BIFUNCTIONAL CATALYSTS WITH IMPROVED HYDROTHERMAL STABILITY FOR THE HYDROLYTIC HYDROGENATION OF CELLULOSE INTO POLYOLS

by

Darlene Zoe Galloza Lorenzo

A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

in

CHEMICAL ENGINEERING UNIVERSITY OF PUERTO RICO MAYAGÜEZ CAMPUS

2014

Approved by:

Nelson Cardona, PhD President, Graduate Committee

María Curet, PhD Member, Graduate Committee

María Martínez, PhD Member, Graduate Committee

Arturo Hernández, PhD Member, Graduate Committee

José Cortés, PhD Representative of Graduate Studies

Aldo Acevedo, PhD Chairperson of the Department Date

Date

Date

Date

Date

Date

Bifunctional Catalysts with Improved Hydrothermal Stability for the Hydrolytic Hydrogenation of Cellulose into Polyols

by Darlene Z. Galloza Lorenzo

Submitted to the Graduate School of the University of Puerto Rico in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 2014

ABSTRACT

The increase in the world's energy needs has caused a renewed interest in finding green ways to produce fuels. In this work, we present a study of the hydrolytic hydrogenation of cellulose on bifunctional catalysts for the production of glucose and/or sorbitol. These molecules offer the potential to be used as renewable feedstock in a biorefinery for the production of fuels and value added chemicals. We report results for the study of the effects of: cellulose crystallinity, cellulose/catalyst ratio, the acid functionality, the hydrothermal stability, reaction temperature and reaction time on the catalytic performance for the conversion of cellulose into sorbitol. A series of single, binary and ternary metal oxide supports with a range of surface acidity, transition metal (V) phosphate and zeolites, were studied. Ruthenium was supported using evaporative deposition on the supports.

Our results show that the hydrolysis catalytic activity for the single metal oxide supports correlate with the Sanderson electronegativity of the metal oxide, passing through a maximum for Nb₂O₅ (HY 340). The Lewis acidity of the metal oxide also correlates well with the Sanderson electronegativity of the sample. However, when ruthenium is supported on the metal oxides they all displayed comparable catalytic performance that was similar to the performance observed in a reaction without catalyst. This result suggests that the change in product distribution causes a leveling effect on the hydrolysis activity. The absence of carboxylic

acids when the bifunctional catalysts are used explains the decrease in apparent catalytic activity. Under these reaction conditions the rate determining step, i.e., the initial hydrolysis of cellulose is not promoted by the bifunctional catalyst but rather by the hydronium ions present in water at the reaction conditions. The addition of Brønsted acidity by phosphating niobium or tantalum oxide significantly enhances the hydrolysis of cellulose. Of all catalytic materials tested, ruthenium supported on NbOPO₄ displayed the best catalytic performance with hexitols yields of about 45% at 100% cellulose conversion. All materials suffer changes in their properties after treatment in hot water. However, treating the catalysts based on transition metal (V) phosphate in water at 503 K and 35 bar H₂ for 24 h or 48 h caused a slight decrease in cellulose conversion, but a significant increase in hexitol and hydrogenolysis products yield. Ru/Nb₂O₅ (HY 340) and the equivalent amount of phosphoric acid present in Ru/NbOPO₄, give essentially the same conversion as Ru/NbOPO₄, but a lower yield to sugar alcohols and a higher yield to hydrogenolysis products. Decreasing cellulose crystallinity and cellulose/catalyst ratio, increases the cellulose conversion and hexitols yield for Ru/NbOPO₄.

Catalizadores Bifuncionales con Mejor Estabilidad Hidrotérmica para la Hidrogenación Hidrolítica de Celulosa a Polioles

por Darlene Z. Galloza Lorenzo

Sometido a Escuela Graduada de la Universidad de Puerto Rico como Requisito Parcial de los Requerimientos para el Grado de Doctorado en Filosofía 2014

RESUMEN

El aumento de las necesidades energéticas del mundo ha provocado un interés de encontrar vías verdes para producir combustibles. En este trabajo presentamos un estudio de la hidrogenación hidrolítica de celulosa sobre catalizadores bifuncionales para la producción de glucosa y/o sorbitol. Estas moléculas ofrecen el potencial de ser utilizadas como materia prima renovable en una biorefinería para la producción de combustibles y productos químicos de valor añadido. Presentamos resultados para el estudio de los efectos de: la cristalinidad de celulosa, la relación de celulosa/catalizador, la funcionalidad acídica, la estabilidad hidrotérmica, temperaturas de reacción y tiempos de reacción sobre el rendimiento catalítico para la conversión de la celulosa a sorbitol. Una serie de soportes de óxidos metálicos simples, binarios y ternarios con un rango de acidez de la superfície, metales de transición (V) de fosfato y zeolitas, se estudiaron. Rutenio fue depositado usando deposición por evaporación sobre los soportes.

Nuestros resultados muestran que la actividad catalítica para la hidrólisis de los soportes simples de óxido de metal se correlaciona con la electronegatividad de Sanderson, pasando a través de un máximo para Nb₂O₅ (HY 340). La acidez Lewis de los óxidos metálicos también correlaciona bien con la electronegatividad Sanderson de la muestra. Sin embargo, cuando rutenio se deposita sobre los óxidos metálicos, todos muestran un comportamiento catalítico que es similar al desempeño observado en una reacción sin catalizador. Este resultado sugiere que el

cambio en la distribución de productos causa un efecto que nivela la actividad para hidrólisis. La ausencia de ácidos carboxílicos cuando se utilizan catalizadores bifuncionales explica la disminución en actividad catalítica. Bajo esas condiciones de reacción el paso de tasa determinante, i.e. la hidrólisis inicial de celulosa no es promovida por los catalizadores bifuncionales sino por los iones hidronio presentes en agua a las condiciones de reacción. De todos los materiales catalíticos puestos a prueba, rutenio sobre NbOPO₄ muestra el mejor rendimiento catalítico con un rendimiento para hexitoles de aproximadamente 45% para una conversión de 100% celulosa. Todos los materiales sufrieron cambios en sus propiedades después de los tratamientos con agua caliente. Sin embargo, el tratamiento de los catalizadores basado en los metales de transición (V) de fosfato en agua a 503 K y 35 bar de H₂ durante 24 h o 48 h causó una ligera disminución en la conversión de celulosa, pero un aumento significativo en los rendimientos para hexitoles y productos de hidrogenólisis. Ru/Nb₂O₅ (HY 340) y la cantidad equivalente de ácido fosfórico presente en Ru/NbOPO₄, da esencialmente la misma conversión como para Ru/NbOPO₄ pero con rendimientos bajos para los alcoholes de azúcar y un mayor rendimiento para los productos de hidrogenólisis. La disminución de la cristalinidad de celulosa y la relación de celulosa/catalizador, aumenta la conversión de celulosa y el rendimiento de hexitoles para Ru/NbOPO₄.

Copyright © 2014

Darlene Zoe Galloza Lorenzo. All rights reserved.

To my parents, Daniel and Carmen.

My sister, Marlene and my husband Isaac.

ACKNOWLEDGEMENTS

I want to express a sincere gratitude to my advisor, Dr. Nelson Cardona Martínez, for all the confidence, knowledge, teaching and the opportunity to perform research under his guidance and supervision. Additionally, to my thesis committee: Dr. María Curet Arana, Dr. María Martínez Iñesta and Dr. Arturo Hernández Maldonado, for all the discussions, and feedback to finish this dissertation. Further, I am very grateful to Dr. María Martínez-Iñesta, Dr. Arturo Hernández-Maldonado and their graduate students for allowing the use of their instrumentation.

Also, I want to thank my lab partners from NCML, for the help, the training, and for all the scientific discussions, that taught me to be a better scientist. To Audrey Michelli for the synthesis of the mesoporous carbon material (CMK-3) and Marietta Marcano for the synthesis of UPRM-5 titanium silicate. Moreover, thanks to Dr. Carlos Velázquez and Dr. David Mota for the analysis of particle size distribution. In the same way, I want to thanks Dr. Rafael Méndez for the synthesis and the pyridine adsorption analysis of the binary metal oxides materials. Additionally, to Dr. James Dumesic and Dr. Ana Alba Rubio at the University of Wisconsin-Madison for the STEM analysis. Furthermore, I appreciate the Chemical Engineering Department at the University of Puerto Rico at Mayagüez, for giving me the opportunity to continue my graduate studies.

Most importantly, I want to give my sincere thanks to all my family for their motivation, support and blessings during my studies. To my friends for your help, support and encouragement. Also, I am deeply grateful to my parents and my sister, for always been my support and my sustain in all my decisions. In the same way, I am more than grateful to my husband, Isaac Torres, for the motivation, the lessons and for being my example to never give up and follow my dreams.

I want to acknowledge, NSF for the support through the Nanotechnology Center for Biomedical and Energy-Driven Systems and Applications (HRD-0833112) for the financial support. Additionally, to Wisconsin-Puerto Rico Partnership for Research and Education in Materials (DMR-0934115) and Sloan Foundation Fellowship Award for providing partial support for the completion of this work.

TABLE OF CONTENTS

ABSTRACT	II
RESUMEN	IV
ACKNOWLEDGEMENTS	VIII
TABLE LIST	XII
FIGURE LIST	XIV
1 INTRODUCTION	1
1.1 Μοτινατίον	1
1.2 BIOMASS	2
1.3 CATALYST	
1.4 CATALYTIC CONVERSION OF CELLULOSE	
1.4.1 Hydrolysis reaction	8
1.4.2 Carbohydrates hydrogenation	
1.5 SORBITOL	
1.6 SUMMARY OF FOLLOWING CHAPTERS	15
2 METHODOLOGY	
2.1 MATERIALS	
2.2 CATALYST PREPARATION	
2.2.1 Synthesis of binary and ternary metal oxide catalysts	
2.2.2 Synthesis of tantalum and niobium phosphate catalysts	
2.2.3 Ruthenium deposition	
2.3 CHARACTERIZATION TECHNIQUES	
2.4 CELLULOSE BALL-MILL TREATMENT	
2.5 CATALYTIC PERFORMANCE	
2.5.1 Batch reactor	
2.0 HYDROTHERMAL STABILITY	
3 METAL OXIDES AS SUPPORTS FOR THE CATALYTIC CONVERSION OF (CELLULOSE29
3.1 INTRODUCTION	
3.2 RESULTS AND DISCUSSION	
3.2.1 Single metal oxides	
3.2.2 Binary and ternary metal oxides	
3.3 CONCLUSIONS	
4 GROUP V TRANSITION METAL PHOSPHATE FOR THE HYDROLYTIC HY CELLULOSE	DROGENATION OF
	51
4.2 RESULTS AND DISCUSSION	
4.2.1 Commercial niobium phosphate	
4.2.2 Mesoporous phosphate catalysts	
4.3 CONCLUSIONS	
5 ZEOLITES FOR THE CATALYTIC CONVERSION OF CELLULOSE	
5.1 INTRODUCTION	98
5.2 RESULTS AND DISCUSSION	
5.2.1 Characterization results	
5.2.2 Catalytic performance	
5.3 CONCLUSIONS	

6	CONCLUDING REMARKS	107
AP	PPENDIX A	111
AP	PPENDIX B	112
AP	PPENDIX C	
AP	PPENDIX D	123
AP	PPENDIX E	124
AP	PPENDIX F	127
RE	EFERENCES	

TABLE LIST

<u>Tables</u>

Page

Table 3-1. Tentative summary of the acid-base properties of binary metal oxides. ¹²⁰ Table 3-2. Physico-chemical properties of catalyst samples studied.	. 30 . 33
Table 3-3. Reaction results for cellulose conversion using ruthenium supported on metal oxide	S.
Table 3-4. Electronegativities of metal oxides. ^{136,137}	. 38
Table 3-5 Physico-chemical properties of binary and ternary metal oxide samples	41
Table 3-6 Configuration and IR characteristics of pyridine adsorbed species on metal oxide	•••
surfaces at $> 300 \text{ K}^{-139}$	44
Table 3-7. Reaction results for cellulose conversion on binary and ternary metal oxides.	46
Table 3-8 Reaction results for the cellulose conversion as a function of reaction time and	
temperature	49
Table 4-1 Reaction results for the effect of changing the surface functionalization	55
Table 4-2 Reaction results for the effect of cellulose crystallinity	61
Table 4-3 Effect of cellulose to catalyst ratio on the catalytic performance for the conversion of	of
ball-milled cellulose	62
Table 4-4 Reaction results for the cellulose conversion as a function of reaction time and	
temperature	65
Table 4-5 Comparison of the catalytic performance for the conversion of ball-milled cellulose	, 00
with Ru/NbOPO ₄ catalysts to the performance of other catalysts with the addition of	
phosphoric acid	66
Table 4-6 Reaction results for the effect of hydrothermal treatments	70
Table 4-7 Physico-chemical properties of Ru/Nb_2O_5 (HY 340) and $Ru/NbOPO_4$ B1 and B2	, , ,
before and after hydrothermal treatments	73
Table 4-8 EDS results for $Ru/NbOPO_4 B2$ before and after hydrothermal treatment at 503 K	
48h obtained from STEM	75
Table 4-9 Pyridine concentrations as function of desorption temperature for Ru/Nb_2O_5 (HY 34)	40)
and Ru/NbOPO ₄ B2 ^a	79
Table 4-10 Physico-chemical properties of group V transition metal phosphates samples	81
Table 4-11. Pyridine concentration as function of desorption temperature for the mesoporous	
phosphate catalysts ^a	83
Table 4-12 Reaction results for group V transition metal phosphate materials	85
Table 4-13 Reaction results for the synthesized tantalum phosphate materials before and after	
hydrothermal treatments.	. 87
Table 4-14 Physico-chemical properties of tantalum phosphate catalyst before and after	
hydrothermal treatments.	88
Table 4-15 Pyridine concentration as function of desorption temperature for the tantalum	
phosphate samples. ^a	89
Table 4-16. Reaction results for the synthesized niobium phosphate material before and after	
hydrothermal treatments.	.93
,	

Table 4-17. Physico-chemical properties of Ru/NbOPO ₄ B3 before and after hydrothermal	
treatments	95
Table 4-18. Pyridine concentration as function of desorption temperature for the niobium	
phosphate catalysts. ^a	96
Table 5-1. Physico-chemical properties of zeolites materials.	. 102
Table A-1. Ruthenium average crystallite size obtained using the Scherrer equation. ¹¹⁵	. 111
Table A-2. Niobium average crystallite size after hydrothermal treatment obtained using the	
Scherrer equation. ¹¹⁵	. 111
Table B-1. Pyridine Concentrations for Brønsted and Lewis acids for some of the catalysts te	ested.
	. 112
Table C-1. Deconvolution of ball-milled cellulose particle size distribution	. 119
Table C-2. Deconvolution of microcrystalline cellulose particle size distribution.	. 120
Table C-3. Cellulose particle size distribution mean diameter and variance	. 121
Table D-1. Weight composition for the niobium samples.	. 123
Table D-2. Weight composition for the tantalum phosphate catalysts.	. 123
Table E-1. Atomic composition for the niobium oxide samples.	. 124
Table E-2. Atomic composition for the niobium phosphate catalysts.	. 125
Table E-3. Atomic composition for the tantalum phosphate materials.	. 126

FIGURE LIST

Figures

Figure 1-1. Structure of lignocellulosic biomass. ²¹
Figure 1-2. Catalytic conversion of cellulose into sorbitol
Figure 1-3. Biorefinery cycle
Figure 1-4. Strategies for converting carbohydrates and polyols in liquid transportation fuels. ⁸ 6
Figure 1-5. Comparison of the energy of a stoichiometric reaction with that for a catalytic
reaction as a function of the reaction coordinate
Figure 1-6. Reaction pathways for the conversion of cellulose to polyols. Hydrolysis (A),
Isomerization (B), Dehydration (C), Rehydration (D), Hydrogenation (E), Hydrogenolysis
(F). ²³
Figure 1-7. Derivative chemicals from sorbitol. ^{92,93}
Figure 2-1. Schematic diagram for the reaction system with a batch reactor
Figure 3-1. X-ray diffraction patterns of (a) Ru/MgO, Ru/ZrO ₂ , Ru/TiO ₂ , Ru/Nb ₂ O ₅ , Ru/Nb ₂ O ₅
(HY 340), and (b) Ru/Al ₂ O ₃ , Ru/SiO ₂ (11.2 wt%), Ru/NbOPO ₄ B1, Ru/A-15. The crystal
structures presented are cubic (C), $^{126}_{127}$ monoclinic (M), $^{131}_{127}$ tetragonal (T), $^{131}_{131}$ anatase (A), $^{132}_{127}$
rutile (R), ¹³² pseudohexagonal (H), ¹²⁷ and gamma (γ), ⁸⁴ zero-valent Ru metal (Ru ⁽⁰⁾). ¹³⁰ 34
Figure 3-2. Cellulose conversion as a function of the Sanderson electronegativity for the single
metal oxides. Support (\blacklozenge) and supported ruthenium (\blacklozenge). Reaction conditions: 483 K, 35 bar
of H_2 and 1 h of reaction. 39
Figure 3-3. X-ray diffraction patterns of Ru/WO ₃ -TiO ₂ , Ru/SiO ₂ -TiO ₂ -WO ₃ , Ru/Al ₂ O ₃ -TiO ₂ ,
Ru/Fe_2O_3 -TiO ₂ , Ru/SiO_2 -TiO ₂ (Degussa) and Ru/SiO_2 -TiO ₂ (sol-gel). The crystal structures
include anatase (A) and rutile (R)
Figure 3-4. FTIR spectra for pyridine adsorption at 473 K on SiO ₂ , TiO ₂ , SiO ₂ -TiO ₂ (SG), WO ₃ -
T_1O_2 , S_1O_2 - T_1O_2 , Al_2O_3 - T_1O_2 , Fe_2O_3 - T_1O_2 . H-bonded pyridine (HPY), Lewis acid sites are
identified with LPY, and Brønsted acid sites are identified with BPY. ¹¹²
Figure 3-5. Cellulose conversion as a function of reaction time and temperature for Ru/SiO_2 -
110_2 -WO ₃ SG (circles) and the reaction in the absence of a catalyst (diamonds) with a
cellulose to catalyst ratio of 3.3, 35 bar of H_2 and ball-milled cellulose. Temperatures of
analysis were 483 K (green) and 503 K (red)
Figure 5-0. Fields as a function of feaction time and temperature for Ru/SiO_2 - IiO_2 - wO_3 .
reducts: sugar alashels (green), sugars (blue) and hydrogonelysis products (red) 48
Figure 4.1 Effect of changing the surface functionalization on the callulose conversion. The
reactions were run using microcrystalline cellulose (Micro) at 483 K 1 h 50 mL of water
cellulose to catalyst ratio of 10 and 35 har of H_2 . Data of mesoporous SBA-15 obtained
from the work of Reves-Luyanda <i>et al</i> 23
Figure 4-2 Effect of changing the surface functionalization on the yields. The reactions were run
for microcrystalline cellulose (Micro) at 483 K 1 h 50 mL of water cellulose to catalyst
ratio of 10 and 35 bar of H_2 Reaction products: sugar alcohols (green) sugars (blue)
hydrogenolysis products (red) and furfurals (vellow). Data of mesoporous SBA-15 obtained
from the work of Reyes-Luyanda <i>et al.</i> ²³

Figure 4-3. X-ray diffraction patterns of microcrystalline (green) and ball-milled cellulose (red). Figure 4-4. Particle size distribution for microcrystalline (green) and ball-milled cellulose (red). Figure 4-5. Effect of cellulose crystallinity on cellulose conversion. The reaction conditions with no catalyst present were 1 g of cellulose, 483 K, 1 h, 50 mL water and 35 bar of H₂. Both niobium phosphate reactions were run at 503 K, 0.5 h, 50 mL of water and 35 bar of H₂. The cellulose to catalyst ratio was the only parameter different in both reactions, cellulose to catalyst ratio of 10 for Ru/NbOPO₄ B2 and cellulose to catalyst ratio of 3.3 for Figure 4-6. Effect of cellulose crystallinity on the yields. The reaction conditions with no catalyst present were 1 g of cellulose, 483 K, 1 h, 50 mL water and 35 bar of H₂. Both niobium phosphate reactions were run at 503 K, 0.5 h, 50 mL of water and 35 bar of H₂. The cellulose to catalyst ratio was the only parameter different in both reactions, cellulose to catalyst ratio of 10 for Ru/NbOPO₄ B2 and cellulose to catalyst ratio of 3.3 for Ru/NBOPO₄ B1. Microcrystalline (Micro) and Ball-milled (BM) cellulose. Reaction products: sugar alcohols (green), sugars (blue), hydrogenolysis products (red) and furfurals (yellow)...... 60 Figure 4-7. Cellulose conversion as a function of reaction time and temperature for Ru/NbOPO₄ B1 (circles) and the reaction in the absence of a catalyst (diamonds) with a cellulose to catalyst ratio of 3.3, 35 bar of H₂ and ball-milled cellulose. Temperatures of analysis were Figure 4-8. Yields as a function of reaction time and temperature for Ru/NbOPO₄ B1. Temperatures of analysis were 483 K and 503 K. Reaction times 0.08 h \leq t \leq 2 h. Reaction Figure 4-9. Effect of hydrothermal treatments (HT) on the cellulose conversion for Ru/NbOPO₄ B1, NbOPO₄ B2, Ru/NbOPO₄ B2 and Ru/Nb₂O₅ (HY 340) at 483 K or 503 K, 24 h or 48 h and 35 bar of H₂. Reaction conditions: 503 K, 35 bar of H₂, 0.5 h, ball-milled cellulose and Figure 4-10. Effect of hydrothermal treatments on the yields for Ru/NbOPO₄ B1, NbOPO₄ B2, Ru/NbOPO₄ B2 and Ru/Nb₂O₅ (HY 340) at 483 K or 503 K, 24 h or 48 h and 35 bar of H₂. Reaction conditions: 503 K, 35 bar of H₂, 0.5 h, ball-milled cellulose and cellulose to catalyst ratio of 3.3. Reaction products: sugar alcohols (green), sugars (blue), Figure 4-11. X-ray diffraction patterns of Ru/NbOPO₄ B1, Ru/NbOPO₄ B2 and Ru/Nb₂O₅ (HY Figure 4-12. STEM images for Ru/NbOPO₄ B2 before [(a) and (c)], and after hydrothermal Figure 4-13. FTIR spectroscopy of pyridine adsorption at 473 K on fresh amorphous NbOPO₄ catalysts and after hydrothermal treatments. (a) Supports: NbOPO₄ B2 (A), HT 483 K 24 h NbOPO₄ B2 (B), Nb₂O₅ (HY 340) (C). (b) Ruthenium supported: Ru/NbOPO₄ B2 (D), HT 483 K 24 h Ru/NbOPO4 B2 (E), HT 503 K 24 h Ru/NbOPO4 B2 (F), HT 503 K 48 h Ru/NbOPO₄ B2 (G), Ru/Nb₂O₅ (HY 340) (H). Lewis acid sites (LPY), and Brønsted acid Figure 4-15. FTIR spectroscopy of pyridine adsorption at 473 K on group V transition metal

Figure 4-16. X-ray diffraction patterns for tantalum phosphate catalyst	86
Figure 4-17. FTIR spectroscopy of pyridine adsorption at 473 K on tantalum phosphate catalyst	t.
Supports (a), and ruthenium supported (b). Lewis acid sites (LPY), and Brønsted acid sites	3
(BPY)	90
Figure 4-18. X-ray diffraction patterns for Ru/NbOPO4 B3 before and after treatment in water a	at
483 K or 503 K, 24 h or 48 h and 35 bar of H2.	92
Figure 4-19. FTIR spectroscopy of pyridine adsorption at 473 K on Ru/NbOPO ₄ and	
hydrothermal treatments: Ru/NbOPO4 B2 (A), HT 483 K 24 h Ru/NbOPO4 B2 (B), HT 50)3
K 24 h Ru/NbOPO4 B2 (C), HT 503 K 48 h Ru/NbOPO4 B2 (D), Ru/NbOPO4 B3 (E), HT	
503 K 24 h Ru/NbOPO4 B3 (F), HT 503 K 48 h Ru/NbOPO4 B3 (G), Ru/Nb2O5 (HY 340)	I
(H). Lewis acid sites (LPY), and Brønsted acid sites (BPY)	94
Figure 5-1. X-ray diffraction patterns for LS-USY before and after ruthenium deposition 10	02
Figure 5-2. X-ray diffraction patterns for TBA-UPRM-5 before and after ruthenium deposition.	
	03
Figure 5-3. Cellulose conversion for microporous materials. Reaction conditions: 503 K, 35 bar	
of H ₂ , 1 h, ball-milled cellulose and cellulose to catalyst ratio of 3.3	04
Figure 5-4. Yields for microporous materials. Reaction conditions: 503 K, 35 bar of H ₂ , 1 h, ba	11-
milled cellulose and cellulose to catalyst ratio of 3.3. Reaction products: sugar alcohols	
(green), sugars (blue), hydrogenolysis products (red) and furfurals (yellow) 10	05
Figure C-1. Deconvolution of microcrystalline cellulose particle size distribution	22
Figure C-2. Deconvolution of ball-milled cellulose particle size distribution	22
Figure F-1 Particles Size Distribution for Ru/NbOPO ₄ 12	27
Figure F-2 Particles Size Distribution for HT 503 K 48 h Ru/NbOPO ₄ 12	28

1 INTRODUCTION

1.1 Motivation

The increase of the world's energy needs with the combination of several factors including the diminishing of petroleum resources, the increase in the petrochemicals prices, as well as the increase of green house gases emissions, has caused great interest in finding new processes to produce renewable fuels. Statistical reviews of the world's energy reveal that the world oil reserves in 2012 were sufficient to last 52.9 years, while North America only had reserves for 38.7 years.¹ The combustion of fossil fuels to produce energy for transportation and electricity, helped humanity achieve a simpler daily life, but also caused an increase in the concentration of greenhouse gas emissions since the Industrial Revolution.²

The CO₂ emissions total count are based on the concentrations obtained from the ocean and land reservoirs.³ The expected CO₂ atmospheric concentration by 2040 for the developed countries will decrease by 20% when compared to the values in 2010, as long as mankind uses energy efficient technologies and less carbon-intensive fuels.⁴ On the other hand, the increase in population, the creation of new technologies, the change in the economy, among many others, is expected to cause a chain reaction of fuel demand and increase in CO₂ concentration.² The increase in greenhouse gas emissions will also create changes in the Earth atmosphere, which eventually produces climate changes such as an increase in ocean temperatures, levels and acidity; changes in snow and rain fall patterns and their intensity; changes in cyclone activity, the durability of drought due to an increase in temperature, and also influence the melting of sea ice and glaciers.² As a result an increase in the use of renewable energy sources such as hydroelectric, solar, geothermal, wind power and biomass are required to supply the demand for energy. Furthermore, the annual global energy consumption is in the same order of magnitude as the amount of biomass that could be produced worldwide for these purposes.⁵ Biomass is the main natural resource that can give the basic elements that are essential in the production of fuels and chemicals, such as carbon and hydrogen that are produced in abundant amounts from the photosynthesis reaction.^{6,7} The use of biomass as energy source, either converting carbohydrates to specific classes of hydrocarbons for the use as liquids fuels, like branched hydrocarbons and aromatic compounds for the production of gasoline, or longer chain, less highly branched hydrocarbons for producing diesel and jet fuels.⁸ For the production of liquid transportation fuels requires the transformation of the feedstock into molecules with desirable properties for combustion with the removal of most of the oxygen atoms.⁸

1.2 Biomass

The plant components that are included in the non edible lignocellulosic biomass are cellulose, hemicellulose and lignin, these three are the components of the cell wall of plants as seen in Figure 1-1.^{6,7,9} The composition of biomass depends on its origin. Mostly biomass is composed of 20-30 % lignin, 20-40 % of hemicellulose and finally 40-50 % of cellulose.^{10,11} Additionally, biomass contains a much richer oxygen content, than petroleum derivatives, such as coal, crude oil and gas.¹²

Hemicellulose is a polymer composed of various monosaccharides of 5 and 6 carbons, like arabinose, glucose, galactose, mannose and xylose, linked together in various forms and is easy to hydrolyze.^{7,13} On the other hand, the composition of the polymer lignin is of aromatic

lignols composed of p-coumaryl, coniferyl and sinapyl alcohols that lack a defined structure. Lignin gives strength to the woods of trees and protection to the cell walls.¹³ Cellulose is also a polymer composed of D-glucose monomers connected with β-1, 4-glycosidic bonds. It is not soluble in water and it is not digestible by humans.^{6,7,9,14–17} Cellulose typically has both amorphous and crystalline structures. Cellulose has hydroxyl groups and hydrogen bonds that give rise to strong crystalline structure domains, due to the high tensile strength of the microfibrils of the cell wall.^{11,18} Instead, the amorphous domains in the microcrystalline cellulose, possess a completely different structure, length and strength, that allows easy access to small molecules like for example water that can penetrate in this region.¹⁸ Cellulose uses can be found in lumber, fuel, textile, paper, plastics, etc.^{9,14} Additionally, it holds significant potential as an alternative renewable feedstock for the sustainable production of fuels and chemicals. With 35-50% of the annual net yield of photosynthesis, cellulose is the most abundant natural source from biomass ^{9,14,15,19,20}

Figure 1-1. Structure of lignocellulosic biomass.²¹

Figure 1-2. Catalytic conversion of cellulose into sorbitol.

Cellulose can be converted by hydrolysis with the aid of an acid or base functionality of the support into sugars like glucose and then with the metal functionality of the catalyst it may be hydrogenated to obtain sorbitol and other polyols (Figure 1-2) that can be used in a biorefinery platform to produce liquid transportation fuels as seen in Figure 1-3.^{5,15} Therefore, the production of fuels from biomass is a way of helping meet the fuel demand, as well as reducing the emission of CO_2 that should help control climate change that is affecting our planet.

Figure 1-3. Biorefinery cycle.

Cellulose can be converted into valuable products such as glucose and/or sorbitol, as mentioned before. Based on these two products, polymers, chemicals and fuels can be obtained. Gluconic acid can be produced from the oxidation of glucose, which is mainly used in pharmaceutical, food and biological industries.²² Fructose can be obtained from the isomerization of glucose, which in turn may be dehydrated to produce 5-hydroxymethylfurural (HMF).^{23,24} HMF is a platform molecule for many chemicals, polymers and fuels production, like formic acid, levulinic acid, 2, 5-furandicarboxylic acid, among others.²⁵ Compounds like glycerol, erythritol and ethylene glycol can be obtained by sorbitol hydrogenolysis.²³ Sorbitan and isoborbide are formed from the dehydration of sorbitol, which are used as surfactants and monomers.²⁶ Additionally, glucose and/or sorbitol can be used as a biorefinery feedstock,^{5,15} for the production of liquid transportations fuels from catalytic processes.⁸ Dumesic and coworkers developed a process to produce liquid transportation fuels involving a combination of processes

like catalytic reforming, de-oxygenation, dehydration, isomerization, alkylation, aromatization, C-C coupling, hydrogenation and hydrodeoxygenation as seen in Figure 1-4.⁸

Figure 1-4. Strategies for converting carbohydrates and polyols in liquid transportation fuels.⁸

1.3 Catalyst

Catalysis is the study of materials that increase the rate at which products are formed, during a chemical reaction, providing an alternative route.^{27–29} The alternate path is more energy favorable providing a lower effective activation energy for the reaction as seen in Figure 1-5.^{27,29} During reaction there will be a series of steps in which these materials called catalysts are involved, first the reactants molecules form a bond with the catalysts allowing them to react to form the products, finally the products will separate from the catalyst to be used in another cycle.²⁹

Figure 1-5. Comparison of the energy of a stoichiometric reaction with that for a catalytic reaction as a function of the reaction coordinate.

Catalysts can be acids, metals, enzymes and so on, for this they are classified as biocatalysts, homogenous and heterogeneous catalysts.^{27–29} Biocatalysts are enzymes that catalyze organic reactions.²⁸ Pepsin and catalase are some examples of catalysts that are enzymes that help in the digestion of food proteins or decomposing hydrogen peroxide in the human body.^{29–34} The catalysts that are in the same physical state as one of the reactants are called homogenous catalysts.^{27–29} Furthermore, heterogeneous catalysts are materials that are in a different phase than the reactants or products.^{27–29} Usually, there are solid materials, like for example noble metals as platinum, rhodium and palladium typically deposited on the monoliths of the catalytic converters for cars.^{29,35–37} Other examples are metal oxides and zeolites that are highly used as catalysts in the petrochemical industry.²⁹

1.4 Catalytic conversion of cellulose

1.4.1 Hydrolysis reaction

The hydrolysis of cellulose or carbohydrates has been tested with the use of ionic liquids like 1-butyl-3-methylimidazolium chloride (BMImCl),^{19,38} 1-alkyl-3-methylimidazolium chloride,³⁹ 1-allyl-3-methylimidazolium chloride (AMImCl),¹⁹ 1-butyl-3-methylimidazolium dicyanamide,^{40,41} among others.^{19,38–43} Also, metal chlorides or mineral acids, like sulfuric acid and hydrochloric acid have been investigated for the hydrolysis of carbohydrates.^{7,17,44–47} However, liquid acids are corrosive, need acid recovery and disposal, which makes those process not environmentally friendly. Additionally, certain enzymes such as cellulase have been used to hydrolyze cellulose, but low reaction rates, high processes costs, enzymes separation difficulties from the reaction media, makes this method expensive.^{7,9,17,45,48–50} Supercritical water also has been used for the hydrolysis of cellulose. However, the major disadvantage of this method is the low glucose selectivity due to high temperature instabilities. Additionally, It may corrode the equipment and consumes much energy during operation.^{7,9,17,45,51}

Solid catalysts with acidic properties have also been studied for the hydrolysis of cellulose. Layered transition metal oxide (HNbMoO₆) possess a strong acidic gallery, which contributed to obtain high activities for the hydrolysis of cellulose, cellobiose, starch and sucrose.⁵² γ -Al₂O₃, SiO₂ and H-zeolites like Modernite, BETA and ZSM-5 were used for the hydrolysis of cellulose, and a dependency between the acidity and hydrolysis activity, was observed.¹⁴ On the other hand, phosphated niobia was also investigated for the dehydration of fructose, the addition of the phosphate enhanced the acidity of the catalyst obtaining higher activities than niobium oxide, due to the strength of acid sites on the NbOPO₄.⁵³ The same acidic

behavior was also observed in other studies for the dehydration of glucose and fructose to 5hydroxymethylfurfural using niobium and tantalum phosphate.^{54–57}

Furthermore, other catalysts studied with the incorporation of a liquid acid or a functional group for the hydrolysis of cellulose have been sulfonated active carbon (AC-SO₃H),¹⁴ sulfonic group functionalized magnetic mesoporous silica (Fe₃O₄-SBA-SO₃H),⁵⁸ sulfonated mesoporous carbon (CMK-3),⁵⁹ heteropoly acids (H₃PW₁₂O₄₀, Cs₁H₂PW₁₂O₄₀)^{60,61} and sulfonated silica-carbon nanocomposites.⁶² Additionally, amorphous carbon bearing SO₃H, COOH and OH groups were studied for this reaction, and high activities were obtained thanks to the ability of these materials to adsorb β -1, 4 glucan.¹⁶ H-form zeolites like CBV-400, HY, HBETA, HZMS-5 were used with ionic liquids as solvents for the hydrolysis of cellulose to 5-hydroxymethylfurfural and presented an increase in catalytic performance of the zeolites studied, due to an increase in acidity by the use of the ionic liquids.^{63,64} Furthermore, an increase in the amount of acidic sites on the zeolites itself, like when H-MOR catalyzed the reaction instead of H-BEA, an increase in HMF selectivity was observed.⁶⁵

When, the hydrolysis of cellulose is performed using only the support (the acid functionality of the catalyst) many reactions occur at the same time. As mentioned before, cellulose is hydrolyzed and produces cellobiose and glucose. Additionally, sugars like arabinose and xylose also are obtained from the hydrolysis of hemicellulose, because the cellulose may have traces of hemicellulose. Isomerization of glucose is also observed, producing fructose and mannose. From the dehydration of fructose, arabinose, xylose and glucose, 5-hydroxymethylfurural (HMF), furfural and levoglucose products are obtained. Additionally, insoluble humins are formed by the polymerization of glucose and 5-hydroxymethylfurural in

acidic media.^{54,55,66} The rehydration of 5-hydroxymethylfurural, yields acids like formic and levulinic acid. These reaction pathways are seen in Figure 1-6.

Figure 1-6. Reaction pathways for the conversion of cellulose to polyols. Hydrolysis (A), Isomerization (B), Dehydration (C), Rehydration (D), Hydrogenation (E), Hydrogenolysis (F).²³

1.4.2 Carbohydrates hydrogenation

The incorporation of a metal functionality on solid catalysts is essential for the hydrogenation of cellulose.^{10,12,13,18–20,67,68} The aim of the metal functionality is to hydrogenate the sugars like glucose, mannose, arabinose and xylose, to produce sugar alcohols like sorbitol, mannitol, arabitol and xylitol important for the production of fuels, as seen in Figure 1-6. The metal functionality also promotes the hydrogenolysis of hexitols from which we may obtain glycerol, erythritol and ethylene glycol. Additionally, the metal loading on the catalyst inhibits

dehydration and rehydration reactions that occur when only the support is present. Transition metals have been used for the hydrolytic hydrogenation of cellulose, because they have good activities for the hydrogenation of glucose. The first steps during the hydrolytic hydrogenation of cellulose involve the hydrolysis to produce poly and monosacharides. For this reason if the catalyst has an adequate surface acidity, it may increase the hydronium ion concentration in solution, helping improve the conversion of cellulose. Fukuoka *et al.* used chlorine precursors for Pt, Ru, Pd, Ir or Ni supported on a series of metal oxides that included γ -Al₂O₃, SiO₂-Al₂O₃ and zeolites. Some of these catalysts displayed high yields for sugar alcohols. They proposed that the metal functionality and the acidity was generated by hydrogen spillover.⁹ The same proposition was suggested by Jollet *et al.* who used Pt/γ -Al₂O₃ for the dissolution of cellulose.⁶⁹ Furthermore, in a study with Ru/NbOPO4 at different initial pHs and RuCl₃ as ruthenium precursor, the authors demonstrated that the high catalytic performance of this catalyst was partly due to the high acid amount of the catalyst.⁷⁰ However, Sievers et al. demonstrated that employing chlorine-containing metal precursors, causes an intense leaching of the support and a decrease in the point of zero charge, affecting eventually the catalytic performance, due to residual chlorine anions in solution that increase the conversion of cellulose.⁷¹ Additionally, it was demonstrated, that with the use of chlorine precursors, the hydrolysis activity increases and the formation of by-products, due to the formation of HCl. On the other hand, the yield of sugar alcohols improved, when chlorine free metal precursors were used instead.⁶

As mentioned above transition metals supported on metal oxides have been studied for the hydrolytic hydrogenation of cellulose. It has been demonstrated, that the yield of polyols is affected by the loading and the transition metal used, in the hydrogenation of cellulose over nickel-promoted W-SiO₂-Al₂O₃ catalysts and Ni/ γ -Al₂O₃.^{72,73} Additionally, the atomic ratio of the metals Sn/Pt in Pt-SnO_x/Al₂O₃, affects the hexitols yields.⁷⁴ Another study showed that the hydrogenation was influenced by the dispersion, crystal size and surface area of the metal, during the hydrogenation of cellobiose and glucose over Ni/ZSM-5.⁷⁵ Furthermore, in a work with Ru, Ir, Pd and Rh over BEA zeolite for the hydrolytic hydrogenation of cellulose, the authors concluded that the selectivities were influenced by the d-band width of these metals and the hydrogen pressures used for the reaction. They also indicated that ruthenium forms Brønsted acids in water as protons and $[Ru(H_2O)_5OH]^{2+}$, leading to high activities.⁷⁶ Another study showed that ruthenium gave the highest sorbitol yields, from a variety of transition metals studied, over CNT, SiO₂₃ Al₂O₃ and MgO.⁶⁷

The addition of a mineral acid and the effect of the support were also investigated. For the combination of a heteropoly acid with Ru/C, the authors claimed that having higher H_3O^+ concentrations and longer reaction times were the key to obtain an increase in conversion of cellulose to sugar alcohols for $H_4[Si(W_3O_{10})_4]$ and $H_3[P(W_3O_{10})_4]$.⁷⁷ Instead, a similar combination of Ru/C but with hydrotreated cesium salts of heteropoly acids, displayed higher activities per proton than their fully protonated counterparts, due to their high surface acidity and hydrophobicity.⁷⁸ Moreover, a study of ruthenium supported on zeolites with added mineral acids, shows the importance of acid to metal ratio optimization, reflected in a fast hydrolysis and a high hydrogenation products activities.⁷⁹ Additionally, other bi-functional catalysts studied for the production of polyols with the addition of an acid such as ruthenium on sulfonated activated carbon (10%Ru/AC-SO₃H),⁸⁰ platinum, palladium and ruthenium on carbon with the addition of mineral acids.⁸¹ Ru/SBA-15 functionalized with arenesulfonic acid was studied for the catalytic conversion of cellulose.²³ It was observed that the acid promotes the activity and that the metal functionality controls the selectivity towards sugar alcohols.²³ The disadvantage of many

functionalized supports is the leaching of their functional group, due to the instability in hot water, that causes the collapse and/or changes in the crystalline structure, loss of surface area and an apparent increase in activity during reaction.^{23,82–84} The stability of metal oxides has been enhanced by adding coatings of carbon or a second metal oxide, on the surface of these metal oxides.^{66,83,85}

1.5 Sorbitol

Sorbitol can be obtained from nature in fruits and seaweed, but in small proportions.⁸⁶ The U.S. Department of Energy ranks sorbitol as the number two compound in the list of building blocks with high value potential for the production of value added chemicals and materials (Figure 1-7).^{87,88} The production per year of sorbitol reaches more than 1.2 million of tons.⁸⁹ Sorbitol, also referred as glucitol has been studied to be used as a biorefinery platform molecule for the production of liquid transportation fuels.⁸ Additionally, it has been used for the production of chemicals, pharmaceuticals, personal products, food, textiles, polymers and for the synthesis of L-ascorbic acid (vitamin C).^{76,88–91}

The derivative chemicals obtained from the hydrogenolysis of sorbitol are ethanol, glycerol, ethylene glycol and propylene glycol.⁹² Ethanol is used as an additive to fuel or as a fuel; instead glycerol is used as an additive for foods, cosmetics and medicines.^{92–96} Ethylene glycol and propylene glycol are employed in the production of polyesters resins, perfumes, inks, medicines, surfactants and functional fluids.^{94,95} Sorbitan and isosorbide, also are obtained from sorbitol, but from a dehydration reaction.^{97–101} Sorbitan is an intermediate molecule for the production of isosorbide, for which a double dehydration has to occur to obtain sorbitan.¹⁰¹

These two products are useful for the synthesis of polymers, such as polyethylene terephthalate, as surfactants, and in the manufacture of cosmetics, medicines and food aditives.^{97–101}

On the other hand, lactic acid is also obtained from the conversion of sorbitol, via an alkaline hydrothermal conversion.¹⁰² Lactic acid is mainly used in the food industry as a preservative, to improve flavor and as an additive. Additionally, it is employed in the pharmaceutical and cosmetic industry, and for the manufacture of leather, textiles and polymers like polylactic acid.^{101,103,104} Hexane may also be produced from sorbitol, obtained from an aqueous phase dehydration/hydrogenation sequential reactions, and is mainly used as a fuel.^{96,105,106} On the other hand, L-sorbose is produced from the oxidation of sorbitol.^{107–109} This molecule is used in the production of vitamin C, which is used in food and the manufacture of medicines.¹¹⁰

Figure 1-7. Derivative chemicals from sorbitol.^{92,93}

1.6 Summary of following chapters

The scope of this dissertation is to describe the catalytic performance for the hydrolytic hydrogenation of cellulose of a series of metal oxides comprised from one up to three mixed metal oxides, metal oxides with their surface functionalized with phosphate cations and zeolites.

Chapter 2 presents the methodology used for the experiments. It also presents the materials, the procedures for the synthesis of binary and ternary metal oxides, phosphate materials and ruthenium deposition as metal functionality. Moreover, it includes a description of the characterization techniques, as well as the parameters and procedures used for the

characterization. Additionally, it summarizes the procedures and parameters used, to change the crystallinity of cellulose, to study the hydrothermal stability of the catalysts and the reaction conditions.

The studies of the catalytic performance of the metal oxides for the conversion of microcrystalline cellulose are presented in Chapter 3. The single metal oxides studied with and without ruthenium were SiO₂, Al₂O₃, TiO₂, ZrO₂, MgO, Nb₂O₅ and hydrated Nb₂O₅ (HY 340). Binary and a ternary metal oxide, also were investigated with and without ruthenium, like fumed SiO₂-TiO₂, Al₂O₃-TiO₂, Fe₂O₃-TiO₂, and synthesized by the sol-gel technique: SiO₂-TiO₂, WO₃-TiO₂, SiO₂-TiO₂-WO₃. Finally, this chapter presents the characterization results obtained for these materials and a study of the effect of temperature and time on the conversion of ball-milled cellulose with Ru/SiO₂-TiO₂-WO₃.

Chapter 4 presents the catalytic performance of the phosphate metal oxide materials during the hydrolytic hydrogenation of ball-milled cellulose. A series of studies are presented in this chapter relative to the catalytic performance of commercial crystalline niobium phosphate (NbOPO₄ B1), amorphous niobium phosphate (NbOPO₄ B2), and NbOPO₄ B3, TaOPO₄ B1 and TaOPO₄ B2 synthesized in our laboratory, with and without ruthenium deposition. A study of the effect of surface functionalization of the niobium oxide with the addition of phosphate is investigated to understand the relationship of this cation with acidity and how the acidity influences the catalytic performance. Additionally, the effects of cellulose crystallinity, cellulose to catalyst ratio, reaction temperature and reaction time were also studied. The effect of the addition of phosphoric acid to mesoporous materials like Ru/SBA-15, Ru/CMK-3, and non-porous materials like Ru/C and Ru/Nb₂O₅ (HY 340), was also studied to compare with the behavior of phosphates leaching from the niobium phosphate and behaving as an acid in solution.

Finally, hydrothermal stability treatments were performed to the phosphate materials at different temperatures and times, to study its stability.

The characterization and the catalytic performance for the conversion of ball-milled cellulose for zeolites like LS-USY and a titanium silicate material called UPRM-5 with and without ruthenium as metal functionality are presented in Chapter 5. Finally, concluding remarks of this work are summarized in Chapter 6.

2 METHODOLOGY

This chapter presents the methodology used for experimentation i.e., the materials, the procedures for synthesis and metal deposition, the characterization techniques and their parameters. Additionally, the procedures and parameters used for cellulose treatments, hydrothermal stability treatments and the reaction conditions used.

2.1 Materials

Microcrystalline cellulose was used as primary source of biomass and was purchased from Alpha Aesar. The single metal oxide catalysts: zirconium dioxide (ZrO₂), aluminum oxide (Al₂O₃), amorphous fumed silicon dioxide (SiO₂), P25 titanium dioxide (TiO₂) were obtained from Degussa Corp. Additional single metal oxides studied include magnesium oxide (MgO, 99.99%, extra pure, Acros Organics) and niobium (V) oxide (Nb₂O₅, 99.99%, Acros Organics). Also from Degussa Corporation we used SiO₂-TiO₂ (F 289, 8% SiO₂), Fe₂O₃-TiO₂ (F405, 6-8% Fe₂O₃) and Al₂O₃-TiO₂ (Al-Ti F 326). Furthermore, the ion exchange resin amberlyst (A-15, Sigma Aldrich), low sodium ultra stable zeolite Y (LS-USY, Grace) and tetrabutylammonium titanium silicate (TBA-UPRM-5) were also studied. For the details of TBA-UPRM-5 synthesis please refer to the literature.¹¹¹ Tetraisopropyl titanate (TYZOR TPT, Dupont), Tetramethoxysilane (TMOS, Fluka) and Tungsten VI isopropoxide 5% w/v n-isopropanol (W[OCH(CH3)2]6, Alfa aesar) were used as titanium, silicon and tungsten oxide precursors for the preparation of the SiO₂-TiO₂, WO₃-TiO₂ and SiO₂-TiO₂-WO₃ using sol-gel methods. Additionally, 2-propanol HPLC grade (Fisher, 99.9%), HCl (Fluka, 37%) and Phosphoric acid (H₃PO₄, 85%, Acros Organics.) were also used.

The niobium catalysts: niobic acid (Nb₂O₅ HY 340), two different niobium phosphates (NbOPO₄) named B1 (crystalline) and B2 (amorphous), were supplied from Companhia Brasileira de Metalurgia e Mineracão (CBMM). For the phosphate catalysts preparation, L(+)-Tartaric acid (ACS reagent) and ammonium phosphate dibasic (99+%) were obtained form Acros Organics. Ethanol (200 proof, anhydrous, 99.5%) and hexadecyltrimethyl ammonium bromide (CTAB, 98%) were supplied from Sigma Aldrich. The niobium (niobium (V) ethoxide, 99.9+%Nb) and tantalum (tantalum (V) ethoxide, 99.9+%Ta) precursors were purchased from Strem Chemicals.

2.2 Catalyst preparation

2.2.1 Synthesis of binary and ternary metal oxide catalysts

The binary and ternary metal oxides studied were synthesized by Rafael Méndez-Román¹¹² using the sol-gel method adapted from the methodology presented by Anderson and Bard.¹¹³ The acid catalyzed hydrolysis of SiO₂-TiO₂ catalysts was conducted by mixing tetramethoxysilane (TMOS) and tetraisopropyl titanate (TYZOR) in a ratio that gave 15% of SiO₂ in a glove box for about 20min. TMOS-TYZOR solution was added dropwise to 250mL of 2-propanol HPLC grade and 1mL of concentrated HCl solution that was stirred at 273K in an ice bath. Water at 273K was added dropwise to this final solution with vigorous stirring until the gelation process began. Then, the precipitate was aged at room temperature for 24h. The remaining solvent was removed in a vacuum oven for 48h at 310K. The final solid material was calcined in an air atmosphere at 673K for 5 days. WO₃-TiO₂ and SiO₂-TiO₂-WO₃ samples were prepared by the same process used for the SiO₂-TiO₂ sample. For the WO₃-TiO₂ catalyst, tungsten VI isopropoxide 5% w/v n-isopropanol was used as the tungsten oxide precursor and with a

proportion of tungsten oxide-titania of 25% of WO₃. For the ternary oxide sample, the three precursors mentioned above were used with a 9.1%/81.8%/9.1% proportion of silica-titania-tungsten oxide.

2.2.2 Synthesis of tantalum and niobium phosphate catalysts

The phosphate materials were prepared according to the synthesis described by Jiménez-Morales et al.¹¹⁴ A tartrate complex was prepared by mixing the tartaric acid; previously dissolved in ethanol with the niobium or tantalum precursor at a molar ratio of 3. Then, the complex solution was evaporated until just before precipitation (a sample of tantalum tartrate was left to start to precipitate, called TaOPO₄ B2). After evaporation of the solvent, water was added to the complex at room temperature with a complex:water molar ratio of 0.005684 and left stirring for approximately 0.25 h. Ammonium phosphate dibasic, dissolved previously in deionized water at a ratio equal to 0.03894, was added to the complex solution with a molar ratio of 2.52 and left stirring. Hexadecyltrimethyl ammonium bromide (CTAB) was used as a structure-directing agent. It was dissolved previously in deionized water with a molar ratio equal to 0.0046. The CTAB solution was added to the previous solution with a CTAB: Complex ratio of 0.3201 with vigorous stirring for 0.5 h. After that, the white precipitate was placed in a teflon autoclave to anneal at 403 K for 24 h. The solid obtained was filtered and washed with distilled water until constant pH, it was finally washed with 200 mL of ethanol, left to dry overnight and placed in an oven to dry at 333 K for 24 h. The dried solid was calcined in air at 823 K for 6 h to eliminate the structure-directing agent.
2.2.3 Ruthenium deposition

Ruthenium was deposited on the supports using ruthenium (III) nitrosyl nitrate solution (Ru(NO)(NO₃)₃, 1.5%Ru, Strem Chemicals) using evaporative deposition with a nominal ruthenium loading of 4% by weight. For SiO₂, we also prepared a sample with 10% ruthenium loading. To increase the volume of the suspensions we pour slowly 30 mL of DI water. The suspension was heated to 313 K with continuous stirring until dry. The resulting material was dried for 12 h under vacuum in an oven at 373 K. Before reaction, the catalysts were reduced with a hydrogen flow of 100 mL min⁻¹ using a temperature ramp of 1 K min⁻¹ from room temperature to 723 K, followed by a constant temperature heating for 2 h. The samples were cooled down to room temperature after the treatment in a helium flow of 100 mL min⁻¹ using a temperature ramp of 3.5 K min⁻¹. The ruthenium loading was characterized by elemental analysis at Galbraith Laboratories using Inductively Coupled Plasma (ICP).

2.3 Characterization techniques

The BET method was used to determine the surface area of the catalysts by nitrogen adsorption at 77 K, using a Micromeritics ASAP 2020 volumetric porosimetry test instrument with a turbo-molecular drag pump. Prior to each nitrogen adsorption measurement, the catalysts were degassed under vacuum for 5 h at 363 K with a heating rate of 10 °C min⁻¹.

Characterization with X-ray diffraction (XRD) was used to determine the crystalline phases present in the samples. For this technique, we used a Rigaku Ultima III diffractometer with Cu K α target ($\lambda = 1.5418$ Å) operating at 40 kV and 44 mA. XRD patterns were collected in the 2 θ range from 20° to 70° with a scanning rate of 2.00 °/min and a step size of 0.02°, respectively.

The crystallite size of the materials was determined using the Scherrer equation.¹¹⁵ This equation relates the mean crystallite size with the broadening at the full width of the half maximum (FWHM) of the intensity. The data used to make the calculations are shown in Appendix A.

$$L = \frac{K \cdot \lambda}{\beta \cdot \cos\theta} \tag{2.1}$$

where,

L	= average crystallite size	[nm]
Κ	= shape factor	0.9
λ	= X-ray wavelength	[nm]
β	= broadening at FWHM intensity	[radians]
θ	= Bragg angle	[radians or degree]

The cellulose crystallinity index (*CI*) was calculated using the Segal method,¹¹⁶ that relates the ratio of the differences between the intensity of the crystalline peak (I_{002}) and the amorphous peak (I_{am}) to the crystalline intensity obtained from the diffraction pattern.

$$CI = \frac{I_{002} - I_{am}}{I_{002}} \tag{2.2}$$

Infrared spectroscopy of pyridine adsorption was used to determine the type of acidity present on the samples. The main region of interest was from 1400 to 1650 cm⁻¹, since this region contains the frequencies of coordinated pyridine, pyridinium ion and H-bonded pyridine. The samples were prepared using a press (Carver, model C S/N 41000-002) where approximately 20 to 50 mg of solid was placed in a die (Carver No. 3619) with an internal diameter of 13 mm to form a circular pellet at a pressure of about 15,000 psi. The background spectrum without sample was collected at 303 K after treating the cell at 473 K for 1 h with

flowing helium to remove humidity in the chamber. A spectrum at room temperature was collected for the clean surface after heating to 623 K for 1 h in helium. The adsorption of pyridine (E.M. Science, 99.92% purity) occurs by passing a stream of helium saturated with pyridine over the catalysts through a cell at 473 K for 1 h. The pyridine saturator was placed in a constant temperature (273 K) bath to produce a vapor pressure of 4.8 Torr. Gas phase pyridine and pyridine weakly adsorbed were removed overnight by flowing 100 mL/min helium at 473 K through the cell, then cooled to room temperature and the spectrum was collected using a Nicolet 6700 Fourier Transfer Infrared Spectrometer.

The concentrations of Brønsted and Lewis for the catalyst tested were calculated using the Beer-Lambert Law equation.¹¹⁷ This equation relates the adsorption of light with the properties of the material.

$$A = \frac{\varepsilon \cdot W \cdot C_w}{S} \tag{2.3}$$

where,

Α	= IR absorption intensity area	$[cm^{-1}]$
ε	= integrated molar extinction coefficient	$[cm \cdot \mu mol^{-1}]$
W	= weight of disk	[mg]
C _w	= weight-based concentration	$[mmol \cdot g]$
S	= sample disk area	$[cm^2]$

The integrated molar extinction coefficients obtained from an average of metal oxides from Tamura *et al.* are $\varepsilon_L = 1.73 \ cm \cdot \mu mol^{-1}$ and $\varepsilon_B = 1.23 \ cm \cdot \mu mol^{-1}$,¹¹⁷ and from Datka *et al.* are $\varepsilon_L = 1.11 \ cm \cdot \mu mol^{-1}$ and $\varepsilon_B = 0.73 \ cm \cdot \mu mol^{-1}$ obtained from measurements of pyridine absorbed in Al₂O₃ and HY zeolite,¹¹⁸ for the bands at 1440 cm⁻¹ corresponding to the vibration of the pyridine ring on Lewis (LPY) acid site and at 1540 cm⁻¹ for adsorbed pyridine on Brønsted (BPY) acid. The data used to make the calculations are displayed in Appendix B.

X-ray photoelectron spectroscopy (XPS) was used to find the elemental atomic concentrations on the surface of the samples. Measurements were made using a PHI 5000 Versa Probe II with Al K α radiation source and pass energy of 187.850 eV. A survey spectrum was run for three regions in each sample at a resolution of 0.8 eV per step. High resolution was used (0.2 eV) when the spectrum was run in the selected region of the sample.

STEM characterization was used to obtain the micrographs of the samples. The images were collected in a FEI Titan STEM with CEOS probe aberration corrector. The equipment was operated at 200 kV and with a high angle annular dark field "Z-contrast" STEM used as imaging mode for which the collection angles were 67 to 337 mrad. The CEOS probe was operated at a convergence angle of 24.5 mrad and with a current of approximately 100 pA that result in a spatial resolution of approximately 0.1 nm.

2.4 Cellulose ball-mill treatment

The crystallinity of the cellulose (Alpha Aesar) was decreased using a Spex SamplePrep 8000M Mixer/Mill with a hardened 440C stainless steel vial of 2 ¹/₄ in diameter and 3 in of length. Two stainless steel balls of ¹/₂ in were loaded to the vial with 2 g of dried microcrystalline cellulose, the milling process was run for 100 min. Afterwards, the treated cellulose was characterized using XRD. The particle size distribution of treated cellulose was obtained using Laser Diffraction with a Malvern Instrument model IDC2000.

The mean diameter and the standard deviation of the cellulose particles before and after treatment were calculated using a particle size distribution function.²⁷ The mean residence

particle diameter was calculated using the data that is shown in Appendix C. The mean residence particle diameter expression is defined by

$$D_m = \int_0^\infty D \cdot E(D) dD \tag{2.4}$$

where,

$$D_{m} = \text{mean residence particle diameter} \qquad [\mu m]$$

$$D = \text{particle diameter} \qquad [\mu m]$$

$$E(D) = \text{particle size distribution function} \qquad \frac{V(D)}{\int_{0}^{\infty} V(D) dD}$$

$$V(D) = \text{cumulative volume as function of particle diameter} \qquad [\% V]$$

$$\int_{0}^{\infty} V(D) dD = \text{area under the curve for the populations of the}$$

$$\mu m \cdot \% V]$$

Additionally, the standard deviation was also calculated for the cellulose particles before and after ball-mill treatment, using the same data that is shown in Appendix C. The standard deviation is taken from the square root of the variance. The square standard deviation or variance equation is defined as

$$\sigma^2 = \int_0^\infty (D - D_m)^2 E(D) dD \tag{2.5}$$

which the square term can be expanded and reduced to

$$\sigma^{2} = \int_{0}^{\infty} D^{2} E(D) dD - D_{m}^{2}$$
(2.6)

2.5 Catalytic performance

2.5.1 Batch reactor

The catalytic tests for the cellulose conversion were carried out in a 100 mL highpressure reactor model 4793 Parr Instrument. Before reaction, the support and the cellulose were dried under vacuum for 2 h at 373 K. If a supported Ru catalyst was studied, it was reduced overnight in a hydrogen flow of 100 mL min⁻¹ for 2 h at 723 K. For an experiment, cellulose (Alfa Aesar, microcrystalline or ball-milled) was placed in the reactor with approximately the amount of catalyst corresponding to 4 mmol of metal for reactions with supported Ru catalysts and the equivalent amount of support for reactions without metal. 50 mL of deionized (DI) water previously treated with helium to remove dissolved CO₂ and obtain an initial pH around 7.0, were loaded to the reactor. Figure 2-1 presents the diagram for the reaction system, the mixture inside the reactor was treated with a helium flow of 100 mL min⁻¹ for 1 h under vigorous stirring. followed by low-pressure hydrogen flow of 100 mL min⁻¹ for 1 h. Later on, the reactor was pressurized to 35 bar of hydrogen and rapidly heated to the desired reaction temperature (483 K in about 15 min; 503 K in approximately 17 min) using a preheated mantle and the temperature was held constant for the reaction time. The temperature was measured with a type J thermocouple (Omega) and controlled with an Omega CN9000 series type temperature controller and coupled to a 300 W heating mantle. After, the desired time, the reaction was stopped by promptly cooling the reactor in an ice-water bath.

Figure 2-1. Schematic diagram for the reaction system with a batch reactor.

The liquid phase was analyzed using a High Performance Liquid Chromatography system (Waters 600 HPLC with a Waters 2410 Refractive Index Detector and a Waters 717 plus autosampler) using a carbohydrate column (Alltech 700 CH; 300 mm x 6.5 mm i.d.) with a MilliQ water mobile phase at a flow rate of 0.5 mL min⁻¹ and a column temperature of 363 K. The remaining solid was filtered using a nitrocellulose filter and dried in a vacuum oven at 373 K. The conversion was calculated based on the initial cellulose weight and the cellulose recovered after the experiment, which is calculated based on the difference between the solid recovered and the amount of catalyst used ($m_{cellulose} = m_{solid recovered} - m_{catalyst}$) as follows:

$$X_{cellulose} = \frac{m_{cellulose_0} - m_{cellulose}}{m_{cellulose_0}}$$
(2.7)

The quantification of the products was based on their yields, which were calculated using the molar amount of cellulose in the starting material $(n_{substrate})$, the molar amount of product

 $(n_{product})$ obtained by the HPLC, the stoichiometric coefficients of the cellulose $(v_{substrate})$ and the product $(v_{product})$. The stoichiometric coefficient used for cellulose is equal to one for a unit of cellulose as starting substrate. The yield equation reads as follows:⁸¹

$$Y_{product} = \frac{n_{product}}{n_{substrate_0}} \frac{v_{substrate}}{v_{product}}$$
(2.8)

The graphical representation for the yields is based on the sum of the products obtained. The yield for sugars represents glucose, fructose, arabinose and cellobiose. Furfural and 5hydroxymethylfurfural are included in the yields of furfurals. Sorbitol and arabitol represents sugar alcohols or hexitols. Finally, the yields for glycerol, erythritol and ethylene glycol are included in the yield for hydrogenolysis products.

2.6 Hydrothermal stability

The stability in water of transition metal (V) phosphate, and Ru/Nb₂O₅ (HY 340) were investigated using a hydrothermal treatment. The stability treatments were conducted at 35 bar of H₂, two different temperatures (483 K and 503 K) and treatment times of 24 h and 48 h in a 100 mL high-pressure reactor model 4793 Parr Instrument with 50 mL of treated DI water to 0.5 g of catalyst. After treatment, the samples were filtered, rinsed with DI water until a constant pH was obtained, dried at room temperature overnight and then at 373 K for 24 h. The filtered solids were analyzed using powder X-ray diffraction, nitrogen adsorption, pyridine adsorption, X-ray photoelectron spectroscopy and inductively coupled plasma spectroscopy.

3 METAL OXIDES AS SUPPORTS FOR THE CATALYTIC CONVERSION OF CELLULOSE

The studies of the catalytic conversion of microcrystalline cellulose for the ruthenium supported on single, binary and ternary metal oxides are presented in this chapter. We also present the characterization results and a study of the effect of temperature and time on the conversion of ball-milled cellulose over Ru/SiO₂-TiO₂-WO₃.

3.1 Introduction

Metal oxides are composed of metal cations covalently or ionic bonded to oxygen atoms (Table 3-1). The differences in oxidation state of the metal oxides give differences in acidity and acid strength, important factors for the hydrolysis activity. These materials have optical, catalytic and electronic properties, useful in the petrochemical, environmental and chemical industries.^{119,120} Metal oxides have many applications as heterogeneous catalysts, such as precursors, catalysts and supports.^{120,121} Properties like the oxidation state of the metal cations, the crystal plane exposed of the atoms, reduction and oxidation reactions running simultaneously on the surface during reaction and their acidity (Brønsted or Lewis), makes metal oxides useful for reactions such as oxidation, dehydration, dehydrogenation, polymerization and many more.^{122,123}

		•				•	
Element	Oxidation	Cation size	M-O bond	Acidity	Acidity	Basicity,	Examples
	State	(radius, Å)	nature	type	strength	nucleophilicity	
Semi-	$\geq^{+}5$	Very small ≤ 0.2	Covalent	Brønsted	Medium strong	None	$(SO_3); P_2O_5$
metal	⁺ 3- ⁺ 4	$Small {\leq} 0.4$	Covalent	Brønsted	Medium weak	None	B ₂ O ₃ , SiO ₂ , GeO ₂
	High *5-*7	Small to medium 0.3-0.7	Largely covalent	Brønsted and Lewis	Medium to strong	None	WO ₃ , MoO ₃ , CrO ₃ Ta ₂ O ₅ , Nb ₂ O ₅ , V ₂ O ₅
		Small 0.35-0.5		Lewis	Strong	Weak	γ -Al ₂ O ₃ , β -Ga ₂ O ₃
Matal	Medium	Medium 0.5-0.6	Ionic	Lewis	Medium	Medium Weak	TiO_2 , Fe_2O_3 , Cr_2O_3
Wietai	1etal 3-4			Lewis	Medium weak	Medium strong	La ₂ O ₃ , SnO ₂ , ZrO ₂ , CeO ₂ ThO ₂ (Bi ₂ O ₃ , Sb ₂ O ₃)
	Low +1-+2	Large to very Large 0.7-1.5		Lewis	Medium to very weak	Strong to very strong	MgO, CaO, SrO, BaO, CoO NiO, CuO, ZnO, (Cu ₂ O)
Source: Data	from Shannon	, R.D. and Prewi	tt, C.T. Acta Cry	ptalogr. 1969, l	B25, 925.		

Table 3-1. Tentative summary of the acid-base properties of binary metal oxides.¹²⁰

Layered transition metal oxides (HNbMoO₆) with inherent surface acidity showed high activities during the hydrolysis of cellulose, cellobiose, starch and sucrose attributed to the strong acidity in the gallery.⁵² The dependency between the acidity and hydrolysis was shown in the conversion of cellulose to glucose over γ -Al₂O₃ and SiO₂.¹⁴ Moreover, the use of phosphated niobium oxide was also studied for the dehydration of fructose. The modification helped to obtain higher activities than niobium oxide, thanks to the strength of acid sites on this catalyst.⁵³ The hydrogenation of cellulose has been studied, using different solid catalysts with the incorporation of a metal functionality.^{10,12,13,18–20,67,68} Platinum on niobium-based supports were studied for the production of alkanes from biomass derived carbohydrates.¹⁰⁶ Nickel-promoted W-SiO₂-Al₂O₃ catalysts and Ni/ γ -Al₂O₃, were studied for the hydrogenation of cellulose, and it was observed that the yield of polyols was affected by the transition metal used and the loading of this metal.^{72,73} Additionally, Pt-SnO_x/Al₂O₃ was used for the conversion of cellulose to polyols and it was demonstrated that the atomic ratio of Sn/Pt affect the hexitols yields.⁷⁴ A nickel phosphide catalyst supported on SiO₂ produced high values for conversion and sorbitol

yields, due to the leaching of phosphoruos.¹²⁴ Other supports studied with transition metals were SiO₂, Al₂O₃ and MgO. Ruthenium gave the highest sorbitol yield of all the metals studied.⁶⁷ Arenesulfonic acid-functionalized mesoporous silica supported ruthenium catalyst has also been studied for the catalytic conversion of cellulose into sugar alcohols.²³ They proposed that the acid loading on the mesoporous silica support promotes the activity and the metal functionality controls the selectivity towards sugar alcohols. The disadvantage of these functionalized supports is that the sulfonic acid is not stable in hot water and is readily lost into the aqueous solution behaving as a mineral acid that attacks the cellulose and causes an apparent increase in heterogeneous catalytic activity.

The main disadvantage of metal oxides used as supports for reactions in hot water is their poor hydrothermal stability that promotes leaching, collapse or changes in the crystalline structure and loss of surface area.^{23,82–84} Davis and coworkers observed a significant growth of the metal particles for Ru/ γ -Al₂O₃ and Ru/SiO₂ after hydrothermal treatment at 473 K.⁸² Additionally, niobium oxide is not hydrothermally stable in water at high temperatures. A study of amorphous Nb₂O₅ (HY 340) displayed a crystalline phase change and in this case, the addition of silica enhanced the stability of this material.⁸³ Recently, niobium oxide was used to stabilize the structure of the mesoporous silica framework; the hydrothermal stability was improved on this composite material by the formation of Nb-O-Si linkages during synthesis.⁶⁶ On the other hand, a higher stability for Pt/ γ -Al₂O₃ was encountered when sorbitol or ethylene glycol were used instead of water.¹²⁵ Also, after hydrothermal treatment, there was a transformation of crystal structure from γ -alumina to boehmite.⁸⁴ Moreover, the stability of silica and γ -alumina was investigated by Pham *et al.*, improving the stability for these supports in water by adding carbon coatings on the surface of these materials.⁸⁵

3.2 Results and discussion

3.2.1 Single metal oxides

3.2.1.1 Characterization results

The surface areas obtained for the catalysts studied are summarized in Table 3-2. The metal oxides with the lowest surface areas were the cubic structure of MgO and the pseudohexagonal Nb₂O₅ (Figure 3-1(a)),^{126,127} displaying surface areas of 7 and 9 m² g⁻¹, respectively. In comparison, amorphous Nb₂O₅ (HY 340) had a surface area of 141 m² g⁻¹, that decreases to 71 m² g⁻¹ with the addition of ruthenium. Additionally, for samples containing amorphous SiO₂, high surface areas were found even with the addition of ruthenium with different loadings. Furthermore, it should be emphasized that after the addition of 11.2 wt% of ruthenium to this amorphous support a peak around 44.0° appears in the diffractogram corresponding to the diffraction of the (1 0 1) plane of ruthenium with an estimated size of 24 nm as seen in Table 3-2, while for the sample with the lower ruthenium loading on SiO₂ the XRD results do not display a pattern for crystalline ruthenium as seen in Figure 3-1(b).¹²⁸⁻¹³⁰ This probably means that the ruthenium particles are smaller than the resolution for the XRD method. Instead, for the ionexchange resin (A-15) the XRD patterns correspond to the zero-valent ruthenium metal after reduction with a crystallite size of approximately 6 nm.¹³⁰ Furthermore, depositing ruthenium on the catalyst surfaces produces a decrease in the surface area for most of the metal oxides that indicates the low hydrothermal stability of these materials.

0	Ru loading Ru crystallite		$S_{BET} (m^2 g^{-1})^c$		
Samples	(wt%) ^a	size (nm) ^b	Support	Ru/Support	
MgO	4.59	19	7	20	
ZrO ₂	4.12	16	36	46	
TiO ₂	3.95	16	49	42	
Nb_2O_5	4.41	13	9	10	
Nb ₂ O ₅ (HY 340)	4.40		141	71	
Al ₂ O ₃	5.08		99	95	
SiO ₂	5.65		175	178	
SiO ₂	11.2	24	175	167	
NbOPO ₄ B1	4.61	15	140	121	
A-15		6	35		
SBA-15 ^d	4.53		672	772	
C ^d	4.69			935	

Table 3-2. Physico-chemical properties of catalyst samples studied.

^aDetermined by Galbraith Laboratories using ICP. ^bDetermined using the Scherrer equation.¹¹⁵ ^cSurface areas were obtained using the BET method. ^dData obtained from the work of Reyes-Luyanda *et al.*²³

Figure 3-1. X-ray diffraction patterns of (a) Ru/MgO, Ru/ZrO₂, Ru/TiO₂, Ru/Nb₂O₅, Ru/Nb₂O₅ (HY 340), and (b) Ru/Al₂O₃, Ru/SiO₂ (11.2 wt%), Ru/NbOPO₄ B1, Ru/A-15. The crystal structures presented are cubic (C),¹²⁶ monoclinic (M),¹³¹ tetragonal (T),¹³¹ anatase (A),¹³² rutile (R),¹³² pseudohexagonal (H),¹²⁷ and gamma (γ),⁸⁴ zero-valent Ru metal (Ru⁽⁰⁾).¹³⁰

3.2.1.2 Effect of the support acidity on the catalytic performance using microcrystalline cellulose

Table 3-3 summarizes the results obtained for the conversion of microcrystalline cellulose using different metal oxides supports at 483 K, 35 bar of H₂ and 1 h of reaction. The conversion of these materials was compared with the results obtained for the reaction in the absence of a catalyst. The reaction occurs without a catalyst with a conversion of 24%. Under our reaction conditions the ionization constant of water is over 500 times higher than at room temperature.¹³³ As a result the higher hydronium ion concentration in solution at 483 K and 35 bar is responsible for increasing the solution acidity that promotes the hydrolysis of cellulose. Additionally, formic and levulinic acids are formed from the rehydration of HMF that leads to a further increase in the acid concentration, as seen in a decrease of the solution final pH, which results in an autocatalytic effect.²³

Figure 3-2 shows the cellulose conversion as a function of the Sanderson electronegativity, of the metal oxide catalysts. The electronegativity of the metal oxide is a property that provides a measure of the surface acidity.¹³⁴ The electronegativity of the metal oxides was calculated using the Sanderson electronegativity (S_{int}) for the compound using the relationship,¹³⁵

$$S_{int} = \left(\prod_{i} S_{i}^{p_{i}}\right)^{\frac{1}{\sum_{i} p_{i}}},\tag{3.1}$$

where, S_i represents the electronegativity and p_i the stoichiometric coefficient of the element *i* on the oxide, as tabulated in Table 3-4.^{136,137}

The conversion for the supports displays a volcano shaped curve, were the highest value corresponded to Nb₂O₅ (HY 340), indicating that this material has a good catalytic performance for cellulose hydrolysis at our reaction conditions. In this graph (Figure 3-2), the values on the

left end of the curve correspond to samples with predominantly basic properties and as you move to the right hand side the acidity increases passing through a maximum before decreasing. The same behavior is observed for the cellulose conversion indicating a correlation between hydrolysis activity and surface acidity. As discussed above for the results without catalyst, in the absence of a metal functionality there is significant production of carboxylic acids that increases the acidity of the solution as can be observed by the decrease in pH as the conversion increases. For the ruthenium supported catalysts we used the same electronegativities calculated for the supports. This instance there is no clear trend observed, only that the conversions for the ruthenium supported catalysts was lower and the values cluster close to the results obtained for the reaction without the presence of a catalyst. This behavior is observed because the hydrogenation of the monosacharides inhibits the formation of the carboxylic acids and the reaction is no longer autocatalytic.

The results for the catalytic performance of the catalysts based on the metal oxides were compared with those obtained for catalysts based on crystalline niobium phosphate (NbOPO₄ B1) and SBA-15. As observed in Table 3-3 the conversion for A-15 was the highest. This sample decomposes at our reaction conditions, and releases the sulfonic acid groups behaving as a liquid mineral acid with an equivalent concentration of 0.03%wt of H₂SO₄. On the other hand, for the supported ruthenium materials, the yields were compared with Ru/NbOPO₄ B1, Ru/SBA-15 and Ru/C. For all supports the addition of ruthenium causes an increase in the selectivity for sugar alcohols, but also decrease cellulose conversion. As mentioned before the metal functionality inhibits the carboxylic acid formation, as seen by the higher pH measured after reaction.

Doubling the ruthenium loading deposited on SiO₂ slightly decreases the cellulose conversion, does not change the yield towards hexitols and increases further the final pH of the

solution after reaction. The decrease in conversion is explained by the higher pH and hence lower concentration of carboxylic acids while the higher particle size explains why there was no enhancement in the hydrogenation activity. Most of the catalysts supported on the metal oxides displayed the same conversion, but significant differences in selectivities were observed as seen in Table 3-3. This behavior may be explained by the fact that the hydrolysis activity appears controlled by the hydronium ion concentration and not by the identity of the metal oxide. But when the monosacharides are formed they do interact with the metal oxides surface and react according to the respective surface chemistry.

Both SBA-15 and Ru/SBA-15 display a slight increase in conversion compared to the values obtained for the SiO₂ based catalyst. These results may be explained by the significant difference in surface areas of these materials. The results for Ru/C are similar to the results for the metal oxide catalysts and the explanation is the same as for those materials. The catalysts based on NbOPO₄ B1 display a significant enhancement in catalytic performance. Both conversion and yield towards hexitols increase significantly. For this reason we decided to conduct a more detailed study of these materials as described in Chapter 4.

Samplas	Final	Conversion $(0/)^{a}$	Yield (%) ^b					
Samples	pН	Conversion (%)	SA	S	Η	F		
No catalyst	3.345	24	0	6	0	6		
Ru/MgO	9.809	23	2	1	3	0		
MgO	8.275	32	0	3	0	0		
Ru/ZrO ₂	3.500	23	8	1	5	0		
ZrO ₂	3.100	34	0	6	0	9		
Ru/TiO ₂	4.015	20	7	2	5	0		
TiO ₂	3.002	35	0	7	0	5		
Ru/Nb ₂ O ₅	3.631	23	5	2	4	0		
Nb_2O_5	2.962	32	0	5	0	5		
Ru/Nb ₂ O ₅ (HY 340)	3.789	22	8	1	3	0		
Nb ₂ O ₅ (HY 340)	2.650	38	0	2	0	4		
Ru/Al ₂ O ₃	5.932	18	1	1	5	0		
Al_2O_3	3.161	28	0	7	0	4		
Ru/SiO ₂ (5.65 wt%)	3.909	24	8	7	5	0		
Ru/SiO ₂ (11.2 wt%)	4.158	22	8	4	3	0		
SiO ₂	3.350	29	0	4	0	6		
Ru/NbOPO ₄ B1	3.534	32	18	2	4	0		
NbOPO ₄ B1	2.806	42	0	7	0	10		
A-15	2.342	62	0	28	0	12		
Ru/SBA-15 ^c	4.180	25	8	1	1	0		
SBA-15 ^c	3.123	30	0	8	0	10		
Ru/C ^c	4.512	21	5	0	5	0		

Table 3-3. Reaction results for cellulose conversion using ruthenium supported on metal oxides.

^aAll experiments were run with microcrystalline cellulose, a cellulose to catalyst ratio of 10, a reaction temperature of 483 K, 1 h of reaction and 35 bar of H₂.

^bSA= sugar alcohols, S= sugars, H= hydrogenolysis, F= furfurals. ^cData obtained from the work of Reyes-Luyanda *et al.*²³

Figure 3-2. Cellulose conversion as a function of the Sanderson electronegativity for the single metal oxides. Support (*) and supported ruthenium (*). Reaction conditions: 483 K, 35 bar of H₂ and 1 h of reaction.

Element	S_i^{a}	Metal oxide	$\mathbf{S_{int}}^{\mathbf{b}}$
Mg	1.318	MgO	2.193
Zr	0.90	ZrO ₂	2.289
Ti	1.50	TiO ₂	2.714
Nb	1.42	Nb ₂ O ₅	2.787
Al	1.714	Nb ₂ O ₅ (HY 340)	2.787
Si	2.138	Al ₂ O ₃	2.698
0	3.650	SiO ₂	3.054

 Table 3-4. Electronegativities of metal oxides.

 ${}^{a}S_{i}$ = electronegativity of the element. ${}^{b}S_{int}$ = Sanderson's electronegativity calculated for the metal oxide.

3.2.2 Binary and ternary metal oxides

3.2.2.1 Characterization results

The surface areas for the binary and ternary metal oxides are summarized in Table 3-5 and the results display values that range from 36 to 189 m² g⁻¹. Furthermore, also was noticed that the addition of ruthenium to the binary and ternary metal oxide caused a decrease in the surface area for most of these metal oxides again indicating low hydrothermal stability. The diffraction patterns for the binary and ternary samples are presented in Figure 3-3. The sol-gel Ru/WO₃-TiO₂ and Ru/SiO₂-TiO₂-WO₃ present no evidence of the rutile crystal phase, only the anatase crystal structure is observed. On the other hand, Ru/SiO₂-TiO₂ (SG) shows a broad peak with low crystallinity near the intense line of the anatase pattern, consistent with the literature.¹¹³ For Ru/SiO₂-TiO₂, Ru/Fe₂O₃-TiO₂ and Ru/Al₂O₃-TiO₂, the anatase and rutile phases were present; because the synthesis of these materials promotes the presence of both phases. Additionally, the peak at $2\theta = 44.0^\circ$, corresponding to the (1 0 1) plane of ruthenium, was also observed for these samples,¹²⁸⁻¹³⁰ indicating the presence of large ruthenium particles on these catalysts with crystallite sizes between 12 to 19 nm (Table 3-5).

Samples	Pyridine Concentration (µmol g ⁻¹) ^a		Ru Loading	Ru crystallite	$S_{BET} (m^2 g^{-1})^d$		
	CB	C _L	(wt%) ^b	size (nm) ^c	Support	Supported Ru	
SiO ₂ -TiO ₂ (SG) ^e	140	107	5.00	12	189	151	
SiO ₂ -TiO ₂	65	63	5.30	12	97	95	
Fe ₂ O ₃ - TiO ₂		214	5.06	19	49	36	
Al ₂ O ₃ - TiO ₂		240	7.12	14	54	56	
WO ₃ - TiO ₂ (SG)	151	96	4.77	16	66	91	
SiO ₂ -TiO ₂ -WO ₃ (SG)			4.74	15	150	116	

Table 3-5. Physico-chemical properties of binary and ternary metal oxide samples.

^aBrønsted and Lewis Concentration calculated by the expression proposed by Tamura.¹¹⁷

^bDetermined by Galbraith Laboratories using ICP.

^cDetermined using the Scherrer equation.¹¹⁵

^dSurface areas were obtained using the BET method.

^eSG= synthesized using a sol-gel procedure.¹³⁸

Figure 3-3. X-ray diffraction patterns of Ru/WO₃-TiO₂, Ru/SiO₂-TiO₂-WO₃, Ru/Al₂O₃-TiO₂, Ru/Fe₂O₃-TiO₂, Ru/SiO₂-TiO₂ (Degussa) and Ru/SiO₂-TiO₂ (sol-gel). The crystal structures include anatase (A) and rutile (R).

The acidity of the binary and ternary metal oxides was analyzed using IR spectroscopy of pyridine adsorption at 473K, as shown in Figure 3-4. The spectrum for SiO₂ shows two IR bands centered at 1446 and 1598 cm⁻¹ corresponding to hydrogen bonded pyridine (Table 3-6).^{112,139} For TiO₂, the four bands observed correspond to the vibrations of the pyridine ring on Lewis acid sites. When Si is incorporated into TiO₂, new bands are generated at 1544 and 1640 cm⁻¹, indicating the presence of Brønsted acid sites as seen for the sol-gel and Degussa samples. Additionally, the Lewis acid site bands are also present, but with lower intensity than for TiO₂, indicative of a decrease in Lewis acid concentration for the binary compounds. This behavior was also observed for the WO₃-TiO₂ sample. The Brønsted concentrations for sol-gel samples were 140 and 151 µmol g⁻¹, otherwise the concentration for the commercial SiO₂-TiO₂ was 54% lower than the sol-gel sample. FTIR spectra for pyridine adsorption on Fe₂O₃-TiO₂ and Al₂O₃-TiO₂ display bands appearing near 1445, 1490, 1575 and 1604 cm⁻¹, respectively that corresponds to adsorption on Lewis acid sites with concentrations of 214 and 240 µmol g⁻¹ as obtained from the Beer-Lambert law (Eq. 2.3).

Figure 3-4. FTIR spectra for pyridine adsorption at 473 K on SiO₂, TiO₂, SiO₂-TiO₂ (SG), WO₃-TiO₂, SiO₂-TiO₂, Al₂O₃-TiO₂, Fe₂O₃-TiO₂. H-bonded pyridine (HPY), Lewis acid sites are identified with LPY, and Brønsted acid sites are identified with BPY.¹¹²

Ру	Т			VCCN	/cm ⁻¹
Species	/K	Configuration		v_{8a}	v _{19b}
РРу	300			1585	1445 & 1435
НРу	300			1600- 1580	1447- 1440
ВРу	300			1640- 1630	1540- 1500
LPy	300			1633- 1600	1460- 1445
vC=O at 1580- 1560cm ⁻¹	$\left\{ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \alpha - Pyridone \end{array} \right.$	>300 K >300 K	M—O— Pyridinium	$\begin{cases} vN^{\pm} \\ 1260 \\ 125 \\ 0xide \end{cases}$	O at)- 50 cm ⁻¹

Table 3-6. Configuration and IR characteristics of pyridine adsorbed species on metal oxide surfaces at \geq 300 K.¹³⁹

3.2.2.2 Catalytic performance for conversion of microcrystalline cellulose

Table 3-7 summarizes the results for cellulose conversion when binary and ternary metal oxide based catalysts were used at 483 K, 35 bar of H₂ and 1 h of reaction. The results for the catalysts based on binary and ternary metal oxides are similar to those described above for the single metal oxides. As it is seen in Table 3-7, SiO₂-TiO₂ catalysts and WO₃-TiO₂ (SG) display the highest cellulose hydrolysis activities with conversions between 38 and 39%. These conversions are higher than the conversions obtained for any of the catalysts based on the single metal oxides. These catalysts have Brønsted acidity and it has been shown that Brønsted acidity promotes both dehydration and rehydration reactions that yield carboxylic acids.^{11,140}

Once again when ruthenium is deposited on the binary and ternary metal oxides we observed a leveling effect similar to that described above for the single metal oxides. This instance the conversions are even lower and the final pH values are higher than most of the catalysts discussed before. The Ru/SiO₂-TiO₂-WO₃ (SG) sample was the most selective for the production of hydrogenolysis products from sugar alcohols with a yield of 8%.

Samplag	Final	Conversion $(0/)^{a}$	Yield (%) ^b				
Samples	pН	Conversion (76)	SA	S	Н	F	
No catalyst	3.345	24	0	6	0	6	
Ru/SiO ₂ -TiO ₂ (SG) ^c	4.125	19	6	0	2	0	
SiO ₂ -TiO ₂ (SG)	2.938	39	0	4	0	9	
Ru/SiO ₂ -TiO ₂	7.273	18	1	1	3	0	
SiO ₂ -TiO ₂	2.864	38	0	5	0	10	
Ru/Fe ₂ O ₃ - TiO ₂	5.111	17	5	1	3	0	
Fe ₂ O ₃ - TiO ₂	3.045	28	0	4	0	6	
Ru/Al ₂ O ₃ - TiO ₂	7.982	16	1	1	1	0	
Al ₂ O ₃ - TiO ₂	3.032	27	0	3	0	8	
Ru/WO ₃ - TiO ₂ (SG)	3.977	23	8	0	4	0	
WO ₃ - TiO ₂ (SG)	2.800	38	0	6	0	3	
Ru/SiO ₂ -TiO ₂ -WO ₃ (SG)	4.100	23	3	3	8	0	
SiO ₂ -TiO ₂ -WO ₃ (SG)	2.821	36	0	8	0	17	
Ru/SBA-15 ^d	4.180	25	8	1	1	0	
SBA-15 ^d	3.123	30	0	8	0	10	
Ru/C ^d	4.512	21	5	0	5	0	

Table 3-7. Reaction results for cellulose conversion on binary and ternary metal oxides.

^aAll experiments were run with microcrystalline cellulose, a cellulose to catalyst ratio of 10, a reaction temperature of 483 K, 1 h of reaction and 35 bar of H₂. ^bSA= sugar alcohols, S= sugars, H= hydrogenolysis, F= furfurals.

^cSG= synthesized using a sol-gel procedure.¹³⁸

^dData obtained from the work of Reyes-Luyanda *et al.*²³

3.2.2.3 Effect of temperature and reaction time for the ternary metal oxides in the conversion of ball-milled cellulose

Ruthenium supported on SiO₂-TiO₂-WO₃ (SG) was the only metal oxide catalyst that produced high yields for the hydrogenolysis products during the conversion of microcrystalline cellulose. Due to those results, the effects of reaction time and temperature were studied for this catalyst during the conversion of ball-milled cellulose in an attempt to optimize the reaction conditions. Those influences over the cellulose conversion and yields are displayed in Figure 3-5, Figure 3-6 and Table 3-8. The conditions studied include temperatures of 483 K and 503 K and reaction times that go from 0.5 to 2 h. For comparison purposes reactions in the absence of a

catalyst were also studied. As observed in Figure 3-5, an increase in conversion is obtained increasing the reaction temperature to 503 K, because the ionization constant of water (K_w) is 600 times the ionization constant at ambient temperature (K_w [503 K, 35 bar] > 600 K_w [298 K, 35 bar]), and therefore there is an increase in the hydronium ion concentrations as we increased the temperature that helped increase the cellulose conversion.¹³³

Figure 3-5. Cellulose conversion as a function of reaction time and temperature for Ru/SiO_2 -TiO_2-WO_3 SG (circles) and the reaction in the absence of a catalyst (diamonds) with a cellulose to catalyst ratio of 3.3, 35 bar of H₂ and ball-milled cellulose. Temperatures of analysis were 483 K (green) and 503 K (red).

The conversion for Ru/SiO₂-TiO₂-WO₃ (SG) was always higher than when no catalyst was used. The difference is significantly higher when the reaction is conducted at 483 K. For 503 K the difference in conversion decreases as the reaction time increases. The yields as a function of temperature and time are illustrated in Figure 3-6. The yield towards sugar alcohols appears to go through a maximum near 1 h for both temperatures. At 483 K there is a slight increase in the yield towards hydrogenolysis products from 1 to 2 h while at 503 K it stays nearly constant at 16%. As a result, Ru/SiO₂-TiO₂-WO₃ (SG) appears to be a better catalyst to obtain hydrogenolysis products than for the production of sugar alcohols, as observed in their selectivity on the conversion of microcrystalline and ball-milled cellulose.

Figure 3-6. Yields as a function of reaction time and temperature for Ru/SiO₂-TiO₂-WO₃. Temperatures of analysis were 483 K and 503 K. Reaction times 0.08 h \leq t \leq 2 h. Reaction products: sugar alcohols (green), sugars (blue) and hydrogenolysis products (red).

 	Temp.	Time		Conversion		Yield (%) ^b		
Sample	(K)	(h)	рн	(%) ^a	SA	S	Н	F
		0.5	4.039	32	0	9	0	4
No catalyst	483	1	3.989	39	0	8	0	4
		2	3.411	58	0	4	0	5
Bu/SiO. TiO. WO.		0.5	3.434	51	8	7	7	0
$(SG)^{c}$	483	1	3.492	54	8	6	10	0
(30)		2	5.075	59	5	5	19	0
	503	0.5	3.979	65	0	7	0	6
No catalyst		1	3.528	90	0	7	0	10
		2	4.900	98	0	12	0	9
Bu/SiO, TiO, WO,		0.5	4.542	77	3	6	16	0
$(SG)^{c}$	503	1	3.421	91	10	5	15	0
(50)		2	3.460	100	6	5	15	0

Table 3-8. Reaction results for the cellulose conversion as a function of reaction time and temperature.

^aAll experiments were run with ball-milled cellulose, a cellulose to catalyst ratio of 3.3, a reaction temperature of 483 and 503 K, 0.5, 1 and 2 h of reaction and 35 bar of H₂. ^bSA= sugar alcohols, S= sugars, H= hydrogenolysis, F= furfurals. ^cSG= synthesized using a sol-gel procedure.¹³⁸

3.3 Conclusions

The cellulose hydrolysis catalytic activity for the single metal oxides supports correlates with the Sanderson electronegativity of the metal oxides passing through a maximum for amorphous Nb₂O₅ (HY 340). The single, binary and ternary metal oxides that have Brønsted acidity displayed higher cellulose hydrolysis activity. In both instances the apparent increase in hydrolysis activity is caused by the formation of carboxylic acids that cause an autocatalytic effect. Depositing ruthenium on all the metal oxides studied causes a marked decrease in cellulose conversion to values lower than those observed without catalyst. The addition of the metal functionality makes the reaction no longer autocatalytic, because it inhibits carbohydrate dehydration and the rehydration of furfurals. Also, it was seen that the ruthenium loading on all supports increases the selectivity towards sugar alcohols. This corroborated that having a metal surface aids the production of these polyols.

Additionally, the strong Brønsted acidity of the crystalline niobium phosphate with and without ruthenium appears to promote the hydrolysis of cellulose obtaining high conversions. Among all supports and supported ruthenium metal oxides catalysts tested, the crystalline niobium phosphate material shows the best catalytic performance for the microcrystalline cellulose conversion. An analysis of temperature and reaction time for the hydrolytic hydrogenation of ball-milled cellulose using Ru/SiO₂-TiO₂-WO₃ (SG) corroborated the same behavior observed as for the conversion of microcrystalline cellulose, in which higher yields for hydrogenolysis products were obtained than for sugar alcohols.

4 GROUP V TRANSITION METAL PHOSPHATE FOR THE HYDROLYTIC HYDROGENATION OF CELLULOSE

This chapter presents a study of the catalytic performance of two commercial niobium phosphates: crystalline niobium phosphate (NbOPO₄ B1) and amorphous niobium phosphate (NbOPO₄ B2), as well as phosphates synthesized in our laboratory: NbOPO₄ B3, TaOPO₄ B1 and TaOPO₄ B2 with and without ruthenium deposition, for the hydrolytic hydrogenation of ball-milled cellulose. The variables studied include the effect of phosphate functionalization of niobium oxide, the cellulose crystallinity, the cellulose to catalyst ratio, the reaction temperature and time, the addition of phosphoric acid to Ru/SBA-15, Ru/CMK-3, Ru/Nb₂O₅ (HY 340) and Ru/C, and hydrothermal treatments.

4.1 Introduction

Transition metal (V) phosphates have been used as catalysts, supports, protonic conductors, for cation mobility, for ceramic preparations, and in the optical industry as coatings, due to their similar chemical properties.^{114,141–145} The metal phosphates possess properties such as the mobility of lattice oxygen and mild acid-base properties, essential for their application in oxidation reactions.¹⁴³ Additionally, it has been observed that the catalytic, acidic and textural properties of these phosphate materials are conserved at high temperatures.¹⁴⁶

Furthermore, metal (V) phosphates possess high reactivity for reactions performed in water, demonstrating their stability and activity under those conditions.^{56,106} The presence of water molecules on the surface of the transition (V) metal phosphates, imparts strong acidity

properties to these supports, due to the highly polarized M-OH bonds that act as Brønsted acid sites.^{114,147,148} Niobic acid has an acid strength that is equivalent to having a solution of sulfuric acid with a 70% of concentration that increases with phosphoric acid treatment and is conserved with water treatment.^{100,114,146,148,149}

Metal phosphates have been used as catalysts in many reactions such as the alkylation of anisole, toluene, phenol and aromatic compounds with benzyl chloride, 1-dodecene, 1-octene, 2-octanol, 1-octen-3-ol, and other alcohols.^{150–156} Also, these materials have been used in the oxidation of hydrogen, methanol, benzyl-alcohol, naphtol, phenol, and the oxidative dehydrogenation of ethane.^{157–162} Other reactions such as the esterification of fatty acids with alcohols, acetylation of glycerol with acetic anhydride and reforming of dimethoxymethane have used phosphate materials as catalysts.^{163–165} They have also been used as proton conductors for fuel cells, and as catalysts for methanolysis of sunflower oil and the dehydration of methanol and butanol.^{114,148,166–168}

In terms of biomass derived products, niobium and tantalum phosphate have been mostly used for the dehydration of glucose and fructose to 5-hydroxymethylfurfural. It was observed that the phosphate materials gave higher activities than the parent metal oxides thanks to the strength of the acid sites generated by the phosphating procedure.^{53–57} Deactivation of the catalysts was observed when they were used for long periods, due to contamination by humins.^{53,55,56,147} Dehydration of sorbitol to isosorbide was also studied using tantalum or niobium phosphate as catalysts.^{100,169,170} Additionally, the production of hexane and octane from biomass derivatives was also studied.^{106,171}

We are aware of only one study for the conversion of cellulose to sorbitol using niobium phosphate. Ru/NbOPO₄ was studied with different initial pHs and RuCl₃ as ruthenium precursor.

The authors demonstrated that the high catalytic performance of this catalyst was partly due to the high acidity of the catalyst.⁷⁰ As mentioned before, using chlorine-containing metal precursors affects the catalytic performance due to residual chlorine anions that leach into solution, increasing the acidity of solution, and eventually increasing the conversion of cellulose.⁷¹ These chlorine ions cause an apparent improvement of the catalytic performance of this material that is not inherent to the catalyst.

4.2 Results and discussion

4.2.1 Commercial niobium phosphate

4.2.1.1 Effect of surface functionalization

The acidity of catalysts can be increased with the functionalization of the surface either with the addition of an acid functional group on the surface like sulfonic acid or with the incorporation of cations in the structure. Figure 4-1, Figure 4-2 and Table 4-1 present the results for the catalytic performance of SBA-15 functionalized with sulfonic acid groups (SBA-15S)²³ and phosphate niobia B1 compared to the parent materials and to the results without catalyst for the conversion of microcrystalline cellulose at 483 K and 1 h of reaction. As shown the addition of a catalyst without a metal functionality always increases the conversion of cellulose, when compared to the results without catalyst. A catalyst with Brønsted acidity such as Nb₂O₅ (HY 340) has higher conversion than a catalyst with neutral acidity like mesoporous silica (SBA-15). Moreover, when 0.43 mmol of sulfonic acid per g of catalyst is added to the mesoporous structure of SBA-15 the conversion increases from 30 to 51 % and the yields for sugar and furfurals also increase significantly. One problem with these materials is that they are not hydrothermally stable and the acid functionality readily leaches at our reaction conditions.

Phosphating Nb₂O₅ (HY 340) also causes an increase in cellulose conversion, but smaller than for SBA-15. Additionally, as observed before, the metal deposition causes a decrease in conversion and an increase in the selectivity towards sugar alcohols. As shown in Figure 4-2, the highest yield towards sugar alcohols is obtained with Ru/SBA-15S. At the reaction conditions the sulfonic acid functional groups leach into solution and behave like a mineral acid, increasing the hydrolysis of cellulose, which in turn increases the production of glucose that is converted to sorbitol over ruthenium leading to an increase in the yield of sugar alcohols.

Figure 4-1. Effect of changing the surface functionalization on the cellulose conversion. The reactions were run using microcrystalline cellulose (Micro) at 483 K, 1 h, 50 mL of water, cellulose to catalyst ratio of 10 and 35 bar of H₂. Data of mesoporous SBA-15 obtained from the work of Reyes-Luyanda *et al.*²³

Figure 4-2. Effect of changing the surface functionalization on the yields. The reactions were run for microcrystalline cellulose (Micro) at 483 K, 1 h, 50 mL of water, cellulose to catalyst ratio of 10 and 35 bar of H₂. Reaction products: sugar alcohols (green), sugars (blue), hydrogenolysis products (red) and furfurals (yellow). Data of mesoporous SBA-15 obtained from the work of Reyes-Luyanda et al.²³

Samplas	Final	Conversion $(0/)^{a}$		Yield (%) ^b				
Samples	pН	Conversion (76)	SA	S	Н	F		
No catalyst	3.345	24	0	6	0	6		
SBA-15 ^c	3.123	30	0	8	0	10		
SBA-15S ^c	2.850	51	0	19	0	19		
Nb ₂ O ₅ (HY 340)	2.650	38	0	2	0	4		
NbOPO ₄ B1	2.806	42	0	7	0	10		
Ru/SBA-15 ^c	4.180	25	8	1	1	0		
Ru/SBA-15S ^c	3.220	43	27	2	4	0		
Ru/Nb ₂ O ₅ (HY 340)	3.789	22	8	1	3	0		
Ru/NbOPO ₄ B1	3.534	32	18	2	4	0		

Table 4-1. Reaction results for the effect of changing the surface functionalization.

^aAll experiments were run with microcrystalline cellulose, a cellulose to catalyst ratio of 10, a reaction temperature of 483 K, 1 h of reaction and 35 bar of H₂.

^bSA= sugar alcohols, S= sugars, H= hydrogenolysis, F= furfurals. ^cData obtained from the work of Reyes-Luyanda *et al.*²³

4.2.1.2 Effect of cellulose crystallinity and cellulose to catalyst ratio

The crystallinity of cellulose has been studied by many authors and various methods have been used to decrease the crystallinity of cellulose like using mineral acids, subcritical water and ball-milling treatments.^{14,70,78,172–176} Since niobium phosphate displayed good catalytic performance, we used this material to study the effect of decreasing the cellulose crystallinity on performance. The crystallinity index (CI) measures the ratio of crystalline to amorphous cellulose and is determined by the differences of crystalline to amorphous intensity divided by the intensities of the crystalline peak (Eq. 2.2).^{116,177,178} Ball-milling cellulose for 1.7 h (100 min) decreases the crystallinity index from 86% to 0% as observed in Figure 4-3. Additionally, the particle size distribution gets wider after ball-mill treatment, with an increase in the number of small particles, as presented in Figure 4-4. The deconvolution of the microcrystalline particle size distribution shows two particle populations with mean diameters of 65 μ m and 137 μ m with a standard deviation (σ) of 59 μ m and 49 μ m. Instead, three populations were obtained for the ball-milled cellulose. The calculated mean diameters are 23, 65 and 171µm and the standard deviations vary from 21, 46 and 56 µm. Appendix C shows the deconvolution of cellulose materials. The deconvolution of both particle size distributions gives particles with mean diameters of 65 μ m, but with lower area (260 μ m) for the ball-milled cellulose than 341 μ m for microcrystalline cellulose. For the ball-milled cellulose there is a new distribution corresponding to smaller particles with a mean diameter of 23 µm. the larger particle size distribution decreases significantly in intensity and the mean particle size increases somewhat probably indicating some agglomeration or preferential decrease in medium size particles.

Figure 4-3. X-ray diffraction patterns of microcrystalline (green) and ball-milled cellulose (red).

	0.08	Microcrystalline			
Cumulative Volume (%)	0.07	Ball-milled			
	0.06				
	0.05				
	0.04				
	0.03				
	0.02				
	0.01				
	0	1	10	100	1000
			Particle Dian	etor (µm)	

Figure 4-4. Particle size distribution for microcrystalline (green) and ball-milled cellulose (red).

The increment in amorphous content as well as the increase in surface area caused by the reduction in particle size causes an increase in cellulose conversion and hexitols yield as seen in Figure 4-5, Figure 4-6 and Table 4-2. These results are consistent with the behavior observed in previous reports.^{70,172} The hydrolysis of cellulose occurs first in the amorphous regions and more rapidly if ball-milled cellulose is used, than for the crystalline material, as seen for all reactions presented in Figure 4-5. Without catalyst (entries 2 and 4) ball-milled cellulose exhibits a higher conversion and yield towards sugars than microcrystalline cellulose. For ruthenium supported on amorphous niobium phosphate (Ru/NbOPO₄ B2), the conversion increases from 58% for microcrystalline cellulose (Entry 2) to 96% for ball-milled cellulose (Entry 5). The cellulose treatment also causes a small increase in the yields towards hexitols, hydrogenolysis products and furfurals, when a cellulose to catalyst ratio of 10 is used during reaction. When the crystalline niobium phosphate (Ru/NbOPO₄ B1) is used as support the increase in conversion is similar (from 61% to 96%) but there is a larger increase in the yield towards sugar alcohols from 19% (Entry 3) to 45% (Entry 6) and a slight decrease in the yield towards hydrogenolysis products, due to lower cellulose to catalyst ratio (c:c = 3.3).

Figure 4-5. Effect of cellulose crystallinity on cellulose conversion. The reaction conditions with no catalyst present were 1 g of cellulose, 483 K, 1 h, 50 mL water and 35 bar of H₂. Both niobium phosphate reactions were run at 503 K, 0.5 h, 50 mL of water and 35 bar of H₂. The cellulose to catalyst ratio was the only parameter different in both reactions, cellulose to catalyst ratio of 10 for Ru/NbOPO₄ B2 and cellulose to catalyst ratio of 3.3 for Ru/NBOPO₄ B1. Microcrystalline (Micro) and Ball-milled (BM).

Figure 4-6. Effect of cellulose crystallinity on the yields. The reaction conditions with no catalyst present were 1 g of cellulose, 483 K, 1 h, 50 mL water and 35 bar of H₂. Both niobium phosphate reactions were run at 503 K, 0.5 h, 50 mL of water and 35 bar of H₂. The cellulose to catalyst ratio was the only parameter different in both reactions, cellulose to catalyst ratio of 10 for Ru/NbOPO₄ B2 and cellulose to catalyst ratio of 3.3 for Ru/NBOPO₄ B1. Microcrystalline (Micro) and Ball-milled (BM) cellulose. Reaction products: sugar alcohols (green), sugars (blue), hydrogenolysis products (red) and furfurals (yellow).

F 4	Samples	Conversion (%) ^a –	Yield (%) ^b			
Entry			SA	S	Н	F
	Microcrystalline					
1	No catalyst	24	0	6	0	6
2	Ru/NbOPO ₄ B2	58	5	5	6	9
3	Ru/NbOPO ₄ B1	61	19	5	20	0
	Ball-milled					
4	No catalyst	45	0	12	0	9
5	Ru/NbOPO ₄ B2	96	6	5	8	16
6	Ru/NbOPO4 B1	96	45	5	14	0

Table 4-2. Reaction results for the effect of cellulose crystallinity.

^aThe reaction conditions with no catalyst present were 1 g of cellulose, 483 K, 1 h, 50 mL water and 35 bar of H₂. Both niobium phosphate reactions were run at 503 K, 0.5 h, 50 mL of water and 35 bar of H₂. The cellulose to catalyst ratio was the only parameter different in both reactions, cellulose to catalyst ratio of 10 for Ru/NbOPO₄ B2 and cellulose to catalyst ratio of 3.3 for Ru/NBOPO₄ B1.

^bSA= sugar alcohols, S= sugars, H= hydrogenolysis, F= furfurals.

The effect of cellulose to catalyst ratio was also investigated using the niobium phosphate catalysts, as shown in Table 4-3. A decrease in the cellulose to catalyst ratio results in higher hexitols yields. The yields are calculated using the carbon molar amount in the product by the total carbon amount in the starting material.⁸¹ In previous studies the cellulose to catalyst ratios were studied between 1 to 10. As seen in Table 4-3, both niobium phosphate supports exhibit an increase in the hexitols yields when the cellulose to catalyst ratio is decreased. For Ru/NbOPO₄ B2 no significant difference in conversion was appreciated when ball-milled cellulose was used for the two cellulose to catalyst ratios used, but there was an increase in sugar alcohols yields and no presence of furfurals was observed when the ratio was lower. The formation of these furfural products (5-hydroxymethyl furfural and furfural) for cellulose to catalyst ratio of 10 in Ru/NbOPO₄ B2 could be attributed to a catalyst not well reduced and the high amount of cellulose used for the reaction.

Samplas	Cellulose:	Conversion (%) ^a	Yield (%) ^b			
Samples	Catalyst		SA	S	Η	F
Du/NLODO D1	10.1	96	6	5	8	16
KU/ NDOPO4 B2	3.3	93	34	4	22	0
D., / NLODO D1	9.9	85	42	3	15	0
KU/ NDOPO4 BI	3.3	96	45	5	14	0

Table 4-3. Effect of cellulose to catalyst ratio on the catalytic performance for the conversion of ball-milled cellulose.

^aReaction conditions: 503 K, 0.5 h, 50 mL of water and 35 bar of H_2 . ^bSA= sugar alcohols, S= sugars, H= hydrogenolysis, F= furfurals.

4.2.1.3 Effect of temperature and reaction time

Reaction temperature and time also influence the catalytic performance of ball-milled cellulose, as seen in Figure 4-7 and Figure 4-8 for Ru/NbOPO₄ B1. The conditions studied were temperatures of 483 K and 503 K, and reaction times that go from 0.08 to 2 h. The activities for this type of catalyst were compared with reactions in the absence of a catalyst. As mentioned before, an increase in the hydronium ion concentration increases the cellulose conversion. A temperature of 503 K, the ionization constant of water is 600 times the ionization constant at ambient temperature.¹³³ When we compare the results without a catalyst at the two temperatures, as the reaction time is increased there is a non-linear increase in the conversion. That increase in conversion appears to pass through a maximum close to 1 h of reaction (65% increases to 90%). Addition of Ru/NbOPO₄ B1 to the reaction at 483 K causes an almost constant increase in conversion for all reaction times. When the reaction is conducted in the presence of Ru/NbOPO₄ B1 at 503 K, we observed a similar trend for the conversion as a function of reaction time for the reaction without catalyst, but the curve is displaced to significant lower times. For ball-milled cellulose 100% conversion was obtained for Ru/NbOPO4 B1 at 503 K and 1 h of reaction, compared to the 2 h of reaction needed to obtain 98% of conversion when the reaction without catalyst is conducted. Figure 4-8 illustrates the yields for Ru/NbOPO₄ B1 as a function of temperature and time. At a reaction temperature of 483K, a reduction of sugars yields and an increase in hexitol yields is observed. On the other hand, for a reaction temperature of 503 K, it was observed that the hexitols yields goes through a maximum with a 45% of performance at 0.5 h of reaction, which was sufficient time to hydrogenate most of the sugars. Additionally, an increase in hydrogenolysis products was obtained increasing the reaction time due to the transformation of sugar alcohols into glycerol, erythritol and ethylene glycol. Also, Ru/NbOPO₄ B1 achieved 76% of overall yields to hexitols, sugars and hydrogenolysis products at reaction conditions of 1 h and 503 K for a 100% of ball-milled cellulose conversion, which demonstrated the good catalytic performance of this material.

Figure 4-7. Cellulose conversion as a function of reaction time and temperature for Ru/NbOPO₄ B1 (circles) and the reaction in the absence of a catalyst (diamonds) with a cellulose to catalyst ratio of 3.3, 35 bar of H_2 and ball-milled cellulose. Temperatures of analysis were 483 K (green) and 503 K (red).

Figure 4-8. Yields as a function of reaction time and temperature for Ru/NbOPO₄ B1. Temperatures of analysis were 483 K and 503 K. Reaction times 0.08 $h \le t \le 2$ h. Reaction products: sugar alcohols (green), sugars (blue) and hydrogenolysis products (red).