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Major Department: Electrical and Computer Engineering

Several problems in science and engineering admit algorithmic solutions that

demand a large amount of computing time. Among these applications are genotype

sequencing, gene sequence comparison, protein folding, quantum chemistry, com-

putational fluid dynamics, and Earth simulation. In most of these cases, a single

computer does not provide enough computing power to satisfy these needs, and

therefore, the design of parallel methods is of crucial importance. It has been ob-

serve in practice that many of these algorithmic solutions acquire the form of a

master-worker algorithm. Due to their availability and low cost, heterogeneous net-

works of computers are becoming a popular alternative for these implementations.

One problem, frequently faced by implementers is how to divide and distribute the

parallel segments of computing tasks among the computers. This is the essence of

the so-called task scheduling problem. Efficiently managing the computations is a

difficult and challenging problem. This efficiency depends on the number of rounds

of computation, the sizes of the data chunks sent in a round, and the number and

the activation sequence of the participating workers.
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In this dissertation variants and extensions of ideas related to the scheduling of

master-worker tasks on heterogeneous star networks are introduced. Some of these

ideas were previously discussed in the form of theoretical frameworks for steady-

state scheduling or as a divisible load theory. This dissertation combines some

elements of these previous works to construct a new framework, and from it, an

efficient algorithm (SCOW) for identifying a deterministic scheduler for clusters of

workers. SCOW produces the parameters of a periodic user-level scheduler for a

single-program multiple-data implementation of a master-worker parallel solution.

SCOW minimizes the job make-span under either maximal production per period,

or perfect worker utilization. The efficiency of the scheduler identified by SCOW

is demonstrated through comparison with other schedulers, including those derived

from the above mentioned theoretical frameworks. As shown in the simulation an

actual computer runs, the scheduler identified by SCOW outperform in most cases

those produced by the previous frameworks.
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Resumen de Disertación Presentado a Escuela Graduada
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Julio 2009

Consejero: Néstor Rodŕıguez
Departamento: Ingenieŕıa Eléctrica y Computadoras

Muchos problemas en ciencias e ingenieŕıa admiten soluciones algoŕıtmicas que

demandan una gran cantidad de tiempo de cómputo. Entre estas aplicaciones están

la secuenciación de genes, la comparación de secuencias de genes, el plegamiento

tridimensional de protéınas, problemas en qúımica cuántica, dinámica de fluidos y

simulación de fenómenos terrestres. En la mayoŕıa de estos casos, un solo computa-

dor no proporciona suficiente poder de cómputo para satisfacer estas necesidades,

y por lo tanto, el diseño de métodos paralelo es de crucial importancia. Se ha

observado en la práctica que muchas de estas soluciones algoŕıtmicas adquieren la

forma de un algoritmo de tipo maestro y trabajador. Las redes heterogéneas de

computadoras, debido a su disponibilidad y bajo costo, se están convirtiendo en una

alternativa popular para estas aplicaciones. Uno de los problemas que a menudo

enfrentan los programadores es cómo dividir y distribuir los segmentos de tareas

de una computación paralela entre las computadoras. Esta es la esencia del lla-

mado problema de planificación de tareas. La ejecución eficiente de los cómputos es

un problema dif́ıcil. Esta eficiencia depende del número de rondas de cómputo, el
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tamaño de los trozos de los datos enviados por rondas, y el número y la secuencia

de activación de los trabajadores participantes.

En esta disertación se introducen variantes y extensiones de las ideas rela-

cionadas con la planificacin de tareas del estilo maestro y trabajador en redes het-

erogéneas con forma de estrella. Algunas de estas ideas fueron previamente discu-

tidas en la forma de marcos teóricos para planificaciones de tareas en sistemas en

estado estable o como una teoŕıa de división de cargas. Esta disertación combina

algunos elementos de estos trabajos previos para construir un nuevo marco teórico,

a partir del cual se construye un algoritmo eficiente (SCOW) que sirve para identi-

ficar un planificador de tareas deterministico para un grupo de trabajadores. SCOW

produce los parámetros de un planificador periódico, a nivel de programador para

programas escritos en estilo de un único programa pero con múltiples datos (SPMD)

de algoritmos paralelos en el estilo de maestro y trabajador. SCOW identificar estos

parámetros del planificador que minimiza el tiempo de ejecución del trabajo ya sea

bajo la restricción de máxima producción por peŕıodo o la de utilización perfecta

de trabajadores. La eficacia del planificador identificado por SCOW se demuestra

a través de la comparación con otros planificadores, incluidos aquellos derivados de

los marcos teóricos mencionados anteriormente. Como se muestra en la simulación

y en mediciones de aplicaciones reales, los planificadores identificados por SCOW

superan en la mayoŕıa de los casos a aquellos producidos por los anteriores marcos

teóricos.
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CHAPTER 1

INTRODUCTION

Several science and engineering problems are computationally intensive. Among

them are problems of contemporary interest such as genotype sequencing and gene

sequence comparison, protein folding and gene network simulations [1–3], and others

such as computational fluid dynamics and environmental simulations. In most of

these cases, a single computer does not provide enough computing power to satisfy

these needs, and therefore, the design of parallel methods is of crucial importance.

Some of these applications admit computational solutions implementable over par-

allel platforms [4, 5]. Furthermore, some of these problems have certain level of

load and task distribution which render naturally to master-worker implementa-

tions [6, 7]. Due to its availability and low cost both, homogeneous and heteroge-

neous networks of computers are increasingly becoming the alternative of choice for

computational scientists. In [8] it is remarked that 82% of the registered parallel

computing systems that make the cut for the top 500 performance competition are

clusters. The pervasive presence of clusters brings about the need for the develop-

ment of efficient methods for distributing the loads and tasks of a parallel job among

the computing elements of these systems. The actual development of such methods,

is nonetheless a challenging problem, and has remained unsolved in several instances

for many decades. In theoretical terms, the search for these methods is referred as

the task scheduling problem. Coffman [9] defines a schedule as follows: ”Given a set

of tasks, a set of resources and a partial order representing the precedence relation

between tasks; a schedule is a mapping of each of the tasks to a point in time and
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space, so that each processor executes only one task at a time, and the partial order

is satisfied”. By scheduling it is understood a set of mathematical techniques and

criteria to identify the best scheduler under well-defined metrics and restrictions.

Most scheduling metrics seek an efficient use of the time and the computing re-

sources. Such a goal is often difficult to achieve. In particular, when it comes to

scheduling tasks in a cluster, due to resource selection, the problems admits only

combinatoric solutions [10]. Even when the cluster is configured as a simple tree or

when the tasks are completely independent, the problem of finding a scheduler that

minimizes of the total execution time remains NP-complete [10–14].

1.1 Basic Definitions and Concepts

This dissertation agrees with the common definitions of parallel and distributed

computing under differences, as presented in [15]. These are:

Distributed computing is a method of solving computational problem by divid-

ing the problem into many tasks run simultaneously on many hardware or software

systems, which may be individual processing or storage elements, or programs, or in-

dividual computer systems, all running within a loosely to tightly controlled operating

framework.

Parallel computing [is] the simultaneous use of more than one CPU or processor

core to execute a program or multiple computational threads.

As for the differences and similarities between parallel and distributed comput-

ing, the same source [15] comments: In distributed computing, the individual tasks

that a program is divided into, communicate usually over a computer network. Dis-

tributed computing is similar to parallel computing, but parallel computing is most

commonly used to describe program parts running simultaneously on multiple pro-

cessors in the same computer. Programs in distributed computing often must deal

with heterogeneous computing environments, network links of varying latencies, and

unpredictable failures in the network or the computers.
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Some current paradigm implementing parallel an distributed computing systems

are: cluster computing, grid computing, and cloud computing. This dissertation

concentrates on the cluster computing paradigm which is the oldest in the previous

list. Cluster computing is still the paradigm of choice for the parallelization of

scientific problems which is the ultimate aim of the scheduler developed in this

dissertation.

This dissertation assumes compute systems that are ideally free of external

perturbations. For example, it is assumed that the computer time is not shared by

other users and that no interruptions in the availability of computer nodes occur.

Therefore, problems such as random variations in compute time due to the sharing

of computer resources or burst in communication demands, are not included in the

model. In general, considerations such as random variations in processing time do

not allow close solution to the scheduling problem, since they are modeled with

random variables and stochastic processes. The model in this dissertation are more

intended to capture steady state system behaviors. Nonetheless, the fact that the

schedule derived from the theoretical framework presented in this work is identifiable

in real time, allows for a quick reaction to changes in the computing environment.

For example, if a computed node fails and no check-point/restart system is running,

the schedule can be recomputed with the remaining compute nodes at a conveniently

selected time in the execution of the job so that optimal make-span is achieved under

the new circumstances.

The overall conception in this dissertation is that of a deterministically char-

acterized system, this is a system whose evolution in time segment is completely

determined by an observation of some of its key characteristics. Therefore, feed-

backs into the system are not taken into consideration.
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Figure 1–1: Heterogeneous Star Graph, with the Affine Cost Model

1.2 Target problems

This dissertation addresses some specific scheduling problems, which are sum-

marized in this section. First of all, are the specific characteristics of the data and

the job. This work concentrates on load- and task-divisible jobs (LTDJ). These are

described in terms of X, which denotes a normally large number of indivisible tasks,

called core tasks. In most practical situations, these X core tasks are indeed, a sin-

gle core task repeated over a large numbers of different data chunks. Thus, in most

practical situations, the problem falls naturally under a master-worker paradigm

where a master processor distributes data chunks across the workers, which in turn,

execute the core tasks concurrently. One such distributions is called round of data

installments.

As an example, let X=1000 be a given number of core tasks. If there are p=16

workers available and a decision is made to assign 20 core tasks to each of 10 selected

worker, then, there will be

1000

20× 10
= 5 (1.1)

rounds of execution of the 20 core tasks on each selected workers. This particular

distribution of job is executed by a single program multiple data (SPMD) pseudo

code like the following:
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For j = 1, 5

If Master process

For i = 1, 10

Prepare data for 20 tasks to be sent to worker i

Send the prepared data to worker i

Else

Receive the data sent by the master,

For j = 1, 20 //may be different for each worker

Compute task

these parameters were chosen arbitrarily. There is no guaranty that the per-

formance of the 10 workers will be the optimal. Indeed, the performance will vary

with the number of tasks selected. Finding the number of tasks that produces the

optimal schedule is the central problem addressed in this dissertation. Finding the

optimal solution for this problem depends on several factors. Among them are the

time spent in transmitting and computing the data, the choice of workers, and the

number of round. Another important consideration is the architectural framework

on which the master-worker paradigm is implemented.

In this dissertation, the platform is assumed to configure as a star topology,

which is commonly denoted in the literature as StarAffine. The StarAffine

network is characterized by the assumption that the time costs of all operations

is an affine mapping in the amount of core tasks. Figure 1–1 is an illustration

of a StarAffine network. In this, the root node represents the master and the

leaves, the workers. The edges, in turn, represent the communication links. In this

dissertation it is assumed that the master can communicate with a single worker at

a given time, and the communications may overlap computations. This is usually

referred as full overlap, single-port model.
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Finally, and mainly because of its easy of implementation, this dissertation con-

centrates on periodic schedulers. As a matter of fact, the resulting scheduler will

have three phases. An initial phase where the master sends the first data chunks

to each processor. Next the schedule enters a truly periodic phase characterized

by rounds of data installments of equal size. This phase dominates the schedule.

Throughout the periodic phase, the compute system is expected to run with a maxi-

mal efficiency, executing the maximal possible number of core tasks per period. The

final phase consists simply in the execution of the computations that remains after

the periodic phase is finished.

The main objective of any scheduler is minimizing the make-span; this is the

time difference between the start and finish of a sequence of jobs. Out of the three

previous phases, the second phase dominates in the make-span. This dissertation

presents a novel solution to the make-span minimization problem, based on restric-

tions over the periods of the schedule. Such restrictions can be either maximal

production, which is the maximization the number of tasks completed within a pe-

riod; or maximal utilization, which corresponds to the choice of resources in such

way that the total idle time is minimal.

These restriction are imposed on a mathematical model of the system, which

is based on some basic performance measurements. This leads to two optimization

problems, namely the maximal production problem and the maximal utilization

problem. Each of these problems is solved keeping the period as a variable. Each of

these solutions are used in turn, as restrictions to make-span minimization problem.

The solution to the latter minimization problems has the additional advantage of

optimizing the use of the computing resources.

The above schema use the number of core tasks X and the basic measure

of system to return the optimal values to number of tasks per worker, number of

rounds and the selected workers. This parameter yields in a user-level scheduler that
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is particularly appropriate for scheduling tasks programmed in a SPMD style. In

SPMD rounds are controlled by an external do-loop, which imposes the mentioned

periodic character in the execution of the job. The general aspect of such an SPMD

code is

For j = 1, nRounds

If Master process

For i = 1, nWorkers

Envelop agglomerated data chunks for worker i

Send agglomerated data chunk to worker i

Else

Receive agglomerated data chunk,

For j = 1, nCoreTasks[Id worker] //may be different for each worker

Compute core task

where nRound, nWorkers and nCoreTasks[i] are the number of rounds, the

number of participating workers and number of core tasks to each worker respec-

tively.

1.3 Previous scheduling methods

Several mathematical frameworks for scheduling divisible tasks has been devel-

oped. However, none of them renders a user-level scheduler directly. This disserta-

tion takes some fundamental elements from these framework to develop a user-level

scheduler and as a base for comparison.

Among the frameworks is the one proposed in [16, 17]. The main idea in [16] is

to relax the problem’s objective function by maximizing the throughput when the

system operates in steady-state. In [16] it is proved that such relaxation leads to

a scheduler that is asymptotically optimal. This proof agrees with intuition in the

sense that if the total amount of load is large, initialization and clean-up phases may

be ignored. Under this circumstances, minimizing the total make-span is almost
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equivalent to maximizing the throughput of the whole system. The framework

proposed in [16] finds the best scheduler in O(p log(p)) time, where p is the number

of workers.

Another framework is discussed in [17]. This framework extends the work of

[16] to a system modeled by affine mappings referred above as StarAffine. This

extension uses the solution in [16], which is based in a linear model, but imposes a

start times on each mapping when building the scheduler. As a result, the scheduler

may present idle time gaps at run time. A drawback in this framework is its inability

to provide the optimal number of rounds. Indeed the whole framework is base upon

the premise that the scheduler is independent of the total amount of work, and

therefore, the optimal number of rounds is not part of the theory. In practice, this

theoretical gap can only be filled heuristically.

Another scheduling framework, which is called uniform multi-round algorithm

(UMR) is introduced in [18]. UMR is uniform in the sense that it contemplates

either uniform data chunk sizes per round, or uniform worker compute time, per

round. The scheduler is designed to absorb the startup time of the send operations

by increasing the data size or the time length in each round. The uniformity also

allow for the determination of the necessary conditions for a full platform utilization

and the optimal number of round. In [19] the concept for UMR is extended to what

is called UMR2. This extension includes both, increasing and decreasing data chunk

sizes or compute time lengths, per round. This provides UMR2 with the ability to

use more resources that UMR and adds to the scheduler, a resource selection policy.

A survey of divisible load scheduling frameworks is presented in [20], including

among others, the work in [17] and the UMR technique. Finally, [21] presents an

estimation of the optimal number of rounds for the scheduler proposed in [17]. This

estimation is based on an upper bound for the throughput of the rounds of the

scheduler.
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1.4 Approach and goals

This dissertation develops an user level periodic scheduler for clusters of work-

ers (SCOW) that tunes the parameters nRound, nWorkers and nCoreTasks of a

SPMD implementation of a master-worker parallel solution. SCOW minimizes the

job make-span under either maximal production per period, or perfect worker uti-

lization. Under the constrain of maximal production per period, the scheduler de-

veloped is similar in spirit to the one developed in [21], but it differs in taking into

account the length of the period and the StarAffine network model. The re-

sulting scheduler provides an optimal throughput for homogeneous networks and a

good approximation to the optimal throughput for heterogeneous networks. This

places the SCOW method as a sort of middle point between UMR and UMR2, in

the sense that it absorbs the cost of the send operations maintaining a constant pe-

riod T through the rounds of data installments. Unlike [21], the scheduler produced

by SCOW gives the possibility of finding an exact subset of worker over which the

system runs with perfect worker utilization. In this way, SCOW eliminates idle gaps

in the worker’s computation. A last round modification is also introduced, to ensure

that all the workers end operating at the same time.

Since SCOW is intended to be used in real life applications, special care is taken

in the validity of the model. Through experimentations, it has been observed that

the model is accurate within intervals in the numbers of core tasks. These intervals

are called Affine Windows in this dissertation. The effects of Affine Windows is

incorporated in the scheduler in a postmortem fashion. When this is done, the set

of workers necessary for full system utilization may be reduced.

The main contribution of this dissertation are:

Realistic model Unlike previous works whose basic models are focused in par-

ticular aspects of the targeted system, the basic mathematical model used in this

dissertation takes into account all the operations that can possible occur in the
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execution of the master-worker SPMD program in a cluster. This mathematical

model is also realistic in the sense that execution time of all the operations include

both, startup and the execution times. Thus, execution times are presented as affine

mappings on the number of agglomerated tasks. The constant part of the mapping

corresponds to the operation’s overhead. These mappings are obtained by regression

over a sample of measurements of the system’s behavior. Furthermore, the validity

of these affine representations is taken in to account when identifying the schedule.

Maximal production Previous works have addressed the problem of obtaining a

maximal throughput under fixed task sizes and using a linear mapping instead of an

affine one for representing the time execution of the operations. In this dissertation

the problem is cast in terms of affine mappings, and variable tasks sizes. In doing

this, the concept of maximal throughput is replaced with that of maximal produc-

tion, which is similar in spirit but more amenable for mathematical treatment.

Maximal Utilization This dissertation introduces a new metric for assessing the

use of the cluster resources in the solution of a problem. The throughout revision in

the literature that was performed for this dissertation showed that this metric has

not been used before in the context of scheduling. Nonetheless, maximal utilization

is an important attribute in the efficiency of a scheduler, specially in the cases where

large cluster systems are available for an equally large number of users.

Resource selection Solving the resource selection problem is one of the most diffi-

cult steps in the design of a schedule. This dissertation presents two mathematically

well-founded solutions to this problem. First, is a result that finds the best subset

of workers for achieving maximal production per period. Second, is the result that

allows the identification of task sizes and number of workers that achieve the perfect

worker utilization, in the sense that all the selected workers operate continuously

throughout the execution of the job.
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Maximal production and perfect utilization of the workers Another impor-

tant contribution of this dissertation is the theoretical result that establishes that

maximal productions and perfect workers utilization are achieved only in a finite

number of values of the variable T representing the period. Furthermore, such val-

ues are shown to play a crucial role in the partition of the domain of the period. The

intervals in this partition are characterized by the fact that the optimizations prob-

lems of maximal production and perfect utilization in a period can be formulated

with a fix number of workers on each period. This number of workers is given by the

underlying mathematics of the construction of the partition. This theoretical result

is essential for the solvability of the make-span minimization problem. The strat-

egy pursued in this dissertation consists in solving each of the finite optimization

problems over the intervals in the partition, this is either the maximal production

or perfect workers utilization in a period; and then searching for the solution that

has minimal make-span.

Last round modification Although frequently mentioned as a measure of load

balance, not all theoretical frameworks for scheduling whit maximal throughput per

round include explicitly the condition that all the workers end operating at the same

time. In this dissertation an explicit method for achieving this aim, called last round

modification method, is presented both, in theory and implementation. Last round

modification is proved to improve significantly the efficiency the schedule whenever

the period is large.

Practical implementation Unlike many of the previous theoretical scheduling

frameworks the scheduler identified with the theoretical frameworks presented in

this dissertation has been tested not only in simulation but also in actual problem

solving situations. The result of real jobs confirm the theoretical and simulated

superiority of the schedule built with the framework discussed in this dissertation.
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SCOW is compared with the above discussed and other scheduling methodolo-

gies both, through numerical simulations and actual applications. The simulations

show that the scheduler produced by SCOW renders better performance for LTDJ

applications than job scheduled with the frameworks in [18, 19, 21]. Runs com-

paring a SCOW scheduled C++/MPI bioinformatics solver against a first-in, first-

out scheduled, and a UMR scheduled implementation, also show the superiority of

SCOW.

The rest of this dissertation is organized as follows: Chapter 2 is a revision

of the literature on divisible task and steady-state scheduling theories. Chapter 3

introduces the main concepts used in this dissertation and examines in further de-

tail, the frameworks introduced in [16, 18, 19, 21]. Chapter 4 discuses the maximal

production and maximal utilization problem, and develops an optimal solution for

homogeneous clusters together with an approximate solution for heterogeneous clus-

ters. Chapter 5 introduces a recursion formula for the modification of the last round,

and the theory behind the make-span optimization for both, maximal production

and maximal utilization constrains. Chapter 6 presents numerically simulated and

actual implementation comparisons of SCOW with other schedulers.
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LITERATURE REVIEW

Scheduling tasks in multiprocessor platform is a main problem in combinatorics

[10]. There are two main aspects of the problem, each with a different degree of dif-

ficulty: scheduling over homogeneous networks and scheduling over heterogeneous

networks. For some extent works area, these dependent directly to the relationship

between the processors: homogeneous or heterogeneous system. For this problem

has been demonstrated that the minimal makespan is NP-complete for the general

cases [10–13], therefore when the platform is a simple tree [14] or the task are in-

dependents. The advantages that can be provided for a heterogeneous distributed

system have attached the increment in complexity solution. The principal idea de-

signs to work in a simple processor, makespan optimization, are poor utility in this

system. The more popular alternative is approximation schedule, in [22] is proposed

an interesting approximation algorithm based in steady-state optimal flow of packet,

this algorithm produces an asymptotical optimal schedule when the total number

of jogs tends to infinity. In [23] is first propose a solution to star network, this so-

lution is achieved including additional constrains in the problem, ”send works in no

decreasing communication link order”. After in [24] is presented a polynomial algo-

rithms to distributed back propagation neural networks on heterogeneous networks

of workstations, this problem is implemented with the master-worker paradigm with-

out any initial communication cost. Some of these ideas are used in [25] to develop

a polynomial time schedule for master-worker intended to optimize the throughput

13
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of the system when operating at steady state. In more general problems, all these

ideas are used in scheduling for divisible load application [20, 21, 23, 26].

Two approaches dominate among the methodologies developed for scheduling of

master-workers tasks. These are: steady state scheduling (SSS)[16, 27] and divisible

load theory (DLT) [20, 23].

In[23], a book that presents a comprehensive theory of divisible load scheduling

The other basic reference for this work is the bandwidth-centric strategy for schedul-

ing a set of equal-sized tasks over a heterogeneous, tree-shaped platforms [16, 27].

Both approaches lead to approximately optimal schedules. And both approaches

have important drawbacks that limit their applicability in practice.

In [16], is presented an aim to maximizing the throughput of the system, an

algorithm for finding the optimal number and sequential order of the processors,

and the fraction of time that each processor must spend computing over a standard

period of time, is discussed thoroughly. The resulting theoretical framework has

the limitation of assuming linear communication and computation behaviors. Also,

the model is not detailed enough to allow for any practical tests and implementa-

tions. Nonetheless, this work set the bases for the combine throughput-makespan

optimization model proposed in this disertation.

2.1 Steady state scheduling

This first approach maximizes the network throughput by assuming that the

main task is divided into independent equal-sized subtasks. The SSS methodology

finds the optimal number of workers for maximizing the throughput [27], assuming

that all parallel tasks have the same size which is kept fixed during the schedul-

ing is indeed a big limitation. In most practical situations the size of the subtasks

is a central factor in scheduling optimization, since it provides a way for adjust-

ing the computations-to-communications ratio to the performance characteristics of

the system. In [16, 27] a polynomial time algorithm for the periodic scheduling
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of master-worker tasks with an optimal throughput over a system operating under

steady-state, is presented. The computer network topology in these works is to be

a tree, so the optimal throughput can be characterized using a bottom-up recursive

equation traversing the tree. In this algorithm tasks have a fixed, uniform size, and

communications and computations are modeled linearly. These assumptions are not

realistic. Besides the possibility of incurring in large periods of different data in-

stallments, which complicates programming, the method may result in an overuse of

data buffers., Nonetheless, the theoretical framework behind this method is highly

elaborated and complete, bringing up a good understanding of the method for con-

cept finding a the optimal number of processors for maximizing the throughput of

a tree-shaped platform, operating in steady-state. The problem with the memory

buffers is addressed in [26]. This work reviews the algorithm and analyzes the impact

of the buffer sizes in the achievement of an optimal performance.

2.2 Divisible load theory

The Divisible load theory is used to model parallel jobs in which each subtask

can be processed in parallel, and on any number of compute nodes [23]. This model

finds applications in many sciences and engineering problems. In practice, divisible

load applications are used in jobs that consist of low-granularity computations such

as those that occur in image processing, volume rendering, data mining, and some

bioinformatics applications [28, 29]. In the research of divisible workload scheduling,

a critical topic of interest is the overhead incurred in the input/output data transfer

time, to or from the master, and the latency incurred before starting the computa-

tions [20]. This second approach (DLT), divides the workload in a arbitrary number

of tasks, and distributes them among the processors under the condition that these

processors end operating at the same time. Although DLT allows the scheduler to

adjust the subtask sizes, it introduces some problems of its own. In order to opti-

mize the scheduling of tasks in DLT two methods are considered [23]: i) divide the
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workload in big chunks, this in general reduce the overhead by constant latencies,

ii) divide the workload in small chunks in multi-installments schedule, this enhance-

ment the communication and computation overlap. A drawback in the divisible

load schedule is that the optimal number of installments is in general, unknown and

remains an open problem. In [30, 31] are the first research about this problem and

in [29] is demonstrated that the optimal installments number to the lineal model is

infinity.

For instance, in the initial versions of the DLT methodology used a single round

of distribution, also called data installment, at the beginning of the operation [23].

Simulations showed that this form of the method was prone to introducing large

latencies in a significant number of cases [23]. A modified version was later pro-

posed to diminish these latencies. In the modified version, several rounds of data

installments, each delivering data chunks of smaller sizes was propose as a way of

keeping processing nodes as busy as possible. This modification, however, brought

a new problem. It turned out that no polynomial time algorithm is known for com-

puting the optimal number of such rounds of installments when the model is affine.

As a consequence, one of the most influential parameters in the schedule cannot

be efficiently determined. The DLT approach also presents other known problem

the sequencing problem. This is the problem of determining the sequential order

in which the load is assigned to the processors. It has been shown [26] that for

an infinite number of tasks, the optimal order is the non decreasing order of the

master to worker link capacities. The problem is still open for a finite number of

tasks. Many works have been carried out where is supposed lineal and affine model.

In [26] is deviced an unified discussion of divisible load scheduling results in star

and tree networks. This Work has three main aspects: selection and order of the

workers, computation of the chunk sizes at each round on multi-round algorithms

and optimal number of rounds.
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2.3 Single-round algorithm

One-Round algorithms is the ones of most studied topic in DLT. In this sched-

ule, to each worker is assigned only a piece of load in the entirely schedule. Ones of

the firs works in this topic is the Linear network [32, 33], the second ones is Start-

Lineal [34, 35], a the last StartAffine model [36, 37]. A other related study in

single round with memory constraints [26, 38, 39], that is a NP-complete problem.

[26] gives a good summary of the computational complexities of Single-Round and

Multi-round algorithms, for star/trees with linear cost model, the problem can be

solved in polynomial, but for the mos general affine cost model, the complexity is un-

known. In [38] a Mixed Linear Programming with possible exponential cost solution

is proposed to solve the most general formulation of Single-round problem, But due

this technique not has the possibility to overlap communication and computation,

their performance is poor.

2.4 Multi-installment algorithm

The affine model is more realistic but the premise above (infinity installments

number) is not true in this case. In [40], the multi-installment concept is extend

to the use of affine model communication and computation models, and it is prove

that an infinity number of installments is not optimal solution in this case. There

are many algorithms based on the multi-installment paradigm. Among them are

the Multi-Installment (MI) algorithm [30, 31], this MI assumes a purely linear time

cost model. Other work in this area is Uniform Multi-Round (UMR) algorithms

[18, 26, 41], which is a multi-round algorithm that proposes an optimal number of

installments constrained to uniform restriction conditions.

The UMR algorithm is, among the Divisible Task Scheduling methods, the

one that resembles most the SCOW methodology. The UMR method in order to

determine the optimal number of rounds of data installments imposes a restriction

on the size of the tasks: The sizes of the tasks sent during a round must be the same
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if the network is homogeneous, and, if the network is heterogeneous, the time that

each processor spends computing must also be the same. Without these restrictions

is not possible to determine an optimal number of rounds of installments. Such

optimal number of rounds appears as an open problem.

Models including data returns from the workers to the master before or after a

parallel computation has also been studied. In [26], the Master/Slave paradigm is

revised with this addition in mind. There, a polynomial algorithm is introduced for

distributing a group of tasks over a start network within a fixed period of time. The

problem of scheduling a group of tasks over a star network including communications

before and after the execution of the tasks is proven to be NP-complete [26]. A

heuristic method is presented for computing an approximate solution, as well.

Finally, both methodologies SSS and DLT are based on mathematical models

of the underlying computing systems that are oblivious to some of its subtle, but

nonetheless influential aspects. In particular, neither SSS nor DLT models depict

a clear decoupling between send, transmission and reception operations, nor they

include data buffers. In addition, the DLT model assumes the unrealistic property

that a data load can be continuously divided. In the previously reviewed publications

the central concepts and main theoretical elements of Divisible Tasks Scheduling are

introduced. Among them are the elements used in this dissertation for minimizing

the makespan aspect of the makespan-throughput duality.
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FOUNDATIONS

As stated in chapter 1, LTDJ assumes a large number X of core tasks. These

core task can be agglomerated to produce different job sizes. These jobs are indepen-

dent in the sense that neither ordering between them, nor synchronization among

them is necessary.

3.1 Model and notations

As illustrated in Figure 1–1, the StarAffine network consists of p+ 1 proces-

sor, P= {P0, P1, P2, ..., Pp}. The master processor is denoted P0 while the p workers

are labeled Pi, 1 ≤ i ≤ p. There are p communication links from the master P0

to each one of the workers Pi. Let xi be the number of units of data load sent to

worker Pi. The master performs two operations. The first operation is a message

preparation that includes data retrieval and message pre-processing. This opera-

tion, which referred as envelop, is performed in e(x) time units where x is a number

of core tasks. The second operation is the sending of the message, called send op-

eration, which is performed in s(x) time units. The transmission of the messages

through the communication links is in turn, modeled by mappings li(x), 1 ≤ i ≤ p.

each of which measures time units that takes for a load x to be moved from the

master to the ith worker. Each worker i performs two operations, as well. These

operations are message reception, referred as receive; and the actual execution of

the job, referred as computation. The worker takes ri(x) time units in performing

a receive operation for the load of corresponding to x core tasks, and wi(x) time

units in executing x core tasks. Without loss of generality it is assumed that the

19
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Figure 3–1: Theoretical Framework in a Period T

master does not execute any core tasks. Throughout this dissertation xi represents

the number of core tasks sent to worker Pi.

The different scenarios for the operation of the processors are surveyed in ap-

pendix B. As stated earlier, this dissertation assumes the full overlap, single-port

model. In this model, the master can perform an envelop and send operations con-

currently with transmissions over the communication links. Similarly, a worker can

operate concurrently with transmissions over its own communication link with the

master. This scenario is realizable in parallel systems whose compute elements are

equipped with a front-end processors [23]. Some restrictions on this model yield

important variants. Among them are bus networks and homogeneous cluster. A

bus networks is a StarAffine network in which all the communication links are

equal, in the sense that li = l for all mappings. A homogeneous cluster, in turn, is

a bus network in which all workers are equal. This is, the mappings ri = r and the

mappings wi = w for all workers. In all the above cases, l, r and w are average

mappings that are defined later in the Definition 6.

In general terms, the system operates as follows: within a round of data install-

ments the master performs a sequence of data envelopes and send operations. Each

data envelop and send operation is followed by a data transmission through the

corresponding link. Receive and compute operations are performed by the workers

upon the arrival of the data package. Envelop and send operations are performed



21

sequentially in the master, and receive and compute operations are performed se-

quentiality by the workers. Envelop and send operations in turn, are performed

concurrently with data transmissions; while receive and compute operations are

concurrently with data transmissions, as well. As a result, three major concurrent

time segments are distinguished within a round. Figure 3–1 depicts these segments,

which are called master, links and workers. These segments in turn, give rise to the

quantities R,L and C described in Table 3–1.

Table 3–1: Theoretical Frame Work Description

Notation Description

R Time spent by the master in a round of data envelop
and send operations

L Maximum time spent by a network link in transmitting
its assigned data packages

C Maximum time spent by a worker in completing the
reception of the data and execution of the corresponding
agglomerated tasks.

Intuitively, a good scheduler maximizes the overlapping of these segments and

minimizes the idle times between rounds.

3.1.1 Periods and continuity between periods

Figures 3–2 and 3–3 are Gantt Charts of periodic schedules with four workers

and one master. Figure 3–3 depicts a schedule that saturates the communication

network in the sense that there are no idle communication times, while Figure 3–2,

depicts a schedule that has no gaps in the master’s execution times. Both figures

keep all except one of the workers operating continuously, as well.

Definition 1. The period of the schedule, denoted by T , is defined to be the maxi-

mum between R, L and C.

If T = R, the master process works continuously as depicted in Figure 3–2.
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Figure 3–2: Continuous Master Utilization

Definition 2. If T = L or T = C, there is either:

(a) weak continuity, if at least one link or one processor

operates with idle times between periods; or

(3.1)

(b) strong continuity, if all links or all workers operate

with no idle times between periods.

(3.2)

The parts in the above definition are not mutually excluding in the sense that it

is possible to have strong continuity in the links and weak continuity in the workers,

or vice verse.

Definition 3. A schedule satisfying

(a) T = R = C, L ≤ T and (3.3)

(b) Workers operate in strongly continuous mode, (3.4)

is said to be a balanced schedule.

When L = T , the schedule is said to be perfect balanced. By allowing the

master to participate in the execution of core tasks, and if the schedule is such that

L = C = T , then it is possible get R = T . This means that the master is saturated

as well. A balanced schedule ensures that workers receive just as much work as they

can concurrently do within T units of time. In section 4.3 it is shown that for each
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Figure 3–3: Continuous Network Utilization

choice of T there is either a balanced schedule or a best approximation to a balanced

schedule. But, neither schedule can guarantee a minimal make-span.

3.1.2 The affine mappings

This subsection is a brief discussion of the affine maps in which the mathemat-

ical model is based. The model assumes that the execution times of each of the

operations of data envelop, send, communication, receive, and execute tasks vary as

an affine mapping on the number of agglomerated core tasks. This is, if op denotes

anyone of these operations and x is a variable taking numbers of agglomerated core

tasks,

op(x) = x.op+OP ; op = e, s, li, ri, or wi. (3.5)

In 3.5 op is overloaded since it is use both, for the name of the mapping and for

the scalar that corresponds to execution time of a single core task. This overloading

is intended to keep consistency with notations used in references such as [20]. Yet

another convention is the use of capital OP to denote the startup time of operation

op. Thus, the mappings consist two constants, namely OP and op, and a variable x

representing amounts of core tasks. The constants OP and op are use later as inputs

for the algorithms and methods that conform SCOW. In practice, these constants

are obtained by linear regression over a small set of measurements. Table 3–2 is

a complete description for each of these mappings. It is worth remarking that
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Figure 3–4: Observation of a Delay in a Real Measurement

assigning x = 0 tasks to a worker means that such worker does not participates

the computation. When this happens, the resource selection problem appears as an

important factor in the search for the best schedule.

For the purpose of analysis, the number of agglomerated tasks in (3.5) is sup-

posed to be a nonnegative real variable x ≥ 1. This is an unrealistic assumption,

since agglomerated tasks yield natural numbers. A post-optimization discretization

method, which is discussed in section 5.3, is applied to obtain an approximation to

the optimal SPMD parameters.

Table 3–2: Mapping Description

Mapping Description

e(x) Time spent by the master in retrieving data and preparing
a package for submission to a worker

s(x) Time spent by the master in performing the send operation
for sending a package to a worker

li(x) Time spent in transporting data over the master- processor
i link

ri(x) Time spent by processor i in performing the receive
operation of a package

wi(x) Time spent by processor i in executing X atomic tasks.

The mapping li(x) is often hard to measure directly. Its affine behavior is postu-

lated from measurements performed with combinations of blocking and nonblocking

send and receive operations for x agglomerated tasks. With these measurements is

possible to model a system with or without front-end. Without front-end s+li+ri is
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replace by delay+ri, where delay is the time between the start of the a blocking send

operation and the start of the blocking receive operation, as shown in Figure 3–4.

The next function expresses the cases of an observable, and that of a non-observable

li(x), in a single formula.

gi(x) =


(s+ li)(x), if communication and computation are concurrent

delay(x), otherwise

(3.6)

The notion of asymptotic domination plays an important role in the theoretical

formulation of SCOW.

Definition 4. Let f and g be real-valued mappings with values in the real numbers.

Then f is said to dominate g asymptotically if there exists a real number xε ≥ 0

such that:

g(x) ≤ f(x), for all x ≥ xε. (3.7)

In this work, hi denotes the mapping that dominates asymptotically between

the mappings e+ s and li. This is,

hi(x) =


(e+ s)(x), if (e+ s) dominates over li; or

li(x), if li dominates over (e+ s).

(3.8)

In general, if hi dominates over (ri + wi), the parallelization is deemed poor

A.2. Consequently, in order to develop a consistent scheduler, it is assumed in this

dissertation that ri+wi dominates over hi for at least a few workers (1 ≤ i ≤ p). The

mappings in Table 3–2 and the auxiliary mapping are collectively called Mapping

Group (MG).

3.1.3 Affine windows

The regressions in Figure 3–5 show that the affine mappings in MG adjust

to the data with minimal errors, within intervals of the values of x core tasks,

referred before as Affine Windows. Outside the Affine Window, the model loses its
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Figure 3–5: Affine Windows Example

validity. Figure 3–5 depicts actual homogeneous system measurements performed

using blocking send a receive operation in a MPI environment. The first Affine

Window is completely determined by the experiment and correspond to the values

of agglomerated core tasks within the interval [25,450]. The second Affine Window is

not completely determined as experiment where stopped at x = 2500 agglomerated

tasks. The abrupt changes in the slope of the mappings between the windows is

most probably due to changes in the policies in the MPI implementations of the

send and receive operations [42].

3.1.4 Homogeneous clusters and average mappings

The concept of homogeneous cluster has not been formally defined. Informally,

by an homogeneous cluster it is understood a cluster formed by machines of the

same hardware characteristics and similar communication links. However, similar

hardware characteristics do not always guarantee an homogeneous behavior. In this

dissertations an homogeneous cluster is a system that satisfies the next definition.
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Definition 5. Let p be the number of workers available to the master and TOL > 0

be a real number. A cluster is said to be homogeneous within a tolerance TOL, or

TOL-homogeneous if for all i, j, 1 ≤ i < j ≤ p and for each concurrent operation

op,

|opi − opj| ≤ TOL and |OPi −OPj| ≤ TOL. (3.9)

A system is said to be heterogeneous with respect to a tolerance TOL, or TOL-

heterogeneous, if there are i, j, 1 ≤ i < j ≤ p, and an concurrent operation op such

that

|opi − opj| > TOL or |OPi −OPj| > TOL. (3.10)

Definition 5 is based solely on time measurements. TOL is intended to be an

upper bound for uncertainties in the measurements. If this is the case, TOL is in

fact, an error bound for

Err(op, i, j, x) = |x.op+OPi − (x.opj +OPj) |. (3.11)

in the sense that

Err(op, i, j, x) ≤ (x+ 1)× TOL. (3.12)

If a system is TOL-homogeneous or simply, homogeneous; the affine mappings

i = 1, ..., p associated with a concurrent operation can be replaced with their average

mappings. These are defined next.

Definition 6. Let p be the number of workers available in a system and let op be

a concurrent operation. Assume that for each worker i, i = 1, ..., p, opi is modeled

as the affine mapping on x, opi(x) = x.opi +OPi. Then, the average op mapping is

defined to be

op(x) = x.op+OP, where (3.13)

OP =

∑p
i=1OPi
p

and op =

∑p
i=1 opi
p

. (3.14)
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The average mappings of the operations {li : i = 1, ..., p}, {hi : i = 1, ..., p},

{ri : i = 1, ..., p} and {wi : i = 1, ..., p} are denoted l, h, r and w, respectively.

3.2 Statement of the Scheduling Problem

In a StarAffine network, the make-span minimization problem is a difficult

one. Although several theoretical results have been published [28, 36, 43, 44] no

significant breakthroughs have been made an the problem remain NP-hard in most

practical situations [13]. In [36] it is stated that the complexity of determining the

optimal make-span for a general star platform is not known. This problem remain

open until today. The complexity of the DLS problem is known in the case of linear

communication and computation costs or in the case of homogeneous platforms

[23]. In [41] the NP-completeness of a particular case of the DLS problem over

heterogeneous platforms and with affine cost is proved.

Using the notation established in the previous sections, the scheduling problem

can be formalized as following: given a StarAffine network P= {P0, P1, P2, ..., Pp},

a set of core tasks X, and a the Mapping Group MG = e, si, li, ri, wi, decide how ag-

glomerated the core tasks and when send these agglomerated task. Let time(op, i, j)

be the time spent from the beginning of execution of the job up to the time when

operation op ends processing xi agglomerated core tasks in jth round. Then the

problem is minimizing the make-span, this is, solving

Minimum
ij

time(wi, i, j) (3.15)

Subject to (3.16)

time(wi, i, j) ≥ max{time(si, i, j) + li(xi), time(li, i, j), time(wi, i, j)}(3.17)

+(ri + wi)(xi) (3.18)

xi ≥ 0 (3.19)
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Figure 3–6: Platform Graph Model

the maximum in the before expression ensure that the begin to compute a tasks

after receive completely the core tasks and the worker process only one tasks to a

give time.

The alternative pursued in this dissertation is focused in the optimization of the

throughput of each period of the schedule. As stated before, the problem of finding

the best schedule can be solved in polynomial time if the mappings under underlying

model are all linear [16]. The problem of finding the schedule that achieves the

optimal throughput in each period can be formalized as follows:

Definition 7. (THROUGHPUT DIVISIBLE). Let K > O, ρ > 0 and assume

consider a system modeled by a StarAffine platform. Is there a periodic schedule

that executes K load units every T time-units and such that K
T
> ρ?.

The above mentioned polynomial time solution for solution when the underlying

mappings are all linear is discussed in section 3.3. if, on the other hand, the mappings

underlying the model are affine, an asymptotically optimal algorithm for finding the

best schedule, is introduced in [17]. In [21], a variant of the algorithm in [17] which

allows for a computation of the optimal number of rounds, is presented. Section 3.4

discusses this approach.
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3.3 Bandwidth-Centric Principle

3.3.1 Overview

In [16], a framework for solving the Master-Slave scheduling problem on a het-

erogeneous platform for a significantly large number of tasks, is introduced. The

heterogeneous platform is modeled as a non oriented graph as the one shown in

Figure 3–6. In this model, each processor is a node and each edge is a physical

interconnection link. The tasks consist of identical and independent jobs. Each

task is associated with a file that contains the data required for the task execution.

Therefore, the model is slightly more general than the (StarAffine) network.

The master determines the number of core tasks and send operations necessary

to distribute the tasks across the network according to the bandwidth-centric prin-

ciple discussed below. Upon reception, nodes compute their segment of the received

package, and forward the remaining tasks to the neighboring processors following

the same bandwidth-centric policy.

The optimal steady state is determined by the fraction of time that the system

spends computing and the fraction of time the system spends sending or receiving

tasks along each communication link. This distribution is made in a way such the

averaged of the total number of tasks processed at each time step is maximum.

3.3.2 Mathematical formulation

The above problem is modeled as a linear programming problem whose objective

function maximizes the throughput. The parameters used for this formulation are

the following:

• wi, referred as the weight of the node Pi, represents the units of time that required

to process one task.

• cij, referred as the weight of the edge eij between the nodes Pi and Pj, represents

the time needed to communicate one task from processor Pi to processor Pj or vice

versa.
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The system is assumed to conform to the full overlap, single-port model. Next

the theoretical framework developed in [16] is discussed in the context of a Star

network.

3.3.3 Optimal steady-state problem formulation

A star network F admits a graph representation of the form depicted in Fig-

ure 1–1. The network consist of p + 1 processors, where P0 is the master and

{P1, P2, ..., Pp}, are p workers. The master does not process tasks. The parameter

c0j, which represents the only communication between the master and processor Pi,

is written simply as ci.

In the context of a star network, the problem of finding the schedule with opti-

mal throughput in each period is formulated as follows: Master Slave Schedul-

ing Problem MSSG(G)

Maximum Ntask(F ) =

p∑
i=1

αi
wi

(3.20)

Subject to

p∑
i=1

si ≤ 1 (3.21)

αi
wi

=
si
ci
, for 1 ≤ i ≤ p (3.22)

0 ≤ αi ≤ 1, for 1 ≤ i ≤ p (3.23)

0 ≤ si ≤ 1, for 1 ≤ i ≤ p (3.24)

where

• αi, referred as the (average) fraction of time spent each time unit by Pi computing

tasks.

• si, referred as the (average) fraction of time spent each time unit by P0 sending

tasks to processor Pi.

• ri,referred as the fraction of time spent each time unit by Pi receiving tasks from

the master P0.

The number of tasks sending by P0 to processor Pi is the same receive by Pi, ri = si
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The above linear programming problem is solved by using rational program-

ming. The values returned by the linear program are αi and si. These values are

rational numbers. The period T of the schedule is the common denominator of the

fractions 1/ci,αi and si; 1 ≤ i ≤ p. As a result, each processor Pi executes exactly

αiT
wi

tasks.

3.3.4 Formal results

Theorem 1. With the above notations, the minimal value of ntask(F) for the star

graph F is obtained as follows:

1 Sort the worker by increasing communication times. Renumber them so that

c1 ≤ c2 ≤ ... ≤ cp.

2 Let q be the largest index so that
∑q

i=1
ci
wi
≤ 1. if q < k, let ε = 1 −

∑q
i=1

ci
wi

;

otherwise, let ε = 0

3 Then, ntask(F ) =
∑q

i=1
ci
wi

+ ε
cq+1

.

From Theorem 1 is concluded that the children cannot consume more tasks

than those that the master processor can send. According to this result, a slow

processor with a fast communication is better than a fast processor with a slow

communication link.

3.4 Asymptotic performance, star network, affine costs

In [17], the Bandwidth-centric principle is applied to search for a solution to

a DLT problem. An asymptotically optimal schedule for a model based on affine

mappings is introduced. The next discussion combines results developed in [20] and

in [21].

The proposed algorithm divides the overall processing time ν into n periods of

length T . As in the previous section initial and final phases are ignored. The main

problem is in this case, the selection of resources. The selection rule presented in

[20] is similar to the one in Theorem 1.
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3.5 Asymptotic Optimality

This section discusses the proof of the asymptotic optimality of the schedule

introduced in [17]. Since the model is affine, it is necessary to find a optimal subset

of workers. Let I ∈ {1, ..., p} be a subset representing the participating workers.

Then x̄ must satisfy the following restrictions:

∑
i∈I hi(xi) ≤ T (3.25)

max {(ri + wi)(xi)|i ∈ I} ≤ T (3.26)

where 3.25 restricts the communication and 3.26 restricts the computation time of

each worker to a period T . The main aim is to maximize the average number of

tasks processed in a period. Average task is defined as: AverageMaxTaks(T ) =

MaxTaks(T )
T

=
∑
i∈I xi
T

. The solution is based in two problems. The first one is:

Max

p∑
i=1

yi (3.27)

Subject to

p∑
i=1

hi.yi ≤ 1− τ (3.28)

max {(ri + wi).yi|1 ≤ i ≤ p} ≤ 1− τ (3.29)

where τ =
∑p
i=1(Hi+Ri+Wi)

T
. The value τ restricts the problem described in equations

(3.28) and (refeq2). As a result, the solution of this problem is such that
∑p

i=1 yi ≤

AverageMaxTaks(T ). Now, the solution to the problem described in equations

(3.28) and (refeq2) follows directly from theorem 1,

p∑
i=1

yi = (1− τ)(

q∑
i=1

1

ri + wi
+

ε

cq+1

) (3.30)

Now, let MaxTaksopt(1) be the solution of the original problem given by

thereon 1. Then,

AverageMaxTaksopt(1) ≤
q∑
i=1

1

ri + wi
+

ε

hq+1

(3.31)
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Let µopt the optimal time to process the X core tasks and µ the time necessary to

process with the proposed algorithm; then

µopt ≥
X∑q

i=1
1

ri+wi
+ ε

hq+1

. (3.32)

If AverageMaxTaks(T ) are processed during n− 1 periods, then n satisfies

MaxTaks(T )(n−1) ≥ X. Let n = d X
MaxTaks(T )

e+1, T =
√
µopt, and 2τ ≤ 1. Then,

µ < µopt + 2τ
µopt
T

+ 2T (3.33)

Finally, the proof of the asymptotic optimality of the algorithm is completed by

setting T =
√
µopt, and obtaining

µ ≤ µopt + 2(τ + 1)
√
µopt = µopt +O(

√
µopt) (3.34)

3.5.1 Formal results

The next Theorem, which is written in terms of the terminology adopted in this

thi dissertation, summarizes the previous discussion.

Theorem 2. For arbitrary values of Hi, hi, Wi and wi the previous periodic multi-

round algorithm is asymptotically optimal. Closed-form expressions for resource

selection and task assignment are provided by the algorithm, whose complexity does

not depend upon the total amount of work to execute.

3.5.2 Periodic scheduler

In [21], the problem proposed in section 3.3.3, is reconsidered as:

Max ρ =

p∑
i=1

yi (3.35)

Subject to

p∑
i=1

hi.yi ≤ 1 (3.36)

max {(ri + wi).yi|1 ≤ i ≤ p} ≤ 1. (3.37)
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As remarked in the previous section, the solution obtained with Theorem 1 ȳi is used

as an upper bound. This upper bound is used to define xi = yi
X
n

and computing

the optimal value of n. Then, the period becomes

T = max {max {(ri + wi)(yi)|1 ≤ i ≤ q},
q∑
i=1

hi(yi) = max (
a

n
+ b,

a′

n
+ b′) (3.38)

where a = X.
∑q

i=1
yihi
ρ

, b =
∑q

i=1 Hi, a
′ = X.max {(ri + wi).yi|1 ≤ i ≤ q} and

b′ = 0.

Two cases are considered when finding a maximum. These are:

If n > a′−a
b

then a
n

+ b > a′

n
and the make-span is:

µ = (n+ 1)T = a+ b+
a

n
+ bn, which is minimized for n =

√
a

b
(3.39)

If n ≥ a′−a
b

then a
n

+ b ≥ a′

n
and the make-span is:

µ = (n+ 1)T = a′ +
a′

n
, which is minimized for n large as possible (3.40)

The optimal number of rounds for such a periodic schedule is therefore,

n = max {
√
a

b
,
a′ − a
b
} (3.41)

3.6 UMR scheduler

UMR is a multi-round, non-periodic algorithm for scheduling divisible tasks on

parallel computing systems. According to [21] ”The idea behind UMR is simple:

assign chunks of ”uniform” sizes to all workers within each round, increasing the

chunk size between rounds geometrically. Here ”uniform” means that it takes the

same amount of time for each worker to compute its chunk at each round”. For

homogeneous systems over a full overlap single port model and with a star topol-

ogy, the method is designed to send to each worker the same amount of work in

a round. There are two versions for the variation of this uniform amount. In the

original version of the scheduler [45], called UMR, the uniform amount of work is
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increased geometrically with each round. In a revised version, called UMR2[19, 46],

the uniform amount is increased or decreased depending on a parameter θ, which

depends on the number of workers chosen. On the other hand, the amount of work

is increased if θ > 1 and decreased if θ < 1. UMR maintains perfect worker uti-

lization throughout the execution. UMR2 instead, may not have a perfect worker

utilization for θ < 1. As remarked earlier, at the base of UMR and UMR2 is a set of

affine equations of the form of (5.74) for expressing execution times in terms of load.

These equations are similar in spirit to the one used for SCOW. UMR equations

model solely communications and computations. These equations are:

Tcompi = cLati +
chunki
Si

, (3.42)

Tcommi = nLati +
chunki
Bi

; (3.43)

where Si is the amount of work completed in a unit of time, Bi is the bandwidth

of the communication link, cLati is the start time of the operation of computation,

and nLati is the start time of the operation of communication. The equations for

UMR are guided by a simple perfect bandwidth utilization principle: ”The time the

last worker, labeled as the Nth worker, spends in receiving the last bytes of data,

initiating a computation, and computing a data chunk during round j; must be equal

to the time it takes for the master to send data to all the N workers during round

j+1”. This principle translate into an equation, which for a homogeneous cluster, is

cLat+
chunkj
S

= N(nLat+
chunkj + 1

B
) (3.44)

This equation can be transformed in turn, into a simple induction over chunkj,

which yields a geometric or arithmetical series of chunk sizes, where chunk0 is the

only unknown. There is also a condition for full platform utilization which restricts

the number of workers used. As the author remark ”when the full platform cannot

be utilized effectively: in the homogeneous case, one can just reduce the value of N,
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for the heterogeneous case implements the resource selection inspired by the work

in [27]”.

The make-span minimization problem for UMR is stated as:

Minimize

Ex(M, chunk0) =
Wtotal

N
+M × cLat

+
N

2
× (nLat+

chunk0

B
)

(3.45)

Subject to

G(M, chunk0) =
M−1∑
j=0

N × chunkj −Wtotal = 0 (3.46)

In a revised version, called UMR2, the uniform amount is increased or decreased

depending on a parameter θ. If θ > 1 the amount is increased; and decreased if θ < 1.

The UMR scheduler maintains perfect worker utilization throughout the execution,

but if θ < 1 there is no perfect worker utilization for URM2.

The algorithm for computing the parameters of UMR or UMR2 receives as

inputs the constant values of these mappings and return the amount of work for

the first round. Then, a recursive formula is applied to compute the increments or

decrements per round. The amount of work returned is a real value. No post-mortem

discretization is proposed in the literature. Instead, UMR and UMR2 methods con-

centrate on computing the optimal value for nRounds. UMR2 make no modifications

in the last round for the workers to end operating at the same time.



CHAPTER 4

OPTIMIZATION CRITERIA FOR A PERIOD

UNDER AFFINE MODEL

This chapter presents a formulation of the general scheduling problem under two

different constrains. These are Maximal Production (MP) and Maximal Utilization

(MU) in a period. An optimal solution and an approximate solution in a particular

case of the problem are presented, as well.

In section 3.1, the three mayor segment times that can be distinguished within

a period T are described. In fact, the period T is an upper bound for these segments.

This upper bound restriction, in turn, produces a set of partitions which induce a

division of the job into agglomerated core tasks. Such division depends directly on

the time T allocated for a period. The next definition attempts to capture all these

basic characteristics in a single concept.

Definition 8. Let T and X be nonnegative real numbers, p a positive integer and

F = {fj : j = 1, ...,m} a finite set of real-valued mappings defined in the real

numbers. A (T, p,MG)-partition of X is a k-tuple x̄ = (x1, ..., xp) that satisfies:

(a)

p∑
i=1

xi ≤ X and (4.1)

(b) For each j = 1, ...,m and each i = 1, ..., p; fj(xi) ≤ T. (4.2)

(c) For each i = 1, ..., p; xi ≥ 0 (4.3)

The word partition does not means that the whole data load X is split into

mutually disjoin subsets since in a period the load processed is only part of the total

load.

38
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Figure 4–1: Pattern of Solution to MP, over Star Network.

4.1 Maximizing the production

The maximal production problem over a single period T considers a load size

X large enough so all workers receive core tasks within this period. The problem is

formulated in the next section.

4.1.1 Maximal production problem

Let xi be the number of units of data load sent to worker Pi. The Maximal

Production problem (MP) can be visualized as follows: Figure 4–1 is a Gantt Chart

of the execution times of process under maximal production. In this chart Ii de-

notes the idle time of Pi and IL denotes the idle time to star the communication

over the link. The goal is to maximize the total number of processed load units,

MaxTask(T)=
∑p

i=1 xi, according to the model defined in Section 3.1. In Figure

4–1, only the q ≤ p selected workers participate in the computation. The envelop

and send time is restricted to a period T (i.e.
∑q

i=1(e + s)(xi) = FC ≤ T ). Data

transmission time is also restricted to period T (i.e.
∑q

i=1(li)(xi) = Iq − Il ≤ T ) as

well as the receive and compute times (i.e. (ri + wi)(xi) = Fi − Ii ≤ T for all i).

The above problem description is independent of the load size X. This value X is

used in chapter 5 to find a minimal make-span.
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The following mixed linear program is used for computing the optimal resource

selection and load distribution. The objective function is the number of tasks pro-

cessed in the period T , χi is a boolean variable that equals 1 if the worker i partic-

ipates in the problem solution.

Maximize MaxTask(T) =

p∑
i=1

xi (4.4)

Subject to R =

p∑
i=1

χi (e+ s)(xi) ≤ T (4.5)

L =

p∑
i=1

χi l(xi) ≤ T (4.6)

Ci = (ri + wi)(xi) ≤ T, 1 ≤ i ≤ p (4.7)

χi ∈ {0, 1}, 1 ≤ i ≤ p (4.8)

(ri + wi).xi ≤ χiT, 1 ≤ i ≤ p (4.9)

xi ≥ 0, 1 ≤ i ≤ p (4.10)

Equation (4.5) states that the time spent by the master in the envelop and send

operations do not exceed the time period. Equation (4.6) states that the time spent

by communicating data over the link do not exceed the time period. Equation (4.7)

restricts receive and compute operations to the time period, and equation (4.9) states

that no task is given to processors that do not participate in the solution (those for

which χi = 0). This mixed linear program is the most general formulation for the

maximal production problem.

Theorem 3. The optimal solution for the MP problem is given by the solution of

the mixed linear program above.

Proof : Direct consequence of problem definition.

The auxiliary mapping h defined in section 3.1.2 is introduced to reformulate

the MP problem in such a way that the variable χi is eliminated and as well as one

the original restrictions.



41

”Given a time T , find I ⊂ {1, 2, ..., p} such that

Max {
∑
i∈I

xi : x̄ is (T, p,MG)− partition of X} (4.11)

Subject to
∑
i∈I

hi(xi) ≤ T (4.12)

max {(ri + wi)(xi)|i ∈ I} ≤ T”. (4.13)

This formulation shows clearly the combinatorial nature of the solution since there is

an exponential number of subset in {1,2,...,p}. However, when the subset is known,

the solution is characterized in proposition 1.

In the particular case when the model is linear, the solution can be found in

polynomial time. Assuming that hi(xi) = siT and (ri +wi)(xi) = αiT , the problem

is transformed to the problem in section 3.3.3 and therefore, the solution follows

directly from Theorem 1. If on the other hand, mapping e + s dominates over

mapping li, or if the platform is a busnetwork, the solution is obtained by sorting

by compute capacities, as demonstrated in appendix A.1.

4.1.2 Optimal production over an homogeneous cluster

First, the solution for homogeneous cluster is described and analyzed. Homoge-

neous cluster as describe in section 3.1 consists of p identical workers accessible via

a network link. Therefore, li = l; ri = r; wi = w for each mappings 1 ≤ i ≤ p, where

l, r and w are average mapping in the sense of definition 6. The next Theorem

provides a particular solution for the MP problem in this homogeneous platform.

Theorem 4. Let T be a real nonnegative number and p be a positive integer. Let

Y = (r + w)−1(T ); (4.14)

q = min {p,
⌊

T

h(Y )

⌋
} (4.15)
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and define

Tε =


T − q × h(Y ) if q < p

0, otherwise

(4.16)

Then the maximal values to MaxTask(T) is,

MaxTask(T) = qY + max{0, h−1(Tε)} (4.17)

Proof The proof is reduced to demonstrate the claims: (a) The tuple

(Y, ..., Y, Yq+1, 0, ..., 0) is a solution, and (b) qY + Yq+1 is the maximum.

Claim (a) follows directly from basic properties and definitions. Indeed, (r+w)(Y ) =

T this showing that Y satisfies (A.3) of MP for i ≤ q. If q < p, then h(Yq+1) =

Tε = T − q × h(Y ). From (4.15) it follows that h(Yq+1) ≤ h(Y ). Since h is a

nondecreasing mapping, Yq+1 ≤ Y . But then, since r + w are also nondecreasing

mappings, (r + w)(Yq+1) ≤ (r + w)(Y ) = T . Therefore, Yq+1 satisfies (A.3) of MP,

as well. To prove A.2, by definition (4.15),
∑j

i=1 h(Xi) ≤ T for all j ≤ q. If q < p,∑q+1
i=1 h(xi) = q×h(Y ) +h(Yq+1) = q×h(Y ) +Tε = T , by the definition of Tε. This

shows that the tuple is a solution of MP.

Claim (b) In order to show that this solution Ȳ is maximal, let’s consider the set of

all optimal MP solutions. Let X̄ ′ a tuple in this set and q′ the number of worker in

this solution.

if q ≥ p, suppose q′ < p them {X ′1, ..., X ′q′ , Yp} is a solution than process more task

that the original one, a contradiction, then q′ = p.

if q < p, suppose q′ > q + 1 them T = q × h(Y ) + h(Yq+1) = h(q × Y + Yq+1) +

(q+ 1)H < h.
∑q′

i=1 X
′
i + q′H, contradiction because X̄ ′ must satisfies A.2. Suppose

q′ < q+1 then qY +Yq+1 ≤
∑q′

i=1X
′
i, contradiction because no is possible distribute

qY + Yq+1 core tasks in q workers, then boot solution use the same number of

processor q′ = q + 1.
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Suppose, without loss of generality, that the two solution use the same subgroup of

processor, them T = h(q × Y + Yq+1) + (q + 1)H ≤ h.
∑q+1

i=1 X
′
i + (q + 1)H, finally

derive that q× Y + Yq+1 =
∑q+1

i=1 X
′
i, this conclude that qY + Yq+1 is the maximum.

�

The solution of MP obtained in this Theorem reveals that there exits the pos-

sibility of a continuous processing in some workers. A particular solution is stated

as follows: q workers execute Y agglomerated core tasks continuously. If in addition

ε = 0, all concurrent tasks are executed by these q workers making the continuity

strong. If ε > H, an additional worker is required to execute Yq+1 = max{0, h−1(Tε)}

remaining core tasks that the master is still able to submit within the given T units

of time. In this case, the continuity between periods is weak, although all but one of

the workers operate continuously. the next corollary present this particular solution.

Corollary 1. The following (T,p,MG)-partition of X is a optimal solution of MP

problem is,

xi = Y = (r + w)−1(T ) for each i = 1, ..., q; (4.18)

xq+1 = max{0, h−1(Tε)}, and (4.19)

xi = 0 for i > q + 1. (4.20)

Due to the characterization given in Theorem 4, if ε > H, the solutions are the

infinite set {x̄ |
∑

i∈I xi = qY +max{0, h−1(Tε)} and |I| = q+1}. The next Theorem

guarantees an upper bound to the number of required workers. This number is

independent of T .

Theorem 5. Let T ≥ 0 be a real variable and i a variable ranging over the set of

all positive integers. Let

R(i, T ) =
i∑
i=1

h(Y ) (4.21)

be the time spent by the master process in completing a round of data installments

for i workers so condition (4.14) is achieved. Let λ = r+w
h

be such that λH > R+W .
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Then, there is a positive integer p̄ = bλc such that the equation

R(i, T ) = T, (4.22)

(a) has a unique solution (i, Ti) for each i, 1 ≤ i ≤ p̄, and

(b) R(i, T ) > T for all i > p̄.

Proof. Let

R(i, T ) =
i∑

j=1

h(Y ) (4.23)

Let λ = r+w
h

be such that λH > R +W and let p̄ = bλc.

From (4.14), Y = (r + w)−1(T ) = T−(R+W )
r+w

. Consequently,

R(i, T ) =
i∑
i=1

h(Y ) = a(i)T + b(i) where (4.24)

a(i) =
i

λ
and (4.25)

b(i) = i(h− R +W

λ
) (4.26)

Proof of (a): Since λH > R + W the intersection between mapping (4.24) and the

y-axis is positive. The slope of mapping (4.24) is 0 < a(i) ≤ 1 if i ≤ λ. Therefore,

R(i, T ) = T has a solution Ti = i(λH−(R+W ))
λ−i , and this solution is nonnegative for

i ≤ p̄.

Proof of (b): For i > p̄ the values of the slope and the y-axis intercept of

mapping (4.24) are a(i) > 1 and b(i) > 0, respectively. Therefore, R(i, T ) = T has

only negative solution. Consequently, R(i, T ) > T for all T ≥ 0.�

It is worth remarking that if λH < R + W , the time cost of the overhead in

the computation does not allow computations within a period T ≤ Tλ = λH. In

this case Ti < 0 if i ≤ p̄. Also, if i > p̄, R(i, T ) = T has a positive solution. But

this solution does not guarantee a positive value for Y = λ iH−(R+W )
(λ−i)(r+w)

except for

iH < R+W . In this case, perfect utilization only occurs within the index p̄ < i ≤ j

where j =
⌊
R+W
H

⌋
.
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Figure 4–2: R(i, T ) Graph Representation.

Figure 4–2 pictures different plots of the functions R(i, t). The plots range up

to i = p̄+1. In this figure the values Ti represent, right limit for the time T requiring

exactly i workers in the solution of MP. If the slope of R(i, t) is greater than or equal

to 1 the equation 4.22 has no solution. In summary, this Theorem states that there

are balanced schedules in the solution of MP provided by Theorem 4. Each such

balance schedule occurs whenever T is chosen such that ε < H.

4.1.3 Optimal production over an heterogeneous cluster

All results in this section refer to the case when mapping hi = li. Figure

4–2 shows the dependence between resource selection and the size of time period

T . Furthermore, as presented in section 4.1.1, the difficulty arises in solving the

resource selection problem, specially when the period is small. When latencies are

introduced, it is difficult to decide which resources to use. In the next example the

optimal solution for three different values of T are presented.

Example 1. In the toy example of Figure 4–3 the optimal solution for three periods

T = 7, 9 and 27, are computed by using the standard solver Lindo [47]. With period

T = 7, Figure 4–3(b) shows link comparisons between the best possible subset

solutions {1,2} and {3}. The optimal solution uses the last processor P3 and the

maximal production is 3 with values x̄ = {0, 0, 3}. However, if the period is T = 9
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Figure 4–3: Example with Four Processor.

Figure 4–3(c) shows that the solution with maximal production is 4.083 with values

x̄ = {2.333, 1.75, 0}. Furthermore, with a period T = 27, the solution uses the whole

platform. The maximal production is 14.605 with values x̄ = {8.333, 6.25, 0.219}.

These solutions with different values of T show a direct dependence between the

subset of workers and T . In fact, Figures 4–3(b and c) show the difficulty in resource

selection. Such difficulty involves solving a trade off between selecting the resource

with faster link capacity or the resource with more effective task transmission per

time unit. The latter concept is illustrated by the fact that link 3 can send 3 tasks

in 7 unit time while link 1 and link 2 together, can only send 2.916 tasks, due to

the compute restriction. Nonetheless, link 1 and link 2 are faster than link 3. In

contrast, when using T = 9, the link 1 and link 2 together are better that link 3.

This holds in all periods greater than T = 8. After T = 27, the resource selection

remains constant. This selection agrees with selection provided by Theorem 1.

If the time period is large enough, it is possible to derive an approximate solution

which can be used to design an asymptotically optimal scheduler. In addition a

bound to this approximation, which is independent of the time period, is derived in

this section.

Proposition 1. In any optimal solution of the MP problem, all participant workers

are fully use, except perhaps for the worker with maximal link capacities gi.
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Proof. Let i, the index for the worker with maximal link capacity. Suppose an

optimal solution in which there exists a worker j 6= i not fully used. This means

(rj + wj)(xj) < T . It is possible to derive a solution that performs at least as

many tasks as those in the optimal solution. Let τ be a smaller fraction of time,

βj = τ
hj

and βi = τ
hi

. The communication time does not change if the vales xj and

xi are replace with xj + βj and xi − βj, respectively. Hence, there is an optimal

solution which processes β = τ(
hi−hj
hihj

) more tasks than the original one. This is a

contradiction. Therefore, all workers with link capacity smaller than the workers

with maximal link capacity are fully used. �

The above proposition ensures that in an optimal solution all processors work

to full capacity except perhaps by the processor with lower speed communication.

The next Theorem is a modification of a similar result presented in [20] for a

single round StarAffine divisible load problem. This Theorem is the main result

in this section.

Theorem 6. If the period is large enough, then for the maximal production is obtain

saturates the processor in the order of non decreasing link capacities hi.

Proof. Consider a valid solution of the MP problem for a time period T and

MaxTask(T) is the optimal number core task that can be processed with this

solution.

• Consider the following instance of the MP problem, with p workers where for all

i, H
′
i = 0, R

′
i = 0, W

′
i = 0, h

′
i = hi, r

′
i = ri, w

′
i = wi and T

′
= T . Since all compu-

tation and communication latencies have been eliminated, the optimal number of

core task MaxTask1(T ) processed by this instance is larger than the number of

core task MaxTask(T ) processed by the initial platform. From Theorem 1, the

value of MaxTask1(T ) is given by a formula

MaxTask1(T ) = f(I, σ)T. (4.27)
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where f(I, σ) =
∑q

i=1
hi
wi

+ ε
hq+1

. The set I of q + 1 workers, the send order σ and

the value of ε are given by Theorem 1.

• Consider now an instance of the MP problem with p workers where for all i, H
′
i = 0,

R
′
i = 0, W

′
i = 0, h

′
i = hi, r

′
i = ri, w

′
i = wi and T

′
= T−

∑
i∈I(Hi+Ri+Wi). Clearly,

the optimal number of task MaxTask2(T ) processed in this instance is lower than

MaxTask(T ), since it adds all the communication and computation latencies

before the beginning of the processing. Moreover, as before MaxTask2(T ) is

given by the formula

MaxTask2(T ) = f(I, σ)(T −
∑
i∈I

(Hi +Ri +Wi)). (4.28)

Therefore,

f(I, σ)

(
1−

∑
i∈I(Hi +Ri +Wi)

T

)
≤ MaxTask(T )

T
≤ f(I, σ). (4.29)

Hence, when T becomes arbitrarily large, then the throughput, MaxTask(T )
T

, be-

comes arbitrarily close to f(I, σ), which is the optimal throughput if there were no

communication and computation latencies. �

Intuitively, the effect of latencies in the solution can be bypass when the period is

large enough. The main difference in the selection sets of resources arises in the time

spent in communication latencies. The next extension of Theorem 1, summarizes

this effect.

Theorem 7. Let p be a positive integer and MaxTask(T) be the optimal solution

of the previous problem. The method:

1. Sort the worker by increasing communication times. Renumber them so that

h1 ≤ h2 ≤ ... ≤ hp.

2. Let Yi = (ri + wi)
−1(T ) for 1 ≤ i ≤ p and q be the largest index so that∑q

i=1 hi(Yi) ≤ T . if q < p, let Tε = T −
∑q

i=1 hi(Yi); otherwise, let Tε = 0

Returns the values to construct the following inequalities:
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i) ∣∣∣∣∣MaxTask(T)−
q∑
i=1

Yi + max{0, h−1
q+1(Tε)}

∣∣∣∣∣ ≤
∑q

i=1Hi

hq+1

(4.30)

ii) If the period T is large enough∣∣∣∣∣MaxTask(T)−
q∑
i=1

Yi + max{0, h−1
q+1(Tε)}

∣∣∣∣∣ ≤ Hq+1

hq+1

(4.31)

Proof. The prof is similar to the one in Theorem 6. The first instance of the

MP problem is changed by the following: for all i, H
′
i = 0, R

′
i = Ri, W

′
i = Wi,

h
′
i = hi, r

′
i = ri, w

′
i = wi and T

′
= T . The second instance of the MP problem is the

original. Both instances are solved with the previous method. Then, the inequalities

are obtained with a equation that is similar to 4.29.

The previous Theorem solves partially the MP problem for a large period. The

solution is partial because a piece of it has again a new resource selection problem

similar to the first one, but with a smaller period Tε. This period Tε can be small

enough to see the effects of latency dependences.

4.2 Maximazing the utilization

In this section a new metric for system utilization is defined. This metric is

built to be maximal when the system is perfectly balanced. As in section 4.1, the

Maximal Utilization (MU) problem is formulated over a single period T with a load

size X large enough so all workers receive core tasks within this period.

4.2.1 Maximal utilization problem

The concept of system utilization is introduced here.

Definition 9. Given a (T, p,MG)-partition x̄ = (x1, x2, ..., xp) of a number X of

agglomerated tasks, where F = MG. The utilization differentials are defined as:

∆h(T, p, (x1, ..., xp)) = T −
∑
{xi 6=0}

hi(xi) for the master or network (4.32)

∆c(T, p, (x1, ..., xp)) =
∑
{xi 6=0}

(T − (ri + wi)(xi)) for the workers. (4.33)
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The partition is assumed to the rearranged in such a way that there is an index k

such that xi 6= 0 for i = 1, ..., k and xi = 0 for k < i ≤ p. Then, the master or

network utilization in a period T is

Uh =

∑k
i=1 h(xi)

T
= 1− ∆h(T, p, (x1, ..., xp))

T
. (4.34)

The utilization of the workers, in turn, is defined as

Uc =

∑k
i=1(ri + wi)(xi)

kT
= 1− ∆c(T, p, (x1, ..., xp))

kT
. (4.35)

The utilization in a round is thus,

U = Uh + Uc = 2− 1

T

(
∆h(T, p, (x1, ..., xp) +

1

k
∆c(T, p, (x1, ..., xp))

)
. (4.36)

The MU problem is stated as follows:

”Given a time T , find I ⊂ {1, 2, ..., p} such that

Max {U : (T, p,MG)− partition of X} (4.37)

Subject to H =
∑
i∈I

hi(Xi) ≤ T (4.38)

C = max {(ri + wi)(Xi)|i ∈ I} ≤ T.” (4.39)

Clearly, MU problem is equivalent to find the same subset to minimizing

∆ = ∆h(T, p, (x1, ..., xp) +
1

k
∆c(T, p, (x1, ..., xp)) (4.40)

subject to the same restrictions. The solution of these problems depends, in turn,

on the MP solution, section 4.1, to homogeneous system. However, this is not true

for heterogeneous systems. In heterogeneous systems this problem is independent of

the maximal production problem since it is possible find a maximal utilization that

equals 2, but with a poor production.
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4.2.2 Optimal utilization over an homogeneous cluster

The solution of the MP problem found in Theorem 4 is used to solve MU as

shown in the next Theorem.

Theorem 8. Let (x1, ..., xp) be the solution to MP given by Lema 1. Then,

∆ =


min {∆h(T, q, (x1, ..., xp)),

1
q+1

∆c(T, q + 1, (x1, ..., xq+1))} if q < p

∆h(T, p, (x1, ..., xp)), otherwise

(4.41)

solves MU.

Proof Let (x1, ..., xk) be the solution of MP given by Theorem 4. Assuming that

q < p; the proof is reduced to demonstrating the claims:

(a) The tuple (x1, ..., xk) is a solution to MU and

(b) min {∆h(T, q, (x1, ..., xq)),
1
q+1

∆c(T, q + 1, (x1, ..., xq+1))} is the minimum.

Claim (a) follows directly from the fact that both problems, MP and MU, have the

same restrictions.

Claim (b). Let Z̄ be a tuple that solves MU and without loss generality, let 1, ..., kz

the workers use in the solution.

if
∑kz

i=1 Zi <
∑q

i=1 xi, then

∆h(T, kz, (Z1, ..., Zk)) > ∆h(T, q, (x1, ..., xk))

≥ min {∆h(T, q, (x1, ..., xq)),
1

q + 1
∆c(T, q + 1, (x1, ..., xq+1)).

(4.42)

This is a contradiction, as well. Thus, the only possibility left is

q∑
i=1

xi ≤
kz∑
i=1

Zi ≤
q+1∑
i=1

xi and kz ≥ q (4.43)

Suppose that
∑q

i=1 xi <
∑kz

i=1 Zi <
∑q+1

i=1 xi, them kz > q, after algebraic manip-

ulations is concluded that 1
q+1

∆c(T, q + 1, (x1, ..., xq+1)) < 1
kz

∆c(T, kz, (Z1, ..., Zkz)),

therefore 1
kz

∆c(T, kz, (Z1, ..., Zkz))+∆h(T, kz, (Z1, ..., Zkz)) >
1
q+1

∆c(T, q+1, (x1, ..., xq+1)),

which is again a contradiction. Therefore,
∑k

i=1 Zi =
∑p

i=1 Xi or
∑k

i=1 Zi =
∑q+1

i=1 Xi.
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this induce the following selection

∆ = min {∆h(T, q, (x1, ..., xp)),
1

q + 1
∆c(T, q + 1, (x1, ..., xq+1))} (4.44)

because in boot extreme ones of ∆h or ∆c is null.

Assuming now that q ≥ p and Z̄ is again the tuple that solves MU.

If ∆h(T, kz, (Z1, ..., Zkz)) > ∆h(T, q, (x1, ..., xq) then, ∆c(T, kz, (Z1, ..., Zkz)) > 0, let

ρ > 0 small enough, now any Zi satisfying (r + w)(Zi) < T can be replaced with

Zi + ρ and get a better solution. This contradicts the maximality of Z̄. Therefore,

∆h(T, kz, (Z1, ..., Zk)) = ∆h(T, q, (x1, ..., xq). �

If Theorem 4 gives q < p workers and ∆c = 0; then perfect utilization and

maximal production are both achieved. On the other hand, if Theorem 4 yields

p + 1 workers, then ∆c 6= 0 and therefore, only maximal production is achieved.

If q < p then ∆c = 0. In this case the utilization is perfect but production is

not maximal. In general, under maximal production, the worker’s utilization is

bounded by 1− 1
k
< Uc ≤ 1. Similarly, under perfect worker’s utilization, the master

or communication network’s utilization is bounded by 1− 1
k
≤ Uh ≤ 1.

Intuitively, this Theorem states that there is a trade off between completely

saturating the link or the master; or eliminating the gaps in the workers executions.

Unfortunately, saturating master, links and workers is achievable only in a finite set

of values, just as described for homogeneous systems in Theorem 5. Furthermore,

in a system with limited resources, the solution of the maximal utilization problem

is easy, since the maximum is achieved when there are not idle time in the workers’

computations.



53

Figure 4–4: Example of Utilization with Four Processor.

4.2.3 Approximate optimal utilization over an heterogeneous cluster

The Figure 4–4, shows an example of independence between maximal produc-

tion and maximal utilization problems over an heterogeneous platform. This inde-

pendence is characterized by the possibility of saturating the link and some resources

so that the utilization is maximal but the production is very poor.

Example 2. In this example it is supposed that the platform of the Figure 4–

3(a), but with no computation overhead in processor P3. The optimal solution is

computed for period T = 28 using the standard solver Lindo [47]. The maximal is

given by the workers selection done in Figure 4–4(c). In this solution ∆h = 0.04 and

∆c = 0. Then, the maximal utilization is U = 1.98 but this solution has a production

of MaxTask(28)=14. An alternative problem is to find the maximal utilization

with a fixed subset of workers with a previously set activation order. Figure 4–

4(a and b) shows two possibilities for getting maximal utilization restricted to a

previous solution that already had maximal production. This solution is obtained

by using the same policy of Theorem 8 for the homogeneous networks. The solution

was obtained by taking the minimum ∆ = min {1.08, 9.3}. Then, the utilization is

U = 1.96 and MaxTask(28)=15.16

If the solution of the MP problem is given, the Theorem 8 can be used to induce

an approximate solution to the MU problem in heterogeneous system.
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4.3 Maximal production and perfect utilization

The Perfect Utilization and Maximal Production problem (PUMP) is the prob-

lem of finding the pairs (i, T ) where 0 < i is a number of workers and T is a period,

in which the utilization is perfect and the production is maximal with i workers.

4.3.1 Optimal utilization-production over an homogeneous cluster

In a homogeneous cluster this problem can be solved by the next Theorem

Theorem 9. Let λ = r+w
h

, and p̄ = bλc. Assume that λH > R + W , let i be a

positive integer and T a positive real number. The solutions of PUMP is the set of

pairs (i, Ti) where i = 1, ..., p̄ and

Ti =
i(λH − (R +W )

λ− i
. (4.45)

Proof Consequence direct of Theorem 5 proof.�

The values i = 1, ..., p̄ induce the partition of the domain T ≥ 0

{(Ti−1, Ti] : i = 1, ..., p̄} ∪ {(Tp̄,+∞)} (4.46)

where T0 = 0, (Ti−1, Ti] = {T : Ti−1 < T ≤ Ti} and Ti is as above, the solution of

R(i, T ) = T .

4.3.2 Optimal utilization-production over an heterogeneous cluster

The effect induced by a small period is similar to the one induced over the

problem of searching the optimal solution to the MP problem in section 4.1.3. This

section presents the solution to perfect utilization problem in a special case.

Theorem 10. Let i be a positive integer, T a positive real number and a fixed

activation order. Let p̄ be the largest index so that
∑q

j=1
hj

rj+wj
≤ 1. The solution

of PUMP is the set of pairs Pumpsol={(i, Ti)|
∑i

j=1Hi −
∑i

j=1
Ri+Wi

ri+wi
≥ 0 and i =

1, ..., p̄} and

Ti =

∑i
j=1Hi −

∑i
j=1

Ri+Wi

ri+wi

1−
∑i

j=1
hj

rj+wj

. (4.47)
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Proof. Let xj = (r + w)−1(T ) the solution given by the approximate solution to

MP problem, them

R(i, T ) =
i∑

j=1

h

(
T − (Rj +Wj)

rj + wj

)
. (4.48)

Therefore, R(i, T ) = T has a solution

Ti =

∑i
j=1Hi −

∑i
j=1

Ri+Wi

ri+wi

1−
∑i

j=1
hj

rj+wj

, (4.49)

and this solution is nonnegative for i ≤ p̄ such that
∑i

j=1 Hi −
∑i

j=1
Ri+Wi

ri+wi
≥ 0.�

As in section 4.3.1 it is possible to find other solutions. These additional solu-

tions occur for values i > p̄ where
∑i

j=1Hi −
∑i

j=1
Rj+Wj

rj+wj
< 0. These values of T

are closed to 0 and it is possible to get negative values in x̄ . Similarly, the values

i = 1, ..., p̄ induce the partition of the domain T ≥ 0

{(Tj, Ti] : (i, Ti) ∈ Pumpsol} ∪ {(Tp̄,+∞)} (4.50)

where T0 = 0, (Tj, Ti] = {T : Tj < T ≤ Ti}, j and i consecutive in the Pumpsol}

and Ti is as above, the solution of R(i, T ) = T .



CHAPTER 5

A NEW SCHEDULER FOR A CLUSTER OF

WORKERS

5.1 Adjusting the last round

In the literature is common to find that in an optimal schedule, all workers finish

at the same time [20]. In [18] a postmortem last round modification is proposed

for the UMR algoritm. Here this technique is used to develop a new last round

modification method. The new method differs in that, due to the limitations imposed

by the period over the rounds, the last round is split in two new rounds, called

last round and auxiliary round. Figure 3–3 depicts a scheduler with a last round

modification.

5.1.1 The last round in heterogeneous cluster

Modifications of the last round are used either to impose the condition that all

processors end operating at the same time or to orchestrate the return of results

from the workers to the master. This section presents a general statement of the

last round modification problem and a solution. The problem statement includes

both, single and multiple port communication networks. Data returns from the

workers to the master are considered to be constant in time, and are modeled with

the additional affine mappings:

si,0(x) = x.si,0 + Si,0, send operation from worker i to the master (5.1)

li,0(x) = x.li,0 + Li,0, transmission time from i to the master, and (5.2)

r0(x) = x.r0 +R0, receive operation in the master. (5.3)

56
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The modifications alter the values of the (T, k,MG)-partition obtained in Theorem

4 in the last round of the computation. Ideally, the concurrent processes i = 1, ..., q

end in the same order that they were started. The delay between any two consecutive

workers at the end is simply

Di = hi(Yi) (5.4)

where h = e+ s or h = l as above. It is also assumed that

r0(x) = x.r0 +R0 = K (5.5)

is the constant time spent in returning one result from a worker to the master. These

delays at the end can be compensated by computing an auxiliary q + 1-tuple of

real numbers, denoted (Z1, ..., Zp, Zq+1), that modifies the values of the (T, k,MG)-

partition (Y1, Y2, ..., Yq+1, 0, ..., 0) of X obtained with Theorem 14. The modification

alters the amount of core tasks that a processor i computes in two different ways,

depending on whether i ≤ m or m < i, for some index m, 1 ≤ m ≤ q + 1 as shown

in the Figure 3–3. The modified values are:

(a) Yi + Zi, for 1 ≤ i ≤ m and (5.6)

(b) Zi, for m < i ≤ q + 1. (5.7)

The new amounts of agglomerated core tasks must satisfy:

m∑
i=1

(Yi + Zi) +

q∑
i=m+1

Zi + χq+1Zq+1 = qY + Yq+1; (5.8)

where

χq+1 =


1, if Yq+1 6= 0, and

0, otherwise

(5.9)
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The tuple (Z1, ..., Zq+1) and the index m are obtained from the following recur-

sive equations:

Di −K + (ri + wi)(Zi) = (ri−1 + wi−1)(Zi−1), 1 < i ≤ m; (5.10)

Di −K + (ri + wi)(Zm+1) = (ri + wi)(Y ) + (r + w)(Zm); and (5.11)

Di −K + (ri + wi)(Zi) = (ri + wi)(Zi−1), i > m+ 1. (5.12)

The following equations express the values Zi, i = 2, ..., q + 1 in terms of Z1,

(ri + wi)(Zi) =


(r1 + w1)(Z1)−

∑i
k=2 Dx for 1 ≤ i ≤ m

(ri + wi)(Yi) + (r1 + w1)(Z1)−
∑i

k=2 Dx form+ 1 ≤ i ≤ q + 1

(5.13)

From the restriction 5.8 it follows that

q+χq+1∑
i=1

Zi =

q+χq+1∑
i=1

(r1 + w1)(Z1)

ri + wi
−

q+χq+1∑
i=2

i∑
j=2

(Dj −K)

ri + wi
−

m∑
i=1

Ri +Wi

ri + wi
+

χq+1∑
i=m+1

Yi

(5.14)

Thus,

Z1 =

∑q+χq+1

i=2

∑i
j=2

(Dj−K)

ri+wi
+
∑m

i=1
Ri+Wi

ri+wi

(r1 + w1)
∑q+χq+1

i=1
1

ri+wi

− R1 +W1

r1 + w1

(5.15)

Regarding the computation of m. It is worth remarking that Zm ≥ 0 implies

Zi ≥ 0 for i = 1, ..., q + 1, then m is the largest such that Zm ≥ 0. This value is

found by exhaustive search starting from m = 1. The values for Zi 1 < i ≤ q+1 can

be calculated form expression 5.13. A natural way to implement these modification

in a SPMD program is splitting the last round into two separate rounds. In the

first, processes i = 1, ...,m consist of Y agglomerated core tasks, while processes

i = m + 1, ..., q + 1 consist of Zi agglomerated tasks. In the second round, only

processes i = 1, ...,m are active, each consisting of Zi agglomerated tasks. This

second round is termed auxiliary round.
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5.1.2 Some considerations in homogeneous cluster

In an Homogeneous Cluster such as the ones described in section 3.1, let D =

h(Y ) and assume that the solution (Y, Y, ..., Yq+1, 0, ..., 0) was obtained with Theorem

4. The Z1 in equation 5.15 can be rewritten as:

Z1 =
R +W

r + w
(q−m+χ

Yq+1
)+

(D −K)(q2 + 2qχ
Yq+1
− q)

2(r + w)
−(χ

Yq+1
Y −Yq+1). (5.16)

The computation of m can be express in close form:

Zm =
(q −m)Y + Yq+1

(q + 1)
−

(q −m+ 1)(r + w)(Y ) + q(q+1)
2

(D −K)

(q + 1)(r + w)
(5.17)

−(m− 1)(D −K)

r + w
(5.18)

For Zm ≥ 0 m must be taken to be:

m =

⌊
(q + 1)(q + 2)(D −K)− 2(r + w)(Y − Yq+1)− 2(q + 1)(R +W )

2(q + 1)(D −K) + 2(R +W )

⌋
(5.19)

If Yq+1 = 0, let q = q − 1 and Yq+1 = Y in (5.18) and solve similarly.

In order to estimate the make-span of the auxiliary round, the formula of Z1 is

written as:

Z1 =
q(q + 1)h− 2(r + w)

2(q + 1)(r + w)
Y +

Yq+1

q + 1

+
2m(R +W ) + q(q + 1)(H −K)− 2(q + 1)(R +W )

2(q + 1)(r + w)

(5.20)

Since Yq+1 ≤ Y the value of Yq+1 can be absorbed by first term in equation (5.15),

to get

Z1 ≤ φ(q)Y + ϕ(q) where (5.21)

φ(q) =
q(h)

2(r + w)
and (5.22)

ϕ(q) =
2m(R +W ) + q(q + 1)(H −K)− 2(q + 1)(R +W )

2(q + 1)(r + w)
(5.23)
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The term (5.22) dominates in equation (5.21). Let λ = r+w
h

be the ratio between

the the time the master spends in preparing and sending a core task, and the time

that average worker spends receiving and computing the same task. This ratio is an

upper limit for the value of q obtained in Theorem 4. Then,

φ(q) =
q

2λ
. (5.24)

After a few algebraic manipulations of equation (5.19), it is concluded that m ≤ q+2
2

.

Since q ≤ λ,

φ(q) ≤ 1

2
and ϕ(p) ≤ λH

2(r + w)
. (5.25)

The previous arguments prove the following theorem:

Theorem 11. Let λ = r+w
h

. Then, the auxiliary round takes at most

T ′ =
1

2
T +

λH

2
(5.26)

units of time.

This theorem can be used to approximate the reduction in time in the modi-

fication of the last round. In the next section it is also uses as an upper bound with a

small modification. In heterogeneous systems, theH is replace withHα=max{Hi|1 ≤

i ≤ p̄}

5.2 Make-span minimization

The final objective of the proposed schedule is to minimize the total execution

time. The next mapping model the total execution time as a function the number

of rounds n and the period T .

µ(n, T ) = (n− 1)T + (e+ g1 + r1 + w1)(Y1) +
1

2
T +

λHα

2
. (5.27)

Here (e + g1 + r1 + w1)(Y1) corresponds to the time spent by the first worker in

completing the first round of computations. The last term corresponds to the ap-

proximation described in section 5.1.2. Since Y1 depends on T , mapping (5.27)
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is well-defined. The actual number n is obtained after the discretization process

discussed in section 5.3.

5.2.1 Make-span minimization constrained to maximal production

This section assumes that p, the number of workers, is large enough so p̄ < p

and that ν > 1 is a real number. The Make-span minimization problem (MM-

MP) constrained by the approximation to Maximal Production problem develop in

section 4.1.3 is stated as follows:

Minimize µ(ν, T ) = (ν − 1)T + (e+ g1 + ri + wi)(Y1) +
1

2
T +

λHα

2
(5.28)

Subject to X = ν

q∑
i=1

Yi + Yq+1 (5.29)

T = (ri + wi)(Yi), 1 ≤ i ≤ q (5.30)

T =

q+1∑
i=1

hi(Yi), and (5.31)

T ≥ (rq+1 + wq+1)(Yq+1) (5.32)

Since λHα
2

is constant, it is eliminated from the minimization problem. Besides, the

analysis will be restricted to values of T within the bounded intervals in partition

(4.50). This in turn, eliminates restriction (5.32) and allows for the reformulation

of the problem as a set of problems, one per each bounded interval (Ti−1, Ti]. A

problem in this set is described for a fixed i, as: ”Pi:

Minimize µ(ν, T ) = (ν +
1

2
)T + (e+ g1)(Y1) (5.33)

Subject to X = ν

i∑
j=1

Yi + Yi+1 (5.34)

T = (rj + wj)(Yj), 1 ≤ j ≤ i (5.35)

T =
i+1∑
j=1

hi(Yi)” (5.36)
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There are also p̄ problems in this set. After each problem is solved, the subset of

values of T satisfying the equation (5.32) with i = q is selected. The minimal value

of µ(T, Y1) for the T ′s ranging over the latter subset is the solution to MM-MP.

Definition 10. The worker that achieves minimal make-span in the latter set is

labeled popt.

The next theorem is the main result in this section.

Theorem 12. Let X be a nonnegative real number and i the number of processors

used by (Ti−1, Ti] fixed interval in (4.50). Then the solution to problem Pi is,

T =
1

a(i)

√
b(i)(r1 + w1)X

1
2
(r1 + w1) + e+ g1

+
b(i)

a(i)
(5.37)

where a(i)=
∑i+1

j=1
1

rj+wj
+ 1
hi+1

(1−
∑i+1

j=1
hj

rj+wj
) and b(i)=

∑i+1
j=1

Rj+Wj

rj+wj
+ 1
hi+1

(
∑i+1

j=1Hi−∑i+1
j=1

hj(Rj+Wj)

rj+wj
).

Proof The problem is solved by using Lagrange multipliers [48]. First let use 5.35

and 5.36 to conclude that

i∑
j=1

Yi + Yi+1 = a(i)T − b(i) (5.38)

where a(i)=
∑i+1

j=1
1

rj+wj
+ 1
hi+1

(1−
∑i+1

j=1
hj

rj+wj
) and b(i)=

∑i+1
j=1

Rj+Wj

rj+wj
+ 1
hi+1

(
∑i+1

j=1 Hi−∑i+1
j=1

hj(Rj+Wj)

rj+wj
).

The Lagrange multiplier is:

L(ν, T, λ) = µ(ν, T ) + λ G(ν, T ). (5.39)

where

µ(ν, T ) =
(
ν + 1

2

)
T + (e+ g)((r1 + w1)−1(T ))

G(ν, T ) = ν(a(i)T − b(i))−X = 0
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Lagrange system is : 
∂L
∂λ

= G = 0

∂L
∂ν

= ∂µ
∂ν

+ λ∂G
∂ν

= 0

∂L
∂T

= ∂µ
∂T

+ λ∂G
∂T

= 0

(5.40)

which is, in turn, equivalent to solve:

a(i)T − b(i) =
X

n
(5.41)

T + λ(a(i)T − b(i)) = 0 (5.42)

(ν +
1

2
)(r + w) + (e+ g) + νa(i) = 0 (5.43)

Now, solving for ν and λ in 5.41 and 5.42 yields

λ =
−T

a(i)T − b(i)
and ν =

X

a(i)T − b(i)
(5.44)

By substituting in (5.43), it follows that(
1

2
(r1 + w1) + e+ g1

)
(a(i)T − b(i))2 − b(i)(r1 + w1)X = 0 (5.45)

Finally, by clearing T ,

T =
1

a(i)

√
b(i)(r1 + w1)X

1
2
(r1 + w1) + e+ g1

+
b(i)

a(i)
(5.46)

this conclude the proof.�

As remarked previously, there is no guarantee that T in (5.46) is indeed a

member of the ith bounded interval. As a matter of fact, only values i and T

satisfying (5.32) contain potential solutions to MM-MP. Using (5.32) and Theorem

12, MM-MP is solved by finding the minimal value of µ(T ) for the periods T ′s

ranging over the subset of values satisfying

(rq+1 + wq+1)(Yq+1) ≤ T (5.47)
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This equation leads to a linear time search algorithm for computing popt. A

natural upper bound for i is p̄, the largest index so that
∑q

j=1
hj

rj+wj
≤ 1 or in

homogeneous case p̄ =
⌊
Ar+Aw

Ah

⌋
.

5.2.2 Make-span minimization constrained to perfect worker’s utiliza-
tion

It is assumed now that p ≤ popt. The problem of make-span minimization under

perfect worker’s utilization (MM-PWU) is stated as:

Minimize µ(T ) = (ν +
1

2
)T + (e+ g1)(Y1) (5.48)

Subject to ν

p∑
i=1

Yi = X (5.49)

(ri + wi)(Yi) = T, 1 ≤ i ≤ p (5.50)
p∑
i=1

hi(Yi) ≤ T (5.51)

Following procedures that are similar to those outlined in the previous subsec-

tion, a set of problems Si is built for each i = 1, ..., p̄. Thus, ”Si :

Minimize µ(T ) = (ν +
1

2
)T + (e+ g)(Y ) (5.52)

Subject to ν

p∑
i=1

Yi = X (5.53)

(ri + wi)(Yi) = T, 1 ≤ i ≤ p” (5.54)

Theorem 13. Let X be a nonnegative real number and i the number of processors

used by (Ti−1, Ti] fixed interval in (4.50). Then, the solution to Si is

T
(i)
sol =

1

a(i)

√
b(i)(r1 + w1)X

1
2
(r1 + w1) + e+ g1

+
b(i)

a(i)
(5.55)

where a(i)=
∑i

j=1
1

rj+wj
and b(i)=

∑i
j=1

Rj+Wj

rj+wj
.

Proof. Similar to theorem 12.

Similar to the previously problem, there is no guarantee that T
(i)
sol in (5.55) is

indeed a member of the ith bounded interval. As a matter of fact, only values
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i and T satisfying (5.51) contain potential solutions to MM-MWU. Using (5.51)

and Theorem 13, MM-MWU is solved by finding the minimal value of µ(T ) for the

periods T
(i)
sol ranging over the subset of values satisfying

T
(i)
sol(a(i)− 1) ≤ b(i) (5.56)

If only a limited subgroup i < p̄ of workers is used, the solution to the MM-PWU

problem can be founded by

T =


arg min {µ(T

(i)
sol), µ(Ti−1), µ(Ti)} if T

(i)
sol ∈ (Ti−1, Ti]

arg min {µ(Ti−1), µ(Ti)} otherwise

(5.57)

in this solution if the minimum is achieved in T = Ti−1 then, the solution only uses

i− 1 workers.

5.3 Discretization in homogeneous cluster

So far, all parameters except p are real numbers. The SCOW parameters

nRounds and nCoreTasks are obtained by discretizing the real parameters. The

discretization process is carefully crafted to preserve the characteristics of maximal

production or perfect utilization per round of the continuous parameters.

5.3.1 Discretize the number of agglomerated tasks

There are two main options when it comes to discretizing parameter Y : take

either its floor or its ceil. Either value may be the optimal number of core tasks for

the SPMD code. Thus,

nCoreTasks = Y E = bY c or dY e . (5.58)

Each choice induces in turn, a different value for the period T through

TE = (r + w)(Y E); (5.59)
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and for the delay parameter D that is used for the adjustment of the last round,

via

D = h(Y E). (5.60)

It follows that

nWorkers = q =

⌊
T

D

⌋
. (5.61)

These values, provide in turn Tε = T − qD, and with it

Y E
q+1 =

⌊
h−1(Tε)

⌋
. (5.62)

The number of rounds is thus,

nRounds = NE =

⌊
X

qY E + Y E
q+1

⌋
(5.63)

With these parameters, each period performs

Tasks per period = qY E + Y E
q+1, (5.64)

and therefore, the total amount of work covered is

NE(qY E + Y E
q+1). (5.65)

The remaining work Xε = X − NE(qY E + Y E
q+1) is added to the last round. The

way this remaining amount of work is added depends upon two additional auxiliary

parameters. These are

a =
2qw − (q + 1)(q + 2)h

2w
and b =

2W − (q + 1)(q + 2)H

2w
. (5.66)

If Xε > aY E + b then Xε tasks are enough to complete an additional round. In

this case, equation 5.8, is to be replaced with

m∑
i=1

(Y + Zi) +

q∑
i=m+1

Zi + χ
Yq+1

Zq+1 = Xε. (5.67)
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Otherwise, the Xε tasks are added in the last round together with the adjust-

ment described in section 5.1. With these modifications, equation (5.8) becomes

m∑
i=1

(Y + Zi) +

q∑
i=m+1

Zi + χ
Yq+1

Zq+1 = qY E + Y E
q+1 +Xε. (5.68)

Because of the previous discussion the schedule has two possible make-spans.

These are,

Make− span =


(e+ g)(Y E) + (NE + 1)T + (r + w)(Z1), if Xε > aY E + b

(e+ g)(Y E) +NET + (r + w)(Z1); otherwise.

.

(5.69)

Since Y E has two possible values, the solution is the minimum make-span between

these two vales.

5.3.2 Discretization the number of rounds

The previous procedure discretizes the number of agglomerated tasks per round.

An alternative is to discretize the number of rounds necessary to perform the whole

task. In this case, there are two possible values for

nRounds = NE = bνc or dνe . (5.70)

Each value provides, in turn, an estimation for

Total work in a round =
X

NE
= qY + Yq+1. (5.71)

Thus, the problem is finding q and Y such that

T = (r + w)(Y ) = qh(Y ) + h(Yq+1); and (5.72)

Yq+1 < Y. (5.73)

In this case, the value of Y is not discretized. The next procedure finds the values

of q and Y for a given NE.
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For i=1:bλc

T = h( X
NE ) + (i+ 1)H;

Y = (r + w)−1(T );

if i =
⌊

T
h(Y )

⌋
q ← i;

end

end

5.3.3 Implementation issues

There are several consideration related to the implementation of SCOW. Ini-

tially the input values to SCOW are the values obtained by a simple linear regression

method, over a minimal set of measurements. Due to the error in the regression,

the accuracy of the predictions is a difficult problem. In the section 3.1.3 Figure 3–5

shows two different areas called affine windows. If the first window is use to predict

the communication time, and if x takes values (> 450), the approximation error is

very large. This problem induces an additional restriction. The values of x are to

be kept within the affine windows determined by the regression.

Another important issue is that the parameters estimated by regression may

not be consistent with the theory. For example, the values of overhead produced

by regression may be negative in some situations. In these cases, the model loses

validity and return wrong optimal values. In the regression obtained by the values

in the second window in Figure 3–5, the estimated parameters returned for the

send a receive mappings have indeed negative overheads. This is shown in Table

6–7. In this particular case, the problem can bypassed because the model is able to

absorb negatives overheads in the compute mapping in such a way that the overhead

parameter of mapping h result ultimately positive.
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Figure 5–1: Flow-Chart for the Computation of SCOW Parameters
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5.3.4 Implementing SCOW in a SPMD code segment

The whole computation of the SCOW parameters are described in the flowchart

depicted in Figure 5–1. The user provides a divisible task with a well-defined core

task. The basic performance parameters derived from a few measurements of the

core is the following MG

MG = {(OP, op) | op(x) = x.op+OP, op = e, s, l, r, or w, } (5.74)

These MG and the total amount of core tasks X are fed into the mathematical

equations of the continuous model. This is done in node SCOW-MP in Figure 5–1,

which corresponds to the process implemented in the MATLAB function in Figure

5–2. The output of SCOW-MP are the number of agglomerated tasks, Y ; a real

approximation to the number of rounds, ν; the length of the period, T ; and the

optimal number of workers required, this is q. It is also assumed that p > 1 workers

are available in the cluster. Now, if q < p, the user may opt for either minimizing

the make-span with maximal production, or minimizing the make-span under the

perfect worker’s utilization constraint. Otherwise, if q ≥ p, the best option is clearly

to minimize make-span under perfect worker’s utilization. After these decisions are

made, the discretization procedures discussed in section 5.3 are applied to get the

actual SCOW parameters.
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Figure 5–2: Matlab Implementation for the Continuous Model



CHAPTER 6

EXPERIMENTAL RESULTS

This chapter is organized as follow: in section 6.1 the results of numerical

comparisons of SCOW with others schedulers is shown. The time executions of two

parallel implementations, one scheduled with SCOW and the other using a fist-in

first-out job distribution, of a Bioinformatics optimization algorithm is presented

in section 6.3. In the section 6.4.1 SCOW and UMR are used to schedule the

above mentioned Bioinformatics algorithm. Finally, a parallel branch and bound

implementation of the same Bioinformatics problem is presented in 6.5.

6.1 Numerical comparison

Table 6–1: Simulation Parameters

Parameter Values

Agglomerated tasks X = 1000
Computational rate S = 1; r = 0.1 1

S
;w = 0.9 1

S

Transfer rates B = 1.1×N, 1.1×N + 1; l = 1
B

, where N=10,20,30
Linear constant of link operation l = 1

B

Computational latency cLat = 0.03;R = 0.1cLat;W = 0.9cLat;
Communication latency nLat = 0.03;L = nLat;
Retrieval and send E = 0; e = 0;S = 0; s = 0;
Auxiliary mapping g = s+ l and h = l

Some UMR numerically predicted performance values are presented in [45]. A

few of these values, which were randomly selected, are used in this section for pre-

dicting the corresponding SCOW-MP and SCOW-PWU performance values. These

predictions are made using solely the mathematical equations underlying them. It

72
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is worth remarking that UMR methods find the optimal number of rounds, and per-

form no discretization on the amount of work per round. Thus, in order to make the

comparisons possible, SCOW discretizations are made on the number of rounds and

not on the amount of agglomerated tasks per round. The randomly chosen values

are shown in Table 6–1.

The numerical prediction of the performances of UMR and SCOW are shown

in Table 6–2. In this table, each cell is organize by: (1,1) make-span, (1,2) number

of workers, (2,1) workers’ utilization and (2,2) network’s utilization.

Table 6–2: Numerical Experimental Results of SCOW and Competing Methods

N B SCOW-MP PERIODIC UMR2 SCOW-PWU UMR2 UMR

1011
99.058 11 99.198 11 99.18111 102.685 10

=UMR
102.528 10

0.962 1 0.951 1 0.960 1 1 0.998 1 0.992

2022
53.427 21 53.613 22 55.48920 55.176 19 56.946 19 57.567 18
0.971 1 0.905 1 0.974 1 1 0.997 0.993 1 1 0.991

3033
38.236 30 38.795 33 39.66830 38.248 29 40.144 29 41.298 25
0.986 1 0.8457 1 0.941 1 0.999 1 0.958 1 1 0.991

1012
91.453 12 91.535 12 91.59112 93.670 11

=UMR
93.633 11

0.958 1 0.948 1 0.956 1 1 0.999 1 0.997

2023
51.434 22 51.739 23 52.41122 51.477 21 53.314 21 53.189 20
0.961 1 0.888 1 0.945 1 0.998 1 0.970 1 1 0.992

3034
37.321 31 37.495 34 38.70531 37.345 30 39.143 30 40.483 26
0.977 1 0.846 1 0.936 1 0.987 1 0.953 1 1 0.995

Table 6–3 shows the normalized make-span and utilization of SCOW versus the

competing schedulers, this is PERIODIC, UMR and UMR2. By normalization it is

understood the following metric

1

η

η∑
i=1

Ψ of competing scheduler with simulation i

Ψ of SCOW with simulation i
, (6.1)

Where η is the number of numerical simulations selected for the comparison,

and Ψ stands for either make-span or utilization. Because of the characteristics of

each of the competing schedulers, not all normalizations yield useful results. For
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instance, in several cases UMR does not use the same number of workers as SCOW-

MP. Therefore, in those cases, it does not make sense normalizing the make-span as

SCOW-MP will always outperform UMR. A similar situation occurs with SCOW-

PWU and UMR whenever the number of workers used by each scheduler is different.

The only useful normalizations are the ones represented in Table 6–3.

Table 6–3: Comparison Between SCOW and Competing Methods, Average over 36
Experiments

SCOW-MP PERIODIC UMR2 SCOW-PWU UMR2 SCOW-PWU UMR

Normalized
Make-span

1.000 1.005 1.022 1.00 1.027 1.000 1.000

Normalized
Utilization

1.000 1.038 1.008 1.00 1.009 1.000 1.001

The data in the table shows that SCOW outperforms UMR, UMR2 and PERI-

ODIC. SCOW is superior in system utilization. On the other hand, PERIODIC has

a better make-span than SCOW-MP in some numerical simulations. This is due to

the fact that PERIODIC uses more workers than SCOW-MP. However, this gain in

time brings about the poorest utilization in the whole table.

6.2 Comparisons Through Simulations

According to [49] SimGrid is a toolkit that provides core functionalities for

the simulation of distributed applications in heterogeneous distributed environments.

The specific goal of the project is to facilitate research in the area of distributed

and parallel application scheduling on distributed computing platforms ranging from

simple network of workstations to Computational Grids.

In this section SimGrid is used to validate the numerical predictions made in

section 6.1. As shown in Table 6–4, the simulations of SCOW show no significant

differences with corresponding predicted values. This was not the case with the sim-

ulations of PERIODIC, UMR and UMR2, The main reason behind these differences

lies in the last round, which is in most cases modified so that all processors end
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Table 6–4: Numerical Experimental Results of SCOW and Competing Methods

N B SCOW-MP PERIODIC UMR2 SCOW-PWU UMR2 UMR

1011
99.063 11 99.254 11 98.68811 102.685 10

=UMR
102.528 10

0.962 1 0.952 1 0.960 1 1 0.998 1 0.992

2022
53.429 21 53.309 22 53.90720 55.176 19 54.882 19 57.567 18
0.971 1 0.905 1 0.974 1 1 0.997 0.993 1 1 0.991

3033
38.239 30 38.331 33 38.84130 38.248 29 39.385 29 40.795 25
0.987 1 0.846 1 0.941 1 0.999 1 0.958 1 1 0.991

1012
91.457 12 91.536 12 91.20212 93.670 11

=UMR
93.807 11

0.958 1 0.949 1 0.956 1 1 0.999 1 0.997

2023
51.436 22 51.428 23 51.77222 51.477 21 52.699 21 54.763 20
0.962 1 0.897 1 0.945 1 0.998 1 0.970 1 1 0.992

3034
37.323 31 37.009 34 37.99131 37.345 30 38.519 30 40.567 26
0.977 1 0.861 1 0.936 1 0.987 1 0.953 1 1 0.995

operating at the same time. In the particular case of PERIODIC, such modification

is the same as the one in SCOW. But due to the weak continuity of the workers

in PERIODIC, the aim of all workers ending at the same time is seldom achieved.

A post mortem improvement on the simulation results is made in Table 6–4. This

improvement consisted in re-distributing the last round lengths in such a way that

all workers end in the average of their ending times. Unfortunately, no efficient

algorithm is available for performing such re-distribution automatically.

Table 6–5: Comparison Between SCOW and Competing Methods using SimGrid.

SCOW-MP PERIODIC UMR2 SCOW-PWU UMR2 SCOW-PWU UMR

Normalized
Make-span

1.000 0.999 1.007 1.000 1.013 1.000 1.000

Normalized
Utilization

1.000 1.036 1.009 1.000 1.010 1.000 1.001

As for UMR, the problem lies in the fact that last round modification provided

by the authors fails in some cases. Indeed, whenever the round length increments

are sufficiently small there is a possibility that lose continuity between rounds. This

is naturally reflected in differences in the processors ending times and therefore,

a longer make-span. Finally, in the case of UMR2 no last round modification is
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provided by the authors. Nonetheless, the last round modification provided for

UMR can be modified for UMR2. Table 6–5 shows the improvements in the UMR2

and PERIODIC performance when these new modification is applied.

6.3 An improved parallel brute force motif finding solver

Given a set of t DNA sequences, the motif finding problem consists in finding

a set of t l-mers, this is, strings with l characters; one from each sequence, that

maximizes the consensus score. The consensus score is computed by selecting one

position in each of the t sequences, thus forming an array s = (s1, ..., st). The l-mers

starting at these positions are arranged as a t × l matrix, called alignment matrix.

The alignment matrix is used, in turn, to compute the profile matrix. The latter is

a 4 × l array of nonnegative integers. Each row in the profile matrix corresponds

to one of the nucleotides A, T, G and C; and each entry (i, j) holds the number

of times that nucleotide i appears in column j. The consensus score of a profile

matrix with starting positions s = (s1, ..., st) is the sum of the highest scores in each

column. This score is denoted Score[(s1, ..., st)]. The set of t l-mers with the highest

Score[(s1, ..., st)] is the computational solution of the motif finding problem.

Next is the pseudo-code of a brute-force algorithm for solving the motif finding

problem.

Set BestScore← 0

For each (s1, ..., st)

Compute Score[(s1, ..., st)]

If Score[(s1, ..., st)] > BestScore

BestScore← Score[(s1, ..., st)]

Motif ← (s1, ..., st)

Return Motif.

In the parallel motif finding algorithm, the master distributes among the work-

ers packages of alignment matrices. Each worker produces the profiles of the matrices
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in its package, computes the score, and keeps best score among all received packages.

After the last round, the master receives the scores from the workers and computes

the best score. Table 6–6 shows the execution times of the parallel motif finding

algorithm scheduled with SCOW against one that implements a first-in,

Table 6–6: Experimental Result of SCOW and FIFO

t = 6, l = 8
m = 20 m = 22

FIFO SCOW-MP FIFO SCOW-MP

Observed Time 3.4595 2.8976 39.1750 32.3308
Predicted Time N/A 2.6832 N/A 30.0358

Workers 26 14 27 14
Y 450 450 450 450

first-out (FIFO) policy for job distribution. In the second case, a extensive

search was done to allocate the best possible amount of agglomerated tasks. The

table show only the best execution times observed for the FIFO job distribution.

The SCOW column shows both, the actual execution time and the execution time

predicted by the model. Experiments were run over an IBM cluster with 64 Intel

Zeon 2.8 GHz processors, star connected with a bandwidth of 100 Gb per second.

As the Table 6–6 shows, SCOW yields a superior performance both, in terms

of time and system utilization.

6.4 Experimental comparison with UMR

Table 6–7: Mapping Regression

Mapping Regression on Regression on
[25, 450] [500, 2500]

e(x) 4.6E-07x+2.2E-05 4.5E-07x+5.7E-06
s(x) 3.2E-07x+2.2E-05 4.0E-06x-1.1E-03
r(x) 3.9E-07x+2.3E-05 4.1E-06x-2.3E-04
w(x) 1.1E-05x+2.0E-05 1.1E-05x-1.0E-04

Figures 6–1 and 6–2, which were obtained from measurements of actual runs

of the implementation discussed in section 6.3, confirm (3.5) for x ranging over the

intervals [25, 450]. These graphs depict the execution time of the master’s message
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Figure 6–1: The Affine Window [25, 450] for e, s, r and w.

preparation (e) and send tasks (s); and the workers’ receive (r) and compute( w)

tasks. The symbol l represents the time spent in the transmission of x agglomerated

tasks over the network link. This variable appears in network centric computations

, this is, computations in which the communications network is saturated. In our

experiments, the master processes are the ones that remain saturated in the sense

that the master processor has no idle times. As a consequence, l is replaced with

e+ s. Although regression over [25, 450] confirms the affine model, between 450 and

500 linear regression does not render an affine graph. Over the interval [500, 2500],

linear regression renders affine mappings again but, as shown in Table 6–7, with a

negative Overheat for the mappings of send, receive and compute. Thus, the validity

of the affine model is limited to what called an affine window. This window depends

on the problem and the underlying computing system. In the particular case of the

implementation measured in this experiment, the affine window is [25, 450]. This

affine window is incorporated as a post-mortem constrain in the design of SCOW.

This means that if the optimal solution of the mathematical model lies outside the

affine window, the actual solution is taken to be the one that produces the minimal

make span between the extreme values of the window. No considerations to this

limitation is made in the UMR scheduler’s literature.
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Figure 6–2: The Affine Window [500, 2500] for e, s, r and w.

6.4.1 Scheduling a Motif Finding Solver

As discussed above, the basic measurements taken for the parallel motif finder

were: ”data retrieval (e)”, ”MPI send (s)”, ”MPI receive (r)” and ”compute (w)”.

Since the master processor executes no consensus computations, the following as-

sumptions were made to cast these measurements in terms of the UMR model:

Tcommi = e+ s, and (6.2)

Tcompi = r + w. (6.3)

The algorithm for computing UMR parameters returns the optimal amount of rounds

and the chunk sizes of each round. As pointed out before, although UMR provides

a discretized value for the number of rounds, the chunk sizes are still nonnegative

real numbers. In order to overcome this limitation, in our experiments, the chunk

sizes were rounded and the remaining loads were incorporated into the last round.

The input for the algorithm that computes the parameters of SCOW is the

set of values op and OP , with the mappings op = e, s, r and w obtained with the

above discussed linear regressions. Since SCOW is designed for determining the

optimal amount of agglomerated core tasks and optimal number of processors, no

further considerations have to be made on this algorithm’s outputs. In fact, the
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outputs of SCOW are the optimal values for nRounds, nWorkers, and nCoreTasks.

The experiments were conducted under the restriction of maximal production per

period. In this case, it is sometimes possible to get a different value for nCoreTasks

for the last worker. The parallel motif finding algorithm that result using these

parameters fits perfectly the pseudo-code in section 1.2, except by the last worker,

which is to be coded separately.

The experiments were conducted with the problem parameters displayed in the

next Table 6–8.

Table 6–8: Experimental Parameter

Parameter Values

Number of DNA sequences t=6
Size of searched pattern l=8
Lengths of DNA sequences m=13,20,26
Total amount of core tasks X = (m− l)t
Size of x tasks in byte x ∗ t ∗ l ∗ sizeof(char)

The DNA sequences were randomly generated. A pattern with some minor

mutations was inserted in each sequence, to simulate actual DNA data. The fact that

t and l remain fixed in each problem instance allows for maintaining a standard group

of measurements for the affine mappings, and a well-defined core task. Experiments

were run over an IBM cluster with 64 Intel Xeon 2.8 GHz processors, star connected

with a bandwidth of 100 Gb per second. All experiments are limited to the affine

window [25, 450] of sizes of agglomerated tasks.

6.4.2 Experiments with SCOW

Table 6–9 shows the results of three runs with values m = 13, m = 20 and

m = 26, respectively; for the parallel motif finder scheduled with SCOW,

where actual number of workers refers to the number of workers obtained after

the post-mortem restriction of the original SCOW values to the affine window. The

actual number of agglomerated tasks corresponds in turn, to a similar restriction but
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Table 6–9: Experimental Result SCOW

t = 6, l = 8 m = 13 m = 20 m = 26

Actual Time 0.0232 2.8976 32.3308
Predicted Time 0.0177 2.3903 26.7541
Predicted number 14 15 16
of workers
Actual number 14 14 14
of workers
Predicted number of 363 4558 15762
agglomerated tasks
Actual number of 363 450 450
agglomerated tasks

with the sizes of the agglomerated tasks. In the case of m = 13 the time predicted

by SCOW is close to the actual execution time. The number of agglomerated tasks

falls within the affine window, in this case, as well. However, in the cases of m = 20

and m = 26, the amount of agglomerated tasks originally returned by the algorithm

are outside the affine window. As a result, these sizes were set to 450 agglomerated

tasks, which is the local optimal obtained by the previously mentioned post-mortem

analysis. As the table shows, the number of agglomerated tasks predicted for m = 20

and m = 26 is significantly higher than 450. However, when these values are fed

into the model to estimate the number of workers, this number turns out to be very

low. As a result, the actual execution time of the parallel algorithm is much higher

than the one showed in the table for the values restricted to the affine window. This

distortion shows that the model fails outside the affine window.

6.4.3 Experiments with UMR

The same experiments were conducted with the parallel tasks scheduled with

UMR. The next Table 6–10 shows the results for m = 13, m = 20, and m = 26

for t = 6 and l = 8, as well. For m = 13 the results are quite similar to those

obtained with SCOW. These similarities can be explained by the fact the all chunk

sizes fall within the affine window. However, this is no longer the case for m = 20

and m = 26. In fact, in these cases, the chunk sizes fall very far from the affine
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window. This fact explains the differences between the predicted and the actual

make-span measurements.

Table 6–10: Experimental Result UMR

t = 6, l = 8 m = 13 m = 20 m = 26

Actual Time 0.0245 12.9534 146.8055
Predicted Time 0.0181 2.5279 26.8482
Optimal number 11 14 15
of workers
Range of chunk 147-232 739-13535 6296-10543
size expansion

6.4.4 A Hybrid UMR-SCOW scheduler

On one hand, UMR has the potential for reducing the delay of starting the

computations as it distributes smaller loads than those predicted by SCOW in the

first rounds. On the other hand, the increase in the chunk size per each round

presents the potential for getting chunk size values outside the affine window. A

hybrid URM-SCOW scheduler that uses UMR for scheduling the first rounds and

then switches to the SCOW scheduler to end the process under the SCOW policy,

seems to capture the advantages of both methods. This section illustrates how

this hybrid scheduling method would work. Work is underway for developing a

mathematical model to assess the actual advantages of this hybrid method.

The next UMR-SCOW hybrid scheduler uses the following policy: initially it

uses an amount of workers such that the first chunk sizes fall within the affine

window. As soon as the time of the round under UMR is close to the optimal period

predicted by SCOW, the scheduler switches to SCOW. The next Table 6–11 shows

the results of runs of the previously discussed parallel motif finder with the above

described UMR-SCOW hybrid scheduler.

The predicted time in the UMR phase is the time spent in sending 7 rounds of

data chunks to 13 workers. At the seventh round, an additional package with 248

agglomerated tasks is sent to worker 14, as a preparation for the transition to the
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Table 6–11: Experimental Result Hybrid UMR-SCOW

t = 6, m=20 l = 8
First phase Second phase

(UMR) (SCOW)

Actual Time 2.9434

Predicted Time 0.0329 2.6058
Number of rounds 7 486
Number of workers 13 14
Chunk sizes 371-448 450

SCOW policy. Then, SCOW takes over, with 450 agglomerated tasks for 13 workers

and 222 agglomerated tasks for worker 14. All other parameters of SCOW are used

in this phase, including the modification of the last round for the workers to end

operating at the same time.

It is worth noticing that in this experiment, the hybrid UMR-SCOW scheduler

renders better performance than the UMR scheduler alone but it does not improve

over that of the job scheduled with SCOW. A possible explanation for the superiority

of SCOW in this experiment is the fact that SCOW uses 14 processors from the

beginning of the computation, while, due to the characteristics of UMR, the UMR-

SCOW starts only with 13 processors; and the time gained in the starting-up of the

workers is not better, in this case, than the time of performing the whole computation

with 14 workers.

6.5 A Parallel Biosequence Motif Discoverer Based on Dynamic Pro-
gramming

An alternative, which is commonly used, is a serial branch-and-bound method

(BBM). BBM searches for the best scores through the branches of a tree. This tree

is better described in terms of its sub-trees. A sub-tree of this tree is rooted at level

r, 1 ≤ r ≤ t, r ranging over the indices of the DNA sequences; and has a selected

l-character subsequence as its root. All l-character subsequences in the r+1th DNA

sequence are the descendents of the selected root. The root of the tree is the empty

string which is assumed to be at level r = 0. As a consequence, the sequence of
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nodes in a branch of this tree is an alignment matrix. BBM start by traversing the

tree depth-first, accumulating partial scores until reaching the leaf of the selected

branch. Thus, once a leaf is reached, BBM has completed the computation of the

score for the corresponding alignment matrix. Then, BBM sets bestScore as this

matrix’s scores and steps one node back in the traversed branch. The idea is to

explore the sub-tree rooted at this node in light of the current bestScore. Indeed,

BBM decides whether is worth computing the score of the alignment matrix that

corresponds to the t− 1 nodes in the original branch and a leaf in a sub-tree. If the

BBM rule dictates that the computation is worth making then the method computes

the score of the alignment matrix and updates bestScore. Otherwise, BBM bypasses

the leaf, eliminating thus unnecessary computations. Once the sub-tree has been

explored, BBM steps one node back in the branch and repeats the elimination-

computation-update routine on each of the sub-trees. The process is carried out

until BBM steps all the way up to the root of the search tree and completes the

elimination-computation-update routine. At each level, BBM computes the score of

the alignment matrix only if

optimisticScore = Score(s, i) + (t− i)l < bestScore; (6.4)

where Score(s, i) is the partial score of the branch of the indices s = (s1, ..., si), for

some i < t. Otherwise, BBM bypasses the node.

6.5.1 A branch and bound motif search algorithm

A Branch and Bound search has the potential to significantly lower the problem

complexity in some particular cases. The Branch and Bound method is implemented

as a search over a t - level tree, which is built in such a way that each node in a

path from the root to a leaf represents the alignment matrix of a particular choice

of starting positions (s1, ..., st). More precisely, the root is the empty string, the

alignment matrices are contained in the leaves, and a parent of a node at level j+ 1
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is the first j rows of the alignment matrix corresponding to the starting positions

(s1, ..., sj). The Branch and Bound method traverses the tree by either one of the

operations of (a) move to the next leaf (b) visit all the leaves (c) visit the next node,

and (d) bypass the children of a node. The tree is traversed in depth - first mode,

starting from the root. By performing a visit to next node, from let’s say a node in

level i−1 to one in level i, a new row l - DNA symbol row is added to the alignment

matrix and a partial score Score(s, i) is computed. The fact that new rows are

added in each computation of a partial score changes the values of w at each level.

In order to account for these changes, the work level i is denoted wi. In any case,

every such computation adds at most l to the previous Score(s, i−1). This allows a

bounding criterion: ”If all subsequent (t− i) positions (sj+1, ..., st) add (t− i)× l to

Score(s, i) and if Score(s, i) + (t− i)× l < bestScore, it does not make any sense to

search in vertices of the current sub - tree”. So, in these cases, the method bypasses

the children nodes. Next is a pseudo code for the Branch and Bound motif search

algorithm.

Bbm(family,t,n,l)

s ← (1,...,1)

bestScore ← 0

i← 1

While i > 0

if i < t

optimisticScore ← Score(s, i) + (t− i)× l

If optimisticScore < bestScore

(s, i)← Bypass(s, i, n− l + 1)

Else

(s, i)← NextV ertex(s, i, n− l + 1)

Else
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Figure 6–3: Predicted Score Model

IfScore(s) > bestScore

bestScore← Score(s)

bestMotif ← (s1, s2, , st)

(s, i)← NextV ertex(s, i, t, n− l + 1)

Return bestMotif

6.5.2 Analysis of the bounding rule

This section examines the effectiveness of the bounding rule to eliminate un-

necessary computations. More precisely, the aim is to establish at what level in the

tree the bounding rule is expected to start eliminating a significant number of par-

tial profile matrices. In order to perform this analysis, two approximate fractions,

namely r1 and r2, are used to model the changes in the partial score. The model is

illustrated in Figure 6–3. In mathematical terms, the model predicts a score of the

form of

predictedscore = l + r1(i− 1)l + r2(t− i)l (6.5)

where r1 is a parameter for approximating the best value of a partial score,

and r2 represent the average fraction added to complete the predicted score. In

order to establish an interval within the partial scores in which the computation

of a new score is judged to be unnecessary by the rule 6.4, it is assumed that a

generic partial score can be represented as Score(s, i) = K(i) + ε. Here K =
⌈
i
4

⌉
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is the minimal partial score value that is always found at each level and ε ≥ 0.

All things considered, the problem reduces to finding level i and ε ≥ 0 in which

optimisticScore < predictedscore. This is,

K(i) + ε+ (t− i)l < l + r1(i− 1)l + r2(t− i)l (6.6)

Statistics taken from experimental data in the problem considered in this disserta-

tion, lead us to assume that r1 = 0.9. On the other hand, since there are four letters

in the DNA alphabet, r2 = 1
4

represent the average increment that can be obtain

by adding a sequence to a partial score, due to the increment by adding a sequence

is a binomial aleatory variable with parameters L y p = 1
4

. After some algebraic

manipulations it is obtained

20

l
ε ≤ 33i− 15t− 20K(i) + 2. (6.7)

Now in order to have ε ≥ 0 is necessary that C = 33i− 15t− 20K(i) + 2 ≥ 0.

As a consequence, i
4
≤ K(i) ≤ i

4
+ 1. And therefore,

28i− 15t− 18 ≤ C ≤ 28i− 15t+ 2. (6.8)

The conclusion is that eliminations start around the level in which

i ≥ 15t+ 18

28
>
t+ 1

2
(6.9)

of the search tree. This conclusion is consistent with the data in Table 6–12. As it

can be seen, the first level in which the rule actually made eliminations is 4. This

corresponds with the computation i > 5+1
2

= 3. In addition, by substituting i = 4

in to equation 6.7, the maximal value of ε turns out to be ε = 9.75. This means

that the interval of scores between 5 and 14.75 are the candidates to be bypassed

by rule 6.4. If i = 3, the maximal value of ε is ε = 1.5. The fact that this value
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is very small, implies that minimal score is rarely founded. As a consequence, the

experiment shows no candidates for bypassing in level 3.

6.5.3 A parallel DNA motif discoverer

Unfortunately, because of the depth-first search and job eliminations, BBM does

not provide global information on the jobs and data loads that are unnecessary and

those that remain to be explored, at any point in time. As a result, BBM does not

render a natural parallelization. A way around this difficulty is replacing depth-first

with breadth-first search and job eliminations. Such strategy leads to a dynamic

programming algorithm (DPM). DPM traverses the levels of the same search tree as

BBM. In order to do this, DPM represents the tree nodes of a level as a list. SCOW

is used to segment the list of nodes into sublists which are distributed across the

workers.

Single-master/worker algorithm

Upon reception of the sublist, the worker computes the scores of all the subtrees

rooted at the sublist nodes; and uses a predicted bestScore and equation (6.4) to rule

out the nodes that are worth keeping. Then returns the results to the master the

best scores and the nodes that are worth further exploration. The master uses this

information to predict a new bestScore and to create a new list of nodes, one that

contains only nodes that have not been ruled out. Then, it runs SCOW to segment

and distribute the new list across the workers. This process is repeated level by

level in the search tree, until the last level is reached. This description encapsulates

the Master/Worker implementation of DPM. Next is a high level description of the

single-master/worker algorithm.

Master

• For each level 2 to t

Use SCOW to distribute the job across the workers.

Receive from the workers the sub-lists of vertices that have passed the rule.
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Replace each parent in the sub-lists with their children.

Use the node with the best partial score to generate a new predictor.

• Return the alignment matrices with the best score.

Worker

• For each level 2 to t

Receive the job from the master

Generate the sub-list of nodes that pass the rule

Send sublist to the master

Multiple-master/worker algorithm Although simpler to program, the Mas-

ter/Worker method introduces some degree of indeterminism which cannot be ab-

sorbed by SCOW. Indeed, since no information on how many nodes will be ruled

out from the list segments distributed to the workers is available by the time when

SCOW was computed, the transmission times from the workers to the master, and

the time spent by the master in the reception of the workers’ information can only

be estimated at that time. A solution to this problem is a Multi-master/Worker

method, in which each worker becomes a master after finishing the processing its

list segment. When the worker has ruled out all unnecessary nodes, it applies SCOW

to the list segment of remaining nodes, and uses the result to distribute the job across

the available workers. Thus, the Multi-master/Worker approach re-distributes the

jobs in a multilevel tree-like fashion which is expected to reduce the makespan log-

arithmically.

StartMaster

Generate the list of the elements in level 2 of the tree.

Randomly select a branch in the tree and generate the first predictor.

Activate workers and Use SCOW to distribute the job across the workers.

While the job not finishes

Receive from Workers request for available workers and update the predictor
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Update the available workers list and notify to the request worker

Receive from the workers the sub-lists

Send finish work order ”deactivation” to all workers

Return the alignment matrices with the best score.

Worker

While receive activation order

Receive job from activator

Perform the job

If level < t

· Generate the data for next level.

· Request needed SCOW processor to the Start Master

· Activate workers and Use SCOW to distribute the job across the activate

workers.

Else

· Send sublist to the Start Master

6.5.4 Preliminary results

In this section we summarize results of runs performed in a 64-node cluster. The

measurements were conducted over a set of t = 5 DNA sequences, each of n = 40

characters. The motif’s length, in turn, was set to l = 5.

Single master

Table 6–12 shows an average over three runs of the Master/Worker method.

Table 6–12: SCOW Single-Master

Parameter Level 2 Level 3 Level 4 Level 5

Actual execution time 0.0101 0.0799 0.8282 4.3308
Time predicted by SCOW 0.0076 0.0697 0.7925 4.1138
Number of workers 2 3 9 16
Total number of tasks 36 1296 46656 362401
Cumulative percentage
node remained 0% 0% 22% 2%
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The difference between the execution times predicted by SCOW and the actual

time are small since the unknown amount of information returned by the workers has

been estimated statistically. The total execution time is the addition of the actual

execution times, this is, 5.2390 seconds. The numbers of workers change because of

the increments in the values of wi, level by level. According with section 6.5.2, it is

possible to generate the first t/2 levels in the search tree without using the bounding

rule. This will save computing time. Although in this experiment there is just a

marginal reduction of 0.09s, in larger problems, the reduction can be much more

significant.

Multi master

The performance of the Multi-master/Worker algorithm for the same problem

was simulated numerically. The simulation yielded the statistics in Table 6–13.

Table 6–13: SCOW Multi-Master

Statistics Level 2 Level 3 Level 4 Level 5

Masters 1 2 6 54
Workers per master 2 3 9 15(42),16(11), 18(1)
Longest compute 0.0076 0.0402 0.1843 0.5068
time

The makespan of the Multi-master/Worker was 0.5547 seconds. The last row in

this table shows an uneven distribution of workers per master. For instance, 42 out

of the 54 masters have 15 workers, 11 have 16 workers, and only one master has 18

workers. This is a consequence of an uneven distributions of the node eliminations in

the search tree. The logarithmic reduction in execution time is due to more accurate

work and load distributions by SCOW, and the savings in communications and

master processing of workers’ information that occur in the single Master/Worker

method.



CHAPTER 7

SOME ETHICAL ISSUES

The advent of information technology brings about a wide spectrum of freely

available sources of scientific consultation. Several ethical issues arise in connection

with this new information environment. First of all is the responsible use of the

content in these information resources, especially in the recognition of authorship

of the publications and the verification an validation of the presented results. The

latter is especially important as some of these publications are not subjected to

peer reviews and misrepresentations of scientific data have been the subject of legal

prosecutions in the past. A remarkable case of such adulteration of scientific data is

the one reported in [50] where a university professor, Dr. Poehlman of the university

of Vermont, used false data to obtain scientific grants for total of 11.6 millions of

dollars during a long period of time. According to the source [50] ”From in or about

1992 to 2000, Dr. Poehlman submitted seventeen (17) research grant applications

to federal agencies or departments that included false and fabricated research data.

In these grant applications, Dr. Poehlman requested approximately $11.6 million

in federal research funding. In most cases, Dr. Poehlman falsified and fabricated

research data in the ”preliminary studies” sections of grant applications in order to

support the scientific basis for and his expertise in conducting the proposed research.

Reviewers of these grant applications relied on the accuracy of the ”preliminary

studies” to determine if a grant should be recommended for award. While many

of the grant applications were not awarded, NIH and USDA expended approximately

$2.9 million in research funding based on grant applications with false and fabricated
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research data”. What is hard to estimate is the cascade effect of this false data in

scientists who may have use it for their on research, as well as those whose grants

where denied for lack of founding do to the misuse of federal grant resources. This

potential damage cannot be repaired even with the strong sentence emitted in this

case. Again, according to the source [50] this case was decided with the ”HHS

actions against Dr. Poehlman include a life time debarment from receiving Public

Health Service research funds and an agreement to retract or correct ten scientific

articles due to research misconduct”.

Falsification or alteration of data can not only appear in big frauds like Dr.

Poehlman’s at also can be appreciated in more subtle situation where small, and

therefore more difficult to detect, alterations of data can be used to sustain a false

scientific claim. The consequences of such acts can be as damaging as the previously

discussed case.

In this dissertation the principle of honest experiment design and data repre-

sentation was fully observed. An example of this observance is the honest treatment

of discrepancies between system measurements and initial assumptions made in the

theoretical model that lead to the restriction of the model only to affine windows.

Another example is the special care that was taken in performing the comparisons

of all competing schedules on comparable grounds. This includes in particular, the

design of a last round modification for schedules whose permanence was affected by

the disparity of the workers end times, and the fact that comparisons were made with

the same number of workers whenever the intrinsic characteristics of the scheduler

allowed it. All referred works were duly cited and faithfully represented.



CHAPTER 8

CONCLUSIONS AND FUTURE WORKS

This dissertation studied the load- and task-divisible jobs (LTDJ) scheduling

problem, divisible job referred to application that consist of a large number of in-

dependent core tasks, this core task can be agglomerate to produce data chunk of

different sizes. This supposition makes the ability to model the problem as con-

ventionally divisible load theory (DLT) but an additional discretization component

is needed because the indivisibility of a single core tasks. In LTDJ application the

communication time is an important factor in the scheduling, because this very large

input. These applications represent a large number of important scientific computing

problem, and achieve high performance when these applications are running using

an efficient schedule. The research in this dissertation make significant contribution

to the goal to achieving the maximal and efficiency system utilization. To this goal

there are several challenges to solve

• Designee algorithms that taken in to account realistic model of the system.

• Designee algorithms that schedule the application with optimal throughput per

period.

• Designee algorithms that schedule the application with efficient utilization of the

computing capabilities of the network. This is, there will be no idle times between

consecutive communications and computations and the resource use is optimal.

• Designee algorithms easy to use as part of a user-level scheduler for LTDJ appli-

cations.
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In this dissertation several contributions are made to solve each of the above

challenges.

Realistic model Unlike previous works whose basic models are focused in par-

ticular aspects of the targeted system, the basic mathematical model used in this

dissertation takes into account all the operations that can possible occur in the

execution of the master-worker SPMD program in a cluster. This mathematical

model is also realistic in the sense that execution time of all the operations include

both, startup and the execution times. Thus, execution times are presented as affine

mappings on the number of agglomerated tasks. The constant part of the mapping

corresponds to the operation’s overhead. These mappings are obtained by regression

over a sample of measurements of the system’s behavior. Furthermore, the validity

of these affine representations is taken in to account when identifying the schedule.

Maximal production Previous works have addressed the problem of obtaining a

maximal throughput under fixed task sizes and using a linear mapping instead of an

affine one for representing the time execution of the operations. In this dissertation

the problem is cast in terms of affine mappings, and variable tasks sizes. In doing

this, the concept of maximal throughput is replaced with that of maximal produc-

tion, which is similar in spirit but more amenable for mathematical treatment.

Maximal Utilization This dissertation introduces a new metric for assessing the

use of the cluster resources in the solution of a problem. The throughout revision in

the literature that was performed for this dissertation showed that this metric has

not been used before in the context of scheduling. Nonetheless, maximal utilization

is an important attribute in the efficiency of a scheduler, specially in the cases where

large cluster systems are available for an equally large number of users.

Resource selection Solving the resource selection problem is one of the most diffi-

cult steps in the design of a schedule. This dissertation presents two mathematically

well-founded solutions to this problem. First, is a result that finds the best subset
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of workers for achieving maximal production per period. Second, is the result that

allows the identification of task sizes and number of workers that achieve the perfect

worker utilization, in the sense that all the selected workers operate continuously

throughout the execution of the job.

Maximal production and perfect utilization of the workers Another impor-

tant contribution of this dissertation is the theoretical result that establishes that

maximal productions and perfect workers utilization are achieved only in a finite

number of values of the variable T representing the period. Furthermore, such val-

ues are shown to play a crucial role in the partition of the domain of the period. The

intervals in this partition are characterized by the fact that the optimizations prob-

lems of maximal production and perfect utilization in a period can be formulated

with a fix number of workers on each period. This number of workers is given by the

underlying mathematics of the construction of the partition. This theoretical result

is essential for the solvability of the make-span minimization problem. The strat-

egy pursued in this dissertation consists in solving each of the finite optimization

problems over the intervals in the partition, this is either the maximal production

or perfect workers utilization in a period; and then searching for the solution that

has minimal make-span.

Last round modification Although frequently mentioned as a measure of load

balance, not all theoretical frameworks for scheduling whit maximal throughput per

round include explicitly the condition that all the workers end operating at the same

time. In this dissertation an explicit method for achieving this aim, called last round

modification method, is presented both, in theory and implementation. Last round

modification is proved to improve significantly the efficiency the schedule whenever

the period is large.

Practical implementation Unlike many of the previous theoretical scheduling

frameworks the scheduler identified with the theoretical frameworks presented in
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this dissertation has been tested not only in simulation but also in actual problem

solving situations. The result of real jobs confirm the theoretical and simulated

superiority of the schedule built with the framework discussed in this dissertation.

Following is discuses four experimental presented in section 6.

8.1 Numerical comparison

This dissertation focused on the actual implementation of mathematical frame-

works for master-worker schedulers. It this experiment is compared there such frame-

works for multi-round schedulers, one for a periodic scheduler (SCOW) and one for

a non-periodic scheduler (UMR). Two aspects were compared: the accuracy of the

predictions computed with the mathematical framework, and the actual make-spans

obtained in runs of a parallel motif finder. The experiments rendered a superior per-

formance for tasks scheduled with the SCOW scheduler. The values predicted by

the SCOW framework were also more accurate than those predicted by the UMR

and Periodic framework.

8.2 An improved parallel brute force motif finding solver

It this part a parallel brute for algorithm to solve a bionformati motif finding

problem is presented. In this experiment the running time and efficient of the

platform use for two schedulers SCOW and FIFO is compared. Both aspects SCOW

rendered the superior performance.

8.3 Experimental comparison with UMR

This experiment illustrates the limitations of a mathematical model frequently

used to design master-worker schedulers. In fact, outside the interval of validity of

the model, this is, the affine window, the parameters obtained by the frameworks

did not represent the actual performance results. The best explanation for the lower

performance and inaccuracy of predictions of the UMR framework is the fact that

the chunk sizes obtained with this framework fall rapidly outside the affine window.

From this stand point, the main advantage of a SCOW scheduler is its ability to



98

orchestrate the tasks on the basis of chunk sizes that remain within the affine window

throughout the job’s execution. A hybrid method was devised to take advantage of

the good features of each scheduler. The hybrid method was illustrated with the

motif finder algorithm, and proposed as a future work.

8.4 A Parallel Biosequence Motif Discoverer Based on Dynamic Pro-
gramming

Several motif discovering algorithms as been proposed and developed, so far. As

biodata increases in size and diversity, most of these methods have been pushed to

the limit. Parallel computing appears as an alternative to cope with this increasingly

higher demand for CPU time and memory. Unfortunately, most of the methods

developed do not render a natural parallelization. Although still under development,

the dynamic programming algorithm seems to offer a competitive parallel alternative

to motif discovering. Dynamic programming is often feared because of its high

memory demands. The Multi-master/Worker paradigm with SCOW may provide

a way around this difficulty. SCOW is proved to be instrumental in balancing and

overlapping communications and computations, while optimizing the use of memory

space and CPU time.

8.5 Future works

There are many topic in scheduling area.

First idea is to incorporate this schedule in the construction of an application

programming interface o software to execute LTDJ applications. This is necessary

because the real user in several cases are interesting only in compute the job efficient

but not in the algorithm or technique to construct a scheduler.

Develop mathematical model able to find the right balance between the use

of UMR and SCOW in the hybrid method. The results shown in Table 6–11 were

obtained with a good guess of this balance but not with the prove optimal.
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Similarly, to develop a mathematical model able to find the right balance be-

tween the a initial phase with UMR, a second main phase with SCOW and the a

last phase UMR2 (decreasing chuck sizes).

Due the superiority of Multi-master/Worker method section 6.5, develop a im-

plementation of this method is needed, it is necessary incorporate a limit work

distribution because the exponential resource demand

Finally, the theory develop has in to account heterogeneous resources. The

experiment with this type of system are needed to complete the test for the SCOW

schedule.
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APPENDIX A

ESPECIAL SCENARIOS

A.1 Solution to bus network

The bus network was describe in 3.1,that is, a StarAffine network such that

all communication links have the same characteristics, the mapping li = l, similarly

in the case when the e+ s dominate l asymptotically, them this resume in suppose

hi = h. Using the notation in this dissertation, the problem can be formulate as:

”Given a time T , find I ⊂ {1, 2, ..., p} such that

Max {
∑
i∈I

xi : x̄ is (T, p, F )− partition of X} (A.1)

Subject to
∑
i∈I

h(xi) ≤ T (A.2)

max {(ri + wi)(xi)|i ∈ I} ≤ T” (A.3)

In this case the problem is a special case of problem in section 4.1.3, in the theorem

14, is no characterize the case when two communication link are equal, because this

theorem is only an approximation to the solution.

Suppose hi = h then
∑

i∈I h(xi) = h
∑

i∈I xi + |I|H ≤ T , this expression show

that if p is large then the best solution is achieve when the |I| is minimum, that

means, using a minimal set of workers.

If sort decreasing the maximal xi = T−Wi

wi
tasks processes by each workers, the

solution is achieve by selecting the firsts q workers so that
∑q

i=1 h(xi) ≤ T plus an

additional workers if T −
∑q

i=1 hi(Yi) > 0.
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Now the comparison of the maximal production for two workers is done, without

loss of generality x1 and x2 is used. therefore

x1 − x2

T
=

1

w1

− 1

w2

+
W2

w2
− W1

w1

T
(A.4)

them when T is arbitrary large the order in x1 and x2 become directly by the order in

w1 and w2, that means, when T is large, x1 ≥ x2, always that w1 ≤ w2. furthermore

”T large” can be characterize by T ≥ W1w2−W2w1

w2−w1
. The above discussion proof the

next theorem.

Theorem 14. Let p be a positive integer,

1. Sort the worker by increasing computation times. Renumber them so that w1 ≤

w2 ≤ ... ≤ wp.

2. Let Yi = (ri + wi)
−1(T ) for 1 ≤ i ≤ p and q be the largest index so that∑q

i=1 h(Yi) ≤ T . if q < p, let Tε = T −
∑q

i=1 hi(Yi); otherwise, let Tε = 0

3. Then, if the period T is large enough the maximum value to MaxTask(T) for

bus network is,

MaxTask(T ) =

q∑
i=1

Yi + max{0, h−1
q+1(Tε)} (A.5)

A.2 A good parallelization

For simplicity here only explain the criteria for the LinelAffine model.

Theorem 15. With the above notation, Suppose that hi ≥ wi, 1 ≤ i ≤ p and

h = min{hi|1 ≤ i ≤ p} then the solution to MP is reduce to 1 worker, and the

maximal value for MaxTask(T) is

MaxTask(T ) =
T

h
(A.6)
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Proof Using the notation in this dissertation, the problem can be formulate as:

Maximize MaxTask(T) =

p∑
i=1

xi (A.7)

Subject to

p∑
i=1

hi.xi ≤ T (A.8)

(ri + wi).xi ≤ T, 1 ≤ i ≤ p (A.9)

xi ≥ 0, 1 ≤ i ≤ p (A.10)

Let k =arg min{hi|1 ≤ i ≤ p} and the x̄ such that xk = T
hk

and xi = 0 for

i 6= k.

i)due to the initial condition hi
wi
≥ 1, clearly x̄ is solution of MaxTask(T).

ii) In order to show that this solution x̄ is maximal, let’s consider the set of all

optimal MP solutions. Let x̄′ a tuple in this set. Them by equation A.8 is follow

that,

p∑
i=1

x′i ≤
∑p

i=1 hi.x
′
i

hk
≤ T

hk
= xk (A.11)

Due to x̄′ is an optimal solution then
∑p

i=1 x
′
i = xk, furthermore x̄ is a optimal

solution. �



APPENDIX B

OPERATING MODELS

There are a survey of model taken from [16]. We used through the dissertation

the full-overlap, single-port model. but exit other model, we present the other model

in this section. These models show below describe from the most powerful machines

to the purely sequential processors.

Full overlap, multiple-port. In this first model, a processor can simultaneously

receive data from all its neighbors, perform some (independent) computation, and

send data to all of its neighbors. This model is not realistic if the number of

neighbors is large.

Full overlap, single-port. In this second model, a processor node can simultane-

ously receive data from one neighbor, perform some (independent) computation,

and send data to one neighbor. At any given time-step, there are at most two

communications taking place, one incoming and one outgoing. This model is rep-

resentative of a large class of modern machines and is the base model which we

have already dealt with.

Receive-in-Parallel, single-port. In this third model, as in the next two, a pro-

cessor node has one single level of parallelism: It can perform two actions simulta-

neously. In the this model, a processor can simultaneously receive data from one

neighbor, and either perform some (independent) computation, or send data to

one neighbor.
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Send-in-Parallel, single-port. In this fourth model, a processor node can simul-

taneously send data to one neighbor and either perform some (independent) com-

putation, or receive data from one neighbor.

Work-in-Parallel, single-port. In this fifth model, a processor node can simulta-

neously compute and execute a single communication, either sending to or receiving

from one neighbor.

No internal parallelism. In this sixth and last model, a processor node can only

do one thing at a time: either receiving from one neighbor, or computing, or

sending data to one neighbor.
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In this dissertation variants and extensions of ideas related to the scheduling of

master-worker tasks on heterogeneous star networks are introduced. Some of these

ideas were previously discussed in the form of theoretical frameworks for steady-

state scheduling or as a divisible load theory. This dissertation combines some

elements of these previous works to construct a new framework, and from it, an

efficient algorithm (SCOW) for identifying a deterministic scheduler for clusters of

workers. SCOW produces the parameters of a periodic user-level scheduler for a

single-program multiple-data implementation of a master-worker parallel solution.

SCOW minimizes the job make-span under either maximal production per period,

or perfect worker utilization. The efficiency of the scheduler identified by SCOW

is demonstrated through comparison with other schedulers, including those derived

from the above mentioned theoretical frameworks. As shown in the simulation an

actual computer runs, the scheduler identified by SCOW outperform in most cases

those produced by the previous frameworks.
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