacggcatcccggtgctcgacttcaacagc gtcatcaatggccagctcgaggtcgggctcggccegctccacacgcagttcgacgaccgcggcaacgectacacgagcatctt cctcgacaccaaggtgacgaagcggagcctcgagccgctcgccgtggtggaccagatcgacgtgcactacaacgtcggcca cctcgcggccgecgagggcgacgcccgetcgcccgacggcaagtacctggtcgccatgaacaagtggtcgctcgaccgatt caatgacgtggggecgetgcacccgcagaacttccagctcatcgacatctcgggtgagaagatgcagctgctctacgacatgc cgatcggtctcggcgagccgcactacgcccagatcatcaaggcggacaagctgtcaccggtgcaggtgtacccccagatcgg ctacgatcccgccacgatgagcgcggcgcggaacgccgtgcagctcggcaacgagggcatcacgcgccgtggcaacgaag tgaccgtgcgcatgacggccatccggagccacttcaagcccgagtacgtccgggtgcgccagggcgaccgcgtcacgatcc acatcacgaacgtggagcaggccegcgatgccacgcatgggttcgcgatcgccaagtacaacgtcaacctgagcctcgagce cggcgagcatcagacggtgaccttcgtggccgacaagcccggcgtgttcccctactactgcacctagttctg >corco2
ccgcacggggtcgatgtgacgccagacggcaaatacatcatcggcagcggcaagctgcagtcgatcaccaccgccttcaatat ggagaagatcctcaccgccatcgagaacaaggacttcaccggggatgaagacggcatccccgtcctcgattacgagaaggtg aaggatgccgaagtcgaagtcggactgggaccgctgcacacgcaattcgatgatcagggettcgcctacacgagcctctttgtc gagagcgcggtggcgaagtggaagctcggcagctgggaggtggtcgacaagattccgatcacctacaacatcggccatctcg cgacggccgaaggcgacacggtcaatccggacggcaaatatctggtcgcgctcaacaagctctcgcacgggcgacatctcgg cgtcggcccgtcgcagcccgagagttcgcagctgatcaacatcacgggcgagaagatgaagctgctctacgatgccttcaccg agccggagccgcactacgcgcagatgatcaaggccgacaaactgcagccgatcgaggtctacccgaaggaggagaacaag aacccgcacgcgatctgggacgtcaaggacgcgggagtcgagcgcagcggcgctaatgtgacggtgaagatggtcgccgtc cgcagcacactcgaaccgacttcgatcgaggtcaace
>corco26
cctcacggggtggatgtgtcaccagacggcagttatttcgtcggcagcggcaagctggaagccgtgaccacggtctacagcttc gacaggatgatcgccgctatcagcaacaaggatttcagcaaggacgaagacggcattccagttctgaagtacgagagcgtggt cgaacgcgaagtgcagatcggcettggccccetgcacacgcagtacgacgaccaggggatggcatacacaagcctgttcgtc gacagcgcaatcgctaagtgggacccgaagaccggggaagtactggacaccatccetgtcgcctatatcatcggccacctgtg cgtcccaggcggcgacagcaccaaaccctacggcaagtatgtgatcgcgctcaacaagctgagccacggccggcaccccaa cgtaggtccaagccagccggagagcagccagctcatcgacatcaccggcgagaagatgaagatcatctatgaagcctttaccg agcccgagccgcactacgeccaggccatcccagccgacaagctcaagcccattgaggtttatccgaaggaagagaacacga acccgcacgcgatctgggacattaaagattccggcgtaaccagcagtggtggaacggtagaggtaaagatggtcgcagtacgt tccacactgcaccegacaaacgcggaggtcaaccgaggcgaaaccgtgaccttccacattacaaacattgagcaaactaccga cgagctgcacggattcgcgatctgtgaatacaacatcaacctggtcattgatccgggggaaaccaagagcgtcactttcaaagct gacaagccgggegtctatccatactactgcacccaattctgctc $>$ corco29
ccgctgcacacggagttcgacggccgcggcaacgcgtatacgacggcgttcatancgtcggagatcgtgaagtggaagctgg ggacgtgggaggtgctggaccggatccccgtctactactcggtgggccacctcatgattccgggcggcgacagccggcagcc gtcgaacaggtacatggtggcgttgaacaagatcacgaaggaccgctacctgccgacggggcccgagctcgcgcacgcggc gcagctgatcgacatctcgggcgacaagatgaagctgctgctggacttcccgacgcagggcgagccgcattacgcgcaggcg ctgccggcggagctgatccgcgacaggcaggtgcagatgttctcgctggagagcaaccggcaccggtacgeggcgaagag cgaagccgagacgaaggtggagcgcaacggccgccgcgtggacgtgtggatgatggcgatccgcagccacttctcgccgg acaacatcgaggggatccaggtgggtgacagcgtctacttccacgtcaccaacctcgagcaggactgggatgtgccgcacgg cttcgccgcgttcggcgggcgcaacgccgagctgctgatcatgcceggcgacacacgcacgctgacctgggtgccgetgcg ggtgggcgtgttccettactactgcacgtaattctgctc
>corco30
gatggcaaatacttcatcggcggcggcaagctgcaatcaatcaccactgcctacaactttgaaaaaatgatgacggccattcaga acagggatttttccggcaacgaagatggcatacctgtgttgaattacgacagcgtcaaggatgccgaagtcaatgtcggtctggg gccgttgcatacccagtttgatgatcaggggtacgcctacaccagcctgtttgtcgaaagcgcagtcgccaaatggaaactcgg cagtcgggaagtcgccgacaagattcccgtcagttacaacatcggccacctttgcacggccgaaggcgatacggtcaatccgg acggcaaattcctgatcgcgctcaataaactctcgcacggacggcatctcagcgtcggtccetcgcaaccggaaagctcgcaat tgatcaacatcggcggcgaaaagatgaagcttctgtatgacgctttcaccgaacccgaaccgcattatgcgcagatgatcaggg ccgacaagctgaaaccgattgaggtttatccaaaagaggagaacaaaaacccgagcgccatttgggatgtcaaggacgccag ggtcgggcgcagcggaaatacggtgatcgccaaagtgctggctgtacgcagcacgattgaaccgaccaaaatcgaagtcaat cagggagacaaggtgatcatttacatcaccgacatcgaacagacgaccgatgaactgcacggattcgggttgaacgaatacaa catcaatgtggtggttgatccgggcgaaaccaagacaattgaatttgtcgcggataaacccggcgtttttcettactactgcaccta tttctgctc
$>$ corco32
ccccacggcgtggatgtcagacccgatggccagtacatggtggtcgcgggcaaactcgatccacacgtgacggtttattcgatc gacaagatcaaggccgccatcgccgcgaagaagtactcgacatccgacgagtacggcgtcccggtgctcgactttgacgcgg tgaaggaagagcaggtcgagctgggcettgggcctctgcacacgcagttcgacaacaagggctatgcgtacacatcgctgttc cttgattcggcagtggcccgctggtccetgggcggggattacgccaagctccacgccgagcagccttggaagctggtgcacaa gacgccggtgcaatacaacatcggccacttgtgctcggccgagggcgacacggtcagccccgacggcaacttcetgatctcg atgtccaagtggtccgtggaccgcttccttcccaccgggcccettcttccgcagaacttccagcttctcgacatcgtcgcgggeg gcacgaacatgccegtgatctatgacagccccatcggegtcggcgagccccactactgccagatgatcaaggccgacaagct gcagacctggaaggtctaccccgacgtcggctggaaccccgcgacgcagcagctggaccccaacgccccgaagaaaggcg atgaaggcgtcacgcgcaacgggaacaaggtcctcgtcaagatgaccgccgtccgcagccacttctccccggagcatgtcatg ctcgaggaaggegatgaggtcacctggcgcatctgcgctaccgaaaccgcgcaggatgccacgcacggcttccgeatcggc gggtacaacatcaacctctcacttgagccgggtgagtacagcgagttcaagttcaccgccgaccgcgccggcacetaccegta ctactgcacccaattct
>corco33
ccgcatggggcggatgtcaggccagatggcaagtttgtggtcgtttccgggaaactcgacccgcacgtgacggtctactccgc cgagaagatccgcaaggcgatggccgggaagaagtattcaggatccgatgaatatggggtcccgatcctcgacttcgactccg tcaaggaggcgeaggctgaagtcggtctgggcccgctgcacacccagtttgacgacaagggggcaggcctacacctccetgttc ctggactcggcggtggcccgctggacgctggggggcgacttcaccaagctccacggccagcagccetggaccatggtccac aagacgccggtgcagtacaacatcgggcacctggtggcggccgaaggcgactcggtgagccccgacgggcggtacctggt ctcgatgtccaagtggtcggtggaccgcttcttcccgccgggtccgctgcttccgcagaacttccagctcctggacatctccggg tccggggccegacatgcccgtcatctacgatgcgcccatcggcgtgggegagccgcactacgcggtgatgatcaaggccgaca agctcaagccetggacggtgtatccggaggtggggtggaatccgcacacccagatgctggatccagcctcgccgegtcgtgg acacgaaggcgtggtgcgcgaggggaacaaggtcaccatcaacatgaccgcgatccgcagccacttcacgcccgagcacgt ggaagtccaggagggcgatcacgcgacgtggcgcatcaccaacctggagaccagcatcgacgccacccacggcttctgcat cggcgggtacaacatcaacctgagcatcgagccgggtgaatatgcggaggcgacattcacggccgacaagccgggaacgta cccatactactgcacccaattgtgetc
>corco35
tgcagtacaacatcggccacttgtgttcggccgagggcgacacggtcagccccgacggcaacttcctcatctcgatgtccaagt ggtcggtggaccgcttccttcccaccgggcccettcttccgcagaacttccagcttctcgacatcgtcgcgggcggcacgaacat gccegtgatctatgacagccccattggegtcggcgagccccactactgccagatgatcaaggccgacaagctgcagacetgga aggtctaccccgaggtcgggtggaaccccaccacgcagcaactggatcccaatgccccgaagaaaggcgatgaaggcgtca cccgcaacgggaacaaggtcctggtcaagatgaccgccgtccgcagccacttctcccccgaacacgtcatgctcgaggaagg cgatgaagtcacctggcgcatctgcgctaccgaaaccgcacaggacgccacgcacggettctgcatcggcgggtacaacatc aacctctcacttgagccgggtgagtactgcgagttcaagttcaccgccgaccgcgccggcacctaccettactactgcacceac
$>$ corco41
ccccacggggtggatgtctggcccgacggcaaatacatcatcggcagcggcaagctgcagtcgatcaccaccgccttcaatat ggagaagatcctcaccgccatcgagaacaaggacttcaccggggatgaagacggcatccccgtcctcgattacgagaaggtg aaggatgccgaagtcgaagtcggactgggaccgctgcacacgcaattcgatgatcagggettcgcctacacgagcetctttgtc gagagcgcggtggcgaagtggaagctcggcagctgggaggtggtcgacaagattccgatcacctacaacatcggccatctcg cgacggccgagggcgacacggtcaatccggacggcaaatatctggtcgcgctcaacaagctcccgcacgggcgacatctcg gcgtcggcccgtcgcagcccgagagttcgcagctgatcaacatcacgggcgagaagatgaagctgctctacgatgccttcacc gagccggagccgcactacgcgcagatgatcaaggccgacaaactgcagccgatcgaggtctacccgaaggaggagaacaa gaacccgcacgcgatctgggacgtcagggacgcgggagacgagcgcagcggcgctaatgtgacggtgaagatggtcgccg tccgcagcacactcgaaccgacttcgatcg >corco46 cgtgtgcccagacggcaaatacatcatcggcagcggcaagctgcagtcgatcaccaccgctttcaacatggagaagatcctga ccgcgatcgggaacaaggacttcaccggcgatgaggagggcatccccgtgctcgactacgagaaggtgaaggatgccgagg tcgaagtcgggctcgggccgctgcacacccagttcgatgaccagggettcgcctacaccagcctctttgtcgagagcgcggtg gcgaagtggaagctcggcacctgggaggtggtcgacaagattccgatcacctacaacatcggccacctggcgacagccgag ggagacacggtcaatccggacggcaaatacctggtcgcgctcaacaagctctcgcacgggcgccatctcagtgtcggccegt cgcagcccgagagctcgcagctgatcaacatcaccgacgagaagatgaaactgctctatgacgcettcaccgagccggagcc ccattacgcgcagatgatcaaggccgacaaactcaaaccgatcgaggtctatccgaaggaggagaacaagaacccgaacgc gatctgggatgtcaaggacgcgggagtcgagcgcagcggcgcgagtgtcactgtaaagatggtcgccgtccgcagcacgctc gaaccgacctcgttcgaggtcaaccagggcgaccgggtgacgatctat >corco47
ccgcatggcgtggacgtgagaccggacgggaaatggatagtcggcggcggtaagctggccgccgttgcctgcgtacatagct ttgaaaagatgcaggaagccattagtaaaggcgattttgacggagaggttatgggaatacccattctaaagtacgaaacggtcag agtcgccgaggttccgataggcttgggtcetctgcacacccagtttgacgaccagggatatgettatacttctttattcetggactca gccgttgccaagtggaagctgggtacttgggaagtagtggataagataccggtttactataacatcggacaccttgccgcagtce atggagacaccgctaaaccccggggccagtacgtcctggccatgaataaaatcgccaagggcagatacctgcccgttggacct tcccatccggagagcgcacagcttatcgacatatccgggaagaagatggaattgctgctcgatttccctacgcaggtagagcetc accacggtcaaataatcgatgctaccttgataaagcccgtgctcgtatatccacttgaagagaataaccaccettacgecattaag agcgcagaccaggctcgtgtggaaaggaacggaaatagagtggacgtttacatgctggcaataagaagccatttcactcctcat ccctttgagtttcaggaaggggatgaagtttatttccatgtgaccaacctggagcaggacgtggatattactcacggattcgggat caacttctccaacgtggatatgcaaatcgaacccggcgaaacaaagacggtgaaatgggtagccgacaaaccggggatatatc cttactactgcacccagttgtgetc
>corco54
cagacggcaaatacatcatcggcagcggcaagctgcagtcgatcaccaccgcettcaatatggagaagatcctcaccgccatc gagaacaaggacttcaccggggatgaagacggcatccccgtcctcgattacgagaaggtgaaggatgccgaagtcgaagtcg gactgggaccgctgcacacgcaattcgatgatcagggcttcgcctacacgagcctctttgtcgagagcgcggtggcgaagtgg aagctcggcagctgggaggtggtcgacaagattccgatcacctacaacatcggccatctcgcgacggccgagggcgacacg gtcaatccggacggcaaatatctggtcgcgctcaacaagctctcgcacgggcgacatctcggcgtcggccegtcgcagcceg agagttcgcagctgatcaacatcacgggcgagaagatgaagctgctctacgatgcettcaccgagccggagccgcactacge gcagatgatcaaggccgacaaactgcagccgatcgaggtcaacccgaaggaggagaacaagaacccgcacgcgatctggg acgtcaaggacgcgggagtcgagcgcagcggcgctaatgtgacggtgaagatggtcgccgtccgcagcacactcgaaccga cttcgatcgaggtcaaccagggcgaccgggtgacgatctacatcaccaacatcgagcagacgaccgatgagct $>$ corco55
ccgcacggtgtggatgtctgtccggacggggcgagttcctggtagccggtggcaagctggccaccogtgatcccggtgcacgcct tctcgaagatgcagaaggccatcgccgaccaggccttcgacggcgagaaggacggcatccccatcctcaagtacgaagccgt caacttctgcgagatccagaacccgggcctcggccccctgcataccgagttcgacgggcaaggcaacgcctacacgtcggtct
tcatctccagcgagatcgtgaagtacacgctgccgggctgcgaggtggtggaccgcgtgccgacctactactcgatcggccac ctgatggtcccgggcggcgacacgcgcaagccgtacggcaagtatgtcgtggccetgaacaagatcacgaaggaccgctac ctgccaacgggccecgagctcacgcagtcggcgcagctctacgacatcacgggcgacgagatgcgcctgctgctcgacttcc cgaccatcggcgacccgcactat
>corco57
acgccgtggccatcgccgccgacaagctgaagccgatggtgcgctacaagttcggcaccgacagccgcaccggcaagccg catccggacgccacccgcccgggcaaggagcgcatcgagcgtgagggcaccaacgtcaaggtgttcggcaccetgatccge tcgcacatcacccccgagatcgtcgaggtcgaggagggcgacaccgtcaccttcgcgttcaccaacaccgagcgcgecgag gacgagacceacggcttcgccgtgtcgggccacaacctcaacctgtcgctcgagcceggcaagaccgcctcggccaccttgg tggccagcaagcceggcgtctacccetactactgcacctacttctgctc >corco6
gatggcaagtacatcgccgtgggcggcaagctggacacgcatgcgtcggtgtatagettcgagaagatccaggccgcgatcc aggcgggcaagttcgaatcgaaggacccetacggcgtgccggtgatcggcatgaaggaagcgctgcacacgcaagtgcaac tgggcettggcccgctgcacacgcagtacgactcgaagccgtgcgtggcctacacgtcgatgtacgtggacagccaggtggc gaagtgggactactgtcagggcaaggtgctggacaagatcagcgtgcactacaacatcggtcacctgatgacgatggaaggtg actctgccgatccgaagggccgttacctggtggcgccgaacaagctggcgatcgaccgtttcgtgccggtgggccegctgcac ccgcagaaccaccagctgatcgacatcagcaacgacaagatgcaactgctgtacgacatgccgctgccgctgggcgagccgc actacgtggttgccatcgaagcgacgaagctgaagccgggcgtgcgctacaaggtgggcacggacagccgtacggacaagc cgcacccgggtgccgttcgcgccggcgaagagacgacgacgaagaagggcaacaagatcgaggtgaagggcacgctgat ccgctcgcacatcacgcctgagacgatcgaggcggaagtgggcgacgaaatcacggtgcacctgacgaacctggagcgtgc gcaggacgagacccacggctttacggtgtcgacctacaacgtgcatgcgtcgatcgagcctggcaagacggtgacggtgaag ttcaaggcegacaaggaaggcgtgtatccetactactgcacgtacttctgctc
$>$ corco 7
ccgcacggcgccgacgtcaggccggacggcaagtacatggtcgtggccggcaagcttgatccgcatgtcaccatctactcgtt cgacaagatgatgcaggcgatcgaaaacgaggcctacaccgccgacgaattcggcattccgatcctcaacttcgacgacgtca tgctggcgcaggtagaactgggattggggccgctgcacacgcaatttgacgacaagggcaacgcctacaccagcetcttccta gacagtgcggttgcacgctggagcctgggtggtgacgacccggccggctgtcagctgctcgagaagctgccggtacagtaca acatcggccatattgcgtcggccgaaggcgacacagtcagcccggacggcaactacctggttgcgctcaacaagtggtcggtc gaccgettcctctcgacaggaccgctcaagccgcagaatgagcagctgctcgacatcggcagcgacacgatgagcgtgattta cgacatgccgatgggcattggcgaaccgcattatgcgcagatgatcagggccgacaggatcacggcctgggaatcctacccc caggtgggttgggatccggtaacccaggcgccatctgagtttgccaccatgcccgggcaggagcgcgtcgagcgcgacggc aatcatgtggaagtcttcatgaccgetgtgcgctcgcacctgaacccggaacacgtcaatctcaagaagggtgaccaagttacgt ggcacattacgaacatcgagacggccccggatgccacgcatggctttgaccttggtgggcaaaacatcagcctgagcatcgaa ccgggcgaaacgacaaccttcgagtttgtcgccgaccagagcggtacgtttgccgtactactgcacccaattctgctc $>$ corco8
ccgcacggcgtcgatgtgaggccagacggcaaatacatcatcggcagcggcaagctgctgtcgatcaccaccaccttcaatat ggagaagatcctcaccgccatcgagaacaaggacttcaccggggatgaagacggcatccccogtcctcgattacgagaaggtg aaggatgccgaagtcgaagtcggactgggaccgctgcacacgcaattcgatgatcagggcttcgcctacacgagcetctttgtc gagagcgcggtggcgaagtggaagctcggcagctgggaggtggtcgacaagattccgatcacctacaacatcggccatctcg cgacggccgagggcgacacggtcaatccggacggcaaatatctggtcgcgctcaacaagctctcgcacgggcgacatctcg gcgtcggcccgtcgcagcccgagagttcgcagctgatcaacatcacgggcgagaagatgaggctgctctacgatgcettcacc gagccggagccgcactacgcgcagatgatcaaggccgacaaactgcagccgatcgaggtctacccgaaggaggagaacaa gaacccgcacgcgatctgggacgtcaaggacgcgggagtcgagcgcagcggcgctaatgtgacggtgaagatggtcgccgt ccgcagcacactcgaaccgacttcgatcgaggtcaaccagggcgaccgggtgacgatctacatcaccaacatcgagcagacg accgatgagctgcacgggttcgggctcaatgaacacaatatcaatgtggtgatcgatccgggcgagaccaagacgattcagttt gtcgccgacaagcceggcgtctttccetactactgcacctacttctgctc
$>$ mwwt10
ccgcacggtgtggatgtcaggccagacggcaagttcatggtcgtggccggcaagctcgacacccacgtgtcggtctacagctt cgagaagatccaggccgccatcaaggecggcaagttcgagagcaaggacccgtacggcatcccggtgatcgcgatgaagga cgcgctgcacacgcaggtgtcgctcggcctcggccegctgcacacgcagtacgacagcaagccttgcctggcctacacgtcg ctctacgtcgactcgcaggtcgcgaagtggaacttctgcgaaggcaaggtcgtcgacaagatcagcgtgcactacaacatcgg ccacctgatgacgatggagggcgactccaccaagcccggcggcaagtacctggtggcgetgagcaagctggcgatcgaccg cttcgtgccggtgggccegctgcaccegcagaaccaccagctgate
$>$ mwwt100
cggcaagttcatggtcgtggccgacaagctcgacacccacgtgtcggtctacagcttcgagaagatccaggccgccatcaagg ccggcaagttcgagagcaaggacccgtacggcatcccggtgatcgcgatgaaggacgcgetgcacacgcaggtgtcgctcg gcctcggccegctgcacacgcagtacgacagcaagccttgcctggcetacacgtcgctctacgtcgactcgcaggtcgcgaag cggaacttctgcgaaggcaaggtcgtcgacaagatcagcgtgcactacaacatcggccacctgatgacgatggggggcgact ccaccaagcccggcggcaagtacctggtggcgetgaacaagctggcgatcgaccgettcgtgccggtgggccegctgcacc cgcagaaccaccagctgatcgacatcagcaacgacaagatgcagctgctgtacgacatgccgctgccgctgggtgagccgca ctatgcggtgtcgatcgeggccaacaagctcaagccggccgttcgctacaaggtcgggaccgacagccggaccgatgagcc $>$ mwwt102
cgtgagaccggacggcaagttcatcatcgtgtcgggcaagctcgacacgcacaccatggtgtactcgttcgacaagattcagga ggccatcaaggcgaacaagttcgagggcaaggaccegtacggcattcccatcatcggaatgaaggacgcgctccacaagca ggtcgagctcggcctcgggccgctgcacacgcagtacgacaccaagccgtgcatcggctacacctcgatgtacgtcgactcg caggtggcgaagtgggactactgcgagggcaaggtgctcgacaagctgtcggtgcactacaacatcggccacctcatgacga tggaaggcgactcggtgaagccgaagggtcgctacctggtcgcgctcaacaagctggccatcgaccgcttcaacccggtcgg cccactgcacccgcagaaccaccagctcatcgacatctcgaacgacaagatgcagctgctctacgacatgccgetgccgctcg gtgagccgcactacgcggtcgccatcagcgccgccaccetgaagcctggcgttcgctacaaggtcggcaccaacagccgca ccgacgagaagcacccgggcgccgtgcgcgcaggcgaagagaagatcgttcgttcgccgggcaaggtcgaggtgttcggta cgctgatccgctcgcacatcaccccggagatcatcgaggtcgagaagggcgacgaggtgaccatcaacctcaccaacctcga gcgcgcggaagacgagacccacggcttcaccatcagcgcgatgaacgtgcacgcgtcggtcgagcccggcaagacggtctc ggtgaagttcaaggccgagcgegagggcgtgttccettactactgcacceaattctgctc >mwwt103
cgatgtgaggccagatggcaagtacatggtcgtctccggcaagctcgacacccacgtctcggtctacagcttcgagaagatcca ggccgccatcaaggccgggaaattcgagagcaaggacccctacggcatcccggtgatcggcatgaaagaggccetgcacgt gcaggtgccgctcggcetgggccegctgcacacccagtacgactcgaaggcetgcgtcgcctacacctcgctttacgtggact cgcaggtcgccaagtggaacttctgcgaaggcaaggtgctcgacaagatcagcgtgcactacaacatcggccacctgatgace atggagggcgactccaccaagccggccggcaagtacctcgtcgegctgaacaagctggccatcgaccgcttcgtgccggtgg gccegctgcaccegcagaaccaccagctgatcgacatctccggcgacaagatgcagctgctctacaacatgccgctgccgctg ggcgagccgcactacgtcgtcgccatcgatgccaagaagctcaagccgggggtgcgctacaaggtcggcaccgacagccgc accgacaagccgcatccgggcgccgtgcgcgccg
>mwwt104
ccgcatggggccgacgtcactcccgatggcaagtacatcatcggctcgggcaagctccagggcgtcacgaccgccttcaactt cgagaagatccagaccgccatcaagaacaaggacttcacgggcgacgaggacggcatccccatcctcaagtacgagtcgatc aaggacgccgaggtgccggtcggcctcgggecgctgcacacacagttcggaccgaacggcgaagcctacacgtcgctcttc gtcgacagcgccatcgccaagtggaagctcggcacgtgggaagtcatcgacaagatcccgatgtcctactccatcggtcacct caccgccgcggaaggcgacaccgtcaatccggatggcaagtacctgatcggcctcaacaagctctcgcacggacggcatctg aacgtcggtccttctcagcccgagtcctctcaactcgtcgacaccacggaggagaagatgaagctcctctatgacgcc >mwwt106
gacgtctgaccggatggcaagttcatggtcgtggccggcaagctcgacacccacgtgtcggtctacagcttcgagaagatcca ggccgccatcaaggccggcaagttcgagagcaaggaccegtacggcatcctggtgatcgcgatgaaggacgcgctgcacac
gcaggtgtcgctcggcctcggccegctgcacacgcagtacgacagcaagccttgcctggcctacacgtcgctctacgtcgact cgcaggtcgcgaagtggaacttctgcaaaggcaaggtcgtcgacaagatcagcgtgcactacaacatcggccacctgatgac gatggagggcgactccaccaagcceggcggcaagtacctggtggcgctaaacaagct >mwwtl1
ccgcatggggccgacgtgtgtccggatggcaagttcatgaccgtttccggcaagctggacacccacgtttcggtctattccttcg agaagatccaggctgcgatcaaggccggcaagttcgaatccaaggatccgtacggcattccggtgatcgggatgaaggatgc gctgcatacccaggtccagctcggtctcggtccettgcacacccagtacgattccaagccctgtatcgcctacacctcgctgtatg tcgattctcangtcgtcaaatggaatcactgcgaaggcaggtactcg
$>$ mwwtl3
cctcacggggtggatgtgtgaccagacggcaagtacatcatcgtcggcggcaagctggacacccacgcgtccgtgtatagctt cgacaagatcatggccgccatccaggccggcaagttctagtccaaagatc
>mwwt14
ccgcatggggccgacgtcactcccgatggcaagtacatcatcggctcgggcaagctccagggcgtcacgaccgcettcaactt cgagaagatccagaccgccctcaagaacaaggacttcacgggcgacgaggacggcatccccatcctcaagtacgagtcgatc aaggacgccaaggtgccggtcggcctcgggccgctccacacactgttaggaccgaaaggcaaaacctacacgtcgctttcgt cgacagcg
$>$ mwwt17
ccgcacggtgtggatgtcagaccagacggcaagttcatggtcgtggccggcaagctcgacacccacgtgtcggtctacagctt cgagaagatccaggccgccatcaaggccggcaagttcgagagcaaggacccgtacggcatcccggtgatcgegatgaagga cgcgetgcacacgcaggtgtcgctcggcetcggccegctgcac
$>$ mwwt18
ccccatggcgtggacgtgtgaccagacggcaagttcatggtcgtggccggcaagctcgacacccacgtgtcggtctacagctt cgagaagatccaggccgccatcaaggccggcaagttcgagagcaaggacccgtacggcatcccggtgatcgcgatgaagga cgcgctgcacacgcaggtgtcgctcggcctcggccegctgcacacgcagtacgacagcaagccttgcetggcctacacgtcg ctctacgtcgactcgcaggtcgcgaagtggaacttctgcgaaggcaaggtcgtcgacaagatcagcgtgcactacaacatcgg ccacctgatgacgatggagggcgactccaccaagcccggcggcaagtacctggtggcgetgaacaagctggcgatcgaccg cttcatgccggtgggccegctgcacccgcagaaccaccagctga
$>$ mwwt20
ggatgtgagtccggacggcaagttcctgaccgtcgccggcaagctcgacacccatgtctccgtttattccttcgagaagatccag gctgccatcaaggccggcaagttcgaatccaaggatccgtacggcattccggtgatcggcatgaaggatgcgctgcataccea ggtccagctcggcctcggccegctgcatacccagtacgacagcaagccttgtatcgcctacacctccetttatgtcgattcgcaa gtcgtcaaatggaatcactgtgaaggcaaggttctcgacaagatctccgtgcactacaacatcggtcacctgatgaccatggaag gtgactcggccgatccgaagggtcgttatctggtggcactgaacaagctgtcgatcgatcgtttcaatccggttggccegctgcat ccgcagaaccaccagttgatcgacatcagcaacgacaagatgcaactgctctacgacatgccggtaccgctcggtgagccgca ctatgtggtcgccatcgaagcggccaagctgaagccgggcgtccgttacaaggtcggcaccaacagccgtaccgacaaaccg aatccgggcgcagtccgggccggtgaggaacataccgacaagaaaggcaacaagatcgaagtcttcggtacgctgatccgtt cgcacatcaccccggaaacgatcgaggctgaagtcggcgacgaaatcaccatccatttgaccaacctcgaacgcgcccagga tgaaacccacggtttcgcggtatcgaccttcaacgtgcatgcttcggttgagccgggcaagacggtcaccgtcaagttcaaggc cgacaaggaaggegtctatccc
$>$ mwwt21
ccccatggcgtggatgtgagcccggacggcaagttcatcatcgtgtcgggcaagctcgacacgcacaccatggtgtactcgttc gacaagattcaggaggccatcaaggcgaacaagttcgagggcaaggacccgtacggcattcccatcatcggaatgaaggacg cgctccacaagcaggtcgagctcggcctcgggccgctgcacacgcagtacgacaccaagccgtgcatcggctacacctcgat gtacgtcgactcgcaggtggcgaagtgggactactgcgagggcaaggtgctcgacaagctgtcggtgcactacaacatcggc cacctcatgacgatggaaggcgactcggtgaagccgaagggtcgctacctggtcgcgctcagcaagctggccatcgaccgctt caacceggtcggcceactgcaccegcagaaccaccagctcatcgacatctcgaacgacaagatgcagctgctctacgacatgc
cgctgccgctcggtgagccgcactacgcggtcgccatcagcgccgccaccetgaagcctggcgttcgctacaaggtcggcac caacagccgcaccgacgagaagcacccgggcgengtg
$>$ mwwt22
ccgcacggtgtggatgtgagaccagacgggaagtacatcgtcgtttcgggcaagctcgatccgcatgtgaccgtctacagcttc gagaagatccagaaagcgatcgctgacgggaattacgagccagatgcgttcggtgttccggtgctcgacttcaagtcctgtgtc gaagctcaggtggagctcggtcttgggccectccacacgcagttcgacgacaagggettcgcttacaccagcctcttcctcgac agcggtatcgcgcggtggaaggtcggcggcgaaggagtcgaagacggctggacgctggtcgacatgattccgatgcaatac aacaccggccacatctgcgtcgcagagggtgacaccgtttccccggccgggcattacatgatcggcatgaacaagtgggcgct cgatcgettccacceggtgggaccgctgctgccccagaacttccatttgatcgacatcagtggcgagcagctggaactgatctac gacatgccgattggcatcggcgagccgcactacgtccanatgatc
>mwwt23
ccgcacggtgtggatgtgagaccagacgggaagtacatcgtcgtttcgggcaagctcgatccgcatgtgaccgtctacagcttc gagaagatccagaaagcgatcgetgacgggaattacgagccagatgcgttcggtgttccggtgctcgacttcgagtcctgtgtc gaagctcaggtggagctcggtcttgggccectccacacgcagttcgacgacaagggcttcgcttacaccagcctcttcctcgac agcggtatcgcgcggtggaaggtcggcggcgaaggagtcgaagacggctggacgctggtcgacatgattccgatgcaatac aacaccggccacatctgcgtcgcagagggtgacaccgtttccccggccgggcattacatgatcggcatgaacaagtgggcgct cgatcgettccacccggtgggaccgetgctgccccagaacttccagttgatcgacatcagtggcgagcagctggaactgatcta cgacatgccgattggcatcggcgagccgcactacgtccagatgatcaagtcngagcgcctcgagaacatctggggaggtctat cccggaggt
$>$ mwwt24
ccgcatggtgtggatgtgtggccggacgggaaatacttcatcgggagcggcaaactgcaatcgatcacgacggcgtacaacgt cgagaagatgctgaccgcgattcagaagaaagatttcagcggcaacgaagacggcattccggtcttgaactacgacagcgtca aggatgcggaggtcaacgtcggtctggggccgctgcacacgcagttcgacgatcagggttatgcgtatacaagcctcttcgtcg aaagcgcggtcgcgaagtggaagctcggcagttgggaggtcgccgacaagattccggtcagctacaacatcggccacctggc cacggctgaaggcgatacggtcaatccggacggcaaatatctggtagcgctcaacaagctctcgcacgggcgccatcttgggg ttggtccgtcgcagccegagagctcgcagctgatcaacatcagcggcgagaagatgaagctgctctacgacgegtttaccgaa cctgagccgcattacgcccagatcatcaaagccgacaagctgaaaccettcgaggtctatccgaaggagcagaacaaaaatcc gcacgcgatctgggacgtcaaggacgccaaggtcgaacgcaacggcgccaatgtgacggccaagctggtcgccgtccgga gcagcttcgaaccgaccaagcttgaggtcaaccagggagacaaggtgacgattcacatcaccaatatcgaacagacgaccgat gagctgcacggattcggattgaacgaatacaacatcaacgtggtgatcgatccgggcgagaccaaaacgatcgagttcactgc ggataaacccggcgtcttccettactactgcacctaattctgctc
$>$ mwwt 25
ccgcacggggtggatgtgtggccggatggcaagaacatcatcgtggccggcaagctcgacacccacgtgtcggtctacagttt cgagaagatccaggcggcgatcaaggccggcaagttcgagtccaaggaccegtatggcatcccggtgatcgcgctgaaggat gccetgcacacccaggtgtcgctgggcctggggcccetgcacacgcagtacgacagcaagtcctgcaccgcgtacacctcgc tgtacgtggactcgcaggtggccaagtggaactattgcgaaggcaaggtgctcgacaagatcagcgtgcactacaacatcggt cacctgatgacgatggagggtgactccaccaagccggccggcaagtacctggtggcgctgaacaagctggccatcgaccgttt cgtgccggtgggccegctgcaccegcagaaccaccagctgatcgacatctcengcgacaagatgcagttgctgtacgacatg ccgctgccgctgggtgagccgcactatgcggtggccatcgcggccaacaagctcaagccggcagtgcgctacaaggtcggc ac
>mwwt28
ccgcacggggtggatgtgtggccggatggcaagaacatcatcgtggccggcaagctcgacacccacgtgtcggtctacagttt cgagaagatccaggcggcgatcaaggccggcaagttcgagtccaaggaccegtatggcatcccggtgatcgcgctgaaggat gccetgcacacccaggtgtcgctgggcctggggcccctgcacacgcagtacgacagcaagtcctgcaccgcgtacacctcgc tgtacgtggactcgcaggtggccaagtggaactattgcgaaggcaaggtgctcgacaagatcagcgtgcactacaacatcggt cacctgatgacgatggagggtgactccaccaagccggccggcaagtacctggtggcgetgaacaagctggccatcgaccgttt
cgtgccggtgggcccgctgcacccgcagaaccaccagctgatcgacatctccggcgacaagatgcagttgctgtacgacatg ccgctgccgctgggtgagccgcactatgcggtggccatcgcggccaacaagctcaagccggcagtgcgctacaaggtcgca ccgacgccgcaccgataanaaacaccccg
>mwwt29
ccccatggtgtggatgtgagcceggatggcaagtacatggtcgtctccggcaagctcgacacccacgtctcggtctacagcttc gagaagatccaggccgccatcaaggccgggaaattcgagagcaaggacccctacggcatcceggtgatcggcatgaaggag gccetgcacgtgcaggtgccgctcggcctgggcccgctgcacacccagtacgactcgaaggcctgcgtcgcctacacctcge tttacgtggactcgcgggtcgccaagtggaacttctgcgaaggcaaggtgctcgacaagatcagcgtgcactacaacatcggtc acctgatgaccatggagggcgactccaccaagccggccggcaagtacctcgtcgcgctgaacaagctggccatcgaccgctt cgtgccggtgggccegctgcatccgcagaaccaccagctgatcgacatcagcaacgacaagatgcagttgctctacgacatgc cgctgccgctgggcgagccgcactacgtcgtcgccatcgatgccaagaagctcaagccgggggtgcgetacaaggtcggca ccgacagccgcaccgacaagccgcatccgggcgccgtgcgcgccggcgaagagaagaccgagaggaagggcaacaagg tcacggtctggggcacgctgatccgctcgcacatcacgcccgagaccatcgaggcggaagtgggcgacgaggtcaccatcc acctgaccaacctcgagcgcgcccaggacgagacccacggcttcacggtgtcgacctacaacctgcacgettcggtcgagce gggcaagacggtgacggtgaagttcaaggccgacaaggaaggcgtctaccectactactgcacgtatttctgctc $>$ mwwt31
ccccatggtgcggatgtgagcccggatggcaagttcatgaccgtttccggcaagctggacacccacgtttcggtctattccttcg agaagatccaggctgcgatcaaggccggcaagttcgaatccaaggatccgtacggcattccggtgatcgggatgaaggatgc gctgcatacccaggtccagctcggtcteggtccettgcacacccagtacgattccaagccetgtatcgcctacacctcgetgtatg tcgattctcaggtcgtcaaatggaatcactgcgaaggcaaggtactcgacaagatctcggtgcattacaacatcggtcacctgat gaccatggaaggcgattcggctgatccgaagggtcgctacctggtggcgctgaacaagctggcgatcgaccgctttgtgccgg ttggccegctgcatccgcaaaatcaccagctgatcgacatttctaacgacaagatgcaattgttgtacgacatgccgctgccgttg ggtgagccgcactacgetgtggccatcgaagccagcaagctgaagccgggcgtgcgctacaaggtcggcaccgattcccgc acggacaggccgcaccccggcatggttcgcgccggcgaagaacgcaccgagaagaagggcaacaagatcacggtctacg gtacgttgatccgttcccacatcaccccggaaacgatcgaggctgatgtcggcgacgaagtcaccatccacctgaccaacctcg aacgtgcccaggacgaaacccatggtttcacggtgtccacgatgaacgtccacgettcggttgaaccgggcaagacagtgacc gtcaagttcaaggctgacaaggaaggcgtctatccgtactactgcacccagttctgctc
$>$ mwwt 32
cctcacggtgtggacgtgagacccgacggcaagtacatggtcgtctccggcaagctcgacacccacgtctcggtctacagcttc gagaagatccaggccgccatcaaggccgggaaattcgagagcaaggacccctacggcatcccggtgatcggcatgaaggag gccetgcacgtgcaggtgccgctcggcctgggccegctgcacacccagtacgactcgaaggectgcgtcgectacacctcge tttacgtggactcgcaggtcgccaagtggaacttctgcgaaggcaaggtgctcgacaagatcagcgtgcactacaacatcggce acctgatgaccatggagggcgactccaccaagccggccggcaagtacctcgtcgcgctgaacaagctggccatcgaccgctt cgtgccggtgggccegctgcatccgcagaaccaccagctgatcgacatcagcaacgacaagatgcagttgctctacg $>$ mwwt 33
cgatgtgtgtccggatggcaagtacatcatcggctcgggcaagctccagggcgtcacgaccgccttcaacttcgagaagatcca gaccgccatcaagaacaaggacttcacgggcgacgaggacggcatccccatcctcaagtacgagtcgatcaaggacgccga ggtgccggtcggcctcgggccgctgcacacacagttcggaccgaacggcgaagcctacacgtcgctcttcgtcgacagcgcc atcgccaagtggaagctcggcacgtgggaagtcatcgacaagatcccgatgtcctactccatcggtcacctcaccgccgcgga aggcgacaccgtcaatccggatggcaagtacctgatcggcctcaacaagctctcgcacggacggcatctgaacgtcggtcctt ctcagccegagtcetctcaactcgtcgacatcacggaggagaagatgaagctcctctatgacgccttcaccgagccegagccg cactacgcccagatgatccaccgtgacaaggtcaagccgatcgaggtctacccgaaggaanagaacaagcacccgctcgcg atctgggacgtcaaggacgccggcgtgaccegcaagggggaacgangttctcgccaaggtcgtce $>$ mwwt34
cctcacggggtcgacgtcagaccggatggcaagttcatgaccgtttccggcaagctggacacccacgtttcggtctattccttcg agaagatccaggctgcgatcaaggccggcaagttcgaatccaaggatccgtacggcattccggtgatcgggatgaaggatgc
gctgcatacccaggtccagctcggtctcggtccettgcacacccagtacgattccaagccetgtatcgcctacacetcgetgtatg tcgattctcaggtcgtcaaatggaatcactgcgaaggcaaggtactcgacaagatctcggtgcattacaacatcggtcacctgat gaccatggaaggcgattcggctgatccgaagggtcgctacctggtggcgctgaacaagctggcgatcgaccgetttgtgccgg ttggcccgetgcatccgcaaaatcaccagctgatcgacatttctaacgacaagatgcaattgttgtacgacatgccgetgccgttg ggtgagccgcactacgctgtggccatcgaagccagcaagctgaagccgggcgtgcgctacaaggtcggtaccgattccegca cggacaagccgcaccccggcatggttcgcgccggcgaagaacgcaccgagaagaagggcaacaagatcacggtctacggt acgttgatccgttcccacatcaccccggaaacgatcgaggctgatgtcggcgacgaagtcaccatccacctgaccaacctcgaa cgtgcccaggacgaaacccatggtttcacggtgtccacgatgaacgtccacgcttcggttgaaccgggcaagacagtgaccgt caagttcaaggctgacaaggaaggcgtctatccatactactgcacccatttctgctc $>$ mwwt35
ccccatggcgtggatgtgagcccggacggcaagttcatcatcgtgtcgggcaagctcgacacgcacaccatggtgtactcgttc gacaagattcaggaggccatcaaggcgaacaagttcgagggcaaggacccogtacggcattcccatcatcggaatgaaggacg cgctccacaagcaggtcgagctcggcetcgggccgctgcacacgcagtacgacaccaagccgtgcatcggctacacctcgat gtacgtcgactcgcaggtggcgaagtgggactactgcgagggcaaggtgctcgacaagctgtcggtgcactacaacatcggc cacctcatgacgatggaaggcgactcggtgaagccgaagggtcgctacctggtcgcgctcagcaagctggccatcgaccgctt caacccggtcggcccactgcacccgcagaaccaccagctcatcgacatctcgaacgacaagatgcagctgctctacgacatgc cgetgccgetcggtgagccgcactacgeggtcgccatcagcgccgccaccetgaagcctggcgttcgetacaaggtcggcac caacagccgcaccgacaagaagcaccongggcgccgtgcgcgcaggc
$>$ mwwt37
ccccatggcgtggatgtgacaccggacggcaagttcatcaccgtttccggcaagctcgacacgcacgtttcggtctattcgttcg acaagatccaggccgcaatcaaggccggcaagttcgagtcgaaggacgcctacggcatcccggtgatcggcatgaaggacg cgttgcacgcgcaggtccagctcggcetcggcccgctgcatacgcagtatgacgccaagcettgcgttgcetacacctcgetct acgtcgattcgcaggttgccaagtggaacttctgcgaaggcaaggtgctcgacaagatcagcgtgcactacaacatcggtcacc tggtcacgatggaaggcgactcggtcgatccgaaagggcgttatctgatcgcgctgaacaagctggcgatcgaccgettcgttc cggttggccegctgcacccgcagaaccaccagttgatcgacatcagcaacgacaagatgcagctcctgtacgacatgccgetg ccgctcggcgagccgcactacgtcgtcgccatcgaggccggcaagctgaagccgggcgtgcgctacaaggtcggcaccga cagccggaccgacaagccgcacccgggagccgtgcgcgccggcgaananaan
>mwwt42
cctcacggggeggacgtgaccccagatggcaagttcatcaccgtttccggcaagctcgacacgcacgtttcggtctattcgttcg acaagatccaggccgcaatcaaggccggcaagttcgagtcgaaggacgcctacggcatcccggtgatcggcatgaaggacg cgttgcacgcgcaggtccagctcggcetcggcccgctgcatacgcagtatgacgccaagcettgcgttgcetacacctcgetct acgtcgattcgcaggttgccaagtggaacttctgcgaaggcaaggtgctcgacaagatcagcgtgcactacaacatcggtcacc tggtcacgatggaaggcgactcggtcgatccgaaagggcgttatctgatcgcgctgaacaagctggcgatcgaccogcttcgttc cggttggccegctgcacccgcagaaccaccagttgatcgacatcagcaacgacaagatgcagctcctgtacgacatgccgetg ccgctcggcgagccgcactacgtcgtcgccatcgaggccggcaagctgaagccgggcgtgcgctacaaggtcggcaccga cagccggaccgacaagccgcacccgggagccgtgcgcgccggcgaag $>$ mwwt43
gtgtgaccggacggcaagtacatcgtcgtctccggcaagctcgattcgcacaccttcgtctacagcttcgagaagatgcaggcc ctgatccaggcgggcgaattcgcgggtaaggatccgtacggcattcccatcctggatctgcagaagtcgctgcacacgcagac cgagctggggctgggccccctgcacacgcagtacgatgcagcctcctgcgttgcctacacctccetctacgtggactcgatggt ggccaagtggaactattgcgagggcaagctgctggatcggctctcggtccactacaacatcgggcacctgatgacgatgcacg gcgacaccgtggctccggaaggccattatctggtggcgetcgacaagctggcgatcgaccgcttccagcccgtgggccegct gcatccgcagaaccaccagctcatcgacatcagcggcgagaagatggagctgctctatgacatgccgetgccgetcggcgag ccgcactacgcggtggcgatcaacgccagcctgctcaagccgcgcaaccagtacaagctgggcaccaacagcaggacggg ggaggactccgccttcaagaccagggccggccgcgagcacgtcgacaagacgccgggcaaggtggaggtgttcggcacca cgatccgatcgcacatcacccccgagatcatcgaggtggaagaaggcgatcaggtgatcatccacctgacgaaccaggagcg
ggccgaggatcagacgcatggattcacggtggacacctacaacgtgaacgcctcgatcgagccgggcaagacgatcacggt gagcttcgtggcgagcaaggcgggcgtttatccgtactactgcacccaattctgctc $>$ mwwt44
ccgcatggggtggatgtctcgccggacggcaagtacatcgtcgtcggcggcaagctcgacagccacgcattggtctacagctt cgagaagatccaggcggcgatcggcgccggccgettcgagtcgaaggatccgtacgggatcccggtgatcgcgctcaagga cgcgatccacgtccaggtgccgctcggcctcggaccgctgcacacgcagtacgactcggcgecgtgcatcgcetacacgtcg ctgtacgtcgattcgcaggtcgcgaagtggaactactgcgagggcaaggtcgtcgacaagctgtcggtccactacaacatcggt cacctgatgacgatggagggcgattcgacgaaaccgggcggcaagtacctggtcgcgctcaacaagctcgcgatcgaccgct tcgtgccggtgggccegctgcatccgcagaaccaccagctgatcgacatcagcaacgacaagatgcagcttctctacgacatg ccgctgccgctcggtgagccgcactacgccgtctcgatcgccgcctcgaagctcaagcccggggtgcgetaccggggccgg caccgacagccgcaccgacaagccgcaccegggagcggtgaaggccggacaggagaagatcgtcaagaagggcaacaa ggtcgaggtgttcgggacgetgatccgctcgcacatcacgccggagaccatcgaggtcgacgtcggtgacgaggtcacgatc cacctgtcgaacctggagagagcgcaggacgagacgcacggcttcaccgtgtcgacgtacaacgtgcacgcgtcgatcgag ccgggcaagacggtcagcgtcgtcttcaaggccgacaaggaaggcgtctatccetactactgcacgtaattctgct $>$ mwwt47
ccgcacggtgtggatgtgtgtccagacggcaagttcatgaccgtttccggcaagctggacacccacgtttcggtctattcettcga gaagatccaggctgcgatcaaggccggcaagttcgaatccaaggatccgtacggcattccggtgatcgggatgaaggatgcg ctgcatacccaggtccagctcggtctcggtccettgcacacccagtacgattccaagccetgtatcgectacacctcgetgtatgt cgattctcaggtcgtcaaatggaatcactgcgaaggcaaggtactcgacaagatctcggtgcattacaacatcggtcacctgatg accatggaaggcgattcggctgatccgaagggtcgctacctggtggcgetgaacaagctggcgatcgaccgctttgtgccggtt ggccegctgcatccgcaaaatcaccagctgatcgacatttctaacgacaagatgcaattgttgtacgacatgccgctgccgttgg ggtgagccgcactacgetgtggccatcgaagccagcaa $>$ mwwt48
ccccatggtgtcgatgtgtgtccggatggcaagttcatgaccgtttccggcaagctggacacccacgtttcggtctattccttcgag aagatccaggctgcgatcaaggccggcaagttcgaatccaaggatccgtacggcattccggtgatcgggatgaaggatgcget gcatacccaggtccagctcggtctcggtccettgcacacccagtacgattccaagccetgtatcgcctacacctcgctgtatgtcg attctcaggttgtcaaatggaatcactgcaaaggcaaggtactcgacaagatctcggtgcattacaacatcggtcacctgatgacc atggaaggcgattcggctgatccgaagggtcgctacctggtggcgctgaacaagctggcgatcgaccgctttgtgccggttgg cccgctgcatccgcaaaatcaccagctgatcgacatttctaacgacaagatgcaattgttgtacgacatgccgctgccgttgggtg agccgcactacg
$>$ mwwt52
gattcggtcgatcccaagggccgttatctggtggccetgaacaagctggcgatcgatcgcttgtcccggtgggtcccctgcacc cgcagaaccatcagctgatcgacatcagcgaagacaaaatgcagcttctttacgacatgccgctgcctctgggtgagccgcact acgtggttgccatcgaggccggcaagctgaagccgggcgttcgctacaaggtcgggaccgacagccggaccgacaagccg cacccgggtgccgtacgggccggcgaggaaaagacggtcaagaagggcaacaagatcgaggtcttcggcaccctgatccgt tcgcacatcacgccggaaacgatcgaggctgaggtcggcgacgaagtgacgatccacctcaccaaccttgaacgcgegcag gacgagacgcacggcttcacgatttcgacctacaacgtgcatgcgtcggtcgagccgggcaagacggtcagcctcaagttcaa ggcggacaaggagggtgtctatcettactactgcacctacttctgctc
$>$ mwwt53
ccgcacggcgtggatgtgaggccagacggcaagttcatgaccgtttccggcaagctggacacccacgttcggtctattccttcg agaagatccaggctgcgatcaaggccggcaagttcgaatccaaggatccgtacggcattccggtgatcgggatgaaggatgc gctgcatacccaggtccagctcggtctcggtccettgcacacccagtacgattccaagccecgtatcgcetacacctcgetgtat gtcgattctcaggtcgtcaaatggaatcactgcaaaggcaaggtactcgacaagatctcggtgcattacaacatcggtcacctgat gaccatggaaggcgattcggctgatccaaagggtcgctacctggtggcgctgaacaagctggcgatcgaccgetttgtgccgg ttggccegctgcatccgcaaaatcaccagctgatcgacattttctaacgacaagatgcaattgttgtacgacatgccgctgccgtt gg
>mwwt55
cctcacggtgtcgacgtgtgtccggatggcaagttcatcatcgtcgccggcaagctcgacacgcacgtttccgtgtattccttcga gaagatccaggccgccatcaaggccggcaagttcgaatccaaggatccctacggcatcccggtgatcggcctcaaggacgeg gtgcagacgcaggtttcgctgggcetgggccegctgcatacccagtacgacagcaagccetgcetggcetacacctcgctcta cgtcgactcgcaggtcgccaagtggaactactgcaaaggcaaggtggtggacaagatttcggtccattacaacatcggccacct gatgaccatggaatgcgattcgaccaagccggccggcaagtacctcgtcgegctgaacaagctgtcgatcgaccgcttcgtcc cggtcggccegctgcagccgcagagccaccagctgatcgacatcagcaacgacaagatgcgtctgctctacgacatgccgttg ccgctgggcgagccgcattacgccgtctcgatcg
$>$ mwwt57
ccccatggggtcgatgtgtggcccgacggcaagttcatggtcgtggccggcaagctcgacacccacgtgtcggtctacagcttc gagaagatccaggccgccatcaaggccggcaagttcgagagcaaggacccgtacggcatcccggtgatcgcgatgaaggac gcgetgcacacgcaggtgtcgetcggcetcggcccgctgcacacgcagtacgacagcaagcettgcetggcctacacgtcge tctacgtcgactcgcaggtcgcgaagtggaacttctgcgaaggcaaggtcgtcgacaagatcagcgtgcactacaacatcggc cacctgatgacgatggagggcgactccaccaagcccggcggcaagtacctggtggcgctgaacaagctggcgatcgaccgc ttcgtgccggtgggccegctgcaccegcagaaccaccagctgatc
$>$ mwwt60
gtggatgtgaggcccgacggcaagaacatcatcgtggccggcaagctcgacacccacgtgtcggtctgcagtttcgagaagat ccaggcggcgatcaaggccggcaggttcgagtccaaggacccgtacggcatcccggtgatcgcgctgaaggatgccetgca cacccaggtgtcgetgggcctggggcccetgcacacgcagtacgacagcaagtcctgcaccgcgtacacctcgctgtacgtg gactcgcaggtggccaagtggaactactgcaaaggcaaggtgctcgacaagatcagcgtgcactacaacatcggtcacctgat gacgatggagggtgactccaccaagccggccggcaagtacctggtggcgctgaacaag $>$ mwwt66
ggatgtgtgcccggatggcaagtacatcatcggctcgggcaagctccagggcgtcacgaccgccttcaacttcgagaagatcc agaccgccatcaagaacaaggacttcacgggcgacaaggacggcatccccatcctcaagtacgagtcgatcaaggacgccg aggtgccggtcggcctcgggccgctgcacacacagttcggaccgaacggcgaagcctacacgtcgctcttcgtcgacagcge catcgccaagtggaagctcggcacgtgggaagtcatcgacaagatcccgatgtcctactccatcggtcacctcaccgccgcgg aaggcgacaccgtcaatccggatggcaagtacctgatcggcctcaacaagctctcgcacggacggcatctgaacgtcggtcct tctcagccegagtcctctcaactcgtcgacatcacggaggagaagatgaa
>mwwt67
agaccagacggcaagtacatggtcgtctccggcaagctcgacacccacgtctcggtctacagcttcgagaagatccaggccgc catcaaggccgggaaattcgagagcaaggacccctacggcatcccggtgatcggcatgaaggaggccetgcacgtgcaggt gccgctcggcctgggccegctgcacacccagtacgactcgaaggcctgcgtcgcctacacctcgctttacgtggactcgcagg tcgccaagtggaacttctgcaaaggcaaggtgctcgacaagatcagcgtgcactacaacatcggtcacctgatgaccatggag ggcgactccaccaagccggccggcaagtacctcgtcgcgctgaacaagctggccatcgaccgcttcgtgccggtgggcccg ctgcatccgcagaaccaccagctgatcgacatcagcaacgacaagatgcagttgctctacaacatgccgctgccgctggggcg agccgeactacgtcntencc
$>$ mwwt68
ccgcatggggtggacgtcacgccggacggcaagttcatgaccgtttccggcaagctggacacccacgtttcggtctattccttcg agaagatccaggctgcgatcaaggccggcaagttcgaatccaaggatccgtacggcattccggtgatcgggatgaaggatgc gctgcatacccaggtccagctcggtctcggtccettgcacacccagtacgattccaagccetgtatcgcctacacctcgctgtatg tcgattctcaggtcgtcaaatggaatcactgcaaaggcaaggtactcgacaagatctcggtgcattacaacatcggtcacctgatg accatggaaggcgattcggctgatccgaagggtcgctacctggtggcgctgaacaagctggcgatcgaccgctttgtgccggtt ggccegctgcatccgcaaaatcaccagctgatcgacatttctaacgacaagatgcaattgttgtacgacatgccgctgccgttgg gtgagccgcactacgctgtggccatcgaagccagcaagctgaagccggggcgtgcgctacaaggtcggtaccgattcccgca cggacaagccgcaccccggcatggttcgcgccggcgaagaacgcaccgagaagaagggcaacaagatcacggtctacggt acgttgatccgttcccacatcaccccggaaacgatcgaggetgatgtcggcgacgaagtcaccatccacctgaccaacctcgaa
cgtgcccaggacgaaacccatggtttcacggtgtccacgatgaacgtccacgcttcggttgaaccgggcaagacagtgaccgt caagttcaaggctgacaaggaaggcgtctatccctactactgcacctatttctgct
$>$ mwwt71
tgccggttggccegctgcatcccgcaaaatcacccagctgatcgacatttctaacgacaagatgcaattgttgtacgacatgccg ctgccgttgggtgagccgcantacgctgtggccatcgaagccagcaagctgaagccgggcgtgcgctacaaggtcggtaccg attcccgcacggacaagtcgcaccccggcatggttcgcgccggcgaagaacgcaccgagaagaagggcaacaagatcacg gtctacggtacgttgatccgttcccacatcaccccggaaacgatcgaggctgatgtcagcgacgaagtcaccatccacctgacc aacctcgaacgtgcccaggacgaaacccatggtttcacggtgtccacgatgaacgtccacgcttcggttgaaccgggcaagac agtgaccgtcaagttcaaggctgacaaggaaggcgtctatccetactactgcacceacttctgctc
$>$ mwwt 72
cctcatggtgtggatgtgacaccggatggcaagttcatcatcgttgccggcaagctcgacacgcacgtctcggtgtacagcttcg agaagattcaggccgegatcaaggccggcaagttcgagtcgaaggacgcctacggcatcccggtgctgagcctgaaggattc gctgcatacgcaggtgtcgctgggcctcggccccctgcacacccagtacgacagcaagccetgcctggcctacacctcgctgt atgtggattcgcaggtcgccaagtggaactactgcaaaggcaaggtggtggacaagatttcggtccactacaacatcggccacc tgatgaccatggaaggcgattcgaccaagcccgccggcaagtacctggtggccttgaacaagctctccatcgatcgtttcgtgc cggtcggccegctgcaaccgcagagccaccagctgatcgacatcagcaacgacaagatgcagctgctgtatgacatgccgct gccgctgggcgagccgcactacgccgtgtcgattgccgccaacaagctgaagccegccgtgcgctacaaggtcggcaccga cagccgcaccgacaagccgcatccgggcgcggtgcgtgccggcgaggagaagacggtcaagaagggcaacaaggtcgag gtcttcgccaccetgatccgctcgcacatcacgccggaaaccatcgaggtcgatgtcggcgacgaggtgacgatccacctgac caacctcgagcgcgcgcaggacgagacccacggcttcaccgtctcgacctacaacacgcatgcctcgatcgagccgggcaa gaccgtcagcgtcaagttcaaggccgacaaggaaggtgtctatcettactactgcacctacttctgctc
$>$ mwwt 73
agaccagacggcaagtacatggtcgtctccggcaagctcgacacccacgtctcggtctacagcttcgagaagatccaggccgc catcaaggccgggaaattcgagagcaaggacccctacggcatcccggtgatcggcatgaaggaggccetgcacgtgcaggt gccgctcggcctgggccegctgcacacccagtacgactcgaaggcctgcgtcgcctacacctcgctttacgtggactcgcagg tcgccaagtggaacttctgcgaaggcaaggtgctcgacaagatcagcgtgcactacaacatcggtcacctgatgaccatggag ggcgactccaccaagccggccggcaagtacctcgtcgcgctgaacaagctggccatcgaccgcttcgtgccggtgggcccg ctgcatccgcagaaccaccagctgatcgacatcagcaacgacaagatgcagttgctctacgacatgccgctgccgctgggcga gccgcactacgtcgtcgccatcgatgccaagaagctcaagccgggggtgcgctacaaggtcggcaccgacagccgcaccga caagccgcatccgggcgccgtgcgcgccggcgaagagaagaccgagaggaagggcaacaaggtcacggtctggggcac gctgatccgctcgcacatcacgcccgagaccatcgaggcggaagtgggcgacgaggtcaccatccacctgaccaacctcga gcgegcccaggacgagacccacggettcacggtgtcgacctacaacctgcacgcttcggtcgagccgggcaagacggtgac ggtgaagttcaaggccgacaaggaaggcgtctacceatactactgcacgtatttctgctc
$>$ mwwt75
ccgcacggcgtggatgtgagcccagacggcaagttcatgaccgtttccggcaagctggacacccacgtttcggtctattccttcg agaagatccaggccgcgatcaaggccggcaagttcgaatccaaggatccgtacggcattccggtgatcgggatgaaggatgc gctgcatacccaggtccagctcggtctcggtctcttgcacacccagtacgattccaagccetgtatcgcctacacctcgetgtatgt cgattctcaggtcgtcaaatggaatcactgcaaaggcaaggtactcgacaagatctcggtgcattacaacatcggtcacctgatg accatggaaggcgattcggctgatccaaagggtcgctacctggtggcgctgaacaagctggcgatcgaccgctttgtgccggtt ggcccactgcatccgcaaaatcaccagctgatcgacatttctaacgacaagatgcaattgttgtacgacatgccgctgccgttgg ggtgagccgcact
$>$ mwwt 76
cctcatggcgtcgatgtgaggccagatggcaagttcatgaccgtttccggcaagctggacacccacgtttcggtctattccttcga gaagatccaggctgcgatcaaggccggcaagttcgaatccaaggatccgtacggcattccggtgatcgggatgaaggatgcg ctgcatacccaggtccagctcggtctcggtccettgcacacccagtacgattccaagccetgtatcgcctacacctcgctgtatgt cgattctcaggtcgtcaaatggaatcactgcgaaggcaaggtactcgacaagatctcggtgcattacaacatcggtcacctgatg
accatggaaggcgattcggctgatccgaagggtcgctacctggtggcgctgaacaagctggcgatcgaccgctttgtgccggtt ggcccgctgcatccgcaaaatcaccagctgatcgacatttctaacgacaagatgcaattgttgtacgacatgccgctgccgttgg gtgagccgcactacgccgtggccatcgaagcengcaagctganccgggcgtgcgetacaaggtcggtaccgattcceg $>$ mwwt 77
ggatgtgtgcceggatggcaagtacatcatcggctcgggcaagctccagggcgtcacgaccgcettcaacttcgagaagatce agaccgccatcaagaacaaggacttcacgggcgacgaggacggcatccccatcctcaagtacgagtcgatcaaggacgccg aggtgccggtcggcctcgggecgctgcacacacagttcggaccgaacggcaaagcctacacgtcgctcttcgtcgacagcgc catcgccaagtggaagctcggcacgtgggaagtcatcgacaagatcccgatgtcctactccatcggtcacctcaccgccgcgg aaggcgacaccgtcaatccggatggcaagtacctgatcggcctcaacaagctctcgcacggacggcatctgaacgtcggtcct tctcagcccgagtcctctcaactcgtcgacatcacgggaggagaagatgaagctcctctatgacgccttcaccgagcccgagcc gcactacgeccagatgatccaccgtgacaaggtcaagcccgatcgaggtctacccgaagga
$>$ mwwt79
agaccagacggcaagtacatggtcgtctccggcaagctcgacacccacgtctcggtctacagcttcgagaagatccaggccgc catcaaggccgggaaattcgagagcaaggacccctacggcatcccggtgatcggcatgaaggaggccetgcacgtgcaggt gccgctcggcctgggccegctgcacacccagtacgactcgaaggcctgcgtcgcctacacctcgctttacgtggactcgcagg tcgccaagtggaacttctgcaaaggcaaggtgctcgacaagatcagcgtgcactacaacatcggtcacctgatgaccatggag ggcgactccaccaagccggccggcaagtacctcgtcgcgctgaacaagctggccatcgaccgettcgtgccggtgggcccg ctgcatccgcagaaccaccagctgatcgacatcagcaacgacaagatgcagttgctctacgacatgccgctgccgctgggcga gccgcactacgtcgtcgccatcgatgccaagaagctcaagccggggggtgegcta $>$ mwwt80
agaccagacggcaagtacatggtcgtctccggcaagctcgacacccacgtctcggtctacagcttcgagaagatccaggccgc catcaaggccgggaaattcgagagcaaggacccctacggcatcccggtgatcggcatgaaggaggccetgcacgtgcaggt gccgctcggcctgggccegctgcacacccagtacgactcgaaggcctgcgtcgcctacacctcgctttacgtggactcgcagg tcgccaagtggaacttctgcaaaggcaaggtgctcgacaagatcagcgtgcactacaacatcggtcacctgatgaccatggag ggcgactccaccaagccggccggcaagtacctcgtcgcgctgaacaagctggccatcgaccgcttcgtgccggtgggcccg ctgcatccgcagaaccaccagctgatcgacatcagcaacgacaagatgcagttgctctacgacatgccgctgccgctgggcga gccgcactacgtcgtcgccatcgatgccaagaaagctcaagccggggggtgcgctacaaggtcggcaccgacagccgcacc gacaagccgcatccgggcgccgtgcgcgccggc
>mwwt81
gtggatgtgaggcccgacggcaagaacatcatcgtggccggcaagctcgacacccacgtgtcggtctgcagtttcgagaagat ccaggcggcgatcaaggccggcaggttcgagtccaaggacccgtacggcatcccggtgatcgcgetgaaggatgccetgca cacccaggtgtcgctgggcctggggcccctgcacacgcagtacgacagcaagtcctgcaccgcgtacacctcgctgtacgtg gactcgcaggtggccaagtggaactactgcaaaggcaaggtgctcgacaagatcagcgtgcactacaacatcggtcacctgat gacgatggagggtgactccaccaagccggccggcaagtacctggtggcgctgaacaagctggccatcgaccgcttcgtgccg gtgggccegctgcaccegcagaaccaccagctgatcgacatctccggcgacaagatgcagttgctgtacaacatgccgctgcc gctgggtgagccgcactatgcgggtgtcaatcgcggccaacaagctcaagccggcengtgcgctacaagg $>$ mwwt82
ccgcacggtgtggatgtgacgccggacggcaagttcatcatcgtcgccggcaagctcgacacgcacgtttccgtgtattcettcg agaagatccaggccgccatcaaggccggcaagttcgaatccaaggatccctacggcatcccggtgatcggcctcaaggacgc ggtgcagacgcaggtttcgctgggcctgggcccgctgcatacccagtacgacagcaagccetgcctggcctacacctcgctct acgtcgactcgcaggtcgccaagtggaactactgcaaaggcaaggtggtggacaagatttcggtccattacaacatcggccac ctgatgaccatggaaggcgattcgaccaagccggccggcaagtacctcgtcgcgctgaacaagctgtcgatcgaccgcttcgt cccggtcggcccgctgcagccgcagagccaccagctgatcgacatcagcaacgacaagatgcatctgctctacgacatgccg ttgccgctgggcgagccgcattacgccgtctcgatcgccgccaacaagctgaagcccgccgtgcgctacaaggtcggcaccg acagccgcaccgacaagccgcatccgggegcggtgcgtgccggcgaggagaagaccgtcaagaagggcaacaaggtcga agtcttcgccacgetgatccgttcgcacatcacgcctgaaaccatcgaggtcgatgtcggcgacgaagtgacgatccacctgac
caatctcgagcgcgcccaggacgagacccacggcttcacggtgtcgacctacaacacgcacgcttcggtcgagccgggcaa gaccgtcagcgtcaagttcaaggccgacaaggaaggtgtctatccatactactgcacccaattctgctc $>$ mwwt83
cctcatggtgcggatgtcacaccagacggcaagttcatggtcgtggccggcaagctcgacacccacgtgtcagtctacagcttc gagaagatccaggccgccatcaaggccggcaagctcgagagcaaggacccgtacggcatcccggtgatcgcgatgaagga cgcgctgcacacgcaggtgtcgctcggcctcggccegctgcacacgcagtacgacagcaagccttgcctggcctacacgtcg ctctacgtcgactcgcaggtcgcgaagtggaacttctgcaaaggcaaggtcgtcgacaagatcagcgtgcactacaacatcgg ccacctgatgacgatggagggcggctccaccaagcccggcggcaagtacctggtggcgetgaacaagctggcgatcgaccg cttcgtgccggtgggeccgctgcacccgcagaaccaccagctgatcgacatcagcaacgacaagatgcagctgctgtacgac atgccgctgccgctgggtgagccgcactatgcggtgtcgatcgcggccaacaagctcaagccggccgttcgctacaaggtcg ggaccgacagccggaccgatgagccgcacccgttcgccaccaaggcggggcgaggagaagatcgtcaagaagggcaacaa ggtcgacgtctatgcgacgctgatccgctcgcacatcacgcccgagacgatcgaggtcgacgtgggtgacgacgtggcgatc cacctgaccaacctcgagcgcgcgcaggacgagacccacggcttcaccgtgtcgacctacaacacccatgcgtcggtcgaac cgggcaagacggtgtcggtgaagttcaaggccgacaaggaaggcgtctacccgtactactgcacccaattctgctc >mwwt84 cctcatggggcggacgtcactccggacggcaagttcatcatcgtgtcgggcaagctcgacacgcacaccatgatgtactcgttc gacaagattcaggaggccatcaaggcgaacaagttcgagggcaaggacccgtacggcattcccatcatcggaatgaaggacg cgctccacaagcaggtcgagctcggcetcgggccgctgcacacgcagtacgacaccaagccgtgcatcggctacacctcgat gtacgtcgactcgcaggtggcgaagtgggactactgcgagggcaaggtgctcgacaagctgtcggtgcactacaacatcggc cacctcatgacgatggaaggcgactcggtgaagccgaagggtcgctacctggtcgcgetcaacaagctggccatcgaccgctt caacccggtcggcccactgcaccegcagaaccaccagctcatcgacatctcnaacgacaagatgcagctgctctacgacatge cgctgccgetcggtgagccgcactacgcggtcgccatcagcgccgccaccetgaagcctggcgttcgctacaaggtcggcac caac
$>$ mwwt85
ccccacggtgccgatgtctcaccggacggcaagttcatcatcgtctcgggcaagctcgacacccatgtgtcggtctacagcttcg agaagatccaggccgccatcaaggccggcaagttcgagagcaaggacccgtacggcatcccggtcatcgcgataaaggacg cgctggcgacgcaggtgtcgctgggcctgggcccgctgcacacgcagttcgacagcaggaactgcgtcgcctacacctcget gtacgtcgactcgcaggtcgccaagtgggacttctgcgaaggcaaggtgctcgacaagatcagcgtgcactacaacatcggcc acctgatgacgatggagggtgacagcaccaagccccagggcaagtacctggtggcgctgaacaagctggccatcgaccgctt cgtgccggtgggcccgctgcacccgcagaaccaccagctgatcgacatctccgggcgacaagatgcagctgctctacgacat gccgctgccgctgggcgagccgcactacgcggtgtcgatcgcggccaacaagctcaagcccgcggtgcgctacaaggtcgg caccgacagccgtacggacgagccgcacccgggcgccaccaaggcgggcgaggagaaggtcgtcaagaagggcaacaa ggtcgaggtgttcgcgaccetgatccgctcgcacatcacgcccgagacgatcgaggtcgacgtcggcgacgacgtgaccatc cacctgaccaacctcgagcgcgcgcaggacgagacgcacggettcacggtcagcacctacaacgtgcatgcgtccatcgagc cgggcaagacggtcagcgtcaagttcaaggccgaccgcgaaggcgtgtacceatactactgcacctatttctgct >mwwt86
cctcatggggcggatgtgagcccggacggcaagttcatgaccgtttccggcaagctggacacccacgtttcggtctattccttcg agaagatccaggetgcgatcaaggccggcaagttcgaatccaaggatccgtacggcattccggtgatcgggatgaaggatgc gctgcatacccaggtccagctcggtctcggtccettgcacacccagtacgattccaagccetgtatcgcctacacctcgetgtatg tcgattctcaggtcgtcaaatggaatcactgcaaaggcaaggtactcgacaagatctcggtgcattacaacatcggtcacctgatg accatggaaggcgattcggctgatccgaagggtcgctacctggtggcgctgaacaagctggcgatcgaccgctttgtgccggtt ggccegctgcatccgcaaaatcaccagctgatcgacatttctaacgacaagatgcaattgttgtacgacatgccgctgccgttgg gtgagccgcactacgctgtggccattgaagccagcaagctggagccggcagtgcgetacaaggtcggcaccgacagccgca ccgatgagaagcaccccggcgcagtgcgcgcgggtgaagaaaagacggtcaagaagggcaacaaggtcgaggtgttcggc accetgatccgctcgcacatcacaccogagacgatcgaagtggatgtgggcgacgaggtcaccatccacctgaccaacctcga
gcgtgcgcaggacgagacccacggcttcaccgtgtcgacctacaacacccacgcctcggtcgagcccggcaagaccgtgac ggtgaagttcaaggccgacaaggaaggtgtgtacceatactactgcacccagttctgctc $>$ mwwt 87
ccgcacggcgtggacgtctgaccagacggcaagttcatgaccgtttccggcaagctggacacccacgtttcggtctattccttcg agaagatccaggctgcgatcaaggccggcaagttcgaatccaaggatccgtacggcattccggtgatcgggatgaaggatgc gctgcatacccaggtccagctcggtctcggtcccttgcacacccagtacgattccaagccetgtatcgcctacacctcgctgtatg tcgattctcaggtcgtcaaatggaatcactgcaaaggcaaggtactcgacaagatctcggtgcattacaacatcggtcacctgatg accatggaaggcgattcggctgatccgaagggtcgctacctggtggcgetgaacaagctggcgatcgaccgetttgtgccggtt ggccegctgcatccgtaaaatcaccagctgatcgacatttctaacgacaagatgcaattgttgtacgacatgccgctgccgttgg gtgagccgcactacgctgtggccatcgaagccagcaagctgaagccgggcgtgcgctacaaggtcgggtaccgattcccgca cggacaagccgcaccccggcatggttcgcgccggcgaagaacgcaccgagaagaagggcaacaagatcacggtctacggt acgttgatccgttcccacatcaccccggaaacgatcgaggctgatgtcggcgacgaagtcaccatccacctgaccaacctcgaa cgtgcccaggacgaaacccatggttcacggtgtccacgatgaacgtccacgettcggttgaaccgggcaagacagtgaccgt caagttcaaggctgacaaggaaggcgtctatccatactactgcacccatttctgct
>mwwt88
cgatgtgaggccagatggcaagtacatggtcgtctccggcaagctcgacacccacgtctcggtctacagcttcgagaagatcca ggccgccatcaaggccgggaaattcgagagcaaggacccctacggcatcccggtgatcggcatgaaagaggccetgcacgt gcaggtgccgctcggcetgggccegctgcacacccagtacgactcgaaggcctgcgtcgcctacacctcgctttacgtggact cgcaggtcgccaagtggaacttctgcgaaggcaaggtgctcgacaagatcagcgtgcactacaacatcggccacctgatgacc atggagggcgactccaccaagccggccggcaagtacctcgtcgcgctgaacaagctggccatcgaccgettcgtgccggtgg gcccgctgcaccegcagaaccaccagctgatcgacatctccggcgacaagatgcagctgctctacgacatgccgctgccgct gggcgagccgcactacgtcgtcgccatcgatgccaagaagctcaagccgggggtgcgctacaaggtcggca $>$ mwwt 90
ccgcatggggtcgatgtcacgccggacggcaaattcatcaccgtttccggcaagctggacacccacgtttccgtctattccttcg agaagatccaggccgccatcaaggccggcaagttcgaatccaaggatccgtacggcattccggtcatcaacatgaaggatgcg ctgcacacccaggttcaactgggtcttggccccctgcacacccagtacgactccaaggcctgcgtcgcgtacacctcgctgtac gtggatagccaggtcgccaagtgggactactgcgcgggcaaggtgctggacaagctttccgtgcattacaacatcggccacct gatgaccatggaaggcgactccaccaagccggccggcaagtatctcgtcgcgctgaacaagctggccatcgatcgettcgtgc cggtcggtccectgcaccegcagaaccaccagctgatcgacatcagcaacgacaagatgcagctcctctacgacatgccgctg ccgctgggcgagccgcactacgccgtcgccatcgccgccagcaagctgaagccgggcgtgcgctacaaggtcggcaccga cagccgcaccgacaagccgcatccgggcgcggtgcgtgccggcgaggagaagaccgtcaagaagggcaacaaggtcgaa gtcttcgccacgctgatccgttcgcacatcacgcctgaaaccatcgaggtcgatgtcggcgacgaagtgacgatccacctgace aacctcgagcgcgcccaggacgagacccacggcttcacggtgtcgacctacaacgtgcatgcctcggtcgagccgggcaag accgtgcaggtgaagttcaaggccgacaaggaaggcgtctatccctactactgcacccacttctgctc
$>$ mwwt92
ccgcacggtgtggatgtcaggccagacggcaagttcatggtcgtggccggcaagctcgacacccacgtgtcggtctacagctt cgagaagatccaggccgccatcaaggccggcaagttcgagagcaaggacccgtacggcatcccggtgatcgcgatgaagga cgcgetgcacacgcaggtgtcgctcggcctcggccegctgcacacgcagtacgacagcaagccttgcctggcctacacgtcg ctctacgtcgactcgcaggtcgcgaagtggaacttctgcaaaggcaaggtcgtcgacaagatcagcgtgcactacaacatcgg ccacctgatgacgatggagggcgactccaccaagcccggcggcaagtacctggtggcgctgagcaagctggcgatcgaccg cttcgtgccggtgggccegctgcaccencagaaccaccanctgatcgacatcagcaacaac $>$ mwwt 94
ggatgtgtgaccggacggcaagttcatggtcgtggccggcaagctcgacacccacgtgtcggtctacagcttcgagaagatcc aggccgccatcaaggccggcaagttcgagagcaaggacccgtacggcatcccggtgatcgcgatgaaggacgcgctgcaca cgcaggtgtcgctcggcctcggccegctgcacacgcagtacgacagcgagcettgcctggcctacacgtcgctctacgtcgac tcgcaggtcgcgaagtggaacttctgcgaaggcaaggtcgtcgacaagatcagcgtgcactacaacatcggccacctgatgac
gatggagggcgactccaccaagcccggcggcaagtacctggtggcgctgaacaagctggcgatcgaccgcttcgtgccggt gggccegctgcaccegcagaaccaccagctgatcgacatcagcaacgacaagatgcagctgctgtacgacatgccgctgccg ctgggtgagccgcactatgcggtgtcgatcgcggccaacaagctcaagccggccgttcgctacaaggtcgggaccgacagce ggaccgatgagccgcacccgttcgccaccaaggcgggcgaggagaagatcgtcaagaagggcaacaaggtcgacgtctat gcgacgetgatccgctcgcacatcacgccegagacgatcgaggtcgacgtgggtgacgacgtggcgatccacctgaccaace tcgagcgcgegcaggacgagacceacggcttcaccgtgtcgacctacaacgcccatgcgtcggtcgaaccgggcaagacgg tgtcggtgaagttcaaggccgacaaggaaggegtctacccatactactgcacgtaattctgctc
$>$ mwwt95
ccgcacggtgtggatgtcagaccagacggcaagttcatggtcgtggccggcaagctcgacacccacgtgtcggtctacagctt cgagaagatccaggccgccatcaaggccggcaagttcgagagcaaggacccgtacggcatcccggtgatcgcgatgaagga cgcgctgcacacgcaggtgtcgctcggcctcggccegctgcacacgcagtacgacagcaagccttgcetggcctacacgtcg ctctacgtcgactcgcaggtcgcgaagtggaacttctgcaaaggcaaggtcgtcgacaagatcagcgtgcactacaacatcgg ccacctgatgacaatggagggcgactccaccaagcccggcggcaagtacctggtggcgetgaacaagcaggcgatcgaccg cttcgtgccggtgggeccgetgcaccegcagaaccacengctga
$>$ mwwt101
gggcgtccggtacaaggtcggcacgaacagccgcaccgaccagaagcacccgggcgtggtgcgcgcgggtgaagagaag atcgtcaagagccccggcaaggtcgaggtgttcggcacgctgatccgctcgcacatcaccccggagatcatcgaggccgaga agggtgacgaggtgacgatcaacctcaccaacctcgagcgcgcccaggacgagacgcacggcttcaccgtgtccggcctga acgtccacgegtcgatcgagcccggcaagacggtgtcggtgaagttcaaggccgagcgcgaaggcgtctacccctactactg cacctacttctgctcnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnccccacggggcggatgtcacgccggacggcaagtt catcatcgtgtccggcaagctggacacgcacaccatggtgtacagcttcgagaagattcagaaggcgatcgccgacaagaagt tcgaaggcaaggaccegtacggcattccgatcatcgcgatgaaggacgcgctgcaggcgcaggtcgagctcggcctggggc cgctgcacacccagttcgacaagaagccgtgctgggcgtacacgtcgctgtacgtcgactcgcaggtcgegcgetgggactac tgccagggcaaggtgctggacaagctgtcggtccactacaacatcggccacctgctcacgatggaaggcgactcggtcgacc cgaagggccgctacctgatcgcgctgaacaagctggcgatcgaccgcttcaacccggtcggcccgctgcacccgcagaacc accagctcatcgacatcagcggcgacaagatgcagctgctctacgacatgccgctgcceatggggcgagccgcactacgegg tggc
$>$ mwwt27
ccccacggggcggacgtgtctccggatggcaagaacatcatcgtcgccggcaagctcgacacccatgtctcggtctacagctt cgacaagatccaggcggccatcaaggccggcaagttcgaaagcaaagatccgtacggcatcccggtgatcggcatgaagga cgcgctgcacacccaggtgtcgctcggcctgggtccgctgcacacgcagtacaacagcaagaactgcgtcgcctacannnn nn nnnnnnnnnnnnnnnnnnnnnnnnaggtcaccatccacatgaccaaccttgagcgtgcgcaggacgagacccacggctt caccgtgtcgacctacaacacccacgcctcggtcgagcccggcaagaccgtgacggtgaagttcaaggccgacaaggaagg tgtgtaccettactactgcacctacttctgctc
$>$ mwwt46
ccgcatggggtggatgtctcgccggacggcaagtacatcgtcgtcggcggcaagctcgacagccacgcattggtctacagctt cgagaagatccaggcggcgatcggcgccggccgcttcgagtcgaaggatccgtacgggatcccggtgatcgcgctcaagga cgcgatccacgtccaggtgccgctcggcctcggaccgctgcacacgcagtacgactcggcgccgtgcatcgcctacacgtcg ctgtacgtcgattcgcaggtcgcgaagtggaactactgcgagggcaaggtcgtcgacaagctgtcggtccactacaacatcggt cacctgatgacgatggagggcgattcgacgaaaccgggcggcaagtacctggtcgcgctcaacaagctcgcgatcgaccgct tcgtgccggtgggcecgctgcatccgcagaaccaccagctgatcgacatcagcaacgacaagatgcagcttctctacgacatg ccgctgccgctcggtgagccgcactacgccgtctcgatcgccgcctcaaanctcaagcccggggtgcgctaccgggccggc accgacagccgcaccgacaagccgcacccgggagcggtgaannnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nngcacga
acaagccgcaccccggcatggttcgcgccggngaagaacgcaccgagaagaagggcaacaagatcacggtctacggtacg ttgatccgttcccacatcaccccggaaacgatcgaggetgatgtcggcgacgaagtcaccatccacctgaccaacctcgaacgt gcccaggacgaaacceatggtttcacggtgtccacgatgaacgtccacgettcggttgaaccgggcaagacagtgaccgtcaa gttcaaggctgacaaggaaggcgtctatcettactactgcacceacttctgctc
$>$ mwwt63
ccccatggcgeggatgtcagcceggatggcaagttcatcatcgtcgccggcaagctcgacacgcacgtttccgtgtattcettcg agaagatccaggccgccatcaaggccggcaagttcgaatccaaggatccetacggcatcccggtgatcggcctcaaggacge ggtgcagacgcaggtttcgctgggcctgggcccgctgcatacccagtacgacagcaagccetgcctggcctacacctcgctct acgtcgactcgcaggtcgccaagtggaactactgcaaaggcaaggtggtggacaagatttcggtccattacaacatcggccac ctnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnngattcgaccaaagccggccggcaagtaccttgtcgcgctgaacaaagc tgtcgatcgaccgcttcgtcceggtcggcccgetgcagccgcagagccaccagctgatcgacatcagcaacgacaagatgcat ctgctctacgacatgccgttgccgetgggegagccgcattacgccgtctcgatcgccgccaacaagctgaagcccgccgtgcg ctacaaggtcggcaccgacagccgcaccgacaagccgcatccgggcgcggtgcgtgccggcgaggagaagaccgtcaag aagggcaacaaggtcgaagtcttcgccacgctgatccgttcgcacatcacgcctgaaaccatcgaggtcgatgtcggcgacga agtgacgatccacctgaccaacctcgagcgcgcccaggacgagacccacggcttcacggtgtcgacctacaacacgcacget tcggtcgagccgggcaagaccgtcagcgtcaagttcaaggccgacaaggaaggtgtctatccttactactgcacctacttctgct c >mwwt64
ccgcatggggcggatgtcaggccggatggcaagttcatcaccgtttccggcaagctcgacacgcacgtttcggtctattcgttcg acaagatccaggccgcaatcaaggccggcaagttcgagtcgaaggacgcctacggcatcccggtgatcggcatgaaggacg cgttgcacgcgcaggtccagctcggcctcggcccgctgcatacgcagtatgacgccaagccttgcgttgcctacacctcgctct acgtcgattcgcaggttgccaagtgggactactgcgaaggcaaggtgctcgacaagatcagcgtgcactacaacatcggtcac ctgatgaccatggaaggcgactcggctgatcccaagggccgctatctggtcgcgctgaacaagctggcgatcgaccgettcgt gccggtgggccegctgcatccgcagaaccaccagctgatcgacatcagcaacgacaagatgcannnnnnnnnnnnnnn nn nnnnnnnnnnnnaccgacagccgcactgacaagccgcatccgggtgcggtgcgtgccggcgaggagaagaccgtcaag aaaggcaacaaggtcgaggtcttcgccacgctgatccgttcgcacatcacgcctgaaaccatcgaggtcgatgtcggcgacga agtgacgatccacctgaccaacctcgagcgcgcccaggacgagacccacggcttcacggtgtcgacctacaacacgcacgct tcggtcgagccgggcaagaccgtcagcgtcaagttcaaggccgacaaggaaggtgtctatccetactactgcacccacttctgc tc
$>$ mwwt 70
ccgcatggggtggacgtgagaccagacggcaagttcctgaccgtcgccggcaagctcgacacgcacgtttccgtgttctccttc gaaaagatccaggccgcgatcaaggccggcaagttcgaatccaaggatccgtacggcattccggtgatcggcatgaaggatg cgctgtccacccaggtccagctcggcctcggcccgctgcacacccagtacgacagcaagccetgtatcgcctacacctcgctct acgtcgattcccaggtcgtcaaatggaatcactgcaaaggcaaggtgctcgacaagatctccgtgcactacaacatcggtcacct gatgaccatggaaggcgactcggctgatccaaagggccgttacctggtggcactgaacaagctgtcgatcgaccgttcaacce ggtcggccegctgcatccgcaaaaccaccagctgatcgacatctcgaacgacaagatgcagctcctgtacgacatgccgattc cgctcggcgagccgcactacgtggttgccatcgaagcttcaaagctgaagccgggcgtgcgttacaagtgggtaccgactenc gtannn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnaagggtaacaagatcgaagtcttcggtaccttgatccgctcgcacatc acgccggaaaccatcgaggccgaagtgggtgacgaaatcaccgtccacctgaccaacctcgaacgcgcccaggacgaaac gcacggtttgccgtgtcgaccttcaacgtgcatgcctcgatcgagccgggcaagacggttaccgtcaagttcaaggccgacaa ggaaggegtctatccgtactactgcacccacttctgctc
$>$ mwwt89
ccccatggtgtcgatgtgactccagacggcaagcgcatcatcgtttccggcaaactcgacacccacgcatcggtgttcagctttg agaagatcatggccgccatcaaggcgggcaagttcgaatccaaggacccctatggcatcccggtgatcgccatggcggatgc gatggacaagcaggtgcagatcggcctcggcccgttgcatacccagttcgactccaagccetgtctggcctacacctcggtgta tgtggactcccaggtggcaaagtgggactactgtgaaggcaaggtgctggacaagctgagcgtgcactacaacatcggccac ctgatgaccatggaaggcgattccaccgatcccaagggccattacctggtggcgetgaacaagcttgccatcgaccgttatgttc ccgtcggcccettgcatcctcagagccatcagctgatcgacatcagcggcgacaagatgcagctgctgtatgacatgccgctgc cgatgggcgaacctcactatgccgtatcgattgccgetgaaaactgaangccggcgatccgttacaaggtaggcaccaacagc cgtaccgaccagcccaacccgnnn nncggtgcgcaagggcaacaagctggaag tcttcggcaccetgatccgctcccacatcacgccggaaaccatcgaagccgaagtgggcgacgaaatcaccatccacctgacc aatctcgaacgggccgaggatgaaacccacggcttcaccgtgagcacctacaacgtccatgcctcgatcgaaccgggcaaga ccgtgacggtgaagttcaaggcggacaaggaaggcgtctatccgtactactgcacccatttctgctc
$>$ mwwt93
ccgcatggggtggatgtgagaccggacggcaagttcatgaccgtttccggcaagctggatacgcatacctcggtgtactcgttc gacaagatccagtcggccatcaagggcggcaggttcgaatccaaggacccgtacggcgtgccggtgatcggtctcaaggatg cgctggacaagcaggtgcaactcggcetcggccccctgcacacccagtacgactccaagccetgtatcgcctacacctcgctg tatgtggatagccaggttgccaagtggaactactgcgaaggcaaggtgctcgacaagctttccgtgcactacaacatcggtcac ctgatgacnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnngcgntgaacaagctggcgatngaccgcttcgtgccggtcggc ccgctgcatccgcaaaaccaccagctggtcgacatctcgaacgacaagatgcagttgttgtatgacatgccgetgccgetgggc gagccgcactacgcggtcggtatcgacgcgaccaagctcaagccgggcgtgcgctacaaggtcgggaccgattcccgtacc gacaagccgcatccgggcgcggtccgtgccggcgaggaaaagacggtcaagaagggtaacaagatcgaagtcttcggcac cctgatccgctcgcacatcacgccggaaaccatcgaagccgaagtcggcgacgaaatcaccatccacctgaccaacctcgaa cgcgcccaggacgaaacccacggcttcacggtatcgacctacaacacccacgcgtccatcgagccgggcaagacggtgacg gtgaagttcaaggccgacaaggaaggegtctatccgtactactgcacccacttctgctc
>mwwt96
ccccatggtgcggatgtgagaccggatggcaaattcatcaccgtttccggcaagctggacacccacgtttccgtctattcettcga gaagatccaggccgccatcaaggccggcaagttcgaatccaaggatccgtacggcattccggtcatcaacatgaaggatgcgc tgcacacccaggttcaactgggtcttggccccetccacaccccgtacgtctcgaagaagtgcgtcgcctacacctccetgtatgt cgactcgcaggtcgtcaagtgggatcactgcgaaggcaaggttctcgacaagatctcggtgcactacaacatcggtcacetgat gaccatggaaggcgactccatggatccaaagggccgctacctggtcnnnnnnnnnnnnnnnnnnnnnnnnnnnn nngat ccgctcgcacatcacgccggaaaccatcgaggcggaagtgggcgacgaaatcaccatccacctgaccaacctcgagcgtgc ccaggacgaaacccacggcttcaccgtgtcgacctacaacgtccatgcgtcggtcgagccgggcaagaccgtcacggtcaag ttcaaggctgacaaggaaggcgtctatccetactactgcacgcaattctgctc

APPENDIX 2.

Nucleotide accession numbers for reference organsims used in this study (protein and nucleotide sequences were obtained from the Pipeline Functional Gene/ Repository [PFGR] [http://flyingcloud.cme.msu.edu/fungene/]).

Achromobacter cycloclastes X94977
Acidovorax sp. NC_008782
Alkalilimnicola ehrlichei NC_008340
Anaeromyxobacter dehalogenans NC_007760
Anaeromyxobacter sp. Fw109-5 DQ504302
Azoarcus NC_006513
Bradyrhizobium japonicum NC_004463
Brucella ovis NC_009504
Burkholderia pseudomallei NC_009074
Campylobacter fetus NC_008599
Colwellia psychrerythraea NC_003910
Crenimugil crenilabis NC_003170
Cupriavidus necator NC_005241
Dechloromonas aromatica NC_007298
Desulfitobacterium hafniense NC_007907
Dinoroseobacter shibae NZ AAVE01000001
Geobacillus thermodenitrificans NC_009328
Gramella forsetii NC_008571

Hahella chejuensis NC_007645
Haloarcula marismortui NC_006396
Halorubrum lacusprofundi NZ_ABEB01000008
Magnetospirillum gryphiswaldense CU459003
Magnetospirillum magneticum NC_007626
Magnetospirillum magnetotacticum NZ_AAAP01003630
Marinobacter hydrocarbonoclasticus DQ504302
Marinobacter sp. NZ_AAXY01000004
Methylobacterium NZ_ABAY01000093
Paracoccus pantotrophus AF016058
Photobacterium profundum NZ_AAPH01000041
Pseudomonas aeruginosa NZ_AAKW01000028
Pseudomonas denitrificans AF016059
Pseudomonas fluorescens AF056319

Pseudomonas stutzeri NC_009434
Psychroflexus torquis NZ_AAPR01000008
Psychromonas ingrahamii NC_008709
Pyrobaculum calidifontis NC_009073
Reinekea sp. NZ_AAOE01000026
Rhodobacter sphaeroides AF125260
Rhodopseudomonas palustris NC_008435
Robiginitalea biformata NZ_AAOI01000001
Roseovarius sp. NZ_AAMV01000002

Shewanella loihica NC_009092
Silicibacter pomeroyi NC_006569
Sinorhizobium meliloti NC_003037
Stappia aggregata NZ_AAUW01000018
Thiobacillus denitrificans NC_007404
Thiomicrospira denitrificans NC_007575
Wolinella succinogenes AJ640086

