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ABSTRACT

The problem of deady date hest conduction in semi-infinite plaes and infinite
quadrants of condant thermd conductivity, with discrete heat generating sources and
Dirichlet boundary conditions (temperature specified on the boundary) was solved usng
the method of Green's functions usng the integrd techniques. The Green's functions for
the geometries were found by the method of images. These functions were then employed
for the solution of five cases for semi-infinite dabs with heat generation sources of
different geometry. These were: a thin plate heating source, a hollow box heating source,
a square prismatic hegting source, finite line hegting source and a thin cylindrica hesting
source. For infinite quadrants a heat generation source of the form of a thin current
carrying wire in the form a square was consdered. The heat sources were idedized as
internd thermal energy generdtion. Solutions found with this method adways yidd closad
form agebrac expressons or andytica solutions or “dmog andyticd” solutions (in the
form of an integral). Results found in this work were vdidated and compared with the
numericd method of finite ements in Ansys 6.0. It was concluded that, for the cases
consdered here, the method used in the present work is degant and is superior in terms

of computationd requirements.



RESUMEN

En d presente trabgo se resolvid € problema de conduccion de calor en estado
edable en placas semi-infinitas y cuadrantes infinitos de conductividad térmica congante,
con fuentes discretas de generacion de cdor y condiciones de frontera tipo Dirichlet
(temperatura especificada en la frontera), utilizando € méodo de las funciones de Green
usando las técnicas integrales. Las funciones de Green para las geometrias fueron
obtenidas mediante e méodo de imégenes. Estas funciones fueron luego empleadas para
la solucion de cinco casos para placas semi-infinitas con fuentes de generacion de caor
de diferente geometria. Estas fueron: una placa lined, una cga hueca, un prisma de base
cuadrada, una linea finita y un cilindro de parede delgadas. Para @ caso de los cuadrantes
infinitos se resolvid un caso con generacion de cdor cuya forma fue un dambre fino
colocado a lo largo del perimetro de un cuadrado. Las fuentes de generacion de cdor se
idedlizaron como generacion interna de calor. Las soluciones obtenidas con este méodo
sempre resultan expresones dgebraicas sencillas 0 soluciones “anditicas’ y “cuas-
anditicas’ (en la forma de una integrd). Los resultados obtenidos en € presente trabgo
fueron comparados con € méodo numéico de dementos finitos € software utilizado
fue Ansys 6.0. Se concluyd que, para los casos considerados agui, € método empleado en

la presente investigacion es superior en terminos de eeganciay tiempo computaciond.
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. INTRODUCTION

The method of Green's functions is an important technique for solving boundary
vadue and initid vaue problems. In engineering and applied sciences the steady dtate and
trandent heat conduction equation is one of this type of problems thet is used to mode
and dudy physica phenomenon aisng in the red world. It is not a al surprisng that

their solution has been the mgor concern of many engineers and scientigts.

The thermd control subsystem (TCS) is an integra pat of every spacecraft. Its
pupose is to mantan dl the components of a gpacecraft within ther respective
temperature limits. There are severd different sources of thermd energy acting on a
spacecraft; solar radiation, abedo, earth emitted infrared, and heat generated by on board
equipment. Therefore, the therma control subsystem is different for every spacecraft. In
generd, there are two types of TCS, passve and active. A passve sysem rdies on
conductive and radiative heat paths and specid coaings and has no moving parts or
electrical power input. An active sysem is used in addition to the passive system when
passive system is not adequate, for example, on manned missions. Active systems rely on

pumps, thermostats, and heaters, use moving parts, and require electrical power.

Many factors influence the design and development of the therma control system.
Figure 1.1 illustrates severd possible inputs and outputs, but each spacecraft TCS will
have it's own unique s&t. Misson condraints, mission objectives, and the physcd design

of a gpacecraft determine the inputs and outputs of the TCSinterface.
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Figural.l. TCSInterfase.

There are different types of components for both active and passve sysems, one
active therma control component is an dectricd heater that is a device that is controlled
by a thermostat and used to heat cold regions of the spacecraft. They generate heat by

running dectrica current through aresgtor.

Electricd heaters are used for fine temperature control, usudly when the
gpacecreft is in the shadow of the earth. Often these dectricd heaters are thin current
carying wires. When this occurs, the principd mechanism of heat trandfer for thermd

control subsystem in the spacecraft is conduction heet transfer.



In the prdiminay thermd andyds, the spacecraft is divided into a large number
of isotheema nodes. The andyss is done by specifying the thermd resstance between
the nodes. Often the thermd resistance is guessed by intuition and experience. Attempts
are being made to tabulate, thermd resstance in mounting plates with heat generation
sources. For this knowledge of the temperature fiedd is required. This work provides
prdiminay results for temperaure didribution, which hopefully will hdp in evauation
of thema resstance. Besdes the problem of temperature determinaion due to
conduction of hesat in solids is a fundamenta problem that has numerous gpplications in
various branches of science and engineering. There is condderable interest in the solution
of heat conduction problems with the ultimate objective of obtaining useful and practica

information.

A variety of methods, exact, gpproximate, and purely numericd, are available for
the solution of these problems. In this work, it is proposed to investigate the conduction
heat transfer problem with discrete heat generation sources, with temperature specified on
boundaries in a semi-infinite dabs and infinite quadrants usng the Green's Functions

Integral Method.

About the physcd dgnificance of Green’'s Function, it can be sad Green's
function is a cause-effect two point function. G(X,X') is the effect a the field point X
due to a unit source gpplied a the source point X'. It is important to note thet the
principle of reciprocity holds for Green's functions (i.e, source and fiedd points can be

interchanged). Green's function can be applied to many fidds of engineering and



stiences The following figures illudrate these ideas with an example gpplied to

dadticity.
Unit load
Elagticity: * i
ilever
P = source point P
Q= field point ~~<_ :
~< G(P,
G S G

Green'sfunction G(P,Q) = deflection a Q (“effect”) dueto unit load at P (* causeg’)

Figure 1.2. (a) Deflection at Q due to unit load P applied to a cantilever.

Unit load

: #
~< | 1 Q .
TS~ Q = source point
\>
~ P =fidd point

G(Q,P) \\
N\
\

7
e e e - — - — -

Green'sfunction G(Q,P) = deflection a P (“effect”) dueto unit load at Q (“cause’)
Figure 1.2. (b) Deflection at P due to unit load Q applied to a cantilever;

Principle of reciprocity.

It is shown in the theory of eadticity that the reciprocity relation G (P, Q) = G (Q, P) is

vdid inthiscase.



The solution of smple cases with Green's Function can be used as building blocks
for much more complex solutions. For heat conduction, the Green's Function is
proportional to the temperature caused by a concentrated energy source. The exact form
of the Green's Function depends on the differentid equation, the body shape, and the
type of boundary conditions present. Green's Functions are named in honor of English
mathematician and physcig George Green (1793-1841) [22]., who in 1828 published an
essay entitted “On the Applicaion of Mathemaicd Andysis to the Theories of
Electricity and Magnetism”. In this essay he derived the integrd identities and used them
to obtain integra representations for the solution of problems involving the Laplacian

operator.

The use of Green's Functions is a very powerful technique for the andyticd
solution, numerical solution and mathematical andyss of heat conduction problems. The
goplication of Green's Functions as a means of s0lving and anayzing initid and boundary
vadue problems is not confined to the study of heat conduction but occurs in dmost al
branches of mathematical physics, and have been used for many decades for obtaining
solutions in  dectromagnetic  theory, dadticity, wave mechanics, fluid mechanics, etc.
However, ther uses in heat transfer have not been very common especiadly among
engineers. Beck [2, 3 and 4] presents some exact solutions of linear trandent heet
conduction problems usng Green's functions evolved from eigenfunction expansions.
Solutions involving egenfunction expansons in terms of infinite series usudly present

convergence problems.



The Green's functions integra method was sdected because the solution is
dways in the form of an integra and can be viewed as a recasting of a boundary vaue
problem into integral form. For some cases the integra can be evauated to yield a closed
form solution. The Green's Functions method is useful if the Green's Function is known,
and if the integrd expressons can be evauated. If these two limitations can be overcome,
the Green's Functions method offers severd advantages for the solution of linear hesat
conduction problems. Even when the integrd has to be evauaed numericdly this is
generdly more accurate than numericd methods solutions such as finite differences
egpecidly for discrete sources. The advantages of the Green's Functions method are the

following:

1. The Green's Functions method is flexible and powerful. The same Green's
Functions for a given geometry (including type of boundary conditions) can be
used as a building block to the temperature resulting from: space-variadle initid
conditions, time- and space-variable boundary conditions, and, time- and space-

variable energy generation.

2. The solution procedure is systematic. For a given geometry the Green's Function
for a particular type of boundary condition has to be determined only once. This
then can be used for any type of source, and the solution for the temperature can
be written immediately in the form of integras. The sysemdic procedure saves
time and reduces the posshility of error, which is paticulaly important for two-

and three- dimensond geometries. For complicated problems in which the heat
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conduction is caused by severa northomogeneous terms, and the effect of each

term can be considered separately.

. The Green's Functions method gives “dmog andyticd” solutions in the form of
integras for some specified geometries such as cylinders, sphere and infinite half
gpaces or quadrants. The solution tekes the form of a sum (superpostion) of
sverd integrds, one for each non-homogeneous term in the problem. The
andyticd expressons for temperature can be evduated with high accurecy;
evduated only where needed for grest computer usage efficiency; differentiated
to find heat flux or sendtivity coeffidents or, integrated to find average
temperature. The integrds can dways be evaduated numericdly (quadratures) if
they cannot be found in closed form. The computationd labor involved is minimd
when compared to purdy numericd finite difference or finite dement methods. In
generd this has much better accuracy than finite difference techniques especiadly

with discrete sources.

. Two- and three-dimensond transent Green's Functions can be found by smple
multiplication of one-dimensond trandent Green's Function. This is true for the
rectangular coordinate sysem for most boundary conditions (type 0-No physica
boundary, type 1-Dirichlet, prescribed temperature on the boundary, type 2-
Neumann, prescribed heet flux and type 3-Robin, convective condition) and for
certain cases involving cylindrical coordinates, but it does not work for the

spherical coordinates system.



5. Alternative form of the solution can improve series convergence. For heat
conduction in finite bodies, infinite series solutions for heat conduction problems
driven by norrhomogeneous boundary conditions sometimes exhibit dow
convergence, requiring a very large number of terms to obtain accurate numerica
vadues. For some of these problems an dternative formulation of the Green's

Function Solution Equation reduces the number of required seriesterms.

1.1 Objectives

The purpose of this work is find the temperature distribution for some two, and
three dimensona gpecific cases in rectangular coordinates of semi-infinite dabs and
infinite quadrants with discrete heat generation sources and temperature specified on
boundary (Dirichlet problem) usng the Green's Functions Integra Method. The specific

gepsinvolved are the fallowing:

1. Determine a genera Green's Function Solution Equation gpplicable to the
solution of conduction heat transfer with Dirichlet boundary conditions of

semi-infinite dabs and infinite quadrants.

2. Find Green's Functions for the specific geometries sami infinite-dabs and
infinite quadrants as shown in pages 910, usng the method of images, the

temperature is specified on the boundary.
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3. Apply the Greem’'s Function Solution Equation for the geometries

considered with various types of heat generation source and determine the
temperature profile. The emphass will be a getting a closed form
andyticd solution or in the foom of an integrd (“amogt andyticd

solution™), for the temperature profile.

4. For atypicd case compare the results obtained with a numerica technique

(finite dements and/or finite differences) to illudrae the advantages of

this method.
y A y A
/-8
8
—
g X
Fig. 1.3(a) Fig. 1.3(b)
Semi-infinite dab with a H eat_ Semi-infinite dab with a
Thin plate hedting source ~~ 9enerating Hollow box heating source

(Two-dimensiond problem) ~ €lements (Two-dimensional problem)



Fig. 1.3(c)

Semi-infinite dab with a

Square prismatic heating source
(Two-dimendond problem)

Fig. 1.3(d)

Semi-infinite dab with a

Thin cylindrical hesting source
(Two-dimengond problem)

YA Heat
generating
8 elements
A
A 8
i
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Fig. 1.3(e) 8 Fig. 1.3(f)
Semi-infinite dab with a Infinite quadrant with a
Finite line heating source Square line heating source

(Three-dimensiond problem) (Two-dimensond problem)

10



II. PREVIOUSWORKS

Boundary vadue problems associated with ether ordinary or partid differentia
equations are dmost inescapable these days in engineering and many of the agpplied
sciences. The purpose of the mathematicians for decades was to provide an independent,
gysematic and andyticd method to solve such problems. The method in question
condsts of determining the Green's function, which is associated with most boundary
vaue problems. An integrd equation representation of a boundary vaue problem is
often much more amenable to numericd andyds than a differentid eguation with
associated boundary conditions. This method is by no means a new concept, for such
functions were first introduced by George Green as early as 1828, and have been used in
electromagnetic theory, potentid theory and eadicity. However in heat trander

goplications the use of Green's function has been more recent.

Green's function integrd method applied to diffuson problems have been
studied for decades. However just few works have been reported by researchers in the
heat trander areg, the man reason being the unfamiliarity of many engineers with this

technique.

Morse and Feshbach [21] in “Methods of Theoreticd Physics’ describe the
Green's Function for the Wave Equetion, solutions for a generdized inhomogeneous
patia differentid equation with boundary conditions gpplied to steady waves. Cardaw
and Jaeger [6] in their book “Conduction of Heats in Solids’ describe the known exact

solutions of problems of heat flow, with detailed discusson of dl the most important
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boundary vaue problems. Jackson [17] in his book “Classicd Electrodynamics’ applied
the Green's Theorem to solve the Kirchhoff's integrd for diffraction problem and dso

for the wave equation using the concept of retarded potentials.

Carrier and Pearson [8] “Partid Differentid Equations — Theory and Technique’
discusses the diffuson equation with Dirichlet boundary conditions usng the Green's
function orthogond expansons. Greenberg [12] in his book “Application of Green's
Functions in Science and Engineering” discuss some gpplications of the Green's
function to solve conduction heat trandfer, acoudic, gravitationd potentid and

vibrations problems.

James and Jeffrey [18] in “Heat Conduction” applied Green's Function to solve
heat conduction equation in three dimendons obtaning an integrd equation for
temperature in terms of the initid and boundaries vaues of the temperature and hesat
flux. V.K. Tewary [30] in his paper “Elagtic Green's Functions for Anisotropic Solids’
goplied the Green's function method for solution of the Chrigtoffd equation for dastic

equilibrium with prescribed boundary conditions.

Beck et d. [4] in ther book “Heat Conduction Using Green's Function” obtained
the Green's Functions and temperature solutions to different boundary conditions for the
transent heat conduction equation in Cartesan, cylindrica, and spherica coordinates.
The solutions of the different cases are tabulated obtaining the solution of many transent
heat conduction problems in a draightforward and efficient manner. This book contains
three derivations of Green's Function Solution Equations, the firg for one-dimensond

cases, the second for generd multidimensond coordinates, and the third is an

12



dternative form which can ad in obtaning solutions having better convergence
properties for some problems having nonhomogeneous boundary conditions. In addition
the book discusses the use of these Green's Function for the solution of heat conduction
problems in Cartesian coordinates for one-, two-, and three-dimensona cases, in these
caes the Green's Functions have been obtained from the egenfunction expanson.
Others sections covers radid heat flow, two-and three-dimensond cases in cylindricd
coordinates and some temperature solutions in radid sphericd coordinates. This work
adso discusses the method of images for infinite plane wals and gives the solution in
terems of power series. This hardly has any advantages over the classcd method of

separation of variables.

Ozisk [22] “Heat Conduction” discusses the physcd dgnificance of Green's
Function and presents genera expressons for the solution of inhomogeneous transent
heast conduction problems with energy generation, inhomogeneous boundary conditions,
and a given initid condition, in terms of Green's condition, for one, two, and three
dimensond problems of finite, semi-infinite, and finite regions with representetives
examples in the rectangular, cylindricd, and sphericd coordinate systems. In addition

this book gpplied this technique to the solution of one-dimensiona composite medium.

The books and papers cited cover different gpplications of Green's Functions.
Higoricdly the use of a Green's Function to solve differentiad equetions grew out of a
dudy of a specid patid differentid equaion and boundary condition cdled the
Dirichlet problem. Later it was discovered that smilar function could dso be used in the

andyds of ordinay differentid equations festuring nonhomogeneities. Although some
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of these functions were origindly given different names for different problems, today we

collectively refer to them al as* Green’s Functions’.

In the paper “Initid Vaue Problem for Boundary Vaues of the Green's
Functions’ Edmond Ghandour [13] formulated the equations that govern boundary
vaues of the Green's functions. Then a particular second order differential equation with
mixed boundary conditions tha is commonly encountered in one-dimensond wave
propagation problems and dso some agpplications to the one-dimensond sochadtic

wave propagations are examined.

Y.P. Chang and R. C. H. Tsou [9] in ther work entitted “Heat Conduction in
Anisotropic Medium Homogeneous in Cylindricad Regions-Unsteady State” talk  about
the analyticad solution for heat conduction in an anisotropic medium tha is
homogeneous in circular cylindrica coordinates. They considered boundary conditions
of Dirichlet, Newmann and mixed (or convective) types for solid cylinder and hollow
oflinder in infinite and finite lengths. The principd subject of ther paper is the

determination of the Green’s functions, using eigenfunctions.

A very important work in this field has been reported by J. Beck [2], where a
derivation of the Green's function solution for the linear, trandent hest conduction
equaion in a form that incdudes five kind of boundary conditions is given, and dso
demondrates the conditions under which it is permissble to use the product property of

one-dimensond Green's functions.
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In 1986, James Beck [3] in the work titled “Green's Functions and Numbering
Sysem for Trandent Heat Conduction”, provides a table of Green's functions that
enable us to derive trandent conduction solutions for rectangular coordinates syslem and
aso provided a numbering sysem that enables efficient catdoging and locating of

Grean'sfunctions. The Green' s functions were obtained using eigenfunction expansons

Hgi-Sheikh and J. Beck [15] reported a work for the heat conduction problem in
thin films & low temperature where the classca theory of heat conduction bresks down.

They report the solution for the temperature distribution for finite bodies.

Kevin D. Cole [10] in his peper “Steady Heat Conduction in Cartesian
coordinates and a Library of Green's Functions’, expresses generd Green's functions for
direct solution of the deady heat equation in finite geometries. In paticular, the many
combinations of posshble boundary conditions leed to hundreds of different functions.
Like the trangent heat transfer Green's functions described by Beck, these accurate
functions serve an important role in the verification of software usng other numerica
methods and furthermore, these dteady-dtate functions can be used to verify the
independently-developed  transent Green's functions. They ae organized into a

sysemdic taxonomy based on the types of boundary conditions on the faces of the

paralldepiped.

John R. Berger [5] in his paper “Green's Functions and Applications for Steady-
State Heat Trandfer in Functionally Graded Materids’, discusses that the Functionaly
graded maerids (FGMs) ae dedgned with gpatid variations in dagic, thermd,

magnetic, or optica properties for optima performance. Some examples of FGMs are
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therma barrier coatings, bone implants, piezodectric sensors, and graded optica index
components. In this paper Green's functions for the steady State heat transfer problem in
FGMs were developed. Both isotropic and anisotropic therma conductivities were
consdered. The developed Green's functions were used in numericd smulations with
the Mehod of Fundamenta Solutions. Results for problems with Dirichlet and
Neumann boundary conditions and results on an inverse problem in a graded materid

were presented.

Sheleddeva M.L. et d. [28], in their paper “Modding of interfacid temperature
effects due to an impulsive line heat source’, discussed the temperature fidds generated
by an indantaneous line heat source in the medium congsing of two hdf spaces of
different thermd properties ae modded. The andyticd cdculations employed the
Green functions for an impulsve line source derived previoudy using the Cagniard—de
Hoop technique. The analyticd modd predicts the change of sign of the reflected
temperature fidd dong the interface for a certain range of parameters. It has dso been
found that for the heat source located in the less conductive medium the temperature
peak ariva can occur before the peak from the source temperature field. The andyticd
results are found to be in excdlent agreement with numericd modding usng the finite

difference method.

All these previous works provide generd and exact solutions for homogeneous
heet conduction problems but only some few generd solutions for smple geometries are
found for inhomogeneous cases. In dl the works, the Green's Functions is obtained by

usng egenfunction, which of course is applicable to many types of boundary
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conditions. None of these works obtain the Green's functions by the physicd agpproach.
Venkataraman N.S, Pé&ez E. and Degado I|. [33] in ther paper “Temperature
Didribution in Spacecraft Mounting Plates with Discrete Heast Generation Sources due
to Conductive Heat Transfer” have used the physical gpproach of the method of images
to obtan Green's functions for cylinders and spheres. They found the temperature
digribution in plates, infinite cylinders and spheres with different types discrete hesat
generation sources such as ring and spird sources and showed that for discrete sources
Green's function determination by method of images yidds andyticd or “admost

andyticad” solutions.

The literature review indicates that most authors have used Green's function
obtained from egenfunction expanson for the solution of problems with various
boundary conditions. This method though powerful in many cases presents the same
complexities and problems as classcad methods. In our work it is proposed to obtain the
Green's function usng a physcd approach through the method of images for semi-
infinite dabs and infinite quedrants. One of the objectives is to get the Green's function
for the region by usng anaogous concepts used in dectrogatics by usng heat sources
and heat dnks. After obtaining the Green's function we will atempt to solve some two,
and three dimensond gpecific cases in rectangular coordinates of a semi-infinite dabs
and infinite quadrant body with discrete heat generation sources and Dirichlet boundary
conditions. It should be emphasized that the Green’'s functions method is specidly suited
for discrete sources, where classcd methods such as separation of varidbles fall, in

many Cases.
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. MATHEMATICAL FORMULATION OF THE PROBLEM

3.1. Statement of the Problem

The following chapter explains and develops the solution of problems of heat
conduction in deady date and temperature profile for some semi-infinite dabs and
infinite quadrants in two and three dimensions with discrete heat generation sources and
temperaure specified on boundary (Dirichlet problem) usng the method of Green's
function developed through the method of images. The materids are assumed to be

isotropic with congtant therma conductivity k.

3.2.  Fundamentals Concepts

A gengd solution equation will be determined and then it will be limited
to the specific boundary conditions of the cases we are focused on. For a better
understanding of the development of the Green's function solution equetion, it is

necessary to introduce the following mathematical concepts:

3.2.1 Dirac-DdtaFunction

The Dirac Ddta function (sometimes cdled the unit impulse function) is
important in the sudy of phenomena of an impulsve naure, such as the action of heat
flow over a very short time interva or over a very smdl region. This Stuation occurs in
mechanics, for example, when a force concentrated at a point causes deformation on solid

surface, impulsve forces in rigid body dynamics, point messes in gravitaiond fied
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theory, point charges and multipoles in dectrodtatics, and point heat sources and pulses in

the theory of heat conduction. The Green's function is the impulse response of a

differentiad equation, and the Dirac Ddlta function describes the impulse.

The Dirac Ddta Function d(x) is defined to be zero when x ! 0, and infinite a

x =0in such away that the area under the function is unity.

Dirac Ddtafunction (specid case)

Y A d(x)

dix)=0 if xt0
dXx)® ¥ if x® 0 } ............... (31

Eﬂ(x)dx =1

> X
Fig. 3.1. Dirac Delta Function

Gengdizing:

Generd form of Dirac Ddtafunction y A

T | dx)
dix-a=0 if xta 1
dx- 9® ¥ if x® a
—» 2 |lea— ;X

¥

gix - a)dx =1

¥ —_
Fig. 3.2. Dirac Ddta Function, Generd Form



Equation (3.1) can be seen asalimit of Gaussan

d(x) = lim §——— e V4=
s® 06/ 4.p.S u dx) Is
Or Lorentzian Larges
. el e
dx)=Ilimz4—.——
(x) e®08p X2+62H < -—> X

Fig. 3.3. Dirac Ddta Function aslimit of Gaussar

The important properties of the delta function are the following:

a) :(‘j(x)d(x- a)dx=f (a) b<a<c
b) E)j(x i a)dng‘yl(x- a)dx =1 a<a<b
0) E‘j(x)d'(x- a)dx=- f'(a) b<a<c
d) ‘1()(’(_'8‘3) =_d(x- a)

3.2.2 HeavisdeFunction

This function is named for the dectricd engineer Oliver Heavisde. The

Heavisde function (or unit step function) is defined as:



\j

—» 3 |<€—

Fig. 3.4. Heavisde Function.

The property that relates the Heaviside function and Dirac-Ddtafunction is

X

dH(x) _
dx ax)

3.2.3 TheDivergence Theorem.

One of the most important theorems of vectorid cdculus is the divergence
theorem; sometimes it is cdled the Gauss Theorem. The divergence theorem is just going

to be mentioned since it can be found in any basic Calculus book as reference [6].

Let S be a surface that encloses a region V in R. If A is a continuous vector fied

whaose components have continuous partia derivativesin V, then:

A-NdS = gpN.AdV
S \

Where 1 isan outward unit vector normd to S.
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3.24 Green'sldentities.

If A=fNy ,where f and y arearbitrary scalar fields, defined in V. Then:

N.A=f N2y +Nf Ny (3.3)
A.A=f Ny .h=f Ty
T, (3.4)

These equations when subgtituted into divergence theorem, results in Green's

first identity:
Gily K2 + Rt Ry Jav = (‘g‘yﬂds
v s (35)

Instead, If A =y Nf and substitute again in Divergence Theorem obtained:

Gl K2y + Ry /it )av= gf Yds
y s Tn (3.6)

Subtracting equations (3.6)-(3.5) results the corollary of divergence theorem

knows as Green’ s second identity or Green’s Theorem:

@‘ﬂfl\l y - y N2f)av “3?11%’] :TTLst
(%]



3.25 Heat Conduction in steady state.

Consder a heated solid body with congtant therma conductivity k, with interna

heat generation in Steady date (strictly therma energy generation).

But the tem heat generdtion is commonly
acepted in the heat transfer to meen themd energy

generation.

Let:

xi

T(X) = Temperature a any point X

Fig. 3.5. Solid body with interndl hest

G ° Heat flux vector a surface dS (W/n? )
d Lx vector & surfece dS (W) generation

Q(X)° Heat generation intensity per unit volumea % (W/nt)

Applying consarvation of energy the heat flux from the surface must be equa to
the thermd energy generation indde the volume mathemdicdly this can be expressed

as.

DAK).-AdS = FRRE)AV
s v (3.9)

The divergence theorem applied to the left hand Sde term:

HAX).Ads = GpN.a(x)adv
s USROS (3.9)
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Theright hand Sdesin equations (3.8) and (3.9) are equivaent:

\Y

apN.gx)av = @Ry - or  ap.§x)- QX))dv =0

Since no redtrictions have been imposed to derive the lagt expression, this is vadid
for any dze and shgpe therefore integrand must be zero. Mahematicaly this can be

expressed asfollows:
N )= Q) (3.10)
The Fourier’ slaw is expressed in the following form:

GR)=- KN T(X) coe et e e e e (3.11)

Where T(X) istemperature

Subdtituting the equation (3.11) in (3.10) to obtain:

(3.12)

The equation (3.12) is the hesat equation with heat generation for Steady State with

congtant therma conductivity k.
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3.3. Steady State Green’sFunctions

In steady sate conditions the heat conduction equation reduces to the Poisson
equation. The Poisson equation has many applications in the fidds of dectrogatics,
eadicity, diffuson, and heat transfer. Morse and Feshbach [21] present the solution
methods to the Poisson equation and its speciad case, the Laplace equation. The method

of Green'sfunction is only one of many solutions methods.

In this part of the work we will explain the process of deriving Green's Functions
in steady dtate using the method of images. For this purpose some concepts about point
and line heat sources and hest snks in an infinite medium are needed. These heat sources
ae expresed in a mathematicd form and a reaionship between Green's function and

the heat conduction equation is also found.

3.3.1 Auxiliary Equation: The Source Solutions
3.3.1.1 Point Heat Sour ce (Three-Dimensional)
Condder a sphere of radius “d’, with congant

heat generation per unit volume Q (W/n?) inside the

herein s gate as shown in figure 3.6. '
¥ ey J Figure 3.6 Sphere with congtant

heat generation.

Thetotal heat generation insde the sphere Q; isgivenby Q; = % pa’Q.



Inthe limtas a® 0 and Q® ¥ , such that Q; remains congtant, the sphere becomes a

point heat source. As a consequence of symmetry, congtant temperature spherica
asurfaces are found around the point heat source (figure 3.7) and the heat flux lines are

radia.

Heat source of

strength Qr (watts) Material of thermal Kk

conductivity k

Heat flux lines
Constant temperature surface

Sphere of radiusr

Figure 3.7. Point heat source an Figure 3.8. Heat flux lines due to a point
congtant temperature surface. heat sourcein an infinite medium

with congtant therma conductivity.

In figure 3.8, q represents the radia heat flux at r due to a heat source of strength
Qt in an infinite medium with congtant therma conductivity. Since Qr is the strength of
the source, which is congant then the heat flux (g) a the boundary of the sphere of
radiusr isafunction of r only (by symmetry).

An energy balance in the sphere gives.
(31>NdS = (Ppd°x

S \
Since g is condant, then:

q,(4pr?)=Q;
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Recdling Fourier'slaw:q, = - k? and subgtituting in the previous equation:
r

arm _ Qv

-k
dr 4pr?

Integrating and solving for T(r), the following expresson is found:

T(r) = 4Q—T
KL e (3.13)

This is the equation for the temperature at r due to a three-dimensiona heet source

Qr inaninfinite medium of therma conductivity k.

Constant temperature surface

For a heat snk (Figure 3.9)

o S Heat flux lines
the temperature didribution can be
found in the same fashion than for a
Heat sink of
heat source; the result is the same strength -Qr(watts)

rering iU in S,
differing justin sign Figure 3.9. Point hesat sink and
constant temperature surface.

3.3.1.2 LineHeat Source (Two-Dimensional)
Suppoe we have an infinite two-dimensond medium with congat thermd
conductivity Smilar to the as previous case; condder a line heast source of strength L per

unit depth (W/m) aong zaxis as shown in figures 3.10 (a) and (b).
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»
|

Medium with o (

f\ thermal
conductivity k

Source L

N

Figure 3.10. (8) Line source in an infinite Figure 3.10. (b) Hest flux
medium of constant conductivity K. from surface.

Snce the medium is infinite, then there is no vaidion dong zaxis, the

temperature profileisafunction of radid distance “r” only, then:

T=T(
10_0 au
9z

Totd heat generation: Qr =L. 7 (W)

Condder a cylindrical surface of radius r with the line source on the axis. By an
energy baance:

Energy flux from the cylindrical surface = heat generation insde volume
o 2pr.t)=L. ¢

Once agan usng Fourier’'s law and solving for the temperature, the following

expresson isfound:
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T(r) :éTLklm (3.14)

Or

T(r) =— 0t e (3.15)

This is the eguation for the temperature a r due to a two-dimensond heat source

Q7 inaninfinite medium of therma conductivity k.

3.3.2 Mathematical Representation of a Heat Source
A heat source of drength Qr (Watts) located at x¢ (Figure 3.11) can be

represented by:

QM) = Q- X)) e, (3.16)

Where Q(X') is the heat generation intensity per unit volume (w/n’).

When Q(X') is integrated over the volume the full drength Qr is obtained, i.e.

EREIPX=Q;

Y

Q)

<t

X
S

Figure 3.11. Three-dimensiond body with interna heet generation.



3.3.3 Green’sFunction Solution Equation for the Heat Conduction Problem.

For the steady dtate heat conduction problem the temperature T(X) at any position
X in a body of congant therma conductivity k with therma heet generation rate Q(X)
per unit volume (W/n7) satisfies the hest conduction equation. Equation (3.12).

Anaogous to the concepts of podtive and negative edectrodtatic charges in
electrodynamics, we can introduce the concept of a heat sources and heat sanks. Then we
define the temperature Green's function G(X,X') as the temperature at the field point X
due to unit hest source at the source point X' (Figure 3.11)

Therefore G(*, X ) must satisfy the heat conduction equition.

Then:

Where Q(X) , isthe heat generation intensity of a unit heat source.
Q(X) =d(X - X')

Sothat FHQ(X)dV =1
\Y

Substituting the equation (3.16) in (3.17) to obtain (remember Qr=1, since heat
source is of unit strength):

R? G(x,%")=- _d(xl; X') o1
3.18

Usng the corollary of divergence theorem equation (3.7) and by setting f =G and
y =T where x is the observation point and X' is the integration varigble, the following

expression is obtained:



@G, XINTR) - TRINGE,X)fdv'= @} 6, % )ﬂ‘ﬂ(X) T )ﬂG(X : )gds

s |

Subdtituting the equations (3.12) and (3.18) in the previous expression to obtained:

- aecc ) av+ o) L ave= b T - o B s
\% v g .

By applying first property for Dirac- Delta function on the second term in the left hand

Sde

- C‘E‘n‘ﬁ()‘{’ S(’I)Q(k)_()dvl_'_-r(x) — \\%(—> Y ﬂT(X) T( )ﬂG(X X )_Od

Q

Solving for temperature T:
T(X) = @B(X, X)Q(X')AV'+ k “a%;(x % )ﬂTﬂ(X) TR )‘HG‘("? X) 8
V' S ﬂ

(3.19)

The primes indicate that the integration is done around the source point X'

The source contribution is represented by the first term on the right hand sde,
boundary condition contributions are represented by other two terms.

The equation (3.19) is vadid for any shape, any heat source and any boundary
condition.

The temperature T(X)a any point X can be determined if Green's function

G(%,x") isknown.
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Green's function must satisfy equation (3.18) but cannot be uniquely determined

until G is specified on the boundary. The purpose of the present work is to solve the hesat
conduction problem for Dirichlet boundary conditions (i.e. temperaiure specified on
surface). In this case the best choice is to make G(Y(,Y('):Oon the boundary such that the

fird term in the surface integra of equation (3.19) vanishes. Then we have:

T = @HEKIQENV - k@l () 1o s
' ° L (320)

Thisisthe fundamenta solution equation using Green's function for the heat
conduction problem with Dirichlet boundary conditions.
It should be reemphasized that once the Green’s function is obtained for a body, it

can be used for any type of source.

34 Problem analysis
With equation (3.20) the problem for the determination of the temperature profile
has been reduced to finding the Green's function. There are two genera ways to obtain

Green's functions:

3.4.1. Orthogonal Expanson:
It must be said that Green’s functions depend on the geometry of the body; there

are severd waysto find them.



The firg one is the generd method, which consgs in expanding G(X,X') in
orthogond eigenfunctions, obtaining the Green’s function in terms of

Sine and cosine functions for rectangular coordinates system.

Sine, cosine and Bessd functions for cylindrical coordinates system.

Legendre polynomids and associated Legendre polynomids, for  spherica

coordinates system.

3.4.2. Physcal Approach:

The second is a physicd gpproach: known as method of images, this method is
ussful for infinite and semi-infinite geometries, circular plates and spheres, when
temperature is specified on the boundaries.

This method congists in replacing the boundary by virtud image sources or Snks.

The method of imagesis the method used in the development of the present research.

3.5. Method of Images
In this part of the present work, Green's functions for two and three dimensiond
semi-infinite spaces and infinite quadrant are found. Before the development is done it is

necessary to introduce the following relaionships:

35.1 NZ(nr)in Cylindrical Coordinates
Recdling equation (3.14) for the deady dae temperature didribution in a

medium with atwo-dimensond line source of strength L (W/m):



-L
T(r) =—Inr
() 20k
After applying the operator N? to both sides in the previous equation, and since L,

k and | are congtants, the following expression is obtained:

NZT(r):iNZInr
2pk

Snce the temperature didribution in this case is only function of radius, then in

cylindrical coordinates N? can be expressed as follows

pe=2laglo
rire frg
Therefore (N? Inr) in equation (3.21) becomes:
- 5 1 0 if rtoO
Negnny =218 gh 8=} ',fr ©
rfre r- g §®% I r=0 ... (322

Applying divergence theorem to eguation (3.22), using the cylindricd volume
enclosing the point r = 0 shown in figure 3.21, resultsin:

T (Iﬂr; r as

S

auN‘(Innav =

In cylindricad coordinates the differentid surface dS is equa to rdgdz; solving the

right hand side term in the previous expresson and integrating the following is obtained:



Medium with

thermal
{\conductivity k

Source L

Figure 3.12. (8) Line source in an infinite
medium of congtant conductivity k.

Therefore:

aN’ (Inr)adv = 2p¢
\

The last expresson isvaid for the volume including the point r = 0

Dividing both sdes in this last expresson by 21 and doing the same in equation

(3.22), thefallowing is obtained:

|0if rto )

L Regni = _
2p/ ,®¥ if r=0

G L f2(nnav =1
v 2Pt

WherevolumeV enclosespoint r = 0.

J



Equation (3.23) behaves as a Dirac-Ddta function and satidfies its conditions,

therefore it can be said that:
1 -~
—N?(nr)=d(r

207 (Inr)=d(r)

Or

NEQnT)=2p0e(r) . (324)

~

a0
35.2. N29?+ in Spherical Coordinates
elg

By a similar procedure, a relationship between N?(1/r) and Dirac-Delta function in
gpherical coordinates can be found.

Recdling equation (3.13) for the deady date temperature digtribution for a

gpherical source of sirength Qr watts:

Qr

T(r) =
") 4pkr

After applying the operator N? to both sides in previous equation, and since G

and k are congtants, the following expression is obtained:

QT Nzé-o

N2T(r) =

. (3.25)
As in the previous case, temperature didribution is only function of radius

therefore N2 for spherical coordinates can be expressed as follows:

~ 1
2 _
T

d|ﬁ

g?i
re fqr

&IO
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Therefore [N? (/)] in equation (3.25) becomes:

a6 1 0 if rio
== - _
Trergg 1®¥ it r=0 ... (32

Applying divergence theorem to a sphericd volume enclosing the point r = 0 as

shown in figure 3.16.

zaéo 10

= —=dS
(\?ﬁ\l er ﬂ %gr %]
z
Norma
34
X

Figure 3.13. Spherica volume enclosing the point r = 0.

In spherica coordinates the differentid surface dS is equa to r’snqdqdf ; solving

the right hand Sde term in previous expression and integrating:

ﬁdjz ng\ 1 2~
r<dn qdodf = —r-9n qdgodf =- 4
rgr% qdq 00) 2 qaaq p

00

ﬁ|ﬁ

ol
I
I

Therefore:



Y- : o)
— =V =-4
@ g 7V = 4p

Thisisvdid for the volume induding the pointr =0

Dividing both ddes in previous the equaion by -4p and doing the same as we did

for equation (3.24), the following is obtained:

-1.,046 1 0 if rt 0 N
—N¢c=+=i B
p érg {®¥ if r=0

’ (3.27)
\“'1~28é.6 .............................................
ap—N"¢==dv =1
v ap g )

y,

Where volume V enclosing thepoint r =0

Equation (3.21) behaves as a Dirac-Ddta function and sdidfies its conditions,

therefore the following expression is valid too:

-1.,8d0
—Nc—==d(r
4p grz ")

Or



3.5.3 Green’sFunction for a Two-Dimensional Semi-Infinite Space
Condder the two-dimensond sami-infinite space with condant thermd

conductivity k, a heat source of unit strength is applied at P as shown in figure 3.14.

y
t ¥

Ph

0

G(x,%')
X =

X
|
|
|
|
|
|
: l
|
on 0] [
|
|
|
[ MO

4 -

_¥v

Figure 3.14. Green's function for atwo-Dimensond semi-infinite space.

Q(X) isthefidd point.
G(P,Q) =G(X,X") = Temperature at X dueto unit sourceat X'.

- d(x- x")

G must satisfy equation (3.18), i.e, N2 G(X, X') = ”

and:

G(X,X")=00N X =0 .iiiiiiiiiiiiii e (3.29)



Congder now an infinite space of therma conductivity k. Put an equd and
opposite heat source a P¢ the image of the point P through the boundary of the semi-

infinite space as shown in figure 3.15.

Infinite space

Figure 3.15. Image for aunit heat source for atwo-dimensiona space
with therma conductivity k.

Since the source and the sink are of unit strength, then |Q-| =1 for both the source
and snk.

Equation (3.15) gives the temperature digtribution for a two dimensond space
due to a heat source (the same expresson but with opposte sign is vdid for the
temperature digtribution due to a sink), then, for this case, the temperature profile can be

expressed as follows:

T(r) = 1 r+ L r
2pk? 2pk?



Applying the operator N to both Ieft and right hand side in previous equation:

N2T :_—1[N2 Inr, - N?In rz]
2pk?

Since 1, is in the imaginary region it never can be zero (actudly 1 3 ato be able to

interact in the red two-dimensond body - i.e. x > 0 in figure 3.15), therefore according

to equations (3.23) and (3.24) for the region of interest, x > 0, the following is
accomplished:

>0 P N°Inr,=0
NZInr, =2prd(r,)

Subdgtituting these vaues in the previous equation the following relationship is
obtained:

N?T =- —d(lil) or:

On boundary r; =r; (seefigure 3.16)

e

Figure 3.16. Effect of heat source and sSink on boundary.
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When r; = 1, then T = 0 (temperature on boundary), then T satisfies equations

(3.18) and (3.29) (G=0 on boundary) therefore T (X,X") isthe Green's function:

G(X,X") -1 r+
2pk?

1 &,U

The distancesr, y 1, are obtain of figure 3.15

r=4J(x- X)Z +(y- y)?

r, = (X +X)% +(y- y)?

Subgtituting in the equation 3.30 to obtain:

)P (y- y)* Y
ZW sJ(x X2 +(y- y)? §

L |né(X+X)z+(y V) e (331)
Tapke gx-x)7 (Y- )7l

Findly, for this case, it can be sad tha finding the Green's function for a semi-
infinite space x>0, is equivdent to solving the problem of a source and its image (a Snk)

in aninfinite space as shown in figure 3.17



sink -1
- |<— a
y

Figure 3.17. Semi-infinite two-dimensond pace with aunit heat
source and its equivaent image through the boundary.

3.5.4 Green’sFunction for a Three-Dimensional Semi-Infinite Space
Condder the three-dimendond semi-infinite space with condant thermd
conductivity k smilarly to point 35.3; a heat source of unitary strength is applied a P as

shown in figure 3.18

T"' ''''''''' it T .
A P
s |
y Va [ i
I i s
S PO
x f | Q X l,
7 ! ! i \
! | / !
)\! i ( !
_— ! i - |
G(X, X')=0 i i ‘i ;
on boundary ! i v i
L i :
} X | j
. I / /
! ,/—'—'—‘—‘"""—‘—-—i—'—"'j“
| 7 P
| /.'/ i
. I
I =
Lo 4

Figure 3.18. Green’s function for a three-dimensond semi-infinite space.



Once again:
G(P,Q) =G(X,X") = Temperature at X dueto unit sourcea X' and must satidy:

26 o0 - %)

7\_
~
w
w
D

G(x,X')=0o0nboundary (X =0) ....oeoeuiiieiiie e (3.33)
Condder now an infinite space of thermd conductivity k. Put an equd and

opposite heat source at R the image of the point Pthrough the plane x = 0 as shown in

figure 3.19.
y [
/""
J/’ Il
X //:/’,—-l\_..-..._\_~/_,_/\‘§_
II ‘\
z ! |
\ [}
\ I
Voo
[ |
! |
! |
" |
i | =l
¥ I -
: l‘(_xyly1lzl <‘
[ \
! I
! I
! I
! 1
i \
1 e
Imaginary region

Figure 3.19. Image for a unit heat source for athree-dimensond space with thermd
conductivity K.



Source and the sink are of unit strength (|Q; | =1 for both the source and sink)
Equation (3.13) gives the temperature distribution for a three dimensona space

due to a heat source (the same expresson but with opposte sign is vdid for the

temperature digtribution due to a sink), then the temperature profile can be expressed as.

T(r) = r 1

4pkr,  4pkr,

Applying the operator N to both |eft and right hand side terms:
. 1 é.,1 .,1u
RI2T :_éNz__ Nz_lj

dpkg >0

The value of , can never be zero snce this is in the imaginary region (2 2 & i.e X
> 0 in figure 3.19), therefore according to equations (3.27) and (3.28) for the region of

interest, x > 0, the following is accomplished:

Subgtitute these last vauesin the previous equation to obtain:

NZT - d(rl)
k
Or:
2T = - d(x- X')

k



In consequence, snce T satisfies equations (3.32) and (3.33), the Green's function
for athree-dimensiond space of therma conductivity k is.

1 ] 1
4pkr,  4pkr,

G(X,X') =

~ o 1 é1 1u
dpkgr, 1,

The distancesry y rp are obtain of figure 3.19

r=4J(x- X)2 +(y- y)2 +(z- 2)°

r, = (X +X)2 +(y - )2 +(z- 2)?

Subgtituting in the equation 3.33 to obtain generd equaion of Green's function

for athree-dimensond space of thermd conductivity k:

é 1 K
e N2 1\ 2 n 2 u
ay (X- X))+ (y - +(z-z 2

G(X,X') = ! gJ( yrly-y)ye(z-2) TR (3.35)
4pk % 1 i

B0t XY +(y- Y+ (- 2)°



3.55 Green’sFunction for a Two-Dimensional Infinite Quadrant
Condder the two-dimensond infinite quadrat with condant thermd

conductivity k, a heat source of unitary strength is applied at P as shown in figure 3.20.

'

{_— ax x)=0

ony=0

Figure 3.20. Green's function for a two-dimensond infinite quadrant.

G(P,Q) =G(X,X") = Temperature at X dueto unit sourceat X'.
G mugt stisfy equation (3.12)
and:

G(X,X) =0 0N X =0 oo (3.36)

G(X,X)Z0 0N YZ0 oottt e, (3.37)



Condder now an infinite quadrant of therma conductivity k. Put three heat

source, two of opposite sign at Rtand P’ and a third of the same sing a P, the images

of the point P through the planex = 0 and y = 0 as shown in figure 3.21.

LX

Figure 3.21. Image for aunit hest source for a two-dimensond infinite quadrant with
therma conductivity k.

Since the source and the sink are of unitary strength, then |Q.| =1 for the sources

and sinks.
Equation (3.15) gives the temperaure digtribution for a two-dimengond infinite

quadrant due to a heat source (the same expression but with opposite sign is vaid for the



temperature digribution due to a snk), then, for this case, the temperature profile can be

expressed asfollows:

-1 1 -1 1
T(r) =——Inr + Inr, Inr, + Inr,
2pk? 2pk? 2pk? 2pk?

Applying the operator N to both left and right hand side in previous equation:

N2T :-—1[N2 Inr, - N?Inr, +N2Inr, - N2In r4]
2pks
Since b, r3 and r; are in the imaginary region, these never can be zero (actudly b,
r; and 1z 3 @, to be able to interact in the real two-dimensond body - i.e x >0 and y>0in

figure 3.21), therefore according to equations (3.23) and (3.24) for the region of interest,

x > 0, y>0 the following is accomplished:
rn>0 b  NInr, =
r3>0 b NInr, =

>0 P NInr, =

NZInr, =2prd(r,)

Subgiituting these vadues in the previous equaion the following reationship is

obtained:
Rer == 90 o
Ri2T = - d(X- X')

49



On boundary r1=r4 (seefigure 3.22 ()

b

Figure 3.22 (a). Effect of heat source and sink on boundary x = 0.

On boundary ri=r, (seefigure 3.22 (b))

Figure 3.22.(b). Effect of heat source and sink on boundary y = 0.



When 1 = 14, I'1 = I2, then T = 0 (temperature on boundary), then T satisfies

equations (3.18), (3.36) and (3.37), (G = 0 on boundary) therefore T(X,X') is the Green's

function:
(*X)——ll L ——Inr, - 1 Inr, + L Inr,
2pk? 2pk€ 2pk/ 2pk?
ér,.r,u
e T T - L (3.38)
2pke @

The distancesry, I, r3 and rs are obtain of figure 3.15

r=4J(x- X)2 +(y- y)?

=J(x- x)? +(y+y)?

f =4/ (X +X)2 +(y +Y')?

ry= (X +x)2 +(y- y)?
Subgtituting in the equation 3.38 to obtan the genera equation of Green's

function for atwo-dimensond infinite quadrant of therma conductivity k:

1 G0 ) +(y+y) (X +x)7 +(y- y)*

G_”_’l
0= 20 sJ(x X')Z+(y- Y2 A (X +X)2 4 (y+Y)>? a

o )7+ iy ] Jocrx)? +(y- vyl
G(X,
(x) = 4pkz ") -y [+ (y +y )

51



V. RESULTSAND DISCUSSION

The main objective of this thess, was to find and apply Green's functions solution
equation to the solution of conduction heat trandfer with Dirichlet boundary conditions
for specific geometries of semi-infinite dabs and infinite quadrants with various types of
discrete heat generation source and determine the temperature profile. The objective was
adso to show that for the cases congdered here Green's function integra techniques yield
an degat andyticd or amost andyticd solution, with far less effort compared to

numerica solutions.

The solutions for semi-infinite dabs with thin plate heating source, the hollow
box heating source, a square prismatic heating source, thin cylindrica heating source and
infinite quadrant with sguare line heeting source are compared with numerica solutions

of finite dementsusng ANSY S 6.0.

The dx cases solved are those with Dirichlet boundary conditions (temperature
gpecified on boundary), this means, if Tg is the temperaiure of the boundary (assumed
constant), thenat x =0 P T = Tg. For the case of semi-infinite quadrant & x =0 b T =
T,y =0 b T= Tg. It should be noted that the method is equdly applicable if Tg is a

function of pogtion. Usng the method of superpostion, the temperature profile can be

expressed asfollows:

T(x,y,2) = Tg + T1(X,y,2) PP C- % §)

52



From equation (4.1) clearly can be seen tha T, mug stidy the following

differentid equation and the boundary condition:

With the boundary condition:

T1(0,),2) = 0 o e (4.2

T, can be solved using equation (3.19):

Tl(Xv Y Z) = @S(X’ Y, Z, X"ylv Z')Q(X'1 ylizl)d\/I

BRI e
S.

By subgtituting boundary condition (4.2), the second term in the equation above
vanishes (remember this is the contribution due to temperature on the boundary, which is

zero for this case). Therefore, the expression for the temperature profile becomes:

T(X,¥,2) =Tg + @@ (X, ¥,2, X, ¥y, 2)Q(X', Y, Z)dV' ..., (44)



Since G has been dready obtained for two-dimendgond semi-infinite space, three-
dimensond semi-infinite space and two-dimengond infinite quadrant (equations (3.31),
(335 and (3.39)), the only unknown is the heat generation per unit volume aong the
heat source (W/nt) Q(X',y’,z') which depends on its geometry, strength and the geometry
of the body. Then the problem of finding the temperature distribution has been reduced to

specifying the heat generation per unit volume and integrating it in equation (4.4).

Is very important to emphasize that equation (4.3) was derived with no condrains
on the geometry, therefore this expresson is vaid to solve temperature profiles for any
body of any shape with the only condraint that temperature must be known on the

boundary.



4.1. Semi-Infinite Slab (Two-dimensional cases)

4.1.1. Semi-Infinite Slab with a Thin Plate Heating Sour ce

A thin plate carrying current is embedded, as a heat-generating dement, in a
sami-infinite dabx >0, -¥ <y<¥ ,6 -¥ <z<¥, and congant therma conductivity k.
The plate can be assumed a an infinitesmdly thin heat source with large
depth/ (/ ® ¥) and width L; the heat generdtion per unit length per unit depth is
congtant and the boundary in x =0 is maintained at constant temperature Tz as shown in

figure4.1.(q)

Figure 4.1(a) Semi-Infinite Sab of congtant therma conductivity k with athin plate
heating source € ement.



Let:
Qr © Totd heat generation (W) =1 ./.L
| © Strength of the heat source per unit depth per unit length (W/nT).

Q(x,y) © Heat generation intensity per unit volume (W/nt)

Q(x,y) when integrated over the whole volume must be equa to the tota hest

generation inside the semi-infinite dab, i.e. @PQ(X,y).dv = Q,
\%

Figure 4.1(b) Semi-Infinite Sab of congtant therma conductivity k with athin plate
hesting source dement.
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For cartesian coordinates this condition becomes:

/
2 ¥¥

00R(X,y).dxdydz =Q; =1 .L(b- a)=I ./L PP (- %5
The heat generation Q(X,y) is then expressed of the following form:
Q(x,y) =1 ><d(y)>{H[x- a]- H[x- b]} (4.6)

The equation (4.6) saidfy to equation (4.5), where H(X) is the Heavisde function

that was explained in the equation (3.2) in the chapter 111.

Integrate the right hand side of expression (4.6) asindicated in equation (4.5)

>{H[x a] H[x- b]}.dx.dy.dz=| Gj ddeH[x a] H[x b]}

,
Nlc\
N'>O'
[ ~
N|‘\%_ N

Using the properties for Dirac-Deta and Heavisde function we get:

b
| 0 x.gpx =1 xx(b-a) =1 L
a

Equation (4.6) after integration becomes:



QIR(X,Y)dv=Q; =I x(xb- a) =| XL

Subgtitute equations (3.31) and (4.6) in equation (4.4):

!
| Z¥¥ i(x+x)?+y?fl
TXy)=T. + ACHALY')$H|x- a]- H[x- b]j.Inf ——————vdx'dy'dz’
0 =T 4 OO - e than e
2

Integration on z is easly performed, for x and y the properties for Dirac Ddta and
Heavisde functions mentioned in chapter 111 are applied obtaining:
| (e x ) +y?

|
T(x,y) =T, + AN § adax'
Ce9) = e o O Gy

In order to express results in nondimensond form, the following non

dimensiond quantities are defined:

T/ — T X1 . .
T(X,y) = (T ) Non-dimensiona temperature
B

— l.(b-a
I = (b-3) Non-dimensiona heat generation

KTg
7:%, y =% Non-dimensiond field point location
7':)(? Non-dimensona source point location
a= %, b :% Non-dimensiond distances
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Findly, subditute dl these quantities in the previous eguation and the following

relationship is obtained:

T(77)=1+%bnig+§;2:§22d7
¢ u
¢ G
¢ G
e u

I_§<7+§>-[In[<i+6>2+y] 2 ool ey 2o e

Ty =1+ e - Dnlx- 57+ 5] o] - D lnlw- 27457 2] ¢
e . N u
e gArctg ?;b: Arctg g ta Q+H u
¢ _eé 2 2 | u
§+2y'§ -bo ax-ao U 3
A éA 2 I A 0 p
g g rctgg 5 rctgg 3 ; H

Equation (4.8) is the temperature profile for a semi-infinite dab with condant
temperature on boundary hested by very thin plate carrying a current and embedded in
the dab. Thus a cosed form expresson for the temperature didribution has been

obtained.

Equation (4.8) can be eadly evauaed for example with Mathcad obtaining highly
accurate plots for the temperature profiles. In contrast with numericad solution, the
andyticd solution permits extensve paametric udies with  minima  computationa

time. Some of the reaults for different values of ?,3a,b, are presented in the figures 4.2 to

4.16.
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Figure 4.2. Dimensionless temperature ditribution, line plate heating source
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Figure 4.3. Dimensonless temperature distribution, line plate hesting source
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Figure 4.5. Dimeng onless temperature digtribution, line plate heating source
1 =5 a=025Db=0.5
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Figure 4.6. Dimensonless temperature distribution, line plate heating source
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Figure 4.7. Dimensonless temperature distribution, line plate heating source
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Figure 4.8. Dimens onless temperature ditribution, line plate heating source
1 =10, a=0, b=0.25.
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Fgure 4.9. Dimensonless temperature disiribution, line plate heating source

I =10, a=0, b=0.50
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Figure 4.10. Dimeng onless temperature distribution, line plate hesting source
1 =10, a=0, b=0.75
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Figure 4.11. Dimensonless temperature distribution, line plate hesting source

I =10, a=0, b=1.0
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Figure 4.12. Dimens onless temperature distribution, line plate heating source
1 =10, a=0.25,b=050.
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Figure 4.13. Dimeng onless temperature digtribution, line plate heeting source
1 =10, a=0.25b=0.75
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Figure 4.14. Dimensonless temperature distribution, line plate hesting source
I =10, a=0.25,b=10.
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Figure 4.15. Dimens onless temperature didtribution, line plate heating source
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Figure 4.16. Dimensonless temperature distribution, thin plate hesting source
I =10, a=0, b=1.0. Comparison with results from ANSYS.

Figures 4.2 to 4.4 show the non-dimendgond temperature profiles dong of axis

“X” a different valuesof “y” for | =5, a=0,and b=(1, 1.5y 20).

For a given y, the non-dimensond temperature obtans maximum vdue while

passing over the source and then falls off to 1 for large X.

Smilar behavior obtained for a given X with varying y. This result is expected
physcdly. Same is true for vaues nondimensond  digances  of
(a,b) =(0.25,0.5),(0.5,0.75),(0.75,1.0) , as shown in figures 4.5 to 4.7, where the same

behavior as the previous curves, displaced according to the new postions of the sources

of hest, is obsarved.
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Figures 4.8 to 4.15 show the case for a higher vdue of the non-dimensond
grength of the source(l =10), for different sizes and different locdizations of the source

of heat. Observe that the curves present the same behavior as the previous cases.

This problem has aso been solved by using the commercid computer software

package ANSYS and results were plotted for comparison and vdidation purposes with
the andyticd results obtained here for a source of dimensionless strength (I =10) and
a=0;b=1.0. The reault in the figure 4.16 shows excdlent agreement anong the curves.

It must be sad that, for this case, ANSYS presents problems to smulate the semi-infinite

dab, because the numbers of eements exceeds the capacity alowed by the verson of this

software used in the development of present work, ANSY S university version 6.0.
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Figure 4.17. Results from Solution Andyticd using TECPLOT 7.5. Dimensionless
temperature distribution, thin plate heating sourcel =10, a=0, b=1.0.
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Figure 4.18. Resultsfrom ANSY'S. Dimens onless temperature digtribution, thin plate
heating sourcel =10, a=0, b=1.0.

Figures 4.17 and 4.18 shows the same results in a contour plot. The two figures
agree very closdy.

Appendix [A] shows ANSYS dement and results. We conclude that the present
method provides, for this case, an andyticd solution and is superior to the numerica
solutions in degance and computationd effort. Further, for parameter studies or when
temperature is derived only a specific points or when it is required to caculate heat flux

at any point, the present solution isidedly suited compared to numerical solutions.

Studies were made to examine results of varying the raio plate length / length of
the “infinitg’ region. This is a measure of the fineness of the mesh sze. The reaults are
show in figures 4.19 and 4.20. When this ratio is less that 1/1000 the agreement between
numerical and exact results are not good. Above this vaue the nonconvergence shows
near to the source. Appendix [B] shows ANSYS results with different retio plate length /

length of the “infinite’ region.
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Figure 4.19. Dimendonless temperature distribution with different ratio plate length /
length of the “infinite’ region, line plate heating source. 1 =10, a=0, b=1.0.
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Figure 4.20. Dimens onless temperature distribution with different ratio plate length /
length of the “infinite” region, line plate heating source. 1 =10, a=0, b=10.
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4.1.2 Semi-Infinite Slab with a Hollow Box- Heating Sour ce

A thin current carrying wire bent in the form of a square forming a hollow box-
heating source is embedded, as a heat-generaing eement, in a semi-infinite two
dimengond dab x>0, -¥ <y<¥, - ¥ <z<¥ 6 and condant therma conductivity k.
The heating dement can be assumed as a hollow box heat source with wadls
infinitesmally thin; with large depth ¢ and dde L. The heat generation per unit length
adong the source per unit depth is congant and the boundary x =0 is mantaned a

constant temperature Tg as shown in figure 4.21 (a).

TOy)=Te _S

Figure 4.21 (a). Semi-infinite dab with a square hollow box- hesting source

71



Let:

Qr © Totd heat generation (W) = 4.1 :/:L

| © Strength of the heat source per unit depth per unit length (W/n¥)
Q(x,y) © Heat generation intensity per unit volume (W/nt).

Q(x,y) when integrated over the whole volume must be equa to the tota hest

generation inside the semi-infinite dab, i.e. @R (X, y).dx.dy.dz = Q;
\%

Figure 4.21 (b). Semi-infinite dab with a square hollow box-heating source
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For cartesian coordinates this condition becomes:

I
2 ¥¥

OOR(X,Y).dxdy.dz= Qr =1 .L(L +L+L+L) =41 LL cooiveieiiiiieeen. (49)
L-¥0
2

Smilaly to the previous case, an expresson was derived for the generation of
heat for unit of volume usng the same principle, but with the assumption that the hollow
box this formed by 4 plates infinitesmdly thin. They were cdculated in an independent

way adding the results, obtaining the following expression for the heat generation Q(X,y):

il d(y+L/2){H[x- a]- H[x- (L+a)}+ 0
1| s(x - (L +a))4H[y+L/2]- H[y - L/2]}+
Q(x,y) = (y L/2 >{H[x a] H[x (L+a)]}+ o
1| sd(x - a){H[y+L/2]- Hly- L/2]} '[)

The equation (4.10) saisfy to equation (4.9), Now integrate the right hand sde of

expression (4.10) asindicated in equation (4.9):

. ildy+L/2){H[x- a]- Hx- (L+a]} +
2\¥‘¥"| sd(x - (L+a)){H[y+L/2- Hy- |_/2] + B
00 sy - L12){Hlx- - Hx- L +a)+ § T
E 1| sd(x - a){H[y+L/2]- Hly- L/2} 'b

/
2

c;i( +L/2) ddeH[x - Hlx - (L+a)]}.dxH @lzcy(x (L +a) dx><dH[y+L/2] Hly- L/2}.dy+

Ni‘\g_ TN Ni\g: NS

01( L/2)dy><¥6H[x- a)- Hx- (L+a)]}.dx+ (x a)dx ><dH[y+L/2] Hly - L/2]}.dy

NS Q:l\.)l\ MBS
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Using the properties for Dirac-Delta and Heaviside function is obtained:

l x€><]-L+a +| xg)g- L/2 +| x€><lL+a +| xg)g-L/Z II X€>4_+| Xéﬂ_+u
X X
03' L,(fy Gj L(,):y HoxosL +1 XL g

Equation (4.9) after integration becomes:
@R(X,Y)=Q; =4l XX
\Y

Substitute equations (3.31) and (4.10) in equation (4.4):

idy . TPy +L/% U

:|:0(Y+L/2)’{H[X a- Hx- (L+a)}n el |

| )

L Ao ra{Hy+L/3- Hy- L focrLraf -y i

TOY) =Ta L O } b Lvaf+y-y)7p |
G 006 ydxdydz

.£'¥O_|. " _ X+X +(y L/Z)"J i

2 |C(y L/ %Hx- d- Hx- (L+a)]}|n o le)zé :

(X+a) +Hy- y)*fi i

' L/2]- Hy- L/Ah s Y- Y) i

O(X Hrbyeti2-r- i - aPry- v b

Integration on z is eadly peformed, then goplying again the properties for Dirac

Ddta and Heavisde functionsfor x and y, we get:

N N2 O
(x+x)+(y- L2 U, , 0

TR A (x+x)P+(y+L/2)20 i

I +1
VSR B SR D Y TR T TENEI
| PKIESY T cral ey vt (e (L)) (y - ) U i
AN N R T CES o S § CRNTEY) S VRO R Sl
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In order to express rexults in nondimendond form, the following non

dimengond quantities are defined:

T(X,y) = y Non-dimensiona temperature
B

— 1L
I = Non-dimensiona heat generation

KTy
X = % 7:% Non-dimensiond field point location
Y‘z%, V':% Non-dimensona source point location
a :% Norndimensond distances

Findly, subditute dl these quantities in the previous eguation and the following

relationship is obtained:

j1+33 = . o'\2 2 Y (o L o)\2 T _ 2 114] u

i b}ln:(i+i)2+(x+1/2)zu ln:’(f+f,)2+(z 1/2)2l,J.$,J R+

- Ciat 1(X-X)P+({F+1/2) 7 ( X)+(y-1/2)fé i
T(X,y)=1+— Ly
P T Ra) (- y)T0 | V(R A4 B) (7§ Ul

[ OIng > —ytini > S yydYy

faet 1(K-aP+(-7)p 1 &- @AV G- Vb b



||n[[(x+1+a) +(y+05) ][(x+1+a) +(y- 0.9 ]]

¢ i o
é._ i G
X+(1+3a -0
2( ( )):ZA tg —+2Art8ey 059 |y l{,l
a eX+l+ag X+1+ag b i
: Hn[[(x+a> rgro5][wra+5-097]- ]
- i
%+ 3). - y
g(x 5) i 2Arctggy 05 2Arctggy 0. 50 Y 3
& T EX+d g EX+d g a
g Ilnl[(x 1- @)? +(y+0.5) ][(X 1-3)% +(y- 05) ]]*“ 3
&x- 1- 3).{ &Y - 050 2y +059 y' u
B 2.Arct - 2.Arct i ’
¢ (=AY 1 x 13 b G
e .I.In[[(x-a) +(7+08) ][( X- ) +(y- 057 ;
&X- )i J- 05 0.5¢ y+ 4
& '-IIZ.Arctggal_- 9, 2Arctg{:aey a 0 y a
_ T (:9 a g e X-a Qj b u
X = —€ u
TEN=Lrg08 e o o) x4 8 ly- 09+ mlu 0
¢ i g5~ 05 + (R+ 1+ @R (7 05 + (R+B)7]4 : d
Y | .
é u
ay- O5),2Arctg§ tit ag 2.Ar taex a O ;',+ u
é Sg y- i a
& ! 3 : l,J
e I2Arctg -1-a9 2Arctg i u
S 55 v b G
g : g[y+05 )? + (X +1+73)2 ][(y+05)2+(7+§) ]U+IU 3 (4.11)
= neé u /
e i @[y+05 +(x 1- 3) J[(y+05) +(X-B)2g i i
€ i i .
é [} u
&7 +05)) 2.Arctgae( +1 : tg y
e i g i L:J
é T - - ) u
2 i 2 Arctgi 10-5ag ctgaex ad i 3
+
é I y 2 y+ b a

Equation 4.11 is the temperature profile for a semi-infinite dab with congant
temperature on boundary heated by a wire in the form of a square hollow box carrying a
curent and embedded in the dab. Thus an “andyticd solution” for the temperaiure

distribution has been obtained.

Equation 4.11 is agebraic expresson, which can be easly evauated. Some of the

results for different valuesof T and @ are presented in the figures 4.22 to 4.30.
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Figure 4.22. Dimensonless temperature distribution, hollow box-hesting source
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Figure 4.23. Dimensonless temperature distribution, hollow box- heating source

I =5 a=0.25
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Figure 4.24. Dimendgonless temperature distribution, hollow box- hesting source
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Figure 4.25. Dimens onless temperature distribution, hollow box-heating source
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Figure 4.27. Dimeng onless temperature distribution, hollow box-hesting source
I =5 a=2.
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Figure 4.29. Dimens onless temperature distribution, hollow box-hesting source
1 =10, a=0.
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axis for different vaues of "y" for 1 and a, with different locations of the source of hest.

We observe that the curves beginin T =1 for X =0, obtaining the maximum vaue when

passng over the source of heat generation. Then T dowly decreases to 1 for very high

T T T T
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Present Work (y = 1.0)
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Figure 4.30. Dimensonless temperature distribution, hollow box- heating source

I =10, a=0. Comparison with the results from ANSYS.

The obtained solution is an andyticd, even though long can be easily evaluated.

Figures 422 to 4.28 show the profiles of dimensonless temperature dong “x”

vauesof “X” and “y”.

The maximum vaue of the temperature is obtaned, when the lines cross

y =*L/2 over the source of heat generation.
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Findly the figure 4.29 shows the result for a congant vaue source dimensionless

drength of 1 =10 and a=0. The figure has the same behavior of the previous curves, but

these are displaced according to the location of the source of heat generation.

In the figure 4.30 the results obtained by our method is compared to numerica
solutions obtained from software ANSY'S specificdly for the case of | =10 and a=1, we
observe a very high agreement between both methods. The smal differences are due to
the difficulty of dmulaing in ANSYS the semi-infinite dab with a very smdl discrete
heat generation source; because the number of mesh dements required to get good
agreement with our analyticadl method exceeds the number of dements dlowed by the
verson 6.0 of ANSYS. Appendix [C] shows ANSYS eement and results. We conclude
that the present method provides, for this case, an andytica solution and is superior and
ampler to the numerica solutions in term of labor and cost. The method is even more

advantageous where parametric studies have to be performed.

Appendix [D] dso shows the results for a rectangular hollow box-hesting
element. The result show for indde the box the temperature digtribution shows two kinds

in contrast to one pesk for outside the box.
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4.1.3 Semi-Infinite Slab with a Square Prismatic Heating Sour ce

A body in the form of a square prismatic bar carrying current is embedded as a
heat-generding dement in a semi-infinite two dimensond dabx >0, -¥ <y<¥ ,
- ¥<z<¥, and condant therma conductivity k. The square prismatic bar heat source
has 9de L and infinite large depth/ ; the heat generation per unit area of plate per unit
depth | (W/nT) is constant. The boundary a& x =0 is maintained at constant temperature

Tg asshown in figure 4.31 (a).

TOY=Te _S \/7%%‘“”9
element
v .

Figure 4.31. (8) Semi-infinite dab with a square prismatic- heating source



Let:
Qr © Totd hesat generation (W) = | .£.L?
| © Strength of the heat source per unit area per unit depth (W/nt)
Q(x,y) © Heat generation per unit volume (W/nt)
Q(x,y) when integrated over the whole volume must be equa to the total hest

generation inside the semi-infinite dab, i.e. @PQ(X,y).dv = Q,
\%

y |

TOY)=Ts —S

Figure 4.31. (b). Semi-infinite dab with a square prismatic-heating source



From figure 4.31.(b) the totd heat generation Qr, insde the volume can be

expressed in Cartesian coordinates:

¢
2 ¥y

OOCR(X, Y)-0x.dy.dz = Q =1 £L% oot (4.12)
% ¥0

The heat generation Q(x,y) per unit volume is expresses of the following form:
Q(x,y) =I {H[x- a]- H[x- (L+a)}{Hly+L/2]- H[y- L/2}}....ccccce. (4.13)

The equation (4.13) satisfies to equation (4.12). Taking the right hand side term

and integrating over the semi-infinite dab.

Qi

a‘il {H[x- a- H[x- (L+a)}{Hly +L/2]- Hly- L/2}}.dxdydz =

'
Nl s

z.JH[y +L /2]- H]y - L/2]}.dy><BH[x- a]- H[x- (L +a)]}.dx

N,'\g:wl«u
QL™

Applying properties for Heavisde function and integrating obtained:
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L/2 L+a

| . Cpy. (pix =1 x/xL?

-L/2 a

Equation (4.12) after integration becomes.

@O, y).dv =Q; =1 xx?
\%

Subgtituting equations (3.31) and (4.13) in equation (4.4) the following expresson

IS obtained:

2 iHx-a]-  oiHy+L/2-a f(x+ ) +y- )2
Tooy)=T, +— | o dy'd
N =Te * 2okt 999|H[x (L+aliHly- L /2] ?Sn% Pyt

After gpplying properties of the Heaviside as before and smplifying, we get:

| T2 3 (e x)P e (y- v)20 il
TXY)=Tg+—1 O O”I( )2 b y.)z
4pkt .75 . T(X'X) +(y-Yy)

In order to express reults in nondimensond form, the following non

dimensond quantities are defined:



=, — _ T(X, Non-dimensond temperature
T(X, y) = M pex
TB

— 1L
| =— Non-dimensiona heat generation

KT,
Y=%, 7:% Non-dimensional field point location
Y':%, 7':% Nondimensona source point location
a :% Norndimensond distances

Findly, subditute al these quantities in the previous equaion and the following

relationship is obtained:

- I_ 11/\21+\§ I(X+X)2+(y_ Vl)ZU _ _P
T(X,y) =1+ —| Inj GO QYY) wvvveeerrrenrrennneennnnee, (4.14)
) B GRS N CRE DL
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Equation (4.15) is the temperature profile for a semi-infinite dab with congtant
temperature on boundary hested by a sgquare prismatic bar carrying a current and
embedded in the dab. Thus an “andyticd solution” for the temperaiure distribution has

been obtained.

Equation (4.15) can be easly evauated. Some of the results for different values of

| and @ are presented in the figures 4.32 to 4.41.
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Figure 4.32. Dimengionless temperature distribution, square prismatic-heating source
1 =5,3=0.
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Figure 4.34. Dimengionless temperature distribution, square prismatic-heating source
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Figure 4.36. Dimengonless temperature distribution, square prismatic- heating source
| =5, a=1.
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behavior is amilar to that observed in the cases of thin plate heating source and square
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Figure 4.41. Dimens onless temperature distribution, square prismatic- hegting

source. | =10, a=0. Comparison with results from ANSYS.

hollow box heating source.

obtained when the lines cross y=+L/2 and then fdl off to 1, dl the curves have the

same behavior as in the previous cases, They begin withT =1 for X =0, obtaning the

maximum vaue when passng over the source of hest generdion, then fdls dowly to

T =1 for high vauesof "x" and"y".

30

Figures 4.32 to 4.41 show the non-dimensond temperature profiles dong the "Xx"

and a. From these results it can be seen that the

For agiven X lying on the source of heat generdion, the maximum temperature is



Figures 4.32 to 4.38 show the profiles of non-dimensond temperaure dong the
axis "x", to different values of "y", for I =5 and to different location of the source of heat

generation. We observe that the maximum points of the curves are displaced according to

the location of the source of heat generation.

Figures 4.39 to 4.40 show the case for a higher vdue of the non-dimensond

drength of the source (1 =10) and different locations of source. It observed that curves

keep the same behavior that the previous curves.

Again for comparison purposes this case was resolved using ANSY'S (which uses
andyss of finite dement to solve the problems), the results for both the present work and
ANSYS are shown in the figure 4.41. The figure 4.41 shows the profiles of dimensonless
temperature for 1 =10and a=0. The andytica solution obtained here and the resuts of
ANSYS are plotted. It observed that the results agree very well. Appendix [E] shows
ANSYS dement and results. Once again the figure 4.41 validates the results obtained

with the method used in thiswork, which is much smpler and easier to evauate.
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4.1.4 Semi-Infinite Slab with a Thin Cylindrical - Heating Sour ce

A thin wire in the form of a thin cylindrica hesting source is embedded, as a hesdt-
gengating dement, in a semi-infinite two-dimendond dab x>0, -¥ <y<¥,
- ¥<z<¥, and congant therma conductivity k. The source can be assumed as a thin
cylindrical heat source with walls infinitesmally thin; with large depth ¢ and radius “&’;
the heat generation per unit length dong the source per unit depth is congtant and the

boundary in x =0 ismaintained at constant temperature Tg as shown in figure 4.42 (a).
Let:

Qr © Totd heat generation (W) = 2.pal ./

| © Strength of the heat source per unit depth per unit length (W/n¥)

Q(r,q) © Heat generation intensity per unit volume (W/nt) at position (r,q) .

Q(r,g) when integrated over the whole volume must be equa to the total heat

generdtion insde sami-infinite dab, i.e. @pQ(r.g).dv = Q;
\Y%

For cylindrical coordinates the tota hest generation of the heat sourceQ. can be

expressed asfollows:

0
2 2p¥

O0CR(r,a)rdrdgdz=Q; =2.pal £ ..., (4.16)

00
2



TOY)=Ts _S "

Figure 4.42. (b) Semi-infinite dab with athin cylindricd- heating source
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Figure 4.42. (c) Image for aunit heat source for athin cylindrical-heating source

The procedure to solve this problem is smilar to that followed for the previous
cases, usng the same equation of Green's function, developed for the previous cases. The
only difference is cylindrical coordinates are used to represent the expresson of the

generation of heet, asthey are more convenient.

According the geometry show in the figure 4.42. (c) the heat generation Q(X.y) is

expresses of the following fornt



Q(X,Y)=Q(r, @) =1 d(r-a) ceueeeiiiiie e e (4.27)

The equation (4.16) satisfy to equation (4.17), integrating over the volume of
semi-infinite dab obtained:

l
2 2p¥

VA
2 2p ¥
0OQQ d(r - @).rdrdadz =1 . cylz. cyla.¢y.d(r - &).dr
00 0 0
2

4 4
= L
Using the properties for Dirac-Deta function we get:

2p

| xxa.(ylg =2pal .0
0

Equation (4.17) after integration becomes:

@RA(r.q) = Q; =2p.al .

Substitute equations (3.31) and (4.17) in equation (4.4):

Using the figure 4.45. (C) one can get:
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(r)?=(r)? +()? - 2r'r.codq- q)

(r,)? =[r.snqg- r.sng]? +[2b+ r.cosq+r.cosq)?

Where: r'=a locdization of ring heat source

(£)?=r2+a2- 2ar.cos(0- ) .ccvrrerreeeieeiiiiieeeeee e e, (419)

(r,? =[r.snqg- asng]? +[2b+r.cosq+acosqf?....c.ccoeeeeveiiiiiiiiiiiii. (4.20)

Subdtituting the values of k, and k in the equation 4.18, equation 4.21 is obtained

as.
;2p¥ 2 2
T+l o e asndl srrcomracndy e, aon
4pk€ oo T r’+a’- 2ar.cos (g- ) b
2
Applying again properties for Dirac Deta function and after integrating dong of
z-axis, obtaining:

Txy) =T, + |.a 8 i[r.dnqg- asng]® +[20+r. cosq+acosq]
4apk & 7 r2+a?- 2ar.cos (q- q)

o |
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In order to express rexults in nondimendond form, the following non

dimensond quantities are defined:

=, T(r, Norndimensiona temperature
T(r.q) = 1.9 per
B
—_ 2l a
I = T P Non-dimensiona heat generation
B

=L Non-dimensond radius

a
E:E Nondimensona source point location

a

Fndly, subditute dl these quantities in the previous equation and the following
relationship is obtained:

- =, I ? 1[2b+T.cosq+cos r.sng- snqgl° 0,
T(XY)=T(F,0) =1+ zd | 1+qr _Z?los[(q qq) a’ )tgdq .............. (4.23)

Equation (4.23) is the temperature profile for a semi-infinite dab with congant
temperature on boundary heated by a wire in the form of a thin cirde carying a current
and embedded in the dab. Thus an "dmogt andyticd" solution” for the temperature
digtribution has been obtained. Using the software Mathcad this solution in the form of an
integra can be easily evaluated. Some of the results for different values of 1,y b are

presented in the figures 4.43 to 4.50.
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Figure 4.50. Dimens onless temperature digtribution, thin cylindrical-hesting source
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Figures 4.43 a 4.50 show the non-dimensond temperature profiles dong radiad

lines for various angles g and b. The non-dimensiond temperature increases dong any

radid line increeses from the origin to a maximum vaue when the radid line cuts the

source and then drops off monotonicaly to T =1 at large distances.

The highest vadue of the temperature is obtained a point where radid line cuts the
source of heat with the angle q=0°. Figures 4.43 to 4.47 shown result for T =5 and
different values of b. This result is as expected physicaly. Same is case for a higher

vdue of the non-dimensiona strength of the source T =10, b=1 and b = 2. The results
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are plotted in the Figures 4.48 to 4.49.(b). Smilar behavior as that of the previous curves

are observed.

Figure 4.49.(b) shows the behavior of temperature profile near the boundary x =

0, dong radid lines for various angles ¢, between 90° and 180°. The non-dimensond

temperature decreasesto T =1.

For comparison and validation purposes the “amogt andytica solution” obtained

from Green's function equation is compared with a numericd solution usng ANSYS and

the results agree closdy as shown in figure4.50 for T =10 and b = 2.

To obtain good precisons computation usng ANSYS needed a very fine mesh
gze with high memory and time requirements. Appendix [F] shows ANSYS dement and

results. Again our method is amost anaytical and superior for parametric studies.
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4.2. Semi-Infinite Slab (Three-dimensional case)

4.2.1 Semi-Infinite Slab with a Finite Line Heating Sour ce

A current carying wire of finite length L (L =2b) is embedded as a heat-
generaing dement. In a sami-infinite three-dimensond dab x>0, -¥ <y<¥ |
- ¥ <z<¥, and congant therma conductivity k. The finite line can be assumed as a
finite line heat source with finite length L; the heat generation per unit length is congtant
and the boundary in X =0 is maintained & congant temperature Tg as shown in figure

451 (a).

Figure 4.51. (@) Semi-infinite dab with afinite line-heating source
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Let:

Qr © Totd heat generation (W) =1 .L

| ° Strength of the heat source per unit length of source (W/m)
Q(x,y,2) © Heat generation intensity per unit volume (W/nt)

Q(x,y,z2) when integrated over the whole volume must be equa to the tota hest

generation inside the semi-infinite dab, i.e. RQ(X,Y,z).dv = Q;
\%

T(O’y) :TB

Figure 4.51. (b) Semi-infinite dab with afinite line-hesting source

109



110

For cartesian coordinates this condition becomes:

14
2 ¥¥
00X, Y, 2)dxdy.dz =Q; =1.L .coooiiiiiiiiiiii (4.24)

L¥0
2

The hegt generation Q(X,y) is expresses of the following form:

Q(x,Y,2) =l d(x - a).d(y){H[z+b]- H[z- b} e (4.25)

The equation (4.25) saidfy to equation (4.24), Now integrate the right hand sde

of expression (4.25) asindicated in equation (4.24)

b=—

ood) d(x - a).dy){H[z+Db]- H[z- b}}.dxdy.dz = | ¢ dz ¢y(y).dy xH(x - a).dx

2

Using the properties for Dirac-Delta and Heavisde function is obtained:

b:L
2

| (fiz.11=1 L

b= L
2

Equation (4.24) after integration becomes:



@Q(X,y,Z) = QT =L

\Y
Substitute equations (3.35) and (4.25) in equation (4.4):

}{d(x - a)d(y){H[z+ b] - H[z- bJ}}. -.-

L é 1 Uy

IR L.

Ty )= Ta 4o 000 &/(x- X)7+(y-y)? +(z- 2)° (yax'dy'dz
k Lxol @ 1 a
2 Té ¥)
felx+x)?+(y-y)? +(z-2)* §,

Integration on z is eadly performed, for x and y the properties for Dirac Ddlta and

Heavisde functions obtaining the following:

1

i é u u
I, é aod

| g heVx-x)2H(y-y) H(z-2)° g i
T(X'y’z)zTB+4pk:l ~E 1 EHZ%/
{ ORI R b

In order to express results in nondimendond form, the following non

dimengond quantities are defined:

m



=, —_ T(X, ' :
T(X,y)= (T ) Non-dimensiona temperature
B

—__—
I = Non-dimensiona heat generation

KT
o X __Yy __z , . : : :
X_f'y_f' Z_f Nondimensond fidd point location
X Yy .7 . . . .
X =T y —r,z =T Nondimensiona source point location
5:% Norndimensond distance

Findly, subditute dl these quantities in the previous equaion and the following

relationship is obtained:

|
=
el
<l

Jx- 3+ +(Z- 7).

g+ 09+ @ vy Grosy 3!

I & 2 2 2 1
Z):1+L|n:[g(z-0.5)+\/(x a)2+y?+(z- 05) EJ{/ . (4.26)

4p ::: 8(2—0.5)+\/(x+a) +y2+(z- 05)25:

e 2 2l

T8(2+0'5)+\/(X+a) +y +(Z+05) Eb
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Where: X'=73, y'=0 locates the finite line-heating source

Equation (4.26) is the temperature profile for a semi-infinite dab with congtant
temperature on boundary heated by a wire in the form of a finite line carrying a current
and embedded in the dab. Thus an “anaytical solution” for the temperature distribution

has been obtained.

Equation (4.26) can be easly evauated. Some of the results for different values of

|, and a are presented in the figures 4.52. (@) to 4.59.
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Figure 4.52. (a) Dimensonless temperature digtribution, finite line- heating source
I =5 a=05, z=0.
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Figure 4.52. (b) Dimengonless temperature distribution, finite line-heating source
| =5 a=05,2=0.
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Figure 4.53. (8) Dimens onless temperature digtribution, finite line-heating source
I =5, a=05,2=20.4.
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Figure 4.54. (a). Dimensionless temperature distribution, finite line-hegting source
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Figure 4.54. (b). Dimens onless temperature ditribution, finite line-heeting source

| =5, a=05,z2=+0.5

0 0.5 10 15 20 25 3.0 35

Non-dimensional distance X

y 001 0.25 050 ——— 075 10 1000

Figure 4.55. (a) Dimens onless temperature didribution, finite line- heating source
I =5 a=05,2=+055.
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Figure 4.55. (b). Dimens onless temperature ditribution, finite line-heating source
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Figure 4.56. (@) Dimensionless temperature digtribution, finite line-heating source
I =5, a=05, 2=+0.6
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Figure 4.56. (b) Dimensonless temperature distribution, finite line-heating source

| =5, a=05 2=+0.6

05 1.0 15
Non-dimensional distance X

20

25

3.0

35

y 0.01 0.25

0.50

—==075

10

1000

Figure 4.57. (8) Dimendonless temperature digtribution, finite line-hesting source

| =5 a=0572z=+038.
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Figure 4.57. (b) Dimensonless temperature distribution, finite line-heating source
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Fgure 4.58. Dimens onless temperature digtribution, finite line- heating source
I =5 a=22=0.
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Figure 4.59. Dimensionless temperature digtribution, finite line-heating source
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The obtained solution is an andytical expresson that can be easly evaluated.

Figures 4.52.(a) to 459 show the profiles of dimensonless temperature aong
"x"axis for different values of "y" and "Z", with different vaues of | and a. The figures
are in two dimensons, maintaining constant z. We observe tha the curves begin in T =1
for X =0, obtaning the maximum vaue when cross very close by the source of heat

generation, then dowly decreaseto T =1 for very high vaues of “X” and “y”.

For a given y, the maximum temperature is obtained when X =3 on the source.

Figures 452. (@ to 4.57. (b) shown the cases for the congtant value of the non
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dimensona drength of the source | =5, a=0.5, a different vaues of z. The same

behavior of the previous curvesis observed, but the pegksfal to T =1 when z>0.

Fndly the figures 4.58 to 4.59 shown the cases for the non-dimensond strength
of the source | =5, b=0.5, but different vaues a=1 and a=2, mantaining congtant the
vaue of Z=0. The figures have the same behavior of the previous curves. But these are

displaced according to the location of the source of heat generation.

Thus we have a dosad form andytical solution for temperature didribution in this
cae, which is easy to evduae This problem was not solved numericdly by using
ANSYS because the problem is fully three-dimensond and is extremdy difficult to solve

by ANSYS.



4.3. Infinite Quadrant
4.3.1 Infinite Quadrant with a Square Line Heating Sour ce

A thin wire in the form of sguare line-heating source is embedded, as a heat-
generating dement in an infinite two-dimensond quadrant x >0, y>0, - ¥<z<¥,
and condant therma conductivity k. The square line can be assumed as a square line
source with wals infinitesmdly thin, sde L and large depth 7 ; the heat generation per
unit length per unit depth is congtant and the boundary in x =0 and y =0 is mantaned

at congtant temperature Tg as shown in figure 4.60. (a)

Let:

Qr © Totd heat generation (W) = 4.1 /L
| © Strength of the heat source per unit depth per unit length (W/n)

Q(x,y) © Heat generation per unit volume (W/nt)

TOy)=Te —>

Figure 4.60. (a) Infinite quadrant with a square line-hegting source



Figure 4.60. (b) Infinite quadrant with a square line heating source

Q(x,y) when integrated over the whole volume must be equa to the total hesat

generation ingde the hollow box, i.e. @Q(x,y)-dv = Q¢
\%

For cartesan coordinates this condition becomes:

‘
2% ¥

OOCR(X,y)dxdy.dz =Q; =1 L[L+L+L+L] =4l LL .o, (4.27)
The heet generation Q(X,y) is expresses of the following form:
il >d(y- b)>{H[x- a]- H[x- (L +a)]}+ U
I I
_yldx- (L+a)o{Hly- b]- Hly- L +b)}+
Q(X, y) = :| >d(y- (L + b))>{H[X i a] i H[X i (L +a)]} +>|/ ..................... (4.28)
fI sd(x - a){H[y- b]- Hly- (L +b)} b



The equation (4.28) satidfy to equation (4.27), Now integrate the right hand sde

of expression (4.28) asindicated in equation (4.27)

. ibdly- b){H[x- a]- Hx- L +af+ @

2¥ ¥4 >d(x- (L+a){Hy- b]- Hy- (L+b)}+ ey =
(v- L+ D) - - Hx- e+ ™Y
(x- a){Hly- b]- Hy- (L +b)]} b

z.z‘ji(y- b).dyxZ‘iH[x- al- H[x- (L +a)] .dx +
z.05i(x - (L +a))dx XE‘jH[y- b]- H[y- (L +b)}dy+
z.o5(y - (L+ b)).dyxE‘jH[x - a- H[x- (L +a)].dx +
(x- a)dx xg‘fH[y- b]- Hy - (L +b)]} dy

Using the properties for Dirac-Deta and Heavisde function is obtained:

I x€>qL+‘a +I><€><1L+‘b +I><€><_LL+‘a +| ><€><1L+‘b ot rlet
. (OPX . . (PX . =i \/
ol o ol OY=H ot 1 e

Equation (4.27) after integration becomes:

QO Y) =Qr =1 xofL+L+L+L]=41 /L

\Y
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Subgtitute equations (3.39) and (4.28) in equation (4.4):

oy b{Hc-o]- Hx- L-al) ‘

N—

i |I”I|

1 oc )7+ +0?Jocrx) +y- b7

PP+ 0 lxex P ey +befh :

]dx L- a){Hy+L+b]- Hy- L- b].

L

e L eyl Lo vty v

ol M - vy xeLrar Hyry Y |

T(6Y) =T, +——— OY)

mo,dy L- b){H[x- a- Hx- L- al}.

X)’ +(y+L+D)°Jx+x)° +(y- L- b) ]u ﬁ

Pl(x-

:'. Inj

yd 'dy dz

-

K +y- Lo b xex) +(y rL+D2]p |

: dx- a){Hy+L+b]- Hy- L- b}. :

I |I”I|

bl eyt ey

Dl af - wrllocar s oyl )

Integration on z is eadly performed, for x and y the properties for Dirac Ddta and

Heavisde functions obtaining the following expression:

X
1

+y +0)? o+ P+ (- by,

X
1

X
1

sy +L+ b xPr(y- L-bpfit

X
1

)i

XF+(y- b7 [+ x P+ (y+b) [}
)i
)

X +(y - L- b)?][(x +x +(y+ L +b)? [pt

x

X
1

-a)+w+y)H&+a)+w y)]

L-a)2+<y+y') x+L+a)t +(y- y)?u @
) +(y- v L af +y ey i

x

— o ——alr——
X
1

~af +(y- v [[(x+a) +(y 2]

In order to express results in nondimensond form the following non

dimensond quantities are defined:
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T(X,y) = Tx.y) Non-dimensiona temperature

TB
— |IL
I = Non-dimensiona heat generation
KTy
X = % V= % Non-dimensional field point location
X' = % y =% Nordimensiona source point location
a= %, b :% Non-dimensiond distances

Findly, subditute al these quantities in the previous equaion and the following

relationship is obtained:

DR gy c@ el Re x4 By fo, o @
= | a —i\2 — T\ 2 A —1\2 — W\ 2 y I I
A GRS IECEDE (SR DRIVADE S
e K s b ke eP g B

SRR S il (CEES IR CRERY (GRS U EION S

’ - — ] - apr N

N S T EICA AN (SERLIRIVEN N TN f

-:-“S-l; x-1-af+ - v ke v af v v+ 707 fp ;dy-:-

. | T ) IS | PR IS .

. o b (x-a)+y+y) [ +a) + (- y)2]u T

i1 orlx- -y lleeay + ey’ b b



'.l i(_+a ) +G+b) ][(x+a) +H(y+1+D) ] +2Arctaez+§g i
x+§)_:' glx+a )> +(y- b) H(_+a) +(y-1- b) Jg X ﬂ;_/+
:2Arct£§]_—+2Arct%— 2Arc t%T_ :p
' [(x+1+a) +(y- b) ”(_+1+a) +(y-1- b)] ®y- b 9
Y+1+_)':'I @lx+1+a +(‘+b) H(‘+1+§) +(y+1+b) Jg+2ArCt%mE.

®&y+b 0 &y +1+bo

2Arct +2Arct - 2.Arct
X+1 +ag §x+ ag §x+1+aﬂ

'Inix a +(_+b) ”(— —)2+(_+1+b) ] 2 Arct + ';'_,
8- a)? +(5-D) 2]l 9°+G-1-B) ?|g X-a 5

2Arct%——+ 2Arct%— - 2Arct%—

].Inj(x 13 +(3- B2x- 1- 32 +(3-1- 5?0 0 o Are T 1Y ¢

dx-1- a) +<7+b) ?[|&-1- 37+ (y+1+D) Jg S 1ag

1w

X : l_) O y+
T |
T Arct —+2Arct —>- 2.Arct = i
i -1 ag § -ag % -1- a,3 b
R Rl il TR
né rct T
T(X,y) =1+— e —— ) a I
gy+n] o w13 “[r+b) +(x- 3]0 § %51,
| |
oA 20 o Arc 22 Harat !
AT y+bs fw b
b raloe @l o
ilng — u+2Arct — Bi_I
go1eby] Gy+1f + @e1+3?Y g 41452+ 4320 715, e
T |
YT LAk AP YN D B APYNON L !
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I ég— U
i gg(y ) +(X+ 1+‘)2U[(_ b)?2 +(X+3)? ] o 1. 50 0
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5-5) o Bf +&-1-9°Y5- B+ - 7 51,
T 1
:2Arct%;—+2A t%w - 2Arc t%— :
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Equation (4.29) is the temperaiure profile for an infinite quadrant with congtant
temperature on boundary heated by a wire in the form of a thin line square, carrying a
current and embedded in the dab. Thus an exact solution for the temperature distribution

has been obtained.

Equation (4.29), even though is long, can be easily evaluated. Some of the results

for different vluesof 1, a and b are presented in the figures 4.61 to 4.71.
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20

15

Non-dimensional Temperature |

10

|
5
Non-dimensional distance X

y 10 125 150 ——— 175 20 1000

Figure 4.61. Dimensionless temperature distribution, square line-heating source
1 =5 a=0,b=0.
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Non-dimensional Temperature
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35

3.0

25

20

15

10

4.0

35

3.0

25

20

15

10

1 2 3 4 5 6 7 8
Non-dimensional distance X
y 10 125 150 ——— 175 20 1000
Figure 4.62. Dimengonless temperature distribution, square line-hesating source
I =5 a=025 b=0.
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Figure 4.63. Dimengonless temperature distribution, square line- hegting source
I =5 a=05 b=0.
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Figure 4.64. Dimens onless temperature digtribution, square line- heating source
I =5 a=0.75 b=0.
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Figure 4.65. Dimens onless temperature distribution, square line- heating source
1 =5 a=1b=0.
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Figure 4.66. Dimensonless temperature distribution, square line- heating source

| =5, a=2 b=0.

3 4 5

Non-dimensional distance X

y

10

125

150 === 175

20

1000

Figure 4.67. Dimens onless temperature distribution, square line-heating source

| =5 a=3,b=0.
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Non-dimensional Temperature T

Non-dimensional Temperature T
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Figure 4.68. Dimens onless temperature ditribution, square line-heating source
| =5 a=1 b=1.
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Figure 4.69. Dimeng onless temperature distribution, square line- heating source
I =5 a=2 b=1.
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Non-dimensional Temperature T
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Figure 4.70. Dimens onless temperature distribution, square line-heating source
I =10, a=1 b=1.

ANSYS (y =2.0)

Present Work (y =2.0)

ANSYS (y =2.25)
Present Work (y =2.25)
ANSYS (y =2.50)

Present Work (y =2.50)
ANSYS (y =2.75)

Present Work (y =2.75)

ANSY S (y =1000) and Present Work (y =1000)

e i e e S e ]

0 2 4 6 8
Non-dimensi

10 12 14 16 18 20
onal distance X

Figure 4.71. Dimengonless temperature distribution, square line-heating source
I =10, a=1, b=1. Comparison whit results from ANSYS.
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For this case the solution is in -the form of an exact dgebraic expresson Which

can be eadly evaluated for the temperature profiles.

Figures 4.61 to 4.69 show the cases for the congtant value of the non-dimensond
strength of the source (I =5), for diffeent a and b. The hedting generating dements are
moved to different locations. The same behavior of the previous curves is observed, but

the pesks are digplaced according to the source location.

Figures 4.70 shows the non-dimensond temperature profiles for the particular
case with 1 =10, with a=1 and b=1. The behavior is Smilar to previous case, the

temperatureismaximumwhen X or y = congtant line cuts through the source.

Thus, once again we get a closed-form eegant solution. Figure 4.71 compares the
results obtained with the anaytic solution and the result from ANSY'S, both results agree
closdly. Appendix [G] shows ANSYS dement and results. While the present method
needs a “dmple caculator” ANSYS required tremendous computationa effort and time

which gets multiplied by factors if we have to make parametric sudies.
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V. CONCLUSIONS

The temperature didribution in semi-infinite dabs and infinite quadrants with
various form of discrete heat generation source has been cdculated, usng Green's
function techniques. The Green's function itsdf was cdculated usng the method of
images. Six cases of heat generation were consdered. For the cases consdered here, we
get an exact solution or an dAmost andyticd solution in the form of a smple integrd.
These solutions are eegant, easy to evduate and highly suitable for parametric studies
and for accurate heat flux caculaions. In al cases the solution by present method has

been shown to be superior to numerica solution in terms of computational requirements.

We condgdered two and three-dimensond geometries with Dirichlet boundary
conditions (temperature specified on boundary). It should be noted that the method of
images when gpplied to more complex geometries would result in difficulties smilar that

encountered in other methods.

Classcd solutions by separation of variables method (or any other method
involving orthogond egenfunction expandons), resuts are usudly in terms of infinite
series. Infinite series solutions are sendtive to the number of terms of the series and
sometime have convergence problems. Numericd solutions when used with discrete heat
sources can produce inaccuracies near source region epecidly for caculating heat flux.

For discrete sources the method of separation of variablesfalls.
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The commercid computer software package ANSYS (universty verson 6.0.
which uses Finite Element Andyss to solve the problems) is a very important tool to
solve problems of conduction heet transfer with complex geometry for the discrete heet
generaion sources. The andyticd or dmogt andytica solutions obtained here have been

compared with the numerical solutions obtained by ANSY S.

For the case of semi-infinite dab with finite line heating source, it was not
possble to obtan a numericd solution by ANSYS, because of the fully three
dimensondity of the problem. The present method yidds and edegant dgebrac

expression.

The inddlation d the complete verson of software is necessary and to make tests

with the purpose of determining if this solves the problems.

In contrast, the method used in the present work proved to be a good dternative to
solve heat conduction problems with discrete heat generation sources, the solution is an
eegant andyticd expresson yidding agebrac expresson in dl cases, except for the
cae of thin cylindrica hesting source where it is in the form of an integra which can be
eadly evduated. These methods are extremdy convenient for parametric studies and heet
flux cdculations. Ancther advantage in complex solutions can be obtaned as

superposition of Smpler solutions.
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The limitation of the method is it is gpplicable to semi-infinite regions, thin and
infinitely long cylinders and spheres. For other geometries the image system will become

very complex.

The solutions obtained with the method of images are agpplicable to smilar
problems (with the same boundary conditions) in other areas of the science and

engineering such as dectrodynamics, fluids mechanics, agticity and potentid theory.

Future work could be directed on problems with varigble therma conductivity Kk,
in bodies such as cylinders, spheres as wel as semi-infinite dabs and infinite quadrarts.

Studies should dso include the effect of temperature varying aong the boundaries.

137



BIBLIOGRAPHY

10.

11.

Baton Gytgy 1989, Elements of Green's Functions and Propagation, Oxford
University Press, New York USA, pg 7-69.

Beck JV. 1984. Green's Function Solution for Transent Hest Conduction
Problems. International Journal of Hest and Mass Transfer. Vol 27, pg 1235
1244,

Beck JV. 1986. Green's Functions and Numbering System for Transent Heat
Conduction. AIAA Journa. Vol 24, pg 327-333.

Beck JV., Cole K.D., Hgi A. and Litkouhi B. 1992. Heat Conduction Using
Green’ s Functions. Hemisphere Publishing Corporation, New York, USA.

Berger John R. 2001 Green's Functions and Applications for Steady-State Heat
Trander in Functiondly Graded Materids Nationd Inditute of Standards and
Technology Boulder Colorado USA.

Bradley G.L. and Smith K.J. 1999. Cdculus Second Edition. Prentice Hdl
Internationa, London, United Kingdom, pg 1011-1017.

Cadaw H.S. and Jaeger JC. 1959. Conduction of Heat in Solids. Oxford
University Press, London, England, pg 353-386.

Carir GF. and Pearson C.E. 1976. Partia Differentid Equations-Theory and
Technique. Academic Press Editors, New York, USA, pg 139-158.

Chang Y.P. and Tsou R.C. 1977. Heat Conduction in an Anisotropic Medium
Homogeneous in Cylindricad Regions-Unsteady State. Journal of Heat Transfer,
Transactions ASME. Vol 99, Ser. C, pg 41-46.

Cole Kevin D. 2001 Steady Heat Conduction in Cartesian coordinates and a
Library of Green's Functions, 35" Nationd Heat Transfer Conference, Anaheim,
CdiforniaUSA, June 10-12-2001

Courant R. and Hilbert D. 1953. Methods of Mathematicd Physcs. Vol |,
Interscience Publishers, Inc. New York USA, pg 351-387.

138



12.

13.

14.

15.

16.

17.

18.

19.

20.

21,

22.

23.

24,

Erich Zauderer 1983, Patid Differentid Equations of Applied Mathematics, Jon
Whyle & Sons, Inc., New York USA, pg 353-449.

Ghandour E. 1974. Initid Vdue Problem for Boundary Vdues of a Green's
Function. Journd of Applied Mathemeatics. Vol. 27, pg 649-654.

Greenberg M.D. 1971. Application of Green's Functions in Science and
Engineering. Prentice-Hall Inc. Editors, New Jersey, USA.

Haji-Sheikh and Beck JV. 1994. Green's Function Solution for Therma Wave
Equation in Finite Bodies. Internationd Journal of Heaet and Mass Trandfer. Vol
37, pg 2615-2626.

Hayek S. 1. 2001. Advanced Mahematicd Methods in Science and Engineering.
Marcel Deckker, Inc. New Y ork, USA, pg 453 — 536.

Jackson JD. 1999. Classcd Electrodynamics. John Wiley & Sons, Inc. New
York, USA.

James M. Hill & Jeffrey N. Dewynne 1987. Heat Conduction, Blackwell
Scientific Publications, Oxford, USA, pg 64-153.

Lary C. Andrews 1986, Elementary Patid Differentid Equetions with Boundary
Vaue Problems, Academic Press, Inc., Orlando, Florida, USA, pg 77-109.

Mackie A. G. 1965 Boundary Vaue Problems, Oliver & Boyd Ltd, Edinburgh
Grest Britain, pg 158-203.

Morse PM. and Feshbach H. 1953. Methods of Theoreticad Physics. Vol |,
McGraw-Hill Book Company, Inc., New York USA, pg 791-895.

Ozisk M.N. 1993. “Heat Conduction”. John Wiley & Sons, Inc. New York, USA,
pg 214-251.

Perez Diaz Eduardo G. 2002 “Andysis of Conduction Heat Trandfer in two and
three dimensond geometries usng Green's function integrd Method” Thess
M.S. Universty of Puerto Rico — Mayagtiez, Campus

Publication in  Intenet  -Biographicd  Notes on  George  Green
http:/Aww.nottingham.ac.uk/~ppzwwwi/green/homepage.htm. Created: 21«
August 1997.

139



25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Pinky Mak A. 1991 Patid Differentid Equations and Boundary-Vdue
Problems with Applications, McGraw-Hill, Inc. New York USA, pg 343-377.

Roach G. F. 1970. Green's Functions Introductory Theory with Applications, The
New Universty Mathematics Series, Van Nosrand Reinhold Company, London,
Grest Britain, pg 213-256.

Sadri Hasani 1999. Mathematicadl Physcs A Modern Introduction to Its
Foundations, Springer-Verlag New York, Inc. New York, USA, pg 551 — 648.
Shenddeva M.L., Molloy JA., and Ljepojevic N.N. 2002. Modeling of interfacia
temperature effects due to an impulsve line heat source, American Inditute of
Physics Vol 80, Number, pg 1486-1488.

Stekgold Ivar 1979. Green's Functions and Boundary Vaue Problems, Jhon
Whyle & Sons, Inc., New York USA, pg 42-85.

Tewary V.K. 1996. Elagtic Green's Functions for Anisotropic Solids NIST
Speciad Publication SP 910, Boulder Colorado, USA.

Venkataraman N.S. and Oliveira C.E. 1988. Temperature Didribution in Satellite
Mounting Plates Due to Conductive Heat Trandfer. Acta Astronautica. Vol. 17, pg
1127-1135.

Venkataraman N.S. and Sepulveda D.G. 1991. Thermd Resdance in Satdlite
Mounting Plates Due to Conductive Hesat Transfer. Acta Adronautica. Vol 25, pg
757-764.

Venkataraman N.S, Pé&ez E. and Delgado |. 2003. Temperature Didtribution in
Spacecraft Mounting Plaies with Discrete Heat Generation  Sources Due
Conductive Heat Transfer.Accepted for publication in Acta Agtronautica Vol 1,
N° 10, May 2003.

Weast Robert. 1972. Handbook of Chemistry and Physics. The Chemica Rubber
Co. Ohio. USA.

140



141
APPENDICES

APPENDIX A

ANSYSRESULTS, LINE PLATE HEAT SOURCE

ANSYSRESULTSFORA LINE PLATE HEAT SOURCE T =10, a=0AND b=10

SMC =2.859
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APPENDIX B

ANSYS RESULTS WITH DIFFERENT RATIO PLATE LENGTH / LENGTH OF

THE “INFINITE” REGION, LINE PLATE HEAT SOURCE. | =10 AND a=0.

Ratio 1/400

Eaphice  FLEFILTEMP. 1.

Ratio 1/800

%

‘..4-!
ALY

]

%
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APPENDIX C

ANSYSRESULTS, HOLLOW BOX HEAT SOURCE (SQUARE)

ANSYSRESULTSFOR A HOLLOW BOX HEAT SOURCE | =10 AND a=0.

HoDAL SOLUTICH




APPENDIX D
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RESULTSFOR A RECTANGULAR HOLLOW BOX HEAT SOURCE

A thin current carrying plate bent in the form of a rectangle forming a rectangle

hollow box-heating source is embedded, as a heat-generating dement, in a semi-infinite

two dimensond dab x>0, -¥ <y<¥, ¥ <z<¥, and condant therma conductivity

k. The hegting dement can be assumed as a hollow box heat source with walls

infintesmally thin; with large depth ¢ and sde L. The heat generation per unit length

adong the source per unit depth is congant and the boundary x =0 is mantaned a

constant temperature Tg as shown in figure (8).

y A + 8
i
TOY)=Te —S
Heating
-~ L —= ¥ g  ©ement
pod—e
d f Vx
< a—» i
— b
! 5S
\/ -8V

Figure (8). Semi-infinite dab with arectangular hollow box- hesting source



Let:
Qr © Totd heat generation (W) =
| © Strength of the heat source per unit depth per unit length (W/n¥)

Q(x,y) © Hest generation intensity per unit volume (W/nt)

Q(x,y) when integrated over the whole volume must be equa to the total hest

generation inside the semi-infinite dab, i.e. PR (X, y).dx.dy.dz = Q;
\

Figure (b). Semi-infinite dab with a rectangular hollow box- hegting source
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For cartesian coordinates this condition becomes:

/
2 ¥¥

OOCR(X,y).dxdy.dz=Q; =1 .](b- &) +d+(b- &) +d]

Smilaly to the previous case, an expresson was derived for the generation of
heat for unit of volume usng the same principle, but with the assumption that the hollow
box this formed by 4 plates infinitesmdly thin. They were cdculated in an independent

way adding the results, obtaining the following expression for the heat generation Q(X,y):

|I >dEy+d§jH{x- a]]- H%x- b]ﬁJr'['J

1 osd(x - b){H[y +d]- H[y- d]} +}

Q) =1, - d)x{H[i_ . H[Z_ g o (B)
1' >d(x a){H[y+d|- Hly- d} p

The eguation (B) satisfy to equation (A), Now integrate the right hand sde of

expression (B) asindicated in equetion (A):

 dl )dEerd%jH{x- a]]- H[[x- b%w
2\¥\¥\JI w- bIx¥Hlv+dl- Hlv- i
/ ¥0| xd(y - d)>{H[3(/_ a- H[Z- b]} dedydz
2§ >d(x - a)>{H[y+d]- H[y- d]} b
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c‘ji(y+d ddeH[x al- Hx- b]}.dx+

0

01( dx>§dH[y+d] H[y d]} dy +

(‘;i ddeH[x al- Hx- b}.dx+ c‘ylx a).dxxBH[y+d]- Hly - df} dy

. .

N|Nq; ST mlxcaz'\’lc\
. | .

g mqf“"\

Using the properties for Dirac-Deta and Heavisde function is obtained:

VI U SR WO R b 8) +1 xod i
Oj Giy Oj OY =1} s up- a)+1 wxd v

-d

Equation (A) after integration becomes:.
ARGY) =Q; =1 X {(b- @) +d+(b- a) +d]=2l £]L +d]

Subdtitute equations (3.31) and (B) in equation (4.4):

i d(y+d){H[x - a] - H[x- b}.In

l———:———»

Td(x-b) {H[y +d]- Hly - d.In

‘
Z¥yl

] x-b)2+(y-y)i§
" apki 090
2

N—!

N N\

T(X,y)=Tg

(x-
(x+b)* +(y- y) ¥
(( Yo dy' oz

8

) +(y - 0l l
Fety- a7 )
-.-

X-a + - _n,(x+a) +(y- y)?H i
o byl - (- af +(y- )7 b

¥O

(y d)>{H[x - a] - H[x - bL.In

—-)-——:———



Integration on z is easly performed, then gpplying again the properties for Dirac

Detaand Heavisde functionsfor x and y, we get:

o T (x+x'P+(y+d)?i  i(x+x)+(y-d)2up, U

 In{ o+ In§ oy '+

T(,y) =T, +— R IR RIVER %(X'X')z”’(y'd)zf%m )
T T T Aok ey . - ) oY
PR T T (cra) +(y - y) UL T (D (y - y) UL
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In order to express results in nondimensond form the following non

dimensond quantities are defined:

=,_ . T(X, Non-dimensiond temperature
T(x, y) = M per
TB
r=lb-a_2d Non-dimensiona heat generation
KT, KT,
X = % y= % Norndimensona temperature location
X' = % y :% Non-dimensona source location

Non-dimendond disances

Findly, subgitute dl these quantities in the previous equation and the following

relationship is obtained:
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Equation (C) is the temperature profile for a semi-infinite dab with condant

temperaiure on boundary heated by a wire in the form of a rectangular hollow box



carying a current and embedded in the dab. Thus an “andyticd solution” for the

temperature distribution has been obtained.

Equation (C), is an agebraic expresson, which can be essly evaduated. Some of

the results for different valuesof T, @, b, and d are presented in the following figures
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Figure (c). Dimensionless temperature digtribution, rectangular hollow box-hesting

source. 1 =10, a=1 b=3,d=05
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APPENDIX E
ANSYSRESULTS, SQUARE PRISMATIC HEAT SOURCE

ANSYSRESULTS FOR A SQUARE PRISMATIC HEAT SOURCE | =10 AND

a=0.

SUANSYS Braphece PLENSDLTEMP_1.

1
NODAL SOLUTICN

1
i
|
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APPENDIX F

ANSYSRESULTS, THIN CYLINDRICAL HEAT SOURCE

ANSYSRESULTSFOR A THIN CYLINDRICAL HEAT SOURCE T =10 AND
b=20.

SUANSYE Giaphees  PLMSOL TEMP, 1,

MNCORL SCLUTION
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APPENDIX G

ANSYSRESULTS, SQUARE LINE HEAT SOURCE

ANSYSRESULTSFOR A SQUARE LINE HEAT SOURCE T =10, a=1.0 AND
b=10.
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