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ABSTRACT 

The decision making process in modern construction industry is challenging when 

recycle materials are required. One such approach is the replacement of cement by fly 

ash. Unfortunately, this replacement lowers concrete’s compressive strength at its early 

age. To counterbalance this loss, nanosilica is being utilized. The relationships among 

different components upon concrete fabrication require a design of experiments with 

mixtures to model concrete compressive strength. A single criteria optimization strategy 

was adopted to recommend mixture combinations that maximize the compressive 

strength. The results serve as a guide to control the additions of these mineral 

admixtures to design a material that withstands a desired level of compressive strength. 

The second stage of this work encompasses the use of a multiple-criteria optimization 

method to optimize several concrete performance measures simultaneously, namely 

concrete density, porosity, and compressive strength. This approach allows 

recommending mixtures that contain the mineral admixtures, in addition of conventional 

mixtures. 
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RESUMEN 

El proceso de toma de decisiones en la industria de la construcción actual es complejo 

cuando se requieren materiales reciclables. Un enfoque de este tipo es el reemplazo de 

cemento por ‘fly ash’. Desafortunadamente, éste reemplazo reduce la resistencia a 

compresión del concreto durante su edad temprana. Para contrarrestar esta pérdida, 

sílica nano-estructurada está siendo utilizada. La relación entre diferentes componentes 

en la fabricación de concreto requiere un diseño experimental con mezclas para 

modelar la resistencia a compresión del concreto. Una estrategia de optimización de un 

solo criterio fue adoptada para recomendar combinaciones de mezclas que maximicen 

la resistencia a compresión.  Los resultados sirven como guía para controlar las 

adiciones de estos aditivos minerales para así diseñar un material que soporte cierto 

nivel de resistencia a compresión.  La segunda etapa de este trabajo incluye el uso de 

una metodología de optimización multi-criterio para optimizar ciertas medidas de 

desempeño del concreto simultáneamente, llamadas densidad, porosidad, y resistencia 

a compresión. Este enfoque permite recomendar mezclas que contienen los aditivos 

minerales, además de las mezclas convencionales. 
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I. CHAPTER  

1. Introduction 

1.1. Justification 

Since concrete is the most used material in construction, from a sustainability viewpoint 

reduction on concrete fabrication energy costs and CO2 emissions are critical [1], [2]. As 

a consequence, new efforts are dedicated to partly replace cement with mineral 

admixtures (MAs) to help lower the total mix cost while lessening environmental damage.  

In addition, more government institutions require that the modern constructions consider 

their environmental impact. One common requirement to contractors is to use recycled 

materials in constructions that are safe and robust to resist strong winds, high loads, 

and a long range of temperatures, as well as withstand natural hazards. As a 

consequence, research and development divisions of building companies have higher 

costs associated with the characterization of these materials. Also, new technologies 

require the development of high performance materials with specific characteristics. 

Often, the methodologies utilized are not based in proper statistical methodologies.  

Consequently, it takes longer to find appropriate results since more trials are generally 

needed when there is no known physical model that explains the phenomenon [3]. A 

statistical design of experiments (DOE) can be the only feasible alternative to 

characterize new cementitious materials [4]–[7]. DOE can help researchers find the 

desired results faster and, thus, in a more economically efficient manner. Some of the 

advantages of using DOE are that you can build a model that represent your system, 

predictions can be made in areas that there are not experimental data, the significant 
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factors of the system can be identified, and so on. One disadvantage of using DOE, 

perhaps, is that the number of design points can increase too much when the number of 

factors increases.   In our case, DOE can help develop high performance concrete 

containing recycled materials. In other words, this work intends to characterize, model, 

and optimize key performance measures of concrete containing Portland cement (PC), 

fly ash (FA), and nanosilica (nS).  

A variety of DOE methodologies are available in the literature. Depending on the 

application, some methodologies are more suitable than others. In many cases, the 

factor levels considered in a process are independent from each other [8]. However, 

there are cases in which the selection of one factor level will affect directly the value or 

level of other factors. For example, if we consider a system with two factors: percentage 

of FA and percentage of PC; and we want to use 40% of FA in a cement mixture, 

consequently the other 60% will have to be PC to complete the 100% of the cement 

mixture. Also, if there are three mixture factors considered such as PC, FA, and nS; and 

we desire to use 20% of FA and 3% of nS, the percentage of PC will be 77%. As 

mentioned, in these cases the factor levels are related to each other. Hence, the use of a 

factorial design or a central composite design is inadequate. On the other hand, a 

mixture experiment design considers the system factors as the ingredients or 

components of the mixture [8]. In addition, the response variable is a combined result of 

the components considered.  

This work implements a DOE for mixtures to determine the proportional amounts of each 

factor, i.e., PC, FA, nS, to evaluate in the cement mixture. These proportions are 

measured by considering the total cement weight required for the concrete mixture. Yet, 
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before further considerations on the data treatment one needs to understand the 

mechanical behavior of the material. In particular, concrete has many physical and 

mechanical properties of interest. Since concrete final application defines the desired 

characteristics of concrete and the priority order given to them. Even so, there are some 

common concrete performance measures such as compressive strength, tensile 

strength, bulk density, and percentage of voids (porosity). In this work, first we evaluate 

the compressive strength of concrete. This is done by using a DOE for mixtures that 

provides a regression model for predicting this performance measure during the early 

age of concrete containing MAs. Then, more performance measures were considered as 

the concrete bulk density, percentage of voids, and compressive strength. This time a 

multiple-criteria optimization methodology was utilized in order to evaluate the different 

mixtures generated.  

1.2. Objective 

This work focuses primarily on the characterization of concrete containing MAs and its 

further compressive strength optimization. Subsequently, the optimal tradeoffs between 

compressive strength and material density shall be investigated. To this purpose the 

use of DOE, single criteria optimization, and multiple criteria optimization will be 

employed. It is envisioned that the contribution of this work results in a novel strategy to 

make decisions on the replacement of concrete components while taking into account 

the optimization of the mixture.   



4 
 

1.3. Literature Review 

1.3.1. Supplementary Cementing Materials and nanoparticles of Silica  

In the last decade, cement replacement such as supplementary cementing materials 

(SCM) in general, and FA and silica fume (SF) in particular, became of much interest 

[9], [10]. Unfortunately, because of its nature FA is the SCM with the highest variability 

in chemical composition, causing sometimes unpredictable results. Mixtures that 

contain FA are considered as eco-concrete mixtures, which are economically attractive 

and help reduce CO2 emissions upon cement fabrication. To compensate for the 

detrimental effects of reducing the concrete compressive strength, alternatives such as 

addition of calcium directly during the burning coal process and using nS as an additive 

to the cement blend are being studied [11], [12]. Figure 1.1 illustrates the gain in 

compressive strength when nS is added to a PC with MAs mixture compared to the 

compressive strength of a conventional PC mixture (this graph was constructed from 

our experimental data). 
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Figure 1.1 Compressive strength in mixtures bearing different proportions of cement as 
a function of the mixture age. 

 

The use of nS in addition to raise the concrete compressive strength also accelerates 

the concrete hardening process, increases its density, reduces its porosity, and 

improves the binding among cement paste and aggregates [13]–[16]. However, it is not 

well known how much compressive strength is earned when specific amounts of nS are 

used.  

After adding specific levels of FA and nS to concrete mixtures some researchers were 

able to analyze the resulting compressive strength for each combination of those levels 

[9]–[13], [15], [17]. However, that approach did not consider the possible interaction 

among the PC, FA, and nS added. Some researchers used linear regression models to 

make predictions on the compressive strength of the mixture as part of an observational 
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study [9].  This approach allows identifying the significant terms including the 

interactions terms, however causality cannot be established.   

To assess this, we deemed necessary to integrate a DOE to manipulate the factors in 

order to identify their effect on the compressive strength [4]–[7]. This strategy allows 

evaluating the use of these materials (FA and nS), studying their interaction, and may 

establish a relationship between the factors and response variable in the concrete 

mixtures. Hence, this work proposes a statistical design of experiments for mixtures to 

fully characterize the effect of FA and nS in concrete compressive strength at its early 

age.   

 

1.3.2. Multiple Criteria Optimization 

The decision making process is an important issue in the construction industry [18]. This 

industry has to deal with the environmental aspect and design factors at the same time. 

The majority of the elements related to this field are in conflicting aspects, since the 

designs that used recycled materials are not necessarily the more robust.  

Often, research investigations related to concrete mixture report a breadth of physical 

and mechanical properties of the specimens. Some of them are fresh density, bulk 

density, slump, compressive strength, split tensile strength, flexural strength, 

percentage of voids, water absorption, shrinkage, consistency, among others [11], [16], 

[19]–[24]. Depending of the application, some performance measures are more 

important than others. For that reason, researchers just collect and analyze the 

performance measures of interest.   
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Different methodologies are utilized to independently analyze the results of compressive 

strength, density, and percentage of voids. Usually, regression models are used in order 

to predict the performance measures mentioned [6], [25]–[27]. Sometimes, neural 

networks are also employed to predict these concrete characteristics [6], [26].  In 

addition, different types of graphs are used to compare the characteristics of the 

mixtures. Although a visual representation of the results facilitates the comparison 

process, other statistical methodologies can be used to compare the mixtures from a 

mathematical viewpoint and not subjectively. Therefore, a variety of optimization 

approaches have been used to find the best possible solutions in a single objective [4], 

[28]–[33]. Final recommendations are made often based on each individual 

performance measures considered. Recommendations based on all the performance 

measures of interest to the user are more appropriate; when compared to just select a 

single solution according to the measured objective.  

To address this situation, different approaches of multiple criteria optimization have 

been used. One of the methods is the TOPSIS-based Taguchi optimization to regulate 

the mixture proportions [34]. Similarly, the Taguchi off-line method was utilized to 

analyze the residual compressive strength of post-fire high performance concrete [35]. 

The 𝜀-constraint method was utilized to optimize the design of the reinforced concrete 

frames [36]. Also, this method was used to resolve a multi-objective reliability-based 

optimum (MORBO) problem of pre-stressed concrete beams [37]. In order to optimize 

the high strength concrete parameters, a multi-objective optimization was solved by 

using a Genetic Algorithm (GA) employing weighted and hierarchical methods [26]. The 

desirability function approach was used to reinforce concrete with carbon nanofiber and 
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polyvinyl alcohol and optimize several concrete properties [38]. Nevertheless, most of 

these methods require target values or decompose the multi-objective problem into a 

single objective optimization problem to find the optimal set. The methodology 

employed in this work does not involve any of the previously mentioned issues, and has 

been developed by the Applied Optimization Group at UPRM throughout the time [39]–

[41]. Instead, it provides us the Pareto-optimal solution set just defining the objectives 

and its respective (maximization/minimization) directions.  

1.4. Scope and General Organization of the Thesis 

The scope of this thesis encompasses the use of different optimization strategies in 

order to analyze several concrete mixtures in terms of compressive strength at early 

age. A statistical design of experiments was employed to determine the mixture 

proportions to evaluate. In addition, as part of a second stage, we utilized multiple 

criteria optimization to evaluate different performance measures of the material. These 

physical and mechanical properties are bulk density, percentage of voids, and 

compressive strength. 
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II. CHAPTER 

2. Design of Experiments and Optimization Strategies for Cement 

Mixtures Involving Portland Cement, Fly Ash, and Nanosilica 

2.1. Introduction 

The most common MAsalso known as supplementary cementing materialsthat are 

often added to concrete mixtures are FA and SF [11].  FA is a manufacturing waste 

produced during coal burning and is the most frequently used SMC to replace PC in 

concrete mixtures [11]. Researchers found that after 90 days FA increases the strength 

and durability of concrete, and the resulting product is more environmentally-friendly and 

less expensive than cement [9], [11], [42], [43]. However, in some cases when FA class 

F is used as SCM, the material loses compressive strength at early age due to a slower 

reaction [42]. The FA physicochemical properties effect such slow reaction because it 

requires a pozzolanic reaction to form compounds that bear cementitious properties [42]. 

This reaction requires more days than the hydration process of the conventional mixes. 

In addition, a concrete mixture that contains SCM requires more curing days than 

conventional mixtures. The construction industry is fast paced and, for this reason, a 

concrete mixture with MAs translates into economic losses. This situation can represent 

more days to remove the woodwork that serves as support for the structure as the 

concrete dries and other ancillary costs.  

When SCM is present, the “early age” scale can extend to more than 28 days, as it is 

usually considered for regular concrete with PC; for example, when fly ash is used, the 

early age can be considered to extend up to 56 days. However, due to the scope of the 
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present work, for the ensuing experiment we shall call “early age” the first 28 days of 

curing.   

In this first stage, the present work studies the strengthening of concrete during the 

early age to avoid accidents resulting from structure weakness by using nS to 

compensate for the loss of concrete compressive strength caused by the cement 

replacement. Additionally, this work proposes the alternative use of nS as an 

accelerator of the concrete hardening process, resulting in higher compressive strength 

at early age and long durability thereupon. The objective is, therefore, to shed more light 

on the understanding of compressive strength gains when adding nS to a concrete 

mixture using cement with MAs, as opposed to perfectly reproducing the behavior of a 

conventional mixture with just Portland cement. 

 

2.2. Background 

2.2.1. Statistical Design of Experiments (DOE) 

Well-planned experiments play an important role in the characterization and 

optimization of processes; hence, the process of designing an experiment is critical. It 

requires time and knowledge to propose an experimental plan with foreseeable 

strengths and contingency actions that effectively leads to answer materials’ research 

questions.  

An experiment can be defined as the manipulation of controllable variables of a 

system/process to measure their effect on responses of interest in such system [44]. As 

a consequence, there are different designs to conduct experiments. For example, the 2k 

experiments evaluate k factors in two levels each one. These experiments are helpful 
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as screening designs since they are useful to identify important factors in a system. 

Specifically, at the start of a study where there are a lot of factors that may be 

considered, a reduction on the number of factors to evaluate is necessary.  However, 

when the response surface of the system under analysis is suspected or known to be 

non-linear, it is necessary to employ other types of designs.  

Such is the case of this work where, due to the nature of the process, a design of 

experiments with mixtures was performed. Here, the factors or components of the 

mixture (i.e., PC, FA, and nS) depend on the values selected for the other components 

and the response is a combination of the proportions of each component [8].  Since 

each component of the cement mixture has both lower and upper control limits, a DOE 

with mixtures employing extreme vertices was selected.  Figure 2.1 represents a 

mixture design with extreme vertices, where 𝑈𝑖 and  𝐿𝑖 are the upper and lower control 

limits, respectively. 
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Figure 2.1 Example of a mixture experiment design with extreme vertices. 
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2.2.2.  Single Objective Optimization 

Optimization is a useful tool in decision making processes. Currently, there exists a 

variety of methods to optimize systems that can find the best system conditions or 

provide the researcher with a probability of being close to an optimum [45], [46].  The 

best known optimization method is, perhaps, the simplex, which is only applicable to 

linear problems [8], [44]. In a feasible problem, the simplex method tries to move from 

one corner point to a better corner point from the feasible space region given by the 

constraints until the optimum solution is found or declared to be unbound. A global 

optimal solution or a series of equivalent optimal solutions result from the application of 

the simplex method [45].  

 

Since the objective function in this work–as explained later–is nonlinear, other 

optimization methods had to be employed. Optimization formulations were coded in 

Microsoft Excel ® and approached with the MS Solver through the Generalized 

Reduced Gradient (GRG2) Algorithm for nonlinear problems. This algorithm allows 

converging to solutions that meet all the constraints while using multi-starting points to 

improve the chances of finding a competitive solution. This process is an iterative 

method that utilizes the derivatives and gradients to search for the improvement of the 

objective function through the manipulation of the declared decision variables [47].  
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2.3. Methodology 

2.3.1. Design of Experiment for Mixtures 

The design of experiments for mixtures was used to study the effect of coarse and fine 

aggregate, water, and PC as components of the concrete mixture. Since the main 

interest has been the cement replacement, our work focused specifically on the cement 

mixture that is added to the final concrete mixture (Figure 2.2).   

 
Figure 2.2 Experiment design with mixtures including the cement mix within the 
concrete mixture. 

 

As previously mentioned, the design uses PC, FA, and nS as cement mixture 

components where the sum of all component proportions should equal one. The lower 

and upper experimental limits of each component were as follows:  

a) FA varied from 0% to 40%, which is a common upper limit in industrial practice 

[48]–[50]. 
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b) The nS amount was varied from 0% to 6% since more than 6% is not 

recommended because it may lead to chemical incompatibilities due to dispersion 

problems [14].  

c) The PC level was varied from 54% to 100% (Table 2.1).  

 

Therefore, a design of experiments based on mixtures with extreme vertices was 

considered [8].  The feasible region can be observed in Figure 2.3. 

Table 2.1 Lower and upper proportion limits for the cement mixture components. 

 

 

 

 

 

Additionally, the water-to-binder (w/b) ratio was included in the experiment as an 

external factor or decision variable in two levels: 0.3 (low) and 0.5 (high); this allowed 

varying the amount of water in the mixture. These levels reflected the limits usually 

found in the industrial fabrication of structural concrete [17].  The points in the 

experimental design prescribe the proportions for each mixture to be evaluated (Figure 

2.3). Three replicates were measured on each design point while the total number of 

design points considering the w/b factor was eighteen.  

The number of replicates was predetermined to three in this experiment according to 

the literature [51]. Afterwards, that sample size was evaluated statistically through the 

use of an operating characteristic curve because the standard followed do not specify 

the power and size difference that the experiment will have. 

Mixture Components Lower Limit Upper Limit 

Portland cement 54% 100% 

Fly ash 0% 40% 

Nanosilica 0% 6% 
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PC

0

1

FA

1

0

nS

1

0

PC

0.54

1.00

FA

0.46

0.00

nS

0.46

0.00

Equation 1 presents the cubic regression model fitted to study the compressive 

strength, i.e., the response variable, for different days. 

Yt =  β̂1PC + β̂2FA + β̂3nS + β̂4PC ∗ FA + β̂5PC ∗ nS + β̂6FA ∗ nS + β̂7PC ∗ FA ∗ nS + β̂8PC ∗
w

b
+ β̂9FA ∗

w

b
+    β̂10nS ∗

w

b
+ β̂11PC ∗ FA ∗

w

b
+  β̂12PC ∗ nS ∗

w

b
   + β̂13FA ∗ nS ∗

w

b
+ β̂14PC ∗

FA ∗ nS ∗
w

b
                                                                                                                                                                                          

(1)  

 
where PC, FA, and nS represent the Portland cement, fly ash, and nanosilica 

proportions, respectively, added to the concrete mixture; w/b is the value of water-to-

binder ratio used in the mixture, and Yt is the compressive strength measured in MPa 

on the t-th day of age.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Mixture proportions (design points) evaluated within the constrained 
experimental region. 
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2.3.2. Experimental Conditions  

A preliminary granulometry study allowed establishing the experimental proportions of 

the aggregates: 30% of limestone, 35% of processed-aggregate, and 35% of clean 

beach sand. As mentioned, PC type I was utilized to prepare the mixtures.  

Furthermore, mixture behavior (i.e., segregation, bleeding, slump loss, and consistency) 

was taken into account to determine the quantity of polycarboxylate superplasticizer 

(SP) necessary for each mixture.  

Additionally, while concrete strength upon the hardening state is important, one cannot 

disregard the workability during the fresh state. When nS is added to the mixture, 

additional water is required [14]. As a consequence, it was important to study and 

analyze the behavior and workability of the mixture during its fresh state when two w/b 

ratio were utilized. Also, the two w/b ratios allowed observing the reactability of the 

materials under different aqueous states. In addition to water, SP was needed to 

maintain the workability of the mixture for a longer time.  The mixture workability was 

assessed in the slump analysis of the mixtures. 

 

2.3.3.  Materials 

The materials utilized in this work are listed and described in this section. The origin and 

suppliers of these materials were the same during the execution of this first phase of the 

experiment to minimize the dispersion due to slight variations in chemical composition 

and the nature of the materials used.  
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Aggregates 

Limestone was used as coarse aggregate and its maximum diameter was 9.5 mm. In 

addition, the processed-aggregate had a maximum diameter of 4.8 mm. The fineness 

modulus of the fine aggregate, i.e. beach sand, was 2.02. 

 

Table 2.2 Properties of the aggregates. 

Aggregate 
Apparent 
Specific 
Gravity 

Specific 
Gravity 

(Oven-dry) 

Specific 
Gravity 
(SSD) 

Absorption 
(%) 

Unit 
Weight 
(kg/m3) 

Limestone 2.6 2.4 2.5 3.5 1510 

Processed-
aggregate 2.5 2.0 2.2 9.0 1591 

Beach Sand 2.7 2.5 2.6 3.1 1623 

 

Portland Cement 

The PC Type I utilized to prepare the mixtures had a specific gravity of 2.9. 

Fly Ash 

The FA class F used for the mixtures possessed a specific gravity of 2.22.  

Nanosilica 

The nS used in this work was originally suspended in an aqueous solution, with a mean 

particle size of 23.22 nm. This was provided by Nissan Chemical Industries.   

Superplasticizer  

The polycarboxylate superplasticizer used was the ADVA 575 and was obtained from 

Instron in PR. 

Water 

The water used to prepare the mixtures was tap water at room temperature.  
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2.3.4. Fabrication and Testing Procedure 

A Blakeslee mixer machine was utilized to mix the concrete components (Figure 2.4 

and Figure 2.5). The aggregates were first introduced in the mixer for 0.5 min at 60 rpm 

followed by half of the required water. PC was dry-mixed with FA (when necessary) and 

then added to the mixer for 0.5 min at 60 rpm. The nS and SP were diluted in water in 

order to obtain a uniform distribution of the particles throughout the mixture and added 

to the mixer (when used) for 5 min at 120 rpm. Fifteen cylinders were filled using the 

rodding method [51]. The dimensions of the test cylinders prepared for each mixture 

had 50 mm in diameter and 100 mm in length [52](Figure 2.6).   

 

Figure 2.4 Blakeslee Mixer Machine utilized. 
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Figure 2.5 Fresh mixture example. 

 

Figure 2.6 Concrete cylinders filled with eight mixtures. 

 

Three cylinders were tested for compressive strength at 1, 3, 7, 14, and 28 days of 

curing (Figure 2.7 and Figure 2.8). The compression tests were performed in a 3000 kN 

FORNEY Universal Tester machine according to American Society for Testing and 

Materials (ASTM) International standards [53]. The first three cylinders were demolded 

and then tested. The other ones were placed in limewater until tested at normal curing 
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conditions (20-23ºC and relative humidity=100%). The temperature (23-25ºC) in the 

experiment was deemed constant. 

 

Figure 2.7 Concrete cylinder in the 3000 kN FORNEY Universal Tester machine. 

 

Figure 2.8 Concrete cylinder after the compression test. 
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2.4. DOE Results and Discussion  

The mixtures with higher compressive strength were the ones bearing w/b ratio of 0.3 

(Figure 2.9); the range in compressive strength obtained was 11.51 MPa (at 1day) to 

86.32 MPa (at 28 days). The less resistant ones were those with a w/b ratio of 0.5 

(Figure 2.10), ranging from 2.79 MPa (at 1 day) to 49.85 MPa (at 28 days). The 

individual mixtures with higher compressive strength were those containing only PC and 

nS. These two mixtures, that is mix 13 and 12, exceeded the control one (mix 7), which 

only had PC; all these mixtures contained a w/b of 0.3 (Table 2.3). This behavior 

remained the same for both w/b ratio levels. However, since the interest of this work 

was the cement replacement by FA, these mixtures were not considered practical (out 

of scope). In other words, a practical mixture is considered to be a mixture that contains 

the manufacturing waste FA with the highest compressive strength. Mix number 11 and 

15 could be mentioned as mixtures of interest. Some characteristics of these mixtures 

are that they contain FA, include silica nanoparticles, exceed 70 MPa after day 28, and 

have a w/b ratio of 0.3.  
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Table 2.3 Average compressive strength of the three replicates in each testing day. 

  

Mix 
Num. 

Portland 
Cement 

Fly 
Ash 

nano-
Silica 

water/ Compressive Strength 

 

binder Y1  St. Dev. Y3 St. Dev. Y7 St. Dev. Y14 St. Dev. Y28 St. Dev. 

  (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) 

 
1 0.94 0.00 0.06 0.5 14.98 0.79 30.45 1.81 47.38 1.15 48.56 0.78 48.81 1.24 

 
2 0.80 0.20 0.00 0.3 22.20 0.62 38.20 2.00 49.67 1.95 53.76 1.03 67.50 3.37 

 
3 0.54 0.40 0.06 0.5 4.25 0.35 12.90 1.47 18.33 3.80 20.31 2.70 26.90 2.05 

 
4 0.57 0.40 0.03 0.5 2.98 0.16 7.83 0.27 15.67 0.83 16.62 1.80 21.49 0.67 

 
5 0.60 0.40 0.00 0.5 2.98 0.11 6.19 0.11 10.00 0.52 14.59 1.11 19.87 0.20 

 
6 1.00 0.00 0.00 0.5 8.41 0.49 19.27 0.36 27.04 0.09 27.90 0.61 32.06 1.86 

Control 7 1.00 0.00 0.00 0.3 32.03 0.84 52.09 2.47 64.01 3.70 68.50 1.22 78.58 1.66 

 
8 0.60 0.40 0.00 0.3 16.46 0.70 23.68 0.76 32.11 1.26 43.70 2.42 54.70 2.66 

 
9 0.57 0.40 0.03 0.3 16.40 0.28 28.14 0.57 45.77 0.98 51.19 2.63 60.94 2.54 

 
10 0.80 0.20 0.00 0.5 5.62 0.16 12.39 0.16 16.87 0.26 21.65 1.98 28.89 0.61 

 
11 0.74 0.20 0.06 0.3 24.92 0.71 51.52 1.53 63.90 1.59 68.44 2.90 75.31 1.39 

 
12 0.97 0.00 0.03 0.3 30.59 0.08 55.65 1.18 66.99 2.80 75.05 2.19 80.04 0.54 

Out of 
scope 

13 0.94 0.00 0.06 0.3 30.56 0.52 58.58 2.55 73.15 3.02 80.51 1.53 84.43 2.55 

 
14 0.97 0.00 0.03 0.5 11.90 0.24 25.79 0.45 33.08 0.71 37.68 0.61 41.92 1.04 

Mix of 
interest 

15 0.77 0.20 0.03 0.3 21.35 0.02 44.52 0.82 58.44 1.69 67.02 2.05 76.34 3.32 

 
16 0.54 0.40 0.06 0.3 12.24 0.64 36.63 0.55 52.42 1.59 58.24 0.85 64.78 3.04 

 
17 0.77 0.20 0.03 0.5 6.46 0.07 16.60 0.85 25.14 0.42 31.88 1.15 31.66 1.70 

  18 0.74 0.20 0.06 0.5 6.94 0.54 18.73 1.24 30.23 0.18 33.08 1.00 37.43 1.62 

Yt correspond to the compressive strength measurement taken in day t.
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Figure 2.9 Compressive strength of concrete cylinders fabricated with a w/b ratio of 0.3 
after curing. 
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Figure 2.10 Compressive strength of concrete cylinders fabricated with a with w/b ratio 
of 0.5 after curing. 

 

On the other hand, the standard deviation values between the three replicates were 

acceptable. These values were below 3.80 MPa (Table 2.3); and in the construction 

industry differences in mixtures are considered more than approximately 7 MPa (1,000 

psi). Nevertheless, a Bartlett test for the standard deviation values was used to verify if 

the variability reported by the different levels of testing days was the same across the 

concrete age evaluated (Figure 2.11). The significance level selected was 0.05; the p-

value obtained from the test was below this value (0.000). Therefore, there is a 
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difference in terms of the variability reported by testing day. According to the graph, the 

standard deviation values from day 1 were smaller than the others.  

28
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e
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a
y

95% Bonferroni Confidence Intervals for StDevs

Test Statistic 28.38

P-Value 0.000

Test Statistic 4.24

P-Value 0.004

Bartlett's Test

Levene's Test

 

Figure 2.11 Bartlett test performed to the standard deviation values from each testing 
day. 

 

After completing the mixture analysis, we identified the interaction terms that 

significantly affected the response variable as a function of the age in days. To this 

purpose, we used Minitab ® 16.2.20 to analyze the DOE results.  Y1 in our experiments 

corresponded to the compressive strength measurements taken in day 1, Y3 for those in 

day 3 and so on. The regression models obtained for compressive strength are 

presented in the following tables. A new set of components were defined in order to 

make easier the model fitting over the constrained region, these components are known 

as pseudocomponents [8]. They were utilized to reduce the high levels of 

multicollinearity that usually have the constrained design spaces. Also the 

pseudocomponents help to reduce the inflated variance of the coefficients estimators. 
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According to a constrained DOE for mixtures [8], the sum of the components proportion 

equals 1 (Equation 2). 

𝑥1 + 𝑥2 + ⋯ + 𝑥𝑞 = 1 

𝐿𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑖,     𝑖 = 1,2, … , 𝑞 
 (2) 

 

where the lower bound constraint  𝐿𝑖 ≥ 0 and the upper bound constraint 𝑈𝑖 ≤ 1 for all 𝑞 

that is the number of components of the cement mixture (PC, FA, and nS). 

    We used Equations 3 and 4 to convert the original proportions 𝑥𝑖 to 

pseudocomponents. 

𝑋𝑖 =
𝑥𝑖 − 𝐿𝑖

1 − 𝐿
 

(3) 
 

𝐿 = ∑ 𝐿𝑖 < 1𝑞
𝑖=1 , 

(4) 
 

where 𝑋𝑖 is the pseudocomponent and 𝐿 is the sum the lower constraints. 

The regression models obtained from Minitab for each testing day are presented in the 
following tables: Table 2.4,  

Table 2.5,  

Table 2.6, Table 2.7, and Table 2.8) with their respective p-values for each interaction 

terms. The statistical level of significance was set at =0.10 for this specific analysis. 

The terms that were statistically significant in all the models were the interactions 

between PC and w/b ratio and FA with w/b ratio. However, most of the interactions 

became statistically significant at least one time within the age of concrete evaluated. 

The only term that was not statistically significant during the concrete age evaluated 

was the interaction between nS and w/b. In order to decide if it was appropriate to use a 
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model without this term, the adequacy of the models was verified. First, the analyses 

were performed on the regression models containing all the terms and then the 

interaction between nS and w/b was removed from the models. 

Table 2.4 Estimated regression coefficients for Y1 in pseudocomponents. 

Term Coef SE Coef T P VIF 

PC 20.3 0.300 * * 3.1 

FA 9.5 0.468 * * 6.3 

nS 101.9 45.995 * * 1374.7 

PC*FA -8.1 1.841 -4.39 0.000 5.5 

PC*nS -71.7 52.946 -1.35 0.183 596.1 

FA*nS -115.2 53.517 -2.15 0.037 586.3 

PC*FA*nS 64.5 21.768 2.96 0.005 4.0 

PC*w/b -11.8 0.300 -39.49 0.000 3.1 

FA*w/b -7.6 0.468 -16.13 0.000 6.3 

nS*w/b -66.6 45.995 -1.45 0.155 1374.7 

PC*FA*w/b 8.6 1.841 4.64 0.000 5.5 

PC*nS*w/b 99.0 52.946 1.87 0.069 596.1 

FA*nS*w/b 96.3 53.517 1.80 0.080 586.3 

PC*FA*nS*w/b -172.7 21.768 -7.94 0.000 4.0 

 

Table 2.5 Estimated regression coefficients for Y3 in pseudocomponents. 

Term Coef SE Coef T P VIF 

PC 35.9 0.541 * * 3.1 

FA 10.8 0.846 * * 6.3 

nS 167.6 83.043 * * 1374.7 

PC*FA 2.6 3.324 0.79 0.434 5.5 

PC*nS -72.4 95.592 -0.76 0.453 596.1 

FA*nS -61.0 96.623 -0.63 0.532 586.3 

PC*FA*nS 4.9 39.301 0.12 0.902 4.0 

PC*w/b -16.5 0.541 -30.53 0.000 3.1 

FA*w/b -7.4 0.846 -8.80 0.000 6.3 

nS*w/b -123.4 83.043 -1.49 0.145 1374.7 

PC*FA*w/b -1.0 3.324 -0.31 0.759 5.5 

PC*nS*w/b 143.5 95.592 1.50 0.141 596.1 

FA*nS*w/b 94.3 96.623 0.98 0.335 586.3 

PC*FA*nS*w/b -123.9 39.301 -3.15 0.003 4.0 
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Table 2.6 Estimated regression coefficients for Y7 in pseudocomponents. 

Term Coef SE Coef T P VIF 

PC 44.6 0.863 * * 3.1 

FA 18.4 1.349 * * 6.3 

nS 69.5 132.489 * * 1374.7 

PC*FA 0.9 5.303 0.18 0.860 5.5 

PC*nS 98.9 152.511 0.65 0.520 596.1 

FA*nS 96.2 154.156 0.62 0.536 586.3 

PC*FA*nS 2.9 62.702 0.05 0.964 4.0 

PC*w/b -18.6 0.863 -21.62 0.000 3.1 

FA*w/b -9.1 1.349 -6.75 0.000 6.3 

nS*w/b 178.0 132.489 1.34 0.187 1374.7 

PC*FA*w/b -6.8 5.303 -1.28 0.207 5.5 

PC*nS*w/b -176.9 152.511 -1.16 0.253 596.1 

FA*nS*w/b -285.9 154.156 -1.85 0.071 586.3 

PC*FA*nS*w/b -7.8 62.702 -0.12 0.901 4.0 

 

 

Table 2.7 Estimated regression coefficients for Y14 in pseudocomponents. 

Term Coef SE Coef T P VIF 

PC 47.6 0.844 * * 3.1 

FA 25.0 1.321 * * 6.3 

nS -164.6 129.698 * * 1374.7 

PC*FA 4.4 5.191 0.85 0.398 5.5 

PC*nS 388.2 149.298 2.60 0.013 596.1 

FA*nS 337.9 150.908 2.24 0.031 586.3 

PC*FA*nS -8.5 61.381 -0.14 0.890 4.0 

PC*w/b -20.3 0.844 -24.06 0.000 3.1 

FA*w/b -14.5 1.321 -10.98 0.000 6.3 

nS*w/b 110.4 129.698 0.85 0.400 1374.7 

PC*FA*w/b 6.9 5.191 1.32 0.193 5.5 

PC*nS*w/b -112.3 149.298 -0.75 0.456 596.1 

FA*nS*w/b -182.5 150.908 -1.21 0.234 586.3 

PC*FA*nS*w/b -62.7 61.381 -1.02 0.313 4.0 
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Table 2.8 Estimated regression coefficients for Y28 in pseudocomponents. 

Term Coef SE Coef T P VIF 

PC 55.1 0.871 * * 3.1 

FA 32.6 1.363 * * 6.3 

nS 21.0 133.856 * * 1374.7 

PC*FA 13.4 5.358 2.50 0.017 5.5 

PC*nS 139.0 154.084 0.90 0.372 596.1 

FA*nS 128.1 155.746 0.82 0.416 586.3 

PC*FA*nS -71.6 63.349 -1.13 0.265 4.0 

PC*w/b -22.5 0.871 -25.84 0.000 3.1 

FA*w/b -17.0 1.363 -12.44 0.000 6.3 

nS*w/b 213.6 133.856 1.60 0.118 1374.7 

PC*FA*w/b 0.9 5.358 0.17 0.863 5.5 

PC*nS*w/b -222.3 154.084 -1.44 0.157 596.1 

FA*nS*w/b -282.9 155.746 -1.82 0.077 586.3 

PC*FA*nS*w/b -81.6 63.349 -1.29 0.205 4.0 

 

 

In order to study the adequacy of the models, some assumptions of regression 

analysis have to be checked. This validation is important since violations to these 

assumptions can result in an unstable model [54]. Therefore a normality test, equal 

variances test, and independence test were performed to the model residuals to verify 

the model adequacy. The residual analysis for the regression models containing all the 

terms shows that all the assumptions were satisfied (Table 2.9). The statistical test used 

to evaluate the residuals normality was the Kolmogorov-Smirnov. In addition, the Runs 

test was utilized to evaluate the independence of the residuals. Finally, Bartlett’s test 

was employed as the test for equal variances. All p-values obtained were above the 

chosen significance level (0.05); therefore the basic assumptions were satisfied.  
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Table 2.9 Model adequacy tests for residuals. 

Residuals 
for: 

Normality Test 
Independence 

Test 
Test for Equal 

Variances 

Kolmogorov-
Smirnov     

Runs Test Bartlett's Test 

p-value p-value p-value 

Y1 0.146 0.575 0.678 

Y3 0.150 0.101 0.929 

Y7 0.150 0.101 0.988 

Y14 0.150 0.791 0.999 

Y28 0.150 0.155 1.000 

 

The values of standard deviation obtained are acceptable in the scale evaluated, 

approximately ± 2 MPa (Table 2.10). The variability of the compressive strength is well 

explained by the model considered since the values of all the R-square, R-square 

predicted, and R-square adjusted are greater than 98.23% (Table 2.10). Consequently, 

the cubic regression model is useful to predict the average concrete compressive 

strength at the different ages evaluated.  

 

Table 2.10 Summary of the variation and adjustment of the models.   

Model 

Standard 
Deviation 

Model Adjustment 

S R-Sq 
R-

Sq(pred) 
R-Sq(adj) 

Y1 0.768 99.53% 99.15% 99.37% 

Y3 1.386 99.48% 99.01% 99.31% 

Y7 2.211 99.04% 98.23% 98.73% 

Y14 2.164 99.18% 98.56% 98.92% 

Y28 2.234 99.22% 98.57% 98.96% 

 

On the other hand, the adequacy analyses to the regression models after removing the 

interaction between nS and w/b from the models are presented in Table 2.11. The 
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reduced regression models obtained from Minitab are presented in Appendix 2. In the 

normality test for the reduced models, the resulting p-value for Y7  fell below the 

significant level established (0.05). Consequently, the residuals are not normally 

distributed implicating that the model can be underfitted. Therefore, the previous model 

can be considered reasonable because it adequately explains the data variability 

satisfying the basic assumptions. This fact supported our decision to keep all the terms 

in the regression models.  

 

Table 2.11 Model adequacy tests for models without the insignificant term. 

Residuals 
for: 

Normality Test 
Independence 

Test 
Test for Equal 

Variances 

Kolmogorov-
Smirnov     

Runs Test Bartlett's Test 

P-value P-value P-value 

Y1 0.049 0.415 0.678 

Y3 0.150 0.276 0.929 

Y7 0.150 0.589 0.988 

Y14 0.150 0.431 0.999 

Y28 0.150 0.783 1.000 

 

After removing the insignificant term, the R-square’s of the models are above 98.24% 

(Table 2.12). This means that these models can predict well the compressive strength 

of the mixtures evaluated. The standard deviations of the models are almost the same 

than the models with all the terms. However, the models that included all the terms were 

kept and used from here on since all the adequacy tests were acceptable. 
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Table 2.12 Adjustment of the models without the insignificant term. 

Model 

Standard 
Deviation 

Model Adjustment 

S R-Sq 
R-

Sq(pred) 
R-Sq(adj) 

Y1 0.778 99.50% 99.16% 99.36% 

Y3 1.406 99.45% 99.00% 99.29% 

Y7 2.232 99.00% 98.24% 98.70% 

Y14 2.157 99.17% 98.61% 98.92% 

Y28 2.275 99.17% 98.56% 98.92% 

 

The correlation between the testing days was calculated to evaluate whether the 

relationship between them could be detected. All the correlation values were close to 1, 

which means that there existed a positive linear relationship among all the testing days 

(Table 2.13). These results suggested that the specimens of mixtures bearing higher 

compressive strength at day 7, for example, would also possess higher compressive 

strength at day 28 too. Moreover, specimens of mixtures with lower compressive 

strength at day 7, for example, will be maintained lower for longer ages.  

 

Table 2.13 Correlation among testing days. 

 

 

 

  

 

Correlations Y1 Y3 Y7 Y14 

Y3 0.961 - - - 

Y7 0.937 0.983 - - 

Y14 0.943 0.980 0.987 - 

Y28 0.949 0.967 0.968 0.982 
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2.5. Optimization Formulation 

An optimization problem of maximizing concrete compressive strength was formulated 

in MS Solver, an optimization add-on tool available Microsoft Excel ®. This is intended 

to search for an optimal mixture that would satisfy all the restrictions and, 

simultaneously, be a practical mixture utilizing cement replacement. First, the data was 

divided in two groups (for every single mixture) with distinct behavior: before and after 7 

days of age. During the first period, maturity of the concrete compressive strength 

increases rapidly, while in the latter such strength increases at a slower pace. A linear fit 

for the experimental data on days 1, 3, and 7 (group 1) was obtained for each mixture.  

Another linear model for the datasets at 7, 14, and 28 days (group 2) was also obtained. 

This analysis provided the slope and intercept of each straight line model for each 

mixture (Figure 2.12). Slope 1 and intercept 1 represented the fit for group 1; slope 2 

and intercept 2 the fit for group 2 (Table 2.14). Since the interest of this work was to 

obtain the highest value of compressive strength at early age, higher values of slopes 

and intercepts were convenient. The same form of the cubic regression models showed 

before were utilized to represent this time the slope and intercept values as functions of 

the mixture proportions.  Linear fits were utilized since our purpose was to identify the 

mixtures with higher compressive strength and not to replicate the behavior of those 

mixtures.  
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Figure 2.12 Mixture growth divided in two linear segments. 

 

Table 2.14 Intercept and slope values for group 1 and 2. 

Mix Number 
Group 1: Y1-Y7 Group 2: Y7-Y28 

Intercept1 Slope1 Intercept2 Slope2 

1 11.75 5.232 47.25 0.06121 

2 20.8 4.333 42.79 0.8682 

3 3.745 2.205 15.03 0.4172 

4 1.146 2.094 13.24 0.287 

5 2.213 1.139 7.36 0.4567 

6 7.466 2.938 24.96 0.2474 

7 31.06 4.994 58.97 0.6976 

8 14.78 2.537 26.61 1.034 

9 12.41 4.826 40.9 0.7186 

10 5.146 1.767 13.25 0.5645 

11 24.74 6.011 60.47 0.5359 

12 30.52 5.606 64.5 0.5832 

13 29.88 6.606 71.19 0.5001 

14 11.54 3.286 30.96 0.404 

15 20.18 5.797 53.78 0.8254 

16 10.65 6.305 49.15 0.5709 

17 5.163 2.974 25.25 0.2637 

18 4.928 3.738 28.06 0.3379 
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Afterwards, the regression model of Y7, Y28, and slope 1 were used in the solver to 

verify whether the suggested mixture proportions maximizing the compressive strength 

were the same. In this case, slope 1 was selected because the expectation was to 

increase it to achieve higher compressive strength. Regression models for Y7 and Y28 

were selected because the search seeks for a mixture with replacement of cement by 

FA that has the highest compressive strength in days 7 and 28.  

 

Optimization problem: 
 
Find PC, FA, nS, w/b to maximize Equation 5 satisfying the constraints given in 
Equations 6 through 12: 
 

  Yi =  β̂1PC + β̂2FA + β̂3nS + β̂4PC ∗ FA + β̂5PC ∗ nS + β̂6FA ∗ nS + β̂7PC ∗ FA ∗ nS +

β̂8PC ∗
w

b
+ β̂9FA ∗

w

b
+ β̂10nS ∗

w

b
+ β̂11PC ∗ FA ∗

w

b
+  β̂12PC ∗ nS ∗

w

b
   + β̂13FA ∗ nS ∗

w

b
+

β̂14PC ∗ FA ∗ nS ∗
w

b
                                                                                                                           

(5) 
 

Subject to: 

0.54 ≤ 𝑃𝐶 ≤ 1                                                                                                                             (6) 

0 ≤ 𝐹𝐴 ≤ 0.40                         Components’ Restrictions                                                 (7) 

0 ≤ 𝑛𝑆 ≤ 0.06                                                                                                                              (8) 

𝑃𝐶 + 𝐹𝐴 + 𝑛𝑆 = 1                    Convexity                                                                         (9) 

𝑤 / 𝑏 =  0.3𝑍1 + 0.5𝑍2                                                                                                              (10) 

𝑍1 + 𝑍2 = 1                               Change of Variable                                                         (11) 

𝑍1, 𝑍2 𝑎𝑠 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠                                                                                                       (12) 

 
where PC, FA, and nS are the proportions of Portland cement, fly ash and nanosilica 

respectively; w/b is the water to binder ratio; Z1 and Z2 are used to restrict the values of 

w/b to those considered in the experiment. 
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2.6. Optimization Results and Discussion 

The results show that the three optimization formulations for slope 1, Y7, and Y28 

converged almost to the same proportions for each mixture component; hence, if one of 

them is maximized, the others will be maximized too. However, the proportions 

suggested correspond to an out of scope mixture with 94% of PC, 6% of nS, and 0% of 

FA. Therefore, the regression model of Y7 was selected to maximize the concrete 

compressive strength but this time forcing the model to include some proportion of fly 

ash to the mixture for being of interest to the research. The constraint of FA greater than 

0 was modified by FA greater than a given value of epsilon (ε), set at 0.00, 0.10, 0.20, 

0.30, and 0.40.  Then the component proportions found through the optimization 

procedure were recorded as the ones that maximized the response variable (Table 2.15 

and Figure 2.13).  

 

Table 2.15 Optimization results varying the lower constraint of FA. 

 

Variation of Fly Ash ε= 0 0.10 0.20 0.30 0.40 

Optimizer Value (MPa) Z= 72.09 68.63 64.31 59.14 53.10 
Experimental Value 
(MPa) Z= 73.15 - 63.90 - 52.42 

Decision Variables in 
Proportions 

PC= 0.94 0.84 0.74 0.64 0.54 

FA= 0.00 0.10 0.20 0.30 0.40 

nS= 0.06 0.06 0.06 0.06 0.06 

w/b= 0.3 0.3 0.3 0.3 0.3 

Percentage of loss of 
Compressive Strength 

  - 4.8% 10.8% 18.0% 26.3% 
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Figure 2.13 Variation of concrete compressive strength as a function of the amount of 
FA (nS is constant at 0.06). 

 

This analysis demonstrated how the optimization procedure always selected the lowest 

value allowed of FA and the highest value of nS. The results were compared with real 

experimental values when available for the validation purposes, obtaining a difference 

within 1%. The percentage of loss of compressive strength raised as the proportion of 

fly ash in the mixture increased. If we replaced PC with a combination of 20% FA and 

6% nS (resulting in a total of 26%), the subsequent loss of compressive strength would 

be 10.8%. However, if we replaced PC with a combination of 40% of FA and 6% of nS 

(resulting in a total of 46%), the subsequent loss of compressive strength would be 

26.3%. 
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If we allow the optimization procedure to select a solution between the original 

component constraints, the use of fly ash is not necessary in the mixture in order to 

maximize the compressive strength (Table 2.15). Figure 2.13 shows that when the 

model is forced to include FA in the mixture, the user has to be willing to lose 

compressive strength although at a lower rate than that described by a linear loss. 

When a lower bound is set for FA, the optimizer keeps nS fixed at its highest level, while 

varying the PC fraction. This indicates that there is a greater loss of compressive 

strength by reducing nS than by reducing PC. 

 

Table 2.16 presents an additional analysis, this time varying the nS proportion in the 

mixture controlled by its upper bound. The optimizer kept the quantity of nS at the 

highest value allowed to gain more compressive strength. Such gain became 

approximately linear when keeping FA at its lowest level (zero in this case). Figure 2.14 

shows the increment in compressive strength with respect to the nS proportion. 

According to this figure, for example, when adding 3% of nS the compressive strength 

would increase 8.9%; adding 6%, the compressive strength rises 14.1% in the absence 

of fly ash (Table 2.16). 
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Table 2.16 Optimization results varying of the upper constraint of nS. 

Variation of Nano-
Silica ε= 0 0.01 0.02 0.03 0.04 0.05 0.06 

Optimizer Value 
(MPa) Z= 63.20 65.33 67.20 68.82 70.17 71.26 72.09 
Experimental 
Value (MPa) Z= 64.01 - - 66.99 - - 73.15 

Decision 
Variables in 
Proportions 

PC= 1.00 0.99 0.98 0.97 0.96 0.95 0.94 

FA= 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

nS= 0.00 0.01 0.02 0.03 0.04 0.05 0.06 

w/b= 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

Percentage of 
gain of 

Compressive 
Strength 

  - 3.4% 6.3% 8.9% 11.0% 12.7% 14.1% 

 

 

 

Figure 2.14 Variation in concrete compressive strength as nS increases (FA set at 0.0). 
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In the proceeding analysis the value of nS was set to 0% in the optimization model while 

we varied the FA lower bound to compare the results with the previous analyses.  

Figure 2.15 shows the difference between replacing cement with just FA and replacing 

cement with both FA and nS. One can observe that as cement is replaced, the 

percentage of difference in compressive strength between adding or not adding nS 

increases (Table 2.17).  For example, based on the evaluated experimental conditions, 

if cement is replaced in a concrete mixture with 40% of FA, the expected compressive 

strength in day 7 will be 33.03 MPa; then, if cement is replaced with 40% of FA with an 

additional 6% of nS, the expected compressive strength in day 7 will be 53.10 MPa. 

Therefore, if nS is added there would be a 60.8% difference in compressive strength at 

day 7. 

 

 

Table 2.17 Comparison between optimizer results of mixtures with and without nS. 

Variation of Fly Ash ε= 0 0.10 0.20 0.30 0.40 

Optimizer Value with 
nS=0.06 
(MPa) ZnS= 72.09 68.63 64.31 59.14 53.10 
Optimizer Value with 
nS=0.0 
(MPa) 

ZwnS

= 63.20 56.75 49.57 41.66 33.03 

Difference (MPa) - 8.89 11.88 14.74 17.47 20.07 

Percentage of Difference - 14.1% 20.9% 29.7% 41.9% 60.8% 
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Figure 2.15 Comparison graph between mixtures containing FA with and without nS. 

 

As mentioned, three replicates were considered in this experiment following ASTM 

C192/C192M − 13a [51]. Such sample size, when analyzed statistically through the use 

of an operating characteristic curve, is capable of detecting differences in compressive 

strength larger than 8 MPa. A difference of 8 MPa can be correctly detected with a 

probability of 78.5%. Because the minimum difference between mixtures with and 

without nS in our experiment was 8.89 MPa (Table 2.17), the chosen number of 

replicates was deemed adequate for analysis. 
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2.7. Final Remarks  

A design of experiments with mixtures was proposed and carried out here to 

characterize compressive properties in time as a function of the proportions of Portland 

cement, fly ash, nanosilica, and the water-to-binder ratio. This experiment allowed 

obtaining regression models that were subsequently used to set up a series of 

optimization problems to maximize the compressive strength of the mixture. 

 

The addition of fly ash to concrete, as shown in this experiment, caused a loss of 

compressive strength at early age. Thus, to offset such loss, the addition of nanosilica is 

deemed as a plausible alternative. The results provided in this study serve as a guide to 

control these additions in order to design a material that withstands a desired level of 

compressive strength.  

 

Instead of one performance measures evaluated here, in the next chapter three 

performance measures are going to be considered. These are concrete bulk density, 

percentage of voids, and compressive strength. The analysis will allow identifying the 

best compromise mixtures in terms of the mentioned criteria.  
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III. CHAPTER 

3. Multiple Criteria Optimization for Cement Mixtures Containing Mineral 

Admixtures  

3.1. Introduction 

Recently the construction industry has been forced to seek for alternatives that reduce 

the environmental damages of producing construction materials [29]. As mentioned, one 

alternative is to replace cement by FA while the use of nS combined with FA is highly 

recommended. These nanoparticles improve some valuable concrete properties such 

as the compressive strength, density, and low porosity [14], [25]. Of them the concrete 

compressive strength is the mechanical property most relevant and, therefore, the most 

studied [55]. High values of compressive strength are desired since sometimes the 

structures should tolerate big loads. The porosity of concrete is related with its durability 

and permeability [20], [56]. Those characteristic depend of the number, size, and 

distribution of pores in the cement paste and the aggregates [57]. Thus, the percentage 

of voids, as a measurement of porosity, is preferred to be lower in concrete structures. 

On the other hand, concrete with high density values is necessary for shielding against 

hazardous materials and other applications [58]. Also a high density concrete can 

represent smaller total concrete volumes required.  

Different values of the mechanical and physical properties of concrete are preferred 

when mineral admixtures are utilized [21], [59]. Also, the desired characteristics 

depends of the proposed application. In previous works we could note that the 

specimen with higher compression strength not necessarily corresponds to the ones 
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with higher density and lower porosity [11], [19]. That is why, in some cases, designers 

have to prioritize, for example, increasing one characteristic and decreasing other ones.   

Specifically, this work will focus on the concrete bulk density, percentage of voids, and 

compressive strength in order to design a multifunctional structural material. This study 

is paramount since the specimens with higher compressive strength are not necessarily 

the ones with higher density and lower porosity, that are usually desirable properties in 

concrete structures [11], [19]. Therefore, there exists a conflict among the different 

performance measures. For that reason, a multiple criteria optimization was utilized to 

simultaneously maximize compressive strength and density and to minimize the 

material porosity. Additional experiments were developed to obtain the previous 

mentioned performance measures. Finally, the use of this approach helps to identify the 

mixtures that belong to the Pareto efficient frontier [39], [40]. These mixtures were the 

best compromise among all performance measures between the set of mixtures under 

evaluation. The proportions and characteristics of the recommended mixtures are 

presented and discussed as part of this work. 

 

3.2. Background 

3.2.1. Multiple Criteria Optimization 

According to Ehrgott the solution of a decision problem is to choose the best 

alternatives among a set of solutions, where some criteria measure the quality of the 

alternatives [60].  Nowadays, a variety of optimization methods permit to resolve 

decision problems that just consider one objective or performance measures. Some of 

these methods are the simplex method, gradient, and evolutionary optimization. 
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However, the majority of the engineering decision problems are based on multiple 

criteria. Therefore, the utilization of multiple criteria optimization have become popular 

and useful; since this methodology consists of simultaneously optimizing several 

objectives [18], [61]. Nevertheless, there is a problem when the objectives are in 

conflict. This means that the optimal solution in an objective is not the same than in 

other objective.  

The objective when solving a multiple criteria optimization problem is to find a set of 

efficient solutions. These are also known as “Pareto-optimal solutions” or “Pareto-

efficient solutions” [36], [39], [61]. These solutions are the best compromise among all 

performance measures under evaluation; they are deemed equally efficient since a gain 

in one objective will result in a sacrifice in at least another objective. The efficient 

solutions form the Pareto efficient frontier.  

In order to identify the optimal solutions, we will utilize the Pareto-optimality conditions 

as described in Deb’s work [61]:  

“A solution 𝑥(1) is said to dominate the other solution 𝑥(2), if both the following conditions 

are true: 

1. The solution 𝑥(1) is no worse than 𝑥(2) in all objectives. Thus, the solutions are 

compared based on their objective function values (or location of the 

corresponding points (𝑧(1) and 𝑧(2) ) on the objective space). 

2. The solution 𝑥(1) is strictly better than 𝑥(2) in at least one objective. ” 
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Figure 3.1 shows a set of nine solutions in which the domination concept can be 

graphically explained. Here we want to minimize both objectives (𝑓1 and 𝑓2). A 

comparison between two solution points can be made utilizing both Pareto conditions; 

through this means we can know if a solution point is dominated or non-dominated by 

other solution. In Figure 3.1, the solutions 1, 3, 4, and 6 are the non-dominated set (the 

line that joins them is just for representation and not necessary the shape of the efficient 

frontier). 

 

Figure 3.1 Illustration of non-dominated solution points. 

 

The cone of dominance define sets of nonnegative elements in the real space of n 

dimensions [60]. In addition, the cone of dominance can be used to determine whether 
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a solution point is dominated or non-dominated among the set of solutions under 

evaluation [60]. This is by applying to each solution point an arrow with the direction of 

each objective function. In our example, we are minimizing both objectives and, for that 

reason, the arrows should be used as shown in Figure 3.2.  If we apply the cone of 

dominance to a solution point and the cone is empty, this means that that point is non-

dominated [60].  On the other hand, if the cone contains other points that solution point 

is dominated by the points contained in the cone. For example, if we apply the cone of 

dominance to the point number 7 we can observe that the cone is not empty. Therefore, 

there are solutions better that that point such as point 1, 3, 4, 5 and 6. However if we 

apply the cone of dominance to point number 1, we can notice that the cone is empty. 

This means that point number 1 is non-dominated by any other member of the solution 

set. All the non-dominated points constitute a front when they are viewed on the 

criterion space; together they are also known as the Pareto efficient frontier [61]. 
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Figure 3.2 Illustration of the cone of dominance.  

 

The cone of dominance can also be applied in optimization problems with three 

objectives [39]. However, when there are more than three objectives in a multiple 

criteria optimization problem the visualization of the cone is out of reach.  

After finding the Pareto efficient frontier, we cannot select all the efficient solutions in 

real applications. A single selection has to be made among the set of efficient solutions. 

Hence, as decision maker, one has to take the final decision among the “optimal 

solutions” that the multiple criteria optimization provides.  
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In order to solve the multiple criteria optimization problems to optimality, researchers 

have developed some methods that are exact and others methods that are heuristics 

[30], [39], [40], [61]. An exact multiple criteria optimization method found all the solutions 

that belong to the Pareto efficient frontier. Some of these recent methods consider the 

Karush-Kuhn-Tucker (KKT) conditions to resolve this kind of problems to optimality [60], 

[61]. On the other hand, the heuristics multiple criteria optimization methods found 

solution points that are close to the Pareto efficient frontier; also these methods utilize 

qualitative considerations to finally recommend a single efficient solution [61].  

In a multiple criteria optimization problem the objectives functions can be either 

maximized or minimized.  According to Deb [61], the general form of a multiple criteria 

optimization problem is as follows: 

Minimize/Maximize   𝑓𝑚(𝑥),                    𝑚 = 1, 2, … , 𝑀; 

Subject to                 𝑔𝑗(𝑥) ≥ 0,              𝑗 = 1, 2, … , 𝐽; 

                                 ℎ𝑘(𝑥) = 0,              𝑘 = 1, 2, … , 𝐾; 

                                 𝑥𝑖
(𝐿)

≤ 𝑥𝑖 ≤ 𝑥𝑖
(𝑈)

,     𝑖 = 1, 2, … , 𝑛; 

where xi represents a decision variable from a set of size n. The decision space is the 

feasible set of the decision variables. On the other hand, the criterion space is formed 

by all functions.  

3.3. Methodology 

3.3.1. Multiple Criteria Optimization for Cement Mixtures 

A design of experiment for mixtures was utilized in order to generate the different 

combinations of the cement mixture components, i.e. PC, FA, and nS [4], [8]. For this 

second stage, the upper bound of nS was changed to 3%. This is because the 
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nanoparticles were diluted in water (50% water and 50% nS) and this fact was not 

considered properly when changing the proportions to grams. In addition, only the 

mixtures with water to binder of 0.3 were considered. This decision was taken since 

those mixtures had higher compressive strength than mixtures with water to binder of 

0.5.  

Nine component combinations or mixtures were evaluated (Table 3.1). Each one of 

these mixtures represent a solution k for us since they have different characteristics in 

terms of physical and mechanical properties of the resulted concrete. Multiple criteria 

optimization helps us in the decision making process of recommend some of these 

mixtures. 

Table 3.1 Mixture proportion combinations evaluated  

k 
Portland 
Cement 

Fly Ash nano-Silica 

1 0.800 0.200 0.000 

2 1.000 0.000 0.000 

3 0.600 0.400 0.000 

4 0.585 0.400 0.015 

5 0.770 0.200 0.030 

6 0.985 0.000 0.015 

7 0.970 0.000 0.030 

8 0.785 0.200 0.015 

9 0.570 0.400 0.030 

 

Now we should present our problem as a multiple criteria optimization problem. We are 

interested in recommending an alternative (k*) among the different mixture proportions 

of PC, FA, and nS that we generated (Table 3.1). The decision taken will be based in 

terms our performance measures, i.e. compressive strength, bulk density, and 

percentage of voids of the resulted specimens (Figure 3.3). In this work, the desired 

properties are higher compressive strength and density and lower percentage of voids.  
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Consider the following multiple criteria optimization problem: 

Find 𝑃𝐶, 𝐹𝐴, and 𝑛𝑆 in order to: 

Maximize   𝑓1(𝐱), 𝑓2(𝐱) 

Minimize    𝑓3(𝐱) 

Subject to: 

0.57 ≤ 𝑃𝐶 ≤ 1.00 

0.00 ≤ 𝐹𝐴 ≤ 0.40 

0.00 ≤ 𝑛𝑆 ≤ 0.03 

 

where 𝑓1(𝐱) is the compressive strength, 𝑓2(𝐱) is the bulk density, and 𝑓3(𝐱) is the 

percentage of voids of the respective specimens.   

We intent to restrict the problem described above to a manageable number of sampling 

experimental solutions generated through a mixture DOE. Furthermore, the best 

tradeoffs among the competing criteria were identified with the application of Pareto-

optimality conditions as advocated by the Applied Optimization Group in [39]–[41].  

The method employed to resolve the multiple criteria optimization problem is an exact 

method based on the Pareto-optimality conditions when having a finite number of 

solutions [39], [40]. This method has being utilized to solve engineering and science 

FA Bulk Density 

Percentage of Voids 

Compressive Strength PC 

nS 

Concrete 

Specimens 

Figure 3.3 System diagram with the input and output variables. 
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problems by the Applied Optimization Group. Specifically, it was utilized to analyze 

process windows for injection molding considering two and three performance 

measures [40]. In addition, this method had been used to find potential biomarkers of 

lung cancer [39]. This time the method was used to effectively find the proportion 

combinations of a cement mixture that belong to the Pareto-efficient frontier.  

The method was coded in Microsoft Excel ® for the availability of the program. As the 

tool is coded to minimize all the performance measures, the following transformation 

was necessary to change from maximization to minimization in the case of compressive 

strength and bulk density [41]: 

𝑓𝑖0
∗ = (𝑀𝑎𝑥 𝑓𝑖0 + 𝑀𝑖𝑛 𝑓𝑖0) − 𝑓𝑖0             

Equation 1 

where 𝑖 is varying from 1 to k solutions and j is set to the particular criterion 0. 

Utilizing the Pareto-optimality conditions, as aforementioned, a full pairwise comparison 

was performed between the solutions to eventually find the Pareto-efficient frontier or 

the non-dominated set. A detailed description of the multiple criteria optimization 

method utilized in this work can be found in Camacho’s work [62].  

 

3.3.2. Experimental Conditions  

For this second stage some changes were necessary in preparing the mixtures. Via a 

granulometry study, the experimental proportions of the aggregates were determined 

as: 30% of gravel, 35% of processed-aggregate, and 35% of clean river sand. The 

same characteristics of the mixtures were taken into account, i.e. segregation, bleeding, 



53 
 

slump loss, and consistency, in order to determine the quantity of polycarboxylate 

superplasticizer (SP) necessary for each mixture.  

 

3.3.3. Materials 

The materials utilized in this stage are described in this section since they have different 

properties than the listed before. This is because they become from different lots and 

suppliers. However, these materials were the same during the second phase of the 

experiment. 

Aggregates 

Gravel was used as coarse aggregate and its maximum diameter was 19.0 mm. 

Moreover, the processed-aggregate had a maximum diameter of 9.5 mm. The fineness 

modulus of the fine aggregate, i.e. beach sand, was 3.0. 

 

Table 3.2 Properties of the aggregates. 

Aggregate 
Apparent 
Specific 
Gravity 

Specific 
Gravity 

(Oven-dry) 

Specific 
Gravity 
(SSD) 

Absorption 
(%) 

Unit 
Weight 
(kg/m3) 

Gravel 2.88 2.71 2.77 2.09 1584.70 

Processed-
aggregate 

2.77 2.50 2.59 3.86 1740.57 

Beach Sand 2.65 2.42 2.51 3.48 1460.54 

 

Portland Cement 

The PC Type I utilized to prepare the mixtures had a specific gravity of 3.06. 
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Fly Ash 

The FA class F used for the mixtures possessed a specific gravity of 2.38.  

Nanosilica 

The nS used in this second stage was obtained from Nissan Chemical Industries and 

originally suspended in an aqueous solution, with a particles mean size of 69.40 nm and 

specific gravity of 2.03 (Figure 3.5). As a note, these nanoparticles are three times 

bigger than the used in the first stage (23.22 nm).  

Superplasticizer  

The polycarboxylate superplasticizer used was the ADVA 575 and was obtained from 

Instron in PR. 

Water 

The water used to prepare the mixtures was tap water at room temperature.  

 

3.3.4. Fabrication and Testing Procedure 

A Globe mixer machine was utilized to mix the concrete components (Figure 3.4). The 

coarse and fine aggregates were first dry-mixed and then introduced into the mixer for 

0.25 min at 120 rpm, followed by the addition of half of the required water. Then the PC 

was added to the mixer followed by the amount of FA (when necessary) for 0.25 min at 

60 rpm. The nS and SP were diluted in water in order to obtain a uniform distribution of 

the particles throughout the mixture and added to the mixer (when used) for 4.30 min at 

120 rpm.  
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The concrete cylinders prepared were filled by the rodding method [51]. The cylinders 

were demolded and placed in limewater until tested at normal curing conditions (20-

23ºC and RH=100%). The temperature (23-25ºC) in the experiment was relatively 

constant. 

 

The standard procedure [63] was followed to measure the density and the percentage 

of voids of the specimens. In order to meet the minimum volume required by the 

standard [52], the dimensions of the test cylinders were 76 mm in diameter and 152 mm 

in length (Figure 3.6).  On the other hand for the compressive strength test, the 

dimensions of the test cylinders were 50 mm in diameter and 100 mm in length (Figure 

3.6) [52].  

 

Figure 3.4 Globe mixer machine utilized. 
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Figure 3.5 Example of the silica nanoparticles utilized as dust. 

 

Figure 3.6 Example of concrete cylinders prepared (76 by 152 mm & 50 by 100 mm). 

 

Six cylinders were tested for compressive strength at 7, 28, and 90 days of curing. The 

compression tests were performed in a 3000 kN Forney universal test machine 

according to ASTM C39/C39M-12a [53].  

 

Moreover, ASTM C642-13 was followed to measure the density and percentage of 

voids of five specimens [63]. The test was at 7, 28, and 90 days. In this test the 
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specimen oven-dry mass (A), saturated mass after immersion in water (B), saturated 

mass after boiling (C), and immersed apparent mass (D) were considered. These 

values were used to calculate the bulk density, apparent density, and the volume of 

permeable pore space or percentage of voids of the specimens. 

 

3.4. Results 

All the specimens generated were tested for compressive strength, bulk density, and 

percentage of voids at 7, 28, and 90 days of curing. However, since the work scope is 

until age 28 the results presented in this section will be for 7 and 28 days only. The 

results of 90 days will be used in a future work.    

3.4.5. Results from day 7 

First, the summary of results obtained in day 7 are presented in Table 3.3. The average 

of the compressive strength results is from 6 replicates whereas for the bulk density and 

percentage of voids the average results is from 5 replicates. In addition, the variability 

between the replicates for each performance measures can be showed in the following 

boxplots:  Figure 3.8, Figure 3.9, and Figure 3.10.  If we consider each one of the 

performance measures separately, they will aim at different solutions (Figure 3.7). In 

other words the performance measures are in conflict. Now, each one of the mixtures 

combination will represent a solution or alternative (k) for our multiple criteria 

optimization problem (Table 3.3).   

Table 3.3 Average result of performance measures at day 7. 
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k 
Mixture 

Proportions 
(PC/FA/nS) 

Compressive 
Strength 

Bulk Density 
Volume of 

Permeable Pore 
Space 

Average 
Std. 
Dev. 

Average 
Std. 
Dev. 

Average 
Std. 
Dev. 

MPa MPa Kg/m3 Kg/m3 % % 

1 0.800/0.20/0.000 27.37 1.15 2165.88 37.32 15.59 0.98 

2 1.000/0.00/0.000 31.11 7.22 2218.43 34.71 13.85 0.75 

3 0.600/0.40/0.000 33.71 3.19 2117.88 13.27 17.42 0.32 

4 0.585/0.40/0.015 31.58 5.32 2125.56 29.80 16.58 0.70 

5 0.770/0.20/0.030 29.75 5.24 2186.46 16.19 15.93 0.63 

6 0.985/0.00/0.015 27.03 5.65 2188.51 37.78 16.00 1.05 

7 0.970/0.00/0.030 24.19 8.24 2189.98 14.19 16.04 0.31 

8 0.785/0.20/0.015 40.40 2.47 2156.64 6.26 17.00 0.28 

9 0.570/0.40/0.030 33.35 4.63 2163.49 23.10 12.49 0.78 

 

 

 

Figure 3.7 Average result from the performance measures at day 7. 
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Figure 3.8 Boxplots of mixtures bulk density at 7 days. 

 

Figure 3.9 Boxplots of mixtures percentage of voids at 7 days. 

 

Figure 3.10 Boxplots of mixtures' compressive strength at 7 days. 
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Compressive strength, bulk density, and percentage of voids were represented as 𝑓1, 𝑓2, 

and 𝑓3 respectively. Then the values of our performance measures, i.e. 𝑓1, 𝑓2, and 𝑓3, 

were utilized to create three matrices 𝐴1, 𝐴2, and 𝐴3 to compare all the solutions n in 

each objective. 

Table 3.44 shows in bold the efficient solutions from day 7; these are mixture number 2, 

8, and 9. Mixture number 2 is the control mixture with just PC. It was expected that this 

mixture was in the optimal set since its properties are very appropriate during its early 

age. However, it is very interesting that the other two mixtures (8 and 9) that belong to 

the Pareto-efficient frontier contains FA and nS. These mixtures are mixture number 8 

that have 78.5% of PC, 20% of FA, and 1.5% nS; and mixture number 9 that have 57% 

of PC, 40% of FA, and 3% nS.  Although mixture number 9 have 40% of FA (high level 

of replacement), the addition of 3% of nS makes it a competitive combination with 

adequate physical and mechanical concrete properties. In contrast, mixture number 3 

have 60% of PC, 40% of FA, and 0% nS (high level of replacement) but it does not 

belong to the Pareto-efficient frontier. The same case is for mixture number 1 with 20% 

of FA and 0% of nS. The difference between being part or not of the Pareto-efficient 

frontier appears to be the addition of silica nanoparticles.   
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Table 3.4 Mixtures highlighted belong to the Pareto efficient frontier of day 7. 

k 
Mixture 

Proportions 
(PC/FA/nS) 

𝑓1 𝑓2 𝑓3 

MPa Kg/m3 % 

1 0.800/0.20/0.000 27.37 2165.88 15.59 

2 1.000/0.00/0.000 31.11 2218.43 13.85 

3 0.600/0.40/0.000 33.71 2117.88 17.42 

4 0.585/0.40/0.015 31.58 2125.56 16.58 

5 0.770/0.20/0.030 29.75 2186.46 15.93 

6 0.985/0.00/0.015 27.03 2188.51 16.00 

7 0.970/0.00/0.030 24.19 2189.98 16.04 

8 0.785/0.20/0.015 40.40 2156.64 17.00 

9 0.570/0.40/0.030 33.35 2163.49 12.49 

 

As we are considering three performance measures, the results can still be presented in 

a 3D graph.  In addition, the cone of dominance can be utilized to visualize the 

dominated and non-dominated solutions. Figure 3.11 shows all the solutions k 

(mixtures) in the criterion space with a rotated view to make easier the visualization of 

the efficient frontier.  
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Figure 3.11 Graphical results of the solution set evaluated at 7 days (rotated view). 

 

Figure 3.12 shows an example of a dominated solution. This time, the cone of 

dominance is applied to the solution evaluated (mixture number 1) with the arrows 

pointing to the preference direction of each axis.  As we can observe, the cone is not 

empty, for that reason this solution is dominated. Also this means that that solution is 

dominated by the solutions contained by the cone. On the other hand, Figure 3.13 

shows an example of a non-dominated solution. The cone of dominance of solution 

number 8 is empty; therefore, it is non-dominated by any other solution in the solution 

set evaluated.  This solution, in conjunction with the other non-dominated solutions, 

form the Pareto-efficient frontier. Figure 3.14 show all the solutions in the criterion space 

but this time with the common axis orientation. 
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Figure 3.12 Cone of dominance applied to a dominated solution. 
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Figure 3.13 Cone of dominance applied to a non-dominated solution. 
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Figure 3.14 Graphical results of the solution set evaluated at 7 days. 

 

3.4.6. Results from day 28 

Table 3.5 and Figure 3.15 show the average results of the three performance measures 

evaluated. In addition, the variability of each mixture is presented in the boxplots of 

compressive strength, bulk density, and percentage of voids (Figure 3.16, Figure 3.17, 

and Figure 3.18). Here we can observe that mixture number 8 has a higher value of 

compressive strength. However, mixture number 6 has the higher value of bulk density 

and the lower percentage of voids (Figure 3.15). There still exists a conflict between the 

objectives.  
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Table 3.5 Average result of performance measures at day 28. 

k 
Mixture 

Proportions 
(PC/FA/nS) 

Compressive 
Strength 

Bulk Density 
Volume of 

Permeable Pore 
Space 

Average 
Std. 
Dev. 

Average 
Std. 
Dev. 

Average 
Std. 
Dev. 

MPa MPa Kg/m3 Kg/m3 % % 

1 0.800/0.20/0.000 34.48 5.49 2141.12 52.85 15.77 1.20 

2 1.000/0.00/0.000 41.91 9.59 2192.05 42.05 14.75 1.06 

3 0.600/0.40/0.000 44.09 2.94 2098.88 19.94 17.26 0.61 

4 0.585/0.40/0.015 38.92 9.38 2096.61 45.25 17.17 1.24 

5 0.770/0.20/0.030 36.59 5.79 2168.71 27.31 16.06 0.86 

6 0.985/0.00/0.015 31.29 3.41 2226.15 28.65 14.25 0.63 

7 0.970/0.00/0.030 31.81 4.64 2197.49 22.35 15.35 0.43 

8 0.785/0.20/0.015 47.27 6.58 2179.52 12.47 16.12 0.25 

9 0.570/0.40/0.030 41.5 3.23 2131.97 18.65 16.02 0.57 

 

 

 

Figure 3.15 Average result from the performance measures at day 28. 
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Figure 3.16 Boxplots of mixtures' bulk density at 28 days. 

 

Figure 3.17 Boxplots of mixtures' percentage of voids at 28 days. 

 

Figure 3.18 Boxplots of mixtures' compressive strength at 28 days. 
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The aim in this stage is the same as in the analysis of day 7: to maximize compressive 

strength and bulk density, and to minimize the percentage of voids.  The results 

obtained from the multiple criteria optimization strategy are presented in Table 3.6. This 

time, there are four solutions that belong to the Pareto efficient frontier. These solutions 

are mixtures number 2, 6, 7, and 8. The Pareto-optimality conditions can be used to 

ensure that these sets of mixtures are always better in at least one objective and the 

same or worse in other objective.  

We expected mixture number 2 to be part of the Pareto efficient frontier since it is the 

control mixture with only PC. Mixtures number 6 and 7 contain PC and 1.5% and 3.0% 

of nS respectively.  These mixtures do not have FA, i.e. the replacement of interest. 

However, the last mixture that is also efficient contains FA (mixture number 8). This one 

contains 78.5% of PC, 20% of FA, and 1.5% of nS. The solutions can be observed in 

the criterion space graphically in Figure 3.19 with a rotated view. However, in Figure 

3.20 the solutions are presented with the common axis orientation.  

Table 3.6 Mixtures highlighted belong to the Pareto efficient frontier of day 28. 

k 
Mixture 

Proportions 
(PC/FA/nS) 

𝑓1 𝑓2 𝑓3 

MPa Kg/m3 % 

1 0.800/0.20/0.000 34.48 2141.12 15.77 

2 1.000/0.00/0.000 41.91 2192.05 14.75 

3 0.600/0.40/0.000 44.09 2098.88 17.26 

4 0.585/0.40/0.015 38.92 2096.61 17.17 

5 0.770/0.20/0.030 36.59 2168.71 16.06 

6 0.985/0.00/0.015 31.29 2226.15 14.25 

7 0.970/0.00/0.030 31.81 2197.49 15.35 

8 0.785/0.20/0.015 47.27 2179.52 16.12 

9 0.570/0.40/0.030 41.5 2131.97 16.02 
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Figure 3.19 Graphical results of the solution set evaluated at 28 days (rotated view). 
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Figure 3.20 Graphical results of the solution set evaluated at 28 days. 
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3.4.7. Full comparison between the mixtures during all the concrete ages evaluated. 

A final analysis was performed on all mixtures, taking into consideration the concrete 

age or testing day. This full comparison allows us to identify the mixtures that show the 

better performance in terms of our three performance measures. Table 3.7 presents the 

eighteen solutions or mixtures with their respective characteristics use for the analysis.  

Table 3.7 Data summary from all the mixtures evaluated at all concrete ages.  

k 
Mixture 

Proportions 
(PC/FA/nS) 

Testing 
Day 

Compressive 
Strength 

Bulk Density 
Volume of 

Permeable Pore 
Space 

Avera-
ge 

Std. 
Dev. 

Average 
Std. 
Dev. 

Average 
Std. 
Dev. 

MPa MPa Kg/m3 Kg/m3 % % 

1 0.800/0.20/0.000 7 27.37 1.15 2165.88 37.32 15.59 0.98 

2 1.000/0.00/0.000 7 31.11 7.22 2218.43 34.71 13.85 0.75 

3 0.600/0.40/0.000 7 33.71 3.19 2117.88 13.27 17.42 0.32 

4 0.585/0.40/0.015 7 31.58 5.32 2125.56 29.80 16.58 0.70 

5 0.770/0.20/0.030 7 29.75 5.24 2186.46 16.19 15.93 0.63 

6 0.985/0.00/0.015 7 27.03 5.65 2188.51 37.78 16.00 1.05 

7 0.970/0.00/0.030 7 24.19 8.24 2189.98 14.19 16.04 0.31 

8 0.785/0.20/0.015 7 40.40 2.47 2156.64 6.26 17.00 0.28 

9 0.570/0.40/0.030 7 33.35 4.63 2163.49 23.10 12.49 0.78 

10 0.800/0.20/0.000 28 34.48 5.49 2141.12 52.85 15.77 1.20 

11 1.000/0.00/0.000 28 41.91 9.59 2192.05 42.05 14.75 1.06 

12 0.600/0.40/0.000 28 44.09 2.94 2098.88 19.94 17.26 0.61 

13 0.585/0.40/0.015 28 38.92 9.38 2096.61 45.25 17.17 1.24 

14 0.770/0.20/0.030 28 36.59 5.79 2168.71 27.31 16.06 0.86 

15 0.985/0.00/0.015 28 31.29 3.41 2226.15 28.65 14.25 0.63 

16 0.970/0.00/0.030 28 31.81 4.64 2197.49 22.35 15.35 0.43 

17 0.785/0.20/0.015 28 47.27 6.58 2179.52 12.47 16.12 0.25 

18 0.570/0.40/0.030 28 41.50 3.23 2131.97 18.65 16.02 0.57 
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The resulting efficient mixtures from this analysis are in bold in Table 3.8. Also the 

solutions are presented graphically in the Figure 3.21. It is interesting to mention that 

the control mixture that contains only PC appears in the Pareto efficient frontier with its 

properties at day 7 and also at day 28. Besides that mixture, all the other mixtures that 

are part of the Pareto-efficient frontier contain silica nanoparticles. However, there are 

two mixtures that also have the cement replacement by FA in two levels. These 

mixtures can be a good option to the users since they contain FA but still possess good 

mechanical and physical properties. In addition, Figure 3.22 shows the solutions with 

the common axis orientation.  

Table 3.8 Mixtures highlighted belong to the Pareto efficient frontier of the full 
comparison. 

k 
Mixture 

Proportions 
(PC/FA/nS) 

Testing 
Day 

𝑓1 𝑓2 𝑓3 

MPa Kg/m3 % 

1 0.800/0.20/0.000 7 27.37 2165.88 15.59 

2 1.000/0.00/0.000 7 31.11 2218.43 13.85 

3 0.600/0.40/0.000 7 33.71 2117.88 17.42 

4 0.585/0.40/0.015 7 31.58 2125.56 16.58 

5 0.770/0.20/0.030 7 29.75 2186.46 15.93 

6 0.985/0.00/0.015 7 27.03 2188.51 16.00 

7 0.970/0.00/0.030 7 24.19 2189.98 16.04 

8 0.785/0.20/0.015 7 40.40 2156.64 17.00 

9 0.570/0.40/0.030 7 33.35 2163.49 12.49 

10 0.800/0.20/0.000 28 34.48 2141.12 15.77 

11 1.000/0.00/0.000 28 41.91 2192.05 14.75 

12 0.600/0.40/0.000 28 44.09 2098.88 17.26 

13 0.585/0.40/0.015 28 38.92 2096.61 17.17 

14 0.770/0.20/0.030 28 36.59 2168.71 16.06 

15 0.985/0.00/0.015 28 31.29 2226.15 14.25 

16 0.970/0.00/0.030 28 31.81 2197.49 15.35 

17 0.785/0.20/0.015 28 47.27 2179.52 16.12 

18 0.570/0.40/0.030 28 41.50 2131.97 16.02 
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Figure 3.21 Graphical results of the full comparison (rotated view). 
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Figure 3.22 Graphical results of the full comparison. 
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3.5. Discussion of Results 

The results obtained from the multiple criteria optimization are the best tradeoff mixtures 

recommended to the decision makers. Now, the decision makers can select a single 

mixture among the efficient set presented in this work. They should take the decision 

based on the characteristics of the mixtures presented in each performance measures. 

Also, they should consider the proportion of each component in the mixture. This 

depends on the user’s interest about the mineral admixtures.  

The efficient mixtures in day 7 were three and they are presented in Table 3.9. In the 

analysis of day 28, the efficient mixtures were four (Table 3.9). And in the full 

comparison analysis, there were six mixtures in the Pareto-efficient frontier. However, 

there are two mixtures that were efficient in all the analysis conducted.  These mixtures 

are:  the control mixture with 100% of PC, 0% of FA, and 0% of nS; and the mixture with 

78.5% of PC, 20% of FA, and 1.5% of nS. It is interesting that this last one contains the 

cement replacement by FA and also the silica nanoparticles.  

Nevertheless, the mixtures that contained FA but did not contain nS, did not belong to 

the Pareto-efficient frontier. This behavior was observed in all the analysis. Therefore, 

the addition of silica nanoparticles appears to be necessary when FA is presented as 

cement replacement. This is to improve the physical and mechanical properties of the 

resulting concrete.  
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Table 3.9 Original average results of the best tradeoffs mixtures in both analysis. 

Best 
Tradeoffs 
Mixtures 

k 
Mixture 

Proportions 
(PC/FA/nS) 

Compressive 
Strength, 
Average 

Bulk 
Density, 
Average 

Volume of 
Permeable 

Pore Space, 
Average 

MPa Kg/m3 % 

7 days 

2 1.000/0.00/0.000 31.11 2218.43 13.85 

8 0.785/0.20/0.015 40.40 2156.64 17.00 

9 0.570/0.40/0.030 33.35 2163.49 12.49 

28 days 

2 1.000/0.00/0.000 41.91 2192.05 14.75 

6 0.985/0.00/0.015 31.29 2226.15 14.25 

7 0.970/0.00/0.030 31.81 2197.49 15.35 

8 0.785/0.20/0.015 47.27 2179.52 16.12 

Full 
Comparison 

2 1.000/0.00/0.000 31.11 2218.43 13.85 

9 0.570/0.40/0.030 33.35 2163.49 12.49 

11 1.000/0.00/0.000 41.91 2192.05 14.75 

15 0.985/0.00/0.015 31.29 2226.15 14.25 

16 0.970/0.00/0.030 31.81 2197.49 15.35 

17 0.785/0.20/0.015 47.27 2179.52 16.12 

 

 

 

3.6. Final Remarks 

Three concrete performance measures were considered in this chapter: concrete 

compressive strength, bulk density, and percentage of voids (porosity). Nine mixture’s 

proportion combinations were evaluated considering different percentages of PC, FA, 

and nS. The use of the multiple criteria optimization helped find the mixtures that were 

the best compromise among the studied objectives. These performance measures were 

measured after 7 and 28 days.  At day 7, three mixtures were part of the Pareto-efficient 

frontier. Two of them were mixtures with cement replacement, i.e. FA and nS at different 

levels. On the other hand, four mixtures were part of the Pareto efficient frontier at day 
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28. This time one mixture has cement replacement (FA and nS). In addition, two 

mixtures were efficient either in day 7 and day 28.  

In this study, a multiple criteria optimization strategy permitted to recommend the use of 

FA and nS to improve the concrete properties at its early age. However, if the analysis 

is performed considering only one performance measures, such as compressive 

strength like in the first stage of this work, the option of cement replacement by FA is 

not recommended. Hence, taking in consideration several performance measures the 

use of mineral admixtures is suggested. This is because a mixture with mineral 

admixtures will be equally efficient than a control mixture with just PC when more 

properties are considered.   
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IV. CHAPTER 

4. Conclusions and Recommendations 

The utilization of design of experiments for mixtures helped characterize concrete 

properties when mineral admixtures are present keeping in mind that this material has 

high composition variability (in terms of its individual constituents). In the present work, 

we first evaluated the mixture components utilizing nonlinear single objective 

optimization. The percentage gain in compressive strength was obtained by each 

percentage of nS added in combination with FA.  

However, concrete users are interested in different desirable characteristics. Therefore, 

a multiple criteria approach was followed in order to give a more general 

recommendation. This is done by evaluating three performance measures, maximizing 

compressive strength and density and minimizing the material porosity. With the 

methodology utilized, the results suggested the utilization of conventional concrete 

mixture but also mixtures containing cement replacement by FA and nS. The 

methodology helped in the decision making process of mixtures proportions selection. 

This selection is based on the mixtures mechanical and physical properties evaluated. 

Now, as the decision makers know the best tradeoffs mixtures, the final 

recommendation is easier to make.  
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4.1. Future Work 

An important aspect in the construction industry is the inherent costs associated to their 

projects. As mentioned before, FA is one of the low-priced mineral admixtures. 

Moreover, the benefits of silica nanoparticles resides on the improvements of the 

concrete physical and mechanical properties and its low cost of production  [14], [64], 

[65]. Therefore, if different mixtures of PC, FA, and nS are evaluated measuring several 

performance measures and also considering their associated costs the result will be 

interested. According Felekoglu [66], the cost of each mixture combinations can be 

considered as follows: 

First calculate the material cost per kilogram.  

Table 4.1 Estimated unit cost for each component of the mixture. 

Material PC  FA nS 
Coarse 

Aggregate 
Fine 

Aggregate 
Super-

plasticizer water 

Unit cost 
($/kg.) c1 c2 c3 c4 c5 c6 c7 

Then the total mixture cost due to all the materials is computed. 

Table 4.2 Total costs associated with each mixture combination. 

k 
Mixture 

Proportions 
(PC/FA/nS) 

Total Mixture 
Cost ($/m

3
) 

1 0.800/0.20/0.000 h1 

2 1.000/0.00/0.000 h2 

3 0.600/0.40/0.000 h3 

4 0.585/0.40/0.015 h4 

5 0.770/0.20/0.030 h5 

6 0.985/0.00/0.015 h6 

7 0.970/0.00/0.030 h7 

8 0.785/0.20/0.015 h8 

9 0.570/0.40/0.030 h9 
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The researchers in the paper mentioned recommend the mixture combination with the 

lower material cost for unit strength [66]. However, our suggestion for future work is to 

estimate the costs by the same means but including the total mixture cost as a fourth 

performance measures, applied the multiple criteria optimization method, and then 

make a recommendation. Otherwise, if a subjective methodology is followed different 

results will be obtained because it will depend of the preferences of the researcher. In 

Appendix 1 a cost analysis was developed based on the local prices of the materials 

used for the mixtures.  

 A limitation of the general methodology followed, perhaps, is that the order of the 

regression model depends of the number of design points selected. In addition, if a 

greater model adjustment is desired more work and time are required to complete the 

design of experiments. Therefore, a suggestion for futures investigations in this area is 

that previously define what they want to specifically know and then execute the 

experiment to avoid delays during the investigation.     

In addition, the concrete density can be evaluated more thoroughly in order to 

investigate if increasing the concrete compression strength, the total volume required of 

concrete can be reduced. Also, the use of optical microscopy can be employed to 

observe and analyze the composition and particles segregation of the different mixtures 

evaluated. 
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6. Appendices 

6.1. Appendix 1  

Local Cost Estimation for the Mixture Combinations Evaluated 

This section includes a local cost analysis for the materials utilized in the mixtures 

prepared. Table 6.1 present the suppliers of each material used in the mixture. Then, 

the total cost of each mixture combination was estimated for 1 cubic meter (Table 6.2).  

Table 6.1 Suppliers’ information about the materials utilized. 

Material Description Supplier 
Supplier 
Location 

Unit Cost 

$/kg. 

Portland Cement Type I ESSROC San Juan Dorado, P.R. $       0.17 

Fly Ash Class F ESSROC San Juan Dorado, P.R. $       0.20* 

Silica nanosilica Nissan Chemical Industries Texas, U.S. $     10.00 

Coarse 
Aggregate 

gravel ESSROC San Juan Dorado, P.R. $       0.02 

Fine Aggregate 

processed ESSROC San Juan Dorado, P.R. $       0.02 

beach sand 
Boquerón Mini Market 
and Hardware, Corp. 

Rincón, P.R. $       0.03 

Superplastizicer Polycarboxylate Darex Puerto Rico Bayamón, P.R. $       3.37 

water tap water 
Autoridad de Acueductos y 

Alcantarillados 
Mayagüez, P.R. $       0.01 

 

*The FA is currently imported to Puerto Rico. There is only one supplier that brings it to 
the island. Consequently, the cost of FA is higher here when compared to the U.S. 
plants that give this material for free or sell it by a minimum cost.  

 

The estimated cost of the conventional or traditional mixture (100% PC, 0% FA, and 0% 

nS) was $174.00. This number is higher when compared to the ready mix cost in the 

local market that is around $120.00 to $130.00. However, this lower cost could be 

associated with the mass production. 
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Table 6.2 Total mixture cost associated with each material utilized. 

k 
Mixture 

Proportions 
(PC/FA/nS) 

Materials 

Total 
Mixture 

Cost 

Portland Cement Fly Ash Silica 
Coarse 

Aggregate 
Fine Aggregate 

Super-
plastizicer 

water 

Type I Class F nanosilica gravel 
processed 

(40%) 
beach sand 

(60%) 
Polycar-
boxylate 

tap water 

Unit Cost ($/kg.) 

$          0.17 $          0.20* $        10.00 $            0.02 $          0.02 $          0.03 $          3.37 $          0.01 

kg/m
3
 $/m

3
 kg/m

3
 $/m

3
 kg/m

3
 $/m

3
 kg/m

3
 $/m

3
 kg/m

3
 $/m

3
 kg/m

3
 $/m

3
 kg/m

3
 $/m

3
 kg/m

3
 $/m

3
 $/m

3
 

1 0.800/0.20/0.000 537.9 90.8 134.5 26.9 0.0 0.0 1001.4 15.8 172.6 3.0 258.9 8.0 6.7 22.6 199.5 1.1 168.00 

2 1.000/0.00/0.000 672.4 113.5 0.0 0.0 0.0 0.0 1001.4 15.8 185.0 3.2 277.4 8.5 9.4 31.7 197.8 1.0 174.00 

3 0.600/0.40/0.000 403.4 68.1 269.0 53.8 0.0 0.0 1001.4 15.8 160.2 2.8 240.3 7.4 4.0 13.6 201.2 1.1 163.00 

4 0.585/0.40/0.015 383.3 64.7 269.0 53.8 20.2 201.7 1001.4 15.8 156.9 2.7 235.3 7.3 5.2 17.6 187.4 1.0 365.00 

5 0.770/0.20/0.030 497.6 84.0 134.5 26.9 40.3 403.4 1001.4 15.8 166.0 2.9 249.0 7.7 6.3 21.3 175.6 0.9 563.00 

6 0.985/0.00/0.015 694.3 117.2 0.0 0.0 21.5 214.7 1066.0 16.8 193.4 3.3 290.1 8.9 9.7 32.7 196.9 1.0 395.00 

7 0.970/0.00/0.030 632.0 106.7 0.0 0.0 40.3 403.4 1001.4 15.8 178.3 3.1 267.5 8.2 10.1 34.0 175.0 0.9 572.00 

8 0.785/0.20/0.015 517.7 87.4 134.5 26.9 20.2 201.7 1001.4 15.8 169.3 2.9 253.9 7.8 5.2 17.6 189.3 1.0 361.00 

9 0.570/0.40/0.030 363.1 61.3 269.0 53.8 40.3 403.4 1001.4 15.8 153.6 2.6 230.4 7.1 5.1 17.0 178.2 0.9 562.00 
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On the other hand, if we evaluate the cost of the other mixture with cement replacement 

(78.5% PC, 20% FA, and 1.5% nS) that always appeared in the Pareto-efficient, we can 

see that it have a higher cost ($361.00). This time is important to mention that the FA 

used in the mixture have a higher cost that the PC and that the cost of the nanoparticles 

of silica are higher too. This could be due to the small quantities in which we buy them.  

In order to make a better cost analysis, the costs of producing these mixtures should be 

deeply investigated in mass production. Also, the production cost of nanosilica is 

decreasing due to improvements to the manufacturing process.  In addition, the 

variability of the cost in the market should be considered. However, the performed 

analysis gives us general information about the current costs in the local market.  

 

6.2. Appendix 2  

Regression models from Minitab after removing the insignificant term.  

Table 6.3 Estimated Regression Coefficients for Y1 in pseudocomponents.  

Term Coef SE Coef T P VIF 

PC 20.3 0.3034 * * 3.11 

FA 9.5 0.4746 * * 6.34 

nS 101.9 46.606 * * 1374.65 

PC*FA -8.1 1.8654 -4.33 0.000 5.5 

PC*nS -71.7 53.6494 -1.34 0.189 596.1 

FA*nS -115.2 54.2279 -2.13 0.040 586.34 

PC*FA*nS 64.5 22.057 2.92 0.006 3.97 

PC*w/b -11.7 0.2934 -39.93 0.000 2.91 

FA*w/b -7.4 0.4597 -16.07 0.000 5.94 

PC*FA*w/b 8.2 1.8525 4.45 0.000 5.43 

PC*nS*w/b 22.5 3.6939 6.09 0.000 2.83 

FA*nS*w/b 19.1 4.8009 3.97 0.000 4.6 

PC*FA*nS*w/b -168 21.8029 -7.7 0.000 3.88 
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Table 6.4 Estimated Regression Coefficients for Y3 in pseudocomponents. 

Term Coef SE Coef T P VIF 

PC 35.9 0.5486 * * 3.11 

FA 10.8 0.8581 * * 6.34 

nS 167.6 84.2574 * * 1374.65 

PC*FA 2.6 3.3724 0.78 0.440 5.5 

PC*nS -72.4 96.9908 -0.75 0.460 596.1 

FA*nS -61 98.0368 -0.62 0.537 586.34 

PC*FA*nS 4.9 39.876 0.12 0.903 3.97 

PC*w/b -16.3 0.5304 -30.73 0.000 2.91 

FA*w/b -7.1 0.831 -8.58 0.000 5.94 

PC*FA*w/b -1.6 3.349 -0.48 0.633 5.43 

PC*nS*w/b 1.8 6.678 0.26 0.794 2.83 

FA*nS*w/b -48.8 8.6794 -5.62 0.000 4.6 

PC*FA*nS*w/b -115.1 39.4167 -2.92 0.006 3.88 

 

 

Table 6.5 Estimated Regression Coefficients for Y7 in pseudocomponents. 

Term Coef SE Coef T P VIF 

PC 44.56 0.871 * * 3.11 

FA 18.35 1.362 * * 6.34 

nS 69.5 133.783 * * 1374.65 

PC*FA 0.94 5.355 0.18 0.861 5.5 

PC*nS 98.95 154.001 0.64 0.524 596.1 

FA*nS 96.19 155.662 0.62 0.540 586.34 

PC*FA*nS 2.85 63.315 0.05 0.964 3.97 

PC*w/b -18.94 0.842 -22.49 0.000 2.91 

FA*w/b -9.55 1.319 -7.24 0.000 5.94 

PC*FA*w/b -5.96 5.318 -1.12 0.269 5.43 

PC*nS*w/b 27.48 10.603 2.59 0.013 2.83 

FA*nS*w/b -79.62 13.781 -5.78 0.000 4.6 

PC*FA*nS*w/b -20.58 62.586 -0.33 0.744 3.88 
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Table 6.6 Estimated Regression Coefficients for Y14 in pseudocomponents. 

Term Coef SE Coef T P VIF 

PC 47.6 0.842 * * 3.11 

FA 25 1.316 * * 6.34 

nS -164.6 129.262 * * 1374.65 

PC*FA 4.4 5.174 0.86 0.396 5.5 

PC*nS 388.2 148.797 2.61 0.013 596.1 

FA*nS 337.9 150.402 2.25 0.030 586.34 

PC*FA*nS -8.5 61.175 -0.14 0.890 3.97 

PC*w/b -20.5 0.814 -25.19 0.000 2.91 

FA*w/b -14.8 1.275 -11.6 0.000 5.94 

PC*FA*w/b 7.4 5.138 1.44 0.158 5.43 

PC*nS*w/b 14.5 10.245 1.41 0.165 2.83 

FA*nS*w/b -54.5 13.315 -4.09 0.000 4.6 

PC*FA*nS*w/b -70.6 60.47 -1.17 0.250 3.88 

 

 

 

Table 6.7 Estimated Regression Coefficients for Y28 in pseudocomponents. 

Term Coef SE Coef T P VIF 

PC 55.12 0.888 * * 3.11 

FA 32.6 1.389 * * 6.34 

nS 20.95 136.358 * * 1374.65 

PC*FA 13.37 5.458 2.45 0.019 5.5 

PC*nS 138.98 156.965 0.89 0.381 596.1 

FA*nS 128.14 158.658 0.81 0.424 586.34 

PC*FA*nS -71.63 64.534 -1.11 0.273 3.97 

PC*w/b -22.87 0.858 -26.65 0.000 2.91 

FA*w/b -17.51 1.345 -13.02 0.000 5.94 

PC*FA*w/b 1.94 5.42 0.36 0.722 5.43 

PC*nS*w/b 23.03 10.807 2.13 0.039 2.83 

FA*nS*w/b -35.27 14.046 -2.51 0.016 4.6 

PC*FA*nS*w/b -96.86 63.79 -1.52 0.137 3.88 
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6.3. Appendix 3 

Detailed results from the multiple-criteria analysis for day 7. 

 

Table 6.8 Comparison among all solutions n from objective 𝑓1. 

𝒇𝟏vs. 𝒇𝟏 37.23 33.49 30.89 33.02 34.85 37.56 40.40 24.19 31.25 

37.23 0 1000 1000 1000 1000 -1 -1 1000 1000 

33.49 -1 0 1000 1000 -1 -1 -1 1000 1000 

30.89 -1 -1 0 -1 -1 -1 -1 1000 -1 

33.02 -1 -1 1000 0 -1 -1 -1 1000 1000 

34.85 -1 1000 1000 1000 0 -1 -1 1000 1000 

37.56 1000 1000 1000 1000 1000 0 -1 1000 1000 

40.40 1000 1000 1000 1000 1000 1000 0 1000 1000 

24.19 -1 -1 -1 -1 -1 -1 -1 0 -1 

31.25 -1 -1 1000 -1 -1 -1 -1 1000 0 

 

 

Table 6.9 Comparison among all solutions n from objective 𝑓2. 

𝒇𝟐vs. 

𝒇𝟐 
2170.43 2117.88 2218.43 2210.75 2149.85 2147.80 2146.33 2179.68 2172.82 

2170.43 0 1000 -1 -1 1000 1000 1000 -1 -1 

2117.88 -1 0 -1 -1 -1 -1 -1 -1 -1 

2218.43 1000 1000 0 1000 1000 1000 1000 1000 1000 

2210.75 1000 1000 -1 0 1000 1000 1000 1000 1000 

2149.85 -1 1000 -1 -1 0 1000 1000 -1 -1 

2147.80 -1 1000 -1 -1 -1 0 1000 -1 -1 

2146.33 -1 1000 -1 -1 -1 -1 0 -1 -1 

2179.68 1000 1000 -1 -1 1000 1000 1000 0 1000 

2172.82 1000 1000 -1 -1 1000 1000 1000 -1 0 

 

 



90 
 

Table 6.10 Comparison among all solutions n from objective 𝑓3. 

𝒇𝟑vs. 𝒇𝟑 15.59 13.85 17.42 16.58 15.93 16.00 16.04 17.00 12.49 

15.59 0 1000 -1 -1 -1 -1 -1 -1 1000 

13.85 -1 0 -1 -1 -1 -1 -1 -1 1000 

17.42 1000 1000 0 1000 1000 1000 1000 1000 1000 

16.58 1000 1000 -1 0 1000 1000 1000 -1 1000 

15.93 1000 1000 -1 -1 0 -1 -1 -1 1000 

16.00 1000 1000 -1 -1 1000 0 -1 -1 1000 

16.04 1000 1000 -1 -1 1000 1000 0 -1 1000 

17.00 1000 1000 -1 1000 1000 1000 1000 0 1000 

12.49 -1 -1 -1 -1 -1 -1 -1 -1 0 

 

 

Table 6.11 Matrix to evaluate the second condition of Pareto. 

k 𝒇𝟏 vs. 𝒇𝟐 vs. 𝒇𝟑 
         

1 37.23 2170.43 15.59 1500 3000 0 0 0 0 0 0 0 

2 33.49 2117.88 13.85 0 1500 0 0 0 0 0 0 0 

3 30.89 2218.43 17.42 0 0 1500 0 0 0 0 3000 0 

4 33.02 2210.75 16.58 0 0 0 1500 0 0 0 0 3000 

5 34.85 2149.85 15.93 0 3000 0 0 1500 0 0 0 0 

6 37.56 2147.80 16.00 0 3000 0 0 0 1500 0 0 0 

7 40.40 2146.33 16.04 0 3000 0 0 0 0 1500 0 0 

8 24.19 2179.68 17.00 0 0 0 0 0 0 0 1500 0 

9 31.25 2172.82 12.49 0 0 0 0 0 0 0 0 1500 
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6.4. Appendix 4 

Detailed results from the multiple-criteria analysis for day 28. 

 

Table 6.12 Comparison among all solutions n from objective 𝑓1. 

𝒇𝟏vs. 𝒇𝟏 44.08 36.65 34.47 39.65 41.97 47.27 46.75 31.29 37.06 

44.08 0 1000 1000 1000 1000 -1 -1 1000 1000 

36.65 -1 0 1000 -1 -1 -1 -1 1000 -1 

34.47 -1 -1 0 -1 -1 -1 -1 1000 -1 

39.65 -1 1000 1000 0 -1 -1 -1 1000 1000 

41.97 -1 1000 1000 1000 0 -1 -1 1000 1000 

47.27 1000 1000 1000 1000 1000 0 1000 1000 1000 

46.75 1000 1000 1000 1000 1000 -1 0 1000 1000 

31.29 -1 -1 -1 -1 -1 -1 -1 0 -1 

37.06 -1 1000 1000 -1 -1 -1 -1 1000 0 

 

Table 6.13 Comparison among all solutions n from objective 𝑓2. 

𝒇𝟐vs. 
𝒇𝟐 2181.64 2130.71 2223.88 2226.15 2154.05 2096.61 2125.27 2143.24 2190.80 

2181.64 0 1000 -1 -1 1000 1000 1000 1000 -1 

2130.71 -1 0 -1 -1 -1 1000 1000 -1 -1 

2223.88 1000 1000 0 -1 1000 1000 1000 1000 1000 

2226.15 1000 1000 1000 0 1000 1000 1000 1000 1000 

2154.05 -1 1000 -1 -1 0 1000 1000 1000 -1 

2096.61 -1 -1 -1 -1 -1 0 -1 -1 -1 

2125.27 -1 -1 -1 -1 -1 1000 0 -1 -1 

2143.24 -1 1000 -1 -1 -1 1000 1000 0 -1 

2190.80 1000 1000 -1 -1 1000 1000 1000 1000 0 
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Table 6.14 Comparison among all solutions n from objective 𝑓3. 

𝒇𝟑vs. 𝒇𝟑 15.77 14.75 17.26 17.17 16.06 14.25 15.35 16.12 16.02 

15.77 0 1000 -1 -1 -1 1000 1000 -1 -1 

14.75 -1 0 -1 -1 -1 1000 -1 -1 -1 

17.26 1000 1000 0 1000 1000 1000 1000 1000 1000 

17.17 1000 1000 -1 0 1000 1000 1000 1000 1000 

16.06 1000 1000 -1 -1 0 1000 1000 -1 1000 

14.25 -1 -1 -1 -1 -1 0 -1 -1 -1 

15.35 -1 1000 -1 -1 -1 1000 0 -1 -1 

16.12 1000 1000 -1 -1 1000 1000 1000 0 1000 

16.02 1000 1000 -1 -1 -1 1000 1000 -1 0 

 

 

Table 6.15 Matrix for evaluates the second condition of Pareto. 

k 𝒇𝟏 vs. 𝒇𝟐 vs. 𝒇𝟑 
         

1 44.08 2181.64 15.77 1500 3000 0 0 0 0 0 0 0 

2 36.65 2130.71 14.75 0 1500 0 0 0 0 0 0 0 

3 34.47 2223.88 17.26 0 0 1500 0 0 0 0 3000 0 

4 39.65 2226.15 17.17 0 3000 0 1500 0 0 0 3000 3000 

5 41.97 2154.05 16.06 0 3000 0 0 1500 0 0 0 0 

6 47.27 2096.61 14.25 0 0 0 0 0 1500 0 0 0 

7 46.75 2125.27 15.35 0 0 0 0 0 0 1500 0 0 

8 31.29 2143.24 16.12 0 0 0 0 0 0 0 1500 0 

9 37.06 2190.80 16.02 0 3000 0 0 0 0 0 0 1500 
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6.5. Appendix 5 

Detailed results from the full comparison analysis between all mixtures. 

 

Table 6.16 Comparison among all solutions n from objective 𝑓1. 

 

 

 

𝒇𝟏vs. 𝒇𝟏 37.23 33.49 30.89 33.02 34.85 37.56 40.40 24.19 31.25 44.08 36.65 34.47 39.65 41.97 47.27 46.75 31.29 37.06 

37.23 0 1000 1000 1000 1000 -1 -1 1000 1000 -1 1000 1000 -1 -1 -1 -1 1000 1000 

33.49 -1 0 1000 1000 -1 -1 -1 1000 1000 -1 -1 -1 -1 -1 -1 -1 1000 -1 

30.89 -1 -1 0 -1 -1 -1 -1 1000 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

33.02 -1 -1 1000 0 -1 -1 -1 1000 1000 -1 -1 -1 -1 -1 -1 -1 1000 -1 

34.85 -1 1000 1000 1000 0 -1 -1 1000 1000 -1 -1 1000 -1 -1 -1 -1 1000 -1 

37.56 1000 1000 1000 1000 1000 0 -1 1000 1000 -1 1000 1000 -1 -1 -1 -1 1000 1000 

40.40 1000 1000 1000 1000 1000 1000 0 1000 1000 -1 1000 1000 1000 -1 -1 -1 1000 1000 

24.19 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

31.25 -1 -1 1000 -1 -1 -1 -1 1000 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 

44.08 1000 1000 1000 1000 1000 1000 1000 1000 1000 0 1000 1000 1000 1000 -1 -1 1000 1000 

36.65 -1 1000 1000 1000 1000 -1 -1 1000 1000 -1 0 1000 -1 -1 -1 -1 1000 -1 

34.47 -1 1000 1000 1000 -1 -1 -1 1000 1000 -1 -1 0 -1 -1 -1 -1 1000 -1 

39.65 1000 1000 1000 1000 1000 1000 -1 1000 1000 -1 1000 1000 0 -1 -1 -1 1000 1000 

41.97 1000 1000 1000 1000 1000 1000 1000 1000 1000 -1 1000 1000 1000 0 -1 -1 1000 1000 

47.27 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 0 1000 1000 1000 

46.75 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 -1 0 1000 1000 

31.29 -1 -1 1000 -1 -1 -1 -1 1000 1000 -1 -1 -1 -1 -1 -1 -1 0 -1 

37.06 -1 1000 1000 1000 1000 -1 -1 1000 1000 -1 1000 1000 -1 -1 -1 -1 1000 0 
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Table 6.17 Comparison among all solutions n from objective 𝑓2. 

𝒇𝟐vs. 𝒇𝟐 2170.43 2117.88 2218.43 2210.75 2149.85 2147.80 2146.33 2179.68 2172.82 2181.64 2130.71 2223.88 2226.15 2154.05 2096.61 2125.27 2143.24 2190.80 

2170.43 0 1000 -1 -1 1000 1000 1000 -1 -1 -1 1000 -1 -1 1000 1000 1000 1000 -1 

2117.88 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1000 -1 -1 -1 

2218.43 1000 1000 0 1000 1000 1000 1000 1000 1000 1000 1000 -1 -1 1000 1000 1000 1000 1000 

2210.75 1000 1000 -1 0 1000 1000 1000 1000 1000 1000 1000 -1 -1 1000 1000 1000 1000 1000 

2149.85 -1 1000 -1 -1 0 1000 1000 -1 -1 -1 1000 -1 -1 -1 1000 1000 1000 -1 

2147.80 -1 1000 -1 -1 -1 0 1000 -1 -1 -1 1000 -1 -1 -1 1000 1000 1000 -1 

2146.33 -1 1000 -1 -1 -1 -1 0 -1 -1 -1 1000 -1 -1 -1 1000 1000 1000 -1 

2179.68 1000 1000 -1 -1 1000 1000 1000 0 1000 -1 1000 -1 -1 1000 1000 1000 1000 -1 

2172.82 1000 1000 -1 -1 1000 1000 1000 -1 0 -1 1000 -1 -1 1000 1000 1000 1000 -1 

2181.64 1000 1000 -1 -1 1000 1000 1000 1000 1000 0 1000 -1 -1 1000 1000 1000 1000 -1 

2130.71 -1 1000 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 1000 1000 -1 -1 

2223.88 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 0 -1 1000 1000 1000 1000 1000 

2226.15 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 0 1000 1000 1000 1000 1000 

2154.05 -1 1000 -1 -1 1000 1000 1000 -1 -1 -1 1000 -1 -1 0 1000 1000 1000 -1 

2096.61 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 

2125.27 -1 1000 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1000 0 -1 -1 

2143.24 -1 1000 -1 -1 -1 -1 -1 -1 -1 -1 1000 -1 -1 -1 1000 1000 0 -1 

2190.80 1000 1000 -1 -1 1000 1000 1000 1000 1000 1000 1000 -1 -1 1000 1000 1000 1000 0 
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Table 6.18 Comparison among all solutions n from objective 𝑓3. 

 

 

 

 

𝒇𝟑vs. 𝒇𝟑 15.59 13.85 17.42 16.58 15.93 16.00 16.04 17.00 12.49 15.77 14.75 17.26 17.17 16.06 14.25 15.35 16.12 16.02 

15.59 0 1000 -1 -1 -1 -1 -1 -1 1000 -1 1000 -1 -1 -1 1000 1000 -1 -1 

13.85 -1 0 -1 -1 -1 -1 -1 -1 1000 -1 -1 -1 -1 -1 -1 -1 -1 -1 

17.42 1000 1000 0 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

16.58 1000 1000 -1 0 1000 1000 1000 -1 1000 1000 1000 -1 -1 1000 1000 1000 1000 1000 

15.93 1000 1000 -1 -1 0 -1 -1 -1 1000 1000 1000 -1 -1 -1 1000 1000 -1 -1 

16.00 1000 1000 -1 -1 1000 0 -1 -1 1000 1000 1000 -1 -1 -1 1000 1000 -1 -1 

16.04 1000 1000 -1 -1 1000 1000 0 -1 1000 1000 1000 -1 -1 -1 1000 1000 -1 1000 

17.00 1000 1000 -1 1000 1000 1000 1000 0 1000 1000 1000 -1 -1 1000 1000 1000 1000 1000 

12.49 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 

15.77 1000 1000 -1 -1 -1 -1 -1 -1 1000 0 1000 -1 -1 -1 1000 1000 -1 -1 

14.75 -1 1000 -1 -1 -1 -1 -1 -1 1000 -1 0 -1 -1 -1 1000 -1 -1 -1 

17.26 1000 1000 -1 1000 1000 1000 1000 1000 1000 1000 1000 0 1000 1000 1000 1000 1000 1000 

17.17 1000 1000 -1 1000 1000 1000 1000 1000 1000 1000 1000 -1 0 1000 1000 1000 1000 1000 

16.06 1000 1000 -1 -1 1000 1000 1000 -1 1000 1000 1000 -1 -1 0 1000 1000 -1 1000 

14.25 -1 1000 -1 -1 -1 -1 -1 -1 1000 -1 -1 -1 -1 -1 0 -1 -1 -1 

15.35 -1 1000 -1 -1 -1 -1 -1 -1 1000 -1 1000 -1 -1 -1 1000 0 -1 -1 

16.12 1000 1000 -1 -1 1000 1000 1000 -1 1000 1000 1000 -1 -1 1000 1000 1000 0 1000 

16.02 1000 1000 -1 -1 1000 1000 -1 -1 1000 1000 1000 -1 -1 -1 1000 1000 -1 0 
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Table 6.19 Matrix for evaluates the second condition of Pareto. 

 

 k 𝒇𝟏 vs. 𝒇𝟐 vs. 𝒇𝟑 

                  1 37.23 2170.43 15.59 1500 3000 0 0 0 0 0 0 0 0 3000 0 0 0 0 0 0 0 

2 33.49 2117.88 13.85 0 1500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 30.89 2218.43 17.42 0 0 1500 0 0 0 0 3000 0 0 0 0 0 0 0 0 0 0 

4 33.02 2210.75 16.58 0 0 0 1500 0 0 0 0 3000 0 0 0 0 0 0 0 3000 0 

5 34.85 2149.85 15.93 0 3000 0 0 1500 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 37.56 2147.80 16.00 0 3000 0 0 0 1500 0 0 0 0 3000 0 0 0 0 0 0 0 

7 40.40 2146.33 16.04 0 3000 0 0 0 0 1500 0 0 0 3000 0 0 0 0 0 0 0 

8 24.19 2179.68 17.00 0 0 0 0 0 0 0 1500 0 0 0 0 0 0 0 0 0 0 

9 31.25 2172.82 12.49 0 0 0 0 0 0 0 0 1500 0 0 0 0 0 0 0 0 0 

10 44.08 2181.64 15.77 3000 3000 0 0 0 0 0 0 3000 1500 3000 0 0 0 0 0 0 0 

11 36.65 2130.71 14.75 0 3000 0 0 0 0 0 0 0 0 1500 0 0 0 0 0 0 0 

12 34.47 2223.88 17.26 0 3000 0 3000 0 0 0 3000 3000 0 0 1500 0 0 0 0 3000 0 

13 39.65 2226.15 17.17 3000 3000 0 3000 3000 3000 0 3000 3000 0 3000 0 1500 0 0 0 3000 3000 

14 41.97 2154.05 16.06 0 3000 0 0 3000 3000 3000 0 0 0 3000 0 0 1500 0 0 0 0 

15 47.27 2096.61 14.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1500 0 0 0 

16 46.75 2125.27 15.35 0 3000 0 0 0 0 0 0 0 0 0 0 0 0 0 1500 0 0 

17 31.29 2143.24 16.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1500 0 

18 37.06 2190.80 16.02 0 3000 0 0 3000 0 0 0 3000 0 3000 0 0 0 0 0 0 1500 


