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ABSTRACT 
 

 
The presented research work analyzes numerically the flow characteristics such as density, 

pressure, and temperature at subsonic and supersonic speeds for flows past airfoils and 

explain their difference.  Also, it analyzed the usage of the Entropy Generation Rate as a 

viable and effective way to design and model aerospace airfoils under different atmospheric 

environments.  The goal of this research is to study the flow characteristics and the steady 

entropy production due to friction and heat transfer.  To accomplish these goals, a wedge, a 

diamond wedge, and three different supercritical airfoils, the NACA 64215, the Grumman 

K2, and the Whitcomb Supercritical Integral Airfoil were studied.  To verify the accuracy of 

the numerical program, an inviscid supersonic flow past a wedge at Mach 2.6 was analyzed 

to verify the accuracy of the Computation Fluid Dynamics (CFD) program.  Two of the 

airfoils were analyzed at five different Mach numbers, while the third one was analyzed at 

four different Mach numbers.  The flow characteristics and the entropy generation for the 

NACA 64215 and the K2 were investigated at five different speeds.  Four of the speeds, 

Mach 0.3, 0.6, 2.0, and 3.0, were similar for all the airfoils at standard atmospheric 

conditions while the last speed varied depending on the experimental data taken from wind 

tunnels.  These Mach number were selected in order to have two subsonic cases and two 

supersonic cases.  The viscous diamond wedge airfoil was analyzed only at Mach 0.6 and 

Mach 2.0 and at an angle of attack (alpha) of one degree to compare its entropy generation 

rate with the entropy generation from the three airfoils. 
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The entropy generation rate was determined by using the results obtained from the NASA 

CFL3D CFD program and input those results into a Fortran program that was done for this 

thesis.  CFL3D is a structured grid CFD solver program that analyzes the time dependent 

conservation form of the Reynolds-Averaged thin-layer Navier-Stokes equations. It uses a 

semi-discrete finite-volume approach in order to spatially discretized the formulas with 

upwind-biasing for the convective and pressure terms and central differencing for the shear 

stress and heat transfer terms.  An implicit method is used in order to advance in time and 

solving for either steady or unsteady flows.  Experimental data is used to validate the results 

of the program. 
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RESUMEN  
 

La presente investigación analiza numéricamente las características del flujo como densidad, 

presión, y temperatura a velocidades subsónicas y supersónicas alrededor de alas y explicas 

las diferencias.  También se analiza la Razón de Generación de Entropia como herramientas 

viables para el diseño de alas aeroespaciales bajo ambientes atmosféricos diferentes.  La meta 

de esta investigación es de estudiar las caracteristicas del flujo y la producción de entropy 

estable debido a la friccion y la transferencia de calor.  Para alcanzar estos objetivos, una 

cuña, una cuña en forma de diamante y tres distintos tipos de alas, la NACA 64215, la 

Grumman K2, y la Whitcomb Supercriticial Integral fueron estudiadas.  Para verificar la 

precision del programa numérico,  se estudio el flujo supersónico sin fricción alrededor de 

una cuña teniendo un número de Mach de 2.6 para verificar la precisión del programa de 

Dinámica de Fluidos Computacionales (CFD, en ingles).  Dos de las alas fueron analizadas 

en cinco distintos tipos de números de Mach, mientras que la tercera ala fue analizada en 

cuatro distintos números de Mach.  A las alas NACA 64215 y K2 se les investigó las 

características del flujo y la generación de entropía a cinco distintas velocidades.  Cuatro de 

las velocidades, Mach 0.3, Mach 0.6, Mach 2.0 y Mach 3.0 eran similares en todas las alas 

bajo condiciones atmosféricas estándar y la última velocidad depende para igualar la 

velocidad en la data obtenida en túneles de viento.  Estas velocidades fueron escogidas para 

tener dos velocidades subsónicas y dos velocidades supersónicas.  La cuña en forma de 

diamante fue analizada a un numero de Mach de 0.6 y Mach 2.0 solamente para comparar la 

razón de la generación de entropía creada con la generación de entropía de las otras tres alas. 
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La razon de generacion de entropía es determinado utilizando los resultados obtenidos por el 

programa de Dinámicas de Flujo Computacional CFL3D de la NASA.  Estos resultados son 

entrados en un programa hecho en el lenguaje de Fortran específicamente para esta tesis.  El 

programa CFL3D es un programa de CFD que soluciona mallas estructuradas para la forma 

conservadora dependiente en tiempo de las ecuaciones de Reynolds-Averaged thin-layer 

Navier-Stokes.  El enfoque del programa es de volumen-finito semi-discreto para discretizar 

en espacio utilizando un upwind-biasing para las partes de presión y de confección y una 

diferencia-central para las partes de esfuerzo cortante y de transferencia de calor.  Un metodo 

implicito es utilizado para avanzar en tiempo para ambos casos estables y casos inestables.  

Data experimental fue utilizada para validar los resultados del programa. 
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1 INTRODUCTION 
 
 

Although great improvements and new research in the area of aerodynamics has led to great 

inventions such as jet airplanes, there are still a large number of unanswered questions.  Fluid 

flow dynamics can be divided and studied depending on the speed at which the flow is 

traveling.  It can be divided into three areas of interest, subsonic, transonic, and supersonic.  

A flow is said to be traveling at a subsonic speed when its speed is less than the speed of 

sound.  On the other hand, a flow is considered to be supersonic when it is traveling faster 

than the speed of sound.   Flow characteristics such as temperature, density and pressure at 

those two different regimes are different and at the same time keep varying as the speed 

keeps increasing within each regime.   

One term that is commonly used to describe the speed of the flow is the Mach number, in 

honor of the Austrian physicist Ernst Mach.  It is defined as the ratio of the speed of the flow 

to the speed of sound.  When the Mach number is one, the flow is said to be at sonic.  The 

flow is subsonic when the Mach number is less than one and supersonic when the Mach 

number is more than one.  One important thing that makes these two flows regimes different 

is the ability of a gas to change its path direction as it goes around a body such as an airfoil.  

If the flow is subsonic, the gas will change its path in order to go around the body.   For a 

supersonic flow, the gas does not have enough time to divert around the body.  When this 

happens in supersonic flow, a compression shock wave is formed in the location where the 

gas strikes the body. 

2  



 
 
 
 

 
In order to study these two ranges of flow speeds, both the first and the second law of 

thermodynamics are used.  Two of the pillars on which physics is founded are the first and 

second law of thermodynamics.  The first law provides a relation between work and all the 

different forms of energy.  It is an application of the conservation of energy which states that 

energy cannot be created or destroyed but that instead it changes from one form to another.  

Although several scientists worked with the concept of energy, it was Rudolf Clausius who 

in 1850 first stated that “There is a state function E, called ‘energy’, whose differential equals 

the work exchanged with the surroundings during an adiabatic process.”  Mathematically, for 

a closed system where mass is not entering or leaving, the first law of thermodynamics can 

be written as: 

WQdE δδ −=  

where  is a infinitesimal change in internal energy,  dE Qδ  is an infinitesimal change in heat, 

and Wδ  infinitesimal change in work.  During the 1820s, Sadi Carnot started to investigate 

the possibility of the maximum amount of mechanical work that can be developed from heat.   

This search led him to develop what we now know as the Carnot type engine.  The Carnot 

type engine represented the ideal reversible engine which can be describe as one where the 

process can be reversed while obtaining the same initial values.  In other words, a cycle 

where there are no dissipative effects such as friction or heat transfer at finite temperature 

difference.  

In a paper in 1850, Rudolf Clausius was the first one to express the second law of 

thermodynamics by stating that “Heat cannot pass spontaneously from a region of lower 

temperature to a region of higher temperature.”  Then in 1865, Clausius extended on work 

 3
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done by others like Carnot and stated in a paper the First and Second Law of 

Thermodynamics by expressing that: 

The energy of the universe is constant.   

The entropy of the universe tends to a maximum.   

He developed what is now known as Clausius inequality: 

∫ ≤ 0
T
Qδ  

and defined for the first time the change in entropy as: 

T
QdS δ

≡   (internally reversible and adiabatic) 

where T  is the temperature.  An adiabatic process which is internally reversible, is called 

isentropic.  Kelvin and Planck defined the Second Law of Thermodynamics in what it is now 

knows as the Kelvin-Planck Statement which states that it is not possible to make a heat 

engine which produces no other effects than the extraction of heat from a single source and 

the generation of an equal amount of work.  If such an engine could exist, it will be called a 

perpetual motion machine.  Later on, in 1877 Ludwig Boltzman modified the definition of 

entropy to represent a statistical measurement of disorder, which J. Willard Gibbs later 

refined and brought about the theory of statistical mechanics. 

One of the important aspects and main usages of the second law of thermodynamics and the 

concept of entropy is that it provides a mean to quantify the efficiency of a process.  Given 

that the maximum amount of work that can be output from a process can be quantify by the 

assuming a Carnot-type engine, then it is possible to calculate the efficiency of a process and 

quantify the different losses.    

 4



 
 
 
 

 
Until 1937 most of the work done with the second law of thermodynamics was related to 

reversible or irreversible thermodynamic transformations in engines and to determine 

efficiencies.  In 1937, Luigi Crocco developed Crocco’s theorem by combining the first and 

second law of thermodynamics.  It related both the translational and rotational movements of 

a fluid element through a flowfield to the second law of thermodynamics.  It was the first 

mathematical relation between the gradient of entropy, the flow vorticity and total enthalpy 

gradient.  One of the important outcomes of Crocco’s theorem is that it proves that all flows 

behind a curved shock wave are rotational even in inviscid flow.  This outcome is important 

in aerospace engineering in order to study and define flows at supersonic speeds around 

airplanes.   

Although the concept of entropy and the second law of thermodynamics have been used in 

aerodynamics, most of its usage has been for flows at high supersonic speeds and only then 

by oversimplifying the problems.  With the technological advancement of computers, the 

new area of Computation Fluid Dynamics (CFD) has allowed engineers and scientist the 

opportunity to program the common equations used to study flows around airplanes.  Given 

the complexity of these equations and the speed of new computers, now it is possible to 

obtain results by programming the complex partial differential equations that before would 

have taken too long to solve without a computer.  This new area of CFD has also allowed 

engineers and scientist to start analyzing the efficiency of aerospace parts in more detail.  

Only until recently, scientist and engineers such as Adrian Bejan[1] has started to use the 

concept of entropy to start talking about the entropy generation rate of different things.  This 

concept of the entropy generation rate allows the study of the efficiency of different things in 
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time.  Therefore, it is now possible to study the entropy generation rate of an airfoil which is 

mainly caused by friction and heat dissipative effects.  In doing so, it is possible to study the 

efficiency of an airfoil and do comparative tests.  For this thesis, the study and comparison of 

the flow characteristics and entropy generation rate will be the main goal. 

 

Motivation 

The work of Luigi Crocco in 1937 has allowed aerospace engineers and scientist to use the 

second law of thermodynamics and entropy in a different way.  For the most part, his work 

has been used to analyze compressible flows phenomena like shock waves and to help 

characterize them.  In recent years, different researches have studied the concept of 

minimization of entropy to analyze and quantify in more detail the losses in mechanical 

systems and ways in which their efficiency can be improved.  Some of these losses that are 

taken into consideration and that cause a process to become irreversible are friction and heat 

dissipation.   

In the area of aerospace engineering, one of the major concerns in all airplane designs is the 

selection of the best suited airfoil shape.  Although iterative methods exist for the selection of 

an airfoil shape, it is still an area of discussion and not so much research has been done.  

Lately, several papers have been published that attempt to analyze different airfoils in terms 

of the entropy that each one produces.  Given that the main purpose of a wing is to hold the 

weight of an airplane by producing lift, it is the intent of this thesis to determine the flow 

characteristics at subsonic and supersonic speeds and also to calculate the entropy generation 

rate that is generated at close proximity to an airfoil for a specific amount of lift.  In doing so, 
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the entropy generated together with the lift-to-drag ratio will help to determine the level of 

efficiency of the airfoil.  For this study, the NACA 642A215 airfoil, the K-2 Grumman airfoil, 

and Whitcomb Supercritical Integral airfoil will be analyzed.  These three airfoils are all 

consider supercritical airfoils due to their ability to achieve high subsonic speeds while 

delaying the drag rise that is caused by the formation of a compression shock at free stream 

speeds close to sonic speed.  These supercritical airfoils were chosen due to their good 

aerodynamic qualities such as low drag and because of available experimental data that will 

be used to compare with the numerical results from the CFL3D program.  Unless specified, 

all the airfoil tests were run in CFL3D assuming standard atmospheric conditions with a 

pressure of 101.325 KPa and a temperature of 288.15K.  This study will also present the way 

in which entropy is generated around an airfoil.   The results from CFL3D were input into a 

Fortran program in order to analyze the entropy generation rate of each airfoil at each 

different Mach number. 

All the cases were analyzed using a Pentium Celeron D 2.8GHz processor with the Intel 

Fortran Compiler and MPICH 1.2.7. 

 

1.1 Literature Review 
 
M. Kostic [1] analyzed the philosophical and practical aspects of energy and entropy having 

as a goal to establish the concept of reversible heat transfer.  Several conclusions were found.  

First, energy is indivisible from matter and space, associated with all processes and thus 

indivisible from time.   For a given state, the addition of energy will randomly distribute over 

the space the system occupies called internal thermal energy, increase its potential energy 
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(temperature) and energy displacement (entropy).  Energy and mass are conserved within the 

interacting systems and the energy will transfer from a higher to a lower potential which will 

result in energy displacement or entropy.  Entropy could be transferred by reversible paths 

from one system to another and also generated due to irreversibility because of heat and work 

transfer. 

Bejan (1995) [3] described the entropy generation minimization as a new analysis for the 

thermodynamics of finite-size devices and finite time processes.  The entropy generation 

minimization (EGM) is a method for modeling and optimizing devices that are affected by 

thermodynamic irreversibilities as heat transfer, mass transfer, and fluid flow irreversibilities.  

In this paper he outlined the way in which the entropy generation minimization method is 

used to analyze and optimize different components of a system.  The EGM has been used in 

the study of cryogenics, heat transfer, education, storage systems, nuclear and fossil power 

plants, solar power plants, and refrigerators.  Also, the use of the EGM might vary from one 

application.  In the case of heat exchangers, the purpose might be to minimize the entropy 

generation while in the case of power plants the goal is to maximize the power output.  The 

EGM consists of taking into account the first and second law.  In his paper, he starts by 

deriving the Gouy-Stodola theorem.  In pure thermodynamics the Gouy-Stodola theorem is 

used which states that the destroyed power is proportional to the total rate of entropy 

generation.  The difference between the Gouy-Stodola theorem (exergy analysis) and the 

EGM method is that the goal of the EGM method is to minimize the calculated entropy 

generation rate.  In order to minimize the entropy generation rate it is necessary to use the 

relations between temperature difference, heat transfer, pressure differences, and mass flow 
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rates.  In this sense, there is no need to make use of the exergy concept to calculate the 

entropy generation rate and minimize it.  The EGM method also makes use of the entropy 

generation number which is a ratio between the entropy generation rate and the minimized 

entropy generation rate.  For the case of heat transfer an equation is given for the entropy 

generation rate per unit tube length which takes into account the wall-stream heat transfer 

coefficient and the frictional pressure drop along the tube.  One interesting characteristic is 

that in all heat transfer devices with fluid flow the entropy generation rate caused by heat 

transfer competes with entropy generation rate caused by fluid friction.  They have opposite 

signs as the diameter of the tube changes and because of this, there is an optimum tube 

diameter that minimizes the total entropy generation rate.  Other heat transfer devices rely on 

external convection in order to accomplish the necessary heat transfer.  In order to analyze 

the entropy generation rate of this system it can be model as the heat transfer between a fluid 

and a body immersed in the fluid.  He gives the entropy generation rate of such a system 

which is composed of a contribution from the heat transfer and another contribution from the 

drag on the immersed body.  As the first heat transfer case, there are two entropy generation 

rates which will compete one against the other.  This points to a minimum total entropy 

generation rate for the optimal body size.  The necessary parameters and a chart is provided 

to view the optimal sizes of a plate, a cylinder, and a sphere.  Some emphasis is put into a 

group that use EGM to explain and predict damping in homogeneous and inhomogeneous 

elastic systems in a theory that they called elastothermodynamic damping.  In this case, it is 

shown that the damping effect is caused by the entropy generated by conduction throughout 

the material.  
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Denton, J. D. [4] analyzed and described the origins and effect of the losses in turbomachines.  

The sources of entropy that he described are in general viscous effects in boundary layers, 

viscous effects in mixing processes, shock waves, heat transfer across temperature 

differences.   He started by explaining how efficiency was categorized in the past and the 

models that engineers and scientist used to use.  These earlier models divided the sources of 

loss in turbomachines in different categories such as profile loss, secondary loss, and tip 

leakage loss and attempted to predict the effect of each individual loss separately.   Still, 

these models depended greatly on correlations of experimental data obtained from tests or 

performance of the machines.  Due to this dependence, little development was achieved to 

comprehend the nature of these losses and people had to adjust all their models to the 

empirical data obtained.  The development in 1970 and 1980 of improved instruments as the 

laser anemometer and the ensemble-average hot-wire data helped identify and characterized 

how the flow behaved in turbomachines.   

He then described the effect of each individual category, starting with profile loss.  Profile 

loss is described as the loss created in the blade boundary layers away from the end walls.  

The loss that is generated from the trailing edge is also included as a profile loss.  Endwall 

loss, which is also classify as secondary loss, is created due to the annulus boundary layers 

pass through a blade row, but he points out the difficulty in  trying to distinguish between 

profile loss and secondary loss since sometimes the losses occur due to a combination of both.  

The third category of loss, tip leakage, arises from the loss of useful flow from the tips of 

blades and hub clearances of stator blades.  The importance of each individual category 

dependences on each system plus other factors such as blade aspect ration and tip clearance.  
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He described that in general, loss refers to anything that reduces the efficiency of a 

turbomachine, but this does not include factors that change the cycle efficiency as opposed to 

turbine or compressor efficiency.  

A loss coefficient is defined that which is different from the ones that are currently in use.  

The most common loss coefficient is the stagnation pressure loss coefficient because of its 

ease to calculate it from test data, but not necessarily the most useful for design purposes.  A 

better coefficient for design purposes will be the use of energy or enthalpy loss coefficient.  

Isentropic efficiency in a machine is a comparison between the actual work and the isentropic 

work of a machine.  Since in most cases the flow is adiabatic, the losses come from entropy 

creation due to irreversibilities.  For this reason it is more useful from a design point of view 

to use entropy increase instead of stagnation pressure or kinetic energy loss.  At the same 

time, the use of entropy does not change if it is viewed from a rotating or stationary blade 

row.  There are different definitions of entropy loss coefficients, but at low speeds, all 

definitions approach the same value.  Denton explains the relation between the efficiency of 

a system and the entropy change.  From the definition of efficiency in a compressor, it can be 

seen that the loss of efficiency is proportional to the increase in specific entropy and to the 

exit temperature.  On the other hand, when entropy is generated as a fluid dynamic process, it 

is inversely proportional to the local temperature.  Therefore, a flow at a high temperature 

creates less entropy than the same process at a lower temperature given that it has fixed 

values for loss coefficient and flow velocity and this is the origin of the “reheat effect” which 

affects the polytropic efficiency to be different from the isentropic efficiency. 
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Denton then describes and characterizes the entropy generation from the different sources.  

He starts by describing the entropy generated from the boundary layers and describes how 

the viscous shear work at the boundary layer causes entropy generation by being converted to 

heat at a specific temperature.  It is noted that in the boundary layer that since the velocity 

gradient is higher near the surface, then most of the entropy generation is concentrated in the 

inner part of the layer.  In turbulent boundary layers most of the entropy generated occurs 

within the laminar sublayer and logarithmic region which are called the “universal velocity 

profile”.  One important fact is that in turbulent boundary layers the dissipation coefficient 

described, is less dependent on the condition of the boundary layer, like the shape factor, than 

is the skin friction coefficient.   Also, the entropy generated by a laminar boundary layer is 

less, by a factor between 2 and 5, than that for a turbulent.  An equation was written that aids 

in determining the total entropy generation in the boundary layer. 

Entropy is also generated in a mixing process.  He explains that even in an irrotational flow, 

the fluid is being sheared and this shearing gives rise to an entropy generation.  In wakes, due 

to the high rates of shearing, entropy generation is considerably higher due to a higher 

effective viscosity, over 100 times larger, than in laminar flow.  Sometimes, high entropy 

generation due to turbulent flow is desired, like in the case of a heat exchanger which could 

lead to a smaller exchange area.  Several approaches are analyzed.  One of these approaches 

is using a control volume to the mixing, which has the advantage of being able to compute 

the losses without knowing the details that caused the losses. 

In shock waves, entropy is generated due to heat conduction and high viscous normal stresses 

that are present within only a few molecular free path of thickness.  As a comparison a 
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normal shock wave will always generate more entropy than an oblique shock wave with the 

same Mach number.  An increase in entropy generation is also caused by the interaction 

between shock waves and boundary layers.  In boundary layers, it is shown that suction 

surfaces of a blade produce more entropy.  An expression is also put describing a way to find 

an optimum relation for pitch-to-chord ratio for turbines given a specified combination of 

inlet and outlet flow angles.  Using the same pitch-to-chord ratio method, the predictions for 

compressors are not realistic and that is probably because the method does not take into 

account the boundary layer separation. 

The effect of Mach number in entropy generation is explained.  As the upstream flow 

approaches sonic speed, the local speed in the suction surface approaches sonic speed at a 

faster rate and usually ends in a normal shock which will greatly increase the entropy 

generated.  Also, there will possibly be a significant contribution of entropy creation due to 

boundary layer separation.  Some of the ways used to delay local sonic speed at the suction 

surface is to design thin blades and blades with low or reverse suction surface camber in 

order the maintain the local Mach number as close to the inlet Mach number.  In this design, 

lift is achieved by a low speed at the pressure surface instead of high lift at the suction 

surface and also helps to minimize the boundary layer loss. 

Emphasis is put in the difficulty of understanding and calculating accurately a priori the 

losses of a two dimensional cascade and the dependence in empirical data.  For some 

problems such as tip leakage loss and loss due to separation there is an understanding of the 

mechanisms for these losses but cannot quantify the improvements in a design before an 

actual test.  At the other hand, there are losses which are yet not fully understood such as 
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endwall losses, transonic trailing edge losses, and mixing losses.   Accurate predictions of 

these losses depend greatly on the use of empirical correlations which may not necessarily 

provide an accurate representation of the physics involved. 

H. Li & G. Ben-Dor [5 & 6] applied the principle of minimum entropy production to the case 

of shock wave reflections.  They started by defining the governing equations of a steady, 

two-dimensional flow for a perfect inviscid gas.  These equations were applied for the case of 

transonic and supersonic flows.  Theoretically, there exists the possibility of two solutions 

with straight and attached shock waves.   They examined the transition from regular to Mach 

reflection and viceversa using the principle of minimum entropy and found the regular 

reflection wave configurations to be stable within the dual-solution domain. 

Ed Walsh, Mark Davies, and Roy Myose [7] studied a technique to minimize the entropy 

generation rate in the boundary layers of turbomachinery blades.  One of the possible 

outcomes of minimizing entropy generation in blades is to increase their efficiency of the 

whole system for a given power output, which will lead to less fuel consumption.  They 

focused their work first on analyzing the entropy generated in the laminar region of the 

boundary layer in the suction surface of non-film cooled turbine blades and then modified the 

boundary layer in order to find ways in which the entropy generated is minimized.  They 

used an analytical polynomial representation of the boundary layer edge velocity distribution 

in the laminar region put forward by Pohlhausen and others in order to minimize the entropy 

creation.  Specifically, they varied the undefined variables of a fifth order polynomial 

representation of the boundary layer following some constraints as the work output and 

boundary conditions as keeping low the rate of diffusion in the decelerating regions in order 
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to avoid separation.  As a result they developed a method to determine the optimum 

boundary layer velocity distribution in order to minimize entropy and an increase in stage 

efficiency of approximately 0.06%. 

Ed J. Walsh, Mark R. D. Davies, and Donal M. McEligot [8] considered the use of entropy to 

predict boundary layer stability.  They suggest a new hypothesis that attempts to put together 

different parameters that affect the location of the transition of the boundary layer from a 

laminar to a turbulent flow.  They claim that the driving force of the boundary layer 

transition onset is the entropy generation rate alone.  Even though the goal is to lower the 

entropy generation they cautioned that minimizing entropy is not always a good thing.  As an 

example, even though laminar flow has lower entropy generation rates than turbulent flow, 

turbulent flow induces high rates of heat transfer which might be desirable in some systems 

or some sections.  A relation is established between different parameters known to affect the 

transition of boundary layer and the entropy generation rate.  

Ed Walsh, Mard R.D. Davies, Philip C. Griffin, and Francis K. O’Donnell [9] studied the 

effect of Reynolds number, compressibility, and free stream turbulence on the profile entropy 

generation rate.   For their study, they assumed an adiabatic and quasi-isothermal flow.  For 

the case of subsonic flow, they assumed an adiabatic and two-dimensional, therefore the only 

source of entropy for that case is the one arising from fluid friction. Some of their 

observations include a thicker turbulent boundary layer, and higher shear strain rates in the 

laminar boundary layer than those seen at 0.8% turbulence intensity caused by an earlier 

transition.  Also, they noticed the presence of fluctuating components of velocity in the 

laminar boundary layer which lead to the notion of a hybrid boundary layer.  This hybrid 
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layer consisted of both laminar and turbulent characteristics in the case where there is free 

stream turbulence.  They use the boundary layer velocity profile to obtain the entropy 

generation rate per unit volume.  For the case of entropy generation due to compressibility at 

a Reynolds number of 163,000 and an exit Mach number of 0.37 they did not observe any 

appreciable generation, even though quantitative measurements were limited because of the 

thin nature of the boundary layer.  For the case of free stream turbulence it affected in 

different ways the entropy generated.  First, the free stream turbulence increase the entropy 

generation due to the increase in viscous shear in the laminar layer, but on the other hand, 

they did not observe a significant effect in the turbulent region compared to when the free 

stream is laminar.   

Philip A. Thompson, Thomas W. Strock, and David S. Lim [10] studied a way to estimate 

the thickness of a shock wave based on the entropy production.  They estimated the thick of 

the shock wave at supersonic speeds in an ideal gas by relating the internal entropy 

production to the increase in entropy found from Rankine-Hugoniot equations.  Under the 

assumptions of continuum flow and local thermodynamic equilibrium, they relate the entropy 

jump across the shock to the entropy production within the shock.  The entropy production 

was found by adding the detailed entropy balance over the shock while the entropy jump is 

found from the Rankine-Hugoniot equations assuming a one-dimensional flow with constant 

heat capacity.  They found good agreement with experiments for the shock thickness using 

argon. 

Salas (1991), [11] studied the shock wave interaction with an abrupt area change.  The 

interaction of the shock wave with a sudden area change was analyzed in terms of the 
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incident shock wave Mach number and the area-jump ratio.  In this analysis the entropy 

production for the wave system was used as well as the principle of minimum entropy 

production in order to resolve a nonuniqueness problem.  The problem been analyzed 

depends on two parameters; the strength of the incident shock measured by the wave Mach 

number and the area ratio across the discontinuity.  In this study, the area ratio is defined as 

well as the Rankine-Hugoniot relations that were used.  Also, the pressure and density were 

nondimensionalized by their initial values and all the velocities were nondimensionalized by 

the speed of sound in a specific region.  For this study, the case of area divergence and area 

convergence were analyzed.  In the case of area divergence, it was shown that if the initial 

Mach number is less than 2.068, then a weak rarefaction is reflected which would accelerate 

the flow before it enters the area of divergence.  As the shock strength continues to increase, 

the shock moves to where the area jumps, but as it keeps increasing, a shock moves to the 

entrance of the divergence area and then the exit area.  One result for the case of area 

contraction is that if the initial shock is greater than 2.068, the reflected wave is a shock and 

then the subsonic flow behind this shock is accelerated to sonic conditions due to the area 

convergence.  Then the flow is further accelerated due to the rarefaction wave running 

downstream.  In this case, in general the transmitted shock is stronger and the incident shock.  

The author used the minimum entropy production principle to correct some results obtained 

by other investigations.  Using the entropy production in an interval of time and integration 

over the whole area, it was demonstrated how is that the case of a standing shock solution 

can link two different cases for an area ratio larger than the one for the standing shock 

solution and the case for a smaller area ratio.  One of the conclusions is that for an area 
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contraction and an incident Mach number greater than 2.068 a region was found where three 

wave patterns satisfied all the governing equations.  At least, it was known that one of the 

patterns, which consisted of the standing shock solution, is an unstable configuration.  It was 

also shown how to prove the exact solutions using the entropy generation rate and the 

principle of minimum entropy production.  

Gino Moretti and Maurizio Pandolfi [12] analyzed the entropy layer on a blunt-nosed cone 

and a predictor-corrector integration scheme is used.  For a given free stream Mach number, 

a numerical method is given that describes at different distances from the nose, what fraction 

of the shock layer is made up of the entropy layer.  Several versions of their predictor-

corrector scheme were analyzed in order to minimize the amount of computational time.   

First, the numerical scheme is analyzed using equally spaced nodes.  An accumulation of 

truncation errors was seen which produced oscillations in the entropy distribution and also 

the Mach number became erratic due to its dependence to the entropy.  The second method 

that they used was to stretch the coordinates by using a stretching function.  This method 

caused high truncation errors in regions where the entropy change was very high.  The last 

method that they used was to have two computational regions. This means that they analyzed 

all regions where a function undergoes rapid changes as a discontinuity.  In other words, any 

parameter like entropy which has a strong gradient in a small area, is going to be analyzed as 

a jump instead of a gradual but steep change.  Other methods were analyzed but the 

conclusion was that even though some methods can give better results than others, the choice 

of which method to use depends greatly on the problem that is being analyzed. 
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Abu-Hijleh and Heilen [13] examined the entropy generation due to laminar natural 

convection over a heated rotating cylinder.  The study consisted of numerically analyzing the 

entropy generation due to laminar mixed convection on an isothermal rotating cylinder over a 

wide range of Reynolds number and buoyancy parameter.  The buoyancy parameter is based 

on a ratio between the Grashof number and the Reynolds number.  First, the necessary 

equations for a steady state two-dimensional laminar mixed convection for a horizontal 

rotating cylinder are presented.  There equations are given in cylindrical coordinates.  Then, 

the equations were put in non-dimensional form using the stream-vorticity function 

formulation and also the boundary conditions.  The local entropy generation, as well, was put 

in non-dimensional form in two-dimensional cylindrical coordinates.  Using the local entropy 

generation, the total entropy generation was calculated by integrating the local entropy 

generation over the entire domain.  In the case study, the entropy equation consisted of two 

parts.  One part that contributed to the entropy generation comes from heat by conduction 

while the second part is due to the viscous dissipation.  Numerically, the entropy generation 

was calculated after the velocity and temperature profiles in the program had converged.  

Higher values of Reynolds number and/or buoyancy parameter caused smaller viscous and 

thermal boundary layers.  On the other hand, this result means a higher velocity and 

temperature gradients, thus higher rates of entropy generation.  The steepest increase in the 

rate of entropy generation was found at low values of the buoyancy parameter.  It was found 

that high values of buoyancy increased the heat transfer but at the expense of higher entropy 

generation but very high values of buoyancy resulted in a minimal increase in entropy 

generation.  Therefore, higher heat transfer rates could be obtained without the consequence 
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of lower efficiency.  Another result is that an increase in the cylinder radius caused a 

decreased in total entropy generation.  The explanation for this is that increasing the radius of 

the cylinder will result in a smaller velocity and temperature gradients for a given Reynolds 

number and buoyancy parameter and thus a decrease in the entropy generation rate. 

Creager [14] investigated the effect of leading edge thickness on the flow over a flat plate at 

a mach number of 5.7.  There was a need for agreement between the measured surface 

pressures and those obtained from a linear combination of blast wave and weak viscous 

interaction parameters.  It was found that the boundary layer for the thickest plate was in the 

high entropy layer.  One of their results is that the impact pressure increases less above the 

boundary layer than the under and it reaches a peak value at the shock wave.  Another result, 

is that the boundary layer’s decay depends primarily on the distance from the leading edge 

while the shape of the shock wave depends on both the distance from the leading edge and 

also on the leading edge thickness.  The data obtained suggested the appearance of the 

boundary layer out of the high entropy layer.  In the case of blunt plates, the boundary layer 

developed in the high entropy layer.  In the case of thin leading edge plates, the boundary 

layer growth varied linearly with the distance from the leading edge. 

Camberos and Heng Chen [15] worked on a continuum breakdown parameter that is based 

on entropy generation rates.  As part of their research, they review different parameters and 

suggested a continuum breakdown parameter based on local entropy production rates that 

could be use as a way to quantify the extend to which the continuum assumption in fluid flow 

dynamics is acceptable.  One area of much research involve rarefied gas dynamics where the 

length of the molecular mean free path is equivalent to a defined macroscopic reference 
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dimension of the flow field.  Some cases that involve the rarefied gas effect include areas of 

strong velocity, pressure, and/or temperature gradients such as high speed flight at high 

altitudes.  One problem when analyzing these types of cases is the ambiguity in the choice of 

an appropriate length scale.  One of the parameter that is currently being used to know when 

the continuum hypothesis breaks down is the Knudsen Number.  They suggested that instead 

of using the Navier-Stokes equations up to a Knudsen number of 0.1, use a local Knudsen 

number that has the characteristic length been defined as gradients.  Such gradients may 

come from temperature, density, or pressure variations.  In their study they start by deriving 

some of the equations use for entropy and entropy generation rates and incorporating entropy 

into a proposed continuum breakdown parameter.  They tested their result for the case of 

incompressible boundary layer in a flat plate heat transfer with constant wall temperature, for 

a flat plate laminar boundary layer entropy production, and for the one dimensional plane 

shock wave.  Their parameter had good agreement for the case of one-dimensional shock 

wave. 

Naterer and Camberos [16] described the use of entropy and the second law of 

thermodynamics to analyze various computational thermo-fluid dynamics.  Entropy and the 

second law is used in computational fluid dynamics (CFD) for things like to determine the 

numerical error, convergence criteria, or time step limitations in a computer program.  They 

give a description of the evolution of entropy and different ways in which it can be expressed 

for cases like incompressible and compressible fluid flow.  In order to be able to fully 

express the second law, two important mathematical properties are described.  The first 

mathematical property, concavity, is use to bound entropy from above while it is in the 
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process of achieving a maximum value at an equilibrium condition.  The second 

mathematical property, compatibility, is a condition that gives a consistency condition 

between the fluxes of entropy and the conserved variables.  Some of the applications in 

which entropy has been used are for compressible flows, incompressible flows, phase change 

heat transfer, and turbulence. 

Salas and Iollo [17] investigated the entropy jump across an inviscid shock wave.  They 

showed how to derive the shock jump conditions for the Euler equations in their primitive 

form.  One of the things that they make emphasis is that the inviscid entropy profile has a 

local maximum within the shock layer.  They start by first writing the one-dimensional 

conservation laws for an inviscid flow of perfect gas.  In this paper they derived in a 

mathematical form the shock jump conditions for the Euler equations starting from their 

primitive form using generalized functions. They also showed how is that the variables have 

different shock profiles and that the entropy can not be represented by a single Heaviside 

function, but that instead, it needs two Heaviside functions for a proper representation. 

Walsh, Myose, and Davies [18] studied a prediction method for the local entropy generation 

rate in a transitional boundary layer with a free stream pressure gradient.  They presented a 

method that could be used to predict the entropy generation rate in steady, two-dimensional, 

incompressible, adiabatic boundary layer flows.  It is based upon five relations in order to 

determine, the entropy generated in the laminar region, the entropy generated in the turbulent 

region, the location of transition, the length of transition, and the entropy generated in the 

transition region.  In order to use this method, knowledge of the boundary layer edge velocity 

distribution and the turbulence intensity is necessary.  They claimed that one of the benefits 
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of this method is that it does not rely upon dissipative CFD predictions which can be slow 

and not sufficiently trustworthy.  In order to determine the entropy generated in the boundary 

layers, they suggested to first curve fit a given boundary layer edge velocity profile. Then, 

use Thwaites separation criteria, which can be expressed in terms of the boundary layer edge 

velocity, in order to determine the location of transition.  Third, determine the length of the 

transition. Lastly, after the transition region has been defined, determine the entropy 

generation rate in the laminar, transition, and turbulent regions. 

Stack [19] studied the design of different types of airfoils that could delay the compressibility 

bubble.  The type of airfoil that he investigated was designated the NACA 16 series and have 

increased critical Mach number.  Apparently, in order to attain the highest critical speed, an 

airfoil needs to have a flat pressure distribution curve instead of having a high negative 

pressure in the nose, which gradually changes into the air stream conditions at or after the 

trailing edge of an airfoil.  A derivation of two airfoil parameters was given.  First, the 

derivation of the camber line was given in terms of the circulation around an airfoil which 

might correspond to a certain distribution of vorticity along the airfoil surface.  Then, a 

derivation for the thickness form of an airfoil is given.  Induced velocities were assumed to 

be negligibly small as compared to stream velocity which for thin airfoils at low lifts, this is 

valid, but not with increase in lift or thickness.  In both derivations, use of thin airfoil theory 

is assumed.  For this NACA 16 series, low drag comes from having a longer region of 

laminar flow in the boundary layer which results in a rearward position of the point of 

maximum negative pressure.  From the different airfoils studied, the NACA 16-106 had the 
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lowest drag coefficient which is contrary to the expectation that a symmetrical NACA 16-

009 airfoil would normally have the lowest minimum drag coefficient. 

Oswatitsch [20] wrote about the recent advances and some of the challenges that are still 

been worked in transonic flows.  Attention is put into the relation of potential flow, drag, and 

entropy flux.  Although potential flow usually assumes isentropic flow, in the case of 

transonic flow over a thin body, the first order entropy disturbance can not be disregard when 

calculating drag although by the momentum theorem it does not occur in the first or second 

order vorticity equation.  Several equations are written that describe the relation between the 

x-component of the velocity and the entropy disturbance across a weak shock wave.  For the 

case of a weak shock wave, the entropy increase is proportional to the third power of the x-

component of the velocity across the shock.  The irrotationality of the transonic flow field is 

also verified using Crocco’s Vortex Law.  An equation for the drag coefficient is derived 

which consist of two parts; one part arrives from the effect of the pressure coefficient and the 

other part comes from the effect of the thickness distribution of the airfoil.  For the case of a 

slightly supersonic flow the integration of the first order drag coefficient is done up to the 

bow shock.  A distinction is made about the dominance of either the kinetic terms or the 

entropy term in the Treftz plane at different distances from the trailing edge.  At a small 

distance from the trailing edge in the Treftz plane, the kinetic terms dominate while farther 

downstream the entropy term becomes important and can not be neglected. 

Stewart, Whitney, and Wong [21] studied the boundary layer characteristics of turbomachine 

blade rows and the relation to over all blade loss.  The study of the boundary layer is of 

importance in turbomachine blade rows because that is where the viscous losses are 
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generated in the blade surface and at the end walls.  Proof was also presented for a relation 

between over all blade loss and the momentum boundary layer thickness.  At the same time, 

the momentum boundary layer thickness is related to the Reynolds number and the total 

blade surface diffusion.  The parameters that they used in their study were the displacement 

thickness, the momentum thickness, a form factor, and an energy factor.  The form factor 

used is a ratio of the total displacement thickness to the total thickness.  The energy factor is 

a ratio of the total energy thickness to the total momentum thickness.  These factors were 

derived as functions of Mach number and a power velocity profile exponent which is usually 

assumed for turbulent boundary layer.  For their study of boundary layer characteristics 

related to blade row losses, they determine the losses by means of a momentum loss and a 

kinetic-energy loss.  For the kinetic-energy loss they found that it consisted of the two-

dimensional cascade loss, the end wall loss, and the mixing loss downstream of the blade 

trailing edge.  Good agreement was found using a specific exponent which is also used in 

turbulent boundary-layer and also found that all the losses could be evaluated by means of a 

momentum thickness ratio.  They also investigated the relation between the momentum 

thickness with diffusion and reaction.  For this, they used the Zweifel’s method and defined a 

total diffusion parameter taken as the sum of the suction and pressure surface diffusion 

parameters.  It was shown that the over all efficiency can be determined in an unknown 

region of Reynolds number from the relation of boundary layer momentum thickness with 

Reynolds number and the relation of blade loss with momentum boundary layer thickness. 

Charles B. Johnson and Lillian R. Boney [22] analyzed an integral method for computing the 

behavior of turbulent boundary layer with variable entropy effects on a blunt axisymmetric 
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body.  In order to obtain the heat transfer they made use the Reynolds analogy factor together 

with the local Stanton number.  The value of the Reynolds analogy factor will depend on 

which local turbulent skin-friction theory is used, either the Spalding-Chi skin-friction or the 

Van Driest II skin-friction.  Their results were compared to experimental data for heat 

transfer on a flat plate, on a blunt-cone, and the difference in other parameters such as skin 

friction and density.  For the case of the flat plate, in general, the heat transfer prediction was 

close to the data whenever the Van Driest II function was derived for a linear Crocco 

relationship.  For the case of the blunt-cone, when there is a peak heating for fully turbulent 

flow, the use of the Spalding-Chi skin-friction theory overestimate the experimental data and 

the Van Driest II underestimate slightly from the experimental data.  In order to calculate 

other parameters they used different techniques.  In order to calculate the different boundary 

layer velocity profiles an N power-law correlation was used and in order to calculate the 

density profiles a modified Crocco relationship. 

James L. Amick [23] derived a method to select the thickness, hollowness, and size which 

will give the least drag and acceptable bending strength for a supersonic wing at specified 

flight conditions.  The chord of the wing was chosen in order to provide the maximum lift-

drag ratio at the design conditions.  The weight of the wing was neglected.  The wing is 

considered to be satisfactorily strong if the maximum bending stress at the root area given by 

the beam formula is at all times less or equal to the maximum allowable stress.  The design 

procedure that they used was to first determine the flight characteristics such as Mach 

number and altitude.  Then, determine the weight of the airplane, the wing plan form, the 

profile shape, material, and maximum permissible bending stress.  As the second step, 
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assume a value for the wing chord and then calculate the ratio of the weight of a solid wing 

for a specific thickness to the weight of the airplane without the wing.  Also, calculate the 

ratio of the thickness drag to the drag caused by the lift of a solid wing weight for a given 

chord.  Then, several other parameters like hollowness ratio, lift and drag coefficients, and 

wing drag are obtain from different equations.  The results that they obtained were that the 

flight characteristics to a large extend determines the shape of the wing to use.  As an 

example, at low altitudes, steel wings appeared to have less drag than aluminum wings while 

at high altitudes the reverse appears to be true. 

J. M. Délery [24] surveyed and reviewed the physical aspects of several problems encounter 

by designers when analyzing shock wave phenomena at high speeds.  He described the shock 

wave equations, the flow properties that give rise to shock waves, and the major 

consequences of shock wave phenomena in aerospace applications.  Problems such as shock-

shock interference of different types, shock-boundary-layer interaction with different 

interaction control techniques were discussed.  At the end, several suggestions were made.  

First, more work is needed to correctly and accurately capture shock waves by numerical 

codes in order to model transfer processes like the development of transitional shears layers.  

Secondly, a full understanding and prediction of structures associated with shock intersection 

or reflection.  More work is also needed to study the thermochemical processes initiated by 

strong shocks in hypersonic flows.  Finally, more study is needed for the modeling of 

turbulence in shock-separated flows.  This last item is crucial in order to predict the physics 

of flows involving strong shockwave-boundary-layer interaction.  In this sense, the model 
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use today, transport equation model, is unable to accurately predict the physics as soon as a 

separated region forms. 

Eric B. Ratts and Atul G. Raut [25] studied the entropy generation minimization of fully 

developed internal convective flows with constant heat flux.  They analyzed the optimal 

Reynolds number by using the Entropy Generation Minimization method for laminar and 

turbulent flow and the thermodynamic optimum of a single-phase convective heat transfer for 

fully developed flow with uniform and constant heat flux.  In order to minimize the entropy 

generated, the generations due to viscous dissipation and heat transfer dissipation in the flow 

passage was summed and then minimized modifying the Reynolds number based on 

hydraulic diameter.  For the case of laminar flow, the optimal Reynolds number was 

determined for different cross sections such as square, equilateral triangle, and rectangular.  

In their conclusion they found the optimal configuration for laminar and turbulent flow in a 

tube with an uniform heat flux boundary for a specific necessary total heat transfer rate and 

mass flow rate.  They reached several conclusions based on the results.  First, the entropy 

generation is smaller for heat dissipation than for viscous dissipation given the same 

deviation from optimal Reynolds number for both laminar and turbulent flow although for 

laminar flow is more noticeable.  The minimum Reynolds number scaled proportional to the 

tube length for laminar flow.  For optimum Reynolds number, the circular tube had the 

longest length while the rectangular tube had the shortest length but high aspect ratio.  In the 

case of the circular cross-section with laminar flow, they found a 5:1 ratio of heat dissipation 

to viscous dissipation while a 29:9 ratio for turbulent flow.  For the cross sections considered 

in laminar flow, the rectangular cross section with an aspect ratio of 8 and 2, had the lowest 

 28



 
 
 
 

 
entropy generation.  The high aspect rectangular cross section was 50% of the minimum 

entropy generation of the circular cross section while the low aspect ratio rectangular cross 

section had 90% of the minimum entropy generation of the circular cross section. 

Li and Figliola [26] studied an exergy based design methodology for airfoil shape 

optimization.  The purpose of this investigation was to use an exergy based method to apply 

it to a two dimensional airfoil shape.  The problem studied was for a viscous, incompressible 

flow represented by the Reynolds-average (RANS) form.  The necessary equations were 

provided and each term was explained.  As it is explained, the entropy generation is not 

computed directly, but instead is calculated based on other properties. The local entropy 

generation rate equation for a three-dimensional flow field is composed of two terms.  The 

first terms comes from the thermal convective exchange that there is between the body and 

the environment either directly or indirectly by internal and aerodynamics heating.  The 

second term results as a consequence from the velocity field around a moving body.  In the 

case of laminar flow, the velocity profile can be easily obtained but for the case of turbulent 

flow, attention was put to replace the laminar viscosity with the effective viscosity which is a 

sum from the laminar and the turbulence viscosity.  Computer simulations were made using 

the Fluent computational fluid dynamic code (CFD) and all the cases were compared by 

using the NACA 0012 airfoil as the benchmark airfoil.  The optimization was performed for 

a fixed chord length, Reynolds number and angle of attack but varied the lift-to-drag ratio in 

order to minimize entropy generation.  In order to have a representation of the coordinates of 

the airfoils as the parameters are changes, the airfoil was optimized using the NURBS curve.  

It was found that entropy generation increases as the lift-to-drag ratio was increased but that 
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did not mean that the lift-to-drag ratio increases as the entropy generation increased.  Also, it 

was found that both the lift-to-drag ratio and the entropy generation increased as the airfoil 

became flatter.   

Kock and Herwig [27] studied the local entropy production in turbulent shear flows using a 

high Reynolds number model with wall functions.  They investigated the entropy production 

in incompressible turbulent shear flows of Newtonian fluids.  This study is based on the 

assumption that the only way to achieve higher efficiency in designing modern thermal 

systems is through a comprehensive understanding of the available work and the amount of 

entropy production which can be analyze using the second law of thermodynamics.  The 

study starts by providing the transport equation of entropy and providing the time averaging 

of this equation which yields the Reynolds average Navier Stokes equations (RANS).  In this 

equation they take into account four different terms that affect entropy.  The terms that are 

involved are the convective terms, the entropy production by dissipation, and the entropy 

production by heat transfer.  The four groups of entropy production terms in turbulent flows 

are the entropy production rate by direct dissipation, the entropy production rate by indirect 

dissipation, the entropy production rate by heat conduction with mean temperature gradients, 

and entropy production rate by heat transfer with fluctuating temperature gradients.  Off the 

four entropy sources, the two that they modeled were the entropy production rate by indirect 

dissipation and the entropy production rate by heat transfer.  In order to model the entropy 

production by indirect dissipation terms one of the steps they took was the use of the two-

equation к-ε turbulence model. They also modified the entropy production caused by the 

fluctuating temperature by assuming a local equilibrium, a Boussinesque approach, and a 
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constant turbulent Prandlt number.  All their equations were compared with Direct Numerical 

Simulations (DNS) and at the same time modified by the DNS results in order to be able to 

predict the minimum entropy production.  They found that the peak values of the entropy 

production occurred close to the wall. 

Morduchow [28] investigated the analysis and calculation by integral methods of laminar 

compressible boundary layer with heat transfer and with and without pressure gradient.  The 

proposed a simple method to be used to calculate several properties of the laminar 

compressible boundary layer in an axial pressure gradient with heat transfer at the wall.  Also, 

a method is presented to aid in determining the separation point in a compressible flow with 

an adverse pressure gradient over a surface with a uniform wall temperature.  Several integral 

methods for the laminar boundary layer analysis are presented and compared for their 

benefits.  The first integral method discussed is the Karman-Pohlhausen method, which is the 

most widely applied.  Some of the advantages of this method is that for certain assumed 

velocity profiles then an ordinary differential equation is obtained and basically leaves the 

boundary layer thickness as the unknown.  There are, however, two disadvantages in using 

this method for practical cases.  One of the disadvantages is in its inability to predict 

accurately the separation point in an adverse pressure gradient and also it fails to provide 

accurate results for the derivatives of the profiles to be use in the laminar boundary layer 

calculations.  Another integral method that has been developed consists in using integral 

equations in addition to the Karman momentum integral.  Another refinement of the Karman-

Pohlhausen method is to use the Karman integral together with profiles of higher degree 

other than the fourth.  This last method was the one that they used but with a sixth-degree 
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profile due to its accurateness and ease to use.  Some of their assumptions were having an 

ideal gas, a coefficient of viscosity proportional to the absolute temperature in order to satisfy 

Sutherland’s relation, for the case of a flow with pressure gradient the wall temperature is 

uniform, use a unity Prandtl number, and constant specific heats as well Prandtl number.  

From the proposed method the boundary layer characteristics can be found for either a flow 

with and without a pressure gradient.  For the case of a flow without a pressure gradient the 

characteristics can be found as long as the Prandtl number is constant.  In the case of a flow 

with a pressure gradient the characteristics can only be found for the case of a unity Prandtl 

number and uniform wall temperature.  In terms of wall cooling, they found that it tends to 

diminish the effect of a pressure gradient like delaying the separation in an adverse pressure 

gradient, while heating tends to enhance it.  It is also shown that while cooling of the wall 

tended to stabilize the laminar boundary layer, at moderate supersonic speeds, the cooling 

may completely stabilize the boundary layer.  Finally, a now common conclusion is that a 

favorable pressure gradient tended to stabilize the laminar boundary layer while an adverse 

pressure gradient had a destabilizing effect. 

Whitcomb and Clark [29] proposed a method of an airfoil shape for efficient flight at 

supercritical mach numbers.  At supercritical Mach numbers, there is a local region of 

supersonic flow that extends vertically from an airfoil and usually terminates in a shock wave.  

This shock wave causes an energy loss and an increase in drag.  Also, it produces a positive 

pressure gradient at the surface of the airfoil that can cause boundary layer separation and 

another source of drag increase associated with it.  The studied had as a goal to find a way to 

delay the drag rise that is associated with the development of local supersonic flow on the 
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upper surface of a wing.  Some of the approaches that had been used until that point were 

based on using thinner airfoils, sweepback, area ruling, and antishock bodies.  Other 

approaches tried to eliminate the shock-induced separation by special camber distribution, 

vortex generators, and injection of high energy air into the boundary layer near the shock 

wave.  The airfoil shape that was suggested in this study included a slot between the upper 

and lower surfaces near the trailing edge in order to delay the shock-induced separation on 

both surfaces.  In order to reduce the shock losses, the airfoil incorporates negative camber in 

front of the slot combined with significant positive camber rearward of the slot.  The 

proposed airfoil shape had a drag rise at a Mach number of 0.79  compared to a drag rise at a 

Mach number of 0.67 for the NACA 64A-series airfoil which is the one that was used as a 

comparison.  The purpose of having the slot is to eliminate the shock-induced separation by 

introducing stream energy air under the upper surface boundary layer at a specific point.  

Another goal is to reduce the vertical extent of the supersonic region that ends in a shock 

wave and reduces the supersonic Mach number ahead of the wave.  To accomplish this goal, 

the proposed airfoil incorporates a reduction in camber that diminishes the curvature of the 

upper surface.  The airfoil shape has a roughly uniform surface curvature and near zero mean 

slope from the rearward of the leading edge to the probable position of the shock.  This 

reduction in camber also causes a reduction of lift. In order to counteract this reduction in lift, 

the wing shape has an increase of the incidence of the fore region in front of the slot that is 

achieved by a significant positive camber on the lower surface.  Several results were 

achieved using the proposed supercritical airfoil shape.  First, for a normal (lift) force 

coefficient of 0.65, the drag rise occurred at a Mach number of 0.79 instead of a Mach 
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number of 0.67 for the NACA 64A-series airfoil.  Most of the drag for a Mach number less 

than the 0.78 optimum was due almost entirely to skin friction losses.  For the less than 

optimum Mach number, the drag value is approximately 10 percent greater than that for the 

NACA 64A-series.  Second, there is a more negative pitching moment coefficient for the 

supercritical airfoil than for conventional airfoils.  There is an increase in stall normal force 

coefficients at high subsonic Mach numbers and it provides delays in drag rise at off-design 

lift coefficients.  The operation of the supercritical airfoil appears to be most critical at 

normal force coefficients below the design value. 

 

In conclusion, only one paper has been found that relates entropy generation and external 

flow characteristics to airfoil shape, although the study only investigated incompressible 

flows.  All other papers help to have some understanding of the magnitude for the effect of 

friction and heat transfer and the areas where these two dissipation forms are usually present.  

Although this thesis investigates compressible subsonic and supersonic flows, most of the 

entropy generation created by friction is expected to happen inside the boundary layer as the 

researched papers suggest.  Also, it is expected that the entropy generation by heat transfer 

becomes more important at the supersonic speeds.    
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1.2 Summary of Following Chapters 
 
 
In this thesis Chapter 1 shows the necessary previous work that has been done about this 

topic.  Chapter 2 deals with the model theory, including all the formulas, and the description 

of the computer program and grid generator that was used in the experiments.  The third 

chapter presents all the experiments that were done.  Conclusions are presented in Chapter 4. 
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2 THEORETICAL BACKGROUND 
 
 
2.1  Navier Stokes Equations  
 
Although a set of equations for inviscid fluid were developed by Leonhard Euler, the Navier-

Stokes Equations describe the motion of a viscous, Newtonian fluid such as air and water.  

The equations developed by Claude-Louis Navier and George Gabriel Stokes, relates the 

change in momentum of the fluid to the change in pressure and dissipative viscous forces.   

 
2.1.1 Continuity and Momentum Equations 
 

The Navier-Stokes Equations represents Newton’s Second Law applied to the case of fluids 

and for that reason they are sometimes classified under Newtonian Mechanics.  As part of 

Newtonian Mechanics and one of physics’ conservation laws, the continuity equation 

represents a mathematical expression of the Conservation of Mass. It states that mass can 

neither be created nor destroyed and can be written as:  

0=⋅∇+ V
Dt
D ρρ        2.1 

where ρ is density, V  is the velocity field vector, and 
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The Navier-Stokes Equations, which are sometimes refer to as the Momentum Equations, can 

be written for a 2-D case as: 
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where u  and  are the components of the velocity field in the x-direction and y-direction 

respectively, 

v

p is the pressure field, μ is the molecular viscosity coefficient.  

 
2.1.2 Conservation of Energy 
 

The Conservation of Energy, also one of the conservation laws in physics, states that energy 

can not be neither created nor destroyed but instead that it changes from one form to another.  

It is a representation of the first law of thermodynamics and can be mathematically 

represented as: 

Φ+⋅∇−∇⋅∇= VpTk
Dt
De )(ρ      2.3 

where  is the specific internal energy, k is the thermal conductivity, and Φ  is the viscous 

dissipation function in 2-dimensions: 
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2.2 Crocco’s Theorem 
 
 

The first law and the second law of thermodynamics can be combined in such a way for the 

case of fluid flows, to end with Crocco’s theorem.  If it is assumed that the specific heat 

transfer is reversible, , and substituting it into the first law: Tdsqrev =∂

υpddeTds +=                                                        2.5 

Then, using the definition of enthalpy, υpeh += , it can be substituted into equation 2.5 to 

get, 

ρ
υ dpdhdpdhTds −=−=                                               2.6 

where υ  is the specific volume ρυ 1= .  Equation 2.6 can be written as  

ρ
phsT ∇

−∇=∇                                                        2.7 

given that at any instant in time, a particle can change its state to that of the neighboring 

particle.  If the viscous terms are eliminated from the Navier Stokes Equation, the resulting 

equations are called the Euler equations: 
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The gradient of pressure in the equation 2.7 can be substituted into equation 2.8 to get: 
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Equation 2.9 can be modified to incorporate the total enthalpy of a system or flow.  If the 

total enthalpy is defined as  

2

2Vhh o −≡                                                           2.10 

and then get its gradient,  
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then, equation 2.11 can be substituted into the resulting entropy equation 2.9 to get  
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Now, using the vector identity  
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in equation 2.12, allows it to be changed to get 
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This equation is called Crocco’s theorem.  For a steady case, 
t
V
∂
∂  will be zero and the 

equation will reduce to  

( )VVhsT o ×∇×−∇=∇                                                2.14 

It is based on the assumption of an inviscid flow and for a steady flow it provides a relation 

between the gradient of entropy, the total enthalpy gradient, oh∇ , and the flow vorticity or 

curl, .  This equation provides the starting point to show that the entropy that is going V×∇
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to be calculated numerically for a viscous case includes two parts, the vorticity and the 

change in enthalpy.   

 

2.3 Entropy Generation  
 

Although compressible flow and sound waves can be describe by assuming an isentropic 

flow, a shock wave is a highly irreversible phenomena.  The calculation of the entropy 

generation might help to provide a mean to be certain that airfoil that is chosen is the best 

airfoil shape for the flight regime that to which it will be exposed.  In order to calculate the 

entropy generation close to the surface of an airfoil, the derivation done by Bejan [2] for 

external flows will be used for the calculations.  Assuming that the fluid is in local 

thermodynamic equilibrium, an account of all the mass fluxes, energy transfers, and entropy 

transfers interactions can be express as: 
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where  is the volumetric entropy generation rate having units of 
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heat transfer rate vector.  Now, the first law of thermodynamics can be written as[2]: 
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where  is the specific internal energy per unit volume.  e~
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If the entropy relation ⎟
⎠
⎞⎜

⎝
⎛−= ρ

1~ PdTdsed  is used and the substantial derivative is taken on 

both sides of the equation then: 
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If this entropy equation, equation 2.17, is combined with equation 2.16 and 2.15 one gets: 
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Using now Fourier law of heat conduction Tkq ∇−=~  and substituting it in equation 2.18, 

then 
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which in two-dimensional Cartesian coordinates, can be expressed as: 
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The first term on the right hand side is the entropy generation due to heat transfer diffusion 

while the second term on the right hand side is the entropy generation due to viscous 

dissipation.  This is the equation that will later be discretizied in order to calculate the 

volumetric entropy generation close to an airfoil.  In order to obtain the data for the heat 

transfer and the viscous dissipation, a CFD approach was used.  The program and the model 

will be explained in the next section. 



 
 
 

 
 

 42 

2.4 CFD Program 
 
 
2.4.1 CFL3D Equations 
 
 
In order to acquire data to input into the entropy generation equation, a Computational Fluid 

Dynamics (CFD) program called CFL3D was used for the experiments.  Several different 

surfaces and airfoil shapes were tested in order to verify the usability of the program.  First, it 

is important to explain in some detail how the program works and how the program interprets 

the Navier Stokes equations and interpret the inputs given.  Depending on the case of study, 

CFL3D works with either the Navier Stokes equations or Euler equations.  Excluding body 

forces and external heat sources, the full three dimensional compressible Navier Stokes 

equations are expressed as: 
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where E~  is the total energy per unit volume.  In these equations the stresses are defined as: 
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and using the ideal gas assumption, the pressure can be defined from the perfect gas law as: 
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Although CFL3D solves the conservative form of the Navier Stokes equations, the primitive 

variables are some of the results that can be obtained.  The primitive variables are obtained 

by a transformation matrix of the form: 
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In CFL3D, all of these equations are transformed to a generalized coordinate system in order 

to evaluate them.  These transformation are accomplish by using a generalized coordinate 

transformation: 
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and using the chain rule for multiple variables: 
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and the Cartesian coordinates with 
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Using these last two equations, it is possible to determine the Jacobian and its inverse: 
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in order to convert the initial three dimensional Cartesian coordinate compressible Navier 

Stokes equations into a generalized Navier Stokes equations: 
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This conservative generalized Navier-Stokes equation can be easily modified to analyze an 

inviscid case by simply eliminating the viscous terms. The conserved density, momentum 

and total energy per unit volume are written as: 
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where the inviscid flux terms are expressed as  
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U  represents the contravariant velocity in the ξ  generalized coordinate defined as 

tzyx wvuU ξξξξ +++=                                               2.45 

Similar contravariant velocities V  and  are defined for the W η  and the ς  generalized 

coordinates. The viscous flux terms are defined by 
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and similarly for  and .  For the cases of where an inviscid solution is desirable, all 

viscous terms like  are omitted.  The resulting inviscid equations will be Euler equations.  

The shear stress and heat flux terms are nondimesionalized by using the free stream density, 

vĜ vĤ

vF̂

∞ρ~ free stream speed of sound, ∞a~ , and the free stream molecular viscosity, ∞μ~  in the tensor 

form as: 
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Finally, in order to close the Navier Stokes equations in generalized form, the Stokes 

hypothesis for viscosity ⎟
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are use where oμ  is the reference viscosity at a reference temperature  of 110.4K. oT

 

2.4.2 Turbulence Model 
 
CFL3D offers the possibility of several turbulence models.  For the cases that were analyzed 

in this thesis, two turbulence models were used.  The one-equation Spalart-Allmaras Model 

for turbulence is one that was used more frequently, although the two-equation Menter’s 

ω−k  Shear Stress Transport Model was used in some cases to verify the results of both 

models.  The Spalart-Allmaras solves the one-equation model for a variable ν̂  related to the 

eddy viscosity 
1

ˆ ννρμ fT = , see Reference [32]. 

In order to calculate the entropy generation rate by using equation 2.18, a Fortran program 

was developed (Appendix D).  For equation 2.18, the viscosity and the thermal conductivity 

were modified to account for turbulence.  
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 Using the Prandtl number definition: 

k
cpμ=Pr                                                                2.51 

the thermal conductivity were obtained.  A constant Prandtl number for air having a value of 

0.72 was used to obtained the thermal conductivity when the viscosity used in equation 2.49 

was the molecular viscosity (μ ).  A constant Prandtl for air of 0.9 was used to calculate the 

turbulent thermal conductivity when the eddy viscosity ( Tμ ) is used.  Therefore, in order to 

use equation 2.18, the viscosity used was the sum of the molecular and the eddy viscosity.  

At the same time, the thermal conductivity used in equation 2.18 was the sum of the viscous 

thermal conductivity and the turbulent thermal conductivity.  The assumed constant Prandtl 

numbers were taken based on numbers that have been used before and that closely match 

experimental results.   

The two-equation Menter’s ω−k  Shear Stress Transport (SST) Model solves for both 

variables  and k ω .  It also provides a different eddy viscosity relation 
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2.5 Grid Generation 
 

2.5.1 Generating a C-Type Grid 
 

In order to have CFL3D interpret the different cases, a computer aided design needed 

to be created first and then the grid.  All designs and grids were created using the computer 

program GRIDGEN.  A C-type structured grid was designed for all airfoil shapes similar to 

the one below. 

 

Figure 2.1  C-Type Two Dimensional Grid   
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In a typical case, the first part is to create data points that will simulate the shape of the 

model 

          

Figure 2.2 Airfoil Point Database 

The second step, is to create connectors around all the points and also to create a connector 

away from the shape that will be the path and distance that the grid will follow.   
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Figure 2.3 Connectors for the database. 

 

 In order to study the entropy generation rate due to viscous effects on an airfoil shape 

it is necessary to create a grid that could provide a reasonable level of resolution.  For that 

reason, all the airfoil shapes that were studied needed a viscous grid having the initial grid 

spacing from the surface to be defined by a dimensionless , which will be explained later.  

The third step in order to create the grid is to create the domain.  Although this part is more 

of a trial-and-error method, some of the features that were used are a C-type structured 

volume grid, a hyperbolic tangent growth from the body to the outside, a 1.05 marching step 

distance, and thirty body lengths of distance for the outer boundary. 

+y
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Figure 2.4 Structured Grid with Point Clustering 

A microscopic zoom to the leading edge of the airfoil shows how each next step increases by 

approximately 1.05 from the last grid point, and it also shows the growth following a 

hyperbolic tangent formula. 
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Figure 2.5 Close-up on Structured Grid 

 

2.5.2 Viscous Grid and MultiGrid 
 

In order to fully analyze an airfoil, viscous terms have to be included.  Although CFD 

is no exact science, there is a general consensus given by experience, about how to create a 

grid that will be able to capture the effects of viscosity, turbulence, and vorticity.  Grids 

designed to take into account the effect of viscosity and turbulent flows are called Viscous 

Grids.  For viscous grids, CFL3D recommends the outer boundary of the domain to be thirty 

body lengths away from the body and it also recommend an initial spacing from the surface, 

, to be approximately equal to one.   An estimation of the initial dimensionless vertical +y
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distance, , from the surface is necessary when creating a grid for turbulent flow 

calculations.  The  is defined by  

+y
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= μτ ,          
ρ
μϑ =  

One method of estimating  and subsequently the dimensional y is to assume that +y ∞= ρρw , 

∞= μμw , where wρ  is the density at the wall, and then use the coefficient of friction in 

equation 

y
c

y f

2
Re=+                                                      2.52 

where using the flat plate skin friction coefficient correlation, 

( )x
fc

Re06.0ln
455.0

2≈                                                   2.53 

xRe  is the Reynolds number based on a specified downstream distance of , or 10% of 

the reference length and therefore, 

1.0=x

ReRe ⋅= xx . The Reynolds number (Re), is defined as  

∞

∞∞=
μ

ρ DURe , where  is the freestream speed and ∞U D  is a predefined distance which for 

all the wings is the chord distance which is one meter. 

A  of one was use for all the cases when first estimating the skin friction coefficient.  +y

All grids were specifically designed in such a way that they could be multigrided and in 

doing so accelerate the convergence process.  CFL3D offers a multigrid capability that 

allows the possibility to create one grid that could be multigrid into different grid sizes.  For 
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all airfoil shapes, a fine two dimensional grid is created with a size of 1025 x 513.  Using the 

multigrid algorithm, two other grids can be calculated with dimensions 513 x 257, and 257 x 

129.  Using the multigrid algorithm, the program starts to calculate the variables at the 

coarser 257 x 129 grid and proceeds to the finer grids after the program has completed the set 

amount of iterations for that grid size.  Caution is needed when setting the number of 

iterations per grid size since it is necessary that a reasonable level of convergence is achieved 

at each grid before starting on the next finer grid size.   
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3 FLOW CHARACTERTISTICS 
 
 
For this thesis the viscous flow characteristics at subsonic and supersonic speeds were 

analyzed.  Theoretically, the perfect gas viscous flow characteristics can be expressed from 

the relations used for the Fanno line.  Using the continuity and energy equations it is possible 

to determine a relation between enthalpy and entropy describe as: 

12

2

−
=

M
TM

ds
dh γ                                                           3.1 

This equation can be used to get the Fanno curve (Appendix F).  This equation helps to show 

the effects caused by friction in the subsonic and supersonic regimes.  From equation 3.1, if 

the Mach number is less than one, the right hand of the equation is negative while if the 

Mach number is more than one, the right hand of the equation is positive.  As shown in the 

Fanno line, the upper curve have a less than zero 
ds
dh  which belongs a Mach number less 

than one, in other words at the subsonic regime, while the lower curve has a greater than zero 

ds
dh  which belongs to a Mach number of more than one which belongs to the supersonic 

regime.  In terms of the enthalpy, when the flow of a gas is accelerating, the enthalpy 

decreases while when the flow is decelerating, the enthalpy increases.  Given that in a 

frictional adiabatic flow the entropy always increases due to the ireversibilities cause by 

friction, the only way that the change in enthalpy is negative at the subsonic regime is for the 

flow to be accelerating.  Also, at the supersonic regime, the only way that the change in 
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enthalpy equals the positive right hand side of the equation is for the flow to be decelerating.  

Theoretically this explains the reason why at the subsonic regime the flow of a gas tends to 

accelerate while at the supersonic regime the flow of a gas tends to decelerate. 

In order to characterize the flow, a computational fluid dynamics approach was used.  The 

first step before obtaining results for the flow characteristics and entropy generation of 

different airfoils, is to compare simple cases with known answers.  Given that the authors of 

CFL3D provided comparative results for the case of a viscous flat plate, it was necessary to 

provide results for an inviscid supersonic wedge.  After these comparative results, the next 

step was to run all the airfoil cases.  The results obtained from CFL3D were then processed 

by a Fortran program that was created.  This program uses a central difference Taylor 

expansion to obtain the gradients defined by the entropy generation equations and determine 

the entropy generation rate close to the body around each airfoil at different at speeds and 

conditions. 

3.1 Test Cases 
 

In order to determine the level of accuracy at supersonic speeds, a test case was run.  In 

compressible inviscid supersonic flow theory, the Rankine-Hugoniot equations allow for the 

calculation of Mach number, pressure ratio, temperature ratio and other parameters before or 

after a compression shock wave.  For this case, an inviscid flat plate with a 30 degrees flow 

deflection wedge angle was created in Fig 3.1.  Although this test case considers inviscid 

supersonic flow, drag will be present in the form of wave drag cause by the irreversible 
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compression shock wave.  The grid of the wedge had a fine mesh of 1025 points along the x-

axis and 513 points along the y-axis, and was subsequently multigrided to two coarser mesh 

levels.   

 

 

Figure 3.1 Wedge Grid with 30-degree step 

Based on the Rankine-Huginot relations (Appendix B), the program was run with air as a 

perfect gas flow at Standard Atmospheric Conditions with a temperature of 288.15 , a 

pressure of , and a density of 

K

kPa25.1013 323.1
m
kg .  This case was run with a Mach number 
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of 2.6, a Reynolds number of  based on the wedge horizontal length, and a speed of 7109.6 x

s
m683.884 .   

First, it is critical to analyze the convergence reached by the program, before using any 

results.  The logarithmic of the residual is what is used to determine the reliability of the data 

as shown in Fig. 3.2.  A good residual in this case is considered around  or less.  It is 

also important to make sure that the convergence for the variables that are been observed like 

the coefficient of drag are relatively flat at the end of the iterations set in the program.  In 

other words, the graphs of these variables should not be changing more than 10% at the end 

of the iterations and should have a zero gradient trend at the end.  In Fig.3.2 the logarithmic 

of the residual stabilizes and stays with an almost zero gradient trend.  The logarithmic 

residual at the last iteration is of 0.2486E-07. 

5101 −×

Also, the degree of convergence of the program was compared with the drag results at 

consecutive iterations as it is shown in Fig. 3.4.  The coefficient of drag stayed at an almost 

zero gradient trend or almost constant throughout the program although it was going from a 

coarser to a finer grid.  It went 257 by 159 grid size to a finer 513 by 257 grid size after 

10,000 iterations, and then to the finest grid size of 1025 by 513 grid size after the 20,000 

iteration.   
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Mach∞ = 2.6

Figure 3.2 Residual and Coefficient of Drag for Wedge  
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Mach∞ = 2.6

Figure 3.3 Mach 2.6 Contour for Wedge 

At this Mach number, the flow will create an attached weak shock at the bottom of the wedge 

and then an expansion fan as soon as the wedge turns horizontal as seen in Fig. 3.3.  

Zooming into the wedge bottom corner (Fig. 3.4). 

 

Mach∞ = 2.6

Figure 3.4 Mach 2.6 Contour Closeup  
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Once the program achieves a reliable convergence, it is important to analyze the result and 

behavior of the other variables.  Figures 3.5 and 3.6 shows the Pressure Ratio Contour and 

the Temperature Ratio Contour respectively along the wedge.  Using the normal shock wave 

flow theory, the Rankine-Hugoniot relations, and an oblique shock wave table, the theoretical 

Mach number, pressure ratio and temperature can be determined.  Given that the flow 

deflection angle is , the upstream Mach number is 2.6, this gives a theoretical 

downstream Mach number of 1.10619.  Compared to the Mach 1.10895 output in Fig. 3.7 by 

the program, this gives an error of 0.249%.  In the case of the pressure ratio and temperature 

ratio, theoretically the results are 5.67064 and 1.88957 respectively.  When the output 

pressure and temperature ratios between downstream and upstream values in Fig. 3.8 are 

compared with the theoretical results, there error is of 0.2% and 0.085% respectively.  These 

results and their respective errors provide sufficient assurance that when viscosity is 

neglected from the analysis, the basic theoretical results can be achieved.   

°= 30θ
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Mach∞ = 2.6

Figure 3.5 Pressure Ratio Contour for Wedge 
 
 

 

Mach∞ = 2.6

Figure 3.6 Temperature Ratio for Wedge 
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Mach∞ = 2.6

Figure 3.7 Mach Number change along a vertical distance at x = 24.5 on the wedge 
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Mach∞ = 2.6

Figure 3.8 Pressure and Temperature Ratio along a vertical distance at x = 24.5  

 

As a fundamental case of supersonic flow over an inviscid wedge, this test case also provides 

the base for determining the volumetric entropy generation rate and will also shed light on 

what to expect for the viscous cases.  Given that the entropy generation rate formula used in 

this thesis is based on generation due to viscosity and generation due to heat, it is expected to 

find the highest entropy generation rate at locations where high viscosity and heat dissipation 

rates are concentrated.  Since the surface of the wedge is inviscid, the other locations where 

high entropy generation rates can be found are around the irreversible weak compression 

shock wave at the bottom of the wedge and around the expansion fan on top of the wedge.   
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Figure 3.9 Entropy Generation Rate (
Km

W
3 ) around Wedge Step 

As it is expected, the highest entropy generation rate per unit span is caused  around the area 

at the bottom of the wedge by a weak shock wave.  At that point, a highly irreversible weak 

attached compression shock wave is formed with high viscous and heat generation terms.   

In order to analyze the entropy generation rate of the wedge, data is taken from inside an 

imaginary rectangle that is 1 meter in length and 45 meters in high.  By having this 

configuration, the entire shock wave is captured.  On the right side of Fig. 3.9, there are two 

peaks in entropy generation rate, which are caused by expansion fans.  A weak expansion fan 

around the x position of 24.9 causes the smallest peak, which is the result of inaccuracies in 
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the grid when creating a straight line.  A true physical expansion fan in the corner of the 

wedge at an x position of 25.0 causes the highest entropy generation rate peak on the right of 

the graph. 

 

3.2 NACA 64215 Airfoil 
 
The first case that was tested was the NACA 64215 supercritical airfoil.  This airfoil was 

tested numerically at a Mach number of 0.65, 0.3, 0.6, 2.0, and 3.0.  The first Mach number 

of 0.65 was used to compare the CFL3D results with experimental results.  Although the 

experimental results do not provide the air temperature at the day of testing, a temperature of 

288.15K was used for the CFL3D analysis.  The other four Mach numbers were used to 

compare all the three airfoils under the same air free stream speeds and temperatures.  The 

grid that was created was used for all the cases.  The grid consisted of three levels of 

refinement with a coarse grid level of 257 by 159 points, then a finer 513 by 257 grid points 

and lastly a 1025 by 513 grid points.  In total, there were 1.38 million grid points. 
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3.2.1 Mach 0.3 
 
 

 

Mach∞ = 0.3  Alpha = 0°

 
Figure 3.10 Residual for NACA 642A215 airfoil from CFL3D 

The first step to do before analyzing all the flow characteristics and properties is to determine 

the level of convergence in the results.  For this case the 257 by 159 grid level was allowed to 

converge for 16000 iterations.  Then the program passed to the finer 513 by 257 level for 

10000 iterations and at the end it went to the finest 1025 by 513 grid level with 14000 

iterations.  As shown in Figure 3.10, the results converged to a level of accuracy of 9 decimal 

places.   
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Mach∞ = 0.3  Alpha = 0°

Figure 3.11 Mach 0.3 Contour around NACA 642A215 airfoil 
 

Figure 3.11 shows the mach contours around the NACA 642A215 airfoil with a free stream 

speed of Mach 0.3 and a Reynolds number of 6.9 million.   

As in the last case, the flow goes over, under or it reaches the stagnation point at the leading 

edge of the airfoil.  It can be seen how the flow reaches a higher speed at the upper surface 

and for a longer distance than in the lower surface.  As the flow passes over and under the 

airfoil, it starts to accelerate, reaches a maximum around half chord and then decelerates to 

the free stream speed.   



 
 
 

 
 

 71 

This acceleration in speed is due to a decrease in pressure caused by the curvature of the 

airfoil.  Figure 3.12 shows the pressure ratio between the local pressure and the free stream 

pressure.  It shows how the pressure decreases as the flow goes over and under the airfoil.  

 

Mach∞ = 0.3  Alpha = 0°

Figure 3.12 Pressure Ratio Contour around NACA 642A215 airfoil 
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Mach∞ = 0.3  Alpha = 0°

Figure 3.13 Temperature Ratio Contour around NACA 642A215 airfoil 

Also, there is a temperature ratio decrease as shown in Figure 3.13, which is associated with 

the pressure decrease as the flow goes over and under the airfoil.  This decrease in 

temperature is expected from the perfect gas law.   
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Mach∞ = 0.3  Alpha = 0°

Figure 3.14 Density Ratio Contour around NACA 642A215 airfoil 

The density ratio for the Mach number of 0.3 can be seen in Figure 3.14.  The Mach number 

0.3 is consider the lower limit when dealing between incompressible and compressible flow.  

As shown in Figure 3.14, although there is a change in density around the airfoil, the change 

is subtle with only a 4% change in density. 
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Mach∞ = 0.3  Alpha = 0°

 
Figure 3.15 Coefficient of Pressure around NACA 642A215 airfoil 

 

Figure 3.15 shows the coefficient of pressure at the Mach number of 0.3.  It shows a lower 

change in pressure than the change at the Mach number of 0.65 
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Mach∞ = 0.3  Alpha = 0°

 
Figure 3.16 Coefficient of Lift and Drag Convergence for NACA 642A215 airfoil 

Figure 3.16 shows the coefficient of lift and the coefficient of drag attained by the program 

after 40000 iterations.  The coefficient of lift converged to 0.1692 and the coefficient of drag 

converged to 0.008533. 
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3.2.2 Mach 0.6 

 
 

 

Mach∞ = 0.6  Alpha = 0°

 
Figure 3.17 Residual for NACA 642A215 airfoil from CFL3D 

 
As before, the 257 by 159 grid level was allowed to converge for 16000 iterations.  Then the 

program passed to the finer 513 by 257 grid level for 10000 iterations and at the end it went 

to the finest 1025 by 513 grid level with 14000 iterations.  As shown in Figure 3.17, the 

results converged to a level of accuracy of around 8 decimal places.   
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Mach∞ = 0.6  Alpha = 0°

 
Figure 3.18 Mach 0.6 Contour around NACA 642A215 airfoil 

Figure 3.18 shows the mach contours around the NACA 642A215 airfoil with a free stream 

speed of Mach 0.3 and a Reynolds number of 13.8 million.   

As in the last case, the flow goes over, under or it reaches the stagnation point at the leading 

edge of the airfoil.  It can be seen how the flow reaches a higher speed at the upper surface 

and for a longer distance than in the lower surface.  This is mainly due to a higher pressure in 

the lower surface than in the upper surface.  Again, this acceleration in speed is due to a 

decrease in pressure caused by the curvature of the airfoil.  Figure 3.19 shows the pressure 

ratio between the local pressure and the free stream pressure.  As in the last cases, there is a 

higher pressure ratio at the leading edge cause by the compression that is occurring at that 
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point.  This compression will also cause an increase in temperature as shown in Figure 3.20.  

As the flow passes the leading edge, it starts to cool down to a minimum that occurs around 

center of the airfoil. 

 

 

 

Mach∞ = 0.6  Alpha = 0°

Figure 3.19 Pressure Ratio Contour around NACA 642A215 airfoil 
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Mach∞ = 0.6  Alpha = 0°

Figure 3.20 Temperature Ratio Contour around NACA 642A215 airfoil 
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Mach∞ = 0.6  Alpha = 0°

Figure 3.21 Density Ratio Contour around NACA 642A215 airfoil 

Given the proportional relation between density and pressure by the perfect gas law, Figure 

3.21 shows how the density ratio also increases at the leading edge and then returns to an 

unity density ratio.  Around the center of the airfoil, the density gets lower which is also 

associated with a lower temperature and a lower pressure. 
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Mach∞ = 0.6  Alpha = 0°

Figure 3.22 Coefficient of Pressure around NACA 642A215 airfoil 

Figure 3.22 shows the coefficient of pressure for a Mach number of 0.6.  Just as in the other 

cases, the ups and downs in the results obtained are believe to be caused by peaks and valleys 

that can be formed when creating a grid given its resolution.  For this Mach number, both 

surfaces have negative coefficient of pressure, which indicates acceleration in the airflow and 

a subsonic case. 
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Mach∞ = 0.6  Alpha = 0°

Figure 3.23 Coefficient of Lift and Drag Convergence on NACA 642A215 airfoil 

Figure 3.23 shows the convergence for the coefficient of lift and the coefficient of drag 

through 40000 iterations.  After the 40000 iterations, it converged to a coefficient of lift of 

0.203 and a coefficient of drag of 0.008042. 
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3.2.3 Mach 0.65 
 
 

 

Mach∞ = 0.65  Alpha = 0°

Figure 3.24 Residual for NACA 642A215 airfoil from CFL3D  

The first step to do before analyzing all the flow characteristics and properties is to determine 

the level of convergence in the results.  This case as well as all the other cases analyzed in 

this thesis started with a coarse 257 by 159 grid level then it went to a finer 513 by 257 grid 

level and ended at the finest 1025 by 513 grid level.  The 257 by 159 grid level was allowed 

to converge for 16000 iterations.  Then the program passed to the finer 513 by 257 level for 

10000 iterations and at the end it went to the finest 1025 by 513 level with 14000 iterations.  
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As shown in Figure 3.24, the results converged to a level of accuracy of 8 decimal places.  

Taking all the grid levels, there were 1.38 million grid points in total. 

 

Mach∞ = 0.65  Alpha = 0°

 

Figure 3.25 Mach 0.65 Contour around NACA 642A215 airfoil 

Figure 3.25 shows the mach contours around the NACA 642A215 airfoil with a free stream 

speed of Mach 0.65 and a Reynolds number of 14.95 million.   

As the flow first encounters the airfoil, it goes over, under or it reaches the stagnation point at 

the leading edge.  Given that the flow is subsonic, as the flow passes over and under the 

airfoil, it starts to accelerate, reaches a maximum around half chord and then decelerates to 

the free stream speed.   
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This acceleration in speed is due to a decrease in pressure caused by the curvature of the 

airfoil.  Figure 3.26 shows the pressure ratio between the local pressure and the free stream 

pressure.  It shows how the pressure decreases as the flow goes over and under the airfoil 

which helps explain the acceleration in speed and therefore the increase in Mach number.  

 

Mach∞ = 0.65  Alpha = 0°

Figure 3.26 Pressure Ratio Contour around NACA 642A215 airfoil 
 

This differential in pressure between the upper and lower surface causes the creation of lift 

since the lower surface has a higher pressure than the upper surface due to its curvature.  This 

decrease in pressure causes a suction effect, which increases the speed. 

As the flow reaches the leading edge of the airfoil, it compresses, which causes an increase in 

temperature as shown in Figure 3.27.  Then as the air flow accelerates due to a decrease in 
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pressure, the temperature and the density also decreases as shown in Figure 3.27 and in 

Figure 3.28.   

 

 

Mach∞ = 0.65  Alpha = 0°

Figure 3.27 Temperature Ratio Contour around NACA 642A215 airfoil 

Given that the surface of the airfoil is viscous, a thin flow boundary layer will start to form.  

This boundary layer will also aid in the decrease of pressure.  In Figure 3.27, the thin 

boundary layer can be seen just above the upper surface due to an increase in temperature 

caused by the viscosity and turbulence.  This viscosity will cause a small turbulent flow to 

small forming and will increase the temperature as the flow passes the trailing edge of the 

airfoil. 
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Mach∞ = 0.65  Alpha = 0°

Figure 3.28 Density Ratio Contour around NACA 642A215 airfoil 
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Mach∞ = 0.65  Alpha = 0°

Figure 3.29 Coefficient of Pressure around NACA 642A215 airfoil 
 

Figure 3.29 shows the coefficient of pressure around the upper and lower surface. The higher 

curve belongs to the coefficient of pressure on the upper surface while the lower curve 

belongs to the coefficient of pressure at the lower surface.  The more negative upper surface 

will create a lower pressure at the top that will increase the speed while the lower surface will 

also increase the speed but to a lesser degree.  The ups and downs in the coefficient of 

pressure close to the leading edge (at an X-position of zero), are belief to be caused by 

irregularities in the grid and not by physical causes. 

 



 
 
 

 
 

 89 

 

Mach∞ = 0.65  Alpha = 0°

Figure 3.30 Coefficient of Lift and Drag Convergence for NACA 642A215 airfoil 

Figure 3.30 shows the coefficient of lift and the coefficient of drag after the 40000 iterations.  

It reached a coefficient of lift of 0.2159 and a coefficient of drag of 0.008119.   These results 

were compared to the experimental results from Ref. 29 which reported a coefficient of lift of 

around 0.252 and a coefficient of drag of around 0.0095.  This shows an estimated error of 

about 14% in the coefficient of lift and about 14.5% in the coefficient of drag.   This level of 

accuracy is expected in the next runs given that the only variable that will be changing is the 

Mach number.   It is worth mentioning that the difference in the results can be due to the 

discrepancies between the grid and the actual surface tested experimentally, and also to a 

difference between the assumed temperature used in the program and the actual temperature 

at the experimental facility. 



 
 
 

 
 

 90 

3.2.4 Mach 2.0 

 

 

Mach∞ = 2.0  Alpha = 0°

Figure 3.31 Residual for NACA 642A215 airfoil from CFL3D 

The first step before analyzing all the flow characteristics and properties is to determine the 

level of convergence in the results.  For this case the 257 by 159 grid level was allowed to 

converge for 10000 iterations.  Then the program passed to the finer 513 by 257 level for 

12000 iterations and at the end it went to the finest 1025 by 513 grid level with 15000 

iterations.  As shown in Figure 3.31, the results obtained represent an average around an 

accuracy of 5 decimal places.   
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Mach∞ = 2.0  Alpha = 0°

Figure 3.32 Mach 2.0 Contour around NACA 642A215 airfoil 

Figure 3.32 shows the mach contours for a free stream Mach number of 2.0 and a Reynolds 

number of 46 million.  As the flow gets closer to the airfoil, it does not have an opportunity 

to expand and go over the airfoil.  In other words, no compression or temperature 

information is passed to the front of the flow.  This causes a compression shock wave at the 

leading edge of the airfoil that is also detached from the surface.  As it was determined for 

the fanno line case, a supersonic flow will decelerate the flow and move it towards the sonic 

speed.  The shock wave will cause a drop in Mach number from 2.0 to around 1.1.   
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It is believe that the reason for only achieving an average residual is either because of having 

a detached compression wave that could be pulsating in an unsteady way or because having 

such a fine grid where the shock is slightly moving and causing this frequency in the results. 

 

 

Mach∞ = 2.0  Alpha = 0°

Figure 3.33 Pressure Ratio Contour around NACA 642A215 airfoil 

Figure 3.33 shows the pressure ratio contour lines for a Mach number of 2.0.  For this 

supersonic case, there is a large increase in pressure at the leading edge of the airfoil and then 

changes to have a lower pressure ratio as it gets closer to the trailing edge.  As the flow gets 

to the trailing edge it will experience another compression wave at the trailing edge which 

can be seen in Figure 3.32. 



 
 
 

 
 

 93 

. 

 

Mach∞ = 2.0  Alpha = 0°

Figure 3.34 Temperature Ratio Contour around NACA 642A215 airfoil 

Figure 3.34 shows the temperature ratio around the airfoil at this supersonic speed.  There is 

an increase in temperature at the leading edge because of this part of the airfoil supporting 

the shock wave that hits the leading edge.  This collision of air particles at supersonic speeds 

will increase the temperature and also the density by having the flow compressed to that zone 

as shown in Figure 3.35. 
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Mach∞ = 2.0  Alpha = 0°

Figure 3.35 Density Ratio Contour around NACA 642A215 airfoil 
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Mach∞ =2.0  Alpha = 0°

 Figure 3.36 Coefficient of Pressure around NACA 642A215 airfoil 

On the other hand, the coefficient of pressure at supersonic speeds will be positive as shown 

in Figure 3.36.  This positive coefficient of pressure shows a tendency toward decelerating 

the flow from it supersonic speeds given that the pressure downstream is higher than the 

pressure upstream.  The coefficient of pressure goes from being positive to being slightly 

zero after the center of the airfoil. 
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Mach∞ = 2.0  Alpha = 0°

Figure 3.37 Coefficient of Lift and Drag Convergence on NACA 642A215 airfoil 

Figure 3.37 shows the coefficient of lift and the coefficient of drag convergence after 37000 

iterations.  For this case, both the coefficient of lift and the coefficient of drag converged.  

The coefficient of lift converged to –0.0201 and the coefficient of drag converged to 0.1127. 
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3.2.5 Mach 3.0 

 

 

Mach∞ = 3.0  Alpha = 0°

Figure 3.38 Residual for NACA 642A215 airfoil from CFL3D 

As before, the first step is to determine the level of convergence and accuracy of the results.  

For this case the 257 by 159 grid level was allowed to converge for 6000 iterations.  Then the 

program passed to the finer 513 by 257 level for 16000 iterations and at the end it went to the 

finest 1025 by 513 grid level with 14000 iterations.  As shown in Figure 3.38, the results 

obtained represent an average that are around an accuracy of 4 decimal places.   
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Mach∞ = 3.0  Alpha = 0°

Figure 3.39 Mach 3.0 Contour around NACA 642A215 airfoil 

Figure 3.39 shows the mach contours for a free stream Mach number of 3.0 and a Reynolds 

number of 69 million.  As in the case for a Mach number of 2.0, the flow does not have an 

opportunity to expand and go over the airfoil.  In other words, no compression or temperature 

information is passed to the front of the flow.  This causes a compression shock wave at the 

leading edge of the airfoil that is also detached from the surface.  It can be seen at the leading 

edge a subsonic area followed by a supersonic area.   

It is also believe that the reason for only achieving an average residual is either because of 

having a detached compression wave that could be pulsating in an unsteady way or because 



 
 
 

 
 

 99 

having such a fine grid where the shock is slightly moving and causing this frequency in the 

results. 

 

 

Mach∞ = 3.0  Alpha = 0°

Figure 3.40 Pressure Ratio Contour around NACA 642A215 airfoil 

In Figure 3.40, the pressure ratio for Mach 3.0 airflow is shown.  An area of even higher 

compression ratio is shown at the leading edge when compared to the Mach 2.0 case.  This 

elevated pressure ratio will also cause a higher temperature ratio as shown in Figure 3.41.  In 

Figure 3.40 and Figure 3.41 also shows almost identical pressure and temperature ratio 

around the upper surface and lower surface which will cause a zero lift coefficient. 
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Mach∞ = 3.0  Alpha = 0°

Figure 3.41 Temperature Ratio Contour around NACA 642A215 airfoil 
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Mach∞ = 3.0  Alpha = 0°

Figure 3.42 Density Ratio Contour around NACA 642A215 airfoil 

Figure 3.42 shows the density ratio that indicates similar flow patterns above and under the 

airfoil.  These identical flows above and under the airfoil will cause a decrease to zero for the 

coefficient of lift and the possibility of having a lift coefficient only if the airfoil is at an 

angle of attack with respect to the free stream flow.  This same pattern is observed in Figure 

3.43 with an almost zero coefficient of pressure. 
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Mach∞ = 3.0  Alpha = 0°

Figure 3.43 Coefficient of Pressure around NACA 642A215 airfoil 
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Mach∞ = 3.0  Alpha = 0°

Figure 3.44 Coefficient of Lift and Drag Convergence for NACA 642A215 airfoil 

Figure 3.44 shows the average coefficient of lift and the coefficient of drag convergence at a 

supersonic speed of Mach 3.0.  The coefficient of lift had an average of –0.0201 and the 

coefficient of drag had an average of 0.1127. 
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3.2.6 Entropy Generation Rate Comparison 

 

 

Figure 3.45 Entropy Generation Rate (
Km

W
3 ) around NACA 642A215 airfoil 

Figure 3.45 shows the entropy generation rate per unit span caused one meter around the 

leading edge, the upper surface and the lower surface only.  It does not shows the entropy 

generated after the trailing edge.   

Figure 3.45 shows the entropy generation rate per unit volume caused by the NACA 

642A215 airfoil at different Mach numbers from subsonic to supersonic speeds.  The X-

position of one is located at the trailing edge and the X-position of zero is the leading edge of 

the airfoil.  As it is expected for the space that is analyzed, the maximum entropy generation 
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is caused at the leading edge where there are large changes in the velocity and temperature of 

the flow.  The flow goes from the free stream Mach number to a stagnant point at the leading 

edge which will cause the entropy generation drop due to the zero velocity terms but with a 

generation due to the rise in temperature and density. As it is expected the least amount of 

entropy generation rate is caused by the slowest Mach number of 0.3.   

Although the upper and lower surface meet in at the trailing edge, the pressure differential 

and the temperature difference is enough to cause a higher entropy generation rate at the 

lower trailing edge than at the higher trailing edge.  It is interesting to notice that the entropy 

generation at the trailing edge for the subsonic Mach numbers is decreasing while the entropy 

generation for the supersonic Mach numbers appear to be level. 

The two highest entropy generation are caused by the highest Mach numbers of 2.0 and 3.0.  

As it was expected, more entropy is generated due to the compression shock that form at the 

leading edge of the airfoil.  The compression shock wave causes an almost instantaneous 

change in velocity gradients and an increase in temperature which will drive the increase in 

entropy generated.   
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3.3 K2 Airfoil 

3.3.1 Mach 0.3 

 

 

Mach∞ = 0.3  Alpha = 0°

Figure 3.46 Residual for K2 airfoil from CFL3D 

Figure 3.46 shows the level of convergence that is expected in the results.  This case as well 

as all the other cases analyzed in this thesis started with a coarse 257 by 159 grid level then it 

went to a finer 513 by 257 grid level and ended at the finest 1025 by 513 grid level.  The 257 

by 159 grid level was allowed to converge for 16000 iterations.  Then the program passed to 

the finer 513 by 257 level for 10000 iterations and at the end it went to the finest 1025 by 513 
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level with 14000 iterations.   An accuracy of 9 decimal places is expected in the results given 

this residual. 

 

Mach∞ = 0.3  Alpha = 0°

Figure 3.47 Mach 0.3 Contour around K2 airfoil 

Figure 3.47 shows the mach contours around the K2 airfoil with a free stream speed of Mach 

0.3 and a Reynolds number of 6.9 million.   

As in the last case, the flow goes over, under or it reaches the stagnation point at the leading 

edge of the airfoil.  It can be seen how the flow reaches a higher speed at the upper surface 

and for a longer distance than in the lower surface.  As the flow passes over and under the 

airfoil, it starts to accelerate, reaches a maximum around half chord and then decelerates to 

the free stream speed.  One important characteristic to notice is the lower maximum Mach 
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number that is achieved at the lower surface and also the Mach number bubble that is created 

close to the trailing edge of the lower surface which is caused by a higher pressure in that 

area as can be seen in Figure 3.48 

This acceleration in speed is due to a decrease in pressure caused by the curvature of the 

airfoil.  Figure 3.48 shows the pressure ratio between the local pressure and the free stream 

pressure.  It shows how the pressure decreases on both the upper and lower surface but 

remains constant for a longer length along the upper surface, limiting the increases in speed 

towards sonic speed. 

 

 

Mach∞ = 0.3  Alpha = 0°

Figure 3.48 Pressure Ratio Contour around K2 airfoil 
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Mach∞ = 0.3  Alpha = 0°

Figure 3.49 Temperature Ratio Contour around K2 airfoil 

Figure 3.49 shows the temperature ratio contours around the K2 airfoil at a Mach number of 

0.3.  Given that this Mach number is the lower limit when considering compressible flow, the 

temperature increase at the nose is close to one which will coincide with a slight 4% increase 

in density as shown in Figure 3.50.  As shown in Figure 3.49, there is a higher temperature at 

the trailing edge of the lower surface when compared to the trailing edge at the upper surface.  

This is in agreement with the higher pressure at that zone and with also the higher density. 
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Mach∞ = 0.3  Alpha = 0°

Figure 3.50 Density Ratio Contour around K2 airfoil 
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Mach∞ = 0.3  Alpha = 0°

Figure 3.51 Coefficient of Pressure around K2 airfoil 

Figure 3.51 shows the coefficient of pressure around the K2 airfoil.  The open area at the 

right side of the coefficient of pressure is cause by numerical inaccuracies when assigning 

two different values at the same point at the trailing edge.  One thing to notice is the extended 

negative constant pressure along the upper surface which changes positive the closer it gets 

to the trailing edge. 
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Mach∞ = 0.3  Alpha = 0°

Figure 3.52 Coefficient of Lift and Drag Convergence for K2 airfoil 

Figure 3.52 shows the coefficient of lift and the coefficient of drag convergence after 40000.  

First, it is important to know that these two variables stay constant along the iterations which 

indicate that the program has converged to the results.  The program output a coefficient of 

lift of 0.1418 and a coefficient of drag of 0.007978. 
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3.3.2 Mach 0.6 

 

 

Mach∞ = 0.6  Alpha = 0°  T = 255.2K 

Figure 3.53 Residual for K2 airfoil from CFL3D 

The first step to do before analyzing all the flow characteristics and properties is to determine 

the level of convergence in the results.  This case as well as all the other cases analyzed in 

this thesis started with a coarse 257 by 159 grid level then it went to a finer 513 by 257 grid 

level and ended at the finest 1025 by 513 grid level.  The 257 by 159 grid level was allowed 

to converge for 16000 iterations.  Then the program passed to the finer 513 by 257 level for 

10000 iterations and at the end it went to the finest 1025 by 513 level with 14000 iterations.  
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As shown in Figure 3.53, the results converged to a level of accuracy of 8 decimal places.  

Taking all the grid levels, there were 1.38 million grid points in total. 

 

 

Mach∞ = 0.6  Alpha = 0°  T = 255.2K 

Figure 3.54 Mach 0.6 Contour around K2 airfoil 

Figure 3.54 shows the mach contours around the K2 airfoil.  The purpose of this first test is 

to compare the CFL3D results with experimental data.  The experimental data had a free 

stream Mach number of 0.6, a Reynolds number of 6.0 million, and a free stream temperature 

of 255.2K which were matched in the CFL3D test run.  For the other runs, the temperature 

was set to 288.15K. 
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As the flow first encounters the airfoil, it goes over, under or it reaches the stagnation point at 

the leading edge.  Compression information is passed upstream of the flow, slowing down 

the flow in front of the leading edge since it is a subsonic flow.  Given that the flow is 

subsonic, as the flow passes over and under the airfoil, it starts to accelerate, reaches a 

maximum around half chord and then decelerates to the free stream speed.   

This acceleration in speed is due to a decrease in pressure caused by the curvature of the 

airfoil.  Figure 3.55 shows the pressure ratio between the local pressure and the free stream 

pressure.  It shows how the pressure decreases as the flow goes over and under the airfoil 

which helps explain the acceleration in speed and therefore the increase in Mach number.   

One of design specifications that is characteristic of supercritical airfoils is trying to maintain 

an almost constant pressure ratio above the upper surface.  This almost constant pressure 

ratio will hold the flow from reaching close to sonic conditions and thus eliminating the 

compression shock and drag rise at the upper surface.   As it is shown in Figure 3.55, the 

pressure ratios across the upper surface have an extended constant pressure bubble.  
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Mach∞ = 0.6  Alpha = 0°  T = 255.2K 

Figure 3.55 Pressure Ratio Contour around K2 airfoil 

In Figure 3.56, the temperature ratio contours around the K2 airfoil are shown.  As it 

expected the temperature decreases over and under the airfoil due to a decrease in pressure 

causing an increase in air flow speed.  This decrease in temperature will also cause a 

decrease in density around the airfoil shown in Figure 3.57 which is theoretically explained 

by the perfect gas law. 
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Mach∞ = 0.6  Alpha = 0°  T = 255.2K 

Figure 3.56 Temperature Ratio Contour around K2 airfoil 
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Mach∞ = 0.6  Alpha = 0°  T = 255.2K 

Figure 3.57 Density Ratio Contour around K2 airfoil 
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Mach∞ = 0.6  Alpha = 0°  T = 255.2K 

Figure 3.58 Coefficient of Pressure around K2 airfoil 

Figure 3.58 shows two experimental results for coefficient of pressure and the numerical 

coefficient of pressure obtained from CFL3D.  Given that the angle of attacks(alpha) that 

were experimentally analyzed are not exactly zero as the one examined numerically, the 

results for two angles of attack are shown.  This figure shows that initially the results 

obtained numerically are an underestimate close to the leading edge of the airfoil and then 

the results are an overestimate close to the trailing edge.  The reason for these discrepancies 

can be caused by numerical inaccuracies in the grid creation, a change in temperature than 

the constant temperature reported in the experimental results, and/or numerical inaccuracies 

in CFL3D.  The experimental data can be seen in Appendix C.1. 



 
 
 

 
 

 120 

 

 

Mach∞ = 0.6  Alpha = 0°  T = 255.2K 

Figure 3.59 Coefficient of Lift and Drag Convergence for K2 airfoil 

Figure 3.59 shows the coefficient of lift and the coefficient of drag convergence after 40000 

iterations.  Numerically the coefficient of lift converged to 0.1376 and the coefficient of drag 

converged to 0.008332.  Experimentally the coefficient of drag can be obtained from 

Appendix C.1.  Given that it does not vary between the two angle of attacks, the coefficient 

of drag is obtained as 0.0092 which is a difference of 9.43% between the numerical and 

experimental results. 
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3.3.3 Mach 0.6 

 

 

Mach∞ = 0.6  Alpha = 0°  T = 288.15K 

Figure 3.60 Residual for K2 airfoil from CFL3D 

As before, the 257 by 159 grid level was allowed to converge for 16000 iterations.  Then the 

program passed to the finer 513 by 257 grid level for 10000 iterations and at the end it went 

to the finest 1025 by 513 grid level with 14000 iterations.  As shown in Figure 3.60, the 

results converged to a level of accuracy of around 8 decimal places.   
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Mach∞ = 0.6  Alpha = 0°  T = 288.15K 

Figure 3.61 Mach 0.6 Contour around K2 airfoil 

Figure 3.61 shows the mach contours around the K-2 airfoil with a free stream speed of 

Mach 0.3 and a Reynolds number of 13.8 million.  Although the Mach number is the same as 

the first case for the K2 airfoil, the temperature is 288.15K instead of 255.56K. 

As in the last case, the flow goes over, under or it reaches the stagnation point at the leading 

edge of the airfoil.  It can be seen how the flow reaches a higher speed at the upper surface 

and for a longer distance than in the lower surface.  This is mainly due to a higher pressure in 

the lower surface than in the upper surface.  Again, this acceleration in speed is due to a 

decrease in pressure caused by the curvature of the airfoil.  Figure 3.62 shows the pressure 

ratio between the local pressure and the free stream pressure.  As in the last cases, there is a 
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higher pressure ratio at the leading edge cause by the compression that is occurring at that 

point.  This compression will also cause an increase in temperature as shown in Figure 3.63.  

As the flow passes the leading edge, it starts to cool down to a minimum that occurs around 

center of the airfoil. 

 

 

 

Mach∞ = 0.6  Alpha = 0°  T = 288.15K 

Figure 3.62 Pressure Ratio Contour around K2 airfoil 
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Mach∞ = 0.6  Alpha = 0°  T = 288.15K 

Figure 3.63 Temperature Ratio Contour around K2 airfoil 
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Mach∞ = 0.6  Alpha = 0°  T = 288.15K 

Figure 3.64 Density Ratio Contour around K2 airfoil 

As in the last case, Figure 3.64 shows how the density ratio also increases at the leading edge 

and then returns to an unity density ratio but increases slightly close to the trailing edge at the 

lower surface.  Around the center of the airfoil, the density gets lower which is also 

associated with a lower temperature and a lower pressure. 
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Mach∞ = 0.6  Alpha = 0°  T = 288.15K 

Figure 3.65 Coefficient of Pressure around K2 airfoil 

The change in coefficient of pressure can be seen in Figure 3.65.  As in the last case, the 

pressure stays with an almost constant negative coefficient of pressure of around -0.35.  It 

stays with this value over a longer length along the upper surface than over the lower surface.  

It reaches a maximum positive pressure at the trailing edge which is the reason why the air 

flow start to decelerate around that zone. 
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Mach∞ = 0.6  Alpha = 0°  T = 288.15K 

Figure 3.66 Coefficient of Lift and Drag Convergence for K2 airfoil 

The coefficient of lift and the coefficient of drag convergence can be seen in Figure 3.66.  

Numerically, the run converged to a coefficient of lift of 0.1537 and a coefficient of drag of 

0.007421.  These results can be compared to the coefficient of lift and the coefficient of drag 

obtained at the same Mach number but lower temperature as in the first case.  The first case 

achieved a coefficient of lift and the coefficient of drag of 0.1376 and 0.008332 respectively.  

As it is expected the higher temperature at the same Mach number causes an increase in lift 

and also a decrease in drag.  The decrease in drag is caused because of a decrease in density 

which causes less air particles to caused friction along the surface of the airfoil. 
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3.3.4 Mach 2.0 

 

 

Mach∞ = 2.0  Alpha = 0°  

Figure 3.67 Residual for K2 airfoil from CFL3D 

The first step before analyzing all the flow characteristics and properties is to determine the 

level of convergence in the results.  For this case the 257 by 159 grid level was allowed to 

converge for 10000 iterations.  Then the program passed to the finer 513 by 257 level for 

12000 iterations and at the end it went to the finest 1025 by 513 grid level with 15000 

iterations.  As shown in Figure 3.31, the results obtained represent an average that are around 

an accuracy of 5 decimal places.   
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Mach∞ = 2.0  Alpha = 0°  

Figure 3.68 Mach 2.0 Contour around K2 airfoil 

Figure 3.68 shows the mach contours for a free stream Mach number of 2.0 and a Reynolds 

number of 46 million.  As the flow gets closer to the airfoil, it does not have an opportunity 

to expand and go over the airfoil.  In other words, no compression or temperature 

information is passed to the front of the flow.  This causes a compression shock wave at the 

leading edge of the airfoil that is also detached from the surface.  As the flow passes over and 

under the leading edge of the airfoil, the changes in Mach number are similar on both sides.  

As the flow passes the center of the airfoil, it achieves a higher mach number at the lower 

surface than at the upper surface due to a favorable pressure gradient as it can be seen in 

Figure 3.69.  As it gets close to the trailing edge the higher pressure at the lower surface 



 
 
 

 
 

 130 

forces the airflow to decelerate and the lower pressure at the upper surface causes the airflow 

there to accelerate.  Both airflows meet at the trailing edge causing an additional compression 

shock wave that will allow for the pressure to achieve a free stream pressure. 

As before, it is believe that the reason for only achieving an average residual is either 

because of having a detached compression wave that could be pulsating in an unsteady way 

or because having such a fine grid where the shock is slightly moving and causing this 

frequency in the results. 

 

 

Mach∞ = 2.0  Alpha = 0°  

Figure 3.69 Pressure Ratio Contour around K2 airfoil 
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Mach∞ = 2.0  Alpha = 0°  

Figure 3.70 Temperature Ratio Contour around K2 airfoil 
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Mach∞ = 2.0  Alpha = 0°  

Figure 3.71 Density Ratio Contour around K2 airfoil 

Follow the perfect gas law, both the density and temperature ratio contours in Figure 3.70 

and 3.71 will increase or decrease accordingly.  The increase in temperature and density in 

leading edge of the airfoil is a consequence of the compression shock wave.  Also the 

increase in pressure along the trailing edge at the lower surface will cause an increase in both 

the temperature and the density. 
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Mach∞ = 2.0  Alpha = 0°  

Figure 3.72 Coefficient of Pressure around K2 airfoil 

Figure 3.72 shows the coefficient of pressure for the K2 airfoil at a Mach number of 2.0.  At 

supersonic speeds, the coefficient of pressure will be positive due to an increase in pressure 

after the shock wave.  Due to the design of this airfoil, a negative coefficient of pressure is 

observed after the center of the airfoil which indicates a favorable pressure gradient for an 

increase in Mach number and a decrease in temperature and density. 
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Mach∞ = 2.0  Alpha = 0°  

Figure 3.73 Coefficient of Lift and Drag Convergence for K2 airfoil 

Figure 3.73 shows the average convergence for the coefficient of lift and coefficient of drag.  

For this run, the coefficient of lift is -0.03013 and the coefficient of drag of 0.07927.  As 

explained before, the noise in the results is believed to be cause by the program, the grid that 

is analyzed, and/or because of trying to achieve a steady result for an unsteady case.  A 

slightly negative lift is the result of a curve shock wave forming at the leading edge and 

creating a higher pressure area at the upper surface than at the lower surface as can be seen in 

Fig. 3.69. 
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3.3.5 Mach 3.0 

 

 

Mach∞ = 3.0  Alpha = 0°  

Figure 3.74 Residual for K2 airfoil from CFL3D 

The first step before analyzing all the flow characteristics and properties is to determine the 

level of convergence in the results.  For this case the 257 by 159 grid level was allowed to 

converge for 6000 iterations.  Then the program passed to the finer 513 by 257 level for 
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15000 iterations and at the end it went to the finest 1025 by 513 grid level with 15000 

iterations.  As shown in Figure 3.74, the results obtained represent an average that is around 

an accuracy of 4 decimal places.   

 

 

 

Mach∞ = 3.0  Alpha = 0°  

Figure 3.75 Mach 3.0 Contour around K2 airfoil 

Figure 3.75 shows the mach contours for a free stream Mach number of 3.0 and a Reynolds 

number of 69 million.  Given that the free stream speed is supersonic, a compression shock 

wave is formed at the leading edge of the airfoil that is also detached from the surface.  As 

for a Mach number of 2.0, the flow achieves a higher mach number at the lower surface than 
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at the upper surface due to a favorable pressure gradient as it can be seen in Figure 3.76.  As 

it gets close to the trailing edge the higher pressure at the lower surface forces the airflow to 

decelerate and the lower pressure at the upper surface causes the airflow there to accelerate.  

Both airflows meet at the trailing edge causing an additional compression shock wave that 

will allow for the pressure to achieve a free stream pressure. 

As before, it is believe that the reason for only achieving an average residual is either 

because of having a detached compression wave that could be pulsating in an unsteady way 

or because having such a fine grid where the shock is slightly moving and causing this 

frequency in the results. 

 

 

Mach∞ = 3.0  Alpha = 0°  
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Figure 3.76 Pressure Ratio Contour around K2 airfoil 

One important change to notice in Figure 3.76 is the high pressure ratio that is achieved at the 

leading edge of the airfoil.  The high pressure ratio will also cause a high temperature ratio 

and density ratio which are important to take into account when designing an airfoil and 

selecting the material to use for making the airfoil. 

 

 

Mach∞ = 3.0  Alpha = 0°  

Figure 3.77 Temperature Ratio Contour around K2 airfoil 

Figures 3.77 and Figure 3.78 shows temperature ratio and density ratio contours around the 

airfoil.  It can be seen in Figure 3.78 that the air density at the leading edge is around four 

times higher than the free stream density with a temperature that is about three times higher.  
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Given that the free stream temperature is 288.15K, the leading edge will experience a 

temperature of 864.45K or 1096.34 Fahrenheit.  

 

Mach∞ = 3.0  Alpha = 0°  

Figure 3.78 Density Ratio Contour around K2 airfoil 

 

 



 
 
 

 
 

 140 

 

Mach∞ = 3.0  Alpha = 0°  

Figure 3.79 Coefficient of Pressure around K2 airfoil 

Figure 3.79 shows the coefficient of pressure for the K2 airfoil at a Mach number of 3.0.  As 

before, at supersonic speeds, the coefficient of pressure will be positive due to an increase in 

pressure after the shock wave.  At this Mach number, the coefficient of pressure stays close 

to zero after 0.25 of the chord down from the leading edge.  The change in coefficient of 

pressure close trailing edge is due to a high pressure at the lower surface compared to the 

upper surface. 
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Mach∞ = 3.0  Alpha = 0°  

Figure 3.80 Coefficient of Lift and Drag Convergence for K2 airfoil 

Figure 3.80 shows the coefficient of lift and the coefficient of drag convergence at a Mach 

number of 3.0.  Although both coefficients are changing along the iterations, there is an 

average of -0.01745 for the coefficient of lift and 0.07123 for the coefficient of drag. 

 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
 

 142 

3.3.6 Entropy Generation Rate Comparison 

 

 

Figure 3.81 Entropy Generation Rate (
Km

W
3 ) around K2 airfoil 

Figure 3.81 shows the entropy generation rate per unit span caused one meter around the 

leading edge, the upper surface and the lower surface only.  It does not shows the entropy 

generated after the trailing edge.   

Figure 3.81 shows the entropy generation rate per unit volume caused by the K2 airfoil at 

different Mach numbers from subsonic to supersonic speeds.  The X-position of one is 

located at the trailing edge and the X-position of zero is the leading edge of the airfoil.  As it 



 
 
 

 
 

 143 

is expected for the space that is analyzed, the maximum entropy generation is caused at the 

leading edge where there are large changes in the velocity and temperature of the flow.  The 

flow goes from the free stream Mach number to a stagnant point at the leading edge which 

will cause the entropy generation drop due to the zero velocity terms but with a generation 

due to the rise in temperature and density. As it is expected the least amount of entropy 

generation rate is caused by the slowest Mach number of 0.3.   

One important point to notice is the difference in entropy generation rate produce for the two 

cases that have similar Mach numbers.  The first case, which has a lower temperature, has a 

lower entropy generation rate than the third case that has the same Mach number but with a 

higher temperature.   

Another peculiar characteristic is the decrease in entropy generation rate close to the trailing 

edge at the lower surface.  This decrease in entropy generation is caused by having a 

favorable pressure gradient at that zone which increase the speed and lowered both the 

temperature and the density.  Although there is a decrease in entropy generation rate, as the 

flow gets to the trailing edge, the entropy generation rate increases due to the compression 

shock that occurs at the trailing edge because of an increase in pressure and temperature. 

The two highest entropy generation rates are caused by the highest Mach numbers of 2.0 and 

3.0.  As it was expected, more entropy is generated due to the compression shock that form at 

the leading edge of the airfoil.  The compression shock wave causes an almost instantaneous 

change in velocity gradients and an increase in temperature which will drive the increase in 

entropy generated.   
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3.4  Whitcomb Integral Supercritical Airfoil 

Four cases where run for the Whitcomb Integral Supercritical Airfoil.  The four cases 

consisted of a Mach number of 0.3, 0.6, 2.0, and 3.0. Numerical results for the case of a 

Mach number of 0.6 is compared with experimental data.  Although the report does not 

specify the temperature at the facilities used to take the data, CFL3D is run assuming a 

standards atmospheric temperature of 288.15K.    

 

3.4.1 Mach 0.3 

 

Mach∞ = 0.3  Alpha = 0°  

Figure 3.82 Residual for Whitcomb airfoil from CFL3D 
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Figure 3.82 shows the level of convergence which correspond to the accuracy that is 

expected in the results.  This case as well as all the other cases analyzed in this thesis started 

with a coarse 257 by 159 grid level then it went to a finer 513 by 257 grid level and ended at 

the finest 1025 by 513 grid level.  The 257 by 159 grid level was allowed to converge for 

16000 iterations.  Then the program passed to the finer 513 by 257 level for 10000 iterations 

and at the end it went to the finest 1025 by 513 level with 15000 iterations.   An accuracy of 

10 decimal places is expected in the results given this residual. 

 

 

Mach∞ = 0.3  Alpha = 0°  

Figure 3.83 Mach 0.3 Contour around Whitcomb airfoil 
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Figure 3.83 shows the mach contours around the Whitcomb airfoil with a free stream speed 

of Mach 0.3 and a Reynolds number of 6.9 million.   

The flow goes over, under or it reaches the stagnation point at the leading edge of the airfoil.  

It can be seen how the flow reaches a higher speed at the upper surface and for a longer 

distance than in the lower surface.  The maximum airflow is found around the first quarter of 

the after the leading edge on the upper surface.  One important characteristic to notice is the 

deceleration that occurs on the last quarter along the lower surface which is caused by an 

increase in pressure in that area as can be seen in Figure 3.84 

This acceleration in speed is due to a decrease in pressure caused by the curvature of the 

airfoil.  Figure 3.84 shows the pressure ratio between the local pressure and the free stream 

pressure.  It shows how the pressure decreases on both the upper and lower surface but 

remains constant for a longer length along the upper surface, limiting the increases in speed 

towards sonic speed. 

Figure 3.85 shows the temperature ratio contours around the Whitcomb airfoil at a Mach 

number of 0.3.  Given that this Mach number is the lower limit when considering 

compressible flow, the temperature increase at the nose is close to one which will coincide 

with a slight 3.78% increase in density as shown in Figure 3.86.  As shown in Figure 3.85, 

there is a higher temperature at the trailing edge of the lower surface when compared to the 

trailing edge at the upper surface.  This is in agreement with the higher pressure at that zone 

and with also the higher density. 
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Mach∞ = 0.3  Alpha = 0°  

Figure 3.84 Pressure Ratio Contour around Whitcomb airfoil 
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Mach∞ = 0.3  Alpha = 0°  

Figure 3.85 Temperature Ratio Contour around Whitcomb airfoil 
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Mach∞ = 0.3  Alpha = 0°  

Figure 3.86 Density Ratio Contour around Whitcomb airfoil 
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Mach∞ = 0.3  Alpha = 0°  

Figure 3.87 Coefficient of Pressure around Whitcomb airfoil 

Figure 3.87 shows the coefficient of pressure around the Whitcomb airfoil with the higher 

curve corresponding to the upper surface and the lower curve corresponding to the lower 

surface.   One important feature is the extension of an almost constant -0.4 coefficient of 

pressure along the upper surface.  This characteristic helps to control the speed changes as 

the flow goes around the airfoil.  As the flow gets closer to the trailing edge, an increasingly 

larger pressure difference starts to build up between the upper surface and the lower surface 

which terminates in the creation of vortices when they unite after the trailing edge. 
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Mach∞ = 0.3  Alpha = 0°  

Figure 3.88 Coefficient of Lift and Drag Convergence around Whitcomb airfoil 

Figure 3.88 shows the convergence for the coefficient of lift and the coefficient of drag.  It is 

important that both the lift and the drag achieves a final value and stays constant as the 

program goes from the coarser to the finest grid after 41000 iterations.  The final converged 

value for the coefficient of lift is 0.4632 and for the coefficient of drag is 0.008688. 
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3.4.2 Mach 0.6 

 

 

Mach∞ = 0.6  Alpha = 0°  T = 288.15K 

Figure 3.89 Residual for Whitcomb airfoil from CFL3D 

Figure 3.89 shows the residual achieved after 41000 iterations.  The 257 by 159 grid level 

was allowed to converge for 16000 iterations.  Then the program passed to the finer 513 by 

257 level for 10000 iterations and at the end it went to the finest 1025 by 513 level with 

15000 iterations.  An accuracy of 9 decimal places is expected in the results given this 

residual. 
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Mach∞ = 0.6  Alpha = 0°  T = 288.15K 

Figure 3.90 Mach 0.6 Contour around Whitcomb airfoil 

Figure 3.90 shows the results for a free stream Mach number of 0.6 and a Reynolds number 

of 13.8 million.  Just as it occurred in the last case, a maximum speed is achieved at the upper 

surface close to the leading edge, then it decelerates and stay with a relatively constant speed 

along the upper surface which is caused by when the pressure ratio stays the same as can be 

seen in Figure 3.91.  

Figure 3.91 shows the decrease in pressure around the leading edge on the upper surface 

which will cause an increase in Mach number as shown and then an increase in pressure 

close to the trailing edge on the lower surface which will cause a deceleration in the airflow 

and a decrease in Mach number. 
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Mach∞ = 0.6  Alpha = 0°  T = 288.15K 

Figure 3.91 Pressure Ratio Contour around Whitcomb airfoil 
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Mach∞ = 0.6  Alpha = 0°  T = 288.15K 

Figure 3.92 Temperature Ratio Contour around Whitcomb airfoil 

Figure 3.92 and 3.93 shows the decrease in temperature and density on the upper surface 

close to the leading edge which correspond with a decrease in pressure.  Back on the trailing 

edge along the lower surface, an increase in both temperature and density created by an 

increase in pressure will cause the flow to decelerate. 
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Mach∞ = 0.6  Alpha = 0°  T = 288.15K 

Figure 3.93 Density Ratio Contour around Whitcomb airfoil 

Figure 3.94 shows the coefficient of pressure comparison between the numerical results 

output by CFL3D and the experimental data.  It is worth noting that the temperature that was 

used to run the program was the standard atmospheric temperature of 288.15K and that the 

temperature on the day of the experimental runs could not be found.  This comparison 

between the experimental and the numerical results aids in noticing the error or discrepancies 

that could be expected.  Just as in the last case, the coefficient of pressure stays with an 

almost zero pressure gradient along both the upper and lower surface along the center of 

airfoil. 
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Mach∞ = 0.6  Alpha = 0°  T = 288.15K 

Figure 3.94 Coefficient of Pressure around Whitcomb airfoil 

As shown in Figure 3.95, the results for both the lift and the drag coefficients converge after 

the 10000 iterations.  The final result obtained for the coefficient of lift is 0.5442 and the 

final converged result for the coefficient of drag is of 0.008455.  If the normal force 

coefficient in Appendix C.2 is taken as the coefficient of lift, then the results obtained by 

CFL3D have a difference of 9.94%. 
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Mach∞ = 0.6  Alpha = 0°  T = 288.15K 

Figure 3.95 Coefficient of Lift and Drag Convergence for Whitcomb airfoil 
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3.4.3 Mach 2.0 

 

 

Mach∞ = 2.0  Alpha = 0°  

Figure 3.96 Residual for Whitcomb airfoil from CFL3D 

Figure 3.96 shows the residual achieved after 41000 iterations.  The 257 by 159 grid level 

was allowed to converge for 16000 iterations.  Then the program passed to the finer 513 by 

257 level for 10000 iterations and at the end it went to the finest 1025 by 513 level with 

15000 iterations.  An accuracy of 5 decimal places is expected in the results given this 

residual. 
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Mach∞ = 2.0  Alpha = 0°  

Figure 3.97 Mach 2.0 Contour around Whitcomb airfoil 

Figure 3.97 shows a supersonic 2.0 Mach contour around the Whitcomb airfoil with a 

Reynolds number of 46 million.  As it occurred in the K2 airfoil at supersonic speeds, the 

flow along the first half of the airfoil is relatively similar on both the upper and lower curve.  

Then, the on the lower surface accelerates due to a decrease in pressure as shown in Figure 

3.98 and then a strong deceleration cause by an increase in pressure.  This increase in 

pressure will also increase the temperature and density. 
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Mach∞ = 2.0  Alpha = 0°  

Figure 3.98 Pressure Ratio Contour around Whitcomb airfoil 

Figures 3.99 and Figure 3.100 shows temperature ratio and density ratio contours around the 

airfoil.  It can be seen in Figure 3.100 that the air density at the leading edge is around three 

times higher than the free stream density with a temperature that is about two times higher.   

 

 



 
 
 

 
 

 162 

 

Mach∞ = 2.0  Alpha = 0°  

Figure 3.99 Temperature Ratio Contour around Whitcomb airfoil 
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Mach∞ = 2.0  Alpha = 0°  

Figure 3.100 Density Ratio Contour around Whitcomb airfoil 

Figure 3.101 shows the coefficient of pressure for a 2.0 Mach number.  It shows the typical 

coefficient of pressure with a positive coefficient of pressure initially and then an almost zero 

coefficient of pressure. 

Figure 3.102 shows the convergence for the coefficient of lift and the coefficient of drag.  As 

seen before in supersonic flows, the results obtained from CFL3D are an average of the 

coefficient of lift oscillating as well as the coefficient of drag.  The average coefficient of lift 

obtained is 0.01141 and a coefficient of drag of 0.1003. 
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Mach∞ = 2.0  Alpha = 0°  

Figure 3.101 Coefficient of Pressure around Whitcomb airfoil 



 
 
 

 
 

 165 

 

Mach∞ = 2.0  Alpha = 0°  

Figure 3.102 Coefficient of Lift and Drag Convergence for Whitcomb airfoil 
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3.4.4 Mach 3.0 

 

 

Mach∞ = 3.0  Alpha = 0°  

Figure 3.103 Residual for Whitcomb airfoil from CFL3D 

Figure 3.103 shows the residual achieved after 36000 iterations.  The 257 by 159 grid level 

was allowed to converge for 6000 iterations.  Then the program passed to the finer 513 by 

257 level for 15000 iterations and at the end it went to the finest 1025 by 513 level with 

15000 iterations.  An accuracy of 4 decimal places is expected in the results given this 

residual. 
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Mach∞ = 3.0  Alpha = 0°  

Figure 3.104 Mach 3.0 Contour around Whitcomb airfoil 

Figure 3.104 shows the free stream Mach 3.0 air flow contour around the Whitcomb airfoil.  

As shown in Figure 3.105, the pressure ratios on both the upper and lower surface are almost 

identical which will cause and almost identical Mach contour as seen in Figure 3.104.  As in 

the last case, a decrease in Mach number is shown at the lower surface close to the trailing 

which is caused by an increase in pressure ratio.  As before, this increase in pressure ratio 

will also increase the temperature and density. 
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Mach∞ = 3.0  Alpha = 0°  

Figure 3.105 Pressure Ratio Contour around Whitcomb airfoil 

Figure 3.106 shows the temperature ratio contour around the Whitcomb airfoil.  It shows is 

higher temperature across the upper surface which is due to the higher pressure when 

compared to the lower surface.  As it happened in the case of the expansion fan on the wedge, 

when the surface is moving away in a supersonic flow, the pressure and temperature 

decreases causing an increase in Mach number and speed.  This effect can be seen on the 

upper surface close to the trailing edge.  The opposite effect occurs when the surface moves 

towards the flow as it is the case of the lower surface close to the trailing edge.  The effects 

of the shape of the surface for supersonic flow can be seen in Figures 3.106 and Figure 3.107. 
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Mach∞ = 3.0  Alpha = 0°  

Figure 3.106 Temperature Ratio Contour around Whitcomb airfoil 
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Mach∞ = 3.0  Alpha = 0°  

Figure 3.107 Density Ratio Contour around Whitcomb airfoil 

Figure 3.108 shows the coefficient of pressure around the surface of the Whitcomb airfoil.  

As it is the case in supersonic flow, the coefficient of pressure is close to zero except at the 

leading edge where it is positive. 

 



 
 
 

 
 

 171 

 

Mach∞ = 3.0  Alpha = 0°  

Figure 3.108 Coefficient of Pressure around Whitcomb airfoil 

Figure 3.109 shows the convergence for the coefficient of lift and the coefficient of drag after 

36000 iterations.  As before, the resulted coefficient of lift and coefficient of drag is the 

average of the oscillations after all the iterations.  It is important to notice that although both 

coefficients are oscillating, they stay within a constant range which indicates that the results 

can be used.  The resulting average coefficient of lift is 0.00575 and the coefficient of drag is 

0.0906. 
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Mach∞ = 3.0  Alpha = 0°  

Figure 3.109 Coefficient of Lift and Drag Convergence for Whitcomb airfoil 
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3.4.5 Entropy Generation Rate Comparison 

 

 

Figure 3.110 Entropy Generation Rate (
Km

W
3 ) around Whitcomb airfoil 

Figure 3.110 shows the entropy generation rate per unit span caused one meter around the 

leading edge, the upper surface and the lower surface only.  It does not shows the entropy 

generated after the trailing edge.   

Figure 3.110 shows the entropy generation rate per unit volume caused by the Whitcomb 

Integral Supercritical airfoil at different Mach numbers from subsonic to supersonic speeds.  
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The X-position of one is located at the trailing edge and the X-position of zero is the leading 

edge of the airfoil.  One important aspect to notice is that at supersonic speeds, the decrease 

and increase in entropy generation close to the leading edge on both sides of the airfoil are 

almost identical.   

At subsonic speeds, the decrease in entropy generation along the lower surface after the 

leading edge is cause by having an almost constant velocity terms which can be seen in the 

pressure ratio contours with an almost constant pressure ratio. 

As it is expected for the space that is analyzed, the maximum entropy generation is caused at 

the leading edge where there are large changes in the velocity and temperature of the flow.  

The flow goes from the free stream Mach number to a stagnant point at the leading edge 

which will cause the entropy generation drop due to the zero velocity terms but with a 

generation due to the rise in temperature and density.  One characteristic that was not 

expected from these results is that the entropy generation peak for a Mach 0.6 flow is higher 

than the entropy generation rate by a flow at Mach 3.0.  Although the level of convergence 

achieved in the Mach 3.0 run is not as accurate as for the Mach 0.6 run, it might be the 

physical case that the pressure ratio bubble created at the upper surface close to the leading 

edge has enough gradients to increase the entropy generation rate.  Due to the low 

convergence for the Mach 3.0 run, it is not possible to give a conclusion decision. 

Another peculiar characteristic is the decrease in entropy generation rate close to the trailing 

edge at the lower surface.  This decrease in entropy generation is caused by having a 

favorable pressure gradient at that zone which increase the speed and lowered both the 
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temperature and the density.  Although there is a decrease in entropy generation rate, as the 

flow gets to the trailing edge, the entropy generation rate increases due to the compression 

shock that occurs at the trailing edge because of an increase in pressure and temperature. 

 

3.5 Diamond Wedge  

Two cases where run for the Diamond Wedge Airfoil.  The two cases consisted of a Mach 

number of 0.6 and 3.0 at an angle of attach (alpha) of one degree.  Given that the flow 

characteristics are going to be similar to the airfoils already shown, the images are going to 

be shown smaller.  

 

3.5.1 Mach 0.6 

 

Mach∞ = 0.6  Alpha = 1°  

Figure 3.111 Residual for Diamond airfoil from CFL3D 
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Mach∞ = 0.6  Alpha = 1°  Mach∞ = 0.6  Alpha = 1°  

   Figure 3.112 Mach 0.6 Contour around Diamond Airfoil                     Figure 3.113 Pressure Contour around Diamond Airfoil 

 

    

Mach∞ = 0.6  Alpha = 1°  Mach∞ = 0.6  Alpha = 1°  

   Figure 3.114 Temperature Contour around Diamond Airfoil                  Figure 3.115 Density Contour around Diamond Airfoil 

 

Figure 3.111 shows the residual at Mach 0.6 around a diamond shape airfoil as the program 

runs through three different size grids.  The coarsest grid is a 273-by-87 grid points, which 

then changes to a finer 545-by-173 grid size, and then to the finest grid of 1089-by-345 grid 
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points.  In total there are 987,482 grid points.   From the residual figure, a convergence 

accuracy of about 7 decimal points is expected. 

Figure 3.112, 3.113, 3.114, and 3.115 show the Mach, pressure, temperature, and density 

contours a diamond shape airfoil at a Mach number of 0.6 and at an angle of attack of one 

degree.  Given that the flow is subsonic, information about the diamond leading edge is 

passed upstream and the flow bends accordingly.  Due to the friction at the surface of the 

airfoil, once the flow passes the center it can not follow the airfoil shape so it separates and 

starts to rotate.  This can be seen by the streamlines in Figure 3.112.  The flow compresses 

approximately 18% at the nose which will  also lead to an increase in temperature and 

pressure.  From Fig. 3.116, the coefficient of lift was taken at 0.02 and the coefficient of drag 

as 0.25.  It is important to notice that this type of configuration is not meant to be used at 

subsonic speeds given the symmetrical shape of the airfoil. 

 

Mach∞ = 0.6  Alpha = 1°  

Figure 3.116 Coefficient of Lift and Drag Convergence for Diamond Airfoil 
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3.5.2 Mach 2.0 

 

 

Mach∞ = 2.0  Alpha = 1°  

Figure 3.117 Residual for Diamond airfoil from CFL3D 
 

In a similar manner Figure 3.117 shows the residual at Mach 2.0 around a diamond shape 

airfoil as the program runs through three different size grids.  The coarsest grid is a 273-by-

87 grid points, which then changes to a finer 545-by-173 grid size, and then to the finest grid 

of 1089-by-345 grid points.  In total there are 987,482 grid points.   From the residual figure, 

a convergence accuracy of about 4 decimal points is expected. 
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Mach∞ = 2.0  Alpha = 1°  Mach∞ = 2.0  Alpha = 1°  

        Figure 3.118 Mach 2.0 Contour around Diamond airfoil             Figure 3.119 Pressure Ratio Contour around Diamond airfoil 
 

 

    

Mach∞ = 2.0  Alpha = 1°  Mach∞ = 2.0  Alpha = 1°  

Figure 3.120 Temperature Ratio Contour around Diamond Airfoil     Figure 3.121 Density Ratio Contour around Diamond Airfoil 

 

Figure 3.118, 3.119, 3.121, and 3.122 show the Mach, pressure, temperature, and density 

contours a diamond shape airfoil at a Mach number of 0.6 and at an angle of attack of one 

degree.   In this case the flow is supersonic.  By supersonic compressible flow theory, the 

boundary layer above the surface is expected to be only millimeters high at the leading edge, 
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so the downstream Mach number can be compared with inviscid flow theory.  From inviscid 

compressible flow theory, the downstream upper Mach number is expected to be 1.41632 

and the downstream lower Mach number at the leading edge is expected to be 1.32731.  The 

numerical results obtained from CFL3D were 1.40774 and 1.33709 respectively for the upper 

and lower surface Mach number.  This gives a difference of 0.606% and 0.737%, which is 

good for the analysis.   

In this airfoil, an oblique shock wave forms instead of the curve shock wave that was formed 

for the other airfoils as can be seen by the streamlines in Figure 3.118.  Figure 3.122 shows 

the coefficient of lift and the coefficient of drag convergence.  The coefficient of lift finished 

with 0.049 and the coefficient of drag with 0.222.    

 

 

Mach∞ = 2.0  Alpha = 1°  

Figure 3.122 Coefficient of Lift and Drag Convergence for Diamond Airfoil 
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3.5.3 Entropy Generation Rate Comparison 

 

 

Mach 0.6 and Mach 2.0  Alpha = 1°  

Figure 3.123 Entropy Generation Rate (
Km

W
3 ) around Diamond Airfoil 

Figure. 3.123 shows the volumetric entropy generation rate per unit span for the Diamond 

Wedge Airfoil at a Mach 0.6 and Mach 2.0.  At Mach 0.6, most of the entropy generation is 

caused from the leading edge to the center of the airfoil due to the changes in velocity caused 

by viscous dissipation.  Then, after the center of the airfoil, there is a slight rise in entropy 

generation caused by the turbulent rotation after the center of the airfoil.  For the supersonic 

case, the highest entropy generation is caused at the leading edge of the airfoil and followed 

by an almost constant entropy generation after the leading edge.   There is still a slight 

increase in entropy generation at the center similar to the increase in generation at the 

subsonic speed. 
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4 CONCLUSIONS AND FUTURE WORK 
 

The first part of this thesis illustrates the subsonic and supersonic compressible regimes.  It 

illustrates how friction helps accelerate the flow in subsonic flow but decelerates the flow in 

supersonic flows.  Also, several graphs were shown to illustrate the change in pressure, 

temperature, and density as the airfoils goes from two subsonic Mach numbers to two 

supersonic Mach numbers. 

The second part of this thesis opens the shows the usage of the entropy generation rate to 

show which airfoils are more efficient at the Mach numbers and atmospheric conditions that 

were studied numerically.  A relation between the entropy generation rate and the changes 

velocity, pressure, temperature, and density was shown through the different graphs.  This 

approach could be used as a mean to design before hand a better suited and more efficient 

wing for a given flight characteristics.  Table 4.1 shows an integrated entropy generation rate 

per unit span at two different Mach numbers for all the airfoils.  Given that the purpose of an 

airfoil is to generate lift, it is important that the entropy generation rate is analyzed together 

with the Lift-to-Drag (L/D) ratio.  

 The L/D or the coefficient of lift-to-coefficient of drag ratio is one of the most important 

characteristics to take into account as it is shown by Breguet’s Formula for the range(R) of a 

propeller driven airplane:   
1

0ln
W
W

Cd
CL

c
R η
=  
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As this formulas shows, the higher the lift-to-drag ratio, the longer the range of the airplane.  

A similar equation exists for jet propelled airplanes.  Also, there is a similar conclusion for 

the endurance of an airplane.   

Table 4.1. Flow and Entropy Characteristics 

 

•
′′′S

For a Mach 0.6, the Whitcomb Integral Airfoil has a higher entropy generation than the 

NACA 64215 airfoil but a lower entropy generation than the Grumman K2.  On the other 

hand, the Whitcomb Integral has the highest L/D ratio at that speed.  Therefore at that speed, 

the Whitcomb airfoil is a better airfoil than the other two.  Of course, the Diamond Wedge 
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airfoil has the lowest L/D at this Mach number since that type of wing is use for supersonic 

flows. 

At supersonic speeds the results are inconclusive given that the entropy generation per unit 

span for the Whitcomb airfoil was lower at supersonic than at subsonic.  Similar results were 

obtained for the Diamond Wedge airfoil.  One reason for this effect might be the creation of 

the grid. 

Another result is that at subsonic the entropy generation rate was about 99% caused by 

viscous dissipation while at supersonic speeds, heat transfer dissipation needs to be taken into 

account.  Heat transfer dissipation will become even more relevant, the faster the flow around 

the airfoil. 

More research is needed in this area.  Lack of experimental data at the studied subsonic and 

supersonic regimes limited the comparison between experimental and numerical data.  This 

data could greatly reduce the cost in the future when designing airfoils due to the use of a 

proven CFD approach for the design. 
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APPENDIX A. RANKINE‐HUGONIOT RELATIONS 
 
Assuming an irreversibly adiabatic normal shock wave, it is possible to derive the Rankine-
Hugoniot Relations.   If both the continuity and the momentum equations are combined for a 
normal shock wave, then the pressures on both side of the shock wave are expressed so that, 
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and rearranging, 
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where the subscripts 2 and 1 define the conditions downstream and upstream of the shock 
wave respectively.  
Given that the enthalpy for a perfect gas can be expressed as  
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where is the specific heat at constant pressure and pc γ  is the specific heat ratio which for air 
as a perfect gas has a value of 1.4.  These expressions can be put into the energy equation to 
get, 
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and rearranging for the pressure and density ratios across a normal shock wave, 
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which are the Rankine-Hugoniot relations.   
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APPENDIX B. ENTROPY GENERATION RATE 
 
APPENDIX B1 NACA 642A215 Airfoil 
  
 B.1.1 Mach 0.65 
 

 
 

Entropy Generation Rate (
Km

W
3 ) around NACA 642A215 airfoil 
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 B.1.2 Mach 0.3 
 

 
Entropy Generation Rate (

Km
W

3 ) around NACA 642A215 airfoil 
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 B.1.3 Mach 0.6 
 

 

Entropy Generation Rate (
Km

W
3 ) around NACA 642A215 airfoil 
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 B.1.4 Mach 2.0 
 

 

Entropy Generation Rate (
Km

W
3 ) around NACA 642A215 airfoil 
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 B.1.5 Mach 3.0 
 

 

Entropy Generation Rate (
Km

W
3 ) around NACA 642A215 airfoil 
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 APPENDIX B.2 K-2 Airfoil 
 
 B.2.1 Mach 0.6 
 

 

Entropy Generation Rate (
Km

W
3 ) around K2 airfoil 
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 B.2.2 Mach 0.3 
 

 

Entropy Generation Rate (
Km

W
3 ) around K2 airfoil 
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 B.2.3 Mach 0.6 
 

 

Entropy Generation Rate (
Km

W
3 ) around K2 airfoil 
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 B.2.4 Mach 2.0 
 

 

Entropy Generation Rate (
Km

W
3 ) around K2 airfoil 
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 B.2.5 Mach 3.0 

 

Entropy Generation Rate (
Km

W
3 ) around K2 airfoil 

 
 
 
 
 
 
 



 
 
 
 

 199

 
 
APPENDIX B.3 Whitcomb Integral Supercritical Airfoil 
 
 B.3.1 Mach 0.3 
 

 

Entropy Generation Rate (
Km

W
3 ) around Whitcomb airfoil 
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 B.3.2 Mach 0.6 
 

 

Entropy Generation Rate (
Km

W
3 ) around Whitcomb airfoil 

 
  
  
 
 
 
 
 
 
 



 
 
 
 

 201

 
 B.3.3 Mach 2.0 

 

 

Entropy Generation Rate (
Km

W
3 ) around Whitcomb airfoil 
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 B.3.4 Mach 3.0 
 

 

Entropy Generation Rate (
Km

W
3 ) around Whitcomb airfoil 
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APPENDIX C. EXPERIMENTAL DATA 
 
APPENDIX C.1 K-2 Airfoil 
  
C.1.1 Drag Polar 

 
 
Drag Polar for a Reynolds Number of 6.0 x 106 based on chord length. 
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C.1.2 Normal Force 
 

 
 

Coefficient of Pressure around Airfoil at Different Angle of Attacks 
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APPENDIX C.2 Whitcomb Integral Supercritical Airfoil 
 

 
 

Coefficient of Pressure around Whitcomb Supercritical Integral Airfoil 
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APPENDIX D. ENTROPY GENERATION RATE PROGRAM 
 
!     Fortran Created by:  Enrique G. Martínez Martí  
!####################################################### 
      PROGRAM ENRIFV 
!####################################################### 
!     This program  opens a cfl3d.prout data file from CFL3D,  
!obtains all the data and calculate the entropy generation 
!rate. 
!####################################################### 
IMPLICIT NONE 
  
INTEGER, PARAMETER :: JMAX=705 
INTEGER, PARAMETER :: KMAX=373 
REAL, PARAMETER :: PI=3.141592653589793 
REAL, PARAMETER :: CVIS=110.4 !CONSTANT FOR SUTHERLAND VISCOSITY 
REAL, PARAMETER :: MVIS=0.0000178 !MOLECULAR VISCOSITY (KG/M*S) 
REAL, PARAMETER :: TINF=288.15, Pr=0.72 !FREE STR. VELOCITY AND PRANDTL 
REAL, PARAMETER :: Pt=0.9 !TURBULENT PRANDTL 
REAL, PARAMETER :: HECND=0.003166059 !HEAT CONDUCTIVITY FOR AIR AT STD. 
REAL, PARAMETER :: CPRE=1004.8 !SPECIFIC HEAT AT CONSTANT PRESSURE (J/KG*K) 
REAL, PARAMETER :: HIL=5*10**18 !Check for really big number 
INTEGER NC,JC,KC,JCO,KCO,OpenStatus 
 
  
 
REAL I(JMAX,KMAX),J(JMAX,KMAX),K(JMAX,KMAX),X(JMAX,KMAX), 
     +  Y(JMAX,KMAX),Z(JMAX,KMAX),U(JMAX,KMAX),V(JMAX,KMAX), 
     +  W(JMAX,KMAX),P(JMAX,KMAX),T(JMAX,KMAX),MACH(JMAX,KMAX),  
     +  CP(JMAX,KMAX),TURB(JMAX,KMAX),DEVUX(JMAX,KMAX), 
     +  DEVUY(JMAX,KMAX),DEVVX(JMAX,KMAX),DEVVY(JMAX,KMAX), 
     +  TEMPX(JMAX,KMAX),TEMPY(JMAX,KMAX),SGEN(JMAX,KMAX), 
     +  VINFI,UDIM(JMAX,KMAX),VDIM(JMAX,KMAX),TDIM(JMAX,KMAX), 
     +  PDIM(JMAX,KMAX),WDIM(JMAX,KMAX), 
     +  SGENT(JMAX),SGENTC,VISEF(JMAX,KMAX),VISLA(JMAX,KMAX), 
     +  HEATCL(JMAX,KMAX),HEATCV(JMAX,KMAX),HEATEF(JMAX,KMAX), 
     +  SGENTH(JMAX,KMAX),SGENV(JMAX,KMAX),SGENTV(JMAX),SGENVC  
 
PRINT *, "What is the Free Stream Mach Number" 
READ *, VINFI 
 
PRINT *, "HIL: ", HIL  
 
!      READ FILE NAMES AND OPEN FILES (This program reads a  
!      cfl3d.prout input file  
OPEN(UNIT=3,FILE="cfl3d.prout",STATUS="OLD",ACTION="READ", 
     &    IOSTAT=OpenStatus) 
REWIND 3 
OPEN(UNIT=7,FILE="Output.DAT",STATUS="NEW") 
REWIND 7 
 
PRINT *, OpenStatus 
 
READ(3,1) 
1 FORMAT(/////////) 
  
DO KC = 1, KMAX 
  DO JC = 1,JMAX 
 
READ(3,*) I(JC,KC),J(JC,KC),K(JC,KC),X(JC,KC),Y(JC,KC), 
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     +Z(JC,KC),UDIM(JC,KC),VDIM(JC,KC),WDIM(JC,KC),PDIM(JC,KC), 
     +TDIM(JC,KC),MACH(JC,KC),CP(JC,KC),TURB(JC,KC)   
      
END DO 
END DO 
  
PRINT *, "VELOCITY, TEMP: ", VDIM(705,354), TDIM(705,354), MVIS 
!Dimensionalize the u and v components of velocity 
   
DO KC = 1, KMAX 
DO JC = 1, JMAX 
 
U(JC,KC)=UDIM(JC,KC)*VINFI*SQRT(1.4*287*TINF) 
V(JC,KC)=VDIM(JC,KC)*VINFI*SQRT(1.4*287*TINF) 
T(JC,KC)=TDIM(JC,KC)*TINF 
 
!DEFINE THE LAMINAR VISCOSITY COEFFICIENT USING SUTHERLAND'S LAW 
VISLA(JC,KC)=MVIS*(TDIM(JC,KC)**1.5)*((TINF+CVIS)/ 
     &(T(JC,KC)+CVIS)) 
 
!DEFINE THE EFFECTIVE VISCOSITY WITH THE EDDY VISCOSITY 
VISEF(JC,KC)=VISLA(JC,KC)+TURB(JC,KC)*MVIS 
 
!DEFINE THE LAMINAR HEAT THERMAL CONDUCTIVITY 
HEATCL(JC,KC)=(CPRE*VISLA(JC,KC))/Pr 
 
!DEFINE THE TURBULENT HEAT THERMAL CONDUCTIVITY 
HEATCV(JC,KC)=(CPRE*TURB(JC,KC)*MVIS)/Pt 
 
!EFFECTIVE HEAT COEFFICIENT 
HEATEF(JC,KC)=HEATCL(JC,KC)+HEATCV(JC,KC) 
 
END DO 
 
END DO 
 
! 
!This part calculates the entropy generation rate 
!caused by viscous dissipation, eliminating the end points 
 
!This part calculates the change in u-velocity and  
!temperature versus y 
       
KCO = 1 
    
DO KC = 1, KMAX-1   
JCO =1 
 
DO JC= 1, JMAX-1 
   
DEVUY(JCO,KCO) = (U(JC,KC+1)-U(JC,KC))/ 
     & (ABS(Y(JC,KC+1)-Y(JC,KC))) 
DEVVY(JCO,KCO) = (V(JC,KC+1)-V(JC,KC))/ 
     & (ABS(Y(JC,KC+1)-Y(JC,KC))) 
TEMPY(JCO,KCO) = (T(JC,KC+1)-T(JC,KC))/ 
     & (ABS(Y(JC,KC+1)-Y(JC,KC))) 
   
IF (DEVUY(JCO,KCO) > HIL .OR. DEVVY(JCO,KCO) > HIL .OR. 
     & TEMPY(JCO,KCO) > HIL) THEN  
PRINT *, "INFINITY FOUND1: ", DEVUY(JCO,KCO),DEVVY(JCO,KCO), 
     & TEMPY(JCO,KCO), JCO,KCO  
DEVUY(JCO,KCO) = 0 
DEVVY(JCO,KCO) = 0 
TEMPY(JCO,KCO) = 0 
END IF 
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JCO = JCO +1 
   
  
END DO 
   
KCO = KCO +1 
 
      END DO 
 
! 
!This part calculates the change in u-velocity and  
!temperature versus x 
KCO = 1 
DO KC = 1, KMAX-1   
JCO =1 
 
DO JC= 1, JMAX-1 
   
DEVUX(JCO,KCO) = (U(JC+1,KC)-U(JC,KC))/ 
     & (ABS(X(JC+1,KC)-X(JC,KC))) 
DEVVX(JCO,KCO) = (V(JC+1,KC)-V(JC,KC))/ 
     & (ABS(X(JC+1,KC)-X(JC,KC))) 
TEMPX(JCO,KCO) = (T(JC+1,KC)-T(JC,KC))/ 
     & (ABS(X(JC+1,KC)-X(JC,KC))) 
   
IF (DEVUX(JCO,KCO) > HIL .OR. DEVVX(JCO,KCO) > HIL .OR. 
     & TEMPX(JCO,KCO) > HIL) THEN  
PRINT *, "INFINITY FOUND2: ", DEVUX(JCO,KCO),DEVVX(JCO,KCO), 
     & TEMPX(JCO,KCO), JC,KC  
DEVUX(JCO,KCO) = 0 
DEVVX(JCO,KCO) = 0 
TEMPX(JCO,KCO) = 0 
END IF 
   
JCO = JCO +1 
 
END DO 
 
KCO = KCO +1 
 
END DO 
 
!This step is to calculate the entropy generation rate  
!at each point 
 
DO KCO = 2,KMAX-1 
DO JCO = 2,JMAX-1 
   
!VISCOUS ENTROPY GENERATION 
SGENV(JCO,KCO) = (VISEF(JCO,KCO)/T(JCO,KCO)) * 
     & (2*(DEVUX(JCO,KCO)**2 + DEVVY(JCO,KCO)**2) +           
     & (DEVUY(JCO,KCO)+DEVVX(JCO,KCO))**2) 
   
!THERMAL ENTROPY GENERATION 
SGENTH(JCO,KCO)=(HEATEF(JCO,KCO)/(T(JCO,KCO)**2))* 
     & (TEMPX(JCO,KCO)**2 + TEMPY(JCO,KCO)**2) 
      
SGEN(JCO,KCO)=SGENV(JCO,KCO)+SGENTH(JCO,KCO) 
  
END DO 
END DO 
 
!Add up all the entropy generation at each point 
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DO JCO = 2,JMAX-1 
   
SGENTC=0  !THIS INITIALIZES THE ENTROPY GENERATION COUNTER 
SGENVC=0  !INITIALIZING THE COUNTER FOR VISCOUS ENTROPY GENERATION 
 
DO KCO = 2,KMAX-1 
  
SGENTC=SGENTC + SGEN(JCO,KCO) 
SGENVC=SGENVC + SGENV(JCO,KCO) 
   
END DO 
 
SGENT(JCO) = SGENTC 
SGENTV(JCO) = SGENVC 
 
END DO 
    
PRINT *, "ENTER SGENT: ", SGENT(200) 
  
  
WRITE(7,*), '#         J  X    TOTAL ENTROPY GENERATION   
     & VISCOUS ENTROPY GENERATION' 
 
!WRITE ALL THE ENTROPY GENERATION RATES AT EACH POINT IN THE DATA FILE 
DO JCO = 2,JMAX-1 
   
WRITE(7,*) JCO,  X(JCO,1), SGENT(JCO), SGENTV(JCO)   
  
END DO 
 
END 
 
 
 
______________________________________________________________________________________________________________ 
 
This is part of the cfl3d.prout output that was used for the Naca airfoil at Mach 0.65: 
 
    NACA64                                                                       
      Mach     alpha      beta      ReUe   Tinf,dR      time 
   0.65000   0.00000   0.00000 0.150E+08 518.67000   0.00000 
 
 
 BLOCK   1  (GRID   1)     IDIM,JDIM,KDIM=    2 1025  513 
 NOTE: endpts may not be reliable 
 
   I   J   K       X            Y            Z          U/Uinf       V/Vinf       W/Winf       P/Pinf       T/Tinf        MACH            cp      tur. vis. 
   1 161   1  0.1000000E+01  0.0000E+00  0.0000000E+00  0.2620366E-01  0.3260641E-02  0.0000000E+00  0.1093352E+01  
 0.1080868E+01  0.1650918E-01  0.3156457E+00  0.7040774E+00 
   1 162   1  0.9999006E+00 -0.1114021E-04  0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00  0.1092089E+01  
 0.1080454E+01  0.0000000E+00  0.3113736E+00  0.0000000E+00 
   1 163   1  0.9997979E+00 -0.2265300E-04  0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00  0.1092144E+01  
 0.1080288E+01  0.0000000E+00  0.3115618E+00  0.0000000E+00 
   1 164   1  0.9996918E+00 -0.3455074E-04  0.0000000E+00  0.0000000E+00  0.0000000E+00  0.0000000E+00  0.1091833E+01  
 0.1080205E+01  0.0000000E+00  0.3105094E+00  0.0000000E+00 
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APPENDIX E. FANNO CURVE 
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