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ABSTRACT

The purpose of this thesis is to develop a comparison between two theories of micro-
polar plates with moderate thickness. A comparison between the proposed and Eringen
models is shown in the thesis.

We used a special technique of the method of separation variables to obtain analytical
solutions for the plate models. This special technique is general and can be used for any
elliptic system of linear partial differential equations.

The stress- strain polynomial approximations of the proposed model have been checked
for consistency with the elastic equilibrium, boundary conditions and the constitutive
relationships. The formulation of the variational principle for the proposed model is based
on the generalized Hellinger-Prange-Reissner principle, which incorporates the
proposed stress and strain-displacement approximations for the micro- polar plates. The
proposed model produces a new theory of Cosserat plate, which includes a new form of
constitutive relationships.

The proposed and Eringen models are described by elliptic systems of partial differential
equations. The differences in the systems are due to the different orders of polynomial
approximations of asymmetric stress, couple stress, displacement, and micro-rotation
over the plate thickness.

The obtained analytical solutions for the micro- polar plate boundary value problem,
have been used for numerical results and comparisons for a special case of syntactic
foam plate.
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RESUMEN

El objetivo de esta tesis es mostrar una comparacion numérica entre dos teorias de placas
micro-polares con un grosor moderado. Esta comparacion esta hecha entre el modelo
propuesto y el modelo de Eringen.

Hemos usado una técnica especial del método de separacion de variables para obtener
soluciones analiticas para los modelos de placas. Esta técnica especial es general y puede ser
usada para cualquier sistema eliptico de ecuaciones diferenciales parciales lineales.

Se ha comprobado la consistencia de las aproximaciones a través de polinomios para la
tension- deformacion del modelo propuesto con el equilibrio elastico, las condiciones de
frontera y las relaciones constitutivas. La formulacién del principio variacional para el
modelo propuesto esta basada en el principio generalizado de Hellinger-Prange-Reissner, el
cual incorpora las aproximaciones propuestas para el stress y deformacion- desplazamiento
para placas micro- polares. EI modelo propuesto produce una nueva teoria de placas de
Cosserat, el cual incluye una nueva forma de relaciones constitutivas.

Los modelos propuesto y de Eringen son descritos por sistemas elipticos de ecuaciones
diferenciales parciales. La diferencia entre estos sistemas es en el uso de diferentes
aproximaciones polinomicas para la tensibn asimétrica, pareja de tensiones, el
desplazamiento y la micro-rotacion sobre el espesor de la placa.

Las soluciones analiticas obtenidas para el problema de valor de contorno de placas micro-
polares han sido usadas para resultados numéricos y comparaciones para un caso especial de
placa de espuma sintactica.
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CHAPTER 1

ELASTICITY THEORIES

1.1 Brief History of Classical and Asymmetric Elasticity Theory

The well known classical bending theory of elastic plates [6], [7], [17], was first presented by
Kirchhoff in his thesis (1850) and is described by a bi-harmonic differential equation [2],
[17]. The usual assumption of this theory is that the normal to the middle plane remains
normal during deformation. Thus the theory neglects transverse shear strain effects. A system
of equations, which takes into account the transverse shear deformation, has been developed
by E. Reissner (1945) [13], [14].

One of the advantages of Reissner’s model is that it is able to determine the reactions along
the edges of a simply supported rectangular plate, where classical theory leads to a
concentrated reaction at the corners of the plate. The Reissner theory has been applied to thin
walled structures with moderate thickness. The study of the relationships between these two
models has proved that the solution of the clamped Reissner plate approaches the solution of
the Kirchhoff plate as the thickness approaches zero [1] and that the maximum bending can
reach up to 20% for moderate plate thickness [2]. The numerical calculations of bending
behavior of the plate of moderate thickness, [16] show high level agreement between 3D and
Reissner models. More remarks on the history of the modeling of classic linear elastic plates
can be found in [6], [16].

In order to describe deformation of elastic plates with microstructure that posses grains,
particles, fibers, and cellular structures [10], [11] A. C. Eringen (1967) was the first to
propose a theory of plates in the framework of Cosserat (micro-polar) Elasticity [3]. His
Theory is based on a direct technique of integration of the Cosserat Elasticity. The Eringen
plate theory does not consider a transverse variation of the micro-rotation over the thickness,
which might be necessary for rather thick plates under vertical load and pure twisting
momentum. In order to develop a theory of plates, which can be used for thin wall structures
with moderate thickness, we propose to use the classic Reissner plate theory as a foundation
for the modeling of Cosserat elastic plates. Our approach, in addition to the traditional model,
takes into account the second order approximation of couple stresses and the variation of
three components of micro rotation in the thickness direction.

The classical elasticity theory showed satisfactory results with experimentation in many
structural materials such as aluminum, steel and iron. There were other cases of elastic
materials in which theory had discrepancies with experimentation. Some of these are
polymers, biological materials, cellular materials and nano materials. These differences
seemed to become significative for problems where large stress gradients occur (near holes
or cracks), for vibrational problems where waves have a very high frequency or small
wavelength and for materials that possess granular structure. These type of observations
suggested that the influence of microstructure should be taken into account.
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1.1.1 Classical Theory

In the classical theory of elasticity only macroscopic effects are taken into consideration,
that is, all solid bodies are assumed to be made of a continuous medium, and only the force
per unit area is taken into consideration.

1.2 Micro-polar Theory

In the asymmetric theory of elasticity a force and a momentum per unit area are considered,
and the stress and the couple stress tensors are in general asymmetric. When the couple stress
effect is neglected then the stress tensor becomes symmetric.

1.2.1 Micro-polar Linear (Cosserat)

The Cosserat elasticity equilibrium equations without body forces represent the balance of
linear and angular momentums and have the following form [3]:

divo =0, (1.1)
E-o+divu=0, (1.2)
where: O ={o}is the stress tensor, £/ ={4¢;}the couple stress tensor, & ={&;, } is the
Levi-Civita tensor, where &, equals 1 or -1 according as (i, j,k) is aneven orodd

permutation of 1,2,3 and zero otherwise, and £-0 ={g; 0, }.
The constitutive equations can be written in Nowacki’s form [12]:

O =(u+a)y+u-a)y" +Atry), (1.3)
HU=(r+e) Y +(r—e) } +Blr YL, (1.4)

and the strain-displacement and torsion-rotation relations are:
y=(VU)'+&-@ and Y=V, (1.5)

where ¥ and Y are the micro- polar strain and torsion tensors, U and ¢ the displacement
and rotation vectors respectively, 1 the identity tensor, and z, A the symmetric and
a, f,7,& the asymmetric Cosserat elasticity constants.

The constitutive equations in the reversible form are given by:

Y =(u+a)o+(u-a)o' +A(tro)l,
X =+ u+(y—e i +pr ),



where
£ A :Lz and ﬂ':—_ﬁz .
Ay da 4y 4e 6u(A+2) 6u(B+7)

We consider a Cosserat elastic body B, . In this case the equilibrium equations (1.1) - (1.2)

with constitutive formulas (1.3)-(1.4) and kinematics formulas (1.5) should be accompanied
by the following mixed boundary conditions:

u=u, =0, onG, =0dB,-0B,, (1.6)
0,=0-N=0,, M, =MUNn= L onG,=0B_, (1.7)

where U,, @), are prescribed on G,, o,and £4,0n G,, and ndenotes the outward unit
normal vector to 0B, .

1.2.2 Cosserat Elastic Energy

The strain stored energy U of the body B, is defined by the integral [11]:

Uc = [W{y, x3dv, (18)

where
-

A
W{Y, x}= #;ayij?/ij +‘L1T7/ij7/ji +E7/kk7/nn +

y+e y-& B
TZijZij +TZiiji +Elkk}(nn-

(1.9)

Then the constitutive relations (1.3)- (1.4) can be written in the form:
o=VWand (/=V W. (1.10)

The function W is positive iff [12]:

u>0, 31+2.>0,
y>0, 3p4+2y>0, (1.11)
a>0, u+a>0,

>0, y+&>0,



The coercivity conditions [9] for Cosserat elastic energy.

u>0, 31+2.>0,
y>0, 3p+2y>0,
x>0, €20, y+&>0,

are enough to provide the uniqueness of the solution of the elasticity boundary value
problems.

The stress energy is given by:

Uy = [ofo, tdv,
By
where

+a —a' A
{0, 1}= £ 5 0,0 +IUTO-ijO-ji +?akk0'nn +
'—8' 1
Hij +]/T/uij/1ji +%:ukklunn’

}/I+€I
2

1.2.3 The Hellinger-Prange-Reissner (HPR) Principle

Steinberg [21] proposed the HPR principle [5] for the case of Cosserat elasticity in the

following form:

For any set 4 of all admissible states s =[U,®, Y, ¥,0, 1] that satisfy the strain-

(1.12)

displacement relation and torsion-rotation relations (1.5), the zero variation (6 ®(s) =0) of

the functional ® defined by:

O(s)=Uy - [[o- )+ - xlv+ [[0,-U-U)+ 1, - (@~ @,)lda+ [[0,-U+ s, - plda

(1.13)

at se 4 isequivalent to s to be a solution of the system of equilibrium equations (1.1)-
(1.2), constitutive relations from (1.3)- (1.4), which satisfies the mixed boundary conditions

(1.6)- (1.7) .



CHAPTER 2

THE PLATE THEORIES

Micro-polar
Elasticity

Cosserat
Elasticity

Clasic Elasticity

Nonlinear

Figure 2.1 Classification of Models of Elastic Plates. This VVenn Euler diagram shows
that Steinberg-Reissner Model and Eringen Model Il are rather close.



2.1. Steinberg-Reissner Plate Theory for Cosserat Materials

2.1.1 Plate Assumptions

We formulate the stress, couple stress and kinematic assumptions of the Cosserat plate. We
consider the thin plate P, where h =h" is the thickness of the plate and x, = 0 contains its
middle plane. The sets T and B are the top and bottom surfaces contained in the

planes x, = 2 Xy = %h respectively and the curve T" is the boundary of the middle plane of
the plate.

The set of points P = {Fx [_—2h : g]}UT w B forms the entire surface of the plate and

{Fu X [_?h,g]} is the lateral part of the boundary, where displacements and micro-rotations
are prescribed. The notation I =I"—T", of the remainder we use to describe the lateral part
of the boundary edge {FU X [%h,g]} where stress and couple stress are prescribed. We also

use notation P, for the middle plane internal domain of the plate.

In our case we consider the vertical load and pure twisting momentum boundary conditions
(B.C.) at the top and bottom of the plate, which can be written in the form:

O X 2) =0 (4 ), - %0 ) =0 (), @
th
O-Bﬂ(xli)(Z’?) =0, (2.2)
h t —h b
#SS(Xl’XZ'E) = 1 (X %), /uss(xyle?) = 1 (X, %), (2.3)
th
Hap (X1’ Xza?) =0, (2.4)

where (x,X,) €P;.



2.1.2 Stress, Couple Stress and Kinematics Assumptions

The Reissner’s theory of plates [13] assumes that the variation of stress o, and couple stress
L4, components across the thickness can be represented by means of polynomials of x, in

such a way that it will be consistent with the equilibrium equations (1.1) and (1.2). We adapt
the expressions for the stress and couple-stress components in the following form [18]:

h
Oy = naﬂ(xl’x2)+zg3maﬂ(xl’x2)’ (2.5)
O3y =qﬂ(X1vX2)(l_§§)1 (2.6)
O p3 =q;()(1,X2)(l—g§), (2.7)

-3,1

0-3327(56-33_?3”“‘0'01 (2.8)
Hop :(l—g??)raﬂ(xl’xz)’ (2.9)
Hps =g3S;(X1,X2)+m;(X1,X2), (2.10)
lu3ﬁ :O, (211)
Moy =GV +L, (2.12)

where:

2 1
a,pe{l2}, g, =EX3, p=P =O-t(X17X2)—Gb(X1!X2) » Oy ZE(O- (X11X2)+O-b(X1’X2))v

V(%) = 2 (0 ) = (%)) o £04,36) =2 (42 (%,5) + 4 (%,,).

We note that expression (2.8) is identical to the expression of o, given in [13] in the case of
o’ =0.
The displacements U_are distributed linearly over the thickness of the plate [3] and that
U, does not vary over the thickness of the plate, i.e.

ua =Ua(X1,X2)—gg3Va(X1,X2), (2.13)
u3 = W(X17 Xz)v

where the terms V_(x;, X,) represent the rotations in middle plane.
The variation of micro-rotation with respect to x, is represented by means of the second and
third order polynomials:

@, =0, (%, %)1-¢3), (2.14)
= @2(x1,x2)+g3(1—§g§)®3(x1,x2)- (2.15)



The functions ®’ in (2.14) and (2.15) describe micro- rotation components in the middle
plane of the plate and @, is the slope at the middle plane, i.e.

h a¢3(xl X2’X3) |

0500,%) =2 ==~
3

2.1.3 Specification of the HPR Variational Principle in the case of Cosserat Elastic
Plates

The HPR variational principle for a Cosserat plate is most appropriately expressed in terms

of corresponding integrands calculated across the whole thickness. The weighted

characteristics of displacements, micro-rotations, strains and stresses of the plate are

introduced, which will be used to produce the explicit forms of these integrands.

2.1.3.1 The Cosserat plate stress energy density

The plate stress energy density is given by the following formula:
h 1
(5) = [ofo, e, (2.16)
-1
where the Cosserat stress set

=[Maﬁ’Qa’QaiRap,S Naﬁ”M :I (217)

and
3

h h
M d ,
af ( j ng O-aﬂ g3 12 a/i’

h 2h 2h .
Qoz ZE j ng 3 q J.O-a3dg3 qa’
]
h l
Ry = Ju j s, =1, (2.18)
2
1
( j Isﬂaadgs Sy

]

_[ pdg; = M:{:Ejﬂa:‘}dg:‘):hm;'

]



Taking into account the stress and couple stress assumptions (2.5)-(2.12) by the integrating
®{o, 1} with respect ¢, in[-1, 1] the plate stress energy density expression is in the form

[5]:

A+ u 12 ) 12

Dd(§)=——" [N2 M .t M..M
()= Shaar 2 e+ iz Ma = 2hy(3/1+2 NNz 17 MM, ]
+ 12
Zh Ela-0,)(N, Ma)+5 °(Q,Q, +Q))]
a4 0,5 L 10 32 .
S 2N,,N MM J+— 2% 0" M
+ thO(,U [QaQa+6 12Nyt hz 12 21] 5h,u(3ﬂ,+2,u)Qa’a 5
3 3,11
G IR FRRal 1~ ORR,
17h(A+ A
Cer) (st (N,
280u(34+2p) 2034 +21)
h(/1+/1) 2 7"‘81 3 )
M M, +—=S.S, 1-6,)R 2.19
2,u(3i+2,u)o- hye [8 2h2 ata ( )R] (2.19)

B B R t+ h(B+y) 2, h(ﬂ+7) 2
2y(3B8+2y) 2y(3B+2y)  6y(38+2y)

Here M,, and M,are the bending moments, M,,and M,, the twisting moments, Q, the
shear forces, Q the transverse shear forces, R,and R,, the micro-polar bending moments,
R,and R, the micro-polar twisting moments, S’ the micro-polar couple moments, all
defined per unit length, N,,and N,, are the bending forces, N,,and N, the twisting forces,

M the micro-polar shear couple-stress resultants.
Then the stress energy of the plate P is given by the following formula:

= [@(s)da, (2.20)

R

where P, is the internal domain of the middle plane of the plate P .
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2.1.3.2 The density of the work done over the Cosserat plate boundary

The proposed stress, couple stress, and kinematic assumptions are valid for the lateral

boundary of the plate P as well.
The density of the work over the boundary I", x[-0.5h,0.5h] :

h 1
(M/l ZE__[[O-n 'u+ﬂn ¢]dg3

(2.21)

Taking into account the stress and the couple stress assumptions (2.5)-(2.12) and kinematic

assumptions (2.13)-(2.15) 1 is represented by the following expression:

W=8.7=M¥, +QW+R Q°+S'Q,+N U, +M"Q?,

where § and Z are defined as
v,.Q"R,,S"N, M,

1y Mgy

[
7=[¥,W,0.0,U,Q}]

A
I

and

M, =M,n,, Q" =Q;n,,R, =R ,n,,

S =5,n,N, =N_n,,M =M;n,.

In the above n 5 is the outward unit normal vector to I";, and

v =§1jgu dc w =§lj(1—g2)u dc
o h71 3Ya 31 471 3 31

3 3
; ~2 J.(l_gz)@adgs’ Q, Dy J.gsgpsdgs’
-1 -1

where:

¥, : Rotation vector (axis: x_) in the middle plane of the plate ,
U, : Horizontal Displacement of the middle plane along axis x_,
Q? : Micro-rotation vector in the middle plane,

Q, : Instant rate of micro-rotation change along x,,
W : Vertical deflection of the middle plane of the plate.

11

(2.22)

(2.23)



The correspondence between the weighted displacement w and the micro- rotations (2.23)
and the kinematic variables by applying (2.13) and (2.15) in integration of expressions (2.23)
is given by the following expressions:

lPa :Va(xi’XZ)’ W :W(Xl!xz)’
QKO LK), Qu=20,(x,x,), (2.2
U, =Ua(X17X2)v Qg = G)g(xpxz)’

where coefficients k; and k, depend on the variation of micro-rotations.

LN A

X

U
= >
—
u
>

X, " g
After deformation /

Figure 2.2 Vertical deflection of the middle plane of the plate
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The density of the work over the boundary I"_ x[-0.5h,0.5h] given by:

h 1
{M/Z = E I(O-Oaf 'uaf +/’l00z '¢a)nadg3’
-1

can be presented in the form
W, =8,4 =T, ¥, +TT W + M, Q° + M Q.+, U, + Y00,

O0a” “a 0,0~ a

where the sets §, and Z are defined as

S =[H0a1H031M M;S’Z Y03]1

Oa? 0,?

Z =[¥,W,Q°,Q,.U_ 0,

and
Ma n :]._.[ a? RO( n,= M Vel
N v (2.25)
Q,n, =g, Sﬁnﬁ=Mo3.
Naﬂnﬂ =2, (2.26)
M;na =Y. (2.27)

, Ny is the outward unit normal vectorto I"_, and

h)2 2 h2
I, :(E) __[gsaoadgai My, ZE__[:Uongav

h . h't
I D) J. Op; — 0, dgs, Mo, D) J. Moz — 1Ny dg, (2.28)
-1 -1
2o =5 IGOng3l Tos :(Ej Iga Hos =G5V dg;.
-1 -1

We are able to evaluate the work done at the top and bottom of the Cosserat plate by using
boundary conditions (2.1) and (2.3):

j (0-03 Uy + fos - P )n;da = j( pW + vQS)da.
PO

TuB

13



2.1.3.3 The Cosserat plate internal work density

The density of the work done by the stress and couple stress over the Cosserat strain field is
defined by the following expression:

W= [(y+p ), (2.29

Substituting the stress and couple stress assumptions (2.5)-(2.12) and integrating the
expression (2.29) we obtain the following expression:

Wy=8-6=M 48, +Q,0, +Qa, +R 7, +S, 75, +N v, +M 75, (2.30)
where ¢ is the Cosserat plate strain set of the weighted averages of strain and torsion tensors
£ =[eaﬁ,a)ﬂ,a);,r3a,raﬂ,vaﬂ,r§a].

Here the components of ¢ are:
3] 3°
eaﬂ :ﬁ J.g37/aﬂdg3’ a)a :Z j7a3(1_g2)dg3’
-1 -1
. 37 3
@, =Z 'D/Sa(l_gz)dgs’ T34 =E Jgslaadgw
N B (2.31)
3
=5 [H-We vy =3
-1

o 17
Taa :E J.ZSrzng'
]

The components of Cosserat plate strain (2.31) can also be represented in terms of the
components of set 7 by the following formulas:

0
€y = ‘Pﬂ’a + 83aﬂQ3’ w,=%Y, + gS(IﬂQﬂ,
* 0 _ 0 _ "o
a)a _Vv,a + 830(59,6’ T3, = Q3,a ! Ta,B - Qﬁ,a’
v .=U, +g& OF
aff Lo 3= =31
0 (2.32)
3, = "3«

We call the relation (2.32) the Cosserat plate strain-displacement relation.
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2.1.3.4 The HPR principle in the case of Cosserat elasticity

Steinberg proposed the HPR principle for the case of Cosserat Plate in the following form
[21]. Let A be any set of all admissible states s=[U,®, ), ¥,0, 4] that satisfy the strain-

displacement relation (2.32) and torsion-rotation relations (1.5). The admissible state s that
minimizes (zero variation) the functional ® defined by:

O(s)=U; - [(s-&— pW +u)da+ [s, (& -#,)ds+ s, s, (2.33)
R Iy I,

where s=[#<Sle A, 4 the displacement set, & the stress set, § the strain set, is

equivalent to s to be a solution of the system of equilibrium equations (1.1)- (1.2),
constitutive relations, which satisfies the mixed boundary conditions (1.6)- (1.7) [5]. In other
words, the admissible state s that minimizes such functional ® (when derivative of this
functional is zero) is the solution of the plate bending (A) and twisting (B) mixed problems.

Following we show the plate bending and twisting mixed problems.

(A) PLATE BENDING PROBLEM

The Bending Equilibrium System of Equations:

M. —Q, =0,
Q.. +P=0,
' \ (2.34)
Raﬂ,a + &35, (Q7 _Qy) =0,
Sya &M, =0,
with the resultant traction boundary conditions:
Man=na, Ran :Maa
T (2.35)
Qana = HOS’ S(Ina = YOS'
at the part I'_ and the resultant displacement boundary conditions:
Y, =¥, W=W,
(2.36)

Q° =0 Q,=Q,,,

Oa?

atthe part I',.
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The Constitutive Formulas:

e o0 12(A+ pu)
“ oM hu(34+2u)

ao

64 34
3 Mg +
h®u (34 +24) S5hu(34+2u)

Q).

Maa _‘8aﬁ3‘

(2.37)
ap = ® 3(a3+y) M. +3(a3—,u) My, a#p,
oM, h o h o
o, - oD _ 3a—p) ;+3(a+,u)Qa,
0Q, 10hau 10hau (2.38)
o = o0 3(a—p) +3(a+,u)Q* '
“ 0Q. 10hau * 10hau
o _ 0P 6(8+7) _ 3p _ I
Toa = - aa ap3 R,Bﬁ t!
oR,, Shy(35+2y) Shy (34 +2y) 2y(38+2y) (2.39)
o _ 00 _3(s—y) 3(s+7) '
Taﬁ: = Raﬂ+ Rﬁa’ aiﬂ!
oR,,  10hye 10hye
0, =22 3t (2.40)
0S, h*ye
(B) PLATE TWISTING PROBLEM
The Twisting Equilibrium System of Equations:
N,s. =0,
. (2.42)
M, . +&p N, +v=0,
with the resultant traction boundary conditions at I"_:
n,==2_,
S (2.42)
Mana = 031
and the resultant displacement boundary conditions at T’ :
Ua =U0a’ Qg 2983' (243)
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The Constitutive Formulas:

oD y ) A
a)aa = = Naa - Na'a' - O-O’
oN hu(34+2u) 2hp(34+2) 2u(31+2u)

0D _a+pu CETEN g p,

(2.44)

Opp = 27— a
?oN, dhap " 4hou

0 20D gy (2.45)
oM_ 4hye

a

The constitutive relations can be written in the following form [21]:

vh?
10(1-v)

aa = D (1+V) ( +1Pa0['+2N2(_1 a+l(Q3_LP0!'fl))’
2 (1-N?) ’ |
_56h( ~2) o, 106hI;

a'a a,a'!

e 3 ' 3

Maa = D(LPa,a +‘}Pa',a') +

2 20 _
R SGshlt («, (1—‘P)(Q2’a+Q‘;.’a.))+—26|“({1{ lP)t,

(2474

5 a 0
Q, = 6(1N)(W +¥, —2N* (W, +(-1)* Q%.)),
N 5Gh @ (0
Q, = W(W +W¥, —2N*(¥, +(-D)*Q).)),
« GIZ(41 —213)h°
“ 1212

3,

Naa = 1Eh2 (Ua,a+VUa',a')+lh_V00’
(L-v7) -V (2.46)

Gh «
aa = W(Ua',a +Ua,a' _ZNZ(Ua',a’ +(_1) Qg))’
2 2 2
;-GN oo

o
b

where o' & o are sub-index suchthat ¢'=1if =2 and «¢'=2 ifa =1.
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Here the following technical constants [4] have been used:

£ HBA+2u)

the Young’s modulus , the Poisson’s ratio v = , the shear

A+ 2(A+ )
3

modulus G = , the flexural rigidity of the plate D = Lz , the characteristic

2+v) 12(1-v7)

. y - . 1 |y+e .
length for torsion |, = |~ the characteristic length for bending|, = X the coupling

7 u
number N = [—& , the polar ratio ¥ = 27 .
U+ p+2y

After substitution (2.46) into (2.34) and (2.41) the bending and twisting governing systems
can be obtained.[21].

We write the system corresponding for the bending case in the matrix form:

L(o,)H=F, xeP,, (2.47)

where L(0,) = L[aij is a matrix differential operator, H is the vector solution defined by
X

a

H' =[¥,,¥,,W,Q,,Q°, Q%] and F the source depending of pressure basically. L. Steinberg

demonstrated the uniqueness of the solution for the deformation of Cosserat elastic plate
which satisfies equilibrium equations, constitutive and kinematics formulas with boundary
conditions (i.e. the formulas: (2.32) and (2.34) - (2.46)), if there is a solution [21].
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Expanding the bending equilibrium system of equations (2.34), we obtain the following
system of Field Equations [22] and [23]:

I (kO +K,0% + k)W, +Kp0,0, W, + Ky 0, W+k,0, €y + ki, Q) =kis0, P,
I k0,0, + (K05 + K0} + k)W, +k,,0,w—k,0,0, + (ki) =k;0,P,
i -k, 0¥, + (k0¥ + (K, A)w+ (=k;;0, )} +0.5k,0,; =k, P,

IV 1 (—kyyd, )W, + KD, P, + (keA— kg )Q; =0,

_ _ 2
Vi kW, + k0, W (K05 + kg0l — ko)) +k,,0,0,Q5 = w 1-P)o.t,

_ _ 2
VI kW, + (kg0 W) + Ky, 0,0, + (k, 05 + kg0 — kg ), = w 1-P)a,t.

(2.48)
where:
klzD(l—Nz), k2=D(1_V), kaz_SGh’ k4=@,
6 6
CONM2(A12 12\ _ N 2 _N2YCI2(0 _
K = DA-v)l, (4|b2 ) @-N )’ K, =2N2D(1—v), K = 5h(1-N*)GI (2 ‘I’)’
21 3
10h(1- NZ)GI,D2 10hGN? D(1+V—2N2)
k8 = ’ k9 = ' klO =
3 3 2
2 _ 2 2009 QY _912V(1 _ N 2
k, = 5Gh(2N° -1) K, = NZD(l—v), Kk, = 5GhN Kk, = S5hG(I7(2-Y)-2I7)1-N°)
6 3 3
_ 2 _ 2
" :M, k, =-(-N?). Note: k, Kk
101-v) 2k,

From (2.35) and (2.36) the correspondent boundary conditions are given in the following
form:

T@O)H=F, xel_,
H=H, xel,,

where T(0,) denote a differential operator T(0,)=T [aij These B.C. are listed below.
X

o
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Boundary Conditions
For x=0:
¥,(0,y)=0, w(0,y)=0,

SGh(I2 212) 10GhI?

0=R,(0,y) = Q% (0,y)+ ng ©,y)),

0=M;(0,y)= D(‘PM(O, )+ 2,2(0, y)),

GI2(412 - 217)h°

b

Q,,(0,y).
For x=a:
¥,(a,y)=0, w(ay)=0,

SGh(I ~212) 05, (a,y) + 1OGth 10Gh 5 (2 1),

0= M11(a’ y) = D(\Pl,l(a’ y) + ‘}PZ,Z(a’ y)).

0= R12(31 y) =

GI2(412 - 212)h?
1212

0= Sl*(a, y)= QS,l(a’ y).

For y=0:
¥, (x,0)=0, w(x,0)=0,
0=M,, (x,0)= D(\'Pz,z (x,0) +1}P11(X’ 0)),

5Gh(12 -212) 10c3h|2

0= R21(X7 0)= 3 ngl(X,O) — Ql (x,0)),

GI2 (412 - 212)h?
1217

0=5;(x,0) = Q,,(x,0).

For y=b:
Y, (x,b)=0, w(x,b)=0,
0=M,, (x,b)= D(\Pz,z(x’ b) +‘}P11(X’ b)),

0= Ry (xb) = =2 00, )+ 20T 02, (b)),
0=5:(xb) =L =200 o) ),

1217

20

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)
(2.58)

(2.59)

(2.60)

(2.61)
(2.62)

(2.63)

(2.64)



We are interested in solve the Field Equations (2.48) with their boundary conditions (B.C.)
(2.49)-(2.64) corresponding for the bending problem, in the section (3.4.1) we discuss the
analytical solution of this Steinberg-Reissner model.

2.2. Reissner Plate Model

2.2.1 The HPR principle for the Plate

HPR principle for the case of elasticity is given in the following form. For any set 4 of all
admissible states s=[U,®, o] that satisfy the strain-displacement relation and torsion-
rotation relations, the zero variation (o [©(s)] =0) of the functional ® defined by:

A(s)=U, - [o.ydv+ o, (U-U,)da+ [o,Uda
By S1 $2

at se A4 isequivalent to s to be a solution of the system of equilibrium equations (1.1)-
(1.2), constitutive relations, which satisfies the mixed boundary conditions (1.6)- (1.7) [5].
2.2.2 Bending System for Reissner Model

Using the HPR Variational Principle for the classic plate it is easy to obtain the Reissner
Plate Theory, which can be written as the following system:

D1-v D1+v 5hE 5hE h?v
DlPl,ll + ( ) \{Jl,ZZ + ( ) lP2,12 _—W,l _—\Pl =TT A N P,l' (2-65)
2 2 12(1+v) * 12(1+v) 10(1-v)
D1-v D1+v 5hE 5hE h?v
D\Pz,zz + ( ) \PZ,ll + ( ) \'Pl,lz _—W,z _—\Pz I P,21 (2-66)
2 2 12(1+v) 12(1+v) 10(1-v)
e \wi—ME (@ w y-_p (2.67)
12(1+v) 12A+v) " " '
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2.3 Eringen Plate Theory

A. Cemal Eringen [3] employs equations very similar to equations appearing in Reissner
Theory to develop a theory of micro- polar plates.

Eringen uses the following physical quantities:

u: Displacement vector

t : Stress vector,

o Mass density,

m,_ : Couple stress vector,
@ Micro- rotation vector,
t,: Stresstensor,

M, : Couple stress tensor,
€, Strain tensor,

.t Micro polar strain tensor,

The stress tensor t,,and the couple stressm,, are defined through

t,=te, m, =M e, where {e} , isthe canonical basis of R®, and «, 8 {1,2,3}.

o

In the linear theory of micro- polar elasticity the equations of motion (1.1) and (1.2) are
supplemented by two sets of constitutive equations, one for the stress and one for the couple
stress [3]:

t,= ﬂEeﬂ% +2(u" + KE)ea/), - KE8M, (2.68)

maﬂ = aE¢y,75aﬂ +ﬂE¢a,ﬂ +7/E¢ﬂ,(z7 (269)

where coefficients A%, 15, k%, a, fF and yF are elastic constants appropriate to the theory
and the strain and micro- polar strain tensors are respectively given by [3]:

1
€, = 5 U Us0), (2.70)
Ep=U,,;,+,,0, (2.71)
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2.3.1 Equations of Balance for Micro- polar Plates

A plate theory is constructed on the fundamental assumptions that [3]:

(a) The plate thickness 2h. =h" =h is small as compared to any characteristic length in the

median plane and
(b) The stress and displacement fields do not vary rapidly across the thickness.

Consequently we may use the average and the first moments of various quantities over the
thickness in integrating the field equations with respect to x, from x, =-h"tox, = h®.
We have:

to =0, (2.72)
— P
(T ohE =0, (2.73)
mkl,k +&y (Ek _f<3) =0, (2.74)
m,, +&.1 =0 (2.75)
. B 1 hE B 1 hE
where : t =F_H[tkdx3, m, = F_ﬁ[ m, dx,,

and
T=1,(%, %, h) —t,(X, %, —h) = 7,6, + pe,,
p=my (%, X, h) =My (X, X, —h) = 1,8, +me,.
t =1, +1t8;,  =1;8 +1.€;,
m,=me +Mge;,  my=Mye +Mye,.

Equations (2.72) to (2.75) must be supplemented with the equations of stress couples which
result from the vector multiplication of balance of momentum of micro-polar elasticity by

x,e, and integration over x, from x, =-h® tox, =h°".
Hence
M, +2h"E, =0, (2.76)

where M, is the couples stress defined by

hE
M i _[ £ X0,

_hE
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2 . . . .
Here | = g(hE)3 is the area moment of a normal cross section of the plate, having thickness

2h. and unit length, with respect to the median line.

The union of equations (2.72) to (2.75) and (2.76) constitute the equations of balance for
micro- polar plates.

2.3.2 Displacements, Rotations, Strains, Constitutive Equations

Basic assumptions of the plate theory allow a power series representation in x, for the
displacement vector u and the micro-rotation vector ¢, the following equations includes both
the stretching of the median plane and the flexure of the plate [3]:

u =[G, (X, X,) + X, (%, X, )]y +W(X;, X, )e,, (2.77)
¢=Qﬁ(x1,x2)ek + (X, %,)8,, (2.78)

where T, is the two-dimensional displacement field in the median plane, ¥, is the angular
hE

rotation field defined by 1V, = I U x,dx,, and w is the transverse deflection of the median
_hE

plane of the plate. The micro-rotation ¢ is decomposed by ¢ =Q, +¢e, into a plane

micro-rotation vector QY and one in the x,-direction. The strain and micro-strain tensors are

calculated by using (2.77) and (2.78) in (2.70) and (2.71) respectively [3]

€ = ekl +x6,, 26,726, = ¥ tw, € =0,

d (2.79)
2ekl =U, +Up,, 2ek| =W Y
Ey =0 + XY | +&450, 0 Es="Y, _gkI3QIO’ (2.80)
Eax =W, +64,8, &5 =0.
Substituting (2.79) and (2.80) into (2.68), we obtain the stress constitutive equations
_ X _
ty =1 +T3 M K tk3:tk3=(/uE+KE)(\Pk +W,k) —K*© (P, _gkIQ?)’ (2.81)

ty = G = (" +x5)(F, +W,k)_KE(W,k ~&), ty= /?'ELTr,ré‘kl +/1EX3lP|r,r5k|’
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where the plane stress and the stress couples are respectively given by

t, = ﬂ“EUr,rgkl +(/1E+KE)(U|<,| +Ul,k)_KE (T, +E49);

(2.82)
I M " }“E\Prrgkl + (/JE +KE)(lPk,| +\Pl,k) - KE\Pk,I'

Similarly for the couple stressm,, , through (2.69) and (2.78) we have

K
m, :aEQ?,r5kl +ﬂEQE,| +7/EQ?,k’ m,, :7E¢,kv m, = IBE(D,k' rnsa =0. (2.83)

We consider the stress constitutive equations of the plate theory (here t,, =0), where the
plane stress t, and the stress couples M,, are respectively given by [3]:

= E . _ 1-v = P
by :1_—2[‘/Ur,r5k| +T(Uk,| +u|,k)]_7(uk,l =0,
EIV 1 : (2.84)
—v K
Mkl :m[ﬁr,rakl +T(ka,| +LP|,k)]_T(lPk,I _\PI,k)‘

The field equations of stretching and bending of plates may thus be constructed by using set
of Equations (2.84) [3].

2.3.3 Field Equations and Boundary Conditions

The partial differential equations of the displacement and micro- rotation fields are obtained
by substituting the constitutive equations (2.81) and (2.83) into the equations of balance

(2.72) to (2.75) and (2.76) [3]. The system of equations is grouped into two sets: one
representing the symmetrical stress distribution about the median plane x,, the other the

antisymmetrical one. These two groups respectively represent the two-dimensional elastic
state (or extensional motion) of the plate and the bending.

2.3.4 Eringen Theory 1 (€,, =0)

In this case we consider €,, =0, and (2.82) is considered. Thus for two-dimensional problem
of micro- elasticity (or the extensional motions of plates) we have [3]:

(A° "‘ﬂE)Uka +(u® +KE)u|,kk _KEgm(D,k =0, (2.85)
7’E¢,kk _ZKE¢_KEgk|Uk,| =0, (2-86)

where: 1:1,2 and k:1,2.
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For the bending, we have [3]:

AR + 1)+ (" +KF)F

(2.87)

_ZhE(ﬂE + KE)(\PI +W,|)Jr 2h®x* (WI +‘(c"leE) =0,
,uE‘Pkyk +(ut +KE)Wkk + KEEK,Q,O’k =0, (2.88)
(aF +ﬁE)QEV|k +7/EQﬁkk +x5&, (P, -W,) —2x°Q0 =0, (2.89)

where: 1112 and k1,2

Equations (2.85) to (2.86) constitute three partial differential equations for the plane
displacement fields T, T, and the plane micro- rotation field ¢». Equations (2.87) to (2.89) of

the flexure and five equations for the unknowns W, Q° andw. Since the boundary

conditions are similarly uncoupled the problem of the plane micro- polar elasticity can be
treated separately from that of the bending.

2.3.4.1 Behaviour of Eringen Model I (€, = 0) for the Elastic (Classic) Materials

From the reduction (the restriction is considering « = g =y =¢ =0 into the equations for the
bending (2.87) to (2.89)) of Eringen Model I (€,, =0) and using the equivalences (3.83) we
obtain the following equations:

h?)? h?)?
%(l+l‘)wk,lk +%;‘“’|,kk —u(¥, +W,|) =0,

P
MY+ +h_p =0,

for 1112 & k1,2,

then expanding these three equations:

(h*)’ (h*)’
ETH A+ )Yy +¥o0)+ Tﬂ(‘{jnl +W¥, ) —u(¥; +w,) =0, (2.90)
(h*)’ (h*)’
1 A+ ) (Y0 +¥,5)+ 12 (o0 +Y,5) — (Y, +W,) =0, (2.91)

:u(l{’l,l"'lpz,z)"',u(w,u+W,zz)+h£p=0,. (292)
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2.3.5 Eringen Theory Il (t,, =0)

In this case (2.84) is considered and the corresponding equations of the extensional motions

of plates are [3]:

1. E _ 1. E _
E[l__V_KE]Uka +E[1__V_KE]ul,kk _KEgk|§”,k =0,

7’E¢,kk _ZKE¢_KEgk|Uk,| =0,
where: 1112 and k1,2
And those of bending are [3]:

1. E 1. E xE
E[E—KE]Tk,|k +§[m+KE]\PI,kk _2hE[G_7]\N,I -

E
2hE[G + ’%]\11I +2x5hEE Q0 =0,

xE xE P
[G —7]‘kak +[G +7]V\{kk +x Y, +ﬁ =0,

(aE +ﬂE)QE,Ik +7EQlo,kk +KE8|<| (¥, _\N,k) _ZKEQF =0,
where: 11,2 and k:1,2.

We are interested in the boundary conditions for bending:

¥, =¥,, w=w, Q'=Q), on C-C,

(2.93)

(2.94)

(2.95)

(2.96)

(2.97)

(2.98)

The quantities t,m,, Ty, , @,, M LG, M, ¥y, W, and QF, are prescribed functions along

indicated portions C, and C-C, of the boundary C of the median plane.
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2.3.5.1 Behaviour of Eringen Model Il (t,, =0) for the Elastic (Classic) Materials

To obtain the model corresponding for the Elastic (Classic) Materials, it is considering the
following reduction of Eringen Model I1:

The restriction considers that («, 3, 7) =(0,0,0) in Eringen Model 11. Substituting the
restriction « = g =y =0 into the equations of bending (2.95) to (2.98) corresponding to the
Eringen Model Il (t,, = 0) we obtain the following equations:

h?)?
w T Vo) + u/U(l}ll,n +W¥,,,)—hPuw, —h? ¥, =0, (2.99)

(h")* u(32+24) ¥
12

12 (A+2u)

hP)® (34 +2 h?)?
(12) #((/1:2#;0 (Lpl'Z”\PZ'ZZH(12)_#(‘1’2,11+W2,zz)—hpﬂwz—hpﬂ‘f’z=0’ (2.100)

B+, ) + (W, +w,22)+hip -0, (2.101)

28



CHAPTER 3

THE SEPARATION OF VARIABLES METHOD FOR PDE SYSTEMS
APPEARING IN THE PLATE THEORIES

3.1 Analytical Solution Based on Separation of VVariables

According to the method of separation of variables we assume solutions to be in the
following form:

f j(Xl""' Xn) = flj(xl)"'fnj(xn)!

where fij(xi) is a function of one variable x, i=1..,n, j=1,..,m. Daniel Bernoulli
developed this technique in the 1700°s [19].
We obtain a system of Sturm-Liouville problems for f’(x)with specific boundary
conditions with respect to each variable x, .

Finally, using the superposition principle, we construct the solution as an expansion, in the
following form:

f :E(flj)k...(fnj)k, VjeN,
k=1

where (f)), are Eigen- functions relative to the corresponding Sturm-Liouville boundary
value problem for f'.

3.2 Application of the Separation of Variables Method for PDE Systems of
the Plates Theories

3.2.1 Analytical Solution of Steinberg-Reissner Model

We consider a rectangular domain. Due to the geometry of the domain, it is feasible to use
the method of separation of variables. We replace each unknown function of “x* and “y”

by a product of two functions, each depending of “x” or “y ™.

So we assume that:

Y, =Y,%,, ¥,=Y,Y,, w=ww, Q=0Q,0,, Q =0Q,0Q Q, =Q,Q,, . Here
these functions are represented by the products of functions of ““x*” and “y “variables.

After substitution to the partial differential equation (PDE) system and boundary conditions
we obtain systems of ordinary differential equations for functions with respect of the
variable “Xx” and “y ”, and the corresponding boundary conditions for them.

1y ?
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Here we substitute each product:

Xy

\Pl = \Plx\Ply’ LPZ = \PZX\PZy’ W=W,W, Q3 = QSXQSy ' Ql = legly ! QZ = QZXQZy

into the Field Equations (2.48). Now, dividing the equation (IV) of the Field Equations
(2.48) by the product Q. Q, , we obtain the following:

_kl2lelleI1y + klZ\Ij'Zx\IJZy + k5 (Q;,XQSy + QSXQ;y) - (kG + 2’93 )Q3XQSy = O

v, ¥ CQ.
e 2 g, Vo Sty g (e 2oy (4 a) =0
Q3X QSy QSX QSy Q3x QBy

Taking the derivative with respect to "x"and"y", we obtain:

[lPlx \Ply — (l}IZX J \PZV J
Q3X Q3y Q3x Q3y
(lljlx j' [lyzy
@) Q
2 ="/ = constant
Q3X 3y

st st

(Where: f = g means that the functions f and g are such that af =bg, for some
constanta,beR.)
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By integrating both sides of each equation we obtain the following that:

P, eSpan(¥,,,Q.,), ¥, eSpan(‘Ply,Q3y), (3.3)

2x?

where we used the following definition for the span[27]:

Span definition Let V be a vector space over a field K, then the span of a setS denoted by
Span(S) is defined to be the intersection W of all subspaces of V which contain S .

Now dividing (IV) by ¥, ¥

¥, ' L Q Q, Q. Q
_klz -~ + k12 \PZX + ks($3X 3y + $3x ‘Psy ) _(ks +ﬂ’93)i_3y =0,

2y 1x 1x \IIZy 1x 2y 1x 2y

Taking the derivatives with respect to "x"and"y" we obtain:

Q" 3 Qs Q 3y
ks (( *)( y)+( L) () = (kg + A=) (2 3X)( —) =0
\Plx 2y 1x \PZy \P \P
QL
Dividing by(%)( )", we obtain:
\Plx \PZy
Q Q, ..
o G
lPlX \IIZY Q3
Ky ot —(k;+47)=0
( 3)() ( 3y )'
\PlX LIJZy
(Q3X) (QBy !
Y, kA Y,
X - = constant
(st) K (st),
\Plx \P

2y

Q. .. Q. Q.. Q.
GH =GN & =M
1x 1x 2y 2y

, therefore ¥, €Span(Qs,, Qs,), ¥, € Span(Q,,, Q). (3.4)
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Dividing (IV) by W, ¥,

b Q
_klqu-lx"'km '2y+k5( = :

Q y
LPZX \Ply \IJZX lIJl

3x

Q. Q.
+—
¥y

y 2X 1y 2X lIle

Taking the derivatives with respect to "x"and"y" we obtain:

Q. Q. Q.
ks«fj?*) ) + (o) )k, 20y (Cy 2o

2x 1y 2x 1y 2x \Ply
Then
\.qux LIJZX \Ply \Ply
and ¥, e SpanQ,,,Q,,), ¥, € Span(Q;,,,Q;,)

More precisely:

Yo ) ke+a™ Py

- = constant.

From (3.3), (3.4) and (3.5), we obtain:

LPlX = a1\IJZ>< + le3x’
¥,, =&%, +bQ,,
¥, =a,Q, +bQ. ,
¥, =8,Q,, +bQ;,
¥y, = a2y, + D0,
Y, =80, +b,Q;,.

for some real constants a,,a,,a,,b,,b,,b,,a,,a,a,,b,,b,,b,.
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(3.5)

(3.6)
(3.7)
(3.8)
(3.9)
(3.10)
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Substituting (3.8) and (3.10) into (3.6):
a,Q, +b,Q; =aQ, +b,Q, +bQ, , for some real constants a,,a,,b,b,,b;.

Then:
a,Q, =hb,Q, , for some real constants a, &b, .

3 = constant. (3.12)

3X

Replacing (3.9) and (3.11) into (3.7):

a,Q,, +b,Q;, =8,Q,, +b,Q; +bQ, , for some real constants &,,a,,b,,b, &b;.

3y

o
—% — constant. (3.13)
3y
Since (3.8) and (3.12):
Y, =Q
S (3.14)
lIllx = Q3X = QSX = \Plx
¥, =¥, (3.15)
Since (3.20), (3.10) and (3.14):
‘{12x - Q3X = LIjlx
LPZX = LIjlx (316)
Since (3.9) and (3.13):
¥, =Q,, (3.17)
¥, = Q3y =Q,, =Y,
\Ifzy =¥, (3.18)
Since (3.11) and (3.13):
Y, =Q,, =Y,
\Ifly =¥, (3.19)
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Dividing (VI) by Q, Q, :

- I(13\Ijllely - leW;Wy + k14Q‘1xQ;.y + k7QZXQ;y + kSQ;xQZy - (k9 + j’Qz )QZXQZy =0

vy W, o) Q. "
k13 \Plx 1y _k13 Wy Y4 k14 le 1y + k7 2y + k8 QZX —(kg +192) =0
QZX QZy QZX QZy QZX QZy Q

2y 2x

Taking the derivatives with respect to "x"and"y" we obtain:

(v, N(w, ) ()
le ( LPlX ] 2| - k13 (&] |+ k14 [ le j — | = 0
Q2x QZy QZx QZy QZX QZ

y
, and then
| N () ¥ ) w ) (@)
(T_lj  Span (WX Ng_lj ’ 2| espan | - ||| =2
QZX QZX QZX QZy QZy QZy
WP, eSpan(w,,Q, ,Q,.), ¥,, € Span(w,,Q, ,Q, ) (3.20)

Dividing (1)by ¥, ‘¥,

kl\Pl"xlyly + kzlylx\Pluy - (k3 + ;tlyl )\Plxlply + klO\Péxlyzly + k11W;<Wy + I(12£23xgzl3y + k13Q22Q2y = 0

¥, W ¥, ¥ w, W Q,, Q. Q,, Q
kl 1x +k2i—(k3+ﬂ,‘ﬂ)+km 2x 2y +k11 X y 3x ~73y 2z =72

1x ly 1x 1y \Plx \Ply \Plx \-Ply \Plx \Pl

y=0

y

Taking the derivatives with respect to "x"and" y" we obtain:

\P'ZX | \PZY | Wx | Wy | Q3X | Q3y | QZZ | sz ._
R G R G A R N

ly 1x 1y

34



By (3.14), we obtain that [%J —0. And then:

lPI2x | \PZY | Wx | Wy | QZZ | QZY l_
e o 552 -
ﬁ IES an & | WX | QZY | S \PZY | Wy |
\I]lx p \Plx ' LPlx , \Ply - pan \Ply 1 \P_ly

Q,, e Span(w,, \¥,,,,\¥,,), Q,, e Span(w,, ¥, \¥,,) (3.21)

Dividing () by W, W, :

' Y b g b4 W
Rt a0 P AP TR e TP e T
\PZX LIJZX \Ile LIJZX LIle ‘{j2x lIle LIij LIle LIJZX lIle ‘{JZX \Ply
v, V¥, Q
(By (3.17), (3.18) and (3.19), —2~,—2¥ and —% are constants.)
lPly lIle 1y
Taking the derivatives with respect to "x"and" y" we obtain:
w, [ W, 0 (@ |
Ky — | = Ky — -
\PZX lPly \PZX lIle
e
Wy _ Y/ _ constant
Q X WI
R 2
Yy,
w=Q, Q,, e Span(w,,¥,,) (3.22)
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Dividing (V) by Q,,Q, :

k13\PZx\IJZy + k13WxW;/ + k7Q;xgly + ksglxgiy - (kg + A% )legly + k14Q£xQ‘2y =0
k [\{’Zx\] \P2YJ+kl(Wx] WYJ+k [QZXJ{QZYJ:O
13 3 14
le Qly le Qly le Qly
(—QIZX J € Span (\sz ] [ W J 2 J € Span L\sz J {—Wy J
le le le Qly Qly Qly

Q,, e Span(¥,,,w,,Q, ), Q,, € Span(¥,,, w,,Q, ) (3.23)

2y

Dividing (I1) by ¥,,'¥,, and taking the derivatives with respect to "x"and"y":

\Pllx | lPl)’ | Wx | W)’ | QSX | Q3y | le | Qly '_
| bl R ol R R

v Q
because —= and —Y are constants.

2y 2y
&) (%]
Ky \Wo = Py _— constant
i [Q] W,
lIJ2>< Lsz
w, e Span(Q2,,,\V,,), w, € Span(¢y,,, ¥,,) (3.24)
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Dividing (111) by w,w, and taking the derivatives with respect to "x"and"y":

—Kiu( 1X)( 1y) —kKu( “)( —kKys( 1X)( ly) + ki 2X)( 2y)—

and replacing (3.22) and (3.23), we obtain the following linear combination:

Q, =a¥, +bw,_, forsome real constants a,b.

(22 = (a~ 2 +b)
W, w

X

:a(ﬁ)',
WX
and then:
Yy ¥y Qyy vy Faxy _

_kil(vx)( ( k11 k13a( Wy ))( WX ) =0
(ay = (Zay, ( ) ¢ Span( “) ( )

Wy Wy Wy Wy

w, e Span(\¥,,,\¥,,), , € Span(¥,,,Q,,,W,) (3.25)

Dividing (I1) by \P;X\PZY and taking the derivatives with respect to "x"and" y" we obtain:

lI" (NN w Q, Q,
+k, +k —2 2 +k Y =0,
km \P lp > kiq,zx ¥, ‘1’2x k11 v ‘sz 2y ¥, k13 \P \P

and using (3.14), (3.16), (3.18) and (3.19):
w

X

=1
Y,

1N

X

Taking the derivatives with respect to "x"and"y" we obtain:

lPzX' \PZY k lz
(E)(qu,2 —K;) =K ( v )q,

X y
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(o2 = (1), sl =
¥ Yo \PZy \PZV
V¥, eSpan(Q,,\¥,,), kllP“Zy =Q +k,Y¥,,
¥, eSpan(,,\¥,,) . ¥,, € Span(Q,,,\¥,,) (3.26)
Thus, replacing between them (3.20) to (3.26), we obtain:
¥, =aW +b,Q +cQ,, (3.27)
¥, =dw, +e,Q +f,Q, (3.28)
Q, =aw +h¥, +c¥,, (3.29)
Q,, =d.w, +e,¥,, + ¥, (3.30)
w, =a0, (3.31)
Q,, =dow, +e,\V,, (3.32)
Q, =a\¥, +bw +cQ (3.33)
Q,, =d,¥, +ew, + f,.Q (3.34)
w, =a,Q, +h¥,, (3.35)
W, =d.Q, +e,\¥,, (3.36)
w, =a,\W¥, +b\¥,, (3.37)
¥y, =d¥,, +6,Q, + fow, (3.38)
¥, =a,Q, +b,\¥,, (3.39)
W¥,, =d Q) +e,\W,, (3.40)
, Where a,b,c,d;,e and f are constants, i =1,10.
Since (3.31) and (3.35):
w, =¥, (3.41)
Since (3.31), (3.33) and (3.41):
Q, =w, (3.42)
Since (3.37) and (3.41):
Y =W, (3.43)
Since (3.31), (3.39) and (3.41):
W, =W, (3.44)
Since (3.31), (3.41) and (3.44):
Q. =Q (3.45)
¥, =V¥,, (3.46)
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From (3.41) and (3.44), we obtain:
(3.47)

Substituting (3.15) into (3.43) and then substituting these results together with (3.16) into
(3.29) , we obtain the following:

w, =¥, (3.48)
Q, =Y, (3.49)
From (3.15) and (3.49), we obtain:
Q,, =Q,, (3.50)
Substituting (3.18) into (3.40):
Q, =Y, (3.51)
Substituting (3.18) into (3.51):
Q,=Q, (3.52)
Substituting (3.19) and (3.51) into (3.32):
w, =¥, (3.53)
Substituting (3.51) and (3.53) into (3.34):
Q, =V¥,, (3.54)
Substituting (3.28) into (3.30) and using (3.51):
Q,, =dw, +6¥,, (3.55)
, were d,, & are some real constants.
Substituting (3.54) into (3.55)
Q,, =dw, +8Q,, , d,,& R (3.56)
In another form: w, =d,Q, +6Q, , d,6 cR
Substituting (3.28) into (3.38) and furthermore, replacing (3.51), (3.54) into (3.56) we
obtain:
Q,,=Q,, (3.57)
and, from (3.57) and (3.58):
w,=Q,, (3.58)
and
W, =W, (3.59)



Substituting (3.54), (3.58) and (3.59) into (3.38):

¥, =0, (3.60)
and
Y, =Y, (3.61)
In a nutshell:
‘{le = QSX = QZX ' \IIZX = \Plx ' ‘PZX = Wx = le ! LIJlx = IIllx ' lI]2>< = lPZx ' \Ply = Wy = QZy ’
Y, =V, , ¥,=Q,=0Q , ¥, =¥, & V¥,=VY,. (3.62)

It is interesting “how well these functions are related”, only it is a function (of one variable,
for example “x”) and its derivative, the derivatives of any order of them belong to one of the
two equivalence classes of which this function and its derivative are representatives, i.e.
“the quotient set (the functions f, g are related f = g if af =bg for some non-zero real

constants a,b) contains only two functions”.

We obtain the following Sturm-Liouville Eigenvalue Problems from the boundary
conditions (2.49)-(2.64) and the relations in (3. 62):

CASE |

From the system of equations (3.62), we consider the following assumption:

Wy _ 42 , Where 1 #0.
WX

(DZ-2%)w, =0

D =+41.

X

Then w, (X) = ae™ + e ™, where «, f € R.

Substituting w=w,w, into (2.49), we obtain the following B.C. for the ODE W _ 52

w, (0)=0
a+B=0, w,(x)=al™-e*)
W, (X) = o sinh(AX)
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And by B.C. inx=a:
w, (a) =0 and then « sinh(1a)=0

Then «=0 and =0, because Aa=0. Then

w, =0
\PZXZle:szo

W, =0, =w=0. (3.63)

By ¥, (X) =¥, (X) , we obtain:

¥, =0

QSX = ng = \Ijlx = 0
Q,=Q)=Y¥,=0 (3.64)
We obtain the trivial solution (3.63) and (3.64).

Similarly for ¥ = 72, 70, withw, (0)=0, w, (b)=0.

Wy

CASE 11

From the system of equations (3.62), we consider the following case:

ﬂ:o,whereizo.
W

X

w, =0, w, (x) =ax+h.
Applying the B.C.: w,(0)=0, b=0.Thenw,(x)=ax; w,(a)=0
aa=0,thena =0, w, =0.

Also as in Case I, we obtain the trivial solution ¥, =¥, =w=Q, =Q. = Q) =0. Similarly
forw, .
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CASE 11

From the system of equations (3.62), we consider the following case:

We o -2, where 1 0.
W

(D? +2*)w, =0, D, =+id

W, (X) = & CoS(AX) + S Sin(AXx).
Applying the B.C.: w, (0) =0.
a=0, w,/(x)=/psin(ix)

Applying the B.C.: w,(a)=0.

,BSin(ﬂ,a):O and then la=nz, neZ.
A=A, :? Then w, (x) =sin(4,x)

Vo =9, =W, _sm(@)
a

2%, =

¥ \PZX,then ‘Plx _cos(—nﬂx)

1x =

Q = QZX - LIJlx - COS(?)

3X, —
Similarly forw,, ﬂ=_,§2 , 1 >0, with w, (0) =w, (b) =0.
w

y

N (V4
Yy, =Q, =W, =S|n(—b y)

And ¥, =Q

2y, —

sy, =Sy —cos(%),where meZ.

(3.65)
(3.66)

(3.67)

(3.68)

(3.69)

From (3.65) to (3.69) we showed that the Eigen-functions for the Field Equations (2.48),

with the boundary conditions (2.49) to (2.64) are the following:

mz X nﬂy
Y, = cos(—)s n(—-),

m,n

Q, ;cos( )cos( y), Q sm(—)cos( ) and Q,
a b a
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Now applying the Superposition Principle we obtain the following series:

¥, (x, y)—m;a cos(")sin(*), (3.70)
¥, (x, y)—m;a £sin() cos(), (3.7)
W(x, y) = ZJ" pSin()sin(2), (3.72)
Q,(% y)=m;a cos(™) cos( ), (3.73)
2 (x,y) = 21“ Fsin(=) cos(), (3.74)
o (x, y)—m;la cos(™)sin(*Y), (3.75)

We assume that the pressure is given by

P(x, y)_Za sm(—)sm( )_sm( )sm( )

m,n=1
where «a, =0, V(m,n)= (1) and o, =1, (3.76)

Substituting (3.70) to (3.76) into the Field Equations (1) - (V1) (2.48), we obtain the system
of algebraic equations (1)** - (VI)**and (VII).

Calculus of the Equation (1) *:

Using the Theorem 1 [19] (Term-by-term Differentiation of Fourier Cosine Series) and the
Theorem 2 [19] (Differentiation of Fourier Sine Series) of the appendix into the equation
(') we proceed to obtain the equation (I1)*. Also, for the other equations (I11)* to (VI)*.

We obtain k,0? (¥,), 5¥,, 0,6,%,, o,w and 8,Q;, which appear in the equation (I):

Y, = i a' cos(—)sm(mﬂy)

m,n=1

¥, ZZ“ sm(—) cos(@)
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For k0, (‘V,) we obtain the following series:

ko (F) = 3 {a (- (—» |n(—)}3| (m”y)

m,n=1

>l k(ZE ))Z “ sin( y)]sm(””x)

again, applying the operator o, , we obtain the following series:

ko (¥, )——[a ¥, (a,y)-0,%,(0,y)] +Z[—{( k1(—))2 s sin(TY )}+

+2 « 1)'8,%,(a, y) - 2,%,(0, y))]cos(@)

From W, (x,y)= Z[Za cos—]sm m;ry we obtain the following series:

209 0,00 T TS eens )

%((—1)”“Pl(x,b) —¥y(x, 0))1008%,

0¥ (% y) = —Z%[m [Z 0ty COS n%xl +§((—1)"“Pl(x, b) — ¥, (x,0))]sin %

m

From W,(x,y)= Z[Za“’zcos gy]sin@ we obtain the following series:
a

0., (X, y) = i[w (a,y)— %, 0, y)]+2[—[2 atyoos Y] ¢
2 ()", (@, y)— ¥, (0, y))loos 7%,
a a

1 n y nzX m
0., (x.) = _[¥,(a.y) ¥, (0 y)]+Z[[Z?”a:;cos %]cos%y+

EZ«‘D"%(& V)= ¥,(0,y))cos ",
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0.%,(x,Y) = 110, %.(a,y) -0, ¥,0.y)] - 3 I aioos ™ in T

2 ¥ (070, %4(a.9)-0,%,(0, oo,

From w(x,y) =Y _[> ay,sin %]sinm we obtain the following:
n m ’ a

0, W(x, y) = ltw(a, y) - w(0, y)] +

nzX

z[n{[zan mSIﬂ—]+ (( 1) W(a Y) W(O y))]COS—

From Q,(x,y) = Z[Za cos—]cos m;ry we obtain the following:

0,9(, y)——Z—[Z s cos—]s in m;ry

P is expressed in the form P(x,y) = Z[Za sm—]sm— substituting expressions in
. a
series form for k,0? (¥,), 05, 0,0,¥,, ow and 0,Q,into the equation (I), we obtain

the following equation:

%[P(a’ y)-PQ, y>1+kls§[”;”[2 S'”—]+ (( 1)"P(a,y) - P(O, y))]cos”%xz

ﬁ[a;Pl(a, Y)-0,%,(0, y)+k1;[—(%”)z[§a hsin T4 2 (( 1)"0,¥,(a, y) ~0,%,(0, y))]
——k Z(m”)[M[ZaS‘TﬁnCOS@HE((—1)”“P1(x,b)—\Pl(x,O))]sinTy_

G2 Y atho0s = in Y 50 [0 w2, ) 0,1, 0,1 - o X eaoos = in =t

Zk“’ Z(( 1)"0,¥,(a,y)-0,¥,(0, y))cos7+ Ky [w(a, y) —w(0, y)] +

X

an[ [z o sin y]+ ~(-)"w(a,y)-w(o, y»]cos”a

122 [Z cosT]sin%+kaZa cosnfaxsm%

(=
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The equation (1)* contains the following zero expressions:

P(a,y)-P(0,y) =0,
(-D"P(a,y)-P(0,y) =0,
o,¥:(a,y)-0,¥,(0,y) =0,
(-D"0, ¥, (a, y)-0,¥,(0,y) =0,
(=)™, (x,b) =¥, (x,0) =0,
0,¥,(a y)-0,¥,(0,y)=0,
(-D"0,¥,(a,y)-0,¥,(0,y) =0,
w(a, y)-w(0,y) =0,
(-1)"w(a, y)-w(0,y) =0.

Calculus of the Equation (I1)*:

X

(0 y) = I3 el sin = Hoos T
’ a

6X‘Pl(x,y):—2(—)[z " sin ”y]sm ”ZX

oW, (x,y)= Z[Z—( sm—]sm m;ry’

2,0,%,(x,Y) :%[a;ln(x, b)—0, %, (x, 0)]+Z[(%)[Z—(”{)an,msin@h ((D"8,%,(x,b) 0, ¥,(x, onm%,

From the following equation

0¥, Y) = Z[¥,(a.y)~ W, (0. Y]+ TIX T eyoos " Jeos ™Y 4

2 n
£ (DY, (@,y) - ¥, 0 y)eos T
we obtain:
nzx

oW, (x,y) = -3 Y extsoos= i~

7y we obtain the following:

FromW¥,(x,y) = Z[Za sm—]cosT

0, ¥, (X, y) = —Z%[Z a,2sin ?]sin %
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0¥, (%, Y) =1(0 W, (x,b) — 8, ¥, (%, 0)) +
Z[%[Z—%[Z sm@]]+ (-1)"0,W,(x,b) -, W, (x, 0))]cosTy,

From the expression (3.72) for w we obtain the following:

O, W(X,y) = %(W(X, b) —w(x,0)) +

SIS o sin %74+ 2 (w(x, b) - w(x, 0))fcos ™Y
~ b 5" a b
From the expression (3.73) for Q, we obtain the following:
0,0,(x, ) = —Z—[Z hoos T in

Substituting expressions obtained for the functions 0,0,%,, 0PV, oP¥,, o,wandd,Q,
in the equation (11) of the Field Equations (2.48), we obtain the second equation:

k0, P(X, Y) = 15(P<x b) - P(x, 0))+k152[ SN ZX]+§[P<x,b)—P(x,0)]]cosm=
Nz g,

1°<a\P(x b) -0, (x, 0))+k102[m”[z—— : sin X]+3«—1)max%(x,b>—ax%(x,om

cosm— z”” ”—”[z Y2 cos ”y] sin . ]+ (0,7, (00) 0, %, (x 0)) +
kZ[m”[Z Z S|n—]]+—((—1)”‘ay\}'2(x,b)—ayLPZ(x,O))]cosTy—
kZa‘“cosmsm?+—<w(x b) - w(x, 0))+k112[ Xals ”X]+3((—1>mw(x,b)—w(x,O»]

ﬂy klzz_[z 2 cos ”y]sm%x—kz o sin 12X " cosT

(ny*.
Calculus of the other Equations (I11)* to (VI)*:

The equations (I11)* to (VI)* are calculated from the equations (111) to (V1) respectively.

From B.C.: Y,(0,y)=0, ¥,(a,y)=0, w(0,y)=0, w(a,y)=0,
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we obtain that the following terms are zero:
¥,,0,y)=0, ¥,,(@y)=0, o,w(0,y)=0, ow@a,y)=0.
From I\/Ill(o, y) =0, we obtain that the following term is zero:
¥,,(0,y)=0.
From l\/lll(a, y) =0, we obtain that the following terms are zero:
Y,(@y)=0 Q,0y)=0 Q,(ay)=0.
Y, (x,00=0, w(x,00=0, W¥,(x,b)=0, w(x,b)=0,
Consequently: ¥,,(x,00=0, ¥, (x,b)=0, owk,0=0, owkbh)= 0
From M ,2(X,0) =0, we obtain that the following term is zero:
¥,,(x,0)=0
From M ,2(X,0) =0, we obtain that the following terms are zero:
¥,,(x,b)=0, Q,,(x,00=0, Q,,(x,b)=0.

Consequently \PMLB =0, \PMLB =0. Given the results: ¥,,[ =0, TZ'Z‘OB =0, etc and

from the first and second equations (1)* and (11)* respectively, we already to obtain Q; and

QJ, since k,, = 0. Replacing these results into the two last equations (V)and (VI), we
obtain:

Q@ y) == 3 riksin ™ cos m§y=o,

13 n,m

Q°(0,y) ~ 7 sm cos m=O,
1( y) 13 ;n: b (3.77)
Qg(x,b)~ Z chos i m;;(O) 0,

13nm

Qg(x,O)~ z chos Xsi m”b(b):o.

3nm
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Now, we will identify terms equal to zero in equations (111) to (VI).
Equation (111) contains the following zero terms:

w(a,y)-w(0,y) =0,

(-D"w(a, y)-w(0,y) =0,
(-D)"w(x,b) —w(x,0) =0,

Equation (1V) contains the following zero terms:

Y, (x,b)-"¥,(x,0)=0,
(=)™, (x,b)—¥,(x,0) =0,
¥,(a,y)-¥,(0,y) =0,
(-D"¥,(a,y)-¥,(0,y) =0,
0,Q,(a,y)-0,9,(0,y) =0,
(-1)"0,8;(a,y) -0,£,(0,y) =0,
0,82,(x,b) —0,0,(x,0) =0,
(-D"0,Q,(x,b)-0,0,(x,0) =0,

Equation (V) contains the following zero terms:

w(x,b)— w(x,0) =0,
(=)™ w(x,b) —, w(x,0) =0,
From B.C., (3.74) and (3.75):
Q) (a,y)-(0,y)=0
D" (a,y)-/(0,y) =0

0,9 (x,0) 8,9/ (x,0) = A3, Q5 (x,b) —B3,05(x,0) =0
(~1)"8,0Q2(x,b) — 8,00 (x,0) = A,Q(x,b) ~BA,Q(x,0) =0
Q) (x,b) — Q3 (x,0)=0
(=D)" 3 (x,b) - Q5(x,0)=0.

, Where A& Bare real constants.
Equation (VI) contains the following zero terms:
w(a, y)-w(0,y) =0,

(_1)nw(a, y) - W(O, y) =0,
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From B.C., (3.74) and (3.75):
Q(a,y)-2(0,y)=0
(-D)"2(a,y)-/(0,y) =0
0,9;(a,y)—0,92;(0,y) = A0, Q) (a, y) -Bo,Q{(0,y) =0
(-1)"20,23(a,y) -9,25(0,y) = A0, (a,y) -B3,(0,y) =0
Q) (x,b) - Q5 (x,0) =0
(=D Q3 (x,b) —Q3(x,0) =0,

where A& Bare real constants.
3.2.1.1 Linear System of Algebraic Equations

In this section we obtain the linear system of algebraic equations given by (1)**-(VI)**
from the Field Equations (2.48).

(1*:
—klsmila = )cos(@nm(m”y)-m;a (k) k() ko)
cos(@)sm(m”yﬂ Zl (o — i m”)COS(%)Sln(m”y)+
ilaxfm(ku )cos(@)s.n(m”y)+zla A (ke S oS )sin(T ) +
’ +m;lanm ,cos()sin(),
(1)*:
—klsm%an,( )sm(@ms(m”y)—m;a 1 (kg - )sin(E) cos(Y) +

0

+D ok (—) kz(n?”) -k )Sln(—)cos(m”y)+

m,n=1

@0

S a ky ”sm(@)cos(m”y) Y of <—12>—sm(@)cos<m”y>

m,n=1 m,n=1

+Z o (- k13)5|n( Xy cos (m”y)

m,n=1
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() *:
—k,, Z a, sm(—)sm(m”y) = i L (ky, —)sm(—)sm(m”y)+

m,n=1 m,n=1

S o' (k, )sm(—)sm(m”y)+ S o (k) (XE Y +(—) )sm(—)sm(m”y)+

m,n=1 m,n=1

3" ik M sin( X sin(™Y) 3 s (o MsinX)sin( ),

n,m
m,n=1 m,n=1

(|V)*'
0= Z (ke )COS(%)COS(m”y)Jr Za” klz—cos(%)cos(mgyh

m,n=1 m,n=1

+Za (- k((—) (—)) ks) cos(L2x )COS(m”y)

m,n=1

V)*:

0= Z ot 3sen(—) cos(m”y)+ Z o Ky : sen(—) cos(mgy)+
m,n=1 m,n=1

+Za (k( kg(”;J) —k,)sin(X )cos(mgy)+

> (ks T ysin ) cos(Y),

m,n=1

V>

0= ok cos(m)sm(mﬂyﬂ S e (e —)COS(%)Sm(mﬁyH

m,n=1 m,n=1
nz mz nzx m;zy) N

+ Za (- k14——)cos(T)sm( 5

m,n=1
11V/4
=)

S o (k( k7(”t‘J) —k,)cos(ZX )sm(

m,n=1
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. 0 0 R
Now we calculate the coefficientscr, a2, oo sy oy a2, Where m,n e Z , using the
orthogonality of the trigonometric functions. We consider the trigonometric functions

cos(ﬂx) and sin(%y) ,forall v, @ €Z, over the domain 0<x<a, 0<y<h.
a

For each v, @ € N, we do the following:

Taking the integral j I (1 )*cos(vix)sin(%y)dxdy , We obtain:
<x<a a
oyep.
Nz a, b nzx mr Nz mx w Nz
[Kisn (?)]2}; (E)(E) = [05:,‘% (—kl(?)2 -k, (T)2 —ky) + a:,’é (—ky Yy T) +a, n(ky, ?) +

m 0 a, b
(ke =)+ ksl Q)G),

Taking the integral ” (\/I)*cos(vix)sin(ﬂy
a b

0<x<a,
0<y<b.

)dxdy, we obtain:

w Nz 0 Nz Mz 0 Nz mrz a, b
0=[arykis + (=K =) + i (ko == )+ o (ko) e (5 o, G,

\Z

Taking the integral ” (II)*sin(?X) cos(%y)dxdy , We obtain:

0<x<a,
0<y<b.

Nz Mx

Kt (ED M, () =Lt ") 7 (e (O k() k) +

s T =t () s afh (o), )0,

Taking the integral ” \ )*sin(VLX) cos(%y)dxdy , We obtain:
<a a’
82;2&
w, M 0 nz mz 0 Nz Mz a, b
0= [a:‘lr% 3 + an,mkl?, Tﬂ. + ar?lm (_k7 (?)2 - kS (T)z - k9) + ar?rzn (_k14 ?T)]g:; (E)(E)’
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Taking the integral ” (III)"‘sm(VLX)sm(w”y)dxdy,we obtain:

0<x<a,
0<y<b.

[kt . ) =Lty )l ”)+a:m<—k4)<(”§>2+(¥)2)+a§??nkn@+

o (-k )]ml( 2 5)

Taking the integral ” (IV)*cos( )cos(zmy)dxdy,weobtain:

0<x<a,
0<y<b.

0=[a (- klz @ik +a§?:ﬂ(—k5«”§) (—)) L9) M a0k )

Note that P|aB -

Thus for each n,me N we obtain the following Linear System of Algebraic Equations:

()**:
sty 2 = [ (—k, (2 >—k(—) k) + (k=
a a b
w nz
Xy (kll —)+ ar?rsn (_k12 ) + agz kls]’
a b
(1) **:
Kty = [0 (i) T+ :;(—kl(@f—kx”;”f—ksn
w . mrz
an,mkllT_ar?rsn(_kﬂ )‘*’0‘ (ks)]
(1) **:
w g, M w n m 0, M
Ko = [0, o ke S 0 (K + () + e, T+

nrx

ar?gn (_kl3 ?)],
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(IV)**:

mrz nz nz mmz
0= e (b ) ik g (K (07 + (00 ko))

(V)**:
Nz mx

W mz 0 nz mz 0
0 =[ay nkis +apkis =+ (K, (?)2 - kg(T)z —kg) + a2 (K ?T)]'

m b
(VI)**:

Nz mwx

w nz 0 0 nz mrz
0= [O‘:rlnkls +a, (=K ?) + ar?,m (—ky, ?T) + ar?,m (kg (?)2 —k; (T)Z —ky)], ¥n,meN.

0 0 .
, where (a5, a5, an an ik an2) s the unknown vector. Where for each

n,m? n,m? n,m? n,m?
(m,n)e NxN —{(1,1)}, we have a homogeneous system of six equations of six variables.

The coefficient matrix of the system is nonsingular, so the vector solution is the trivial vector
(zero solution). These linear systems have a coefficient matrix and a vector of independent
terms which can vary the nature of the solution, such as in the case for which w, =0, p=0,

& p,=0, p,=0, t,=t, =0 over the domain, the vector of independent terms is zero and

so the system is homogeneous for each (m,n)e Nx N, so if the determinant of coefficient

matrix is nonzero, the vector solution is trivial. If we would like to have a solution for the
system (1)**- (VI)** in which the functions consisting of more than one term. For

example, this is possible if the matrix of the homogeneous system is singular, and of course,
depends of the linear independence of column vectors of the matrix of coefficients, and
essentially of input data of the plate (the material elastic constants «, 8,¢,y, 4, 4 and the size

of the plateh,a&b). Form=n=1, (I1)**- (VI)** is not homogeneous system.
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Linear System (Case:(m,n) = (1,1))

T

E_all( k1( )? kz(%)z_k3)+a11( klO ) all(kll )+0!11( Ky )+0‘12k13’

7 7 7 7 0
Kis P = ayy (ko = B) Ay (_kl(g)z - kz(g)z —ks) +ayiky b +O‘1§,213k12 E"'af} (=Ki3),

T T w T T 0 V4 0 T
ki = a7 (ky E) +a (K B) Ty, (_k4)((g)2 + (E)Z) +oy7 kg a7 (K g)’

b
0=y (k) + ek, ~ et (K0 + (1)) ko),
0=k + gk, - +“1%( k( )_k( )—k)+a (k14 —),

ab

0=k, + (kg )+ (ku + ol (—ky (= )—k( )2 —kq)- Vi)
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3.2.2 Analytical Solution of Reissner Model

We consider the pressure defined by
PO y) =sin(sin(Th), (x,y) <[0,a]x[0,b]
a

into of the bending system for Reissner (2.65)- (2.67). Substituting the derivatives 0, (2.65)
and 0, (2.66) into (2.67) we obtain the following system:

5hE D(l Y D(1+v) D@+) 5hE

120+7) AW+ D[\Pun + ‘112,222] 1122 ‘Pz,uz) 2112 1,122) _m (Wv11 + sz) +
h?v
Y (p +P,)=—
10(1_ V) ( 11 ,22)
5hE 5hE h2y
12(1+v) AW+ DY, 1y + W5 000 + Wiz + Woan ] - 1201+ v) Aw + 100-v) AP =-P
DIA(Y,; +W,,)]+ "V Ap—p (3.78)

B2 01— v) -

Substituting 0, (2.65) and putting (¥, +¥,,) from (2.67) into (3.78):

2
Z1204V) b Ay Y Ap—_p

DA
ohE 10(1—v)

2
12(1+v) AP hy
5hE 10(1-v)

DA*w+ D AP =

Eh®

By definition of D= ——— .
12(1-v7)

Ao Lpy [12(1 31/ ) kv 120+ 1/)]A
D ER° 10(1—v)  5Eh
12(1+v)

Aw=lpy [v—2]AP
D 10Eh
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From definition of the elastic constant E, given by E = M we obtain one formula
+H
for the maximum vertical deflection of the middle plane of the plate corresponding to the

Reissner Model:

2
P2

AW, = e — 3.79
Y% =D 10D(1-v) (3.79)
From (3.72) we obtain the following equation:
w(x,y) = Z ay sm(—)sm(m”y)
m,n=1
m
AW Y) = 3 iy () + (D) sin(=)sin( )
m,n=1
= Zsin(ZysinY) - 12&1_2)) (Ey + Esinsin(Y)
-2p- 10&1_2)) (5 + @ sinsing)
Then integrating over the domain [0, a]x[0,b] we obtain the following equations:
oy =0,v(n,m) = (1,1).
For n=m=1 we obtain the following:
2
v lph=a, 1 L , (3.80)
© D" 10Q-v) T2, N2 T V4

(g) +(B) ((g) +(E))

1 ! +h(2 V)]sm( )sm( ). (3.81)

and W(x,y) = ——————[——— 10(1-v)
D"+ () O+ )’ Y
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Table of Correspondence between A. C. ERINGEN and NOWACKI W. moduli
elasticity

Notations for ERINGEN version for the elastic microstructure constants:
CZE,ILlE,lE,KE,ﬂE,]/E.

Notations for NOWACKI version for the elastic microstructure constants:

a, A, By, €. (3.82)
Sets of elastic constants:
NOWACKI: o M P B y g
ERINGEN: KE c «E AE of ﬂE +7E yE _ﬂE
2 vy 2 2

We obtain the Eringen version in terms of the Nowacki version (used in the Steinberg-
Reissner Model) for the elastic microstructure constants:

k=20, uF=p—a A°=1, aF=p, yF=y+e, pF=y-c (3.83)
Other important correspondence is given by h. :g, between the thickness of the plate of

Eringen Theory h. and the thickness of the plate of Steinberg- Reissner Theory h”(=h).

3.2.3 Analytical Solution of Eringen Model I (€,, =0)

For the bending in the case €, =0, the two-dimensional problem of micro- elasticity (or the

extensional motions of plates) consider the equations from (2.87) to (2.89) and using the
equivalences (3.83) we obtain the following system of equations:

%hg (A+u—a)¥ +§hg (u—a+2a)¥, 4 =20 (u—a+2a)(Y, +W,) +

2he 2a(w, + Ex) =0,

(—)¥,  +(u-a+2a)W, +2aE,Q, +£ =0,

E

(ﬂ+7/_8)Q(lz,lk +(7+5)Q|O,kk +2a&, (¥, _\N,k)_4mlo =0.

for 1:1,2 & k:1,2.

58



Expanding, we obtain five equations:

2 2
ghé (A+u- “)(lpl,n + lPZ,lZ) + g hé (u+ a)(l{’l,ll + LI}1,22) =2h (u+a)(Y, +W,1) +4ahg (Wl + Qg) =0,
2 2
5 hé (A+u _a)(LPLn +\P2,22) +§hé (u +0‘)(\Pz,11 +1P2,22) =2he (u+a)(W, +W,2) +4ahg (Wz _Qf) =0,

P
(u— 0‘)(\{]1,1 + \Pz,z) +(u+ a)(\N,ll + W,zz) + 20‘(_Q|0,2 + Q(Z),l) + I =0,

E

(B+y-— 8)(9111+Q212)+(7+5)(Q111+Q122) 2a(\Y, _W,z)_4an =0,
(B+y— 5)(9121"'92 22)+(7+5)(9211+Qz 22)"'2“(\1]1_\’\/,1)_4059(2) =0,

replacing the series (3.70) to (3.76) we obtain the following series:

20+ - a)( 3~y oo ysin Ty + 3 () (e cos("ysin L)) +

m,n=1 m,n=1

—h3ﬂ+0!)(z ( Yot cos(HZX )sm(m”y)+z ( ) o cos(L2X )sm(m”y))_

m,n=1 m,n=1

2h (ura)( ! cos(@)sm(m;’ ).y ”fa cos(n%x)sin(mﬂy)) +

m,n=1 m,n=1

4ah (z —a cos(—)sm(m”y)+ Z ay cos(—)sm(mﬂy)) 0,

m,n=1 m,n=1

o0

—h3(/1+y a)(z—”” M7 ot sin(22X )cos(m”y)+z ( Y sin(2X . Xy cos(M7Yyy +

m,n=1 b m,n=1

_h3 /u+a)(z ( )2 sz sm(—)cos( )+ Z (_)2 kpz sm( )Cos(mﬂ'y))_

m,n=1 b m,n=1

ZhE(“+“)(Z“ sin(~— )COS(m”y)w“ZT nmsm(—)cos(mﬂy))+

m,n=1 m,n=1

4ah(z Ta sm(—)cos(m”y) Z sm(—)cos(m”y)) 0,

m,n=1 m,n=1
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0

(- a)(z (—) sm(—)sm(m”y +i ( sin(%x)sin(m”y)H

(u+a)(i (—) sin(?)sm(m”y Z ( sm(T)sm(m”y))+
sm(—)sm( )
2 (Z(—)a sm(@)sm(m”yﬂz (n—”)af%sin( Xy sin(™ y))+ a
mon=1 b mn1 & ’ 2he
(B+7- e)(z () e sin(T) cos( )+§ e i) cos(TED) +

7/+8)(z (_)2 ” 5'”(—)003(m7zy)+ z ( )Yal sm(—)COS(m”y))—

m,n=1 m,n=1

Za(zfx 2SC — Z—a sm(—)cos( )) 4aZa sm(—)cos(mﬂy) 0,

(B+7- exz (“—”)(m”) o cos((2X )sm(m”y)+z ( 2 cos(L2X )sn(m”y))
+(7+5)(Z ( )l cos( )sm(m”y)+z ( )l cos( )sm(mﬂy))

+2a(z a“lcos(—)sm(m”y) Z— nmcos(—)sm(m”y)) 4“5:0‘ ! cos(X )Sm(m”y) 0.

m,n=1 m,n=1 m,n=1

By the orthogonality of the trigonometric functions we obtain the following linear system:

[ 222+ - @)Y - 2 e+ @) () + () - 2he e+l +

(3.84)
[—gn—”%h%ﬂw—ana +[-2h (ﬂ+a)—+4ah ]a +[4ahlaf =0,
[—%hé(z+y—a)n—”m]a:,;+[ (D7) 2 e a)——h3(ﬂ+a)((—) 5
a b b a (3.85)

(?)2)—2hE(y+a)]a +[-2h (,u+a) +4ah ]a +[-4ah ]an =

[(u—-a) n—”]arf,; =22 —a)la,: +[(u ra) (2 + (@)2)]0% +
a b a b
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, , sm(—)sm( )
[Zam]a?m[—zan—”]aﬁ’;n a b 3110m1 =0, (3.86)
b~ " a " 2he

[-2eee)y +[2a 2ty + (B + 7 =)o) =+ (o) + ()
a a b

Nz mz o _

—4a]a +[ ?—(ﬂ+7/ g)]a (3.87)
[2a)ats +[- 2a—]a Bty )”—”m”]a o
[-(B+y- 8)(—) —(7+8)((—) +( ) )—4a]at = (3.88)
3.2.3.1 Analytical Solution for the Elastic (Classic) Materials
Taking 0, (2.90) we obtain the following:
(h?)? (h?)?
12 (A+ /U)(qjl,ln + \P2,112) + ? ﬂ(‘{"l,lll + \PMZZ) - :u(lyl,l + W,11) =0,
ay(2.91) :
%(ﬂ +,u)(‘l’1)122 +\'112,222) +%ﬂ(\yz,nz +\yz,zzz) _ﬂ(\}’z,z +W,zz) =0,
Putting (2.92) into 0, (2.90) +0,(2.91):
hp h? P
O o+, + O s, 1,2 <0
-12P
AV, +¥,,)=—F—— 3.89
( 11 2,2) (l+2’u)(hp)3 ( )
A(2.92):
—AP
A(\Pl,l +\P2‘2) + A( AW) = F (390)
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Putting (3.89) into (3.90), we obtain a formula for the maximum vertical deflection of the
middle plane of the plate corresponding to the Eringen Model I for the Elastic (Classic)
Materials:

pgp! AP 12 (3.92)
w20’

A = —AP _Au(A+p) P (3.92)
hpy (A+2u)* D

We (X, Y) = Z ol sm(—)sm(m”y)

m,n=1

1 Au(A+ p) 1
[ : ]sm(—)sm( ) (3.93)
(Cy () P20 Dy + () W

we' (x,y) =

3.2.4 Analytical Solution of Eringen Model Il (t,, =0)

Substituting the equivalences (3.83) into the corresponding equations of bending (2.95) to
(2.97), we obtain the following system:

1(h") (,u(3/1+2,u) 1 —20)¥ 1(hp) (,u(3/1+2,u) 1
212 (A+p) A “T 2 ) g, 2
2(4+ p) 2(A+ p)

+2a)¥,

—h?(u-a)w, —h°(u+a)¥, +2ah”E, Q) =0,

(u—a)¥y +(u+o)w, + ZaElefyk +h_F:’ =0,

(CH‘ﬂ)QE,lk +7'Q?,kk +22&, (¥, —W,) — 40 =0.
for 1:1,2 & k:1,2.
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Expanding, we obtain six equations:

(h")? (HBA+2p)
12 (A+2u)

(h?)? Pl _
a)(‘{jl,n+‘Pz,12)+?(/u+a)(l}ll,u"'qjl,zz)_h ('u a)Wl (394)

—hP(u+a)¥, +2ah®QS =0,

hP)3 31+2 hP)3
( 12) (/u((;t +-;'u/;l) - a)(\PLu + \Pz,zz) + % (pe+ a’)(\'Pz,n + "Pz,zz) —hP (- a)W,z
(3.95)
—h°(u+a)¥, -2ah’Q? =0,

(4= )P+ ¥+ (i @)y W) ~2000, + =0, (3.96)

(=)W + W)+ (@) W) + 200, + =0, (3.97)

(@+ B, +Q) +7( Q) + QL)+ 2a(W, —W,) — 40 =0, (3.98)

(0! + ﬂ)(Qizl + Qg‘zz) + 7(92,11 + Qg,zz) + 205(\[1'1 - W1) - 40‘§22 =0. (3 99)

So we obtain one important property: Q9. =-Q9, .

Replacing the series (3.70) to (3.76) into (3.94) to (3.99) we obtain the following series:

o () @i+ 2p) T w N ma o (h°)
mgl{?( (l+2ﬂ) —0!)[—(—) P m (a)( b )an,m]+ 12 (IU+(Z) (3100)
[0~ (OO arts, ~ 0 (=)l et~ P (ua + )™ + 2ah e Yoos(Tr) sin(TeY) =0,
a b ’ a~ " ' a b
" ﬂ/l@i"‘zﬂ)_ Ny M7y g MT oy,
SO, gy DG~ (] +

O+ -y~ (M) e (- ), P (u+ @)’y — 2P oin( ") cos( ™) o,
12 a b ‘ a~ " ' ‘ a b
(3.101)
< Nz v, M7 4y, N7 MTo0 w
mél{(ﬂ_a)[_?an,m b an,m]+(:u+a)[ ( a) ( b ) ]an,m (3102)
m o nzx, . mry 5n,15m‘lp
—2a]- Tﬁ]anvm}sm(%)sm(%) =0,
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El{(“ -y i (e ) () e + (3.103)
2a[——]a92}sm( )sm(m”y) 5~f§'1pzo,

m;{(aw)[ O gl =D 1+ Aoy () et (3.104)
+20:[Ta —at]- 4aa91}sm(—)cos(m”y) 0,

m;{<a+ﬂ)[ O ~ (Y il A0 ~ () Tagh + (3.105)

2afa’ —%a 1-4aa yeos(ZX )sm(m”y) 0.

3.2.4.1 Analytical Solution for the Elastic (Classic) Materials

Taking 0,(2.99) +0, (2.100) we obtain the following equation:

h®)® (34 +24) (hP)?
(12) #((/1+2 I;l (T1111+q12,121+q11,212+l{12,222)+ 12

- hp/u(vv,ll + W,zz) —h p/u(LPm + \Pz,z) =0

/U(lpun + lPl mt le 1wty 222)

(h*)* p(3A+2u) (h*)’ _
12 (A+24) AW +Woo)+-— 12 HA(Y +F5)) (3.106)

hp,u(w,n + W,zz) —h? /u(l{jl,l + lIJ2,2) =0,

From (2.101) and (3.106) we obtain the following:

h?)®  31+2
%ﬂ(ﬂ 21u+1)A(lP11+LP22) hp/u(_) 0 (3107)
4h°)° A+u
A —A P=0
B ;t(/1 2 ) ( w) +
A2 3 A+2u, 1 g

TNV Atu

sy L [ 3 A+2u

—A]P,
WP (P A+
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we obtain one formula for the maximum vertical deflection of the middle plane of the plate
corresponding to the Eringen Model 11 for the Elastic (Classic) Materials:

Aot — L ap P where po#Atrm(’) (3.108)
: uh® D 3(1+2.)
Note: u=G.
From w2'"(x,y)= Z ay sm(—)sm( ) we obtain: (3.109)

m,n=1

Awa—Zam« (= ))mm )mﬂ”%

m,n=1

P L ap = Lain@™ysinMeYy , 1 ((”—”) L ))sm( )sm(m”y)
D a b hPu

D uh?
i (Ey + Y 22 <[+ HF*() NARILES
where o, =0,v(n,m) = (1,1).
)y = ! [ L bt (3.110)

(EF+() DI +()) h*p

Then:

(xy) = ————[———
T 2 T 2 T 2 T 2
Gy ) @)

OII

]sm(—)sm( ). (3.111)
j h? a
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CHAPTER 4

COMPARISON OF THE THEORIES

4.1 Comparison Based on the Analytical Solutions

Consider the expression for A*w of the vertical deflection of the middle plane of the plate
“w ”obtained after the reduction (restriction: « =g =y =0) of the Eringen Model Il (t,, =0)

and of the Reissner Model, respectively :

V! L yp, P
uh? D
and

PN\2(,,
A, =) =2) \p P

" 10D(1-v) D’

And then we proceed to compare the coefficients of AP:

P)3 2
ﬂ we obtain E :M

From the definition of D, D = > 3
12(1-v?) (h*)

D and substituting

E  120-v)D 6(1-v)D

= = = , and then:
2(L+v)  2(1+v)(hP)® (h?)?

intop: wu=G

_ —(hP)? Py [ _
L = (h) = (h) (—1j Finally we compare the coefficients of AP for
uh?  6Q1-v)D (@-v)D\ 6

the reduction of Eringen Il and Reissner:

(h")*(v-2)
Coefficient of AP in the formula for A’w, ~ 10D(1-v) _3(2-v) _19-0.6v
Coefficient of AP in the formula for A>w2" = 5 o
uh?

=0.6(2-v).
The slope of the straight line is -0.6 with intercept 1.2. In our experiments we consider
v =0.339 with 1 =2186 and « =1029, and then we have:

Coefficient of AP in the formula for A*w,
Coefficient of AP in the formula for A*w?"

=0.6(2-0.339) =0.99 =1.
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L p=0(-2) \p

~uh® T T 10D(-v)
and then
PN2(.,
—LAP-FEEMAP'FE
1h? D™~ 10D(1-v) D
AW = APw, .

Simple comparison of these two equations leads to the conclusion that difference between
two solutions should be small.

4.2 Comparison Based on Numerical Computations

We compare the maximum vertical deflection of the middle plane of the plate-w
corresponding to the six models of elastic plates. The microstructure is determined by
additional elastic material constants, related with asymmetric elasticity property. We study
effect of microstructure at different levels: 1%, 10%, 100% , which means that the elasticity
constants related with the microstructure (3.82) «, 8,7 & ¢ are divided by 1, 10, 100, or

others numbers respectively. Note that elastic contacts A, u, related with macrostructure, we
keep the same values. Also, we compare the rotation vector (with axis: x_) in the middle
plane of the plate- ¥, the displacement of the middle plane along x -axis: U_, the micro-
rotation vector in the middle plane- Q° , and the instant rate of micro-rotation change long x, -
axis: Q, corresponding to the models of elastic plates.

We consider the quadratic plate, which is made of syntactic foam (lightweight engineered
foam consisting of glass hollow spheres embedded in a resin matrix), has the following
elastic constants for our material in consideration [24]: h=0.1m,E=2758 Mpa,

G =1029.1 Mpa, v=0.34, 1, =0.065 mm, I, =0.033, N°=0.1, ¥ =15 and then we find
the other constants such as D = 0.2598749 and also the values of thek; as a functions of the
elasticity constants related with the microstructure.

Exist important relations between thek; :

k14:k7_k8’ k4:_k3' k13:O-5k9’ k1:k2+k101 k6:2k12'
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The following graphs shows different values ofa(h)‘on the X-axis. The value of “h”

remains constant (equal to 0.1 in our case) while the value of “a”, the side of the square
begins to increase from 0.5 to 3.

For our case we consider the following values of the elastic material constants corresponding
for the technical constants h, E, G, v, |, |,, N and \¥':

a=114, 1=2186, p=-2.898, y=43, £=0.135 «=1029.1.
Remarks:

The effect of microstructure is considered in 100% if the elasticity constants related with the
microstructure «, B,y & ¢ are multiplied by 1,

The effect of microstructure is considered in 10% if the elasticity constants related with the
microstructure «, B, & ¢ are multiplied by 0.1,

The effect of microstructure is considered in 1% if the elasticity constants related with the
microstructure «, B,y & ¢ are multiplied by 0.01, etc.

“The continued loss” of the asymmetric part (as illustrated in the Steinberg-Reissner Model),
as the elasticity constants related with the microstructure converge to zero makes such a
maximum vertical deflection ratio between two models go for 1, as is the case of Steinberg-

Reissner over Reissner, moreover this happens in a neighborhood of %: 5.
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Figure 4.1 Maximum of Qg Corresponding to Steinberg-Reissner Model
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Figure 4.2 Maximum of ¥, Corresponding to Steinberg-Reissner Model
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Figure 4.3 Maximum of ‘¥, Corresponding to Steinberg-Reissner Model
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Figure 4.4 Maximum of ‘¥, Corresponding to Eringen Model 11
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Figure 4.5 Maximum of ‘¥, Corresponding to Eringen Model 11
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Figure 4.6 Maximum of ¥, Corresponding to Steinberg-Reissner Model over Maximum

of ‘¥, Corresponding to Steinberg-Reissner Model with 0.001% (level of Microstructure)
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Figure 4.7 Maximum of ‘¥, Corresponding to Steinberg-Reissner Model over Maximum

of ¥, Corresponding to Steinberg-Reissner Model with 0.001% (level of Microstructure)
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Figure 4.8 Maximum of ‘¥, Corresponding to Eringen Model Il over Maximum

of ¥, Corresponding to Eringen Model Il with 0.001% (level of Microstructure)
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Figure 4.9 Maximum Vertical Deflection of Steinberg-Reissner Model over Maximum
Vertical Deflection of Reissner Model
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Figure 4.10 Maximum Vertical Deflection of Steinberg-Reissner Model over Maximum
Vertical Deflection of Eringen Model |
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Figure 4.11 Maximum Vertical Deflection of Steinberg-Reissner Model over Maximum
Vertical Deflection of Eringen Model 11
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Figure 4.12 Maximum Vertical Deflection of Eringen Model Il over Maximum
Vertical Deflection of Eringen Model |
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Figure 4.13 Maximum Vertical Deflection of Reissner Model over Maximum
Vertical Deflection of Eringen Model 11 for the Elastic (Classic) Materials
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Figure 4.14 Maximum Vertical Deflection of Eringen Model | for the Elastic (Classic)
Materials over Maximum Vertical Deflection of Reissner Model
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Figure 4.15 Maximum Vertical Deflection of Eringen Model I for the Elastic (Classic)
Materials over Maximum Vertical Deflection of Eringen Model 11 for the
Elastic (Classic) Materials
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Figure 4.16 The Maximum of Micro-rotation Vector Qf for Steinberg-Reissner Model
Converges to Zero
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Figure 4.17 The Maximum of Micro-rotation Vector Qf for Eringen Model Il Converges to Zero
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Figure 4.18 The Behavior of the Maximum of Micro-rotation Vector Qf for Steinberg-
Reissner Model as a function of « in a Neighborhood of Zero
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Figure 4.19 The Behavior of the Maximum of Micro-rotation Vector Qf for Erigen
Model Il as a function of « in a Neighborhood of Zero
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Figure 4.20 Maximum of Rotation Vector ‘¥, of Steinberg-Reissner Model over

Maximum of Rotation Vector ‘¥, of Eringen Model I1
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Figure 4.21 Maximum of Rotation Vector \Pz of Steinberg-Reissner Model over Maximum of Rotation Vector \Pz
of Eringen Model 11
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Figure 4.22 Maximum of Micro-rotation Vector Qf of Steinberg-Reissner Model over

Maximum of Micro-rotation Vector Qf of Eringen Model 11
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Figure 4.23 Maximum of Micro-rotation Vector Qg of Steinberg-Reissner Model over

Maximum of Micro-rotation Vector Qg of Eringen Model 11
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Figure 4.24 Maximum of Micro-rotation Vector Qf of Steinberg-Reissner Model
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Figure 4.25 Maximum of Micro-rotation Vector Qf of Eringen Model 11

93



Figure 4.26 Maximum of Micro-rotation Vector Qg of Steinberg-Reissner Model
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Figure 4.27 Maximum of Micro-rotation Vector Qg of Eringen Model 11
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Figure 4.28 The Behavior of the Maximum of Micro-rotation Vector Qf for Steinberg-

Reissner Model as a function of & in a Neighborhood of Zero
(see Figure 4.18)

96



Figure 4.29 Maximum of the stress component M, , for Steinberg-Reissner Model
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Figure 4.30 Maximum of the stress component M., for Steinberg-Reissner Model
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Figure 4.31 Maximum of the stress component M,, for Steinberg-Reissner Model
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Figure 4.32 Maximum of the stress component M., for Steinberg-Reissner Model

100



Figure 4.33 Maximum of the couple-stress component I, for Steinberg-Reissner Model
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Figure 4.34 Maximum of the couple-stress component I, for Steinberg-Reissner Model
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Figure 4.35 Maximum of the couple-stress component I, for Steinberg-Reissner Model
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Figure 4.36 Maximum of the couple-stress component TI,, for Steinberg-Reissner Model
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Figure 4.37 Maximum of the stress component ¢, for Steinberg-Reissner Model
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Figure 4.38 Maximum of the stress component (], for Steinberg-Reissner Model
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Figure 4.39 Maximum of the stress component ql* for Steinberg-Reissner Model
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Figure 4.40 Maximum of the stress component q; for Steinberg-Reissner Model

108



Figure 4.41 Maximum of the couple-stress component SI for Steinberg-Reissner Model
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Figure 4.42 Maximum of the couple-stress component S; for Steinberg-Reissner Model
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Figure 4.43 The Maximum of Micro-rotation Vector Qg for Eringen Model 11
Converges to Zero
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4.3 CONCLUSIONS

1. The Maximum Vertical Deflection of Steinberg-Reissner Model is always less than the
Maximum Vertical Deflection of Reissner Model as we show in the figure 4.9, but according
as the size of the side of the square “a” is smaller (close to a=0.5) with respect to the
thickness of the square “h”(for this experiment we keep constant h=0.1). The Maximum
Vertical Deflection of both models are near to mach (not only fora = 0.5, if not also for other
values of “a” from 0 .5 to 3) while the effect of the microstructure decreases gradually from
100% to get to be 1%, almost disappear.

2. The Maximum Vertical Deflection calculated using the Eringen Model 11 is greater than
calculated using the Reissner Model, but are close when it loses the effect of the
microstructure from 100% to 1% and the size of the side of the square “a” go see becoming
smaller (close to a=0.5) with respect to its thickness “h”(for this experiment we keep
constant the value of h=0.1), but they do not become equal by a sufficiently small error

equal to [3.63*10°°| (we obtain [4.678*1077| when the effect of the microstructure is .001%).

Then by transitivity the Eringen Model 11 and our model (the Steinberg-Reissner Model) are
also close but they not converge. We show this behavior in the figure 4.11.

3. The modules of micro-rotation vector in the middle plane QYand QS converge to zero as
the effect of microstructure disappears for the case of the models Steinberg-Reissner and
Eringen I1. This is shown in the Figure 4.16 that the Maximum of Q° for Steinberg-Reissner
Model Converges to Zero and the Figure 4.17 we show that the Maximum of Q° for Eringen

Model 11 Converges to Zero, for the case of Q7. Also the same applies to the case of Q) for
both models.

4. In the Figure 4.18 and Figure 4.19 the Behavior of the Maximum of Q} as a function of «
(with « in a Neighborhood of Zero) for Steinberg-Reissner Model and Eringen Model I,
respectively are examples in the which Q°[«] behaves as a function of « , with the property
that Q°[er,10 "] =10Q[x, 10~ for some “n large enough and some number , . This is

even more general: Q[aC]=CQ’[«], whena is in a Neighborhood of Zero and for any
real constant C such that« and «C both also are in a Neighborhood of Zero. In other words
we have that “The function Qsatisfy the homogeneity property (corresponding to the
definition of linear transformation) in a Neighborhood of Zero”. This interesting property is
true for QY in both models, the Steinberg-Reissner Model and the Eringen Model I1.
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APPENDIX A

ELLIPTICITY OF THE FIELD EQUATIONS OF THE STEINBERG-REISSNER
MODEL

The principal part of the system of the Field Equations (2.48) (seen as (C.1)) is given by
the following matrix:

kel +k,el  KygE, 0 0 0 0
koeie,  K,gf +kel 0 0 0 0
P(x,€) = 0 0 k,(e2+&2) 0 0 0
0 0 0 k(] +£2) 0 0
0 0 0 0 kel +kees  Kuee,
0 0 0 0 koo, kel +kel

This matrix has determinant different of zero for all non-zero vectors & =(g,, &,) inR?, i.e.
the system of the Field Equations (2.48) is Elliptic.

Let &= (g,¢,)#0 any vector in R?,

det[P(x, £)]= (k! + k55 ) (k8! +kig3) —kipels;)

Ky (&7 + 87K (&7 +87) (Ko7 +Keer )(K &5 +koer) —kiyere3)

= (kk, (& +&)+ (K +k; - klzo)glzgzz)(k7k8 (s +&5) +

(2 4K K)ok e + )

= [kk, (& +27) + (K + k5 —kp)el el 1(ef +&7) kkek ks (& +&7)°

k2 +k2 - K2

= klkZ[(glz _522)+(2+ K 10)512822](512 +522)4k7k8k4k5
1K

2 2
= Kk, [(£2 —£2)* + ((k, + 'le Kio) 262](e2 + £2) K Kok k.

2
= [kk, (& —£7)° + 2k, (k, +k, + k)& e71(e] +&7) Krkek ks >0

Bellow we prove the following inequalities:

k., K,, kK +k, +k,, and Kk k;k,k; > 0.
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We have:
(ef —£7)* =0,

We have the following definitions:

k,==D(@-N?),
K, = D(l—v)’
2
 D(@+v-2N?)
klo .:f-

By the coercivity conditions (1.12) and Cosserat elastic energy we have u+a >0,

From 34+2x>0and x>0, we obtain:

l>_2ﬂ,
3
ﬂ+2,u>l+,u>y—%l>§>0.
And then:
3
DM+ g

3(A+2u)

(@) k +k,+k,, k, and k >0:
20470 (A + 1)

k, +K, + Ky, =2k, = 2D[1-N?] =

3(A+2u)(u+a)
2@:kfng—mw:ga—v)

_D(A+2u) 50

2(A+ u)

and also k, >0.
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(b) Kkk.k,>0:

Fromy >0 & 34+2y >0, ﬂ>_—§7. Then:

+ >i+ :Z>O, and
B+y 3 7773

ﬂ+2y>:§Z+2y=£Z>O

3
And then:
o wop__2r _2AB+y)
(B+2y) ﬂ+27
ﬁ=1>Q
y7i
@z 17y =4 U9 7 _E
dp poop
12=7"¢ 0.
b 4y
And then;
[2K,; (mz—l)&]
ks = 21?2 >0,
k, =5h(1-N )c-;|2(2 *) O5hE5 |2(2 ).
Ky s 2

k, =10h(1— N2 ) =100 252> 0.
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APPENDIX B

NUMERICAL SOLUTIONS AND PROGRAMS IN MATHEMATICA FOR PLATE
THEORIES

In this appendix we show additional tables related to subchapter 4.2 (look at this subchapter).
Also the corresponding files for some figures.

Input Data

We consider the quadratic plate with the following technical constants for our material in
consideration [24]:

h=0.1m, E=2758 Mpa, G=1029.1 Mpa, v =0.34,
l, =0.065 mm, I, =0.033, N*=0.1, ¥=15

The following values of the elastic material constants are in correspondence with the
technical constants (h, E,G,v,l,,I,,N and ¥ ):

a=114, 1=2186, f=-2.898, y=43, £=0135 1 =1029.1.

Following, some programs in MATHEMATICA 4.1, used for comparison between solutions
of the plate models.
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Constants Used to Define the System of Linear Equations
Corresponding to Steinberg-Reissner Model

h3 42 (A+ p) (32+2p)
12 (a+ ) (0.75 A2+ 2 A 2+ p22)

ki[fa , A , 2 , h_}] :=

0.0417h3 2 (0.5 A +p) (32 +2 p)
0.75° A2 + 2 A 2 + 2

k2[fA , 2 , h_}]:

0.4167 h g (3 + 2 )
1.5 A+ p

k3[{A_ , 2 , h_}]:

0.1667h3 5 (0. y+ 1.  €) (0.5 A+ p) (32+ 2p)

ki[{a , A , ¥ , € # ,h }]:=
ARCHIRR SRS e (¥ +€) (a+p2) (0.75° A2+ 2 A e+ p22)

h3 ap (0.5 A+p) (32+24pu)
6 (a+2) (0.75° A2 + 2 Ay + p2)

ké[{fa , 2 , ¢ , h }]:

1.6667Thy (B+¥) 2 (3A+2p)
(B+2%) (a+p) (1.5 A+ p)

k1[{a , 2 , B , % , 1 ,h_}]:

0.4167h (¥ + €) 2 (3 A+ 2 )
(e +2) (1.5 A+ p2)

k8[{a , X , ¥ , €, ,h }]:

1.6667h ap (3 A+ 2 )
(ee+p2) (1.5 A+ p2)

k9[fa , A , 2 ,h }]:

0.4167h g (-a+ ) (3 A+ 2pu)

k11 r A, R i
Ifaie X B} (a+#) (1.5 2+ p)
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Matrix of the System of Linear Equations Corresponding to Steinberg-Reissner Model
(SteinbergReissnerMatrix)

and

Vector of Constants (SteinbergReissnerSourc)

SteinbergReissne¥atrix[{a ,A , 6 ,¥ ,€ ,#,h ;a ,b ,ph }]:=

ph?Ki[{a, A, 1, h3] PR2K2[@A, &, h}] ph? Ki[{a X, 1, h3] -K2[@R, &, h}])
{t- > - +k3[Q, 12, W}, ;
a b2 ab
phKI1[{a, X, 1, h3] 0.5 phk6[{a, X, 12, h}] :
o ,0,0.5 K[{& X, & W31},
a b
ph? KL[{a, X, 2, 3] -K2[QR, &, h3]})  ph2Ki[{a R, £, h3] DPh2K2[Q, g, h3]
{- : = +K3[Q, g, h31,
ab h2 a2
phKI1[{a R, £, h3] 0.5 phk6[{a, X, 12, h}] )
.- , -0.5" K9[{a A, g, h3], 0},
b a
phKil[{a, R, &, h3] phkil[{a X, & h}] [ph? ph? 0.5 phk9[{a A, &, h}]
{ . i =+ — [BIR & 131, 0, i
a b ] az p2 b
0.5’ phK9[{a, X, 1, h}]} ( 0.5 phks[{o; A s h}] 0.5 phM6le, A i W)
a ’ h ’ a ’ ’
{ ph2 ph2)
|-— -— | ¥51{a A, ¥, € &, W3] -k6[{a A, 1 h3], 0, 0},
l a2 b2
. 0.5 phK9[{a A, g, h}]
{0, 0.5 K9[{a 2, 1, 31, 3 .0,
ph2K1[{a, X, B, ¥, it i3] Ph2K8[{a, R, ¥, €, 12, h3]
E % -K9[{a, &, &£, h3}],
a2 h2
ph? (K7[{a X, B, %, i, W3] +k8[{a, X, ¥, €, i, h}]) }
a_b ’
. 0.5 phK9[{a A, g, h}] ph? K?[{e, &, B, ¥, 1, W3] -K8[{a X, ¥, €, 2, h}])
{0.5" X9[{e X, 1 W3], O, .0, ;
a ab
ph?K?[{a, A, B, ¥, 12, h3] PRPKB[{a A, ¥, €, 12, h}]
+ +K9[{a X, 1 M1}}
b2 a2
0.1571h2 A p 0.1571h2Ap it

SteinbergReissnerSourc[{a , A , # ,h ,a b }]:={ ,0,0,0}

a(a+m (0.5 A+g) barg) (0.5 A+g) arp
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Functions Used to Define the Maximum of Each Unknown Function of the System of
Linear Equations Corresponding to Steinberg-Reissner Model

(The Tikhonov Regularization Method has been applied)

MaxydRotationVectorSteimbergReissnerTikhonovRegularization [
{fa,XA,8,%¥,€,2,h ,a,b , ph , t , FactorTikhonovRegularizationEffect }]:=
{Inmse [Transpose [SteinbergReissneMatrix[{aft, A, /t, ¥ft, eft, u, h, ax0.1,b«0.1, ph}]].
SteinbergReissnerMatrix[{aft, A, §ft, yft, eft, g, h,ax0.1, b«0.1, ph}]+
FactorTikhonowRegularizationEffect” » Tdentitatrix [6] |.
Transpose [SteinbergReissnerMatrix[{aft, A, /t, y/ft, eft, o, h, ax0.1,b«0.1, ph}]].

SteinbergReissnerSowrc [{aft, A, &2, h, a»0.1, b« 0.1}]}[[1, 1]]

MaxyiPRotationVectorSteinbergReissnerTikhonovRegularization [
{fa,A,8,%,€,2,h ,a,b , ph , t , FactorTikhonovRegularizationEffect }]:=
{Imrm'se [Transpose [SteinbergReissneMatrix[{aft, A, /t, ¥ft, eft, u, h, ax0.1,b+0.1, ph}]].
SteinbergReissnerMatrix[{aft, R, §ft, yft, €ft, g, h,ax0.1, bx0.1, ph}]+
FactorTikhonowRegul arizationEf fect? » Identitatrix [6] ] ;
Transpose [SteinbergReissnerMatrix[{aft, A, gft, y/ft, eft, g1, h, a»0.1,b«0.1, ph}]].
SteinbergReissnerSowrc [{a/t, X, & h, a0.1, bx0.1}]}[[1, 2]]

MaxwWerticalDeflectionSteinbergReissnerTikhonovRegularization |
{fa,2A,8,%,€,2,h,a,b  ph , bt , FactorTikhonovRegularizationEffect }]:=
{Inmse [Transpose [SteinbergReissnerMatrix[{aft, A, /t, y/ft, eft, g, h, ax0.1,bx0.1, ph}]].
SteinbergReissnerMatrix[{aft, A, §ft, yft, eft, g, h,ax0.1, bx0.1, ph}]+
FactorTikhonowRegularizationEffect? » Identitatrix[6] |-
Transpose [SteinbergReissnerMatrix[{aft, A, /t, y/ft, eft, g, h, ax0.1,b«0.1, ph}]].
SteinbergReissnerSowrc [{aft, A, g2, h, a»0.1, b« 0.1}]}[[1, 3]]
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Max@i3DerivativelficrorotationSteinbergReissnerTikhonovRegularization|
{fa ,A,6,%¥,€,u2,h,a, b, ph,t , FactorTikhonovRegularizationEffect }]:=
{Inverse|Transpose[SteinbergReissnerMatrix[{a/st, X, §/7t, ¥/t , e/t , u, h, ar0.1, b« 0.1, ph}]].
SteinbergReissnerMatrix[{a/st, A, 57t, y7t, e/t p, h,ax0.1, bx 0.1, ph}] +
FactorTikhonovRegularizationEffect? » IdentityMatrix[6] ]
Transpose [SteinbergReissnerMatrix[{a/st, A, /t, y7t, est, u, h,ax0.1,bx 0.1, ph}]].
SteinbergReissnerSourc[{a/7t, A, ¢, h, ar0.1, b«0. 1}]}[ [1, 4]11

MaxQi01MicrorotationVectorSteinbergReissnerTikhonowRegularization[
{fa ,A ,6,%,€,2,h ., ,a, b, ph ,t 6 FactorTikhonovRegularizationEffect }]:=
{Inverse[Transpose [SteinbergReissnerMatrix[{a/t, X, §/t, ¥/t, €/t, u, h, ax0.1, b 0.1, ph}]].
SteinbergReissneMatrix[{a/t, A, f/t, y/t,e/t,u, h, ax0.1, b+ 0.1, ph}] +
FactorTikhonowRegulari zationEffect? « Identit.yl&atrix[ﬁ]] i
Transpose [SteinbergReissnerMatrix[{a/t, A, §/t, ¥/t, eft, u, h,ar0.1, bv 0.1, ph}]].
SteinbergReissnerSowc[{a/t, A, i, h, ax0.1, b« 0.1}]}[[1, 511

Max0 2ficrorotationVectorSteinbergReissnerTikhonowRegularization[
{a ,A ,B,%¥,€,2,h,a. b ,ph  t , FactorTikhonovRegularizationEffect }] :=
{Imrerse[Transpose[Ste:inhengﬂeissmrl{atrix[{alt, A, Bit,yi/t,eft, u, h,ar0.1, br 0.1, ph}l1].
SteinbergReissneMatrix[{a/t, A, §/t, y/t,eft, p, h,a~0.1, b« 0.1, ph}]+
FactorTikhonowRegularizationEf fect® r»IdentityMatrix[6] ] s
Transpose[SteinbergReissnerMatrix[{a/t, A, §/t, y/t, e/t p, h,a»0.1,bx0.1, ph}l].
SteinbergReissnerSowc[{a/t, A, 2, h, arx0.1, br 0.1}]}[[1, 611
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Formula Used to EringenlIMatrix (Corresponding to the Matrix of the System of
Linear Equations of Eringen 11 Model) and Formula to EringenliSourc
(Corresponding to the Vector of Constants of the Linear System of Eringen 11 Model)

EringenIIMatrix[{a ,A , 8 , ¥, ,h ,a ,b ,ph ,m ,n }]:=

h3n2ph2 ‘—a+ —31“'2”2‘ 1131111119112 ‘—a+ —34\;»2;3 )
1, n2pn?  n2pn? ) xzp ) A2 p
{{-h (@+p) + — h° |- = (c+ g2) - ;= 7
12 h2 a2 12 a2 12ab
hnph (-a+ ¢
-#, 0,2ha},
a
hemaph® Lo 22m2il { m2oh2  n2oh2 ) h3m2ph? [ o, 32242 )
ll A2 gt 1 .| m“ph® n°ph 'l A2 2
{— ; -h (@+p) + — h* |- - (c+g2) - ,
12 ab 12 h2 a2 12b2
hmph (- + 1) nph (-a+z#) mph (-a+z) | m2ph?  n2pn?) 2mph «
-———, 2na, 0}, {- ;- |- - (a+82), . o},
b a b h2 a2 b
2mph a n? ph? (a+ B) { m2phZ  n2ph? ) mnph? (a+ B)
{0t -2 Q, ’ -4 a- + |- o ¥ - }I
a2 h2 a2 ah
2npha mnph? (a+ B) m2ph? (a+ B) { m2phZz n2pn? )
{2al 0, .- ;s 2 a- + |- - “g}}
a ab h2 h2 a2

EringenIISourc :={0, 0, -10, 0, 0}

Following, we write the formulas used to the Maximum of each unknown function of the
linear system of equations corresponding to Eringen 11 Model. The Tikhonov Regularization
Method has been applied.
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MasqiRotat ionVect orEringenTITi khonovRegularization[
{fa .2 ,8.y,.2,.,h,a.,b ph m, n, t 6 FactorTikhonovRegularizationEffect }]:=
{Inverse [Transpose [EringenIDiatrix[{a/t, A, $/t, w/t, ., h,ax0.1, bx 0.1, ph, m, n}]].
ErvingenTMatrix[{aft, A, g/t, w/t, ., h,ax0.1, bx0.1, ph,m, n}]+
FactorTikhonovRegul ari zationEffect” » IdentityMatrix[5] ] .
Transpose[EringenTDMatrix[{a/t, A, $/t, w/t, p, h, ax 0.1, b»0.1, ph, m, n}]].EringenTISowrc }[[1, 1]1]

Max@Rotat ionVect orEringenTITi khonovRegularization[
{fa .2 ,.8.y.2,.,h,a.,b ph m, n, t 6 FactorTikhonovRegularizationEffect }]:=
{Inverse [Transpose [EringenIDiatrix[{a/t, X, $/t, w/t, i, h,ax0.1, bx 0.1, ph, m, n}]].
EringenITDMatrix[{aft,6 A, gft, w/t, 2, h, av0.1, bx0.1, ph,m, n}]+
FactorTikhonovRegul ari zationEffect” » IdentityMatrix[5] ] .
Transpose[EringenTDMatrix[{a/t, A, $/¢t, w/t, £, h, ax 0.1, bx0.1, ph, m, n}]].EringenTISowc }[[1, 2]]

MassierticalDe flectionEringenI ITikhonovRegularization [
{fa ., 2,8 .y.2,.,h,a b ph m, n, t 6 FactorTikhonovRegularizationEffect }]:=
{Inverse [Transpose [EringenIDiatrix[{a/t, X, $/t, w/t, , h,ax0.1, bx 0.1, ph, m, n}]].
EringenTMatrix[{aft, A, g/t, y/t, pu. h,ax0.1, bx0.1, ph,m, n}]+
FactorTikhonovRegul ari zationEffect” » IdentityMatrix[5] ] .

Transpose[ErvingenTIMatrix[{aft, A, g/t, y/t, ., h,ax0.1, bx0.1, ph, m, n}]].Et'iJmtI[Souxc}[[l, 3]1]

Max001Microrot ationVect orEringenI ITi KhonovRegularization[
{fa ., 2,8 .y.2,.,h,a b ph m, n, t kA FactorTikhonovRegularizationEffect }]:=
{Inverse [Transpose [EringenIDiatrix[{a/t, X, $/t, w/t, iz, h, ax0.1, bx 0.1, ph, m, n}]].
EringenTIMatrix[{a/t,K A, gft, wit, pu. h,ax0.1, bx0.1, ph,m, n}]+
FactorTikhonovRegul ari zationEffect” » IdentityMatrix[5]].
Transpose[EringenTIMatrix[{a/t, A, g/t, y/t, 2, h, ax 0.1, bx0.1, ph, m, n}]].Brinwa[Som:c}[[l, 4]]
Max02Microrot ationVect orEringenI ITi khonovRegularization [
{a .2 ,8.%¥.2.h,a b ph m,6 n, t A FactorTikhonovBegularizationEffect }]:=
{Imrse['l‘ranspose[krin;enlnhtﬁx[{alt, A, Bft,y/t, g, h,ax0.1, bx0.1, ph,m, n}]].
EringenIIMatrix[{a/t,6 A, gft, y/t . h,ax0.1,bx0.1, ph,m, n}]+
FactorTikhonovRegul ari zationEffect” » IdentityMatrix[5]].

Transpose [EringenTIMatrix[{aft, A, g/t, wift, ¢, h, av 0.1, bx0.1, ph,m, n}]].Er.i.n@nI[Souu:}[[l, 511
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Mathematica Packages: Plotting Package

<< Graphics MultipleListPlot"®
<< Graphics Legend’
<< Graphics "Colors’

<< Graphics "FilledPlot®

Now, we show some programs used to the graphical representation of the maximum of each
component of the vector solution (only the first coefficient of each trigonometric series
corresponding to each unknown function) of the linear system corresponding to the
Steinberg-Reissner and Eringen Il Models and their comparisons.

124



Table[
{a, MawAkrtical BeflectionSteinbergheissnerTikhonovRegulai zation[
{114 34494, 218684701, -2.89864, \4.31797, 0.13181, 1029.1045, 0.1, a, a, Pi, 1, 0}]/
MadferticalDeflectionBeissner[{2186. 847, 1029.104478, 0.1, a, a}]}, {a, 5, 30, 0.75}],
Table[
{a, MawsAkrtical BeflectionSteinbergheissnerTikhonovRegulai zation[
{114.3449, 2186.847, -2.8986, 4.347967, 0.13481, 1029.1045, 0.1, a, a, Pi, 10, 0.0102}] /
MadferticalDeflectionBeissner [{2186. 847, 1029.1045, 0.1, a, a}]}, {a, 5, 30, 0.75}],
Table[
{a, MawAkrticalDeflectionSteinbergheissnerTikhonovRegulai zation[
{114.3449, 2186.847, -2.898645, 4.347966, 0.1348, 1029.104478, 0.1, a, a, Pi, 100, 0.00489}] /
MaxsAferticalbeflectionReissner[{2186. 847, 1029.104478, 0.1, a, a}]}, {a, 5, 30, 0.75}],
Table[
{a, MawdkerticalDeflectionSteinberghei ssnerTikhonovRegul aization[
{114 3449, 2186847, -2.8986, 4.34797, 0.13481, 1029.104478, 0.1, a, a, Pi, 1000, 0.000075}] /
MaxsAferticalDeflectionReissner[{2186. 847, 1029.104478, 0.1, a, a}]}, {a, 5, 30, 0.75}],
Table[
{a, MaxsAkrticalDeflectionSteinbergheissnerTikhonovRegulai zation[
{114.34494, 2186.847, -2.8986, 4.34797, 0.1348, 1029.104478, 0.1, a, a, Pi, 10000, 0.008629}] /
MaxsiferticalleflectionReissner[{2186. 847, 1029.104478, 0.1, a, a}]}, {a, 5, 30, 0.75}],
Table[
{a, MawAkrticalDeflectionSteinbergheissnerTikhonovRegulai zation[
{114.3449, 2186.847, -2.8986, ¥.347966, 0.1348, 1029.1044776, 0.1, a, a, Pi, 100000, 0.010914}] /
MaxsiferticalDeflectionReissner[{2186. 847, 1029.104477%6, 0.1, a, a}]}, {a, 5, 30, 0.755}],
PlotStyle — { {Dashing[{Dot }], Peru, Thickness[0.005]}, {Dashing[{Dot}], BEEColor[0, 0, 1], Thickness[0.005]},
{Dashing[{Dot }], BEColor[1, 0, 1], Thickness[0.005]}, {Dashing[{Dot}], Violet, Thickness[0.005]},
{Dashing[{Dot }], Orange, Thickness[0.005]}, {Dashing[{Dot}], RBColor[0., 1., 0.], Thickness[0.005]}},
Symbol Shape — {MakeSyrbol [{Line[{{2, 2}, {-2, -2}}], Line[{{-2, 2}, {2, -2}}]}], MakeSynbol [FegularFolygon[5, 311,
PlotSymbol[Star], PlotSymbol [Triangle], MakeSynbol [RegularPolygon[?, 2.6, {0, 0}, 0, 3]1,
MakeSyrbol [{Line[{{0, -2}, {0, 2}}], Line[{{-2, 0}, {2, 0}}]1}]1}.

SmbolStyle — {Graylevel[0], Graylevel[.5], Grajevel[.3], Graylevel[0], Graylevel[0], Graylevel[0]},
SR, 100% SR, 10% SR, 1% SR, 0.1% SR, 0.01% SR, 0.001%

"o "
v . . v .

R ! R R R R R

FlotLegend -> {"
IegendPosition —{-.9, -0.95}, LegendSize—{2, .3}, LegendTextSpace — .05,
IegendLabel — "Steinberg-Beissner Max Vert Deflection over Reissner Max Vert Deflection with a,
B ., ¥ & €eby #/100: ", LegendlLabel Space — 1.5, Legendlrientation —Haizontal ,
LegendBackground —Graylevel [0.95], LegendShadow— {.03, -.03}, Background »Graylevel[.9],

SR, H#%
PlotJoined —»True, fomsFront —True, foes »True, foesOrigin— {5, 0}, ]buzsLd:el—){"x LPels o |

]u}r
Frame —»True, FrameLabel —{"a/h", "Max Vert Deflection S-R / Max Vert Deflection R"},
FlotRange - {{5, 30.5}, {0, 1.1}}]
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Mul tipleListPlot [
Table [{a, MaxdlDficrorotationtfectorfringenlITikhonovRegularization [
{114.3449, 2186.847, -2.8986, 4.347967, 1029.104, 0.1, a, a, Pi, 1, 1, 1, 0}]}, {a. 5, 30, 0.75}],
Table [{a, MaxdlDficrorotationtfectorfringenlITikhonovRegularization [
{114.3449, 2186.847, -2.8986, 4.347967, 1029.104, 0.1, a, a, Pi, 1, 1, 10, 0313, fa, 5, 30, 0.75}],
Table [{a, MaxdlDficrorotationtfectorfringenlITikhonovRegularization [
{114.3449, 2186.847, -2.8986, 4.347967, 1029.104, 0.1, a, a, Pi, 1, 1, 100, 0}]}, {a, 5, 30, 0.753}],
Table [{a, MaxdlDficrorotationtfectorfringenlITikhonovRegularization [
{114.3449, 2186.847, -2.8986, 4.347967, 1029.104, 0.1, a, a, Pi, 1, 1, 1000, 0}]3, {a, 5, 30, 0.75}],
Table [{a, MaxdlDficrorotationtfectorfringenlITikhonovRegularization [
{114.3449, 2186.847, -2.8986, 4.347967, 1029.104478, 0.1, a, a, Pi, 1, 1, 10000, 0.103}]}, {a, 5, 30, 0.753}],
Table [{a, MaxdlDficrorotationtfectorfringenlITikhonovRegularization [
{114.3449, 2186.847, -2.8986, 4.347966, 1029.104, 0.1, a, a, Pi, 1, 1, 100000, 0.121}]3}, {a, 5, 30, 0.753],
PlotStyle — {{Dashing[{Dot}], Peru, Thickness[0.005]3}, {Dashing[{Dot}], REBColox[0, 0, 1], Thickness [0.005]3,
{Dashing [{Dot}], FBColar[1, 0, 1], Thickness [0.005]}, {Dashing[{Dot}], Violet, Thickness [0.005]3,
{Dashing [{Dot}], Orange, Thickness [0.005]}, {Dashing[{Dot}], RGBCdlor[0., 1, 0.], Thickness [0.005]}},
Synbol shape — {MakeSyibol [{line [{{2, 2}, {-2, -233]. Lire[{{-2, 2}, {2, -2}3]}]. MakeSyrbol [RegularPalygon[5, 3]],
PlotSynbal [Star], PlotSuibol [Triangle], MakeSymbol [RegularPolygon|[?, 2.6, {0, 0}, 0, 3]],
MakeSwibol [{Line [{{0, -2}, {0, 2}}]. Line [{{-2, 0}, {2, 0}}]131}.
Symbol Style — {Graylevel [0], Graylevel[.5], Graylevel [.3], Graylevel [0], Graylewl [0], Gaylevel[0]},
PlotLegend - {"ELT,100%", "EIT,10%", "ELT,1%", "ELT,0.1%", "ELL,0.01%", "ELT,0.001%"},
Legendfositian —{-.9, -0.95}, IegendSize — {2, .3}, LegendTextSpace—.05,
Legendlsbel — "Bringen IT Max §D1 Microrotation Vector with o, § ,¥ & € by #/100: ", LegendLabel%ace— 1.5,
Legendientation —»Horizontal, LegendBackground —Graylevel [0.95], IegendShadow — {.03, —.03},
Background —Graylevel [.9], PlotJained— True, fomsFront —True, fomes—True, foesOrigin— {5, 0},
TomsLabel - {"X ", "Y [E-IT,#%]"}, Frame—Truwe, FrameLabel - {"a/h", "Max {01 Microrotation Vector E-II"},

PlotRange - {{5, 30.5}, {0, 0.8}}]
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Tikhonov Regularization Method

Assume X, Y are Hilbert spaces. To obtain regularized solution to the linear system A x =y,
choose -x- to fit data -y- in least-squares sense, but penalize solutions of “large norm”. In
other words, solve the following minimization problem:

%o =argminfAx- [ + e[,

=(A'A+aly'AYy

, Where ¢ is called the regularization parameter or factor of regularization of Tikhonov.

Output Data

Below we show tables for Maximum of the Vertical Deflection Corresponding to Plate
Theories.
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APPENDIX C

SOME BASIC THEOREMS OF ELASTICITY THEORY
Cauchy-Poisson Theorem

The Cauchy-Poisson Theorem [5] is one of the major results of continuum mechanics.

We assume given on B a continuous strictly positive function p called the density; the mass
of any part P of Bis then

Ipdv.

P

Let (0,t,) denote a fixed interval of time. A motion of the body is a class C?vector field u
on Bx(0,t,). The vector u(x,t) is the displacement of x at timet, while the fields

1 : . . . .
u,u, E= E(Vu +Vu"), and E are the velocity, acceleration, strain, and strain-rate. We say

that a motion is admissible if u,u,u, E, and E are continuous on Bx(0,t,) . Given an
admissible motion and a part P of B,

I(P) = jupdv

is the linear momentum of P, and
h(P) = jpxupdv
P

is the angular momentum (about the origin 0) of P . Note that, for P fixed, I(P) and
h(P) are smooth functions of time on [0,t,); in fact,

f(P)= [tpdv,  h(P)=[pxtipdv.

A system of forces , for the body is defined by assigning to each (x,t) € Bx[0,t,) a vector
b(x,t) and, for each unit vector n, a vector s, (X, t) such that:

(i) s,is continuous on Bx[0,t,)and of class C*° on Bx(0,t,);

(i) b is continuous on Bx[0,t,).
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We call s (x,t) the stress vector at (x,t). Let .« be an oriented regular surface in B with
unit normal n. Then s_ ., (x,t) is the force per unit areax exerted by the portion of B on the
other side; thus

n(x)

jsnda = jsn(x) (x,t)da,
< s

and

[pxs,da= [p(x)xs,(xt)da,
L P

represent the total force and moment across .. The same consideration also applies when x
is located on the boundary of Band n is the outward unit normal tooB at x ; in this case
s, (x,t) is called the surface traction at (x,t). The vector b(x,t) is the body force at (x,t); it

represents the force per unit volume exerted on the point x by bodies exterior to B .The total
force f P onapart P isthe total surface force exerted across oP plus the total body force

exerted on P by the external world:

f(P)= [s,da+ [bdv.
oP P

Analogously, the total moment m P on P (about 0) is given by

m(P) = Ipx s,da+ Ipxbdv.
oP P
An ordered array [u, /|, where u is an admissible motion and , a system of forces, is called
a dynamical process if it obeys the following postulate[5]: for every part P of B
f(P)=I(P)
and

m(P) = h(P).

These two relations constitute the laws of balance of linear and angular momentum.
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Cauchy-Poisson Theorem [5]. Let u be an admissible motion and , a system of forces.
Then [u, /] is a dynamical process if and only if the following two conditions are satisfied:

(1 there exists a class C*° symmetric tensor field on Bx(0,t,), called the stress
field, such that for each unit vector n,

S, = SN,
(i) u,S,and b satisfy the equation of motion:

divS +b = pi.

The proof of this theorem is based on two lemmas. The first is usually referred to as the law
of action and reaction (Cauchy’s reciprocal theorem. Lét [u, /| be a dynamical process.

Then given any unit vectorn, s, =-s_..).

Nonexistence Theorem

The boundary value problems of elastostatics [5]. We assume given an elasticity C field
on B, body forces b on B, surface displacements tion .4, and surface forces § on .4,

where .4 and .« are complementary regular sub-surfaces of oB . And then the mixed
problem of elastostatics is to find an elastic state u,E,S that corresponds to b and satisfies
the displacement condition

and the traction condition

s=Sn=S$ on .4.

We will call such an elastic state a solution of the mixed problem. When < is empty, so
that .« = 0B, the above boundary conditions reduce to

u=U0 on 0B,
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and the associated problem is called the displacement problem. If .« =B, the boundary
conditions become

s=§ on 0B,
and we refer to the resulting problem as the traction problem.

Regularity assumptions:

(i) Cissmoothon B;

(i) b is continuous on B;

(iif) 4 is continuous on .4;

(iv) § is piecewise regular on 4.

Assumptions (ii)-(iv) are necessary for the existence of a solution to the mixed problem. In
the definition of a solution u,E,S , the requirement that S be admissible is redundant;

indeed, the required properties of S follow from (i), (ii), the admissibility of u, and the field
equations.

By a displacement field corresponding to a solution of the mixed problem we mean a vector
field u with the property that there exist fields E,S such that u,E,S is a solution of the

mixed problem. We define a stress field corresponding to a solution of the mixed problem
analogously.

For the traction problem a necessary condition for the existence of a solution is that the
external forces be in equilibrium, i.e. that

j@da+ jbdv =0,
B B

Ipxéda+ Jpxde:O.
oB B

0

A deeper result was established by Ericksen, who proved that, in general, lack of uniqueness
implies lack of existence, or equivalently, that existence implies uniqueness.

Suppose there were two solutions to a given mixed problem, and that these solutions were
not equal modulo a rigid displacement. Then their difference u,E,S would have E =0,

would satisfy

u=0 on .4, s=Sn=0 on .4,
and would correspond to vanishing body forces. We call an elastic state u,E,S with the
above properties a non-trivial solution of the mixed problem with null data.
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Nonexistence Theorem [5]. Let the elasticity field be symmetric. Assume that there exists a
non-trivial solution of the mixed problem with null data. Then there exists a continuous body

force field b on B of class C?on B with the following property: the mixed problem
corresponding to this body force field and to the null boundary condition (N) has no solution.

Further, if .4 is empty, then b can be chosen so as satisfy

jbdv:o, jpxbdv:o.
B B
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APPENDIX D

DIFFERENTIATION OF FOURIER SERIES AND MAXIMUM PRINCIPLE FOR
ELLIPTIC PDE

Term-by-term Differentiation of Fourier Cosine Series

Theorem 1 [19]

If f(x) is piecewise smooth, then the Fourier cosine series of a continuous function f ,

given in the form f (x) = > «, cos(nLLX) , 0<x<L, can be differentiated term by term,

neN
l.e.

f(x)= —Z(”T”)an sin(%), 0<x<L. (D.1)

neN

Differentiation of Fourier Sine Series

Theorem 2[19]

If f'(x)is piecewise smooth, then the Fourier sine series of a continuous function f (x),

given in the following form f (x) = Zﬂn sin(%), 0<x<L, cannot, in general be

neN

differentiated term by term. However,

f'(x);%[f(L)—f(O)]+Z[nTﬁ[>’n+%((—l)”f(L)—f(O))]cos(%), 0<x<L (D.2)

neN
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APPENDIX E

ELEMENTS OF THEORY OF ELLIPTIC PDE SYSTEMS

Elliptic Equations

Consider a system of differential equations

ZN_:Z A (X)D)I:uj =f(x) (i=1..,N), (E.1)
and form the matrix
P(x,$) = (Z Al (X)ékj- (E2)

If for any real vector & # 0, det P(x,&) = 0, then we say that the system (E.1) is of
elliptic system [20]. m is the order of the system. If the coefficients of the system are real,
then m must be an even number. Indeed, if m is odd, then from det P(x,—¢&) = —det P(x, &)

follows the existence of real vectors £° = Osuch that det P(x,&°) =0.

Maximum Principle for Elliptic PDE

We here present versions [20] of the maximum principle for elliptic operators for a single
differential equation, and we expect analogous results for elliptic PDE systems.

Consider the linear differential operator of elliptic type at a point x°, with coefficients
defined in an n—dimensional domain D,

n o%u
Lu= a. (X
Y405

+Zn:b,(x)%+c(x)u (E.3)

The strong maximum principle for elliptic operators is the following theorem.
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Theorem 3 [20]

Let L be an elliptic operator with continuous coefficients in a domain D and assume that
c(x)<0Oand that Lu>0 (Lu<0)inD. If u = const.then u cannot have a positive
maximum (negative maximum) inD.

The following consequence of Theorem 3 is know as the weak maximum principle
Theorem 4 [20]

Let L be as in Theorem 3, let D be a bounded domain, and let u be continuous in D with
Lu>0 (Lu<0)inD. If uhas a positive maximum (negative maximum) in D, then

I.Xti.tp.u(x)srxrlgé(u(x) (g.l.b.u(x)zggggu(x)),

xeD
where oD is the boundary of D.
The problem of finding a solution u to the elliptic equation

Lu(x)=f(x) inD, (E.4)
satisfying the boundary condition

u(x) = p(x) on dD, (E.5)
is know as the first boundary value problem, or the Dirichlet problem.

Unless the contrary is explicitly stated, ¢ is always assumed to be a continuous function
ondD. When ¢ is a the solution is always understood to be continuous in D .

From the weak maximum principle we obtain the following uniqueness theorem.

Theorem 5 [20]

Let L be elliptic operator with continuous coefficients in a bounded domain D and assume
that c(x) <0.Then there exists at most one solution to the Dirichlet problem (E.4), (E.5).

141



REFERENCE LIST

[1] Bathe K.J., Brezzi F.: On the convergence of a four node plate bending element
based on Mindlin-Reissner plate theory and a mixed interpolation, The
Mathematics of Finite Elements and Applications V (Uxbridge, 1984), Academic
Press, London, 491-503, (1985)

[2] Domell L. H.: Beams Plates and Shells, McGraw-Hill, New York (1976)

[3] Eringen C. A. Theory of micropolar plates. Journal of Applied Mathematics
and Physics, Vol 18:12,-31 ,1967.

[4] Gauthier R.D., Jahsman W.E.: A quest for micropolar elastic constants, Journal
of Applied Mechanics, 42, 369-374 (1975)

[5] Gurtin M. E.: The Linear Theory of Elasticity in Handbuch der Physik,Vol.
Vla/2; C. Truesdell (editor), Springer-Verlag, 1-296 (1972)

[6] Love A.E.H A Treatise on the Mathematical Theory of Elasticity. Dover, New
York, 1996

[7] Naghdi P.M.: The Theory of Shells and Plates, in Handbuch der Physik, Vol.
Vla/2;C. Truesdell (editor), Springer-Verlag, 425-640 (1972)

[8] Neff P.: A geometrically exact Cosserat-shell model including size effects, avoiding
degeneracy in the thin shell limit. Part I: Formal dimensional reduction for elastic
plates and existence of minimizers for positive Cosserat couple modulus. Cont.
Mech. Thermodynamics, 16: 577-628 (2004)

[9] Neff P.: The Cosserat couple modulus for continuous solids is zero viz the
lineagrized Couchy-stress tensor is symmetric. Preprint 2409,
http://www3.mathematik.tudarmstadt.de/fb/mathe/bibliothek/preprints.html
(2005)

[10] Neff P.: A finite elastic-plastic Cosserat theory for polycrystalls with grain
rotations. Int J. Eng. Sci. 44574-594 (2006)

[11] P. Neff and Forest S.: A geometrical exact micropolar model; for elastic
metallic foams accounting for affine microstructure. Modeling, existing of
minimizers, identification of moduli and computational results. J. Elasticity, 87,
236-279, (2007)

[12] Nowacki W. Theory of Asymmetric Elasticity. Pergamon Press, Oxford, New
York, Toronto, Sydney, Paris, 1986.

142


http://www3.mathematik.tudarmstadt.de/fb/mathe/bibliothek/preprints.html

[13] Reissner E.: The effect of transverse shear deformation on the bending of
elastic plates, Journal of Applied Mechanics, June, 69-77 (1945)

[14] Reissner E.: Reflections on the theory of elastic plates, Applied Mechanics
Reviews, 38, 1453-1464 (1985)

[15] Rossle A., Bischoff M., Wendland W., Ramm E.: On the mathematical
foundation of the (1,1,2)-plate model, International Journal of Solids and
Structures, 36, 2143-2168 (1999)

[17] Timoshenko S. and Woinowsky —Krieger S. Theory of Plates and Shells.
McGraw-Hill, 1959.

[18] Wan F. Y. M.: Lectures Notes on Problems in Elasticity: Il Linear Plate Theory.
Tech.Rep. No. 83-15, Institute of Applied of Mathematics, University of British
Columbia (1983).

[19] Richard Haberman. Elementary Applied Partial Differential Equations.
Prentice-Hall, Upper Saddle River, N.J. 07458.

[20] Avner Friedman. Partial Differential Equations of Parabolic Type. 1964 by
Prentice-Hall, INC. Englewood Cliffs, N.J.

[21] Steinberg L.: Elastic Plate Deformation with Transverse Variation of
Microrotation, arXiv:0811.1534v3 [math-ph] (accepted in IJAMM, 2009).

[22] Steinberg L.: Deformation of Micro- polar Plates of Moderate Thickness
(accepted in IJAMM, 2010).

[23] Pedro Joaquin Madrid: Reissner’s Plate Theory in the Framework of Asymmetric
Elasticity, Thesis of Master of Science in Applied Mathematics, November
2007, University of Puerto Rico, Mayagtiez Campus.

[24] Protter and Weinberger: Maximum Principles in Differential Equations. 1967 by
Prentice-Hall, INC. Englewood Cliffs, N.J.

[25] Yu.V. Egorov and M. A. Shubin: Partial Differential Equations I, Encyclopedia of
Mathematical Sciences, Vol 30, Springer-Verlag, Berlin Heidelberg, 1992,

[26] Lakes R. Experimental methods for study of cosserrat elastic solids and other
generalized elastic continua. In Muhlhaus H, Wiley J. (eds) Continuum Models for
Materials with Microstructures, pages 1-22, New York, 1995.

[27] Hoffman K. and Ray: Alden Linear Algebra. 1971 by Prentice Hall mathematics
series.

143



