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Abstract

The most widely used model to perform the analysis of piles under lateral loads consists
in modeling the pile as a series of beam elements and representing the soil as a group of
unconnected, concentrated springs perpendicular to the pile (Discrete Winkler Model).
The literature review shows that the soil stiffness and damping properties are included in
a dynamic analysis through lumped springs and dashpots, but a lumped mass to represent

soil inertia is not included.

The objective of this investigation is to perform an analytical and numerical study of the
dynamic response of the pile-soil system under lateral loads (considering the soil as a
semi-infinite half space), in order to develop a rational method that includes the soil
contribution to the system inertial properties through a series of lumped masses,
consistent with the Discrete Winkler Model, and to evaluate the importance of such

lumped mass in the system response.

A simplified lumped model, consistent with the Winkler hypothesis, was obtained by
performing an approximation of the continuous (plane strain) model developed by
Novak. In the proposed approach, the pile-soil interaction is taken into account through
three frequency independent elements: a spring with stiffness ki, a mass with value m,
and a dashpot with coefficient c,. The spring-mass-dashpot coefficients ka, ma, and c, that

represent the soil can be obtained by means of simple equations.

The proposed lumped model was used to demonstrate that a lumped soil mass is not
required for small soil Poisson’s ratios. However, the soil mass is important for high soil
Poisson’s ratios, as may be the case of saturated soils (for v = 0.5 the required soil

lumped mass is in the same order of the pile mass contribution).



Resumen

El modelo mas usado para efectuar el analisis de pilotes bajo carga lateral consiste en
modelar el pilote como una serie elementos de viga (flexionales), y representar al suelo
como un grupo de resortes concentrados, desconectados, perpendiculares al pilote
(Modelo Discreto de Winkler). La revision bibliografica muestra que las propiedades de
rigidez y amortiguamiento del suelo son incluidas en un analisis dinamico por medio de
resortes y amortiguadores concentrados, pero las propiedades de inercia del suelo no son

consideradas por medio de una masa concentrada.

El objetivo de esta investigacion es desarrollar un estudio analitico y numérico de la
respuesta dindmica del sistema suelo-pilote bajo cargas laterales (considerando el suelo
como un espacio semi-infinito), para desarrollar un método racional que incluya la
contribucion del suelo a las propiedades de inercia del sistema, a través de una serie de
masas concentradas, consistentes con el Modelo Discreto de Winkler, y evaluar la
importancia de esta masa concentrada en la respuesta del sistema.

Se realiz6 una aproximacion al modelo continuo (de estado plano de deformaciones)
desarrollado por Novak, para obtener un modelo simplificado consistente con las
hipotesis de Winkler. La interaccion suelo-pilote se tiene en cuenta a través de tres
elementos independientes de la frecuencia: un resorte de rigidez k,, una masa de valor m,
y un amortiguador de constante c,. Estos tres coeficientes se obtienen por medio de

expresiones sencillas.

Este modelo se usé para demostrar que para razones de Poisson bajas no se requiere una
masa concentrada de suelo. Sin embargo, para razones de Poisson altas, como es el caso
de suelos saturados, la masa de suelo es importante (para v = 0.5 la masa concentrada de

suelo es del mismo orden que la contribucion de masa del pilote).
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1 Introduction

This chapter presents the justification of the developed research project, and the
objectives and scope of the work, together with a brief discussion of the methodology

adopted to develop the project.

1.1 Justification

Foundation systems composed by isolated piles or pile groups are extensively used to
support different types of structures placed over soft soil layers, where shallow
foundations are not appropriate because they do not provide the required capacity, or may

experience too large settlements.

These pile foundations have to be designed to support lateral loads due to earthquakes,
wind, and vehicle impact loads, among others. The most widely used model to perform
the analysis of piles under lateral loads consists in modeling the pile as a series of beam
elements, and considering the pile-soil interaction by representing the soil as a group of
unconnected, concentrated springs perpendicular to the pile (Discrete Winkler Model). In
order to consider soil non-linear behavior, the springs can have a varying stiffness given
through a non-linear load-deflection relationship that depends on the type of soil and type

of pile, known as p-y curves.

To adequately address pile response under earthquake actions, or to analyze heavy
vibratory machine foundations, it is often required to perform a dynamic analysis of the
pile for transverse (lateral) vibrations. For a dynamic analysis it is critical to have an
adequate representation of the system stiffness (force-deflection relationships), and
adequate representation of the system mass involved in the vibration phenomena. Up to
now, the Winkler model that is generally used only takes into account the mass of the
pile, and does not consider the possible soil mass contribution to the inertia

characteristics of the system.



The literature review (presented in Chapter 2) shows that the soil stiffness and damping
properties are included in a dynamic analysis through lumped springs and dashpots, but a
lumped mass to represent soil inertia is not included. The objective of this investigation is
to perform an analytical and numerical study of the dynamic response of the pile-soil
system under lateral loads (considering the soil as a semi-infinite half space) in order to
assess the importance of the soil mass in the system response, and develop a rational
method that includes the soil contribution to the system inertial properties through a

series of lumped masses, consistent with the Discrete Winkler Model.

1.2 Objectives and Scope

The main objective of this investigation is to assess the importance of the soil mass in the
soil-pile system response and to develop a rational method to include the soil contribution
to the inertial properties of a soil-pile system under dynamic lateral loads, through
lumped masses consistent with the discrete Winkler model. This would lead to a better

representation of the dynamic soil-pile interaction.

After performing the analytical studies necessary to develop a procedure for the inclusion
of the soil mass into the system, a series of worksheets and computer programs were
developed in order to perform the dynamic analysis of the system response. This allows
validating the method developed by comparing the results to those of more complex
analyses, such as a 3D Finite Element Method (performed with robust commercial
packages such as SAP2000), or to the ones obtained by experimental results. They also

allow performing some parametric studies and applications.

After performing the verification and validation of the model, and the evaluation of some
case studies, conclusions regarding the significance (or not) of including soil inertial
properties in the analysis are presented, the accuracy of the proposed model is discussed,

and recommendations for possible future work are developed.



In order to limit the scope of the project, the analysis focuses on a single pile located in a

homogeneous soil deposit, evaluated as a semi-infinite half space. The pile has a straight

axis, circular cross section, and is placed vertically. The soil was assumed not saturated,

so pore pressure effects (including liquefaction) were not an issue.

1.3 General Procedures and Methods

Following is a list of the primary tasks conducted during this research:

a)

b)

Develop a thorough study and literature review of relevant topics (piles under static
and dynamic lateral loads, seismic-soil-pile interaction, soil-structure interaction,
lumped models of piles). The summary of the findings are presented in Chapter 2.
Perform a numerical study of the influence of the soil mass on the system response by
performing a dynamic analysis of 2D and 3D Finite Element Models of a case study
of a pile in a sand deposit. The study is performed without considering the soil mass,
including the soil mass, and including a partial zone of soil with mass. The main
objective is to compare the response of the system with and without the soil mass, in
order to assess the impact of the soil inertial properties on the pile-soil system
response, and to compare the results with partial soil mass and with full soil mass, in
order to assess if a lumped mass model is able to replicate the system response. The
results are presented in Chapter 3.

Propose an approximation and perform a regression analysis of the complex dynamic
stiffness model developed by Novak. The model, one of the most accepted and used
in the literature, is based on a continuous approach that considers the soil as a
homogeneous, elastic, semi-infinite medium, and the pile as a straight vertically
placed element with flexural deformations and rigid cross section. The objective is to
obtain an analytical expression for the equivalent lumped mass that allows for the use
of a discrete beam on elastic foundation (BEF) model that considers soil inertia
properties. The appropriate pile stiffness, mass and damping matrices required to
perform a 2D stiffness analysis are derived. These results are presented in Chapter 4.



d) The accuracy of the simplified discrete model obtained is validated by means of a

series of numerical tests. To this end several worksheets and programs are developed

in MathCad and Matlab. The validations performed are:

Examination of the accuracy of the regression analysis performed by
computing the appropriate regression analysis statistical parameters
Evaluation of the accuracy of the discrete model for representing the
continuous model by analyzing the response of a case study. Then, in order to
generalize the results, a series of parametric studies are performed, where soil
and pile characteristics are varied in a wide range.

Comparison of the results of the discrete model versus the results of a 3D
FEM analysis, for a case study.

Comparison of the results of the discrete model with experimental results.
Evaluation of the effect of the Poisson’s Ratio in the system response in a 3D
FEM model, to analyze if these results contribute to explain the variation of
the mass coefficient found in the simplified model.

Comparison of the simplified model stiffness and the damping coefficients to

corresponding coefficients presented in the literature.

These analyses are presented in Chapter 5.

e) Development of applications (analyses and parametric studies) of the simplified

lumped model. This is reported in Chapter 6.

f) Drawing conclusions and, based on the findings, preparation of recommendations.

The conclusions and recommendations are presented in Chapter 7.

Some comments regarding the adopted soil model and numerical procedures are

presented in the following subsections.

1.3.1 Soil Model Proposed for this Work

The Beam on Elastic Foundation approach (Winkler model, or subgrade-reaction

approach) was adopted to model the soil in this study. Despite the disadvantages of the



model (i.e. lack of continuity of the soil model because the displacements at a point of a
soil are not influenced by stresses and forces at other points within the soil), this approach
has been widely employed in foundation engineering practice as confirmed by diverse
authors (e.g. Poulos and Davis, 1980; EI Naggar and Novak, 1996; Wang et al., 1998;
Mostafa and EI Naggar, 2002). In addition, it is the procedure recommended in many
technical reports such as the publications of the Federal Highway Administration (Lam
and Martin, 1986; FHWA, 1997; FHWA, 1998), the reports of the U.S. Army Corps of
Engineers (USACE, 1991; USACE, 1998; Mosher and Dawkins, 2000), the publications
of the Transportation Research Board (Brown et al., 2001), and the Naval Facilities
Engineering Command (NFEC, 1986).

Some of the advantages of the subgrade-reaction approach can be summarized as follows:

e |t has been proven to be a versatile technique.

e Simple numerical algorithm implementation.

e Fast problem modeling and solution computation.

e Ability to take into account factors such as the variation of soil stiffness with
depth and the layering of the soil profile (vertical soil inhomogeneity).

e Ability to simulate nonlinearity (through the p-y curves), and hysteretic
degradation of the soil surrounding the pile by simply changing the modulus of
subgrade-reaction.

e Large body of knowledge: the considerable amount of past experience gained in
applying this approach to practical problems, and the availability of a number of

empirical correlations to determine the modulus of subgrade-reaction.

Its extensive use in the current analysis of piles has been one of the principal reasons for
selecting this methodology for the present research project. The discrete BEF model has
the potential to provide a rational way to address the soil inertial contribution to soil-pile

interaction.



1.3.2 Proposed Numerical Implementation

Regarding the numerical implementation, although the Finite-Difference Method (FDM)

has been widely used by many authors (as described in Section 2.1.1), the Stiffness

Matrix Approach (one dimensional Finite Element Method - FEM) was adopted, since

this approach is considered more suitable and general for the current study.

According to Bowles (1996) the following is a summary of the main disadvantages of the

FDM:

Boundary conditions are difficult to introduce in the FDM, requiring fictitious
nodes.

The FDM would require all nodes to have equal spacing in order to use the same
recurrent equation. Better pile design data is obtained when closer spacing is used
near the pile head.

The FDM end and interior equations are not the same.

The FDM equations for the pile head depend on whether it is free or either its
translation and/or rotation are restrained.

The FDM matrix is full (not scattered).

Variable pile cross sections are not easily handed by the FDM.

On the other hand, as reported by Bowles (1996), the FEM has the following advantages:

The FEM matrix is always symmetric and banded.

The FEM delivers translation and rotation of pile nodes.

The FEM elements can have length and cross section that vary from one element
to the next.

Boundary conditions and load points can be easily specified in the FEM.

FEM programs for piles under lateral loads can be easily adapted to other similar
type of problems, such as beams on elastic foundation, lateral piers, and in-take

towers, among others.



2 Literature Review and Background

A review of soil-pile behavior under lateral loads is presented in the following sections.
The purpose of this chapter is to present the current state of the art and practice in the
analysis of piles under static and dynamic lateral loads, pointing out some milestones in
this development, rather than be a comprehensive review of all the papers and reports
related to these topics. The chapter has two major sections, which are relevant to the
proposed research topic and will serve as theoretical background and reference: the

modeling of piles under static lateral loads, and the analysis of piles under dynamic loads.

2.1 Analytical Models for Piles under Static Lateral Load

As described by Poulos and Davis (1980) and Fleming et al. (1992), there are three major

approaches for the load-deflection prediction of laterally loaded piles.

2.1.1 Beam on Elastic Foundation Approach

This model was originally proposed by Winkler in 1867. The model, also known as Beam
on Elastic Foundation (BEF) and Beam on Winkler Foundation (BWF), proposes that the
deflection (v) at any point of the soil in contact with the pile is linearly related to the
contact pressure (p) at that point, and independent of the contact stresses at other points.
In other words, the model represents the soil as a series of unconnected linearly-elastic
distributed springs (Aristizabal-Ochoa, 2003), as shown in Figure 2.1. The pile is

modeled as a beam-column element.
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Figure 2.1 Subgrade Reaction Modulus Model: (a) Pile and Soil representation, (b) Effect of a partial
uniform pressure over the soil model

The spring modulus of the model is the soil Modulus of Lateral (Horizontal) Subgrade
Reaction, Ky in units of [force/length®]. Ky represents the horizontal pressure (or
horizontal force acting on a unit vertical area; or the distributed force along the pile
length, acting on a unit length) required to produce a unit horizontal displacement. K

depends on the soil type, depth, and foundation size, among others.

The differential equation of equilibrium of a beam (pile) subjected to a distributed load w

IS given by:

4
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where:

Ep = pile modulus of elasticity

Ip = pile cross section moment of inertia

d = pile diameter

w = soil reaction per unit length over the pile (distributed load)
p = soil pressure over the pile

K}, = soil lateral subgrade-reaction modulus

v = lateral displacement of the pile



Analytical (Closed Form) Solutions have been obtained for this equation for the case of
Ky constant with depth, and specific boundary conditions (e.g., Hetenyi, 1946; Scott,
1981, presents the Hetenyi solution in a detailed way). These solutions, although limited
regarding practical applications, provide a significant insight into the pile response and
the factors that affect the soil-pile interaction. Vesi¢ (1961) presented a rigorous analysis
of beams resting on an elastic, isotropic half-space medium, obtaining analytical
solutions (deflection, slope, bending moment, shear force, and contact pressure) for
infinite beams acted upon by a concentrated load and by a couple. He compared these
solutions with the Winkler model solutions, and recommended values for the subgrade
reaction modulus so that the Winkler solution can provide reasonably accurate results. He
also demonstrated that the Winkler model gives reasonably accurate results for long and
medium length beams. Kagawa (1992) performed a dimensional analysis to evaluate
factors affecting the subgrade reaction modulus K;, and proposed a procedure to
determine an average value of K as a function of the soil Young’s modulus that may be

used for pile analysis based on the BEF.

Numerical Solutions by means of the Finite Difference Method (FDM) have been
proposed and implemented since the early fifties (e.g. Palmer and Thompson, 1948;
Gleser, 1953; Reese and Matlock, 1956). In this method, the basic differential equation
(1) is written in finite-difference form, and the solution is found at discrete points. A
general discrete model for the FDM is shown in Figure 2.2. The discretization of the
solution by means of the FDM has the disadvantages that it is difficult to introduce
general boundary conditions at the pile top and tip, and that the elements must be uniform

in size.
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Figure 2.2: Finite-Difference Discretization for the Analysis of Laterally Loaded Piles (Poulos and
Davis, 1980)

Numerical Solutions by means of the Finite Element Method (FEM) with One
Dimensional Elements (1D elements), or beam elements, may be obtained from
foundation engineering books (e.g. Bowles, 1974; and Bowles, 1996). This analysis is

most often referred to as the Stiffness Method.

Some authors have used the BEF to propose a complete design process for piles. The
work by Broms (1964a/b, 1965) is perhaps the best known of these approaches, where the
BEF is used to predict deflections under working loads, and a method to estimate
ultimate load resistance is also provided by assuming a number of simple ultimate states

for the pile-soil system.
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2.1.1.1 The p-y Method

The original BEF model by itself does not account for the nonlinear response of the soil.
The most widely-employed approach to consider the nonlinear nature of soil response is
the p-y Method, where the spring stiffness value is variable, allowing consideration of a
non-proportional relationship between the soil resistance per unit pile length (p) and the

lateral displacement (y) (see Figure 2.3).
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Figure 2.3: Typical p-y Curve for Ductile and Brittle Soil (FHWA, 1997)

The p-y approach was developed by Reese, Matlock and coworkers. In a series of papers,
they described how to construct the p-y curves for different soils and depths based on
experimental results, how to develop a solution by the FDM, and how to develop a
computer program (Matlock and Reese, 1960; Reese, 1977; and Matlock, 1970). Figure
2.4 shows a schematic of the soil-pile modeling and the corresponding p-y curve for each

non-linear spring.
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Figure 2.4: Schematic of Pile-Soil Model for the p-y Approach (FHWA, 1997)

It is important to point out that p is not the contact stress (as in the original Winkler
model), but the resultant of the contact stresses (with complex distribution) and the
friction (adhesion) along the pile perimeter for a given depth, resulting in a contact
(interaction) load per unit length of pile. Figure 2.5 shows a distribution of contact
stresses prior to and after pile lateral deflection. The value of p depends on soil type, pile
type and shape, depth, and value of the deflection y (since the response is non-linear).
Figure 2.6 represents the complexity of the factors involved (for the case of a drill shaft).
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Figure 2.5: Distribution of contact stresses against a pile before and after lateral deflection (Reese
and Van Impe, 2001)

The p-y method is sometimes referred to in the literature as the Beam-on-Nonlinear-Winkler
Foundation (BNWF) framework to model soil-pile interaction (e.g. Wang et al., 1998;
Hutchinson et al., 2004), or as the Load-Transfer Approach (Basile, 2003).
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Figure 2.6: Lateral loading and resistance components on a drilled shaft (Wallace et al, 2001)

2.1.1.2 The Wedge Model

The p-y curves of Matlock-Reese were established based on the results of field tests on
instrumented piles. Ashour, Norris, and coworkers (Ashour et al., 1998; Ashour and
Norris, 2000) developed the Strain Wedge Model, which allows the assessment of

nonlinear p-y curve response of laterally loaded piles based on an 3D soil-pile interaction
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response through a passive wedge soil developing in front of the pile (Figure 2.7). This
approach permits to relate the stress-strain-strength behavior of the layered soil in the 3D
wedge model to the 1D BNWF model parameters. In this way, the nonlinear response
may be obtained from an analysis that considers the actual conditions of the soil-pile

system (pile diameter, soil stratification, etc.)
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Figure 2.7: Wedge Model Configuration and Distribution of Soil-Pile Reaction along Deflected Pile
(Ashour and Norris, 2000)

2.1.1.3 New Developments in BEF

The BEF analysis using the Winkler model to predict soil-pile behavior under static
lateral loads continues to be a research topic. A few examples of recent developments are
mentioned here. Shen and Teh (2004) proposed a variational approach (similar to the Ritz
method) to perform the analysis of a laterally loaded pile in a soil with subgrade reaction

modulus increasing with depth. Hsiung (2003) presented the theoretical solution for the
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maximum bending moment and deflection for laterally loaded piles in a uniform
subgrade reaction modulus soil that yields. Kim et al. (2004) conducted lateral field tests
on instrumented piles located in a site in Korea, in order to obtain p-y curves and analyze
the influence of the installation method and head restraint conditions in the soil-pile

response.

2.1.2 Elastic Continuum Approach

The representation of the soil as a homogeneous elastic continuum has also been

proposed for the analysis of the soil-pile interaction.

Some authors developed Plane Strain Models (e.g. Davis and Booker, 1971) for the
analysis of limit pile capacity. These solutions are relevant for the case of shallowly-
embedded sheet piling, and may be also accurate for a group of piles closely spaced in a
single long row (i.e. wall footing). Plane Strain Models are also used for modeling the 3D

system as a series of parallel horizontal planes in plane strain.

Other authors developed Three Dimensional Elastic Models (e.g. Douglas and Davis,
1964; Spillers and Stoll, 1964; Poulos, 1971, 1972). These models are based on Mindlin’s
Solution for the horizontal displacement caused by a horizontal point load within the
interior of a semi-infinite elastic-isotropic homogeneous mass (this solution can be found
in Elasticity handbooks, such as the one by Poulos and Davis, 1974). Since Mindlin’s
solutions become singular when evaluating the displacement corresponding to the point
where the load is located, integral solutions over a predefined area, representing a
fraction of the pile surface, are used (Douglas and Davis, 1964; Spillers and Stoll, 1964;
Basile, 2002). These solutions are generally known as Green Functions, and define the
displacement field due to an assumed loading system (pattern) associated with the pile-

soil interaction.
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Poulos and Davis (1980) presented the implementation of the model proposed by Poulos
(1971, 1972). In this model the pile is assumed to be a thin rectangular vertical strip
divided in elements, and it is considered that each element is acted upon by uniform
horizontal stresses (see Figure 2.8) which are related to the element displacements
through the integral solution of Mindlin’s problem. Finally, they solved the differential
equation of equilibrium of a beam element on a continuous soil with the Finite Difference
Method (FDM), in which the soil pressures over each element are unknown variables.

After obtaining the pressures, the displacements are found.

Figure 2.8: General Pile Discretization for the Analysis of Soil as a Continuous. Stresses acting on (a)
pile, (b) soil adjacent to pile (Poulos and Davis, 1980)

The model has the advantage that it is able to take into account the continuous nature of
soil, the semi-infinite dimension of the half-space, and the boundary conditions along the
unloaded ground surface. Although yielding of soil may be introduced by varying the soil
elastic modulus, this approach does not permit to consider local yielding and layered soil
conditions (without stretching Mindlin’s Solution for a homogeneous half-space). In this
regard, Spillers and Stoll (1964) proposed the computation of the maximum permissible
load by any suitable yielding condition (for instance, a wedge model for the top part of
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the soil, where the displacements are larger and yielding of soil occurs), together with the
elastic solution and an iterative process to verify that the maximum load is not exceeded
at any point. It was mentioned that two of the drawbacks of the discretization by means
of the FDM s the difficulty to introduce general boundary conditions at pile top and
bottom, and the required uniform size of the elements. As reported by Basile (2002), this
soil model was also used for the Boundary Element Method (BEM) analysis of piled

foundations.

2.1.3 The Finite Element Approach

In order to obtain the solution of laterally loaded flexible piles in an elasto-plastic soil
mass, the Finite Element Method (FEM) has been proposed and implemented to perform

a numerical analysis of the soil-pile system.

As reported by Poulos and Davis (1980), the first attempts included two-dimensional
finite element models in the horizontal plane (Baguelin and Frank, 1979), axi-symmetric
geometries (Banerjee and Davies, 1978), and general three-dimensional finite element

analysis (Desai and Appel, 1976).

Some recent publications include the work by Yang and Jeremic (2002), who used 3D FE
models of a laterally loaded pile embedded in uniform and layered soil profiles in order

to numerically obtain p-y curves and compare them to experimental ones (Figure 2.9).

The FE method has the ability of permitting to account for soil nonlinearity by applying
appropriate constitutive models, such as the Drucker-Prager formulation (Ben Jamma and
Shiojiri, 2000; Yang and Jeremic, 2002), and to use gap-elements to model possible pile-
soil separation. These modeling capabilities are usually available in robust general
purpose FEM programs (such as ABAQUS and ANSYS) or special geotechnical
engineering oriented codes (e.g. PLAXIS).
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Figure 2.9: Example of a Three-Dimensional Finite Element Mesh for a Single Pile System (Yang and
Jeremic, 2002)

There is a general agreement (e.g. Poulos and Davis, 1980; Kagawa, 1992; EI Naggar and
Novak, 1996; Wang et al., 1998; Mostafa and El Naggar, 2002) that the FEM analysis is
impractical for the design of anything but extremely expensive structures, due to the cost
of the specialized software, the time consuming model generation, the time required for
the non-linear analysis, the difficulty in the interpretation of the result in terms of
common pile (beam) variables, and the uncertainties associated with soil non-linear

modeling in 3D.

Finally, it is appropriate to mention that in the last years a powerful 3D Finite Difference
Method program called Flac3D (ltasca Consulting Group, Inc, 1996) has been used to
solve complex geotechnical engineering problems. However, the program has rarely been
used for pile analysis. An example is the work by Ng and Zhang (2001), who used a 3D
FDM model to analyze the behavior of piles placed on a cut slope. In particular, they
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investigated the effect of the sleeving (annulus of compressible material that is usually
constructed between the piles and the adjacent soil to minimize the transfer of lateral load
from the buildings to the shallow depths of the slope) on the pile performance (Figure
2.10).
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Figure 2.10: Example of a Finite Difference Mesh for a Soil-Pile System: (a) 3D View, (b) Close-up of
sleeved zone (Ng and Zhang, 2001)
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2.2 Analysis of Piles under Dynamic Lateral Loads

Similar approaches as those described in Section 2.1 have been proposed and
implemented for the dynamic analysis of single piles under horizontal loads (e.g., seismic
excitations). They are the Finite Element Method (FEM) and the Boundary Element
Method (BEM) that treat the soil as a continuous medium, the Beam on Nonlinear
Winkler Foundation (BNWF), that treats the soil as a series of disconnected springs, and
the Continuum Approach, that provides closed form solutions by considering the soil as
an infinite semi-space. A brief description of these approaches is presented in this

section, with particular emphasis in seismic analysis.

2.2.1 Winkler Approach

Considering that both piles and soil can behave in a nonlinear manner during extreme
events, the use of p-y methods for defining the lateral stiffness of pile-soil model for
seismic analysis (secant stiffness as a function of pile deformation) has been used since
the seventies (Matlock et al., 1978). This model has been used by several authors (e.g.
PoLam et al.,1998; Wang et al., 1998; Hutchinson et al., 2004). Appropriate p-y models
which take into account cyclic soil degradation should be used. Since the classic Linear
Modal Analysis cannot be applied due to the expected nonlinear response, an lterative
Nonlinear Time-Domain Analysis can be used to perform this analysis (Brown et al.,
2001).

The energy dissipation inherent to material behavior, known as Material Damping, may
be modeled as a dashpot in parallel with a spring that represents soil stiffness. This is the

well known Kelvin-Voigt model for visco-elastic materials.

The energy dissipation due to soil nonlinear behavior, known as Hysteretic Damping, can

be considered in the p-y model by allowing the unloading path to differ form the loading
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path (Brown et al., 2001), as shown in Figure 2.11. This figure also shows a way to
consider soil degradation, namely the reduction in soil strength as the loading cycles

progress.
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Figure 2.11: p-y Method for Modeling Hysteretic Damping and Cyclic Degradation in Soil (Brown et
al., 2001)

When a soil is subjected to cyclic symmetric loads a Hysteresis Cycle is produced in the
stress-strain response, which has acute angles where the load inverts. The hysteresis cycle
may be defined using Masing’s Rules (Suarez, 2003). The p-y curve, that may be
considered as the constitutive equation of the soil, is used as the backbone curve or
skeleton curve, and its shape is used to define the cycle (Figure 2.12): curve oa is
reproduced in bca, curve ob is reproduced in adb (both with double amplitude and double
ordinates). The hysteretic damping is related to the energy dissipated by cycle, which is
equal to the enclosed area. A detailed description of this model is presented by Suarez
(2003).
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Figure 2.12: Hysteretic Cycle using Masing’s Rules (Suarez, 2003)

The loss of energy in the soil-pile system due to out-going stress waves that travel from
pile-soil interface to infinity, known as Radiation Damping, has been considered by a
number of researchers, as reported by Wang et al. (1998). Berger et al. (1977) proposed a
simplified approach, assuming that the pile cross section (that moves horizontally) only
generates one dimensional (1D) P-waves traveling in the direction of shaking, and 1D SH
waves traveling perpendicular to the pile (Figure 2.13 a). Novak et al. (1978) proposed a
more rigorous model, assuming a plane strain state for the soil (considered as
homogeneous, isotropic, and linearly elastic) and analyzed the pile undergoing uniform
harmonic vibrations in an infinite medium. Because the pile is considered infinitely long,
massless and rigid, the problem reduces from 3D to 2D, as a rigid circular disc vibrating
in an infinite elastic plane (Figure 2.13 b). Gazetas and Dobry (1984a, 1984b) proposed a
simplified model by assuming that compression-extension waves propagate in the two
quarter planes along the direction of shaking, and that SH-waves propagate in the two
quarters perpendicular to the direction of shaking (Figure 2.13 c). For each of the
previous approaches, a dashpot coefficient “C” can be determined. A damper with this

coefficient is placed in parallel with the non-linear spring element.
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Figure 2.13: Models to Analyze Radiation Damping for a Horizontally Vibrating Pile (Wang et al.,
1998)

Figure 2.14 summarizes the modeling of stiffness and damping for a pile-soil system
when using a beam on nonlinear Winkler foundation model (e.g. Kagawa and Kraft,

1980a, 1981; Badoni and Makris, 1996).
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Figure 2.14: BNWF Model with Different Damping Effects
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Several authors have proposed a Winkler model based on a continuum solution, most of
them considering the soil as an isolated horizontal plane in a plane strain state of stresses.
These solutions are considered a very good approximation of the real 3D behavior for
frequencies higher than the fundamental natural frequency of the soil deposit, as
demonstrated by Nogami and Novak (1980). Nogami and Koganai (1988) proposed a
time-domain method to calculate the flexural response of linear single piles, based on
plane strain solutions, but consisting of a series of springs and dashpots (as shown in
Figure 2.15). This modified Winkler model, sometimes referred to as the Hybrid
Dynamic Winkler Model (HDWM), was validated for a wide range of frequencies. They
proposed a model in which the soil mass is included through a soil radius (as a cylinder

around the pile), but the value of this soil radius was never addressed in the paper.

Figure 2.15: Hybrid Dynamic Winkler Model for Lateral Pile Response (Nogami and Koganai, 1988)

This model was then extended by Nogami et al. (1992) for the nonlinear dynamic
analysis of soil-pile interaction, by dividing the soil medium in two regions (Figure 2.16).
The near field region in the vicinity of the pile shaft, where strong nonlinear soil response
occurs, is represented by a nonlinear spring and a gap element. The far field region,
where the behavior is primarily linear elastic, is represented by the series of springs and
dashpots proposed by Nogami and Koganai (1988). Again, they proposed a model where
the soil mass is included through a soil radius (as an annular cylindrical region around the
pile). Here also the typical value of the soil radius was not addressed in the paper (it is
only mentioned that it was artificially taken). A simpler model based on this approach

was proposed by EI Naggar and Novak (1995, 1996) and used by Mostafa and El Naggar
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(2002), consisting in a series of non-linear springs and dashpots for the inner field, and a
series of linear springs and dashpots for the far field. They also included a lumped mass
of the soil (the mass of the inner field, distributed among the two nodes of the inner field
element), but its value was not addressed in the aforementioned papers. ElI Naggar and
Bentley (2000) established a link between this model and the p-y curves, by equating the
two series spring constants for the far field and near field (the far field stiffness is known,
and obtained from a plane strain model) to the p-y curve stiffness. In this way, the non-
linear stiffness of the near field is obtained and the series springs behave as the p-y

springs.

Figure 2.16: Schematic for the Nonlinear HDWM (Nogami et al., 1992)

Finally, regarding seismic excitations, the common practice after Penzien et al. (1964) is
to perform the analysis in two stages: 1) First, the dynamic motion of the free field is
obtained by considering that it is uncoupled from the pile motion. This process, known as
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site response analysis, can be done using a program like SHAKE (Schnabel et al.,1972;
Idriss and Sun, 1992). 2) Second, the free field motion is applied to the soil-pile system as
boundary support movements at the end of each spring element. This allows consideration of
the effects of varying motion due to the vertical propagation of the ground shaking. As an
example, Figure 2.17 shows the scheme of the model used by Hutchinson et al. (2004) for the
inelastic seismic analysis of extended pile-shaft-supported bridge structures. It is important to
note that no lumped masses were used to consider soil inertial contribution to system

response in this work.
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Figure 2.17: Model for Seismic Analysis of Pile-Supported Bridge (Hutchinson et al., 2004)

2.2.2 Continuum Approach

The mayor advantage of the continuum approach over the BNWF and the FEM is that it

automatically includes the radiation of energy to infinity, known as Radiation Damping,
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through the complex expression of the pile impedance function (stiffness). The
disadvantages are that, in general, it is only applicable to visco-elastic materials, although
material damping may be considered by using the complex form of the material
properties, or Lame’s constants. Another drawback is that the nonlinear behavior can
only be accounted for by changing the elastic modulus of the full space, i.e. it does not
allow for local yielding. Finally, the boundary conditions are limited and the soil
characteristics have to be simple, i.e. the soil must be homogeneous or with homogeneous

layers.

Despite its limitations, this analysis is extremely useful to acquire a better understanding
and insight of the soil-pile interaction phenomenon, and to obtain analytical expressions
of parameters such as the subgrade reaction modulus (Vesi¢, 1961), that can be used in
the Winkler models.

Following is a brief description of some publications that are considered relevant for the

purpose of the present project:

Novak (1974) presented an approximate continuum approach to account for soil-pile
interaction: it is assumed that the soil is composed of a set of independent horizontal
layers of infinitesimal thickness, which extend to infinity. As each plane is considered
independent, this model may be viewed as a generalized Winkler model. The planes are
homogeneous, isotropic, and linearly elastic, and are considered to be in a plane strain
state. Using Baranov’s solution for the horizontal soil reaction to a rigid circular disc with
harmonic horizontal displacement (representing a pile cross section), Novak formulated
the differential equation of the damped pile in horizontal vibration. He found the steady-
state (particular) solution for harmonic motion induced through pile ends, and used this
solution to find the dynamic stiffness of the pile head for different boundary conditions.
According to Novak, the dimensionless parameters that control the soil-pile system
response are: (a) the specific mass of the soil “p” over the specific mass of the pile “p,”

(mass ratio p/pp), (b) the ratio between the shear wave velocity of the soil “Vs” and the
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longitudinal wave velocity of the pile “vc” (wave velocity ratio Vs/vc), (c) the ratio of the
length of the pile “L” to the pile radius “ro” (slenderness ratio L/ro), and (d) the

frequency of the load “w” (expressed as a dimensionless parameter a, =1, @/p/G,

where G is the shear modulus of the soil). Then he presented the equivalent stiffness and
damping constants for a pile head, and for a pile group considering a rigid pile cup at pile
heads. He presented a numerical example, and compared the response of a spread footing
to an identical footing resting on piles, reaching the following conclusions: (a) pile
foundations are more rigid, having higher natural frequencies, smaller damping, and
larger resonant amplitudes than spread footings; (b) pile (and spread footing) embedment
can reduce resonant amplitudes; (c) piles can reduce settlements, but they cannot
eliminate vibrations, so the dynamic analysis of pile foundations is as important as for
shallow foundations. As stated by Klar (2003), as the frequency tends to zero, the
stiffness obtained from the Novak solution (1974) tends to zero. Moreover, as the
frequency increases Novak’s solutions tends to Tajimi’s solution (based on a more
rigorous 3D analysis). Due to the fact that for higher frequencies waves tend to propagate
more horizontally, Novak’s model tends to capture the actual behavior. Therefore
Novak’s solution can provide good results for high frequencies and poor results for very

low frequencies and static conditions.

Nogami and Novak (1980) investigated the coefficients of dynamic soil reaction to pile
motion treating the soil as a three-dimensional continuum, in order to compare to the
Winkler model (where the soil is modeled as discrete springs and dashpots).  The
assumptions used were: (a) homogeneous soil stratum underlain by a rigid bedrock; (b)
linear viscoelastic soil material with constant hysteretic damping; (c) cylindrical elastic
pile driven to the bedrock; (d) no vertical soil movement; (e) no relative soil-pile
movement at soil-pile interface; and (f) harmonic motion. They reached the following
conclusions: (a) even in homogeneous soil media, the local stiffness and damping of the
soil can vary greatly with depth, frequency, and relative pile/soil stiffness; (b) at
frequencies higher than the fundamental frequency of the soil deposit, the 3D solution is

similar to the plane strain solution (2D) proposed by Novak (1974). For these
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frequencies, the soil medium can be treated accurately with the Winkler hypothesis
(uncoupled springs and dashpots along the pile); and (c) the Winkler hypothesis works

better for stiffer piles and deeper soil deposits.

The results from the previous works have been used to model the stiffness and damping
effects of the dynamic soil-pile response in a Winkler model, analyzing the pile dynamic
stiffness (impedance), but they were not clearly used to consider the contribution of the

soil mass to the dynamic response in a discrete Winkler model.

2.2.3 Finite Element Approach

As pointed out by Wolf (1985), for static loading, a fictitious boundary at a sufficient
distance from the structure (pile) where the response is expected to vanish from a
practical point of view, can be introduced, leading to a soil with finite domain. This finite
domain is meshed, and pin supports (displacements restraints) are assigned to the
boundary nodes. However, for dynamic loading, the fictitious boundaries can reflect
waves originating from the vibrating structure (pile) back into the discretized soil region,
instead of letting them to propagate toward infinity. Special attention has to be paid in

placing adequate radiation damping capabilities at the soil FEM boundaries.

Some recent publications that are considered relevant as references for the present study

are briefly summarized in the following paragraphs:

Wu and Finn (1997a, 1997b) proposed a ‘“quasi-three-dimensional finite element
method™, where the soil is modeled using eight-node brick elements having only one
translational DOF at each node, in the direction of shaking. The element stiffness, mass
and damping matrices are obtained from a simplified differential equation of dynamic
equilibrium in the direction of shaking. The simplifications came from the study of the
shear wave propagation in the vertical direction, and the analysis of the components of

stress (or strain) that may be neglected. The pile is modeled with classical two-node beam
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elements. Dynamic soil-pile interaction is considered by enforcing displacement
compatibility between the pile and soil. They report that the proposed FEM is both

accurate and efficient.

Bentley and El Naggar (2000) developed a 3D finite element model that considers the
soil nonlinear behavior (by means of the Drucker-Prager yielding criteria), discontinuity
conditions at the soil-pile interface (by means of contact elements that allow slippage and
gapping), energy dissipation (by means of Kelvin elements), wave propagation (by
introducing the excitation at the bottom of the model), and actual in situ stress conditions
(geostatic stresses). They used the model to evaluate the kinematic soil-pile interaction,
comparing the free-field soil response with the response of the soil-pile system. They
performed the analysis by applying earthquake excitations with low dominant
frequencies, and found that although the response is slightly amplified for elastic soils,
the pile-head response closely resembles the free field response for elastoplastic soils.

Klar and Frydman (2002) used a series of plane strain FE models in horizontal planes to
model the 3D response. Figure 2.18 shows the different planes and the boundary
conditions schematically.

Maheshwari et al. (2004) used a 3D FE model to obtain the pile response under seismic
excitation and a load applied to the pile cap, considering the effects of material
nonlinearity in the soil and separation at the soil-pile interface on the dynamic behavior
of a single pile and pile groups. Figure 2.19 shows one of the FE mesh used for this

study.
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Figure 2.18: Discrete Planes and Free-Field Boundary Conditions (Klar and Frydman, 2002)

It is appropriate to mention that the Boundary Element Method (BEM) has been
increasingly used in the investigation of laterally loaded piles. Examples are the work by
Ben-Jamma and Shiojiri (2000), who used a hybrid of Thin Layer Element and Finite
Element methods to analyze the total soil-substructure system and obtain the dynamic
response of single piles embedded in an infinite half-space. The benefits of the BEM for

pile structure interaction modeling and analysis were emphasized by Basile (2003).
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Figure 2.19: Example of a 3D FE Mesh and Boundary Elements for the Dynamic Analysis of a Soil-
Pile System: (a) top view, (b) elevation (Maheshwari et al., 2004)
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3 Numerical Evaluation of the Soil Inertia Contribution to the Soil-
Pile System Response

The objective of this chapter is to evaluate in a preliminary form the importance of the
soil inertia properties in the soil-pile system behavior. To this end, a set of representative
soil and pile characteristics will be selected, and the dynamic flexibility of the pile head
will be obtained by means of a Finite Element Method (FEM) steady state analysis. Two
types of analysis will be performed: one considering the soil mass and the other
neglecting it. The response of both analyses will be compared in order to address the
impact of the soil mass. The effect of the cutoff boundary conditions will also be

evaluated.

3.1 Case Study

In order to perform the analysis, average soil properties corresponding to a dense sand
deposit will be selected. These values were obtained by consulting the Soil Mechanics,
Soil Dynamics, and Foundation books from Barkan (1962), Bowles (1996), Cernica
(1995), Coduto (2001), Das (1999), and Poulos and Davis (1980). The adopted values for
the soil material properties are as follows:

Es=12ksi  (soil modulus of elasticity or Young’s modulus)
7% =110 pcf  (soil specific weight)
1, =0.3 (soil Poisson’s ratio)

The depth of the sand soil deposit considered is 30 ft. It is assumed that the soil deposit

rests on a rigid rock, and that its properties are constant with depth.

It is appropriate to mention that in order to have a soil with a shear wave velocity Vs in
the range of soil profile type SD of the Uniform Building Code (International Code
Council, 1997), the modulus of elasticity E should be adopted between two to eight times

higher than the values recommended in the previous cited books, as shown in Table 3.1.
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This is probably due to the fact that a secant modulus is usually provided as the reference

value in the literature.

Table 3.1: Values of Elastic Modulus E for Different UBC Site Types

g= 32.2 [ft/s?] gravity acceleration
Soil Type Y Y Vs [ft/sec] G [ksi] E [ksi] E [MPa]
[pcf] > < > < > < > <

SA 1308 0.2 5000 700.91 1682.19 11578.88
SB 125| 0.25] 2500 5000 168.49 673.96 421.22] 1684.89) 2899.36| 11597.44
sC 120} 0.25 1200 2500 37.27 161.75 93.17 404.37 641.29| 2783.39
SD 115) 0.3] 600 1200 8.93 35.71 23.21 92.86) 159.79 639.15
SE 110 0.3] 600 8.54 22.20] 152.84

\. J\ J

Y Y
Assumed values UBC tabulated values

The pile foundation used in this chapter was based on a reinforced concrete pile, with a
compressive strength f’c = 4000 psi, corresponding to a normal strength concrete, and the
following material properties:

Ep = 3600 ksi (pile modulus of elasticity)
Yp = 150 pcf  (pile specific weight)
vp=0.2 (pile Poisson’s ratio)

The pile has a 1-ft square cross section, and an embedded length of 30 ft.

3.2 Dynamic Response to be Evaluated

In order to evaluate the effect of the soil inertia properties in the system behavior, the
dynamic flexibility of the pile head will be considered. The dynamic flexibility is defined
here as the horizontal pile head displacement due to the excitation of a unit harmonic load
at the pile top for different load vibration frequencies. This quantity is also known as the
Frequency Response Function (FRF) of the pile head.
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3.3 Analysis Package, Type, and General Parameters

The computer program SAP2000 was selected to perform the FE analysis required to
obtain the Frequency Response Function. Although SAP2000 is not among the most
frequently used software packages for pile-soil interaction problems, it was selected due
to its availability, its friendly graphical user interface, and its adequate capabilities for the

present analysis.

The analysis to be performed in order to obtain the FRF is designated as Steady State
Analysis in SAP2000. Appendix B presents a detailed step-by-step process to perform the
analysis for one of the two dimensional cases considered and presented later in section
3.5.

For the present study, the default damping model available in SAP2000 was adopted: a
hysteretic damping constant for all frequencies, with a stiffness-proportional coefficient
of 0.05.

3.4 General Comments on the Finite Element Model to be Adopted

The FE mesh will be adopted considering the case studies reviewed in the literature (i.e.
Maheshwari et al., 2004) and the recommendations given by soil-structure interaction
specialists (i.e. Lysmer, 1979). For example, Lysmer (1979) states that the element size
should be related to the highest frequency, frnax [hz], of the wave that must be transmitted
correctly through the finite element model. The shortest wavelength, As which occurs in

the system is:

J=— (3.1)

S

max

where Vs is the shear wave velocity. Lysmer recommends that the maximum element size
be limited to As / 8. For the data adopted for this case study, an element size of 2 ft would

be adequate to transmit harmonic waves with a frequency up to the fourth natural
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frequency of the one-layer uniform soil deposit, and an element size of 1 ft would be
adequate to transmit a wave with a frequency up to the eighth soil deposit natural

frequency (see computations in Appendix A).

When performing a 2D analysis, the soil will be represented with rectangular planar
elements, and with brick solid elements when performing a 3D analysis. It is important to
have in mind that the type of analysis to be performed will focus on the effects of the soil
mass in the system response when the system remains in the linear elastic range. The
contact problems between pile and soil are considered not important for this purpose,
therefore frame lineal elements are considered adequate to model the pile. For other type
of analysis, it would be more appropriate to model the pile with plane (2D) or solid (3D)

elements, and model the soil-pile interface with contact elements.

Regarding the model size (macro-idealization), Lysmer (1979) states that, as far as the
motion of the structure is concerned, the boundaries of the soil volume should be located
far enough away from the structure to simulate the infinite extent of the deposit. The
author recommends placing the lateral boundaries at a distance of two or more times the
depth of the soil profile away from the edge of the structure. Although these
recommendations were intended for the analysis of superstructures that may be partially
embedded, they will be used herein as a guidance. Considering the 30 ft soil deposit
depth, the boundaries will be placed 60 ft away from the pile. The mesh obtained is more
extended than those used in the several papers reviewed in which the FEM was used as
the analysis technique.

3.5 Two Dimensional Analysis

A beam (frame) element was adopted for the pile, and plane stress elements for the soil,
with 1 ft thickness. In order to model plane strain conditions, the elasticity modulus E and

Poisson’s ratio v of both concrete and soil were replaced by the well known equivalent
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elastic constants that allow to obtain plane strain solutions from plane stress analysis
(Ugural and Fenster, 1995):

E
Eeqzl—v2

; (3.2)
v, =——
“o1-y

The resulting equivalent properties for the sand soil and the reinforced concrete (RC) are

presented in Table 3.2:
Table 3.2: Equivalent Elastic Properties for the 2D Model

Material | E [ksi] v Eeq [ksi] veq
Soil 12 0.3 13.19 0.429
RC 3600 0.2 3750.00 0.250

3.5.1 Boundary Conditions

The soil will be considered fully restrained at the bottom edge, in order to model a rigid
bedrock below the sand deposit. The top edge will be considered free. The two lateral
edges should represent the continuity of the soil deposit as an infinite half space. The
model will be taken wide enough in order to approximately represent this condition. In
order to verify this statement, two boundary conditions will be considered: free and
restrained against horizontal movement. If the two conditions give similar results, a more
refined lateral boundary condition, that should give results somewhere in between these
two cases, is not required since it will not change the general conclusions of the analysis
of the results. A more advanced and commonly used boundary condition is to represent
the elastic continuity by means of horizontal springs and to use dashpots to represent the

radiation damping. These boundary conditions will be implemented in the 3D model.
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3.5.2 FEM Mesh

Following the criteria described in section 3.4, the full FE model is 120 ft wide and 30 ft
high, the finite element mesh representing the soil is composed of 2ft x 2ft rectangular
elements, and the pile consists of 2ft frame elements. The resulting FE mesh is shown in
Figure 3.1. The FE model contains 15 frame elements and 900 plane stress elements,
having 976 nodes and 1976 degrees of freedom (DOF) corresponding to two translations

of each soil node and two translations and one rotation of each pile node.

Figure 3.1: 2D FEM Model

Figure 3.2 presents a zoom in of the FE model for the pile top, in order to show the
numbering of the node whose motion will be studied. The pile top corresponds to node

496 in this model, and its steady state response will be obtained.

Figure 3.2: FEM Model Node Identification near Pile Top
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3.5.3 System Response

As stated in section 3.2, the system response to be evaluated is the dynamic flexibility of
the pile head (i.e., the horizontal pile displacement due to a unit harmonic load for
different load vibration frequencies). This response will be designated as FRF
(Frequency Response Function). It is obtained by means of the Steady State Analysis
option in SAP2000 (see Appendix B for details).

This response will be presented in charts (Figures 3.3 through 3.7), by plotting the
magnitude of the horizontal displacement of the pile top, in [ft], against the frequency of

the load, in [Hz]. The following nomenclature will be used in these graphs:

SM = Soil Mass

NO SM = Soil Mass is not included in the analysis

YES SM = Soil Mass is included in the analysis

LS = Lateral Support

NO LS = There are not Lateral Supports at the model edge
YES LS = There are Lateral Supports at model edge

In order to obtain a high resolution, 400 frequency increments were specified for each

analysis. The mass of the pile is always included in the analyses.

Figure 3.3 presents the results of the model without the inclusion of the soil mass, for the
two boundary conditions evaluated. Figure 3.4 presents the results of the model
considering the soil mass, for the two boundary conditions evaluated. Figure 3.5 presents
the results of the model first considering and next neglecting the soil mass, leaving the
lateral edges without lateral supports.
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Figure 3.3: FRF for the 2D Model without Soil Mass
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Figure 3.4: FRF for the 2D Model with Soil Mass
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Figure 3.5: FRF for the 2D Model with and without Soil Mass, and no Lateral Supports

Figure 3.6 presents the soil model with two zones, one zone adjacent to the pile was
arbitrary selected to be 20 ft wide and corresponds to the zone where soil mass will be
considered (red). The other zone, away from the pile, 40 ft wide, in which the soil will be
considered massless (orange). Figure 3.7 presents the results of this model with partial
mass assignment along with the function obtained when the full soil deposit mass is

included.

| 40 200 4 200 40° |

Figure 3.6: 2D FEM Mesh with Partial Soil Mass Assignment



43

1.20E-02

1.00E-02 f
8.00E-03 +

6.00E-03 ~

Ux [ft]

4.00E-03

2.00E-03 ~

0.00E+00 \ \ T
0 5 10 15 20
Freq [Hz]

—YES SM - NO LS — PARTIAL SM - NO LS

Figure 3.7: FRF for the 2D Model with Partial and Full Soil Mass Assignment, and no Lateral
Supports

3.5.4 Discussion of the 2D Results

From Figures 3.3 and 3.4, it is evident that the effect of the fixed lateral support is to
produce a shift of the peaks of the FRF to the right. This implies an increase in the natural
frequencies of the system, which correspond to the peaks of the FRF. This situation is
expected since the system is stiffer (more rigid) due to the presence of the lateral supports
that restraint the horizontal movement. The natural frequencies increase as the stiffness
increases, as shown in the following expression that gives a natural frequency of a multi

degree of freedom (MDOF) system:

a)JZ — {¢J }T [I\K/I]{¢J} (3.3)
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where:
o;j = system natural frequency corresponding to the j™ vibration mode
{¢j} = system j™ vibration mode (eigenvector)
[K] = system stiffness matrix
[M] = system mass matrix

Figures 3.3 and 3.4 also show that the general behavior of the pile-soil systems is similar
for both boundary conditions, and the first two natural frequencies are comparable in both
cases. This leads to the conclusion that, for the analyses to be performed, it is not
necessary to consider a more refined elastic lateral support. Free boundary supports will

be considered for the remaining analyses.

Figure 3.5 presents the resulting FRF (in magnitude) for the system with and without the
soil mass. As expected (see equation 3.3), the presence of the soil mass reduces the
natural frequencies (i.e. the frequencies where the peaks of the FRF occur). This figure
shows that the inclusion of the soil mass produces a significant qualitative and
quantitative change in the behavior of the pile-soil system. This leads to the conclusion

that the soil mass plays an important role in the dynamic response.

Figure 3.7 shows a comparison between the magnitude of the FRF for the system with a
partial assignment of the soil mass (the mass nearest to the pile) and the FRF of the
system with full soil mass assignment. The figure shows that the system with partial mass
assignment partially captures the general behavior of the system with the full soil mass
assigned, and that the first natural frequencies of both models are relatively close. This
leads to the conclusion that a partial soil mass assignment may result in a reasonable
good estimate of the first natural frequency, and of the overall system response.
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3.6 Three Dimensional Model

The results of analyses similar to the ones presented in section 3.5, but considering a
three dimensional (3D) soil model, are presented here. Table 3.3 shows the elastic

material properties to be used for the soil and the RC pile:

Table 3.3: Elastic Properties for 3D Model

Material | E [Ksi] v
Soil 12 0.3
RC 3600 0.2

3.6.1 Boundary Conditions

The soil will be considered fully restrained in the bottom edge, in order to model a rigid
bedrock below the sand deposit. The top edge will be considered free. The lateral edges
will be considered with five different boundary conditions: free, restrained against
horizontal movement, with roller supports (vertical movement restrained), with dashpots
that model the radiation damping due to waves traveling in the semi-infinite medium, and
with spring-dashpot to model both the soil continuity and the radiation damping. The
latter conditions will be considered to evaluate the effect of the radiation damping in the

system response (an effect not evaluated in the 2D analyses).

As stated by Arduino (2005), to simulate the radiation condition, the cut off boundaries
must include normal and tangential energy absorption elements. These absorption
elements are usually represented by dashpots, and are usually known as Lysmer boundary
conditions. Properly calibrated, these elements absorb the propagating waves in such a
way that any incident wave produces zero energy being reflected back into the domain.
The dashpot coefficients are determined in terms of the material properties of the semi-
infinite domain, as shown in Figure 3.8. As presented by Mengi and Tanrukulu (1993),

the original dashpot proposed by Lysmer and Kuhlemeyer (1969) included dimensionless
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constants a and b (C, = a p vp, Ct = b p vs). However, it was found that using optimized
values for these constants (in order to minimize the reflected energy) does not bring
major improvements to the performance of viscous boundary conditions as compared to

simply taking a = b = 1. These last values were adopted for the present work.

Force in dashpot: f Dashpot Coefficients: C

FEM Node I f=C, C,=pV,
[I_ Cn =p Vp

Where: p = soil density
'_'r_' v, =soil S wave velocity
v, =soil P wave velocity

fn = Cn un

I t = tangential
Fixed support, drawn n = normal
parallel to FE model
boundary

Figure 3.8: Dashpot Elements to Simulate Radiation Damping in the FE Cut-off Boundaries

The dashpot coefficients presented in Figure 3.8 have to be multiplied by the influence
area “A” of each node of the FE boundary in order to obtain a concentrated dashpot
coefficient, resulting in: Cr = C; A and Cy = C, A, where the capital subscript represents
nodal concentrated values. Because the mesh of the FE model is uniform of size
2'x2’x2’, an internal node will have an influence area of A = 4 ft, an edge node of A = 2
ft?, and a corner node of A = 1 ft%. Table 3.4 summarizes the values of the dashpot

coefficients to be used in the model, for each of the of influence areas stated before.



Table 3.4: Dashpot Coefficients for the Cut off Boundaries

E [Ksi] v y [pcf] G [Ksi] |Vp [ft/sec] | Vs [ft/sec]
12 0.3 110 4.62 711.22 441.08
C, [psf/ (ft/sec)] C, [psf / (ft/sec)]
2429.63 1506.79
Alft] Cy [Ib / (ft/sec) ] C+ [Ib / (ft/sec) ]
4 9718.52 6027.17
2 4859.26 3013.59
1 2429.63 1506.79
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The spring constants used to model the unbounded nature of the soil medium will be

obtained following the approach proposed by Luco (2004). Luco obtained expressions for

the average distributed spring constant to be applied at the boundaries of a rectangular

soil island or truncated region of dimensions 2a, X 2ay X a,, as depicted in Figure 3.9,

carved out of the half space. In the present FE model, a, = 60 ft, a, = 30 ft, and a, = 30 ft.

Figure 3.9: Rectangular Soil Island Dimensions
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The average distributed springs constants to be applied at the region boundaries are

obtained from the following equation:

where:

ki; = distributed spring constant

I =X, Y, or z = plane in which the spring is placed (represented by its normal)

J =X,y, or z =direction in which the spring acts
a; = dimension in the i direction

S = coefficient that depends on the Poisson’s ratio of the soil and the block

dimensions

(3.4)

These coefficients have to be multiplied by the influence area “A” of each node of the FE

boundary in order to obtain a concentrated spring coefficient. This leads to the following

expression: Kjj = ki A, where the capital letter represents nodal concentrated values.

Because the size of each FE is 2’x2’, an internal node will have an influence area of A=4

ft?, an edge node of A = 2 ft?, and a corner node of A = 1 ft*.

Appendix C presents the computations of the coefficients g, k and K. Table 3.5

summarizes the values of the spring coefficients to be used in the model, for each one of

the values of influence areas A stated before.

Table 3.5: Spring Coefficients for Cutoff Boundaries

AT | Kellb/ft] | Ky [lb/ft] | Ky [Ib/ft]
4 87080 24260 24260
2 43540 12130 12130
1 21770 6064 6064
AT | Ky b /ft] | Ky b /ft] | Ky, [Ib/ft]
4 49410 88160 37900
2 24700 44080 18950
1 12350 22040 9475
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3.6.2 FEM Mesh

Following the criteria described in section 3.4, the FE model is 120 ft long, 60 ft wide,
and 30 ft tall. The finite element mesh representing the soil is composed of 2ft x 2ft x 2ft
solid elements, and the pile is modeled with frame elements with 2ft length. The resulting
FEM mesh is shown in an isometric view in Figure 3.10, in a front view in Figure 3.11
(xz plane, long dimension of the model), and in a right view in Figure 3.12 (yz plane,

short dimension of the model).

Figure 3.10: Isometric View of the FEM 3D Model Mesh
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Figure 3.11: Front View of the FEM 3D Model Mesh (long dimension)

Figure 3.12: Right View of the FEM 3D Model Mesh (short dimension)

The resulting FE model has 15 frame elements and 27000 solid elements, 30256 nodes,
and 90813 degrees of freedom (DOF), corresponding to three displacements at each soil
node, and three displacements and three rotations at each pile node. The steady state
response at the pile top, which corresponds to node 15136 in this model, will be obtained.

The magnitude of the force applied at the top of the pile in the x (long) direction is 1 Kip.
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3.6.3 System Response

As stated in section 3.2, the system response to be evaluated is the dynamic flexibility of
the pile head (the horizontal pile displacement due to a unit harmonic load, for different
load vibration frequencies). The dynamic flexibility curve is also known as the FRF

(Frequency Response Function).

This response will be presented in charts that show the magnitude of the horizontal
displacement of the pile top as a function of the frequency of the load. The following

nomenclature will be used in these graphs:

SM = Soil Mass

NO SM = Soil Mass is not included in the analysis

YES SM = Soil Mass is included in the analysis

LS = Lateral Support

NO LS = No Lateral Supports are present at the model edge
YES LS = Lateral Supports are present at the model edge
DP = Dashpot (radiation damping)

NO DP = No Dashpots are present at the model edge
Yes DP = Dashpots are present at the model edge

RS = Roller Support

Yes RS = Roller Supports are present at the model edge

In order to obtain a detailed response while at the same time keeping the computing time

at reasonable levels, 100 frequency increments were specified for each analysis.

Figure 3.13 presents the results of the model when the soil mass is neglected, for two
lateral boundary conditions: free and fixed. Figure 3.14 presents the FRF curve
considering the soil mass, for the same two lateral boundary conditions. Finally, Figure
3.15 displays the results including and neglecting the soil mass, with the lateral edges

without lateral supports (free).
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Figure 3.13: FRF for the 3D Model without Soil Mass
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Figure 3.14: FRF for the 3D Model with Soil Mass
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Figure 3.15: FRF for the 3D Model with and without Soil Mass, and no Lateral Supports

Figures 3.16 a and b present the amplitude of the top pile displacement for the FE model
that considers the soil mass and also dashpots in the cutoff boundaries to simulate the
radiation damping, for two different load frequency ranges. In both charts the response is
plotted against the one obtained by considering free lateral edges, without the dashpots.
The first figure (Figure 3.16a) displays a zoom of the dynamic flexibility for the lower
frequency range (0 to 25 Hz). It is important to mention that for both frequency ranges (0
to 25, and 0 to 200 Hz), the same number of frequency increments (100) was used in the
analysis: Figure 3.16a is more detailed than the lower range of Figure 3.16b, capturing

some peaks not present in Figure 3.16b.
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Figure 3.16: FRF for the 3D Model with Soil Mass, and Dashpots in the Lateral Cutoff Boundaries
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Figure 3.17 presents the soil model with two zones, one near the pile (40 ft wide x 40 ft
long) in which soil mass will be considered (shown in red), and the other away from the
pile (the remaining of the soil island) in which the soil will be considered massless (the

orange zone).

Figure 3.17: 3D FEM Mesh with Partial Soil Mass Assignment

Figures 3.18 a and b present the displacement of the pile top with this partial mass
assignment for the soil. Each figure corresponds to two different load frequency ranges.
In both charts the response is plotted against the displacements obtained considering all

the soil deposit with mass.

Figures 3.19 a and b show the results corresponding to the FE model that considers soil
mass and springs and dashpots in the cutoff boundaries to simulate the semi-infinite
nature of the soil medium and the radiation damping. Again, there are two figures to
better appreciate the response in two different load frequency ranges. In both charts the

response is plotted against the one obtained considering free lateral edges.
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Figure 3.18: FRF for the 3D Model with Partial Soil Mass and no Lateral Supports
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Figure 3.19: FRF for the 3D Model with Soil Mass, and Springs and Dashpots in the Lateral Cutoff

Boundaries
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Figure 3.20 presents the results of the model when the soil mass is neglected, and with
roller supports at the cutoff boundaries. These results are plotted against the FRF

magnitude obtained for the model with free nodes at the lateral edges, for comparison.
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Figure 3.20: FRF for the 3D Model without Soil Mass, and Rollers in the Lateral Cutoff Boundaries

Figures 3.21 a and b present the FRF curve considering the soil mass, for two different
frequency ranges, when the model lateral edges are restrained by roller supports. These
results are plotted against the FRF obtained for the model with free nodes at the cutoff

boundaries, for comparison.

Finally, Figure 3.22 presents the FRF of the system considering soil mass and with
springs and dashpots in the cutoff boundaries, together with the soil deposit natural
frequencies and the pile natural frequencies (as computed in Appendix A, considering
both as continuous systems). Table 3.6 presents the computed natural frequencies, the
wavelengths, and the ratio between the wavelengths of the pile and the soil for coincident

(or more precisely, similar) natural frequencies.
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Figure 3.21: FRF for the 3D Model with Soil Mass, and Rollers in the Lateral Cutoff Boundaries
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Figure 3.22: FRF for the 3D Model with Soil Mass, and Springs-Dashpots Elements in the Lateral
Cutoff Boundaries, together with Soil and Pile Natural Frequencies
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Table 3.6: Soil Stratum and Pile Natural Frequencies and Wavelengths

Soil Natural Frequencies Pile Natural Frequencies

i fi [HZ] As [ft] i fi [HZ] = Ap [ft] AP/ As
1 3.68 120.00 1 1.89 240

2 11.03 40.00 2 11.87 30 0.75
3 18.38 24.00 3 33.22 21 1.58
4 25.73 17.14 4 65.11 15 212 | €
5 33.08 13.33 5 107.63 12 2.90 | €
6 40.43 10.91 6 160.78 10 3.58
7 47.78 9.23

8 55.14 8.00

9 62.49 7.06

10 69.84 6.32

11 77.189 5.714

12 84.54 5.217

13 91.892 4.8

14 99.243 4.444

15 106.594 4.138

16 113.946 3.871

17 121.297 3.636

18 128.648 3.429

19 135.999 3.243

20 143.351 3.077

21 150.702 2.927

22 158.053 2.791

23 165.405 2.667

24 172.756 2.553

3.6.4 Discussion of the 3D Results

Examining Figures 3.13 and 3.14, it is evident that the effect of the lateral support is to
produce a shift of the peaks of the FRF to the right. This implies an increase in the natural
frequencies of the system, which corresponds to the peaks of the FRF. This situation is
expected since the system is stiffer (more rigid) due to the presence of the lateral supports
that restraint the horizontal movement, and the natural frequencies increase as the

stiffness increases.
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These figures also show that the general behavior of the systems is similar for both
boundary conditions, and the first two natural frequencies are comparable in both cases.
This leads to the conclusion that, for the type of analysis considered, it is not necessary to
use a more refined elastic lateral support. Free boundary supports seem appropriate for

the remaining analyses.

Figure 3.15 presents the resulting FRF for the system with and without the soil mass. As
expected, the presence of the soil mass reduces the natural frequencies. However, this
figure also shows that the inclusion of the soil mass produces a significant qualitative and
quantitative change in the dynamic behavior of the system. This leads to the conclusion
that the soil mass plays an important role in the dynamic response of the pile. It also
reveals that, for the case analyzed, the general effect of the mass was quite similar to a
damper: the FRF peaks were smothered in addition to the shift in their locations to the
left (at least in the first two peaks).

Figure 3.16 shows the FRF for the system with soil mass and with dashpots in the lateral
cutoff edges compared to the response of the same system without the dashpots. It is
evident that these dashpots have an important impact in the system response at low
frequencies, but not at high frequencies. The effects of the dashpots were to smooth the
FRF peaks (lowering the system displacement response), to eliminate some of them
(probably associated with rebounding of waves in the cutoff boundaries), and to produce

a shift in the peaks location.

Figure 3.18 shows the FRF for the system with a partial assignment of the soil mass (to
the soil nearest to the pile) compared to the FRF of the system with full soil mass
assignment. The figure shows that the system with partial mass assignment captures the
general behavior of the system with the full soil mass assigned. This leads to the
conclusion that a partial soil mass assignment may result in reasonable good estimates of

the overall system response.
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Figure 3.19 presents the FRF for the system with full soil mass assignment, and springs
and dashpots in the cutoff boundaries. The figure also includes the response of the system
with free cutoff boundaries, and with dashpots in the cutoff boundaries. The figure shows
that there is not a significant difference between the system with dashpots only and the
system with springs and dashpots, reflecting that the soil island has been taken large
enough so the soil half space is adequately represented. The dashpots appear to be more

important in order to model the boundary conditions of the problem.

Figures 3.20 and 3.21 presents the FRF for the system with free edge nodes and with
roller supports at the edge nodes. In Figure 3.20 the soil mass is neglected, and in Figure
3.21 the soil mass is included. The figures show that the response for these two boundary
conditions are similar, and practically identical for the frequency range of interest (where
the principal peaks of the FRF are located). A similar outcome was obtained in the
analysis that includes springs at the boundaries (where the vertical springs play a similar
role than the roller supports). This situation leads to the conclusion that the soil island has
been taken large enough so the soil half space is adequately represented, and that roller

supports are not required to draw valid conclusions on the system response.

Figure 3.22 presents the FRF for the system with full soil mass assignment, and springs
and dashpots in the cutoff boundaries, together with the soil and pile natural frequencies.
It can be appreciated that for frequencies near soil and pile natural frequencies, the FRF
experiences a peak. When soil and pile have closely located natural frequencies and their
wave length ratio is close to an integer (the pile approximated wave length, obtained from
its natural modal shape, is a multiple of soil wave length), as presented in Table 3.6, the
FRF peak is higher, probably due to the fact that soil and pile modes can couple more

effectively.

Finally, a brief comparison between the 2D and the 3D analysis will be presented. By
comparing Figures 3.3 and 3.13 (2D model vs 3D model without soil mass) one can

appreciate a significantly different behavior, with a clear shift of the natural frequencies
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to the right for the 3D model. This situation may be explained considering that although
the 3D model is more flexible it has much less mass involved (due to the fact that the pile
is of finite cross section vs the infinite length in the out of plane direction of the 2D
model). It is appropriate to point out that the static displacement is smaller in the 3D
model since the unit load is distributed in the 60 ft width (in the transverse direction, y
axis) soil mass; however the 2D model is equivalent to have a unit load every ft of soil
width.

By evaluating figures 3.4 and 3.14 (2D model vs 3D model with soil mass) it is possible
to appreciate a considerably different response of both systems. Although the first peak of
the FRF is placed near the same value for both cases, the response of the 3D has a series
of closely located peaks, probably due to out of plane vibration modes in this range of

frequencies.

These findings lead to the conclusion that, when performing a FEM analysis, a 2D FEM
analysis may be appropriate to draw general conclusions of the pile-soil behavior, and to
gain insight on the system response and parameters affecting the system behavior. But a
3D FEM analysis would be required in order to develop more accurate conclusions, since
it is a more realistic representation of the system.

3.6.5 Comments on the 3D Model Analysis Applicability

The FEM analysis was first performed on a PC with a Pentium IV processor, 3.2 Ghz of
speed, 512 MB of RAM, and 143 GB of hard drive (101 GB free). This is considered, at
the present moment, a quite robust PC for any small to midsize engineering firm (either a

Structural Engineering or a Geotechnical Engineering firm).

When performing the 3D analysis, and due to the size of the problem, each frequency
analyzed in order to obtain the dynamic flexibility of pile top lasted more than 20

minutes. For 100 frequency increments the analysis lasted for around 38 hours.
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The required analysis time, added to the time consumed during the model generation,
verification, modification (a process delayed due to the automatic redrawing of the model
performed by the program after each editing step), and saving, made the 3D analysis
complicated and probably not recommended for any practical purpose in an engineering
firm. Considering a seismic time history analysis (with several time increments) that
includes material nonlinearities (so each increment of time implies an iterative process,
and the necessity of a more refined model for the pile and the soil-pile contact surface), it

would easily require more than 2 days per analysis.

The above mentioned situations related to a 3D FEM analysis lead to the conclusion that
simpler, yet accurate for design purposes, models are still required for practical purposes

in an engineering firm.

The required time to perform each FE analysis was also used to decide that the FEM is
not the desired tool to perform parametric analyses that may result in the definition of a
lumped soil mass. The definition of an analytical expression for the lumped soil mass will
be obtained from the approximation of a continuous model, as presented in Chapter 4.
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4 Lumped Soil Model for Dynamic Soil-Pile System Response

The objective of this chapter is to derive an expression of the soil mass contribution to the
soil-pile system response consistent with the Winkler Simplified Model.

The Dynamic Stiffness of a lumped Single Degree of Freedom (SDOF) System is
presented first. Then, the expression for the dynamic stiffness of the pile-soil system
derived by Novak is described. Novak made this development considering an infinite soil
layer of unit thickness under a Plane Strain State. The Novak’s expression will be

manipulated in order to obtain an equivalent lumped model expression.

4.1 Dynamic Stiffness and Flexibility of a SDOF System

Let us consider a lumped single degree of freedom (SDOF) system, consisting of a rigid
body of mass M (lumped mass) constrained to move along the X axis. The mass is
attached to a fixed support by a spring of stiffness K and a dashpot of constant C, as
shown in Figure 4.1. The system is subjected to damped forced harmonic vibrations by
the action of a force with harmonic variation in time F(t) = Fo e’ and the system

response (position as a function of time) is described through the coordinate X(t).

Figure 4.1: SDOF System
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Figure 4.2 presents the free body diagram (FBD) and the kinetic diagram of the rigid
body, corresponding to a positive displacement, a positive velocity, and a positive
acceleration, where:

Fs(t)
F(t) .
— X (t)
M — M
DI — | X (1)
Fd(t) s X()
Free body diagram Kinetic diagram

Figure 4.2: Free Body and Kinetic Diagrams

F(t) = applied dynamic force
Fs(t) = spring force = K X(t)
Fd(t) = damping force = C X (t)

Applying Newton’s second law, the equation of motion for the rigid body is:

F(t)-Fs(t)—Fd(t)=M X(t)
(4.1)
M X (t)+C X (t)+K X (t)=F(t)

The complementary solution of equation (4.1), obtained from the homogeneous second-
order differential equation of motion, results in a transient solution exponentially
decaying with time, and will not be considered here. X(t) = Xo €' is proposed for the
particular solution, or steady state solution, of equation (4.1). Replacing X(t) in (4.1)
leads to:
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M i? @* Xoe +Ciw Xoe™ +K Xoe = Foe'
[ K-&*M+ioC |Xo=Fo (4.2)

Kd (@) Xo=Fo

The complex function [ K - @* M + i @ C ] that relates the displacement and the force
magnitude is referred as the system dynamic stiffness or impedance “Kd(w)”. One can
give a physical meaning to Kd(w) as the amplitude of the harmonic force that must be

applied to a SDOF system to obtain a unit steady state harmonic displacement.

Kd(w) has a real component Kdd(w) (also known as the direct dynamic stiffness) and an
imaginary component Kdg(w) (also known as the quadrature dynamic stiffness), as

shown in equation (4.3) and Figure 4.3.

Kd(0)=| K-&*M+iaC |
Kdd (0)=K -’ M (4.3)
Kdg(w)=wC

It can be seen from equation (4.2) that Xo results in a complex function of @, meaning
that the displacement is not in phase with the force, and that the imaginary component of
the stiffness (due to the system damping) is responsible for the phase angle ¢ with which

the displacement lags the force.
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Figure 4.3: Dynamic Stiffness Components (Phase Diagram)

Another way of representing the dynamic stiffness is to use a polar system of reference
giving its module |[Kd(®)| (vector length) and phase angle @(®) as described in equation
4.4, instead of giving its component in a Cartesian system of coordinates (Kdd(w) and
Kdg(w)). In the expressions of |Kd(w)| and # ) it is usual to take K out of the radical,
and make a change of variables considering that K/M = @n? and C/K = 2& an, where an

is the system natural frequency and & is the system damping ratio.

28
¢(w)=atan (%j =atan| — N (4.4)
- w
1-| <
wn

Kd ()= ‘Kd (a))‘ ¥
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Figure 4.4 presents in a qualitative way the variation of the real component Kdd(w) and
the imaginary component Kdq(w) of the dynamic stiffness with the frequency of the load

. The real component has a parabolic variation, and it becomes zero when the frequency
of the load coincides with the natural frequency of the system wn = % (resonance

condition). It is important to notice that, in a damped system, the dynamic stiffness does
not become zero at resonance, since the imaginary component (which has a linear

variation with o) has a finite value equal to on C.

Kdd 4

v

Kdqg

oC

v
S

Figure 4.4: Variation of Real and Imaginary Components of Kd(w) as a Function of Load Frequency @

The ratio of the dynamic stiffness to the static stiffness may be called the relative

dynamic stiffness Kdr(w) = Kd(w)/K:

Kdr(a)):%(w):[l—wz%Ha)%}:{l_(ﬁjzﬂ 252}

wn wn



The direct (or real) and quadrature (or imaginary) components of the relative stiffness
are:

Kddr () :1—(ﬁj2

wn

Kdqr (w)=2 f%

The modulus of the relative (or non-dimensional) dynamic stiffness is:

71

watol=fo-( [ -{(2)]

Figure 4.5 shows the variation of |Kdr(®)| with the frequency ratio or = @/ wn, for
different damping ratios & (5%, 10%, 20%, 30%); it can be seen that |[Kdr(w)| is

minimum near resonance (er = 1).

25 ’

2 ‘4'
Kdr(wr, 0.05) ke

Kdr(or,0.1) K4
""" 15 ¢l
Kdr(mr, 02) 0 1

Kdr(wr,0.3)

1 --u‘n-.‘,_' ‘-

0.5

0.5 1 15 2

or

Figure 4.5: Variation of |[Kdr(a)| as a Function of Load Relative Frequency ar, for Different
Damping Ratios
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Figure 4.6 shows the variation of phase angle #() with the frequency ratio or = @l wn,
for different damping ratios & It can be seen that for static loads («=0) the displacement
is in phase with the force (¢=0; the dynamic stiffness has only a real component), for
resonant loads (w=wn) the displacement lags the force by 90° (¢=n/2, the dynamic
stiffness has only an imaginary component), and for high frequency loads the
displacement lags the load by 180° (g=n, the mass component of the dynamic stiffness is

dominant).
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Figure 4.6 : Phase Angle ¢ a Function of Load Relative Frequency ar, for Different Damping Ratios

The inverse of the dynamic stiffness is the dynamic flexibility H(®) (equation 4.6), also
known as dynamic compliance, receptance, admittance, and Frequency Response
Function (FRF), this last designation being the most commonly used. One can give a
physical meaning to H(w), as the amplitude of the steady state displacement of a SDOF

system when subjected to a complex unit harmonic force F(t) = 1 '
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1 1
H = =
(a)) Kd(a)) K-o*M+iwC
1 1 _ 1 st (4.6)
H — - _ e |¢(ru) _ |¢((a)
(CU) ‘Kd (w) i)

The ratio between the dynamic flexibility and the static flexibility ( f = 1/K ) may be
defined as the relative dynamic flexibility (or dimensionless frequency response function)

Hr(w), and is shown in equation 4.7.

Hr ()= ia’) - Hg")) - 2 1 ¢ 4.7)
R R

Figure 4.7 shows the variation of the module of Hr(w) with the frequency ratio wr =

ol wn; it can be seen that |Hr(w)| is maximum near resonance (or = 1).

10

Hr(or, 0.05)

Hr(wr,0.1)

Hr(wr,0.2)

Hr(wr,0.3)

0 or 2
Figure 4.7: Variation of |Hr(w)| as a Function of Load Relative Frequency ar, for Different Damping
Ratios
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4.2 Novak’s Dynamic Stiffness to Model Soil-Pile Interaction

Novak (1974) presented an approximate analytical expression of the dynamic stiffness
and damping of piles based on linear elasticity, describing the dynamic soil reaction per
unit length of pile by closed form formulas, as derived by Baranov in 1967. In Novak’s
study it is assumed that the soil is composed of a set of independent infinitesimally thin
horizontal layers in plane strain state that extend to infinity and experience small
displacements. The layers are considered to be composed of an homogeneous, isotropic,
and linear-elastic material. The pile is assumed to be vertical, with circular cross section,
and that the cross section shape and size remain unchanged and moves as a rigid body (a
hypothesis that is consistent with the Navier-Bernoulli beam theory). The massless rigid
circular disc that represents the pile cross section is considered to experience a harmonic

vibration. No separation is allowed between the rigid cylinder and the soil medium.

This approach was later extended by Novak and his coworkers to viscoelastic materials
with frequency independent material damping (hysteretic damping), as reported by
Novak and Abloul-Ella (1978) and Novak et al. (1978). The damping is considered by
means of the Complex Shear Modulus G* =G +i G’ =G (1 + i D) , where the parameter

D (known as the loss factor) is defined in terms of the loss angle 6:

D =tan5=G— (4.8)
G

where:

D = loss factor
G = real part of the shear modulus
G’ = imaginary part of the shear modulus

The complex horizontal stiffness of the soil associated with a unit length of the cylinder,
“ku”, (or the dynamic soil reaction per unit length of pile to a unit horizontal harmonic

displacement of the rigid disc) is given by the following equation:
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ku=Gra’T (4.9)
where:
4K, (b,") Ky (a,")+a, K, (b, ) Ko (8, ) +b, Ky (b)) K, (3, )
=—— K K K (4.10)
b, K, (b, ) K, (8, ) +a, K, (b, ) Ko (a,") +b,"a, Ky (b, ) Ko (a,)
in which:
K, = modified Bessel function of the second kind of order n
or . :
a, =—>=dimensionless frequency
@ = vibration frequency in [ra%ec}
r, = cylinder radius
V, = \/E = shear wave velocity of the soil
P
o = mass density of the soil
. a,
a, = i = complex dimensionless frequency
J1+iD
b =2
n
2(1-v
o [2a0)
1-2v
(4.12)

v = Poisson's ratio of the soil

Separating the real and imaginary parts of the function T, equation 4.9 can be rewritten in

a condensed form as:

ku=G[S,(a,v,D)+iS,,(a,v,D)] (4.12)

in which Sy; and S, are real functions. The variations of these functions with a,, v, and D

are shown in Figures 4.8 a and b.
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Figure 4.8: Horizontal Stiffness and Damping Parameters Sy; and S,
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By analyzing this figure it can be appreciated that the imaginary part of the dynamic
stiffness (Sy2), corresponding to the damping, has an almost linear variation, and that it
increases (for the same frequency) as the hysteretic damping D increases. It also can be
noted that the real part of the dynamic stiffness (Su1), corresponding to the elastic and
inertia contributions, has a parabolic type of variation, and decreases (for the same
frequency) as the hysteretic damping D increases. An inspection of Figure 4.8 also allows
to pinpoint that as the Poisson’s ratio v decreases the curve of the real part Sy; tends to
flatten, and a decrease in the Poisson’s ratio also lowers the slope of the imaginary part

(decreasing the damping effect).

Novak (1974) and Novak and Aboul-Ella (1978) compared the dynamic stiffness of the
pile head obtained with Novak’s model with the results calculated with more rigorous
approaches. An example of such comparisons is shown in Figure 4.9. It presents, for a
case study of a pile fixed at the bottom, the real part (f,;) and the imaginary part (f,;) of
the direct horizontal pile head stiffness (functions that relates the pile head horizontal

force corresponding to a pile head horizontal displacement).

As stated by Novak (1974), the differences between the two solutions appear acceptable
and diminish with increasing frequency. Novak’s solution does not yield peaks attributed
to the soil layer resonances; however, the sharpness of these peaks decreases and they
even vanish with soil viscosity, so they are not considered important. Since the real part
of the Novak’s solution tends to zero as the frequency tends to zero (instead of yielding
the static stiffness), Novak and Aboul-Ella (1978) recommended to extend the value of
fu1 corresponding to a, = 0.3 to the lower frequencies, as shown in Figure 4.9. Novak
also recommended to use, for practical purposes, the value corresponding to a, =0.3 as

the dynamic stiffness.
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Figure 4.9: Comparison of Approximate (Novak) vs. More Rigorous Approach (Aboul-Ella and
Novak, 1978)

Finally, considering the dynamic stiffness of a SDOF system presented in Figure 4.4, the
similar trends presented by Novak’s dynamic stiffness in Figure 4.9 (at least for high
Poisson’s ratio values) strongly suggest that an equivalent lumped model would be

appropriate, avoiding the use of a complex expression for the dynamic stiffness that is
also frequency dependent .

4.3 Equivalent Lumped Model

In order to obtain an equivalent lumped model it was decided to approximate the Novak’s
dynamic stiffness presented in section 4.2. To this end, the real part of Novak’s solution

will be approximated by a second degree polynomial with no linear term, and the
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imaginary part of Novak’s solution will be approximated by a straight line with no

constant term.

In order to obtain the proposed approximation, the least square technique for curve fitting

will be applied. The analysis will be performed for different Poisson’s ratios.

Considering the fact that the maximum of the real part of Novak’s dynamic stiffness is
not located at zero frequency, and that the real part tends to zero as the frequency tends to
zero, this maximum will be determined and extended as constant for the lower

frequencies.

4.3.1 Lumped Coefficients Definition

By comparing equation 4.9, which describes the soil dynamic stiffness according to the
Novak model, with equation 4.3, which describes the dynamic stiffness of a single degree
of freedom system, a general form of the equivalent lumped model coefficients can be
established.

It is proposed to obtain a polynomial approximation of the Novak’s solution, taking the
dimensionless frequency a, as the independent variable. As stated before, the real part
will be approximated by a constant term (corresponding to the static stiffness) and a
quadratic term (corresponding to the mass), and the imaginary part will be represented by

a linear term (corresponding to the viscous damping). Starting with equation 4.9:

ku=Gra,” T(a,v,D)

and introducing a function f,

f(a,,v,D)=2a,"T(a,,v,D)
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the complex stiffness can be written as
ku=Gr f(a,v,D)=G~x {Real[f (a,,v,D)]+ilmag| f(a,v, D)]}
introducing the following approximations

Real| f(a,,v,D) ]|~ -a, a,

Imag[ f (a,,v.D)|~q, a,
the dynamic stiffness ku becomes
kuzGﬂ'(ak—am a’+ia, ao) (4.13)

The coefficients «; will be determined by the least square approximation of the function
f(ao, ,D), for i = k, m or c (the subscripts k, m and ¢ correspond to the stiffness, mass, and
damping coefficients, respectively). Comparing equation 4.13 with the dynamic stiffness

of a SDOF system as expressed by equation 4.3, one can obtain:

2 H 2 H
ku~G 7(a —a, 3, +ia, a,)=k,—m, &’ +ic, o

k,=G 7 e,
r? o
m o’ =Gra,a’°=Gra, (G] =prr’a, o (4.14)
p
c,o=Gra,a,=Gra, Lo Gz, a, o
V V.

Solving for the stiffness coefficient k,, the lumped mass m,, and the lumped viscous
damper coefficient c, from equation 4.14, the equivalent lumped coefficients are:

k,=7G ¢q,
m=xr’pa, (4.15)

CaZEFO\%aC:ﬁI’OpVSaC =7r\G p a,

S
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The viscous damping coefficient corresponds to the radiation damping. The material

damping (hysteretic damping) is accounted by the parameter D, as defined previously.

These coefficients are defined per unit pile length. In order to obtain lumped coefficients
to apply at each node of a pile discretized with beam elements, these values have to be
multiplied by the tributary length for each node. Alternatively, the corresponding
consistent matrices of a beam on elastic foundation, considering the beam element degree
of freedom, should be obtained.

4.3.2 Determination of the Lumped Coefficients

As stated previously, the dynamic stiffness of the Novak’s model will be approximated
by polynomials using the least squares method. The basic equation of the method can be
found in most textbook on applied numerical analysis (for instance, Gerald and Wheatley,
1994; Chapra and Canale, 1998).

Consider “N” known discrete data points (X, y). It is desired to find an “n” degree
polynomial that best fit these data points by minimizing the error between the known
ordinates of the data points and the ordinates predicted by the following polynomial

expression:

f(x)~d,+d, x+d, x* +d; x> +...+d_x"

The polynomial coefficients d; can be found by solving the following system of linear

simultaneous equations:



82

B N N N N ] N
N in zxiz ins "'zxin Zyi
" :\‘:1 |;1 |;1 ’:‘:1 d N|:1
in ZX.Z zxis ZX|4 "'zxinﬂ ° XY
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N N N N N d.t=1N (4.16)
x 2 x3 x4 x5 x 2 .2 Xi2 i
: : : : : d, :
N N N N N N
inn zxim—l inrH—Z zxin+3 _._inm—n inn yi
| i=1 i=1 i=1 i=1 i=1 | i=1

where x; and y; are, respectively, the abscise and ordinate of data point i.

The coefficients ax and o are obtained from the real part of Novak’s dynamic stiffness
function f(a,, v,D) defined in the previous section. The application of the least square

method leads to the following expressions:

X=a,
y=Real| f (a,,v,D)]

2
yro —a, ao

N Y. (4.17)
N©XT Y
{ O }_ i1 i1
—a. | | N N
S DR DI I DI
i1 i1 i1

The coefficient « is defined by using the imaginary part of Novak’s dynamic stiffness
function f(a,, v,D) defined in the previous section. Applying the least square method leads

to the following expressions:
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X=a,

y=Imag| f (a,,v,D)]

y ~ aC a'0
N (4.18)

DX,

i=1

RS

i=1

a. =

b=

The number of discrete points N adopted for the analysis was 30. The main objective was
to obtain an adequate fitting of Novak’s solution within the range of 0.3 < a, < 3.0. The
lower range value correspond to the one suggested by Novak to be used for low
frequencies; the upper range value was adopted as twice the upper value displayed in the
charts presented by Novak, as a range where the model is expected to give adequate

results.

Instead of using a, = 0.3 in the lower frequency range, the maximum of the function was
obtained (and adopted as the second data point). This value was then extended
horizontally up to the intersection with the vertical axis, which was the point adopted as

the first data point of the series.

Appendix D presents the listing of the MathCad worksheet prepared to perform the
regression, for different Poisson’s ratio values. As an example of the results of the
analysis, Figure 4.10 presents the real part on Novak’s dynamic stiffness function
f(ao, v,D), in red, together with the data points used for the regression (in green), and the
resulting polynomial approximation (in blue). These results are for the case of v=0.5 (a

value of 0.4999999 was adopted to avoid indetermination) and D = 0.0.
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Figure 4.10: Real Part of f(a,, v,D) for v=0.5 and D = 0.0 (red), Data Points (Green), and Polynomial
Approximation (Blue)

Figure 4.11 presents the imaginary part on Novak’s dynamic stiffness function f(ao, v,D)
(in red) together with the data points used for the regression (in green), and the resulting

polynomial approximation (in blue). The same values for vand D were used.

Figure 4.11: Imaginary Part of f(a,,v,D) for v=0.5and D = 0.0 (red), Data Points (Green), and
Polynomial Approximation (Blue)
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The resulting regression coefficients for this case are:

a, =1.721
a, =0.965 (4.19)
a, =4.107

This analysis was performed for different soil Poisson’s ratios v. As the Poisson’s ratio
decreases, the real part on Novak’s dynamic stiffness function f(ao, v,D), in red, starts to
exhibit an inflection point after the maximum, and the function tends to increase for high
frequencies, as shown in Figure 4.12. To show this effect, Figure 4.12 displays the real
part on Novak dynamic stiffness function f(a,, v,D) (in red) together with the data points
used for the regression (in green), and the resulting polynomial approximation (in blue)
for the case of v =0.48 and D = 0.0. As the Poisson’s ratio continues decreasing, the
curvature is reduced (the curve tends to get flatter, more horizontal), making the mass

contribution less important. It also shows a tendency to move its maximum to the right.

In order to analyze these cases, it was decided to find the inflection point, and to extend
the function along the tangent to this point to obtain the data points for higher
frequencies, and not to include the rising portion of the function, as shown in Figure 4.13
for the case of v=0.47 and D = 0.0.
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Figure 4.12: Real Part of f(a,,v,D) for v=0.48 and D = 0.0 (red), Data Points (Green), and
Polynomial Approximation (Blue)
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Figure 4.13: Real Part of f(a,,v,D) for v=0.47 and D = 0.0 (red), Modified Data Points (Green), and
Polynomial Approximation (Blue)
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Figure 4.14 shows the variation of the regression coefficients o, om, and o with the
Poisson’s ratio v, and Table 4.1 presents the numerical values obtained for them. It is

recalled that the dynamic stiffness ku was approximated as follows:
ku~(G ﬂak)—(pﬂ o, )a)2 +i(zr, pV,a, o

Because the coefficient an becomes very small as the Poisson’s ratio decreases,
according to Novak’s model, the contribution of the lumped soil mass to the system
response tends to be less significant in this case. Indeed, its contribution is practically
insignificant for Poisson’s ratios smaller than 0.4. Figure 4.15 presents the variation of

coefficient o, alone, in order to better appreciate its behavior.
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Figure 4.14: Variation of Regression Coefficients with Poisson’s Ratio [0.3-0.5]



Table 4.1: Regression Coefficients ax, am, and a for v[0.5-0.31]

v ak am ac
0.50 1.72137 0.96533 4.10747
0.49 1.61062 0.68219 4.38920
0.48 1.46327 0.45715 4.33825
0.47 1.39946 0.32158 4.20948
0.46 1.36918 0.23482 4.06638
0.45 1.35437 0.17664 3.92941
0.44 1.34592 0.13555 3.80454
0.43 1.34015 0.10538 3.69268
0.42 1.33550 0.08258 3.59299
0.41 1.33130 0.06494 3.50411
0.40 1.32727 0.05106 3.42465
0.39 1.32329 0.03998 3.35334
0.38 1.31933 0.03104 3.28908
0.37 1.31540 0.02376 3.23091
0.36 1.31153 0.01780 3.17803
0.35 1.30775 0.01290 3.12978
0.34 1.30411 0.00886 3.08557
0.33 1.30067 0.00553 3.04493
0.32 1.29749 0.00280 3.00744
0.31 1.29479 0.00059 2.97274
\ 1.0
\\ 0.8
\\ 0.6
04 =
m
- 0.2
‘ - 0.0
0.5 0.4 0.3

Poisson's ratio v

Figure 4.15: Variation of Regression Coefficient e;,, with Poisson’s Ratio [0.3-0.5]
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For values of Poisson’s ratio of 0.30 and smaller, the real part of Novak’s dynamic
stiffness does not present a maximum. It was decided to approximate the function by a
horizontal line. Since the real part of the function f(a,v,D) was approximated by

o, —a, &, this implies that the coefficient am must be zero. In turn, since the quadratic

term gives the contribution of the mass to the dynamic stiffness, this implies that there

will be no lumped mass contribution for small values of v.

The first option was to select an horizontal line passing through the inflection point of the
curve, as shown in Figure 4.16 for v = 0.30. However, for Poisson’s ratios values less
than 0.24 no inflection point was obtained, so it was opted to obtain the coefficient ok as
the mean value of the real part of the dynamic stiffness within the range of the
dimensionless frequency between 1.0 and 3.0. In this way one avoids having to account
for the steep variation in the initial range and it permits to have a good estimate within
the range of interest of a,. This procedure is equivalent to the least square method for a
linear regression, keeping only the constant term. Figure 4.17 shows this approximation

for v =0.30.

fr(ao)

fr_app (a0)

05 -

0.5 1 15 2 25 3 35
0 ao 35

Figure 4.16: Real Part of f(a,, v,D) for v=0.30 and D = 0.0 (red), and Horizontal Line Approximation
(Blue) using Inflection Point
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Figure 4.17: Real Part of f(a,, v,D) for v=0.30 and D = 0.0 (red), Horizontal Line Approximation
(Blue) using the Mean Value, and Selected Data Points (green)

Figure 4.18 shows the variation of the regression coefficients o, and o, with the
Poisson’s ratio v and Table 4.2 presents the results of this approximation for Poisson’s

ratios values ranging from 0.30 to 0.00.
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Figure 4.18: Variation of Regression Coefficients with Poisson’s Ratio [0-0.3]
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Table 4.2: Regression Coefficients ax, o, and ¢ for v[0.3-0.0]

0.30 1.30686 - 2.94054
0.29 1.30834 - 2.91058
0.28 1.30886 - 2.88262
0.27 1.30858 - 2.85647
0.26 1.30766 - 2.83197
0.25 1.30622 - 2.80895
0.24 1.30435 - 2.78729
0.23 1.30213 - 2.76687
0.22 1.29964 - 2.74757
0.21 1.29692 - 2.72932
0.20 1.29402 - 2.71203
0.19 1.29099 - 2.69562
0.18 1.28784 - 2.68003
0.17 1.28461 - 2.66519
0.16 1.28133 - 2.65106
0.15 1.27800 - 2.63758
0.14 1.27464 - 2.62470
0.13 1.27127 - 2.61240
0.12 1.26791 - 2.60062
0.11 1.26454 - 2.58934
0.10 1.26120 - 2.57852
0.09 1.25787 - 2.56814
0.08 1.25457 - 2.55817
0.07 1.25131 - 2.54859
0.06 1.24807 - 2.53937
0.05 1.24488 - 2.53049
0.04 1.24172 - 2.52194
0.03 1.23861 - 2.51370
0.02 1.23553 - 2.50574
0.01 1.23251 - 2.49806
0.00 1.22953 - 2.49064

4.3.3 Lumped Coefficients Analysis

Figure 4.19 presents a summary of the variation of the regression coefficients ax, am, and
o, With the Poisson’s ratio for whole range of v values (between 0.0 and 0.5). Observing
the figure, it becomes evident that the coefficient «, corresponding to the soil static

stiffness contribution, remains practically constant for different v values whereas the
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coefficient am, corresponding to the soil mass contribution, decreases rapidly with the
Poisson’s ratio and for all practical purposes vanishes for values smaller that 0.30. The
figure also shows that the coefficient «., corresponding to the radiation damping
contribution, after an initial increase for v below 0.5, experiences a significant reduction
as the value of v decreases, but nevertheless it keeps a non-negligible value for all the

range of the Poisson’s ratios.
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Figure 4.19: Variation of Regression Coefficients with Poisson’s Ratio [0.5-0.0]

In order to analyze the type of dynamic response predicted by the model, the critical
damping coefficient c., and the damping ratio & considering that the rigid circular slice
that represents the pile cross section is massless, will be obtained (Humar, 2002). It is

well known that the critical damping coefficient of a single DOF oscillator is:

CCI’ :kaa ma



93

Substituting k, and m, from equations 4.15 one obtains

G
c, =2 Ga rPopa )| =2xr | —a, a
cr \/(” k)(ﬂ- 0 p m) ﬂo ,0 p k “*m (420)

CchZﬂ-rost \/ ak am

By definition the viscous damping ratio is

C, zr pV,a,
é::—:
C. ZﬂrOpVS\/akam

(4.21)
aC

Table 4.3 presents the damping ratio & defined in equation 4.20 for values of the

Poisson’s ratios ranging from 0.50 to 0.30.

Table 4.3: Damping ratio &for v[0.50-0.30]

% Olk om Oc E
050 | 1.72137 | 0.96533 | 4.10747 | 1.5932
049 | 1.61062 | 0.68219 | 4.38920 | 2.0937
048 | 1.46327 | 0.45715| 4.33825| 2.6521
0.47 | 1.39946 | 0.32158 | 4.20948 | 3.1374
0.46 | 1.36918 | 0.23482 | 4.06638 | 3.5857
0.45| 1.35437 | 0.17664 | 3.92941 | 4.0168
0.44 | 1.34592 | 0.13555 | 3.80454 | 4.4536
0.43 | 1.34015| 0.10538 | 3.69268 | 4.9130
0.42 | 1.33550 | 0.08258 | 3.59299 | 5.4097
0.41| 1.33130| 0.06494 | 3.50411 | 5.9588
0.40 | 1.32727 | 0.05106 | 3.42465| 6.5779
039 | 1.32329 | 0.03998 | 3.35334 | 7.2899
0.38 | 1.31933 | 0.03104 | 3.28908 | 8.1270
0.37 | 1.31540 | 0.02376 | 3.23091 | 9.1374
0.36 | 1.31153| 0.01780 | 3.17803 | 10.3987
0.35| 1.30775| 0.01290 | 3.12978 | 12.0467
0.34 | 1.30411| 0.00886 | 3.08557 | 14.3499
0.33 | 1.30067 | 0.00553 | 3.04493 | 17.9454
0.32 | 1.29749 | 0.00280 | 3.00744 | 24.9381
0.31| 1.29479 | 0.00059 | 2.97274 | 53.6188
0.30 | 1.30686 | 0.00000 | 2.94054 0
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Since the damping ratio is always greater that 1, the model will predict an overdamped
response. It is important to point out that if the model is applied to analyze a pile-soil

system, this situation may vary due to the effect of the pile mass and stiffness.

It is instructive to evaluate the effect of the mass of a SDOF system on the system
response as the damping ratio varies. To this end, the dimensionless frequency response
function (presented in section 4.1) of a SDOF system will be evaluated, considering
different mass values (M), and different damping ratios (£). For the analysis, the stiffness
and mass properties of the original system will be first taken equal to 1, in order to obtain
a natural frequency an = 1 rad/sec. Then, a mass one order of magnitude smaller than the
original (i.e., M = 0.1) and one order of magnitude greater than the original (i.e., M = 10)
are considered. Figures 20, 21 and 22 present the modulus of the FRF for £= 0.2, 1.5,

and 10, respectively.
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Figure 4.20: Dimensionless FRF for £=0.2
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Figure 4.21: Dimensionless FRF for £=1.5
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Figure 4.22: Dimensionless FRF for £=10.0
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It can be seen from Figure 4.20 that for systems with a relatively small damping ratios
and for excitation frequencies a)<\/§a)n, the response experiences an amplification

(peak) with respect to the static response (w= 0), and that the system mass plays an
important role in establishing where the peak is located (for a constant stiffness). As the
damping ratio becomes higher (specifically, &> V212 ), the FRF does not present a peak
(there is no amplification for any excitation frequency), and the response of the systems
with different masses becomes closer, making the effect of the mass less important in the
system response. Figure 4.23 displays the response of systems with different masses and
different damping ratios; this figure demonstrates that, in overdamped systems, an effect

similar to the mass may be obtained with an appropriate damping.
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Figure 4.23: Dimensionless FRF for Different M and &

The fact that the radiation damping makes a soil deposit a highly dissipative medium may
explain the reason why the model proposed by Novak, which was used as the basis of the
present proposed lumped model developed in this chapter, does not yield an equivalent

lumped mass for all Poisson’s ratios:
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This situation may be explained by the fact that, due to radiation damping, the soil
response is overdamped; and overdamped SDOF systems behavior are basically
controlled by damping and not by mass. The model also shows that the soil mass is
important for high soil Poisson’s ratios, as occurs in saturated soils (for v = 0.5 the soil
mass contribution is in the same order of the pile mass contribution). However, the soil
mass importance rapidly diminishes as the Poisson’s ratio becomes smaller. This
situation may be explained due to the fact that the larger the value of the Poisson’s ratio
v, the larger the soil transverse deformation that will occur when the piles vibrates
horizontally, so more soil mass is involved in the transmission of p-waves due to pile
vibration, as presented in Figure 4.24: when v = 0.0 there are no transverse deformations,
and the compressive waves propagate along one line of soil stress elements located along
the direction of pile movement, but when v increases, there are increasingly larger
transverse deformations, so the compressive waves also affect the soil stress elements

located perpendicular to the direction of pile movement.

Figure 4.24: Effect of vin the Propagation of P-Waves
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4.4 Pile Element Matrices

This section briefly describes the implementation of the soil lumped model in the analysis

of a single pile, using three types of one dimensional (1D) flexural beam elements.

4.4.1 Classical Beam Element with Lumped Soil

A classical beam element with its nodal degrees of freedom is shown in Figure 4.25. The
corresponding element stiffness, lumped mass, and consistent mass matrices are

presented in equations 4.21, 4.22 and 4.23 respectively (Chopra, 2001; Suarez, 2004).

v

Figure 4.25: Pile Element DOF
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[ 12E1 6EI 12E1  6EI |
E T 12
E E E E
6EI 4E1  6EIl  2EI
L2 L L2 L
[ke]=| ..° ; - - (4.22)
_12E1 6EIl  12EI  6El
L L L Lt
6E I 2E 1 _6EI 4E1
Lt L L L
where:
[k | = Pile element stiffness matrix
L. = length of the pile element
E = modulus of elasticity of the pile element material
I = moment of inertia of the pile element cross section
M. 0 0 O
2
0O 0 0 O
[m:]= (4.23)
M
0 0 —2*20
2
i 0 0 0

where:

[m¢ ] = Pile element lumped mass matrix
M, = p AL; = mass of the pile element
p = density of the pile element material
A = area of the pile element cross section
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156 22L. 54 —13L.
m_Mp | 22Le 4.2 13L.  -3L.°7
17420 54 13L, 156 —22L.

~13L. -3L.2 -22L. 4L

(4.24)

where:

[m, | = Pile element consistent mass matrix
M, = p AL = Pile element mass

The pile with a lumped mass-spring-dashpot at its ends (representing soil-pile interaction)
is presented in Figure 4.26, together with the corresponding lumped parameters
definition. The coefficients k,, m,, and c; were obtained based on Novak’s dynamic
stiffness that represents the dynamic soil reaction per unit length of pile due to a unit
horizontal harmonic displacement of a rigid disc (pile cross section). These coefficients
must be multiplied by the tributary length of each pile element node, that is Lg/2, in order

to obtain the nodal lumped parameters.

This approach of representing the soil-pile interaction has four main advantages:

e |t can be easily implemented in any commercial structural analysis software (e.g.
SAP2000, etc.).

e |t is not difficult to incorporate possible soil non-linearities by varying the soil
stiffness ka (i.e. using p-y curves).

e The required computational time is orders of magnitude smaller than the one
required by a 3D FEM model.

e A simple model can be more easily understood and it is more likely to be

accepted and adopted by the professional community.
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Figure 4.26: Pile Element with Lumped Soil Parameters

4.4.2 Classical Beam Element with Distributed Soil

Other possible approach to obtain a model of the pile that accounts for the soil
contribution is to obtain a set of consistent stiffness, mass and damping matrices by
applying an appropriate variational principle to the pile (beam) element with distributed
soil parameters k,, m,, and c,. The beam element is shown in Figure 4.27; note that the
springs, dashpots and masses representing the soil are not lumped at its end nodes, but
distributed along its length. Appendix E presents the derivation of these matrices; the

results obtained are given in equations 4.24 trough 4.26.

This approach is more elegant than the lumped model, but it has two drawbacks:

e Itis not possible to implement in a commercial package, since the program should
have this type of element matrices built in. Most commercial software use lumped
mass matrices and only allow to add additional masses, dashpots and springs at
discrete points.

e |t is not evident how to incorporate nonlinear effects, since the soil stiffness is
distributed (not lumped), and hence it is not associated to a particular

displacement that may control this stiffness value.
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Figure 4.27: Pile Element with Distributed Soil Parameters
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The stiffness matrix for the beam element with distributed soil stiffness is given by:

12EI B6El  12EI 6EI |
Le Lt L L
6EI  4El  BEIl 2ElI
Lt L L L
_12EI_6EI 12El  GEI
Le L L Lt
6EI  2El  BEIl A4El
Le L L L

_l_ _
420

156
221,
54
~13L,

—3L.2 -22L,

~13L,
31,2
~22L,
412

(4.25)
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where:

[k | = Pile element stiffness matrix

L. = length of the pile element

E = modulus of elasticity of the pile element material
I = moment of inertia of the pile element cross section
K =Kk, Lz = Total soil stiffness coefficient

The mass matrix for a beam element with distributed soil mass is given by:

156  22L, 54  -13L,
221, 4L 13 -3L°

[ME]=MP+MS E E E E (4.26)
420 54 13, 156 22l

~13L, -3L.2 -22L.  4L2

where:

[M_ | = Pile + soil element consistent mass matrix
M, = p AL, = Total pile element mass

Mg =m, L, = Total soil mass

p = density of the pile element material

A = area of the pile element cross section

oA =mass per unit length of the pile element

m, = mass per unit length of the soil

The damping matrix for a beam element with distributed soil damping is given by:

156 22, 54 —13L,
C. | 22L. 4L 13, -3L°
T420| 54 13L. 156  -22L.
~13L, -3L.2 -22L. 4L

[cc] (4.27)
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where:

[ce | = Pile + soil element consistent damping matrix
Cs =c, L. = total soil damping
c, = distributed damping coefficient of the soil

4.4.3 Refined Beam Element with Distributed Soil

Finally, a third approach to define a model to represent the pile and the soil contribution
is presented. The refined beam element was proposed by Deschapelles (2003), and it has
five degree of freedom (DOF): four corresponding to the classical beam element (nodal
transverse displacements and rotations) plus one corresponding to the average transverse
displacement along the beam length. This last displacement may be considered as a
distributed or non nodal DOF. This element is displayed in Figure 4.28 with the

distributed springs, dampers and masses.

The consistent stiffness, mass and damping matrices were obtained by applying the
Principle of Virtual Work to the pile (beam) element with distributed soil parameters ka,
m,, and c,. The derivation is presented in Appendix E and the results are given in
equations 4.27 through 4.28.

This approach is more elegant than the lumped model, and it has the advantage that the
new DOF is directly associated with the distributed soil stiffness, so its value may be
used to control the soil stiffness to perform a nonlinear analysis. Its major drawback is
that it is not possible to implement it in a commercial structural analysis program, since

no program has this type of element.
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Figure 4.28: Refined Beam Element with Distributed Soil Parameters

The stiffness matrix for the refined beam element with distributed soil stiffness is given

by:

64 12 120 56 8]
Lt L A Le
1L—2 3 —? Li -1 (288 21, -270 -18 6L
£ - ; 21L, 22 -15L. 6L, L2
[ke]= 25! (120020 240 120 20\ Ks | 00 151 1800 270 151
oL Le L L L L | 1260 18 6|_E 270 288 215
? 8 —@ G—f 2 6L, L2EE 15L, -2l 2L2EE
I—E I—E LE LE I—E -
.8 4 20 12
L LE I-E LE
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where [kg] is the stiffness matrix of the pile plus soil element, and the other parameters

are the same as those previously defined for equation 4.24.

The mass matrix for a refined beam element with distributed soil mass is given by:

(288 21l
u oo |2 212
+
M. ]=—F 25| 270 -15L
Mel=""1o55 .
~18 6L,
6L L

where [Mg] is the pile plus soil element consistent mass matrix, and the remaining

270
151,
1800

270
150,

18
6L,
270

288
~21L,

150,
~21L,

212 |

parameters were defined before for the mass matrix in equation 4.25.

(4.29)

The damping matrix for a refined beam element with distributed soil damping is given

by:

CS
Cel=—">—
(e ] 1260

288 21l
21, 212
-270 -15L,
-18  -6L,
6L, L2

270
151,
1800
270
150,

~18
6L,
270

288
—21L,

150,
211,
2Lt |

(4.30)

where [cg] is the pile plus soil element consistent damping matrix. The definition of Cs

was given after equation 4.26.
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5 Proposed Lumped Model Validation/Verification

The objective of this chapter is to present a series of validations of the proposed lumped
model. First, a comparison between the Dynamic Stiffness of the equivalent lumped
Single Degree of Freedom System is compared to Novak’s solution for plane strain, to
determine the accuracy of the approximation (within a selected dimensionless frequency
range). Then, a comparison of a pile system response, given by the pile top dynamic
flexibility, analyzing the system with the lumped model and Novak’s model is performed,
in order to assess the adequacy of the lumped system to model pile-soil response. This is
followed by a comparison between a 3D FEM model and a 1D lumped model response.
Then a comparison between experimental and analytical results using the lumped model
is carried out, in order to assess the lumped model capability of predicting experimental
results. The effect of the Poisson’s ratio in a 3D FEM model response is obtained next, in
order to evaluate if there is a similar impact than the one obtained for the lumped mass of
the approximate model. Lastly, the stiffness and the damping coefficients of the
approximate model are compared to the corresponding values presented in the literature

for other approaches.

5.1 Lumped Dynamic Stiffness Approximation of Novak Continuum
Model for Plane Strain

As the lumped model was obtained through a polynomial least square regression of
Novak’s model, the accuracy of the obtained approximate polynomial function is
evaluated by means of the coefficient of determination R? (R-squared). The R? value is a
number between 0 and 1 that reveals how closely the estimated values for the polynomial
regression match the actual data (Zwillinger and Kokoska, 2000; Chapra and Canale,
1998). The approximation is most reliable when its R? value is 1 or near 1. R® is
computed as the ratio between the variance Sg2 of the predicted data (as a measure of its

statistical dispersion, indicating how its values are spread around the expected value,
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which is the mean value) and the variance Si° of the sample (actual) data. Equation 5.1
shows the reference formula:

_Se

R? (5.1)

The R? coefficient can also be calculated in terms of the Estimated Sum of Squares and

the Total Sum of Squares:

R? :E_SS:]__R_SS (5.2)
TSS TSS
where:
N
Z(yl - y)z ES
g2 =i = = Explained (or Estimated) Variance
N-1 N-1
N
—\2
Z(y| - y) TSS
SZ=12 = = Total (Sample) Variance
N -1 N -1

N
ESS=>"(§; - V) =Explained (or Estimated) Sum of Squares

i=1

N
TSS=> (y,- y)’ = Total Sum of Squares
i=1

N
RSS =) (y,-¥, )2 = Residual Sum of Squares (or Sum of the Squared Errors)
i=1

N = number of data points
y;, = data value
¥, = estimated value

y == = mean value of data points

A value of R? = 1 implies that the predicted data with the regression equation has the
same variance (respect to the sample mean) than the sample data. In this sense, one can
interpret that the R® coefficient is intended to give quantification of how better is to
approximate the ordinates by the polynomial equation instead of using the mean value as

an approximation, in which case R? = 0.
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Appendix D presents the MathCad worksheet prepared to compute the R? coefficient for

the different regressions performed, both for the real part and the imaginary part of the

dynamic stiffness. The results are summarized in Table 5.1 and presented graphically in

Figure 5.1 for the range of values of v where a parabolic regression was applicable for the

real part (0.31 < v <0.50).

Table 5.1: Coefficient of Determination for Different Poisson’s Ratios [0.31-0.50]

R? R? R? R?
v Real Imaginary v Real Imaginary
0.50 0.999 0.997 0.40 0.981 0.999
0.49 0.999 0.994 0.39 0.981 0.999
0.48 0.995 0.993 0.38 0.981 0.999
0.47 0.990 0.994 0.37 0.981 0.999
0.46 0.987 0.995 0.36 0.981 0.999
0.45 0.984 0.997 0.35 0.982 0.999
0.44 0.983 0.997 0.34 0.982 0.998
0.43 0.982 0.998 0.33 0.982 0.998
0.42 0.981 0.998 0.32 0.983 0.998
0.41 0.981 0.999 0.31 0.984 0.998
y 1.00
4
0.99
098 —e—Real Part
—aA— Imaginary
0.97 Part
0.96
‘ 0.95
0.50 0.40 0.30
Poisson's ratio v

Figure 5.1: Coefficient of Determination for Different Poisson’s Ratios
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The results demonstrate that the proposed polynomial approximations yield very good

estimates of the selected data points.

In the cases when the real part of Novak’s Dynamic Stiffness does not present a
maximum (v < 0.3) and is approximated by an horizontal line, the least squares solutions
gives a constant value as the mean value of the ordinate data points. In this case, the
coefficient of determination is meaningless, and its value is zero (ESS=0 and RSS=TSS).
For these cases, the coefficient of variation CV in percentage (also known as the relative
standard deviation) will be used to determine the fitness of the approximation: the closer
CV is to zero, the better the mean value (used as the approximation) represents the whole

data (since the values are less disperse around the mean). The CV is defined as:

x 100 (5.3)

where:

y ==L —sample mean value

—\2
S= (yll\l;yl) = sample standard deviation

N = number of data points

The results are summarized in Table 5.2 and presented graphically in Figures 5.2 and 5.3
for the range of v values where a horizontal approximation was applicable for the real
part (0.00 < v < 0.30). For the imaginary part the R? coefficient was computed. The
results demonstrate that the proposed approximations result in very good estimates of the

selected data points.
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Table 5.2: Coefficient of Determination and Coefficient of Variation for Different Poisson’s Ratios

[0.31-0.50]
CV % R? CV % R?
v Real Imaginary Y Real Imaginary
0.30 1.186 0.998 0.15 2.401 0.997
0.29 1.368 0.998 0.14 2.424 0.997
0.28 1.527 0.998 0.13 2.445 0.997
0.27 1.664 0.998 0.12 2.463 0.997
0.26 1.783 0.998 0.11 2.479 0.997
0.25 1.885 0.998 0.10 2.493 0.997
0.24 1.974 0.998 0.09 2.505 0.997
0.23 2.051 0.998 0.08 2.516 0.997
0.22 2.118 0.997 0.07 2.526 0.997
0.21 2.176 0.997 0.06 2.535 0.997
0.20 2.227 0.997 0.05 2.542 0.997
0.19 2.271 0.997 0.04 2.548 0.997
0.18 2.310 0.997 0.03 2.554 0.997
0.17 2.344 0.997 0.02 2.559 0.997
0.16 2.374 0.997 0.01 2.563 0.997
0.15 2.401 0.997 0.00 2.567 0.997
Imaginary Part
1.00
oo U U U W W S S W S S W S S e e |

- 0.99

0.98
o e

0.97

- 0.96

‘ ‘ 0.95

0.30 0.20 0.10 0.00

Poisson's ratio v

Figure 5.2: Coefficient of Determination of the Imaginary Part for Different Poisson’s Ratios
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Figure 5.3: Coefficient of Variation of the Real Part for Different Poisson’s Ratios

5.2 Pile with Lumped Model vs Pile with Novak Model

A case study will be developed to compare the predicted pile-soil response using the
proposed lumped model, and using Novak’s plane strain model, as presented in Chapter
4. A RC circular pile, with a 1ft radius, a length of 30 ft, a Young’s elastic modulus of
3600 ksi and a specific weight of 150 pcf is placed in a sand stratum. The soil has an

elastic modulus of 12 ksi, a specific weight of 110 pcf, and a Poisson’s ratio of 0.4.

The Poisson’s ratio was initially taken as 0.4 in order to analyze a case where the soil
mass has a contribution. Later, the analysis will be extended to cover different Poisson’s

ratios values, in order to generalize the findings of the comparison.
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Regarding the analytical model to be used, the pile will be discretized with 15 beam

(flexural) elements. The pile analytical model (with the corresponding nodal degrees of

freedom), and the pile element stiffness and mass matrices are presented in Figure 5.4.

&)
%

YV

Pile Analytical
Model

muEz
@ — Ug

Ugyq

} @_, u,,

[12E1  6EI  12El 6EI |
Lk L L
6EI  4El  6EI 2EI
igol & 0k &L
1| 12E1 6EI 12EI  6EI
L L Lk Le
6EI 2EI  6EI 4EI
Lk L L L
[ke ] = Pile element stiffness matrix
Mo 0 0
2
00 0 0
[mE]= M
0 0 —~0
2
0 0 0 o0

[mg ] = Pile element lumped mass matrix

L. = Pile element length

E = Pile element material modulus of elasticity
I = Pile element cross section moment of inertia
M, = p AL, =Pile element mass

p = Pile element material density

A= Pile element cross section area

Pile Element Analytical Model,
Stiffness Matrix and Mass Matrix

Figure 5.4: Pile Analytical Model and Element Matrices
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The system response to be evaluated is the pile head dynamic flexibility, or frequency
response function (FRF). Appendix F (sections F.1, F.2 and F.3) presents the programs
developed in Matlab in order to perform the analyses. First, the FRF of the pile without
the soil was obtained, in order to appreciate the isolated pile response. The result obtained
was also compared to the FRF obtained with the commercial package SAP2000, in order
to verify the Matlab program. Figure 5.5 presents the comparison. The FRF presents a
series of peaks, as expected for a system with multiple degrees of freedoms and without
damping. The results obtained with the program developed agree very well with those
obtained with SAP2000 (in SAP2000 analysis, a default material damping of 0.05 of the
system stiffness matrix was used, so the peaks are smoother).

FRF of Pile without Soil

0.12

e
o
©

FRF [ft / Kip]

o
o
=

/ LJL |

0 10 20 30 40 50 60 70

— Matlab — SAP2000 Freq [Hz]

Figure 5.5: FRF of Pile without Soil Contribution

Next an analysis including the soil contribution was conducted. Both the Novak’s plane
strain model and the equivalent lumped model presented in Chapter 4 were used. Figure
5.6 shows the analytical models for the two approaches.
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Figure 5.7 presents the modulus of the FRF obtained using Novak’s dynamic stiffness;
Figure 5.8 presents the similar response calculated with the equivalent lumped model.

Figure 5.9 presents both responses together for comparison purposes.
A good agreement in the predicted system responses can be observed. This indicates that

the lumped model is able to produce accurate results for this pile-soil system and similar

cases.

Figure 5.7: Pile-Soil System FRF Using Novak Model
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Figure 5.8: Pile-Soil System FRF Using Lumped Model

Figure 5.9: Comparison between Lumped FRF (red) and Novak FRF (blue)
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It also can be seen that the pile responds as an overdamped system, since there are no
peaks in its FRF. Figure 5.5 showed the system response disregarding soil contribution,
and Figure 5.10 presents the two responses, those that account and neglect the soil
contribution. A different vertical scale was used in order to better appreciate the effect of
the soil contribution. It is clear that for this case the soil has a great impact in the system
response: the magnitude of the static displacement is dramatically reduced, and the peaks

of the FRF are eliminated.

Figure 5.10: FRF with and Without Soil Contribution

In order to extend the conclusions regarding the adequacy of the lumped model, a series

of numerical tests are conducted next over a range of soil Poisson’s ratio and pile radius.
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5.2.1 Lumped vs Novak Model for Different Soil Poisson’s Ratios

Figures 5.11, 5.12, and 5.13 display the response (dynamic flexibility) of both models for

different soil Poisson’s ratios, ranging from 0.2 to 0.5, and maintaining fixed the rest of

the parameters of the case study.
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Figure 5.11: Comparison Between Lumped FRF (red) and Novak FRF (blue) for Different Soil

Poisson’s Ratios [0.20 < v £0.30]
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Figure 5.13: Comparison Between Lumped FRF (red) and Novak FRF (blue) for Different Soil
Poisson’s Ratio [0.44 < v £ 0.50]

Appendix F, section F.4, contains the Matlab program written to perform the comparison.

These figures demonstrate that there is a very good agreement between both dynamic

flexibilities for all the 16 cases evaluated.

5.2.2 Lumped vs Novak Model for Different Pile Radius

Figures 5.14 and 5.15 show the response of both models for piles with increasing radius,

ranging from 1ft to 10 ft, while maintaining fixed the rest of the data of the case study.

The programs used for this purpose are included in Appendix F, section F.5. These

figures verify that the agreement between both frequency response functions is excellent

for all the cases evaluated.
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the pile

Increasing

It can also be seen that as the pile diameter becomes larger (thus

stiffness), the FRF starts to present peaks. This situation will be analyzed in more detail

in Chapter 6.
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5.2.3 Lumped vs Novak Model for Different Soil Modulus of Elasticity

Figures 5.16 and 5.17 show the modulus of the FRF calculated with both models for
different soil modulus of elasticity E. The rest of the data of the case study described at
the beginning of section 5.2 were not varied. The corresponding program developed for
this study is listed in Appendix F, section F.6. The range for the adopted values of E was
chosen to represent the usual values of Young’s modulus for different soil types cited in
the literature (Barkan, 1962; Bowles, 1996; Cernica, 1995; Coduto, 2001; Das, 1999; and
Poulos and Davis, 1980). The range of rounded values for E is from 10 to 150 MPa
(=1,500 to 25,000 psi, ~200,000 to 3,800,000 psf).
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The figures demonstrate that there is a very good match between both dynamic flexibility

functions for all the cases evaluated.
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5.3 1D Stiffness Method Model vs. 3D FEM Model

The case study presented in section 5.2 will be used to compare the results obtained from
a 3D FE analysis and those obtained with a 1D Stiffness Method analysis (i.e. beam on

elastic foundation model).

Both analyses were performed using the computer program SAP2000, in a PC with a
Pentium IV processor, 3.2 Ghz of speed, 512 MB of RAM, and 143 GB of hard drive
(101 GB free). This is considered, at the present moment, a robust PC for any small to

midsize engineering firm (either a Structural or a Geotechnical Engineering firm).

First the 1D model using beam (frame) elements for the pile and the proposed lumped
model for the soil was implemented. In order to verify the model implementation in
SAP2000 (i.e definition and assignment of the link elements required to model the
spring-dashpot soil elements), the results obtained with this program were compared to
those obtained with routines developed in Matlab. Appendix F, section F.7, presents
some of the details of the modeling process and the examples used to verify the SAP2000

results.

Figure 5.18 presents the 1D model created in SAP2000. Figure 5.19 presents the
comparison of the results obtained with SAP2000 and the Matlab program: a perfect
agreement between both analysis tools can be verified. This validates the selection and
implementation of the link elements used in SAP2000 to model the spring-dashpot soil
element. The lumped soil masses are directly assigned to the pile nodes in the SAP2000

model.
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Figure 5.18: 1D Model Implemented in SAP2000
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Figure 5.19: FRF of Pile Head using the 1D Model

Next a 3D FE Model was implemented in SAP2000, with a similar layout than the model

presented in Chapter 3, section 3.6. Figure 5.20 shows the results of this analysis, along
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with a comparison with the results obtained with the previously described 1D analysis.
Figure 5.21 presents the modulus of the FRF computed with the 3D FE model and similar
results obtained with the 1D model but now with a reduced damping coefficient C,. The
value adopted here for « is 1, instead of the value obtained from the regression analysis

and used to generate Figure 5.20.

It can be seen from Figure 5.20 that the 1D model is stiffer (it has less static
displacement, i.e. for zero frequency) and more damped (there are no peaks in its FRF).
When a reduced damping coefficient is used for the 1D model in Figure 5.21, the first
peaks of the FRFs predicted by both models are closely located. Assuming that the 3D
model gives a more accurate response, this may suggest that the definition of an
appropriate value for the damping coefficient is a potential research topic to extend the

present project.
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Figure 5.20: FRF of Pile Head: 3D vs. 1D Models
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Figure 5.21: FRF of Pile Head: 3D vs. 1D Models with Reduced Damping

When performing the 3D analysis, and due to the size of the problem, to obtain the
dynamic flexibility of the pile top for each frequency analyzed took more than 20 minutes
with the computer system described at the beginning of section 5.3. For 100 frequency
increments, the analysis lasted about 38 hours. The 1D analysis performed with 200

frequency increments took just less than 15 seconds.

The enormous difference in processing time (the 1D analysis is more than 9000 times
faster than the 3D analysis), in conjunction with the reasonably predictions of the
response provided by the 1D analysis for common engineering practice purposes, make
the 1D analysis a valuable analysis tool.
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5.4 Modeling of Experimental Pile Test with Lumped Soil Model

The ability of the lumped model to predict experimentally obtained results will be
evaluated in this section. To this end the results of the dynamic tests reported by De
Napoli (2006) and De Napoli and Prato (2006) will be used. The experiment consisted in
applying an impulsive lateral load of small amplitude to the top of a series of piles. To
apply the excitation, a pendulum mounted with a load cell was used, and an

accelerometer was used to register the top pile movement, as shown in Figure 5.22.

Figure 5.22: Load Cell Fixed to the Pendulum and Accelerometer Fixed to Pile Top (De Napoli and
Prato, 2006)

From the dynamic response of the pile top to the impulsive force, the dynamic stiffness of

the pile head is obtained for small strains.

Figure 5.23 presents the layout of the piles tested, consisting of five piles: three piles are
30 cm and two are 35 cm in diameter, with lengths of 3 m and 5 m for the first and
second group respectively. The piles were drilled on a loessic soil deposit approximately

7 years before the reported tests. The shorter piles were initially tested under static axial
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compression up to failure, while the longer ones were used as tension piles to provide the

reaction for the compression tests shortly after construction.
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Figure 5.23: Tested Pile Group Layout (De Napoli and Prato, 2006)

De Napoli and Prato reported a good agreement with the results obtained using Novak’s
plane strain model for the soil (De Napoli and Prato, 2006). Therefore it was decided to
compare the reported experimental results for the dynamic stiffness of pile P3D30 head
(see Figure 5.23) to the results obtained with the proposed lumped model. Appendix F,

section F.8, contains the Matlab program developed for this task.

The pile has a modulus of elasticity E, = 31,000 MPa, a density p, =2.4 tn/m®, and a
Poisson’s ratio of 1, = 0.18. The pile cap has a 0.5 m diameter and a length of 0.3 m. The
soil was removed along this depth, leaving the reminder 2.7 m pile length surrounded by
the soil. The soil has a density ps = 1.55 tn/m®, a Poisson’s ratio s = 0.31, and an average

modulus of elasticity at the surface Eg, = 288 MPa.

The experimental results obtained by De Napoli and Prato for the real and imaginary part

of the pile head dynamic stiffness are presented in Figure 5.24, and the predicted results
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using the proposed lumped model are shown in Figure 5.25. By comparing viz-a-viz the
figures it can be concluded that there is a reasonable agreement with the experimental
results. The response predicted by the proposed analytical model resulted slightly stiffer

and, to some extent, more damped.
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Figure 5.24: Real and Imaginary Components of the Dynamic Stiffness. Pile P3D30. Directions N-S
and E-W (E-O) (De Napoli, 2006)
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5.5 The Effect of Poisson’s Ratio in the 3D FE System Response

In order to evaluate if the 3D FE model presents a significant change in response as the
Poisson’s ratio v increases, similar to the one obtained for the o, ac, and am coefficients
of the proposed approximated model, the FRF for the pile top was obtained for several
values of soil Poisson’s ratio v, in the range of 0.0 < v < 0.495. The same parameters

used in section 3.6 for the soil and the pile were adopted for this analysis.

The results fort the FRF corresponding to each v value are presented in Figure 5.26.
Figure 5.27 presents the variation of the static flexibility F = FRF(»=0) of the pile top
with the Poisson’s ratio, and Figure 5.28 the corresponding variation of the static stiffness
of the pile top K = 1/F. One can observe in these figures that as the Poisson’s ratio
increases from 0 to 0.3 the static stiffness K decreases (the FRF for o = 0, or static
flexibility, increases), and the corresponding peaks of the FR functions move to the left,
being this one the expected response for a system when K decreases and the mass
remains constant. It also ca be noted that for values of v larger than 0.3, as v increases the

static stiffness increases, and tends to a large value as vapproaches 0.5.

The increase in stiffness as the Poisson’s ratio approaches 0.5 is explained by considering
the 3D stress strain relationships for normal stresses and longitudinal strains, presented in
equations 5.4. It is evident that the denominator tends to infinity as v tends to 0.5,

indicating that the system becomes stiffer as v becomes closer to 0.5.
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Figure 5.28: 3D FE Model Static Stiffness for Different Poisson’s Ratios

By analyzing Figure 5.26 it can be noted that the Poisson’s ratio has a significant impact
in the system response, given through the FRF of pile top. One can also appreciate the
locations of the peaks of the different FRF do not significantly vary for Poisson’s ratios
larger than 0.3. Considering that the stiffness K increases and knowing that the FRF peak
occurs near the natural frequency, the mass M of an equivalent SDOF system should also
increase as v tends to 0.5 in order to obtain this type of behavior. The effect of the
Poisson’s ratio on the 3D FE model discussed before may contribute to explain the
behavior of the o, coefficient of the proposed simplified model, which has non zero
values for high Poisson’s ratios, indicating that the model requires an added mass for

these cases.
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5.6 Comparison to other Models

The equations obtained for the stiffness k, and the damping coefficient c, in the proposed
approximated model of Novak’s continuous solution will be compared to the
corresponding coefficients found in the literature. In order to have a valid comparison,
the models selected have to be based in the soil elastic properties (elastic modulus E, and
Poisson’s ratio v) and soil density, and have to be frequency independent. The mass

contribution is not compared, since this effect was not addressed in the literature.

5.6.1 Damping Coefficient

As reported by Wang et al (1998) and Gazetas and Dobry (1984a), Berger and coworkers
proposed a 1-D model, assuming that the horizontal moving pile cross section only
generates 1 dimensional P-waves traveling in the direction of the shaking, and 1
dimensional SH-waves traveling in the direction perpendicular to the shaking, as shown
in Figure 5.29.

N\

P-waves P-waves

SH-waves

Figure 5.29: 1-D Radiation Damping Model
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Based on these assumptions, the radiation damping coefficient results:

Co =2d, p(Vs +V; ) = 41, pV, (1+ \\;—P] (5.5)
S

where:
d, = diameter of the pile cross section
r, = radius of the pile cross section
p = soil mass density
Vs = shear-wave velocity in the soil medium
Vp = P-wave velocity in the soil medium

Considering that the P-Wave and the SH-wave velocities in a 2D or 3D continuous are

given by:
_|E_ (1-v)
1+v 1 2v
(5.6)
\f P21
where:
E = elastic modulus of the soil
G = shear (rigidity) modulus of the soil
v = Poisson’s ratio of the soil
the ratio between P-wave and S-wave velocities results:
2(1-
Vo _ [20-v) (5.7)
A (1— 2v)
and the radiation damping coefficient becomes:
2(1—1/)
C.=4r poV.|1+ |——= 5.8
B 0 p S [ (1_ ZV) J ( )

The ratio between the radiation damping coefficient obtained in the present study and the

one proposed by Berger and coworkers is given by:
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C., :%: zrpVa, _ Ta, (5.9)
* g v 14 POV ] 4l [2A2Y)
(1-2v) (1-2v)

This ratio is represented in Figure 5.30 for different Poisson’s ratios. Appendix F, section
F.9, contains the MathCad worksheet developed to perform this comparison.
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Figure 5.30: Ratio between Damping Coefficients C, and Cg for Different Poisson’s Ratio of the Soil

As shown in the figure, the proposed model estimates a damping coefficient of around
80% of the one proposed by Berger and coworkers for a wide range of Poisson’s ratios;
for values of v above 0.4 the difference significantly increases since Cg tends to infinity
as v approaches 0.5. This is a drawback of Berger model, and several authors propose to
accept Berger’s basic expression, but using a velocity V < Vp instead of Vp: Wang et al.
(1998) proposed to adopt Vs instead of Vp; Gazetas and Dobry (1984a) presented three

alternatives, one of them is to adopt the P-wave velocity corresponding to the

compression-extension wave propagation in an elastic rod V, =,/E/p . Adopting this last
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approach, the resulting Vp/Vs ratio and the corresponding ratio between the radiation

damping coefficients C,/Cg are:

v\/E
o,
G E 1
V.= == |=
* \/; p2(1+v)
VP
—=,/2(1
e = 2]
C _& zr pVa, 3 o,

“TCy ar pV. (L+y20+v)) 41+ J2(140))

(5.10)

This ratio is represented in Figure 5.31 for different Poisson’s ratios; it can be seen that

both models predict similar radiation damping coefficients for all Poisson’s ratio values.
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Figure 5.31: Ratio between Damping Coefficients C, and Modified Cg for Different Poisson’s Ratio of

the Soil
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5.6.2 Stiffness Coefficient

The coefficient of subgrade reaction for beams resting on isotropic elastic medium
presented by Vesi¢ (1961) was used for the analysis of piles under lateral loads (e.g.
Poulos and Davis, 1980; Wang et al., 1998). This coefficient, representing the static

stiffness of the soil per unit beam length, is given in the following equation:

(5.11)

where:
Es = modulus of elasticity of the soil
vs = Poisson’s ratio of the soil
Es = modulus of elasticity of the beam
Is = moment of inertia of the beam cross section
d, = diameter (width) of the beam cross section

Considering that this coefficient has been obtained for a beam resting on the surface of an
infinite half space, and that the pile is completely surrounded by the soil, the
corresponding horizontal subgrade reaction modulus for the pile will be obtained as twice
the coefficient proposed by Vesi¢. It is important to mention than to take the subgrade
reaction modulus as two times the Vesi¢ modulus is a recommended practice for buried
pipes (Klar et al., 2004). For piles with solid circular cross section the final expression

becomes:

k, =2| 0.65 1 E 64 & > (5.12)
Eoz (1-v2)

where:
Es = modulus of elasticity of the pile

The results obtained for the static stiffness of the proposed approximated model k, will be
compared to Vesi¢ solution, by computing the ratio ka/k,= krel. The same parameters

used in section 5.2 for the pile and the soil will be adopted here:
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Ep = 518400 [ksf]

Es = 1728 [ksf]

vs=0.4
Figure 5.32 presents krel for different modulus of elasticity of the soil deposit in the
range of 200 to 3800 [ksf], wile keeping all the other parameters unchanged; Figure 5.33
presents krel for different Poisson’s ratios of the soil deposit, wile keeping all the other
parameters unchanged; and Figures 5.34 and F.35 present krel for different modulus of
elasticity of the soil deposit in the range of 200 to 3800 [ksf], three values of the modulus
of elasticity of the pile (100E3, 1000E3, and 10000E3 [ksf]), wile keeping constant the
Poisson’s ratio. Appendix F, section F.10, contains the MathCad worksheets developed to

obtain these results.

It can be appreciated that the proposed model predicts, in general, a higher stiffness than

Vesi¢’s model, but in the same order of magnitude.
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Figure 5.32: Relative Stiffness ku/k, for Different Modulus of Elasticity of the Soil
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Figure 5.33: Relative Stiffness ky/k;, for Different Poisson’s Ratio of the Soil
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Figure 5.34: Relative Stiffness ky/k;, for Different Modulus of Elasticity of the Soil and the Pile for
Soil Poisson’s Ratio v=10.4
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Poisson's Ratio = 0.3
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Figure 5.35: Relative Stiffness kJ/k;, for Different Modulus of Elasticity of the Soil and the Pile for
Soil Poisson’s Ratio v=0.3

5.7 Final Comments

The proposed lumped model gives results (for the damping and stiffness coefficients) in
the same order of magnitude of other available models, situations that strengthen its
reliability. The model has also proven to be a reliable approximation of Novak’s
continuum model, a reasonable approximation of more rigorous approaches (i.e., FEM),
and a good predictor of laboratory tests. These situations lead to the conclusion that the

analysis of the model may lead to reasonable conclusions.
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6 Applications of the Proposed Lumped Model

The objective of this chapter is to present a series of applications and case studies using
the proposed lumped model, whose development and verification were presented in

Chapter 4 and Chapter 5, respectively.

6.1 Effect of the Pile Stiffness on the System Response

In order to evaluate the effect of the pile stiffness on the system response, a series of
analysis with different increasing pile radius are performed. The same case study
described in section 5.2 will be used here. Figures 6.1 and 6.2 present the pile FRF and
the pile-soil FRF for different pile radius, in a range of 1 ft to 10 ft. The Matlab program

developed to perform this analysis is presented in Appendix G.

As mentioned in section 5.2, it can be noticed that the larger the pile diameter, the stiffer
the pile, and the FRF starts to exhibit peaks. This is due to the fact that as the pile radius
increases, the response starts to be controlled by the stiffness and mass properties of the
pile itself rather than those of the soil. This situation becomes evident since the static
displacement and the location of the FRF peaks do not appreciably change from those
obtained by considering the pile alone. The effect of the soil in these cases of large
diameter pile is basically to reduce and smooth the peaks of the FRF, due to the radiation

damping.
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6.2 Effect of the Radiation Damping on the System Response

The effect of the radiation damping on the response of the pile-soil system is evaluated in
this section. The FRF of the pile head for the case study presented in section 5.2 was
obtained for different intensities of the radiation damping, expressed as a fraction of the
lumped model damping coefficient c,. Figure 6.3 presents the results for six different
damping values: 0.0, 0.2 c,, 0.4 ¢4, 0.6 ¢4, 0.8 o, and 1.0 c,. Appendix H presents the

Matlab program developed to compute this response.
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As expected, the effect of the damping was to smoothen the peaks of the FRF, and even
to eliminate them for large values of damping. Figure 6.3 also shows that the value of the
damping coefficient is critical to the system response. For the case study in section 5.2,
the value of the damping coefficient obtained as a regression from Novak’s plain strain
model leads an overdamped system, with a monotonically decreasing FRF module. As
presented in sections 5.3 and 5.4, the differences in the FRFs between a 3D FE model and
the 1D FE model, and between experimental and predicted results, suggest that the
appropriate value of the damping coefficient is a potential research topic to extend the
present project. In this way the lumped model will be able to give more accurate

predictions of the system response.

FRF Pile + Saoil - Different Damping

Module of the Dynamic Flexibility or FRF [ft/Kip]

| | |
150 200 250 300 350
load frequency [Hz]

Figure 6.3: Effect of Different Damping Coefficient Value on the System FRF
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6.3 Analysis of the Mass Effect on a 3D FE Model System Response

Section 3.6 presented the analysis of a case study by means of a 3D FE model. The
response obtained considering and ignoring the soil mass contribution, originally

presented in Figure 3.14, is reproduced here in Figure 6.4.
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Figure 6.4: FRF for the 3D Model with and without Soil Mass, and no Lateral Supports

This analysis was performed without dashpots in the cutoff boundaries, and considering a
material damping represented by a complex elastic modulus equal to E (1 + 5/100 i ),
where E is the (small strain) soil elastic modulus. As discussed in section 3.6.4, Figure
6.4 indicates that, for this case study, the general effect of including the soil mass in the
3D FE analysis was to produce a damped like response (as compared to the response
without soil mass). It is evident that the FRF peaks were smothered and there was a shift

in their location to the left (at least in the first two peaks).
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The objective of the study presented in the following sections is to evaluate if this type of
response may be achieved with a 1D analysis, by representing the soil not as a single
spring and a lumped mass added to the pile mass, but as a series of springs with lumped

masses at the connecting nodes, to simulate the spatial distribution of the soil mass.

A series of analysis will be performed. First, the effect of the mass distribution will be
analyzed for a single spring, by replacing the spring by a set of series and parallel springs.
Then, the effect will be evaluated for a pile-soil interaction, where the spring is replaced
by a series of springs. The programs developed to carry out these studies are presented in
Appendix I.

6.3.1 Effect of the Mass Distribution on a System of Springs in Series

The first example analyzed consists of a single degree of freedom (SDOF) system (that
may represent a single soil layer in plane strain). The SDOF has a spring of stiffness
constant “K” equal to 1000, mass “m” equal to 10, and an added mass “m,” equal to 50,
all in consistent units. The effect of the added mass directly assigned to the mass node,
and distributed among different series spring nodes is evaluated, as schematized in Figure
6.5. The single spring is replaced by “n” springs in series, of stiffness constant equal to “n
K”, in order to obtain the same static stiffness than the single spring, where “n” was taken
equal to 10.

The results of the analysis of these systems, in terms of the dynamic flexibility or
frequency response function “FRF” (steady state horizontal displacement of the mass
“m” due to unit horizontal harmonic load applied at this point) are presented in Figure
6.6, where:

e “m, K” corresponds to the single spring without added mass

e “m+ma, K” corresponds to the single spring with added mass

e “m+ma, n K” corresponds to the equivalent series spring, with the added mass

distributed among the spring nodes.
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Figure 6.6: Effect of the Mass Distribution in a System of Springs in Series
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These results indicate that the effect of the added mass, as expected, is to produce a shift
of the natural frequency to the left (lower natural frequency). The effect of the added
mass distribution along a series of springs is to increase this natural frequency, and give
rise to new peaks of the FRF (corresponding to the higher natural frequencies that appear
due to the multiple DOF of the system), but this model does not produce an effect
equivalent to a damper, as found in a 3D FEM analysis due to the 3D mass distribution.

6.3.2 Effect of the Mass Distribution on a MDOF System

The second example analyzed consists of a SDOF system having a spring stiffness
constant “K” equal to 1000, mass “m” equal to 10, and an added mass “m,” equal to 50.
The effect of the added mass directly assigned to the mass node, and distributed among
different parallel spring nodes is evaluated, as schematized in Figure 6.7, where the single
spring is replaced by “n” springs in series, on both sides of the mass “m”, of stiffness
constant equal to “n K / 2”7, and a variable number of springs in parallel (np), with
stiffness constant equal to “n K / 2 (np+1)”, in order to obtain the same static stiffness

than the single spring, where “n” was taken equal to 2 and np was varied from 1 to 6.

The results of the analysis of these systems, in terms of the dynamic flexibility or
frequency response function “FRF” (steady state horizontal displacement of the mass “m”
due to unit horizontal harmonic load applied at this point) are presented in Figure 6.8,
where:

e “No ma” corresponds to the single spring without added mass

e “ma” corresponds to the single spring with the added mass

e “mai P” corresponds to the series of 2 springs to each side of mass “m”, and “i”

parallel (P) springs (as depicted in Figure 6.7), with the added mass “ma”

distributed among spring nodes.
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Figure 6.7: Models used to Analyze the Effect of the Added Mass in a System of Springs in Parallel

The results indicate that the addition of parallel springs produce an effect similar to
damping, since the first peak of the FRF is reduced. This may be explained by the fact
that the parallel springs provide alternate paths so the waves (energy) that are generated
due to the vibration of mass “m” may travel in the system without returning to this point,
producing a phenomenon similar to the radiation damping, which may be called
propagation damping. The figure also shows that second peak of the FRF, corresponding

to the system without added mass (mass “m” alone) is accentuated.
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Figure 6.8: Effect of the Mass Distribution in a System of Springs in Parallel

6.3.3 Effect of the Mass Distribution on a Pile-Soil System

Finally, a pile-soil system will be analyzed, in which the contribution of the soil will be
accounted for as a set of several parallel layers each represented by a spring and a mass.
The effect of considering a single spring with the lumped parameters proposed in Chapter
4 (Figure 6.9 top), versus considering the soil layer as a series of springs with distributed
added soil mass (Figure 6.9 bottom) will be evaluated first. Next the soil layers will be
represented as a set of parallel springs with the added mass distributed on the spring
nodes (similar to the scheme presented in Figure 6.7). The different spring layouts will

have an equivalent condensed stiffness equal to the one obtained in Chapter 4 in the
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proposed lumped model, and the soil mass to be distributed among spring nodes will be
taken from the 3D FE analysis with partial soil mass presented in section 6.3. The case of

adding this mass with a single spring is also considered.
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Figure 6.9: Piles Models to be Analyzed
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The same set of data used in Section 5.3 to present a comparison between a 3D FE

analysis and the proposed lumped model will be used. The number of series and parallel

springs was taken equal to twenty; the results obtained were similar to the ones obtained

with ten springs. A complex elastic modulus E (1+0.05i) was assigned to the pile and

soil.

Figure 6.10 presents the results of the analysis of the pile alone, i.e. without the soil

contribution. Figure 6.11 presents the results for the pile with the soil contribution and an

added soil mass about 40 times the pile mass. Figure 6.12 presents similar results for an

added soil mass of about 100 times the pile mass. The following nomenclature applies for
Figures 6.11 and 6.12:

PLM = Pile with the soil represented by the proposed lumped model developed in
Chapter 4 (as a reference response).

SS DM = Pile with the soil represented by springs in series and an added mass
distributed among the spring nodes.

PS DM = Pile with the soil represented by a set of parallel springs and an added
mass distributed among the spring nodes.

1S LM = Pile with the soil represented by single springs and added masses
lumped at each pile node.

1S = Pile with the soil represented by single springs and no added masses.
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Figure 6.12: FRF of the Pile with Soil Contribution. Ma = 100 Mp

The analysis of Figures 6.10, 6.11 and 6.12 reveals that the effect of the soil stiffness is to
drastically reduce the system response and increase the value of the natural frequencies
(the peaks of the FRF are shifted to the right). The added mass produces a reduction of
the natural frequencies (the peaks of the FRF are shifted to the left; in a region similar to
the pile alone for this case study), a narrowing of the FRF peaks, and a reduction of the
FRF peak values (more pronounced at high frequencies), giving a damped-like response,
more evident for the set of parallel springs. But this damped-like response is not as
drastic as in the 3D FEM model, probably due to the fact that the soil was modeled as a
set of unconnected layers, lacking the real 3D nature of wave propagation (and hence,

piles response attenuation).
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6.3.4 Discussion of the Results — FE Model Propagation Damping

It is well known that the radiation damping represents the energy carried away by the
elastic waves generated at the pile-soil interface radiated to infinity and hence not
returning to the interface. The damping-like response observed in the 3D FE model may
be the result of the waves generated at the soil-pile interface that travel within the soil
mass, without returning to the pile. In a numerical model the waves keep traveling within
the soil mass after reflecting in the model edges. Therefore, they create an effect that may
be called propagation damping. To have this type of response, the model should have
alternate paths that allow the waves to propagate within the system without returning to
the interface, as provided by the parallel springs presented in Section 6.3.2 for a one layer
system. The analysis presented in Section 6.3.3 reveals that it is not possible to obtain this
type of response with a relative simple layout of springs and a distributed soil mass along
spring nodes, so the simplified pile-soil model where the soil is replaced by an equivalent
spring-mass-dashpot element should always include the dashpot to account for this

phenomenon.

In order to gain a deeper understanding of the characteristics of the wave propagation

phenomenon when using a FE model, three simple cases are analyzed next:

6.3.4.1 2D FE Model Subjected to an Impulsive Force

The FE model presented in section 3.5 was used for the analysis. The impulsive
rectangular force displayed in Figure 6.13 was applied at the pile top, and a time history
analysis was performed. The response at a number of points located along the same
horizontal line, shown in Figure 6.14, was obtained by neglecting and considering the soil
mass in the whole FE model. As expected, when the soil mass was neglected there is no
wave propagation: the motion of all points starts at instant t = 0, and they move in a
synchronous way. This can be explained by considering that when the soil mass density

approaches zero, the wave velocity tends to infinity. The displacement-time traces are
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presented in Figure 6.15 for node number 495 (located at the soil-pile interface) and node
number 30 (located at the lateral edge of the soil deposit). Note that although the

amplitudes are different, the time variations are quite similar.

Function Graph

Display Graph | (04991 .00

Figure 6.13: Impulsive Ramp Function

Figure 6.14: Points for Response Calculation
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Figure 6.16 presents the same response when the soil mass is included in the analysis.

This figure clearly shows that the response at the node away from the force (joint number

30) starts after time zero. As shown later, this effect is larger for those points located

farther away from the interface. Considering the soil properties (E = 1900 ksf and y =

0.11 kcf), one can obtain that the p-wave velocity is around 475.8 ft/sec. Considering that
the distance from the pile to the edge is 60 ft, it should take about 0.08 sec for the wave to

reach the edge, which is approximately the same time lapse that is observed in Figure

6.16.

Figure 6.17 presents the results for all the points along the horizontal line (the higher the

node number, the closer the node is to the soil-pile interface). By observing the lag in the

response between consecutive points located further away from the soil pile interface,

one can notice the time required for the perturbation (wave front) to propagate.
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6.3.4.2 Effect of Parallel Springs without Distributed Masses

The spring-mass system presented in section 6.3.2 is reevaluated, without assigning
masses to the parallel springs nodes, as shown in Figure 6.18. Figure 6.19 shows the FRF
for the system considering an increasing number of parallel springs, with no added mass
in their nodes. The response of the system does not change when the number of parallel
springs is increased. When compared to the FRF presented in Figure 6.8 (in which the
system has masses distributed in the parallel spring nodes) it is evident that the absence
of mass in the parallel springs nodes makes the response undamped, indicating that no

waves can propagate through them.

F(t), X(t)
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F(t) X(t)
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n = number of series springs
np = number of parallel springs
nn = number of nodes with mass

n n

K

2(np+1) 2(np+1)K

Figure 6.18: System with Parallel Springs with no Added Masses
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Figure 6.19: FRF for the System with Parallel Springs with no Added Masses

6.3.4.3 Effect of the Mass in a 3D Truss

In order to verify if a damped type response may be obtained with bar elements, a 3D
truss model was developed in SAP2000. Figure 6.20 shows a isometric view of the 3D
truss. The objective is to study the 3D nature of soil wave propagation in a non-solid
medium. The FRF of the pile head was obtained by considering the bars without mass
and with mass. The mass of the pile (vertical element) was always considered. A
hysteretic damping of 5% was adopted by assigning a constant damping matrix equal to
0.05 times the stiffness matrix (equivalent to adopt a complex elastic modulus equal to
E(1+0.05i))
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Figure 6.21 shows the FRFs of the pile top; the two curves results show that considering
the mass of the bars has an effect similar to that provoked by damping. This is in

agreement with the results obtained in the 3D FE model.

Figure 6.20: 3D Truss Model View
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Figure 6.21: FRF of Pile Top in the 3D Truss Model
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7 Conclusions and Recommendations

The objective of this chapter is to present the general conclusions of the research project
together with a brief summary of the work undertaken, and recommendations for possible
research topics that may complement the present project and contribute with valuable
information for the academic and professional community in topics related to the

response of piles under dynamic horizontal excitations.

7.1 Summary and Conclusions

The following is a listing of the most relevant conclusions of the present research project:

e 2D FEM and 3D FEM were used to evaluate the impact of considering and
neglecting the mass of the soil in the dynamic response of a single pile. The
effects of the cutoff boundary conditions were also evaluated. The dynamic
flexibility of the pile top (or frequency response function, FRF), defined as the
horizontal displacement due to a unitary horizontal harmonic load in the pile top,
was selected as the system dynamic response to be evaluated. The analyses,
results, and their interpretation were presented in Chapter 3. Following is a
summary of the most relevant findings and conclusions for this part of the project:

o The differences found by adopting free, fixed, or flexible cut-off
boundaries were not very significant, suggesting that the model size (i.e.
the soil island) was taken large enough so the soil half space is adequately
represented.

o The assignment of dashpots in the cutoff boundaries, added in order to
represent the radiation damping, had an important effect only at low
frequencies. They produce a smoothening of the FRF peaks (thus lowering
the system displacement response) and eliminating some peaks (probably
associated with the rebounding of waves in the cutoff boundaries), and

producing a shift in the peaks location.
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0 The inclusion of the soil mass in the FE models produces a significant
qualitative and quantitative change in the system behavior. As expected,
the presence of the soil mass reduces the natural frequencies (the
frequencies where the peaks of the FRF occur). It also was observed that,
for the 3D analysis, the general effect of the mass was quite similar to
adding damping in the system: the FRF peaks were smoothened and there
was a shift in their locations to the left.

o A model with partial soil mass assignment captures the general behavior
of the system with full soil mass, leading to the conclusion that a partial
soil mass assignment may result in reasonable good estimates of the
overall pile dynamic response.

0 A 2D FE analysis may be appropriate to analyze sheet piles or wall
foundations on closely spaced piles. This type of model allows one to
draw general conclusions of the pile-soil behavior, and to gain insight in
the system response and parameters affecting its behavior. However, a 3D
FE analysis should be used to obtain more specific and accurate
conclusions about the pile-soil dynamic interaction problem.

o The large amount of time required by the pre-processing, analysis, and
post-processing of 3D FE models strongly suggests that simplified
analyses, such as the Winkler approach, are still recommendable for

professional practice despite the increase in power of current computers.

A simplified lumped model, consistent with the Winkler hypothesis, was obtained
by performing a regression analysis of the continuous (plane strain) model
developed by Novak. This development is presented in Chapter 4. In the proposed
approach, the pile-soil interaction is taken into account through three frequency
independent elements: a spring with stiffness k,, a mass with value m,, and a
dashpot with coefficient c,. The spring-mass-dashpot coefficients ks, ma, and c,
that represent the soil can be obtained by means of simple equations presented

again next for easy reference. These equations include three parameters ax, am,
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and o that depend on the soil Poisson’s ratio. The values of these three

parameters were presented in Table 4.1.

k,=7G ¢,
m=zr’pa, (7.1)

ca=71r0\%acz7rr0,0V505c=7z|’OJG,0aC

S

where:

r. = pile radius

G = soil shear modulus
o = soil mass density

v = soil Poisson's ratio

S

V, = \/E = shear wave velocity in the soil
Yo,

o, a,,, o, = parameters function of v

The three coefficients ka, m,, and c, in equation 7.1 are defined per unit pile
length. In order to implement them in the 1D Finite Element Model, they should
be multiplied by the node tributary length (half element length for the top node

and the element length for the internal nodes).

Figure 7.1 presents the general view of the analytical model to be implemented
for a pile subdivided in “n” elements, when the pile rests on rigid bedrock. Instead
of using spring-mass-dashpot elements lumped at the pile nodes, consistent pile
stiffness, mass and damping matrices may be used, as presented in Section 4.4 for
the classical beam element with four degrees of freedom (DOF) and the refined

beam element with five DOF proposed by Deschapelles (2003).
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The proposed lumped model has been proven to be a reliable approximation of
Novak’s continuous, frequency dependent solution, as it was verified in Chapter 5

for an isolated layer and for a pile-soil system.

The proposed lumped model was used to demonstrate that a lumped soil mass is
not required for small soil Poisson’s ratios (v < 0.3). This situation may be
explained by the fact that, due to radiation damping, the soil response is
overdamped; and overdamped SDOF systems behavior are basically controlled by

damping and not by mass, as shown in section 4.3.1.

It is important to note that, as shown in equation 7.1, the damping coefficient c,
depends on the soil density, among other parameters. Therefore, the soil inertial
properties are basically taken into account by the radiation damping coefficient

for Poisson’s ratios lower than 0.4.

The model also shows that the soil mass is important for high soil Poisson’s
ratios, as occurs in saturated soils (for v = 0.5 the soil mass contribution is in the
same order of the pile mass contribution). However, the soil mass importance
rapidly diminishes as the Poisson’s ratio becomes smaller. This situation may be
explained due to the fact that the larger the value of the Poisson’s ratio v, the
larger the soil transverse deformation that will occur when the piles vibrates
horizontally, so more soil mass is involved in the transmission of p-waves due to
pile vibration. The increase in the static stiffness for high Poisson’s ratios
(parameter ax) could also explain the increase in the lumped soil mass (parameter
om), by considering a SDOF system where the natural frequency does not change

(as explained in section 5.5).

The frequency independent concentrated spring-mass-dashpot element proposed
is available in most of the commercial analysis packages, making the model

simple to implement by the professional community.
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This type of model could serve as the basis to develop simplified Soil Structure
Interaction Specifications for structures on pile foundations, similar to those for
structures on spread footings currently contained in the NEHRP Recommended
Provisions for Seismic Regulations for New Buildings and Other Structures
(Building Seismic Safety Council, 2003).

Having independent expressions for the stiffness coefficient (ka), the dashpot
coefficient (ca), and the mass (ma), instead of a complex equation for the
dynamic stiffness, allows one to perform different “what if” analyses, and
evaluate the impact of the variation of each coefficient in the system response
(examples of this study were presented in Chapter 6). These analyses may
contribute to a better understanding of the factors affecting the system response.
They can also help calibrate the parameters to be adopted for a particular analysis

or to be included in future recommended provisions.

Considering that the radiation damping represents the energy, or elastic waves,
generated at the pile-soil interface, that is radiated away to infinity (i.e. does not
return to the interface), the damped-like response observed in the 3D FEM model
when the soil mass is considered (Section 3.6) may be the result of the waves
generated at the soil-pile interface that travel within the soil mass, without
returning to the pile, generating an effect that may be called propagation
damping. As demonstrated in section 6.3.2 for a one layer system, to have this
type of response the model should have alternate paths that allow the waves to
propagate within the system without returning to the interface, as provided by the
parallel springs. It was not possible to obtain this type of response with a relative
simple layout of springs and a distributed soil mass along spring nodes. The
simplified pile-soil model (where the soil is replaced by an equivalent spring-
mass-dashpot element) should always include the dashpot to account for this

phenomenon.
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The model could be extended to perform nonlinear dynamic analysis of pile-soil
system, by replacing the spring constant k, by a nonlinear static soil response,
such as the one provided by the p-y method. In this case, the implementation of a
hysteretic soil model to account for damping due to plastic effects (e.g. use of

Masing Rules) is recommended.

7.2 Recommendations

The following recommended research topics emerge as a possible complement

continuation of the present project; other suggested topics can provide useful information

to the academic and professional community:

Develop other lumped models based on the curve-fitting of other continuum
mechanics theories and rigorous approaches (e.g. Tajimi, 1969; Kausel, 1974;
Kaynia, 1982). These new models will allow to compare different solutions, and
to verify the findings regarding the influence of the soil mass in the dynamic

response of the pile-soil system.

Study the effect of radiation damping, by comparing different models and
different analyses, in order to establish the most appropriate lumped damping
coefficient (as suggested by the analyses presented in Sections 5.3, 5.4 and 6.2).

Study the effect of the pile cross section size and shape in the dynamic system
response by performing 3D FEM analyses, modeling the soil and the pile with
solid 3D elements, and applying the appropriate constrains to pile nodes in order

to simulate rigid cross section behavior.

Study the applicability of the proposed simplified model to battered piles.
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Extend the analysis to pile groups.

Develop state-of-the-art reports of dynamic soil-pile interaction topics, with
theoretical fundaments and detailed practical applications and examples. Two
topics are considered relevant to the professional and the academic community: a)
recommended procedures for the 3D Finite Element analysis of soil-pile
interaction problems, and b) available continuum mechanics models for soil-pile

interaction problems.

Perform a study of the constitutive equations of the p-y method, in order to
compare its initial slope to the coefficient k, presented previously, and develop

the appropriate conclusions and recommendations.

Implement the proposed model in a graphically oriented program, with adequate
pre-processing and post-processing capabilities, and a wide variety of dynamic
analyzes available. This program may serve as a tool for research, teaching and

professional use.

Perform a comparison of the seismic analysis response of an isolated pile by
modeling the pile-soil system with the proposed simplified model and with a 3D
FE model.
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A Soil Deposit and Pile Natural Frequencies

This appendix presents the computation of the soil deposit natural frequencies and wave
lengths, as presented by Suarez (2003), and the appropriated FEM element size,

following the recommendations by Lysmer (2979).

The computations of the pile natural frequencies and mode shapes are also presented. The
reference equations were taken fro Humar (2002).

A.1 Soil Deposit Natural Frequencies, Wave Length, and FEM
Element Size

The computations of the appropriate finite element size so the finite element model is
able to transmit up to the fourth soil deposit natural frequency (for vertical propagating
shear waves) is presented in Figure A.1. The computations are performed in MathCad

software package.
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Problem Data

E=12 [Ksi]
y =110 [pcf]
v =03

g:=322 [ft/sec2]

h:=30 [ft]

Computations

E
G = ———.144.1000 [psf] G = 6.646x 10°
21+ v)
p=1 p = 3416
g
G
Vs = |— [ft/sec] Vs = 441.079
p
r=4
b1 Vs
omax:= —-(2-r—1) - [rad/sec] omax = 161.664
fmax:= omax [herz] fmax= 25.73
*TC
\Y
2 = — [ft] As = 17.143
fmax
25 5143
8

Figure A.1: Maximum Element Size for 4™ Natural Frequency

Figure A.2 presents the computations required to determine the maximum appropriate
element size if it is desired that the finite element model is able to transmit a maximum

frequency equal to the eighth soil deposit natural frequency.



Problem Data
E:.=12 [Ksi]

y := 110 [pcf]

v =0.3
g:=322
h:= 30

[ft/sec2]

[ft]

Computations

E
G=——
2-(1+v)
_Y
p ="
g
Vs = E
p
r=28

omax = g-(z-r— 1) s

mmax
fmax:=
2
Vs
AS = ——
fmax

-144-1000

h

[psf]

[ft/sec]

[rad/sec]

[herz]

[ft]

G = 6.646x 10°

p = 3.416

Vs = 441.079

omax = 346.423

fmax= 55.135
AS =8
A,

8

Figure A.2: Maximum Element Size for 8" Natural Frequency
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A.2 Pile Natural Frequencies and Modal Shape

Following is a listing of the MathCad worksheet developed to compute the pile natural
frequencies and modal shape. The pile is considered as a cantilever beam, and the

reference equations were taken from Humar (2002).

Pile Natural Frequencies

Problem Data
E:=518400 [ksf]

y:=0150  [kef]
v:=0.2

g:=32.2 [ft/sec2]

L:=30 [ft]
r=1 [ft]

Computations

A=t A=l
r4
= — 1=0.083
12
p :=l p =4.658x 10 8
9
-3
m=A-p m=4.658x 10
f(X) :=1+ cosh(X)-cos(x)  characteristic equation x:=0,0.01..20
.+

f(X) T T T T } } }
L 0 1 3 4|5 6 7 |8 9 10 11 12 13 14 15 16 17 18
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X:=1
w

First Mode
Given

1+ cosh(x)-cos(x) =0

x1:=Find(X)
x1=1.875

El
ol = x| =1 [rad/sec] ol = 11.897

mit

1
fl= 2> [herz] f1=1.893
2-1

GL(x) = 1~[(sin(x]) - sinh(xl))(sin(xtlxj - sinh(xtlx)) + (cos(x1) + cosh (xl))(cos(xtl-xj — cosh (thxjﬂ

x:=0,0.01.L
4

B} S

3 .

$1(%) . \

3 N
. AN

-7
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X=5 Second Mode

Given

1+ cosh(x)-cos(x) =0

x2:=Find(X)
X2=4.694
22 El
@2 :=x2- |— [rad/sec] 2 = 74.556
4
m-L
2
f2:=— [herz] f2=11.866
2-n

@(x) = 1-{(sin(x2) - sinh(xa)(sin(xzzxj - sinh(xtz-x)) + (cos(x2) + cosh (xZ))(cos(XI?xj — cosh (thxjﬂ

x:=0,0.01. L
W
150
100 /
50
$2(X)
0 5 10 15 20 25 30
- v
-100
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Third Mode

X:=8

Given
1+ cosh(X)-cos(X) = 0
x3:=Find(x)

X3=7.855

El
3= P | =L [rad/sec] 3 = 208.76
mL*

f3.- 2 [herz] f3 = 33.225

(¥ = 1-{(sin(x3) - sinh(x@)(sin(%x} - sinh(x—f’-x)) + (cos(x3 + cosh (xs))(cos(x—ij — cosh (X—L?’x)ﬂ

=0,0.01.L

X:
W

2000

1000

0 5 10 5 20 25 30
$3(x)

—1000

—2000 \\

~3000
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X:=11 Fourth Mode
W
Given

1+ cosh(x)-cos(x) =0

x4:=Find(X)
x4 =10.996
o = xl- El [rad/sec] o4 = 409.086
m-L
4= 24 [herz] f4 = 65.108
2-m
(X = 1-{(sin(x4) - sinh(x4))~(sin(x—f~xj - sinh(x—f-x)) + (cos(x4) + cosh (x4))~(cos(x—:1~xj — cosh (X—I_A'x)ﬂ
=0,0.01.L

X:
W

S N ]
\/ V4

-4.10* N

-6-10"
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x=14.13 f(x) = 4.909x 10° Fifth Mode
Given

1+ cosh(x)-cos(X) =0

x5:= Find(x)

x5=14.137

o5 = x |[EL [rad/sec] 5 = 676.249
m-L

f5.- [herz] f5 = 107.628
27

B(X) = 1-{(sin(xa - sinh(x@)~(sin(xt5~xj - sinh(x—f-x)) + (cos(x5) + cosh (x@)(cos(xtsxj — cosh (X—fx)ﬂ

=0,0.01.L

X:
W

» N f\ 5 /1‘0 1\=\ % / % \e‘,o
M AVARRV/ \\

-15.10°
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x:=17.28 f(x) = 1.982x 10" Sixth Mode

Given

1+ cosh(x)-cos(x) =0

x6:= Find(X)
x6=17.279
o6 = x& |- [rad/sec] o6 = 1.01x 10°
m-L
f:= 22 [herz] f6 = 160.778
2
(X = 1-{(sin(x® - sinh(x6))~(sin(x—f~xj - sinh(x—f-x)) + (cos(x6) + cosh (x6))~(cos(x—f-xj — cosh (X—I_Gx)ﬂ
%:=0,001.L
410
3.107 J
7 N AN /

w | N N ]
Wi\ [ 7\
\ /SN

-2.10 \_/ Y,

S
ol
=
o

.,--"""FH"
N
Ul
N
o

-3.10
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B FEM Analysis in SAP

This appendix briefly describes the model generation and analysis performed to obtain
the Frequency Response Function (FRF) of the pile head horizontal displacement with
the SAP2000 computer package (CSI, 2004). The results of this analysis are presented in
Chapter 3.

B.1 Analysis Type

The analysis performed is identified as Steady State Analysis in SAP2000. A steady-state
analysis case solves for the response of the structure due to cyclic (harmonic, sinusoidal)
loading at one or more frequencies of interest (a range of frequencies of interest may be

specified).

B.2 Step by Step Model Generation

This section describes the steps required to generate the 2D Finite Element Model used.
When it is considered relevant to help to demonstrate the model generation process, a

brief explanation of the step and/or a snapshot of the SAP2000 window is displayed.

1) Define the Model Geometry (FEM Mesh)

The wall template (plane stress elements) was selected to develop the soil model, as
shown in Figure B.1. Once this template is selected, a dialog box is displayed in order to
enter the parameters that define the FEM mesh. The resulting model is displayed in
Figure B.2. Frame elements are then added to model the pile, as shown in Figure B.3
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Figure B.1: Template Selection and Mesh Parameters
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Figure B.2: Soil Mesh

Figure B.3: Soil Mesh (Area Elements) and Pile (Frame Elements)

2) Define the Material Properties for soil and concrete, using equivalent elastic modulus
and Poisson’s ratio.
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3) Define the Frame Section for the pile (1ft x 1ft square cross section), and the Area

Section for the soil (1 ft thickness, plane stress).

4) Assign the previously defined elements sections to the soil and the pile elements.

5) Define a Load Case that will be used to assign a unit load applied to the pile head

(top). In this project, this load was named Unit. Figure B.4 shows this definition:

Figure B.4: Load Case Definition

6) Define the Analysis Case that will be performed. A Steady State Analysis is selected,
and named FRF (Frequency Response Function). It is specified that this analysis will be
performed with a load and that this load is defined in the Unit load case. The range of

frequencies for which the response will be obtained and the number of frequency steps to
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be used are also specified, as displayed in Figure B.5. The Function UNIFSS is a
multiplying unit function used as default, that may be modified when certain frequencies
are required to be eliminated (Function = 0) or highlighted (Function > 1), or when a

force with a frequency dependant magnitude value is present.

Figure B.5: Analysis Case Definition

7) Assign a unit horizontal load to the pile head (top), in the Unit load case.

8) Apply the appropriate out-of-plane Restraints, since this is a 2D (plane) analysis
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9) Perform the Analysis.

10) Review the results. In the Display Menu Option, select the Show Plot Functions
command. In the dialog box that is displayed, select the Define Plot Functions command

button, as shown in Figure B.6.

/CD

Figure B.6: Setting the Parameters to be Plotted - a

The user is asked to select the variable to be plotted as a function of the frequency. For
this study the horizontal displacement of the pile top was selected, as shown in Figure
B.7.
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Figure B.7: Setting the Parameters to be Plotted - b

After defining the variable to be plotted, the two dialog boxes are closed, and the selected
variable is added to the plot to be displayed, as shown in Figure B.8, the Magnitude
option button is selected, and the Display command button is pressed to display the
Frequency Response Function. The results for the present 2D soil model, considering the
soil massless, are displayed in Figure B.9

O

0

Figure B.8: Setting the Parameters to be Plotted - ¢
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Figure B.9: Frequency Response Function

These results may be exported to a file, by selecting the command Print Tables to File,

within the File menu on the top left of the plot window.
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C FEM Boundary Spring Constants

The computations of the appropriate spring constant for the boundaries of the FEM
model to simulate the unbounded media nature of the soil deposit are presented. These

computations are based on the recommendations given by Luco (2004).

Luco obtained expressions for the average distributed spring constant to be applied in the
boundaries of a rectangular soil island or truncated region of dimensions 2ay X 2ay X ax, as
depicted in Figure C.1, carved out of the half space. In the present problem a, = 60 ft, ay
=30 ft, and a, = 30 ft.

Figure C.1: Rectangular Soil Island Dimensions

Luco proposed that the average distributed springs constants to be applied at the region

boundaries are obtained from the following equation:



202

Where:
k = distributed spring constant
I =X, Y, or z = plane in which the spring is applied
] =X,Yy, or z =direction in which spring acts
ai = dimension in the i direction
Bij = coefficient that depends on soil Poisson’s ratio and block dimensions

These coefficients have to be multiplied by the influence area “A” of each node of the
FEM boundary in order to obtain a concentrated spring coefficient, resulting in: Kjj = k;;
A, where the capital letter represents nodal concentrated values. Being the FE model
mesh 2°x2’, an internal node will have an influence area of A = 4 ft?, and edge node of A
= 2 ft, and a corner node of A = 1 ft°.

The computations are performed in MathCad software package, as displayed in Figure
C.2 and C.3 for the boundary located in the longitudinal direction, at x = 60 ft. This plane
is named “x”, since its normal is x axis; so all the stiffness coefficients will be designated

as kyj , where j =X,y and z indicates the direction of the spring.
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Problem Data

E:=12 [Ksi]
v:=03

ax:= 60 [ft
ay := 30 [ft]
az:=30 [ft]

Computations

G:= 1441000 [psf] G=6.646x 10°
2(1+v)
ay raz
ax 2 [2 2 5)°°
(1—2‘v)+3~ _ ( ax +Yy +z) dzdy
Jax2+y2+z2
Bxx:=2ax2~ —y 0 Bxx= 1.965
ay raz
[ ax 2 [2. 2 o)t
J J (34-v)+(—} ( ax +y +z) dzdy
2 2 2
\/ax +y +2Z
—ay "0
[ay [az
2 [2. 2 )3
(172-v)+3~ — Y ( ax +y +z) dzdy
\/ax2+y2+z2
Bxy = 2.8 — 0 Bxy = 0.547
ay raz
2 [2. 2 o)t
(3—4~v)+[+ ( ax +y +z) dzdy
2 2 2
\]ax +y +z
—ay “0
ay raz
z 2 [2. 2 2)°°
(1—2-v)+3< _— ( ax +y +z) dzdy
\/ax2+y2+22
pxziz 28— 0 Bxz= 0.547
ay az

-1

[(3 - 4~v) + [;T](\) ax2 + y2 + 22) dzdy

Figure C.2: Computation of Coefficients p for x plane



G
kxx:= —-Bxx
ax

Kxx_int:= kxx4

Kxx_ext:= kxx2

kxy := & -Bxy
ax

Kxy_int := kxy-4

Kxy_ext:= kxy-2

G
kxz:= —-Bxz
ax

Kxz_int:= kxz4

Kxz_ext:= kxz2

kxx= 2.177x 107

Kxx_int=8.708x 10"

Kxx_ext= 4.354x 10°

kxy = 6.064x 10°

Kxy_int = 2.426x 10"

Kxy_ext=1.213x 10°

kxz= 6.064x 10°

Kxz_int=2.426x 10"

Kxz_ext= 1.213x 10*

[pcf]

[b/ft]

[b/ft]

[pcf]

[b/ft]

[b/ft]

[pcf]

[b/ft]

[b/ft]

Figure C.3: Computation of Coefficients k and K for x plane
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D Lumped Equivalent Coefficients for Novak Model

The computations of the appropriate spring, mass and damping coefficients to
approximate Novak dynamic stiffness by a lumped SDOF system is presented. The least

square method to perform a polynomial fitting of the data points was implemented.

The following pages present a listing of the MathCad worksheet developed to this end,
with the computations performed for a soil hysteretic damping ration of D = 0.0, and a
soil Poisson’s ratio v = 0.5, v = 0.45 and v = 0.35, and v = 0.30 as examples of the

performed analysis.

The worksheet also presents the computation of coefficient of determination R? (R-
squared), obtained in order to determine how well does the regression equation truly
represent the set of data used (points of the Novak plane strain model in the range of

dimensionless frequency 0 < ao < 3). The reference equations used to obtain R? are:

RSS

R =1-
TSS

N
RSS=> (v, - ¥, )2 = Residual Sum of Squares
i=1

N
TSS =) (y,— y)" = Total Som of Squares
i=1

y, = data value
Yy, = estimated value
N = number of data points

iyi

y= % = mean value of data points

In the cases when the real part of Novak Dynamic Stiffness is approximated by an

horizontal line, the least squares solutions gives the constant value as the mean value of
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the ordinate data points. In this case, the coefficient of determination is meaningless, and
it’s results is zero, since it is intended to give a quantification of how better is to
approximate the ordinates by the polynomial equation instead of using the mean value.
For these cases, the coefficient of variation CV, in percentage (also known as the relative
standard deviation) will be used to determine the adequacy of the approximation: the
closer CV is to zero, the better the mean value represents the whole data. CV is defined

as:

CV == %100

y
N

ZYi

i=1

y= = sample mean value
(vi-y) .
S= ﬁ = sample standard deviation

N = number of data points



D.1 CaseofD=0.0andv=0.5

Novak Dinamic Stiffness (Novak et al, 1978)

Pile and Soil Data

v :=0.4999999 soil Poisson's ratio

D=0 soil hysteretic damping ratio = G'/G

Computations

_|21-v 3
=T oy n = 2.236x 10

ao'(ao) = a0i
"~ J1+Di
aoi
bo' =
o(20) n+/1+ Di
T(ao0) - 4-K1(bo'(a0))-K1(ao'(ao0)) + ao'(ao)-K1(bo'(ao))-K0(ao'(ao)) + bo'(ao)-K0O(bo'(a0))-K1(ao'(ao))

- bo'(ao0)-KO0(bo'(a0))-K1(ao'(a0)) + ao'(ao)-K1(bo'(ao))-K0(ao'(ao)) + bo'(ao)-ao'(ao)-KO(bo'(ao))-K0(ao'(ao0))

K(ao) := —1-a02-T(ao)

a0 :=0,0.05..2

Re(K(ao))

207
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Real Part Maximum Determination

fr(ao) := Re(K(ao))
ao :=0.3

Given
ao > 0.0

maxRe:= Maximizgfr, ao) maxRe= 0.378

Real Part Curve Fitting by Least-Squares Approximation
N:=29

X, = 0.0

Y= fr(maxRé

i=2..N

X = maxRe+ 0.1:(i — 2)

<o)

oM = -aM
aK =1.7213669
|ocM = 0.9653314|

fr_app(ao) = aK - ocM-ao2
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i=1.N
ao :=0,0.05..5.5
fr(ao)
fr_app (ao)
Yi
[ N X J
-3 | | l ' '
0 0.5 1 15 2 2.5 3
ao, a0, X
I
. _
_5 ]
fr(ao)
fr_app(ao)
— -1 |
Yi
[ X N J
-15 _
]

ao,ao, X



Coefficient of Determination for the Real Part

N
> Y
j=1
N

ym :=

i=1.N

ya, := fr_app(xl>

N

w553, ()

i1

N

155 ¥ (s,

i1

RSS

TSS

210
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Im(K(ao))

Imaginary Part Curve Fitting by Least-Squares Approximation

fi(ao) := ImM(K(a0))

oC = 4.1074708

fi_app(ao) := aC-a0

211
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i=1.N
ao :=0,0.05..6.9
12 T T I I I
10 1
8 |
fi(ao)
fi_app(ao) ¢ —
Yi
[ X N J
4 |
2 |
0 | | | | |

0 0.5 1 1.5 2 25 3
a0, a0, X;



213

Coefficient of Determination for the Imaginary Part

N
Y
j=1
N

ym :=

i=1.N

ya, := fi_app(xl)

N

5= 3. ()

i=1

N

155 Y, oy

i=1

RSS



D.2 CaseofD=0.0andv=0.45

Novak Dinamic Stiffness (Novak et al, 1978)

Pile and Soil Data

soil Poisson's ratio

soil hysteretic damping ratio = G'/G

Computations

2\1-v
n:=’
1-2v

n =3.317
ao'(ao0) = a0l
"~ J1+Di
aoi
bo' =
(o) N1+ Di
T(a0) : 4-K1(bo'(a0))-K1(ao'(a0)) + ao'(a0)-K1(bo'(a0))-K0(ao'(ao)) + bo'(ao)-KO(bo'(ao))-K1(ao'(ao))

- bo'(a0)-K0(bo'(a0))-K1(ao'(a0)) + ao'(ao)-K1(bo'(ao))-K0(ao'(ao)) + bo'(ao)-ao'(ao)-K0O(bo'(ao))-K0(ao'(ao))
K(ao) := —1-a02-T(ao)

ao :=0,0.05..4

15 I I I I I I I

-
|
|

Re(K(ao0))

-05 - -

-1

214



Real Part Maximum Determination

fr(ao) := Re(K(a0))
ao :=0.3

maxRe:= Maximizgfr, ao) maxRe= 0.558

Real Part Inflection Point Determination
_d
gr(ao) :=—fr(ao)
dao

ao := 1.1:-maxRe
Given
ao > 0.0

minRe":= Minimizeggr, ao) minRe'= 1.671
Real Part Curve Fitting by Least-Squares Approximation
N :=29

X = 0.0

Y= fr(maxRé

i=2.N

X = maxRe+ 0.1:(i — 2)
y, = if[xi < minRe), fr(xl),fr(minRe) + gr(minRe)»(xI - minRe‘)}

- —1r -

z
M=z
.
=

N
M
<

S oS W | o

i=1 i=1 i=1

oM = —aM

oK =1.3543719
oM = 0.1766402

215
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fr_app(ao) =K — (XM‘aOZ
i=1.N

a0 :=0,0.05..6.5

fr(ao)

fr_app (ao)
Yi
ooe

-2
2 25 3 35

fr(ao)
fr_app (ao)
Yi

o000

ao,aon, %



Coefficient of Determination for the Real Part

N
> Y
j=1
N

ym :=

i=1.N

ya, := fr_app(xl>

N

5= 3. ()

i1

N

155 . (s

i1

RSS

TSS

217
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Im(K(ao))

Imaginary Part Curve Fitting by Least-Squares Approximation

fi(ao) := ImM(K(a0))

aC = 3.9294084

fi_app(ao) := aC-a0

218
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i=1.N
ao :=0,0.05..6.9
12 T T I I I
10 1
8 |
fi(ao)
fi_app(a0) ¢ —
Yi
[ X N J
b |
= |
0 | | | | |

0 0.5 1 15 2 25 3
a0,a0,%
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Coefficient of Determination for the Imaginary Part

N
Y
j=1
N

ym :=

i=1.N

ya, := fi_app(xl)

N

5= 3. ()

i=1

N

155 Y, oy

i=1

RSS



D.3 CaseofD=0.0andv=0.35

Novak Dinamic Stiffness (Novak et al, 1978)

Pile and Soil Data

soil Poisson's ratio

D=0 soil hysteretic damping ratio = G'/G

Computations

2(1-v
n:=
1-2v

n =2.082
, — aoi
20(20) J1+Di
aoi
bo' =
o) n+/1+ Di
T(a0) : 4-K1(bo'(a0))-K1(ao'(ao0)) + ao'(ao)-K1(bo'(ao))-K0(ao'(ao)) + bo'(ao)-K0O(bo'(a0))-K1(ao'(ao))

- bo'(ao)-K0(bo'(a0))-K1(ao'(a0)) + ao'(ao)-K1(bo'(ao))-K0(ao'(ao)) + bo'(ao)-ao'(ao)-KO(bo'(ao))-K0(ao'(ao))
K(ao) := —1-a02-T(ao)

a0 :=0,0.05..4

141 1

Re(K(ao))

08 I

0.6 ] ] ] ] ] ] ]

221



Real Part Maximum Determination

fr(ao) := Re(K(a0))
ao :=0.3

maxRe:= Maximizgfr, ao) maxRe= 0.933

Real Part Inflection Point Determination
_d
gr(ao) :=—fr(ao)
dao

ao := 1.1:-maxRe
Given
ao > 0.0

minRe":= Minimizeggr, ao) minRe'= 1.37
Real Part Curve Fitting by Least-Squares Approximation
N :=29

X = 0.0

Y= fr(maxRé

i=2.N

X = maxRe+ 0.1:(i — 2)
y, = if[xi < minRe), fr(xl),fr(minRe) + gr(minRe)»(xI - minRe‘)}

- —1r -

z
M=z
.
=

N
M
<

S oS W | o

i=1 i=1 i=1

oM = —aM

oK = 1.3077538
oM = 0.0129035

222
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fr_app(ao) := oK — (xM~a02

i=1.N
a0 :=0,0.05..6.5
2 T T T T T T
15 =
fr(a0) '—M

fr_app(ao) 1+

Yi
[ X N ]
05 1
0 | | | | | |
0 0.5 1 15 2 25 3 35
a0, a0, Xj
2 T T T T T T
/-'— e s aad e g g o s
ol |
fr(ao) 2r N
fr_app (ao)
Yi
(XX —4 = 7
- |
-8 ] ] | | | |
0 1 2 3 4 5 6



Coefficient of Determination for the Real Part

N
> Y
j=1
N

ym :=

i=1.N

ya, := fr_app(xl>

N

5= 3. ()

i1

N

155 . (s

i1

RSS

TSS

224
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20~

Im(K(ao))

Imaginary Part Curve Fitting by Least-Squares Approximation

fi(ao) := ImM(K(a0))

oC = 3.1297789

fi_app(ao) := aC-a0
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i=1.N
a0 :=0,0.05..6.9
12 ' | | | |
10 :
7
7
//
8- // _
7
fi(ao) //
- e
fi_app(a0) ¢ - // _
Yi
| |
. 25

a0,a0,X%
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Coefficient of Determination for the Imaginary Part

N
Y
j=1
N

ym :=

i=1.N

ya, := fi_app(xl)

N

5= 3. ()

i=1

N

155 Y, oy

i=1

RSS



D4 CaseofD=0.0andv=0.3

Novak Dinamic Stiffness (Novak et al, 1978)

Pile and Soil Data

v :=0.30 soil Poisson's ratio

D=0 soil hysteretic damping ratio = G'/G

Computations

_|21-v
=T o n=1871

ao'(ao) = a0i
" J1+Di
bo'(ao0) := a0i
n+/1+ Di
T(a0) = 4.K1(bo'(a0))-K1(ao'(a0)) + ao'(ao)-K1(bho'(ao))-K0(ao'(ao)) + bo'(ao)-KO(bo'(ao))-Ki1(ao'(ao0))

bo'(a0)-KO0(bo'(a0))-K1(ao'(ao)) + ao'(ao)-K1(bo'(ao))-K0(ao'(ao)) + bo'(ao)-ao'(ao)-K0O(bo'(ao))-K0(ao'(ao))
K(ao) := —1~a02-T(a0)

a0 :=0,0.05..4

14 T T T T T T

Re(K(ao))

06 1

02 1

0 0.5 1 15 2 25 3 3.5
ao

228



Real Part Inflection Point Determination

fr(ao) := Re(K(ao))

gr(ao) := OI—fr(ao)
dao

minRe':= Minimizggr, ao) minRe'= 1.433

Real Part Curve Fitting by Least-Squares Approximation
N :=29 aoi :=1.0 aof :=3
i=1.N

(i-1)

X :=aoi + (aof —aoi)-——
! N-1

-t

oM =0

oK = 1.3068585

oM =0

229



fr_app(a0) := aK — aM-a0°

i=1..N

ao :=0,

fr(ao)

fr_app

Yi

0.05..6.5

230

|

— = ===
=== 0==Ontnl

(a0) 1

3.5

15

fr(ao)
fr_app(ao) 4

Yi

a0,a0, X
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Coefficient of Determination for the Real Part

N
2 Y

j=1
m:= m = 1.307
y N Yl
i=1.N
ya, = fr_app(xl)
N 2 3
RSS:= .—vya. RSS=6.731x 10
ss Z(y] yal) SS=6.731x 10
j=1
N 2
TSS = y.—ym
E‘l =) TSS = 6.731x 10 °
RSS
R2:=1- Tss R2=0
Standard error of estimate
(Sample Standard Deviation)
SEE=0.016
CV=0.012 coefficient of variation
RSD:= CV-100 RSD = 1.186 Relative Standard Deviation
3-SEE
R2G:=1- —— R2G=0.964
ym

Dark blue is less than one standard deviation from the mean. For the normal distribution, this accounts for 68.27% of the
set; while two standard deviations from the mean (blue and brown) account for 95.45%; and three standard deviations (blue,
brown and green) account for 99.73%.
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15

Im(K(ao)) 10

ao

Imaginary Part Curve Fitting by Least-Squares Approximation

fi(ao) := ImM(K(a0))

oC = 2.9405413

fi_app(ao) := aC-a0

232



i=1.N

a0 :=0,0.05..6.9

233

12

10

fi(ao)
fi_app(a0) |-

Yi

|
15

a0,a0,%
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Coefficient of Determination for the Imaginary Part

N
Y
j=1
N

ym :=

i=1.N

ya, := fi_app(xl)

N
Rssi= 3 (o)
j=1

N

155 Y oy

i=1

R2:=1— R

=
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E Pile Element with Distributed Soil Parameters

E.1 Classical Beam Element

The derivation of the stiffness, mass, and dumping matrices for a pile element with
distributed soil parameters is presented in this section. The element is shown in Figure
E.1; the soil stiffness k, per unit length, soil mass m, per unit length, and soil damping

coefficient c, per unit length were obtained in Chapter 4.

C. K ] u,

OO

§

§

o
mO
~

wB
m
—
m

=~

[+

O
=

=

ANNNE NN
2)

Uy

Figure E.1: Pile Element with Distributed Soil Parameters

The matrix will be derived by using the Finite Element Method (FEM) formulation based
on the Virtual Work Principle. The four degrees of freedom (DOF) of the beam element

are the two end displacements u; and us and rotations u, and us. In the FEM, the
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displacements v(x,t) within the element are expressed in terms of the end displacements
and rotations {q} through shape functions [N]:
vix = [N] {a)

where

(1)
um
k=

u, ()

It will be assumed that the shape functions for the classic beam theory (Bernoulli beam)

are applicable. This shape functions are shown in Figure E.2, together with the element

DOF.

2 3 5
P (x)=1-3 ()L(j 2 (’L(j Po(X) =X (1— Xj
N
2 3 2
w0=of] 2] e-i{i]

Figure E.2: Beam Element Shape Functions (Battini, 2006)
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The Principle of Virtual Work for a dynamic structural system, also known as the
generalized D’ Alambert Principle, is:

oW, —oW,, —oW, ., =0

Iner

where Wiy is the virtual work of the internal forces, oWey is the virtual work associated
to the external forces, and Wiy is the virtual work of the “inertial” forces, as defined by

D’ Alambert.

For a beam with a distributed force f(x,t), the three virtual work expressions are:

56’(x t)

d (Sv(x, t)) i

dx?

J'E Iv'(x,1) dx _I E 1V'(x,t)
SW,, = j f (x,1) Sv(x,t) dx
oW, = —JL.rﬁ V(x,t)ov(x,t)dx

where m is the distributed mass of the beam per unit length, i.e. m=pA+m,, E is the

elastic modulus, | the moment of inertia of the cross section, v(x,t) is the transverse

displacement, and ov(x,t) is the virtual transverse displacement.

Introducing the FEM approximation:

v(xt) = [N()] {a®)}
sv(x,t) = [NX] {s9)}={sq®)} [NX)]
Vi(xt) = [N"(9] {a@®)}
V() = [N'()] {sq@)}={sa®)} [N"(]

The internal virtual work becomes:
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L L
W, = [ETV(x, 1) 8V (x,1)dx = [ E 16V (X, )V"(x,1) dX
0 0

W, ={5a®)} | JET[N"()] [N"(0] dx [{a(t)}

By defining the beam element stiffness matrix [kp] as:

L

[k,]=[ET[N"0Q] [N"(9)] dx

0

the internal virtual work results:

W, = {5a®)}" [k, [{a(®)}

If the force f(x,t) is due to the distributed spring and dampers, i.e.

f(x,t) =—k, v(x,t)—c, v(x,t), the virtual work of the external forces is:

L L
MWy, == [k, v(x,8) S(x, 1) dx— [ ¢, V(x,t) Sv(x, 1) dX
0 0

Introducing the FEM approximation shown previously, that for the velocity field results:
v(x,t) = [N(X)] {a@)}
SVt = [NM] {84} ={sq®} [NC)]

The external virtual work becomes:

L L
évvext = __[ ka 5V(th) V(X,t) dx _ICa 5V(X,t)\7(x,t) dx
0 0

W, =—{5q(®)}' fka[N(x)]T [N(x)]dx}{q(t)}—{aq(t)f UC [NCOT [NOO] dx ({a(®)}

By defining the soil stiffness matrix [Ks] and the soil damping matrix as [c;] as:
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[k.]= [k [NOOT [N(x)]dx

the external virtual work results:

oW, =—{5a®)}" [k, ]J{a®)} -{sa®)}" [c,]{d®)}

c.[NOOT [N(x)] dx

Ot Ot

Finally, the acceleration field can be expressed in terms of the nodal coordinates as:
V(xt) = [N(X)] {d®)]
SV(xt) = [NM] {sd®) ={sd®)) [N

Substituting these expressions into the equation of the virtual work of the inertial forces,

it results:

oW. = —j mov(x,t)vV(x,t) dx

Iner

MW, =~{S9()} {j [NGOT [N dx}{qa)}

Introducing the consistent mass matrix [Mg] for the beam element (which contribution is
[Mg]) with added distributed soil mass (which contribution is [Ms]) as:

[NEOT [NG)]dx= [ (pA+m,)[N()] [N(x)]dx

[M, ]

Mel=[m
JL'pA[N(x) ] [N(x)]dx
J=m, [NCOT [N(x)]dx

the expression for the virtual work of the inertial forces becomes:

W, =—{3q(®)} [M.]{4@)}



240

Considering the above mentioned nomenclature, the principle of virtual works results:

=0
{59} [ J{a®} +[k J{a@®}+[c.J{a@®}+[Me {d®)} ]

Since the virtual displacement{sq}, by definition, are arbitrary (as long as they are

é\Nint - évvext - oW,

compatible with the support conditions), one obtains the equation of motion for the free

vibrations of the element as:

[ke [{a®)} +[ce {a®)} +[Me ]{d®)} =0

where

[Ke]=[k, ]+[k,]= total element stiffness matrix

[Ce]
[Mc]=[M,]+[M,]= total element mass matrix

I
—
—_

c, | = total element damping matrix
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E.1l.1 Element Stiffness Matrix

The element stiffness matrix, that includes the contribution of the pile of modulus of
elasticity E, cross sectional moment of inertia I, and length Lg, and the soil of distributed

stiffness ks, is computed as follows:

[Ke]= |{[N‘T E[N"]dx+{[N]T ka[N]dx

A listing of the Maple worksheet developed to compute the stiffness matrix is presented

below:

>restart;
B R T S e

*
. : :

Shape Functions [Fi]
*hkkkkkhkkhkkhkkkhkkhkhkkhkhkhkkhkkkhkhhkkhkhkhkhkkhkhhkkhkhkhkhhkhkhhkkikhkhkhhkkhkhhkkihkhkhkkhkhhkihkkhkhkkhkhkhkihkkhkhkkikihkkiixk

*

>Fi1 = Vector(1..4):

Fi[1] =1-3* (xL)"2 + 2 * (xX/L)"3
Fi[2] =x * (1- x/L)"2 :
Fi[3] =3 * (xXL)N2 - 2 * (X/LYN3 :

Fi[4] :=x2 /L * (x/L - 1) :

>Fi;
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B R R R S R R S R R S R R S R R S e R S R R S R R S R R S S R S S R R S R R S R R S R R S R R S R R R R R S R R S S R S S R S S R S S R S
*

* Matrix of Derivatives of the Shape Functions [B]

KA I I I I I I A I I IA A A A A A A A A A A A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAh Kk

*

>B = Matrix(1l..1,1..4):

>with(student):
for jJ from 1 to 4 do

B[1,j]:= diff(Fi[j],x$2):
end do:

>BT := Matrix(1..4, 1..1):
with(linalg):
BT := transpose(B):

>simplify(B);
L-2x -3x+2L L-2x -3x+L
—6 3 -2 2 6 3 -2 2
L L L L

R AR R R R S S B S B R R R R R R R R R R S R R R S R R R S R R R S S S R R S R R R R R R R R S S S S R S S S S S S R S S S S S S S S e
*

* Constitutive Matrix [E1]
*hkkkkkhkkhkkhkkkhkkhkhkkhkhkhkkhkkkhkhhkkhkhkhkhkkhkhhkkhkhkhkhhkhkhhkkikhkhkhhkkhkhhkkihkhkhkkhkhhkihkkhkhkkhkhkhkihkkhkhkkikihkkiixk
*

>E1 = Matrix(1,1):

E1[1,1] := E :

print(El);

[E]
KEAEAKRAAKRAAXAAAXAAAXAAAAAAAIAAAIAAAAAAAAAAAhAArAAAAAAhhkdrhhhhhhrkhhrihhhhihhihhiihiiikkx
*

* Stiffness Matrix [K]
*

R R R R R R R R R R R R R R R R R R AR AR R R R R R R R R AR AR AR A R R AR AR AR R R R R R R R R R R R R R R R R R R AR AR R R R R R R R R R R R R

>dK1l = Matrix(1l..4, 1..4):
with(linalg):

dkl = multiply(BT,multiply(El1,B)):

>K1 = Matrix(1..4, 1..4):
with(student):
for 1 from 1 to 4 do

for j from 1 to 4 do



Ki[i,j] = I * value(int(dkl[i,j], x = 0..L )) :

end do:
end do:

>print(K1l);

T121E 6I1E -121E 6I1E
L3 L? L3 L2
6IE 41E -61E 2I1E
L2 L L2 L
121E -6l1E 121E -6IE
L3 L? L3 L2
61E 21E -61E 41E
L2 L L2 L

>K2 = Matrix(1..4, 1..4):
with(student):
for 1 from 1 to 4 do

for j from 1 to 4 do

K2[i,j] := ka * value(int(Fi[i]*Fi[j], x = 0-.L ))

end do:
end do:

>print(K2);

>K2R := simplify(K2 / (ka*L/420));
156 22L 54 -13L

2L 4L% 13L -3L?
K2R := 3 3
54 13L 156 -22L

-13L -3L%? -22L 4L?

| égkaL 21110kaL2 790kaL —412?6kaL2_
lelokaL2 1c1)5kaL3 41230kaL2 —1410kaL3
790kaL 41230kaL2 ;gkaL —lelokaL2
_412?6ka|_2 —y}f()kaL3 —21110kaL2 135kaL:"’

243
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E.1.2 Element Mass Matrix

The element mass matrix, that includes the contribution of the pile of density p and cross

sectional area A, and the soil of distributed mass m,, is computed as follows:

[M]zIm[N]T[N]dx

m= (pA+ ma) = mass per unit length

A listing of the Maple worksheet developed to compute the mass matrix is presented

below:

>restart;
*hkkkkkhhkhkkhhkkhhhkkhhkkhkhhkkhhhhhhdhhhhhihhdhhkhhhihkkhkhhihhkhhhhhrhhkhhrhhrhhihkihhihkiihikikx

* Shape Functions [Fi]

* %%k * %k %k * %%k * %k %k * %% * %k %k * k% * %k %k * %% * k% * %k %k * %%k

>Fi = Vector(1..4):

Fi[1] =1 -3 * (x/L)"2 + 2 * (X/L)"3 :
Fi[2] ::=x * ( 1- x/L)"2 :
FIi[3] =3 * (x/L)"2 - 2 * (X/L)"3 :
Fi[4] :=x2 /L * (xX/L - 1) :
>print (Fi); ~
3x? 2x3
et
X 2
(1)
x> 2x®
[EEE
2( X _
X (L 1]
- L -

*hkkhkkkhhkhkkhhkhkhkhkkhkhkhkhhkhkhkhkkhhkhhhkhkhkhkkhhkhhhkkhhkhkhhkhkhhkkihkhkhhkhhkhkkihkhkhhkhkhhkihkhkhhkkhhhihkhkhikkik

* Mass Matrix [ME]
*

*hkkkkhhkhkkhhkkhkhkkhhkkhkhhkrhhrhhdhhhhhihhdhhkhhhihkkhhhihhkhhhhhrhhkhhikhhihhihkihhihkiihiikx

>ME := Matrix(1..4, 1..4):
with(student):
for 1 from 1 to 4 do
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for j from 1 to 4 do
ME[i,j] = (ro * A + ma) * value(int(Fi[i]*Fi[j], x = 0..L )) :
end do:
end do:

> print(ME);

S oArm)L  —=(roA+ma)l?  —(roA+ma)l  ——(r0A +ma)L2
—(ro ma —(I0 ma —(Io ma ——(ro ma
35T 2100 00 70000 4200 00
LN 2 Lion B3 Bioa L2 L oA L3
—(ro ma —(ro ma —(ro ma ——(ro ma
210 (MOA+Ma) 105 (O A +ma) 220 0 A +Ma) 120 (O A +ma)
Y oAsmal  ——(oAsma)l?  (roA+ma)l - (roA+ma)L>
—(ro ma —(I0 ma —(Io ma ——(ro ma
70000 4200 00 g5 ot 2100 00T

13 oA 12~ on 3 on 12 L iona L3
——(ro ma ——(ro ma ——(ro ma —(Io ma
oA +Ma) 120 (TOA +ma) 210 (MOA+Mma) 105 (OA +ma)

>MER = ME/((ro * A + ma)*L/420):

>simplify(MER); 156 22 L 54 13L

2L 4L% 13L -3L?
54 13L 156 -22L

-13L -3L%? -22L 4L?

E.1.3 Element Damping Matrix

The element damping matrix that includes the contribution of the soil of distributed

damping c,, is computed as follows:

[C]:IC[N]T[N]dx

¢ =(c, ) = damping coefficient per unit length

The resulting damping matrix has the same form of the mass matrix, where m, Lg is

replaced by ¢, Le.
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E.2 Refined Beam Element

This section presents the derivation of the stiffness, mass, and dumping matrices for the
refined pile element proposed by Deschapelles (2003) with distributed soil parameters.
The element with its five DOF is displayed in Figure E.3. The soil stiffness k, per unit
length, soil mass m, per unit length, and soil damping coefficient c, per unit length were

obtained in Chapter 4.
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Figure E.3: Refined Pile Element with Distributed Soil Parameters

The advantages of this element, as reported by Deschapelles (2003) are:
e The nodal DOF in a conventional beam element are localized directions along
which only concentrated forces or moments can be applied or computed. They are
required to assure compatibility of deformed shape at nodal points, but do not

provide “room” for distributed loads since such actions do not operate in specific
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points. Distributed loads act over a finite element length, rather than over an
infinitesimal point.

e Beam elements with distributed loads have bending moments with parabolic
variation; considering the differential equation of a beam (M/EI = dv/dx?), the
transverse displacements should be represented by a 4™ degree polynomial with 5

coefficients. Accordingly, 5 DOF should be used.

The shape functions for this element, considering a normalized coordinate & = x / (Lg/2)
and with the origin of coordinate axes located at the middle of the beam (as presentede in
Figure E.4), are presented in Figures E.5 to E.7. The shape functions for the nodal
rotations (N2 and N5) should be multiplied by Lg/2.

y.n

-————p

Usg
E | \
u, 1
a=Lg/2 /x £

Figure E.4: Normalized Coordinate Sistem
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First Shape Function

2 3 4 1
-7 -12 30 4.t — 15
Nl(a):( e <) J N1(2) de = 0
-1
1
0.5
NIE o
—0.5
-1
-1 -0.5 0 0.5 1
:

Second Shape Function

2 3 4 1
NZ(E) = ba-scroceud-sc J NZ(E) dz = 0

16 .

0.1

0.05
N2(€)

—0.05

Figure E.5: Refined Beam Element Shape Functions - a



Third Shape Function
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2 4 1
15\1 - 2
N3(2) = ( 3 ) J N3(2) de = 2
-1
2
1.5
N3(&) 1
0.5
0
-1 —0.5 0.5 1
Fourth Shape Function
(—7 + 126 + 30-@2 - 4-@3 - 15-@4) !
N4(e) := J N4(g) dg = 0
16 1
1
0.5
N4(E) o
-05
-1
-1 —0.5 0.5 1

Figure E.6: Refined Beam Element Shape Functions - b
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Fifth Shape Function

2 3 4 1
1-45—6E +4E +5
NS(a):( oo s J NS(£) de = 0
16 .
0.05
0
N5(2)
T 005
0.1
—0.15
-1 —-0.5 0 0.5 1
:

Figure E.7: Refined Beam Element Shape Functions - ¢

E21 Refined Element Stiffness Matrix

The element stiffness matrix for a pile with modulus of elasticity E, cross sectional
moment of inertia I, and length Lg, and that includes the contribution of the the soil of

distributed stiffness ks, is computed as follows:

[Ke]= |{[N'T E[N']dx+.L|-[N]T ka[N]dx
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A listing of the Maple worksheet developed to compute the stiffness matrix is presented
below:

>restart;

KA I I I I I I I I I IA A A A A A A A A A A A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhh Kk
*
. : :
Shape Functions [Fi]
B R R R S R R S R R S R R S R R S e R S R R S R R S R R S S R S S R R S R R S R R S R R S R R S R R R R R S R R S S R S S R S S R S S R S

*

>Fi1 = Vector(1..5):

Fi[1] = (-7 - 12 * x + 30 * x"2 + 4 * x"3 - 15 * x™M) /
16:

Fi[2] =L/ 2 * (-1 -4*xX+6*x2+4*x"3 -5=*
x™4) / 16:

Fi[3] (1-2*x2+xM)*15/ 8 :

Fi[4] (-7 + 12 * x + 30 * x2 -4 *x"3 - 15 * x™M) /
16:
Fi[5] =L/ 2* @ -4*Xx-6*x"2+4%*x"3 +5%*
x") / 16:
>Fi;
T 3 Bt B
16 4 8 4 16

2L(—1—4x+6x2+4x3—5x%

15 15 , 15 ,

8 478
Sy 1 15

7
"6t T8 1% T 16

1
§§L(1—4x—6x2+4x3+5x4)

*hhkhkAhkhkAhhkhkhhkhkrhkhkrhhhkrhhkrhhkhhhkhhhkhkhhkhkhhkhkhhkhkihkhkkrhkhkkihhkhkkihhkkihhkkihhkkhhhkkihihkkiiikkiiikkx
*

* Matrix [B] with the derivatives of the Shape Functions
*hkkkkkhkkhkkhkkkhkkhkhkkhkhkhkkhkkhkhhkkhkhkhkhkkkhkhhkkhhkhkhhkhkhhkkihkhkhhkkhkhhkkihkhkhkkhkhhkihkkhkhhkkhkhkhkkikkhkhkkikihkkiixk

*

>B = Matrix(1l..1,1..5):

>with(student):
for j from 1 to 5 do
B[1,j]:= diff(Fi[j],x$2)* (2/L)"2:
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end do:

>BT := Matrix(1..5, 1..1):
with(linalg):
BT := transpose(B):

>simplify(B);
5-2x+15%x> 3-1-2x+5%? ~1+3x? 5+ 2 X+ 15 x>
-3 - = , 30 , —3 ,
L2 2 L L2 L2
§—1+2x+5ﬂ
2 L

KA I I I I I I I I A IA A A A A A A A A A A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdhh Kk
*

* Constitutive Matrix [E1]

R R R R S S B S B R R R R R R R R R R S R R R S R R R S R R R S S S R R S R R R R R R R R S S S S R S S S S S S R R S S S S S S S

*

>E1 = Matrix(1,1):
E1[1,1] = E :
print(El);

KA I I I I I I I I I A A A A A A A A A A A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhh Kk
*
* oui .
Stiffness Matrix [K]
*
KA I I I I I I A I I IA A A A A A A A A A A A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAh Kk

*

>dK1l := Matrix(1l..5, 1..5):
with(linalg):
dkl = multiply(BT,multiply(E1,B)):

>K1 = Matrix(1..5, 1..5):
with(student):
for 1 from 1 to 5 do

for j from 1 to 5 do

Ki[i,j] =1 * (L /7 2) * value(int(dkl[i,j], x = -

1..1)) :

end do:
end do:

>print(K1l);
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T1921E 361E -3601E 1681E -241E]
L3 L? L3 L3 L?
36IE 91E 60 |1 E 24 | E 31E
L? L L? L2 L
-3601E -601E 7201E -3601E 60IE
L3 L2 L3 L3 L?
168 1E  241E -3601E 1921E -361E
L3 L? L3 L3 L?
241E -3IE 601 E 36 1 E 91E
L? L L? L2 L
>K1R:= simplify (K1/(3*E*I1/L));
r 1 1 17
644[5 12‘E’ —1204E5 56 — —81:
1 1 1
12[ 3 40[ 8f -1
1 1 1 1 1
KIR := ‘120‘[5 —20]: 2404EE -120 — 20‘[
1 1 1 1 1
56—[5 8—E— —-120—EE 64—EE _12‘E
1 1 1
_ —SIT -1 20 — _lZIf 3 _
>K2 = Matrix(1..5, 1..5):
with(student):

for 1 from 1 to 5 do

for j from 1 to 5 do
= ka *(L/2)* value(int(Fi[i]*Fi[j], x = -

K2[i,]]
1..1 )) :
end do:
end do:

>print(K2);



8 1 9 3 1 1 5 ]
EkaL @kaL —ﬂkaL —%kaL mkaL
P S A T SN SR SN SR SR
50 ka L 630 ka L 84 ka L 510 ka L 1260 ka L

3 1 9 10 3 1 9

—ﬂkaL —@kaL 7kaL —ﬁkaL @kaL

1 1 9 3 8 1 9

—%kaL —mkaL —ﬁkaL gkaL —@kaL
A R P S S 1, 0 1

210 ka L 1260 ka L 84 ka L 50 ka L 630 ka L |

>K2R = simplify(K2 / (ka*L/1260));
7288 21L -270 -18 6L T
21L 2L? -15L -6L L2
K2R :=|-270 -15L 1800 -270 15L
-18 6L -270 288 -21L
6L L* 15L -21L 2L*

E.2.2 Refined Element Mass Matrix
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The element mass matrix, that includes the contribution of the pile of density p and cross

sectional area A, and the soil of distributed mass m,, is computed as follows:

[M]{m[NT[N]dX

m= (pA+ ma) = mass per unit length

A listing of the Maple worksheet developed to compute the mass matrix is presented

below:

>restart;

B R R T R R R S R R R R R S R R S R R S R R e R R S R R S R R S R R R R R R R R R R R R R R R R R R R R R S R R S R R S R R P R R S S R P S

*
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* Shape Functions [Fi]

B R R R R R R S R R R R R S R R S R R S R R S R R S R R S R R S R R R R R R R R R R R R R R R R R R R R R S R R S R R S R R S R R S S R P S

*

>Fi1 = Vector(1..5):

Fi[1] = (-7 - 12 * x + 30 * X2 + 4 * x3 - 15 * x™M) /
16:

Fi[2] =L/ 2* (-1 -4*x+6*x2+4*x"3 -5=*
x") / 16:

Fi[3] =(1-2*x2+xM ) *15/ 8 :

Fi[4] = (-7 +12 * x+ 30 * x2 -4 *x"3 -15 * x™M) /
16:

Fi[5] =L/2*@A-4*%X-6*xXx2+4*x"3 +5*
x™4) / 16:

>print (Fi);

T3 By e 1o

16 4 8 4" 16
iL(—1—4x+6x2+4x3—5x4)
32
15 15 , 15 ,
g a2 X *tgX
7 3 15, 1, 15,
BT R RO R T

312L(1—4x—6x2+4x3+5x4)

*hhkhkAAkhkAhkhkrAhkhkrhkhkrhhkrkhhkrhhkrhhkhhhkhhhkhkhhkhkihhkhkihkhkkihhkhkkirhkhkihhkihhkkikhhkkhkhhkkihihkkiiikiiikkx
*
« .

Mass Matrix [ME]
*
KhhkhkAAkhkAAkhkAhkAkrrkhkrkrkhkrkhhkrhhkrhhkhhhkhkhhkhhhkhkihhkhkihkhkkhhkhkkrhkhkkirhhkkihhkkihhkkhhhkkhhihkkiiikiiikkx

*

>ME := Matrix(1..5, 1..5):
with(student):
for 1 from 1 to 5 do

for jJ from 1 to 5 do

ME[1,3J] := (ro * A + ma) *(L/2)*

value(int(Fi[i]*Fi[jJ], x = -1..1 )) :

end do:
end do:

>print(ME);



8 1 9
[%(roA+ma)L,60(roA+ma)L ,

1
210

(1 2
@(ro A+ma)lL

(roA+ma)L }

(roA+ma)L3®, - (roA+ma)L2,

630
! (ro A+ ma)L?,
210

3
1260 (roA+ma)lL }

(ro A+ma)lL,

—4(ro A+ ma)L2,170(roA+ma)L,
—i(roA+ma)L i(ro A+ ma) L?
14 ' 84

(roA+ma)L?, -

1 1
—%(roA+ma)L 210

1 2
—5(r0A+ma)L,—@(roA+ma)L

3 1
—ﬂ(ro A+ma)L,—%

(ro A+ma)lL,

1 2 1 3 1 2
[Zlo(roAera)L 1260(roA+ma)L 4(roA+ma)L ,
1
- 2
0 (roA+ma) L ' 630 (roA+ma)lL }
>MER = ME/((ro * A + ma)*L/1260):
>simplify(MER);
(288 21L -270 -18 6L 7
21L 2L*> -15L -6L L2
-270 -15L 1800 -270 15L
-18 6L -270 288 -21L
6L L* 15L -21L 2L7 |
>
E.2.3 Refined Element Damping Matrix
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(roA+ma)lL,

The element damping matrix that includes the contribution of the soil of distributed

damping c,, is computed as follows:
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[C]ch[N]T[N]dx

¢ =(c, ) = damping coefficient per unit length

The resulting damping matrix has the same form of the mass matrix, where m, Lg is

replaced by c, L.

E.3 Analysis of Convergence to the Natural Frequency

In order to evaluate the appropriateness of the classical and the refined beam elements to
perform dynamic analyses, the natural frequencies of a simple supported steel beam,
W8x10, L = 20 ft, where computed using the classical beam element with consistent mass
matrix and lumped mass matrix, the refined element proposed by Deschapelles with
consistent mass matrix, and the exact solutions obtained considering the beam as a

continuous (Humar, 2002).

Figures E.8 through E.10 present the first four natural frequencies of the system, and the
convergence of the different models as the number of elements is increased. It is
observed that the refined element proposed by Deschapelles gives a very good estimate
of the first natural frequency with only one element, and converges to the exact values of
the natural frequency for higher modes faster than the classical beam, as the number of

elements “ne” used to discretize the beam is increased.

Section E3.1 through E.3.3 present the Matlab programs developed to compute the

natural frequencies for each model, varying the number of elements.



258

First Mode

121

119 \
117 \

115 \
113 \
111 \

109 — . . t

wn;, [rad/sec]

‘—O—Classic Beam —— Continuous A Refined Beam —4A— Classic Beam Lumped Mass

Figure E.8: First Natural Frequency vs Number of Elements (ne)
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Figure E.9: Second Natural Frequency vs Number of Elements (ne)



Third Mode
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Figure E.10: Third Natural Frequency vs Number of Elements (ne)
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Figure E.11: Fourth Natural Frequency vs Number of Elements (ne)
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E3.1 Classical Beam Element with Lumped Mass Matrix

% R R R R Rk R T kS

% BeamNatFreq.m

% Finite Element Program

% to obtain natural frequencies of a simple beam
% using classical and refined beam elements

% AAAAXAAIAAAAXAAAAAAAAXAXAAAAAAAAAXAAAAAAkAAAhhdhhixhhhhhhhkhkhikkh

% FhkhkIhhkhhhkhkhkhhkhhhkhkhhhkhkhhhkikihhkhkhhhkhhkhkhkhhhkhhhkikikhikhkhhikiiikk

% Clears window, variables, and graphs
% R R X X

clc;
clear all;
close all;

% AEEEAEEEEEEAAAARAEEARARAAIIEIEIEAARAARAEIRIRARAA AR AAAAAAAAAITITRTAN
% Problem Data

% AAAAAAIAAAAXAAAAAAAAXAXAAAAAAAAAAAAAAAkAAxAhhhhihhhhhhkhkhkhkikikkh

g = 32.2; % [Ft/sec"2] gravity acceleration
% W8x10

A= 2.96; %[in2]

1 = 30.8; %[in4]

L = 20.0; B[FE]

E = 29000.0; %[ksi]

gamma = 0.490; %[kcfF]

ne = 6; % number elements

nm = 5; % number of modes

% R R X X X
% Parameters computation

% AAAAXAAAAAAAXAAAAAAAAXAXAAAAAAAAAAAAAAAkAAxAhAhdhhihihhhhhhhkhkiikkh
L=L*12;

rho = (gamma/1273) / (g*12); %[pcf]

Le =L / ne ;

K
M

zeros(2*(ne+l),2*(net+l));
zeros(2*(ne+1),2*(ne+l));

% BEAM ELEMENT STIFFNESS MATRIX

k1l = 4*E*1/Le;
k2 = 6*E*1/Le"2;
k3 = 12*E*1/Le"3;
Ke(1,1) = k3;
Ke(2,1) = k2;
Ke(3,1) = -k3;
Ke(4,1) = k2;
Ke(1,2) = k2;
Ke(2,2) = ki1;
Ke(3,2) = -k2;
Ke(4,2) = k1/2;
Ke(1,3) = -k3;
Ke(2,3) = -k2;
Ke(3,3) = k3;
Ke(4,3) = -k2;
Ke(1,4) = k2;
Ke(2,4) = k1/2;
Ke(3,4) = -k2;
Ke(4,4) = ki;

% BEAM ELEMENT LUMPED MASS MATRIX
MB = rho * A * Le ;

Me(1,1) = MB /7 2;
Me(2,1) = 0;
Me(3,1) = 0;



Me(4,1)

Me(1,2)
Me(2,2)
Me(3,2)
Me(4,2)

Me(1,3)
Me(2,3)
Me(3.3)
Me(4.3)

Me(l1,4)
Me(2,4)
Me(3,4)
Me(4,4)

% AAAAAAIAAAAXAAAAAAAAXAXAAAAAAAAAAAAAAAkAAAhhhhixhhhhhkhhkhkiikkh

% Mass and Stiffness Matrices Assembling
% Kkkkkhhkhhikkhhkhhkhkhkhkhkhkhkhhhikhkhkikhkhkhhkhkhkhkhkhkhkhkhkhhkhkhkkhkhhhhikikikk

for jj =1 : ne
dof(1) = jj*2-1;

/ 2;

we Q0w

OO0OO0O0O O=00 O0O0OO0O O

dof(2) = jj*2;
dof(3) = jj*2+1
dof(4) = jj*2+2;
for kk =1 : 4

for 11 =1 : 4
row = dof(kk);
col = dof(ll);
K(row,col) = K(row,col) + Ke(kk,I11);
M(row,col) M(row,col) + Me(kk,Il);

end
end
end

% Boundary conditions
K

K((ne+i)*2—2,:)=[]
K(z, (ne+1)*2-2)=[]

M

M(1,:)=[
M(:.1)=[1]
M((ne+1)*2-2, :)=[]
M(: , (ne+1)*2-2)=[]

% FhkhkIkhhkhhhkhkhkhhkhhhkikhhhkhkhhhkikhhkhkhhkhkhhkikhkhhhkhhhkikikhikhkhhkikiiikk

% Exact Beam Natural Frequencies
% R X 2 X

for jJ =1 : nm
wex(33) = i*2)*(Pin2)*sqrt(E*1/(rho*A*L™M));
g disp(wex(d1))
en

% FhkkIkhhkhhhkhkhkhhkhhhkikhhhkhkhhhikihhkhkhhkhkhhkhkhkhhhkhhhkikikhikhkhhkikiiikk

% Eigenvalues and Eigenvectors
% R X X

[phi, lam] = eig(K,M);
wj = sqgrt(diag(lam));

% AAAXAXAAIAAAAAAAAAAAAXAXAAAAAAAAAAAAAAAkAAxAhhhhhkhhhhhhhhkhkikikkh

% Ordena los autovalores y autovectores

% Calcula los periodos naturales

% AAAAXAAIAAAAXAAAAAAAAXAXAAAAAAAAAAAAAAAxkAAxAhhhhhhhhhhhkhkhkiikkh
[wj, id]=sort(wj);

phi=phi(z,id);

Tj = 2*pi./wj;

) = 1./Tj;

% AAAAXAAIAAAAXAAAAAAAAXAXAAAAAAAAAAAAAAAkAXxAhhdhhihhhhhhkhhkhkiikkh

% Imprime en pantalla
% Fkkkkhhkhhkhkhkhkhhkhkhkhkhkhkhkhhhikhkhkikhkhhkhkhkhkhkhkhkhhhkhhkhkhkikhkhhhhkikiikk

for jj =1 : ( (ne-1)*2 + 2)
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varl = num2str(jj);
var2 = num2str(Wj(i)):
var3 = num2str(fj(JJ)):
vard = num2str(T3J(31)):;
var5 = strcat( varl , "," , var2 , *," , var3, "," , var4d);
g disp(var5)
en

E.3.2 Classical Beam Element with Consistent Mass Matrix

% Fe e e e e e e e e e e e e e e e e e e e de e e e e e e e e dede e e e de Fe e dede e de de de e dede dede Je dede ke ke

% BeamNatFreq.m
% Finite Element Program
% to obtain natural frequencies of a simple beam

% using classical and refined beam elements
% Fkkkkhhkhhikkhkhkhhkhkhkhkhkhkhkhkhhhkhkhkikhkhhkhkhkikhkhkhkhhhkhkhkhkhkkhkhhhhikiikk

% R R R R kT kS

% Clears window, variables, and graphs
% e Je e Fe Yo e Fede Fe e Je e e Jedede Je Fe e Fe e de e e de Je e Je s e dede e e de e e de Fede e e de de de de e dede e de de ke ke

clc;
clear all;
close all;

% Fe e e e e e e e e e e e e e e e e e e e de e e e e e e e e dede e e e de Fe e dede e de de de e e de dede de de de ke ke

% Problem Data

% FhkhkIkhhkhhhkhkhkhhkhkhhkhkhhhkhkhhhkikihhkhkhhhkhhkikhkhhhkhhhkikikhikhkhhkikiiikk

g = 32.2; % [Ft/sec”2] gravity acceleration
% W8x10

A= 2.96; %[in2]

1 = 30.8; %[in4]

L = 20.0; %[ft]

E = 29000.0; %[ksi]

gamma = 0.490; %[kcf]

ne = 6; % number elements

nm = 5; % number of modes

% Fe e Fe e e e e e e e e e e e e e e e e e de e e e e e e e e dede e e e de Fe e dede e de de de e e de dede de de de ke ke

% Parameters computation

% Fkkkkhhkhhikkhkhkhhkhkhkhkhkhkhkhhhikhkhkikhkhhkhkhkhkhkhkhkhhhkhhkhkhkkhkhhhhkikiikk
L =1L *12;

rho = (gammas/1273) / (g*12); %[pct]

Le =L 7/ ne ;

K
M

zeros(2*(ne+l),2*(ne+l));
zeros(2*(ne+l),2*(net+l));

% BEAM ELEMENT STIFFNESS MATRIX

k1l = 4*E*1/Le;
k2 = 6*E*1/Le"2;
k3 = 12*E*1/Le"3;
Ke(1,1) = k3;
Ke(2,1) = k2;
Ke(3.1) = -k3;
Ke(4,1) = k2;
Ke(1.2) = k2;
Ke(2,2) = ki;
Ke(3,2) = -k2;
Ke(4.2) = k1/2;
Ke(1,3) = -k3;
Ke(2,3) = -k2;
Ke(3,3) = k3;
Ke(4,3) = -k2;

Ke(1,4)
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Ke(2,4) = k1/2;
Ke(3,4) = -k2;
Ke(4,4) = ki;

% BEAM ELEMENT MASS MATRIX
MB = rho * A * Le ;

Me(1l,1) = MB / 420 * 156;
Me(2.1) = MB / 420 * 22 * Le;
Me(3,1) = MB / 420 * 54;

Me(4,1) = - MB / 420 * 13 * Le;
Me(1,2) = MB / 420 * 22 * Le;
Me(2.2) = MB / 420 * 4 * Len2;
Me(3.2) = MB / 420 * 13 * Le;
Me(4,2) = - MB /7 420 * 3 * Le~2;
Me(1,3) = MB / 420 * 54;

Me(2,3) = MB 7 420 * 13 * Le;
Me(3.3) = MB / 420 * 156;
Me(4.,3) = - MB /7 420 * 22 * Le;
Me(1,4) = - MB / 420 * 13 * Le;
Me(2.4) = - MB /7 420 * 3 * Le~2;
Me(3,4) = - MB 7 420 * 22 * Le:
Me(4,4) = MB / 420 * 4 * Len2;

% FhkhkIkhhkhhhkhkhkhhkhkhhkikhhhkhkhhhikhhkhkhhkhkhhkhkhkhhhkhhhkikikhikhkhhkikiiikk

% Mass and Stiffness Matrices Assembling
% R X X

for jj =1 : ne

dof(1) = jj*2-1
dof(2) = Jj*2;
dof(3) = Jjj*2+1
dof(4) = jj*2+2;
for kk =1 : 4

for 11 =1 : 4
row = dof(kk);
col = dof(ll);
K(row,col) = K(row,col) + Ke(kk,ID)
M(row,col) M(row,col) + Me(kk,Il)

end
end
end

% Boundary conditions
K

K(1,:)=01

K(:,1)=
K((ne+1)*2-2, :)=[1
K(:, (ne+1)*2-2)=[]
M(1 =0

M(:, =[]

M((ne+1)*2 2,:)=[

M(:, (ne+1)*2-2)=[]

% R R X X
% Exact Beam Natural Frequencies

% AAAXAAAIAAAAXAAAAAAAAXAXAAAAAAAAAAAAAAAkAAAhhhhixhhhhhhhkhkhkikkh

for jj =1
we: X(jj) = (jJAZ)*(piAZ)*sqrt(E*l/(rho*A*LA4));
g disp(wex(31))
en

% R X X X
% Eigenvalues and Eigenvectors

% AAAAXAAIAAAAXAAAAAAAAXAXAAAAAAAAAAAAAAAkAAxAhhdhhhhhhhhhhhkiikih

[phi, lam] = eig(K,M);
wj = sqgrt(diag(lam));

% Fkkkkhhkhhkkhkhkhhkhkhkhkhkhkhkhkhhikhkhkkhkhkhkhkhhkhkhkhkhhhkhhkhkhkkhkhhhhikiikk
% Ordena los autovalores y autovectores
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E.3.3

% Calcula los periodos naturales

% Fkkkkhhkhhkkhkhkhhkhkhkhkhkhkhkhkhhhkhkhkikhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkkhkhhhhhkiikk
[wj, id]=sort(wj);

phi=phi(z,id);

Tj = 2*pi./wj;

) = 1./7);

% Fkkkkhhkhhikkhkhkhhkhkhkhkhkhkhkhhhikhkhkikhkhhkhkhkhkhkhkhkhhhhkhkhkhkkhkhhhhikiihkk

% Imprime en pantalla
% R R X X X

for jj =1 : ( (ne-1)*2 + 2)
varl = num2str(jj);
var2 = num2str(wi(i)):;
var3 = num2str(fj(3J1)):
var4d = num2str(T3(J3)):
var5 = strcat( varl , *," , var2 , *," , var3, "," , var4d);
J disp(var5)
en

Refined Beam Element with Consistent Mass Matrix

% FhkhkIkhhkhhhkhkhkhhkhkhhkikhhhkhkhhhkikhhkhkhhhkhhikhkhhhkhhhikikhikrkhhkikiiikk

% DeschapellesBeamNatFreq.m
% Finite Element Program
% to obtain natural frequencies of a simple beam

% using a refined beam elements
% R X X

% Fe e e e e e e e de e e e e e e e e e e e e e e e e e e e e dede e e e de e dedede e de de de e e de dede de dede ke ke

% Clears window, variables, and graphs
% Fkkkkhhkhhkkhkhkhhkhkhkhkhkhkhkhkhhhkhkhkikhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkkhkhhhhkikiikk

clc;
clear all;
close all;

% FhkhkIkhhkhhhkhkhkhhkhhhkikhhhkhkhhhkikhhkhkhhhkhhkhkhkhhhkhhhkikikhikrkhhkikiiikk

% Problem Data

% R 2k R R R R Rk R R R T kS

g = 32.2; % [Ft/sec"2] gravity acceleration
% W8x10

A= 2.96; %[in2]

1 = 30.8; %[in4]

L = 20.0; %[Ft]

E = 29000.0; %[ksi]

gamma = 0.490; %[kcf]

ne = 6; % number elements

nm = 5; % number of modes

% FhkhkIkhhkhhhkhkhhhkhkhhkikhhhkhkhhhkikhhkhkhhhkhhkhkhkhhhkhhhikikhikhkhhkikiiikk

% Parameters computation

% R X
L=L*12;

rho = (gamma/1273) / (g*12); %[pcf]

Le =L 7/ ne ;

K
M

zeros(3*ne+2,3*ne+2);
zeros(3*ne+2,3*ne+2);

% BEAM ELEMENT STIFFNESS MATRIX

kl = 3*64*E*1/Le"3;
k2 = 3*120*E*1/Le"3;
k3 = 3*56*E*1/Le"3;
k4 = 3*12*E*1/Le"2;
k5 = 3*8*E*1/Le"2;
k6 = 3*20*E*1/Le"2;
k7 = 3*3*E*1/Le;
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k8 = 3*E*1/Le;

Ke(1,1) = ki;
Ke(2,1) = k4;
Ke(3,1) = -k2;
Ke(4,1) = k3;
Ke(5,1) = -k5;
Ke(1,2) = k4;
Ke(2,2) = k7;
Ke(3,2) = -k6;
Ke(4,2) = k5;
Ke(5,2) = -k8;
Ke(1,3) = -k2;
Ke(2,3) = -k6;
Ke(3,3) = 2*k2;
Ke(4,3) = -k2;
Ke(5,3) = k6;
Ke(1,4) = k3;
Ke(2,4) = k5;
Ke(3,4) = -k2;
Ke(4,4) = ki;
Ke(5,4) = -k4;
Ke(1,5) = -k5;
Ke(2,5) = -k8;
Ke(3,5) = k6;
Ke(4,5) = -k4;
Ke(5,5) = k7;

% BEAM ELEMENT MASS MATRIX
MB = rho * A * Le ;

Me(1,1) = MB / 1260 * 288;
Me(2.1) = MB 7/ 1260 * 21 * Le;
Me(3.1) = - MB /7 1260 * 270;
Me(4,1) = - MB / 1260 * 18;
Me(5.1) = MB 7/ 1260 * 6 * Le;
Me(1,2) = MB / 1260 * 21 * Le;
Me(2.2) = MB 7/ 1260 * 2 * Len2;
Me(3.2) = - MB /7 1260 * 15 * Le;
Me(4.2) = - MB 7 1260 * 6 * Le;
Me(5.2) = MB / 1260 * Le~2;
Me(1,3) = - MB /7 1260 * 270;
Me(2.3) = - MB 7 1260 * 15 * Le;
Me(3.3) = MB / 1260 * 1800;
Me(4.3) = - MB 7 1260 * 270;

Me(5,3) = MB /7 1260 * 15 * Le;

Me(1,4) = - MB / 1260 * 18;
Me(2,4) = - MB 7 1260 * 6 * Le:
Me(3.4) = - MB / 1260 * 270;
Me(4.,4) = MB / 1260 * 288;
Me(5,4) = - MB 7 1260 * 21 * Le;
Me(1,5) = MB / 1260 * 6 * Le;
Me(2,5) = MB / 1260 * Le~2;
Me(3.5) = MB / 1260 * 15 * Le;
Me(4.5) = - MB /7 1260 * 21 * Le;
Me(5,5) = MB / 1260 * 2 * Le2:

% FhkhkIkhhkhhhkhkhkhhkhkhhkikhhhkhkhhhikhhkhkhhhkhhkikhkhhhkhhhkikikhikhkhhkikiiikk

% Mass and Stiffness Matrices Assembling
% R X X X

for jj =1 : ne

dof(1l) = jj*3-2;
dof(2) = jj*3-1;
dof(3) = ji*3:

dof(4) = Jj*3+1;

dof(5) = Jj*3+2
for kk =1 :5
for I =1 :5
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row = dof(kk);
col = dof(ll);
K(row,col) = K(row,col) + Ke(kk,I11);
M(row,col) M(row,col) + Me(kk,Il);

end
end
end

% Boundary conditions

K

K(1,:)=0
K(:,1)=[]
K(3*ne, :)=[1
K(:z,3*ne)=L]

M(3*ne,5§=[]
M(: ,3*ne)=[]

% FhkhhkIkhhkhhhkhkhkhhkhkhhkikhhhkhkhhhkikhhkhkhhhkhhkhkhkhhhkhhhkikikhikhkhhkikiiikk

% Exact Beam Natural Frequencies
% R R X X

for jJ =1 : nm
wex(33) = i*2)*(Pin2)*sqrt(E*1/(rho*A*L™M));
g disp(wex(d1))
en

% FhkhkIkhhkhhhkhkhkhhkhkhhkikhhhkhkhhhikhhkhkhhkhkhhkikhkhhhkhhhkikikhikrkhhkikiiikk

% Eigenvalues and Eigenvectors
% R X X

[phi, lam] = eig(K,M);
wj = sqgrt(diag(lam));

% AAAAAAIAAAAXAAAAAAAAXAXAAAAIAAAAAAAAAAAkAAxAhhdhhixhhhhhhhkhkikikkh

% Ordena los autovalores y autovectores

% Calcula los periodos naturales

% AAAXAAAIAAAAAAAAAAAAXAXAAAAAAAAAAAAAAAkAAxAhhhhhhhhhhkhhkhkikikkh
[wj, id]=sort(wj);

phi=phi(z,id);

Tj = 2*pi./wj;

) = 1./Tj;

% AAAXAAAEAAAAXAAAAAAAAXAXAAAAAAAAAAAAAAAkAAxAAhdhhixhhhhhkhhkhkikikkh

% Imprime en pantalla
% Fkkkkhhkhkhkikhhkhhhkhkhkhkhkhkhkhhikhkhkikhkhhkhkhhkhkhkhkhhhkhkhkhkhkikhkhhhhikikikk

for jj =1 : ( 3*ne )
varl = num2str(jj);
var2 = num2str(wj(j)):
var3 = num2str(fj(JJ)):
vard = num2str(T3J(131)):;
var5 = strcat( varl , *," , var2 , *," , var3, "," , var4d);
disp(varb)

end
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F Programs for Approximate Model Verification

The Matlab programs (worksheets) developed to compute the frequency response
function (FRF) or dynamic flexibility and the dynamic stiffness of the pile head, used to
obtain the results of in Chapter 5, are listed in this appendix. The MathCad worksheets
prepared to compare the approximate model to other models are also presented.

F.1 FRF Using Novak Plane Strain Soil Dynamic Stiffness

Programa FRFNovak.m
Program to compute the dynamic flexibility of a pile head %

%

% using the dynamic stiffness proposed by Novak for the soil, who considers %
% the soil in plain-strain and the pile as a rigid circle of radious %
% ro embeded in an infinite medium. %
% Novak, Nogami and Aboul-Ella %
%————— —-— - - - - ——— e %

clc; clear all; close all

% R 2 kR S

% * PROBLEM DATA *

% FhAxXxAAxFxIxIxIAIAAAAAAAhAhkhkhkdhhhhhhihhkhkhkhkhhkikk

% SOIL DATA

Es = 1728000; % soil Young"s elastic mudulus[lb/ft"2]
nu = 0.40; % soil Poisson®s ratio

D=0.0; % hysteretic damping ratio

sw = 110.0; % soil specific weight [pcf]

% PILE DATA

ro = 1.0; % pile radious

L = 30.0; % pile length

Ep = 518400000.0; % pile Youngs" modulus

pw = 150.0; % pile specific weight

% GENERAL DATA

ne = 15; % number of elements to discretize the
pile

g = 32.2; % gravity acceleration [ft/sec”2]
FregMax = 80; % maximum frequency [Hz]

NFreq = 240; % Number of frequency steps

% Fehk Ak dhhhxxhdxhhhxikhihkhhhhikhkikikikhhhkikii

% * PROBLEM ANALYSIS *

% Fe e de e e e e e doe e e e e dedede de de e e e de e de de de e e de e dedede Ko ke ke

% GENERAL COMPUTATION

sm = sw/qQ; % density of soil [Ib.s"2/ft™M]

G = Es/(2*(1+nu)); % soil shear elastic mudulus[lb/ft]
Vs = sqrt(G/sm); % shear wave velocity [ft/sec]

eta = sqre(2*(1-nu)/(1-2*nu)); % Novak Dynamic Stiffness parameter
Le = L/ne; % pile element length

pm = pw/g; % density of pile [Ib.s"2/ft™4]

% ARRAYS DEFINITION
%

% The KDP, UP and FRFP variables refer to
% considering soil contribution (Just the
%

KD = zeros(2*ne,2*ne); %
KDP = zeros(2*ne,2*ne); %

the system reponse without
pile contribution).

System dynamic stiffness matrix
Pile dynamic stiffness matrix



P
w
miunn

UP =

FRFM
FRFP
freq

zeros(2*ne,2*ne);
zeros(2*ne,2*ne);
zeros(2*ne,2*ne);
zeros(4,4);
zeros(2*ne);
zeros(2*ne);
zeros(2*ne);
= zeros(NFreg+1);
zeros(NFreg+1);
zeros(NFreq+1);
zeros(NFreg+1);

% UNIT
FQD) =

% PILE

LOAD ON TOP
1.0;

ELEMENT STIFFNESS MATRIX

Ip =
Ap =

pi*rona/4._;
pi*ron2;

4*Ep*Ip/Le;

6*Ep*Ip/Le2;
12*Ep*1p/Le"3;

1
Ke(1,2
Ke(2,2
Ke(3,2
Ke(4,2

Ke(1,3)
Ke(2,3)
Ke(3,3)
Ke(4,3)

Ke(1,4)
Ke(2.4)
Ke(3.4)
Ke(4,4)

% PILE

for jj

k3;
k2;
-k3;
k2;

k2;
ki;
-k2;
k1/2;

-k3;
-k2;
k3;

-k2;

k2;
k1/2;
-k2;
ki;

STIFFNESS MATRIX
=1 : ne-1
1i*2-1;

Q
Q
=
™\
N
/'
mian

11*2;
JI*2+1;
dof(4) = Jj*2+2:

EESEERNEXRERSE

ES

R
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System mass matrix

Pile Stiffness matrix

Soil Dynamic Stiffness Matrix
Pile element stiffness matrix
Load vector

System Displacement vector
Pile Displacement vector

FRF = top node displacement
FRF Module top node displacement
FRF Pile top node displacement
Frequency data points

Unit harminic load on top of pile

Pile crossm sectiuon inertia
Pile cross section area

for

end
end

dof(1)

dof(2)

for Kkk
for

end
end

% PILE
MT(1,1)
for jj

kk =1 : 4
for 11 =1 : 4

row = dof(kk);

col = dof(ll);

KP(row,col) = KP(row,col) + Ke(kk,Il);
end

ne*2-1;
ne*2;
1:2
m=1:2
row = dof(kk);
col = dof(ll);
KP(row,col) = KP(row,col) + Ke(kk,Il);

MASS MATRIX
= pm*Ap*Le/2;
=2 : ne

MT(2*))-1,2*jj-1) = pm*Ap*Le;

end

% FRF F
ao = 0.

UNCTION
3;
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aoc = 1*ao/sqrt(1+i*D);

boc = aoc/eta;

numer = 4*
besselk(1,boc)*besselk(1,aoc)+aoc*besselk(l,boc)*besselk(0,aoc)+boc*besselk(0,boc)*
besselk(1,aoc);

denom=
boc*besselk(0,boc)*besselk(1l,aoc)+aoc*besselk(l,boc)*besselk(0,aoc)+boc*aoc*besselk
(0,boc)*besselk(0,aoc);

S03 =-pi*G*ao”2*numer/denom;

for jj = 1 : NFreg+l
freq(Jj) = FregMax*(§j-1)/NFreq;

% SOIL DYNAMIC STIFFNESS
w=Freq(jJj)*2*pi;
ao = w*ro/Vs;
aoc = i*ao/sqrt(1+i*D);
boc = aoc/eta;
numer = 4*
besselk(1,boc)*besselk(1,aoc)+aoc*besselk(1,boc)*besselk(0,aoc)+boc*besselk(0,boc)*
besselk(1,aoc);
denom=
boc*besselk(0,boc)*besselk(1,aoc)+aoc*besselk(1,boc)*besselk(0,aoc)+boc*aoc*besselk
(0,boc)*besselk(0,aoc);
S =-pi*G*ao”2*numer/denom;
if a0 < 0.3
S = 1*imag(S) + real(S03);
end
KS(1,1) = S*Le/2;
for kk = 2 : ne
KS(2*kk-1,2*kk-1) = S*Le;
end

% SYSTEM DYNAMIC STIFFNESS
KD = KP + KS - w2 * MT;
KDP = KP - wA2 * MT;

% FREQUENCY RESPONSE FUNCTION FRF

U = KD\F;

FRFM(JJ) = sqrt(real(U(1))2+imag(U(1))™2);
FRF(J) = U(D);

UP = KDP\F;
FRFP(jj) = sqrt(real (UP(1))2+imag(UP(1))™2);

end

figure; plot( freq,FRFM ); grid on; title("Pile FRF Using Novak Dynamic Stiffnes")
xlabel ("load frequency [Hz]"); ylabel("Module of the Dynamic Flexibility or FRF®);

figure; plot( freq,FRFM, freq, FRFP ); grid on; title("Pile FRF Using Novak Dynamic
Stiffnes™)
xlabel ("load frequency [Hz]"); ylabel("Module of the Dynamic Flexibility or FRF");



F.2 FRF Using Lumped Soil Dynamic Stiffness

%
%
%
%

Programa FRFLumpedModel .m--
Program to compute the dynamic flexibility of a pile head

using the equivalent lumped model obtained by regression of the
dynamic stiffness proposed by Novak for the soil, who considers
the soil in plain-strain and the pile as a rigid circle of radious

%
%

ro embeded in an infinite medium.
Novak, Nogaml and AbouI—EIIa

ERRRIKBER

clc; clear aII' close aII

% R 2 kR kR

% * PROBLEM DATA *

% Fe e e e e e e e de e e e e dedede de de de e e de e de de do e e de e e dede Ko e ke

% SOIL DATA

Es = 1728000;

= 0.40;
D=0.0;

= 110.0;
% PILE DATA
ro = 1.0;
L = 30.0;
Ep = 518400000.0;
pw = 150.0;
% GENERAL DATA

= 15;
pile
g = 32.2;
FreqMax = 200;
NFreq = 400;
% Lumped model coefficients
ak = 1.3272671;
am = 0.0510557;
ac = 3.4246489;

% FhkhkIkhhkhhhkhkhhkhkhkhhkikhhkhkhkhhhkhkhhkhkhhkhkhiiik

% * PROBLEM ANALYSIS *

% R 2 Rk R T

% GENERAL COMPUTATION

sm = sw/g; %
G = Es/(2*(1+nu)): %
Vs = sqrt(G/sm); %
eta = sqre(2*(1-nu)/(1-2*nu)); %
Le = L/ne; %
pm = pw/g; %

% ARRAYS DEFINITION

%

% The KDP, UP and FRFP variables refer to
% considering soil contribution (Just the
%

KD = zeros(2*ne,2*ne); %
KDP = zeros(2*ne,2*ne); %
KP = zeros(2*ne,2*ne); %
KS = zeros(2*ne,2*ne); %
Ke = zeros(4,4): %
MP = zeros(2*ne,2*ne); %
MS = zeros(2*ne.2*ne); %
MT = zeros(2*ne,2*ne); %
CS = zeros(2*ne,2*ne); %
F = zeros(2*ne); %
U = zeros(2*ne); %
UP = zeros(2*ne); %

%
%
%
%

%
%
%
%

%

soil Young®s elastic mudulus[lb/fe 2]
soil Poisson"s ratio

hysteretic damping ratio

soil specific weight [pcf]

pile radious

pile length

pile Youngs® modulus
pile specific weight

number of elements to discretize the

% gravity acceleration [ft/sec/”2]

% maximum frequency [Hz]

% Number of frequency steps

density of soil [Ib.s"2/ft™M]
soil shear elastic mudulus[lb/ft]
shear wave velocity [ft/sec]
Novak Dynamic Stiffness parameter
pile element length

density of pile [Ib.s"2/ftM]

the system reponse without
pile contribution).

System dynamic stiffness matrix
Pile dynamic stiffness matrix

Pile

Soil
Pile

Stiffness matrix
Dynamic Stiffness Matrix
element stiffness matrix

Pile mass matrix
Soil mass matrix
System mass matrix
Soil damping matrix
Load vector

System Displacement vector
Pile Displacement vector

270



FRF = z
FRFM
FRFP
freq

% UNIT
FD =

% PILE

eros(NFreqg+1);

zeros(NFreg+1);
zeros(NFreq+1);
zeros(NFreg+1);

LOAD ON TOP
1000.0;

EXRR

SR
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FRF = top node displacement

FRF Module top node displacement
FRF Pile top node displacement
Frequency data points

Unit harminic load on top of pile
to obtain dynamic flexibility in
[fFt/Kip] units

ELEMENT STIFFNESS MATRIX

Ip = pi*ro™4/4.;
Ap = pi*ron2;

k1l

4*Ep*Ip/Le;
k2 = 6*Ep*lIp/Le”2;
k3 = 12*Ep*Ip/Le"3;

Ke(1,1) k3;

% Pille crossm sectiuon inertia
% Pile cross section area

Ke(2,1)
Ke(3,1)
Ke(4,1)

Ke(1,2)

k2;
-k3;
k2;

k2;

Ke(2.2)
Ke(3.2)
Ke(4.2)

Ke(1,3)
Ke(2.3)
Ke(3.3)
Ke(4,3)

Ke(1,4)
Ke(2,4)
Ke(3,4)
Ke(4,4)

i n
1
x~
N

i mn
|
ry
N

% PILE STIFFNESS MATRIX

for jj =1 :
dof(1)

ne-1
ii*2-1;

dof(2)
dof(3)
dof(4)
for kk = 1 :
for 11 =1 : 4

row = dof(kk);

col = dof(ll);

KP(row,col) = KP(row,col) + Ke(kk,Il);

i nmnn
*
N
+
=Y

end
end
end

dof(1)
dof(2)
for kk

for 11

end
end

ne*2-1;

ne*2;

1:2

=1:2

row = dof(kk);

col = dof(ll);

KP(row,col) = KP(row,col) + Ke(kk,Il);

% PILE MASS MATRIX
MP(1,1) = pm*Ap*Le/2;
for jj =2 : ne

MP(2*JJ-1,2*jj-1)
end

pm*Ap*Le;

% SOIL STIFFNESS MATRIX, MASS MATRIX, AND DAMPING MATRIX

KS(1,1) = pi*G*ak*Le/2;

MS(1,1) = pi*ro~2*sm*am*Le/2;
CS(1,1) = pi*ro*G/Vs*ac*Le/2;
for jj =2 : ne

KS(2*jj-1,2*jj-1)

pi*G*ak*Le;

MS(2*jj3-1,2*)3-1) = pi*ro~2*sm*am*Le;
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g CS(2*jj-1,2*jj-1) = pi*ro*G/Vs*ac*Le;
en

MT = MP + MS;
% FRF FUNCTION
for jj = 1 : NFreg+l

freq(Jj) = FregMax*(§jj-1)/NFreq;
w=Freq(Jj)*2*pi;

% SYSTEM DYNAMIC STIFFNESS
KD=KP + KS + I *w*CS - w2 * MT;
KDP = KP - wA2 * MP;

% FREQQENCY RESPONSE FUNCTION FRF

U = KD\F;

FREM(JJ) = sqrt(real (U(1))2+imag(U(1))™2);
FRF(J) = U(D:

UP = KDP\F;
FRFP(Jj) = sqrt(real (UP(1))2+imag(UP(1))"2);

end

figure; plot( freq,FRFM ); grid on; title("Pile FRF Using Novak Dynamic Stiffnes")
xlabel ("load frequency [Hz]"); ylabel("Module of the Dynamic Flexibility or FRF
[ft/Kip]™):

fig:;e; p;ot( freq,FRFM, freq, FRFP ); grid on; title("Pile FRF Using Novak Dynamic
Stiffnes”

xlabel ("load frequency [Hz]"); ylabel(*Module of the Dynamic Flexibility or FRF
[ft/Kip]™):

figure; plot( freq, FRFP ); grid on; title("Pile FRF without Soil Contribution®)

xlabel ("load frequency [Hz]"); ylabel("Module of the Dynamic Flexibility or FRF
[ft/Kipl™):

FRF Comparing Novak and Lumped Models

Yp————m Programa FRFNovakLumped.m-- -——— ——————————— %
% Program to compute the dynamic flexibility of a pile head %
% using the dynamic stiffness proposed by Novak for the soil, and %
% using the equivalent lumped model obtained by regression of the %
% dynamic stiffness proposed by Novak for the soil, who considers %
% the soil in plain-strain and the pile as a rigid circle of radious %
% ro embeded in an infinite medium. %
% Novak, Nogami and Aboul-Ella %
Yp————— - - -— - - -——- ———— %
clc; clear all; close all

% KEEAXEAIEEAERXETAAIAEIREIRXAIAAAAAITIATAAAAAAEX

% * PROBLEM DATA *

% Fe Je e Fe Yo e Fe de Fe e Je e e e dede e Fe e de e e e e de de de de e e dede de Jede ke

% SOIL DATA

Es = 1728000; % soil Young®s elastic mudulus[lb/fe 2]
nu = 0.40; % soil Poisson"s ratio

D=0.0; % hysteretic damping ratio

sw = 110.0; % soil specific weight [pcf]

% PILE DATA

ro = 1.0; % pile radious

L = 30.0; % pile length

Ep = 518400000.0; % pile Youngs®™ modulus

pw = 150.0; % pile specific weight

% GENERAL DATA



ne = 15;

pile

g =32.2;

FregMax = 200;

NFreq = 400;

% Lumped model coefficients
ak = 1.3272671;

am = 0.0510557;

ac = 3.4246489;

% FAhAxXAAIIxIAAIAAXAAAAAAAhkhkhhhhhxhhhkhkhhkhhkikk

% * PROBLEM ANALYSIS *

% FhkhkIkhhkhhhkhkhhhkhhhkhkhhkhkhkhhhkhkhhkhkrhkhhiik

% GENERAL COMPUTATION

sm = sw/qQ; %
G = Es/(2*(1+nu)); %
Vs = sqrt(G/sm); %
eta = sqre(2*(1-nu)/(1-2*nu)); %
Le = L/ne; %
pm = pw/g; %

% ARRAYS DEFINITION
%

% The KDP, UP and FRFP variables refer to
% considering soil contribution (Just the

KDN = zeros(2*ne,2*ne); %

KDL = zeros(2*ne,2*ne); %

KDP = zeros(2*ne,2*ne); %

KP = zeros(2*ne,2*ne); %

KS = zeros(2*ne,2*ne); %

KSL = zeros(2*ne,2*ne); %

Ke = zeros(4,4); %

MP = zeros(2*ne,2*ne); %

MS = zeros(2*ne,2*ne); %

MT = zeros(2*ne,2*ne); %

CS = zeros(2*ne,2*ne); %

F = zeros(2*ne); %

U = zeros(2*ne); %

UL = zeros(2*ne); %

UP = zeros(2*ne); %

FRF = zeros(NFreq+1l); %

FRFM = zeros(NFreg+1); %

FRFP = zeros(NFreq+1l); %

FRFL = zeros(NFreq+1); %

freq = zeros(NFreg+1); %

% UNIT LOAD ON TOP

F(1) = 1000.0; %
%
%

% PILE ELEMENT STIFFNESS MATRIX

Ip = pi*ro™M/4.; %

Ap = pi*ron2; %

k1 = 4*Ep*lIp/Le;

k2 = 6*Ep*Ip/Le/2;

k3 = 12*Ep*lp/Le"3;

Ke(1,1) = k3;

Ke(2,1) = k2;

Ke(3,1) = -k3;

Ke(4,1) = k2;

Ke(1,2) = k2;

Ke(2,2) = ki;

Ke(3,2) = -k2;

Ke(4,2) = k1/2;
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% number of elements to discretize the

% gravity acceleration [ft/sec”2]
% maximum frequency [Hz]
% Number of frequency steps

density of soil [lIb.s"2/ft™M]
soil shear elastic mudulus[lb/ft]
shear wave velocity [ft/sec]
Novak Dynamic Stiffness parameter
pile element length

density of pile [Ib.s"2/7ft™M]

the system reponse without
pile contribution).

Novak System dynamic stiffness matrix
Lumped System dynamic stiffness matrix
Pile dynamic stiffness matrix

Pile Stiffness matrix

Soil Dynamic Stiffness Matrix

Lumped Soil Dynamic Stiffness Matrix
Pile element stiffness matrix

Pile mass matrix
Lumped Soil mass matrix
System mass matrix

Lumped Soil damping matrix
Load vector

System Displacement vector
Lumped Model Displacement vector
Pile Displacement vector

FRF = top node displacement

FRF Module top node displacement

FRF Pile top node displacement

Lumped FRF module top node displacement
Frequency data points

Unit harminic load on top of pile
to obtain dynamic flexibility iIn
[Ft/Kip] units

Pile crossm sectiuon inertia
Pile cross section area
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Ke(1,3) = -k3;
Ke(2,3) = -k2;
Ke(3,3) = k3;
Ke(4,3) = -k2;
Ke(1,4) = k2;
Ke(2,4) = k1/2;
Ke(3,4) = -k2;
Ke(4,4) = ki;

% PILE STIFFNESS MATRIX
for jj =1 : ne-1
dof(1) = jj*2-1;
dof(2) = jj*2;
dof(3) = jj*2+1;
dof(4) = Jj*2+2;
for kk =1 : 4
for 11 =1 : 4
row = dof(kk);
col = dof(ll);
KP(row,col) = KP(row,col) + Ke(kk,Il);

end
end
end
dof(1l) = ne*2-1;
dof(2) = ne*2;
for kk =1 : 2
for Il =1 : 2
row = dof(kk);
col = dof(ll);
g KP(row,col) = KP(row,col) + Ke(kk,Il);
en
end

% PILE MASS MATRIX
MP(1,1) = pm*Ap*Le/2;
for jj =2 : ne
g MP(2*)j-1,2*jj-1) = pm*Ap*Le;
en

% LUMPED SOIL STIFFNESS MATRIX, MASS MATRIX, AND DAMPING MATRIX
KSL(1,1) = pi*G*ak*Le/2:

MS(1,1) = pi*ro”™2*sm*am*Le/2;
CS(1,1) = pi*ro*G/Vs*ac*Le/2;
for jj = 2

: ne
KSL(2*jj-1,2*jj-1) = pi*G*ak*Le;
MS(2*)J-1,2*jj-1) = pi*ro”~2*sm*am*Le;
CS(2*jj-1,2*)J-1) = pi*ro*G/Vs*ac*Le;

end

MT = MP + MS;

% FRF FUNCTION

ao = 0.3;

aoc = i*ao/sqrt(1+i*D);

boc = aoc/eta;

numer = 4*
besselk(1,boc)*besselk(1,aoc)+aoc*besselk(1,boc)*besselk(0,aoc)+boc*besselk(0,boc)*
besselk(1,aoc);

denom=
boc*besselk(0,boc)*besselk(1,aoc)+aoc*besselk(1,boc)*besselk(0,aoc)+boc*aoc*besselk
(0,boc)*besselk(0,aoc);

S03 =-pi*G*ao”2*numer/denom;

for jj = 1 : NFreg+l
freq(jj) = FregMax*(§jj-1)/NFreq;

% SOIL DYNAMIC STIFFNESS

w=Freq(Jj)*2*pi;

ao = w*ro/Vs;

aoc = i*ao/sqrt(1+i*D);

boc = aoc/eta;

numer = 4*
besselk(1,boc)*besselk(1,aoc)+aoc*besselk(1,boc)*besselk(0,aoc)+boc*besselk(0,boc)*
besselk(1,aoc);
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denom=
boc*besselk(0,boc)*besselk(1,aoc)+aoc*besselk(l,boc)*besselk(0,aoc)+boc*aoc*besselk
(0,boc)*besselk(0,aoc);
=—pi*G*ao”2*numer/denom;
if a0 < 0.3
S = i*imag(S) + real(S03);
end
KS(1,1) = S*Le/2;
for kk = 2 : ne
KS(2*kk-1,2*kk-1) = S*Le;
end

% SYSTEM DYNAMIC STIFFNESS
KD = KP + KS - w2 * MP;
KDP = KP - w2 * MP;

KDL = KP + KSL + T * w * CS - w2 * MT;

% FREQUENCY RESPONSE FUNCTION FRF

U = KD\F;

FRFM(JJ) = sqrt(real(U(1))M2+imag(U(1))™2);
FRF(J) = U(D);

UP = KDP\F;
FRFP(jj) = sqrt(real (UP(1))2+imag(UP(1))"2);
UL = KDL\F;

FRFL(J) = sqrt(real (UL(1))2+imag(UL(1))™2);
end

figure; plot( freq,FRFM, freq, FRFL ); grid on; title("Pile FRF Using Lumped Model

and Novak Dynamic Stiffnes®)

f;%gel(ilgad frequency [Hz]"); ylabel("Module of the Dynamic Flexibility or FRF
Kip]l™):;

FRF Comparing Novak and Lumped Models for Different v

Yp————————————— Programa FRFNovakLumpedVariousnu.m—-—————————————————————
% Program to compute the dynamic flexibility of a pile head

% using the dynamic stiffness proposed by Novak for the soil, and

% using the equivalent lumped model obtained by regression of the

% dynamic stiffness proposed by Novak for the soil, who considers

% the soil in plain-strain and the pile as a rigid circle of radious

% ro embeded in an infinite medium.
% Novak, Nogami and Aboul-Ella
%————— _ —_— —_—

clc; clear all; close all

ERRRIBERR

% R 2 kR

% * PROBLEM DATA *

% Fe e e e e e e e de e e e e dedede Ko de e e e de e de de de e de e e e dede e e ke

% SOIL DATA
Es = 1728000; % soil Young®s elastic mudulus[lb/fe 2]

nu = [0.499999, 0.48, 0.46, 0.44, 0.42, 0.40, 0.38, 0.36, 0.34, 0.32, 0.30, 0.28,
0.26, 0.24, 0.22, 0.20];
% soil Poisson®s ratio

D=0.0; % hysteretic damping ratio
sw = 110.0; % soil specific weight [pcf]
% PILE DATA

ro = 1.0; % pile radious

L = 30.0; % pile length

Ep = 518400000.0; % pile Youngs" modulus

pw = 150.0; % pile specific weight

% GENERAL DATA



ne = 15; % number of elements to discretize the
pile

g = 32.2; % gravity acceleration [ft/sec”2]
FregMax = 200; % maximum frequency [Hz]

NFreq = 400; % Number of frequency steps

% Lumped model coefficients

ak = [1.7213669, 1.4632669, 1.3691849, 1.3459197, 1.3354993, 1.3272671];
ak(7) = 1.3193269;

ak(8) = 1.3115302;

ak(9) = 1.3041138;

ak(10) = 1.2974948;

ak(1l) = 1.3068585;

ak(12) = 1.3088585;

ak(13) = 1.3076619;

ak(14) = 1.304348;

ak(15) = 1.2996384;

ak(16) = 1.2940234;

am = [0.9653314, 0.4571463, 0.2348233, 0.1355508, 0.0825761, 0.0510557];
am(7) = 0.0310366;

am(8) = 0.0178041;

am(9) = 0.0088633;

am(10) = 0.0028022;

am(11) = 0.0;

am(12) = 0.0;

am(13) = 0.0;

am(14) = 0.0;

am(15) = 0.0;

am(16) = 0.0;

ac = [4.1074708, 4.3382529, 4.066384, 3.8045412, 3.5929876, 3.4246489];
ac(7) = 3.2890761;

ac(8) = 3.1780333;

ac(9) = 3.0855721;

ac(10) = 3.0074355;

ac(1l) = 2.9405413;

ac(12) = 2.8826198;

ac(13) = 2.8319687;

ac(14) = 2.7872894;

ac(15) = 2.7475747;

ac(16) = 2.7120324;

% Fkkkdkhhhhkikhkhkhhhkhkhkhkhkhkhhhhkhkhkikhkhkhhhikiik
% * PROBLEM ANALYSIS *

% R 2 kT

% GENERAL COMPUTATION

sm = sw/g; % density of soil [Ib.s"2/ft™4]
Le = L/ne; % pile element length
pm = pw/g; % density of pile [Ib.s"2/ft™4]

% ARRAYS DEFINITION
%

% The KDP, UP and FRFP variables refer to the system reponse without
% considering soil contribution (Jjust the pile contribution).
%

= zeros(2*ne); Load vector

System Displacement vector
Lumped Model Displacement vector
Pile Displacement vector

KDN = zeros(2*ne,2*ne); % Novak System dynamic stiffness matrix
KDL = zeros(2*ne,2*ne); % Lumped System dynamic stiffness matrix
KDP = zeros(2*ne,2*ne); % Pile dynamic stiffness matrix
KP = zeros(2*ne,2*ne); % Pile Stiffness matrix
KS = zeros(2*ne,2*ne); % Soil Dynamic Stiffness Matrix
KSL = zeros(2*ne,2*ne); % Lumped Soil Dynamic Stiffness Matrix
Ke = zeros(4,4); % Pile element stiffness matrix
MP = zeros(2*ne,2*ne); % Pile mass matrix
MS = zeros(2*ne,2*ne); % Lumped Soil mass matrix
MT = zeros(2*ne,2*ne); % System mass matrix
CS = zeros(2*ne,2*ne); % Lumped Soil damping matrix
%
%
%
%

F

U = zeros(2*ne);
UL = zeros(2*ne);
UP = zeros(2*ne);
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FRF = zeros(NFreq+1l); % FRF = top node displacement

FRFM = zeros(NFreq+1); % FRF Module top node displacement

FRFP = zeros(NFreg+1); % FRF Pile top node displacement

FRFL = zeros(NFreq+1); % Lumped FRF module top node displacement

freq = zeros(NFreg+1); % Frequency data points

% UNIT LOAD ON TOP

F(1) = 1000.0; % Unit harminic load on top of pile
% to obtain dynamic flexibility in
% [Ft/Kip] units

% PILE ELEMENT STIFFNESS MATRIX

Ip = pi*ro™4/4.; % Pile crossm sectiuon inertia

Ap = pi*ron2; % Pile cross section area

k1l = 4*Ep*lIp/Le;

k2 = 6*Ep*lIp/Le”2;

k3 = 12*Ep*1p/Le”"3;

Ke(1,1) = k3;

Ke(2,1) = k2;

Ke(3,1) = -k3;

Ke(4,1) = k2;

Ke(1,2) = k2;

Ke(2,2) = ki1;

Ke(3,2) = -k2;

Ke(4,2) = k1/2;

Ke(1,3) = -k3;

Ke(2,3) = -k2;

Ke(3,3) = k3;

Ke(4,3) = -k2;

Ke(1,4) = k2;

Ke(2,4) = k1/2;

Ke(3,4) = -k2;

Ke(4,4) = ki;

% PILE STIFFNESS MATRIX
for jj =1 - ne-1

dof(1) = jj*2-1;
dof(2) = jJj*2;
dof(3) = Jjj*2+1
dof(4) = jj*2+2;
for kk = 1 :

for 11 =1 : 4
row = dof(kk);
col = dof(ll);

KP(row,col) = KP(row,col) + Ke(kk,Il);

end
end
end

dof(1)
dof(2)

ne*2-1;
ne*2;

for kk 1:

2

for Il =1 : 2
row = dof(kk);
col = dof(ll);
g KP(row,col) = KP(row,col) + Ke(kk,Il);
en
end

% PILE MASS MATRIX

MP(1,1) = pm*Ap*Le/2;

for jj =2 : ne
MP(2*jj-1,2*jj-1) = pm*Ap*Le;

end

for i1 =1 : 10

% GENERAL COMPUTATIONS

eta = sqre(2*(1-nu(ii))/(A-2*nu(ii)));
G = Es/*(1+nu(ii))):

Vs = sqrt(G/sm);

% Novak Dynamic Stiffness parameter
% soil shear elastic mudulus[lb/ft]
% shear wave velocity [ft/sec]
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% LUMPED SOIL STIFFNESS MATRIX, MASS MATRIX, AND DAMPING MATRIX
KSL(1,1) = pi*G*ak(ii)*Le/2;
MS(1,1) pi*ro~2*sm*am(ii)*Le/2;
CS(1,1) pi*ro*G/Vs*ac(ii)*Le/2;
for jj =2 : ne
KSL(2*jj-1.2*jj-1) = pi*G*ak(ii)*Le;
MS(2*jJ-1,2*jjJ-1) = pi*ro™2*sm*am(ii)*Le;
q CsS(2*jj-1,2*jj-1) = pi*ro*G/Vs*ac(ii)*Le;
en

MT = MP + MS;

% FRF FUNCTION

ao = 0.3;

aoc = 1*ao/sqrt(1+i*D);

boc = aoc/eta;

numer = 4*
besselk(1,boc)*besselk(1,aoc)+aoc*besselk(l,boc)*besselk(0,aoc)+boc*besselk(0,boc)*
besselk(1,aoc);

denom=
boc*besselk(0,boc)*besselk(1l,aoc)+aoc*besselk(l,boc)*besselk(0,aoc)+boc*aoc*besselk
(0,boc)*besselk(0,aoc);

S03 =-pi*G*ao”2*numer/denom;

for jj = 1 : NFreg+l
freq(Jj) = FregMax*(§j-1)/NFreq;

% SOIL DYNAMIC STIFFNESS

w=Freq(Jj)*2*pi;

ao = w*ro/Vs;

aoc = i*ao/sqrt(1+i*D);

boc = aoc/eta;

numer = 4*
besselk(1,boc)*besselk(1,aoc)+aoc*besselk(1,boc)*besselk(0,aoc)+boc*besselk(0,boc)*
besselk(1,aoc);

denom=
boc*besselk(0,boc)*besselk(1,aoc)+aoc*besselk(1,boc)*besselk(0,aoc)+boc*aoc*besselk
(0,boc)*besselk(0,aoc);

=-pi*G*ao”2*numer/denom;
if a0 < 0.3
S = i*imag(S) + real(S03);

KS(1,1) = S*Le/2;

for Kk = 2 - ne
KS(2*kk-1,2*kk-1) = S*Le;

end

% SYSTEM DYNAMIC STIFFNESS
KD = KP + KS - w2 * MP;
KDP = KP - wr2 * MP;

KDL = KP + KSL + i * w * CS - w2 * MT;
% FREQUENCY RESPONSE FUNCTION FRF
U = KD\F;

FRFM(j) = sart(real(U(D))"2+imag(U(1))™2);
FREA1) = U():;

UP = KDP\F;
FRFP(JJ) = sqart(real (UP(1))"2+imag(UP(1))"2);
UL = KDL\F;

FRFL(JJ) = sqart(real (UL(1))"2+imag(UL(1))"2);
end

varl = strcat("nu = ",num2str(nu(ii)), * "):
var2 = strcat("FRF Lumped Model vs Novak Model - ",varl);
figure; plot( freq,FRFM, freq, FRFL ); grid on; title(var2)
[ft/xla?e;('load frequency [Hz]"):; ylabel("Module of the Dynamic Flexibility or FRF
Kip]l®):

end



F.5 FRF Comparing Novak and Lumped Models for Different ro

% ro embeded

clc; clear a

% Fhkhkdkhhkhkhhkhkhhkhkhkhhkikhhhkhkhhhkhkhhkhkhhkhhiik

Programa FRFNovakLumpedVariousDo.m------
% Program to compute the dynamic flexibility of a pile head

% using the dynamic stiffness proposed by Novak for the soil, and

% using the equivalent lumped model obtained by regression of the

% dynamic stiffness proposed by Novak for the soil, who considers

% the soil in plain-strain and the pile as a rigid circle of radious
in an infinite medium.

% Novak, Nogami and Aboul-Ella

%————— _ —_—

% * PROBLEM DATA

% R 2 kR kS S

% SOIL DATA
Es = 1728000;
nu = 0.40;
D=0.0;

sw = 110.0;

% PILE DATA
for jj =1 : 10

end

Ep
pw

L = 30.0;
5

roo(Jj) = ii:

0:
18400000.0;
150.0;

% GENERAL DATA

% Lumped model coefficients

ak
am
ac

% Fe e e e e e e e de e e e e dedede Fe e e e e e e e de de e de e e e dede Ko ke ke

1.3272671;
0.0510557;
3.4246489;

% * PROBLEM ANALYSIS

% FhkkIkhhkhhhkhkhhkhkhkhhkikhhhkhkhhhkhkhhkhkhhkhkhiik

% GENERAL COMPUTATION
sm = sw/qQ;
G = Es/(2*(1+nu)):

Vs

eta

Le
pm

= sqrt(G/sm);

sqre(2*(1-nu)/(1-2*nu));

L/ne;
pw/g;

% ARRAYS DEFINITION

11; close all

%
%
%
%

%

%
%
%
%
%

ERXREXRSR

% The KDP, UP and FRFP variables refer to
% considering soil contribution (Just the

%

KDN
KDL
KDP

KP
KS

KSL = zeros(2*ne,2*ne);

zeros(2*ne,2*ne);
zeros(2*ne,2*ne);

Ke = zeros(4.,4);

MP
MS
MT

zeros(2*ne,2*ne);
zeros(2*ne,2*ne);
zeros(2*ne,2*ne);

zeros(2*ne,2*ne);
zeros(2*ne,2*ne);
zeros(2*ne,2*ne);

R BREXR XBER

soil Young"s elastic mudulus[lb/ft 2]
soil Poisson"s ratio

hysteretic damping ratio

soil specific weight [pcf]

pile radious

pile length

pile Youngs®™ modulus
pile specific weight

number of elements to discretize the

gravity acceleration [ft/sec/2]
% maximum frequency [Hz]
% Number of frequency steps

density of soil [lIb.s"2/ftM]
soil shear elastic mudulus[lb/ft]
shear wave velocity [ft/sec]
Novak Dynamic Stiffness parameter
pile element length

density of pile [Ib.s"2/7ft™M]

the system reponse without
pile contribution).

Novak System dynamic stiffness matrix
Lumped System dynamic stiffness matrix
Pile dynamic stiffness matrix

Pile Stiffness matrix

Soil Dynamic Stiffness Matrix

Lumped Soil Dynamic Stiffness Matrix
Pile element stiffness matrix

Pile mass matrix

Lumped Soil mass matrix
System mass matrix

RRRIRRNERRER
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CS = zeros(2*ne,2*ne);
F = zeros(2*ne);

U = zeros(2*ne);

UL = zeros(2*ne);

UP = zeros(2*ne);

FRF = zeros(NFreg+l);
FRFM = zeros(NFreq+1);
FRFP = zeros(NFreq+1);
FRFL = zeros(NFreq+1);
freq = zeros(NFreg+1);

% UNIT LOAD ON TOP
F(1) = 1000.0;

1:10

3
=
n

ro = roo(ii);

% PILE ELEMENT STIFFNESS MATRIX
Ip pi*ro™4/4._;
Ap = pi*ro”2;

k1
k2
k3

4*Ep*Ip/Le;
6*Ep*Ip/Len2;
12*Ep*lIp/Le”3;

Ke(1,1) k3;
Ke(2,1) k2;
Ke(3,1) = -k3;
Ke(4,1) k2;

Ke(1,2) k2;
Ke(2,2) k1;
Ke(3,2) -k2;
Ke(4,2) k1/2;

Ke(1,3) -k3;
Ke(2,3) -k2;
Ke(3,3) k3;
Ke(4,3) -k2;

Ke(1,4) k2;

Ke(2,4) k1/2;
Ke(3,4) -k2;
Ke(4,4) k1;

% PILE STIFFNESS MATRIX
for jj =1 : ne-1

dof(1)

row = dof(kk);
col = dof(ll);

EEXRER BEXRR ¥ ¥

X
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Lumped Soil damping matrix
Load vector

System Displacement vector
Lumped Model Displacement vector
Pile Displacement vector

FRF = top node displacement

FRF Modulle top node displacement

FRF Pile top node displacement

Lumped FRF module top node displacement
Frequency data points

Unit harminic load on top of pile
to obtain dynamic flexibility in
[ft/Kip] units

% Pile crossm sectiuon inertia
% Pile cross section area

KP(row,col) = KP(row,col) + Ke(kk,Il);

end
end
end

dof(1)

dof(2)

for kk
for Il =1 : 2

row = dof(kk);

col = dof(ll);

nnn
3
[1']
*
N

KP(row,col) = KP(row,col) + Ke(kk,Il);

end
end

% PILE MASS MATRIX
MP(1,1) = pm*Ap*Le/2;
for jj =2 : ne
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MP(2*jj-1,2*)j-1) = pm*Ap*Le;
end

% LUMPED SOIL STIFFNESS MATRIX, MASS MATRIX, AND DAMPING MATRIX
KSL(1,1) = pi*G*ak*Le/2;
MS(1,1) = pi*ro~2*sm*am*Le/2;
CS(1,1) pi*ro*G/Vs*ac*Le/2;
for jj =2 : ne
KSL(2*jj-1,2*jj-1) = pi*G*ak*Le;
MS(2*jJ-1,2*)jJ-1) = pi*ro”~2*sm*am*Le;
g CS(2*)3-1,2*jj-1) = pi*ro*G/Vs*ac*Le;
en

MT = MP + MS;

% FRF FUNCTION

ao = 0.3;

aoc = i*ao/sqrt(1+i*D);

boc = aoc/eta;

numer = 4*
besselk(1,boc)*besselk(1,aoc)+aoc*besselk(1,boc)*besselk(0,aoc)+boc*besselk(0,boc)*
besselk(1,aoc);

denom=
boc*besselk(0,boc)*besselk(1,aoc)+aoc*besselk(1,boc)*besselk(0,aoc)+boc*aoc*besselk
(0,boc)*besselk(0,aoc);

S03 =-pi*G*ao”2*numer/denom;

for jj = 1 : NFreg+l
freq(3j) = FregMax*(§j-1)/NFreq;

% SOIL DYNAMIC STIFFNESS
w=freq(Jj)*2*pi;
ao = w*ro/Vs;
aoc = i*ao/sqrt(1+i*D);
boc = aoc/eta;
numer = 4*
besselk(1,boc)*besselk(1,aoc)+aoc*besselk(1,boc)*besselk(0,aoc)+boc*besselk(0,boc)*
besselk(1,aoc);

denom=
boc*besselk(0,boc)*besselk(1,aoc)+aoc*besselk(l,boc)*besselk(0,aoc)+boc*aoc*besselk
(0,boc)*besselk(0,aoc);

=-pi*G*ao”2*numer/denom;
if a0 < 0.3
S = i*imag(S) + real(S03);
end

KS(1,1) = S*Le/2;

for kk = 2 - ne
KS(2*kk-1,2*kk-1) = S*Le;

end

% SYSTEM DYNAMIC STIFFNESS
KD = KP + KS - w2 * MP;
KDP = KP - w2 * MP;

KDL = KP + KSL + i *w * CS - w2 * MT;

% FREQUENCY RESPONSE FUNCTION FRF

U = KD\F;

FRFM(Jj) = sart(real(U(D))M2+imag(U(1))™2);
FREQJ) = U(D);

UP = KDP\F;
FRFP(§j) = sart(real (UP(1))2+imag(UP(1))"2);

UL = KDL\F;
FRFL(@J) = sart(real (UL(1))2+imag(UL(1))"2);
end
varl = strcat("FRF Lumped vs Novac - ro = ", num2str(ro), " [ft]"):
figure; plot( freq,FRFM, freq, FRFL ); grid on; title(varl)
[ft/xla?e;('load frequency [Hz]"); ylabel("Module of the Dynamic Flexibility or FRF
Kip]l™):

end



F.6 FRF Comparing Novak and Lumped Models for Different E

%
%
%
%
%
%
%

ro embeded in an infinite medium.
Novak, Nogami and Aboul-Ella

Programa FRFNovakLumpedVariousE.m--—------——————————————— %
Program to compute the dynamic flexibility of a pile head

using the dynamic stiffness proposed by Novak for the soil, and

using the equivalent lumped model obtained by regression of the
dynamic stiffness proposed by Novak for the soil, who considers

the soil in plain-strain and the pile as a rigid circle of radious

clc; clear all; close all

% FhAxXxAAFxIxIxIAIAAAAAAAhhkhkhkhhhhhxhhhhhhkhhkikk

% * PROBLEM DATA *

% Fe e e e e e e e de e Fe e e Fedede de de e e e de e de de de e e e e dedede Ko e ke

% SOIL DATA

Es = [200000, 600000, 1000000, 1400000,
Es(9) = 3400000;

Es(10) = 3800000;

nu = 0.40;

D=0.0;

sw = 110.0;

% PILE DATA

ro = 1.0;

L = 30.0;

Ep = 518400000.0;
pw = 150.0;

% GENERAL DATA
ne = 15;

pile

g = 32.2;

FregMax = 200;
NFreq = 400;

% Lumped model coefficients
ak = 1.3272671;
am = 0.0510557;
ac = 3.4246489;

% Fe e e e e e e e e e e e e dedede Fe e e e e e e e de de e e e e e dede de ke ke

% * PROBLEM ANALYSIS *

% R 2 kR R

% GENERAL COMPUTATION

sm = sw/g;

Le = L/ne;

pm = pw/g;

% ARRAYS DEFINITION
%

%

% considering soil contribution (Just the
%

KDN = zeros(2*ne,2*ne);
KDL = zeros(2*ne,2*ne);
KDP = zeros(2*ne,2*ne);
KP = zeros(2*ne,2*ne);
KS = zeros(2*ne,2*ne);
KSL = zeros(2*ne,2*ne);
Ke = zeros(4.4):;

MP = zeros(2*ne,2*ne);
MS = zeros(2*ne,2*ne);
MT = zeros(2*ne,2*ne);

The KDP, UP and FRFP variables refer to

IR

1800000, 2200000, 2600000, 3000000];

% soil Young®s elastic mudulus[lb/fe 2]

% soil Poisson"s ratio

%
%

hysteretic damping ratio
soil specific weight [pcf]

%
%
%
%

pile radious

pile length

pile Youngs®™ modulus
pile specific weight

% number of elements to discretize the
% gravity acceleration [ft/sec”2]

% maximum frequency [Hz]

% Number of frequency steps

density of soil [Ib.s"2/7ft™M]
pile element length
density of pile [lb.s"2/ftM]

X

the system reponse without
pile contribution).

Novak System dynamic stiffness matrix
Lumped System dynamic stiffness matrix
Pile dynamic stiffness matrix

Pile Stiffness matrix

Soil Dynamic Stiffness Matrix

Lumped Soil Dynamic Stiffness Matrix
Pile element stiffness matrix

Pile mass matrix
Lumped Soil mass matrix
System mass matrix

R BEEXR ¥BER
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CS = zeros(2*ne,2*ne);
F = zeros(2*ne);

U = zeros(2*ne);

UL = zeros(2*ne);

UP = zeros(2*ne);

FRF = zeros(NFreg+l);
FRFM = zeros(NFreq+1);
FRFP = zeros(NFreq+1);
FRFL = zeros(NFreq+1);
freq = zeros(NFreg+1);

% UNIT LOAD ON TOP
F(1) = 1000.0;

% PILE ELEMENT STIFFNESS MATRIX
Ip = pi*ro™M/4_;
Ap = pi*ron2;

= 4*Ep*Ip/Le;
k2 = 6*Ep*lIp/Le”2;

k3 = 12*Ep*lp/Le”3;
Ke(1,1) = k3;
Ke(2,1) = k2;
Ke(3,1) = -k3;
Ke(4,1) = k2;
Ke(1,2) = k2;
Ke(2,2) = ki;
Ke(3,2) = -k2;
Ke(4,2) = k1/2;
Ke(1,3) = -k3;
Ke(2,3) = -k2;
Ke(3,3) = k3;
Ke(4,3) = -k2;
Ke(1,4) = k2;
Ke(2,4) = k1/2;
Ke(3,4) = -k2;
Ke(4,4) = ki;

% PILE STIFFNESS MATRIX
for jj =1 : ne-1
dof(1) = jj*2-1;
dof(2) = jj*2;
dof(3) = Jj*2+1;
dof(4) = jj*2+2
for kk =
for II = 1 : 4

EEXRER BEXRR ¥ ¥

X

R
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Lumped Soil damping matrix
Load vector

System Displacement vector
Lumped Model Displacement vector
Pile Displacement vector

FRF = top node displacement

FRF Modulle top node displacement

FRF Pile top node displacement

Lumped FRF module top node displacement
Frequency data points

Unit harminic load on top of pile
to obtain dynamic flexibility in
[ft/Kip] units

Pile crossm sectiuon inertia
Pile cross section area

KP(row,col) = KP(row col) + Ke(kk,Il);

end
end
end

dof(1) = ne*2-1;
dof(2) = e*2;
for kk = :

KP(row,col)
end
end

% PILE MASS MATRIX
MP(1,1) = pm*Ap*Le/2;
for jj =2 : ne

MP(2*jj-1,2*jj-1) = pm*Ap*Le;

end

= KP(row,col) + Ke(kk,11);
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for i1 =1 : 10
% GENERAL COMPUTATIONS

eta = sqrt(2*(1-nu)/(1-2*nu)); % Novak Dynamic Stiffness parameter
G = Es(ii)/(2*(1+nu)); % soil shear elastic mudulus[lb/ft]
Vs = sqrt(G/sm); % shear wave velocity [ft/sec]

% LUMPED SOIL STIFFNESS MATRIX, MASS MATRIX, AND DAMPING MATRIX
KSL(1,1) = pi*G*ak*Le/2;
MS(1,1) = pi*ro~2*sm*am*Le/2;
CS(1,1) = pi*ro*G/Vs*ac*Le/2;
for jj =2 : ne
KSL(2*jj-1.2*jj-1) = pi*G*ak*Le;
MS(2*jJ-1,2*jj-1) pi*ro~2*sm*am*Le;
q CsS(2*jj-1,2*jj-1) pi*ro*G/Vs*ac*Le;
en

MT = MP + MS;

% FRF FUNCTION

ao = 0.3;

aoc = 1*ao/sqrt(1+i*D);

boc = aoc/eta;

numer = 4*
besselk(1,boc)*besselk(1,aoc)+aoc*besselk(l,boc)*besselk(0,aoc)+boc*besselk(0,boc)*
besselk(1,aoc);

denom=
boc*besselk(0,boc)*besselk(1l,aoc)+aoc*besselk(l,boc)*besselk(0,aoc)+boc*aoc*besselk
(0,boc)*besselk(0,aoc);

S03 =-pi*G*ao”2*numer/denom;

for jj = 1 : NFreg+l

freq(Jj) = FregMax*(§j-1)/NFreq;

% SOIL DYNAMIC STIFFNESS

w=Ffreq(Jj)*2*pi;

ao = w*ro/Vs;

aoc = i*ao/sqrt(1+i*D);

boc = aoc/eta;

numer = 4*
besselk(1,boc)*besselk(1,aoc)+aoc*besselk(1,boc)*besselk(0,aoc)+boc*besselk(0,boc)*
besselk(1,aoc);

denom=
boc*besselk(0,boc)*besselk(1,aoc)+aoc*besselk(1l,boc)*besselk(0,aoc)+boc*aoc*besselk
(0,boc)*besselk(0,aoc);

S =-pi*G*ao”2*numer/denom;

if a0 < 0.3

S = i*imag(S) + real(S03);
end

KS(1,1) = S*Le/2;

for kk = 2 - ne
KS(2*kk-1,2*kk-1) = S*Le;

end

% SYSTEM DYNAMIC STIFFNESS
KD = KP + KS - w2 * MP;
KDP = KP - w2 * MP;

KDL = KP + KSL + i *w * CS - w2 * MT;

% FREQUENCY RESPONSE FUNCTION FRF

U = KD\F;

FRFM(Jj) = sart(real(U(D))M2+imag(U(1))™2);
FREQJ) = U(D);

UP = KDP\F;
FRFP(§j) = sart(real (UP(1))2+imag(UP(1))"2);

UL = KDL\F;
FRFL(J) = sart(real(UL(D))2+imag(UL(1))"2);

end

varl = strcat(" E = ",num2str(Es(ii)), " [psf]");

var2 = strcat("FRF Lumped Model vs Novak Model - ",varl);

figure; plot( freq,FRFM, freq, FRFL ); grid on; title(var2)

xlabel("load frequency [Hz]"); ylabel("Module of the Dynamic Flexibility or FRF
[fg/Klp]'):
en
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F.7 FRF Implemented in SAP

This section presents the models used to verify the application of SAP Link Element to
model the Soil Spring-Dashpot lumped model. The relation between the Link element
local axes and the global coordinate system is shown in Table F.1, and represented in

Figure F.1.

Table F.1: Link Element DOF vs. Global DOF

Link Element DOF Corresponding Global DOF
Ul Uz
U2 Ux
U3 Uy
X
Ul
lJ2
C K
z

Figure F.1: Link Element DOF vs. Global Coordinates

F.7.1  SDOF System

A single degree of freedom (SDOF) system was first used to verify SAP Link Element

local axis and behavior. The following problem will be analyzed:
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Figure F.2: SDOF Problem

The following is a listing of the MathCad worksheet developed to compute the SDOF

response, and the problem data.

Problem Data

k:=40 [Ib, in, sec]
m:=0.1
c:=08
Solution
on :=jE on =20
m
1 on

==-Cc— =02

< >k <
2
od:=ony1-§ od = 19.596
&)

FRA(w) == K

FRFwd) = 0.0635

ol :=od

Given
owl>0
©m := Maximizd FRF, ©1)
om = 19.183
FRA om) = 0.0638
FRF(0) = 0.025

FRF(60) = 3.0904x 10 8
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0.065 F{

0.05 / \
FRF(w) 0.04

FRF(od) / \
e 0.03

FRF(om)

0.02 \

AN

0.01 N~
\x
0 o
10 20 30 40 50 60
0 ®,od, om 60

The following figure presents the SAP model implementation, as a special point where

the link element and the lumped mass were assigned.

i~ Link/Suppert Mame [~ Stifriess Values Used For All Anslysis Ca

| & Sitfress Is Uncouplsd © Stifness |s Coupled

Ut u2 u3 A1 i iE!

e e [Fired [oos [Fired [Fired [Fired [Fired

Dirsstion Fired

e u ~

W Uz L]

U3 ~

v 1 &

W A2 I - Damping Values Used For All Analysis Cas

(% Damping Is Uncouplsd ¢ Damping Is Coupled
W B3 &
Ut uz uz Rl A2 R3
[Fived [6.000E-04 [Fixed [Fived [Fived [Fived

- Shear Distance fiom End J

uz [ -

IE
plnibs———————————

Kip, in. F =

Cance

Figure F.3: SDOF System SAP Model
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The following figure presents the results of SAP vs the ones obtained with a Matlab
worksheet with the analytical response. There is a total agreement between both

responses, indicating that the SAP model with Link elements is appropriate to model this

type of systems.

0.07

0.06

0.05 -
0.04 / \
0.03

0.02

FRF [in/Kip]

0.01

0 T T T T T
0 10 20 30 40 50 60

—— SAP —— Matlab ‘ freq [rad/sec]

Figure F.4: SDOF Problem SAP Response vs. Analytical Response

F.7.2  Pile + Lumped Soil System

The following figure presents the link element parameters definition for the 1D model of

the pile-soil system presented in Section 5.3, and the pile discretization adopted.
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Link{Support Property Data

— trea =]
[ £d Cé-middle

[ i i | 1

d
d

—
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|
i [ |

o ke e H

Figure F.5: SAP Link Element Definition for 1D Pile with Soil Model



F.8 Dynamic Stiffness of Pile Top for Di Napoli and Prato Test

%
%

[ S —— - -
clc; clear all;

Programa FRFLumpedModel_DeNapoli.m- -— -—=

-%

Program to compute the dynamic flexibility and dynamic stiffness of the pile %

head tested by DeNapoli and Prato. The analysis uses the equivalent lumped
model obtained by regression of the dynamic stiffness proposed by Novak for

the soil, who considers the soil in plain-strain and the pile as a rigid

circle of radious ro embeded

in an Infin

ite medium.

close all

% FhAxXxAAFxIxIhIAIAAAXAAAAAAhhkhkdhhhhhxhhhhkhhkhhkikk

% * PROBLEM DATA

% Fhkkdkhhkhkhhkhkhkhkhkhkhhkikhhkhkhkhhhkhkhhkhkhhkhhiik

% SOIL DATA

Es = 288.0 * 10M6;
nu = 0.31;

sm = 1.55 * 10"3;

% PILE CAP DATA

Lpc = O.

Rpc = 0.25

% PILE DATA

ro = 0.15;

L=2.7;

Ep = 31000.0 * 10"6;
pm = 2.4 * 1073;

% GENERAL DATA

nepc = 6;

ne = 54;

pile (6 cm length)
FregMax = 150;
NFreq = 450;

*

% soil Young®s elastic mudulus[N/m"2]

%
%

soil Poisson"s ratio
soil density [Kg/m3]

ile radious [m]
ile length [m]

ile Youngs®™ modulus [Pa]
ile density [Kg/m3]

RN

% number of elements to discretize the

%
%

% Lumped model coefficients for nu=0.31

ak
am
ac

%
%
%
%

G
Vs

1.2947912;
0.0005935;
2.9727406;

R 2 kR

* PROBLEM ANALYSIS

FhAxAxAAFxIxIAAIAxAAAAAAAkhkhkhkhhhhhhhhhhhhhkikk

GENERAL COMPUTATION

eta

nn

Es/(2*(1+nu));
sqre(G/sm);

: sqre(2*(1-nu)/(1-2*nu));

nepc + ne + 1;

% ARRAYS DEFINITION
%

*

% The KDP, UP and FRFP variables refer to
% considering soil contribution (Just the

%
KD

KP
KS
Ke
MP
MS
mT
Ccs
E

U

zeros(2*nn,2*nn) ;
zeros(2*nn,2*nn);
zeros(2*nn,2*nn) ;
zeros(4,4);

zeros(2*nn,2*nn) ;
zeros(2*nn,2*nn);
zeros(2*nn,2*nn);
zeros(2*nn,2*nn);
zeros(2*nn);

zeros(2*nn);

%

X R R EXRR EXRR

maximum Frequency [Hz]
Number of frequency steps

soil shear elastic mudulus[lb/ft]

shear wave velocity [ft/sec]

Novak Dynamic Stiffness parameter
% number of nodes

the system reponse without
pile contribution).

System dynamic stiffness matrix
Pile Stiffness matrix

Soil Dynamic Stiffness Matrix
Pile element stiffness matrix
Pile mass matrix

Soil mass matrix

System mass matrix

Soil damping matrix

Load vector

System Displacement vector
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UP = zeros(2*nn); % Pile Displacement vector

FRF = zeros(NFreg+1l); % FRF = top node displacement

FRFM = zeros(NFreq+1); % FRF Module top node displacement

FRFP = zeros(NFreqg+1); % FRF Pile top node displacement
%

KDT = zeros(NFreq+1l); Dynamic stiffness of pile top

KDTR = zeros(NFreqg+1);
KDTI = zeros(NFreg+1l);
freq = zeros(NFreg+1); % Frequency data points

% UNIT LOAD ON TOP

F(7) = 1000.0; % Unit harminic load on top of pile
% to obtain dynamic flexibility in
% [m/KN] units

% PILE CAP ELEMENT STIFFNESS MATRIX

Le = Lpc/nepc; % pile element length

Ip = pi*Rpc™ / 4_; % Pile cross section inertia

Ap = pi*Rpc/2; % Pile cross section area

k1 = 4*Ep*lIp/Le;

k2 = 6*Ep*Ip/Le"2;

k3 = 12*Ep*lp/Le"3;
Ke(1,1) = k3;
Ke(2,1) = k2;
Ke(3,1) = -k3;
Ke(4,1) = k2;
Ke(1,2) = k2;
Ke(2,2) = ki;
Ke(3,2) = -k2;
Ke(4,2) = k1/2;
Ke(1,3) = -k3;
Ke(2,3) = -k2;
Ke(3,3) = k3;
Ke(4,3) = -k2;
Ke(1,4) = k2;
Ke(2,4) = k1/2;
Ke(3,4) = -k2;
Ke(4,4) = ki;

% PILE CAP STIFFNESS MATRIX
for jj =1 : nepc
dof(1) = jj*2-1;

dof(2) = Jj*2;
dof(3) = Jj*2+1;
dof(4) = jJj*2+2;
for kk =1 : 4

for 11 =1 : 4
row = dof(kk);
col = dof(ll);
KP(row,col) = KP(row,col) + Ke(kk,Il);
end
end
end

% PILE CAP MASS MATRIX

MP(1,1) = pm*Ap*Le/2;

for jj = 2 : nepc
MP(2*jj-1,2*jj-1) = pm*Ap*Le;

en
MP(2*ne+1,2*ne+1)= pm*Ap*Le/2;

% PILE ELEMENT STIFFNESS MATRIX

Le = L/ne; % pile element length

Ip = pi*ro™4 / 4_; % Pile cross section inertia
Ap = pi*ron2; % Pile cross section area

kil = 4*Ep*Ip/Le;

k2 = 6*Ep*lIp/Le”2;

k3 = 12*Ep*lp/Le”3;



Ke(1,1) = k3;
Ke(2,1) = k2;
Ke(3,1) = -k3;
Ke(4,1) = k2;
Ke(1,2) = k2;
Ke(2,2) = ki;
Ke(3,2) = -k2;
Ke(4,2) = k1/2;
Ke(1,3) = -k3;
Ke(2,3) = -k2;
Ke(3,3) = k3;
Ke(4,3) = -k2;
Ke(1,4) = k2;
Ke(2,4) = k1/2;
Ke(3,4) = -k2;
Ke(4,4) = ki;

% PILE STIFFNESS MATRIX
for jj =1 : ne

dof(1) = nepc*2 + jj*2-1;
dof(2) = nepc*2 + jj*2;
dof(3) = nepc*2 + jj*2+1;
dof(4) = nepc*2 + Jj*2+2;
for kk =1 : 4

for 11 =1 : 4
row = dof(kk);
col = dof(ll);
g KP(row,col) = KP(row,col) + Ke(kk,Il);
en
end
end

% PILE MASS MATRIX
MP(nepc*2+1,nepc*2+1) = MP(nepc*2+1,nepc*2+1)+pm*Ap*Le/2;
for jJ =2 : ne
MP(nepc*2 + 2*jj-1,nepc*2 + 2*jj-1) = pm*Ap*Le;
end
MP(nepc*2 + 2*ne+l,nepc*2 + 2*ne+l)= pm*Ap*Le/2;

% SOIL STIFFNESS MATRIX, MASS MATRIX, AND DAMPING MATRIX

KS(nepc*2 +1,nepc*2 +1) = pi*G*ak*Le/2;
MS(nepc*2 +1,nepc*2 +1) = pi*ro~2*sm*am*Le/2;
CS(nepc*2 +1,nepc*2 +1) = pi*ro*G/Vs*ac*Le/2;

for jj =2 : ne
KS(nepc*2 + 2*jj-1,nepc*2 + 2*jj-1)
MS(nhepc*2 + 2*jj-1,nepc*2 + 2*jj-1)
CS(nepc*2 + 2*jj-1,nepc*2 + 2*jj-1)

pi*G*ak*Le;
pi*ro~2*sm*am*Le;
pi*ro*G/Vs*ac*Le;

end

KS(nepc*2 + 2*ne+1,nepc*2 + 2*ne+l)
MS(nepc*2 + 2*ne+l,nepc*2 + 2*ne+l)
CS(nepc*2 + 2*ne+l,nepc*2 + 2*ne+l)

pi*G*ak*Le/2;
pi*ro~2*sm*am*Le/2;
pi*ro*G/Vs*ac*Le/2;

MT = MP + MS;
% FRF FUNCTION
for jj = 1 : NFreg+l

freq(Jj) = FregMax*(§jj-1)/NFreq;
w=Freq(Jj)*2*pi;

% SYSTEM DYNAMIC STIFFNESS
KD = KP + KS + I *w * CS - wh2 * MT;

% FREQQENCY RESPONSE FUNCTION FRF

U = KD\F;

FREM(JJ) = sqrt(real (U(7))2+imag(U(7))"2);
FRF(J) = U(™):
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KDT(§j)= 1.0 7 FRF(i):
KDTR(3J) real (KDT(3J));
KDTI(33) = imag(KDT(3)):

% to convert from KN to ton
KDT(§j)= KDT(Jj)/10.;

KDTR(jJJ) = KDTR(jj)7/10.:;
KDTI(33) = KDT1(33)710.;
varl = num2str(jj);
var2 = num2str(freq(j)):
var3 = num2str(KDTR(J})):;
vard = num2str(KDTI(JJ)):;
var5 = strcat( varl , "," , var2 , "," , var3, "," , vard);
% save ("FRF.txt", "varl®, "var2®, "-ASCI1", "-append®)
disp(var5)
end

figure; plot( freq,KDTR ); grid on; title("Real Part of KD Using Lumped Model®)
xlabel ("load frequency [Hz]"); ylabel("Module of the Dynamic Stiffness [ton/m]");

figure; plot( freq,KDT1); grid on; title("Imaginary Part of KD Using Lumped Model*®)
xlabel ("load frequency [Hz]"); ylabel("Module of the Dynamic Stiffness [ton/m]");

F.9 Damping Coefficient Comparison
Approximate Model vs Berger Coefficient of Damping

Ch= E-d-p-:_"\'p - '\.-E: = _'-r-p-"._-g. 1+ —
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F.10 Stiffness Coefficient Comparison

Approximate Model vs Vesic Subgrade Reaction Modulus
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G Influence of Pile Stiffness on the FRF of Pile Head

The Matlab program (worksheet) developed to compute the frequency response function
(dynamic flexibility) of the pile head, used to obtain the results of in Chapter 6, is listed
in this appendix. The program varies the pile radius and obtains the FRF of the pile head
considering the soil with the lumped model, and considering the pile alone (without soil
contribution)

G.1 FRF Comparing Pile Alone and Pile + Soil for Different Radius

Yp———mm Programa FRFLumpedVariousDo.m------——————————————————__| %
% Program to compute the dynamic flexibility of a pile head %
% using the equivalent lumped model obtained by regression of the %
% dynamic stiffness proposed by Novak for the soil, who considers %
% the soil in plain-strain and the pile as a rigid circle of radious %
% ro embeded in an infinite medium (Novak, Nogami and Aboul-Ella ). %
% The effect of different radius is computed %
Yo————- - -—= -—= -—= -—= -—— - -—= %
clc; clear all; close all
% Fe Je e Fe Yo e Fe de Fe e Je e e e dede e Fe e de e e e e de de de de e e dedede Jede ke
% * PROBLEM DATA *
% KEEAXEAIEEAERXEAAXIAEIREIRXAIRAAAAIAETIATAAAIAAEX
% SOIL DATA
Es = 1728000; % soil Young®s elastic mudulus[lb/ft"2]
nu = 0.40; % soil Poisson"s ratio
D=0.0; % hysteretic damping ratio
sw = 110.0; % soil specific weight [pcf]
% PILE DATA
for jj =1 : 10
roo(Jj) = ij: % pile radious
end
L = 30.0; % pile length
Ep = 518400000.0; % pile Youngs®™ modulus
pw = 150.0; % pile specific weight
% GENERAL DATA
ne = 15; % number of elements to discretize the
pile
g = 32.2; % gravity acceleration [ft/sec”2]
FregMax = 400; % maximum frequency [Hz]
NFreq = 800; % Number of frequency steps
% Lumped model coefficients
ak = 1.3272671;
am = 0.0510557;
ac = 3.4246489;
% FhAxXxAAxFxIxIAIAIAAAXAAAAAAkhhkhkdhhdhhhxhhhhhhhhkikk
% * PROBLEM ANALYSIS *
% Fe Je e Fe Yo e FedeFe e Je e e e dede e Fe e de e e e e de e de de e e de ke de dede ke
% GENERAL COMPUTATION
sm = sw/qQ; % density of soil [Ib.s"2/ft ]
G = Es/(2*(1+nu)); % soil shear elastic mudulus[lb/ft]
Vs = sqrt(G/sm); % shear wave velocity [ft/sec]
eta = sqrt(2*(1-nu)/(1-2*nu)); % Novak Dynamic Stiffness parameter



Le L/ne;
pm = pw/g;

% ARRAYS DEFINITION

%

% The KDP, UP and FRFP variables refer to
% considering soil contribution (Just the
%

=S

KDN = zeros(2*ne,2*ne); %
KDL = zeros(2*ne,2*ne); %
KDP = zeros(2*ne,2*ne); %
KP = zeros(2*ne,2*ne); %
KS = zeros(2*ne,2*ne); %
KSL = zeros(2*ne,2*ne); %
Ke = zeros(4,4); %
MP = zeros(2*ne,2*ne); %
MS = zeros(2*ne,2*ne); %
MT = zeros(2*ne,2*ne); %
CS = zeros(2*ne,2*ne); %
F = zeros(2*ne); %
U = zeros(2*ne); %
UL = zeros(2*ne); %
UP = zeros(2*ne); %
FRF = zeros(NFreg+1l); %
FRFM = zeros(NFreq+1); %
FRFP = zeros(NFreq+1); %
FRFL = zeros(NFreg+1); %
freq = zeros(NFreg+1); %
% UNIT LOAD ON TOP
F(1) = 1000.0; %
%
%

for ii =1 : 10

ro = roo(ii);

% PILE ELEMENT STIFFNESS MATRIX

Ip = pi*ro™4/4._;

Ap = pi*ron2;

k1l = 4*Ep*Ip/Le;

k2 = 6*Ep*Ip/Len2;

k3 = 12*Ep*Ip/Le”3;

Ke(1,1) = k3;

Ke(2,1) = k2;

Ke(3,1) = -k3;

Ke(4,1) = k2;

Ke(1,2) = k2;

Ke(2,2) = ki;

Ke(3,2) = -k2;

Ke(4,2) = k1/2;

Ke(1,3) = -k3;

Ke(2,3) = -k2;

Ke(3,3) = k3;

Ke(4,3) = -k2;

Ke(1,4) = k2;

Ke(2,4) = k1/2;

Ke(3,4) = -k2;

Ke(4,4) = ki;

% PILE STIFFNESS MATRIX
for jj =1 : ne-1

dof(1l) = jj*2-1;
dof(2) = jj*2;
dof(3) = Jj*2+1;
dof(4) = jj*2+2;
for kk =1 : 4
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for Il =1 : 4
row = dof(kk);
col = dof(ll);
KP(row,col) = KP(row,col) + Ke(kk,Il);

end
end
end
dof(1) = ne*2-1;
dof(2) = ne*2;
for kk =1 : 2

for 11 =1 : 2
row = dof(kk);
col = dof(ll);
KP(row,col) = KP(row,col) + Ke(kk,Il);
end
end

% PILE MASS MATRIX
MP(1,1) = pm*Ap*Le/2;
for jj =2 : ne
g MP(2*jj-1,2*jj-1) = pm*Ap*Le;
en

% LUMPED SOIL STIFFNESS MATRIX, MASS MATRIX, AND DAMPING MATRIX
KSL(1,1) = pi*G*ak*Le/2;
MS(1,1) pi*ro~2*sm*am*Le/2;
CS(1,1) pi*ro*G/Vs*ac*Le/2;
for jj =2 : ne
KSL(2*jj-1.2*jj-1) = pi*G*ak*Le;
MS(2*jJ-1,2*j)-1) = pi*ro~2*sm*am*Le;
q CsS(2*jj-1,2*jj-1) = pi*ro*G/Vs*ac*Le;
en

MT = MP + MS;
% FRF FUNCTION

for jj = 1 : NFreg+l
freq(Jj) = FregMax*(§j-1)/NFreq;
w=Freq(jJj)*2*pi:

% SYSTEM DYNAMIC STIFFNESS
KDP = KP - w2 * MP;
KDL = KP + KSL + i * w * CS - w2 * MT;

% FREQUENCY RESPONSE FUNCTION FRF

UP = KDP\F;
FRFP(Jj) = sqart(real (UP(1))2+imag(UP(1))"2);
UL = KDL\F;

FRFL(JjJ) = sqart(real(UL())2+imag(UL(1))™2);
end
varl = strcat("FRF Pile Alone vs Pile + Soil - ro = ", num2str(ro), " [ft]");

figure; plot( freq, FRFL, "-b", freq, FRFP, "-r" ); grid on; title(varl);
xlabel("load frequency [Hz]"); ylabel ("Module of the Dynamic Flexibility or FRF

[fw/Kip]*);

end
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H Influence of Radiation Damping on the FRF of Pile Head

The Matlab program (worksheet) developed to compute the frequency response function
(dynamic flexibility) of the pile head, used to obtain the results of in Chapter 6, is listed
in this appendix. The program varies the soil equivalent lumped damping coefficient and

obtains the FRF of the pile head considering the soil with the lumped model.

H.1 FRF Comparing Pile Alone and Pile + Soil for Different Ca

Yp———mm Programa FRFLumpedVariousC.m-----———————————————————__| %
% Program to compute the dynamic flexibility of a pile head %
% using the dynamic stiffness proposed by Novak for the soil, and %
% using the equivalent lumped model obtained by regression of the %
% dynamic stiffness proposed by Novak for the soil, who considers %
% the soil in plain-strain and the pile as a rigid circle of radious %
% ro embeded in an infinite medium. %
% Novak, Nogami and Aboul-Ella %
Yp————— - - -— - - -——- ———— %
clc; clear all; close all

% KEEEXEAIEEAERXEAAXIAEIREIRXAIRAAIAAAITIATAAAIAAAEX

% * PROBLEM DATA *

% FhAxXxAAxFxIxIAIAIAAAAAAAAhkhkhxhhhhhxhhhkhkhhkhhkikk

% SOIL DATA

Es = 1728000; % soil Young"s elastic mudulus[lb/ft"2]
nu = 0.40; % soil Poisson"s ratio

D=0.0; % hysteretic damping ratio

sw = 110.0; % soil specific weight [pcf]

% PILE DATA

ro = 1; % pile radious

L = 30.0; % pile length

Ep = 518400000.0; % pile Youngs®™ modulus

pw = 150.0; % pile specific weight

% GENERAL DATA

ne = 15; % number of elements to discretize the
pile

g = 32.2; % gravity acceleration [ft/sec”2]
FregMax = 400; % maximum frequency [Hz]

NFreq = 800; % Number of frequency steps

% Lumped model coefficients

ak = 1.3272671;

am = 0.0510557;

ac = 3.4246489;

% Fkkkdkhkhhhhkikhkhkhhkhkhkhkhkhkhkhhkhhkhkhkikhhhhikikik

% * PROBLEM ANALYSIS *

% KEEEXEAEEAERXEAATAEIRERXAIRAAAAAITITTAAAAAAEX

% GENERAL COMPUTATION

sm = sw/gQ; % density of soil [Ib.s"2/ft™4]

G = Es/(2*(1+nu)): % soil shear elastic mudulus[lb/ft]
Vs = sqrt(G/sm); % shear wave velocity [ft/sec]

eta = sqre(2*(1-nu)/(1-2*nu)); % Novak Dynamic Stiffness parameter
Le = L/ne; % pile element length

pm = pw/g; % density of pile [Ib.s"2/ft™4]

% ARRAYS DEFINITION



%

% The KDP, UP and FRFP variables refer to
% considering soil contribution (Just the

%

KDN = zeros(2*ne,2*ne); %
KDL = zeros(2*ne,2*ne); %
KDP = zeros(2*ne,2*ne); %
KP = zeros(2*ne,2*ne); %
KS = zeros(2*ne,2*ne); %
KSL = zeros(2*ne,2*ne); %
Ke = zeros(4,4); %
MP = zeros(2*ne,2*ne); %
MS = zeros(2*ne,2*ne); %
MT = zeros(2*ne,2*ne); %
CS = zeros(2*ne,2*ne); %
F = zeros(2*ne); %
U = zeros(2*ne); %
UL = zeros(2*ne); %
UP = zeros(2*ne); %
FRF = zeros(NFreq+1l); %
FRFM = zeros(NFreg+1); %
FRFP = zeros(NFreq+1); %
FRFL = zeros(NFreq+1); %
freq = zeros(NFreg+1); %
% UNIT LOAD ON TOP
F(1) = 1000.0; %
%
%
% PILE ELEMENT STIFFNESS MATRIX
Ip = pi*ronM4/4.; %
Ap = pi*ron2; %

= 4*Ep*Ip/Le;
k2 = 6*Ep*lp/Le”2;
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k3 = 12*Ep*lp/Le"3;
Ke(1,1) = k3;
Ke(2,1) = k2;
Ke(3,1) = -k3;
Ke(4,1) = k2;
Ke(1,2) = k2;
Ke(2,2) = ki;
Ke(3,2) = -k2;
Ke(4,2) = k1/2;
Ke(1,3) = -k3;
Ke(2,3) = -k2;
Ke(3,3) = k3;
Ke(4,3) = -k2;
Ke(1,4) = k2;
Ke(2,4) = k1/2;
Ke(3,4) = -k2;
Ke(4,4) = ki;
% PILE STIFFNESS MATRIX
for jj =1 : ne-1
dof(1) = jj*2-1;
dof(2) = Jj*2;
dof(3) = jj*2+1;
dof(4) = jj*2+2;
for kk =1 : 4
for 11 =1 : 4
row = dof(kk);
col = dof(ll);
g KP(row,col) = KP(row,col) + Ke(kk,Il);
en

end



end
dof(1) = ne*2-1;
dof(2) = ne*2;
for kk =1 : 2
for Il =1 : 2
row = dof(kk);
col = dof(ll);
KP(row,col) = KP(row,col) + Ke(kk,Il);
end
end

% PILE MASS MATRIX
MP(1,1) = pm*Ap*Le/2;
for jj =2 : ne
J MP(2*)j-1,2*jj-1) = pm*Ap*Le;
en

% LUMPED SOIL STIFFNESS MATRIX, MASS MATRIX, AND DAMPING MATRIX
KSL(1,1) = pi*G*ak*Le/2;
MS(1,1) = pi*ro”™2*sm*am*Le/2;
CS(1,1) = pi*ro*G/Vs*ac*Le/2;
for jj =2 : ne
KSL(2*jj-1,2*jj-1) = pi*G*ak*Le;
MS(2*)J-1,2*jj-1) = pi*ro~2*sm*am*Le;
g Cs(2*jj-1,2*jj-1) = pi*ro*G/Vs*ac*Le;
en

MT = MP + MS;
% FRF FUNCTION
for ii =1 :6
for jj = 1 : NFreg+l

freq = FregMax*(jj-1)/NFreq;
w=Freq*2*pi;

% SYSTEM DYNAMIC STIFFNESS
KDL = KP + KSL + i * w * CS * (2*1i-2)/710 - w2 * MT;

% FREQUENCY RESPONSE FUNCTION FRF

UL = KDL\F;
FRFL(Ei, jj) = sqrt(real (UL(1))2+imag(UL(1))"2);

end
end

for : NFreg+1

FregMax*(jj-1)/NFreq;
= freq;
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end

varl = "FRF Pile + Soil - Different Damping *;

figure; plot( x, y1, X, y2, X, y3, X, y4, X, y5, X, y6 ); grid on; title(varl);
xlabel ("load frequency [Hz]"); ylabel(*Module of the Dynamic Flexibility or FRF

[f/Kip]™);

legend("c = 0.0","c = 0.2 ca", "c =04 ca","c =06 ca","c=0.8ca","c=1.0

ca®);
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I Influence of the Soil Mass Distribution

315

The Matlab programs (worksheets) developed to compute the frequency response

function (dynamic flexibility) of the Spring-Mass system and the pile head, used to obtain

the results of in Section 6.3, are listed in this appendix.

.1 FRF For a System with Springs in Series

Ypmmmmmmm Programa FRFDistributedMass.m-------——————————

% Program to compute the dynamic flexibility of a SDOF

% with different number of springs in series (but same stifffness)
% And different mass distribution

[/ — —_

clc; clear all; close all

% R 2k kS

% * PROBLEM DATA *

% Fe e de e e e e e de e e e e dedede de de e e e de e de de de e de e e e dede Ko e ke

% Model Data

ks = 1000.*(1+0.05i); % spring stiffness
m= 10.; % mass
ma = 50.; % added mass

FregMax = 10;
NFreq = 1000;

% R 2 kR

% * PROBLEM ANALYSIS *

% Fe e e e e e e e de e Fe e e dedede de de de e e de e de de de e de e e e dede Ko e ke

% ARRAYS DEFINITION
K = zeros(10,10);

M1 = zeros(10,10);

M2 = zeros(10,10);

KD1 = zeros(10,10);

KD2 = zeros(10,10);

F = zeros(10); % Load vector

Ul = zeros(10); % System Displacement vector

U2 = zeros(10);

FRF1 = zeros(NFreq+1): % FRF SDOF

FRF2 = zeros(NFreq+1l); % FRF Series springs, lumped mass
FRF3 = zeros(NFreq+1); % FRF Series springs, distributed mass
freq = zeros(NFreqg+1); % Frequency data points

% UNIT LOAD ON TOP
F(1) = 1.0;

% STIFFNESS MATRIX
for jj =1 :9

dof(1) = jj:
dof(2) = jj+1;
for kk = 1 :

for 11 =1 : 2

row = dof(kk);

col = dof(ll);

K(row,col) = K(row,col) + ks*10*(-1)"(kk+I1l);
end



1.2

end

end
K(10,10)=K(10,10)+ks*10;
K

% MASS MATRIX
M1(1,1)=m+ma;

% FRF FUNCTION
for jj =1 :

freq(Jj) = FregMax*(§jj-1)/NFreq;
w=Freq(§j)*2*pi;

% SYSTEM DYNAMIC STIFFNESS
KD1 = K - w2 * M1;
KD2 = K - w2 * M2;

NFreg+1

% FREQUENCY RESPONSE FUNCTION FRF

Ul = KD1\F;
U2 = KD2\F;
FRF1(JJ) sqrt(real (17 (ks-wr2*m))"2+imag(1/ (ks-wr2*m))"2) ;

FRF2(J3) ; sqgrt(real (U1(1))"2+imag(UL1(1))*2);

FRF3(QJ) = sqrt(real (U2(1))2+imag(U2(1))"2);

varl = num2str(jj);

var2 = num2str(freq(j)):

var3 = num2str(FRF1(J}));

vard = num2str(FRF2(J})):;

var5 = num2str(FRF3(JJ));

var6é = strcat( vari , *," , var2 , *," , var3, ", , var4, ", , varb);

disp(var6)

end

figure; plot( freq,FRF1, freq, FRF2, freq, FRF3 ); grid on; title("FRF Multiple

Springs®)

xlabel ("load frequency [Hz]"); ylabel("Module of the Dynamic Flexibility or FRF

[L/F17);

FRF For a System with Springs in Parallel

Ypm—mmmm Programa FRFDistributedMassWithParallelSpring.m—-----
% Program to compute the dynamic flexibility of a SDOF

% with different number of springs in series (but same stifffness)

% And different mass distribution

% And a parallel spring to provide alternate path to the waves
%————— _ —_— —_— —_— —_—

clc; clear all; close all

% R 2 kR kS

% * PROBLEM DATA *

% FhAxXxAAFxIxIAIAAAAAAAAAAkhkhkhhhhhxhhhkhhhhhkikk

% Model Data

ks = 1000.*(1+0.05i);
m= 10.;
ma = 50.;

FregMax = 6;
NFreq = 1000;

% spring stiffness
% mass
% added mass
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nss
nps

2; % number of series springs
6; % number of parallel springs

% R 2 kS

% * PROBLEM ANALYSIS *

% FhAxXxAAxFxIxIAAAAAAAAAAAkhkhkdhhhhhhhhkhkhhhhkikk

% ARRAYS DEFINITION

K2 = zeros(1,1):

K3 = zeros(2*nss-1+nps,2*nss-1+nps);

M2 = zeros(1,1);

M3 = zeros(2*nss-1+nps,2*nss-1+nps);

KD2 = zeros(1,1):

KD3 = zeros(2*nss-1+nps,2*nss-1+nps);

F2 = zeros(1); % Load vector

F3 = zeros(2*nss-1+nps);

U2 = zeros(1); % System Displacement vector

U3 = zeros(2*nss-1+nps);

FRF1 = zeros(NFreq+1); % FRF SDOF

FRF2 = zeros(NFreg+1); % FRF SDOF with Lumped Added Mass
FRF3 = zeros(NFreq+1); % FRF Series Springs and Parallel,
Distributed Added Mass

freq = zeros(NFreg+1); % Frequency data points

% UNIT LOAD ON TOP

F2(1) = 1.0;

F3(nss$ = 1.0;

% STIFFNESS MATRIX
K2(1,1)= ks;
K3(1,1) = ks*nss/2;

K3(2*nss-1,2*nss-1) = ks*nss/2;
for jj = 2 : (2*nss-1)

dof(1) = jj-1;
dof(2) = jj;
for kk = 1 :
for 11 = :
row = dof(kk);
col = dof(ll);
g K3(row,col) = K3(row,col) + ks*nss/2*(-1)"(kk+I1l);
en
end
end
for jj =1 : nps
dof(1) = nss-1;
dof(2) = 2*nss-1+jj;
for kk = 1 0 2
for Il =1 : 2
row = dof(kk);
col = dof(ll);
g K3(row,col) = K3(row,col) + ks*nss/(2*(nps+1))*(-1) (kk+11);
en
end
dof(1l) = 2*nss-1+jj;
dof(2) = nss+1;
for kk = 1 0 2
for Il =1 : 2
row = dof(kk);
col = dof(ll);
g K3(row,col) = K3(row,col) + ks*nss/(2*(nps+1))*(-1) (kk+11);
en
end
end

% MASS MATRIX
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M2(1,1)=m+ma;
M3(nss,nss)=m;
for jj = 1 : (2*nss-1+nps)
d M3(J.J1) = M3UJ.JJ) + ma/(2*nss-1+nps);:
en
% FRF FUNCTION
for jj = 1 : NFreg+l

freq(Jj) = FregMax*(§j-1)/NFreq;
w=Freq(Jj)*2*pi;

% SYSTEM DYNAMIC STIFFNESS
KD2 = K2 - w2 * M2;
KD3 = K3 - w2 * M3;

% FREQUENCY RESPONSE FUNCTION FRF

U2 = KD2\F2;
U3 = KD3\F3;
FRF1(JjJ) sqrt(real (17 (ks-wr2*m))"2+imag(1/ (ks-wr2*m))"2) ;

FRF2(J3J) ; sqrt(real (U2(1))2+imag(U2(1))"2);

FRF3(JJ) = sqrt(real (U3(nss))"2+imag(U3(nss))"2);

varl = num2str(3j);

var2 = num2str(freq(jj)):

var3 = num2str(FRF1(Jj)):

vard = num2str(FRFE2(5§));

var5 = num2str(FRF3(Jj)):

var6é = strcat( vari , *," , var2 , *," , var3, "," , var4, "," , var5):;
disp(vare6)

end

figure; plot( freq,FRF1, freq, FRF2, freq, FRF3); grid on; title("FRF Multiple

Springs®)

ft7bﬁl§'load frequency [Hz]"):; ylabel("Module of the Dynamic Flexibility or FRF
F17);

FRF For a Pile-Soil System with Springs in Series

Ypm———m Programa FRFPileSoilDistributedMass.m———————————————- Y%
% Program to compute the dynamic flexibility of a pile head %
% using the equivalent lumped model obtained by regression of the %
% dynamic stiffness proposed by Novak for the soil. %
% Then representing the soil as a series of springs and a distributed %
% mass among spring nodes %
% %
Yo————-— - - -—= -—= -—= -—— ———————— %

clc; clear all; close all

% Fe e e e e e dedede e e e e dedede de de de e e de e de de de e de e e dedede Ko ke ke

% * PROBLEM DATA *

% R 2k kR

% SOIL DATA

Es = 1728000*(1+0.05i); % soil Young®s elastic mudulus[lb/ft"2]
nu = 0.40; % soil Poisson"s ratio

D=0.0; % hysteretic damping ratio

sw = 110.0; % soil specific weight [pcf]

% PILE DATA

ro = 1.0; % pile radious

L = 30.0; % pile length

Ep = 518400000.0*(1+0.05i1); % pile Youngs®™ modulus

pw = 150.0; % pile specific weight

% GENERAL DATA
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FregMax =
NFreq = 1000;

nss = 10;

ma = 20*éo*sw/5;
analysis

% Lumped model coefficients

ak = 1.3272671;
am = 0.0510557;
ac = 3.4246489;

% FhkhkIkhhhhhkhkhhhkhkhhkikhhhkhkhhhkhkhhkhkhhhhiik

% * PROBLEM ANALYSIS *

% R 2 R kR S

% GENERAL COMPUTATION

sm = sw/gQ;

G = Es/(2*(1+nu)):
Vs = sqrt(G/sm);
Le = L/ne;

pm = pw/g;

% ARRAYS DEFINITION
%

% The KDP, UP and FRFP variables refer to
% considering soil contribution (Just the

%
KD = zeros(2*ne,2*ne);
KDP = zeros(2*ne,2*ne);

KP = zeros(2*ne,2*ne);
KS = zeros(2*ne,2*ne);
Ke = zeros(4,4);
MP = zeros(2*ne,2*ne);
MS = zeros(2*ne,2*ne);
MT = zeros(2*ne,2*ne);
CS = zeros(2*ne,2*ne);
F = zeros(2*ne);
U = zeros(2*ne);

UP = zeros(2*ne);

FRF = zeros(NFreg+l);

FRFM = zeros(NFreq+1);

FRFP = zeros(NFreq+1);

freq = zeros(NFreq+1);

% DOF = 2*ne + (nss-1)*ne

KSSS = zeros((nss+1l)*ne, (nss+l)*ne);
MSSS = zeros((nss+1l)*ne, (nss+l)*ne);
KPSS = zeros((nss+1l)*ne, (nss+l1)*ne);
MPSS = zeros((nss+l)*ne, (nss+l)*ne);
KDSS = zeros((nss+1l)*ne, (nss+l)*ne);
FSS = zeros((nss+1)*ne);

USS = zeros((nss+l)*ne);

FRFSS = zeros(NFreg+1);

% UNIT LOAD ON TOP

F(1) = 1000.0;

FSS(1) = 1000.0;

% PILE ELEMENT STIFFNESS MATRIX

Ip = pi*ronM4/4.;
Ap = pi*ron2;
k1 = 4*Ep*lp/Le;

% number of elements to discretize the

% gravity acceleration [ft/sec”2]
% maximum frequency [Hz]
% Number of frequency steps

% number of series springs
% Soil mass to be added, from 3D FEM

% with partial soil mass

density of soil [Ib.s"2/ft™M]
soil shear elastic mudulus[lb/ft]
shear wave velocity [ft/sec]

pile element length

density of pile [Ib.s"2/ftM]

EXRER

the system reponse without
pile contribution).

System dynamic stiffness matrix
Pile dynamic stiffness matrix

Stiffness matrix
Dynamic Stiffness Matrix
element stiffness matrix

Pile
Soil
Pile

Pile mass matrix
Soil mass matrix_
System mass matrix

Soil damping matrix
Load vector

System Displacement vector
Pile Displacement vector

FRF = top node displacement

FRF Modulle top node displacement
FRF Pile top node displacement
Frequency data points

R B 8 B =BEXR¥® BER ¥¥

Unit harminic load on top of pile
to obtain dynamic flexibility iIn
[Ft/Kip] units

EXR

Pile crossm sectiuon inertia
Pile cross section area

X
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k2 = 6*Ep*lIp/Le”2;
k3 = 12*Ep*lp/Le”3;
Ke(1,1) = k3;
Ke(2,1) = k2;
Ke(3,1) = -k3;
Ke(4,1) = k2;
Ke(1,2) = k2;
Ke(2,2) = ki;
Ke(3,2) = -k2;
Ke(4,2) = k1/2;
Ke(1,3) = -k3;
Ke(2,3) = -k2;
Ke(3,3) = k3;
Ke(4,3) = -k2;
Ke(1,4) = k2;
Ke(2,4) = k1/2;
Ke(3,4) = -k2;
Ke(4,4) = ki;
% PILE STIFFNESS MATRIX
for jj =1 : ne-1
dof(1) = jj*2-1;
dof(2) = 1*2'
dof(3) = jj*2+1;

dof(4) = jj*2+2
for kk =1 : 4

fo

en
end
end

dof(1)
dof(2)
for kk

for II

ril=1:4
row = dof(kk);
col = dof(ll);
KP(row,col) = KP(row,col) + Ke(kk,Il);

KPSS(row,col) = KPSS(row,col) + Ke(kk,I1l);

d

ne*2-1;
e*2'
12
=1:2

row = dof(kk);

co
KP
KP
end
end

% PILE MAS
MP(1,1) =
MPSS(1,1)

for jj = 2 :

1 = dof(ll);
(row,col) = KP(row,col) + Ke(kk,Il);
SS(row,col) = KPSS(row,col) + Ke(kk,Il);

S MATRIX
pm*Ap*Le/2;

= pm*Ap*Le/2;
ne

MP(Z*jj -1,2*jj-1) = pm*Ap*Le;

MPSS(2
end

% SOIL STIFFNESS MATRIX, MASS MATRIX, AND DAMPING MATRIX

KS(1,1)
MS(1,1)
cs(1.1)

MSSS(1,1) =
for jj = 2 :

*jj-1,2%jj-1) = pm*Ap*Le;

pi*G*ak*Le/2;
pi*ro~2*sm*am*Le/2;
pi*ro*G/Vs*ac*Le/2;

ma * Le/2 / (nhe*nss);

ne

KS(2*jj-1,2*jj-1)
MS(2*Jj-1,2*j]-1)
Cs(2*3J-1,2*1i-1)

MSSS(2*jj-1,2*jj-1)

end
for ii =1 ne
if (ii < 2)
Ls = Le/2;

pi*G*ak*Le;
pi*ro~2*sm*am*Le;
pi*ro*G/Vs*ac*Le;

=ma * Le / (ne*nss);
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end

else
Ls = Le;
end

KSSS(ne*2+ (nss-1)*(i1i-1)+ 1,ne*2+ (nss-1)*(1i-1)+ 1) = nss *pi*G*ak*Ls;
for jj = 2 : nss;
dof(1) = ne*2+ (nss-1)*(i-1)+ (i-1);

if (JJ < nss)
dof(2) = dof(1)+1;

else
dof(2) = (ii-1)*2+1;
end
for kk =1 :© 2
for 11 =1 : 2
row = dof(kk);
col = dof(ll);
g KSSS(row,col) = KSSS(row,col) + nss *pi*G*ak*Ls*(-1)"(kk+I11);
en
end

MSSS(dof (1) ,dof(1)) = MSSS(dof(1),dof(1)) + ma * Ls / (ne*nss);

end

MT = MP + MS;

% FRF FUNCTION

for jj = 1 : NFreg+l

end

freq(Jj) = FregMax*(§jj-1)/NFreq;
w=Freq(Jj)*2*pi;

% SYSTEM DYNAMIC STIFFNESS

KD = KP + KS + I *w * CS - wr2 * MT;
KDP = KP - wh2 * MP;

KDSS = KPSS + KSSS - w"2 * (MPSS+MSSS);

% FREQUENCY RESPONSE FUNCTION FRF

U = KD\F;

FRFM(JJ) = sqrt(real(U(1))2+imag(U(1))™2);
FRF(J) = U(D);

UP = KDP\F;
FRFP(jj) = sqrt(real (UP(1))2+imag(UP(1))™2);

USS = KDSS\FSS;
FRFSS(jj) = sqrt(real (USS(1))"2+imag(USS(1))™2);

varl = num2str(jj);

var2 = num2str(freq(j)):

var3 = num2str(FRFM(3}));

vard = num2str(FRFSS(JJ)):;

var5 = strcat( varl , "," , var2 "," , var3, "," , vard);

% save ("FRF.txt", "varl-®, 'var2': ':ASCII', :—append')
disp(var5)

% Figure; plot( freq,FRFM ); grid on; title("FRF Using Lumped Model")
%fé}abei(;Ioad frequency [Hz]"); ylabel("Module of the Dynamic Flexibility or FRF
Kip]l®):
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figure; plot( freq,FRFM, freq, FRFSS ); grid on; title("FRF Lumped Model vs Series
of Springs and Masses™)

xlabel ("load frequency [Hz]"); ylabel("Module of the Dynamic Flexibility or FRF

[f/Kip]™);

% Figure; plot( freq, FRFP ); grid on; title("FRF Pile Alone")
%fé}abei(;Ioad frequency [Hz]"); ylabel("Module of the Dynamic Flexibility or FRF
Kip]l®):



FRF For a Pile-Soil System with Springs in Parallel

Programa FRFPileSoilDistributedMassParallel.m
% Program to compute the dynamic flexibility of a pile head

% using the equivalent lumped model obtained by regression of the
% dynamic stiffness proposed by Novak for the soil.

% Then representing the soil as a two series springs and a set of
% parallel springs, and a distributed mass among spring nodes

%

%
%
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%

clc clear all; close all

% Fe e e e e e e e de e e e e dedede Fe de e e e de e de de de e de e e e dede Ko e ke

% * PROBLEM DATA *

% R 2 Rk kR

% SOIL DATA

Es = 1728000*(1+0.05i); % soil Young®s elastic mudulus[lb/ft"2]
nu = 0.40; % soil Poisson"s ratio

D=0.0; % hysteretic damping ratio
sw = 110.0; % soil specific weight [pcf]
% PILE DATA

ro = 1.0; % pile radious

= 30.0; % pile length

Ep = 518400000.0*(1+0.05i); % pile Youngs®™ modullus

pw = 150.0; % pile specific weight
% GENERAL DATA

ne = 15; % number of elements to discretize the
pile
g = 32.2; % gravity acceleration [ft/sec”2]
FreqMax = 100; % maximum frequency [Hz]

NFreq = 1000; % Number of frequency steps

nss = 2 ; % number of series springs

nps = 10 ; % number of parallel springs
ma = 20*20*sw; % Soil mass to be added, from 3D FEM
analysis

% with partial soil mass

% Lumped model coeffFicients

ak = 1.3272671;
am = 0.0510557;
ac = 3.4246489;
% FhAxXxAAFxIxIAIAAAAXAAAAAAhhkhkhhhhhhhhkhhhhhkikk
% * PROBLEM ANALYSIS *

% Fe e e e e e e e de e e e e dedede e de e e e e e de de de e e e e e dede Ko e ke

% GENERAL COMPUTATION

sm = sw/g; % density of soil [lb.s"2/ft ]

G = Es/(2*(1+nu)) % soil shear elastic mudulus[lb/ft]
Vs = sqrt(G/sm); % shear wave velocity [ft/sec]

Le = L/ne; % pile element length

pm = pw/g; % density of pile [Ib.s"2/ft™4]

% ARRAYS DEFINITION
%

% The KDP, UP and FRFP variables refer to
% considering soil contribution (Just the
%

the system reponse without
pile contribution).

KD = zeros(2*ne,2*ne); % System dynamic stiffness matrix
KDP = zeros(2*ne,2*ne); % Pile dynamic stiffness matrix
KP = zeros(2*ne,2*ne); % Pile Stiffness matrix

KS = zeros(2*ne,2*ne); % Soil Dynamic Stiffness Matrix
Ke = zeros(4,4); % Pile element stiffness matrix
MP = zeros(2*ne.2*ne); % Pile mass matrix

MS = zeros(2*ne,2*ne); % Soil mass matrix

MT = zeros(2*ne,2*ne); % System mass matrix

CS = zeros(2*ne,2*ne); % Soil damping matrix

F = zeros(2*ne); % Load vector



U=2z
UP =

FRF =
FRFM
FRFP
freq

TDOF
TSN =
KSPS
MSPS
KPPS
MPPS
KDPS

eros(2*ne);
zeros(2*ne);

zeros(NFreqg+1);
zeros(NFreg+1);
zeros(NFreq+1);
zeros(NFreg+1);

2*ne + ((nss-1)*2+ nps)*ne;
(nss-1)*2+ nps + 1;
zeros(TDOF, TDOF);
zeros(TDOF, TDOF);
zeros(TDOF, TDOF);
zeros(TDOF, TDOF);
zeros(TDOF, TDOF);

FPS = zeros(TDOF);
UPS = zeros(TDOF);
FRFPS = zeros(NFreg+1);

% UNIT LOAD ON TOP
F(1) = 1000.0;

FPS(1) = 1000.0;

% PILE ELEMENT STIFFNESS MATRIX
Ip = pi*roM4/4.;
Ap = pi*ron2;

k1
k2
k3

4*Ep*1p/Le;
6*Ep*Ip/Le”2;
12*Ep*1p/Le"3;

Ke(1,1) k3;

EEXRR XX

R

EXR

R
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System Displacement vector
Pile Displacement vector

FRF = top node displacement

FRF Module top node displacement
FRF Pile top node displacement
Frequency data points

Total DOF
Total Spring Nodes per layer

Unit harminic load on top of pile
to obtain dynamic flexibility iIn
[Ft/Kip] units

Pile crossm sectiuon inertia
Pile cross section area

Ke(2,1)
Ke(3,1)
Ke(4,1)

Ke(1,2)
Ke(2,2)
Ke(3,2)
Ke(4,2)

Ke(1,3)
Ke(2,3)
Ke(3.3)
Ke(4.3)

Ke(l,4)
Ke(2,4)
Ke(3,4)
Ke(4,4)

k2;
-k3;
k2;

k2;
kil;
-k2;
k1/2;

-k3;
-k2;
k3;

-k2;

k2;
k1/2;
-k2;
k1;

% PILE STIFFNESS MATRIX
for jj =1 : ne-1
dof(1)
dof(2) ;
dof(3) JJ*2+1;
dof(4) = jj*2+2;
for kk =1 : 4
for 11 =1 : 4
row = dof(kk);
col = dof(ll);

munn

=

{ ——
*
N

KP(row,col) = KP(row,col) + Ke(kk,Il);
KPPS(row,col) = KPPS(row,col) + Ke(kk,Il);

end
end
end

dof(1)
dof(2) ne*2;
for kk =1 : 2
for Il =1 : 2
row = dof(kk);
col dof(ll);

ne*2-1;



KP(row,col) = KP(row,col) + Ke(kk,Il);
g KPPS(row,col) = KPPS(row,col) + Ke(kk,Il);
en
end

% PILE MASS MATRIX

MP(1,1) = pm*Ap*Le/2;

MPPS(1,1) = pm*Ap*Le/2;

for Jjj = 2 : ne
MP(Z*jj -1,2*jj-1) = pm*Ap*Le;
MPPS(2*]]—1 2*jj-1) = pm*Ap*Le;

end

% SOIL STIFFNESS MATRIX, MASS MATRIX, AND DAMPING MATRIX
KS(1,1) = pi*G*ak*Le/2;

MS(1,1) = pi*ro™2*sm*am*Le/2;

Cs(1,1) = pi*ro*G/Vs*ac*Le/2;

for jj =2 : ne

KS(2*jj-1,2*jj-1) = pi*G*ak*Le;
MS(2*jJ-1,2*)j-1) = pi*ro~2*sm*am*Le;
CS(2*jj-1,2*jj-1) = pi*ro*G/Vs*ac*Le;

end

% SOIL AS PARALLEL SPRINGS AND MASSES
for i1 =1 : ne

if (ii < 2)
Ls = Le/2;
else
Ls = Le;
end

ksref = pi*G*ak*Ls*nss/2;
mref = ma*Ls/TSN;

%First two series springs nss = 2
dof(1) = 2*ne + (2+nps)*(ii-1)+1 ;
dof(2) = (Fi-1)*2+1;
for kk =1 : 2
for 11 =1 : 2
row = dof(kk);
col = dof(ll);
KSPS(row,col) = KSPS(row,col) + ksref;

end
d
ESPS(dof(l),dof(l)) = KSPS(dof(1),dof(1)) + ksref;
MSPS(dof(1),dof(1)) = MSPS(dof(1),dof(1)) + mref;
MSPS(dof(2) ,doF(2)) = MSPS(dof(2),dof(2)) + mref;

%second two series springs

dof(1l) = 2*ne + +nps)*(ii-1)+2 ;
dof(2) = (||—1)*2+1'
for kk =

for II = 1 : 2
row = dof(kk)'
col = dof(ll);
g KSPS(row,col) = KSPS(row,col) + ksref;
en
end
KSPS(dof(1),dof(1)) = KSPS(dof(1l),dof(1)) + ksref;
MSPS(dof (1) ,dof(1)) = MSPS(dof(1l),dof(1)) + mref;

Y%set of parallel springs
for jj 1 : nps
dof (1) = 2*ne + (2+nps)*(ii-1)+1;
dof(2) = 2*ne + (2+nps)*(ii-1)+2+jj;
for kk =1 : 2
for 11 =1 :© 2
row = dof(kk);
col = dof(ll);

KSPS(row col) = KSPS(row,col) + ksref/(nps+1);

end
d
ﬁgPS(dof(Z),dof(Z)) = MSPS(dof(2),dof(2)) + mref;
dof (1) = 2*ne + (2+nps)*(1i-1)+2;

dof(2) = 2*ne + (2+nps)*(1i-1)+2+]j;
for kk =1 : 2
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for Il =1 : 2
row = dof(kk);
col = dof(ll);
g KSPS(row,col) = KSPS(row,col) + ksref/(nps+1l);
en
end
end

end

MT = MP + MS;
% FRF FUNCTION
for jj = 1 : NFreg+l

freq(Jj) = FregMax*(§jj-1)/NFreq;
w=Freq(Jj)*2*pi;

% SYSTEM DYNAMIC STIFFNESS

KD = KP + KS + I *w * CS - wr2 * MT;
KDP = KP - wh2 * MP;

KDPS = KPPS + KSPS - w~2 * (MPPS+MSPS);

% FREQUENCY RESPONSE FUNCTION FRF

U = KD\F;

FRFM(JJ) = sqrt(real(U(1))2+imag(U(1))™2);
FRE(J) = U(D);

UP = KDP\F;
FRFP(jj) = sqrt(real (UP(1))2+imag(UP(1))"2);

UPS = KDPS\FPS;
FRFPS(JJj) = sqrt(real (UPS(1))2+imag(UPS(1))"2);

varl = num2str(jj);

var2 = num2str(freq(j)):

var3 = num2str(FRFM(3}));

vard = num2str(FRFPS(JJ)):;

var5 = strcat( varl , "," , var2 "," , var3, "," , vard);

% save ("FRF.txt", "varl-®, 'var2': ':ASCII', :—append')
disp(var5)

end

% Figure; plot( freq,FRFM ); grid on; title("FRF Using Lumped Model")
% xlabel("load frequency [Hz]"); ylabel("Module of the Dynamic Flexibility or FRF

[fu/Kip]):
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figure; plot( freq,FRFM, freq, FRFPS ); grid on; title("FRF Lumped Model vs Series

of Springs and Masses™)

xlabel ("load frequency [Hz]"); ylabel("Module of the Dynamic Flexibility or FRF

[f/Kip]l™);
% Figure; plot( freq, FRFP ); grid on; title("FRF Pile Alone")

% xlabel ("load frequency [Hz]"); ylabel("Module of the Dynamic Flexibility or FRF

[fu/Kip]):

FRF For a Pile-Soil System with Single Spring

Ypm—mmmm Programa FRFPileSoilLumpedMass.m---————————————

% Program to compute the dynamic flexibility of a pile head

% using the equivalent lumped model obtained by regression of the
% dynamic stiffness proposed by Novak for the soil.

% Then representing the soil as a single spring and a and a lumped
% mass among pile nodes

[/ — —_ _—
clc; clear all; close all



% R 2 Rk R kS

% * PROBLEM DATA *

% FhxAxXAAFxIxIAAIAAAAAAAAhkhkhkdhhhhhhhhkhkhhkhhkikk

% SOIL DATA
Es = 1728000*(1+0.05i);

nu = 0.40;
D=0.0;

sw = 110.0;

% PILE DATA

ro = 1.0;

L = 30.0;

Ep = 518400000.0*(1+0.05i);
pw = 150.0;

% GENERAL DATA
ne = 15;

pile

g = 32.2;

NFreq = 1000;
nss = 10;

ma = 20*éo*sw/5;
analysis

% Lumped model coefficients

ak = 1.3272671;
am = 0.0510557;
ac = 3.4246489;

% R 2 kR kR T

% * PROBLEM ANALYSIS *

% FhAxXxAAIIxIAIAAAAXAAAAAkhkhkhkhkdhhdhhhhhhhkhhhhkikk

% GENERAL COMPUTATION

sm = sw/g;

G = Es/(2*(1+nu));
Vs = sqrt(G/sm);
Le = L/ne;

pm = pw/g;

% ARRAYS DEFINITION
%

% soil Young®s elastic mudulus[lb/fe 2]
% soil Poisson®s ratio

% hysteretic damping ratio

% soil specific weight [pcf]

% pile radious

% pile length

% pile Youngs®™ modulus
% pile specific weight

% number of elements to discretize the

% gravity acceleration [ft/sec/”2]
% maximum frequency [Hz]
% Number of frequency steps

% number of series springs

% Soil mass to be added, from 3D FEM

% with partial soil mass

EEXRER

% The KDP, UP and FRFP variables refer to
% considering soil contribution (Just the

%
KD = zeros(2*ne,2*ne);
KDP = zeros(2*ne,2*ne);

KP = zeros(2*ne,2*ne);
KS = zeros(2*ne,2*ne);
Ke = zeros(4,4);
MP = zeros(2*ne,2*ne);
MS = zeros(2*ne,2*ne);
MT = zeros(2*ne,2*ne);
CS = zeros(2*ne,2*ne);
F = zeros(2*ne);
U = zeros(2*ne);

UP = zeros(2*ne);

FRF = zeros(NFreqg+1l);

FRFM = zeros(NFreg+1);
FRFP = zeros(NFreq+1l);
freq = zeros(NFreqg+1);

% DOF = 2*ne + (nss-1)*ne
KSLS = zeros(2*ne,2*ne);
MSLS = zeros(2*ne,2*ne);
KPLS = zeros(2*ne,2*ne);
MPLS = zeros(2*ne,2*ne);

EERR VR & ¥ BEXR ¥R &=¥

density of soil [lb.s"2/ftM]
soil shear elastic mudulus[lb/ft]
shear wave velocity [ft/sec]

pile element length

density of pile [Ib.s"2/7ft™M]

the system reponse without
pile contribution).

System dynamic stiffness matrix
Pile dynamic stiffness matrix

Pile

Soil
Pile

Stiffness matrix
Dynamic Stiffness Matrix
element stiffness matrix

Pile mass matrix
Soil mass matrix_
System mass matrix

Soil damping matrix
Load vector

System Displacement vector
Pile Displacement vector

FRF = top node displacement

FRF Modulle top node displacement
FRF Pile top node displacement
Frequency data points
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KDLS = zeros(2*ne,2*ne);
FLS = zeros(2*ne,2*ne);
ULS = zeros(2*ne,2*ne);
FRFLS = zeros(NFreqg+1);

% UNIT LOAD ON TOP
F(1) = 1000.0;

FLS(1) = 1000.0:
% PILE ELEMENT STIFFNESS MATRIX

327

% Unit harminic load on top of pile
% to obtain dynamic flexibility in
% [Ft/Kip] units

Ip = pi*ro™M/4._; % Pile crossm sectiuon inertia
Ap = pi*ron2; % Pile cross section area
k1 = 4*Ep*lIp/Le;

k2 = 6*Ep*Ip/Le"2;
= 12*Ep*Ip/Le"3;

k3;

Ke(3.1
Ke(4,1

Ke(1,2
Ke(2,2
Ke(3,2
Ke(4,2)

Ke(1,3)
Ke(2,3)
Ke(3,3)
Ke(4,3)

Ke(1,4)
Ke(2.4)
Ke(3.4)
Ke(4,4)

d
)
)
)
)

k2;
-k3;
k2;

k2;
ki;
-k2;
k1/2;

-k3;
-k2;
k3;

-k2;

k2;
k1/2;
-k2;
ki;

% PILE STIFFNESS MATRIX

for jj =1 :
dof(1) =
dof(2)
dof(3)
dof(4)
for kk

ne-1
1i*2-1;
1J*2:
JI*2+1;
JI*2+2;
1:4

end
end

dof (1)
dof(2)
for Kkk

for 11 =1 : 4
row = dof(kk);
col = dof(ll);
KP(row,col) = KP(row,col) + Ke(kk,Il);
g KPLS(row,col) = KPLS(row,col) + Ke(kk,Il);
en

ne*2-1;
ne*2;
1:2

for Il =1 - 2

end
end

row = dof(kk);

col = dof(ll);

KP(row,col) = KP(row,col) + Ke(kk,Il);
KPLS(row,col) = KPLS(row,col) + Ke(kk,Il);

% PILE MASS MATRIX
MP(1,1) = pm*Ap*Le/2;
MPSS(1,1) = pm*Ap*Le/2;

for jj

2 : ne

MP(2*)j-1,2*jj-1) = pm*Ap*Le;
MPLS(2*jj-1.2*jj-1) = pm*Ap*Le;

end

% SOIL STIFFNESS MATRIX, MASS MATRIX, AND DAMPING MATRIX
KS(1,1) = pi*G*ak*Le/2;
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MS(1,1)
cs(1.1)

MSLS(1,1) = ma * Le/2;

pi*ro~2*sm*am*Le/2;
pi*ro*G/Vs*ac*Le/2;

for jj =2 : ne
KS(2*jj-1.2*jj-1) = pi*G*ak*Le;
MS(2*)J-1,2*]j-1) = pi*ro~2*sm*am*Le;
Cs(2*jj-1,2*jj-1) = pi*ro*G/Vs*ac*Le;

MSLS(2*jj-1,2*jj-1) = ma * Le;
KSLS(2*3j-1,2*jjJ-1) = pi*G*ak*Le;
end

MT = MP + MS;

% FRF FUNCTION

for jj = 1 : NFreg+l
freq(Jj) = FregMax*(§j-1)/NFreq;
w=Freq(Jj)*2*pi;

% SYSTEM DYNAMIC STIFFNESS

KD = KP + KS + 1 *w * CS - wh2 * MT;
KDP = KP - w2 * MP;

KDLS = KPLS + KSLS - w~2 * (MPLS+MSLS);

% FREQQENCY RESPONSE FUNCTION FRF

U = KD\F;

FREM(JJ) = sqrt(real (U(1))2+imag(U(1))2);
FRF(J) = U(D:

UP = KDP\F;
FRFP(Jj) = sqrt(real (UP(1))2+imag(UP(1))"2);

ULS = KDLS\FLS;
FRFLS(Jj) = sqrt(real (ULS(1))"2+imag(ULS(1))™2);

varl = num2str(jj);

var2 = num2str(freq(Jj)):

var3 = num2str(FRFM(JJ));

vard = num2str(FRFLS(JJ)):;

var5 = strcat( varl , *," , var2 , *," , var3, "," , var4d);

% save ("FRF.txt", "varl®, "var2-, ':ASCII', "-append”)
disp(varb)

end

% Figure; plot( freq,FRFM ); grid on; title("FRF Using Lumped Model™)
%f:}abei(;load frequency [Hz]"); ylabel("Module of the Dynamic Flexibility or FRF
Kipl®):

figure; plot( freq,FRFM, freq, FRFLS ); grid on; title("FRF Lumped Model vs Series
of Springs and Masses™)

xlabel ("load frequency [Hz]"); ylabel("Module of the Dynamic Flexibility or FRF
[ft/Kip]™);

% Figure; plot( freq, FRFP ); grid on; title("FRF Pile Alone")
%f:}abei(;load frequency [Hz]"); ylabel("Module of the Dynamic Flexibility or FRF
Kipl®):



