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ABSTRACT 

 

The problem of steady state heat conduction in semi-infinite plates and infinite 

quadrants of constant thermal conductivity, with discrete heat generating sources and 

Dirichlet boundary conditions (temperature specified on the boundary) was solved using 

the method of Green’s functions using the integral techniques. The Green’s functions for 

the geometries were found by the method of images. These functions were then employed 

for the solution of five cases for semi-infinite slabs with heat generation sources of 

different geometry. These were: a thin plate heating source, a hollow box heating source, 

a square prismatic heating source, finite line heating source and a thin cylindrical heating 

source. For infinite quadrants a heat generation source of the form of a thin current 

carrying wire in the form a square was considered. The heat sources were idealized as 

internal thermal energy generation. Solutions found with this method always yield closed 

form algebraic expressions or analytical solutions or “almost analytical” solutions (in the 

form of an integral). Results found in this work were validated and compared with the 

numerical method of finite elements in Ansys 6.0. It was concluded that, for the cases 

considered here, the method used in the present work is elegant and is superior in terms 

of computational requirements. 
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RESUMEN 

 

 En el presente trabajo se resolvió el problema de conducción de calor en estado 

estable en placas semi-infinitas y cuadrantes infinitos de conductividad térmica constante, 

con fuentes discretas de generación de calor y condiciones de frontera tipo Dirichlet 

(temperatura especificada en la frontera), utilizando el método de las funciones de Green 

usando las técnicas integrales. Las funciones de Green para las geometrías fueron 

obtenidas mediante el método de imágenes. Estas funciones fueron luego empleadas para 

la solución de cinco casos para placas semi-infinitas con fuentes de generación de calor 

de diferente geometría. Estas fueron: una placa lineal, una caja hueca, un prisma de base 

cuadrada, una linea finita y un cilindro de parede delgadas. Para el caso de los cuadrantes 

infinitos se resolvió un caso con generación de calor cuya forma fue: un alambre fino 

colocado a lo largo del perímetro de un cuadrado. Las fuentes de generación de calor se 

idealizaron como generación interna de calor. Las soluciones obtenidas con este método 

siempre resultan expresiones algebraicas sencillas o soluciones “analíticas” y “cuasi-

analíticas” (en la forma de una integral). Los resultados obtenidos en el presente trabajo 

fueron comparados con el método numérico de elementos finitos, el software utilizado 

fue Ansys 6.0. Se concluyó que, para los casos considerados aquí, el método empleado en 

la presente investigación es superior en terminos de elegancia y tiempo computacional. 
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1 

  

I.  INTRODUCTION 

The method of Green’s functions is an important technique for solving boundary 

value and initial value problems. In engineering and applied sciences the steady state and 

transient heat conduction equation is one of this type of problems that is used to model 

and study physical phenomenon arising in the real world. It is not at all surprising that 

their solution has been the major concern of many engineers and scientists. 

The thermal control subsystem (TCS) is an integral part of every spacecraft. Its 

purpose is to maintain all the components of a spacecraft within their respective 

temperature limits. There are several different sources of thermal energy acting on a 

spacecraft; solar radiation, albedo, earth emitted infrared, and heat generated by on board 

equipment. Therefore, the thermal control subsystem is different for every spacecraft. In 

general, there are two types of TCS, passive and active. A passive system relies on 

conductive and radiative heat paths and special coatings and has no moving parts or 

electrical power input. An active system is used in addition to the passive system when 

passive system is not adequate, for example, on manned missions. Active systems rely on 

pumps, thermostats, and heaters, use moving parts, and require electrical power.  

Many factors influence the design and development of the thermal control system. 

Figure 1.1 illustrates several possible inputs and outputs, but each spacecraft TCS will 

have it's own unique set. Mission constraints, mission objectives, and the physical design 

of a spacecraft determine the inputs and outputs of the TCS interface. 
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Figura 1.1. TCS Interfase. 

There are different types of components for both active and passive systems, one 

active thermal control component is an electrical heater that is a device that is controlled 

by a thermostat and used to heat cold regions of the spacecraft. They generate heat by 

running electrical current through a resistor. 

Electrical heaters are used for fine temperature control, usually when the 

spacecraft is in the shadow of the earth. Often these electrical heaters are thin current 

carrying wires. When this occurs, the principal mechanism of heat transfer for thermal 

control subsystem in the spacecraft is conduction heat transfer. 
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In the preliminary thermal analysis, the spacecraft is divided into a large number 

of isothermal nodes. The analysis is done by specifying the thermal resistance between 

the nodes. Often the thermal resistance is guessed by intuition and experience. Attempts 

are being made to tabulate, thermal resistance in mounting plates with heat generation 

sources. For this knowledge of the temperature field is required. This work provides 

preliminary results for temperature distribution, which hopefully will help in evaluation 

of thermal resistance. Besides the problem of temperature determination due to 

conduction of heat in solids is a fundamental problem that has numerous applications in 

various branches of science and engineering. There is considerable interest in the solution 

of heat conduction problems with the ultimate objective of obtaining useful and practical 

information. 

A variety of methods, exact, approximate, and purely numerical, are available for 

the solution of these problems. In this work, it is proposed to investigate the conduction 

heat transfer problem with discrete heat generation sources, with temperature specified on 

boundaries in a semi-infinite slabs and infinite quadrants using the Green’s Functions 

Integral Method. 

About the physical significance of Green’s Function, it can be said Green’s 

function is a cause-effect two point function. )',( xxG vr
 is the effect at the field point xv  

due to a unit source applied at the source point 'x
v

. It is important to note that the 

principle of reciprocity holds for Green’s functions (i.e., source and field points can be 

interchanged). Green’s function can be applied to many fields of engineering and 
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sciences. The following figures illustrate these ideas with an example applied to 

elasticity. 

Elasticity: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is shown in the theory of elasticity that the reciprocity relation G (P, Q) = G (Q, P) is 

valid in this case. 

P 

Q 

Unit load 

Cantilever 
P = source point 

Q= field point 

Figure 1.2. (a) Deflection at Q due to unit load P applied to a cantilever. 
 

Q 

G(P,Q) 

G(Q,P) 

Green’s function G(Q,P) = deflection at P (“effect”) due to unit load at Q (“cause”) 

Figure 1.2. (b) Deflection at P due to unit load Q applied to a cantilever; 
 Principle of reciprocity. 

Green’s function G(P,Q) = deflection at Q (“effect”) due to unit load at P (“cause”) 

P 

Unit load 

• 

• 
Q = source point 

P = field point 
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The solution of simple cases with Green's Function can be used as building blocks 

for much more complex solutions. For heat conduction, the Green’s Function is 

proportional to the temperature caused by a concentrated energy source. The exact form 

of the Green’s Function depends on the differential equation, the body shape, and the 

type of boundary conditions present. Green's Functions are named in honor of English 

mathematician and physicist George Green (1793-1841) [22]., who in 1828 published an 

essay entitled “On the Application of Mathematical Analysis to the Theories of 

Electricity and Magnetism”. In this essay he derived the integral identities and used them 

to obtain integral representations for the solution of problems involving the Laplacian 

operator. 

The use of Green’s Functions is a very powerful technique for the analytical 

solution, numerical solution and mathematical analysis of heat conduction problems. The 

application of Green's Functions as a means of solving and analyzing initial and boundary 

value problems is not confined to the study of heat conduction but occurs in almost all 

branches of mathematical physics, and have been used for many decades for obtaining 

solutions in electromagnetic theory, elasticity, wave mechanics, fluid mechanics, etc. 

However, their uses in heat transfer have not been very common especially among 

engineers. Beck [2, 3 and 4] presents some exact solutions of linear transient heat 

conduction problems using Green’s functions evolved from eigenfunction expansions. 

Solutions involving eigenfunction expansions in terms of infinite series usually present 

convergence problems.  
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The Green’s functions integral method was selected because the solution is 

always in the form of an integral and can be viewed as a recasting of a boundary value 

problem into integral form. For some cases the integral can be evaluated to yield a closed 

form solution. The Green’s Functions method is useful if the Green’s Function is known, 

and if the integral expressions can be evaluated. If these two limitations can be overcome, 

the Green’s Functions method offers several advantages for the solution of linear heat 

conduction problems. Even when the integral has to be evaluated numerically this is 

generally more accurate than numerical methods solutions such as finite differences 

especially for discrete sources. The advantages of the Green’s Functions method are the 

following:  

1. The Green’s Functions method is flexible and powerful. The same Green’s 

Functions for a given geometry (including type of boundary conditions) can be 

used as a building block to the temperature resulting from: space-variable initial 

conditions; time- and space-variable boundary conditions; and, time- and space-

variable energy generation.  

2. The solution procedure is systematic. For a given geometry the Green’s Function 

for a particular type of boundary condition has to be determined only once. This 

then can be used for any type of source, and the solution for the temperature can 

be written immediately in the form of integrals. The systematic procedure saves 

time and reduces the possibility of error, which is particularly important for two- 

and three- dimensional geometries. For complicated problems in which the heat 



7 

  

conduction is caused by several non-homogeneous terms, and the effect of each 

term can be considered separately. 

3. The Green’s Functions method gives “almost analytical” solutions in the form of 

integrals for some specified geometries such as cylinders, sphere and infinite half 

spaces or quadrants. The solution takes the form of a sum (superposition) of 

several integrals, one for each non-homogeneous term in the problem. The 

analytical expressions for temperature can be evaluated with high accuracy; 

evaluated only where needed for great computer usage efficiency; differentiated 

to find heat flux or sensitivity coefficients; or, integrated to find average 

temperature. The integrals can always be evaluated numerically (quadratures) if 

they cannot be found in closed form. The computational labor involved is minimal 

when compared to purely numerical finite difference or finite element methods. In 

general this has much better accuracy than finite difference techniques especially 

with discrete sources. 

4. Two- and three-dimensional transient Green’s Functions can be found by simple 

multiplication of one-dimensional transient Green’s Function. This is true for the 

rectangular coordinate system for most boundary conditions (type 0-No physical 

boundary, type 1-Dirichlet, prescribed temperature on the boundary, type 2-

Neumann, prescribed heat flux and type 3-Robin, convective condition) and for 

certain cases involving cylindrical coordinates, but it does not work for the 

spherical coordinates system.  
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5. Alternative form of the solution can improve series convergence. For heat 

conduction in finite bodies, infinite series solutions for heat conduction problems 

driven by non-homogeneous boundary conditions sometimes exhibit slow 

convergence, requiring a very large number of terms to obtain accurate numerical 

values. For some of these problems an alternative formulation of the Green's 

Function Solution Equation reduces the number of required series terms. 

1.1 Objectives 
 

The purpose of this work is find the temperature distribution for some two, and 

three dimensional specific cases in rectangular coordinates of semi-infinite slabs and 

infinite quadrants with discrete heat generation sources and temperature specified on 

boundary (Dirichlet problem) using the Green’s Functions Integral Method. The specific 

steps involved are the following: 

1. Determine a general Green’s Function Solution Equation applicable to the 

solution of conduction heat transfer with Dirichlet boundary conditions of 

semi-infinite slabs and infinite quadrants. 

2.  Find Green’s Functions for the specific geometries semi infinite-slabs and 

infinite quadrants as shown in pages 9-10, using the method of images, the 

temperature is specified on the boundary. 
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3.  Apply the Green’s Function Solution Equation for the geometries 

considered with various types of heat generation source and determine the 

temperature profile. The emphasis will be a getting a closed form 

analytical solution or in the form of an integral (“almost analytical 

solution”), for the temperature profile. 

4. For a typical case compare the results obtained with a numerical technique 

(finite elements and/or finite differences) to illustrate the advantages of 

this method. 

 

Fig. 1.3(a) 
Semi-infinite slab with a  
Thin plate heating source 

(Two-dimensional problem) 

Fig. 1.3(b) 
Semi-infinite slab with a 

Hollow box heating source 
(Two-dimensional problem) 
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Fig. 1.3(c) 
Semi-infinite slab with a 

Square prismatic heating source 
(Two-dimensional problem) 

Fig. 1.3(e) 
Semi-infinite slab with a 
Finite line heating source 

(Three-dimensional problem) 

Fig. 1.3(d) 
Semi-infinite slab with a  

Thin cylindrical heating source 
(Two-dimensional problem) 

Heat  
generating  
elements 

Fig. 1.3(f) 
Infinite quadrant with a  

Square line heating source 
(Two-dimensional problem) 
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II.   PREVIOUS WORKS 

Boundary value problems associated with either ordinary or partial differential 

equations are almost inescapable these days in engineering and many of the applied 

sciences. The purpose of the mathematicians for decades was to provide an independent, 

systematic and analytical method to solve such problems. The method in question 

consists of determining the Green's function, which is associated with most boundary 

value problems. An integral equation representation of a boundary value problem is 

often much more amenable to numerical analysis than a differential equation with 

associated boundary conditions. This method is by no means a new concept, for such 

functions were first introduced by George Green as early as 1828, and have been used in 

electromagnetic theory, potential theory and elasticity. However in heat transfer 

applications the use of Green’s function has been more recent.  

Green’s function integral method applied to diffusion problems have been 

studied for decades. However just few works have been reported by researchers in the 

heat transfer area, the main reason being the unfamiliarity of many engineers with this 

technique. 

Morse and Feshbach [21] in “Methods of Theoretical Physics” describe the 

Green’s Function for the Wave Equation, solutions for a generalized inhomogeneous 

partial differential equation with boundary conditions applied to steady waves. Carslaw 

and Jaeger [6] in their book “Conduction of Heats in Solids” describe the known exact 

solutions of problems of heat flow, with detailed discussion of all the most important 
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boundary value problems. Jackson [17] in his book “Classical Electrodynamics” applied 

the Green’s Theorem to solve the Kirchhoff’s integral for diffraction problem and also 

for the wave equation using the concept of retarded potentials. 

Carrier and Pearson [8] “Partial Differential Equations – Theory and Technique” 

discusses the diffusion equation with Dirichlet boundary conditions using the Green’s 

function orthogonal expansions. Greenberg [12] in his book “Application of Green’s 

Functions in Science and Engineering” discuss some applications of the Green’s 

function to solve conduction heat transfer, acoustic, gravitational potential and 

vibrations problems.  

James and Jeffrey [18] in “Heat Conduction” applied Green’s Function to solve 

heat conduction equation in three dimensions obtaining an integral equation for 

temperature in terms of the initial and boundaries values of the temperature and heat 

flux. V.K. Tewary [30] in his paper “Elastic Green’s Functions for Anisotropic Solids” 

applied the Green’s function method for solution of the Christoffel equation for elastic 

equilibrium with prescribed boundary conditions. 

Beck et al. [4] in their book “Heat Conduction Using Green’s Function” obtained 

the Green’s Functions and temperature solutions to different boundary conditions for the 

transient heat conduction equation in Cartesian, cylindrical, and spherical coordinates. 

The solutions of the different cases are tabulated obtaining the solution of many transient 

heat conduction problems in a straightforward and efficient manner. This book contains 

three derivations of Green’s Function Solution Equations, the first for one-dimensional 

cases, the second for general multidimensional coordinates, and the third is an 
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alternative form which can aid in obtaining solutions having better convergence 

properties for some problems having nonhomogeneous boundary conditions. In addition 

the book discusses the use of these Green’s Function for the solution of heat conduction 

problems in Cartesian coordinates for one-, two-, and three-dimensional cases, in these 

cases the Green’s Functions have been obtained from the eigenfunction expansion. 

Others sections covers radial heat flow, two-and three-dimensional cases in cylindrical 

coordinates and some temperature solutions in radial spherical coordinates. This work 

also discusses the method of images for infinite plane walls and gives the solution in 

terms of power series. This hardly has any advantages over the classical method of 

separation of variables. 

Ozisik [22] “Heat Conduction” discusses the physical significance of Green’s 

Function and presents general expressions for the solution of inhomogeneous transient 

heat conduction problems with energy generation, inhomogeneous boundary conditions, 

and a given initial condition, in terms of Green’s condition, for one, two, and three 

dimensional problems of finite, semi-infinite, and finite regions with representatives 

examples in the rectangular, cylindrical, and spherical coordinate systems. In addition 

this book applied this technique to the solution of one-dimensional composite medium. 

The books and papers cited cover different applications of Green’s Functions. 

Historically the use of a Green’s Function to solve differential equations grew out of a 

study of a special partial differential equation and boundary condition called the 

Dirichlet problem. Later it was discovered that similar function could also be used in the 

analysis of ordinary differential equations featuring nonhomogeneities. Although some 
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of these functions were originally given different names for different problems, today we 

collectively refer to them all as “ Green’s Functions”. 

In the paper “Initial Value Problem for Boundary Values of the Green’s 

Functions” Edmond Ghandour [13] formulated the equations that govern boundary 

values of the Green’s functions. Then a particular second order differential equation with 

mixed boundary conditions that is commonly encountered in one-dimensional wave 

propagation problems and also some applications to the one-dimensional stochastic 

wave propagations are examined. 

Y.P. Chang and R. C. H. Tsou [9] in their work entitled “Heat Conduction in 

Anisotropic Medium Homogeneous in Cylindrical Regions-Unsteady State” talk about 

the analytical solution for heat conduction in an anisotropic medium that is 

homogeneous in circular cylindrical coordinates. They considered boundary conditions 

of Dirichlet, Newmann and mixed (or convective) types for solid cylinder and hollow 

cylinder in infinite and finite lengths. The principal subject of their paper is the 

determination of the Green’s functions, using eigenfunctions. 

A very important work in this field has been reported by J. Beck [2], where a 

derivation of the Green’s function solution for the linear, transient heat conduction 

equation in a form that includes five kind of boundary conditions is given, and also 

demonstrates the conditions under which it is permissible to use the product property of 

one-dimensional Green’s functions. 
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In 1986, James Beck [3] in the work titled “Green’s Functions and Numbering 

System for Transient Heat Conduction”, provides a table of Green’s functions that 

enable us to derive transient conduction solutions for rectangular coordinates system and 

also provided a numbering system that enables efficient cataloging and locating of 

Green’s functions. The Green’s functions were obtained using eigenfunction expansions 

Haji-Sheikh and J. Beck [15] reported a work for the heat conduction problem in 

thin films at low temperature where the classical theory of heat conduction breaks down. 

They report the solution for the temperature distribution for finite bodies. 

Kevin D. Cole [10] in his paper “Steady Heat Conduction in Cartesian 

coordinates and a Library of Green's Functions”, expresses general Green's functions for 

direct solution of the steady heat equation in finite geometries. In particular, the many 

combinations of possible boundary conditions lead to hundreds of different functions. 

Like the transient heat transfer Green's functions described by Beck, these accurate 

functions serve an important role in the verification of software using other numerical 

methods and furthermore, these steady-state functions can be used to verify the 

independently-developed transient Green's functions. They are organized into a 

systematic taxonomy based on the types of boundary conditions on the faces of the 

parallelepiped. 

John R. Berger [5] in his paper “Green's Functions and Applications for Steady-

State Heat Transfer in Functionally Graded Materials”, discusses that the Functionally 

graded materials (FGMs) are designed with spatial variations in elastic, thermal, 

magnetic, or optical properties for optimal performance. Some examples of FGMs are 
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thermal barrier coatings, bone implants, piezoelectric sensors, and graded optical index 

components. In this paper Green's functions for the steady state heat transfer problem in 

FGMs were developed. Both isotropic and anisotropic thermal conductivities were 

considered. The developed Green's functions were used in numerical simulations with 

the Method of Fundamental Solutions. Results for problems with Dirichlet and 

Neumann boundary conditions and results on an inverse problem in a graded material 

were presented. 

Sheledeleva M.L. et al. [28], in their paper “Modeling of interfacial temperature 

effects due to an impulsive line heat source”, discussed the temperature fields generated 

by an instantaneous line heat source in the medium consisting of two half spaces of 

different thermal properties are modeled. The analytical calculations employed the 

Green functions for an impulsive line source derived previously using the Cagniard–de 

Hoop technique. The analytical model predicts the change of sign of the reflected 

temperature field along the interface for a certain range of parameters. It has also been 

found that for the heat source located in the less conductive medium the temperature 

peak arrival can occur before the peak from the source temperature field. The analytical 

results are found to be in excellent agreement with numerical modeling using the finite 

difference method.  

All these previous works provide general and exact solutions for homogeneous 

heat conduction problems but only some few general solutions for simple geometries are 

found for inhomogeneous cases. In all the works, the Green’s Functions is obtained by 

using eigenfunction, which of course is applicable to many types of boundary 
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conditions. None of these works obtain the Green’s functions by the physical approach. 

Venkataraman N.S., Pérez E. and Delgado I. [33] in their paper “Temperature 

Distribution in Spacecraft Mounting Plates with Discrete Heat Generation Sources due 

to Conductive Heat Transfer” have used the physical approach of the method of images 

to obtain Green’s functions for cylinders and spheres. They found the temperature 

distribution in plates, infinite cylinders and spheres with different types discrete heat 

generation sources such as ring and spiral sources and showed that for discrete sources 

Green’s function determination by method of images yields analytical or “almost 

analytical” solutions. 

The literature review indicates that most authors have used Green’s function 

obtained from eigenfunction expansion for the solution of problems with various 

boundary conditions. This method though powerful in many cases presents the same 

complexities and problems as classical methods. In our work it is proposed to obtain the 

Green’s function using a physical approach through the method of images for semi-

infinite slabs and infinite quadrants. One of the objectives is to get the Green’s function 

for the region by using analogous concepts used in electrostatics by using heat sources 

and heat sinks. After obtaining the Green’s function we will attempt to solve some two, 

and three dimensional specific cases in rectangular coordinates of a semi-infinite slabs 

and infinite quadrant body with discrete heat generation sources and Dirichlet boundary 

conditions. It should be emphasized that the Green’s functions method is specially suited 

for discrete sources, where classical methods such as separation of variables fail, in 

many cases. 
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III.   MATHEMATICAL FORMULATION OF THE PROBLEM 

 

3.1. Statement of the Problem 

The following chapter explains and develops the solution of problems of heat 

conduction in steady state and temperature profile for some semi-infinite slabs and 

infinite quadrants in two and three dimensions with discrete heat generation sources and 

temperature specified on boundary (Dirichlet problem) using the method of Green’s 

function developed through the method of images. The materials are assumed to be 

isotropic with constant thermal conductivity k. 

3.2. Fundamentals Concepts 

 A general solution equation will be determined and then it will be limited 

to the specific boundary conditions of the cases we are focused on. For a better 

understanding of the development of the Green’s function solution equation, it is 

necessary to introduce the following mathematical concepts: 

3.2.1 Dirac-Delta Function 

 The Dirac Delta function (sometimes called the unit impulse function) is 

important in the study of phenomena of an impulsive nature, such as the action of heat 

flow over a very short time interval or over a very small region. This situation occurs in 

mechanics, for example, when a force concentrated at a point causes deformation on solid 

surface, impulsive forces in rigid body dynamics, point masses in gravitational field 
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theory, point charges and multipoles in electrostatics, and point heat sources and pulses in 

the theory of heat conduction. The Green's function is the impulse response of a 

differential equation, and the Dirac Delta function describes the impulse. 

The Dirac Delta Function )x(δ  is defined to be zero when 0x ≠ , and infinite at 

0x = in such a way that the area under the function is unity.  

Dirac Delta function (special case) 
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Generalizing: 
 

General form of Dirac Delta function 
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Fig. 3.1. Dirac Delta Function 

Fig. 3.2. Dirac Delta Function, General Form 
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Equation (3.1) can be seen as a limit of Gaussian 
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The important properties of the delta function are the following: 
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3.2.2 Heaviside Function  

This function is named for the electrical engineer Oliver Heaviside. The 

Heaviside function (or unit step function) is defined as: 

 

x 

)x(δ  Smallσ  

Large σ  

Fig. 3.3. Dirac Delta Function as limit of Gaussian 
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The property that relates the Heaviside function and Dirac-Delta function is: 

)x(
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δ=  

 

3.2.3 The Divergence Theorem. 

One of the most important theorems of vectorial calculus is the divergence 

theorem; sometimes it is called the Gauss Theorem. The divergence theorem is just going 

to be mentioned since it can be found in any basic Calculus book as reference [6]. 

 Let S be a surface that encloses a region V in R3. If A is a continuous vector field 

whose components have continuous partial derivatives in V, then: 

∫∫ ∫∫∫ ∇=
S V

AdV.dSn̂.A  

 

Where n̂  is an outward unit vector normal to S. 

 

 

……(3.2) 

x 

Fig. 3.4. Heaviside Function. 
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3.2.4 Green’s Identities. 

 If ψ∇φ=A , where φ and ψ are arbitrary scalar fields, defined in V. Then: 

ψ∇φ∇+ψ∇φ=∇ .A. 2
r

……………………………………………….. (3.3) 

n
n̂.n̂.A

∂
ψ∂

φ=ψ∇φ=
r

………………………………………………. (3.4) 

These equations when substituted into divergence theorem, results in Green’s 

first identity: 

( )∫∫∫ ∫∫ ∂
φ∂

ψ=ψ∇φ∇+φ∇ψ
V S

2 dS
n

dV.
……………………………….. (3.5) 

 

Instead, If φ∇ψ=A  and substitute again in Divergence Theorem obtained: 

( )∫∫∫ ∫∫ ∂
ψ∂

φ=φ∇ψ∇+ψ∇φ
V S

2 dS
n

dV.
……………………………… (3.6) 

Subtracting equations (3.6)-(3.5) results the corollary of divergence theorem 

knows as Green’s second identity or Green’s Theorem: 

( )∫∫∫ ∫∫ 







∂
φ∂

ψ−
∂
ψ∂

φ=φ∇ψ−ψ∇φ
V S

22 dS
nn

dV
……………………… (3.7) 
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3.2.5 Heat Conduction in steady state. 

Consider a heated solid body with constant thermal conductivity k, with internal 

heat generation in steady state (strictly thermal energy generation). 

But the term heat generation is commonly 

acepted in the heat transfer to mean thermal energy 

generation. 

Let: 

T( x
r

) = Temperature at any point x
r

 

q
r

≡  Heat flux vector at surface dS (W/m2) 

≡)x(Q
r

 Heat generation intensity per unit volume at x
r

 (W/m3) 

 

Applying conservation of energy the heat flux from the surface must be equal to 

the thermal energy generation inside the volume; mathematically this can be expressed 

as: 

∫∫∫∫∫ =
VS

dV)x(QdSn̂.)x(q
rrr

……………………………………………. (3.8) 

The divergence theorem applied to the left hand side term: 

∫∫∫∫∫ ∇=
VS

dV)x(q.dSn̂.)x(q
rrrr

…………………………………………. (3.9) 

n̂  

q
r

 

x
r

Fig. 3.5. Solid body with internal heat 
generation 

 dS 
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The right hand sides in equations (3.8) and (3.9) are equivalent: 

∫∫∫∫∫∫ =∇
VV

dV)x(QdV)x(q.
rrr

     Or        ( ) 0dV)x(Q)x(q.
V

=−∇∫∫∫
rrr

 

Since no restrictions have been imposed to derive the last expression, this is valid 

for any size and shape therefore integrand must be zero. Mathematically this can be 

expressed as follows: 

)x(Q)x(q.
rrr

=∇ ………………………………………………………… (3.10) 

The Fourier’s law is expressed in the following form: 

)x(Tk)x(q
rrr

∇−= ……………………………………………………… (3.11) 

Where )x(T
r

 is temperature 

Substituting the equation (3.11) in (3.10) to obtain: 

k
)x(Q

)x(T2
r

r
−=∇

……………………………………………………… (3.12) 

The equation (3.12) is the heat equation with heat generation for steady state with 

constant thermal conductivity k. 
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3.3. Steady State Green’s Functions 

In steady state conditions the heat conduction equation reduces to the Poisson 

equation. The Poisson equation has many applications in the fields of electrostatics, 

elasticity, diffusion, and heat transfer. Morse and Feshbach [21] present the solution 

methods to the Poisson equation and its special case, the Laplace equation. The method 

of Green’s function is only one of many solutions methods. 

In this part of the work we will explain the process of deriving Green's Functions 

in steady state using the method of images. For this purpose some concepts about point 

and line heat sources and heat sinks in an infinite medium are needed. These heat sources 

are expressed in a mathematical form and a relationship between Green’s function and 

the heat conduction equation is also found. 

 

3.3.1 Auxiliary Equation: The Source Solutions 

3.3.1.1 Point Heat Source (Three-Dimensional) 

Consider a sphere of radius “a”, with constant 

heat generation per unit volume Q (W/m3) inside the 

sphere in steady state as shown in figure 3.6. 

 

The total heat generation inside the sphere TQ  is given by Qa
3
4

Q 3
T π= . 

Figure 3.6 Sphere with constant 
heat generation. 

a 
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In the limit as 0a →  and ∞→Q , such that TQ  remains constant, the sphere becomes a 

point heat source. As a consequence of symmetry, constant temperature spherical 

surfaces are found around the point heat source (figure 3.7) and the heat flux lines are 

radial. 

 

 

 

 

 

 

 

 

 

 

In figure 3.8, qr represents the radial heat flux at r due to a heat source of strength 

QT  in an infinite medium with constant thermal conductivity. Since QT  is the strength of 

the source, which is constant then the heat flux (qr) at the boundary of the sphere of 

radius r is a function of r only (by symmetry). 

An energy balance in the sphere gives: 

∫∫∫∫∫ =⋅
V

3

S

xQddSnq )r
 

Since q is constant, then: 

T
2

r Q)r4(q =π  

Figure 3.7. Point heat source and 
constant temperature surface. 

Figure 3.8. Heat flux lines due to a point  
heat source in an infinite medium  

with constant thermal conductivity. 

r qr 

Heat source of 
strength QT (watts) 

Constant temperature surface 

Heat flux lines 

Sphere of radius r 

Material of thermal 
conductivity k 
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Recalling Fourier’s law:
dr

)r(dT
kq r −=  and substituting in the previous equation: 

2
T

r4
Q

dr
)r(dT

k
π

=−  

Integrating and solving for T(r), the following expression is found: 

kr4
Q

)r(T T

π
=

…………………………………………………………… (3.13) 

This is the equation for the temperature at r due to a three-dimensional heat source 

QT  in an infinite medium of thermal conductivity k. 

 

 

 

 

 

 

 

3.3.1.2 Line Heat Source (Two-Dimensional) 

 Suppose we have an infinite two-dimensional medium with constant thermal 

conductivity similar to the as previous case; consider a line heat source of strength Λ per 

unit depth (W/m) along z-axis as shown in figures 3.10 (a) and (b). 

Constant temperature surface 

 

Heat sink of 
strength -QT(watts) 

Figure 3.9. Point heat sink and 
constant temperature surface. 

For a heat sink (Figure 3.9) 

the temperature distribution can be 

found in the same fashion than for a 

heat source; the result is the same 

differing just in sign. 

Heat flux lines 
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Since the medium is infinite, then there is no variation along z-axis, the 

temperature profile is a function of radial distance “r” only, then: 

T = T(r) 

0
z
)(

=
∂
∂

   and 

Total heat generation: QT  = Λ. l  (W) 

Consider a cylindrical surface of radius r with the line source on the axis. By an 

energy balance: 

Energy flux from the cylindrical surface = heat generation inside volume 

qr (2.π .r.l ) =Λ. l  

Once again using Fourier’s law and solving for the temperature, the following 

expression is found: 

l 

z 

z 

y 

x 

Figure 3.10. (a) Line source in an infinite 
medium of constant conductivity k. 

Source Λ 
(W/m) 

Medium with 
thermal 

conductivity k 

qr

Figure 3.10. (b) Heat flux  
from surface. 

r 
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rln
k2

)r(T
π
Λ−

= …………………………………………………………. (3.14) 

Or  

rln
k2

Q
)r(T T

lπ
−

= ………………………………………………………… (3.15) 

This is the equation for the temperature at r due to a two-dimensional heat source 

QT  in an infinite medium of thermal conductivity k. 

 

3.3.2 Mathematical Representation of a Heat Source 

A heat source of strength QT  (Watts) located at x′ (Figure 3.11) can be 

represented by: 

)'xx(Q)'x(Q T
rrr

−δ= …………………………………………………… (3.16) 

Where )'x(Q
r

is the heat generation intensity per unit volume (w/m3). 

When )'x(Q
r

 is integrated over the volume the full strength QT  is obtained, i.e. 

∫∫∫ =
V

T
3 Q'xd)'x(Q

r
 

 

 

      

 

• 'x
r

x
r

)x(Q
r

Figure 3.11. Three-dimensional body with internal heat generation. 
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3.3.3 Green’s Function Solution Equation for the Heat Conduction Problem. 

For the steady state heat conduction problem the temperature T( x
r

) at any position 

x
r

 in a body of constant thermal conductivity k with thermal heat generation rate Q(x
r

) 

per unit volume (W/m3) satisfies the heat conduction equation. Equation (3.12). 

Analogous to the concepts of positive and negative electrostatic charges in 

electrodynamics, we can introduce the concept of a heat sources and heat sinks. Then we 

define the temperature Green’s function G( x
r

, 'x
r

) as the temperature at the field point x
r

 

due to unit heat source at the source point 'x
r

 (Figure 3.11)  

Therefore ( )'x,xG
rr

 must satisfy the heat conduction equation. 

Then: 

( )
k

)x(Q
'x,xG2

r
rr

−=∇
…………………………………………………… (3.17) 

Where )x(Q
r

, is the heat generation intensity of a unit heat source. 

)'xx()x(Q
rrr

−δ=  

So that 1dV)x(Q
V

=∫∫∫
r

 

 
Substituting the equation (3.16) in (3.17) to obtain (remember QT=1, since heat 

source is of unit strength): 

( )
k

)'xx(
'x,xG2

rr
rr −δ

−=∇
………………………………………………… (3.18) 

Using the corollary of divergence theorem equation (3.7) and by setting G=φ and 

T=ψ  where x  is the observation point and x'  is the integration variable, the following 

expression is obtained: 
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{ }∫∫∫ ∫∫ 







∂
∂

−
∂

∂
=∇−∇

V S

22 'dS
'n

)'x,x(G
)'x(T

'n
)'x(T

)'x,x(G'dV)'x,x(G)'x(T)'x(T)'x,x(G
rr

r
r

rrrrrrrr
 

 

Substituting the equations (3.12) and (3.18) in the previous expression to obtained: 

'dS
'n

)'x,x(G
)'x(T

'n
)'x(T

)'x,x(G'dV
k

)'xx(
)'x(T'dV

k
)x(Q

)'x,x(G
SVV
∫∫∫∫∫∫∫∫ 








∂
∂

−
∂

∂
=

−δ
+−

rr
r

r
rr

rr
r

r
rr

 

By applying first property for Dirac-Delta function on the second term in the left hand 

side: 

'dS
'n

)'x,x(G
)'x(T

'n
)'x(T

)'x,x(G
k

)x(T
'dV

k
)x(Q

)'x,x(G
SV
∫∫∫∫∫ 








∂
∂

−
∂

∂
=+−

rr
r

r
rr

rr
rr

 

 

Solving for temperature T: 

'dS
'n

)'x,x(G
)'x(T

'n
)'x(T

)'x,x(Gk'dV)'x(Q)'x,x(G)x(T
'S'V

∫∫∫∫∫ 







∂
∂

−
∂

∂
+=

rr
r

r
rrrrrr

…. (3.19) 

 

The primes indicate that the integration is done around the source point 'x
r

 

 

The source contribution is represented by the first term on the right hand side, 

boundary condition contributions are represented by other two terms. 

The equation (3.19) is valid for any shape, any heat source and any boundary 

condition. 

The temperature )x(T
r

at any point x
r

 can be determined if Green’s function 

( )'x,xG
rr

 is known. 
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 Green’s function must satisfy equation (3.18) but cannot be uniquely determined 

until G is specified on the boundary. The purpose of the present work is to solve the heat 

conduction problem for Dirichlet boundary conditions (i.e. temperature specified on 

surface). In this case the best choice is to make ( ) 0'x,xG =
rr

on the boundary such that the 

first term in the surface integral of equation (3.19) vanishes. Then we have: 

 

'dS
'n

)'x,x(G
)'x(Tk'dV)'x(Q)'x,x(G)x(T

'S'V
∫∫∫∫∫ ∂

∂
−=

rr
rrrrr

…………………… (3.20) 

 This is the fundamental solution equation using Green’s function for the heat 

conduction problem with Dirichlet boundary conditions. 

 It should be reemphasized that once the Green’s function is obtained for a body, it 

can be used for any type of source. 

 

3.4 Problem analysis 

 With equation (3.20) the problem for the determination of the temperature profile 

has been reduced to finding the Green’s function. There are two general ways to obtain 

Green’s functions: 

 

 

3.4.1. Orthogonal Expansion: 

It must be said that Green’s functions depend on the geometry of the body; there 

are several ways to find them. 
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 The first one is the general method, which consists in expanding )'x,x(G
rr

 in 

orthogonal eigenfunctions, obtaining the Green’s function in terms of: 

• Sine and cosine functions for rectangular coordinates system. 

• Sine, cosine and Bessel functions for cylindrical coordinates system. 

• Legendre polynomials and associated Legendre polynomials, for spherical 

coordinates system. 

 

3.4.2. Physical Approach: 

 The second is a physical approach: known as method of images, this method is 

useful for infinite and semi-infinite geometries, circular plates and spheres, when 

temperature is specified on the boundaries. 

 This method consists in replacing the boundary by virtual image sources or sinks. 

The method of images is the method used in the development of the present research. 

 

3.5. Method of Images 

In this part of the present work, Green’s functions for two and three dimensional 

semi-infinite spaces and infinite quadrant are found. Before the development is done it is 

necessary to introduce the following relationships: 

 

3.5.1 ∇2(lnr) in Cylindrical Coordinates 

Recalling equation (3.14) for the steady state temperature distribution in a 

medium with a two-dimensional line source of strength Λ(W/m): 
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rln
k2

)r(T
π
Λ−

=  

After applying the operator ∇2 to both sides in the previous equation, and since Λ, 

k and l are constants, the following expression is obtained: 

rln
k2

)r(T 22 ∇
π
Λ−

=∇
………………………………………………………… (3.21) 

 

Since the temperature distribution in this case is only function of radius, then in 

cylindrical coordinates ∇2 can be expressed as follows: 









∂
∂

∂
∂

=∇
r

r
rr

12  

 Therefore (∇2 lnr) in equation (3.21) becomes: 





=∞→
≠

=







∂
∂

∂
∂

=∇
0rif

0rif0
)r(ln

r
r

rr
1

)r(ln2

………………………… (3.22) 

 

Applying divergence theorem to equation (3.22), using the cylindrical volume 

enclosing the point r = 0 shown in figure 3.21, results in: 

∫∫∫ ∫∫ ∂
∂

=∇
V S

2 dS
r

)r(ln
dV)r(ln  

 

In cylindrical coordinates the differential surface dS is equal to rdθdz; solving the 

right hand side term in the previous expression and integrating the following is obtained: 



 

 

35 

∫ ∫ ∫ ∫
π π

π=θ=θ
∂

∂l l

l
0

2

0
0

2

0

2dzddzrd
r

)r(ln
 

 

 

 

 

 

 

  

 

 

Therefore: 

∫∫∫ π=∇
V

2 2dV)r(ln l  

 The last expression is valid for the volume including the point r = 0 

 

Dividing both sides in this last expression by 2πl and doing the same in equation 

(3.22), the following is obtained: 





=∞→
≠

=∇
π 0rif

0rif0
)r(ln

2
1 2

l  

∫∫∫ =∇
πV

2 1dV)r(ln
2
1
l  

Where volume V encloses point 0r = . 

      …..……………………..........       (3.23) 

Figure 3.12. (a) Line source in an infinite 
medium of constant conductivity k. 

l 

z 

z 

y 

x 

Source Λ 
(W/m) 

Medium with 
thermal 

conductivity k 
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Equation (3.23) behaves as a Dirac-Delta function and satisfies its conditions, 

therefore it can be said that: 

)r()r(ln
2

1 2 δ=∇
πl

 

Or 

)r(2)r(ln2 δπ=∇ l …………………………………………………………… (3.24) 

 

3.5.2. 





∇
r
12

 in Spherical Coordinates 

By a similar procedure, a relationship between ∇2(1/r) and Dirac-Delta function in 

spherical coordinates can be found. 

Recalling equation (3.13) for the steady state temperature distribution for a  

spherical source of strength QT  watts: 

kr4
Q

)r(T T

π
=  

 

After applying the operator ∇2 to both sides in previous equation, and since QT  

and k are constants, the following expression is obtained: 







∇

π
=∇

r
1

k4
Q

)r(T 2T2

………………………………..……………………….. (3.25) 

As in the previous case, temperature distribution is only function of radius, 

therefore ∇2 for spherical coordinates can be expressed as follows: 









∂
∂

∂
∂

=∇
r

r
rr

1 2
2

2  
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 Therefore [∇2 (1/r)] in equation (3.25) becomes: 





=∞→
≠

=















∂
∂

∂
∂

=





∇

0rif
0rif0

r
1

r
r

rr
1

r
1 2

2
2

………………………… (3.26) 

Applying divergence theorem to a spherical volume enclosing the point r = 0 as 

shown in figure 3.16. 

∫∫∫ ∫∫ 







∂
∂

=





∇

V S

2 dS
r
1

r
dV

r
1

 

 

 

 

 

 

 

 

 

In spherical coordinates the differential surface dS is equal to r2sinθdθdφ; solving 

the right hand side term in previous expression and integrating: 

 

π−=φθθ−=φθθ
















∂
∂

∫ ∫ ∫ ∫
π π

ππ

4ddsinr
r
1

ddsinr
r
1

r

2

0 0

2

0 0

2
2

2  

 

Therefore: 

φ 

θ 
r 

Normal 

dS 

z 

y 

x 

Figure 3.13. Spherical volume enclosing the point r = 0. 
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∫∫∫ π−=





∇

V

2 4dV
r
1

 

This is valid for the volume including the point r = 0 

Dividing both sides in previous the equation by -4π  and doing the same as we did 

for equation (3.24), the following is obtained: 

 





=∞→
≠

=





∇

π
−

0rif
0rif0

r
1

4
1 2  

                     ………………………………………        (3.27) 

 

 

Where volume V enclosing the point 0r =  

Equation (3.21) behaves as a Dirac-Delta function and satisfies its conditions; 

therefore the following expression is valid too: 

 

)r(
r
1

4
1 2 δ=






∇

π
−

 

Or 

)r(4
r
12 πδ−=






∇

………………………………………………………… (3.28) 
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3.5.3 Green’s Function for a Two-Dimensional Semi-Infinite Space 

Consider the two-dimensional semi-infinite space with constant thermal 

conductivity k, a heat source of unit strength is applied at P as shown in figure 3.14. 

 

 

 

 

 

 

 

 

 

 

)x(Q
r

is the field point. 

G(P,Q) = )'x,x(G
rr

= Temperature at x
r

 due to unit source at 'x
r

. 

G must satisfy equation (3.18), i.e, ( )
k

)'xx(
'x,xG2 −δ−

=∇
rr

 

and: 

0)'x,x(G =
rr

on 0x = ……………………………………………..................... (3.29) 

 

∞ 

∞ 

-∞ 

 Q 

P 

'x
r

x
r

G( 'x,x
rr

) = 0  
on x = 0 

Figure 3.14. Green’s function for a two-Dimensional semi-infinite space. 
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 Consider now an infinite space of thermal conductivity k. Put an equal and 

opposite heat source at P′, the image of the point P through the boundary of the semi-

infinite space as shown in figure 3.15. 

 

 

 

 

 

 

 

 

 

  

 

Since the source and the sink are of unit strength, then 1QT =  for both the source 

and sink. 

 Equation (3.15) gives the temperature distribution for a two dimensional space 

due to a heat source (the same expression but with opposite sign is valid for the 

temperature distribution due to a sink), then, for this case, the temperature profile can be 

expressed as follows: 

 

21 rln
k2

1
rln

k2
1

)r(T
ll π

+
π
−

=  

Q 

P’  a  a 
  +1 -1 

r2 

r1 

P 

'x

x

∞ 

∞ 

∞ 

∞ 

Infinite space 

Figure 3.15. Image for a unit heat source for a two-dimensional space  
with thermal conductivity k. 

y 

x 

(x, y) 

(x’, y’)
(-x’, y’)
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 Applying the operator ∇2 to both left and right hand side in previous equation: 

[ ]2
2

1
22 rlnrln

k2
1

T ∇−∇
π
−

=∇
l

 

 

 Since r2 is in the imaginary region it never can be zero (actually r2 ≥ a to be able to 

interact in the real two-dimensional body - i.e. x > 0 in figure 3.15), therefore according 

to equations (3.23) and (3.24) for the region of interest, x > 0, the following is 

accomplished: 

r2 > 0   0rln 2
2 =∇⇒  

  )r(2rln 11
2 δπ=∇ l  

 Substituting these values in the previous equation the following relationship is 

obtained: 

k
)r(

T 12 δ
−=∇   Or: 

k
)'xx(

T2
rr

−δ
−=∇  

On boundary  r1 = r2 (see figure 3.16) 

 

 

 

 

 

 

-1 +1 

r2 r1 

 a  a 

Figure 3.16. Effect of heat source and sink on boundary. 
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When r1 = r2 then T = 0 (temperature on boundary), then T satisfies equations 

(3.18) and (3.29) (G=0 on boundary) therefore )'x,x(T
rr

is the Green’s function: 

21 rln
k2

1
rln

k2
1

)'x,x(G
ll

rr
π

+
π
−

=
 









π

=
1

2

r
r

ln
k2

1
)'x,x(G

l
rr

.………………………………………………………...(3.30) 

  

The distances r1 y r2 are obtain of figure 3.15 

22
1 )'yy()'xx(r −+−=  

22
2 )'yy()'xx(r −++=  

 

 Substituting in the equation 3.30 to obtain: 













−+−

−++
π

=
22

22
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1

)'x,x(G
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







−+−
−++

π
= 22

22

)'yy()'xx(
)'yy()'xx(

ln
k4

1
)'x,x(G

l
rr

……………………………………...(3.31) 

 

 Finally, for this case, it can be said that finding the Green’s function for a semi-

infinite space x>0, is equivalent to solving the problem of a source and its image (a sink) 

in an infinite space as shown in figure 3.17 
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3.5.4 Green’s Function for a Three-Dimensional Semi-Infinite Space 

Consider the three-dimensional semi-infinite space with constant thermal 

conductivity k similarly to point 3.5.3; a heat source of unitary strength is applied at P as 

shown in figure 3.18 

 

 

 

 

 

 

 

 

  

  +1 

 a =

  +1 

 a 
  -1 

 a 

Figure 3.17. Semi-infinite two-dimensional space with a unit heat 
source and its equivalent image through the boundary. 

Figure 3.18. Green’s function for a three-dimensional semi-infinite space. 
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Once again: 

G(P,Q) = )'x,x(G
rr

= Temperature at x
r

 due to unit source at 'x
r

 and must satisfy: 

k
)'xx(

G2
rr

−δ−
=∇

……………………………………………………………    (3.32) 

 

 G(x,x’) = 0 on boundary (x = 0) …………………………………………….     (3.33) 

 Consider now an infinite space of thermal conductivity k. Put an equal and 

opposite heat source at P′, the image of the point P through the plane x = 0 as shown in 

figure 3.19. 
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Figure 3.19. Image for a unit heat source for a three-dimensional space with thermal 
conductivity k. 
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Source and the sink are of unit strength ( 1QT =  for both the source and sink) 

 Equation (3.13) gives the temperature distribution for a three dimensional space 

due to a heat source (the same expression but with opposite sign is valid for the 

temperature distribution due to a sink), then the temperature profile can be expressed as: 

21 kr4
1

kr4
1

)r(T
π

−
π

=  

 

 Applying the operator ∇2 to both left and right hand side terms: 









∇−∇

π
=∇

2

2

1

22

r
1

r
1

k4
1

T  

 

 The value of r2 can never be zero since this is in the imaginary region (r2 ≥ a; i.e. x 

> 0 in figure 3.19), therefore according to equations (3.27) and (3.28) for the region of 

interest, x > 0, the following is accomplished: 

r2 > 0   0
r
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2

2 =







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  )r(..4
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


∇  

 Substitute these last values in the previous equation to obtain: 

k
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T 12 δ
−=∇  

Or: 

k
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T2
rr

−δ
−=∇  
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 In consequence, since T satisfies equations (3.32) and (3.33), the Green’s function 

for a three-dimensional space of thermal conductivity k is: 

21 kr4
1

kr4
1

)'x,x(G
π

−
π

=
rr

 









−

π
=

21 r
1

r
1
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1

)'x,x(G
rr

………………………………………………… (3.34) 

 

The distances r1 y r2 are obtain of figure 3.19 

222
1 )'zz()'yy()'xx(r −+−+−=  

222
2 )'zz()'yy()'xx(r −+−++=  

 

 Substituting in the equation 3.33 to obtain general equation of Green’s function 

for a three-dimensional space of thermal conductivity k: 
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3.5.5 Green’s Function for a Two-Dimensional Infinite Quadrant 

Consider the two-dimensional infinite quadrant with constant thermal 

conductivity k, a heat source of unitary strength is applied at P as shown in figure 3.20. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
G(P,Q) = )'x,x(G

rr
= Temperature at x

r
 due to unit source at 'x

r
. 

G must satisfy equation (3.12) 

and: 

0)'x,x(G =
rr

 on 0x =        ……………………………………………… (3.36) 

0)'x,x(G =
rr

 on 0y =        ……………………………………………… (3.37) 
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Figure 3.20. Green’s function for a two-dimensional infinite quadrant. 
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 Consider now an infinite quadrant of thermal conductivity k. Put three heat 

source, two of opposite sign at P′ and P’’’ and a third of the same sing at P’’, the images 

of the point P through the plane x = 0 and y = 0 as shown in figure 3.21. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Since the source and the sink are of unitary strength, then 1QT =  for the sources 

and sinks. 

 Equation (3.15) gives the temperature distribution for a two-dimensional infinite 

quadrant due to a heat source (the same expression but with opposite sign is valid for the 
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Figure 3.21. Image for a unit heat source for a two-dimensional infinite quadrant with 
thermal conductivity k. 
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temperature distribution due to a sink), then, for this case, the  temperature profile can be 

expressed as follows: 

4321 rln
k2

1
rln

k2
1

rln
k2

1
rln

k2
1

)r(T
llll π

+
π
−

π
+

π
−

=  

 Applying the operator ∇2 to both left and right hand side in previous equation: 

[ ]4
2

3
2

2
2

1
22 rlnrlnrlnrln

k2
1

T ∇−∇+∇−∇
π
−

=∇
l

 

 

 Since r2,  r3 and r4 are in the imaginary region, these never can be zero (actually r2, 

r3 and r4 ≥ a, to be able to interact in the real two-dimensional body - i.e. x > 0 and y>0 in 

figure 3.21), therefore according to equations (3.23) and (3.24) for the region of interest, 

x > 0, y>0 the following is accomplished: 

r2 > 0   0rln 2
2 =∇⇒  

r3 > 0   0rln 3
2 =∇⇒  

r4 > 0   0rln 4
2 =∇⇒  

 

  )r(2rln 11
2 δπ=∇ l  

 Substituting these values in the previous equation the following relationship is 

obtained: 

k
)r(

T 12 δ
−=∇   Or: 

k
)'xx(

T2
rr

−δ
−=∇  



 50 

On boundary  r1 = r4 (see figure 3.22 (a)) 

 

 

 

 

 

 

 

 

 

 

On boundary  r1 = r2 (see figure 3.22 (b)) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.22 (a). Effect of heat source and sink on boundary x = 0.

Figure 3.22.(b). Effect of heat source and sink on boundary y = 0. 
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When r1 = r4, r1 = r2, then T = 0 (temperature on boundary), then T satisfies 

equations (3.18), (3.36) and (3.37), (G = 0 on boundary) therefore )'x,x(T
rr

is the Green’s 

function: 
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llll

rr
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π
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31

42

r.r
r.r

ln
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1
)'x,x(G

l
rr

.……………………………………………………... (3.38) 

  

The distances r1, r2,  r3 and r4 are obtain of figure 3.15 

22
1 )'yy()'xx(r −+−=  

22
2 )'yy()'xx(r ++−=  

22
3 )'yy()'xx(r +++=  

22
4 )'yy()'xx(r −++=  

 Substituting in the equation 3.38 to obtain the general equation of Green’s 

function for a two-dimensional infinite quadrant of thermal conductivity k: 


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IV.   RESULTS AND DISCUSSION 

The main objective of this thesis, was to find and apply Green’s functions solution 

equation to the solution of conduction heat transfer with Dirichlet boundary conditions 

for specific geometries of semi-infinite slabs and infinite quadrants with various types of 

discrete heat generation source and determine the temperature profile. The objective was 

also to show that for the cases considered here Green’s function integral techniques yield 

an elegant analytical or almost analytical solution, with far less effort compared to 

numerical solutions. 

The solutions for semi-infinite slabs with thin plate heating source, the hollow 

box heating source, a square prismatic heating source, thin cylindrical heating source and 

infinite quadrant with square line heating source are compared with numerical solutions 

of finite elements using ANSYS 6.0. 

The six cases solved are those with Dirichlet boundary conditions (temperature 

specified on boundary), this means, if TB is the temperature of the boundary (assumed 

constant), then at x = 0 ⇒ T = TB. For the case of semi-infinite quadrant at x = 0 ⇒ T = 

TB, y = 0 ⇒ T= TB. It should be noted that the method is equally applicable if TB is a 

function of position. Using the method of superposition, the temperature profile can be 

expressed as follows: 

T(x,y,z) = TB + T1(x,y,z) ……………………………………………………. (4.1) 
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 From equation (4.1) clearly can be seen that T1 must satisfy the following 

differential equation and the boundary condition: 

k
)z,y,x(Q

)z,y,x(T1
2

rrr
−=∇  

With the boundary condition: 

T1(0,y,z) = 0 …………………………………………………………………   (4.2) 

T1 can be solved using equation (3.19): 

∫∫

∫∫∫

∂
∂−

=

'S
1

'V
1

'dS
'n

)'z,'y,'x,z,y,x(G)z,y,0(Tk

'dV)'z,'y,'x(Q)'z,'y,'x,z,y,x(G)z,y,x(T

……….……………  (4.3) 

By substituting boundary condition (4.2), the second term in the equation above 

vanishes (remember this is the contribution due to temperature on the boundary, which is 

zero for this case). Therefore, the expression for the temperature profile becomes: 

∫∫∫ ⋅+=
'V

B 'dV)'z,'y,'x(Q)'z,'y,'x,z,y,x(GT)z,y,x(T  ……………………  (4.4) 
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 Since G has been already obtained for two-dimensional semi-infinite space, three-

dimensional semi-infinite space and two-dimensional infinite quadrant (equations (3.31), 

(3.35) and (3.39)), the only unknown is the heat generation per unit volume along the 

heat source (W/m3) Q(x’,y’,z’) which depends on its geometry, strength and the geometry 

of the body. Then the problem of finding the temperature distribution has been reduced to 

specifying the heat generation per unit volume and integrating it in equation (4.4). 

 Is very important to emphasize that equation (4.3) was derived with no constrains 

on the geometry, therefore this expression is valid to solve temperature profiles for any 

body of any shape with the only constraint that temperature must be known on the 

boundary. 
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4.1. Semi-Infinite Slab (Two-dimensional cases) 

4.1.1. Semi-Infinite Slab with a Thin Plate Heating Source  

A thin plate carrying current is embedded, as a heat-generating element, in a 

semi-infinite slab 0x > , - ∞<<∞ y , - ∞<<∞ z , and constant thermal conductivity k. 

The plate can be assumed as an infinitesimally thin heat source; with large 

depthl ( ∞→l ) and width L; the heat generation per unit length per unit depth is 

constant and the boundary in 0x =  is maintained at constant temperature TB as shown in 

figure 4.1.(a)  

8  

-8  

8  

y 

x 
a 

b 

L 

T(0,y)=TB 
Heating 
element 

Figure 4.1(a) Semi-Infinite Slab of constant thermal conductivity k with a thin plate 
heating source element. 
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Let: 

QT  ≡ Total heat generation (W) = L..lλ   

λ ≡ Strength of the heat source per unit depth per unit length (W/m2). 

Q(x,y) ≡ Heat generation intensity  per unit volume (W/m3) 

Q(x,y) when integrated over the whole volume must be equal to the total heat 

generation inside the semi-infinite slab, i.e. ∫∫∫ =
V

TQdv).y,x(Q  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1(b) Semi-Infinite Slab of constant thermal conductivity k with a thin plate 
heating source element. 
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For cartesian coordinates this condition becomes: 

L..)ab.(.Qdz.dy.dx).y,x(Q T

2

2
0

ll

l

l

λ=−λ==∫ ∫ ∫
−

∞

∞−

∞

 ……………..………………. (4.5) 

 The heat generation Q(x,y) is then expressed of the following form: 

( ) [ ] [ ]{ }bxHaxHy)y,x(Q −−−⋅δ⋅λ=  ……………………………… (4.6) 

The equation (4.6) satisfy to equation (4.5), where H(x) is the Heaviside function 

that was explained in the equation (3.2) in the chapter III. 

Integrate the right hand side of expression (4.6) as indicated in equation (4.5) 

( ) [ ] [ ]{ } ( ) [ ] [ ]{ }∫∫ ∫∫ ∫ ∫
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∞−−
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2

2

2
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dx.bxHaxHdy.y.dzdz.dy.dx.bxHaxHy

l

l

l

l

 

Using the properties for Dirac-Delta and Heaviside function we get: 

L.)ab(dx.1
b

a

lll ⋅λ=−⋅⋅λ=⋅⋅λ ∫  

Equation (4.6) after integration becomes: 
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L.)ab(Qdv).y,x(Q T
V

ll ⋅λ=−⋅⋅λ==∫∫∫  

Substitute equations (3.31) and (4.6) in equation (4.4): 
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 Integration on z is easily performed, for x and y the properties for Dirac Delta and 

Heaviside functions mentioned in chapter III are applied obtaining: 
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In order to express results in non-dimensional form, the following non-

dimensional quantities are defined: 

BT
)y,x(T

)y,x(T =  Non-dimensional temperature 

BkT
)ab.( −λ

=λ  Non-dimensional heat generation 

L
y

y,
L
x

x ==  Non-dimensional field point location 

L
'x

'x =  Non-dimensional source point location 

L
b

b,
L
a

a ==  Non-dimensional distances 
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Finally, substitute all these quantities in the previous equation and the following 

relationship is obtained: 
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 Equation (4.8) is the temperature profile for a semi-infinite slab with constant 

temperature on boundary heated by very thin plate carrying a current and embedded in 

the slab. Thus a closed form expression for the temperature distribution has been 

obtained. 

Equation (4.8) can be easily evaluated for example with Mathcad obtaining highly 

accurate plots for the temperature profiles. In contrast with numerical solution, the 

analytical solution permits extensive parametric studies with minimal computational 

time. Some of the results for different values of ,b,a,?  are presented in the figures 4.2 to 

4.16. 
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Figure 4.2. Dimensionless temperature distribution, line plate heating source 

1b,0a,5 ===λ . 
 

 
 

           

Figure 4.3. Dimensionless temperature distribution, line plate heating source 
5.1b,0a,5 ===λ  
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Figure 4.4. Dimensionless temperature distribution, line plate heating source 
2b,0a,5 ===λ  

 

 
              
         

Figure 4.5. Dimensionless temperature distribution, line plate heating source 
5.0b,25.0a,5 ===λ  
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Figure 4.6. Dimensionless temperature distribution, line plate heating source 
75.0b,5.0a,5 ===λ  

 

 
              
         

Figure 4.7. Dimensionless temperature distribution, line plate heating source 
1b,75.0a,5 ===λ . 
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Figure 4.8. Dimensionless temperature distribution, line plate heating source 
25.0b,0a,10 ===λ . 

 

 

 
           

Figure 4.9. Dimensionless temperature distribution, line plate heating source 
50.0b,0a,10 ===λ  
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Figure 4.10. Dimensionless temperature distribution, line plate heating source 
75.0b,0a,10 ===λ  

 

 
              
         

Figure 4.11. Dimensionless temperature distribution, line plate heating source 
0.1b,0a,10 ===λ  
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Figure 4.12. Dimensionless temperature distribution, line plate heating source 
50.0b,25.0a,10 ===λ . 

 

 
 

           
Figure 4.13. Dimensionless temperature distribution, line plate heating source 

75.0b,25.0a,10 ===λ  
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Figure 4.14. Dimensionless temperature distribution, line plate heating source 
0.1b,25.0a,10 ===λ . 

 

 
 

           
Figure 4.15. Dimensionless temperature distribution, line plate heating source 

25.1b,25.0a,10 ===λ  
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Figure 4.16. Dimensionless temperature distribution, thin plate heating source 

0.1b,0a,10 ===λ . Comparison with results from ANSYS. 
 

Figures 4.2 to 4.4 show the non-dimensional temperature profiles along of axis 

“x” at different values of “y” for 5=λ , 0a = , and )0.2y5.1,1(b = .  

For a given y , the non-dimensional temperature obtains maximum value while 

passing over the source and then falls off to 1 for large x .  

Similar behavior obtained for a given x  with varying y . This result is expected 

physically. Same is true for values non-dimensional distances of 

(0.75,1.0),(0.5,0.75),(0.25,0.5))b,a( = , as shown in figures 4.5 to 4.7, where the same 

behavior as the previous curves, displaced according to the new positions of the sources 

of heat, is observed. 
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Figures 4.8 to 4.15 show the case for a higher value of the non-dimensional 

strength of the source )10( =λ , for different sizes and different localizations of the source 

of heat. Observe that the curves present the same behavior as the previous cases. 

This problem has also been solved by using the commercial computer software 

package ANSYS and results were plotted for comparison and validation purposes with 

the analytical results obtained here for a source of dimensionless strength )10( =λ  and 

0.1b;0a == . The result in the figure 4.16 shows excellent agreement among the curves. 

It must be said that, for this case, ANSYS presents problems to simulate the semi-infinite 

slab, because the numbers of elements exceeds the capacity allowed by the version of this 

software used in the development of present work, ANSYS university version 6.0.  

 
Figure 4.17. Results from Solution Analytical using TECPLOT 7.5.  Dimensionless 

temperature distribution, thin plate heating source 0.1b,0a,10 ===λ . 
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Figure 4.18. Results from ANSYS.  Dimensionless temperature distribution, thin plate 
heating source 0.1b,0a,10 ===λ . 

Figures 4.17 and 4.18 shows the same results in a contour plot. The two figures 

agree very closely. 

Appendix [A] shows ANSYS element and results. We conclude that the present 

method provides, for this case, an analytical solution and is superior to the numerical 

solutions in elegance and computational effort. Further, for parameter studies or when 

temperature is derived only at specific points or when it is required to calculate heat flux 

at any point, the present solution is ideally suited compared to numerical solutions. 

Studies were made to examine results of varying the ratio plate length / length of 

the “infinite” region. This is a measure of the fineness of the mesh size. The results are 

show in figures 4.19 and 4.20. When this ratio is less that 1/1000 the agreement between 

numerical and exact results are not good. Above this value the non-convergence shows 

near to the source. Appendix [B] shows ANSYS results with different ratio plate length / 

length of the “infinite” region. 
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Figure 4.19. Dimensionless temperature distribution with different ratio plate length / 

length of the “infinite” region, line plate heating source. 0.1b,0a,10 ===λ . 

 

 
Figure 4.20. Dimensionless temperature distribution with different ratio plate length / 

length of the “infinite” region, line plate heating source. 0.1b,0a,10 ===λ . 
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4.1.2 Semi-Infinite Slab with a Hollow Box- Heating Source 

A thin current carrying wire bent in the form of a square forming a hollow box-

heating source is embedded, as a heat-generating element, in a semi-infinite two 

dimensional slab 0x > , - ∞<<∞ y , ∞<<∞− z , and constant thermal conductivity k. 

The heating element can be assumed as a hollow box heat source with walls 

infinitesimally thin; with large depth l  and side L. The heat generation per unit length 

along the source per unit depth is constant and the boundary 0x =  is maintained at 

constant temperature TB as shown in figure 4.21 (a).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.21 (a). Semi-infinite slab with a square hollow box-heating source 
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Let: 

QT  ≡ Total heat generation (W) = L.4 ⋅⋅λ l  

λ ≡ Strength of the heat source per unit depth per unit length (W/m2) 

Q(x,y) ≡ Heat generation intensity per unit volume (W/m3). 

Q(x,y) when integrated over the whole volume must be equal to the total heat 

generation inside the semi-infinite slab, i.e. ∫∫∫ =
V

TQdz.dy.dx).y,x(Q  

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21 (b). Semi-infinite slab with a square hollow box-heating source 
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For cartesian coordinates this condition becomes: 

( ) L...4LLLL..Qdz.dy.dx).y,x(Q T

2

2
0

ll

l

l

λ=+++λ==∫ ∫ ∫
−

∞

∞−

∞

….….…………………. (4.9) 

Similarly to the previous case, an expression was derived for the generation of 

heat for unit of volume using the same principle, but with the assumption that the hollow 

box this formed by 4 plates infinitesimally thin. They were calculated in an independent 

way adding the results, obtaining the following expression for the heat generation Q(x,y): 
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The equation (4.10) satisfy to equation (4.9), Now integrate the right hand side of 

expression (4.10) as indicated in equation (4.9): 
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Using the properties for Dirac-Delta and Heaviside function is obtained: 
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Equation (4.9) after integration becomes: 

L.4Q)y,x(Q T
V
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Substitute equations (3.31) and (4.10) in equation (4.4): 
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 Integration on z is easily performed, then applying again the properties for Dirac 

Delta and Heaviside functions for x and y, we get: 
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In order to express results in non-dimensional form, the following non-

dimensional quantities are defined: 

BT
)y,x(T

)y,x(T =  Non-dimensional temperature 

BkT
L.λ

=λ  Non-dimensional heat generation 

L
y

y,
L
x

x ==  Non-dimensional field point location 

L
'y

'y,
L

'x
'x ==  Non-dimensional source point location 

L
a

a =  Non-dimensional distances 

 

Finally, substitute all these quantities in the previous equation and the following 

relationship is obtained: 
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 Equation 4.11 is the temperature profile for a semi-infinite slab with constant 

temperature on boundary heated by a wire in the form of a square hollow box carrying a 

current and embedded in the slab. Thus an “analytical solution” for the temperature 

distribution has been obtained. 

Equation 4.11 is algebraic expression, which can be easily evaluated. Some of the 

results for different values of aandλ  are presented in the figures 4.22 to 4.30. 
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Figure 4.22. Dimensionless temperature distribution, hollow box-heating source 
0a,5 ==λ . 

 

 
 

           
Figure 4.23. Dimensionless temperature distribution, hollow box-heating source 

25.0a,5 ==λ  
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Figure 4.24. Dimensionless temperature distribution, hollow box-heating source 
5.0a,5 ==λ . 

 

 
 

           
Figure 4.25. Dimensionless temperature distribution, hollow box-heating source 

75.0a,5 ==λ  
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Figure 4.26. Dimensionless temperature distribution, hollow box-heating source 
1a,5 ==λ . 

 

  
 

           
Figure 4.27. Dimensionless temperature distribution, hollow box-heating source 

2a,5 ==λ . 
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Figure 4.28. Dimensionless temperature distribution, hollow box-heating source 
3a,5 ==λ . 

 

 
 
 
 

Figure 4.29. Dimensionless temperature distribution, hollow box-heating source 
0a,10 ==λ . 
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Figure 4.30. Dimensionless temperature distribution, hollow box-heating source 
0a,10 ==λ . Comparison with the results from ANSYS. 
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Finally the figure 4.29 shows the result for a constant value source dimensionless 

strength of 10=λ  and 0a = . The figure has the same behavior of the previous curves, but 

these are displaced according to the location of the source of heat generation.     

In the figure 4.30 the results obtained by our method is compared to numerical 

solutions obtained from software ANSYS specifically for the case of 10=λ  and 1a = , we 

observe a very high agreement between both methods. The small differences are due to 

the difficulty of simulating in ANSYS the semi-infinite slab with a very small discrete 

heat generation source; because the number of mesh elements required to get good 

agreement with our analytical method exceeds the number of elements allowed by the 

version 6.0 of ANSYS. Appendix [C] shows ANSYS element and results. We conclude 

that the present method provides, for this case, an analytical solution and is superior and 

simpler to the numerical solutions in term of labor and cost. The method is even more 

advantageous where parametric studies have to be performed. 

Appendix [D] also shows the results for a rectangular hollow box-heating 

element. The result show for inside the box the temperature distribution shows two kinds 

in contrast to one peak for outside the box. 
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4.1.3 Semi-Infinite Slab with a Square Prismatic Heating Source 

A body in the form of a square prismatic bar carrying current is embedded as a 

heat-generating element in a semi-infinite two dimensional slab 0x > , - ∞<<∞ y , 

∞<<∞− z , and constant thermal conductivity k. The square prismatic bar heat source 

has side L and infinite large depthl ; the heat generation per unit area of plate per unit 

depth λ (W/m3) is constant. The boundary at 0x =  is maintained at constant temperature 

TB as shown in figure 4.31 (a). 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.31. (a) Semi-infinite slab with a square prismatic-heating source 
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Let: 

QT  ≡ Total heat generation (W) = 2L..lλ  

λ ≡ Strength of the heat source per unit area per unit depth (W/m3) 

Q(x,y) ≡ Heat generation per unit volume (W/m3) 

Q(x,y) when integrated over the whole volume must be equal to the total heat 

generation inside the semi-infinite slab, i.e. ∫∫∫ =
V

TQdv).y,x(Q  

  

 

        

 

 

 

 

 

 

 

 

 

 Figure 4.31. (b). Semi-infinite slab with a square prismatic-heating source 
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From figure 4.31.(b) the total heat generation QT , inside the volume can be 

expressed in Cartesian coordinates: 

2
T

2

2
0

L..Qdz.dy.dx).y,x(Q l

l

l

λ==∫ ∫ ∫
−

∞

∞−

∞

 …………….……………………………… (4.12) 

 The heat generation Q(x,y) per unit volume is expresses of the following form: 

[ ] [ ]{ } [ ] [ ]{ }2/LyH2/LyH.)aL(xHaxH)y,x(Q −−++−−−⋅λ= ………………. (4.13) 

The equation (4.13) satisfies to equation (4.12). Taking the right hand side term 

and integrating over the semi-infinite slab. 

[ ] [ ]{ } [ ] [ ]{ }{ } =−−++−−−⋅λ∫ ∫ ∫
−

∞

∞−

∞

∞−

2

2

dz.dy.dx.2/LyH2/LyH.)aL(xHaxH

l

l

 

[ ] [ ]{ } [ ] [ ]{ }∫∫ ∫
∞

−

∞

∞−

+−−−⋅−−+λ
0

2

2

dx.)aL(xHaxHdy.2/LyH2/LyH.dz

l

l

 

Applying properties for Heaviside function and integrating obtained: 
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2
aL

a

2/L

2/L

Ldx.dy. ⋅⋅λ=⋅λ ∫∫
+

−

ll  

Equation (4.12) after integration becomes: 

2
T

V

LQdv).y,x(Q ⋅⋅λ==∫∫∫ l  

Substituting equations (3.31) and (4.13) in equation (4.4) the following expression 

is obtained: 

[ ]
[ ]

[ ]
[ ]

( )
( )

'dz'dy'dx.
)'yy('xx

)'yy('xx
ln.

2/LyH

2/LyH
.

)aL(xH
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π
λ+=

l

ll
 

 After applying properties of the Heaviside as before and simplifying, we get: 

( )
( ) 


















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π
λ

+= ∫ ∫
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+

'dy'.dx.
)'yy('xx
)'yy('xx

ln
k4

T)y,x(T
2/L

2/L

aL

a
22

22

B  

In order to express results in non-dimensional form, the following non-

dimensional quantities are defined: 
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BT
)y,x(T

)y,x(T =  
Non-dimensional temperature 

B

2

kT
L.λ

=λ  Non-dimensional heat generation 

L
y

y,
L
x

x ==  Non-dimensional field point location 

L
'y

'y,
L

'x
'x ==  Non-dimensional source point location 

L
a

a =  Non-dimensional distances 

Finally, substitute all these quantities in the previous equation and the following 

relationship is obtained: 

( )
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
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a
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Equation (4.15) is the temperature profile for a semi-infinite slab with constant 

temperature on boundary heated by a square prismatic bar carrying a current and 

embedded in the slab. Thus an “analytical solution” for the temperature distribution has 

been obtained. 

Equation (4.15) can be easily evaluated. Some of the results for different values of 

aandλ  are presented in the figures 4.32 to 4.41. 

  
 
 
 

Figure 4.32. Dimensionless temperature distribution, square prismatic-heating source 
0a,5 ==λ . 
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Figure 4.33. Dimensionless temperature distribution, square prismatic-heating source 
25.0a,5 ==λ . 

 

  
              
         
 

Figure 4.34. Dimensionless temperature distribution, square prismatic-heating source 
5.0a,5 ==λ . 
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Figure 4.35. Dimensionless temperature distribution, square prismatic-heating source 

75.0a,5 ==λ . 
 

 
              
         
 

Figure 4.36. Dimensionless temperature distribution, square prismatic-heating source 
1a,5 ==λ . 
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Figure 4.37. Dimensionless temperature distribution, square prismatic-heating source 

2a,5 ==λ . 
 

  
 
 
 

Figure 4.38. Dimensionless temperature distribution, square prismatic-heating source 
3a,5 ==λ . 
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Figure 4.39. Dimensionless temperature distribution, square prismatic-heating source 
0a,10 ==λ . 

 

  
 

           
Figure 4.40. Dimensionless temperature distribution, square prismatic-heating source 

1a,10 ==λ . 
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Figure 4.41. Dimensionless temperature distribution, square prismatic-heating 
source. 0a,10 ==λ . Comparison with results from ANSYS. 
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Figures 4.32 to 4.38 show the profiles of non-dimensional temperature along the 

axis "x", to different values of "y", for 5=λ  and to different location of the source of heat 

generation. We observe that the maximum points of the curves are displaced according to 

the location of the source of heat generation. 

Figures 4.39 to 4.40 show the case for a higher value of the non-dimensional 

strength of the source ( 10=λ ) and different locations of source. It observed that curves 

keep the same behavior that the previous curves. 

Again for comparison purposes this case was resolved using ANSYS (which uses 

analysis of finite element to solve the problems), the results for both the present work and 

ANSYS are shown in the figure 4.41. The figure 4.41 shows the profiles of dimensionless 

temperature for 10=λ and 0a = . The analytical solution obtained here and the results of 

ANSYS are plotted. It observed that the results agree very well. Appendix [E] shows 

ANSYS element and results. Once again the figure 4.41 validates the results obtained 

with the method used in this work, which is much simpler and easier to evaluate. 
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4.1.4 Semi-Infinite Slab with a Thin Cylindrical - Heating Source  

A thin wire in the form of a thin cylindrical heating source is embedded, as a heat-

generating element, in a semi-infinite two-dimensional slab 0x > , - ∞<<∞ y , 

∞<<∞− z , and constant thermal conductivity k. The source can be assumed as a thin 

cylindrical heat source with walls infinitesimally thin; with large depth l  and radius “a”; 

the heat generation per unit length along the source per unit depth is constant and the 

boundary in 0x =  is maintained at constant temperature TB as shown in figure 4.42 (a). 

Let: 

QT  ≡ Total heat generation (W) = l..a..2 λπ  

λ ≡ Strength of the heat source per unit depth per unit length (W/m2) 

),r(Q θ ≡ Heat generation intensity per unit volume (W/m3) at position ),r( θ . 

),r(Q θ  when integrated over the whole volume must be equal to the total heat 

generation inside semi-infinite slab, i.e. ∫∫∫ =θ
V

TQdv).,r(Q  

For cylindrical coordinates the total heat generation of the heat source TQ can be 

expressed as follows: 

l

l

l

..a..2Qdz.d.dr.r).,r(Q T

2

2

2

0 0

λπ==θθ∫ ∫ ∫
−

π∞

 ………………………..…... (4.16) 
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 Figure 4.42. (b) Semi-infinite slab with a thin cylindrical-heating source 
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Figure 4.42. (a). Semi-infinite slab with a thin cylindrical-heating source 
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The procedure to solve this problem is similar to that followed for the previous 

cases, using the same equation of Green's function, developed for the previous cases. The 

only difference is cylindrical coordinates are used to represent the expression of the 

generation of heat, as they are more convenient. 

According the geometry show in the figure 4.42. (c) the heat generation Q(x,y) is 

expresses of the following form: 

r1 

r2 

Field point 
 

a 

Source 
point 
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Image heat sink  

Figure 4.42. (c) Image for a unit heat source for a thin cylindrical-heating source 
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)ar(.),r(Q)y,x(Q −δλ=θ= ………………………………………………………… (4.17) 

The equation (4.16) satisfy to equation (4.17), integrating over the volume of 

semi-infinite slab obtained: 

∫∫∫∫ ∫ ∫
∞π

−−

π∞

−δθλ=θ−δλ
0

2

0

2

2

2

2

2

0 0

dr).ar(.r.d.dz.dz.d.dr.r.)ar(.

l

l

l

l

 

Using the properties for Dirac-Delta function we get: 

ll ..a..2d.a
2

0

λπ=θ⋅⋅λ ∫
π

 

Equation (4.17) after integration becomes: 

l..a..2Q),r(Q T
V

λπ==θ∫∫∫  

Substitute equations (3.31) and (4.17) in equation (4.4): 

( ) ( )
( )

'dz'd'dr'.r.
r

r
ln.a'r

k4
T)y,x(T

2

2

2

0 0
2

1

2
2

B θ












−δ
π
λ+= ∫ ∫ ∫

−

π∞
l

ll
……………………………  (4.18) 

 Using the figure 4.45. (c) one can get: 
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( ) ( ) ( ) ( )'cos.r'.r.2'rrr 222
1 θ−θ−+=  

( ) [ ] [ ]222
2 cos.r'cos'.rb2'sin'.rsin.rr θ+θ++θ−θ=  

Where: a'r =  localization of ring heat source 

( ) ( )'cos.r.a.2arr 222
1 θ−θ−+= ……………………………………..…………… (4.19) 

( ) [ ] [ ]222
2 'cos.acos.rb2'sin.asin.rr θ+θ++θ−θ= ……………………………… (4.20) 

 Substituting the values of r1, and r2 in the equation 4.18, equation 4.21 is obtained 

as: 

( ) [ ] [ ]
( )

'dz'd'dr'.r.
'cos.r.a.2ar

'cos.acos.rb2'sin.asin.r
ln.a'r

k4
T)y,x(T 22

222

2

2

0 0
B θ









θ−θ−+
θ+θ++θ−θ

−δ
π
λ

+= ∫ ∫ ∫
−

π∞
l

ll
…. (4.21) 

Applying again properties for Dirac Delta function and after integrating along of 

z-axis, obtaining: 

[ ] [ ]
( )

'd.
'cos.r.a.2ar

'cos.acos.rb2'sin.asin.r
ln

k4
a.

T)y,x(T
2

0
22

22

B θ








θ−θ−+
θ+θ++θ−θ

π
λ+= ∫

π

……….….. (4.22) 
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In order to express results in non-dimensional form, the following non-

dimensional quantities are defined: 

BT
),r(T

),r(T
θ

=θ  
Non-dimensional temperature 

BkT
.a..2 πλ=λ  Non-dimensional heat generation 

a
r

r =  Non-dimensional radius 

a
b

b =  Non-dimensional source point location 

Finally, substitute all these quantities in the previous equation and the following 

relationship is obtained: 

[ ] [ ]
( ) 'd.

'cos.r.2r1
'sinsin.r'coscos.rb.2

ln
.8

1),r(T)y,x(T
2

0
2

2

2 θ








θ−θ−+
θ−θ+θ+θ+

π
λ

+=θ= ∫
π

 …………..(4.23) 

 Equation (4.23) is the temperature profile for a semi-infinite slab with constant 

temperature on boundary heated by a wire in the form of a thin circle carrying a current 

and embedded in the slab. Thus an "almost analytical" solution" for the temperature 

distribution has been obtained. Using the software Mathcad this solution in the form of an 

integral can be easily evaluated. Some of the results for different values of by,λ  are 

presented in the figures 4.43 to 4.50. 
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Figure 4.43. Dimensionless temperature distribution, thin cylindrical-heating source 
1b,5 ==λ  

 

 
 
 

 

Figure 4.44. Dimensionless temperature distribution, thin cylindrical-heating source 
25.1b,5 ==λ  
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Figure 4.45. Dimensionless temperature distribution, thin cylindrical-heating source 
5.1b,5 ==λ  

 

 
 
 
 

Figure 4.46. Dimensionless temperature distribution, thin cylindrical-heating source 
75.1b,5 ==λ  
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Figure 4.47. Dimensionless temperature distribution, thin cylindrical-heating source 
2b,5 ==λ  

 

 
 
 

 

Figure 4.48. Dimensionless temperature distribution, thin cylindrical-heating source 
1b,10 ==λ  
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Figure 4.49.(a) Dimensionless temperature distribution, thin cylindrical-heating source 
2b,10 ==λ  

 
 

 
 
 

Figure 4.49.(b) Dimensionless temperature distribution, thin cylindrical-heating source 
2b,10 ==λ  
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Figure 4.50. Dimensionless temperature distribution, thin cylindrical-heating source 
2b,10 ==λ . Comparison with result from ANSYS. 
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are plotted in the Figures 4.48 to 4.49.(b). Similar behavior as that of the previous curves 

are observed. 

Figure 4.49.(b) shows the behavior of temperature profile near the boundary x = 

0, along radial lines for various angles θ , between 90o and 180o. The non-dimensional 

temperature decreases to 1T = . 

For comparison and validation purposes the “almost analytical solution” obtained 

from Green's function equation is compared with a numerical solution using ANSYS and 

the results agree closely as shown in figure 4.50 for 10=λ  and 2b = .  

To obtain good precisions computation using ANSYS needed a very fine mesh 

size with high memory and time requirements. Appendix [F] shows ANSYS element and 

results. Again our method is almost analytical and superior for parametric studies. 
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4.2. Semi-Infinite Slab (Three-dimensional case) 

4.2.1 Semi-Infinite Slab with a Finite Line Heating Source  

A current carrying wire of finite length L )b2L( =  is embedded as a heat-

generating element. In a semi-infinite three-dimensional slab 0x > , - ∞<<∞ y , 

∞<<∞− z , and constant thermal conductivity k. The finite line can be assumed as a 

finite line heat source with finite length L; the heat generation per unit length is constant 

and the boundary in 0x =  is maintained at constant temperature TB as shown in figure 

4.51 (a).  

 

 

 

 

 

 

 

 

 

Figure 4.51. (a) Semi-infinite slab with a finite line-heating source 
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Let: 

QT  ≡ Total heat generation (W) = L.λ  

λ ≡ Strength of the heat source per unit length of source (W/m) 

Q(x,y,z) ≡ Heat generation intensity per unit volume (W/m3) 

Q(x,y,z) when integrated over the whole volume must be equal to the total heat 

generation inside the semi-infinite slab, i.e. ∫∫∫ =
V

TQdv).z,y,x(Q  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.51. (b) Semi-infinite slab with a finite line-heating source 
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For cartesian coordinates this condition becomes: 

L.Qdz.dy.dx).z,y,x(Q T

2

2
0

λ==∫ ∫ ∫
−

∞

∞−

∞
l

l

 …………….……………………………... (4.24) 

The heat generation Q(x,y) is expresses of the following form: 

[ ] [ ]{ }bzHbzH).y().ax(.)z,y,x(Q −−+δ−δλ= ………………………………….. (4.25) 

The equation (4.25) satisfy to equation (4.24), Now integrate the right hand side 

of expression (4.25) as indicated in equation (4.24) 

[ ] [ ]{ }{ } =−−+δ−δλ∫ ∫ ∫
∞

∞−

∞

∞−

∞

0

dz.dy.dx.bzHbzH).y().ax(.  ∫∫ ∫
∞

=

−=−

∞

∞−

−δ⋅δλ
0

2
L

b

2
L

b

dx.)ax(dy).y(.dz  

Using the properties for Dirac-Delta and Heaviside function is obtained: 

L.1.1.dz
2
L

b

2
L

b

λ=λ ∫
=

−=−

 

Equation (4.24) after integration becomes: 
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L.Q)z,y,x(Q T
V

λ==∫∫∫  

Substitute equations (3.35) and (4.25) in equation (4.4): 

[ ] [ ]{ }{ }

'dz'dy'dx.

)'zz()'yy()'xx(

1

)'zz()'yy()'xx(

1

.bzHbzH).y().ax(

k..4
T)z,y,x(T

2

2
0

222

222
B ∫ ∫ ∫

−

∞

∞−

∞

















































−+−++

−
−+−+−

−−+δ−δ

π
λ

+=

l

l

 

  

Integration on z is easily performed, for x and y the properties for Dirac Delta and 

Heaviside functions obtaining the following: 













































−+−++

−
−+−+−

π
λ

+= ∫
−

'dz

)'zz()'yy()'xx(

1

)'zz()'yy()'xx(

1

k4
T)z,y,x(T

b

b
222

222

B
 

 

In order to express results in non-dimensional form, the following non-

dimensional quantities are defined: 
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BT
)y,x(T

)y,x(T =  Non-dimensional temperature 

BkT
λ

=λ  Non-dimensional heat generation 

L
z

z,
L
y

y,
L
x

x ===  Non-dimensional field point location 

L
'z

'z,
L

'y
'y,

L
'x

'x ===  Non-dimensional source point location 

L
a

a =  Non-dimensional distance 

 

Finally, substitute all these quantities in the previous equation and the following 

relationship is obtained: 













































−+++

−
−++−

π
λ

+= ∫
−

'dz

)'zz()y()'ax(

1

)'zz()y()'ax(

1

.4
1)z,y,x(T

2/1

2/1
222

222
 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( ) 

































 ++++++





 −++++−





 −++−+−





 +++−++

π
λ

+=

222

222

222

222

5.0zy)ax(5.0z

5.0zy)ax(5.0z

.
5.0zy)ax(5.0z

5.0zy)ax(5.0z

ln.
.4

1)z,y,x(T
………………. (4.26) 
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Where: 0'y,a'x ==  locates the finite line-heating source 

Equation (4.26) is the temperature profile for a semi-infinite slab with constant 

temperature on boundary heated by a wire in the form of a finite line carrying a current 

and embedded in the slab. Thus an “analytical solution” for the temperature distribution 

has been obtained. 

Equation (4.26) can be easily evaluated. Some of the results for different values of 

aand,λ  are presented in the figures 4.52. (a) to 4.59. 

 

 
 
 
 

 
Figure 4.52. (a) Dimensionless temperature distribution, finite line-heating source 

0z,5.0a,5 ===λ . 
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Figure 4.52. (b) Dimensionless temperature distribution, finite line-heating source 

0z,5.0a,5 ===λ . 
 

 
            
         
 

Figure 4.53. (a) Dimensionless temperature distribution, finite line-heating source 
4.0z,5.0a,5 ±===λ . 
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Figure 4.53. (b) Dimensionless temperature distribution, finite line-heating source 

4.0z,5.0a,5 ±===λ  
 

 
 

           
Figure 4.54. (a). Dimensionless temperature distribution, finite line-heating source 

5.0z,5.0a,5 ±===λ  
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Figure 4.54. (b). Dimensionless temperature distribution, finite line-heating source 

5.0z,5.0a,5 ±===λ  
 

 
            
         

Figure 4.55. (a) Dimensionless temperature distribution, finite line-heating source 
55.0z,5.0a,5 ±===λ . 
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Figure 4.55. (b). Dimensionless temperature distribution, finite line-heating source 

55.0z,5.0a,5 ±===λ . 
 

 
 

           
Figure 4.56. (a) Dimensionless temperature distribution, finite line-heating source 

6.0z,5.0a,5 ±===λ  
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Figure 4.56. (b) Dimensionless temperature distribution, finite line-heating source 

6.0z,5.0a,5 ±===λ  
 

 
            
         
 

Figure 4.57. (a) Dimensionless temperature distribution, finite line-heating source 
8.0z,5.0a,5 ±===λ . 
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Figure 4.57. (b) Dimensionless temperature distribution, finite line-heating source 
8.0z,5.0a,5 ±===λ . 

 
            
         
 

Figure 4.58. Dimensionless temperature distribution, finite line-heating source 
0z,2a,5 ===λ . 
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Figure 4.59. Dimensionless temperature distribution, finite line-heating source 
0z,2a,5 ===λ . 

The obtained solution is an analytical expression that can be easily evaluated. 
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dimensional strength of the source 5=λ , ,5.0a =  at different values of z . The same 

behavior of the previous curves is observed, but the peaks fall to 1T =  when z>0. 

Finally the figures 4.58 to 4.59 shown the cases for the non-dimensional strength 

of the source 5=λ , 5.0b = , but different values 1a =  and 2a = , maintaining constant the 

value of 0z = . The figures have the same behavior of the previous curves. But these are 

displaced according to the location of the source of heat generation.     

Thus we have a closed form analytical solution for temperature distribution in this 

case, which is easy to evaluate. This problem was not solved numerically by using 

ANSYS because the problem is fully three-dimensional and is extremely difficult to solve 

by ANSYS. 
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4.3. Infinite Quadrant 

4.3.1 Infinite Quadrant with a Square Line Heating Source 

A thin wire in the form of square line-heating source is embedded, as a heat-

generating element in an infinite two-dimensional quadrant 0x > , 0y > , ∞<<∞− z , 

and constant thermal conductivity k. The square line can be assumed as a square line 

source with walls infinitesimally thin, side L and large depth l ; the heat generation per 

unit length per unit depth is constant and the boundary in 0yand0x ==  is maintained 

at constant temperature TB as shown in figure 4.60. (a) 

Let: 

QT  ≡ Total heat generation (W) = L...4 lλ  

λ ≡ Strength of the heat source per unit depth per unit length (W/m2) 

Q(x,y) ≡ Heat generation per unit volume (W/m3) 

 

 

 

  

 

 

 

 
Figure 4.60. (a) Infinite quadrant with a square line-heating source 
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Q(x,y) when integrated over the whole volume must be equal to the total heat 

generation inside the hollow box, i.e. ∫∫∫ =
V

TQdv).y,x(Q  

For cartesian coordinates this condition becomes: 

[ ] L...4LLLL..Qdz.dy.dx).y,x(Q T

2

2
0 0

ll

l

l

λ=+++λ==∫ ∫ ∫
−

∞ ∞

…………………. (4.27) 

 The heat generation Q(x,y) is expresses of the following form: 
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)y,x(Q ………………… (4.28) 

Figure 4.60. (b) Infinite quadrant with a square line heating source 
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The equation (4.28) satisfy to equation (4.27), Now integrate the right hand side 

of expression (4.28) as indicated in equation (4.27) 
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Using the properties for Dirac-Delta and Heaviside function is obtained: 
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Equation (4.27) after integration becomes: 
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Substitute equations (3.39) and (4.28) in equation (4.4): 
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 Integration on z is easily performed, for x and y the properties for Dirac Delta and 

Heaviside functions obtaining the following expression: 

( )[ ] ( )[ ]
( )[ ] ( )[ ]
( )[ ] ( )[ ]
( )[ ] ( )[ ]
( )[ ] ( )[ ]
( )[ ] ( )[ ]
( )[ ] ( )[ ]
( )[ ] ( )[ ] 








































































+++−+−
−++++−

+








++++−+−−

−+++++−−

+

































++++−−+−
−−+++++−

+








+++−+−

−++++−

π
λ

+=

∫

∫

+

+

bL

b

2222

2222

2222

2222

aL

a

2222

2222

2222

2222

B

dy.

)'yy(ax.)'yy(ax
)'yy(ax.)'yy(axln

)'yy(aLx.)'yy(aLx

)'yy(aLx.)'yy(aLx
ln

dx.

)bLy('xx.)bLy('xx
)bLy('xx.)bLy('xx

ln

)by('xx.)by('xx

)by('xx.)by('xx
ln

.
k4

T)y,x(T  

In order to express results in non-dimensional form the following non-

dimensional quantities are defined: 
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BT
)y,x(T

)y,x(T =  Non-dimensional temperature 

BkT
Lλ

=λ  Non-dimensional heat generation 

L
y

y,
L
x

x ==  Non-dimensional field point location 

L
'y

'y,
L

'x
'x ==  Non-dimensional source point location 

L
b

b,
L
a

a ==  Non-dimensional distances 

Finally, substitute all these quantities in the previous equation and the following 

relationship is obtained: 
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Equation (4.29) is the temperature profile for an infinite quadrant with constant 

temperature on boundary heated by a wire in the form of a thin line square, carrying a 

current and embedded in the slab. Thus an exact solution for the temperature distribution 

has been obtained. 

Equation (4.29), even though is long, can be easily evaluated. Some of the results 

for different values of banda,λ  are presented in the figures 4.61 to 4.71. 

 

 
              
         
 

Figure 4.61. Dimensionless temperature distribution, square line-heating source 
0b,0a,5 ===λ . 
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Figure 4.62. Dimensionless temperature distribution, square line-heating source 

0b,25.0a,5 ===λ . 
 

 
 

           
Figure 4.63. Dimensionless temperature distribution, square line-heating source 

0b,5.0a,5 ===λ . 
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Figure 4.64. Dimensionless temperature distribution, square line-heating source 

0b,75.0a,5 ===λ . 
 

 
 

           
Figure 4.65. Dimensionless temperature distribution, square line-heating source 

0b1a,5 ===λ . 
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Figure 4.66. Dimensionless temperature distribution, square line-heating source 

0b,2a,5 ===λ . 
 

 
 

           
Figure 4.67. Dimensionless temperature distribution, square line-heating source 

0b,3a,5 ===λ . 
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Figure 4.68. Dimensionless temperature distribution, square line-heating source 

1b,1a,5 ===λ . 
 

 
 

           
Figure 4.69. Dimensionless temperature distribution, square line-heating source 

1b,2a,5 ===λ . 
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Figure 4.70. Dimensionless temperature distribution, square line-heating source 

1b,1a,10 ===λ . 
 

 
         

Figure 4.71. Dimensionless temperature distribution, square line-heating source 
1b,1a,10 ===λ . Comparison whit results from ANSYS. 

 

N
on

-d
im

en
si

on
al

 T
em

pe
ra

tu
re

 

Non-dimensional distance x  

y 
8  

8  

x 

10.0  

8.0  

6.0  

4.0  

2.0  

1.0  

12.0  

16.0  

N
on

-d
im

en
si

on
al

 T
em

pe
ra

tu
re

 

Non-dimensional distance x  

y 
8  

8  

x 

2 4 6 8 10 12 14 16 

10.0  

8.0  

6.0  

4.0  

2.0  

1.0  

12.0  

0 18 20 

ANSYS (y =2.0) 

Present Work (y =2.0) 

ANSYS (y =2.25) 

Present Work (y =2.25) 

ANSYS (y =2.50) 

Present Work (y =2.50) 

ANSYS (y =2.75) 

Present Work (y =2.75)

ANSYS (y =3.0) 

Present Work (y =3.0)

ANSYS (y =1000) and Present Work (y =1000)

2.25  2.0 2.5 2.75 3.0  1000 y

2 4 6 8 10 12 14 16 0 18 20 



 

 

134 

 

For this case the solution is in -the form of an exact algebraic expression. Which 

can be easily evaluated for the temperature profiles. 

Figures 4.61 to 4.69 show the cases for the constant value of the non-dimensional 

strength of the source ( 5=λ ), for different a  and b . The heating generating elements are 

moved to different locations. The same behavior of the previous curves is observed, but 

the peaks are displaced according to the source location.  

Figures 4.70 shows the non-dimensional temperature profiles for the particular 

case with 10=λ , with 1a =  and 1b = . The behavior is similar to previous case, the 

temperature is maximum when x  or y  = constant line cuts through the source. 

Thus, once again we get a closed-form elegant solution. Figure 4.71 compares the 

results obtained with the analytic solution and the result from ANSYS, both results agree 

closely. Appendix [G] shows ANSYS element and results. While the present method 

needs a “simple calculator” ANSYS required tremendous computational effort and time 

which gets multiplied by factors if we have to make parametric studies. 
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V.  CONCLUSIONS 

 

The temperature distribution in semi-infinite slabs and infinite quadrants with 

various form of discrete heat generation source has been calculated, using Green’s 

function techniques. The Green’s function itself was calculated using the method of 

images. Six cases of heat generation were considered. For the cases considered here, we 

get an exact solution or an almost analytical solution in the form of a simple integral. 

These solutions are elegant, easy to evaluate and highly suitable for parametric studies 

and for accurate heat flux calculations. In all cases the solution by present method has 

been shown to be superior to numerical solution in terms of computational requirements. 

We considered two and three-dimensional geometries with Dirichlet boundary 

conditions (temperature specified on boundary). It should be noted that the method of 

images when applied to more complex geometries would result in difficulties similar that 

encountered in other methods. 

Classical solutions by separation of variables method (or any other method 

involving orthogonal eigenfunction expansions), results are usually in terms of infinite 

series. Infinite series solutions are sensitive to the number of terms of the series and 

sometime have convergence problems. Numerical solutions when used with discrete heat 

sources can produce inaccuracies near source region especially for calculating heat flux. 

For discrete sources the method of separation of variables fails. 
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The commercial computer software package ANSYS (university version 6.0. 

which uses Finite Element Analysis to solve the problems) is a very important tool to 

solve problems of conduction heat transfer with complex geometry for the discrete heat 

generation sources. The analytical or almost analytical solutions obtained here have been 

compared with the numerical solutions obtained by ANSYS. 

For the case of semi-infinite slab with finite line heating source, it was not 

possible to obtain a numerical solution by ANSYS, because of the fully three 

dimensionality of the problem. The present method yields and elegant algebraic 

expression. 

The installation of the complete version of software is necessary and to make tests 

with the purpose of determining if this solves the problems. 

In contrast, the method used in the present work proved to be a good alternative to 

solve heat conduction problems with discrete heat generation sources, the solution is an 

elegant analytical expression yielding algebraic expression in all cases, except for the 

case of thin cylindrical heating source where it is in the form of an integral which can be 

easily evaluated. These methods are extremely convenient for parametric studies and heat 

flux calculations. Another advantage in complex solutions can be obtained as 

superposition of simpler solutions. 
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The limitation of the method is it is applicable to semi-infinite regions, thin and 

infinitely long cylinders and spheres. For other geometries the image system will become 

very complex. 

The solutions obtained with the method of images are applicable to similar 

problems (with the same boundary conditions) in other areas of the science and 

engineering such as electrodynamics, fluids mechanics, elasticity and potential theory. 

Future work could be directed on problems with variable thermal conductivity k, 

in bodies such as cylinders, spheres as well as semi-infinite slabs and infinite quadrants. 

Studies should also include the effect of temperature varying along the boundaries. 
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APPENDICES 

 
APPENDIX A  

ANSYS RESULTS, LINE PLATE HEAT SOURCE 

ANSYS RESULTS FOR A LINE PLATE HEAT SOURCE 10=λ , 0a =  AND 0.1b =  
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APPENDIX B 
 

ANSYS RESULTS WITH DIFFERENT RATIO PLATE LENGTH / LENGTH OF 

THE “INFINITE” REGION, LINE PLATE HEAT SOURCE. 10=λ  AND 0a = . 

   Ratio 1/400 
 

   Ratio 1/800 
 

  Ratio 1/1000 
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APPENDIX C 
 

ANSYS RESULTS, HOLLOW BOX HEAT SOURCE (SQUARE) 
 
ANSYS RESULTS FOR A HOLLOW BOX HEAT SOURCE 10=λ  AND 0a = . 
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APPENDIX D 

RESULTS FOR A RECTANGULAR HOLLOW BOX HEAT SOURCE 

A thin current carrying plate bent in the form of a rectangle forming a rectangle 

hollow box-heating source is embedded, as a heat-generating element, in a semi-infinite 

two dimensional slab 0x > , - ∞<<∞ y , ∞<<∞ z , and constant thermal conductivity 

k. The heating element can be assumed as a hollow box heat source with walls 

infinitesimally thin; with large depth l  and side L. The heat generation per unit length 

along the source per unit depth is constant and the boundary 0x =  is maintained at 

constant temperature TB as shown in figure (a). 

 

 

 

 

 

 

 

 

 

Figure (a). Semi-infinite slab with a rectangular hollow box-heating source 
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Let: 

QT  ≡ Total heat generation (W) =  

λ ≡ Strength of the heat source per unit depth per unit length (W/m2) 

Q(x,y) ≡ Heat generation intensity per unit volume (W/m3) 

Q(x,y) when integrated over the whole volume must be equal to the total heat 

generation inside the semi-infinite slab, i.e. ∫∫∫ =
V

TQdz.dy.dx).y,x(Q  

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 Figure (b). Semi-infinite slab with a rectangular hollow box-heating source 
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For cartesian coordinates this condition becomes: 

[ ]d)ab(d)ab(..Qdz.dy.dx).y,x(Q T

2

2
0

+−++−λ==∫ ∫ ∫
−

∞

∞−

∞

l
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l

 ……….…………... (A) 

Similarly to the previous case, an expression was derived for the generation of 

heat for unit of volume using the same principle, but with the assumption that the hollow 

box this formed by 4 plates infinitesimally thin. They were calculated in an independent 

way adding the results, obtaining the following expression for the heat generation Q(x,y): 
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The equation (B) satisfy to equation (A), Now integrate the right hand side of 

expression (B) as indicated in equation (A): 
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Using the properties for Dirac-Delta and Heaviside function is obtained: 
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Equation (A) after integration becomes: 
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 Integration on z is easily performed, then applying again the properties for Dirac 

Delta and Heaviside functions for x and y, we get: 
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In order to express results in non-dimensional form the following non-

dimensional quantities are defined: 

BT
)y,x(T

)y,x(T =  
Non-dimensional temperature 

BB kT
d2

kT
)ab( λ

=
−λ

=λ  Non-dimensional heat generation 

L
y

y,
L
x

x ==  Non-dimensional temperature location 

L
'y

'y,
L

'x
'x ==  Non-dimensional source location 

L
d

d,
L
b

b,
L
a

a ===  Non-dimensional distances 

 

Finally, substitute all these quantities in the previous equation and the following 

relationship is obtained: 
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 Equation (C) is the temperature profile for a semi-infinite slab with constant 

temperature on boundary heated by a wire in the form of a rectangular hollow box 
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carrying a current and embedded in the slab. Thus an “analytical solution” for the 

temperature distribution has been obtained. 

Equation (C), is an algebraic expression, which can be easily evaluated. Some of 

the results for different values of dand,b,a,λ  are presented in the following figures: 

 

 
 

           
Figure (c). Dimensionless temperature distribution, rectangular hollow box-heating 

source. 5.0d,3b,1a,10 ====λ  
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APPENDIX E 

ANSYS RESULTS, SQUARE PRISMATIC HEAT SOURCE 

ANSYS RESULTS FOR A SQUARE PRISMATIC HEAT SOURCE 10=λ  AND 

0a = . 
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APPENDIX F 

ANSYS RESULTS, THIN CYLINDRICAL HEAT SOURCE 

ANSYS RESULTS FOR A THIN CYLINDRICAL HEAT SOURCE 10=λ  AND 

0.2b = . 
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APPENDIX G 

ANSYS RESULTS, SQUARE LINE HEAT SOURCE 

ANSYS RESULTS FOR A SQUARE LINE HEAT SOURCE 10=λ , 0.1a =  AND 

0.1b = . 
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