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Abstract 
 
 
The most widely used model to perform the analysis of piles under lateral loads consists 

in modeling the pile as a series of beam elements and representing the soil as a group of 

unconnected, concentrated springs perpendicular to the pile (Discrete Winkler Model). 

The literature review shows that the soil stiffness and damping properties are included in 

a dynamic analysis through lumped springs and dashpots, but a lumped mass to represent 

soil inertia is not included.  

 

The objective of this investigation is to perform an analytical and numerical study of the 

dynamic response of the pile-soil system under lateral loads (considering the soil as a 

semi-infinite half space), in order to develop a rational method that includes the soil 

contribution to the system inertial properties through a series of lumped masses, 

consistent with the Discrete Winkler Model, and to evaluate the importance of such 

lumped mass in the system response. 

 

A simplified lumped model, consistent with the Winkler hypothesis, was obtained by 

performing an approximation of the continuous (plane strain) model developed by 

Novak. In the proposed approach, the pile-soil interaction is taken into account through 

three frequency independent elements: a spring with stiffness ka, a mass with value ma, 

and a dashpot with coefficient ca. The spring-mass-dashpot coefficients ka, ma, and ca that 

represent the soil can be obtained by means of simple equations.  

 

The proposed lumped model was used to demonstrate that a lumped soil mass is not 

required for small soil Poisson’s ratios. However, the soil mass is important for high soil 

Poisson’s ratios, as may be the case of saturated soils (for ν = 0.5 the required soil 

lumped mass is in the same order of the pile mass contribution). 
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Resumen 
 
 
El modelo más usado para efectuar el análisis de pilotes bajo carga lateral consiste en 

modelar el pilote como una serie elementos de viga (flexionales), y representar al suelo 

como un grupo de resortes concentrados, desconectados, perpendiculares al pilote 

(Modelo Discreto de Winkler). La revisión bibliográfica muestra que las propiedades de 

rigidez y amortiguamiento del suelo son incluidas en un  análisis dinámico por medio de 

resortes y amortiguadores concentrados, pero las propiedades de inercia del suelo no son 

consideradas por medio de una masa concentrada. 

 

El objetivo de esta investigación es desarrollar un estudio analítico y numérico de la 

respuesta dinámica del sistema suelo-pilote bajo cargas laterales (considerando el suelo 

como un espacio semi-infinito), para desarrollar un método racional que incluya la 

contribución del suelo a las propiedades de inercia del sistema, a través de una serie de 

masas concentradas, consistentes con el  Modelo Discreto de Winkler, y evaluar la 

importancia de esta masa concentrada en la respuesta del sistema. 

 

Se realizó una aproximación al modelo continuo (de estado plano de deformaciones) 

desarrollado por Novak, para obtener un modelo simplificado consistente con las 

hipótesis de Winkler. La interacción suelo-pilote se tiene en cuenta a través de tres 

elementos independientes de la frecuencia: un resorte de rigidez ka, una masa de valor ma, 

y un amortiguador de constante ca. Estos tres coeficientes se obtienen por medio de 

expresiones sencillas. 

 

Este modelo se usó para demostrar que para razones de Poisson bajas no se requiere una 

masa concentrada de suelo. Sin embargo, para razones de Poisson altas, como es el caso 

de suelos saturados,  la masa de suelo es importante (para  ν = 0.5 la masa concentrada de 

suelo es del mismo orden que la contribución de masa del pilote). 
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1 Introduction 
 
This chapter presents the justification of the developed research project, and the 

objectives and scope of the work, together with a brief discussion of the methodology 

adopted to develop the project. 

 

1.1 Justification 
 

Foundation systems composed by isolated piles or pile groups are extensively used to 

support different types of structures placed over soft soil layers, where shallow 

foundations are not appropriate because they do not provide the required capacity, or may 

experience too large settlements. 

 

These pile foundations have to be designed to support lateral loads due to earthquakes, 

wind, and vehicle impact loads, among others. The most widely used model to perform 

the analysis of piles under lateral loads consists in modeling the pile as a series of beam 

elements, and considering the pile-soil interaction by representing the soil as a group of 

unconnected, concentrated springs perpendicular to the pile (Discrete Winkler Model). In 

order to consider soil non-linear behavior, the springs can have a varying stiffness given 

through a non-linear load-deflection relationship that depends on the type of soil and type 

of pile, known as p-y curves. 

 

To adequately address pile response under earthquake actions, or to analyze heavy 

vibratory machine foundations, it is often required to perform a dynamic analysis of the 

pile for transverse (lateral) vibrations. For a dynamic analysis it is critical to have an 

adequate representation of the system stiffness (force-deflection relationships), and 

adequate representation of the system mass involved in the vibration phenomena. Up to 

now, the Winkler model that is generally used only takes into account the mass of the 

pile, and does not consider the possible soil mass contribution to the inertia 

characteristics of the system. 
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The literature review (presented in Chapter 2) shows that the soil stiffness and damping 

properties are included in a dynamic analysis through lumped springs and dashpots, but a 

lumped mass to represent soil inertia is not included. The objective of this investigation is 

to perform an analytical and numerical study of the dynamic response of the pile-soil 

system under lateral loads (considering the soil as a semi-infinite half space) in order to 

assess the importance of the soil mass in the system response, and develop a rational 

method that includes the soil contribution to the system inertial properties through a 

series of lumped masses, consistent with the Discrete Winkler Model. 

 

1.2 Objectives and Scope 
 

The main objective of this investigation is to assess the importance of the soil mass in the 

soil-pile system response and to develop a rational method to include the soil contribution 

to the inertial properties of a soil-pile system under dynamic lateral loads, through 

lumped masses consistent with the discrete Winkler model. This would lead to a better 

representation of the dynamic soil-pile interaction.  

 

After performing the analytical studies necessary to develop a procedure for the inclusion 

of the soil mass into the system, a series of worksheets and computer programs were 

developed in order to perform the dynamic analysis of the system response. This allows 

validating the method developed by comparing the results to those of more complex 

analyses, such as a 3D Finite Element Method (performed with robust commercial 

packages such as SAP2000), or to the ones obtained by experimental results. They also 

allow performing some parametric studies and applications. 

 

After performing the verification and validation of the model, and the evaluation of some 

case studies, conclusions regarding the significance (or not) of including soil inertial 

properties in the analysis are presented, the accuracy of the proposed model is discussed, 

and recommendations for possible future work are developed.  
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In order to limit the scope of the project, the analysis focuses on a single pile located in a 

homogeneous soil deposit, evaluated as a semi-infinite half space. The pile has a straight 

axis, circular cross section, and is placed vertically. The soil was assumed not saturated, 

so pore pressure effects (including liquefaction) were not an issue. 

   

1.3 General Procedures and Methods 
 

Following is a list of the primary tasks conducted during this research: 

a) Develop a thorough study and literature review of relevant topics (piles under static 

and dynamic lateral loads, seismic-soil-pile interaction, soil-structure interaction, 

lumped models of piles). The summary of the findings are presented in Chapter 2. 

b) Perform a numerical study of the influence of the soil mass on the system response by 

performing a dynamic analysis of 2D and 3D Finite Element Models of a case study 

of a pile in a sand deposit. The study is performed without considering the soil mass, 

including the soil mass, and including a partial zone of soil with mass. The main 

objective is to compare the response of the system with and without the soil mass, in 

order to assess the impact of the soil inertial properties on the pile-soil system 

response, and to compare the results with partial soil mass and with full soil mass, in 

order to assess if a lumped mass model is able to replicate the system response. The 

results are presented in Chapter 3. 

c) Propose an approximation and perform a regression analysis of the complex dynamic 

stiffness model developed by Novak. The model, one of the most accepted and used 

in the literature, is based on a continuous approach that considers the soil as a 

homogeneous, elastic, semi-infinite medium, and the pile as a straight vertically 

placed element with flexural deformations and rigid cross section. The objective is to 

obtain an analytical expression for the equivalent lumped mass that allows for the use 

of a discrete beam on elastic foundation (BEF) model that considers soil inertia 

properties. The appropriate pile stiffness, mass and damping matrices required to 

perform a 2D stiffness analysis are derived. These results are presented in Chapter 4. 
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d) The accuracy of the simplified discrete model obtained is validated by means of a 

series of numerical tests. To this end several worksheets and programs are developed 

in MathCad and Matlab. The validations performed are: 

• Examination of the accuracy of the regression analysis performed by 

computing the appropriate regression analysis statistical parameters 

• Evaluation of the accuracy of the discrete model for representing the 

continuous model by analyzing the response of a case study. Then, in order to 

generalize the results, a series of parametric studies are performed, where soil 

and pile characteristics are varied in a wide range. 

• Comparison of the results of the discrete model versus the results of a 3D 

FEM analysis, for a case study. 

• Comparison of the results of the discrete model with experimental results.  

• Evaluation of the effect of the Poisson’s Ratio in the system response in a 3D 

FEM model, to analyze if these results contribute to explain the variation of 

the mass coefficient found in the simplified model. 

• Comparison of the simplified model stiffness and the damping coefficients to 

corresponding coefficients presented in the literature. 

These analyses are presented in Chapter 5.                                                                                              

e) Development of applications (analyses and parametric studies) of the simplified 

lumped model. This is reported in Chapter 6. 

f) Drawing conclusions and, based on the findings, preparation of recommendations. 

The conclusions and recommendations are presented in Chapter 7. 

 

Some comments regarding the adopted soil model and numerical procedures are 

presented in the following subsections.  

 

1.3.1 Soil Model Proposed for this Work 
 

The Beam on Elastic Foundation approach (Winkler model, or subgrade-reaction 

approach) was adopted to model the soil in this study. Despite the disadvantages of the 
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model (i.e. lack of continuity of the soil model because the displacements at a point of a 

soil are not influenced by stresses and forces at other points within the soil), this approach 

has been widely employed in foundation engineering practice as confirmed by diverse 

authors (e.g. Poulos and Davis, 1980; El Naggar and Novak, 1996; Wang et al., 1998; 

Mostafa and El Naggar, 2002). In addition, it is the procedure recommended in many 

technical reports such as the publications of the Federal Highway Administration (Lam 

and Martin, 1986; FHWA, 1997; FHWA, 1998), the reports of the U.S. Army Corps of 

Engineers (USACE, 1991; USACE, 1998; Mosher and Dawkins, 2000), the publications 

of the Transportation Research Board (Brown et al., 2001), and the Naval Facilities 

Engineering Command (NFEC, 1986).  

 

Some of the advantages of the subgrade-reaction approach can be summarized as follows: 

• It has been proven to be a versatile technique. 

• Simple numerical algorithm implementation. 

• Fast problem modeling and solution computation. 

• Ability to take into account factors such as the variation of soil stiffness with 

depth and the layering of the soil profile (vertical soil inhomogeneity). 

• Ability to simulate nonlinearity (through the p-y curves), and hysteretic 

degradation of the soil surrounding the pile by simply changing the modulus of 

subgrade-reaction. 

• Large body of knowledge: the considerable amount of past experience gained in 

applying this approach to practical problems, and the availability of a number of 

empirical correlations to determine the modulus of subgrade-reaction. 

 

Its extensive use in the current analysis of piles has been one of the principal reasons for 

selecting this methodology for the present research project. The discrete BEF model has 

the potential to provide a rational way to address the soil inertial contribution to soil-pile 

interaction. 
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1.3.2 Proposed Numerical Implementation 
 

Regarding the numerical implementation, although the Finite-Difference Method (FDM) 

has been widely used by many authors (as described in Section 2.1.1), the Stiffness 

Matrix Approach (one dimensional Finite Element Method - FEM) was adopted, since 

this approach is considered more suitable and general for the current study.  

 

According to Bowles (1996) the following is a summary of the main disadvantages of the 

FDM: 

• Boundary conditions are difficult to introduce in the FDM, requiring fictitious 

nodes. 

• The FDM would require all nodes to have equal spacing in order to use the same 

recurrent equation. Better pile design data is obtained when closer spacing is used 

near the pile head. 

• The FDM end and interior equations are not the same. 

• The FDM equations for the pile head depend on whether it is free or either its 

translation and/or rotation are restrained. 

• The FDM matrix is full (not scattered). 

• Variable pile cross sections are not easily handed by the FDM. 

 

On the other hand, as reported by Bowles (1996), the FEM has the following advantages: 

• The FEM matrix is always symmetric and banded. 

• The FEM delivers translation and rotation of pile nodes. 

• The FEM elements can have length and cross section that vary from one element 

to the next. 

• Boundary conditions and load points can be easily specified in the FEM. 

• FEM programs for piles under lateral loads can be easily adapted to other similar 

type of problems, such as beams on elastic foundation, lateral piers, and in-take 

towers, among others.    
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2 Literature Review and Background 

 
A review of soil-pile behavior under lateral loads is presented in the following sections. 

The purpose of this chapter is to present the current state of the art and practice in the 

analysis of piles under static and dynamic lateral loads, pointing out some milestones in 

this development, rather than be a comprehensive review of all the papers and reports 

related to these topics. The chapter has two major sections, which are relevant to the 

proposed research topic and will serve as theoretical background and reference: the 

modeling of piles under static lateral loads, and the analysis of piles under dynamic loads. 

 

2.1 Analytical Models for Piles under Static Lateral Load 
 

As described by Poulos and Davis (1980) and Fleming et al. (1992), there are three major 

approaches for the load-deflection prediction of laterally loaded piles. 

 

2.1.1 Beam on Elastic Foundation Approach 
 

This model was originally proposed by Winkler in 1867. The model, also known as Beam 

on Elastic Foundation (BEF) and Beam on Winkler Foundation (BWF), proposes that the 

deflection (v) at any point of the soil in contact with the pile is linearly related to the 

contact pressure (p) at that point, and independent of the contact stresses at other points. 

In other words, the model represents the soil as a series of unconnected linearly-elastic 

distributed springs (Aristizábal-Ochoa, 2003), as shown in Figure 2.1. The pile is 

modeled as a beam-column element. 
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Figure 2.1 Subgrade Reaction Modulus Model: (a) Pile and Soil representation, (b) Effect of a partial 

uniform pressure over the soil model 
 

The spring modulus of the model is the soil Modulus of Lateral (Horizontal) Subgrade 

Reaction, Kh, in units of [force/length3]. Kh represents the horizontal pressure (or 

horizontal force acting on a unit vertical area; or the distributed force along the pile 

length, acting on a unit length) required to produce a unit horizontal displacement. Kh 

depends on the soil type, depth, and foundation size, among others.  

 

The differential equation of equilibrium of a beam (pile) subjected to a distributed load w 

is given by: 

where: 

 Ep = pile modulus of elasticity 
Ip = pile cross section moment of inertia 
d = pile diameter 
w = soil reaction per unit length over the pile (distributed load) 
p = soil pressure over the pile 
Kh = soil lateral subgrade-reaction modulus 
v = lateral displacement of the pile  
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Analytical (Closed Form) Solutions have been obtained for this equation for the case of 

Kh constant with depth, and specific boundary conditions (e.g., Hetenyi, 1946; Scott, 

1981, presents the Hetenyi solution in a detailed way). These solutions, although limited 

regarding practical applications, provide a significant insight into the pile response and 

the factors that affect the soil-pile interaction. Vesić (1961) presented a rigorous analysis 

of beams resting on an elastic, isotropic half-space medium, obtaining analytical 

solutions (deflection, slope, bending moment, shear force, and contact pressure) for 

infinite beams acted upon by a concentrated load and by a couple. He compared these 

solutions with the Winkler model solutions, and recommended values for the subgrade 

reaction modulus so that the Winkler solution can provide reasonably accurate results. He 

also demonstrated that the Winkler model gives reasonably accurate results for long and 

medium length beams. Kagawa (1992) performed a dimensional analysis to evaluate 

factors affecting the subgrade reaction modulus Kh, and proposed a procedure to 

determine an average value of Kh as a function of the soil Young’s modulus that may be 

used for pile analysis based on the BEF. 

 

Numerical Solutions by means of the Finite Difference Method (FDM) have been 

proposed and implemented since the early fifties (e.g. Palmer and Thompson, 1948; 

Gleser, 1953; Reese and Matlock, 1956). In this method, the basic differential equation 

(1) is written in finite-difference form, and the solution is found at discrete points. A 

general discrete model for the FDM is shown in Figure 2.2. The discretization of the 

solution by means of the FDM has the disadvantages that it is difficult to introduce 

general boundary conditions at the pile top and tip, and that the elements must be uniform 

in size. 
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Figure 2.2:  Finite-Difference Discretization for the Analysis of Laterally Loaded Piles (Poulos and 

Davis, 1980) 
 

 

Numerical Solutions by means of the Finite Element Method (FEM) with One 

Dimensional Elements (1D elements), or beam elements, may be obtained from 

foundation engineering books (e.g. Bowles, 1974; and Bowles, 1996). This analysis is 

most often referred to as the Stiffness Method. 

 

Some authors have used the BEF to propose a complete design process for piles. The 

work by Broms (1964a/b, 1965) is perhaps the best known of these approaches, where the 

BEF is used to predict deflections under working loads, and a method to estimate 

ultimate load resistance is also provided by assuming a number of simple ultimate states 

for the pile-soil system.  
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2.1.1.1 The p-y Method 
 

The original BEF model by itself does not account for the nonlinear response of the soil. 

The most widely-employed approach to consider the nonlinear nature of soil response is 

the p-y Method, where the spring stiffness value is variable, allowing consideration of a 

non-proportional relationship between the soil resistance per unit pile length (p) and the 

lateral displacement (y) (see Figure 2.3).  
 

 
Figure 2.3: Typical p-y Curve for Ductile and Brittle Soil (FHWA, 1997) 

 
 

The p-y approach was developed by Reese, Matlock and coworkers. In a series of papers, 

they described how to construct the p-y curves for different soils and depths based on 

experimental results, how to develop a solution by the FDM, and how to develop a 

computer program (Matlock and Reese, 1960; Reese, 1977; and Matlock, 1970). Figure 

2.4 shows a schematic of the soil-pile modeling and the corresponding p-y curve for each 

non-linear spring. 
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Figure 2.4: Schematic of Pile-Soil Model for the p-y Approach (FHWA, 1997) 

 

 

It is important to point out that p is not the contact stress (as in the original Winkler 

model), but the resultant of the contact stresses (with complex distribution) and the 

friction (adhesion) along the pile perimeter for a given depth, resulting in a contact 

(interaction) load per unit length of pile. Figure 2.5 shows a distribution of contact 

stresses prior to and after pile lateral deflection. The value of p depends on soil type, pile 

type and shape, depth, and value of the deflection y (since the response is non-linear). 

Figure 2.6 represents the complexity of the factors involved (for the case of a drill shaft). 
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Figure 2.5: Distribution of contact stresses against a pile before and after lateral deflection (Reese 

and Van Impe, 2001) 
 

 

 

The p-y method is sometimes referred to in the literature as the Beam-on-Nonlinear-Winkler 

Foundation (BNWF) framework to model soil-pile interaction (e.g. Wang et al., 1998; 

Hutchinson et al., 2004), or as the Load-Transfer Approach (Basile, 2003). 

Passive lateral 
soil resistance Active lateral 

soil resistance 

Friction 
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Figure 2.6: Lateral loading and resistance components on a drilled shaft (Wallace et al, 2001) 

 

 

2.1.1.2 The Wedge Model 
 

The p-y curves of Matlock-Reese were established based on the results of field tests on 

instrumented piles. Ashour, Norris, and coworkers (Ashour et al., 1998; Ashour and 

Norris, 2000) developed the Strain Wedge Model, which allows the assessment of 

nonlinear p-y curve response of laterally loaded piles based on an 3D soil-pile interaction 
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response through a passive wedge soil developing in front of the pile (Figure 2.7). This 

approach permits to relate the stress-strain-strength behavior of the layered soil in the 3D 

wedge model to the 1D BNWF model parameters. In this way, the nonlinear response 

may be obtained from an analysis that considers the actual conditions of the soil-pile 

system (pile diameter, soil stratification, etc.) 

 
 

Figure 2.7: Wedge Model Configuration and Distribution of Soil-Pile Reaction along Deflected Pile 
(Ashour and Norris, 2000) 

 

2.1.1.3 New Developments in BEF 
 

The BEF analysis using the Winkler model to predict soil-pile behavior under static 

lateral loads continues to be a research topic. A few examples of recent developments are 

mentioned here. Shen and Teh (2004) proposed a variational approach (similar to the Ritz 

method) to perform the analysis of a laterally loaded pile in a soil with subgrade reaction 

modulus increasing with depth. Hsiung (2003) presented the theoretical solution for the 
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maximum bending moment and deflection for laterally loaded piles in a uniform 

subgrade reaction modulus soil that yields. Kim et al. (2004) conducted lateral field tests 

on instrumented piles located in a site in Korea, in order to obtain p-y curves and analyze 

the influence of the installation method and head restraint conditions in the soil-pile 

response. 

 

2.1.2 Elastic Continuum Approach 
 

The representation of the soil as a homogeneous elastic continuum has also been 

proposed for the analysis of the soil-pile interaction.  

 

Some authors developed Plane Strain Models (e.g. Davis and Booker, 1971) for the 

analysis of limit pile capacity. These solutions are relevant for the case of shallowly-

embedded sheet piling, and may be also accurate for a group of piles closely spaced in a 

single long row (i.e. wall footing). Plane Strain Models are also used for modeling the 3D 

system as a series of parallel horizontal planes in plane strain. 

 

Other authors developed Three Dimensional Elastic Models (e.g. Douglas and Davis, 

1964; Spillers and Stoll, 1964; Poulos, 1971, 1972). These models are based on Mindlin’s 

Solution for the horizontal displacement caused by a horizontal point load within the 

interior of a semi-infinite elastic-isotropic homogeneous mass (this solution can be found 

in Elasticity handbooks, such as the one by Poulos and Davis, 1974). Since Mindlin’s 

solutions become singular when evaluating the displacement corresponding to the point 

where the load is located, integral solutions over a predefined area, representing a 

fraction of the pile surface, are used (Douglas and Davis, 1964; Spillers and Stoll, 1964; 

Basile, 2002). These solutions are generally known as Green Functions, and define the 

displacement field due to an assumed loading system (pattern) associated with the pile-

soil interaction. 
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Poulos and Davis (1980) presented the implementation of the model proposed by Poulos 

(1971, 1972). In this model the pile is assumed to be a thin rectangular vertical strip 

divided in elements, and it is considered that each element is acted upon by uniform 

horizontal stresses (see Figure 2.8) which are related to the element displacements 

through the integral solution of Mindlin’s problem. Finally, they solved the differential 

equation of equilibrium of a beam element on a continuous soil with the Finite Difference 

Method (FDM), in which the soil pressures over each element are unknown variables. 

After obtaining the pressures, the displacements are found. 

 
Figure 2.8: General Pile Discretization for the Analysis of Soil as a Continuous. Stresses acting on (a) 

pile, (b) soil adjacent to pile (Poulos and Davis, 1980) 
 

The model has the advantage that it is able to take into account the continuous nature of 

soil, the semi-infinite dimension of the half-space, and the boundary conditions along the 

unloaded ground surface. Although yielding of soil may be introduced by varying the soil 

elastic modulus, this approach does not permit to consider local yielding and layered soil 

conditions (without stretching Mindlin’s Solution for a homogeneous half-space). In this 

regard, Spillers and Stoll (1964) proposed the computation of the maximum permissible 

load by any suitable yielding condition (for instance, a wedge model for the top part of 
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the soil, where the displacements are larger and yielding of soil occurs), together with the 

elastic solution and an iterative process to verify that the maximum load is not exceeded 

at any point. It was mentioned that two of the drawbacks of the discretization by means 

of the FDM is the difficulty to introduce general boundary conditions at pile top and 

bottom, and the required uniform size of the elements. As reported by Basile (2002), this 

soil model was also used for the Boundary Element Method (BEM) analysis of piled 

foundations. 

 

2.1.3 The Finite Element Approach 
 

In order to obtain the solution of laterally loaded flexible piles in an elasto-plastic soil 

mass, the Finite Element Method (FEM) has been proposed and implemented to perform 

a numerical analysis of the soil-pile system.  

 

As reported by Poulos and Davis (1980), the first attempts included two-dimensional 

finite element models in the horizontal plane (Baguelin and Frank, 1979), axi-symmetric 

geometries (Banerjee and Davies, 1978), and general three-dimensional finite element 

analysis (Desai and Appel, 1976). 

 

Some recent publications include the work by Yang and Jeremic (2002), who used 3D FE 

models of a laterally loaded pile embedded in uniform and layered soil profiles in order 

to numerically obtain p-y curves and compare them to experimental ones (Figure 2.9). 

 

The FE method has the ability of permitting to account for soil nonlinearity by applying 

appropriate constitutive models, such as the Drucker-Prager formulation (Ben Jamma and 

Shiojiri, 2000; Yang and Jeremic, 2002), and to use gap-elements to model possible pile-

soil separation. These modeling capabilities are usually available in robust general 

purpose FEM programs (such as ABAQUS and ANSYS) or special geotechnical 

engineering oriented codes (e.g. PLAXIS).  



 

 

19

 
Figure 2.9: Example of a Three-Dimensional Finite Element Mesh for a Single Pile System (Yang and 

Jeremic, 2002) 
 

   

There is a general agreement (e.g. Poulos and Davis, 1980; Kagawa, 1992; El Naggar and 

Novak, 1996; Wang et al., 1998; Mostafa and El Naggar, 2002) that the FEM analysis is 

impractical for the design of anything but extremely expensive structures, due to the cost 

of the specialized software, the time consuming model generation, the time required for 

the non-linear analysis, the difficulty in the interpretation of the result in terms of 

common pile (beam) variables, and the uncertainties associated with soil non-linear 

modeling in 3D. 

 

Finally, it is appropriate to mention that in the last years a powerful 3D Finite Difference 

Method program called Flac3D (Itasca Consulting Group, Inc, 1996) has been used to 

solve complex geotechnical engineering problems. However, the program has rarely been 

used for pile analysis. An example is the work by Ng and Zhang (2001), who used a 3D 

FDM model to analyze the behavior of piles placed on a cut slope. In particular, they 



 

 

20

investigated the effect of the sleeving (annulus of compressible material that is usually 

constructed between the piles and the adjacent soil to minimize the transfer of lateral load 

from the buildings to the shallow depths of the slope) on the pile performance (Figure 

2.10). 

 
Figure 2.10: Example of a Finite Difference Mesh for a Soil–Pile System: (a) 3D View, (b) Close-up of 

sleeved zone (Ng and Zhang, 2001) 
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2.2 Analysis of Piles under Dynamic Lateral Loads 
 

Similar approaches as those described in Section 2.1 have been proposed and 

implemented for the dynamic analysis of single piles under horizontal loads (e.g., seismic 

excitations). They are the Finite Element Method (FEM) and the Boundary Element 

Method (BEM) that treat the soil as a continuous medium, the Beam on Nonlinear 

Winkler Foundation (BNWF), that treats the soil as a series of disconnected springs, and 

the Continuum Approach, that provides closed form solutions by considering the soil as 

an infinite semi-space. A brief description of these approaches is presented in this 

section, with particular emphasis in seismic analysis. 

 

2.2.1 Winkler Approach 
 

Considering that both piles and soil can behave in a nonlinear manner during extreme 

events, the use of p-y methods for defining the lateral stiffness of pile-soil model for 

seismic analysis (secant stiffness as a function of pile deformation) has been used since 

the seventies (Matlock et al., 1978). This model has been used by several authors (e.g. 

PoLam et al.,1998; Wang et al., 1998; Hutchinson et al., 2004). Appropriate p-y models 

which take into account cyclic soil degradation should be used. Since the classic Linear 

Modal Analysis cannot be applied due to the expected nonlinear response, an Iterative 

Nonlinear Time-Domain Analysis can be used to perform this analysis (Brown et al., 

2001).  

 

The energy dissipation inherent to material behavior, known as Material Damping, may 

be modeled as a dashpot in parallel with a spring that represents soil stiffness. This is the 

well known Kelvin-Voigt model for visco-elastic materials. 

 

The energy dissipation due to soil nonlinear behavior, known as Hysteretic Damping, can 

be considered in the p-y model by allowing the unloading path to differ form the loading 
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path (Brown et al., 2001), as shown in Figure 2.11. This figure also shows a way to 

consider soil degradation, namely the reduction in soil strength as the loading cycles 

progress.  

 

 
Figure 2.11: p-y Method for Modeling Hysteretic Damping and Cyclic Degradation in Soil (Brown et 

al., 2001) 
 

When a soil is subjected to cyclic symmetric loads a Hysteresis Cycle is produced in the 

stress-strain response, which has acute angles where the load inverts. The hysteresis cycle 

may be defined using Masing’s Rules (Suarez, 2003). The p-y curve, that may be 

considered as the constitutive equation of the soil, is used as the backbone curve or 

skeleton curve, and its shape is used to define the cycle (Figure 2.12): curve oa is 

reproduced in bca, curve ob is reproduced in adb (both with double amplitude and double 

ordinates). The hysteretic damping is related to the energy dissipated by cycle, which is 

equal to the enclosed area. A detailed description of this model is presented by Suarez 

(2003). 
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Figure 2.12: Hysteretic Cycle using Masing’s Rules (Suarez, 2003) 

 

The loss of energy in the soil-pile system due to out-going stress waves that travel from 

pile-soil interface to infinity, known as Radiation Damping, has been considered by a 

number of researchers, as reported by Wang et al. (1998). Berger et al. (1977) proposed a 

simplified approach, assuming that the pile cross section (that moves horizontally) only 

generates one dimensional (1D) P-waves traveling in the direction of shaking, and 1D SH 

waves traveling perpendicular to the pile  (Figure 2.13 a). Novak et al. (1978) proposed a 

more rigorous model, assuming a plane strain state for the soil (considered as 

homogeneous, isotropic, and linearly elastic) and analyzed the pile undergoing uniform 

harmonic vibrations in an infinite medium. Because the pile is considered infinitely long, 

massless and rigid, the problem reduces from 3D to 2D, as a rigid circular disc vibrating 

in an infinite elastic plane (Figure 2.13 b). Gazetas and Dobry (1984a, 1984b) proposed a 

simplified model  by assuming that compression-extension waves propagate in the two 

quarter planes along the direction of shaking, and that SH-waves propagate in the two 

quarters perpendicular to the direction of shaking (Figure 2.13 c). For each of the 

previous approaches, a dashpot coefficient “C” can be determined. A damper with this 

coefficient is placed in parallel with the non-linear spring element. 

backbone curve: boa 

hysteretic cycle: bcadb 
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Figure 2.13: Models to Analyze Radiation Damping for a Horizontally Vibrating Pile (Wang et al., 

1998) 
 

Figure 2.14 summarizes the modeling of stiffness and damping for a pile-soil system 

when using a beam on nonlinear Winkler foundation model (e.g. Kagawa and Kraft, 

1980a, 1981; Badoni and Makris, 1996).  

 

 
Figure 2.14: BNWF Model with Different Damping Effects 

Berger et al, 1977 Novak et al, 1978 Gazetas and Dobry, 1984 
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Several authors have proposed a Winkler model based on a continuum solution, most of 

them considering the soil as an isolated horizontal plane in a plane strain state of stresses. 

These solutions are considered a very good approximation of the real 3D behavior for 

frequencies higher than the fundamental natural frequency of the soil deposit, as 

demonstrated by Nogami and Novak (1980). Nogami and Koganai (1988) proposed a 

time-domain method to calculate the flexural response of linear single piles, based on 

plane strain solutions, but consisting of a series of springs and dashpots (as shown in 

Figure 2.15). This modified Winkler model, sometimes referred to as the Hybrid 

Dynamic Winkler Model (HDWM), was validated for a wide range of frequencies. They 

proposed a model in which the soil mass is included through a soil radius (as a cylinder 

around the pile), but the value of this soil radius was never addressed in the paper. 

 

 
Figure 2.15: Hybrid Dynamic Winkler Model for Lateral Pile Response (Nogami and Koganai, 1988) 
 

This model was then extended by Nogami et al. (1992) for the nonlinear dynamic 

analysis of soil-pile interaction, by dividing the soil medium in two regions (Figure 2.16). 

The near field region in the vicinity of the pile shaft, where strong nonlinear soil response 

occurs, is represented by a nonlinear spring and a gap element. The far field region, 

where the behavior is primarily linear elastic, is represented by the series of springs and 

dashpots proposed by Nogami and Koganai (1988). Again, they proposed a model where 

the soil mass is included through a soil radius (as an annular cylindrical region around the 

pile). Here also the typical value of the soil radius was not addressed in the paper (it is 

only mentioned that it was artificially taken). A simpler model based on this approach 

was proposed by El Naggar and Novak (1995, 1996) and used by Mostafa and El Naggar 
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(2002), consisting in a series of non-linear springs and dashpots for the inner field, and a 

series of linear springs and dashpots for the far field. They also included a lumped mass 

of the soil (the mass of the inner field, distributed among the two nodes of the inner field 

element), but its value was not addressed in the aforementioned papers. El Naggar and 

Bentley (2000) established a link between this model and the p-y curves, by equating the 

two series spring constants for the far field and near field (the far field stiffness is known, 

and obtained from a plane strain model) to the p-y curve stiffness. In this way, the non-

linear stiffness of the near field is obtained and the series springs behave as the p-y 

springs. 

  

 
Figure 2.16: Schematic for the Nonlinear HDWM (Nogami et al., 1992) 

 

Finally, regarding seismic excitations, the common practice after Penzien et al. (1964) is 

to perform the analysis in two stages: 1) First, the dynamic motion of the free field is 

obtained by considering that it is uncoupled from the pile motion. This process, known as 
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site response analysis, can be done using a program like SHAKE (Schnabel et al.,1972; 

Idriss and Sun, 1992). 2) Second, the free field motion is applied to the soil-pile system as 

boundary support movements at the end of each spring element. This allows consideration of 

the effects of varying motion due to the vertical propagation of the ground shaking. As an 

example, Figure 2.17 shows the scheme of the model used by Hutchinson et al. (2004) for the 

inelastic seismic analysis of extended pile-shaft-supported bridge structures. It is important to 

note that no lumped masses were used to consider soil inertial contribution to system 

response in this work. 

 

 
Figure 2.17: Model for Seismic Analysis of Pile-Supported Bridge (Hutchinson et al., 2004) 

 

 

2.2.2 Continuum Approach 
 

The mayor advantage of the continuum approach over the BNWF and the FEM is that it 

automatically includes the radiation of energy to infinity, known as Radiation Damping, 
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through the complex expression of the pile impedance function (stiffness). The 

disadvantages are that, in general, it is only applicable to visco-elastic materials, although 

material damping may be considered by using the complex form of the material 

properties, or Lame’s constants. Another drawback is that the nonlinear behavior can 

only be accounted for by changing the elastic modulus of the full space, i.e. it does not 

allow for local yielding. Finally, the boundary conditions are limited and the soil 

characteristics have to be simple, i.e. the soil must be homogeneous or with homogeneous 

layers. 

 

Despite its limitations, this analysis is extremely useful to acquire a better understanding 

and insight of the soil-pile interaction phenomenon, and to obtain analytical expressions 

of parameters such as the subgrade reaction modulus (Vesić, 1961), that can be used in 

the Winkler models. 

 

Following is a brief description of some publications that are considered relevant for the 

purpose of the present project:  

 

Novak (1974) presented an approximate continuum approach to account for soil-pile 

interaction: it is assumed that the soil is composed of a set of independent horizontal 

layers of infinitesimal thickness, which extend to infinity. As each plane is considered 

independent, this model may be viewed as a generalized Winkler model. The planes are 

homogeneous, isotropic, and linearly elastic, and are considered to be in a plane strain 

state. Using Baranov’s solution for the horizontal soil reaction to a rigid circular disc with 

harmonic horizontal displacement (representing a pile cross section), Novak formulated 

the differential equation of the damped pile in horizontal vibration. He found the steady-

state (particular) solution for harmonic motion induced through pile ends, and used this 

solution to find the dynamic stiffness of the pile head for different boundary conditions. 

According to Novak, the dimensionless parameters that control the soil-pile system 

response are: (a) the specific mass of the soil “ρ” over the specific mass of the pile “ρp” 

(mass ratio ρ/ρp), (b) the ratio between the shear wave velocity of the soil “Vs” and the 
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longitudinal wave velocity of the pile “vc” (wave velocity ratio Vs/vc), (c) the ratio of the 

length of the pile “L” to the pile radius “ro” (slenderness ratio L/ro), and (d) the 

frequency of the load “ω” (expressed as a dimensionless parameter /o oa r Gω ρ= , 

where G is the shear modulus of the soil). Then he presented the equivalent stiffness and 

damping constants for a pile head, and for a pile group considering a rigid pile cup at pile 

heads. He presented a numerical example, and compared the response of a spread footing 

to an identical footing resting on piles, reaching the following conclusions: (a) pile 

foundations are more rigid, having higher natural frequencies, smaller damping, and 

larger resonant amplitudes than spread footings; (b) pile (and spread footing) embedment 

can reduce resonant amplitudes; (c) piles can reduce settlements, but they cannot 

eliminate vibrations, so the dynamic analysis of pile foundations is as important as for 

shallow foundations. As stated by Klar (2003), as the frequency tends to zero, the 

stiffness obtained from the Novak solution (1974) tends to zero. Moreover, as the 

frequency increases Novak’s solutions tends to Tajimi’s solution (based on a more 

rigorous 3D analysis). Due to the fact that for higher frequencies waves tend to propagate 

more horizontally, Novak’s model tends to capture the actual behavior. Therefore 

Novak’s solution can provide good results for high frequencies and poor results for very 

low frequencies and static conditions. 

 

Nogami and Novak (1980) investigated the coefficients of dynamic soil reaction to pile 

motion treating the soil as a three-dimensional continuum, in order to compare to the 

Winkler model (where the soil is modeled as discrete springs and dashpots).   The 

assumptions used were: (a) homogeneous soil stratum underlain by a rigid bedrock; (b) 

linear viscoelastic soil material with constant hysteretic damping; (c) cylindrical elastic 

pile driven to the bedrock; (d) no vertical soil movement; (e) no relative soil-pile 

movement at soil-pile interface; and (f) harmonic motion. They reached the following 

conclusions: (a) even in homogeneous soil media, the local stiffness and damping of the 

soil can vary greatly with depth, frequency, and relative pile/soil stiffness; (b) at 

frequencies higher than the fundamental frequency of the soil deposit, the 3D solution is 

similar to the plane strain solution (2D) proposed by Novak (1974). For these 
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frequencies, the soil medium can be treated accurately with the Winkler hypothesis 

(uncoupled springs and dashpots along the pile); and (c) the Winkler hypothesis works 

better for stiffer piles and deeper soil deposits.   

 

The results from the previous works have been used to model the stiffness and damping 

effects of the dynamic soil-pile response in a Winkler model, analyzing the pile dynamic 

stiffness (impedance), but they were not clearly used to consider the contribution of the 

soil mass to the dynamic response in a discrete Winkler model.  

 

2.2.3 Finite Element Approach 
 

As pointed out by Wolf (1985), for static loading, a fictitious boundary at a sufficient 

distance from the structure (pile) where the response is expected to vanish from a 

practical point of view, can be introduced, leading to a soil with finite domain. This finite 

domain is meshed, and pin supports (displacements restraints) are assigned to the 

boundary nodes. However, for dynamic loading, the fictitious boundaries can reflect 

waves originating from the vibrating structure (pile) back into the discretized soil region, 

instead of letting them to propagate toward infinity. Special attention has to be paid in 

placing adequate radiation damping capabilities at the soil FEM boundaries.   

 

Some recent publications that are considered relevant as references for the present study 

are briefly summarized in the following paragraphs: 

 

Wu and Finn (1997a, 1997b) proposed a “quasi-three-dimensional finite element 

method”, where the soil is modeled using eight-node brick elements having only one 

translational DOF at each node, in the direction of shaking. The element stiffness, mass 

and damping matrices are obtained from a simplified differential equation of dynamic 

equilibrium in the direction of shaking. The simplifications came from the study of the 

shear wave propagation in the vertical direction, and the analysis of the components of 

stress (or strain) that may be neglected. The pile is modeled with classical two-node beam 



 

 

31

elements. Dynamic soil-pile interaction is considered by enforcing displacement 

compatibility between the pile and soil. They report that the proposed FEM is both 

accurate and efficient. 

 

Bentley and El Naggar (2000) developed a 3D finite element model that considers the 

soil nonlinear behavior (by means of the Drucker-Prager yielding criteria), discontinuity 

conditions at the soil-pile interface (by means of contact elements that allow slippage and 

gapping), energy dissipation (by means of Kelvin elements), wave propagation (by 

introducing the excitation at the bottom of the model), and actual in situ stress conditions 

(geostatic stresses). They used the model to evaluate the kinematic soil-pile interaction, 

comparing the free-field soil response with the response of the soil-pile system. They 

performed the analysis by applying earthquake excitations with low dominant 

frequencies, and found that although the response is slightly amplified for elastic soils, 

the pile-head response closely resembles the free field response for elastoplastic soils. 

   

Klar and Frydman (2002) used a series of plane strain FE models in horizontal planes to 

model the 3D response. Figure 2.18 shows the different planes and the boundary 

conditions schematically. 

 

Maheshwari et al. (2004) used a 3D FE model to obtain the pile response under seismic 

excitation and a load applied to the pile cap, considering the effects of material 

nonlinearity in the soil and separation at the soil–pile interface on the dynamic behavior 

of a single pile and pile groups. Figure 2.19 shows one of the FE mesh used for this 

study. 
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Figure 2.18: Discrete Planes and Free-Field Boundary Conditions (Klar and Frydman, 2002) 

 
 
 
 
It is appropriate to mention that the Boundary Element Method (BEM) has been 

increasingly used in the investigation of laterally loaded piles. Examples are the work by 

Ben-Jamma and Shiojiri (2000), who used a hybrid of Thin Layer Element and Finite 

Element methods to analyze the total soil-substructure system and obtain the dynamic 

response of single piles embedded in an infinite half-space. The benefits of the BEM for 

pile structure interaction modeling and analysis were emphasized by Basile (2003). 
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Figure 2.19: Example of a 3D FE Mesh and Boundary Elements for the Dynamic Analysis of a Soil–

Pile System: (a) top view, (b) elevation (Maheshwari et al., 2004) 
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3 Numerical Evaluation of the Soil Inertia Contribution to the Soil-
Pile System Response 

 
The objective of this chapter is to evaluate in a preliminary form the importance of the 

soil inertia properties in the soil-pile system behavior. To this end, a set of representative 

soil and pile characteristics will be selected, and the dynamic flexibility of the pile head 

will be obtained by means of a Finite Element Method (FEM) steady state analysis. Two 

types of analysis will be performed: one considering the soil mass and the other 

neglecting it. The response of both analyses will be compared in order to address the 

impact of the soil mass. The effect of the cutoff boundary conditions will also be 

evaluated. 

 

3.1 Case Study 
 

In order to perform the analysis, average soil properties corresponding to a dense sand 

deposit will be selected. These values were obtained by consulting the Soil Mechanics, 

Soil Dynamics, and Foundation books from Barkan (1962), Bowles (1996), Cernica 

(1995), Coduto (2001), Das (1999), and Poulos and Davis (1980). The adopted values for 

the soil material properties are as follows: 

 

Es = 12 ksi  (soil modulus of elasticity or Young’s modulus) 
γs = 110 pcf  (soil specific weight) 
νs = 0.3  (soil Poisson’s ratio) 

 

The depth of the sand soil deposit considered is 30 ft. It is assumed that the soil deposit 

rests on a rigid rock, and that its properties are constant with depth. 

 

It is appropriate to mention that in order to have a soil with a shear wave velocity Vs in 

the range of soil profile type SD of the Uniform Building Code (International Code 

Council, 1997), the modulus of elasticity E should be adopted between two to eight times 

higher than the values recommended in the previous cited books, as shown in Table 3.1. 
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This is probably due to the fact that a secant modulus is usually provided as the reference 

value in the literature. 

 
Table 3.1: Values of Elastic Modulus E for Different UBC Site Types 

 

 

 

The pile foundation used in this chapter was based on a reinforced concrete pile, with a 

compressive strength f’c = 4000 psi, corresponding to a normal strength concrete, and the 

following material properties: 

Ep = 3600 ksi  (pile modulus of elasticity) 
  γp = 150 pcf  (pile specific weight) 
  νp = 0.2  (pile Poisson’s ratio) 
 

The pile has a 1-ft square cross section, and an embedded length of 30 ft.  

 

3.2 Dynamic Response to be Evaluated  
 

In order to evaluate the effect of the soil inertia properties in the system behavior, the 

dynamic flexibility of the pile head will be considered. The dynamic flexibility is defined 

here as the horizontal pile head displacement due to the excitation of a unit harmonic load 

at the pile top for different load vibration frequencies. This quantity is also known as the 

Frequency Response Function (FRF) of the pile head. 

 

 

g = 32.2 [ft/s2] gravity acceleration

Soil Type γ ν
[pcf] > < > < > < > <

SA 130 0.2 5000 700.91 1682.19 11578.88
SB 125 0.25 2500 5000 168.49 673.96 421.22 1684.89 2899.36 11597.44
SC 120 0.25 1200 2500 37.27 161.75 93.17 404.37 641.29 2783.39
SD 115 0.3 600 1200 8.93 35.71 23.21 92.86 159.79 639.15
SE 110 0.3 600 8.54 22.20 152.84

Assumed values UBC tabulated values

Vs [ft/sec] G [ksi] E [ksi] E [MPa]

( )ν
γρ

ρ +
===

12
EG

g
GVs
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3.3 Analysis Package, Type, and General Parameters 
 

The computer program SAP2000 was selected to perform the FE analysis required to 

obtain the Frequency Response Function. Although SAP2000 is not among the most 

frequently used software packages for pile-soil interaction problems, it was selected due 

to its availability, its friendly graphical user interface, and its adequate capabilities for the 

present analysis.  

 

The analysis to be performed in order to obtain the FRF is designated as Steady State 

Analysis in SAP2000. Appendix B presents a detailed step-by-step process to perform the 

analysis for one of the two dimensional cases considered and presented later in section 

3.5.  

 

For the present study, the default damping model available in SAP2000 was adopted: a 

hysteretic damping constant for all frequencies, with a stiffness-proportional coefficient 

of 0.05. 

 

3.4 General Comments on the Finite Element Model to be Adopted 
 

The FE mesh will be adopted considering the case studies reviewed in the literature (i.e. 

Maheshwari et al., 2004) and the recommendations given by soil-structure interaction 

specialists (i.e. Lysmer, 1979). For example, Lysmer (1979) states that the element size 

should be related to the highest frequency, fmax [hz], of the wave that must be transmitted 

correctly through the finite element model. The shortest wavelength, λs which occurs in 

the system is: 

 
max

s
s

V
f

λ =  (3.1) 

where Vs is the shear wave velocity. Lysmer recommends that the maximum element size 

be limited to λs / 8. For the data adopted for this case study, an element size of 2 ft would 

be adequate to transmit harmonic waves with a frequency up to the fourth natural 
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frequency of the one-layer uniform soil deposit, and an element size of 1 ft would be 

adequate to transmit a wave with a frequency up to the eighth soil deposit natural 

frequency (see computations in Appendix A). 

 

When performing a 2D analysis, the soil will be represented with rectangular planar 

elements, and with brick solid elements when performing a 3D analysis. It is important to 

have in mind that the type of analysis to be performed will focus on the effects of the soil 

mass in the system response when the system remains in the linear elastic range. The 

contact problems between pile and soil are considered not important for this purpose, 

therefore frame lineal elements are considered adequate to model the pile. For other type 

of analysis, it would be more appropriate to model the pile with plane (2D) or solid (3D) 

elements, and model the soil-pile interface with contact elements. 

 

Regarding the model size (macro-idealization), Lysmer (1979) states that, as far as the 

motion of the structure is concerned, the boundaries of the soil volume should be located 

far enough away from the structure to simulate the infinite extent of the deposit. The 

author recommends placing the lateral boundaries at a distance of two or more times the 

depth of the soil profile away from the edge of the structure. Although these 

recommendations were intended for the analysis of superstructures that may be partially 

embedded, they will be used herein as a guidance. Considering the 30 ft soil deposit 

depth, the boundaries will be placed 60 ft away from the pile. The mesh obtained is more 

extended than those used in the several papers reviewed in which the FEM was used as 

the analysis technique. 

 

3.5 Two Dimensional Analysis 
 

A beam (frame) element was adopted for the pile, and plane stress elements for the soil, 

with 1 ft thickness. In order to model plane strain conditions, the elasticity modulus E and 

Poisson’s ratio ν of both concrete and soil were replaced by the well known equivalent 
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elastic constants that allow to obtain plane strain solutions from plane stress analysis 

(Ugural and Fenster, 1995): 

 
21
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eq

eq
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=
−

=
−

 (3.2) 

The resulting equivalent properties for the sand soil and the reinforced concrete (RC) are 

presented in Table 3.2: 
Table 3.2: Equivalent Elastic Properties for the 2D Model 

 
Material E [ksi] ν Eeq [ksi] νeq 

Soil 12 0.3 13.19 0.429 
RC 3600 0.2 3750.00 0.250 

 
 

3.5.1 Boundary Conditions 
 

The soil will be considered fully restrained at the bottom edge, in order to model a rigid 

bedrock below the sand deposit. The top edge will be considered free. The two lateral 

edges should represent the continuity of the soil deposit as an infinite half space. The 

model will be taken wide enough in order to approximately represent this condition. In 

order to verify this statement, two boundary conditions will be considered: free and 

restrained against horizontal movement. If the two conditions give similar results, a more 

refined lateral boundary condition, that should give results somewhere in between these 

two cases, is not required since it will not change the general conclusions of the analysis 

of the results. A more advanced and commonly used boundary condition is to represent 

the elastic continuity by means of horizontal springs and to use dashpots to represent the 

radiation damping. These boundary conditions will be implemented in the 3D model. 
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3.5.2 FEM Mesh 
 

Following the criteria described in section 3.4, the full FE model is 120 ft wide and 30 ft 

high, the finite element mesh representing the soil is composed of 2ft x 2ft rectangular 

elements, and the pile consists of 2ft frame elements. The resulting FE mesh is shown in 

Figure 3.1. The FE model contains 15 frame elements and 900 plane stress elements, 

having 976 nodes and 1976 degrees of freedom (DOF) corresponding to two translations 

of each soil node and two translations and one rotation of each pile node. 

 
Figure 3.1: 2D FEM Model 

 

Figure 3.2 presents a zoom in of the FE model for the pile top, in order to show the 

numbering of the node whose motion will be studied. The pile top corresponds to node 

496 in this model, and its steady state response will be obtained. 

 
Figure 3.2: FEM Model Node Identification near Pile Top 
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3.5.3 System Response 
 

As stated in section 3.2, the system response to be evaluated is the dynamic flexibility of 

the pile head (i.e., the horizontal pile displacement due to a unit harmonic load for 

different load vibration frequencies). This response will be designated as FRF 

(Frequency Response Function). It is obtained by means of the Steady State Analysis 

option in SAP2000 (see Appendix B for details). 

 

This response will be presented in charts (Figures 3.3 through 3.7), by plotting the 

magnitude of the horizontal displacement of the pile top, in [ft], against the frequency of 

the load, in [Hz]. The following nomenclature will be used in these graphs: 

 

SM = Soil Mass 
NO SM = Soil Mass is not included in the analysis 
YES SM = Soil Mass is included in the analysis 
LS = Lateral Support 
NO LS = There are not Lateral Supports at the model edge 
YES LS = There are Lateral Supports at model edge 

 

In order to obtain a high resolution, 400 frequency increments were specified for each 

analysis. The mass of the pile is always included in the analyses. 

 

Figure 3.3 presents the results of the model without the inclusion of the soil mass, for the 

two boundary conditions evaluated. Figure 3.4 presents the results of the model 

considering the soil mass, for the two boundary conditions evaluated. Figure 3.5 presents 

the results of the model first considering and next neglecting the soil mass, leaving the 

lateral edges without lateral supports. 
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Figure 3.3: FRF for the 2D Model without Soil Mass 

 
Figure 3.4: FRF for the 2D Model with Soil Mass 
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Figure 3.5: FRF for the 2D Model with and without Soil Mass, and no Lateral Supports 
 

Figure 3.6 presents the soil model with two zones, one zone adjacent to the pile was 

arbitrary selected to be 20 ft wide and corresponds to the zone where soil mass will be 

considered (red). The other zone, away from the pile, 40 ft wide, in which the soil will be 

considered massless (orange). Figure 3.7 presents the results of this model with partial 

mass assignment along with the function obtained when the full soil deposit mass is 

included. 

 

 
Figure 3.6: 2D FEM Mesh with Partial Soil Mass Assignment 

 

40’ 20’ 20’ 40’ 
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Figure 3.7: FRF for the 2D Model with Partial and Full Soil Mass Assignment, and no Lateral 
Supports 

 

 

3.5.4 Discussion of the 2D Results 
 

From Figures 3.3 and 3.4, it is evident that the effect of the fixed lateral support is to 

produce a shift of the peaks of the FRF to the right. This implies an increase in the natural 

frequencies of the system, which correspond to the peaks of the FRF. This situation is 

expected since the system is stiffer (more rigid) due to the presence of the lateral supports 

that restraint the horizontal movement. The natural frequencies increase as the stiffness 

increases, as shown in the following expression that gives a natural frequency of a multi 

degree of freedom (MDOF) system: 
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where: 

  ωj = system natural frequency corresponding to the jth vibration mode 

  {φj} = system jth vibration mode (eigenvector)  

  [K] = system stiffness matrix 

  [M] = system mass matrix 

 

Figures 3.3 and 3.4 also show that the general behavior of the pile-soil systems is similar 

for both boundary conditions, and the first two natural frequencies are comparable in both 

cases. This leads to the conclusion that, for the analyses to be performed, it is not 

necessary to consider a more refined elastic lateral support. Free boundary supports will 

be considered for the remaining analyses. 

 

Figure 3.5 presents the resulting FRF (in magnitude) for the system with and without the 

soil mass. As expected (see equation 3.3), the presence of the soil mass reduces the 

natural frequencies (i.e. the frequencies where the peaks of the FRF occur). This figure 

shows that the inclusion of the soil mass produces a significant qualitative and 

quantitative change in the behavior of the pile-soil system. This leads to the conclusion 

that the soil mass plays an important role in the dynamic response. 

 

Figure 3.7 shows a comparison between the magnitude of the FRF for the system with a 

partial assignment of the soil mass (the mass nearest to the pile) and the FRF of the 

system with full soil mass assignment. The figure shows that the system with partial mass 

assignment partially captures the general behavior of the system with the full soil mass 

assigned, and that the first natural frequencies of both models are relatively close. This 

leads to the conclusion that a partial soil mass assignment may result in a reasonable 

good estimate of the first natural frequency, and of the overall system response. 
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3.6 Three Dimensional Model 
 

The results of analyses similar to the ones presented in section 3.5, but considering a 

three dimensional (3D) soil model, are presented here. Table 3.3 shows the elastic 

material properties to be used for the soil and the RC pile: 

 
Table 3.3: Elastic Properties for 3D Model 

 
Material E [Ksi] ν 

Soil 12 0.3
RC 3600 0.2

 

3.6.1 Boundary Conditions 
 

The soil will be considered fully restrained in the bottom edge, in order to model a rigid 

bedrock below the sand deposit. The top edge will be considered free. The lateral edges 

will be considered with five different boundary conditions: free, restrained against 

horizontal movement, with roller supports (vertical movement restrained), with dashpots 

that model the radiation damping due to waves traveling in the semi-infinite medium, and 

with spring-dashpot to model both the soil continuity and the radiation damping. The 

latter conditions will be considered to evaluate the effect of the radiation damping in the 

system response (an effect not evaluated in the 2D analyses).  

 

As stated by Arduino (2005), to simulate the radiation condition, the cut off boundaries 

must include normal and tangential energy absorption elements. These absorption 

elements are usually represented by dashpots, and are usually known as Lysmer boundary 

conditions. Properly calibrated, these elements absorb the propagating waves in such a 

way that any incident wave produces zero energy being reflected back into the domain. 

The dashpot coefficients are determined in terms of the material properties of the semi-

infinite domain, as shown in Figure 3.8. As presented by Mengi and Tanrukulu (1993), 

the original dashpot proposed by Lysmer and Kuhlemeyer (1969) included dimensionless 
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constants a and b (Cn = a ρ vp, Ct = b ρ vs). However, it was found that using optimized 

values for these constants (in order to minimize the reflected energy) does not bring 

major improvements to the performance of viscous boundary conditions as compared to 

simply taking a = b = 1. These last values were adopted for the present work. 

 

 
Figure 3.8: Dashpot Elements to Simulate Radiation Damping in the FE Cut-off Boundaries 

 

 

The dashpot coefficients presented in Figure 3.8 have to be multiplied by the influence 

area “A” of each node of the FE boundary in order to obtain a concentrated dashpot 

coefficient, resulting in: CT = Ct A and CN = Cn A, where the capital subscript represents 

nodal concentrated values. Because the mesh of the FE model is uniform of size 

2’x2’x2’, an internal node will have an influence area of A = 4 ft2, an edge node of A = 2 

ft2, and a corner node of A = 1 ft2. Table 3.4 summarizes the values of the dashpot 

coefficients to be used in the model, for each of the of influence areas stated before. 
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Table 3.4: Dashpot Coefficients for the Cut off Boundaries 
 

E [Ksi] ν γ [pcf] G [Ksi] Vp [ft/sec] Vs [ft/sec]
12 0.3 110 4.62 711.22 441.08

A [ft2]
4
2
1

Cn [psf / (ft/sec)] Ct [psf / (ft/sec)]

CN [lb / (ft/sec) ] CT [lb / (ft/sec) ]

1506.792429.63

2429.63

6027.17
3013.59
1506.79

9718.52
4859.26

 
  

The spring constants used to model the unbounded nature of the soil medium will be 

obtained following the approach proposed by Luco (2004). Luco obtained expressions for 

the average distributed spring constant to be applied at the boundaries of a rectangular 

soil island or truncated region of dimensions 2ax x 2ay x az, as depicted in Figure 3.9, 

carved out of the half space. In the present FE model, ax = 60 ft, ay = 30 ft, and az = 30 ft. 

 

 

 
Figure 3.9: Rectangular Soil Island Dimensions 
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The average distributed springs constants to be applied at the region boundaries are 

obtained from the following equation: 

 ij ij
i

Gk
a

β=  (3.4) 

where: 
 kij = distributed spring constant  
 i = x, y, or z = plane in which the spring is placed (represented by its normal) 
 j = x, y, or z = direction in which the spring acts 
 ai = dimension in the i direction 

βij = coefficient that depends on the Poisson’s ratio of the soil and the block 
dimensions 

 
 

These coefficients have to be multiplied by the influence area “A” of each node of the FE 

boundary in order to obtain a concentrated spring coefficient. This leads to the following 

expression: Kij = kij A, where the capital letter represents nodal concentrated values. 

Because the size of each FE is 2’x2’, an internal node will have an influence area of A = 4 

ft2, an edge node of A = 2 ft2, and a corner node of A = 1 ft2. 

 

Appendix C presents the computations of the coefficients β, k and K. Table 3.5 

summarizes the values of the spring coefficients to be used in the model, for each one of 

the values of influence areas A stated before. 

 
Table 3.5: Spring Coefficients for Cutoff Boundaries 

 
A [ft2] Kxx [lb / ft ] Kxy [lb / ft ] Kxz [lb / ft ] 

4 87080 24260 24260 
2 43540 12130 12130 
1 21770 6064 6064 

A [ft2] Kyx [lb / ft ] Kyy [lb / ft ] Kyz [lb / ft ] 
4 49410 88160 37900 

2 24700 44080 18950 
1 12350 22040 9475 
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3.6.2 FEM Mesh 

 

Following the criteria described in section 3.4, the FE model is 120 ft long, 60 ft wide, 

and 30 ft tall. The finite element mesh representing the soil is composed of 2ft x 2ft x 2ft 

solid elements, and the pile is modeled with frame elements with 2ft length. The resulting 

FEM mesh is shown in an isometric view in Figure 3.10, in a front view in Figure 3.11 

(xz plane, long dimension of the model), and in a right view in Figure 3.12 (yz plane, 

short dimension of the model).  

 

 

 

 
Figure 3.10: Isometric View of the FEM 3D Model Mesh 
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Figure 3.11: Front View of the FEM 3D Model Mesh (long dimension) 

 

 

 
Figure 3.12: Right View of the FEM 3D Model Mesh (short dimension) 

 

The resulting FE model has 15 frame elements and 27000 solid elements, 30256 nodes, 

and 90813 degrees of freedom (DOF), corresponding to three displacements at each soil 

node, and three displacements and three rotations at each pile node. The steady state 

response at the pile top, which corresponds to node 15136 in this model, will be obtained. 

The magnitude of the force applied at the top of the pile in the x (long) direction is 1 kip. 
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3.6.3 System Response 
 

As stated in section 3.2, the system response to be evaluated is the dynamic flexibility of 

the pile head (the horizontal pile displacement due to a unit harmonic load, for different 

load vibration frequencies). The dynamic flexibility curve is also known as the FRF 

(Frequency Response Function). 

 

This response will be presented in charts that show the magnitude of the horizontal 

displacement of the pile top as a function of the frequency of the load. The following 

nomenclature will be used in these graphs: 

 

SM = Soil Mass 
NO SM = Soil Mass is not included in the analysis 
YES SM = Soil Mass is included in the analysis 
LS = Lateral Support 
NO LS = No Lateral Supports are present at the model edge 
YES LS = Lateral Supports are present at the model edge  
DP = Dashpot (radiation damping) 
NO DP = No Dashpots are present at the model edge  
Yes DP = Dashpots are present at the model edge 
RS = Roller Support 
Yes RS = Roller Supports are present at the model edge 

 

In order to obtain a detailed response while at the same time keeping the computing time 

at reasonable levels, 100 frequency increments were specified for each analysis. 

 

Figure 3.13 presents the results of the model when the soil mass is neglected, for two 

lateral boundary conditions: free and fixed. Figure 3.14 presents the FRF curve 

considering the soil mass, for the same two lateral boundary conditions. Finally, Figure 

3.15 displays the results including and neglecting the soil mass, with the lateral edges 

without lateral supports (free). 

 



 

 

52

 
Figure 3.13: FRF for the 3D Model without Soil Mass 

 

 
Figure 3.14: FRF for the 3D Model with Soil Mass 
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Figure 3.15: FRF for the 3D Model with and without Soil Mass, and no Lateral Supports 
 

 

Figures 3.16 a and b present the amplitude of the top pile displacement for the FE model 

that considers the soil mass and also dashpots in the cutoff boundaries to simulate the 

radiation damping, for two different load frequency ranges. In both charts the response is 

plotted against the one obtained by considering free lateral edges, without the dashpots. 

The first figure (Figure 3.16a) displays a zoom of the dynamic flexibility for the lower 

frequency range (0 to 25 Hz). It is important to mention that for both frequency ranges (0 

to 25, and 0 to 200 Hz), the same number of frequency increments (100) was used in the 

analysis: Figure 3.16a is more detailed than the lower range of Figure 3.16b, capturing 

some peaks not present in Figure 3.16b. 
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Figure 3.16: FRF for the 3D Model with Soil Mass, and Dashpots in the Lateral Cutoff Boundaries 

 

 

 

2.20E-04

2.40E-04

2.60E-04

2.80E-04

3.00E-04

3.20E-04

3.40E-04

0 5 10 15 20 25
Freq [Hz]

U
x 

[ft
]

YES SM - NO LS YES SM - YES DASHPOT

0.00E+00

1.00E-04

2.00E-04

3.00E-04

4.00E-04

5.00E-04

0 20 40 60 80 100 120 140 160 180 200
Freq [Hz]

U
x 

[ft
]

YES SM - NO LS YES SM - YES DASHPOT



 

 

55

Figure 3.17 presents the soil model with two zones, one near the pile (40 ft wide x 40 ft 

long) in which soil mass will be considered (shown in red), and the other away from the 

pile (the remaining of the soil island) in which the soil will be considered massless (the 

orange zone).  

 

 
Figure 3.17: 3D FEM Mesh with Partial Soil Mass Assignment 

 

Figures 3.18 a and b present the displacement of the pile top with this partial mass 

assignment for the soil. Each figure corresponds to two different load frequency ranges. 

In both charts the response is plotted against the displacements obtained considering all 

the soil deposit with mass. 

 

Figures 3.19 a and b show the results corresponding to the FE model that considers soil 

mass and springs and dashpots in the cutoff boundaries to simulate the semi-infinite 

nature of the soil medium and the radiation damping. Again, there are two figures to 

better appreciate the response in two different load frequency ranges. In both charts the 

response is plotted against the one obtained considering free lateral edges. 
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Figure 3.18: FRF for the 3D Model with Partial Soil Mass and no Lateral Supports 
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Figure 3.19: FRF for the 3D Model with Soil Mass, and Springs and Dashpots in the Lateral Cutoff 

Boundaries 
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Figure 3.20 presents the results of the model when the soil mass is neglected, and with 

roller supports at the cutoff boundaries. These results are plotted against the FRF 

magnitude obtained for the model with free nodes at the lateral edges, for comparison.  
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Figure 3.20: FRF for the 3D Model without Soil Mass, and Rollers in the Lateral Cutoff Boundaries 
 

 

Figures 3.21 a and b present the FRF curve considering the soil mass, for two different 

frequency ranges, when the model lateral edges are restrained by roller supports. These 

results are plotted against the FRF obtained for the model with free nodes at the cutoff 

boundaries, for comparison. 

 

Finally, Figure 3.22 presents the FRF of the system considering soil mass and with 

springs and dashpots in the cutoff boundaries, together with the soil deposit natural 

frequencies and the pile natural frequencies (as computed in Appendix A, considering 

both as continuous systems). Table 3.6 presents the computed natural frequencies, the 

wavelengths, and the ratio between the wavelengths of the pile and the soil for coincident 

(or more precisely, similar) natural frequencies. 
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Figure 3.21: FRF for the 3D Model with Soil Mass, and Rollers in the Lateral Cutoff Boundaries 
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FRF and Natural Frequencies
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Figure 3.22: FRF for the 3D Model with Soil Mass, and Springs-Dashpots Elements in the Lateral 
Cutoff Boundaries, together with Soil and Pile Natural Frequencies 
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Table 3.6: Soil Stratum and Pile Natural Frequencies and Wavelengths 
 

Soil Natural Frequencies  Pile Natural Frequencies    
i fi [Hz] λs [ft]  i fi [Hz]  ≈ λp [ft]  λp / λs   
1 3.68 120.00  1 1.89 240     
2 11.03 40.00  2 11.87 30  0.75  
3 18.38 24.00  3 33.22 21  1.58  
4 25.73 17.14  4 65.11 15  2.12  
5 33.08 13.33  5 107.63 12  2.90  
6 40.43 10.91  6 160.78 10  3.58  
7 47.78 9.23        
8 55.14 8.00        
9 62.49 7.06        

10 69.84 6.32        
11 77.189 5.714        
12 84.54 5.217        
13 91.892 4.8        
14 99.243 4.444        
15 106.594 4.138        
16 113.946 3.871        
17 121.297 3.636        
18 128.648 3.429        
19 135.999 3.243        
20 143.351 3.077        
21 150.702 2.927        
22 158.053 2.791        
23 165.405 2.667        
24 172.756 2.553        
 
 

3.6.4 Discussion of the 3D Results 
 

Examining Figures 3.13 and 3.14, it is evident that the effect of the lateral support is to 

produce a shift of the peaks of the FRF to the right. This implies an increase in the natural 

frequencies of the system, which corresponds to the peaks of the FRF. This situation is 

expected since the system is stiffer (more rigid) due to the presence of the lateral supports 

that restraint the horizontal movement, and the natural frequencies increase as the 

stiffness increases. 
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These figures also show that the general behavior of the systems is similar for both 

boundary conditions, and the first two natural frequencies are comparable in both cases. 

This leads to the conclusion that, for the type of analysis considered, it is not necessary to 

use a more refined elastic lateral support. Free boundary supports seem appropriate for 

the remaining analyses. 

 

Figure 3.15 presents the resulting FRF for the system with and without the soil mass. As 

expected, the presence of the soil mass reduces the natural frequencies. However, this 

figure also shows that the inclusion of the soil mass produces a significant qualitative and 

quantitative change in the dynamic behavior of the system. This leads to the conclusion 

that the soil mass plays an important role in the dynamic response of the pile. It also 

reveals that, for the case analyzed, the general effect of the mass was quite similar to a 

damper: the FRF peaks were smothered in addition to the shift in their locations to the 

left (at least in the first two peaks). 

 

Figure 3.16 shows the FRF for the system with soil mass and with dashpots in the lateral 

cutoff edges compared to the response of the same system without the dashpots. It is 

evident that these dashpots have an important impact in the system response at low 

frequencies, but not at high frequencies. The effects of the dashpots were to smooth the 

FRF peaks (lowering the system displacement response), to eliminate some of them 

(probably associated with rebounding of waves in the cutoff boundaries), and to produce 

a shift in the peaks location. 

 

Figure 3.18 shows the FRF for the system with a partial assignment of the soil mass (to 

the soil nearest to the pile) compared to the FRF of the system with full soil mass 

assignment. The figure shows that the system with partial mass assignment captures the 

general behavior of the system with the full soil mass assigned. This leads to the 

conclusion that a partial soil mass assignment may result in reasonable good estimates of 

the overall system response. 
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Figure 3.19 presents the FRF for the system with full soil mass assignment, and springs 

and dashpots in the cutoff boundaries. The figure also includes the response of the system 

with free cutoff boundaries, and with dashpots in the cutoff boundaries. The figure shows 

that there is not a significant difference between the system with dashpots only and the 

system with springs and dashpots, reflecting that the soil island has been taken large 

enough so the soil half space is adequately represented. The dashpots appear to be more 

important in order to model the boundary conditions of the problem. 

 

Figures 3.20 and 3.21 presents the FRF for the system with free edge nodes and with 

roller supports at the edge nodes. In Figure 3.20 the soil mass is neglected, and in Figure 

3.21 the soil mass is included. The figures show that the response for these two boundary 

conditions are similar, and practically identical for the frequency range of interest (where 

the principal peaks of the FRF are located). A similar outcome was obtained in the 

analysis that includes springs at the boundaries (where the vertical springs play a similar 

role than the roller supports). This situation leads to the conclusion that the soil island has 

been taken large enough so the soil half space is adequately represented, and that roller 

supports are not required to draw valid conclusions on the system response. 

 

Figure 3.22 presents the FRF for the system with full soil mass assignment, and springs 

and dashpots in the cutoff boundaries, together with the soil and pile natural frequencies. 

It can be appreciated that for frequencies near soil and pile natural frequencies, the FRF 

experiences a peak. When soil and pile have closely located natural frequencies and their 

wave length ratio is close to an integer (the pile approximated wave length, obtained from 

its natural modal shape, is a multiple of soil wave length), as presented in Table 3.6, the 

FRF peak is higher, probably due to the fact that soil and pile modes can couple more 

effectively. 

 

Finally, a brief comparison between the 2D and the 3D analysis will be presented. By 

comparing Figures 3.3 and 3.13 (2D model vs 3D model without soil mass) one can 

appreciate a significantly different behavior, with a clear shift of the natural frequencies 
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to the right for the 3D model. This situation may be explained considering that although 

the 3D model is more flexible it has much less mass involved (due to the fact that the pile 

is of finite cross section vs the infinite length in the out of plane direction of the 2D 

model). It is appropriate to point out that the static displacement is smaller in the 3D 

model since the unit load is distributed in the 60 ft width (in the transverse direction, y 

axis) soil mass; however the 2D model is equivalent to have a unit load every ft of soil 

width. 

 

By evaluating figures 3.4 and 3.14 (2D model vs 3D model with soil mass) it is possible 

to appreciate a considerably different response of both systems. Although the first peak of 

the FRF is placed near the same value for both cases, the response of the 3D has a series 

of closely located peaks, probably due to out of plane vibration modes in this range of 

frequencies. 

 

These findings lead to the conclusion that, when performing a FEM analysis, a 2D FEM 

analysis may be appropriate to draw general conclusions of the pile-soil behavior, and to 

gain insight on the system response and parameters affecting the system behavior. But a 

3D FEM analysis would be required in order to develop more accurate conclusions, since 

it is a more realistic representation of the system. 

 

3.6.5 Comments on the 3D Model Analysis Applicability 
 

The FEM analysis was first performed on a PC with a Pentium IV processor, 3.2 Ghz of 

speed, 512 MB of RAM, and 143 GB of hard drive (101 GB free). This is considered, at 

the present moment, a quite robust PC for any small to midsize engineering firm (either a 

Structural Engineering or a Geotechnical Engineering firm).  

 

When performing the 3D analysis, and due to the size of the problem, each frequency 

analyzed in order to obtain the dynamic flexibility of pile top lasted more than 20 

minutes. For 100 frequency increments the analysis lasted for around 38 hours.  
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The required analysis time, added to the time consumed during the model generation, 

verification, modification (a process delayed due to the automatic redrawing of the model 

performed by the program after each editing step), and saving, made the 3D analysis 

complicated and probably not recommended for any practical purpose in an engineering 

firm. Considering a seismic time history analysis (with several time increments) that 

includes material nonlinearities (so each increment of time implies an iterative process, 

and the necessity of a more refined model for the pile and the soil-pile contact surface), it 

would easily require more than 2 days per analysis.  

 

The above mentioned situations related to a 3D FEM analysis lead to the conclusion that 

simpler, yet accurate for design purposes, models are still required for practical purposes 

in an engineering firm. 

 

The required time to perform each FE analysis was also used to decide that the FEM is 

not the desired tool to perform parametric analyses that may result in the definition of a 

lumped soil mass. The definition of an analytical expression for the lumped soil mass will 

be obtained from the approximation of a continuous model, as presented in Chapter 4. 
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4 Lumped Soil Model for Dynamic Soil-Pile System Response 
 

The objective of this chapter is to derive an expression of the soil mass contribution to the 

soil-pile system response consistent with the Winkler Simplified Model. 

The Dynamic Stiffness of a lumped Single Degree of Freedom (SDOF) System is 

presented first. Then, the expression for the dynamic stiffness of the pile-soil system 

derived by Novak is described. Novak made this development considering an infinite soil 

layer of unit thickness under a Plane Strain State. The Novak’s expression will be 

manipulated in order to obtain an equivalent lumped model expression. 

 

4.1 Dynamic Stiffness and Flexibility of a SDOF System 
 

Let us consider a lumped single degree of freedom (SDOF) system, consisting of a rigid 

body of mass M (lumped mass) constrained to move along the X axis. The mass is 

attached to a fixed support by a spring of stiffness K and a dashpot of constant C, as 

shown in Figure 4.1. The system is subjected to damped forced harmonic vibrations by 

the action of a force with harmonic variation in time F(t) = Fo eiωt, and the system 

response (position as a function of time) is described through the coordinate X(t). 

 

 
Figure 4.1: SDOF System 
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Figure 4.2 presents the free body diagram (FBD) and the kinetic diagram of the rigid 

body, corresponding to a positive displacement, a positive velocity, and a positive 

acceleration, where: 

 

 
Figure 4.2: Free Body and Kinetic Diagrams 

 

 F(t) = applied dynamic force 

 Fs(t) = spring force = K X(t) 

 Fd(t) = damping force = )(tXC  

 

Applying Newton’s second law, the equation of motion for the rigid body is: 

 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

F t Fs t Fd t M X t

M X t C X t K X t F t

− − =

+ + =

 (4.1) 

 

The complementary solution of equation (4.1), obtained from the homogeneous second-

order differential equation of motion, results in a transient solution exponentially 

decaying with time, and will not be considered here. X(t) = Xo eiωt is proposed for the 

particular solution, or steady state solution, of equation (4.1). Replacing X(t) in (4.1) 

leads to: 

M 
F(t) 

X(t) 

Fs(t) 

Fd(t) 

M
)(tX

)(tX

Free body diagram Kinetic diagram 
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( )

2 2

2

i t i t i t i tM i Xo e C i Xo e K Xo e Fo e

K M i C Xo Fo

Kd Xo Fo

ω ω ω ωω ω

ω ω

ω

+ + =

⎡ ⎤− + =⎣ ⎦

=

 (4.2) 

 
 

The complex function [ K – ω2 M + i ω C ] that relates the displacement and the force 

magnitude is referred as the system dynamic stiffness or impedance “Kd(ω)”. One can 

give a physical meaning to Kd(ω) as the amplitude of the harmonic force that must be 

applied to a SDOF system to obtain a unit steady state harmonic displacement. 

 

Kd(ω) has a real component Kdd(ω) (also known as the direct dynamic stiffness) and an 

imaginary component Kdq(ω) (also known as the quadrature dynamic stiffness), as 

shown in equation (4.3) and Figure 4.3.  

 

 

( )
( )
( )

2

2

Kd K M i C

Kdd K M

Kdq C

ω ω ω

ω ω

ω ω

⎡ ⎤= − +⎣ ⎦
= −

=

 (4.3) 

 
  

It can be seen from equation (4.2) that Xo results in a complex function of ω, meaning 

that the displacement is not in phase with the force, and that the imaginary component of 

the stiffness (due to the system damping) is responsible for the phase angle φ with which 

the displacement lags the force. 
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Figure 4.3: Dynamic Stiffness Components (Phase Diagram) 
 

 

Another way of representing the dynamic stiffness is to use a polar system of reference 

giving its module |Kd(ω)| (vector length) and phase angle φ(ω) as described in equation 

4.4, instead of giving its component in a Cartesian system of coordinates (Kdd(ω) and 

Kdq(ω)). In the expressions of |Kd(ω)| and φ(ω) it is usual to take K out of the radical, 

and make a change of variables considering that K/M = ωn2, and C/K = 2ξ/ωn, where ωn 

is the system natural frequency and ξ is the system damping ratio. 
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Figure 4.4 presents in a qualitative way the variation of the real component Kdd(ω) and 

the imaginary component Kdq(ω) of the dynamic stiffness with the frequency of the load 

ω. The real component has a parabolic variation, and it becomes zero when the frequency 

of the load coincides with the natural frequency of the system M
Kn =ω (resonance 

condition). It is important to notice that, in a damped system, the dynamic stiffness does 

not become zero at resonance, since the imaginary component (which has a linear 

variation with ω) has a finite value equal to ωn C.   

 

 
Figure 4.4: Variation of Real and Imaginary Components of Kd(ω) as a Function of Load Frequency ω 

 
 

The ratio of the dynamic stiffness to the static stiffness may be called the relative 

dynamic stiffness Kdr(ω) = Kd(ω)/K: 
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The direct (or real) and quadrature (or imaginary) components of the relative stiffness 
are: 
 

 
( )

( )

2

1

2

Kddr
n

Kdqr
n

ωω
ω
ωω ξ
ω

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

=

 

 
The modulus of the relative (or non-dimensional) dynamic stiffness is: 
 

 ( )
2 22

1 2Kdr
n n

ω ωω ξ
ω ω

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= − +⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎢ ⎥⎣ ⎦
 (4.5) 

  

Figure 4.5 shows the variation of |Kdr(ω)| with the frequency ratio ωr = ω/ωn, for 

different damping ratios  ξ (5%, 10%, 20%, 30%); it can be seen that |Kdr(ω)| is 

minimum near resonance (ωr = 1). 

 
 

Figure 4.5: Variation of |Kdr(ω)| as a Function of Load Relative Frequency ωr, for Different 
Damping Ratios 
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Figure 4.6 shows the variation of phase angle φ(ω) with the frequency ratio ωr = ω/ωn, 

for different damping ratios ξ. It can be seen that for static loads (ω=0) the displacement 

is in phase with the force (φ=0; the dynamic stiffness has only a real component), for 

resonant loads (ω=ωn) the displacement lags the force by 90o (φ=π/2, the dynamic 

stiffness has only an imaginary component), and for high frequency loads the 

displacement lags the load by 180o  (φ=π, the mass component of the dynamic stiffness is 

dominant). 

  

Figure 4.6 : Phase Angle φ a Function of Load Relative Frequency ωr, for Different Damping Ratios 
 

The inverse of the dynamic stiffness is the dynamic flexibility H(ω) (equation 4.6), also 

known as dynamic compliance, receptance, admittance, and Frequency Response 

Function (FRF), this last designation being the most commonly used. One can give a 

physical meaning to H(ω), as the amplitude of the steady state displacement of a SDOF 

system when subjected to a complex unit harmonic force F(t) = 1 eiωt.  
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(4.6) 

 
The ratio between the dynamic flexibility and the static flexibility ( f = 1/K ) may be 

defined as the relative dynamic flexibility (or dimensionless frequency response function) 

Hr(ω), and is shown in equation 4.7.   
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 (4.7) 

    

Figure 4.7 shows the variation of the module of Hr(ω) with the frequency ratio ωr = 

ω/ωn; it can be seen that |Hr(ω)| is maximum near resonance (ωr = 1). 

 

Figure 4.7: Variation of |Hr(ω)| as a Function of Load Relative Frequency ωr, for Different Damping 
Ratios 
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4.2 Novak’s Dynamic Stiffness to Model Soil-Pile Interaction 
 

Novak (1974) presented an approximate analytical expression of the dynamic stiffness 

and damping of piles based on linear elasticity, describing the dynamic soil reaction per 

unit length of pile by closed form formulas, as derived by Baranov in 1967. In Novak’s 

study it is assumed that the soil is composed of a set of independent infinitesimally thin 

horizontal layers in plane strain state that extend to infinity and experience small 

displacements. The layers are considered to be composed of an homogeneous, isotropic, 

and linear-elastic material. The pile is assumed to be vertical, with circular cross section, 

and that the cross section shape and size remain unchanged and moves as a rigid body (a 

hypothesis that is consistent with the Navier-Bernoulli beam theory). The massless rigid 

circular disc that represents the pile cross section is considered to experience a harmonic 

vibration. No separation is allowed between the rigid cylinder and the soil medium.  

 

This approach was later extended by Novak and his coworkers to viscoelastic materials 

with frequency independent material damping (hysteretic damping), as reported by 

Novak and Abloul-Ella (1978) and Novak et al. (1978). The damping is considered by 

means of the Complex Shear Modulus G* = G + i G’ = G (1 + i D) , where the parameter 

D (known as the loss factor) is defined in terms of the loss angle δ: 

 

 'tan GD
G

δ= =  (4.8) 

 
where: 

 D = loss factor 
 G = real part of the shear modulus 
 G’ = imaginary part of the shear modulus 
 

The complex horizontal stiffness of the soil associated with a unit length of the cylinder, 

“ku”, (or the dynamic soil reaction per unit length of pile to a unit horizontal harmonic 

displacement of the rigid disc) is given by the following equation: 

 



 

 

75

 2
oku G a Tπ=  (4.9) 

 where: 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
* * * * * * * *
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o o o o o o o o o o
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T
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+ +
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+ +
 (4.10) 

in which: 
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Separating the real and imaginary parts of the function T, equation 4.9 can be rewritten in 

a condensed form as: 

 
 ( ) ( )1 2, , , ,u o u oku G S a D i S a Dν ν⎡ ⎤= +⎣ ⎦  (4.12) 

 

in which Su1 and Su2 are real functions. The variations of these functions with ao, ν, and D 

are shown in Figures 4.8 a and b.  
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Figure 4.8: Horizontal Stiffness and Damping Parameters Su1 and Su2 
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By analyzing this figure it can be appreciated that the imaginary part of the dynamic 

stiffness (Su2), corresponding to the damping, has an almost linear variation, and that it 

increases (for the same frequency) as the hysteretic damping D increases. It also can be 

noted that the real part of the dynamic stiffness (Su1), corresponding to the elastic and 

inertia contributions, has a parabolic type of variation, and decreases (for the same 

frequency) as the hysteretic damping D increases. An inspection of Figure 4.8 also allows 

to pinpoint that as the Poisson’s ratio ν decreases the curve of the real part Su1 tends to 

flatten, and a decrease in the Poisson’s ratio also lowers the slope of the imaginary part 

(decreasing the damping effect). 

 

Novak (1974) and Novak and Aboul-Ella (1978) compared the dynamic stiffness of the 

pile head obtained with Novak’s model with the results calculated with more rigorous 

approaches. An example of such comparisons is shown in Figure 4.9. It presents, for a 

case study of a pile fixed at the bottom, the real part (fu1) and the imaginary part (fu2) of 

the direct horizontal pile head stiffness (functions that relates the pile head horizontal 

force corresponding to a pile head horizontal displacement). 

 

As stated by Novak (1974), the differences between the two solutions appear acceptable 

and diminish with increasing frequency. Novak’s solution does not yield peaks attributed 

to the soil layer resonances; however, the sharpness of these peaks decreases and they 

even vanish with soil viscosity, so they are not considered important. Since the real part 

of the Novak’s solution tends to zero as the frequency tends to zero (instead of yielding 

the static stiffness), Novak and Aboul-Ella (1978) recommended to extend the value of  

fu1 corresponding to ao = 0.3 to the lower frequencies, as shown in Figure 4.9.  Novak 

also recommended to use, for practical purposes, the value corresponding to ao =0.3 as 

the dynamic stiffness. 
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Figure 4.9: Comparison of Approximate (Novak) vs. More Rigorous Approach (Aboul-Ella and 

Novak, 1978) 
 

 

Finally, considering the dynamic stiffness of a SDOF system presented in Figure 4.4, the 

similar trends presented by Novak’s dynamic stiffness in Figure 4.9 (at least for high 

Poisson’s ratio values) strongly suggest that an equivalent lumped model would be 

appropriate, avoiding the use of a complex expression for the dynamic stiffness that is 

also frequency dependent . 

 

4.3 Equivalent Lumped Model 
 

In order to obtain an equivalent lumped model it was decided to approximate the Novak’s 

dynamic stiffness presented in section 4.2. To this end, the real part of Novak’s solution 

will be approximated by a second degree polynomial with no linear term, and the 
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imaginary part of Novak’s solution will be approximated by a straight line with no 

constant term.  

 

In order to obtain the proposed approximation, the least square technique for curve fitting 

will be applied. The analysis will be performed for different Poisson’s ratios.  

 

Considering the fact that the maximum of the real part of Novak’s dynamic stiffness is 

not located at zero frequency, and that the real part tends to zero as the frequency tends to 

zero, this maximum will be determined and extended as constant for the lower 

frequencies. 

 

4.3.1 Lumped Coefficients Definition      
 

By comparing equation 4.9, which describes the soil dynamic stiffness according to the 

Novak model, with equation 4.3, which describes the dynamic stiffness of a single degree 

of freedom system, a general form of the equivalent lumped model coefficients can be 

established.  

 

It is proposed to obtain a polynomial approximation of the Novak’s solution, taking the 

dimensionless frequency ao as the independent variable. As stated before, the real part 

will be approximated by a constant term (corresponding to the static stiffness) and a 

quadratic term (corresponding to the mass), and the imaginary part will be represented by 

a linear term (corresponding to the viscous damping). Starting with equation 4.9: 

 

 ( )2 , ,o oku G a T a Dπ ν=  

 
and introducing a function f,  
 
 
 
 ( ) ( )2, , , ,o o of a D a T a Dν ν=  
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the complex stiffness can be written as 
 
 ( ) ( ) ( ){ }, , Real , , Imag , ,o o oku G f a D G f a D i f a Dπ ν π ν ν⎡ ⎤ ⎡ ⎤= = +⎣ ⎦ ⎣ ⎦  

introducing the following approximations 
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ν α α

ν α

⎡ ⎤ ≈ −⎣ ⎦
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the dynamic stiffness ku becomes 
 
 
 ( )2

k m o c oku G a i aπ α α α≈ − +  (4.13) 

 
The coefficients αi will be determined by the least square approximation of the function 

f(ao,ν,D), for i = k, m or c (the subscripts k, m and c correspond to the stiffness, mass, and 

damping coefficients, respectively).  Comparing equation 4.13 with the dynamic stiffness 

of a SDOF system as expressed by equation 4.3, one can obtain: 
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 (4.14) 

 

Solving for the stiffness coefficient ka, the lumped mass ma, and the lumped viscous 

damper coefficient ca from equation 4.14, the equivalent lumped coefficients are: 
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The viscous damping coefficient corresponds to the radiation damping. The material 

damping (hysteretic damping) is accounted by the parameter D, as defined previously.  

 

These coefficients are defined per unit pile length. In order to obtain lumped coefficients 

to apply at each node of a pile discretized with beam elements, these values have to be 

multiplied by the tributary length for each node. Alternatively, the corresponding 

consistent matrices of a beam on elastic foundation, considering the beam element degree 

of freedom, should be obtained. 

 

4.3.2 Determination of the Lumped Coefficients      
 

As stated previously, the dynamic stiffness of the Novak’s model will be approximated 

by polynomials using the least squares method. The basic equation of the method can be 

found in most textbook on applied numerical analysis (for instance, Gerald and Wheatley, 

1994; Chapra and Canale, 1998).  

 

Consider “N” known discrete data points (x, y). It is desired to find an “n” degree 

polynomial that best fit these data points by minimizing the error between the known 

ordinates of the data points and the ordinates predicted by the following polynomial 

expression: 

 

 2 3
1 2 3( ) n

o nf x d d x d x d x d x≈ + + + + +…  

 
The polynomial coefficients di can be found by solving the following system of linear 

simultaneous equations: 
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 (4.16) 

 
where xi and yi are, respectively, the abscise and ordinate of data point i. 

      

The coefficients αk and αm are obtained from the real part of Novak’s dynamic stiffness 

function f(ao,ν,D) defined in the previous section. The application of the least square 

method leads to the following expressions: 
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 (4.17) 

 
The coefficient αc is defined by using the imaginary part of Novak’s dynamic stiffness 

function f(ao,ν,D) defined in the previous section. Applying the least square method leads 

to the following expressions: 
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 (4.18) 

 
 

The number of discrete points N adopted for the analysis was 30. The main objective was 

to obtain an adequate fitting of Novak’s solution within the range of 0.3 < ao < 3.0. The 

lower range value correspond to the one suggested by Novak to be used for low 

frequencies; the upper range value was adopted as twice the upper value displayed in the 

charts presented by Novak, as a range where the model is expected to give adequate 

results.  

 

Instead of using ao = 0.3 in the lower frequency range, the maximum of the function was 

obtained (and adopted as the second data point). This value was then extended 

horizontally up to the intersection with the vertical axis, which was the point adopted as 

the first data point of the series.   

 

Appendix D presents the listing of the MathCad worksheet prepared to perform the 

regression, for different Poisson’s ratio values. As an example of the results of the 

analysis, Figure 4.10 presents the real part on Novak’s dynamic stiffness function 

f(ao,ν,D), in red, together with the data points used for the regression (in green), and the 

resulting polynomial approximation (in blue). These results are for the case of ν = 0.5 (a 

value of 0.4999999 was adopted to avoid indetermination) and D = 0.0. 
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Figure 4.10: Real Part of f(ao,ν,D) for ν = 0.5 and D = 0.0 (red), Data Points (Green), and Polynomial 
Approximation (Blue) 

 

Figure 4.11 presents the imaginary part on Novak’s dynamic stiffness function f(ao,ν,D) 

(in red) together with the data points used for the regression (in green), and the resulting 

polynomial approximation (in blue). The same values for ν and D were used. 

 

 
Figure 4.11: Imaginary Part of f(ao,ν,D) for ν = 0.5 and D = 0.0 (red), Data Points (Green), and 

Polynomial Approximation (Blue) 
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The resulting regression coefficients for this case are: 

 

 
1.721
0.965
4.107

k

m

c

α
α
α

=
=
=

 (4.19) 

 
This analysis was performed for different soil Poisson’s ratios ν. As the Poisson’s ratio 

decreases, the real part on Novak’s dynamic stiffness function f(ao,ν,D), in red, starts to 

exhibit an inflection point after the maximum, and the function tends to increase  for high 

frequencies, as shown in Figure 4.12. To show this effect, Figure 4.12 displays the real 

part on Novak dynamic stiffness function f(ao,ν,D) (in red) together with the data points 

used for the regression (in green), and the resulting polynomial approximation (in blue) 

for the case of ν = 0.48 and D = 0.0. As the Poisson’s ratio continues decreasing, the 

curvature is reduced (the curve tends to get flatter, more horizontal), making the mass 

contribution less important. It also shows a tendency to move its maximum to the right.  

 

In order to analyze these cases, it was decided to find the inflection point, and to extend 

the function along the tangent to this point to obtain the data points for higher 

frequencies, and not to include the rising portion of the function, as shown in Figure 4.13 

for the case of ν = 0.47 and D = 0.0. 
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Figure 4.12: Real Part of f(ao,ν,D) for ν = 0.48 and D = 0.0 (red), Data Points (Green), and 
Polynomial Approximation (Blue) 

 

  

  
Figure 4.13: Real Part of f(ao,ν,D) for ν = 0.47 and D = 0.0 (red), Modified Data Points (Green), and 

Polynomial Approximation (Blue) 
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Figure 4.14 shows the variation of the regression coefficients αk, αm, and αc with the 

Poisson’s ratio ν, and Table 4.1 presents the numerical values obtained for them. It is 

recalled that the dynamic stiffness ku was approximated as follows: 

 

 ( ) ( ) ( )2 2
k o m o s cku G r i r Vπα ρ π α ω π ρ α ω≈ − +  

 
Because the coefficient αm becomes very small as the Poisson’s ratio decreases, 

according to Novak’s model, the contribution of the lumped soil mass to the system 

response tends to be less significant in this case. Indeed, its contribution is practically 

insignificant for Poisson’s ratios smaller than 0.4. Figure 4.15 presents the variation of 

coefficient αm alone, in order to better appreciate its behavior. 
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Figure 4.14: Variation of Regression Coefficients with Poisson’s Ratio [0.3-0.5] 
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Table 4.1: Regression Coefficients αk, αm, and αc for ν [0.5-0.31] 
 

ν αk αm αc 
0.50 1.72137 0.96533 4.10747 
0.49 1.61062 0.68219 4.38920 
0.48 1.46327 0.45715 4.33825 
0.47 1.39946 0.32158 4.20948 
0.46 1.36918 0.23482 4.06638 
0.45 1.35437 0.17664 3.92941 
0.44 1.34592 0.13555 3.80454 
0.43 1.34015 0.10538 3.69268 
0.42 1.33550 0.08258 3.59299 
0.41 1.33130 0.06494 3.50411 
0.40 1.32727 0.05106 3.42465 
0.39 1.32329 0.03998 3.35334 
0.38 1.31933 0.03104 3.28908 
0.37 1.31540 0.02376 3.23091 
0.36 1.31153 0.01780 3.17803 
0.35 1.30775 0.01290 3.12978 
0.34 1.30411 0.00886 3.08557 
0.33 1.30067 0.00553 3.04493 
0.32 1.29749 0.00280 3.00744 
0.31 1.29479 0.00059 2.97274 

 

 
Figure 4.15: Variation of Regression Coefficient αm with Poisson’s Ratio [0.3-0.5] 
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For values of Poisson’s ratio of 0.30 and smaller, the real part of Novak’s dynamic 

stiffness does not present a maximum. It was decided to approximate the function by a 

horizontal line. Since the real part of the function f(ao,ν,D) was approximated by 
2
0k m aα α− , this implies that the coefficient αm must be zero. In turn, since the quadratic 

term gives the contribution of the mass to the dynamic stiffness, this implies that there 

will be no lumped mass contribution for small values of ν.  

 

The first option was to select an horizontal line passing through the inflection point of the 

curve, as shown in Figure 4.16 for ν = 0.30. However, for Poisson’s ratios values less 

than 0.24 no inflection point was obtained, so it was opted to obtain the coefficient αk as 

the mean value of the real part of the dynamic stiffness within the range of the 

dimensionless frequency between 1.0 and 3.0. In this way one avoids having to account 

for the steep variation in the initial range and it permits to have a good estimate within 

the range of interest of ao. This procedure is equivalent to the least square method for a 

linear regression, keeping only the constant term. Figure 4.17 shows this approximation 

for ν = 0.30.  

 
Figure 4.16: Real Part of f(ao,ν,D) for ν = 0.30 and D = 0.0 (red), and Horizontal Line Approximation 

(Blue) using Inflection Point 
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Figure 4.17: Real Part of f(ao,ν,D) for ν = 0.30 and D = 0.0 (red), Horizontal Line Approximation 

(Blue) using the Mean Value, and Selected Data Points (green) 
 

Figure 4.18 shows the variation of the regression coefficients αk, and αc with the 

Poisson’s ratio ν and Table 4.2 presents the results of this approximation for Poisson’s 

ratios values ranging from 0.30 to 0.00. 

 

Figure 4.18: Variation of Regression Coefficients with Poisson’s Ratio [0-0.3] 
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Table 4.2: Regression Coefficients αk, αm, and αc for ν [0.3-0.0] 

 

ν αk αm αc 
0.30 1.30686 - 2.94054 
0.29 1.30834 - 2.91058 
0.28 1.30886 - 2.88262 
0.27 1.30858 - 2.85647 
0.26 1.30766 - 2.83197 
0.25 1.30622 - 2.80895 
0.24 1.30435 - 2.78729 
0.23 1.30213 - 2.76687 
0.22 1.29964 - 2.74757 
0.21 1.29692 - 2.72932 
0.20 1.29402 - 2.71203 
0.19 1.29099 - 2.69562 
0.18 1.28784 - 2.68003 
0.17 1.28461 - 2.66519 
0.16 1.28133 - 2.65106 
0.15 1.27800 - 2.63758 
0.14 1.27464 - 2.62470 
0.13 1.27127 - 2.61240 
0.12 1.26791 - 2.60062 
0.11 1.26454 - 2.58934 
0.10 1.26120 - 2.57852 
0.09 1.25787 - 2.56814 
0.08 1.25457 - 2.55817 
0.07 1.25131 - 2.54859 
0.06 1.24807 - 2.53937 
0.05 1.24488 - 2.53049 
0.04 1.24172 - 2.52194 
0.03 1.23861 - 2.51370 
0.02 1.23553 - 2.50574 
0.01 1.23251 - 2.49806 
0.00 1.22953 - 2.49064 

 

4.3.3 Lumped Coefficients Analysis      
 

Figure 4.19 presents a summary of the variation of the regression coefficients αk, αm, and 

αc with the Poisson’s ratio for whole range of ν values (between 0.0 and 0.5). Observing 

the figure, it becomes evident that the coefficient αk, corresponding to the soil static 

stiffness contribution, remains practically constant for different ν values whereas the 
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coefficient αm, corresponding to the soil mass contribution, decreases rapidly with the 

Poisson’s ratio and for all practical purposes vanishes for values smaller that 0.30. The 

figure also shows that the coefficient αc, corresponding to the radiation damping 

contribution, after an initial increase for ν below 0.5, experiences a significant reduction 

as the value of ν decreases, but nevertheless it keeps a non-negligible value for all the 

range of the Poisson’s ratios. 

 
 

Figure 4.19: Variation of Regression Coefficients with Poisson’s Ratio [0.5-0.0] 
 

 

In order to analyze the type of dynamic response predicted by the model, the critical 

damping coefficient ccr and the damping ratio ξ, considering that the rigid circular slice 

that represents the pile cross section is massless, will be obtained (Humar, 2002). It is 

well known that the critical damping coefficient of a single DOF oscillator is: 
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Substituting ka and ma from equations 4.15 one obtains 
 

 
( )( )22 2

2

cr k o m o k m

cr o s k m

Gc G r r

c r V

π α π ρ α π ρ α α
ρ

π ρ α α

= =

=

 (4.20) 

 
By definition the viscous damping ratio is 
 

 
2

2

a o s c

cr o s k m

c

k m

c r V
c r V

π ρ αξ
π ρ α α

αξ
α α

= =

=
 (4.21) 

 
Table 4.3 presents the damping ratio ξ defined in equation 4.20 for values of the 

Poisson’s ratios ranging from 0.50 to 0.30. 

 

Table 4.3: Damping ratio ξ for ν [0.50-0.30] 
 

ν αk αm αc ξ 
0.50 1.72137 0.96533 4.10747 1.5932 
0.49 1.61062 0.68219 4.38920 2.0937 
0.48 1.46327 0.45715 4.33825 2.6521 
0.47 1.39946 0.32158 4.20948 3.1374 
0.46 1.36918 0.23482 4.06638 3.5857 
0.45 1.35437 0.17664 3.92941 4.0168 
0.44 1.34592 0.13555 3.80454 4.4536 
0.43 1.34015 0.10538 3.69268 4.9130 
0.42 1.33550 0.08258 3.59299 5.4097 
0.41 1.33130 0.06494 3.50411 5.9588 
0.40 1.32727 0.05106 3.42465 6.5779 
0.39 1.32329 0.03998 3.35334 7.2899 
0.38 1.31933 0.03104 3.28908 8.1270 
0.37 1.31540 0.02376 3.23091 9.1374 
0.36 1.31153 0.01780 3.17803 10.3987 
0.35 1.30775 0.01290 3.12978 12.0467 
0.34 1.30411 0.00886 3.08557 14.3499 
0.33 1.30067 0.00553 3.04493 17.9454 
0.32 1.29749 0.00280 3.00744 24.9381 
0.31 1.29479 0.00059 2.97274 53.6188 
0.30 1.30686 0.00000 2.94054 ∞ 
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Since the damping ratio is always greater that 1, the model will predict an overdamped 

response. It is important to point out that if the model is applied to analyze a pile-soil 

system, this situation may vary due to the effect of the pile mass and stiffness. 

 

It is instructive to evaluate the effect of the mass of a SDOF system on the system 

response as the damping ratio varies. To this end, the dimensionless frequency response 

function (presented in section 4.1) of a SDOF system will be evaluated, considering 

different mass values (M), and different damping ratios (ξ). For the analysis, the stiffness 

and mass properties of the original system will be first taken equal to 1, in order to obtain 

a natural frequency ωn = 1 rad/sec. Then, a mass one order of magnitude smaller than the 

original (i.e., M = 0.1) and one order of magnitude greater than the original (i.e., M = 10) 

are considered. Figures 20, 21 and 22 present the modulus of the FRF for ξ = 0.2, 1.5, 

and 10, respectively. 

 

 
Figure 4.20: Dimensionless FRF for ξ = 0.2 
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Figure 4.21: Dimensionless FRF for ξ = 1.5 

 

 
Figure 4.22: Dimensionless FRF for ξ = 10.0 
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It can be seen from Figure 4.20 that for systems with a relatively small damping ratios 

and for excitation frequencies 2 nω ω< , the response experiences an amplification 

(peak) with respect to the static response (ω = 0), and that the system mass plays an 

important role in establishing where the peak is located (for a constant stiffness). As the 

damping ratio becomes higher (specifically, 2 / 2ξ > ), the FRF does not present a peak 

(there is no amplification for any excitation frequency), and the response of the systems 

with different masses becomes closer, making the effect of the mass less important in the 

system response. Figure 4.23 displays the response of systems with different masses and 

different damping ratios; this figure demonstrates that, in overdamped systems, an effect 

similar to the mass may be obtained with an appropriate damping. 

 

 
Figure 4.23: Dimensionless FRF for Different M and ξ 
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This situation may be explained by the fact that, due to radiation damping, the soil 

response is overdamped; and overdamped SDOF systems behavior are basically 

controlled by damping and not by mass. The model also shows that the soil mass is 

important for high soil Poisson’s ratios, as occurs in saturated soils (for ν = 0.5 the soil 

mass contribution is in the same order of the pile mass contribution). However, the soil 

mass importance rapidly diminishes as the Poisson’s ratio becomes smaller. This 

situation may be explained due to the fact that the larger the value of the Poisson’s ratio 

ν, the larger the soil transverse deformation that will occur when the piles vibrates 

horizontally, so more soil mass is involved in the transmission of p-waves due to pile 

vibration, as presented in Figure 4.24: when ν = 0.0 there are no transverse deformations, 

and the compressive waves propagate along one line of soil stress elements located along 

the direction of pile movement, but when ν increases, there are increasingly larger 

transverse deformations, so the compressive waves also affect the soil stress elements 

located perpendicular to the direction of pile movement. 

 

 

Figure 4.24: Effect of ν in the Propagation of P-Waves 
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4.4 Pile Element Matrices 
 

This section briefly describes the implementation of the soil lumped model in the analysis 

of a single pile, using three types of one dimensional (1D) flexural beam elements. 

 

4.4.1 Classical Beam Element with Lumped Soil 
 

A classical beam element with its nodal degrees of freedom is shown in Figure 4.25. The 

corresponding element stiffness, lumped mass, and consistent mass matrices are 

presented in equations 4.21, 4.22 and 4.23 respectively (Chopra, 2001; Suarez, 2004).   

 

 

 
Figure 4.25: Pile Element DOF 
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 (4.22) 

 
where: 
 

 

[ ] Pile element stiffness matrix
length of the pile element

  modulus of elasticity of the pile element material 
  moment of inertia of the pile element cross section 

E

E

k
L
E
I

=

=
=
=
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 (4.23) 

where: 
 

 

[ ] Pile element lumped mass matrix
mass of the pile element 

density of the pile element material 
area of the pile element cross section 

E

P E

m
M A L

A

ρ
ρ
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= =
=
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 (4.24) 

 
where: 
 

 
[ ] Pile element consistent mass matrix

Pile element mass
E

P E

m
M A Lρ

=

= =
 

 

The pile with a lumped mass-spring-dashpot at its ends (representing soil-pile interaction) 

is presented in Figure 4.26, together with the corresponding lumped parameters 

definition. The coefficients ka, ma, and ca were obtained based on Novak’s dynamic 

stiffness that represents the dynamic soil reaction per unit length of pile due to a unit 

horizontal harmonic displacement of a rigid disc (pile cross section). These coefficients 

must be multiplied by the tributary length of each pile element node, that is LE/2, in order 

to obtain the nodal lumped parameters. 

 

This approach of representing the soil-pile interaction has four main advantages: 

• It can be easily implemented in any commercial structural analysis software (e.g. 

SAP2000, etc.). 

• It is not difficult to incorporate possible soil non-linearities by varying the soil 

stiffness ka (i.e. using p-y curves). 

• The required computational time is orders of magnitude smaller than the one 

required by a 3D FEM model. 

• A simple model can be more easily understood and it is more likely to be 

accepted and adopted by the professional community. 
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Figure 4.26: Pile Element with Lumped Soil Parameters 
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results obtained are given in equations 4.24 trough 4.26.  

 

This approach is more elegant than the lumped model, but it has two drawbacks: 

• It is not possible to implement in a commercial package, since the program should 

have this type of element matrices built in. Most commercial software use lumped 

mass matrices and only allow to add additional masses, dashpots and springs at 

discrete points. 

• It is not evident how to incorporate nonlinear effects, since the soil stiffness is 
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Figure 4.27: Pile Element with Distributed Soil Parameters 

 

 

The stiffness matrix for the beam element with distributed soil stiffness is given by: 
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(4.25) 
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where: 
 

 

[ ] Pile element stiffness matrix
length of the pile element

  modulus of elasticity of the pile element material 
  moment of inertia of the pile element cross section

Total soil stiffness 

E

E

S a E

k
L
E
I
K k L

=

=
=
=
= = coefficient

 

 

The mass matrix for a beam element with distributed soil mass is given by: 

 

 
2 2

2 2

156 22 54 13
22 4 13 3

[ ]
54 13 156 22420
13 3 22 4

E E

E E E EP S
E

E E

E E E E

L L
L L L LM MM

L L
L L L L

−⎡ ⎤
⎢ ⎥−+ ⎢ ⎥=
⎢ ⎥−
⎢ ⎥− − −⎣ ⎦

 (4.26) 

 
where: 
 

 

[ ]

S

Pile + soil element consistent mass matrix
 Total pile element mass

M Total soil mass
 density of the pile element material
area of the pile element cross section

mass per unit leng

E

P E

a E

M
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m L

A
A
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ρ

=

= =
= =

=
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The damping matrix for a beam element with distributed soil damping is given by: 
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where: 
 

 
[ ]

S

Pile + soil element consistent damping matrix
C  total soil damping

distributed damping coefficient of the soil 

E

a E

a

c
c L

c

=

= =
=

 

 

4.4.3 Refined Beam Element with Distributed Soil      
 

Finally, a third approach to define a model to represent the pile and the soil contribution 

is presented. The refined beam element was proposed by Deschapelles (2003), and it has 

five degree of freedom (DOF): four corresponding to the classical beam element (nodal 

transverse displacements and rotations) plus one corresponding to the average transverse 

displacement along the beam length. This last displacement may be considered as a 

distributed or non nodal DOF. This element is displayed in Figure 4.28 with the 

distributed springs, dampers and masses.  

 

The consistent stiffness, mass and damping matrices were obtained by applying the 

Principle of Virtual Work to the pile (beam) element with distributed soil parameters ka, 

ma, and ca. The derivation is presented in Appendix E and the results are given in 

equations 4.27 through 4.28. 

 

This approach is more elegant than the lumped model, and it has the advantage that the 

new DOF is directly associated with the distributed soil stiffness, so its value may be 

used to control the soil stiffness to perform a nonlinear analysis. Its major drawback is 

that it is not possible to implement it in a commercial structural analysis program, since 

no program has this type of element. 
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Figure 4.28: Refined Beam Element with Distributed Soil Parameters 

 

The stiffness matrix for the refined beam element with distributed soil stiffness is given 

by: 
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 (4.28) 
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where [kE] is the stiffness matrix of the pile plus soil element, and the other parameters 

are the same as those previously defined for equation 4.24.  

 

The mass matrix for a refined beam element with distributed soil mass is given by: 

 

 

2 2

2 2

288 21 270 18 6
21 2 15 6

[ ] 270 15 1800 270 15
1260

18 6 270 288 21
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E E
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P S
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L L
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− −⎡ ⎤
⎢ ⎥− −⎢ ⎥+ ⎢ ⎥= − − −
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥−⎣ ⎦

 (4.29) 

 
where [ME]  is the pile plus soil element consistent mass matrix, and the remaining 

parameters were defined before for the mass matrix in equation 4.25. 

 

The damping matrix for a refined beam element with distributed soil damping is given 

by: 

 

 

2 2

2 2
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21 2 15 6
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⎢ ⎥−⎣ ⎦

 (4.30) 

 
where [cE] is the pile plus soil element consistent damping matrix. The definition of Cs 

was given after equation 4.26. 

 

 
 

 

 

 



 

 

107

5 Proposed Lumped Model Validation/Verification 
 
The objective of this chapter is to present a series of validations of the proposed lumped 

model. First, a comparison between the Dynamic Stiffness of the equivalent lumped 

Single Degree of Freedom System is compared to Novak’s solution for plane strain, to 

determine the accuracy of the approximation (within a selected dimensionless frequency 

range). Then, a comparison of a pile system response, given by the pile top dynamic 

flexibility, analyzing the system with the lumped model and Novak’s model is performed, 

in order to assess the adequacy of the lumped system to model pile-soil response. This is 

followed by a comparison between a 3D FEM model and a 1D lumped model response. 

Then a comparison between experimental and analytical results using the lumped model 

is carried out, in order to assess the lumped model capability of predicting experimental 

results. The effect of the Poisson’s ratio in a 3D FEM model response is obtained next, in 

order to evaluate if there is a similar impact than the one obtained for the lumped mass of 

the approximate model.  Lastly, the stiffness and the damping coefficients of the 

approximate model are compared to the corresponding values presented in the literature 

for other approaches. 

 

5.1 Lumped Dynamic Stiffness Approximation of Novak Continuum 
Model for Plane Strain 

 

As the lumped model was obtained through a polynomial least square regression of 

Novak’s model, the accuracy of the obtained approximate polynomial function is 

evaluated by means of the coefficient of determination R2 (R-squared). The R2 value is a 

number between 0 and 1 that reveals how closely the estimated values for the polynomial 

regression match the actual data (Zwillinger and Kokoska, 2000; Chapra and Canale, 

1998). The approximation is most reliable when its R2 value is 1 or near 1. R2 is 

computed as the ratio between the variance SE
2 of the predicted data (as a measure of its 

statistical dispersion, indicating how its values are spread around the expected value, 
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which is the mean value) and the variance ST
2 of the sample (actual) data. Equation 5.1 

shows the reference formula:  

 
2

2
2
E

T

SR
S

=  (5.1) 

 
The R2 coefficient can also be calculated in terms of the Estimated Sum of Squares and 

the Total Sum of Squares: 

 2 1ESS RSSR
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A value of R2 = 1 implies that the predicted data with the regression equation has the 

same variance (respect to the sample mean) than the sample data. In this sense, one can 

interpret that the R2 coefficient is intended to give quantification of how better is to 

approximate the ordinates by the polynomial equation instead of using the mean value as 

an approximation, in which case R2 = 0. 
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Appendix D presents the MathCad worksheet prepared to compute the R2 coefficient for 

the different regressions performed, both for the real part and the imaginary part of the 

dynamic stiffness. The results are summarized in Table 5.1 and presented graphically in 

Figure 5.1 for the range of values of ν where a parabolic regression was applicable for the 

real part (0.31 ≤ ν ≤ 0.50). 

 
Table 5.1: Coefficient of Determination for Different Poisson’s Ratios [0.31-0.50] 

 

ν 
R2         

Real 
R2 

Imaginary ν 
R2         

Real 
R2 

Imaginary 
0.50 0.999 0.997 0.40 0.981 0.999 
0.49 0.999 0.994 0.39 0.981 0.999 
0.48 0.995 0.993 0.38 0.981 0.999 
0.47 0.990 0.994 0.37 0.981 0.999 
0.46 0.987 0.995 0.36 0.981 0.999 
0.45 0.984 0.997 0.35 0.982 0.999 
0.44 0.983 0.997 0.34 0.982 0.998 
0.43 0.982 0.998 0.33 0.982 0.998 
0.42 0.981 0.998 0.32 0.983 0.998 
0.41 0.981 0.999 0.31 0.984 0.998 

 

 
Figure 5.1: Coefficient of Determination for Different Poisson’s Ratios 
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The results demonstrate that the proposed polynomial approximations yield very good 

estimates of the selected data points. 

 

In the cases when the real part of Novak’s Dynamic Stiffness does not present a 

maximum (ν ≤ 0.3) and is approximated by an horizontal line, the least squares solutions 

gives a constant value as the mean value of the ordinate data points. In this case, the 

coefficient of determination is meaningless, and its value is zero (ESS=0 and RSS=TSS). 

For these cases, the coefficient of variation CV in percentage (also known as the relative 

standard deviation) will be used to determine the fitness of the approximation: the closer 

CV is to zero, the better the mean value (used as the approximation) represents the whole 

data (since the values are less disperse around the mean). The CV is defined as: 

 

 100sCV
y

= ×  (5.3) 

where: 
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The results are summarized in Table 5.2 and presented graphically in Figures 5.2 and 5.3 

for the range of ν values where a horizontal approximation was applicable for the real 

part (0.00 ≤ ν ≤ 0.30). For the imaginary part the R2 coefficient was computed. The 

results demonstrate that the proposed approximations result in very good estimates of the 

selected data points. 
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Table 5.2: Coefficient of Determination and Coefficient of Variation for Different Poisson’s Ratios 
[0.31-0.50] 

 

ν 
CV %      
Real 

R2 
Imaginary  ν 

CV %      
Real 

R2 
Imaginary 

0.30 1.186 0.998  0.15 2.401 0.997 
0.29 1.368 0.998  0.14 2.424 0.997 
0.28 1.527 0.998  0.13 2.445 0.997 
0.27 1.664 0.998  0.12 2.463 0.997 
0.26 1.783 0.998  0.11 2.479 0.997 
0.25 1.885 0.998  0.10 2.493 0.997 
0.24 1.974 0.998  0.09 2.505 0.997 
0.23 2.051 0.998  0.08 2.516 0.997 
0.22 2.118 0.997  0.07 2.526 0.997 
0.21 2.176 0.997  0.06 2.535 0.997 
0.20 2.227 0.997  0.05 2.542 0.997 
0.19 2.271 0.997  0.04 2.548 0.997 
0.18 2.310 0.997  0.03 2.554 0.997 
0.17 2.344 0.997  0.02 2.559 0.997 
0.16 2.374 0.997  0.01 2.563 0.997 
0.15 2.401 0.997  0.00 2.567 0.997 

 

 
Figure 5.2: Coefficient of Determination of the Imaginary Part for Different Poisson’s Ratios 
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Figure 5.3: Coefficient of Variation of the Real Part for Different Poisson’s Ratios 

 
 

5.2 Pile with Lumped Model vs Pile with Novak Model 
 

A case study will be developed to compare the predicted pile-soil response using the 

proposed lumped model, and using Novak’s plane strain model, as presented in Chapter 

4. A RC circular pile, with a 1ft radius, a length of 30 ft, a Young’s elastic modulus of 

3600 ksi and a specific weight of 150 pcf is placed in a sand stratum. The soil has an 

elastic modulus of 12 ksi, a specific weight of 110 pcf, and a Poisson’s ratio of 0.4. 

 

The Poisson’s ratio was initially taken as 0.4 in order to analyze a case where the soil 

mass has a contribution. Later, the analysis will be extended to cover different Poisson’s 

ratios values, in order to generalize the findings of the comparison. 
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Regarding the analytical model to be used, the pile will be discretized with 15 beam 

(flexural) elements. The pile analytical model (with the corresponding nodal degrees of 

freedom), and the pile element stiffness and mass matrices are presented in Figure 5.4. 

 
Figure 5.4: Pile Analytical Model and Element Matrices 
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The system response to be evaluated is the pile head dynamic flexibility, or frequency 

response function (FRF). Appendix F (sections F.1, F.2 and F.3) presents the programs 

developed in Matlab in order to perform the analyses. First, the FRF of the pile without 

the soil was obtained, in order to appreciate the isolated pile response. The result obtained 

was also compared to the FRF obtained with the commercial package SAP2000, in order 

to verify the Matlab program. Figure 5.5 presents the comparison. The FRF presents a 

series of peaks, as expected for a system with multiple degrees of freedoms and without 

damping. The results obtained with the program developed agree very well with those 

obtained with SAP2000 (in SAP2000 analysis, a default material damping of 0.05 of the 

system stiffness matrix was used, so the peaks are smoother). 

 

 
Figure 5.5: FRF of Pile without Soil Contribution 

 

Next an analysis including the soil contribution was conducted. Both the Novak’s plane 

strain model and the equivalent lumped model presented in Chapter 4 were used. Figure 
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Figure 5.6: Soil-Pile Analytical Models 
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Figure 5.7 presents the modulus of the FRF obtained using Novak’s dynamic stiffness; 

Figure 5.8 presents the similar response calculated with the equivalent lumped model. 

Figure 5.9 presents both responses together for comparison purposes.  

 

A good agreement in the predicted system responses can be observed. This indicates that 

the lumped model is able to produce accurate results for this pile-soil system and similar 

cases. 

 

 

 
Figure 5.7: Pile-Soil System FRF Using Novak Model 
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Figure 5.8: Pile-Soil System FRF Using Lumped Model 

 

 
Figure 5.9: Comparison between Lumped FRF (red) and Novak FRF (blue) 
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It also can be seen that the pile responds as an overdamped system, since there are no 

peaks in its FRF. Figure 5.5 showed the system response disregarding soil contribution, 

and Figure 5.10 presents the two responses, those that account and neglect the soil 

contribution. A different vertical scale was used in order to better appreciate the effect of 

the soil contribution. It is clear that for this case the soil has a great impact in the system 

response: the magnitude of the static displacement is dramatically reduced, and the peaks 

of the FRF are eliminated.  

 

 

 
Figure 5.10: FRF with and Without Soil Contribution 

 

 

In order to extend the conclusions regarding the adequacy of the lumped model, a series 

of numerical tests are conducted next over a range of soil Poisson’s ratio and pile radius. 
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5.2.1 Lumped vs Novak Model for Different Soil Poisson’s Ratios 
 

Figures 5.11, 5.12, and 5.13 display the response (dynamic flexibility) of both models for 

different soil Poisson’s ratios, ranging from 0.2 to 0.5, and maintaining fixed the rest of 

the parameters of the case study. 
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Figure 5.11: Comparison Between Lumped FRF (red) and Novak FRF (blue) for Different Soil 
Poisson’s Ratios [0.20 ≤ ν ≤ 0.30] 
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Figure 5.12: Comparison Between Lumped FRF (red) and Novak FRF (blue) for Different Soil 

Poisson’s Ratios [0.32 ≤ ν ≤ 0.42] 
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Figure 5.13: Comparison Between Lumped FRF (red) and Novak FRF (blue) for Different Soil 
Poisson’s Ratio [0.44 ≤ ν ≤ 0.50] 

 

Appendix F, section F.4, contains the Matlab program written to perform the comparison. 

 

These figures demonstrate that there is a very good agreement between both dynamic 

flexibilities for all the 16 cases evaluated. 

 

5.2.2 Lumped vs Novak Model for Different Pile Radius 
 

Figures 5.14 and 5.15 show the response of both models for piles with increasing radius, 

ranging from 1ft to 10 ft, while maintaining fixed the rest of the data of the case study. 

The programs used for this purpose are included in Appendix F, section F.5. These 

figures verify that the agreement between both frequency response functions is excellent 

for all the cases evaluated. 
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It can also be seen that as the pile diameter becomes larger (thus increasing the pile 

stiffness), the FRF starts to present peaks. This situation will be analyzed in more detail 

in Chapter 6. 
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Figure 5.14: Comparison Between Lumped FRF (red) and Novak FRF (blue) for Different Pile 

Radius [1.0 ft ≤ ro ≤ 6.0 ft] 
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Figure 5.15: Comparison Between Lumped FRF (red) and Novak FRF (blue) for Different Pile 

Radius [7.0 ft ≤ ro ≤ 10.0 ft] 
 

 

5.2.3 Lumped vs Novak Model for Different Soil Modulus of Elasticity 
 

Figures 5.16 and 5.17 show the modulus of the FRF calculated with both models for 

different soil modulus of elasticity E. The rest of the data of the case study described at 

the beginning of section 5.2 were not varied. The corresponding program developed for 

this study is listed in Appendix F, section F.6. The range for the adopted values of E was 

chosen to represent the usual values of Young’s modulus for different soil types cited in 

the literature (Barkan, 1962; Bowles, 1996; Cernica, 1995; Coduto, 2001; Das, 1999; and 

Poulos and Davis, 1980). The range of rounded values for E is from 10 to 150 MPa 

(≈1,500 to 25,000 psi, ≈200,000 to 3,800,000 psf). 
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The figures demonstrate that there is a very good match between both dynamic flexibility 

functions for all the cases evaluated. 
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Figure 5.16: Comparison between Lumped FRF (red) and Novak FRF (blue) for Different Soil 

Elastic Modulus [200 ksf ≤ E ≤ 2200 ksf] 
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Figure 5.17: Comparison between Lumped FRF (red) and Novak FRF (blue) for Different Soil 

Elastic Modulus [2600 ksf ≤ E ≤ 3800 ksf] 
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5.3 1D Stiffness Method Model vs. 3D FEM Model    
 

The case study presented in section 5.2 will be used to compare the results obtained from 

a 3D FE analysis and those obtained with a 1D Stiffness Method analysis (i.e. beam on 

elastic foundation model).  

 

Both analyses were performed using the computer program SAP2000, in a PC with a 

Pentium IV processor, 3.2 Ghz of speed, 512 MB of RAM, and 143 GB of hard drive 

(101 GB free). This is considered, at the present moment, a robust PC for any small to 

midsize engineering firm (either a Structural or a Geotechnical Engineering firm). 

 

First the 1D model using beam (frame) elements for the pile and the proposed lumped 

model for the soil was implemented. In order to verify the model implementation in 

SAP2000 (i.e definition and assignment of the link elements required to model the 

spring-dashpot soil elements), the results obtained with this program were compared to 

those obtained with routines developed in Matlab. Appendix F, section F.7, presents 

some of the details of the modeling process and the examples used to verify the SAP2000 

results. 

 

Figure 5.18 presents the 1D model created in SAP2000. Figure 5.19 presents the 

comparison of the results obtained with SAP2000 and the Matlab program: a perfect 

agreement between both analysis tools can be verified. This validates the selection and 

implementation of the link elements used in SAP2000 to model the spring-dashpot soil 

element. The lumped soil masses are directly assigned to the pile nodes in the SAP2000 

model. 

 

 

 

 

 



 

 

127

 
Figure 5.18: 1D Model Implemented in SAP2000 

 

 
Figure 5.19: FRF of Pile Head using the 1D Model 

 

 

 

Next a 3D FE Model was implemented in SAP2000, with a similar layout than the model 

presented in Chapter 3, section 3.6. Figure 5.20 shows the results of this analysis, along 
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with a comparison with the results obtained with the previously described 1D analysis. 

Figure 5.21 presents the modulus of the FRF computed with the 3D FE model and similar 

results obtained with the 1D model but now with a reduced damping coefficient Ca. The 

value adopted here for αc is 1, instead of the value obtained from the regression analysis 

and used to generate Figure 5.20. 

 

It can be seen from Figure 5.20 that the 1D model is stiffer (it has less static 

displacement, i.e. for zero frequency) and more damped (there are no peaks in its FRF). 

When a reduced damping coefficient is used for the 1D model in Figure 5.21, the first 

peaks of the FRFs predicted by both models are closely located. Assuming that the 3D 

model gives a more accurate response, this may suggest that the definition of an 

appropriate value for the damping coefficient is a potential research topic to extend the 

present project.   

 

 
Figure 5.20: FRF of Pile Head: 3D vs. 1D Models 
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Figure 5.21: FRF of Pile Head: 3D vs. 1D Models with Reduced Damping 

 

 

When performing the 3D analysis, and due to the size of the problem, to obtain the 

dynamic flexibility of the pile top for each frequency analyzed took more than 20 minutes 

with the computer system described at the beginning of section 5.3. For 100 frequency 

increments, the analysis lasted about 38 hours. The 1D analysis performed with 200 

frequency increments took just less than 15 seconds.  

 

The enormous difference in processing time (the 1D analysis is more than 9000 times 

faster than the 3D analysis), in conjunction with the reasonably predictions of the 

response provided by the 1D analysis for common engineering practice purposes, make 

the 1D analysis a valuable analysis tool.  
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5.4 Modeling of Experimental Pile Test with Lumped Soil Model 
 

The ability of the lumped model to predict experimentally obtained results will be 

evaluated in this section. To this end the results of the dynamic tests reported by De 

Napoli (2006) and De Napoli and Prato (2006) will be used. The experiment consisted in 

applying an impulsive lateral load of small amplitude to the top of a series of piles. To 

apply the excitation, a pendulum mounted with a load cell was used, and an 

accelerometer was used to register the top pile movement, as shown in Figure 5.22. 

 

 
Figure 5.22: Load Cell Fixed to the Pendulum and Accelerometer Fixed to Pile Top (De Napoli and 

Prato, 2006) 
 

 

From the dynamic response of the pile top to the impulsive force, the dynamic stiffness of 

the pile head is obtained for small strains. 

 

Figure 5.23 presents the layout of the piles tested, consisting of five piles: three piles are 

30 cm and two are 35 cm in diameter, with lengths of 3 m and 5 m for the first and 

second group respectively. The piles were drilled on a loessic soil deposit approximately 

7 years before the reported tests. The shorter piles were initially tested under static axial 
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compression up to failure, while the longer ones were used as tension piles to provide the 

reaction for the compression tests shortly after construction.  

 
Figure 5.23: Tested Pile Group Layout (De Napoli and Prato, 2006) 

 

 

De Napoli and Prato reported a good agreement with the results obtained using Novak’s 

plane strain model for the soil (De Napoli and Prato, 2006). Therefore it was decided to 

compare the reported experimental results for the dynamic stiffness of pile P3D30 head 

(see Figure 5.23) to the results obtained with the proposed lumped model. Appendix F, 

section F.8, contains the Matlab program developed for this task. 

 

The pile has a modulus of elasticity Ep = 31,000 MPa, a density ρp =2.4 tn/m3, and a 

Poisson’s ratio of νp = 0.18. The pile cap has a 0.5 m diameter and a length of 0.3 m. The 

soil was removed along this depth, leaving the reminder 2.7 m pile length surrounded by 

the soil. The soil has a density ρs = 1.55 tn/m3, a Poisson’s ratio νs = 0.31, and an average 

modulus of elasticity at the surface Eso = 288 MPa.  

 

The experimental results obtained by De Napoli and Prato for the real and imaginary part 

of the pile head dynamic stiffness are presented in Figure 5.24, and the predicted results 
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using the proposed lumped model are shown in Figure 5.25. By comparing viz-a-viz the 

figures it can be concluded that there is a reasonable agreement with the experimental 

results. The response predicted by the proposed analytical model resulted slightly stiffer 

and, to some extent, more damped. 

  

 
 

Figure 5.24: Real and Imaginary Components of the Dynamic Stiffness. Pile P3D30. Directions N-S 
and E-W (E-O) (De Napoli, 2006) 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.25: Real and Imaginary Components of the Dynamic Stiffness Obtained Numerically with 

the Lumped Model 
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5.5 The Effect of Poisson’s Ratio in the 3D FE System Response 
 

In order to evaluate if the 3D FE model presents a significant change in response as the 

Poisson’s ratio ν increases, similar to the one obtained for the αk, αc, and αm coefficients 

of the proposed approximated model, the FRF for the pile top was obtained for several 

values of soil Poisson’s ratio ν, in the range of 0.0 ≤ ν ≤ 0.495. The same parameters 

used in section 3.6 for the soil and the pile were adopted for this analysis. 

 

The results fort the FRF corresponding to each ν value are presented in Figure 5.26. 

Figure 5.27 presents the variation of the static flexibility F = FRF(ω=0) of the pile top 

with the Poisson’s ratio, and Figure 5.28 the corresponding variation of the static stiffness 

of the pile top K = 1/F. One can observe in these figures that as the Poisson’s ratio 

increases from 0 to 0.3 the static stiffness K decreases (the FRF for ω = 0, or static 

flexibility, increases), and the corresponding peaks of the FR functions move to the left, 

being this one the expected response for a system when K decreases and the mass 

remains constant. It also ca be noted that for values of ν larger than 0.3, as ν increases the 

static stiffness increases, and tends to a large value as ν approaches 0.5. 

 

The increase in stiffness as the Poisson’s ratio approaches 0.5 is explained by considering 

the 3D stress strain relationships for normal stresses and longitudinal strains, presented in 

equations 5.4. It is evident that the denominator tends to infinity as ν tends to 0.5, 

indicating that the system becomes stiffer as ν becomes closer to 0.5. 

 
 

 

( )( ) ( ) ( )( )

( )( ) ( ) ( )( )

( )( ) ( ) ( )( )

1 2
1 1 2 1 1 2

1 2
1 1 2 1 1 2

1 2
1 1 2 1 1 2

x x y z x y z x

y x y z x y z y

z x y z x y z z

E Ev G

E Ev G

E Ev G

νσ ε νε νε ε ε ε ε
ν ν ν ν

νσ νε ε νε ε ε ε ε
ν ν ν ν

νσ νε νε ε ε ε ε ε
ν ν ν ν
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Figure 5.26: 3D FE Model FRF for Different Poisson’s Ratios 

 

 
Figure 5.27: 3D FE Model Static Flexibility for Different Poisson’s Ratios 
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Figure 5.28: 3D FE Model Static Stiffness for Different Poisson’s Ratios 
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5.6 Comparison to other Models 
 

The equations obtained for the stiffness ka and the damping coefficient ca in the proposed 

approximated model of Novak’s continuous solution will be compared to the 

corresponding coefficients found in the literature. In order to have a valid comparison, 

the models selected have to be based in the soil elastic properties (elastic modulus E, and 

Poisson’s ratio ν) and soil density, and have to be frequency independent. The mass 

contribution is not compared, since this effect was not addressed in the literature. 

 

5.6.1 Damping Coefficient 
 

As reported by Wang et al (1998) and Gazetas and Dobry (1984a), Berger and coworkers 

proposed a 1-D model, assuming that the horizontal moving pile cross section only 

generates 1 dimensional P-waves traveling in the direction of the shaking, and 1 

dimensional SH-waves traveling in the direction perpendicular to the shaking, as shown 

in Figure 5.29. 

 
Figure 5.29: 1-D Radiation Damping Model 
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Based on these assumptions, the radiation damping coefficient results: 

 

 ( )2 4 1 P
B o S P o S
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VC d V V r V
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ρ ρ
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= + = +⎜ ⎟
⎝ ⎠

 (5.5) 

where: 
do = diameter of the pile cross section 
ro = radius of the pile cross section 
ρ = soil mass density 
VS = shear-wave velocity in the soil medium 
VP = P-wave velocity in the soil medium 

 

Considering that the P-Wave and the SH-wave velocities in a 2D or 3D continuous are 

given by: 
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where:  
E = elastic modulus of the soil 
G = shear (rigidity) modulus of the soil 
ν = Poisson’s ratio of the soil 
 

the ratio between P-wave and S-wave velocities results: 
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ν
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−
 (5.7) 

and the radiation damping coefficient becomes: 
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The ratio between the radiation damping coefficient obtained in the present study and the 

one proposed by Berger and coworkers is given by: 
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 (5.9) 

 
This ratio is represented in Figure 5.30 for different Poisson’s ratios. Appendix F, section 

F.9, contains the MathCad worksheet developed to perform this comparison. 

  
Figure 5.30: Ratio between Damping Coefficients Ca and CB for Different Poisson’s Ratio of the Soil 
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approach, the resulting VP/VS ratio and the corresponding ratio between the radiation 

damping coefficients Ca/CB are: 
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  (5.10) 

 
This ratio is represented in Figure 5.31 for different Poisson’s ratios; it can be seen that 

both models predict similar radiation damping coefficients for all Poisson’s ratio values. 

 
Figure 5.31: Ratio between Damping Coefficients Ca and Modified CB for Different Poisson’s Ratio of 

the Soil 
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5.6.2 Stiffness Coefficient 
 

The coefficient of subgrade reaction for beams resting on isotropic elastic medium 

presented by Vesić (1961) was used for the analysis of piles under lateral loads (e.g. 

Poulos and Davis, 1980; Wang et al., 1998). This coefficient, representing the static 

stiffness of the soil per unit beam length, is given in the following equation: 

 

 
( )
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0.65
1

S o S

B B S

E d Ek
E I ν

=
−

 (5.11) 

where: 
ES = modulus of elasticity of the soil 
νS = Poisson’s ratio of the soil 
EB = modulus of elasticity of the beam 
IB = moment of inertia of the beam cross section 
do = diameter (width) of the beam cross section 

 
 

Considering that this coefficient has been obtained for a beam resting on the surface of an 

infinite half space, and that the pile is completely surrounded by the soil, the 

corresponding horizontal subgrade reaction modulus for the pile will be obtained as twice 

the coefficient proposed by Vesić. It is important to mention than to take the subgrade 

reaction modulus as two times the Vesić modulus is a recommended practice for buried 

pipes (Klar et al., 2004). For piles with solid circular cross section the final expression 

becomes: 
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 (5.12) 

where: 
ES = modulus of elasticity of the pile 

 

The results obtained for the static stiffness of the proposed approximated model ka will be 

compared to Vesić solution, by computing the ratio ka/kh= krel. The same parameters 

used in section 5.2 for the pile and the soil will be adopted here: 
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EP = 518400 [ksf] 
ES = 1728 [ksf] 
νS = 0.4 

 
Figure 5.32 presents krel for different modulus of elasticity of the soil deposit in the 

range of 200 to 3800 [ksf], wile keeping all the other parameters unchanged; Figure 5.33 

presents krel for different Poisson’s ratios of the soil deposit, wile keeping all the other 

parameters unchanged; and Figures 5.34 and F.35 present krel for different modulus of 

elasticity of the soil deposit in the range of 200 to 3800 [ksf], three values of the modulus 

of elasticity of the pile (100E3, 1000E3, and 10000E3 [ksf]), wile keeping constant the 

Poisson’s ratio. Appendix F, section F.10, contains the MathCad worksheets developed to 

obtain these results. 

 

It can be appreciated that the proposed model predicts, in general, a higher stiffness than 

Vesić’s model, but in the same order of magnitude. 

 

 
Figure 5.32: Relative Stiffness ka/kh for Different Modulus of Elasticity of the Soil 
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Figure 5.33: Relative Stiffness ka/kh for Different Poisson’s Ratio of the Soil 

 

 
Figure 5.34: Relative Stiffness ka/kh for Different Modulus of Elasticity of the Soil and the Pile for 

Soil Poisson’s Ratio ν = 0.4 
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Figure 5.35: Relative Stiffness ka/kh for Different Modulus of Elasticity of the Soil and the Pile for 

Soil Poisson’s Ratio ν = 0.3 
 

 

 

5.7 Final Comments 
 

The proposed lumped model gives results (for the damping and stiffness coefficients) in 

the same order of magnitude of other available models, situations that strengthen its 

reliability. The model has also proven to be a reliable approximation of Novak’s 

continuum model, a reasonable approximation of more rigorous approaches (i.e., FEM), 

and a good predictor of laboratory tests. These situations lead to the conclusion that the 

analysis of the model may lead to reasonable conclusions. 
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6 Applications of the Proposed Lumped Model 
 
The objective of this chapter is to present a series of applications and case studies using 

the proposed lumped model, whose development and verification were presented in 

Chapter 4 and Chapter 5, respectively. 

 

6.1 Effect of the Pile Stiffness on the System Response 
 

 

In order to evaluate the effect of the pile stiffness on the system response, a series of 

analysis with different increasing pile radius are performed. The same case study 

described in section 5.2 will be used here. Figures 6.1 and 6.2 present the pile FRF and 

the pile-soil FRF for different pile radius, in a range of 1 ft to 10 ft. The Matlab program 

developed to perform this analysis is presented in Appendix G.  

 

As mentioned in section 5.2, it can be noticed that the larger the pile diameter, the stiffer 

the pile, and the FRF starts to exhibit peaks. This is due to the fact that as the pile radius 

increases, the response starts to be controlled by the stiffness and mass properties of the 

pile itself rather than those of the soil. This situation becomes evident since the static 

displacement and the location of the FRF peaks do not appreciably change from those 

obtained by considering the pile alone. The effect of the soil in these cases of large 

diameter pile is basically to reduce and smooth the peaks of the FRF, due to the radiation 

damping. 
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Figure 6.1: Comparison between Pile Alone FRF (red) and Pile with Soil FRF (blue) for Different 

Pile Radius 
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Figure 6.2: Comparison between Pile Alone FRF (red) and Pile with Soil FRF (blue) for Different 

Pile Radius 
 

 

6.2 Effect of the Radiation Damping on the System Response 
 

The effect of the radiation damping on the response of the pile-soil system is evaluated in 

this section. The FRF of the pile head for the case study presented in section 5.2 was 

obtained for different intensities of the radiation damping, expressed as a fraction of the 

lumped model damping coefficient ca. Figure 6.3 presents the results for six different 

damping values: 0.0, 0.2 ca, 0.4 ca, 0.6 ca, 0.8 ca, and 1.0 ca. Appendix H presents the 

Matlab program developed to compute this response.  
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As expected, the effect of the damping was to smoothen the peaks of the FRF, and even 

to eliminate them for large values of damping. Figure 6.3 also shows that the value of the 

damping coefficient is critical to the system response. For the case study in section 5.2, 

the value of the damping coefficient obtained as a regression from Novak’s plain strain 

model leads an overdamped system, with a monotonically decreasing FRF module. As 

presented in sections 5.3 and 5.4, the differences in the FRFs between a 3D FE model and 

the 1D FE model, and between experimental and predicted results, suggest that the 

appropriate value of the damping coefficient is a potential research topic to extend the 

present project. In this way the lumped model will be able to give more accurate 

predictions of the system response.  

 

 
Figure 6.3: Effect of Different Damping Coefficient Value on the System FRF 
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6.3 Analysis of the Mass Effect on a 3D FE Model System Response 
 

Section 3.6 presented the analysis of a case study by means of a 3D FE model. The 

response obtained considering and ignoring the soil mass contribution, originally 

presented in Figure 3.14, is reproduced here in Figure 6.4. 

 

 
Figure 6.4: FRF for the 3D Model with and without Soil Mass, and no Lateral Supports 

 

This analysis was performed without dashpots in the cutoff boundaries, and considering a 

material damping represented by a complex elastic modulus equal to E ( 1 + 5/100 i ), 

where E is the (small strain) soil elastic modulus. As discussed in section 3.6.4, Figure 

6.4 indicates that, for this case study, the general effect of including the soil mass in the 

3D FE analysis was to produce a damped like response (as compared to the response 

without soil mass). It is evident that the FRF peaks were smothered and there was a shift 

in their location to the left (at least in the first two peaks). 
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The objective of the study presented in the following sections is to evaluate if this type of 

response may be achieved with a 1D analysis, by representing the soil not as a single 

spring and a lumped mass added to the pile mass, but as a series of springs with lumped 

masses at the connecting nodes, to simulate the spatial distribution of the soil mass.  

 

A series of analysis will be performed. First, the effect of the mass distribution will be 

analyzed for a single spring, by replacing the spring by a set of series and parallel springs. 

Then, the effect will be evaluated for a pile-soil interaction, where the spring is replaced 

by a series of springs. The programs developed to carry out these studies are presented in 

Appendix I. 

 

6.3.1 Effect of the Mass Distribution on a System of Springs in Series 
 

The first example analyzed consists of a single degree of freedom (SDOF) system (that 

may represent a single soil layer in plane strain). The SDOF has a spring of stiffness 

constant “K” equal to 1000, mass “m” equal to 10, and an added mass “ma” equal to 50, 

all in consistent units. The effect of the added mass directly assigned to the mass node, 

and distributed among different series spring nodes is evaluated, as schematized in Figure 

6.5. The single spring is replaced by “n” springs in series, of stiffness constant equal to “n 

K”, in order to obtain the same static stiffness than the single spring, where “n” was taken 

equal to 10.   

 

The results of the analysis of these systems, in terms of the dynamic flexibility or 

frequency response function “FRF” (steady state horizontal displacement of the mass 

“m” due to unit horizontal harmonic load applied at this point) are presented in Figure 

6.6, where: 

• “m, K” corresponds to the single spring without added mass 

• “m+ma, K” corresponds to the single spring with added mass 

• “m+ma, n K” corresponds to the equivalent series spring, with the added mass 

distributed among the spring nodes. 
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Figure 6.5: Models used to Analyze the Effect of the Added Mass in a System of Springs in Series 

 

 
Figure 6.6: Effect of the Mass Distribution in a System of Springs in Series 
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These results indicate that the effect of the added mass, as expected, is to produce a shift 

of the natural frequency to the left (lower natural frequency). The effect of the added 

mass distribution along a series of springs is to increase this natural frequency, and give 

rise to new peaks of the FRF (corresponding to the higher natural frequencies that appear 

due to the multiple DOF of the system), but this model does not produce an effect 

equivalent to a damper, as found in a 3D FEM analysis due to the 3D mass distribution. 

 

6.3.2 Effect of the Mass Distribution on a MDOF System 
 

The second example analyzed consists of a SDOF system having a spring stiffness 

constant “K” equal to 1000, mass “m” equal to 10, and an added mass “ma” equal to 50. 

The effect of the added mass directly assigned to the mass node, and distributed among 

different parallel spring nodes is evaluated, as schematized in Figure 6.7, where the single 

spring is replaced by “n” springs in series, on both sides of the mass “m”, of stiffness 

constant equal to “n K / 2”, and a variable number of springs in parallel (np), with 

stiffness constant equal to “n K / 2 (np+1)”, in order to obtain the same static stiffness 

than the single spring, where “n” was taken equal to 2 and np was varied from 1 to 6.   

 

The results of the analysis of these systems, in terms of the dynamic flexibility or 

frequency response function “FRF” (steady state horizontal displacement of the mass “m” 

due to unit horizontal harmonic load applied at this point) are presented in Figure 6.8, 

where: 

• “No ma” corresponds to the single spring without added mass 

• “ma” corresponds to the single spring with the added mass 

• “ma i P” corresponds to the series of 2 springs to each side of mass “m”, and “i” 

parallel (P) springs (as depicted in Figure 6.7), with the added mass “ma” 

distributed among spring nodes.  
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Figure 6.7: Models used to Analyze the Effect of the Added Mass in a System of Springs in Parallel 
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producing a phenomenon similar to the radiation damping, which may be called 

propagation damping. The figure also shows that second peak of the FRF, corresponding 

to the system without added mass (mass “m” alone) is accentuated.  
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Figure 6.8: Effect of the Mass Distribution in a System of Springs in Parallel 

 

6.3.3 Effect of the Mass Distribution on a Pile-Soil System 
 

Finally, a pile-soil system will be analyzed, in which the contribution of the soil will be 

accounted for as a set of several parallel layers each represented by a spring and a mass. 

The effect of considering a single spring with the lumped parameters proposed in Chapter 

4 (Figure 6.9 top), versus considering the soil layer as a series of springs with distributed 

added soil mass (Figure 6.9 bottom) will be evaluated first. Next the soil layers will be 

represented as a set of parallel springs with the added mass distributed on the spring 

nodes (similar to the scheme presented in Figure 6.7). The different spring layouts will 

have an equivalent condensed stiffness equal to the one obtained in Chapter 4 in the 
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proposed lumped model, and the soil mass to be distributed among spring nodes will be 

taken from the 3D FE analysis with partial soil mass presented in section 6.3. The case of 

adding this mass with a single spring is also considered. 

 

 

 
Figure 6.9: Piles Models to be Analyzed 
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The same set of data used in Section 5.3 to present a comparison between a 3D FE 

analysis and the proposed lumped model will be used. The number of series and parallel 

springs was taken equal to twenty; the results obtained were similar to the ones obtained 

with ten springs. A complex elastic modulus E (1+0.05i) was assigned to the pile and 

soil.  

 

Figure 6.10 presents the results of the analysis of the pile alone, i.e. without the soil 

contribution. Figure 6.11 presents the results for the pile with the soil contribution and an 

added soil mass about 40 times the pile mass. Figure 6.12 presents similar results for an 

added soil mass of about 100 times the pile mass. The following nomenclature applies for 

Figures 6.11 and 6.12: 

• PLM = Pile with the soil represented by the proposed lumped model developed in 

Chapter 4 (as a reference response). 

• SS DM = Pile with the soil represented by springs in series and an added mass 

distributed among the spring nodes. 

• PS DM = Pile with the soil represented by a set of parallel springs and an added 

mass distributed among the spring nodes. 

• 1S LM = Pile with the soil represented by single springs and added masses 

lumped at each pile node. 

• 1S = Pile with the soil represented by single springs and no added masses. 
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Figure 6.10: FRF of the Pile without Soil Contribution 
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Figure 6.11: FRF of the Pile with Soil Contribution. Ma ≈ 10 Mp 
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Figure 6.12: FRF of the Pile with Soil Contribution. Ma ≈ 100 Mp 
 

The analysis of Figures 6.10, 6.11 and 6.12 reveals that the effect of the soil stiffness is to 

drastically reduce the system response and increase the value of the natural frequencies 

(the peaks of the FRF are shifted to the right). The added mass produces a reduction of 

the natural frequencies (the peaks of the FRF are shifted to the left; in a region similar to 

the pile alone for this case study), a narrowing of the FRF peaks, and a reduction of the 

FRF peak values (more pronounced at high frequencies), giving a damped-like response, 

more evident for the set of parallel springs. But this damped-like response is not as 

drastic as in the 3D FEM model, probably due to the fact that the soil was modeled as a 

set of unconnected layers, lacking the real 3D nature of wave propagation (and hence, 

piles response attenuation). 
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6.3.4 Discussion of the Results – FE Model Propagation Damping 
 

It is well known that the radiation damping represents the energy carried away by the 

elastic waves generated at the pile-soil interface radiated to infinity and hence not 

returning to the interface. The damping-like response observed in the 3D FE model may 

be the result of the waves generated at the soil-pile interface that travel within the soil 

mass, without returning to the pile. In a numerical model the waves keep traveling within 

the soil mass after reflecting in the model edges. Therefore, they create an effect that may 

be called propagation damping.  To have this type of response, the model should have 

alternate paths that allow the waves to propagate within the system without returning to 

the interface, as provided by the parallel springs presented in Section 6.3.2 for a one layer 

system. The analysis presented in Section 6.3.3 reveals that it is not possible to obtain this 

type of response with a relative simple layout of springs and a distributed soil mass along 

spring nodes, so the simplified pile-soil model where the soil is replaced by an equivalent 

spring-mass-dashpot element should always include the dashpot to account for this 

phenomenon. 

 

In order to gain a deeper understanding of the characteristics of the wave propagation 

phenomenon when using a FE model, three simple cases are analyzed next: 

 

6.3.4.1 2D FE Model Subjected to an Impulsive Force 
 

The FE model presented in section 3.5 was used for the analysis. The impulsive 

rectangular force displayed in Figure 6.13 was applied at the pile top, and a time history 

analysis was performed. The response at a number of points located along the same 

horizontal line, shown in Figure 6.14, was obtained by neglecting and considering the soil 

mass in the whole FE model.  As expected, when the soil mass was neglected there is no 

wave propagation: the motion of all points starts at instant t = 0, and they move in a 

synchronous way. This can be explained by considering that when the soil mass density 

approaches zero, the wave velocity tends to infinity. The displacement-time traces are 
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presented in Figure 6.15 for node number 495 (located at the soil-pile interface) and node 

number 30 (located at the lateral edge of the soil deposit). Note that although the 

amplitudes are different, the time variations are quite similar. 

 

 
Figure 6.13: Impulsive Ramp Function 

 

 

 
 

Figure 6.14: Points for Response Calculation 
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Figure 6.15: Displacement Time Histories of two Nodes when the Soil Mass is Neglected 

 

Figure 6.16 presents the same response when the soil mass is included in the analysis. 

This figure clearly shows that the response at the node away from the force (joint number 

30) starts after time zero. As shown later, this effect is larger for those points located 

farther away from the interface. Considering the soil properties (E = 1900 ksf and γ = 

0.11 kcf), one can obtain that the p-wave velocity is around 475.8 ft/sec. Considering that 

the distance from the pile to the edge is 60 ft, it should take about 0.08 sec for the wave to 

reach the edge, which is approximately the same time lapse that is observed in Figure 

6.16.  

 

Figure 6.17 presents the results for all the points along the horizontal line (the higher the 

node number, the closer the node is to the soil-pile interface). By observing the lag in the 

response between consecutive points located further away from the soil pile interface, 

one can notice the time required for the perturbation (wave front) to propagate.  
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Figure 6.16: Response of First and Last Point when Soil Mass is Considered 

 
 

Figure 6.17: Response for all Points when Soil Mass is Considered 
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6.3.4.2 Effect of Parallel Springs without Distributed Masses 
 
 

The spring-mass system presented in section 6.3.2 is reevaluated, without assigning 

masses to the parallel springs nodes, as shown in Figure 6.18. Figure 6.19 shows the FRF 

for the system considering an increasing number of parallel springs, with no added mass 

in their nodes. The response of the system does not change when the number of parallel 

springs is increased. When compared to the FRF presented in Figure 6.8 (in which the 

system has masses distributed in the parallel spring nodes) it is evident that the absence 

of mass in the parallel springs nodes makes the response undamped, indicating that no 

waves can propagate through them.  

 

 
Figure 6.18: System with Parallel Springs with no Added Masses 
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Figure 6.19: FRF for the System with Parallel Springs with no Added Masses 

 
 

6.3.4.3 Effect of the Mass in a 3D Truss 
 
 

In order to verify if a damped type response may be obtained with bar elements, a 3D 

truss model was developed in SAP2000. Figure 6.20 shows a isometric view of the 3D 

truss. The objective is to study the 3D nature of soil wave propagation in a non-solid 

medium. The FRF of the pile head was obtained by considering the bars without mass 

and with mass. The mass of the pile (vertical element) was always considered. A 

hysteretic damping of 5% was adopted by assigning a constant damping matrix equal to 

0.05 times the stiffness matrix (equivalent to adopt a complex elastic modulus equal to 

E(1+0.05i)) 
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Figure 6.21 shows the FRFs of the pile top; the two curves results show that considering 

the mass of the bars has an effect similar to that provoked by damping. This is in 

agreement with the results obtained in the 3D FE model. 

 
Figure 6.20: 3D Truss Model View 

 
 

 
Figure 6.21: FRF of Pile Top in the 3D Truss Model 
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7 Conclusions and Recommendations 
 
The objective of this chapter is to present the general conclusions of the research project 

together with a brief summary of the work undertaken, and recommendations for possible 

research topics that may complement the present project and contribute with valuable 

information for the academic and professional community in topics related to the 

response of piles under dynamic horizontal excitations.  

 

7.1 Summary and Conclusions 
 

The following is a listing of the most relevant conclusions of the present research project: 

 

• 2D FEM and 3D FEM were used to evaluate the impact of considering and 

neglecting the mass of the soil in the dynamic response of a single pile. The 

effects of the cutoff boundary conditions were also evaluated. The dynamic 

flexibility of the pile top (or frequency response function, FRF), defined as the 

horizontal displacement due to a unitary horizontal harmonic load in the pile top, 

was selected as the system dynamic response to be evaluated. The analyses, 

results, and their interpretation were presented in Chapter 3. Following is a 

summary of the most relevant findings and conclusions for this part of the project: 

o The differences found by adopting free, fixed, or flexible cut-off 

boundaries were not very significant, suggesting that the model size (i.e. 

the soil island) was taken large enough so the soil half space is adequately 

represented. 

o The assignment of dashpots in the cutoff boundaries, added in order to 

represent the radiation damping, had an important effect only at low 

frequencies. They produce a smoothening of the FRF peaks (thus lowering 

the system displacement response) and eliminating some peaks (probably 

associated with the rebounding of waves in the cutoff boundaries), and 

producing a shift in the peaks location. 
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o The inclusion of the soil mass in the FE models produces a significant 

qualitative and quantitative change in the system behavior. As expected, 

the presence of the soil mass reduces the natural frequencies (the 

frequencies where the peaks of the FRF occur). It also was observed that, 

for the 3D analysis, the general effect of the mass was quite similar to 

adding damping in the system: the FRF peaks were smoothened and there 

was a shift in their locations to the left. 

o A model with partial soil mass assignment captures the general behavior 

of the system with full soil mass, leading to the conclusion that a partial 

soil mass assignment may result in reasonable good estimates of the 

overall pile dynamic response. 

o A 2D FE analysis may be appropriate to analyze sheet piles or wall 

foundations on closely spaced piles. This type of model allows one to 

draw general conclusions of the pile-soil behavior, and to gain insight in 

the system response and parameters affecting its behavior. However, a 3D 

FE analysis should be used to obtain more specific and accurate 

conclusions about the pile-soil dynamic interaction problem. 

o The large amount of time required by the pre-processing, analysis, and 

post-processing of 3D FE models strongly suggests that simplified 

analyses, such as the Winkler approach, are still recommendable for 

professional practice despite the increase in power of current computers.     

 

• A simplified lumped model, consistent with the Winkler hypothesis, was obtained 

by performing a regression analysis of the continuous (plane strain) model 

developed by Novak. This development is presented in Chapter 4. In the proposed 

approach, the pile-soil interaction is taken into account through three frequency 

independent elements: a spring with stiffness ka, a mass with value ma, and a 

dashpot with coefficient ca. The spring-mass-dashpot coefficients ka, ma, and ca 

that represent the soil can be obtained by means of simple equations presented 

again next for easy reference. These equations include three parameters αk, αm, 
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and αc that depend on the soil Poisson’s ratio. The values of these three 

parameters were presented in Table 4.1. 

 

 2
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The three coefficients ka, ma, and ca in equation 7.1 are defined per unit pile 

length. In order to implement them in the 1D Finite Element Model, they should 

be multiplied by the node tributary length (half element length for the top node 

and the element length for the internal nodes). 

 

Figure 7.1 presents the general view of the analytical model to be implemented 

for a pile subdivided in “n” elements, when the pile rests on rigid bedrock. Instead 

of using spring-mass-dashpot elements lumped at the pile nodes, consistent pile 

stiffness, mass and damping matrices may be used, as presented in Section 4.4 for 

the classical beam element with four degrees of freedom (DOF) and the refined 

beam element with five DOF proposed by Deschapelles (2003). 
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Figure 7.1: Analytical Model for the Proposed Lumped Soil Representation 
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• The proposed lumped model has been proven to be a reliable approximation of 

Novak’s continuous, frequency dependent solution, as it was verified in Chapter 5 

for an isolated layer and for a pile-soil system. 

 

• The proposed lumped model was used to demonstrate that a lumped soil mass is 

not required for small soil Poisson’s ratios (ν ≤ 0.3). This situation may be 

explained by the fact that, due to radiation damping, the soil response is 

overdamped; and overdamped SDOF systems behavior are basically controlled by 

damping and not by mass, as shown in section 4.3.1. 

 

It is important to note that, as shown in equation 7.1, the damping coefficient ca 

depends on the soil density, among other parameters. Therefore, the soil inertial 

properties are basically taken into account by the radiation damping coefficient 

for Poisson’s ratios lower than 0.4. 

 

The model also shows that the soil mass is important for high soil Poisson’s 

ratios, as occurs in saturated soils (for ν = 0.5 the soil mass contribution is in the 

same order of the pile mass contribution). However, the soil mass importance 

rapidly diminishes as the Poisson’s ratio becomes smaller. This situation may be 

explained due to the fact that the larger the value of the Poisson’s ratio ν, the 

larger the soil transverse deformation that will occur when the piles vibrates 

horizontally, so more soil mass is involved in the transmission of p-waves due to 

pile vibration. The increase in the static stiffness for high Poisson’s ratios 

(parameter αk) could also explain the increase in the lumped soil mass (parameter 

αm), by considering a SDOF system where the natural frequency does not change 

(as explained in section 5.5). 

 

• The frequency independent concentrated spring-mass-dashpot element proposed 

is available in most of the commercial analysis packages, making the model 

simple to implement by the professional community. 
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• This type of model could serve as the basis to develop simplified Soil Structure 

Interaction Specifications for structures on pile foundations, similar to those for 

structures on spread footings currently contained in the NEHRP Recommended 

Provisions for Seismic Regulations for New Buildings and Other Structures 

(Building Seismic Safety Council, 2003). 

 

• Having independent expressions for the stiffness coefficient (ka), the dashpot 

coefficient (ca), and the mass (ma), instead of a complex equation for the 

dynamic stiffness, allows one to perform different “what if” analyses, and 

evaluate the impact of the variation of each coefficient in the system response 

(examples of this study were presented in Chapter 6). These analyses may 

contribute to a better understanding of the factors affecting the system response. 

They can also help calibrate the parameters to be adopted for a particular analysis 

or to be included in future recommended provisions. 

  

• Considering that the radiation damping represents the energy, or elastic waves, 

generated at the pile-soil interface, that is radiated away to infinity (i.e. does not 

return to the interface), the damped-like response observed in the 3D FEM model 

when the soil mass is considered (Section 3.6) may be the result of the waves 

generated at the soil-pile interface that travel within the soil mass, without 

returning to the pile, generating an effect that may be called propagation 

damping.  As demonstrated in section 6.3.2 for a one layer system, to have this 

type of response the model should have alternate paths that allow the waves to 

propagate within the system without returning to the interface, as provided by the 

parallel springs. It was not possible to obtain this type of response with a relative 

simple layout of springs and a distributed soil mass along spring nodes. The 

simplified pile-soil model (where the soil is replaced by an equivalent spring-

mass-dashpot element) should always include the dashpot to account for this 

phenomenon.    
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• The model could be extended to perform nonlinear dynamic analysis of pile-soil 

system, by replacing the spring constant ka by a nonlinear static soil response, 

such as the one provided by the p-y method. In this case, the implementation of a 

hysteretic soil model to account for damping due to plastic effects (e.g. use of 

Masing Rules) is recommended.  

 

7.2 Recommendations 
 

The following recommended research topics emerge as a possible complement 

continuation of the present project; other suggested topics can provide useful information 

to the academic and professional community: 

 

• Develop other lumped models based on the curve-fitting of other continuum 

mechanics theories and rigorous approaches (e.g. Tajimi, 1969; Kausel, 1974; 

Kaynia, 1982). These new models will allow to compare different solutions, and 

to verify the findings regarding the influence of the soil mass in the dynamic 

response of the pile-soil system.  

  

• Study the effect of radiation damping, by comparing different models and 

different analyses, in order to establish the most appropriate lumped damping 

coefficient (as suggested by the analyses presented in Sections 5.3, 5.4 and 6.2). 

 

• Study the effect of the pile cross section size and shape in the dynamic system 

response by performing 3D FEM analyses, modeling the soil and the pile with 

solid 3D elements, and applying the appropriate constrains to pile nodes in order 

to simulate rigid cross section behavior. 

 

• Study the applicability of the proposed simplified model to battered piles. 
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• Extend the analysis to pile groups. 

  

• Develop state-of-the-art reports of dynamic soil-pile interaction topics, with 

theoretical fundaments and detailed practical applications and examples. Two 

topics are considered relevant to the professional and the academic community: a) 

recommended procedures for the 3D Finite Element analysis of soil-pile 

interaction problems, and b) available continuum mechanics models for soil-pile 

interaction problems. 

 

• Perform a study of the constitutive equations of the p-y method, in order to 

compare its initial slope to the coefficient ka presented previously, and develop 

the appropriate conclusions and recommendations. 

 

• Implement the proposed model in a graphically oriented program, with adequate 

pre-processing and post-processing capabilities, and a wide variety of dynamic 

analyzes available. This program may serve as a tool for research, teaching and 

professional use. 

 

• Perform a comparison of the seismic analysis response of an isolated pile by 

modeling the pile-soil system with the proposed simplified model and with a 3D 

FE model. 
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A Soil Deposit and Pile Natural Frequencies  
 
This appendix presents the computation of the soil deposit natural frequencies and wave 

lengths, as presented by Suarez (2003), and the appropriated FEM element size, 

following the recommendations by Lysmer (2979). 

 

The computations of the pile natural frequencies and mode shapes are also presented. The 

reference equations were taken fro Humar (2002). 

  

A.1 Soil Deposit Natural Frequencies, Wave Length, and FEM 
Element Size 
 

The computations of the appropriate finite element size so the finite element model is 

able to transmit up to the fourth soil deposit natural frequency (for vertical propagating 

shear waves) is presented in Figure A.1. The computations are performed in MathCad 

software package. 
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λs
8

2.143=

λs 17.143=[ft]λs
Vs

fmax
:=

fmax 25.73=[herz]fmax
ωmax
2 π⋅

:=

ωmax 161.664=[rad/sec]ωmax
π
2

2 r⋅ 1−( )⋅
Vs
h

⋅:=

r 4:=

Vs 441.079=[ft/sec]Vs
G
ρ

:=

ρ 3.416=ρ
γ
g

:=

G 6.646 105
×=[psf]G

E
2 1 ν+( )⋅

144⋅ 1000⋅:=

Computations

[ft]h 30:=

[ft/sec2]g 32.2:=

ν 0.3:=

[pcf]γ 110:=

[Ksi]E 12:=

Problem Data

 
 

Figure A.1: Maximum Element Size for 4th Natural Frequency 
 

Figure A.2 presents the computations required to determine the maximum appropriate 

element size if it is desired that the finite element model is able to transmit a maximum 

frequency equal to the eighth soil deposit natural frequency. 

  



 

 

185

λs
8

1=

λs 8=[ft]λs
Vs

fmax
:=

fmax 55.135=[herz]fmax
ωmax
2 π⋅

:=

ωmax 346.423=[rad/sec]ωmax
π
2

2 r⋅ 1−( )⋅
Vs
h

⋅:=

r 8:=

Vs 441.079=[ft/sec]Vs
G
ρ

:=

ρ 3.416=ρ
γ
g

:=

G 6.646 105
×=[psf]G

E
2 1 ν+( )⋅

144⋅ 1000⋅:=

Computations

[ft]h 30:=

[ft/sec2]g 32.2:=

ν 0.3:=

[pcf]γ 110:=

[Ksi]E 12:=

Problem Data

 
Figure A.2: Maximum Element Size for 8th Natural Frequency 
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A.2 Pile Natural Frequencies and Modal Shape 
 

Following is a listing of the MathCad worksheet developed to compute the pile natural 

frequencies and modal shape. The pile is considered as a cantilever beam, and the 

reference equations were taken from Humar (2002). 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

4

2

2

4

f x( )

x

x 0 0.01, 20..:=characteristic equationf x( ) 1 cosh x( ) cos x( )⋅+:=

m 4.658 10 3−
×=m A ρ⋅:=

ρ 4.658 10 3−
×=ρ

γ

g
:=

I 0.083=I
r4

12
:=

A 1=A r2:=

Computations

[ft]r 1:=

[ft]L 30:=

[ft/sec2]g 32.2:=

ν 0.2:=

[kcf]γ 0.150:=

[ksf]E 518400:=

Problem Data

Pile Natural Frequencies
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x 1:= First Mode
Given

1 cosh x( ) cos x( )⋅+ 0

x1 Find x( ):=

x1 1.875=

ω1 x12
E I⋅

m L4
⋅
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2 π⋅
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x1
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sinh
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⎝
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⎠
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x 5:= Second Mode
Given

1 cosh x( ) cos x( )⋅+ 0

x2 Find x( ):=

x2 4.694=

ω2 x22
E I⋅

m L4⋅
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2 π⋅
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x2
L

x⋅⎛⎜
⎝

⎞⎟
⎠

sinh
x2
L

x⋅⎛⎜
⎝

⎞⎟
⎠

−⎛⎜
⎝

⎞⎟
⎠

⋅ cos x2( ) cosh x2( )+( ) cos
x2
L

x⋅⎛⎜
⎝

⎞⎟
⎠

cosh
x2
L

x⋅⎛⎜
⎝

⎞⎟
⎠

−⎛⎜
⎝

⎞⎟
⎠

⋅+⎡⎢
⎣

⎤⎥
⎦

⋅:=

x 0 0.01, L..:=

0 5 10 15 20 25 30

100

50

50

100

150

φ2 x( )

x  
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Third Mode
x 8:=

Given

1 cosh x( ) cos x( )⋅+ 0

x3 Find x( ):=

x3 7.855=

ω3 x32
E I⋅

m L4⋅
⋅:= [rad/sec] ω3 208.76=

f3
ω3
2 π⋅

:= [herz] f3 33.225=

φ3 x( ) 1 sin x3( ) sinh x3( )−( ) sin
x3
L

x⋅⎛⎜
⎝

⎞⎟
⎠

sinh
x3
L

x⋅⎛⎜
⎝

⎞⎟
⎠

−⎛⎜
⎝

⎞⎟
⎠

⋅ cos x3( ) cosh x3( )+( ) cos
x3
L

x⋅⎛⎜
⎝

⎞⎟
⎠

cosh
x3
L

x⋅⎛⎜
⎝

⎞⎟
⎠

−⎛⎜
⎝

⎞⎟
⎠

⋅+⎡⎢
⎣

⎤⎥
⎦

⋅:=

x 0 0.01, L..:=

0 5 10 15 20 25 30

3000

2000

1000

1000

2000

φ3 x( )

x  
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x 11:= Fourth Mode

Given

1 cosh x( ) cos x( )⋅+ 0

x4 Find x( ):=

x4 10.996=

ω4 x42
E I⋅

m L4
⋅

⋅:= [rad/sec] ω4 409.086=

f4
ω4
2 π⋅

:= [herz] f4 65.108=

φ4 x( ) 1 sin x4( ) sinh x4( )−( ) sin
x4
L

x⋅⎛⎜
⎝

⎞⎟
⎠

sinh
x4
L

x⋅⎛⎜
⎝

⎞⎟
⎠

−⎛⎜
⎝

⎞⎟
⎠

⋅ cos x4( ) cosh x4( )+( ) cos
x4
L

x⋅⎛⎜
⎝

⎞⎟
⎠

cosh
x4
L

x⋅⎛⎜
⎝

⎞⎟
⎠

−⎛⎜
⎝

⎞⎟
⎠

⋅+⎡⎢
⎣

⎤⎥
⎦

⋅:=

x 0 0.01, L..:=

0 5 10 15 20 25 30

6 .104

4 .104

2 .104

2 .104

4 .104

6 .104

φ4 x( )

x  
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x 14.13:= f x( ) 4.909 103
×= Fifth Mode

Given

1 cosh x( ) cos x( )⋅+ 0

x5 Find x( ):=

x5 14.137=

ω5 x52
E I⋅

m L4
⋅

⋅:= [rad/sec] ω5 676.249=

f5
ω5
2 π⋅

:= [herz] f5 107.628=

φ5 x( ) 1 sin x5( ) sinh x5( )−( ) sin
x5
L

x⋅⎛⎜
⎝

⎞⎟
⎠

sinh
x5
L

x⋅⎛⎜
⎝

⎞⎟
⎠

−⎛⎜
⎝

⎞⎟
⎠

⋅ cos x5( ) cosh x5( )+( ) cos
x5
L

x⋅⎛⎜
⎝

⎞⎟
⎠

cosh
x5
L

x⋅⎛⎜
⎝

⎞⎟
⎠

−⎛⎜
⎝

⎞⎟
⎠

⋅+⎡⎢
⎣

⎤⎥
⎦

⋅:=

x 0 0.01, L..:=

0 5 10 15 20 25 30

1.5 .106

1 .106

5 .105

5 .105

1 .106

φ5 x( )

x  
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x 17.28:= f x( ) 1.982 104
×= Sixth Mode

Given

1 cosh x( ) cos x( )⋅+ 0

x6 Find x( ):=

x6 17.279=

ω6 x62
E I⋅

m L4
⋅

⋅:= [rad/sec] ω6 1.01 103
×=

f6
ω6
2 π⋅

:= [herz] f6 160.778=

φ6 x( ) 1 sin x6( ) sinh x6( )−( ) sin
x6
L

x⋅⎛⎜
⎝

⎞⎟
⎠

sinh
x6
L

x⋅⎛⎜
⎝

⎞⎟
⎠

−⎛⎜
⎝

⎞⎟
⎠

⋅ cos x6( ) cosh x6( )+( ) cos
x6
L

x⋅⎛⎜
⎝

⎞⎟
⎠

cosh
x6
L

x⋅⎛⎜
⎝

⎞⎟
⎠

−⎛⎜
⎝

⎞⎟
⎠

⋅+⎡⎢
⎣

⎤⎥
⎦

⋅:=

x 0 0.01, L..:=

0 5 10 15 20 25 30

3 .107

2 .107

1 .107

1 .107

2 .107

3 .107

4 .107

φ6 x( )

x  
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B FEM Analysis in SAP  
 
This appendix briefly describes the model generation and analysis performed to obtain 

the Frequency Response Function (FRF) of the pile head horizontal displacement with 

the SAP2000 computer package (CSI, 2004). The results of this analysis are presented in 

Chapter 3. 

 

B.1 Analysis Type 
 

The analysis performed is identified as Steady State Analysis in SAP2000. A steady-state 

analysis case solves for the response of the structure due to cyclic (harmonic, sinusoidal) 

loading at one or more frequencies of interest (a range of frequencies of interest may be 

specified). 

 

B.2 Step by Step Model Generation 
 

This section describes the steps required to generate the 2D Finite Element Model used. 

When it is considered relevant to help to demonstrate the model generation process, a 

brief explanation of the step and/or a snapshot of the SAP2000 window is displayed. 

 

1) Define the Model Geometry (FEM Mesh) 

 

The wall template (plane stress elements) was selected to develop the soil model, as 

shown in Figure B.1. Once this template is selected, a dialog box is displayed in order to 

enter the parameters that define the FEM mesh. The resulting model is displayed in 

Figure B.2. Frame elements are then added to model the pile, as shown in Figure B.3 
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Figure B.1: Template Selection and Mesh Parameters 
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Figure B.2: Soil Mesh 

 

 
 

 
Figure B.3: Soil Mesh (Area Elements) and Pile (Frame Elements) 

 

2) Define the Material Properties for soil and concrete, using equivalent elastic modulus 

and Poisson’s ratio. 
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3) Define the Frame Section for the pile (1ft x 1ft square cross section), and the Area 

Section for the soil (1 ft thickness, plane stress). 

 

4) Assign the previously defined elements sections to the soil and the pile elements. 

 

5) Define a Load Case that will be used to assign a unit load applied to the pile head 

(top). In this project, this load was named Unit. Figure B.4 shows this definition: 

 

 
 

Figure B.4: Load Case Definition 
 

6) Define the Analysis Case that will be performed. A Steady State Analysis is selected, 

and named FRF (Frequency Response Function). It is specified that this analysis will be 

performed with a load and that this load is defined in the Unit load case. The range of 

frequencies for which the response will be obtained and the number of frequency steps to 
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be used are also specified, as displayed in Figure B.5. The Function UNIFSS is a 

multiplying unit function used as default, that may be modified when certain frequencies 

are required to be eliminated (Function = 0) or highlighted (Function > 1), or when a 

force with a frequency dependant magnitude value is present.   

   
Figure B.5: Analysis Case Definition 

 

7) Assign a unit horizontal load to the pile head (top), in the Unit load case. 

 

8) Apply the appropriate out-of-plane Restraints, since this is a 2D (plane) analysis 
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9) Perform the Analysis.  

 

10) Review the results. In the Display Menu Option, select the Show Plot Functions 

command. In the dialog box that is displayed, select the Define Plot Functions command 

button, as shown in Figure B.6. 

 

 
Figure B.6: Setting the Parameters to be Plotted - a 

 

The user is asked to select the variable to be plotted as a function of the frequency. For 

this study the horizontal displacement of the pile top was selected, as shown in Figure 

B.7. 
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Figure B.7: Setting the Parameters to be Plotted - b 

 

After defining the variable to be plotted, the two dialog boxes are closed, and the selected 

variable is added to the plot to be displayed, as shown in Figure B.8, the Magnitude 

option button is selected, and the Display command button is pressed to display the 

Frequency Response Function. The results for the present 2D soil model, considering the 

soil massless, are displayed in Figure B.9 

 
Figure B.8: Setting the Parameters to be Plotted - c 
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Figure B.9: Frequency Response Function 
 

These results may be exported to a file, by selecting the command Print Tables to File, 

within the File menu on the top left of the plot window. 
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C FEM Boundary Spring Constants  
 
 

The computations of the appropriate spring constant for the boundaries of the FEM 

model to simulate the unbounded media nature of the soil deposit are presented. These 

computations are based on the recommendations given by Luco (2004). 

 

Luco obtained expressions for the average distributed spring constant to be applied in the 

boundaries of a rectangular soil island or truncated region of dimensions 2ax x 2ay x ax, as 

depicted in Figure C.1, carved out of the half space. In the present problem ax = 60 ft, ay 

= 30 ft, and az = 30 ft. 

 

 

 
Figure C.1: Rectangular Soil Island Dimensions 

 

Luco proposed that the average distributed springs constants to be applied at the region 

boundaries are obtained from the following equation: 

 

x

y

z

2 ax

2 ay

az

x

y

z

2 ax

2 ay

az
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 ij ij
i

Gk
a

β=   

Where: 
 k = distributed spring constant  
 i = x, y, or z = plane in which the spring is applied 
 j = x, y, or z = direction in which spring acts 
 ai = dimension in the i direction 
 βij = coefficient that depends on soil Poisson’s ratio and block dimensions 
 

These coefficients have to be multiplied by the influence area “A” of each node of the 

FEM boundary in order to obtain a concentrated spring coefficient, resulting in: Kij = kij 

A, where the capital letter represents nodal concentrated values. Being the FE model 

mesh 2’x2’, an internal node will have an influence area of A = 4 ft2, and edge node of A 

= 2 ft2, and a corner node of A = 1 ft2. 

 

The computations are performed in MathCad software package, as displayed in Figure 

C.2 and C.3 for the boundary located in the longitudinal direction, at x = 60 ft. This plane 

is named “x”, since its normal is x axis; so all the stiffness coefficients will be designated 

as kxj , where  j = x, y and z indicates the direction of the spring. 
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Figure C.2: Computation of Coefficients β for x plane 
 

βxz 0.547=βxz 2 ax2
⋅

ay−

ay

y

0
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z

ax2 y2
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⎛
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⎮
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⎮
⎮
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y
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⎛
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⎝
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⎟
⎠
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⋅+

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

ax2 y2
+ z2

+( ) 3−
⋅

⌠
⎮
⎮
⎮
⌡

d

⌠
⎮
⎮
⎮
⌡

d

ay−

ay

y

0

az

z3 4 ν⋅−( ) y

ax2 y2
+ z2

+

⎛
⎜
⎝

⎞
⎟
⎠

2
+

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

ax2 y2
+ z2

+( ) 1−
⋅

⌠
⎮
⎮
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⎮
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βxx 1.965=βxx 2 ax2
⋅
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y

0
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z1 2 ν⋅−( ) 3
ax

ax2 y2
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+

⎛
⎜
⎝

⎞
⎟
⎠
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⎡
⎢
⎢
⎣

⎤
⎥
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⋅

⌠
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⎮
⎮
⌡

d

⌠
⎮
⎮
⎮
⌡

d
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y

0
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z3 4 ν⋅−( ) ax

ax2 y2
+ z2

+

⎛
⎜
⎝

⎞
⎟
⎠

2
+

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

ax2 y2
+ z2

+( ) 1−
⋅

⌠
⎮
⎮
⎮
⌡

d

⌠
⎮
⎮
⎮
⌡

d

⋅:=

G 6.646 105
×=[psf]G

E
2 1 ν+( )⋅

144⋅ 1000⋅:=

Computations

[ft]az 30:=

[ft]ay 30:=

[ft]ax 60:=

ν 0.3:=

[Ksi]E 12:=

Problem Data
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Figure C.3: Computation of Coefficients k and K for x plane 

 

 

[lb/ft]Kxz_ext 1.213 104
×=Kxz_ext kxz2⋅:=

[lb/ft]Kxz_int 2.426 104
×=Kxz_int kxz4⋅:=

[pcf]kxz 6.064 103
×=kxz

G
ax

βxz⋅:=

[lb/ft]Kxy_ext 1.213 104
×=Kxy_ext kxy 2⋅:=

[lb/ft]Kxy_int 2.426 104
×=Kxy_int kxy 4⋅:=

[pcf]kxy 6.064 103
×=kxy

G
ax

βxy⋅:=

[lb/ft]Kxx_ext 4.354 104
×=Kxx_ext kxx2⋅:=

[lb/ft]Kxx_int 8.708 104
×=Kxx_int kxx4⋅:=

[pcf]kxx 2.177 104
×=kxx

G
ax

βxx⋅:=
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D Lumped Equivalent Coefficients for Novak Model  
 
 

The computations of the appropriate spring, mass and damping coefficients to 

approximate Novak dynamic stiffness by a lumped SDOF system is presented. The least 

square method to perform a polynomial fitting of the data points was implemented. 

 

The following pages present a listing of the MathCad worksheet developed to this end, 

with the computations performed for a soil hysteretic damping ration of D = 0.0, and a 

soil Poisson’s ratio ν = 0.5, ν = 0.45 and ν = 0.35, and  ν = 0.30 as examples of the 

performed analysis. 

 

The worksheet also presents the computation of coefficient of determination R2 (R-

squared), obtained in order to determine how well does the regression equation truly 

represent the set of data used (points of the Novak plane strain model in the range of 

dimensionless frequency 0 < ao < 3). The reference equations used to obtain R2 are: 

 

( )

( )

2

2

1

2

1

1

1

ˆ Residual Sum of Squares

 Total Som of Squares

 data value
ˆ  estimated value

 number of data points

 mean value of data points

N

i i
i
N

i
i

i

i

N

i
i

RSSR
TSS

RSS y y

TSS y y

y
y
N

y
y

N

=

=

=

= −

= − =

= − =

=
=
=

= =

∑

∑

∑

 

 

In the cases when the real part of Novak Dynamic Stiffness is approximated by an 

horizontal line, the least squares solutions gives the constant value as the mean value of 
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the ordinate data points. In this case, the coefficient of determination is meaningless, and 

it’s results is zero, since it is intended to give a quantification of how better is to 

approximate the ordinates by the polynomial equation instead of using the mean value. 

For these cases, the coefficient of variation CV, in percentage (also known as the relative 

standard deviation) will be used to determine the adequacy of the approximation: the 

closer CV is to zero, the better the mean value represents the whole data. CV is defined 

as: 

 

 

( )

1

2

100

sample mean value

sample standard deviation
1

 number of data points

N

i
i

i

sCV
y

y
y

N

y y
s

N
N

=

= ×

= =

−
= =

−
=

∑
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D.1 Case of D = 0.0 and ν = 0.5 
 

Novak Dinamic Stiffness (Novak et al, 1978) 

Pile and Soil Data 

ν 0.4999999:= soil Poisson's ratio

D 0:= soil hysteretic damping ratio = G'/G

Computations

η
2 1 ν−( )⋅

1 2 ν⋅−
:= η 2.236 103×=

ao' ao( )
aoi

1 Di+
:=

bo' ao( )
aoi

η 1 Di+⋅
:=

T ao( )
4 K1 bo' ao( )( )⋅ K1 ao' ao( )( )⋅ ao' ao( ) K1 bo' ao( )( )⋅ K0 ao' ao( )( )⋅+ bo' ao( ) K0 bo' ao( )( )⋅ K1 ao' ao( )( )⋅+

bo' ao( ) K0 bo' ao( )( )⋅ K1 ao' ao( )( )⋅ ao' ao( ) K1 bo' ao( )( )⋅ K0 ao' ao( )( )⋅+ bo' ao( ) ao' ao( )⋅ K0 bo' ao( )( )⋅ K0 ao' ao( )( )⋅+
:=

K ao( ) 1− ao2⋅ T ao( )⋅:=

ao 0 0.05, 2..:=

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

2

1

0

1

Re K ao( )( )

ao  
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fr_app ao( ) αK αM ao2
⋅−:=

αM 0.9653314=

αK 1.7213669=

αM αM−:=

αK

αM
⎛
⎜
⎝

⎞
⎟
⎠

N

1

N

i

xi( )2∑
=

1

N

i

xi( )2∑
=

1

N

i

xi( )4∑
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

1−

1

N

i

yi∑
=

1

N

i

xi( )2 yi⋅⎡
⎣

⎤
⎦∑

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅:=

yi fr xi( ):=

xi maxRe 0.1 i 2−( )⋅+:=

i 2 N..:=

y1 fr maxRe( ):=

x1 0.0:=

N 29:=

Real Part Curve Fitting by Least-Squares Approximation

maxRe 0.378=maxRe Maximizefr ao,( ):=

ao 0.0≥

Given

ao 0.3:=

fr ao( ) Re K ao( )( ):=

Real Part Maximum Determination
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i 1 N..:=

ao 0 0.05, 5.5..:=

0 0.5 1 1.5 2 2.5 3
8

6

4

2

0

2

fr ao( )

fr_app ao( )

yi

ao ao, xi,

0 1 2 3 4 5 6
20

15

10

5

0

fr ao( )

fr_app ao( )

yi

ao ao, xi,  
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Coefficient of Determination for the Real Part

ym
1

N

j

y j∑
=

N
:=

i 1 N..:=

yai fr_app xi( ):=

RSS

1

N

j

y j ya j−( )2∑
=

:=

TSS

1

N

j

y j ym−( )2∑
=

:=

R2 1
RSS
TSS

−:= R2 0.999=
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0 1 2 3 4 5
0

5

10

15

20

25

Im K ao( )( )

ao

Imaginary Part Curve Fitting by Least-Squares Approximation

fi ao( ) Im K ao( )( ):=

N 30:=

x1 0.0:=

y1 0:=

i 2 N..:=

xi 0.1 i 1−( )⋅:=

yi fi xi( ):=

αC
1

N

i

xi yi⋅( )∑
=

1

N

i

xi( )2∑
=

:=

αC 4.1074708=

fi_app ao( ) αC ao⋅:=  
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i 1 N..:=

ao 0 0.05, 6.9..:=

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

fi ao( )

fi_app ao( )

yi

ao ao, xi,  
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Coefficient of Determination for the Imaginary Part

ym
1

N

j

y j∑
=

N
:=

i 1 N..:=

yai fi_app xi( ):=

RSS

1

N

j

y j ya j−( )2∑
=

:=

TSS

1

N

j

y j ym−( )2∑
=

:=

R2 1
RSS
TSS

−:= R2 0.997=
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D.2 Case of D = 0.0 and ν = 0.45 
 

 

Novak Dinamic Stiffness (Novak et al, 1978) 

Pile and Soil Data 

ν 0.45:= soil Poisson's ratio

D 0:= soil hysteretic damping ratio = G'/G

Computations

η
2 1 ν−( )⋅

1 2 ν⋅−
:=

η 3.317=

ao' ao( )
aoi

1 Di+
:=

bo' ao( )
aoi

η 1 Di+⋅
:=

T ao( )
4 K1 bo' ao( )( )⋅ K1 ao' ao( )( )⋅ ao' ao( ) K1 bo' ao( )( )⋅ K0 ao' ao( )( )⋅+ bo' ao( ) K0 bo' ao( )( )⋅ K1 ao' ao( )( )⋅+

bo' ao( ) K0 bo' ao( )( )⋅ K1 ao' ao( )( )⋅ ao' ao( ) K1 bo' ao( )( )⋅ K0 ao' ao( )( )⋅+ bo' ao( ) ao' ao( )⋅ K0 bo' ao( )( )⋅ K0 ao' ao( )( )⋅+
:=

K ao( ) 1− ao2⋅ T ao( )⋅:=

ao 0 0.05, 4..:=

0 0.5 1 1.5 2 2.5 3 3.5 4
1

0.5

0

0.5

1

1.5

Re K ao( )( )

ao
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αM 0.1766402=

αK 1.3543719=

αM αM−:=

αK

αM
⎛
⎜
⎝

⎞
⎟
⎠

N

1

N

i

xi( )2∑
=

1

N

i

xi( )2∑
=

1

N

i

xi( )4∑
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣
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⎥
⎥
⎥
⎥
⎥
⎥
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⎣
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⎢
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⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅:=

yi if xi minRe'< fr xi( ), fr minRe'( ) gr minRe'( ) xi minRe'−( )⋅+,⎡⎣ ⎤⎦:=

xi maxRe 0.1 i 2−( )⋅+:=

i 2 N..:=

y1 fr maxRe( ):=

x1 0.0:=

N 29:=

Real Part Curve Fitting by Least-Squares Approximation

minRe' 1.671=minRe' Minimize gr ao,( ):=

ao 0.0≥

Given

ao 1.1 maxRe⋅:=

gr ao( )
ao

fr ao( )d
d

:=

Real Part Inflection Point Determination

maxRe 0.558=maxRe Maximizefr ao,( ):=

ao 0.0≥

Given

ao 0.3:=

fr ao( ) Re K ao( )( ):=

Real Part Maximum Determination
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fr_app ao( ) αK αM ao2
⋅−:=

i 1 N..:=

ao 0 0.05, 6.5..:=
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Coefficient of Determination for the Real Part

ym
1

N

j

y j∑
=

N
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i 1 N..:=

yai fr_app xi( ):=

RSS

1

N

j

y j ya j−( )2∑
=
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TSS
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N
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y j ym−( )2∑
=
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R2 1
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TSS

−:= R2 0.984=
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Imaginary Part Curve Fitting by Least-Squares Approximation
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x1 0.0:=

y1 0:=

i 2 N..:=

xi 0.1 i 1−( )⋅:=

yi fi xi( ):=

αC
1

N

i

xi yi⋅( )∑
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Coefficient of Determination for the Imaginary Part
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=

:=

R2 1
RSS
TSS

−:= R2 0.997=
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D.3 Case of D = 0.0 and ν = 0.35 
 

Novak Dinamic Stiffness (Novak et al, 1978) 

Pile and Soil Data 

ν 0.35:= soil Poisson's ratio

D 0:= soil hysteretic damping ratio = G'/G

Computations

η
2 1 ν−( )⋅

1 2 ν⋅−
:= η 2.082=

ao' ao( )
aoi

1 Di+
:=

bo' ao( )
aoi

η 1 Di+⋅
:=

T ao( )
4 K1 bo' ao( )( )⋅ K1 ao' ao( )( )⋅ ao' ao( ) K1 bo' ao( )( )⋅ K0 ao' ao( )( )⋅+ bo' ao( ) K0 bo' ao( )( )⋅ K1 ao' ao( )( )⋅+

bo' ao( ) K0 bo' ao( )( )⋅ K1 ao' ao( )( )⋅ ao' ao( ) K1 bo' ao( )( )⋅ K0 ao' ao( )( )⋅+ bo' ao( ) ao' ao( )⋅ K0 bo' ao( )( )⋅ K0 ao' ao( )( )⋅+
:=

K ao( ) 1− ao2⋅ T ao( )⋅:=

ao 0 0.05, 4..:=

0 0.5 1 1.5 2 2.5 3 3.5 4
0.6

0.8

1

1.2

1.4

Re K ao( )( )

ao  
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αM 0.0129035=

αK 1.3077538=

αM αM−:=

αK

αM
⎛
⎜
⎝

⎞
⎟
⎠

N

1

N

i

xi( )2∑
=

1

N

i

xi( )2∑
=

1

N
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xi( )4∑
=
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⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
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⎥
⎥
⎥
⎦
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1
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yi∑
=
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N
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xi( )2 yi⋅⎡
⎣

⎤
⎦∑

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅:=

yi if xi minRe'< fr xi( ), fr minRe'( ) gr minRe'( ) xi minRe'−( )⋅+,⎡⎣ ⎤⎦:=

xi maxRe 0.1 i 2−( )⋅+:=

i 2 N..:=

y1 fr maxRe( ):=

x1 0.0:=

N 29:=

Real Part Curve Fitting by Least-Squares Approximation

minRe' 1.37=minRe' Minimize gr ao,( ):=

ao 0.0≥

Given

ao 1.1 maxRe⋅:=

gr ao( )
ao

fr ao( )d
d

:=

Real Part Inflection Point Determination

maxRe 0.933=maxRe Maximizefr ao,( ):=

ao 0.0≥

Given

ao 0.3:=

fr ao( ) Re K ao( )( ):=

Real Part Maximum Determination
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fr_app ao( ) αK αM ao2
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Coefficient of Determination for the Real Part

ym
1

N

j

y j∑
=

N
:=

i 1 N..:=
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RSS
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N

j

y j ya j−( )2∑
=

:=

TSS
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=
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−:= R2 0.982=
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Coefficient of Determination for the Imaginary Part
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:=
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D.4 Case of D = 0.0 and ν = 0.3 
 

Novak Dinamic Stiffness (Novak et al, 1978) 

Pile and Soil Data 

ν 0.30:= soil Poisson's ratio

D 0:= soil hysteretic damping ratio = G'/G

Computations

η
2 1 ν−( )⋅

1 2 ν⋅−
:= η 1.871=

ao' ao( )
aoi

1 Di+
:=

bo' ao( )
aoi

η 1 Di+⋅
:=

T ao( )
4 K1 bo' ao( )( )⋅ K1 ao' ao( )( )⋅ ao' ao( ) K1 bo' ao( )( )⋅ K0 ao' ao( )( )⋅+ bo' ao( ) K0 bo' ao( )( )⋅ K1 ao' ao( )( )⋅+

bo' ao( ) K0 bo' ao( )( )⋅ K1 ao' ao( )( )⋅ ao' ao( ) K1 bo' ao( )( )⋅ K0 ao' ao( )( )⋅+ bo' ao( ) ao' ao( )⋅ K0 bo' ao( )( )⋅ K0 ao' ao( )( )⋅+
:=

K ao( ) 1− ao2⋅ T ao( )⋅:=

ao 0 0.05, 4..:=

0 0.5 1 1.5 2 2.5 3 3.5
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αM 0=

αK 1.3068585=

αM 0:=

αK
1

N

i

yi∑
=

N
:=

yi fr xi( ):=

xi aoi aof aoi−( )
i 1−( )
N 1−

⋅+:=

i 1 N..:=

aof 3:=aoi 1.0:=N 29:=

Real Part Curve Fitting by Least-Squares Approximation

minRe' 1.433=minRe' Minimize gr ao,( ):=

ao 0.0≥

Given

ao 1.5:=

gr ao( )
ao

fr ao( )d
d

:=

fr ao( ) Re K ao( )( ):=

Real Part Inflection Point Determination
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Dark blue is less than one standard deviation from the mean. For the normal distribution, this accounts for 68.27% of the 
set; while two standard deviations from the mean (blue and brown) account for 95.45%; and three standard deviations (blue, 
brown and green) account for 99.73%.

R2G 0.964=R2G 1
3 SEE⋅
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−:=

Relative Standard DeviationRSD 1.186=RSD CV 100⋅:=
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=

N 1−
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y j ym−( )2∑
=
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y j ya j−( )2∑
=

:=
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N
:=

Coefficient of Determination for the Real Part

 
 

 

 



 

 

232

0 1 2 3 4 5
0

5

10

15

20

Im K ao( )( )

ao

Imaginary Part Curve Fitting by Least-Squares Approximation
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Coefficient of Determination for the Imaginary Part

ym
1
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j

y j∑
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N
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i 1 N..:=
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RSS

1

N

j

y j ya j−( )2∑
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=

:=
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E Pile Element with Distributed Soil Parameters  
 

E.1 Classical Beam Element 
 

The derivation of the stiffness, mass, and dumping matrices for a pile element with 

distributed soil parameters is presented in this section. The element is shown in Figure 

E.1; the soil stiffness ka per unit length, soil mass ma per unit length, and soil damping 

coefficient ca per unit length were obtained in Chapter 4. 

 

 

 
Figure E.1: Pile Element with Distributed Soil Parameters 

 

The matrix will be derived by using the Finite Element Method (FEM) formulation based 

on the Virtual Work Principle. The four degrees of freedom (DOF) of the beam element 

are the two end displacements u1 and u3 and rotations u2 and u4. In the FEM, the 
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displacements v(x,t) within the element are expressed in terms of the end displacements 

and rotations {q} through shape functions [N]: 

 [ ] { }v(x, t)        =   N q  

where 
 

 

 { }

1

2

3

4

(t)
(t)

    
(t)
(t)

u
u
u
u

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 q  

 
 
It will be assumed that the shape functions for the classic beam theory (Bernoulli beam) 

are applicable. This shape functions are shown in Figure E.2, together with the element 

DOF. 

 
 

Figure E.2: Beam Element Shape Functions (Battini, 2006) 
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The Principle of Virtual Work for a dynamic structural system, also known as the 

generalized D’Alambert Principle, is: 

 

 int i 0ext nerW W Wδ δ δ− − =  

 
where δWint is the virtual work of the internal forces, δWext is the virtual work associated 

to the external forces, and  δWiner is the virtual work of the “inertial” forces, as defined by 

D’Alambert. 

 

For a beam with a distributed force f(x,t), the three virtual work expressions are: 

 

 

( )
int 2

0 0

0

i
0

( , )( , )( , ) ( , )

( , ) ( , )

( , ) ( , )

L L

L

ext

L

ner

d v x tx tW E I v x t dx E I v x t dx
dx dx

W f x t v x t dx

W m v x t v x t dx

δδθδ

δ δ

δ δ

′′ ′′= =

=

= −

∫ ∫

∫

∫

 

where m  is the distributed mass of the beam per unit length, i.e. am A mρ= + ,  E is the 

elastic modulus, I the moment of inertia of the cross section, v(x,t) is the transverse 

displacement, and δv(x,t) is the virtual transverse displacement.  

 

Introducing the FEM approximation: 

 

[ ] { }
[ ] { } { } [ ]
[ ] { }

[ ] { } { } [ ]

T

T

( , )      ( )   ( )

( , )      ( )   ( ) ( ) ( )

( , )      ( )   ( )

( , )      ( )   ( ) ( ) ( )   

T

T

v x t N x q t

v x t N x q t q t N x

v x t N x q t

v x t N x q t q t N x

δ δ δ

δ δ δ

=

= =

′′ ′′=

′′ ′′ ′′= =

 

 

The internal virtual work becomes: 
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{ } [ ] [ ] { }

int
0 0

T
int

0

( , ) ( , ) ( , ) ( , )

( ) ( ) ( )   ( )

L L

L
T

W E I v x t v x t dx E I v x t v x t dx

W q t E I N x N x dx q t

δ δ δ

δ δ

′′ ′′ ′′ ′′= =

⎡ ⎤
′′ ′′= ⎢ ⎥

⎣ ⎦

∫ ∫

∫
 

 

By defining the beam element stiffness matrix [kb] as: 

[ ] [ ] [ ]T

0

( ) ( )   
L

bk E I N x N x dx′′ ′′= ∫  

the internal virtual work results: 

{ } [ ]{ }int ( ) ( )T
bW q t k q tδ δ=  

 

If the force f(x,t) is due to the distributed spring and dampers, i.e. 

( , ) ( , ) ( , )a af x t k v x t c v x t= − − , the virtual work of the external forces is: 

 

 
0 0

( , ) ( , ) ( , ) ( , )
L L

ext a aW k v x t v x t dx c v x t v x t dxδ δ δ= − −∫ ∫  

Introducing the FEM approximation shown previously, that for the velocity field results: 

[ ] { }
[ ] { } { } [ ]T

( , )      ( )   ( )

( , )      ( )   ( ) ( ) ( )   T

v x t N x q t

v x t N x q t q t N xδ δ δ

=

= =
 

 

The external virtual work becomes: 

{ } [ ] [ ] { } { } [ ] [ ] { }

0 0

0 0

( , ) ( , ) ( , ) ( , )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

L L

ext a a

L L
T TT T

ext a a

W k v x t v x t dx c v x t v x t dx

W q t k N x N x dx q t q t c N x N x dx q t

δ δ δ

δ δ δ

= − −

⎡ ⎤ ⎡ ⎤
= − −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

∫ ∫

∫ ∫

 

By defining the soil stiffness matrix [ks] and the soil damping matrix as [cs] as: 
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[ ] [ ] [ ]

[ ] [ ] [ ]

0

0

( ) ( )

( ) ( )

L
T

s a

L
T

s a

k k N x N x dx

c c N x N x dx

=

=

∫

∫
 

the external virtual work results: 

{ } [ ]{ } { } [ ]{ }( ) ( ) ( ) ( )T T
ext s sW q t k q t q t c q tδ δ δ= − −  

 

Finally, the acceleration field can be expressed in terms of the nodal coordinates as: 

[ ] { }
[ ] { } { } [ ]T

( , )      ( )   ( )

( , )      ( )   ( ) ( ) ( )   T

v x t N x q t

v x t N x q t q t N xδ δ δ

=

= =
 

Substituting these expressions into the equation of the virtual work of the inertial forces, 

it results: 

{ } [ ] [ ] { }

i
0

i
0

( , ) ( , )

( ) ( ) ( ) ( )

L

ner

L
TT

ner

W m v x t v x t dx

W q t m N x N x dx q t

δ δ

δ δ

= −

⎡ ⎤
= − ⎢ ⎥

⎣ ⎦

∫

∫
 

 

Introducing the consistent mass matrix [ME] for the beam element (which contribution is 

[Mb]) with added distributed soil mass (which contribution is [Ms]) as: 

 

[ ] [ ] [ ] ( )[ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

0 0

0

0

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

L L
T T

E a

L
T

b

L
T

s a

M m N x N x dx A m N x N x dx

M A N x N x dx

M m N x N x dx

ρ

ρ

= = +

=

=

∫ ∫

∫

∫

 

 
the expression for the virtual work of the inertial forces becomes: 
 

{ } [ ]{ }i ( ) ( )T
ner EW q t M q tδ δ= −  
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Considering the above mentioned nomenclature, the principle of virtual works results: 

 

{ } [ ]{ } [ ]{ } [ ]{ } [ ]{ }
int i 0

( ) ( ) ( ) ( ) ( )
ext ner

T
b s s E

W W W

q t k q t k q t c q t M q t

δ δ δ

δ

− − =

⎡ ⎤+ + +⎣ ⎦
 

Since the virtual displacement{ }qδ , by definition, are arbitrary (as long as they are 

compatible with the support conditions), one obtains the equation of motion for the free 

vibrations of the element as: 

 

[ ]{ } [ ]{ } [ ]{ }( ) ( ) ( ) 0E E Ek q t c q t M q t+ + =  

where 
 

[ ] [ ] [ ]
[ ] [ ]
[ ] [ ] [ ]

= total element stiffness matrix

= total element damping matrix

= total element mass matrix

E b s

E s

E b s

K k k
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M M M
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=

= +
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E.1.1 Element Stiffness Matrix 
 

The element stiffness matrix, that includes the contribution of the pile of modulus of 

elasticity E, cross sectional moment of inertia I, and length LE, and the soil of distributed 

stiffness ka, is computed as follows: 

 

 [ ] [ ] [ ]'' ''T T
E

L L

K I N E N dx N ka N dx⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦∫ ∫  

 
A listing of the Maple worksheet developed to compute the stiffness matrix is presented 

below: 

 

> restart; 
************************************************************************
* 
* Shape Functions [Fi] 
************************************************************************
* 
> Fi := Vector(1..4): 
Fi[1]  := 1 - 3 * (x/L)^2 + 2 * (x/L)^3  : 
Fi[2]  := x * ( 1- x/L)^2 : 
Fi[3]  := 3 * (x/L)^2 - 2 * (x/L)^3 : 
Fi[4] := x^2 / L * (x/L - 1) : 
 
 
> Fi; 

⎡
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⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
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⎠
⎟⎟ − 1

x
L

2

 − 3
x2

L2
2 x3

L3

x2 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ − 

x
L 1

L
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************************************************************************
* 
* Matrix of Derivatives of the Shape Functions [B] 
************************************************************************
* 
 
> B := Matrix(1..1,1..4): 
 
> with(student): 
for j from 1 to 4 do 
     B[1,j]:= diff(Fi[j],x$2): 
end do: 
 
> BT := Matrix(1..4, 1..1): 
with(linalg): 
BT := transpose(B): 
 
> simplify(B); 

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥−6  − L 2 x

L3 −2 −  + 3 x 2 L
L2 6  − L 2 x

L3 −2 −  + 3 x L
L2  

************************************************************************
* 
* Constitutive Matrix [E1] 
************************************************************************
* 
> E1 := Matrix(1,1): 
E1[1,1] := E : 
print(E1); 
 

[ ]E  

************************************************************************
* 
* Stiffness Matrix [K] 
* 
************************************************************************
* 
> dK1 := Matrix(1..4, 1..4): 
with(linalg): 
dk1 := multiply(BT,multiply(E1,B)): 
 
> K1 := Matrix(1..4, 1..4): 
with(student): 
for i from 1 to 4 do 
    for j from 1 to 4 do 
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       K1[i,j] := I * value(int(dk1[i,j], x = 0..L )) : 
    end do: 
end do: 
 
> print(K1); 

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

12 I E
L3

6 I E
L2

-12 I E
L3

6 I E
L2

6 I E
L2

4 I E
L

-6 I E
L2

2 I E
L

-12 I E
L3

-6 I E
L2

12 I E
L3

-6 I E
L2

6 I E
L2

2 I E
L

-6 I E
L2

4 I E
L

 

> K2 := Matrix(1..4, 1..4): 
with(student): 
for i from 1 to 4 do 
    for j from 1 to 4 do 
       K2[i,j] := ka * value(int(Fi[i]*Fi[j], x = 0..L  )) 
: 
    end do: 
end do: 
 
> print(K2); 

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

13
35 ka L 11

210 ka L2 9
70 ka L −

13
420 ka L2

11
210 ka L2 1

105 ka L3 13
420 ka L2 −

1
140 ka L3

9
70 ka L

13
420 ka L2 13

35 ka L −
11

210 ka L2

−
13

420 ka L2 −
1

140 ka L3 −
11

210 ka L2 1
105 ka L3

 

> K2R := simplify(K2 / (ka*L/420)); 

 := K2R

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

156 22 L 54 −13 L
22 L 4 L2 13 L −3 L2

54 13 L 156 −22 L
−13 L −3 L2 −22 L 4 L2

 

>  
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E.1.2 Element Mass Matrix 
 

The element mass matrix, that includes the contribution of the pile of density ρ and cross 

sectional area A, and the soil of distributed mass ma, is computed as follows: 

 

 
[ ] [ ] [ ]

( )
0

mass per unit length

L
T

a

M m N N dx

m A mρ

=

= + =

∫  

 

A listing of the Maple worksheet developed to compute the mass matrix is presented 

below: 

 
> restart; 
************************************************************************* 
* Shape Functions [Fi] 
************************************************************************* 
> Fi := Vector(1..4): 
Fi[1]  := 1 - 3 * (x/L)^2 + 2 * (x/L)^3  : 
Fi[2]  := x * ( 1- x/L)^2 : 
Fi[3]  := 3 * (x/L)^2 - 2 * (x/L)^3 : 
Fi[4] := x^2 / L * (x/L - 1) : 
 
> print (Fi); 

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

 −  + 1 3 x2

L2
2 x3

L3

x ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ − 1 x

L

2

 − 3 x2

L2
2 x3

L3

x2 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ − 

x
L 1

L

 

 
************************************************************************* 
* Mass Matrix [ME] 
*  
************************************************************************* 
> ME := Matrix(1..4, 1..4): 
with(student): 
for i from 1 to 4 do 
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    for j from 1 to 4 do 
       ME[i,j] := (ro * A + ma) * value(int(Fi[i]*Fi[j], x = 0..L  )) : 
    end do: 
end do: 
 
> print(ME); 
 

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

13
35

( ) + ro A ma L
11

210
( ) + ro A ma L2 9

70
( ) + ro A ma L −

13
420

( ) + ro A ma L2

11
210

( ) + ro A ma L2 1
105

( ) + ro A ma L3 13
420

( ) + ro A ma L2 −
1

140
( ) + ro A ma L3

9
70

( ) + ro A ma L
13

420
( ) + ro A ma L2 13

35
( ) + ro A ma L −

11
210

( ) + ro A ma L2

−
13

420
( ) + ro A ma L2

−
1

140
( ) + ro A ma L3

−
11

210
( ) + ro A ma L2 1

105
( ) + ro A ma L3

 
 

> MER := ME/((ro * A + ma)*L/420): 
> simplify(MER); 

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

156 22 L 54 −13 L
22 L 4 L2 13 L −3 L2

54 13 L 156 −22 L
−13 L −3 L2 −22 L 4 L2

 

>  
 

 

E.1.3 Element Damping Matrix 
 

The element damping matrix that includes the contribution of the soil of distributed 

damping ca, is computed as follows: 

 

 
[ ] [ ] [ ]

( )
0

damping coefficient per unit length

L
T

a

C c N N dx

c c

=

= =

∫  

 

The resulting damping matrix has the same form of the mass matrix, where ma LE is 

replaced by ca LE. 
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E.2 Refined Beam Element 
 

This section presents the derivation of the stiffness, mass, and dumping matrices for the 

refined pile element proposed by Deschapelles (2003) with distributed soil parameters. 

The element with its five DOF is displayed in Figure E.3. The soil stiffness ka per unit 

length, soil mass ma per unit length, and soil damping coefficient ca per unit length were 

obtained in Chapter 4. 

 

 
Figure E.3: Refined Pile Element with Distributed Soil Parameters 

 

The advantages of this element, as reported by Deschapelles (2003) are: 

• The nodal DOF in a conventional beam element are localized directions along 

which only concentrated forces or moments can be applied or computed. They are 

required to assure compatibility of deformed shape at nodal points, but do not 

provide “room” for distributed loads since such actions do not operate in specific 

u1

u4
u5

u2
ca, ka

ma

LE

E, I

ca, ka

ma

ca, ka

ma

ca, ka

ma

ca, ka

ma

ca, ka

ma

ca, ka

ma

u3

3
0

1 ( )
EL

E

u v x dx
L

= ∫

u1

u4
u5

u2
ca, ka

ma

ca, ka

ma

LE

E, I

ca, ka

ma

ca, ka

ma

ca, ka

ma

ca, ka

ma

ca, ka

ma

ca, ka

ma

ca, ka

ma

ca, ka

ma

ca, ka

ma

ca, ka

ma

ca, ka

ma

ca, ka

ma

u3

3
0

1 ( )
EL

E

u v x dx
L

= ∫
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points. Distributed loads act over a finite element length, rather than over an 

infinitesimal point. 

• Beam elements with distributed loads have bending moments with parabolic 

variation; considering the differential equation of a beam (M/EI = d2v/dx2), the 

transverse displacements should be represented by a 4th degree polynomial with 5 

coefficients. Accordingly, 5 DOF should be used.   

 

The shape functions for this element, considering a normalized coordinate ξ = x / (LE/2) 

and with the origin of coordinate axes located at the middle of the beam (as presentede in 

Figure E.4), are presented in Figures E.5 to E.7. The shape functions for the nodal 

rotations (N2 and N5) should be multiplied by LE/2. 

 

  

 

 
Figure E.4: Normalized Coordinate Sistem 

 

u1 u4

u2

LE

E, I

u5

u3

y, η

x, ξa = LE / 2

u1 u4

u2

LE

E, I

u5

u3

y, η

x, ξa = LE / 2
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First Shape Function

N1 ξ( ) 7− 12 ξ⋅− 30 ξ
2

⋅+ 4 ξ
3

⋅+ 15 ξ
4

⋅−( )
16

:=
1−

1
ξN1 ξ( )⌠

⎮
⌡

d 0=

1 0.5 0 0.5 1
1

0.5

0

0.5

1

N1 ξ( )

ξ

Second Shape Function

N2 ξ( ) 1− 4 ξ⋅− 6 ξ
2

⋅+ 4 ξ
3

⋅+ 5 ξ
4

⋅−( )
16

:=
1−

1
ξN2 ξ( )⌠

⎮
⌡

d 0=

1 0.5 0 0.5 1
0.1

0.05

0

0.05

0.1

N2 ξ( )

ξ  
 

Figure E.5: Refined Beam Element Shape Functions - a 
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Third Shape Function

N3 ξ( ) 15 1 2 ξ
2

⋅− ξ
4

+( )⋅

8
:=

1−

1
ξN3 ξ( )⌠

⎮
⌡

d 2=

1 0.5 0 0.5 1
0

0.5

1

1.5

2

N3 ξ( )

ξ

Fourth Shape Function

N4 ξ( ) 7− 12 ξ⋅+ 30 ξ
2

⋅+ 4 ξ
3

⋅− 15 ξ
4

⋅−( )
16

:=
1−

1
ξN4 ξ( )⌠

⎮
⌡

d 0=

1 0.5 0 0.5 1
1

0.5

0

0.5

1

N4 ξ( )

ξ  
Figure E.6: Refined Beam Element Shape Functions - b 
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Fifth Shape Function

N5 ξ( ) 1 4 ξ⋅− 6 ξ
2

⋅− 4 ξ
3

⋅+ 5 ξ
4

⋅+( )
16

:=
1−

1
ξN5 ξ( )⌠

⎮
⌡

d 0=

1 0.5 0 0.5 1
0.15

0.1

0.05

0

0.05

N5 ξ( )

ξ  
 

Figure E.7: Refined Beam Element Shape Functions - c 
 

 

 

 

E.2.1 Refined Element Stiffness Matrix 
 

The element stiffness matrix for a pile with modulus of elasticity E, cross sectional 

moment of inertia I, and length LE, and that includes the contribution of the the soil of 

distributed stiffness ka, is computed as follows: 

 

 [ ] [ ] [ ]'' ''T T
E

L L

K I N E N dx N ka N dx⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦∫ ∫  
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A listing of the Maple worksheet developed to compute the stiffness matrix is presented 

below: 

 

> restart; 
************************************************************************
* 
* Shape Functions [Fi] 
************************************************************************
* 
> Fi := Vector(1..5): 
Fi[1]  := (-7 - 12 * x + 30 * x^2 + 4 * x^3  - 15 * x^4) / 
16: 
Fi[2]  := L / 2 * (-1 - 4 * x + 6 * x^2 + 4 * x^3  - 5 * 
x^4) / 16: 
Fi[3]  := ( 1 - 2 * x^2 + x^4 ) * 15 / 8 : 
Fi[4]  := (-7 + 12 * x + 30 * x^2 - 4 * x^3  - 15 * x^4) / 
16: 
Fi[5]  := L / 2 * (1 - 4 * x - 6 * x^2 + 4 * x^3  + 5 * 
x^4) / 16: 
 
> Fi; 

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

−  −  +  +  − 
7

16
3
4 x 15

8 x2 1
4 x3 15

16 x4

1
32 L ( )−  −  +  +  − 1 4 x 6 x2 4 x3 5 x4

 −  + 
15
8

15
4 x2 15

8 x4

−  +  +  −  − 
7

16
3
4 x

15
8 x2 1

4 x3 15
16 x4

1
32 L ( ) −  −  +  + 1 4 x 6 x2 4 x3 5 x4

 

************************************************************************
* 
* Matrix [B] with the derivatives of the Shape Functions  
************************************************************************
* 
 
> B := Matrix(1..1,1..5): 
 
> with(student): 
for j from 1 to 5 do 
     B[1,j]:= diff(Fi[j],x$2)* (2/L)^2: 
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end do: 
 
> BT := Matrix(1..5, 1..1): 
with(linalg): 
BT := transpose(B): 
 
> simplify(B); 

−3
−  −  + 5 2 x 15 x2

L2 −
3
2

−  −  + 1 2 x 5 x2

L 30
−  + 1 3 x2

L2 −3
−  +  + 5 2 x 15 x2

L2
⎡

⎣
⎢⎢⎢ , , , ,

3
2

−  +  + 1 2 x 5 x2

L
⎤

⎦
⎥⎥⎥

 

************************************************************************
* 
* Constitutive Matrix [E1] 
************************************************************************
* 
> E1 := Matrix(1,1): 
E1[1,1] := E : 
print(E1); 
 

[ ]E  

************************************************************************
* 
* Stiffness Matrix [K] 
* 
************************************************************************
* 
> dK1 := Matrix(1..5, 1..5): 
with(linalg): 
dk1 := multiply(BT,multiply(E1,B)): 
 
> K1 := Matrix(1..5, 1..5): 
with(student): 
for i from 1 to 5 do 
    for j from 1 to 5 do 
       K1[i,j] := I * (L / 2) * value(int(dk1[i,j], x = -
1..1 )) : 
    end do: 
end do: 
 
> print(K1); 
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⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

192 I E
L3

36 I E
L2

-360 I E
L3

168 I E
L3

-24 I E
L2

36 I E
L2

9 I E
L

-60 I E
L2

24 I E
L2

-3 I E
L

-360 I E
L3

-60 I E
L2

720 I E
L3

-360 I E
L3

60 I E
L2

168 I E
L3

24 I E
L2

-360 I E
L3

192 I E
L3

-36 I E
L2

-24 I E
L2

-3 I E
L

60 I E
L2

-36 I E
L2

9 I E
L

 

> K1R:= simplify (K1/(3*E*I/L)); 

 := K1R

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

64 1
L2 12 1

L −120 1
L2 56 1

L2 −8 1
L

12 1
L 3 −20 1

L 8 1
L -1

−120 1
L2 −20 1

L 240 1
L2 −120 1

L2 20 1
L

56
1
L2 8

1
L −120

1
L2 64

1
L2 −12

1
L

−8
1
L -1 20

1
L −12

1
L 3

 

> K2 := Matrix(1..5, 1..5): 
with(student): 
for i from 1 to 5 do 
    for j from 1 to 5 do 
       K2[i,j] := ka *(L/2)* value(int(Fi[i]*Fi[j], x = -
1..1  )) : 
    end do: 
end do: 
 
> print(K2); 
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⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

8
35 ka L 1

60 ka L2 −
3

14 ka L −
1

70 ka L 1
210 ka L2

1
60 ka L2 1

630 ka L3 −
1

84 ka L2 −
1

210 ka L2 1
1260 ka L3

−
3

14 ka L −
1

84 ka L2 10
7 ka L −

3
14 ka L 1

84 ka L2

−
1

70 ka L −
1

210 ka L2 −
3

14 ka L
8

35 ka L −
1

60 ka L2

1
210 ka L2 1

1260 ka L3 1
84 ka L2 −

1
60 ka L2 1

630 ka L3

 

> K2R := simplify(K2 / (ka*L/1260)); 

 := K2R

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

288 21 L -270 -18 6 L
21 L 2 L2 −15 L −6 L L2

-270 −15 L 1800 -270 15 L
-18 −6 L -270 288 −21 L
6 L L2 15 L −21 L 2 L2

 

>  
 

 

E.2.2 Refined Element Mass Matrix 
 

The element mass matrix, that includes the contribution of the pile of density ρ and cross 

sectional area A, and the soil of distributed mass ma, is computed as follows: 

 

 
[ ] [ ] [ ]

( )
0

mass per unit length

L
T

a

M m N N dx

m A mρ

=

= + =

∫  

 

A listing of the Maple worksheet developed to compute the mass matrix is presented 

below: 

 

> restart; 
************************************************************************
* 
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* Shape Functions [Fi] 
************************************************************************
* 
> Fi := Vector(1..5): 
Fi[1]  := (-7 - 12 * x + 30 * x^2 + 4 * x^3  - 15 * x^4) / 
16: 
Fi[2]  := L / 2 * (-1 - 4 * x + 6 * x^2 + 4 * x^3  - 5 * 
x^4) / 16: 
Fi[3]  := ( 1 - 2 * x^2 + x^4 ) * 15 / 8 : 
Fi[4]  := (-7 + 12 * x + 30 * x^2 - 4 * x^3  - 15 * x^4) / 
16: 
Fi[5]  := L / 2 * (1 - 4 * x - 6 * x^2 + 4 * x^3  + 5 * 
x^4) / 16: 
 
> print (Fi); 

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

−  −  +  +  − 
7

16
3
4 x 15

8 x2 1
4 x3 15

16 x4

1
32 L ( )−  −  +  +  − 1 4 x 6 x2 4 x3 5 x4

 −  + 
15
8

15
4 x2 15

8 x4

−  +  +  −  − 
7

16
3
4 x

15
8 x2 1

4 x3 15
16 x4

1
32 L ( ) −  −  +  + 1 4 x 6 x2 4 x3 5 x4

 

 
************************************************************************
* 
* Mass Matrix [ME] 
*  
************************************************************************
* 
> ME := Matrix(1..5, 1..5): 
with(student): 
for i from 1 to 5 do 
    for j from 1 to 5 do 
       ME[i,j] := (ro * A + ma) *(L/2)* 
value(int(Fi[i]*Fi[j], x = -1..1  )) : 
    end do: 
end do: 
 
> print(ME); 



 

 

256

8
35 ( ) + ro A ma L 1

60 ( ) + ro A ma L2 −
3

14 ( ) + ro A ma L −
1

70 ( ) + ro A ma L⎡
⎣
⎢⎢ , , , ,

1
210 ( ) + ro A ma L2 ⎤

⎦
⎥⎥

1
60 ( ) + ro A ma L2 1

630 ( ) + ro A ma L3 −
1

84 ( ) + ro A ma L2⎡
⎣
⎢⎢ , , ,

−
1

210 ( ) + ro A ma L2 1
1260 ( ) + ro A ma L3, ⎤

⎦
⎥⎥

−
3

14 ( ) + ro A ma L −
1

84 ( ) + ro A ma L2 10
7 ( ) + ro A ma L⎡

⎣
⎢⎢ , , ,

−
3

14 ( ) + ro A ma L
1

84 ( ) + ro A ma L2, ⎤
⎦
⎥⎥

−
1

70 ( ) + ro A ma L −
1

210 ( ) + ro A ma L2 −
3

14 ( ) + ro A ma L⎡
⎣
⎢⎢ , , ,

8
35 ( ) + ro A ma L −

1
60 ( ) + ro A ma L2, ⎤

⎦
⎥⎥

1
210 ( ) + ro A ma L2 1

1260 ( ) + ro A ma L3 1
84 ( ) + ro A ma L2⎡

⎣
⎢⎢ , , ,

−
1

60 ( ) + ro A ma L2 1
630 ( ) + ro A ma L3, ⎤

⎦
⎥⎥

 

> MER := ME/((ro * A + ma)*L/1260): 
> simplify(MER); 

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

288 21 L -270 -18 6 L
21 L 2 L2 −15 L −6 L L2

-270 −15 L 1800 -270 15 L
-18 −6 L -270 288 −21 L
6 L L2 15 L −21 L 2 L2

 

>  
 

E.2.3 Refined Element Damping Matrix 
 

The element damping matrix that includes the contribution of the soil of distributed 

damping ca, is computed as follows: 

 



 

 

257

 
[ ] [ ] [ ]

( )
0
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c c

=

= =

∫  

 

The resulting damping matrix has the same form of the mass matrix, where ma LE is 

replaced by ca LE. 

 

E.3 Analysis of Convergence to the Natural Frequency 
 

 
In order to evaluate the appropriateness of the classical and the refined beam elements to 

perform dynamic analyses, the natural frequencies of a simple supported steel beam, 

W8x10, L = 20 ft, where computed using the classical beam element with consistent mass 

matrix and lumped mass matrix, the refined element proposed by Deschapelles with 

consistent mass matrix, and the exact solutions obtained considering the beam as a 

continuous (Humar, 2002). 

 
Figures E.8 through E.10 present the first four natural frequencies of the system, and the 

convergence of the different models as the number of elements is increased. It is 

observed that the refined element proposed by Deschapelles gives a very good estimate 

of the first natural frequency with only one element, and converges to the exact values of 

the natural frequency for higher modes faster than the classical beam, as the number of 

elements “ne” used to discretize the beam is increased. 

 

Section E3.1 through E.3.3 present the Matlab programs developed to compute the 

natural frequencies for each model, varying the number of elements. 
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Figure E.8: First Natural Frequency vs Number of Elements (ne) 
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Figure E.9: Second Natural Frequency vs Number of Elements (ne) 
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Figure E.10: Third Natural Frequency vs Number of Elements (ne) 
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Figure E.11: Fourth Natural Frequency vs Number of Elements (ne) 
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E.3.1 Classical Beam Element with Lumped Mass Matrix 
 

% ****************************************************** 
% BeamNatFreq.m 
% Finite Element Program 
% to obtain natural frequencies of a simple beam 
% using classical and refined beam elements 
% ****************************************************** 
 
% ****************************************************** 
% Clears window, variables, and graphs 
% ****************************************************** 
 
clc; 
clear all; 
close all; 
 
% ****************************************************** 
% Problem Data 
% ****************************************************** 
 
g = 32.2;      % [ft/sec^2] gravity acceleration 
               % W8x10 
A= 2.96;       %[in2] 
I = 30.8;      %[in4] 
L = 20.0;      %[ft] 
E = 29000.0;   %[ksi] 
gamma = 0.490; %[kcf] 
 
ne = 6;         % number elements 
nm = 5;         % number of modes 
 
% ****************************************************** 
% Parameters computation 
% ****************************************************** 
L = L * 12; 
rho = (gamma/12^3) / (g*12); %[pcf] 
Le = L / ne ; 
 
K = zeros(2*(ne+1),2*(ne+1)); 
M = zeros(2*(ne+1),2*(ne+1)); 
 
% BEAM ELEMENT STIFFNESS MATRIX 
 
k1 = 4*E*I/Le; 
k2 = 6*E*I/Le^2; 
k3 = 12*E*I/Le^3; 
 
Ke(1,1) = k3; 
Ke(2,1) = k2; 
Ke(3,1) = -k3; 
Ke(4,1) = k2; 
 
Ke(1,2) = k2; 
Ke(2,2) = k1; 
Ke(3,2) = -k2; 
Ke(4,2) = k1/2; 
 
Ke(1,3) = -k3; 
Ke(2,3) = -k2; 
Ke(3,3) = k3; 
Ke(4,3) = -k2; 
 
Ke(1,4) = k2; 
Ke(2,4) = k1/2; 
Ke(3,4) = -k2; 
Ke(4,4) = k1; 
 
% BEAM ELEMENT LUMPED MASS MATRIX 
 
MB = rho * A * Le ; 
 
Me(1,1) = MB / 2; 
Me(2,1) = 0; 
Me(3,1) = 0; 
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Me(4,1) = 0; 
 
Me(1,2) = 0; 
Me(2,2) = 0; 
Me(3,2) = 0; 
Me(4,2) = 0; 
 
Me(1,3) = 0; 
Me(2,3) = 0; 
Me(3,3) = MB / 2; 
Me(4,3) = 0; 
 
Me(1,4) = 0; 
Me(2,4) = 0; 
Me(3,4) = 0; 
Me(4,4) = 0; 
 
% ****************************************************** 
% Mass and Stiffness Matrices Assembling 
% ****************************************************** 
for jj = 1 : ne 
    dof(1) = jj*2-1; 
    dof(2) = jj*2; 
    dof(3) = jj*2+1; 
    dof(4) = jj*2+2; 
    for kk = 1 : 4 
        for ll = 1 : 4 
            row = dof(kk); 
            col = dof(ll); 
            K(row,col) = K(row,col) + Ke(kk,ll); 
            M(row,col) = M(row,col) + Me(kk,ll); 
        end 
    end 
end 
 
 
% Boundary conditions 
K 
K(1,:)=[] 
K(:,1)=[] 
K((ne+1)*2-2,:)=[] 
K(:,(ne+1)*2-2)=[] 
 
M 
M(1,:)=[] 
M(:,1)=[] 
M((ne+1)*2-2,:)=[] 
M(:,(ne+1)*2-2)=[] 
 
% ****************************************************** 
% Exact Beam Natural Frequencies 
% ****************************************************** 
for jj = 1 : nm 
    wex(jj) = (jj^2)*(pi^2)*sqrt(E*I/(rho*A*L^4)); 
    disp(wex(jj)) 
end 
 
 
% ****************************************************** 
% Eigenvalues and Eigenvectors 
% ****************************************************** 
 
 [phi, lam] = eig(K,M); 
 wj = sqrt(diag(lam)); 
 
% ****************************************************** 
% Ordena los autovalores y autovectores 
% Calcula los periodos naturales 
% ****************************************************** 
[wj, id]=sort(wj); 
phi=phi(:,id); 
Tj = 2*pi./wj; 
fj = 1./Tj; 
 
% ****************************************************** 
% Imprime en pantalla 
% ****************************************************** 
for jj = 1 : ( (ne-1)*2 + 2 ) 
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    var1 = num2str(jj); 
    var2 = num2str(wj(jj)); 
    var3 = num2str(fj(jj)); 
    var4 = num2str(Tj(jj)); 
    var5 = strcat( var1 , ',' , var2 , ',' , var3, ',' , var4); 
    disp(var5) 
end 

 

 

E.3.2 Classical Beam Element with Consistent Mass Matrix 
 

% ****************************************************** 
% BeamNatFreq.m 
% Finite Element Program 
% to obtain natural frequencies of a simple beam 
% using classical and refined beam elements 
% ****************************************************** 
 
% ****************************************************** 
% Clears window, variables, and graphs 
% ****************************************************** 
 
clc; 
clear all; 
close all; 
 
% ****************************************************** 
% Problem Data 
% ****************************************************** 
 
g = 32.2;      % [ft/sec^2] gravity acceleration 
               % W8x10 
A= 2.96;       %[in2] 
I = 30.8;      %[in4] 
L = 20.0;      %[ft] 
E = 29000.0;   %[ksi] 
gamma = 0.490; %[kcf] 
 
ne = 6;         % number elements 
nm = 5;         % number of modes 
 
% ****************************************************** 
% Parameters computation 
% ****************************************************** 
L = L * 12; 
rho = (gamma/12^3) / (g*12); %[pcf] 
Le = L / ne ; 
 
K = zeros(2*(ne+1),2*(ne+1)); 
M = zeros(2*(ne+1),2*(ne+1)); 
 
% BEAM ELEMENT STIFFNESS MATRIX 
 
k1 = 4*E*I/Le; 
k2 = 6*E*I/Le^2; 
k3 = 12*E*I/Le^3; 
 
Ke(1,1) = k3; 
Ke(2,1) = k2; 
Ke(3,1) = -k3; 
Ke(4,1) = k2; 
 
Ke(1,2) = k2; 
Ke(2,2) = k1; 
Ke(3,2) = -k2; 
Ke(4,2) = k1/2; 
 
Ke(1,3) = -k3; 
Ke(2,3) = -k2; 
Ke(3,3) = k3; 
Ke(4,3) = -k2; 
 
Ke(1,4) = k2; 
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Ke(2,4) = k1/2; 
Ke(3,4) = -k2; 
Ke(4,4) = k1; 
 
% BEAM ELEMENT MASS MATRIX 
 
MB = rho * A * Le ; 
 
Me(1,1) = MB / 420 * 156; 
Me(2,1) = MB / 420 * 22 * Le; 
Me(3,1) = MB / 420 * 54; 
Me(4,1) = - MB / 420 * 13 * Le; 
 
Me(1,2) = MB / 420 * 22 * Le; 
Me(2,2) = MB / 420 * 4 * Le^2; 
Me(3,2) = MB / 420 * 13 * Le; 
Me(4,2) = - MB / 420 * 3 * Le^2; 
 
Me(1,3) = MB / 420 * 54; 
Me(2,3) = MB / 420 * 13 * Le; 
Me(3,3) = MB / 420 * 156; 
Me(4,3) = - MB / 420 * 22 * Le; 
 
Me(1,4) = - MB / 420 * 13 * Le; 
Me(2,4) = - MB / 420 * 3 * Le^2; 
Me(3,4) = - MB / 420 * 22 * Le; 
Me(4,4) = MB / 420 * 4 * Le^2; 
 
% ****************************************************** 
% Mass and Stiffness Matrices Assembling 
% ****************************************************** 
for jj = 1 : ne 
    dof(1) = jj*2-1; 
    dof(2) = jj*2; 
    dof(3) = jj*2+1; 
    dof(4) = jj*2+2; 
    for kk = 1 : 4 
        for ll = 1 : 4 
            row = dof(kk); 
            col = dof(ll); 
            K(row,col) = K(row,col) + Ke(kk,ll); 
            M(row,col) = M(row,col) + Me(kk,ll); 
        end 
    end 
end 
 
 
% Boundary conditions 
K 
K(1,:)=[] 
K(:,1)=[] 
K((ne+1)*2-2,:)=[] 
K(:,(ne+1)*2-2)=[] 
 
M 
M(1,:)=[] 
M(:,1)=[] 
M((ne+1)*2-2,:)=[] 
M(:,(ne+1)*2-2)=[] 
 
% ****************************************************** 
% Exact Beam Natural Frequencies 
% ****************************************************** 
for jj = 1 : nm 
    wex(jj) = (jj^2)*(pi^2)*sqrt(E*I/(rho*A*L^4)); 
    disp(wex(jj)) 
end 
 
 
% ****************************************************** 
% Eigenvalues and Eigenvectors 
% ****************************************************** 
 
 [phi, lam] = eig(K,M); 
 wj = sqrt(diag(lam)); 
 
% ****************************************************** 
% Ordena los autovalores y autovectores 
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% Calcula los periodos naturales 
% ****************************************************** 
[wj, id]=sort(wj); 
phi=phi(:,id); 
Tj = 2*pi./wj; 
fj = 1./Tj; 
 
% ****************************************************** 
% Imprime en pantalla 
% ****************************************************** 
for jj = 1 : ( (ne-1)*2 + 2 ) 
    var1 = num2str(jj); 
    var2 = num2str(wj(jj)); 
    var3 = num2str(fj(jj)); 
    var4 = num2str(Tj(jj)); 
    var5 = strcat( var1 , ',' , var2 , ',' , var3, ',' , var4); 
    disp(var5) 
end 

 

 

E.3.3 Refined Beam Element with Consistent Mass Matrix 
 

% ****************************************************** 
% DeschapellesBeamNatFreq.m 
% Finite Element Program 
% to obtain natural frequencies of a simple beam 
% using a refined beam elements 
% ****************************************************** 
 
% ****************************************************** 
% Clears window, variables, and graphs 
% ****************************************************** 
 
clc; 
clear all; 
close all; 
 
% ****************************************************** 
% Problem Data 
% ****************************************************** 
 
g = 32.2;      % [ft/sec^2] gravity acceleration 
               % W8x10 
A= 2.96;       %[in2] 
I = 30.8;      %[in4] 
L = 20.0;      %[ft] 
E = 29000.0;   %[ksi] 
gamma = 0.490; %[kcf] 
 
ne = 6;         % number elements 
nm = 5;         % number of modes 
 
% ****************************************************** 
% Parameters computation 
% ****************************************************** 
L = L * 12; 
rho = (gamma/12^3) / (g*12); %[pcf] 
Le = L / ne ; 
 
K = zeros(3*ne+2,3*ne+2); 
M = zeros(3*ne+2,3*ne+2); 
 
% BEAM ELEMENT STIFFNESS MATRIX 
 
k1 = 3*64*E*I/Le^3; 
k2 = 3*120*E*I/Le^3; 
k3 = 3*56*E*I/Le^3; 
 
k4 = 3*12*E*I/Le^2; 
k5 = 3*8*E*I/Le^2; 
k6 = 3*20*E*I/Le^2; 
 
k7 = 3*3*E*I/Le; 
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k8 = 3*E*I/Le; 
 
Ke(1,1) = k1; 
Ke(2,1) = k4; 
Ke(3,1) = -k2; 
Ke(4,1) = k3; 
Ke(5,1) = -k5; 
 
Ke(1,2) = k4; 
Ke(2,2) = k7; 
Ke(3,2) = -k6; 
Ke(4,2) = k5; 
Ke(5,2) = -k8; 
 
Ke(1,3) = -k2; 
Ke(2,3) = -k6; 
Ke(3,3) = 2*k2; 
Ke(4,3) = -k2; 
Ke(5,3) = k6; 
 
Ke(1,4) = k3; 
Ke(2,4) = k5; 
Ke(3,4) = -k2; 
Ke(4,4) = k1; 
Ke(5,4) = -k4; 
 
Ke(1,5) = -k5; 
Ke(2,5) = -k8; 
Ke(3,5) = k6; 
Ke(4,5) = -k4; 
Ke(5,5) = k7; 
 
% BEAM ELEMENT MASS MATRIX 
 
MB = rho * A * Le ; 
 
Me(1,1) = MB / 1260 * 288; 
Me(2,1) = MB / 1260 * 21 * Le; 
Me(3,1) = - MB / 1260 * 270; 
Me(4,1) = - MB / 1260 * 18; 
Me(5,1) = MB / 1260 * 6 * Le; 
 
Me(1,2) = MB / 1260 * 21 * Le; 
Me(2,2) = MB / 1260 * 2 * Le^2; 
Me(3,2) = - MB / 1260 * 15 * Le; 
Me(4,2) = - MB / 1260 * 6 * Le; 
Me(5,2) = MB / 1260 * Le^2; 
 
Me(1,3) = - MB / 1260 * 270; 
Me(2,3) = - MB / 1260 * 15 * Le; 
Me(3,3) = MB / 1260 * 1800; 
Me(4,3) = - MB / 1260 * 270; 
Me(5,3) = MB / 1260 * 15 * Le; 
 
Me(1,4) = - MB / 1260 * 18; 
Me(2,4) = - MB / 1260 * 6 * Le; 
Me(3,4) = - MB / 1260 * 270; 
Me(4,4) = MB / 1260 * 288; 
Me(5,4) = - MB / 1260 * 21 * Le; 
 
Me(1,5) = MB / 1260 * 6 * Le; 
Me(2,5) = MB / 1260 * Le^2; 
Me(3,5) = MB / 1260 * 15 * Le; 
Me(4,5) = - MB / 1260 * 21 * Le; 
Me(5,5) = MB / 1260 * 2 * Le^2; 
 
 
% ****************************************************** 
% Mass and Stiffness Matrices Assembling 
% ****************************************************** 
for jj = 1 : ne 
    dof(1) = jj*3-2; 
    dof(2) = jj*3-1; 
    dof(3) = jj*3; 
    dof(4) = jj*3+1; 
    dof(5) = jj*3+2 
    for kk = 1 : 5 
        for ll = 1 : 5 
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            row = dof(kk); 
            col = dof(ll); 
            K(row,col) = K(row,col) + Ke(kk,ll); 
            M(row,col) = M(row,col) + Me(kk,ll); 
        end 
    end 
end 
 
 
% Boundary conditions 
K 
K(1,:)=[] 
K(:,1)=[] 
K(3*ne,:)=[] 
K(:,3*ne)=[] 
 
M 
M(1,:)=[] 
M(:,1)=[] 
M(3*ne,:)=[] 
M(:,3*ne)=[] 
 
% ****************************************************** 
% Exact Beam Natural Frequencies 
% ****************************************************** 
for jj = 1 : nm 
    wex(jj) = (jj^2)*(pi^2)*sqrt(E*I/(rho*A*L^4)); 
    disp(wex(jj)) 
end 
 
 
% ****************************************************** 
% Eigenvalues and Eigenvectors 
% ****************************************************** 
 
 [phi, lam] = eig(K,M); 
 wj = sqrt(diag(lam)); 
 
% ****************************************************** 
% Ordena los autovalores y autovectores 
% Calcula los periodos naturales 
% ****************************************************** 
[wj, id]=sort(wj); 
phi=phi(:,id); 
Tj = 2*pi./wj; 
fj = 1./Tj; 
 
% ****************************************************** 
% Imprime en pantalla 
% ****************************************************** 
for jj = 1 : ( 3*ne ) 
    var1 = num2str(jj); 
    var2 = num2str(wj(jj)); 
    var3 = num2str(fj(jj)); 
    var4 = num2str(Tj(jj)); 
    var5 = strcat( var1 , ',' , var2 , ',' , var3, ',' , var4); 
    disp(var5) 
end 

 
 

 
 
 
 

 

 



 

 

267

F Programs for Approximate Model Verification  
 
 

The Matlab programs (worksheets) developed to compute the frequency response 

function (FRF) or dynamic flexibility and the dynamic stiffness of the pile head, used to 

obtain the results of in Chapter 5, are listed in this appendix. The MathCad worksheets 

prepared to compare the approximate model to other models are also presented. 

 

F.1 FRF Using Novak Plane Strain Soil Dynamic Stiffness 
 
 

%------------------ Programa FRFNovak.m-------------------------------------% 
% Program to compute the dynamic flexibility of a pile head                 % 
% using the dynamic stiffness proposed by Novak for the soil, who considers % 
% the soil in plain-strain and the pile as a rigid circle of radious        % 
% ro embeded in an infinite medium.                                         % 
% Novak, Nogami and Aboul-Ella                                              % 
%---------------------------------------------------------------------------% 
clc; clear all; close all 
 
% ************************************ 
% * PROBLEM DATA                     * 
% ************************************ 
 
% SOIL DATA 
Es = 1728000;                            % soil Young's elastic mudulus[lb/ft^2] 
nu = 0.40;                               % soil Poisson's ratio 
D=0.0;                                   % hysteretic damping ratio 
sw = 110.0;                              % soil specific weight [pcf] 
 
% PILE DATA 
ro = 1.0;                                % pile radious 
L = 30.0;                                % pile length 
Ep = 518400000.0;                        % pile Youngs' modulus 
pw = 150.0;                              % pile specific weight 
 
% GENERAL DATA 
ne = 15;                                 % number of elements to discretize the 
pile 
g = 32.2;                                % gravity acceleration [ft/sec^2] 
FreqMax = 80;                            % maximum frequency [Hz] 
NFreq = 240;                             % Number of frequency steps 
 
% ************************************ 
% * PROBLEM ANALYSIS                 * 
% ************************************ 
 
% GENERAL COMPUTATION 
sm = sw/g;                              % density of soil [lb.s^2/ft^4] 
G  = Es/(2*(1+nu));                     % soil shear elastic mudulus[lb/ft] 
Vs  = sqrt(G/sm);                       % shear wave velocity [ft/sec] 
eta = sqrt(2*(1-nu)/(1-2*nu));          % Novak Dynamic Stiffness parameter 
Le = L/ne;                              % pile element length 
pm = pw/g;                              % density of pile [lb.s^2/ft^4] 
 
% ARRAYS DEFINITION 
% 
% The KDP, UP and FRFP variables refer to the system reponse without 
% considering soil contribution (just the pile contribution). 
% 
KD = zeros(2*ne,2*ne);                  % System dynamic stiffness matrix 
KDP = zeros(2*ne,2*ne);                 % Pile dynamic stiffness matrix 
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MT = zeros(2*ne,2*ne);                  % System mass matrix 
KP = zeros(2*ne,2*ne);                  % Pile Stiffness matrix 
KS = zeros(2*ne,2*ne);                  % Soil Dynamic Stiffness Matrix 
Ke = zeros(4,4);                        % Pile element stiffness matrix 
F = zeros(2*ne);                        % Load vector 
U = zeros(2*ne);                        % System Displacement vector 
UP = zeros(2*ne);                       % Pile Displacement vector 
FRF = zeros(NFreq+1);                   % FRF = top node displacement 
FRFM = zeros(NFreq+1);                  % FRF Module top node displacement 
FRFP = zeros(NFreq+1);                  % FRF Pile top node displacement 
freq = zeros(NFreq+1);                  % Frequency data points 
 
% UNIT LOAD ON TOP 
F(1) = 1.0;                             % Unit harminic load on top of pile 
 
% PILE ELEMENT STIFFNESS MATRIX 
Ip = pi*ro^4/4.;                        % Pile crossm sectiuon inertia 
Ap = pi*ro^2;                           % Pile cross section area 
 
k1 = 4*Ep*Ip/Le; 
k2 = 6*Ep*Ip/Le^2; 
k3 = 12*Ep*Ip/Le^3; 
 
Ke(1,1) = k3; 
Ke(2,1) = k2; 
Ke(3,1) = -k3; 
Ke(4,1) = k2; 
 
Ke(1,2) = k2; 
Ke(2,2) = k1; 
Ke(3,2) = -k2; 
Ke(4,2) = k1/2; 
 
Ke(1,3) = -k3; 
Ke(2,3) = -k2; 
Ke(3,3) = k3; 
Ke(4,3) = -k2; 
 
Ke(1,4) = k2; 
Ke(2,4) = k1/2; 
Ke(3,4) = -k2; 
Ke(4,4) = k1; 
 
% PILE STIFFNESS MATRIX 
for jj = 1 : ne-1 
    dof(1) = jj*2-1; 
    dof(2) = jj*2; 
    dof(3) = jj*2+1; 
    dof(4) = jj*2+2; 
    for kk = 1 : 4 
        for ll = 1 : 4 
            row = dof(kk); 
            col = dof(ll); 
            KP(row,col) = KP(row,col) + Ke(kk,ll); 
        end 
    end 
end 
 
dof(1) = ne*2-1; 
dof(2) = ne*2; 
for kk = 1 : 2 
    for ll = 1 : 2 
        row = dof(kk); 
        col = dof(ll); 
        KP(row,col) = KP(row,col) + Ke(kk,ll); 
    end 
end 
 
 
% PILE MASS MATRIX 
MT(1,1) = pm*Ap*Le/2; 
for jj = 2 : ne 
    MT(2*jj-1,2*jj-1) = pm*Ap*Le; 
end 
 
 
% FRF FUNCTION 
ao = 0.3; 
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aoc = i*ao/sqrt(1+i*D); 
boc = aoc/eta; 
numer = 4* 
besselk(1,boc)*besselk(1,aoc)+aoc*besselk(1,boc)*besselk(0,aoc)+boc*besselk(0,boc)*
besselk(1,aoc); 
denom= 
boc*besselk(0,boc)*besselk(1,aoc)+aoc*besselk(1,boc)*besselk(0,aoc)+boc*aoc*besselk
(0,boc)*besselk(0,aoc); 
S03 =-pi*G*ao^2*numer/denom; 
 
for jj = 1 : NFreq+1 
 
    freq(jj) = FreqMax*(jj-1)/NFreq; 
 
    % SOIL DYNAMIC STIFFNESS 
    w=freq(jj)*2*pi; 
    ao = w*ro/Vs; 
    aoc = i*ao/sqrt(1+i*D); 
    boc = aoc/eta; 
    numer = 4* 
besselk(1,boc)*besselk(1,aoc)+aoc*besselk(1,boc)*besselk(0,aoc)+boc*besselk(0,boc)*
besselk(1,aoc); 
    denom= 
boc*besselk(0,boc)*besselk(1,aoc)+aoc*besselk(1,boc)*besselk(0,aoc)+boc*aoc*besselk
(0,boc)*besselk(0,aoc); 
    S =-pi*G*ao^2*numer/denom; 
    if ao < 0.3 
        S = i*imag(S) + real(S03); 
    end 
    KS(1,1) = S*Le/2; 
    for kk = 2 : ne 
        KS(2*kk-1,2*kk-1) = S*Le; 
    end 
 
    % SYSTEM DYNAMIC STIFFNESS 
    KD = KP + KS - w^2 * MT; 
    KDP = KP - w^2 * MT; 
 
    % FREQUENCY RESPONSE FUNCTION FRF 
    U = KD\F; 
    FRFM(jj) = sqrt(real(U(1))^2+imag(U(1))^2); 
    FRF(jj) = U(1); 
 
    UP = KDP\F; 
    FRFP(jj) = sqrt(real(UP(1))^2+imag(UP(1))^2); 
 
end 
 
figure; plot( freq,FRFM ); grid on; title('Pile FRF Using Novak Dynamic Stiffnes') 
xlabel('load frequency [Hz]'); ylabel('Module of the Dynamic Flexibility or FRF'); 
 
figure; plot( freq,FRFM, freq, FRFP ); grid on; title('Pile FRF Using Novak Dynamic 
Stiffnes') 
xlabel('load frequency [Hz]'); ylabel('Module of the Dynamic Flexibility or FRF'); 
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F.2 FRF Using Lumped Soil Dynamic Stiffness 
 
 

%------------------ Programa FRFLumpedModel.m-------------------------------% 
% Program to compute the dynamic flexibility of a pile head                 % 
% using the equivalent lumped model obtained by regression of the           % 
% dynamic stiffness proposed by Novak for the soil, who considers           % 
% the soil in plain-strain and the pile as a rigid circle of radious        % 
% ro embeded in an infinite medium.                                         % 
% Novak, Nogami and Aboul-Ella                                              % 
%---------------------------------------------------------------------------% 
clc; clear all; close all 
 
% ************************************ 
% * PROBLEM DATA                     * 
% ************************************ 
 
% SOIL DATA 
Es = 1728000;                            % soil Young's elastic mudulus[lb/ft^2] 
nu = 0.40;                               % soil Poisson's ratio 
D=0.0;                                   % hysteretic damping ratio 
sw = 110.0;                              % soil specific weight [pcf] 
 
% PILE DATA 
ro = 1.0;                                % pile radious 
L = 30.0;                                % pile length 
Ep = 518400000.0;                        % pile Youngs' modulus 
pw = 150.0;                              % pile specific weight 
 
% GENERAL DATA 
ne = 15;                                 % number of elements to discretize the 
pile 
g = 32.2;                                % gravity acceleration [ft/sec^2] 
FreqMax = 200;                            % maximum frequency [Hz] 
NFreq = 400;                             % Number of frequency steps 
 
% Lumped model coefficients 
ak = 1.3272671; 
am = 0.0510557; 
ac = 3.4246489; 
 
% ************************************ 
% * PROBLEM ANALYSIS                 * 
% ************************************ 
 
% GENERAL COMPUTATION 
sm = sw/g;                              % density of soil [lb.s^2/ft^4] 
G  = Es/(2*(1+nu));                     % soil shear elastic mudulus[lb/ft] 
Vs  = sqrt(G/sm);                       % shear wave velocity [ft/sec] 
eta = sqrt(2*(1-nu)/(1-2*nu));          % Novak Dynamic Stiffness parameter 
Le = L/ne;                              % pile element length 
pm = pw/g;                              % density of pile [lb.s^2/ft^4] 
 
% ARRAYS DEFINITION 
% 
% The KDP, UP and FRFP variables refer to the system reponse without 
% considering soil contribution (just the pile contribution). 
% 
KD = zeros(2*ne,2*ne);                  % System dynamic stiffness matrix 
KDP = zeros(2*ne,2*ne);                 % Pile dynamic stiffness matrix 
 
KP = zeros(2*ne,2*ne);                  % Pile Stiffness matrix 
KS = zeros(2*ne,2*ne);                  % Soil Dynamic Stiffness Matrix 
Ke = zeros(4,4);                        % Pile element stiffness matrix 
 
MP = zeros(2*ne,2*ne);                  % Pile mass matrix 
MS = zeros(2*ne,2*ne);                  % Soil mass matrix 
MT = zeros(2*ne,2*ne);                  % System mass matrix 
 
CS = zeros(2*ne,2*ne);                  % Soil damping matrix 
 
F = zeros(2*ne);                        % Load vector 
 
U = zeros(2*ne);                        % System Displacement vector 
UP = zeros(2*ne);                       % Pile Displacement vector 
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FRF = zeros(NFreq+1);                   % FRF = top node displacement 
FRFM = zeros(NFreq+1);                  % FRF Module top node displacement 
FRFP = zeros(NFreq+1);                  % FRF Pile top node displacement 
freq = zeros(NFreq+1);                  % Frequency data points 
 
% UNIT LOAD ON TOP 
F(1) = 1000.0;                          % Unit harminic load on top of pile 
                                        % to obtain dynamic flexibility in 
                                        % [ft/Kip] units 
 
% PILE ELEMENT STIFFNESS MATRIX 
Ip = pi*ro^4/4.;                        % Pile crossm sectiuon inertia 
Ap = pi*ro^2;                           % Pile cross section area 
 
k1 = 4*Ep*Ip/Le; 
k2 = 6*Ep*Ip/Le^2; 
k3 = 12*Ep*Ip/Le^3; 
 
Ke(1,1) = k3; 
Ke(2,1) = k2; 
Ke(3,1) = -k3; 
Ke(4,1) = k2; 
 
Ke(1,2) = k2; 
Ke(2,2) = k1; 
Ke(3,2) = -k2; 
Ke(4,2) = k1/2; 
 
Ke(1,3) = -k3; 
Ke(2,3) = -k2; 
Ke(3,3) = k3; 
Ke(4,3) = -k2; 
 
Ke(1,4) = k2; 
Ke(2,4) = k1/2; 
Ke(3,4) = -k2; 
Ke(4,4) = k1; 
 
% PILE STIFFNESS MATRIX 
for jj = 1 : ne-1 
    dof(1) = jj*2-1; 
    dof(2) = jj*2; 
    dof(3) = jj*2+1; 
    dof(4) = jj*2+2; 
    for kk = 1 : 4 
        for ll = 1 : 4 
            row = dof(kk); 
            col = dof(ll); 
            KP(row,col) = KP(row,col) + Ke(kk,ll); 
        end 
    end 
end 
 
dof(1) = ne*2-1; 
dof(2) = ne*2; 
for kk = 1 : 2 
    for ll = 1 : 2 
        row = dof(kk); 
        col = dof(ll); 
        KP(row,col) = KP(row,col) + Ke(kk,ll); 
    end 
end 
 
 
% PILE MASS MATRIX 
MP(1,1) = pm*Ap*Le/2; 
for jj = 2 : ne 
    MP(2*jj-1,2*jj-1) = pm*Ap*Le; 
end 
 
% SOIL STIFFNESS MATRIX, MASS MATRIX, AND DAMPING MATRIX 
KS(1,1) = pi*G*ak*Le/2; 
MS(1,1) = pi*ro^2*sm*am*Le/2; 
CS(1,1) = pi*ro*G/Vs*ac*Le/2; 
for jj = 2 : ne 
    KS(2*jj-1,2*jj-1) = pi*G*ak*Le; 
    MS(2*jj-1,2*jj-1) = pi*ro^2*sm*am*Le; 



 

 

272

    CS(2*jj-1,2*jj-1) = pi*ro*G/Vs*ac*Le; 
end 
 
MT = MP + MS; 
 
% FRF FUNCTION 
 
for jj = 1 : NFreq+1 
 
    freq(jj) = FreqMax*(jj-1)/NFreq; 
    w=freq(jj)*2*pi; 
 
    % SYSTEM DYNAMIC STIFFNESS 
    KD = KP + KS + i * w * CS - w^2 * MT; 
    KDP = KP - w^2 * MP; 
 
    % FREQUENCY RESPONSE FUNCTION FRF 
    U = KD\F; 
    FRFM(jj) = sqrt(real(U(1))^2+imag(U(1))^2); 
    FRF(jj) = U(1); 
 
    UP = KDP\F; 
    FRFP(jj) = sqrt(real(UP(1))^2+imag(UP(1))^2); 
 
end 
 
figure; plot( freq,FRFM ); grid on; title('Pile FRF Using Novak Dynamic Stiffnes') 
xlabel('load frequency [Hz]'); ylabel('Module of the Dynamic Flexibility or FRF 
[ft/Kip]'); 
 
figure; plot( freq,FRFM, freq, FRFP ); grid on; title('Pile FRF Using Novak Dynamic 
Stiffnes') 
xlabel('load frequency [Hz]'); ylabel('Module of the Dynamic Flexibility or FRF 
[ft/Kip]'); 
 
figure; plot( freq, FRFP ); grid on; title('Pile FRF without Soil Contribution') 
xlabel('load frequency [Hz]'); ylabel('Module of the Dynamic Flexibility or FRF 
[ft/Kip]'); 

 
 

F.3 FRF Comparing Novak and Lumped Models 
 
 

%------------------ Programa FRFNovakLumped.m-------------------------------% 
% Program to compute the dynamic flexibility of a pile head                 % 
% using the dynamic stiffness proposed by Novak for the soil, and           % 
% using the equivalent lumped model obtained by regression of the           % 
% dynamic stiffness proposed by Novak for the soil, who considers           % 
% the soil in plain-strain and the pile as a rigid circle of radious        % 
% ro embeded in an infinite medium.                                         % 
% Novak, Nogami and Aboul-Ella                                              % 
%---------------------------------------------------------------------------% 
clc; clear all; close all 
 
% ************************************ 
% * PROBLEM DATA                     * 
% ************************************ 
 
% SOIL DATA 
Es = 1728000;                            % soil Young's elastic mudulus[lb/ft^2] 
nu = 0.40;                               % soil Poisson's ratio 
D=0.0;                                   % hysteretic damping ratio 
sw = 110.0;                              % soil specific weight [pcf] 
 
% PILE DATA 
ro = 1.0;                                % pile radious 
L = 30.0;                                % pile length 
Ep = 518400000.0;                        % pile Youngs' modulus 
pw = 150.0;                              % pile specific weight 
 
% GENERAL DATA 
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ne = 15;                                 % number of elements to discretize the 
pile 
g = 32.2;                                % gravity acceleration [ft/sec^2] 
FreqMax = 200;                            % maximum frequency [Hz] 
NFreq = 400;                             % Number of frequency steps 
 
% Lumped model coefficients 
ak = 1.3272671; 
am = 0.0510557; 
ac = 3.4246489; 
 
% ************************************ 
% * PROBLEM ANALYSIS                 * 
% ************************************ 
 
% GENERAL COMPUTATION 
sm = sw/g;                              % density of soil [lb.s^2/ft^4] 
G  = Es/(2*(1+nu));                     % soil shear elastic mudulus[lb/ft] 
Vs  = sqrt(G/sm);                       % shear wave velocity [ft/sec] 
eta = sqrt(2*(1-nu)/(1-2*nu));          % Novak Dynamic Stiffness parameter 
Le = L/ne;                              % pile element length 
pm = pw/g;                              % density of pile [lb.s^2/ft^4] 
 
% ARRAYS DEFINITION 
% 
% The KDP, UP and FRFP variables refer to the system reponse without 
% considering soil contribution (just the pile contribution). 
% 
KDN = zeros(2*ne,2*ne);                 % Novak System dynamic stiffness matrix 
KDL = zeros(2*ne,2*ne);                 % Lumped System dynamic stiffness matrix 
KDP = zeros(2*ne,2*ne);                 % Pile dynamic stiffness matrix 
 
KP = zeros(2*ne,2*ne);                  % Pile Stiffness matrix 
KS = zeros(2*ne,2*ne);                  % Soil Dynamic Stiffness Matrix 
KSL = zeros(2*ne,2*ne);                 % Lumped Soil Dynamic Stiffness Matrix 
Ke = zeros(4,4);                        % Pile element stiffness matrix 
 
MP = zeros(2*ne,2*ne);                  % Pile mass matrix 
MS = zeros(2*ne,2*ne);                  % Lumped Soil mass matrix 
MT = zeros(2*ne,2*ne);                  % System mass matrix 
 
CS = zeros(2*ne,2*ne);                  % Lumped Soil damping matrix 
 
F = zeros(2*ne);                        % Load vector 
 
U = zeros(2*ne);                        % System Displacement vector 
UL = zeros(2*ne);                       % Lumped Model Displacement vector 
UP = zeros(2*ne);                       % Pile Displacement vector 
 
FRF = zeros(NFreq+1);                   % FRF = top node displacement 
FRFM = zeros(NFreq+1);                  % FRF Module top node displacement 
FRFP = zeros(NFreq+1);                  % FRF Pile top node displacement 
FRFL = zeros(NFreq+1);                  % Lumped FRF module top node displacement 
freq = zeros(NFreq+1);                  % Frequency data points 
 
% UNIT LOAD ON TOP 
F(1) = 1000.0;                          % Unit harminic load on top of pile 
                                        % to obtain dynamic flexibility in 
                                        % [ft/Kip] units 
 
% PILE ELEMENT STIFFNESS MATRIX 
Ip = pi*ro^4/4.;                        % Pile crossm sectiuon inertia 
Ap = pi*ro^2;                           % Pile cross section area 
 
k1 = 4*Ep*Ip/Le; 
k2 = 6*Ep*Ip/Le^2; 
k3 = 12*Ep*Ip/Le^3; 
 
Ke(1,1) = k3; 
Ke(2,1) = k2; 
Ke(3,1) = -k3; 
Ke(4,1) = k2; 
 
Ke(1,2) = k2; 
Ke(2,2) = k1; 
Ke(3,2) = -k2; 
Ke(4,2) = k1/2; 
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Ke(1,3) = -k3; 
Ke(2,3) = -k2; 
Ke(3,3) = k3; 
Ke(4,3) = -k2; 
 
Ke(1,4) = k2; 
Ke(2,4) = k1/2; 
Ke(3,4) = -k2; 
Ke(4,4) = k1; 
 
% PILE STIFFNESS MATRIX 
for jj = 1 : ne-1 
    dof(1) = jj*2-1; 
    dof(2) = jj*2; 
    dof(3) = jj*2+1; 
    dof(4) = jj*2+2; 
    for kk = 1 : 4 
        for ll = 1 : 4 
            row = dof(kk); 
            col = dof(ll); 
            KP(row,col) = KP(row,col) + Ke(kk,ll); 
        end 
    end 
end 
 
dof(1) = ne*2-1; 
dof(2) = ne*2; 
for kk = 1 : 2 
    for ll = 1 : 2 
        row = dof(kk); 
        col = dof(ll); 
        KP(row,col) = KP(row,col) + Ke(kk,ll); 
    end 
end 
 
 
% PILE MASS MATRIX 
MP(1,1) = pm*Ap*Le/2; 
for jj = 2 : ne 
    MP(2*jj-1,2*jj-1) = pm*Ap*Le; 
end 
 
% LUMPED SOIL STIFFNESS MATRIX, MASS MATRIX, AND DAMPING MATRIX 
KSL(1,1) = pi*G*ak*Le/2; 
MS(1,1) = pi*ro^2*sm*am*Le/2; 
CS(1,1) = pi*ro*G/Vs*ac*Le/2; 
for jj = 2 : ne 
    KSL(2*jj-1,2*jj-1) = pi*G*ak*Le; 
    MS(2*jj-1,2*jj-1) = pi*ro^2*sm*am*Le; 
    CS(2*jj-1,2*jj-1) = pi*ro*G/Vs*ac*Le; 
end 
 
MT = MP + MS; 
 
% FRF FUNCTION 
ao = 0.3; 
aoc = i*ao/sqrt(1+i*D); 
boc = aoc/eta; 
numer = 4* 
besselk(1,boc)*besselk(1,aoc)+aoc*besselk(1,boc)*besselk(0,aoc)+boc*besselk(0,boc)*
besselk(1,aoc); 
denom= 
boc*besselk(0,boc)*besselk(1,aoc)+aoc*besselk(1,boc)*besselk(0,aoc)+boc*aoc*besselk
(0,boc)*besselk(0,aoc); 
S03 =-pi*G*ao^2*numer/denom; 
 
for jj = 1 : NFreq+1 
 
    freq(jj) = FreqMax*(jj-1)/NFreq; 
 
    % SOIL DYNAMIC STIFFNESS 
    w=freq(jj)*2*pi; 
    ao = w*ro/Vs; 
    aoc = i*ao/sqrt(1+i*D); 
    boc = aoc/eta; 
    numer = 4* 
besselk(1,boc)*besselk(1,aoc)+aoc*besselk(1,boc)*besselk(0,aoc)+boc*besselk(0,boc)*
besselk(1,aoc); 
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    denom= 
boc*besselk(0,boc)*besselk(1,aoc)+aoc*besselk(1,boc)*besselk(0,aoc)+boc*aoc*besselk
(0,boc)*besselk(0,aoc); 
    S =-pi*G*ao^2*numer/denom; 
    if ao < 0.3 
        S = i*imag(S) + real(S03); 
    end 
    KS(1,1) = S*Le/2; 
    for kk = 2 : ne 
        KS(2*kk-1,2*kk-1) = S*Le; 
    end 
 
    % SYSTEM DYNAMIC STIFFNESS 
    KD = KP + KS - w^2 * MP; 
    KDP = KP - w^2 * MP; 
    KDL = KP + KSL + i * w * CS - w^2 * MT; 
 
    % FREQUENCY RESPONSE FUNCTION FRF 
    U = KD\F; 
    FRFM(jj) = sqrt(real(U(1))^2+imag(U(1))^2); 
    FRF(jj) = U(1); 
 
    UP = KDP\F; 
    FRFP(jj) = sqrt(real(UP(1))^2+imag(UP(1))^2); 
 
    UL = KDL\F; 
    FRFL(jj) = sqrt(real(UL(1))^2+imag(UL(1))^2); 
 
end 
 
figure; plot( freq,FRFM, freq, FRFL ); grid on; title('Pile FRF Using Lumped Model 
and Novak Dynamic Stiffnes') 
xlabel('load frequency [Hz]'); ylabel('Module of the Dynamic Flexibility or FRF 
[ft/Kip]'); 

 
 

F.4 FRF Comparing Novak and Lumped Models for Different ν 
 
 

%------------- Programa FRFNovakLumpedVariousnu.m---------------------------% 
% Program to compute the dynamic flexibility of a pile head                 % 
% using the dynamic stiffness proposed by Novak for the soil, and           % 
% using the equivalent lumped model obtained by regression of the           % 
% dynamic stiffness proposed by Novak for the soil, who considers           % 
% the soil in plain-strain and the pile as a rigid circle of radious        % 
% ro embeded in an infinite medium.                                         % 
% Novak, Nogami and Aboul-Ella                                              % 
%---------------------------------------------------------------------------% 
clc; clear all; close all 
 
% ************************************ 
% * PROBLEM DATA                     * 
% ************************************ 
 
% SOIL DATA 
Es = 1728000;                            % soil Young's elastic mudulus[lb/ft^2] 
 
nu = [0.499999, 0.48, 0.46, 0.44, 0.42, 0.40, 0.38, 0.36, 0.34, 0.32, 0.30, 0.28, 
0.26, 0.24, 0.22, 0.20]; 
                                         % soil Poisson's ratio 
 
D=0.0;                                   % hysteretic damping ratio 
sw = 110.0;                              % soil specific weight [pcf] 
 
% PILE DATA 
ro = 1.0;                                % pile radious 
L = 30.0;                                % pile length 
Ep = 518400000.0;                        % pile Youngs' modulus 
pw = 150.0;                              % pile specific weight 
 
% GENERAL DATA 
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ne = 15;                                 % number of elements to discretize the 
pile 
g = 32.2;                                % gravity acceleration [ft/sec^2] 
FreqMax = 200;                            % maximum frequency [Hz] 
NFreq = 400;                             % Number of frequency steps 
 
% Lumped model coefficients 
ak = [1.7213669, 1.4632669, 1.3691849, 1.3459197, 1.3354993, 1.3272671]; 
ak(7) = 1.3193269; 
ak(8) = 1.3115302; 
ak(9) = 1.3041138; 
ak(10) = 1.2974948; 
ak(11) = 1.3068585; 
ak(12) = 1.3088585; 
ak(13) = 1.3076619; 
ak(14) = 1.304348; 
ak(15) = 1.2996384; 
ak(16) = 1.2940234; 
 
am = [0.9653314, 0.4571463, 0.2348233, 0.1355508, 0.0825761, 0.0510557]; 
am(7) = 0.0310366; 
am(8) = 0.0178041; 
am(9) = 0.0088633; 
am(10) = 0.0028022; 
am(11) = 0.0; 
am(12) = 0.0; 
am(13) = 0.0; 
am(14) = 0.0; 
am(15) = 0.0; 
am(16) = 0.0; 
 
ac = [4.1074708, 4.3382529, 4.066384, 3.8045412, 3.5929876, 3.4246489]; 
ac(7) = 3.2890761; 
ac(8) = 3.1780333; 
ac(9) = 3.0855721; 
ac(10) = 3.0074355; 
ac(11) = 2.9405413; 
ac(12) = 2.8826198; 
ac(13) = 2.8319687; 
ac(14) = 2.7872894; 
ac(15) = 2.7475747; 
ac(16) = 2.7120324; 
 
% ************************************ 
% * PROBLEM ANALYSIS                 * 
% ************************************ 
 
% GENERAL COMPUTATION 
sm = sw/g;                              % density of soil [lb.s^2/ft^4] 
Le = L/ne;                              % pile element length 
pm = pw/g;                              % density of pile [lb.s^2/ft^4] 
 
% ARRAYS DEFINITION 
% 
% The KDP, UP and FRFP variables refer to the system reponse without 
% considering soil contribution (just the pile contribution). 
% 
KDN = zeros(2*ne,2*ne);                 % Novak System dynamic stiffness matrix 
KDL = zeros(2*ne,2*ne);                 % Lumped System dynamic stiffness matrix 
KDP = zeros(2*ne,2*ne);                 % Pile dynamic stiffness matrix 
 
KP = zeros(2*ne,2*ne);                  % Pile Stiffness matrix 
KS = zeros(2*ne,2*ne);                  % Soil Dynamic Stiffness Matrix 
KSL = zeros(2*ne,2*ne);                 % Lumped Soil Dynamic Stiffness Matrix 
Ke = zeros(4,4);                        % Pile element stiffness matrix 
 
MP = zeros(2*ne,2*ne);                  % Pile mass matrix 
MS = zeros(2*ne,2*ne);                  % Lumped Soil mass matrix 
MT = zeros(2*ne,2*ne);                  % System mass matrix 
 
CS = zeros(2*ne,2*ne);                  % Lumped Soil damping matrix 
 
F = zeros(2*ne);                        % Load vector 
 
U = zeros(2*ne);                        % System Displacement vector 
UL = zeros(2*ne);                       % Lumped Model Displacement vector 
UP = zeros(2*ne);                       % Pile Displacement vector 
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FRF = zeros(NFreq+1);                   % FRF = top node displacement 
FRFM = zeros(NFreq+1);                  % FRF Module top node displacement 
FRFP = zeros(NFreq+1);                  % FRF Pile top node displacement 
FRFL = zeros(NFreq+1);                  % Lumped FRF module top node displacement 
freq = zeros(NFreq+1);                  % Frequency data points 
 
% UNIT LOAD ON TOP 
F(1) = 1000.0;                          % Unit harminic load on top of pile 
                                        % to obtain dynamic flexibility in 
                                        % [ft/Kip] units 
 
% PILE ELEMENT STIFFNESS MATRIX 
Ip = pi*ro^4/4.;                        % Pile crossm sectiuon inertia 
Ap = pi*ro^2;                           % Pile cross section area 
 
k1 = 4*Ep*Ip/Le; 
k2 = 6*Ep*Ip/Le^2; 
k3 = 12*Ep*Ip/Le^3; 
 
Ke(1,1) = k3; 
Ke(2,1) = k2; 
Ke(3,1) = -k3; 
Ke(4,1) = k2; 
 
Ke(1,2) = k2; 
Ke(2,2) = k1; 
Ke(3,2) = -k2; 
Ke(4,2) = k1/2; 
 
Ke(1,3) = -k3; 
Ke(2,3) = -k2; 
Ke(3,3) = k3; 
Ke(4,3) = -k2; 
 
Ke(1,4) = k2; 
Ke(2,4) = k1/2; 
Ke(3,4) = -k2; 
Ke(4,4) = k1; 
 
% PILE STIFFNESS MATRIX 
for jj = 1 : ne-1 
    dof(1) = jj*2-1; 
    dof(2) = jj*2; 
    dof(3) = jj*2+1; 
    dof(4) = jj*2+2; 
    for kk = 1 : 4 
        for ll = 1 : 4 
            row = dof(kk); 
            col = dof(ll); 
            KP(row,col) = KP(row,col) + Ke(kk,ll); 
        end 
    end 
end 
 
dof(1) = ne*2-1; 
dof(2) = ne*2; 
for kk = 1 : 2 
    for ll = 1 : 2 
        row = dof(kk); 
        col = dof(ll); 
        KP(row,col) = KP(row,col) + Ke(kk,ll); 
    end 
end 
 
 
% PILE MASS MATRIX 
MP(1,1) = pm*Ap*Le/2; 
for jj = 2 : ne 
    MP(2*jj-1,2*jj-1) = pm*Ap*Le; 
end 
 
 
for ii = 1 : 10 
 
    % GENERAL COMPUTATIONS 
    eta = sqrt(2*(1-nu(ii))/(1-2*nu(ii)));      % Novak Dynamic Stiffness parameter 
    G  = Es/(2*(1+nu(ii)));                     % soil shear elastic mudulus[lb/ft] 
    Vs  = sqrt(G/sm);                           % shear wave velocity [ft/sec] 
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    % LUMPED SOIL STIFFNESS MATRIX, MASS MATRIX, AND DAMPING MATRIX 
    KSL(1,1) = pi*G*ak(ii)*Le/2; 
    MS(1,1) = pi*ro^2*sm*am(ii)*Le/2; 
    CS(1,1) = pi*ro*G/Vs*ac(ii)*Le/2; 
    for jj = 2 : ne 
        KSL(2*jj-1,2*jj-1) = pi*G*ak(ii)*Le; 
        MS(2*jj-1,2*jj-1) = pi*ro^2*sm*am(ii)*Le; 
        CS(2*jj-1,2*jj-1) = pi*ro*G/Vs*ac(ii)*Le; 
    end 
 
    MT = MP + MS; 
 
    % FRF FUNCTION 
    ao = 0.3; 
    aoc = i*ao/sqrt(1+i*D); 
    boc = aoc/eta; 
    numer = 4* 
besselk(1,boc)*besselk(1,aoc)+aoc*besselk(1,boc)*besselk(0,aoc)+boc*besselk(0,boc)*
besselk(1,aoc); 
    denom= 
boc*besselk(0,boc)*besselk(1,aoc)+aoc*besselk(1,boc)*besselk(0,aoc)+boc*aoc*besselk
(0,boc)*besselk(0,aoc); 
    S03 =-pi*G*ao^2*numer/denom; 
 
    for jj = 1 : NFreq+1 
 
        freq(jj) = FreqMax*(jj-1)/NFreq; 
 
        % SOIL DYNAMIC STIFFNESS 
        w=freq(jj)*2*pi; 
        ao = w*ro/Vs; 
        aoc = i*ao/sqrt(1+i*D); 
        boc = aoc/eta; 
        numer = 4* 
besselk(1,boc)*besselk(1,aoc)+aoc*besselk(1,boc)*besselk(0,aoc)+boc*besselk(0,boc)*
besselk(1,aoc); 
        denom= 
boc*besselk(0,boc)*besselk(1,aoc)+aoc*besselk(1,boc)*besselk(0,aoc)+boc*aoc*besselk
(0,boc)*besselk(0,aoc); 
        S =-pi*G*ao^2*numer/denom; 
        if ao < 0.3 
            S = i*imag(S) + real(S03); 
        end 
        KS(1,1) = S*Le/2; 
        for kk = 2 : ne 
            KS(2*kk-1,2*kk-1) = S*Le; 
        end 
 
        % SYSTEM DYNAMIC STIFFNESS 
        KD = KP + KS - w^2 * MP; 
        KDP = KP - w^2 * MP; 
        KDL = KP + KSL + i * w * CS - w^2 * MT; 
 
        % FREQUENCY RESPONSE FUNCTION FRF 
        U = KD\F; 
        FRFM(jj) = sqrt(real(U(1))^2+imag(U(1))^2); 
        FRF(jj) = U(1); 
 
        UP = KDP\F; 
        FRFP(jj) = sqrt(real(UP(1))^2+imag(UP(1))^2); 
 
        UL = KDL\F; 
        FRFL(jj) = sqrt(real(UL(1))^2+imag(UL(1))^2); 
 
    end 
 
    var1 = strcat('nu = ',num2str(nu(ii)), ' '); 
    var2 = strcat('FRF Lumped Model vs Novak Model - ',var1); 
    figure; plot( freq,FRFM, freq, FRFL ); grid on; title(var2) 
    xlabel('load frequency [Hz]'); ylabel('Module of the Dynamic Flexibility or FRF 
[ft/Kip]'); 
 
end 
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F.5 FRF Comparing Novak and Lumped Models for Different ro 
 
 

%------------- Programa FRFNovakLumpedVariousDo.m---------------------------% 
% Program to compute the dynamic flexibility of a pile head                 % 
% using the dynamic stiffness proposed by Novak for the soil, and           % 
% using the equivalent lumped model obtained by regression of the           % 
% dynamic stiffness proposed by Novak for the soil, who considers           % 
% the soil in plain-strain and the pile as a rigid circle of radious        % 
% ro embeded in an infinite medium.                                         % 
% Novak, Nogami and Aboul-Ella                                              % 
%---------------------------------------------------------------------------% 
clc; clear all; close all 
 
% ************************************ 
% * PROBLEM DATA                     * 
% ************************************ 
 
% SOIL DATA 
Es = 1728000;                            % soil Young's elastic mudulus[lb/ft^2] 
nu = 0.40;                               % soil Poisson's ratio 
D=0.0;                                   % hysteretic damping ratio 
sw = 110.0;                              % soil specific weight [pcf] 
 
% PILE DATA 
for jj = 1 : 10 
    roo(jj) = jj;                        % pile radious 
end 
 
L = 30.0;                                % pile length 
Ep = 518400000.0;                        % pile Youngs' modulus 
pw = 150.0;                              % pile specific weight 
 
% GENERAL DATA 
ne = 15;                                 % number of elements to discretize the 
pile 
g = 32.2;                                % gravity acceleration [ft/sec^2] 
FreqMax = 200;                            % maximum frequency [Hz] 
NFreq = 400;                             % Number of frequency steps 
 
% Lumped model coefficients 
ak = 1.3272671; 
am = 0.0510557; 
ac = 3.4246489; 
 
% ************************************ 
% * PROBLEM ANALYSIS                 * 
% ************************************ 
 
% GENERAL COMPUTATION 
sm = sw/g;                              % density of soil [lb.s^2/ft^4] 
G  = Es/(2*(1+nu));                     % soil shear elastic mudulus[lb/ft] 
Vs  = sqrt(G/sm);                       % shear wave velocity [ft/sec] 
eta = sqrt(2*(1-nu)/(1-2*nu));          % Novak Dynamic Stiffness parameter 
Le = L/ne;                              % pile element length 
pm = pw/g;                              % density of pile [lb.s^2/ft^4] 
 
% ARRAYS DEFINITION 
% 
% The KDP, UP and FRFP variables refer to the system reponse without 
% considering soil contribution (just the pile contribution). 
% 
KDN = zeros(2*ne,2*ne);                 % Novak System dynamic stiffness matrix 
KDL = zeros(2*ne,2*ne);                 % Lumped System dynamic stiffness matrix 
KDP = zeros(2*ne,2*ne);                 % Pile dynamic stiffness matrix 
 
KP = zeros(2*ne,2*ne);                  % Pile Stiffness matrix 
KS = zeros(2*ne,2*ne);                  % Soil Dynamic Stiffness Matrix 
KSL = zeros(2*ne,2*ne);                 % Lumped Soil Dynamic Stiffness Matrix 
Ke = zeros(4,4);                        % Pile element stiffness matrix 
 
MP = zeros(2*ne,2*ne);                  % Pile mass matrix 
MS = zeros(2*ne,2*ne);                  % Lumped Soil mass matrix 
MT = zeros(2*ne,2*ne);                  % System mass matrix 
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CS = zeros(2*ne,2*ne);                  % Lumped Soil damping matrix 
 
F = zeros(2*ne);                        % Load vector 
 
U = zeros(2*ne);                        % System Displacement vector 
UL = zeros(2*ne);                       % Lumped Model Displacement vector 
UP = zeros(2*ne);                       % Pile Displacement vector 
 
FRF = zeros(NFreq+1);                   % FRF = top node displacement 
FRFM = zeros(NFreq+1);                  % FRF Module top node displacement 
FRFP = zeros(NFreq+1);                  % FRF Pile top node displacement 
FRFL = zeros(NFreq+1);                  % Lumped FRF module top node displacement 
freq = zeros(NFreq+1);                  % Frequency data points 
 
% UNIT LOAD ON TOP 
F(1) = 1000.0;                          % Unit harminic load on top of pile 
                                        % to obtain dynamic flexibility in 
                                        % [ft/Kip] units 
for ii = 1 : 10 
 
    ro = roo(ii); 
 
    % PILE ELEMENT STIFFNESS MATRIX 
    Ip = pi*ro^4/4.;                        % Pile crossm sectiuon inertia 
    Ap = pi*ro^2;                           % Pile cross section area 
 
    k1 = 4*Ep*Ip/Le; 
    k2 = 6*Ep*Ip/Le^2; 
    k3 = 12*Ep*Ip/Le^3; 
 
    Ke(1,1) = k3; 
    Ke(2,1) = k2; 
    Ke(3,1) = -k3; 
    Ke(4,1) = k2; 
 
    Ke(1,2) = k2; 
    Ke(2,2) = k1; 
    Ke(3,2) = -k2; 
    Ke(4,2) = k1/2; 
 
    Ke(1,3) = -k3; 
    Ke(2,3) = -k2; 
    Ke(3,3) = k3; 
    Ke(4,3) = -k2; 
 
    Ke(1,4) = k2; 
    Ke(2,4) = k1/2; 
    Ke(3,4) = -k2; 
    Ke(4,4) = k1; 
 
    % PILE STIFFNESS MATRIX 
    for jj = 1 : ne-1 
        dof(1) = jj*2-1; 
        dof(2) = jj*2; 
        dof(3) = jj*2+1; 
        dof(4) = jj*2+2; 
        for kk = 1 : 4 
            for ll = 1 : 4 
                row = dof(kk); 
                col = dof(ll); 
                KP(row,col) = KP(row,col) + Ke(kk,ll); 
            end 
        end 
    end 
 
    dof(1) = ne*2-1; 
    dof(2) = ne*2; 
    for kk = 1 : 2 
        for ll = 1 : 2 
            row = dof(kk); 
            col = dof(ll); 
            KP(row,col) = KP(row,col) + Ke(kk,ll); 
        end 
    end 

 
    % PILE MASS MATRIX 
    MP(1,1) = pm*Ap*Le/2; 
    for jj = 2 : ne 
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        MP(2*jj-1,2*jj-1) = pm*Ap*Le; 
    end 
 
    % LUMPED SOIL STIFFNESS MATRIX, MASS MATRIX, AND DAMPING MATRIX 
    KSL(1,1) = pi*G*ak*Le/2; 
    MS(1,1) = pi*ro^2*sm*am*Le/2; 
    CS(1,1) = pi*ro*G/Vs*ac*Le/2; 
    for jj = 2 : ne 
        KSL(2*jj-1,2*jj-1) = pi*G*ak*Le; 
        MS(2*jj-1,2*jj-1) = pi*ro^2*sm*am*Le; 
        CS(2*jj-1,2*jj-1) = pi*ro*G/Vs*ac*Le; 
    end 
 
    MT = MP + MS; 
 
    % FRF FUNCTION 
    ao = 0.3; 
    aoc = i*ao/sqrt(1+i*D); 
    boc = aoc/eta; 
    numer = 4* 
besselk(1,boc)*besselk(1,aoc)+aoc*besselk(1,boc)*besselk(0,aoc)+boc*besselk(0,boc)*
besselk(1,aoc); 
    denom= 
boc*besselk(0,boc)*besselk(1,aoc)+aoc*besselk(1,boc)*besselk(0,aoc)+boc*aoc*besselk
(0,boc)*besselk(0,aoc); 
    S03 =-pi*G*ao^2*numer/denom; 
 
    for jj = 1 : NFreq+1 
 
        freq(jj) = FreqMax*(jj-1)/NFreq; 
 
        % SOIL DYNAMIC STIFFNESS 
        w=freq(jj)*2*pi; 
        ao = w*ro/Vs; 
        aoc = i*ao/sqrt(1+i*D); 
        boc = aoc/eta; 
        numer = 4* 
besselk(1,boc)*besselk(1,aoc)+aoc*besselk(1,boc)*besselk(0,aoc)+boc*besselk(0,boc)*
besselk(1,aoc); 
        denom= 
boc*besselk(0,boc)*besselk(1,aoc)+aoc*besselk(1,boc)*besselk(0,aoc)+boc*aoc*besselk
(0,boc)*besselk(0,aoc); 
        S =-pi*G*ao^2*numer/denom; 
        if ao < 0.3 
            S = i*imag(S) + real(S03); 
        end 
        KS(1,1) = S*Le/2; 
        for kk = 2 : ne 
            KS(2*kk-1,2*kk-1) = S*Le; 
        end 
 
        % SYSTEM DYNAMIC STIFFNESS 
        KD = KP + KS - w^2 * MP; 
        KDP = KP - w^2 * MP; 
        KDL = KP + KSL + i * w * CS - w^2 * MT; 
 
        % FREQUENCY RESPONSE FUNCTION FRF 
        U = KD\F; 
        FRFM(jj) = sqrt(real(U(1))^2+imag(U(1))^2); 
        FRF(jj) = U(1); 
 
        UP = KDP\F; 
        FRFP(jj) = sqrt(real(UP(1))^2+imag(UP(1))^2); 
 
        UL = KDL\F; 
        FRFL(jj) = sqrt(real(UL(1))^2+imag(UL(1))^2); 
 
    end 
 
    var1 = strcat('FRF Lumped vs Novac - ro = ', num2str(ro), ' [ft]'); 
    figure; plot( freq,FRFM, freq, FRFL ); grid on; title(var1) 
    xlabel('load frequency [Hz]'); ylabel('Module of the Dynamic Flexibility or FRF 
[ft/Kip]'); 
 
end 
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F.6 FRF Comparing Novak and Lumped Models for Different E 
 

%------------- Programa FRFNovakLumpedVariousE.m------------------------% 
% Program to compute the dynamic flexibility of a pile head                 % 
% using the dynamic stiffness proposed by Novak for the soil, and           % 
% using the equivalent lumped model obtained by regression of the           % 
% dynamic stiffness proposed by Novak for the soil, who considers           % 
% the soil in plain-strain and the pile as a rigid circle of radious        % 
% ro embeded in an infinite medium.                                         % 
% Novak, Nogami and Aboul-Ella                                              % 
%---------------------------------------------------------------------------% 
clc; clear all; close all 
 
% ************************************ 
% * PROBLEM DATA                     * 
% ************************************ 
 
% SOIL DATA 
Es = [200000, 600000, 1000000, 1400000, 1800000, 2200000, 2600000, 3000000]; 
Es(9) = 3400000; 
Es(10) = 3800000; 
                                         % soil Young's elastic mudulus[lb/ft^2] 
 
nu = 0.40; 
                                         % soil Poisson's ratio 
 
D=0.0;                                   % hysteretic damping ratio 
sw = 110.0;                              % soil specific weight [pcf] 
 
% PILE DATA 
ro = 1.0;                                % pile radious 
L = 30.0;                                % pile length 
Ep = 518400000.0;                        % pile Youngs' modulus 
pw = 150.0;                              % pile specific weight 
 
% GENERAL DATA 
ne = 15;                                 % number of elements to discretize the 
pile 
g = 32.2;                                % gravity acceleration [ft/sec^2] 
FreqMax = 200;                            % maximum frequency [Hz] 
NFreq = 400;                             % Number of frequency steps 
 
% Lumped model coefficients 
ak = 1.3272671; 
am = 0.0510557; 
ac = 3.4246489; 
 
 
% ************************************ 
% * PROBLEM ANALYSIS                 * 
% ************************************ 
 
% GENERAL COMPUTATION 
sm = sw/g;                              % density of soil [lb.s^2/ft^4] 
Le = L/ne;                              % pile element length 
pm = pw/g;                              % density of pile [lb.s^2/ft^4] 
 
% ARRAYS DEFINITION 
% 
% The KDP, UP and FRFP variables refer to the system reponse without 
% considering soil contribution (just the pile contribution). 
% 
KDN = zeros(2*ne,2*ne);                 % Novak System dynamic stiffness matrix 
KDL = zeros(2*ne,2*ne);                 % Lumped System dynamic stiffness matrix 
KDP = zeros(2*ne,2*ne);                 % Pile dynamic stiffness matrix 
 
KP = zeros(2*ne,2*ne);                  % Pile Stiffness matrix 
KS = zeros(2*ne,2*ne);                  % Soil Dynamic Stiffness Matrix 
KSL = zeros(2*ne,2*ne);                 % Lumped Soil Dynamic Stiffness Matrix 
Ke = zeros(4,4);                        % Pile element stiffness matrix 
 
MP = zeros(2*ne,2*ne);                  % Pile mass matrix 
MS = zeros(2*ne,2*ne);                  % Lumped Soil mass matrix 
MT = zeros(2*ne,2*ne);                  % System mass matrix 
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CS = zeros(2*ne,2*ne);                  % Lumped Soil damping matrix 
 
F = zeros(2*ne);                        % Load vector 
 
U = zeros(2*ne);                        % System Displacement vector 
UL = zeros(2*ne);                       % Lumped Model Displacement vector 
UP = zeros(2*ne);                       % Pile Displacement vector 
 
FRF = zeros(NFreq+1);                   % FRF = top node displacement 
FRFM = zeros(NFreq+1);                  % FRF Module top node displacement 
FRFP = zeros(NFreq+1);                  % FRF Pile top node displacement 
FRFL = zeros(NFreq+1);                  % Lumped FRF module top node displacement 
freq = zeros(NFreq+1);                  % Frequency data points 
 
% UNIT LOAD ON TOP 
F(1) = 1000.0;                          % Unit harminic load on top of pile 
                                        % to obtain dynamic flexibility in 
                                        % [ft/Kip] units 
 
% PILE ELEMENT STIFFNESS MATRIX 
Ip = pi*ro^4/4.;                        % Pile crossm sectiuon inertia 
Ap = pi*ro^2;                           % Pile cross section area 
 
k1 = 4*Ep*Ip/Le; 
k2 = 6*Ep*Ip/Le^2; 
k3 = 12*Ep*Ip/Le^3; 
 
Ke(1,1) = k3; 
Ke(2,1) = k2; 
Ke(3,1) = -k3; 
Ke(4,1) = k2; 
 
Ke(1,2) = k2; 
Ke(2,2) = k1; 
Ke(3,2) = -k2; 
Ke(4,2) = k1/2; 
 
Ke(1,3) = -k3; 
Ke(2,3) = -k2; 
Ke(3,3) = k3; 
Ke(4,3) = -k2; 
 
Ke(1,4) = k2; 
Ke(2,4) = k1/2; 
Ke(3,4) = -k2; 
Ke(4,4) = k1; 
 
% PILE STIFFNESS MATRIX 
for jj = 1 : ne-1 
    dof(1) = jj*2-1; 
    dof(2) = jj*2; 
    dof(3) = jj*2+1; 
    dof(4) = jj*2+2; 
    for kk = 1 : 4 
        for ll = 1 : 4 
            row = dof(kk); 
            col = dof(ll); 
            KP(row,col) = KP(row,col) + Ke(kk,ll); 
        end 
    end 
end 
 
dof(1) = ne*2-1; 
dof(2) = ne*2; 
for kk = 1 : 2 
    for ll = 1 : 2 
        row = dof(kk); 
        col = dof(ll); 
        KP(row,col) = KP(row,col) + Ke(kk,ll); 
    end 
end 
 
 
% PILE MASS MATRIX 
MP(1,1) = pm*Ap*Le/2; 
for jj = 2 : ne 
    MP(2*jj-1,2*jj-1) = pm*Ap*Le; 
end 
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for ii = 1 : 10 
 
    % GENERAL COMPUTATIONS 
    eta = sqrt(2*(1-nu)/(1-2*nu));      % Novak Dynamic Stiffness parameter 
    G  = Es(ii)/(2*(1+nu));                     % soil shear elastic mudulus[lb/ft] 
    Vs  = sqrt(G/sm);                           % shear wave velocity [ft/sec] 
 
    % LUMPED SOIL STIFFNESS MATRIX, MASS MATRIX, AND DAMPING MATRIX 
    KSL(1,1) = pi*G*ak*Le/2; 
    MS(1,1) = pi*ro^2*sm*am*Le/2; 
    CS(1,1) = pi*ro*G/Vs*ac*Le/2; 
    for jj = 2 : ne 
        KSL(2*jj-1,2*jj-1) = pi*G*ak*Le; 
        MS(2*jj-1,2*jj-1) = pi*ro^2*sm*am*Le; 
        CS(2*jj-1,2*jj-1) = pi*ro*G/Vs*ac*Le; 
    end 
 
    MT = MP + MS; 
 
    % FRF FUNCTION 
    ao = 0.3; 
    aoc = i*ao/sqrt(1+i*D); 
    boc = aoc/eta; 
    numer = 4* 
besselk(1,boc)*besselk(1,aoc)+aoc*besselk(1,boc)*besselk(0,aoc)+boc*besselk(0,boc)*
besselk(1,aoc); 
    denom= 
boc*besselk(0,boc)*besselk(1,aoc)+aoc*besselk(1,boc)*besselk(0,aoc)+boc*aoc*besselk
(0,boc)*besselk(0,aoc); 
    S03 =-pi*G*ao^2*numer/denom; 
 
    for jj = 1 : NFreq+1 
 
        freq(jj) = FreqMax*(jj-1)/NFreq; 
        % SOIL DYNAMIC STIFFNESS 
        w=freq(jj)*2*pi; 
        ao = w*ro/Vs; 
        aoc = i*ao/sqrt(1+i*D); 
        boc = aoc/eta; 
        numer = 4* 
besselk(1,boc)*besselk(1,aoc)+aoc*besselk(1,boc)*besselk(0,aoc)+boc*besselk(0,boc)*
besselk(1,aoc); 
        denom= 
boc*besselk(0,boc)*besselk(1,aoc)+aoc*besselk(1,boc)*besselk(0,aoc)+boc*aoc*besselk
(0,boc)*besselk(0,aoc); 
        S =-pi*G*ao^2*numer/denom; 
        if ao < 0.3 
            S = i*imag(S) + real(S03); 
        end 
        KS(1,1) = S*Le/2; 
        for kk = 2 : ne 
            KS(2*kk-1,2*kk-1) = S*Le; 
        end 
 
        % SYSTEM DYNAMIC STIFFNESS 
        KD = KP + KS - w^2 * MP; 
        KDP = KP - w^2 * MP; 
        KDL = KP + KSL + i * w * CS - w^2 * MT; 
 
        % FREQUENCY RESPONSE FUNCTION FRF 
        U = KD\F; 
        FRFM(jj) = sqrt(real(U(1))^2+imag(U(1))^2); 
        FRF(jj) = U(1); 
 
        UP = KDP\F; 
        FRFP(jj) = sqrt(real(UP(1))^2+imag(UP(1))^2); 
 
        UL = KDL\F; 
        FRFL(jj) = sqrt(real(UL(1))^2+imag(UL(1))^2); 
 
    end 
 
    var1 = strcat(' E = ',num2str(Es(ii)), ' [psf]'); 
    var2 = strcat('FRF Lumped Model vs Novak Model - ',var1); 
    figure; plot( freq,FRFM, freq, FRFL ); grid on; title(var2) 
    xlabel('load frequency [Hz]'); ylabel('Module of the Dynamic Flexibility or FRF 
[ft/Kip]'); 
end 
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F.7 FRF Implemented in SAP 
 
This section presents the models used to verify the application of SAP Link Element to 

model the Soil Spring-Dashpot lumped model. The relation between the Link element 

local axes and the global coordinate system is shown in Table F.1, and represented in 

Figure F.1. 

 
Table F.1: Link Element DOF vs. Global DOF 

 
Link Element DOF Corresponding Global DOF 

U1 Uz 
U2 Ux 
U3 Uy 

 

 

Figure F.1: Link Element DOF vs. Global Coordinates 
 

 

F.7.1 SDOF System 
 

A single degree of freedom (SDOF) system was first used to verify SAP Link Element 

local axis and behavior. The following problem will be analyzed: 
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Figure F.2: SDOF Problem 

 

The following is a listing of the MathCad worksheet developed to compute the SDOF 

response, and the problem data. 
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The following figure presents the SAP model implementation, as a special point where 

the link element and the lumped mass were assigned. 

 

  
 

Figure F.3: SDOF System SAP Model 
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The following figure presents the results of SAP vs the ones obtained with a Matlab 

worksheet with the analytical response. There is a total agreement between both 

responses, indicating that the SAP model with Link elements is appropriate to model this 

type of systems. 

   

 
Figure F.4: SDOF Problem SAP Response vs. Analytical Response 

 

 

F.7.2 Pile + Lumped Soil System 
 

The following figure presents the link element parameters definition for the 1D model of 

the pile-soil system presented in Section 5.3, and the pile discretization adopted. 
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Figure F.5: SAP Link Element Definition for 1D Pile with Soil Model 
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F.8 Dynamic Stiffness of Pile Top for Di Napoli and Prato Test  
 
 

%------------------ Programa FRFLumpedModel_DeNapoli.m-------------------------% 
% Program to compute the dynamic flexibility and dynamic stiffness of the pile % 
% head tested by DeNapoli and Prato. The analysis uses the equivalent lumped   % 
% model obtained by regression of the dynamic stiffness proposed by Novak for  % 
% the soil, who considers the soil in plain-strain and the pile as a rigid     % 
% circle of radious ro embeded in an infinite medium.                          % 
%                                                                              % 
%------------------------------------------------------------------------------% 
clc; clear all; close all 
 
% ************************************ 
% * PROBLEM DATA                     * 
% ************************************ 
 
% SOIL DATA 
Es = 288.0 * 10^6;                       % soil Young's elastic mudulus[N/m^2] 
nu = 0.31;                               % soil Poisson's ratio 
sm = 1.55 * 10^3;                        % soil density [Kg/m3] 
 
% PILE CAP DATA 
Lpc = 0.3 
Rpc = 0.25 
 
% PILE DATA 
ro = 0.15;                                % pile radious [m] 
L = 2.7;                                  % pile length [m] 
Ep = 31000.0 * 10^6;                      % pile Youngs' modulus [Pa] 
pm = 2.4 * 10^3;                          % pile density [Kg/m3] 
 
% GENERAL DATA 
nepc = 6; 
ne = 54;                                 % number of elements to discretize the 
pile (5 cm length) 
FreqMax = 150;                           % maximum frequency [Hz] 
NFreq = 450;                             % Number of frequency steps 
 
% Lumped model coefficients for nu=0.31 
ak = 1.2947912; 
am = 0.0005935; 
ac = 2.9727406; 
 
% ************************************ 
% * PROBLEM ANALYSIS                 * 
% ************************************ 
 
% GENERAL COMPUTATION 
 
G  = Es/(2*(1+nu));                     % soil shear elastic mudulus[lb/ft] 
Vs  = sqrt(G/sm);                       % shear wave velocity [ft/sec] 
eta = sqrt(2*(1-nu)/(1-2*nu));          % Novak Dynamic Stiffness parameter 
nn = nepc + ne + 1;                            % number of nodes 
 
% ARRAYS DEFINITION 
% 
% The KDP, UP and FRFP variables refer to the system reponse without 
% considering soil contribution (just the pile contribution). 
% 
KD = zeros(2*nn,2*nn);                  % System dynamic stiffness matrix 
 
KP = zeros(2*nn,2*nn);                  % Pile Stiffness matrix 
KS = zeros(2*nn,2*nn);                  % Soil Dynamic Stiffness Matrix 
Ke = zeros(4,4);                        % Pile element stiffness matrix 
 
MP = zeros(2*nn,2*nn);                  % Pile mass matrix 
MS = zeros(2*nn,2*nn);                  % Soil mass matrix 
MT = zeros(2*nn,2*nn);                  % System mass matrix 
 
CS = zeros(2*nn,2*nn);                  % Soil damping matrix 
 
F = zeros(2*nn);                        % Load vector 
 
U = zeros(2*nn);                        % System Displacement vector 
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UP = zeros(2*nn);                       % Pile Displacement vector 
 
FRF = zeros(NFreq+1);                   % FRF = top node displacement 
FRFM = zeros(NFreq+1);                  % FRF Module top node displacement 
FRFP = zeros(NFreq+1);                  % FRF Pile top node displacement 
 
KDT = zeros(NFreq+1);                   % Dynamic stiffness of pile top 
KDTR = zeros(NFreq+1); 
KDTI = zeros(NFreq+1); 
 
freq = zeros(NFreq+1);                  % Frequency data points 
 
% UNIT LOAD ON TOP 
F(7) = 1000.0;                          % Unit harminic load on top of pile 
                                        % to obtain dynamic flexibility in 
                                        % [m/KN] units 
 
% PILE CAP ELEMENT STIFFNESS MATRIX 
Le = Lpc/nepc;                               % pile element length 
Ip = pi*Rpc^4 / 4.;                      % Pile cross section inertia 
Ap = pi*Rpc^2;                           % Pile cross section area 
 
k1 = 4*Ep*Ip/Le; 
k2 = 6*Ep*Ip/Le^2; 
k3 = 12*Ep*Ip/Le^3; 
 
Ke(1,1) = k3; 
Ke(2,1) = k2; 
Ke(3,1) = -k3; 
Ke(4,1) = k2; 
 
Ke(1,2) = k2; 
Ke(2,2) = k1; 
Ke(3,2) = -k2; 
Ke(4,2) = k1/2; 
 
Ke(1,3) = -k3; 
Ke(2,3) = -k2; 
Ke(3,3) = k3; 
Ke(4,3) = -k2; 
 
Ke(1,4) = k2; 
Ke(2,4) = k1/2; 
Ke(3,4) = -k2; 
Ke(4,4) = k1; 
 
% PILE CAP STIFFNESS MATRIX 
for jj = 1 : nepc 
    dof(1) = jj*2-1; 
    dof(2) = jj*2; 
    dof(3) = jj*2+1; 
    dof(4) = jj*2+2; 
    for kk = 1 : 4 
        for ll = 1 : 4 
            row = dof(kk); 
            col = dof(ll); 
            KP(row,col) = KP(row,col) + Ke(kk,ll); 
        end 
    end 
end 
 
% PILE CAP MASS MATRIX 
MP(1,1) = pm*Ap*Le/2; 
for jj = 2 : nepc 
    MP(2*jj-1,2*jj-1) = pm*Ap*Le; 
end 
MP(2*ne+1,2*ne+1)= pm*Ap*Le/2; 
 
 
% PILE ELEMENT STIFFNESS MATRIX 
Le = L/ne;                              % pile element length 
Ip = pi*ro^4 / 4.;                      % Pile cross section inertia 
Ap = pi*ro^2;                           % Pile cross section area 
 
k1 = 4*Ep*Ip/Le; 
k2 = 6*Ep*Ip/Le^2; 
k3 = 12*Ep*Ip/Le^3; 
 



 

 

292

Ke(1,1) = k3; 
Ke(2,1) = k2; 
Ke(3,1) = -k3; 
Ke(4,1) = k2; 
 
Ke(1,2) = k2; 
Ke(2,2) = k1; 
Ke(3,2) = -k2; 
Ke(4,2) = k1/2; 
 
Ke(1,3) = -k3; 
Ke(2,3) = -k2; 
Ke(3,3) = k3; 
Ke(4,3) = -k2; 
 
Ke(1,4) = k2; 
Ke(2,4) = k1/2; 
Ke(3,4) = -k2; 
Ke(4,4) = k1; 
 
% PILE STIFFNESS MATRIX 
for jj = 1 : ne 
    dof(1) = nepc*2 + jj*2-1; 
    dof(2) = nepc*2 + jj*2; 
    dof(3) = nepc*2 + jj*2+1; 
    dof(4) = nepc*2 + jj*2+2; 
    for kk = 1 : 4 
        for ll = 1 : 4 
            row = dof(kk); 
            col = dof(ll); 
            KP(row,col) = KP(row,col) + Ke(kk,ll); 
        end 
    end 
end 
 
 
 
% PILE MASS MATRIX 
MP(nepc*2+1,nepc*2+1) = MP(nepc*2+1,nepc*2+1)+pm*Ap*Le/2; 
for jj = 2 : ne 
    MP(nepc*2 + 2*jj-1,nepc*2 + 2*jj-1) = pm*Ap*Le; 
end 
MP(nepc*2 + 2*ne+1,nepc*2 + 2*ne+1)= pm*Ap*Le/2; 
 
 
% SOIL STIFFNESS MATRIX, MASS MATRIX, AND DAMPING MATRIX 
KS(nepc*2 +1,nepc*2 +1) = pi*G*ak*Le/2; 
MS(nepc*2 +1,nepc*2 +1) = pi*ro^2*sm*am*Le/2; 
CS(nepc*2 +1,nepc*2 +1) = pi*ro*G/Vs*ac*Le/2; 
 
for jj = 2 : ne 
    KS(nepc*2 + 2*jj-1,nepc*2 + 2*jj-1) = pi*G*ak*Le; 
    MS(nepc*2 + 2*jj-1,nepc*2 + 2*jj-1) = pi*ro^2*sm*am*Le; 
    CS(nepc*2 + 2*jj-1,nepc*2 + 2*jj-1) = pi*ro*G/Vs*ac*Le; 
end 
 
KS(nepc*2 + 2*ne+1,nepc*2 + 2*ne+1) = pi*G*ak*Le/2; 
MS(nepc*2 + 2*ne+1,nepc*2 + 2*ne+1) = pi*ro^2*sm*am*Le/2; 
CS(nepc*2 + 2*ne+1,nepc*2 + 2*ne+1) = pi*ro*G/Vs*ac*Le/2; 
 
MT = MP + MS; 
 
% FRF FUNCTION 
 
for jj = 1 : NFreq+1 
 
    freq(jj) = FreqMax*(jj-1)/NFreq; 
    w=freq(jj)*2*pi; 
 
    % SYSTEM DYNAMIC STIFFNESS 
    KD = KP + KS + i * w * CS - w^2 * MT; 
 
 
    % FREQUENCY RESPONSE FUNCTION FRF 
    U = KD\F; 
    FRFM(jj) = sqrt(real(U(7))^2+imag(U(7))^2); 
    FRF(jj) = U(7); 
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    KDT(jj)= 1.0 / FRF(jj); 
    KDTR(jj) = real(KDT(jj)); 
    KDTI(jj) = imag(KDT(jj)); 
 
    % to convert from KN to ton 
    KDT(jj)= KDT(jj)/10.; 
    KDTR(jj) = KDTR(jj)/10.; 
    KDTI(jj) = KDTI(jj)/10.; 
 
    var1 = num2str(jj); 
    var2 = num2str(freq(jj)); 
    var3 = num2str(KDTR(jj)); 
    var4 = num2str(KDTI(jj)); 
    var5 = strcat( var1 , ',' , var2 , ',' , var3, ',' , var4); 
    % save ('FRF.txt', 'var1', 'var2', '-ASCII', '-append') 
    disp(var5) 
 
end 
 
figure; plot( freq,KDTR ); grid on; title('Real Part of KD Using Lumped Model') 
xlabel('load frequency [Hz]'); ylabel('Module of the Dynamic Stiffness [ton/m]'); 
 
figure; plot( freq,KDTI); grid on; title('Imaginary Part of KD Using Lumped Model') 
xlabel('load frequency [Hz]'); ylabel('Module of the Dynamic Stiffness [ton/m]'); 

 

F.9 Damping Coefficient Comparison  
 
Approximate Model vs Berger Coefficient of Damping  
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Crel = Ca/CBerger 
Considering Vp of 1D case  
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Crel = Ca/CBerger 
Considering Vp of 3D case  
 
.  

 

 
 
 
 
 
 
 
 
 



 

 

298

F.10 Stiffness Coefficient Comparison  
 
Approximate Model vs Vesic Subgrade Reaction Modulus  
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Krel = Ka/Kvesic  

 

.  
 
 
 
 
 
 
 
 
 



 

 

303

 

 

 

 

.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

304

 

 

 

 

.  



 

 

305

 

 

 

 

.  



 

 

306

 

 

 

 



 

 

307

 

 

 

 



 

 

308

 

 

 

 

 



 

 

309

G Influence of Pile Stiffness on the FRF of Pile Head  
 
 

The Matlab program (worksheet) developed to compute the frequency response function 

(dynamic flexibility) of the pile head, used to obtain the results of in Chapter 6, is listed 

in this appendix. The program varies the pile radius and obtains the FRF of the pile head 

considering the soil with the lumped model, and considering the pile alone (without soil 

contribution)  

 

G.1 FRF Comparing Pile Alone and Pile + Soil for Different Radius 
 

%------------------- Programa FRFLumpedVariousDo.m--------------------------% 
% Program to compute the dynamic flexibility of a pile head                 % 
% using the equivalent lumped model obtained by regression of the           % 
% dynamic stiffness proposed by Novak for the soil, who considers           % 
% the soil in plain-strain and the pile as a rigid circle of radious        % 
% ro embeded in an infinite medium (Novak, Nogami and Aboul-Ella ).         % 
% The effect of different radius is computed                                % 
%---------------------------------------------------------------------------% 
clc; clear all; close all 
 
% ************************************ 
% * PROBLEM DATA                     * 
% ************************************ 
 
% SOIL DATA 
Es = 1728000;                            % soil Young's elastic mudulus[lb/ft^2] 
nu = 0.40;                               % soil Poisson's ratio 
D=0.0;                                   % hysteretic damping ratio 
sw = 110.0;                              % soil specific weight [pcf] 
 
% PILE DATA 
for jj = 1 : 10 
    roo(jj) = jj;                        % pile radious 
end 
 
L = 30.0;                                % pile length 
Ep = 518400000.0;                        % pile Youngs' modulus 
pw = 150.0;                              % pile specific weight 
 
% GENERAL DATA 
ne = 15;                                 % number of elements to discretize the 
pile 
g = 32.2;                                % gravity acceleration [ft/sec^2] 
FreqMax = 400;                            % maximum frequency [Hz] 
NFreq = 800;                             % Number of frequency steps 
 
% Lumped model coefficients 
ak = 1.3272671; 
am = 0.0510557; 
ac = 3.4246489; 
 
% ************************************ 
% * PROBLEM ANALYSIS                 * 
% ************************************ 
 
% GENERAL COMPUTATION 
sm = sw/g;                              % density of soil [lb.s^2/ft^4] 
G  = Es/(2*(1+nu));                     % soil shear elastic mudulus[lb/ft] 
Vs  = sqrt(G/sm);                       % shear wave velocity [ft/sec] 
eta = sqrt(2*(1-nu)/(1-2*nu));          % Novak Dynamic Stiffness parameter 
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Le = L/ne;                              % pile element length 
pm = pw/g;                              % density of pile [lb.s^2/ft^4] 
 
% ARRAYS DEFINITION 
% 
% The KDP, UP and FRFP variables refer to the system reponse without 
% considering soil contribution (just the pile contribution). 
% 
KDN = zeros(2*ne,2*ne);                 % Novak System dynamic stiffness matrix 
KDL = zeros(2*ne,2*ne);                 % Lumped System dynamic stiffness matrix 
KDP = zeros(2*ne,2*ne);                 % Pile dynamic stiffness matrix 
 
KP = zeros(2*ne,2*ne);                  % Pile Stiffness matrix 
KS = zeros(2*ne,2*ne);                  % Soil Dynamic Stiffness Matrix 
KSL = zeros(2*ne,2*ne);                 % Lumped Soil Dynamic Stiffness Matrix 
Ke = zeros(4,4);                        % Pile element stiffness matrix 
 
MP = zeros(2*ne,2*ne);                  % Pile mass matrix 
MS = zeros(2*ne,2*ne);                  % Lumped Soil mass matrix 
MT = zeros(2*ne,2*ne);                  % System mass matrix 
 
CS = zeros(2*ne,2*ne);                  % Lumped Soil damping matrix 
 
F = zeros(2*ne);                        % Load vector 
 
U = zeros(2*ne);                        % System Displacement vector 
UL = zeros(2*ne);                       % Lumped Model Displacement vector 
UP = zeros(2*ne);                       % Pile Displacement vector 
 
FRF = zeros(NFreq+1);                   % FRF = top node displacement 
FRFM = zeros(NFreq+1);                  % FRF Module top node displacement 
FRFP = zeros(NFreq+1);                  % FRF Pile top node displacement 
FRFL = zeros(NFreq+1);                  % Lumped FRF module top node displacement 
freq = zeros(NFreq+1);                  % Frequency data points 
 
% UNIT LOAD ON TOP 
F(1) = 1000.0;                          % Unit harminic load on top of pile 
                                        % to obtain dynamic flexibility in 
                                        % [ft/Kip] units 
for ii = 1 : 10 
 
    ro = roo(ii); 
 
    % PILE ELEMENT STIFFNESS MATRIX 
    Ip = pi*ro^4/4.;                        % Pile crossm sectiuon inertia 
    Ap = pi*ro^2;                           % Pile cross section area 
 
    k1 = 4*Ep*Ip/Le; 
    k2 = 6*Ep*Ip/Le^2; 
    k3 = 12*Ep*Ip/Le^3; 
 
    Ke(1,1) = k3; 
    Ke(2,1) = k2; 
    Ke(3,1) = -k3; 
    Ke(4,1) = k2; 
 
    Ke(1,2) = k2; 
    Ke(2,2) = k1; 
    Ke(3,2) = -k2; 
    Ke(4,2) = k1/2; 
 
    Ke(1,3) = -k3; 
    Ke(2,3) = -k2; 
    Ke(3,3) = k3; 
    Ke(4,3) = -k2; 
 
    Ke(1,4) = k2; 
    Ke(2,4) = k1/2; 
    Ke(3,4) = -k2; 
    Ke(4,4) = k1; 
 
    % PILE STIFFNESS MATRIX 
    for jj = 1 : ne-1 
        dof(1) = jj*2-1; 
        dof(2) = jj*2; 
        dof(3) = jj*2+1; 
        dof(4) = jj*2+2; 
        for kk = 1 : 4 
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            for ll = 1 : 4 
                row = dof(kk); 
                col = dof(ll); 
                KP(row,col) = KP(row,col) + Ke(kk,ll); 
            end 
        end 
    end 
 
    dof(1) = ne*2-1; 
    dof(2) = ne*2; 
    for kk = 1 : 2 
        for ll = 1 : 2 
            row = dof(kk); 
            col = dof(ll); 
            KP(row,col) = KP(row,col) + Ke(kk,ll); 
        end 
    end 
 
 
    % PILE MASS MATRIX 
    MP(1,1) = pm*Ap*Le/2; 
    for jj = 2 : ne 
        MP(2*jj-1,2*jj-1) = pm*Ap*Le; 
    end 
 
    % LUMPED SOIL STIFFNESS MATRIX, MASS MATRIX, AND DAMPING MATRIX 
    KSL(1,1) = pi*G*ak*Le/2; 
    MS(1,1) = pi*ro^2*sm*am*Le/2; 
    CS(1,1) = pi*ro*G/Vs*ac*Le/2; 
    for jj = 2 : ne 
        KSL(2*jj-1,2*jj-1) = pi*G*ak*Le; 
        MS(2*jj-1,2*jj-1) = pi*ro^2*sm*am*Le; 
        CS(2*jj-1,2*jj-1) = pi*ro*G/Vs*ac*Le; 
    end 
 
    MT = MP + MS; 
 
    % FRF FUNCTION 
 
 
    for jj = 1 : NFreq+1 
 
        freq(jj) = FreqMax*(jj-1)/NFreq; 
        w=freq(jj)*2*pi; 
 
 
        % SYSTEM DYNAMIC STIFFNESS 
        KDP = KP - w^2 * MP; 
        KDL = KP + KSL + i * w * CS - w^2 * MT; 
 
        % FREQUENCY RESPONSE FUNCTION FRF 
        UP = KDP\F; 
        FRFP(jj) = sqrt(real(UP(1))^2+imag(UP(1))^2); 
 
        UL = KDL\F; 
        FRFL(jj) = sqrt(real(UL(1))^2+imag(UL(1))^2); 
 
    end 
 
    var1 = strcat('FRF Pile Alone vs Pile + Soil - ro = ', num2str(ro), ' [ft]'); 
    figure; plot( freq, FRFL, '-b', freq, FRFP, '-r' ); grid on; title(var1); 
    xlabel('load frequency [Hz]'); ylabel('Module of the Dynamic Flexibility or FRF 
[ft/Kip]'); 
 
end 
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H Influence of Radiation Damping on the FRF of Pile Head  
 
 

The Matlab program (worksheet) developed to compute the frequency response function 

(dynamic flexibility) of the pile head, used to obtain the results of in Chapter 6, is listed 

in this appendix. The program varies the soil equivalent lumped damping coefficient and 

obtains the FRF of the pile head considering the soil with the lumped model. 

 

H.1 FRF Comparing Pile Alone and Pile + Soil for Different Ca 
 
 

%-------------------- Programa FRFLumpedVariousC.m--------------------------% 
% Program to compute the dynamic flexibility of a pile head                 % 
% using the dynamic stiffness proposed by Novak for the soil, and           % 
% using the equivalent lumped model obtained by regression of the           % 
% dynamic stiffness proposed by Novak for the soil, who considers           % 
% the soil in plain-strain and the pile as a rigid circle of radious        % 
% ro embeded in an infinite medium.                                         % 
% Novak, Nogami and Aboul-Ella                                              % 
%---------------------------------------------------------------------------% 
clc; clear all; close all 
 
% ************************************ 
% * PROBLEM DATA                     * 
% ************************************ 
 
% SOIL DATA 
Es = 1728000;                            % soil Young's elastic mudulus[lb/ft^2] 
nu = 0.40;                               % soil Poisson's ratio 
D=0.0;                                   % hysteretic damping ratio 
sw = 110.0;                              % soil specific weight [pcf] 
 
% PILE DATA 
ro = 1;                                  % pile radious 
L = 30.0;                                % pile length 
Ep = 518400000.0;                        % pile Youngs' modulus 
pw = 150.0;                              % pile specific weight 
 
% GENERAL DATA 
ne = 15;                                 % number of elements to discretize the 
pile 
g = 32.2;                                % gravity acceleration [ft/sec^2] 
FreqMax = 400;                            % maximum frequency [Hz] 
NFreq = 800;                             % Number of frequency steps 
 
% Lumped model coefficients 
ak = 1.3272671; 
am = 0.0510557; 
ac = 3.4246489; 
 
% ************************************ 
% * PROBLEM ANALYSIS                 * 
% ************************************ 
 
% GENERAL COMPUTATION 
sm = sw/g;                              % density of soil [lb.s^2/ft^4] 
G  = Es/(2*(1+nu));                     % soil shear elastic mudulus[lb/ft] 
Vs  = sqrt(G/sm);                       % shear wave velocity [ft/sec] 
eta = sqrt(2*(1-nu)/(1-2*nu));          % Novak Dynamic Stiffness parameter 
Le = L/ne;                              % pile element length 
pm = pw/g;                              % density of pile [lb.s^2/ft^4] 
 
% ARRAYS DEFINITION 
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% 
% The KDP, UP and FRFP variables refer to the system reponse without 
% considering soil contribution (just the pile contribution). 
% 
KDN = zeros(2*ne,2*ne);                 % Novak System dynamic stiffness matrix 
KDL = zeros(2*ne,2*ne);                 % Lumped System dynamic stiffness matrix 
KDP = zeros(2*ne,2*ne);                 % Pile dynamic stiffness matrix 
 
KP = zeros(2*ne,2*ne);                  % Pile Stiffness matrix 
KS = zeros(2*ne,2*ne);                  % Soil Dynamic Stiffness Matrix 
KSL = zeros(2*ne,2*ne);                 % Lumped Soil Dynamic Stiffness Matrix 
Ke = zeros(4,4);                        % Pile element stiffness matrix 
 
MP = zeros(2*ne,2*ne);                  % Pile mass matrix 
MS = zeros(2*ne,2*ne);                  % Lumped Soil mass matrix 
MT = zeros(2*ne,2*ne);                  % System mass matrix 
 
CS = zeros(2*ne,2*ne);                  % Lumped Soil damping matrix 
 
F = zeros(2*ne);                        % Load vector 
 
U = zeros(2*ne);                        % System Displacement vector 
UL = zeros(2*ne);                       % Lumped Model Displacement vector 
UP = zeros(2*ne);                       % Pile Displacement vector 
 
FRF = zeros(NFreq+1);                   % FRF = top node displacement 
FRFM = zeros(NFreq+1);                  % FRF Module top node displacement 
FRFP = zeros(NFreq+1);                  % FRF Pile top node displacement 
FRFL = zeros(NFreq+1);                  % Lumped FRF module top node displacement 
freq = zeros(NFreq+1);                  % Frequency data points 
 
% UNIT LOAD ON TOP 
F(1) = 1000.0;                          % Unit harminic load on top of pile 
                                        % to obtain dynamic flexibility in 
                                        % [ft/Kip] units 
 
 
% PILE ELEMENT STIFFNESS MATRIX 
Ip = pi*ro^4/4.;                        % Pile crossm sectiuon inertia 
Ap = pi*ro^2;                           % Pile cross section area 
 
k1 = 4*Ep*Ip/Le; 
k2 = 6*Ep*Ip/Le^2; 
k3 = 12*Ep*Ip/Le^3; 
 
Ke(1,1) = k3; 
Ke(2,1) = k2; 
Ke(3,1) = -k3; 
Ke(4,1) = k2; 
 
Ke(1,2) = k2; 
Ke(2,2) = k1; 
Ke(3,2) = -k2; 
Ke(4,2) = k1/2; 
 
Ke(1,3) = -k3; 
Ke(2,3) = -k2; 
Ke(3,3) = k3; 
Ke(4,3) = -k2; 
 
Ke(1,4) = k2; 
Ke(2,4) = k1/2; 
Ke(3,4) = -k2; 
Ke(4,4) = k1; 
 
% PILE STIFFNESS MATRIX 
for jj = 1 : ne-1 
    dof(1) = jj*2-1; 
    dof(2) = jj*2; 
    dof(3) = jj*2+1; 
    dof(4) = jj*2+2; 
    for kk = 1 : 4 
        for ll = 1 : 4 
            row = dof(kk); 
            col = dof(ll); 
            KP(row,col) = KP(row,col) + Ke(kk,ll); 
        end 
    end 
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end 
 
dof(1) = ne*2-1; 
dof(2) = ne*2; 
for kk = 1 : 2 
    for ll = 1 : 2 
        row = dof(kk); 
        col = dof(ll); 
        KP(row,col) = KP(row,col) + Ke(kk,ll); 
    end 
end 
 
 
% PILE MASS MATRIX 
MP(1,1) = pm*Ap*Le/2; 
for jj = 2 : ne 
    MP(2*jj-1,2*jj-1) = pm*Ap*Le; 
end 
 
% LUMPED SOIL STIFFNESS MATRIX, MASS MATRIX, AND DAMPING MATRIX 
KSL(1,1) = pi*G*ak*Le/2; 
MS(1,1) = pi*ro^2*sm*am*Le/2; 
CS(1,1) = pi*ro*G/Vs*ac*Le/2; 
for jj = 2 : ne 
    KSL(2*jj-1,2*jj-1) = pi*G*ak*Le; 
    MS(2*jj-1,2*jj-1) = pi*ro^2*sm*am*Le; 
    CS(2*jj-1,2*jj-1) = pi*ro*G/Vs*ac*Le; 
end 
 
MT = MP + MS; 
 
% FRF FUNCTION 
 
for ii = 1 : 6 
 
    for jj = 1 : NFreq+1 
 
        freq = FreqMax*(jj-1)/NFreq; 
        w=freq*2*pi; 
 
        % SYSTEM DYNAMIC STIFFNESS 
        KDL = KP + KSL + i * w * CS * (2*ii-2)/10 - w^2 * MT; 
 
        % FREQUENCY RESPONSE FUNCTION FRF 
 
        UL = KDL\F; 
        FRFL(ii, jj) = sqrt(real(UL(1))^2+imag(UL(1))^2); 
 
    end 
 
end 
 
for jj = 1 : NFreq+1 
    freq = FreqMax*(jj-1)/NFreq; 
    x(jj) = freq; 
    y1(jj) = FRFL(1,jj); 
    y2(jj) = FRFL(2,jj); 
    y3(jj) = FRFL(3,jj); 
    y4(jj) = FRFL(4,jj); 
    y5(jj) = FRFL(5,jj); 
    y6(jj) = FRFL(6,jj); 
end 
 
 
var1 = 'FRF Pile + Soil - Different Damping '; 
figure; plot( x, y1, x, y2, x, y3, x, y4, x, y5, x, y6 ); grid on; title(var1); 
xlabel('load frequency [Hz]'); ylabel('Module of the Dynamic Flexibility or FRF 
[ft/Kip]'); 
legend('c = 0.0','c = 0.2 ca', 'c = 0.4 ca','c = 0.6 ca','c = 0.8 ca','c = 1.0 
ca'); 

 
 
 
 
 



 

 

315

I Influence of the Soil Mass Distribution  
 
 

The Matlab programs (worksheets) developed to compute the frequency response 

function (dynamic flexibility) of the Spring-Mass system and the pile head, used to obtain 

the results of in Section 6.3, are listed in this appendix. 

 

I.1 FRF For a System with Springs in Series 
 

%------------------ Programa FRFDistributedMass.m------------------------% 
% Program to compute the dynamic flexibility of a SDOF                   % 
% with different number of springs in series (but same stifffness)       % 
% And different mass distribution                                        % 
%------------------------------------------------------------------------% 
clc; clear all; close all 
 
% ************************************ 
% * PROBLEM DATA                     * 
% ************************************ 
 
% Model Data 
ks = 1000.*(1+0.05i);                     % spring stiffness 
m = 10.;                                  % mass 
ma = 50.;                                 % added mass 
 
FreqMax = 10; 
NFreq = 1000; 
 
% ************************************ 
% * PROBLEM ANALYSIS                 * 
% ************************************ 
 
% ARRAYS DEFINITION 
 
K = zeros(10,10); 
M1 = zeros(10,10); 
M2 = zeros(10,10); 
KD1 = zeros(10,10); 
KD2 = zeros(10,10); 
 
F = zeros(10);                          % Load vector 
 
U1 = zeros(10);                        % System Displacement vector 
U2 = zeros(10); 
 
FRF1 = zeros(NFreq+1);                  % FRF SDOF 
FRF2 = zeros(NFreq+1);                  % FRF Series springs, lumped mass 
FRF3 = zeros(NFreq+1);                  % FRF Series springs, distributed mass 
freq = zeros(NFreq+1);                  % Frequency data points 
 
% UNIT LOAD ON TOP 
F(1) = 1.0; 
 
 
 
% STIFFNESS MATRIX 
for jj = 1 : 9 
    dof(1) = jj; 
    dof(2) = jj+1; 
    for kk = 1 : 2 
        for ll = 1 : 2 
            row = dof(kk); 
            col = dof(ll); 
            K(row,col) = K(row,col) + ks*10*(-1)^(kk+ll); 
        end 
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    end 
end 
K(10,10)=K(10,10)+ks*10; 
K 
 
 
% MASS MATRIX 
M1(1,1)=m+ma; 
M2(1,1)=m; 
for jj = 1 : 10 
    M2(jj,jj) = M2(jj,jj) + ma/10; 
end 
M1 
M2 
 
% FRF FUNCTION 
 
for jj = 1 : NFreq+1 
 
    freq(jj) = FreqMax*(jj-1)/NFreq; 
    w=freq(jj)*2*pi; 
 
    % SYSTEM DYNAMIC STIFFNESS 
    KD1 = K - w^2 * M1; 
    KD2 = K - w^2 * M2; 
 
    % FREQUENCY RESPONSE FUNCTION FRF 
    U1 = KD1\F; 
    U2 = KD2\F; 
 
    FRF1(jj) = sqrt(real(1/(ks-w^2*m))^2+imag(1/(ks-w^2*m))^2); 
    FRF2(jj) = sqrt(real(U1(1))^2+imag(U1(1))^2); 
    FRF3(jj) = sqrt(real(U2(1))^2+imag(U2(1))^2); 
 
    var1 = num2str(jj); 
    var2 = num2str(freq(jj)); 
    var3 = num2str(FRF1(jj)); 
    var4 = num2str(FRF2(jj)); 
    var5 = num2str(FRF3(jj)); 
    var6 = strcat( var1 , ',' , var2 , ',' , var3, ',' , var4, ',' , var5); 
 
    disp(var6) 
 
end 
 
figure; plot( freq,FRF1, freq, FRF2, freq, FRF3 ); grid on; title('FRF Multiple 
Springs') 
xlabel('load frequency [Hz]'); ylabel('Module of the Dynamic Flexibility or FRF 
[L/F]'); 

 
 

I.2 FRF For a System with Springs in Parallel 
 

%------------------ Programa FRFDistributedMassWithParallelSpring.m------% 
% Program to compute the dynamic flexibility of a SDOF                   % 
% with different number of springs in series (but same stifffness)       % 
% And different mass distribution                                        % 
% And a parallel spring to provide alternate path to the waves           % 
%------------------------------------------------------------------------% 
clc; clear all; close all 
 
% ************************************ 
% * PROBLEM DATA                     * 
% ************************************ 
 
% Model Data 
ks = 1000.*(1+0.05i);                     % spring stiffness 
m = 10.;                                  % mass 
ma = 50.;                                 % added mass 
 
FreqMax = 6; 
NFreq = 1000; 
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nss = 2;                                 % number of series springs 
nps = 6;                                 % number of parallel springs 
 
% ************************************ 
% * PROBLEM ANALYSIS                 * 
% ************************************ 
 
 
% ARRAYS DEFINITION 
 
K2 = zeros(1,1); 
K3 = zeros(2*nss-1+nps,2*nss-1+nps); 
 
M2 = zeros(1,1); 
M3 = zeros(2*nss-1+nps,2*nss-1+nps); 
 
KD2 = zeros(1,1); 
KD3 = zeros(2*nss-1+nps,2*nss-1+nps); 
 
F2 = zeros(1);                          % Load vector 
F3 = zeros(2*nss-1+nps); 
 
U2 = zeros(1);                        % System Displacement vector 
U3 = zeros(2*nss-1+nps); 
 
FRF1 = zeros(NFreq+1);                  % FRF SDOF 
FRF2 = zeros(NFreq+1);                  % FRF SDOF with Lumped Added Mass 
FRF3 = zeros(NFreq+1);                  % FRF Series Springs and Parallel, 
Distributed Added Mass 
 
freq = zeros(NFreq+1);                  % Frequency data points 
 
% UNIT LOAD ON TOP 
F2(1) = 1.0; 
F3(nss) = 1.0; 
 
 
% STIFFNESS MATRIX 
 
K2(1,1)= ks; 
 
 
K3(1,1) = ks*nss/2; 
K3(2*nss-1,2*nss-1) = ks*nss/2; 
for jj = 2 : (2*nss-1) 
    dof(1) = jj-1; 
    dof(2) = jj; 
    for kk = 1 : 2 
        for ll = 1 : 2 
            row = dof(kk); 
            col = dof(ll); 
            K3(row,col) = K3(row,col) + ks*nss/2*(-1)^(kk+ll); 
        end 
    end 
end 
for jj = 1 : nps 
    dof(1) = nss-1; 
    dof(2) = 2*nss-1+jj; 
    for kk = 1 : 2 
        for ll = 1 : 2 
            row = dof(kk); 
            col = dof(ll); 
            K3(row,col) = K3(row,col) + ks*nss/(2*(nps+1))*(-1)^(kk+ll); 
        end 
    end 
    dof(1) = 2*nss-1+jj; 
    dof(2) = nss+1; 
    for kk = 1 : 2 
        for ll = 1 : 2 
            row = dof(kk); 
            col = dof(ll); 
            K3(row,col) = K3(row,col) + ks*nss/(2*(nps+1))*(-1)^(kk+ll); 
        end 
    end 
end 
 
 
% MASS MATRIX 
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M2(1,1)=m+ma; 
 
M3(nss,nss)=m; 
for jj = 1 : (2*nss-1+nps) 
    M3(jj,jj) = M3(jj,jj) + ma/(2*nss-1+nps); 
end 
 
% FRF FUNCTION 
 
for jj = 1 : NFreq+1 
 
    freq(jj) = FreqMax*(jj-1)/NFreq; 
    w=freq(jj)*2*pi; 
 
    % SYSTEM DYNAMIC STIFFNESS 
    KD2 = K2 - w^2 * M2; 
    KD3 = K3 - w^2 * M3; 
 
    % FREQUENCY RESPONSE FUNCTION FRF 
    U2 = KD2\F2; 
    U3 = KD3\F3; 
 
    FRF1(jj) = sqrt(real(1/(ks-w^2*m))^2+imag(1/(ks-w^2*m))^2); 
    FRF2(jj) = sqrt(real(U2(1))^2+imag(U2(1))^2); 
    FRF3(jj) = sqrt(real(U3(nss))^2+imag(U3(nss))^2); 
 
    var1 = num2str(jj); 
    var2 = num2str(freq(jj)); 
    var3 = num2str(FRF1(jj)); 
    var4 = num2str(FRF2(jj)); 
    var5 = num2str(FRF3(jj)); 
    var6 = strcat( var1 , ',' , var2 , ',' , var3, ',' , var4, ',' , var5); 
 
    disp(var6) 
 
end 
 
 
figure; plot( freq,FRF1, freq, FRF2, freq, FRF3); grid on; title('FRF Multiple 
Springs') 
xlabel('load frequency [Hz]'); ylabel('Module of the Dynamic Flexibility or FRF 
[L/F]'); 

 
 

I.3 FRF For a Pile-Soil System with Springs in Series 
 

%------------------ Programa FRFPileSoilDistributedMass.m----------------% 
% Program to compute the dynamic flexibility of a pile head              % 
% using the equivalent lumped model obtained by regression of the        % 
% dynamic stiffness proposed by Novak for the soil.                      % 
% Then representing the soil as a series of springs and a distributed    % 
% mass among spring nodes                                                % 
%                                                                        % 
%------------------------------------------------------------------------% 
clc; clear all; close all 
 
% ************************************ 
% * PROBLEM DATA                     * 
% ************************************ 
 
% SOIL DATA 
Es = 1728000*(1+0.05i);                  % soil Young's elastic mudulus[lb/ft^2] 
nu = 0.40;                               % soil Poisson's ratio 
D=0.0;                                   % hysteretic damping ratio 
sw = 110.0;                              % soil specific weight [pcf] 
 
% PILE DATA 
ro = 1.0;                                % pile radious 
L = 30.0;                                % pile length 
Ep = 518400000.0*(1+0.05i);              % pile Youngs' modulus 
pw = 150.0;                              % pile specific weight 
 
% GENERAL DATA 
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ne = 15;                                 % number of elements to discretize the 
pile 
g = 32.2;                                % gravity acceleration [ft/sec^2] 
FreqMax = 100;                           % maximum frequency [Hz] 
NFreq = 1000;                            % Number of frequency steps 
 
nss = 10;                                % number of series springs 
ma = 20*20*sw/5;                           % Soil mass to be added, from 3D FEM 
analysis 
                                         % with partial soil mass 
 
% Lumped model coefficients 
ak = 1.3272671; 
am = 0.0510557; 
ac = 3.4246489; 
 
% ************************************ 
% * PROBLEM ANALYSIS                 * 
% ************************************ 
 
% GENERAL COMPUTATION 
sm = sw/g;                              % density of soil [lb.s^2/ft^4] 
G  = Es/(2*(1+nu));                     % soil shear elastic mudulus[lb/ft] 
Vs  = sqrt(G/sm);                       % shear wave velocity [ft/sec] 
Le = L/ne;                              % pile element length 
pm = pw/g;                              % density of pile [lb.s^2/ft^4] 
 
% ARRAYS DEFINITION 
% 
% The KDP, UP and FRFP variables refer to the system reponse without 
% considering soil contribution (just the pile contribution). 
% 
KD = zeros(2*ne,2*ne);                  % System dynamic stiffness matrix 
KDP = zeros(2*ne,2*ne);                 % Pile dynamic stiffness matrix 
 
KP = zeros(2*ne,2*ne);                  % Pile Stiffness matrix 
KS = zeros(2*ne,2*ne);                  % Soil Dynamic Stiffness Matrix 
Ke = zeros(4,4);                        % Pile element stiffness matrix 
 
MP = zeros(2*ne,2*ne);                  % Pile mass matrix 
MS = zeros(2*ne,2*ne);                  % Soil mass matrix 
MT = zeros(2*ne,2*ne);                  % System mass matrix 
 
CS = zeros(2*ne,2*ne);                  % Soil damping matrix 
 
F = zeros(2*ne);                        % Load vector 
 
U = zeros(2*ne);                        % System Displacement vector 
UP = zeros(2*ne);                       % Pile Displacement vector 
 
FRF = zeros(NFreq+1);                   % FRF = top node displacement 
FRFM = zeros(NFreq+1);                  % FRF Module top node displacement 
FRFP = zeros(NFreq+1);                  % FRF Pile top node displacement 
freq = zeros(NFreq+1);                  % Frequency data points 
 
 
% DOF = 2*ne + (nss-1)*ne 
KSSS = zeros((nss+1)*ne, (nss+1)*ne); 
MSSS = zeros((nss+1)*ne, (nss+1)*ne); 
KPSS = zeros((nss+1)*ne, (nss+1)*ne); 
MPSS = zeros((nss+1)*ne, (nss+1)*ne); 
KDSS = zeros((nss+1)*ne, (nss+1)*ne); 
FSS = zeros((nss+1)*ne); 
USS = zeros((nss+1)*ne); 
FRFSS = zeros(NFreq+1); 
 
 
% UNIT LOAD ON TOP 
F(1) = 1000.0;                          % Unit harminic load on top of pile 
                                        % to obtain dynamic flexibility in 
                                        % [ft/Kip] units 
FSS(1) = 1000.0; 
 
% PILE ELEMENT STIFFNESS MATRIX 
Ip = pi*ro^4/4.;                        % Pile crossm sectiuon inertia 
Ap = pi*ro^2;                           % Pile cross section area 
 
k1 = 4*Ep*Ip/Le; 



 

 

320

k2 = 6*Ep*Ip/Le^2; 
k3 = 12*Ep*Ip/Le^3; 
 
Ke(1,1) = k3; 
Ke(2,1) = k2; 
Ke(3,1) = -k3; 
Ke(4,1) = k2; 
 
Ke(1,2) = k2; 
Ke(2,2) = k1; 
Ke(3,2) = -k2; 
Ke(4,2) = k1/2; 
 
Ke(1,3) = -k3; 
Ke(2,3) = -k2; 
Ke(3,3) = k3; 
Ke(4,3) = -k2; 
 
Ke(1,4) = k2; 
Ke(2,4) = k1/2; 
Ke(3,4) = -k2; 
Ke(4,4) = k1; 
 
% PILE STIFFNESS MATRIX 
for jj = 1 : ne-1 
    dof(1) = jj*2-1; 
    dof(2) = jj*2; 
    dof(3) = jj*2+1; 
    dof(4) = jj*2+2; 
    for kk = 1 : 4 
        for ll = 1 : 4 
            row = dof(kk); 
            col = dof(ll); 
            KP(row,col) = KP(row,col) + Ke(kk,ll); 
            KPSS(row,col) = KPSS(row,col) + Ke(kk,ll); 
        end 
    end 
end 
 
dof(1) = ne*2-1; 
dof(2) = ne*2; 
for kk = 1 : 2 
    for ll = 1 : 2 
        row = dof(kk); 
        col = dof(ll); 
        KP(row,col) = KP(row,col) + Ke(kk,ll); 
        KPSS(row,col) = KPSS(row,col) + Ke(kk,ll); 
    end 
end 
 
 
% PILE MASS MATRIX 
MP(1,1) = pm*Ap*Le/2; 
MPSS(1,1) = pm*Ap*Le/2; 
for jj = 2 : ne 
    MP(2*jj-1,2*jj-1) = pm*Ap*Le; 
    MPSS(2*jj-1,2*jj-1) = pm*Ap*Le; 
end 
 
% SOIL STIFFNESS MATRIX, MASS MATRIX, AND DAMPING MATRIX 
KS(1,1) = pi*G*ak*Le/2; 
MS(1,1) = pi*ro^2*sm*am*Le/2; 
CS(1,1) = pi*ro*G/Vs*ac*Le/2; 
 
MSSS(1,1) = ma * Le/2 / (ne*nss); 
 
for jj = 2 : ne 
    KS(2*jj-1,2*jj-1) = pi*G*ak*Le; 
    MS(2*jj-1,2*jj-1) = pi*ro^2*sm*am*Le; 
    CS(2*jj-1,2*jj-1) = pi*ro*G/Vs*ac*Le; 
 
    MSSS(2*jj-1,2*jj-1) = ma * Le / (ne*nss); 
end 
 
for ii = 1 : ne 
 
    if (ii < 2) 
        Ls = Le/2; 



 

 

321

    else 
        Ls = Le; 
    end 
 
    KSSS(ne*2+ (nss-1)*(ii-1)+ 1,ne*2+ (nss-1)*(ii-1)+ 1) = nss *pi*G*ak*Ls; 
 
    for jj = 2 : nss; 
 
       dof(1) = ne*2+ (nss-1)*(ii-1)+ (jj-1); 
       if (jj < nss) 
           dof(2) = dof(1)+1; 
       else 
           dof(2) = (ii-1)*2+1; 
       end 
 
       for kk = 1 : 2 
           for ll = 1 : 2 
               row = dof(kk); 
               col = dof(ll); 
               KSSS(row,col) = KSSS(row,col) + nss *pi*G*ak*Ls*(-1)^(kk+ll); 
           end 
       end 
 
       MSSS(dof(1),dof(1)) = MSSS(dof(1),dof(1)) + ma * Ls / (ne*nss); 
 
    end 
end 
 
 
 
MT = MP + MS; 
 
% FRF FUNCTION 
 
for jj = 1 : NFreq+1 
 
    freq(jj) = FreqMax*(jj-1)/NFreq; 
    w=freq(jj)*2*pi; 
 
    % SYSTEM DYNAMIC STIFFNESS 
    KD = KP + KS + i * w * CS - w^2 * MT; 
    KDP = KP - w^2 * MP; 
    KDSS = KPSS + KSSS - w^2 * (MPSS+MSSS); 
 
    % FREQUENCY RESPONSE FUNCTION FRF 
    U = KD\F; 
    FRFM(jj) = sqrt(real(U(1))^2+imag(U(1))^2); 
    FRF(jj) = U(1); 
 
    UP = KDP\F; 
    FRFP(jj) = sqrt(real(UP(1))^2+imag(UP(1))^2); 
 
    USS = KDSS\FSS; 
    FRFSS(jj) = sqrt(real(USS(1))^2+imag(USS(1))^2); 
 
    var1 = num2str(jj); 
    var2 = num2str(freq(jj)); 
    var3 = num2str(FRFM(jj)); 
    var4 = num2str(FRFSS(jj)); 
    var5 = strcat( var1 , ',' , var2 , ',' , var3, ',' , var4); 
    % save ('FRF.txt', 'var1', 'var2', '-ASCII', '-append') 
    disp(var5) 
 
end 
 
% figure; plot( freq,FRFM ); grid on; title('FRF Using Lumped Model') 
% xlabel('load frequency [Hz]'); ylabel('Module of the Dynamic Flexibility or FRF 
[ft/Kip]'); 
 
figure; plot( freq,FRFM, freq, FRFSS ); grid on; title('FRF Lumped Model vs Series 
of Springs and Masses') 
xlabel('load frequency [Hz]'); ylabel('Module of the Dynamic Flexibility or FRF 
[ft/Kip]'); 
 
% figure; plot( freq, FRFP ); grid on; title('FRF Pile Alone') 
% xlabel('load frequency [Hz]'); ylabel('Module of the Dynamic Flexibility or FRF 
[ft/Kip]'); 
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I.4 FRF For a Pile-Soil System with Springs in Parallel 
 

%------------------ Programa FRFPileSoilDistributedMassParallel.m -------% 
% Program to compute the dynamic flexibility of a pile head              % 
% using the equivalent lumped model obtained by regression of the        % 
% dynamic stiffness proposed by Novak for the soil.                      % 
% Then representing the soil as a two series springs and a set of        % 
% parallel springs, and a distributed mass among spring nodes            % 
%                                                                        % 
%------------------------------------------------------------------------% 
clc; clear all; close all 
 
% ************************************ 
% * PROBLEM DATA                     * 
% ************************************ 
 
% SOIL DATA 
Es = 1728000*(1+0.05i);                  % soil Young's elastic mudulus[lb/ft^2] 
nu = 0.40;                               % soil Poisson's ratio 
D=0.0;                                   % hysteretic damping ratio 
sw = 110.0;                              % soil specific weight [pcf] 
 
% PILE DATA 
ro = 1.0;                                % pile radious 
L = 30.0;                                % pile length 
Ep = 518400000.0*(1+0.05i);              % pile Youngs' modulus 
pw = 150.0;                              % pile specific weight 
 
% GENERAL DATA 
ne = 15;                                 % number of elements to discretize the 
pile 
g = 32.2;                                % gravity acceleration [ft/sec^2] 
FreqMax = 100;                           % maximum frequency [Hz] 
NFreq = 1000;                            % Number of frequency steps 
 
nss = 2 ;                                % number of series springs 
nps = 10 ;                               % number of parallel springs 
ma = 20*20*sw;                           % Soil mass to be added, from 3D FEM 
analysis 
                                         % with partial soil mass 
 
% Lumped model coefficients 
ak = 1.3272671; 
am = 0.0510557; 
ac = 3.4246489; 
 
% ************************************ 
% * PROBLEM ANALYSIS                 * 
% ************************************ 
 
% GENERAL COMPUTATION 
sm = sw/g;                              % density of soil [lb.s^2/ft^4] 
G  = Es/(2*(1+nu));                     % soil shear elastic mudulus[lb/ft] 
Vs  = sqrt(G/sm);                       % shear wave velocity [ft/sec] 
Le = L/ne;                              % pile element length 
pm = pw/g;                              % density of pile [lb.s^2/ft^4] 
 
% ARRAYS DEFINITION 
% 
% The KDP, UP and FRFP variables refer to the system reponse without 
% considering soil contribution (just the pile contribution). 
% 
KD = zeros(2*ne,2*ne);                  % System dynamic stiffness matrix 
KDP = zeros(2*ne,2*ne);                 % Pile dynamic stiffness matrix 
 
KP = zeros(2*ne,2*ne);                  % Pile Stiffness matrix 
KS = zeros(2*ne,2*ne);                  % Soil Dynamic Stiffness Matrix 
Ke = zeros(4,4);                        % Pile element stiffness matrix 
 
MP = zeros(2*ne,2*ne);                  % Pile mass matrix 
MS = zeros(2*ne,2*ne);                  % Soil mass matrix 
MT = zeros(2*ne,2*ne);                  % System mass matrix 
 
CS = zeros(2*ne,2*ne);                  % Soil damping matrix 
 
F = zeros(2*ne);                        % Load vector 
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U = zeros(2*ne);                        % System Displacement vector 
UP = zeros(2*ne);                       % Pile Displacement vector 
 
FRF = zeros(NFreq+1);                   % FRF = top node displacement 
FRFM = zeros(NFreq+1);                  % FRF Module top node displacement 
FRFP = zeros(NFreq+1);                  % FRF Pile top node displacement 
freq = zeros(NFreq+1);                  % Frequency data points 
 
 
TDOF = 2*ne + ((nss-1)*2+ nps)*ne;      % Total DOF 
TSN = (nss-1)*2+ nps + 1;               % Total Spring Nodes per layer 
KSPS = zeros(TDOF, TDOF); 
MSPS = zeros(TDOF, TDOF); 
KPPS = zeros(TDOF, TDOF); 
MPPS = zeros(TDOF, TDOF); 
KDPS = zeros(TDOF, TDOF); 
FPS = zeros(TDOF); 
UPS = zeros(TDOF); 
FRFPS = zeros(NFreq+1); 
 
 
% UNIT LOAD ON TOP 
F(1) = 1000.0;                          % Unit harminic load on top of pile 
                                        % to obtain dynamic flexibility in 
                                        % [ft/Kip] units 
FPS(1) = 1000.0; 
 
% PILE ELEMENT STIFFNESS MATRIX 
Ip = pi*ro^4/4.;                        % Pile crossm sectiuon inertia 
Ap = pi*ro^2;                           % Pile cross section area 
 
k1 = 4*Ep*Ip/Le; 
k2 = 6*Ep*Ip/Le^2; 
k3 = 12*Ep*Ip/Le^3; 
 
Ke(1,1) = k3; 
Ke(2,1) = k2; 
Ke(3,1) = -k3; 
Ke(4,1) = k2; 
 
Ke(1,2) = k2; 
Ke(2,2) = k1; 
Ke(3,2) = -k2; 
Ke(4,2) = k1/2; 
 
Ke(1,3) = -k3; 
Ke(2,3) = -k2; 
Ke(3,3) = k3; 
Ke(4,3) = -k2; 
 
Ke(1,4) = k2; 
Ke(2,4) = k1/2; 
Ke(3,4) = -k2; 
Ke(4,4) = k1; 
 
% PILE STIFFNESS MATRIX 
for jj = 1 : ne-1 
    dof(1) = jj*2-1; 
    dof(2) = jj*2; 
    dof(3) = jj*2+1; 
    dof(4) = jj*2+2; 
    for kk = 1 : 4 
        for ll = 1 : 4 
            row = dof(kk); 
            col = dof(ll); 
            KP(row,col) = KP(row,col) + Ke(kk,ll); 
            KPPS(row,col) = KPPS(row,col) + Ke(kk,ll); 
        end 
    end 
end 
 
dof(1) = ne*2-1; 
dof(2) = ne*2; 
for kk = 1 : 2 
    for ll = 1 : 2 
        row = dof(kk); 
        col = dof(ll); 
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        KP(row,col) = KP(row,col) + Ke(kk,ll); 
        KPPS(row,col) = KPPS(row,col) + Ke(kk,ll); 
    end 
end 
 
 
% PILE MASS MATRIX 
MP(1,1) = pm*Ap*Le/2; 
MPPS(1,1) = pm*Ap*Le/2; 
for jj = 2 : ne 
    MP(2*jj-1,2*jj-1) = pm*Ap*Le; 
    MPPS(2*jj-1,2*jj-1) = pm*Ap*Le; 
end 
 
% SOIL STIFFNESS MATRIX, MASS MATRIX, AND DAMPING MATRIX 
KS(1,1) = pi*G*ak*Le/2; 
MS(1,1) = pi*ro^2*sm*am*Le/2; 
CS(1,1) = pi*ro*G/Vs*ac*Le/2; 
for jj = 2 : ne 
    KS(2*jj-1,2*jj-1) = pi*G*ak*Le; 
    MS(2*jj-1,2*jj-1) = pi*ro^2*sm*am*Le; 
    CS(2*jj-1,2*jj-1) = pi*ro*G/Vs*ac*Le; 
end 
 
% SOIL AS PARALLEL SPRINGS AND MASSES 
for ii = 1 : ne 
 
    if (ii < 2) 
        Ls = Le/2; 
    else 
        Ls = Le; 
    end 
    ksref = pi*G*ak*Ls*nss/2; 
    mref = ma*Ls/TSN; 
 
    %first two series springs nss = 2 
    dof(1) = 2*ne + (2+nps)*(ii-1)+1 ; 
    dof(2) = (ii-1)*2+1; 
    for kk = 1 : 2 
        for ll = 1 : 2 
            row = dof(kk); 
            col = dof(ll); 
            KSPS(row,col) = KSPS(row,col) + ksref; 
        end 
    end 
    KSPS(dof(1),dof(1)) = KSPS(dof(1),dof(1)) + ksref; 
    MSPS(dof(1),dof(1)) = MSPS(dof(1),dof(1)) + mref; 
    MSPS(dof(2),dof(2)) = MSPS(dof(2),dof(2)) + mref; 
 
    %second two series springs 
    dof(1) = 2*ne + (2+nps)*(ii-1)+2 ; 
    dof(2) = (ii-1)*2+1; 
    for kk = 1 : 2 
        for ll = 1 : 2 
            row = dof(kk); 
            col = dof(ll); 
            KSPS(row,col) = KSPS(row,col) + ksref; 
        end 
    end 
    KSPS(dof(1),dof(1)) = KSPS(dof(1),dof(1)) + ksref; 
    MSPS(dof(1),dof(1)) = MSPS(dof(1),dof(1)) + mref; 
 
    %set of parallel springs 
    for jj = 1 : nps 
        dof(1) = 2*ne + (2+nps)*(ii-1)+1; 
        dof(2) = 2*ne + (2+nps)*(ii-1)+2+jj; 
        for kk = 1 : 2 
            for ll = 1 : 2 
                row = dof(kk); 
                col = dof(ll); 
                KSPS(row,col) = KSPS(row,col) + ksref/(nps+1); 
            end 
        end 
        MSPS(dof(2),dof(2)) = MSPS(dof(2),dof(2)) + mref; 
 
        dof(1) = 2*ne + (2+nps)*(ii-1)+2; 
        dof(2) = 2*ne + (2+nps)*(ii-1)+2+jj; 
        for kk = 1 : 2 
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            for ll = 1 : 2 
                row = dof(kk); 
                col = dof(ll); 
                KSPS(row,col) = KSPS(row,col) + ksref/(nps+1); 
            end 
        end 
    end 
 
end 
 
 
 
MT = MP + MS; 
 
% FRF FUNCTION 
 
for jj = 1 : NFreq+1 
 
    freq(jj) = FreqMax*(jj-1)/NFreq; 
    w=freq(jj)*2*pi; 
 
    % SYSTEM DYNAMIC STIFFNESS 
    KD = KP + KS + i * w * CS - w^2 * MT; 
    KDP = KP - w^2 * MP; 
    KDPS = KPPS + KSPS - w^2 * (MPPS+MSPS); 
 
    % FREQUENCY RESPONSE FUNCTION FRF 
    U = KD\F; 
    FRFM(jj) = sqrt(real(U(1))^2+imag(U(1))^2); 
    FRF(jj) = U(1); 
 
    UP = KDP\F; 
    FRFP(jj) = sqrt(real(UP(1))^2+imag(UP(1))^2); 
 
    UPS = KDPS\FPS; 
    FRFPS(jj) = sqrt(real(UPS(1))^2+imag(UPS(1))^2); 
 
    var1 = num2str(jj); 
    var2 = num2str(freq(jj)); 
    var3 = num2str(FRFM(jj)); 
    var4 = num2str(FRFPS(jj)); 
    var5 = strcat( var1 , ',' , var2 , ',' , var3, ',' , var4); 
    % save ('FRF.txt', 'var1', 'var2', '-ASCII', '-append') 
    disp(var5) 
 
end 
 
% figure; plot( freq,FRFM ); grid on; title('FRF Using Lumped Model') 
% xlabel('load frequency [Hz]'); ylabel('Module of the Dynamic Flexibility or FRF 
[ft/Kip]'); 
 
figure; plot( freq,FRFM, freq, FRFPS ); grid on; title('FRF Lumped Model vs Series 
of Springs and Masses') 
xlabel('load frequency [Hz]'); ylabel('Module of the Dynamic Flexibility or FRF 
[ft/Kip]'); 
 
% figure; plot( freq, FRFP ); grid on; title('FRF Pile Alone') 
% xlabel('load frequency [Hz]'); ylabel('Module of the Dynamic Flexibility or FRF 
[ft/Kip]'); 

 
 

I.5 FRF For a Pile-Soil System with Single Spring 
 

%------------------ Programa FRFPileSoilLumpedMass.m---------------------% 
% Program to compute the dynamic flexibility of a pile head              % 
% using the equivalent lumped model obtained by regression of the        % 
% dynamic stiffness proposed by Novak for the soil.                      % 
% Then representing the soil as a single spring and a and a lumped       % 
% mass among pile nodes                                                  % 
%                                                                        % 
%------------------------------------------------------------------------% 
clc; clear all; close all 
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% ************************************ 
% * PROBLEM DATA                     * 
% ************************************ 
 
% SOIL DATA 
Es = 1728000*(1+0.05i);                  % soil Young's elastic mudulus[lb/ft^2] 
nu = 0.40;                               % soil Poisson's ratio 
D=0.0;                                   % hysteretic damping ratio 
sw = 110.0;                              % soil specific weight [pcf] 
 
% PILE DATA 
ro = 1.0;                                % pile radious 
L = 30.0;                                % pile length 
Ep = 518400000.0*(1+0.05i);              % pile Youngs' modulus 
pw = 150.0;                              % pile specific weight 
 
% GENERAL DATA 
ne = 15;                                 % number of elements to discretize the 
pile 
g = 32.2;                                % gravity acceleration [ft/sec^2] 
FreqMax = 100;                           % maximum frequency [Hz] 
NFreq = 1000;                            % Number of frequency steps 
 
nss = 10;                                % number of series springs 
ma = 20*20*sw/5;                           % Soil mass to be added, from 3D FEM 
analysis 
                                         % with partial soil mass 
 
% Lumped model coefficients 
ak = 1.3272671; 
am = 0.0510557; 
ac = 3.4246489; 
 
% ************************************ 
% * PROBLEM ANALYSIS                 * 
% ************************************ 
 
% GENERAL COMPUTATION 
sm = sw/g;                              % density of soil [lb.s^2/ft^4] 
G  = Es/(2*(1+nu));                     % soil shear elastic mudulus[lb/ft] 
Vs  = sqrt(G/sm);                       % shear wave velocity [ft/sec] 
Le = L/ne;                              % pile element length 
pm = pw/g;                              % density of pile [lb.s^2/ft^4] 
 
% ARRAYS DEFINITION 
% 
% The KDP, UP and FRFP variables refer to the system reponse without 
% considering soil contribution (just the pile contribution). 
% 
KD = zeros(2*ne,2*ne);                  % System dynamic stiffness matrix 
KDP = zeros(2*ne,2*ne);                 % Pile dynamic stiffness matrix 
 
KP = zeros(2*ne,2*ne);                  % Pile Stiffness matrix 
KS = zeros(2*ne,2*ne);                  % Soil Dynamic Stiffness Matrix 
Ke = zeros(4,4);                        % Pile element stiffness matrix 
 
MP = zeros(2*ne,2*ne);                  % Pile mass matrix 
MS = zeros(2*ne,2*ne);                  % Soil mass matrix 
MT = zeros(2*ne,2*ne);                  % System mass matrix 
 
CS = zeros(2*ne,2*ne);                  % Soil damping matrix 
 
F = zeros(2*ne);                        % Load vector 
 
U = zeros(2*ne);                        % System Displacement vector 
UP = zeros(2*ne);                       % Pile Displacement vector 
 
FRF = zeros(NFreq+1);                   % FRF = top node displacement 
FRFM = zeros(NFreq+1);                  % FRF Module top node displacement 
FRFP = zeros(NFreq+1);                  % FRF Pile top node displacement 
freq = zeros(NFreq+1);                  % Frequency data points 
 
 
% DOF = 2*ne + (nss-1)*ne 
KSLS = zeros(2*ne,2*ne); 
MSLS = zeros(2*ne,2*ne); 
KPLS = zeros(2*ne,2*ne); 
MPLS = zeros(2*ne,2*ne); 



 

 

327

KDLS = zeros(2*ne,2*ne); 
FLS = zeros(2*ne,2*ne); 
ULS = zeros(2*ne,2*ne); 
FRFLS = zeros(NFreq+1); 
 
 
% UNIT LOAD ON TOP 
F(1) = 1000.0;                          % Unit harminic load on top of pile 
                                        % to obtain dynamic flexibility in 
                                        % [ft/Kip] units 
FLS(1) = 1000.0; 
 
% PILE ELEMENT STIFFNESS MATRIX 
Ip = pi*ro^4/4.;                        % Pile crossm sectiuon inertia 
Ap = pi*ro^2;                           % Pile cross section area 
 
k1 = 4*Ep*Ip/Le; 
k2 = 6*Ep*Ip/Le^2; 
k3 = 12*Ep*Ip/Le^3; 
 
Ke(1,1) = k3; 
Ke(2,1) = k2; 
Ke(3,1) = -k3; 
Ke(4,1) = k2; 
 
Ke(1,2) = k2; 
Ke(2,2) = k1; 
Ke(3,2) = -k2; 
Ke(4,2) = k1/2; 
 
Ke(1,3) = -k3; 
Ke(2,3) = -k2; 
Ke(3,3) = k3; 
Ke(4,3) = -k2; 
 
Ke(1,4) = k2; 
Ke(2,4) = k1/2; 
Ke(3,4) = -k2; 
Ke(4,4) = k1; 
 
% PILE STIFFNESS MATRIX 
for jj = 1 : ne-1 
    dof(1) = jj*2-1; 
    dof(2) = jj*2; 
    dof(3) = jj*2+1; 
    dof(4) = jj*2+2; 
    for kk = 1 : 4 
        for ll = 1 : 4 
            row = dof(kk); 
            col = dof(ll); 
            KP(row,col) = KP(row,col) + Ke(kk,ll); 
            KPLS(row,col) = KPLS(row,col) + Ke(kk,ll); 
        end 
    end 
end 
 
dof(1) = ne*2-1; 
dof(2) = ne*2; 
for kk = 1 : 2 
    for ll = 1 : 2 
        row = dof(kk); 
        col = dof(ll); 
        KP(row,col) = KP(row,col) + Ke(kk,ll); 
        KPLS(row,col) = KPLS(row,col) + Ke(kk,ll); 
    end 
end 
 
 
% PILE MASS MATRIX 
MP(1,1) = pm*Ap*Le/2; 
MPSS(1,1) = pm*Ap*Le/2; 
for jj = 2 : ne 
    MP(2*jj-1,2*jj-1) = pm*Ap*Le; 
    MPLS(2*jj-1,2*jj-1) = pm*Ap*Le; 
end 
 
% SOIL STIFFNESS MATRIX, MASS MATRIX, AND DAMPING MATRIX 
KS(1,1) = pi*G*ak*Le/2; 
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MS(1,1) = pi*ro^2*sm*am*Le/2; 
CS(1,1) = pi*ro*G/Vs*ac*Le/2; 
 
MSLS(1,1) = ma * Le/2; 
 
for jj = 2 : ne 
    KS(2*jj-1,2*jj-1) = pi*G*ak*Le; 
    MS(2*jj-1,2*jj-1) = pi*ro^2*sm*am*Le; 
    CS(2*jj-1,2*jj-1) = pi*ro*G/Vs*ac*Le; 
 
    MSLS(2*jj-1,2*jj-1) = ma * Le; 
    KSLS(2*jj-1,2*jj-1) = pi*G*ak*Le; 
end 
 
MT = MP + MS; 
 
% FRF FUNCTION 
 
for jj = 1 : NFreq+1 
 
    freq(jj) = FreqMax*(jj-1)/NFreq; 
    w=freq(jj)*2*pi; 
 
    % SYSTEM DYNAMIC STIFFNESS 
    KD = KP + KS + i * w * CS - w^2 * MT; 
    KDP = KP - w^2 * MP; 
    KDLS = KPLS + KSLS - w^2 * (MPLS+MSLS); 
 
    % FREQUENCY RESPONSE FUNCTION FRF 
    U = KD\F; 
    FRFM(jj) = sqrt(real(U(1))^2+imag(U(1))^2); 
    FRF(jj) = U(1); 
 
    UP = KDP\F; 
    FRFP(jj) = sqrt(real(UP(1))^2+imag(UP(1))^2); 
 
    ULS = KDLS\FLS; 
    FRFLS(jj) = sqrt(real(ULS(1))^2+imag(ULS(1))^2); 
 
    var1 = num2str(jj); 
    var2 = num2str(freq(jj)); 
    var3 = num2str(FRFM(jj)); 
    var4 = num2str(FRFLS(jj)); 
    var5 = strcat( var1 , ',' , var2 , ',' , var3, ',' , var4); 
    % save ('FRF.txt', 'var1', 'var2', '-ASCII', '-append') 
    disp(var5) 
 
end 
 
% figure; plot( freq,FRFM ); grid on; title('FRF Using Lumped Model') 
% xlabel('load frequency [Hz]'); ylabel('Module of the Dynamic Flexibility or FRF 
[ft/Kip]'); 
 
figure; plot( freq,FRFM, freq, FRFLS ); grid on; title('FRF Lumped Model vs Series 
of Springs and Masses') 
xlabel('load frequency [Hz]'); ylabel('Module of the Dynamic Flexibility or FRF 
[ft/Kip]'); 
 
% figure; plot( freq, FRFP ); grid on; title('FRF Pile Alone') 
% xlabel('load frequency [Hz]'); ylabel('Module of the Dynamic Flexibility or FRF 
[ft/Kip]'); 

 
 
 
 
 
 
 

 


