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ABSTRACT 
 
 

Slamming loads induced by waves on ships can cause severe damages on structural members 

which may compromise integrity and safety. Therefore, better understanding of the slamming 

problem is a topic of interest in marine applications. In addition, sandwich composite structures are 

being widely used in the marine industry due to their extremely high flexural stiffness and light 

weight. This thesis presents a novel predictive computational technique for fatigue life assessment of 

sandwich composite hulls subject to repeated slamming loads. The slamming modeling was 

approached in the framework of the two dimensional water entry problem, in which, the fluid is 

assumed ideal and potential, the angle of incidence between the fluid and the structure is small and 

gravitational effects are neglected. Numerical models based on explicit finite element analysis (FEA) 

were developed in LS-DYNA to simulate a single impact event. The multimaterial Arbitrary-

Lagrangian-Eulerian (ALE) formulation and the Eulerian-Lagrangian penalty coupling algorithm 

were used. Initially, the study focused on the impact of rigid hulls with constant velocity. Pressure 

distribution on the contact surface was investigated and compared with analytical solutions and 

experimental data. Later, the analysis was extended to include metallic and sandwich composite hulls. 

As a result, stress time histories for a single impact were obtained at critical locations. To simulate the 

effect of multiple impacts, these stresses were extrapolated using Peak Over Threshold (POT) 

analysis assuming a gamma distribution for the exceedances. Then, the Rainflow cycle counting 

method was used to reduce the complex slamming stresses to a series of simple cyclic stresses. For 

each stress level, the degree of damage induced in the structure was calculated from the S-N curves 

and the individual contributions were combined using a damage accumulation model. For metallic 

hulls, linear Miner’s rule was used. For sandwich composite hulls two damage models were 

investigated: Miner’s rule, based on number of cycles, and the non-linear stiffness degradation 

approach, based on reduction of fatigue (shear) modulus. The selection of damage accumulation 

models was based on the predominant mode of failure of the structure’s material. As a result of this 

study, it was found that sandwich composite hulls are more susceptible to fatigue failure due to 

slamming loads than steel hulls. Fatigue life of sandwich hulls was limited by the high shear stresses 

in the core.     
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RESUMEN 
 

 

Las fuerzas producidas por el impacto de olas en embarcaciones pueden causar daños severos en 

componentes estructurales comprometiendo la integridad y la seguridad de la misma. Por lo tanto conocer 

el comportamiento de estas fuerzas es muy importante en aplicaciones marinas. Además, las estructuras 

de materiales compuestos tipo sándwich están siendo ampliamente usadas en la actualidad en aplicaciones 

marinas debido a su  alta rigidez a la flexión y a su bajo peso. En esta tesis se presenta una nueva 

metodología de predicción numérica de vida de fatiga de cascos de embarcaciones hechos de materiales 

compuestos tipo sándwich bajo la acción de cargas de impacto hidrodinámico repetitivas. El problema se 

modeló en base al método de entrada de cuerpos en agua en dos dimensiones. En este método, el fluido se 

asume ideal y potencial, el ángulo de incidencia entre el agua y el cuerpo es pequeño y se desprecian los 

efectos gravitacionales. De esta manera, se desarrollaron modelos de elementos finitos usando LS-DYNA 

con el fin de realizar simulaciones de un solo impacto. Estos modelos incorporaron la formulación 

multimaterial Arbitrary-Lagrangian-Eulerian (ALE) y el método de contacto ponderado de Euler-

Lagrange. En su primera parte, esta tesis se enfoca en el impacto de cascos rígidos en agua con velocidad 

constante. Se calculó la presión hidrodinámica en la superficie de contacto para varios casos y se comparó 

con soluciones analíticas y datos experimentales. Luego, el estudio se extendió a cascos metálicos y a 

cascos tipo sándwich. En estos casos se obtuvieron historiales de esfuerzos en el tiempo para un solo 

impacto en localizaciones identificadas como críticas. Para considerar el efecto de múltiples impactos, 

dicho esfuerzos fueron extrapolados usando el método “Peak Over Threshold” (POT) asumiendo que los 

valores extremos siguen una distribución de probabilidades Gama. Los historiales de esfuerzos 

extrapolados fueron simplificados a una serie de esfuerzos cíclicos más simples utilizando el método de 

conteo de ciclos llamado “Rainflow”. Para cada nivel de esfuerzo, se calculó el daño producido en la 

estructura usando las curvas S-N del material y las contribuciones individuales se combinaron aplicando 

modelos de acumulación de daño. Para el caso de cascos metálicos, se utilizó la regla de Miner. Para 

cascos de tipo sándwich, dos modelos diferentes de acumulación de daño fueron considerados: la regla de 

Miner, basada en el número de ciclos y el método no lineal de degradación de rigidez, el cual se basa en 

la reducción del módulo de fatiga (corte). La selección de cada modelo se hizo en base al tipo de falla 

predominante del material del casco. Como resultado de este estudio, se encontró que los cascos hechos 

de materiales compuestos tipo sándwich son más propensos a falla por fatiga bajo este tipo de cargas que 

los cascos metálicos. La vida de fatiga de los cascos tipo sándwich está limitada por los altos esfuerzos de 

corte que se producen en el núcleo. 
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CHAPTER 1.  INTRODUCTION 
 
 
1.1 BACKGROUND 
 

Hydrodynamic impacts, “slamming”, are characterized by very high loads of short duration 

compared to the local dominant period of vibration of the structure. In rough seas, a ship hull may 

experience repeated impact events which may produce cyclic loading, eventually causing fatigue induced 

failure of the structure (Figure 1.1). Because of the considerable possibility of this type of structural 

damage, slamming is a serious concern in the shipbuilding industry. Thus, ship hulls must be strong and 

stiff enough to carry these loads and still light enough to make the ship efficient in terms of building and 

operational costs.  

 

 

Figure 1.1. Slamming on a U.S. Navy war ship. 
 

To address this problem, new developments have been made in the design and construction of 

marine vehicles. One of these new concepts substitutes materials commonly used in ship construction 

such as steel and aluminum with more sophisticated material configurations. Sandwich composites have 

been used recently in marine vehicles due to their extremely high flexural stiffness and light weight. But 

sandwich structures tend to be more flexible than other conventional structures used in vessels which 

makes dynamic effects such as slamming more pronounced. Therefore, better understanding of the 

slamming problem on sandwich hulls is a topic of interest in marine applications. Usually, the study of 

wave slamming on ships has been approached in the framework of the water entry problem. The 

hydrodynamic analysis of the impact of rigid hulls into water has been widely studied for many years. 

Several theoretical and numerical models have been developed to predict the interaction forces (pressure) 
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between fluid and structure during the impact. Many of them are still used by researchers and designers of 

marine vehicles. Recently, the analysis of water impact has been extended to elastic hulls leading to more 

complex mathematical models. However this analysis is limited to beam structures with simple boundary 

conditions. Therefore, water slamming modeling of actual composite structures, in particular of sandwich 

hulls, is a topic that still requires further investigation. Additionally, damage assessment models for 

metallic structures subject to arbitrary cyclic excitations have been widely studied for many years and 

some of them have been implemented in FE codes. The Rainflow cycle counting method combined with 

linear damage accumulation models (Miner’s rule) have demonstrated to produce relatively accurate 

fatigue life predictions. But for composite materials, life prediction models have just been developed 

recently and they are currently being validated using numerical simulations and experimental results. 

Several approaches are still being tested by researchers and there is no consensus regarding the best 

modeling approach for this problem. Fatigue life assessment on sandwich composite hulls subject to 

repeated slamming loads have not been included yet in the current literature and it may be critical in the 

design of marine vehicles. 

 
 
1.2 OBJECTIVES AND METHODOLOGY 
 

The primary purpose of this thesis was to develop a predictive computational technique for fatigue 

life assessment of sandwich composite hulls subject to repeated slamming loads. To achieve this goal, the 

following objectives needed to be addressed: 1) The investigation of the physical phenomena that occur in 

slamming problems. In particular, the interaction forces between fluid and structure during the impact. 

Several theoretical models have been developed to predict the pressure distribution in the contact region. 

The current work focused on Wagner’s model [2] and the solution proposed by Zhao and Faltinsen [6] for 

the impact of rigid hulls. The study of slamming on elastic structures was based  on hydroelastic models 

developed by Korobkin [8, 9] which use the normal mode method to approximate the structural 

deformation; 2) The development and validation of FE models to compute the hydrodynamic loads and 

structural response (displacements and stresses) of rigid and elastic hulls. Different FE formulations were 

considered for the modeling of the three main components involved in the problem: the fluid, the 

structure and the coupling between fluid and structure. According to the Aquelet and Souli [14, 15], the 

multimaterial Arbitrary-Lagrangian-Eulerian ALE formulation and the penalty based algorithm is the 

modeling technique that produces the best results. This phase also included the extrapolation of the 

slamming cycle loading from numerical simulations of a single impact event. This means, to obtain the 

time history of slamming stresses to which the hull structure will be subject to during its lifetime. This 

was done by using extreme value theory or Peak Over Threshold (POT) [32] extrapolation analysis and 
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maximum stress distribution data obtained from slamming measurements on actual high-speed 

catamarans; 3) The implementation of existing damage accumulation models to predict fatigue life of 

metallic and sandwich composite hulls. The Rainflow cycle counting method [27] was used to reduce the 

complex slamming loading to a series of simple cyclic loadings. For each load level, the degree of 

cumulative damage induced in the structure was calculated from the S-N curves and the individual 

contributions were combined using the selected damage models. For metallic hulls linear Miner’s rule 

was used while for sandwich hulls both linear and non-linear damage models were investigated. The 

selection of damage accumulation models was based on the predominant mode of failure of the structure 

under study; 4) The validation of the proposed fatigue life prediction approach  using comparative results 

from previous published works and experimental tests. The proposed approach is schematically shown in 

Figure 1.2. 
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Figure 1.2. Proposed fatigue life prediction approach. 
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CHAPTER 2.  LITERATURE REVIEW 
 

The study of hydrodynamic impacts has been of great interest for structural designers for many 

years. Information related to water forces occurring during the impact, particularly in the initial stage, is 

crucial in the design of marine vehicles. Recent investigations have included improvements in theoretical 

models, advances in experimental techniques and the implementation of numerical methods. The first 

physical model of the water impact problem was developed by Von Karman [1] to predict the forces on a 

two dimensional rigid wedge. Von Karman’s theory was based on momentum conservation of the water-

wedge system and on the concept of added mass. The work assumed that the local water surface elevation 

during the wedge penetration could be neglected. This unrealistic hypothesis limited the application of 

Von Karman’s model in subsequent work. Wagner’s theory, however, took into account the local up-rise 

of the water by approximating the wetted part of the wedge by an expanding flat plate of the same length 

[2]. Assuming ideal conditions, the fluid flow was described by a boundary value problem in terms of the 

complex velocity potential function. The hydrodynamic pressures on the body surface were calculated 

from Bernoulli’s equation neglecting gravitational effects. Wagner’s solution predicts an infinite 

slamming pressure at the edge of the expanding plate, which is physically impossible. In an attempt to 

solve this singularity, Wagner limited the maximum pressure by truncating his solution in the vicinity of 

the singular point. Subsequent improvements on Wagner’s model included the effect of non linear jet 

flow in the intersection region between the wedge and the fluid free surface by matching the solution in 

this region with the expanding plate solution as shown by Dobrovolskaya [3], Watanabe [4], and Cointe 

[5]. 

 

Based on this approach, Zhao and Faltinsen [6] presented a composite solution for the pressure 

distribution on the body surface. This pressure solution was used in the current thesis as an initial 

validation of the numerical models of rigid hull impacts. On the other hand, for water impact problems in 

which structural deformations are significant, the rigid body approximation is no longer valid and the 

hydroelastic fluid-structure interaction must be considered. Usually, hydroelastic impact models combine 

the structural analysis with Wagner’s theory. The structural analysis can be performed using the finite 

element method or the normal mode method. In both cases, the problem becomes coupled and non-linear. 

The hydrodynamic loads on the structure and the structural deformations have to be determined 

simultaneously, along with the length of the wetted part of the body. The time evolution of the wetted 

length is an important characteristic of the impact, which strongly affects the magnitude of the loads. The 

hydroelastic beam model has been used to study wet-deck slamming on catamarans and water entry of 

elastic wedges by Kvalsvold [7] and Korobkin [8, 9]. In this model, the structure is represented by elastic 
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Euler beams and the normal mode method is used to approximate the beam deflection during the impact. 

This is a relative simple approach to calculate the elastic response of the beam, but for non-homogeneous 

structures such as composite panels, the normal mode method becomes impractical. In those cases, the 

structural model needs to be developed based on FE analysis or by composite panel-shell theory as shown 

by Qin and Batra [10, 37] and by Abrate [39] for the impact of a sandwich composite hull. The FE 

modeling of water impacts is still a topic of discussion among researchers and engineers which requires 

further investigation. Many FE codes have been developed to predict the hydrodynamic loads between the 

fluid and the structure as those by Bereznitski [11] and Korobkin [12]. The role of hydroelasticity has 

been studied by Bereznitski [13] using a self-developed code and other comercial software. A novel fluid-

structure coupling algorithm was designed by Aquelet, Souli, and Olovsson [14, 15 and 16] to manage the 

interaction forces between an Eulerian and a Lagrangian mesh. A sensitivity study of the solution based 

on mesh density and selection of penalty coupling algorithm parameters was conducted by Stenius, Rosen, 

and Kuttenleuler in [17, 40] using the general purpose FE code LS-DYNA [18, 19]. LS-DYNA 

capabilities include pure Lagrangian, arbitrary Lagrangian-Eulerian (ALE), multimaterial and penalty 

based contact formulations. These particular modeling approaches have made LS-DYNA the most 

suitable and used FE code for the study of fluid-structure interaction problems and simulation of  

hydrodynamic impacts as done by Tutt [20]. 

 

The experimental investigation of water impacts has recently become of great interest for 

validation of FE models and prediction of hydrodynamic pressures and fatigue life as shown by Anghileri 

[21] and Downs-Honey [22]. Breder [23] conducted an experimental investigation of the slamming 

pressures on a rigid sandwich panel using a servo hydraulic slam test system which was programmed to 

work at a constant velocity. Several tests were performed with different deadrise angle and impact 

velocities. The hydrodynamic pressure, load and vertical displacement of the specimens were measured. 

In addition, Breder [23] suggested that similar tests should be carried out with elastic panels for more 

combinations of deadrise angle and impact velocity. Charca [24] performed an experimental program to 

study damage accumulation and failure in sandwich composites under repeated slamming. The work 

focused on two different material configurations: 1) carbon fiber-epoxy face sheets and polyester foam 

filled honeycomb sandwich and 2) carbon fiber-epoxy face sheets and polyurethane foam core sandwich. 

Different modes of failure were identified for both material configurations, being local core shear the 

most critical. Thomas [25] investigated the influence of slamming and whipping on the fatigue life of a 

large high-speed aluminium catamaran in order to optimize the structural design. Full-scale measurements 

of slam events were taken in a variety of sea conditions. The Rainflow method [26] was used to determine 

the number of cycles for specific stress ranges from the experimental data. The Rainflow method is a 
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standardized cycle counting technique as per American Society for Testing Materials (ASTM) [27]. 

Fatigue life was then estimated based on Miner’s linear damage accumulation model [26] which was 

found to reduce significantly with the presence of slam events. Several life prediction programs have been 

developed based on the combination of the Rainflow method and Miner’s rule for damage assessment of 

metallic structures. Moreover, some of these programs have been implemented in commercial FE codes 

like ANSYS [28]. In some cases this life prediction approach has been extended to non-metallic structural 

components such as NASALife [29] for ceramic matrix fiber-reinforced composites. The effect of fatigue 

on sandwich materials subjected to slamming loads was studied by Burman, Rosen and Zenkert [38] 

using actual response measurements on a high-speed vessel to formulate a slam fatigue loading spectrum. 

However, the use of linear damage accumulation models to predict fatigue life in composite materials is a 

topic of discussion and requires special attention. Alternatively, non-linear models have been proposed 

for sandwich composites materials based on strength or stiffness degradation by Sharma [30] and Clark 

[31]. These models tend to be less conservative than linear models for predicting fatigue life.    

 

The work presented in this thesis is intended to extend the current state of the art in fatigue life 

prediction of hull structures under slamming loading. It uses a novel approach to extrapolate stress time 

histories from FE simulations of a single impact event to account for multiple impacts, Johannesson [32]. 

It also combines the Rainflow cycle counting method with Miner’s rule to predict the number of impacts 

to failure in a steel ship hull. For sandwich composite hulls, fatigue life predictions obtained using 

Miner’s rule are compared with results using the damage accumulation model presented by Clark [31]. 

Several recommendations are suggested to improve fatigue life of sandwich hulls and particular topics are 

proposed for future work.   
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CHAPTER 3.  PROBLEM DESCRIPTION 
 

 In this chapter, the two dimensional unsteady problem of a symmetrical hull-water impact is 

studied. The fluid flow is assumed to be irrotational and incompressible. Viscous and gravitational effects 

are neglected. The angle of incidence   between the bottom hull and the undisturbed water surface is 

small (5º - 20º) and the impact velocity V of the body remains constant during the impact and penetration 

stages. The impact stage is defined as the time it takes the hull length to wet completely. A Cartesian 

coordinate system x-y is used to formulate the mathematical problem. The x axis corresponds to the free 

water surface at t = 0, where t is the time measured from the instant the keel touches the water. The hull 

section is symmetric about the y axis (Figure 3.1). During the impact, the water rises up in the vicinity of 

the intersection points |x| = c(t). At these locations, the fluid flow field is divided into two regions: the 

outer and the inner region. In the outer region, |x| < c(t), the fluid flow can be described by the velocity 

potential function (x,y,t) which satisfies the boundary value problem (BVP) in Eqs. (3.1)-(3.4). By 

definition, the derivative of the velocity potential function along any arbitrary direction n, gives the fluid 

velocity component in that direction. 

  

 
 

Figure 3.1. Definitions used in the problem of hull-water impact. 
 
 

 0     0   xx yy y        (3.1) 

 0     0,  ( )   y x c t  (3.2) 

    on the contact surface  n V n  (3.3) 

2 20     ( )   x y  (3.4) 

V

c(t) 

y

x  

c(t) 

 

 = 0 

n = Vn 

  0

  0   0 

keel 

chine 

V

c(t) 

y

x  

c(t) 

 

 = 0 

n = Vn 

  0

  0   0 

keel 
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The subscripts in Eqs. (3.1) and (3.3) indicate partial derivative. Eq. (3.2) is a consequence of 

fluid acceleration in the vicinity of the hull dominating over gravitational acceleration during the impact. 

Fluid particles on the fluid free surface start at initial time with  = 0 and remain in that state for all time. 

This is because the pressure is assumed to be zero above the water surface and, according to Bernoulli’s 

equation, /t = 0 at that location. However, the free surface moves because /n  0. The contact 

boundary condition requiring no fluid flow through the bottom hull specifies that Eq. (3.3) must be 

satisfied for all fluid particles in contact with the body. Where n is the unit vector normal to the bottom 

hull surface. Far away from the impact zone (x2+y2), the fluid particles remain undisturbed and it can 

be assumed that the potential function tends to zero, Eq. (3.4). In the inner region, |x| > c(t), potential 

theory is no longer valid due to non linear jet flow effects. For small deadrise angles it is possible to use 

matched asymptotic expansions to solve the hydrodynamic problem [3, 4 and 5]. An asymptotic formula 

for the pressure distribution on the body surface is available in [6] which will be used in Chapter 5 to 

compare with FE results. Notice that BVP (3.1)-(3.4) represents only the hydrodynamic part of the impact 

problem and does not include the structural formulation. The structural part of the problem is presented in 

the following sections.  

 

3.1 RIGID HULL SOLUTION 
 

If the bottom surface of the hull is assumed to be rigid and the deadrise angle   is small, the body 

boundary condition (3.3) can be transferred to a horizontal straight line between the coordinates x = - c(t) 

and x = c(t) using the Taylor expansion [2]. This means that the wetted length of the bottom hull is 

approximated by an expanding flat plate of width 2c(t). Eq. (3.5) represents the new boundary condition 

on the contact surface according to Wagner’s model.       

 

    ( 0,  | | ( ))    y V y x c t  (3.5) 

 

Since Wagner was mostly interested in the impact pressure on the bottom of the hull, he only 

focused on the solution of the BVP on the contact surface (Eq. (3.6)). The hydrodynamic pressure is 

calculated using an approximation of Bernoulli’s equation (Eq. (3.7)), where w represents the water mass 

density. The computation of the temporal derivative of Eq. (3.6), assuming a constant impact velocity V, 

gives the pressure Eq. (3.8). This pressure is associated with the rate of change of the wetted length dc/dt. 

In addition, Wagner derived an approximation to calculate the wetted length of the body surface c(t), Eq. 

(3.9). Note that Wagner’s solution predicts an infinite impact pressure at the edges of the expanding plate, 
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x =  c(t), which is physically impossible. Therefore, Wagner limited the maximum pressure on the body 

to p = pmax according to Eq. (3.10). This model is only valid in the outer region but it is widely used to 

represent the hydrodynamic formulation in hydroelastic impact problems.           

 

2 2 1 2( ( ) )        0,  ( )     V c t x y x c t  (3.6) 

 
 

wp
t

 (3.7) 

2 2 1 2

( ) ( )

( ( ) )


w

c t dc t
p V

dtc t x
 (3.8) 

( )
2 tan





Vt

c t  (3.9) 

2

max

1 ( )

2
    

 
w

dc t
p

dt
 (3.10) 

 
Wagner’s solution of the impact pressure for a rigid hull (Eq. 3.8 and Eq. 3.9) with length L = 0.2 

m, deadrise angle  = 20 and constant velocity V = 5 m/s is shown in Figures 3.2 and 3.3. The temporal 

evolution of the impact pressure at three different locations on the bottom hull is illustrated in Figure 3.2. 

The spatial distribution of the pressure when the wetted length coincides with the selected locations is 

shown in Figure 3.3. The dashed lines correspond to equation (3.8) which goes to infinity at x = c(t) while 

the solid lines represent the same solution limited according to equation (3.10). 

 

 
Figure 3.2. Wagner’s solution: time history of impact pressure. 
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The local up rise of the water causes the pressure peak to propagate from the keel to the chine of 

the hull followed by a distinctly lower and relatively uniform pressure. The impact pressure is also 

characterized by location of the peak and the temporal and spatial extent. In this particular case, the 

maximum pressure was close to 0.23 MPa and the duration of the impact stage was 9.2 milliseconds (ms) 

approximately. The width of the pressure peak increases with time and accordingly with the x coordinate. 

Therefore, proper numerical modeling of the problem will require higher spatial resolution of the fluid 

domain close to the initial contact point x = 0.  The pre-knowledge of the theoretical expanding pressure 

peak will be used in Chapter 4 as guidance to develop FE models. 

 

 

Figure 3.3. Wagner’s solution: spatial distribution of impact pressure. 
 

Based on Wagner’s theory, Zhao and Faltinsen [6] developed a composite solution for the 

pressure distribution by matching the flow field around the expanding flat plate in the outer region with 

the flow field around a steady planning plate at an attack angle  in the inner region. According to Zhao 

and Faltinsen, in the inner region the pressure can be approximated by Eq. (3.11).  

 

2
1/ 2 1/ 2 22 (1 )      

 
in w

dc
p

dt
 (3.11) 

22

8




   
 

cV dc

dt
 (3.12) 
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The jet thickness  obtained by matching the inner and the outer solutions is given in Eq. (3.12). 

An intermediate variable || is related to the spatial coordinate x by Eq. (3.13). When || tends to 0, 1 and 

∞, x tends to , c(t) and - respectively. For large values of ||, Eq. (3.11) becomes 2w(dc/dt)2||-1/2 and 

Eq. (3.13) become – (/)||. For this condition, the pressure Eq. (3.11) can be expressed as Eq. (3.14). 

The composite solution valid in both the inner and the outer region is obtained by adding Eqs. (3.8) and 

(3.11) and subtracting Eq. (3.14).  

 
1/ 2

(ln 4 5)
   


    x c  (3.13) 

  1 2[2 ]    
 

in w

dc
p Vc c c x

dt
 (3.14) 

 
2

1/ 2 1/ 2 2 1 2
2 2 1 2

2 (1 ) [2 ]
( )

                   
w w w

c dc dc dc
p V Vc c c x

dt dt dtc x
 (3.15) 

 

The solution given by Eq. (3.15) gives a more realistic behavior of the pressure close to the 

intersection point (Figure 3.4). This solution will be used in Chapter 5 for comparison with FE results. 

The hydrodynamic pressure distribution becomes pronouncedly peaked and concentrated for smaller 

deadrise angles (  20). Additionally, the pressure is directly related to the impact velocity according to 

Eqs. (3.8) and (3.15). 

 

 

Figure 3.4. Wagner’s model versus solution of Zhao and Faltinsen. 
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3.2 HYROELASTIC MODELING OF METALLIC HULLS 
 

The hydroelastic modeling of impact of metallic hulls represents the bottom hull surface as 

simple supported homogeneous Euler beams (Figure 3.5). The hydrodynamic loads are evaluated with the 

Wagner approximation. The initial position of each beam is given by the equation y = |x| tan, where  is 

the angle of the un-deformed structure. The beam supports are subjected to a constant downward velocity 

V. The transversal deflection of the beams is denoted by w(x,t). Thus, the absolute velocity of impact of 

any point of the beam is –V + wt(x,t), where the subscript t indicates temporal derivative. Due to the 

symmetry of the problem with respect to the y axis, only the right hand side beam is considered, x > 0. 

The usual approach of the problem involves the use of non-dimensional variables in the mathematical 

formulation [8, 9 and 12]. The beam length L is taken as the length scale and the velocity V is the velocity 

scale for fluid particles. If the hull structure were infinite rigid and the water surface were undisturbed 

during the penetration, the bottom hull would be completely wetted at time T = (L/V)sin and the vertical 

displacement of the hull would be Lsin at this time instant. The time T is taken as the time scale factor 

and Lsin as the displacement scale factor. The product VL is the scale factor for the velocity potential 

and wV2/sin is the hydrodynamic pressure scale. Wagner’s model in non-dimensional variables is given 

by the BVP (3.16)-(3.19).  

 

 
 

Figure 3.5. Hydroelastic modeling of hull-water impact. 
 

 0     0   xx yy y        (3.16) 

 0     0,  | | ( )   y x c t  (3.17) 

 1 (| |, )     0,  | | ( )     y tw x t y x c t  (3.18) 

2 20     ( )   x y  (3.19) 

y 

c(t) 

 w(x,t) 

c(t) 

x 
V 

  0

  0  0 
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This BVP is complemented by the equations that govern the beam deflection, Eqs. (3.20)-(3.22). 

Dots indicate time derivative while Roman numerals indicate derivative with respect to x. The 

hydrodynamic pressure p(x,t) is given by Eq. (3.7). The non-dimensional mass and flexural stiffness are m 

= bh/wL and  = EIsin2/(wV2L3) respectively. Where, b is the mass density of the beam, h is the 

beam thickness, E is the elasticity modulus and I is the moment of inertia of the beam cross section, I = 

h3/12. Eqs. (3.16)-(3.22) describe the coupled problem between fluid hydrodynamic and structural 

response. This means, that the solution of the BVP (3.16)-(3.19) depends on the temporal derivative of 

w(x,t) according to Eq. (3.18), and at the same time, the right hand side term of Eq. (3.20) depends on the 

velocity potential function.  

 

   ( , )     0 1; 0    
��

IVm w w p x t x t  (3.20) 

 0     0;  1;  0    IIw w x x t  (3.21) 

 0     0 1; 0    
�

w w x t  (3.22) 

 

However, the formulation of the problem is not yet complete. The dimension of the contact length 

c(t) is unknown so far and it must be specified in some way. A condition for c(t) was suggested by 

Korobkin [8] requiring no penetration of water particles into the structure, Eq. (3.23). This condition is a 

modification of the classical Wagner condition [2]. The function yb describes the shape of the elastic 

beam in a moving deformed coordinate system. In this case, yb = x  1 t + w(x,t). The unity factor 

multiplying the time corresponds to the scaled velocity. Thus, Eq. (3.23) becomes Eq. (3.24). 

 

 
/ 2

0

( )sin , 0


   by c t t d  (3.23) 

 
/ 2

0

2 2
( ) ( )sin ,



 
 

  t c t w c t t d  (3.24) 

 

The BVP (3.16)-(3.19), along with Eqs. (3.20)-(3.22) and condition (3.24) are coupled and have 

to be solved simultaneously. In the current analysis, the solution was found by using the normal mode 

method. Within this method, the beam deflection is approximated by Eq. (3.25). The functions ψn(x) are 

the eigen-functions, also known as dry modes of the beam, which are obtained by solving the 

homogeneous BVP (3.26)-(3.27). The coefficients an(t) are generalized coordinates or modal coordinates. 
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For a simple supported beam, the dry modes are given by Eq. (3.28) which satisfies the orthogonal Eq. 

(3.29) (nm = 0 for n  m and nm = 1 for n = m). 

 

1

( , ) ( ) ( )




 n n
n

w x t x a t  (3.25) 

 4( ) ( )     0 1    IV
n n nx x x  (3.26) 

 ( ) ( ) 0     0;  1    II
n nx x x x  (3.27) 

( ) sin( | |)     with         n n nx x n  (3.28) 

1

0

( ) ( ) 2   n m nmx x  (3.29) 

 

With approximation (3.25) for the beam deflection, Eq. (3.20) becomes Eq. (3.30). Multiplying 

the latter by any arbitrary eigenfunction ψm(x) and integrating over the beam length Eq. (3.31) is obtained. 

Note that the pressure term on the right hand side of Eq. (3.31) becomes zero for x > c(t). 

 

1 1

 ( ) ( )  ( ) ( ) ( , )  
 

 

   IV
n n n n

n n

m x a t x a t p x t  (3.30) 

( )1 1
4

1 10 0 0

 ( ) ( )  ( )  ( ) ( )  ( ) ( , ) ( )      
 

 

    
c t

n m n n n m n m
n n

m x x dx a t x x dx a t p x t x dx  (3.31) 

 

The property of orthogonal modes (3.29) allows rewriting Eq. (3.31) in a more compact form of 

Eq. (3.32). The hydrodynamic pressure is given by Bernoulli Eq. (3.7) in terms of the velocity potential. 

Using the beam deflection approximation (3.25), the velocity potential function can be expanded as 

shown in Eq. (3.33), where the function w(x,0,c) is the solution of the Wagner problem in its non-

dimensional version. In this case w(x,0,c) =   (c2  x2)1/2 for |x| < c(t). The functions n(x,y,c) are the 

solutions of the harmonic BVP (3.34)-(3.37).  

 

 
( )

4

( )

 ( )   ( ) ( , ) ( )  


  
c t

m m m m

c t

m a t a t p x t x dx  (3.32) 

1

( ,0, ) ( ,0, ) ( ,0, ) ( )  




  w n n
n

x t x c x c a t   (3.33) 
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   0     0   n xx n yy y       (3.34)  

 0     0,  | | ( )   n y x c t  (3.35) 

  (| |)     0,  | | ( )   n y n x y x c t  (3.36) 

2 20     ( )   n x y  (3.37) 

 

The substitution of the pressure term into the beam Eq. (3.32) leads to Eq. (3.38), where the 

functions fm(c) and Snm(c) are given by Eq. (3.39). 

 

4

1

 ( )   ( ) ( )  (c) ( ) 




     m m m m nm n
n

d d
m a t a t f c S a t

dt dt
 (3.38) 

( ) ( ,0, ) (| |) ,           S ( ) ( ,0, ) (| |)   
 

   
c c

m w m nm n m

c c

f c x c x dx c x c x dx  (3.39) 

 

The integrals Snm(c) have been evaluated by Korobkin [8] for the case ψn(x) = cos(nx),  n = 

(n1/2), which corresponds to the problem of wave impact on the center of an elastic Euler beam. The 

integrals Snm(c) associated with the centered impact problem, which are denoted here by Ŝnm(c), are given 

by Eq. (3.40), where J0(n) y J1(n) are the zero and first order Bessel functions. 

 

0 1 0 12 2

2
2 2
0 1

ˆ ( ) [ ( ) ( ) ( ) ( )]     ( )

ˆ ( ) [ ( ) ( )]
2

      
 

  

  


 

nm n m n m n m
n m

nn n n

c
S c J c J c J c J c n m

c
S c J c J c

 (3.40) 

  

In order to evaluate the integrals Snm(c) in the problem under consideration, expansion (3.41) was 

used. Eq. (3.41) expresses the actual mode shapes as a linear combination of those used to derive Eq. 

(3.40).  After substitution, Eqs. (3.42) and (3.43) (matrix form) are found. 

 

2 2
1

2
(| |) cos( ),           


 

 





 
 n

n nk k nk
k n k

x C x C  (3.41) 

1 1

ˆ( ) ( )
 

 

 nm nk ms ks
k s

S c C C S c  (3.42) 

ˆ TS C S C  (3.43) 
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Similarly, Eq. (3.38) can also be rewritten as Eq. (3.44) or in its matrix form, Eq. (3.45), where M 

is the mass matrix and K is the diagonal matrix with elements m
4. S is the matrix of added masses; it is 

symmetric and depends only on the dimension of the contact region c. The vector f is associated with the 

Wagner hydrodynamic pressure and also depends on c. 

 

4

1

 ( ) + (c) ( )   ( )     ( ) 0 




  
    

  
 m nm n m m m
n

d
m a t S a t f c a t

dt
 (3.44) 

  +        
d

dt
M S f K 0a a  (3.45) 

 

Eq. (3.45) is a system of infinite ordinary differential equations (ODEs) of second order with 

respect to the modal coordinates a(t). S and f depend on the unknown variable c but not explicitly with 

time t. Therefore, it is convenient to take c as the new independent variable (0  c  1) instead of time t. 

This substitution is valid if dc/dt > 0 which is the main assumption within the Wagner approach. A 

differential equation (3.46) for the unknown function t(c) follows from Eq. (3.24) after its differentiation 

with respect to c. Taking into account expansion (3.25), Eq. (3.47) is obtained. The coordinates an(t) are 

functions only of t and are considered constants in the integration along the variable . Thus, Eq. (3.47) 

can be rewritten as Eq. (3.48).  Eq. (3.49) follows after performing the derivative of the term in brackets.  

Finally the differential equation for the function t(c) takes the form of Eq. (3.50), where the function Q is 

given by Eq. (3.51). 

 

 
/ 2

0

2 2
( )sin ,



 
 

 
   

 


dt d
w c t t d

dc dc
 (3.46) 

/ 2

10

2 2
( sin ) ( ) 



  
 





 
   

 
 n n
n

dt d
c a t d

dc dc
 (3.47) 

/ 2

1 0

2 2
 ( sin ) ( )



  
 





  
        

  n n
n

dt d
c d a t

dc dc
 (3.48) 

/ 2 / 2

1 0 0

2 2
( sin ) sin  ( ) ( sin ) ( )  

 

      
 





    
              

   I
n n n n

n

dt dt
c d a t c d a t

dc dc
 (3.49) 

( , , ) 
dt

Q c
dc

a a  (3.50) 
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 
 

/ 2

0
1

/ 2

0
1

1 ( sin ) sin  ( )

2 ( sin ) ( )





   

   













 

  

I
n n

n

n n
n

c d a t
Q

c d a t
 (3.51) 

 

By introducing new variables Z1 = a, Z2 = (M + S)ȧ  f and Z3 = t, it is possible to transform the 

system of ODEs of second order (3.45) and (3.50) into a new system of ODEs of first order. Although 

this technique increases twice the size of the system, it allows us to use numerical methods suitable for 

solving systems of ODEs of first order. Thus the original system becomes system (3.52)-(3.54). 

 

( , , )
�

Q c1Z R Ra  (3.52) 

= ( , , )
�

Q c2 1Z KZ Ra  (3.53) 

= ( , , )
�

Q c3Z Ra  (3.54) 

 

Here dot indicates derivative with respect to c and R = (M + S)-1(Z2 + f). The initial conditions for 

system (3.52)-(3.54) are Z1 = Z2 = Z3 = 0 for c = 0. The initial value problem (IVP) (3.52)-(3.54) was 

solved using the fourth-order Runge-Kutta algorithm and the results are presented in Chapter 5. 

 

3.3 WATER IMPACT OF SANDWICH COMPOSITE HULLS 
 

The current study of water impact of sandwich composite hulls was conducted entirely using FE 

analysis. This means that no analytical model was used to validate the FE results. Only the mathematical 

formulation presented by Qin and Batra in [10] for hydroelastic impact of sandwich panels was used as an 

initial approach to study the problem. However, FE results corresponding to rigid and metallic hulls were 

in fact validated using the analytical models presented in Sections 3.1 and 3.2, and FE models of 

sandwich composite hulls were developed directly from those existing models. Consequently, FE results 

of sandwich composite hulls were assumed to be correct. 
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CHAPTER 4.  FINITE ELEMENT MODELING 
 

In this chapter the governing equations of the fluid-structure impact problem are presented along 

with a brief description of the Lagrangian, Eulerian and ALE formulations implemented in LS-DYNA. 

The fluid flow is solved using an Eulerian formulation on a Cartesian grid that overlaps the structural 

mesh. The structure is described using the classical Lagrangian approach in which the FE mesh moves 

with the material. ALE formulation is a general description of representing the governing equations of the 

problem which contains both Eulerian and Lagrangian formulations as particular cases.  

 

4.1 LAGRANGIAN DESCRIPTION 
 

Consider the body shown in Figure 4.1 [16] which occupies the domain ΩX in the current 

configuration and let ∂ΩX denotes its boundary. In the Lagrangian or material representation, the current 

coordinates x are expressed in terms of the reference coordinates X (usually the undeformed configuration) 

and the variation of a typical variable  over the domain is described with respect to the material 

coordinates X and time t, Eqs. (4.1) and (4.2). The time derivative of  is simply the partial derivative 

with respect to time, because the material coordinates X do not change with time, Eq. (4.3). 

 

 

 

 

 

 

 

 

 

 
Figure 4.1. Lagrangian or material description. 

 

 

( , )x x X t   (4.1) 

( , )  X t  (4.2) 

( , ) ( , ) 


d
X t X t

dt t
 (4.3) 
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configuration Current 

configuration 

x2, X2 
x1, X1 

x3, X3 

ΩX

∂ΩXx=x(X,0) 
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The Lagrangian formulation for the momentum and energy of the body are given by Eqs. (4.4) 

and (4.5) in which  and  are the stress and strain tensors respectively,  is the mass density, v is the 

material velocity, f is the force density and e is the internal energy. Dots indicates time derivative and “:” 

denotes the double dot product. 

( )   

v

div f
t

  (4.4) 

:  


�e

t
   (4.5) 

 

Solution of Eqs. (4.4) and (4.5) requires the satisfaction of displacement boundary condition (4.6) 

on ∂ΩX
D and the traction boundary condition (4.7) on ∂ΩX

T. The vector n is the unit normal vector 

oriented outward at the boundary ∂ΩX. At time t = 0 the initial conditions are given by Eqs. (4.8) and (4.9). 

 

( , ) ( )   on  D
Xx X t D t  (4.6) 

( , ) ( )   on   T
X XX t n T t  (4.7) 

0( ,0) ( )x X X X  (4.8) 

0( ,0) v X V  (4.9) 

 

The material formulation is completed with the constitutive model and the kinematics equations. 

For a linear elastic material, the constitutive relationship takes the form of Eq. (4.10). The constants K and 

G represent the bulk and the shear modulus respectively and they are defined in terms of the Young 

modulus of elasticity E and the Poisson ratio , Eq. (4.13). V/V is the specific volumetric deformation of 

the solid computed as the sum of the diagonal elements of the strain tensor, I is the identity matrix and d 

is the deviatoric component of the strain tensor. In the Lagrangian approach the mass conservation is 

trivially satisfied through the formulation of Eq. (4.14) where 0 is the mass density in the reference 

configuration and J is the determinant of the deformation gradient matrix grad(x) = ∂x/∂X. 

 

2


   d

V
K G

V
I   (4.10) 

1
[ ( ) ( ) ]

2
  Tgrad x grad x  (4.11) 
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1
[ ( ) ( ) ]

2
 

�
Tgrad v grad v  (4.12) 

,          
3(1 2 ) 2(1 ) 

 
 
E E

K G  (4.13) 

0 J  (4.14) 

 

Eqs. (4.4)-(4.14) are solved using a FE mesh that moves with the material tracking the solid 

surfaces at each time interval. This formulation is very useful in solid mechanics where deformations are 

relatively small. In fluid mechanics mesh distortion associated with large deformations might result in 

inaccuracies and numerical instability, therefore, requiring the Eulerian description for the fluid domain.  

 

4.2 EULERIAN DESCRIPTION 
 

In the Eulerian or spatial description [16] (Figure 4.2), the motion of the body is referred to the 

current configuration and the variable  is described in terms of the current coordinates x and time t, Eq. 

(4.15). In those terms, the time derivative of , also known as the material derivative, is given by Eq. 

(4.16) or equivalently by Eq. (4.17).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Eulerian or spatial description. 
 

 

( , )  x t  (4.15) 

( , ) ( , ) ( , )   
 
 

d dx
X t x t x t

dt t x dt
 (4.16) 
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( )
  
  


d
v grad

dt t
 (4.17) 

 
Assuming that Ωx is the domain occupied by the body particles in the current configuration with 

boundary ∂Ωx, the spatial formulation of conservation of mass, momentum and energy are presented in 

Eqs. (4.18), (4.19) and (4.20). Additional terms associated with the material velocity v are known as 

convective terms. For a Newtonian viscous fluid, the stress tensor  in the reference domain can be 

represented according to Eq. (4.21) in which p is the pressure, q is the bulk viscosity,  is the dynamic 

viscosity and 
�

 is the strain rate tensor.    

 

( ) ( ) 0
  
    


div v v grad

t
 (4.18) 

( ) ( ) 
   


v

v div v div f
t

  (4.19) 

( ) : 
  



�e
v grad e

t
   (4.20) 

( ) 2   
�

p q I   (4.21) 

 

The pressure p is computed using an equation of state (EOS) which is defined as the relationship 

between the change in pressure and the change in mass density and energy, p = EOS(e,). Solution of Eqs.  

(4.18)-(4.21) must satisfy the velocity boundary condition (4.22) on ∂Ωx
V and the traction boundary 

condition (4.23) on the remaining part of the boundary, ∂Ωx
T. The solution must also satisfy the initial 

conditions (4.24). In fluid mechanics, the Eulerian coordinate system in a fixed mesh in space is the 

traditional approach. The fixed mesh eliminates the limitation on the degree of deformation allowed in the 

material, but introduces the additional complexity of the convective terms associated with the transport of 

material through the mesh elements. 

 

( , ) ( )   on  V
xv X t V t  (4.22) 

( , ) ( )   on   T
F xX t n T t  (4.23) 

0( ,0) ( )v x V x  (4.24) 
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4.3 GENERAL ALE FORMULATION 
 

In the ALE description of motion [15, 16], an arbitrary reference domain Ωy is introduced in 

addition to the previous discussed material (ΩX) and spatial (Ωx) domains. In fact, this new reference 

frame corresponds to the finite element mesh in which the problem will be formulated [15]. The arbitrary 

movement of the reference frame along with an adequate mesh moving and advection algorithms [15, 18] 

allow the ALE description to deal with moving boundaries, free surface and interface contact problems. 

The material derivative of the variable  is computed using Eq. (4.25) where y is the reference coordinate, 

v is the material velocity and w is the velocity of the reference frame (FE mesh). Note that the ALE 

representation contains both Lagrangian and Eulerian formulations as particular cases. If the mesh 

velocity w = v, Eq. (4.25) becomes into Eq. (4.3) while if w = 0, Eq. (4.17) is obtained. 

 

( , ) ( , )
( ) ( ( , ))

   
   

 
X t y t

v w grad y t
t t

 (4.25) 

 
The formulation of conservation of mass, momentum and energy in the ALE description is given 

by Eqs. (4.26), (4.27) and (4.28).  Variables, boundary and initial conditions are defined similarly as done 

in Sections 4.1 and 4.2. In most fluid-structure interaction problems, neither the Lagrangian nor the 

Eulerian formulations are optimal for the entire domain. Instead, ALE methods combine a Lagrangian 

formulation for the structure with an Eulerian formulation for the fluid. The interaction forces between the 

moving mesh and the mesh fixed in space is managed by a coupling algorithm [14, 16]. The terms related 

to the relative velocity v – w are usually referred to as the convective terms. The nonlinearities associated 

with those terms present one of the major difficulties in the time integration of ALE equations.  

 

( ) ( ) ( ) 0
  
     


div v v w grad

t
 (4.26) 

( ) ( ) ( ) 
    


v

v w div v div f
t

  (4.27) 

( ) ( ) : 
   



�e
v w grad e

t
   (4.28) 
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The common approach followed by the computational fluid dynamic (CFD) community is to 

solve the fully coupled equations [15]. However, many commercial codes, including LS-DYNA, 

implement an alternative approach named the operator splitting method [14]. Operator splitting is a 

convenient technique of breaking complicated problems into a series of less complex problems. In this 

method, the calculations performed for each time step are divided into two phases, a Lagrangian phase 

followed by an advection or Eulerian phase. In the Lagrangian step, in which the mesh moves with the 

material, changes in velocity, pressure and internal energy due to external and internal forces are 

computed using an explicit time integration scheme. In the Eulerian step, the deformed mesh is remapped 

back to its original position and the transport of mass, momentum and energy across element boundaries 

are computed (Figure 4.3). A detailed discussion of these topics is presented in the following sections. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Split operator. 
 

4.3.1 The Operator Splitting 
 

The progression of the solution in time in ALE methods is performed by breaking the governing 

partial differential equations (PDEs) into a series of simpler PDEs which are solved sequentially. The 

basic concept of the operator splitting can be illustrated using a simple linear ordinary differential 

equation (ODE) [16]. Consider the IVP described in Eqs. (4.29) and (4.30). 

 

1 2( ) 0
   

d
L L

dt
 (4.29) 

0( 0)  t  (4.30) 

1 2( )
0( )    L L tt e  (4.31) 

 

Time step 

Lagrangian  
phase 

Eulerian 
phase 
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In the general case,  can be a scalar or a vector function of t and L1 and L2 can be scalars or 

matrices. The solution of this problem within the interval t is given in Eq. (4.31) where e(L1+ L2) is the 

matrix exponential of matrix (L1+L2). Suppose that instead of solving Eqs. (4.29) and (4.30) in a single 

time step t, the problem is divided into two simpler IVPs as shown in Eqs. (4.32) and (4.33). It is easily 

to demonstrate that solutions for 1 and 2 are of the form of Eqs. (4.34) and (4.35).  

 

1
1 1

1 00,           (0)
     

d
L

dt
 (4.32) 

2
2 2 1 2

2 0,           (0) ( ),          ( ) ( )
           

d
L t t t

dt
 (4.33) 

11
0( )   L tt e  (4.34) 

2 2 12 1
0( ) ( ) ( )          L t L t L tt t e t e e  (4.35) 

 

If L1 and L2 are scalars or commutative matrices (L1 L2 = L2 L1), Eqs. (4.31) and (4.35) are 

identical. However, for arbitrary matrices L1 and L2, that is not true and an error is introduced in the 

solution of the problem as a result of the splitting process. According to the literature [16], the order of 

the this error is proportional to (t)3 which is an acceptable accuracy cost considering the computational 

benefits. To illustrate how the operator splitting is applied to ALE formulation, consider the model Eq. 

(4.36). The function  is a generalization of the material variables (, v and e) and the term S(x,t) 

represents the source term. Using the operator splitting, Eq. (4.36) can be rewritten as two equivalent 

equations, Eqs. (4.37) and (4.38). The first one has the form of the Lagrangian equation in which the 

relative velocity v – w = 0. This phase is called the Lagrangian step and its solution is obtained using a 

mesh that moves with the material velocity v.  

 

( ) ( ) ( , )
 
   


v w grad S x t

t
 (4.36) 

( , )




S x t

t
 (4.37) 

0( ) 0,          ( ,0) ( )
   



   


v grad x x  (4.38) 
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The second equation which contains only the convective terms is commonly referred to as the 

Eulerian or advection step. In this phase, the deformed mesh obtained at the end of the Lagrangian phase 

is remapped back to its original position using a mesh smoothing algorithm [15]. Later, the transport of 

mass, momentum and energy across element boundaries are computed sequentially using as initial 

configuration 0(x) which is the solution of the Lagrangian phase at the current time step. The variable  

in Eq. (4.38) is a fictitious time because the time step is not updated during the advection phase. The 

splitting process of the time step is shown in Figure 4.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Split time step into two phases. 
 

 

4.3.2 The Lagrangian Step 
 

The principle of virtual displacements states that the virtual work of all actual forces when 

moving through a virtual displacement is zero if the body is in equilibrium, Eq. (4.39). The virtual 

displacement x is arbitrary but must satisfies the constraint x = 0 in ∂ΩX
D. Using the divergence 

theorem Eq. (4.39) can be rewritten as Eq. (4.40) which is known as the weak form of the equilibrium 

equations. 

 

 ( )      
  


 

  
X X X

v
x dX div x dX f x dX

t
  (4.39) 
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
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
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     
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   
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       
   


   

   
T

X X X X

X

v
x dX dX f x dX T x dS

t
   (4.40) 

 

Eq. (40) is solved in a Lagrangian FE mesh in which the coordinates, velocity, and virtual 

displacement are interpolated from their values at the nodes using the shape functions (,,). In Eq. 

(4.41), ,  and  are parametric coordinates, N is the number of nodes in defining the element and xs are 

the nodal coordinates. Extending the weak form of the equilibrium equations to the m elements that form 

the FE mesh and considering approximation (4.41), Eq. (4.42) is derived. The term on the right hand side 

of Eq. (4.42) is the mass matrix, the first term on the left hand side represents the internal forces on the 

body and the second and third terms represent the external forces. The mass matrix Mc in Eq. (4.43) is 

called the consistent mass matrix because its derivation is consistent with the FE method.  

 

1

( , ) ( , , ) ( )   


 
N

s s
s

x X t x t  (4.41) 

,
1 1 1 1

             
      

         
T

Xr Xr Xr Xr

m m m m

s k k r s s i i r s s r s X s r s
r r r r

a dX x dX x f dX x T dS x  (4.42) 

  


 sk

Xr

c
s k rM dX  (4.43) 

int
, 



 
Xr

s s i i rF dX  (4.44) 

 
 

  
T

Xr Xr

ext
s s r X s rF f dX T dS  (4.45) 

 
Using the mass matrix Mc would require solving a linear system of equations for the acceleration 

v/t at each time instant, which may be computationally costly. Instead the lumped diagonal mass matrix 

M is commonly used; Eq. (4.46).  The system of equations of motion is now decoupled and for each node 

s the acceleration at time tn is easily computed using Eq. (4.48).  

 
  



 
Xr

ss s s rM dX  (4.46) 

int   ext
ss s s s sM a F F F  (4.47) 

 s

n
n
s

ss

F
a

M
 (4.48) 
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1/ 2 1/ 2    n n n
s s sv v t a  (4.49) 

1 1/ 2    n n n
s s sd d t v  (4.50) 

 


t
c

 (4.51) 

 

The nodal velocities and displacements are obtained using central difference time integration of 

the nodal accelerations and velocities respectively, Eqs. (4.49) and (4.50). In the central difference 

method the time step is limited by stability considerations like all explicit integration methods. The stable 

time step size is limited according to Eq. (4.51) in which ℓ is the characteristic length of the smallest 

element and c is the speed of sound in the material. For a linear elastic material the speed of sound is c = 

(E/)1/2. Notice that the form of this stability limit is similar to that in transport algorithms where c is the 

velocity of the fluid. The physical interpretation is that the time step must be smaller than the time 

required for a wave to propagate through the element. For larger time steps, waves would jump elements 

which never would experience their effect.  

 

4.3.3 The Eulerian Step 
 

In the Eulerian step, the deformed mesh obtained from the Lagrangian calculations is remapped 

back to its original position and the transport of variables across element boundaries is computed. The 

overall flow of an advection step includes: 1) to decide which nodes to move; move the boundary nodes 

and then move the interior nodes and 2) to calculate the transport of the element-centered variables and 

compute the transport of momentum and update the velocity. The movement of the nodes relative to the 

material is performed using a mesh relaxation or mesh smoothing algorithm [15]. Different relaxation 

algorithms have been implemented in FE codes; the Equipotential method [15] which was found to be 

stable for a broad range of problems, the simple average algorithm, the Kikuchi’s algorithm and 

combinations of those. The selection and implementation of the mesh relaxation algorithm is the most 

difficult and challenging step in ALE methods and is problem dependent. The code implemented in this 

thesis uses the Equipotential smoothing algorithm and the donor cell advection method [18, 19]. Both 

algorithms are simple, stable and accurate and have been extensively used to solve impact problems. The 

mathematical bases of smoothing algorithms and advection methods are not discussed here because they 

are beyond the scope of this work.  
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4.3.4 Fluid-Structure Interaction 
 

The interaction between the Lagrangian mesh and the Eulerian mesh is managed by the penalty 

based contact algorithm available in LS-DYNA [18, 19]. In the contact interface, the fluid nodes are 

allowed to penetrate a small amount e into the structural mesh. The penalty contact formulation works as 

a spring damper system imposing resisting forces Ff and Fs at the contact nodes [14], (Figure 4.5). The 

resisting forces are proportional to the penetration depth e, penetration velocity ė and user defined 

stiffness kD and damping . The stiffness factor kD is calculated by LS-DYNA in terms of the bulk 

modulus (c2) and the average size of the elements in contact dx using Eq. (4.52), where pf is a user 

defined scale factor set by default to 0.1. To avoid numerical instability pf must satisfy 0  pf  1. 

According to Stenius [17], the appropriate selection of the contact properties is highly dependent on the 

mesh density. Too low contact stiffness leads to numerical leakage while an excessively high stiffness 

results in an oscillating solution. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Penalty coupling schematic diagram. 
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4.4 LS-DYNA MODELS 
 

FE models were developed using the commercial explicit code LS-DYNA. Explicit FE analysis is 

well suited for dynamic simulations of impact problems, but it may become prohibitively expensive for 

long time duration analyses. Therefore, this work focused on a balanced solution between accuracy and 

computational cost. The initial approach to model the problem is shown in Figure 4.6 which included the 

entire hull structure. Later, the model was simplified to take into account the symmetry of the problem 

and thus to reduce the FE mesh size. The hull structure was also simplified to a simple beam (Figure 4.7). 

The model extension in z-direction was one single element. The fluid domains, water and air, were 

modeled using an Eulerian mesh with solid one-point (Gauss quadrature integration) ALE multimaterial 

element formulation (ELFORM = 11). The pressure-volume-internal energy relationship in the fluid 

elements was defined using the Gruneisen EOS [18, 19], even though the theoretical models described in 

Chapter 3 assumed the fluid as incompressible. EOS’s are required in problems involving high pressures 

and shock wave propagation in order to accurately simulate the material behavior. Therefore, some 

compressibility in the water was expected to occur during the simulations. The air domain was modeled 

as void which allows water material to flow through the air mesh. The beam was modeled using 

Lagrangian shell elements, for steel beams, and a combination of shell and solid elements, for sandwich 

composite beams. The analysis was restricted to two dimensions by constraining all nodes in the z-

direction. Non reflecting boundary conditions were defined in the fluid borders to simulate a semi-infinite 

domain. The interaction between the fluid and the structure was managed by the penalty based contact 

algorithm described in Section 4.3.4. Numerical sensor shell elements were defined in the fluid-structure 

contact region in order to record the pressure data during the simulations. 

 

 
 

Figure 4.6. Finite element model. 
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The pre-knowledge of the expanding pressure peak obtained from theoretical models was used to 

design the FE mesh in order to reduce the computational time of the simulations. As a result, the fluid 

domain was divided into two domains: 1) an interior domain located close to the keel, where high spatial 

resolution was required, and 2) an exterior domain located beyond the influence of the impact. Note that 

these domains do not correspond to the inner and outer regions defined in Section 3.2. The interior 

domain was uniformly meshed while within the exterior domain an expanding mesh toward the model 

boundaries was used. The size of the fluid elements in the uniform meshed region was estimated based on 

results of a parameter study conducted on water-impact problems [17]. The objective of this study was to 

provide general guidance for the appropriate selection of element size and contact stiffness to capture the 

pressure peak with satisfactory accuracy. According to Stenius [17], the mesh density and contact 

stiffness are highly dependent and at least, eight elements must be used within the pressure peak to 

capture it with sufficient accuracy. Further elements will result in a considerable computational effort in 

addition to the full capture of the pressure peak is not necessary in the modeling of fluid-structure 

interaction. To avoid contact problems, the structural elements and the fluid elements (within the inner 

region) were similar in size. The contact stiffness scale factor pf and the contact damping  were set as 

default, 0.1 and 0 respectively. These settings conducted to good correlation for the pressure peak 

between theoretical and numerical results as shown in the next chapter. During this investigation, it was 

concluded that neither pf nor   had a significant effect on the solution. This was found by comparing 

results of different simulations with different values of pf and. Instead, it was the mesh density within the 

pressure peak the critical factor to be considered.   

 

 

 
Figure 4.7. Simplified FE model. 
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CHAPTER 5.  FE RESULTS AND DISCUSSION 
 

This chapter presents the results of FE simulations of symmetrical hull-water impacts. Three 

different structural models were considered for the hull structure: rigid, linear elastic (metallic) and 

sandwich composite. The fluid formulation and coupling method described in Chapter 4 were used. The 

time required to complete the impact stage depends on the characteristics of the problem under study (hull 

dimensions, deadrise angle, impact velocity and structural deformation). Therefore, the simulation time 

was estimated using analytical models [2, 8 and 9]. Hydrodynamic pressures of rigid hull impacts were 

verified with analytical solutions and compared with experimental data [23]. Results demonstrated to 

have better correlation than those published in the literature [14, 17]. The structural response of metallic 

hulls was validated using the hydroelastic model presented in Chapter 3. Results of sandwich composite 

models are discussed in Section 5.3. 

 

5.1 WATER IMPACT OF RIGID HULLS 
 

First, the impact of a rigid hull with deadrise angle  and vertical velocity V into water was 

considered. In this case, the hydrodynamic loads and the structural response can be treated separately, 

which simplifies the problem considerably. Impacts of rigid hulls were studied in the current work in 

order to get the first approach into the water impact problem. Abundant literature is available on 

slamming of rigid bodies which was used to validate the computational results. The hull structure was 

modeled in LS-DYNA using the RIGID material type. Rigid elements are computationally very cost 

effective since no memory is allocated for storaging history variables [18, 19], only the fluid variables are 

computed during the impact simulation. A typical case study in the literature is the rigid hull with 

deadrise angle  = 20 and vertical velocity V = 5 m/s.  Consequently, this case was selected for analysis 

in this work. The bottom hull length was L = 0.2 m for all study cases. The fluid element size within the 

interior domain was chosen based on the pre-knowledge of the expanding pressure peak (dx = 0.5x10-3 m). 

The contact stiffness, based on Eq. (4.52), was kD = 4.5 GPa/m and no contact damping was considered ( 

= 0). The fluid density was assumed constant, W = 1000 kg/m3. Based on Wagner’s model, the 

simulation time for the penetration stage was estimated in 9.0 milliseconds (ms) approximately. In order 

to guarantee stability of the solution (a non-oscillatory-converged solution), the default time step 

calculated by LS-DYNA was scaled by a factor 0.3 [18, 19]. The computational cost of the simulation 

was in the order of 4 hours using a 2.66 GHz Core 2 Quad processor PC.  
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a)  t = 3.0 ms 
 

 
 

b)  t = 5.0 ms 
 

 
 

c)  t = 7.0 ms 

 
 

d)  t = 3.0 ms 
 

 
 

e)  t = 5.0 ms 
 

 
 

f)  t = 7.0 ms
 
 

Figure 5.1. Left: water free surface elevation. Right: water pressure. 
 

c 

c 

c 



33 
 

 

Elevation of the water free surface and pressure distribution were plotted in Figure 5.1 at t = 3.0, 

5.0 and 7.0 ms from the impact. Clearly, no evidence of numerical leakage was observed during the 

simulation. Figure 5.1 (d), (e) and (f) also show that the maximum hydrodynamic pressure, indicated as a 

red colored area, is located at the contact surface between the water and the structure. This pressure peak 

propagates from the keel to the chine of the hull during the impact stage following the contact point c(t). 

Figure 5.2 depicts the local pressure time history at location x = 0.107 m on the bottom hull surface 

measured from the keel. The temporal evolution of the pressure is characterized by a localized pressure 

peak at time t = 5 ms approximately, at which x = c(t), followed by a distinctly lower and relatively 

uniform pressure. FE results were compared with the analytical solution of Zhao and Faltinsen [6].  

 

 

Figure 5.2. Pressure time history at x = 0.107 m ( = 20, V = 5 m/s). 
 

Notice that the theoretical pressure was slightly higher than that obtained using LS-DYNA. 

According to the analytical model, the maximum pressure was close to 0.23 MPa while the maximum 

numerical pressure was 0.20 MPa, approximately. The difference between both models was in the order 

of 13 % which is in accordance with the results presented in [17] for FE models with similar mesh 

densities. The effect of capturing the final 13 % of the pressure peak may result in a dramatic increment 

of the computational cost. In addition, the contribution of the very pressure peak to the dynamic structural 

response is thought to be small; therefore, lower mesh densities can be accepted [17]. On the other hand, 

experimental results [23] demonstrated that the maximum pressure measured during the impact of a rigid 

wedge with 20 at 5 m/s was in the range 0.155 - 0.208 MPa, which is consistent with the FE results. 
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Therefore, it was concluded that no further increase of the mesh density was required and the selected 

contact stiffness (4.5 GPa/m) and damping (0) were appropriate for this case.  

 

Another interesting study case is the rigid hull with deadrise angle  = 10 and vertical velocity V 

= 5 m/s. This case represented a more challenging problem in terms of modeling since the pressure peak 

was more pronounced than that in the previous case (Figure 5.3). The increment in the pressure peak was 

a consequence of a smaller impact angle. As a result of the reduction of pressure peak width, the uniform 

fluid element size was reduced to dx = 0.2x10-3 m. The resulting contact stiffness was kD = 11.25 GPa/m 

and no damping was selected. The simulation time corresponding to the impact stage was 4.5 ms with a 

computational cost of 10 hours approximately. By comparison with analytical results, this FE model was 

able to capture about the 78 % of the theoretical pressure peak. The maximum experimental pressure, 

corresponding to this impact case, was in the range 0.523 - 0.754 MPa [23] which showed better 

correlation with FE results than with theoretical results. The expanding pressure peak can be observed in 

Figure 5.4.  Notice that the pressure peak width increased with time, consistent with the analytical model 

(see Figure 3.2). Eventually, more and more elements are within the pressure peak width allowing the 

model to capture a higher percentage of the pressure peak. As a result, the maximum pressure increased 

from 0.7 MPa at 1.6 ms to 0.8 MPa at 3.0 ms.  

 

 
 

 
 

Figure 5.3. Pressure time history at x = 0.111 m ( = 10, V = 5 m/s). 
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Figure 5.4. Propagation of the expanding pressure peak. 
 

5.2 HYDROELASTIC IMPACT OF METALLIC HULLS 
 

This section presents the results of FE simulations of water impacts of linear elastic hulls using 

LS-DYNA. The hull structure was modeled as an Euler beam using an isotropic ELASTIC material and 

simply supported boundary conditions. The beam was considered to be made of steel with mass density 

b = 7850 kg/m3, modulus of elasticity E = 21x1010 N/m2, constant thickness h = 6 x10-3 m and length 

between supports L = 0.2 m. These properties were selected for comparison purposes with published 

results [8, 9]. The deadrise angle was   = 10 and the impact velocity V = 5 m/s. Mesh density, contact 

stiffness and damping were selected the same to those corresponding to the rigid case in Section 5.1 (dx = 

0.2x10-3 m, kD = 11.25 GPa/m and  = 0). Initially, the simulation time was set in 5.0 ms (based on 

analytical results for the impact stage). Later, the analysis was extended to include the penetration stage. 

The computational cost of the simulation was in the order of 10 days.  

 

5.2.1 The Impact Stage 
 

Previously, the impact stage was defined as the time it takes the hull length to wet completely. In 

other words, it is the time required for the contact point (c(t)) to travel from the left to the right beam 

support. When the contact point reaches the right support (c(t) = L), the impact stage ends and the 

penetration stage begins. The left column of Figure 5.5 shows the water surface at t = 0.75, 3.0 and 4.75 

ms while the right column illustrates the corresponding structural deformation. The deflected shapes 

represent the displacement of the structure relative to its rigid body position (dashed line).  
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a)  Time = 0.75 ms 
 

 
 

b)  Time = 3.0 ms 
 

 
 

c)  Time = 4.75 ms 
 
 

 

 
 

d)  Time = 0.75 ms 
 

 
 

e)  Time = 3.0 ms 
 

 
 

f)  Time = 4.75 ms 

Figure 5.5. Left: Water free surface elevation. Right: Hull deflection (with scale factor). 

c 

c 

c 
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Clearly, at early stages (Figure 5.5d) the hull deflection included the contribution of several free 

vibration mode shapes. But at advanced stages (Figure 5.5e and 5.5f) the structural deflection was 

governed mostly by the first mode shape. These results were verified later using the analytical model 

described in Chapter 3. The duration of the impact stage was estimated in 4.8 ms approximately, which 

corresponds to the time that the pressure peak was sensed in the model by the numerical pressure sensor 

located on the element at the right support (see Section 4.4). Figure 5.6 shows the time history of the hull 

deflection at three different locations on the hull length, x = 0.05, 0.10 and 0.15 m, measured from the left 

support (L/4, L/2 and 3L/4 respectively). The results correspond to the impact stage (0 ≤ t ≤ 4.8 ms). As 

expected, the structural response was not symmetric and the maximum deflections occurred at mid-span 

of the beam length (x = 0.1 m).  

 

Figure 5.6. Hull deflection time history ( = 10, V = 5 m/s). 
 

 
Figure 5.7. Maximum hull deflections. 
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Figure 5.7 shows the results of the previous analysis extended to 6 ms in order to demonstrate that 

the maximum structural deformations took place immediately after the beginning of the penetration stage, 

when the hull length was completely wetted (t = 5.3 ms approximately). To validate these results, the 

hydroelastic model presented in Chapter 3 was used to solve the same impact situation. The number of 

terms used to approximate the hull deflection was n = 3. Results demonstrated that only the first three 

generalized coordinates had a significant effect in the structural response. The duration of the impact 

stage in terms of the wetted length was c = 1.0, in non-dimensional variables, or c = 0.2 m, in 

dimensional variables. Note that the system of differential equations and the corresponding initial 

conditions derived in Chapter 3 were formulated using c as the independent variable and not time. The 

temporal variable t was obtained as a result of the solution of the ODE system (3.52)-(3.54), as shown in 

Figure 5.8. In this case, the relationship between t and c was quasi-linear which indicated a relative rigid 

impact. The time required to complete the impact stage was in the order of 4.6 ms which was very close 

to the time predicted by the FE model. The generalized coordinates an were plotted in Figure 5.9 as a 

function of time t. Clearly, the first coordinate a1 (blue line) dominated over a2 (green line) and a3 (red 

line). In fact, a3 was approximately zero, which confirmed that no additional terms were needed in the 

expansion approximations. However, at initial impact stages (t  1.0 ms), the three generalized 

coordinates were similar in magnitude. Therefore, the hull deformation included the contribution of the 

three dry mode shapes, ψ1, ψ2, and ψ3. This can be seen in Figure 5.10 for four different values of the 

wetted length, c = 0.02, 0.03, 0.04 and 0.05 m. The small circle on each curve indicates the location of 

the contact point x = c.  

 

 
 

Figure 5.8. Time history of the wetted length. 
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Figure 5.9. Time history of generalized coordinates. 

 

 
Figure 5.10. Deflected shapes at initial stages. 

 

 
Figure 5.11. Deflected shapes at advanced stages. 
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Figure 5.12. Hull deflection time history ( = 10, V = 5 m/s). 

 
 

On the other hand, at advanced stages (t > 1.0 ms), coordinate a1 dominated over a2 and a3 and 

the hull deformation basically adopted the shape of the first dry mode shape ψ1 (Figure 5.11).  These 

results were in accordance with those obtained with LS-DYNA. Figure 5.12 shows the time history of the 

hull deflection obtained from the analytical model at x = 0.05, 0.10 and 0.15 m correspondingly to Figure 

5.6. These results also demonstrated good correlation with FE simulations. However, at this point two 

major issues required special attention: 1) the accuracy of the FE results and 2) the computational cost of 

the simulation. First, it was found that the structural deformations computed using Korobkin’s model 

were slightly higher than those obtained with LS-DYNA, analogous to the impact pressure for rigid hulls. 

According to the theoretical model, the maximum mid-span beam deflection was close to 2 mm (Figure 

5.12) while LS-DYNA predicted approximately 1.5 mm at the same location (Figure 5.6). The difference 

was a consequence of the calculation of the hydrodynamic pressure during the impact stage. The integral 

of this pressure between time t = 0 and t is defined as the impulse and represents the momentum by unit 

area applied to the structure. Figure 5.13 illustrates the difference in the predicted impact pressure at a 

particular location. Clearly, the momentum applied to the FE structure during the impact was relatively 

lower than that applied to the beam in the analytical model. Consequently the FE deformations were 

significantly smaller. Second, the 10 days of computational time of this simulation was considered 

excessively expensive, based on the scope of this work which requires including in the analysis the 

penetration stage of the impact.  

 

The most effective method to reduce the simulation time is to decrease the FE mesh density. But 

decreasing the mesh density in the interior domain may affect the accuracy of the numerical results; in 

particular the impact pressure peak might not be captured with a coarser mesh. To determine the 
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sensitivity of the structural response to the very pressure peak, a simple comparative analysis was 

conducted using a FE model with lower mesh density. The new model was developed using a uniform 

mesh element size 6.25 times larger than the element size used in the current model (0.20x10-3 m). The 

structural deflection at x = 0.10 m is shown in Figure 5.14 for both element sizes. The maximum mid-

span deflection reduced from 1.50x10-3 m to 1.25x10-3 m (16 % approximately) and occurred exactly at 

the end of the impact stage. On the other hand, the reduction of computational time was in the order of 10 

times (from 10 days to 1 day). Based on these results, it was concluded that the pressure peak had no 

significant effect on the dynamic response of the hull structure. Deflections can be accurately predicted 

using coarser meshes than that required to capture the pressure peak and the reduction of computational 

cost obtained by decreasing the mesh density can be very significant. 

 

 
Figure 5.13. Hydrodynamic pressure (impact stage). 

 

 
Figure 5.14. Hull deflection for two different mesh densities (x = 0.1 m) 
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5.2.2 The Penetration Stage 
 

In order to investigate the structural response of the elastic hull during the penetration stage, the 

previous FE analysis was extended to 20 ms. Figure 5.15 illustrates how after the bottom hull surface was 

totally wetted, the structure started to vibrate with a damped oscillatory motion. This vibration induced by 

the slam event is known as whipping. The damping was related to the dissipation of energy during the 

impact due to small changes of fluid mass density; even though this was assumed to be incompressible 

(no structural damping was considered). From Figure 5.15, the period of vibration of the wet structure TW 

was estimated close to 6.8 ms. The damping ratio was calculated using the logarithmic decrement method 

which was 0.18 approximately. The period of vibration corresponding to the dry structure TD, obtained 

using a single degree of freedom damped model, was 2.9 ms (TW ≈ 2.3 TD). The hydrodynamic loads 

applied to the hull structure during the impact had a similar effect of incrementing its mass about 5 times. 

This is known as the added mass effect. As time increased, the structural response tended to a state of 

constant deformation. The bending stresses induced by the impact and the hull vibration are shown in 

Figure 5.16. As expected, the maximum stresses occurred simultaneously with the maximum 

deformations. The peak stress computed at x = 0.1 m was 220 MPa approximately. This was selected as 

the critical location in terms of maximum stresses for fatigue analysis. Results, showed in Figure 5.15 and 

Figure 5.16, correspond to a single impact event. Under multiple impacts or repeated impacts, as 

experienced in rough sea conditions, the result of structural vibrations may be more pronounced. As a 

consequence of these oscillating stresses, fatigue analysis on the hull structure must be conducted. In 

Chapter 6 a new model based on the Rainflow cycle counting method [27] and Miner’s Rule [26] is 

proposed for the prediction of the maximum number of impacts (cycles) to fatigue failure.    

 

 
Figure 5.15. Hull deflection including the penetration stage. 
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Figure 5.16. Hull stresses including the penetration stage. 

 
 

5.3 HYDROELASTIC IMPACT OF SANDWICH HULLS 
 
 

The sandwich composite hull FE model is shown in Figure 5.17. It consisted of two layers of 4-

node shell elements (top and bottom face sheets) attached by four layers of 8-node solid elements (core). 

The face sheets were modeled using an orthotropic elastic material formulation while the core was 

assumed to be isotropic linear elastic.  Mechanical properties of the sandwich composite materials in local 

coordinate system (, ) are listed in Table 5.1.  

 

 
Figure 5.17. FE model of a sandwich composite hull. 
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Data correspond to carbon fiber-polyurethane foam core sandwich composite [24]. 
 

Boundary conditions were simply supported for the face sheets and clamped for the core (Figure 

5.17). Beam’s dimensions were selected similar to those described in Section 5.2 for metallic hulls: face 

sheet thickness hf = 0.5x10-3 m, core thickness tc = 5x10-3 m (2hf + tc = 6x10-3 m), and length between 

supports L = 0.2 m. Other parameters including deadrise angle, impact velocity, mesh density, contact 

stiffness and fluid properties were chosen from the previous model ( = 10, V = 5 m/s, dx = 1.25x10-3 m, 

kD = 0.18 GPa/m and  = 0). The impact stage was estimated in 5.5 ms approximately (Figure 5.18) and 

the total simulation time was set to 20 ms. Figure 5.19 shows the time history of transversal deflections ( 

direction) for three different locations on the beam span. Note that the deflections were significantly 

larger than those in Figure 5.15 due to the lower stiffness of the materials. Also note that the whipping 

effect (vibration) was more pronounced in the sandwich beam, especially during the penetration stage. In 

this case, the time of maximum deflections became considerably different among the three locations, as a 

consequence of the large deformations.    

 
 

 

a)   

 

b)   

Figure 5.18. a) Water free surface elevation, b) Core shear stresses (MPa). 

Table 5.1. Mechanical properties of sandwich composite beams. 
   

Property Face Sheet Core    

Mass density (kg/m3) 
Longitudinal modulus of elasticity (MPa) 
Transversal modulus of elasticity (MPa) 
Shear modulus of elasticity (MPa) 
Poisson’s ratio 

1117 
40000 
40000 
10000 
0.35 

96 
21.5 
21.5 
9.0 
0.3 

   

c 

c 
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In sandwich structures, the core is assumed to carry all shear loads while the face sheets provide 

the stiffness in the longitudinal direction ( axis). Additionally, experimental results on fatigue of 

sandwich composites [24, 31], demonstrated that the predominant mode of failure for flexural cyclic 

loading was core shear. Based on that, and knowing that the maximum shear stresses in the sandwich 

composite beam will occur close to the supports (for these particular boundary conditions), Figure 5.20 

was obtained. The critical location was identified near to the right support with a maximum shear stress of 

1.8 MPa at 5.5 ms approximately. The maximum shear stress near the left support was significantly 

smaller, 1.3 MPa at 7.5 ms. Note that these maximum stresses took place after the impact stage, in other 

words, after the beam was completely wet. As a result, both locations within the sandwich core were 

selected for fatigue life assessment in Chapter 6.  

 
Figure 5.19. Sandwich hull transversal deflections ( axis). 

 

 
Figure 5.20. Core shear stresses at beam supports. 
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CHAPTER 6.  FATIGUE LIFE PREDICTION FOR REPEATED IMPACTS 
 

In this chapter a new approach based on the Rainflow cycle counting method [27] and Peak Over 

Threshold (POT) stress extrapolation analysis [32] is proposed for the prediction of fatigue life (number 

of impacts to failure) of a hull structure. Fatigue life is estimated using a linear damage accumulation 

model and compared with a non-linear model based on fatigue modulus degradation. First, an 

introduction to POT analysis to extrapolate stress time histories is presented along with a brief description 

of the Rainflow method. Later, fatigue analysis, conducted on selected critical locations of metallic and 

sandwich composite structures, is discussed.  

 

 

6.1 FATIGUE LIFE PREDICTION APPROACH 
 

The stress time histories obtained in Chapter 5 for a single impact event can be extrapolated to 

account for multiple impacts of similar characteristics (deadrise angle, impact velocity, etc.). The 

extrapolation can be done using one of the following approaches: a) simply repeating the load history 

obtained from a single impact until structural failure or b) “randomly” modifying high peaks and low 

valley using statistical extreme value theory (POT model). Both extrapolation approaches require 

extracting peaks and valleys, also called turning points (TP), from the stress history. It is also 

recommended to remove small amplitude cycles to reduce computational cost because they are assumed 

to cause negligible damage. In addition, frequency content in the stress time history is not considered.  In 

this thesis, the POT extrapolation approach was used. POT methods have the capability to incorporate in 

the analysis statistical data obtained from real load measurements. From the extrapolated results, stress 

cycles were extracted and counted using the Rainflow method. As a result, a series of cycles and half 

cycles with different mean and amplitude values were obtained. Then, a damage accumulation model was 

used to predict the fatigue life of critical locations on the hull structure. For metallic hulls, Palmgren-

Miner linear law was used because its simplicity and because it has demonstrated to work properly in 

metals; while for sandwich composites hulls, a damage accumulation model based on fatigue (shear) 

modulus degradations was selected since core shear was indentified to be the predominant mode of failure. 

The fatigue life prediction approach proposed in this thesis is summarized in Figure 6.1.  
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Figure 6.1. Fatigue life prediction approach. 
 
 
 
 

6.2 TURNING POINTS SELECTION 
 

The second step in the proposed life prediction approach involves the extraction of peaks and 

valleys (TPs) from the simulated stress history (TP filter). These TPs are simply points where the 

direction of the stress slope changes from positive to negative or from negative to positive. Also of 

interest are ranges or absolute stress differences |∆σ| between consecutive TPs. Figure 6.2 shows three 

repetitions or blocks of the stress time history obtained at mid-span of a steel hull hitting the water surface 

with  = 10 and V = 5 m/s with the corresponding TPs. The TPs associated with stress ranges smaller 

than 5 MPa were removed from the original data because they were assumed to cause negligible damage. 

Once the TPs were selected, the stress history is discarded and only the filtered data is used for 

subsequent steps which include extrapolation and cycle counting (Figure 6.3). 

 

1. Perform finite element 
analysis of a single impact 
event. 

4. Use the RAINFLOW 
method to count cycles from 
extrapolated stress time 
history.  

5. Predict fatigue life at critical 
locations on the hull 
structure using a damage 
accumulation model. 

 Extract peaks and valleys from 
stress time history. 

 Remove small amplitude ranges 
(negligible damage). 

 Use Peak Over Threshold (POT) 
analysis to modify high peaks and 
low valleys based on statistical 
data. 

3. Extrapolate stress time 
history to simulate repeated 
impacts. 

 Obtain stress time history at 
selected critical locations. 

2. Apply turning points (TPs) 
selection. 

 Obtain mean and amplitude values 
from counted cycles. 

 Use Palmgren-Miner linear law for 
metallic structures. 

 Use fatigue modulus degradation 
approach for sandwich composite 
hulls. 
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Figure 6.2. Stress time history at mid-span for three impact events. 
 

 

Figure 6.3. Selected turning points. 
 

 

6.3 EXTRAPOLATION ANALYSIS: Peak Over Threshold Method 
 

The stress history obtained using FE models represents only a small fraction of the structure’s 

design life. Usually, this stress time history is repeated until failure [32]. However, this approach has the 

disadvantage that only the stress cycles in the FE results will appear in the extrapolation, even though 

other cycles might be possible. Especially, this can be critical for the most damaging large amplitude 

cycles. The methodology adopted in this thesis included the repetition of simulated TPs stress histories 

modifying maximum and minimum values. The random variation of peaks and valleys was based on 



49 
 

 

extreme value theory (POT model) and experimental data [25, 32]. The maximum stress distribution 

obtained from slamming measurements on high-speed aluminum catamarans follows approximately an 

exponential distribution (Figure 6.4). The horizontal axis corresponds to the normalized peak stress for 

each slam event, which was calculated as the actual peak stress divided by the mean of all peak stresses, 

 . The vertical axis indicates the percentage of occurrence of each normalized peak. Figure 6.4 shows 

that the majority of the slam events (around 70%) occurred in the range [0-1.0] of normalized peaks [32]. 

It also indicates that the probability of occurrence of a peak stress in the interval [1.0-2.0] is close to 20% 

and in the interval [2.0-3.0] close to 6%. The experimental stress distribution of Figure 6.4 was 

approximated using an exponential Probability Density Function (PDF) described by Equation 6.1 with a 

Cumulative Distribution Function (CDF) of the form of Equation 6.2. Notice that for normalized stresses, 

the mean value   is equal to one. The randomly generated maximum stresses are shown in Figure 6.5. 

The blue line corresponds to the fit equation of the form of Equation 6.1. 

   

 

 
 

 
Figure 6.4. Maximum stress distribution for slam events [25]. 
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Figure 6.5. Randomly generated maximum stress distribution. 
 

 

The exceedances above or below a certain stress level u, defined as uZ   (Figure 6.6), can 

also be assumed to follow some probability distribution, for sufficient high threshold level u. Thus, 

normalized exceedances (Z/ Z ) were generated numerically, in this case, using a gamma distribution 

(Equation 6.3). The gamma distribution is a two parameter (k,) probability function widely used to 

model random variables in many engineering applications. The parameter   is the scale parameter while 

k is the shape parameter. The mean value is given by the product of both parameters  and k. For these 

normalized exceedances, the mean value (k) must be approximately one and the maximum value should 

be limited to a certain expected level. In this case, it will be assumed that no exceedances greater than 3.5 

times the averaged value will occur. Based on this criteria, the parameters of the gamma distribution were 

selected as follow,  = 0.12 and k = 9. Figure 6.7 shows the distribution of normalized exceedances for 

10,000 impacts. Slight variations of  and k will produce similar distributions and the ultimate choice 

must be decided based on empirical data and experience. The author believes that the gamma distribution 

better represents the expected stress exceedances than the exponential distribution, which is a special case 

of the gamma distribution (k = 1). The gamma distribution assigns the higher probability of occurrence to 

those exceedances that are close to the mean value and reduces the probability of those exceedances 

below and above the mean value, similar to a normal distribution, but not in a symmetric way. The actual 

stress exceedances were obtained from the normalized distribution by scaling these values with the 

average of all exceedances Z (previous extrapolation). The extrapolated results were then computed as 

u Z   . Threshold levels umax and umin have no physical meaning. They only define which TPs will be 

modified and which will remain unchanged during the extrapolation process. Therefore, the selection of 
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appropriate threshold levels is a difficult task which requires some engineering judgment and experience. 

These levels need to be chosen high enough for the extreme value theory to be a reasonable 

approximation, but also low enough to get a sufficient number of exceedances [32]. In this thesis, levels 

umax and umin were selected such that only the TPs associated with the larger stress ranges were affected 

(Figure 6.6). Thus, only the major and most damaging cycles will be modified during the extrapolation. 

As a result of this approach, an extrapolated TPs time history with random variation of its maximum and 

minimum values is obtained. Figure 6.8 compares the original TPs time history with the extrapolated 

results corresponding to umax = 180 MPa and umin = 20 MPa. 

 

Figure 6.6. Exceedances above threshold level umax and below umin. 
 

 11 1
( ) exp( );     ( ) 1 !     for     0   and   , 0

( )
k

k
f Z Z Z k k Z k

k
 


      


 (6.3) 

 

Figure 6.7. Distribution of normalized exceedances Z/ Z for 10,000 impacts. 
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Notice that two of the three TPs above the level umax increased and one decreased from their 

original values. The TPs below level umin were slightly affected by the extrapolation process. This is a 

consequence of the selected levels umax and umin which determine the magnitude of the extrapolated 

stresses. For instance, lower values of umax lead to higher values of extrapolated stresses. Similarly, higher 

values of umin also lead to higher values of extrapolated stresses. Those TPs between umin and umax remain 

constant during the extrapolation. As a result, a new time history is obtained by replacing the original TPs 

by the new extrapolated TPs. The resulting stress time history has the form of that shown in Figure 6.9 

which was obtained using the same threshold levels but, in this case, for 10 impacts. This approach can be 

extended to include thousands of cycles, as it will be shown in the next section. 

 

 

Figure 6.8. Original TPs history compared with extrapolated results. 

 
Figure 6.9. Extrapolated TPs time history for 10 impacts. 
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6.4 RAINFLOW CYCLE COUNTING METHOD 
 

The next step in the proposed life prediction approach uses the Rainflow method to count the 

number of cycles included in the extrapolated stress history. For irregular variations of stresses with time, 

such those shown in Figure 6.9, it is not clear how to isolate a cycle in terms of its mean value and 

amplitude so that a fatigue damage accumulation model as Miner’s rule can be employed [26]. In past 

years, there was considerably uncertainty and debate concerning the proper procedure and a number of 

different methods were proposed and used. Recently, a consensus has emerged that the best approach is a 

procedure called Rainflow cycle counting developed in Japan around 1968 [27]. Usually, the Rainflow 

algorithm extracts cycles from load, stress or strain history obtained from measurements or simulations. 

As a result of the counting, several cycles and half cycles with different mean and amplitude values are 

obtained.  To illustrate how the Rainflow method works, it will be used to count the number of cycles in 

the extrapolated stress history of Figure 6.9. For simplicity, only the first three impacts will be considered.  

In Figure 6.10 the TPs were labeled using capital letters (A-T). The ranges or absolute stress differences 

|∆σ| between consecutive TPs were computed and listed in Table 6.1. 

 

 
Figure 6.10. Extrapolated TPs labels. 

 

 

Table 6.1. Absolute stress differences. 

Event A-B B-C C-D 
D-E 
K-L 
Q-R 

E-F 
L-M 
R-S 

F-G G-H H-J J-K M-N N-O O-P P-Q S-T 

Range (MPa) 233.9 240.4 75.6 35.7 10.6 50.0 218.3 220.1 77.0 37.4 235.9 249.7 76.2 5.4 
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Using these results, the counting procedure begins from the starting point A and progresses 

according to the following criterion: a generic valley-peak or peak-valley event XY in the stress history is 

counted if |∆σXY|    |∆σYZ|, where YZ is the following event adjacent to XY. In addition, if event XY 

contains the starting point, then XY is counted as half cycle otherwise it is counted as one cycle. If event 

XY is counted as half cycle, the first TP (peak or valley) of the event is discarded from the stress history 

and the starting point is moved to the next TP. If event XY is counted as one cycle, both peak and valley 

of that event are discarded. Every time a TP is eliminated from the history, the two adjacent TPs are 

automatically connected to form a new event. The remaining uncounted events are counted as half cycles 

at the end of the procedure. Figure 6.11 shows the Rainflow method flow chart. Note that the counting of 

cycles is not sequential.  

 

• XY : Range under consideration.
• YZ : Next adjacent range.
• S : Starting point in the history.

1. Read next peak or valley.

2. There are less than three
points?

Yes No

3. Compare ranges XY and YZ:
Is |XY|  |YZ | ?

Yes No

4. Does range XY contain
the starting point S?

5. Count range XY as one-half cycle.
Discard the first TP (peak or valley).
Move the starting point to the nest TP.

Yes No

Count range XY as one cycle.
Discard the both TPs (peak and valley).

6. Count each range that has not been
previously counted as as one-half cycle.

End

 

Figure 6.11. Rainflow cycle counting method flow chart. 
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For the stress history of Figure 6.10, the counting begins at the starting point A. Range AB is 

smaller than range BC (see Table 6.1), therefore, event AB is counted by the Rainflow method as half 

cycle. TP A is removed and the starting point is moved to B. On the other hand, range BC is greater than 

range CD; therefore event BC is not counted at this stage. Similarly, events CD and DE are also omitted 

during the first counting step. Event EF is counted as one cycle because range EF is smaller than range 

FG and it does not contain the starting point B. Consequently, both TPs E and F are discarded from the 

history, TPs D and G are connected,  and the process starts again from point B. Figure 6.12 shows all the 

cycles extracted from the three impacts of Figure 6.10 using the Rainflow method. The mean and 

amplitude values corresponding to these cycles were summarized in Table 6.2. As a result of the counting 

process, five complete cycles and eight half cycles with different mean and amplitude values were 

extracted. For time histories with large number of impacts, it is more appropriate to use the Rainflow 

matrix to graphically represent the counted cycles (Figure 6.13). The Rainflow matrix is a three 

dimensional plot of the data listed in Table 6.2. The Rainflow matrix also shows the distribution of the 

extracted cycles in terms of their amplitudes and mean values. 

 

 
Figure 6.12. Rainflow cycles extracted from stress history. 

 

 

Table 6.2. Rainflow cycles for three impacts time history. 

Event 1 2 3 4 5 6 7 8 9 10 11 12 13 

Mean (MPa) 
Amplitude (MPa) 
Nº Cycles 

114.5 
116.9 
0.5 

36.2 
5.3 
1.0 

29.0 
37.6 
1.0 

100.4 
109.4 
1.0 

36.2 
5.3 
1.0 

35.4 
31.3 
1.0 

110.6 
120.9 
0.5 

114.9 
125.3 
0.5 

115.2 
124.8 
0.5 

28.5 
38.1 
0.5 

48.8 
17.8 
0.5 

36.2 
5.3 
0.5 

38.8 
2.7 
0.5 
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Figure 6.13. Rainflow matrices for different number of impacts. 
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The Rainflow matrices of Figure 6.13 only include those cycles modified during the extrapolation 

(major cycles). The damage induced in the structure by these equivalent cyclic stresses can be estimated 

using an appropriate damage accumulation model, depending on the material of the structure. For metallic 

structures Miner’s Law works properly giving relatively accurate results but for composite structures, in 

particular those made of sandwich composite material, more complex models are needed. These topics are 

discussed in the next section. 

 

 
6.5 FATIGUE MODELING: Damage Accumulation Approach 
 

The extrapolation analysis described in previous sections can be extended to include thousands of 

repetitions of the simulated stress time history at a particular location. In fact, it is possible to extrapolate 

these stresses as many times as needed to make the structure fail at that location. To measure the effect of 

cyclic stresses on the structural life, several analytical models have been developed. These models are 

typically based on either stress versus number of cycles (S-N curves), strength degradation, stiffness 

reduction, cumulative damage modeling, or a combination of these approaches [30]. In this section, the 

fatigue life of steel and sandwich composite hulls is estimated based on two different damage 

accumulation models. 

 

6.5.1 Damage Assessment for Metallic Hulls 
 
 

 

For metallic structures, the most common approach used is the Palmgren-Miner criterion, or 

linear damage accumulation law [26]. In this approach damage is assumed to be linearly proportional to 

the fractional life used by different cyclic stress levels and fatigue is assumed to occur when the sum of 

these fractions exceeds unity. The criterion is expressed in equations 6.4 and 6.5 where D is called the 

damage parameter, Ni is the number of cycles at the stress level i and Nf is the number of cycles to cause 

fatigue failure at the that stress level.  
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For non-zero mean stresses, Gerber’s model (Equation (6.6)) can be used. The number of cycles 

to failure is given by equation 6.7, where a and m are the amplitude and mean stresses respectively, u 

is the static strength and f’ and b are experimentally determined parameters. In equation 6.6, am is the 

equivalent stress amplitude with zero mean value which causes the same effect that a and m. Typical 

values for common metallic materials from tests at zero mean stress on un-notched axial specimens are 

listed in Table 6.3 [26]. Additionally, the American Bureau of Shipping (ABS) [34] and the Standard 

Specifications for Structural Steel for Ships [33], require that the minimum tensile properties for ordinary 

strength hull structural steels must be 235 MPa and 400 MPa for yielding and tensile strength respectively. 

These values are relatively close to those listed in Table 6.3 for the AISI 1015 normalized steel. Thus, 

similar values of f’ and b were assumed for a structural steel for ship hull applications.  

 

2

1a m

am u

 
 

 
  
 

 (6.6) 

 

1

' 2

1 1

2 1

b

a
f

f m u

N

  

 
 
  

 (6.7) 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

For a specific number of impacts ni, a series of cyclic stresses with mean values m and 

amplitudes a were obtained following the methodology described in Sections 6.3 and 6.4. These stresses 

were used in Eq. 6.7 to calculate the required numbers of cycles to failure (Nf ) of each individual pair of 

data (m, a). Finally, the individual damage contributions were combined using Eq. 6.5 to obtain the total 

Table 6.3. Constants for S-N curves for various ductile materials. 

Material 

Yield  
Strength  

y (MPa) 

Ultimate 
Strength 

U (MPa) 

f’ 
(MPa) 

A 
(MPa) 

b = B  

a) Steels 
AISI 1015 (normalized) 
Man-Ten (hot-rolled) 
RQC-100 
AISI 4142 (Q&T, 450 HB) 
AISI 4340 (aircraft quality) 
 
b) Other Metals 
2024-T4 Al 
Ti-6Al-4V 

 
227 
332 
683 

1584 
1103 

 
 

303 
1185 

 
415 
557 
758 

1757 
1172 

 
 

476 
1233 

 
976 
1089 
938 
1937 
1758 

 
 

900 
2030 

 
886 

1006 
897 

1837 
1643 

 
 

839 
1889 

 
-0.14 
-0.115 

-0.0648 
-0.0762 
-0.0977 

 
 

-0.102 
-0.104 
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accumulated damage. This procedure was programmed in a MATLAB code (Appendix A) which also 

included the extrapolation of stresses and the cycle counting. The code receives as inputs a spreadsheet 

file with the stress time history of a single impact event, the number of impacts of interest ni and the 

threshold levels umin and umax. The values of ni, umin and umax are user defined. In this analysis, three 

different case scenarios were considered: umax = 150 MPa; umax = 160 MPa; and umax = 180 MPa. The 

objective was to determine the sensitivity of the damage results to the selection of umax. The code follows 

the four steps shown in Figure 6.14 and produces the following outputs: the extrapolated stress time 

history, the Rainflow matrix of major cycles for ni impacts, and the predicted damage for that number of 

impacts. Initially, the number of impacts was set in 105 and subsequently it was increased until the critical 

damage (D = 1) was exceeded. As a result, the damage plots of Figure 6.15 were obtained. A linear fit 

equation was used to measure the linearity of the predicted results. In each case, the inverse of the slope 

of the fit equation was used to estimate the fatigue life (number of impacts to failure) of the location of 

interest. Notice that number of impacts was used in the x-axis instead of number of cycle; each impact 

contains several cycles and half cycles with different amplitudes and means values. Figure 6.16 compares 

these results with the damage predicted for extrapolated stresses based on Single Block Repetitions 

(without TPs modification). The effect of umax on the damage results is evident, the lower the value of umax 

the lower the number of impacts required for fatigue failure. The fatigue life for each case scenario was 

estimated and listed in Table 6.4.  

 

 

 

EXTRACTS 
TURNING 

POINTS 

EXTRAPOLATES 
TPs ni TIMES USING 

RANDOM 
EXCEEDANCES

USES 
RAINFLOW

CYCLE 
COUNTING

APPLIES 
LINEAR 

DAMAGE 
MODEL

READS
INPUTS

WRITES 
OUTPUTS

INPUTS:
• Stress Time History Spreadsheet (single impact)
• Number of Impacts to Extrapolate (ni)
• Threshold Levels (umin) and (umax)

OUTPUTS:
• Extrapolated Stress Time History
• RAINFLOW Matrix
• Predicted Damage for ni Impacts  

 

Figure 6.14. Damage accumulation MATLAB code flow chart. 
 

 



 
 

 
 

 
 

 
 

 
 

Figure 6.15. Damage accumulation as a function of number of impact



 
 

 
 

 
Figure 6.16. Damage as a function of umax. 

 
 
 

Notice the significant reduction in fatigue life as a consequence of the extrapolation method. The 

fatigue life decreased from 1,871,292 impacts for single block repetition (SBR) to 849,792 impacts for 

POT extrapolation with threshold level umax = 150 MPa. This represents the 45.41% of the original life. 

Even the case with umax = 180 MPa reduced the fatigue life to 1,251,266 impacts (66.87%). Thus, it was 

demonstrated that the life predictions were highly dependent to the selected threshold levels. Therefore, it 

is strongly recommended to choose umax above the 80% of peak stress. However, the proposed approach is 

presented as a conservative method to assess fatigue life in those cases when only stresses for a limited 

period of time (from FE simulations or experimental data) are available.  

 

 

 

 

 

 

 

 
(Steel hull impact:  = 10 and V = 5 m/s) 
 
 
 

Table 6.4. Fatigue life at location of interest. 

Extrapolation Method Number of Impacts  

a) Single Block Repetition 
 
b) POT  (Threshold Level) 
umax = 180 MPa 
umax = 160 MPa 
umax = 150 MPa 

1,871,292 
 

 
1,251,266 (66.87%) 
982,414 (52.50%) 
849,762 (45.41%) 
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6.5.1.1 Statistical Analysis of Damage Predictions (Linear Model) 
 
 

As a result of the random generated exceedances, some degree of variance was expected 

in the damage predictions. In other words, the MATLAB program described in Figure 6.14 does not 

produce the same exact output result for the same input data. The variance of the damage predictions is 

very important to determine the confidence of the results of the proposed approach. In order to evaluate 

this variance, the case with umax = 150 MPa and 849,762 impacts was ran multiple times. This case was 

thought to be the worst case scenario in terms of damage variation because it produced the highest 

exceedances. Figure 6.17 shows the distribution of the damage predictions associated with this case. 

Notice that the results followed approximately a normal distribution with mean value 1.002 and standard 

deviation 0.015069, even though the exceedances were generated using a gamma distribution (see Figure 

6.7). Also notice that the 97% of the predictions lied within the three standard deviation interval. This 

indicates that the damage and fatigue life predictions of the linear model are consistent and do not require 

further analysis. However, this will not be the case for non-linear models, as discussed in the next section.  

 

 

 

Figure 6.17. Damage Distribution at 849,762 impacts with umax = 150 MPa. 
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6.5.2 Damage Assessment for Sandwich Composite Hulls 
 
 

Fatigue damage assessment in sandwich composite structures, and other related materials, has 

been modeled using one of the following approaches: a) strength degradation or b) stiffness degradation. 

In the strength degradation approach, the residual strength of the structure is determined from a static test 

after fatigue loading, therefore, a series of tests are required to determine a single strength degradation 

curve [30, 31]. Stiffness degradation methods, though, allow measurement of effective stiffness during 

cyclic loading without destruction of the specimen so that a stiffness degradation curve can be obtained 

from a single test. Smaller numbers of specimens are required and average results can be used to 

characterize the fatigue strength of the structure. These advantages make the stiffness degradation 

approach more suitable for fatigue damage modeling and prediction; therefore it was the approach 

adopted in this thesis.  

 

 

6.5.2.1 Stiffness Degradation Approach 

 

In this approach, stiffness is defined as a modulus term which is obtained from the stress-strain 

curve at different number of cycles. For polymer foams structures, where core shear is the predominant 

mode of failure under flexural cyclic loading [24, 31], stiffness reduction is usually modeled based on the 

fatigue modulus concept Gf(n) (Equation 6.8). During fatigue loading, the stress-strain curve of the core 

material changes causing a reduction of fatigue modulus. The fatigue modulus at a specific load cycle n, 

is represented on the stress-strain curve by a line drawn from the origin to the resultant strain at the 

applied stress level (Figure 6.18). As the number of cycles increases, at an applied shear stress level a, 

the resultant shear strain (n) becomes larger until it reaches the failure shear strain u. It is assumed that 

when failure occurs (Nf) = u where Nf is the number of cycles to failure at stress level a. Note that 

knowledge of the stress-strain curve at every cycle number is not required since measurement of the 

fatigue modulus can be made directly from the strain or deflection time history for the given material. 

Additionally, it has been demonstrated [31] that the fatigue process consists of an initiation period, in 

which no damage is observed, followed by a period of damage progression. The number of cycles 

defining the initiation of fatigue damage is given by nif.  

 

( ) ( )f aG n n   (6.8) 
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

u

a

(0)   (n)  (Nf)           

G0

Gf(n)

Gf(Nf)

 
 

Figure 6.18. Fatigue modulus definition. 
 

 

The fatigue modulus degradation model is given by an exponential function which describes the 

decrease in modulus from an initial static value G0, (Equation 6.9), where A and C are material constants 

to be determined experimentally. A non-linear S-N model can be derived from Equation 6.9 in terms of 

the applied stress ratio r = a/u and the fatigue modulus at failure Gf(Nf) = a/u (Equation 6.10). At 

failure (n = Nf), the non-linear S-N model is given by Equation 6.11 which can be used to predict the 

number of cycles at failure for different applied stress levels. In order to consider the effect of non-zero 

mean stresses m, a similar approach to that described in Equation 6.6 for metallic structures can be 

assumed for sandwich composites. Thus, the stress ratio is computed by r = am/u where am is the 

equivalent shear stress amplitude with zero mean value which causes the same effect on life that a and m 

combined. 

 

0

0

( )                                     

( ) exp[( ) ]     

f if

f if if

G n G n n

G n G A n n C n n

 

   
 (6.9) 

 

0

( )f f a u a

u u u

G N
r

G

  
  

    (6.10) 

 

01
ln (1 )f if

G
N n r

C A
     

 (6.11) 

 



65 
 

 

Similarly, the fatigue damage coefficient D is defined by Equation 6.4. It accumulates from an 

initial damage state, equal to zero, at nif cycles to a final failure value, equal to unity at Nf. However, 

different forms of the damage accumulation model can be selected depending on the degree of linearity of 

the degradation response. In this section, two models were investigated: Model I) Palmgren-Miner linear 

cumulative damage model based on the number of cycles; and Model II) a non-linear model based on 

changes of fatigue modulus. In both models, damage is assumed to initiate when fatigue damage is first 

observed (n = nif). Models I and II are expressed by Equations 6.12 and 6.13, respectively. 
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For non-linear models (Model II) loading sequence has a significant impact in the damage 

accumulation coefficient. To illustrate this effect, assume that Model II will be used to calculate the 

damage accumulation for two different stress levels r1 > r2 applied sequentially. In addition, to simplify 

the analysis, also assume that fatigue damage initiates at zero cycles (nif  = 0). The damage accumulation 

curves for r1 and r2 are shown in Figure 6.19. First, consider that n2 cycles are applied at stress level r2 

causing a damage D21 (Figure 6.19 a). This damage is equivalent to that caused by n21 cycles at stress 

level r1. Then n1 cycles are applied at stress level r1 which are added to n21 resulting in an accumulated 

damage D1. In the second case (Figure 6.19 b), n1 cycles are applied at stress level r1 with a damage D12 

equivalent to that caused by n12 cycles at stress level r2. Subsequently, n2 cycles are applied at stress level 

r2 which are counted from n12 cycles. As a result of this stress loading sequence, a total accumulated 

damage D2, greater than D1, is obtained showing that a high-low loading sequence is more damaging than 

a low-high loading sequence. To consider the load sequence effect and to represent the worst case 

scenario, the stresses were sorted in descending order previous to damage calculation.   
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a)    b) 
 

Figure 6.19. Damage accumulation for two stress levels: a) low/high, b) high/low. 
 
 
 

In Figure 6.19, it was assumed that fatigue damage initiated at the zero cycles but, in practice, it 

has been observed that the initiation of fatigue damage is highly dependent of the stress level (nif = nif(r)) 

[31]. At higher stress levels, the number of cycles necessary to initiate fatigue damage is much smaller 

than for lower stress levels. The relationship between r and nif can also be determined experimentally and 

curve fitting can be used to develop a mathematical equation. However, the fatigue life prediction 

approach proposed in this thesis does not include the modeling of the number of cycles to damage 

initiation and therefore, it is assumed to initiate at the first cycle. This is a very conservative approach 

which will provide the most severe damage case scenario. In addition, experimental results [31] have 

demonstrated that the material constants A and C in Equations 6.9 and 6.11 are also a non-linear function 

of the stress ratio r. Table 6.5 summarizes the parameters and relations used in the current stiffness 

degradation approach for damage assessment.   

 

 
 
 
 
 
 
 
 
 
 
 

Table 6.5. Stiffness degradation parameters for sandwich core. 

Parameter Assumed Value/Model 

Static shear modulus (G0) 

Static shear strength (u) 

Material parameter (A) 
Material parameter (C) 
Number of cycles for damage initiation ( nif) 
Number of cycles to fatigue failure (Nf) 
Linear damage accumulation coeff. (D) (Model I) 
Non-linear damage accumulation coeff. (D) (Model II) 

9.0 MPa 
1.9 MPa 

0.0014exp(8.497r) 
5x10-7exp(13.656r) 

0 
nif+(1/C)ln[G0(1 - r)/A] 

(n - nif)/(Nf - nif) 
exp[(n - nif)C]/exp[(Nf - nif)C] 
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The principal mode of failure observed in sandwich structures under cyclic flexural loads has 

been through thickness core shear at the locations of maximum shear stresses. In the case of the sandwich 

beam of Figure 6.20 the maximum shear stresses occur near the supports. Therefore, locations A and B 

were identified as critical in terms of fatigue life and were selected for damage assessment.  

 
  
 
 
  
 
 

 

 

Figure 6.20. Fatigue failure and selected location for damage assessment. 
 
 

In this case, damage was computed using a code written in MATLAB (Appendix A) similar to 

that described in Figure 6.14 but with the option to select between two different damage models: a linear 

model (Eq. 6.12) or an exponential model (Eq.6.13). Three case scenarios (umax values) were considered 

for each location based on the maximum stress at that location. Results are shown in Figure 6.21 and 

Figure 6.22. As in Section 6.5.1, damage predictions were highly dependent on the selected threshold 

level umax. Notice that, in general, the linear model predicted more damage than the exponential model for 

small number of impacts. However, the exponential model predicted that the critical damage (D = 1) and 

fatigue failure is reached much earlier when compared with the linear model. The difference in fatigue 

life between both models is very significant. But before discussing fatigue life predictions, it is important 

and necessary to take a look in more detail at the damage results plotted in Figure 6.21 and Figure 6.22. 

Notice that damage results, obtained using the exponential model, were very scattered in comparison with 

the results of the linear model. In fact, some points seemed to be inconsistent with the remaining 

exponential results. These “apparently” inconsistent points are called outliers and required further 

analysis. One alternative to deal with outliers is simply to remove or modify them from the results. But 

before taking any action, the cause or causes of the possible outliers should be investigated. It was found 

that those inconsistent damage results arose from low probability values from the exceedances 

distribution function (those values on the tail of the gamma distribution) but they were perfectly valid.  

Location A Location B

p(x,t) 

keel chine 

Direction of pressure peak propagation 
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Figure 6.21. Damage as a function of number of impacts (Loc. A).



 
 

 
 

 
 

 
 

 
 

Figure 6.22. Damage as a function of number of impacts (Loc. B). 
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Additionally, it was observed that the effect of low probability exceedances on damage results 

was magnified by the exponential behavior of the non-linear model. Finally, it was also found that both 

the variance of the damage results and the occurrence of outliers were highly dependent on the selected 

value of umax. Lower values of umax produced more inconsistent results and consequently, increased the 

number of outliers. This was also a consequence of high exceedances values obtained from low threshold 

levels. In order to minimize the effect of low probability (high) exceedances on the damage results and to 

eliminate outliers, a simple but effective iterative approach is proposed in this thesis. This approach was 

based on damage mean value calculation, for a particular number of impacts, until convergence criteria 

were satisfied (Figure 6.23). The first convergence criterion defines the minimum number of damage 

points to be included in the mean calculation. The second, and more important, criterion establishes the 

minimum value that the damage residual must reach in order consider a converged solution. The residual 

was calculated as the absolute difference in damage mean value between two consecutive iterations (Eq. 

6.15). Both convergence criteria are user defined inputs. For example, the damage results shown in Figure 

6.24 were obtained using a minimum of ten points and a convergence value of 0.1% of the mean value for 

the residual (Eq. 6.14). Figure 6.24 shows four different damage convergence plots for the same event 

(34,000 impacts at Location B with umax = 1.7 MPa). Notice that, initially the predicted damage (first 

iteration) ranged from 0.55 to 1.15 approximately but eventually it converged to 0.64. Ultimately, this 

was the damage level associated with that event. 

 

EXTRACTS 
TURNING 

POINTS 

EXTRAPOLATES 
TPs ni TIMES USING 

RANDOM EXCEEDANCES

USES RAINFLOW
CYCLE 

COUNTING

APPLIES LINEAR 
DAMAGE MODEL OR

APPLIES NON-LINEAR 
DAMAGE MODEL

CHECKS 
CONVERGENCE

COMPUTES MEAN 
VALUE

SATISFIES CONV. 
CRITERIA?

YES

READS 
INPUTS

NO

WRITES 
OUTPUTS

ITERATIVE PROCESS (NON-LINEAR MODEL)

INPUTS:
• Stress Time History Spreadsheet (single impact)
• Number of Impacts to Extrapolate (ni)
• Threshold Levels (umin) and (umax)
• Damage Model (Linear or Non-Linear)
• Minimum and Maximum Number of Iterations
• Damage Residual Convergence Value

OUTPUTS:
• Predicted Damage for ni Impacts

 
 
 

Figure 6.23. MATLAB code flow chart. 
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Figure 6.24. Damage convergence. 
 

 

Figure 6.25 and Figure 6.26 show how the proposed iterative approach improved the reliability of 

the damage results and helped minimize, and in some cases, eliminate outliers. The effect of extrapolated 

stresses on linear and exponential damage predictions can be seen in Figure 6.27 and Figure 6.28 

respectively, (Location A). Similarly, Figure 6.29 and Figure 6.30 for Location B. Results were compared 

with the case of extrapolated stresses with zero exceedances or Single Block Repetition (SBR). In the 

SBR case, the extrapolated stresses were obtained by simple repetition (without TPs modification) of the 

FE stress time history. Damage associated with this case was significantly lower than damage calculated 

from POT extrapolated stresses, especially for the non-linear model. Based on these damage results, 

fatigue life or the number of impacts to failure was predicted as a function of umax (Table 6.6). In each 

case, fatigue life was calculated using the corresponding fit equation. The failure point was defined as the 

point at which the fitted curve interested the critical damage (D = 1).  
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Figure 6.25. Damage as a function of number of impacts (Loc. A). 
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Figure 6.26. Damage as a function of number of impacts (Loc. B). 
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Figure 6.27. Linear damage predictions (Loc.A). 
 
 

 
 

Figure 6.28. Non-linear damage predictions (Loc. A). 
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Figure 6.29. Linear damage predictions (Loc. B). 
 
 

 
 

Figure 6.30. Non-linear damage predictions (Loc. B). 
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(Sandwich hull impact:  = 10 and V = 5 m/s) 
 
 
 

For SBR extrapolated stresses, both the linear model and the non-linear model predicted a similar 

fatigue life, 151,417 and 148,903 impacts at Location A and 50,738 and 47,069 impacts at Location B. 

For POT extrapolated stresses, on the other hand, the non-linear model predicted a significantly lower 

fatigue life than the linear model. The worst case scenario was at Location B with umax = 1.50 MPa. The 

linear model predicted that the fatigue life at that location is 31,731 impacts while the exponential model 

predicted 12,487 impacts, which represents more than 60% reduction in fatigue life. Clearly, the 

difference in fatigue life results between both models reduced as umax approached to the maximum stress 

at that location, in which case there are no exceedances and the extrapolated stresses coincide with those 

obtained using the SBR approach.  

 
 
 
 
 
 
 
 
 
 
 
 

Table 6.6. Fatigue life at locations of interest. 

Location 
Damage Model I 

(Linear) 
Damage  Model II 

(Non-linear) 

A) POT Threshold Level 
umax = 1.00 MPa 
umax = 1.10 MPa 
umax = 1.20 MPa 
 
Single Block Repetition 
 
B) POT Threshold Level 
umax = 1.50 MPa 
umax = 1.60 MPa 
umax = 1.70 MPa 
 
Single Block Repetition 

 
111,842 
127,372 
139,030 

 
151,417 

 
 

31,731 
41,301 
47,529 

 
50,738 

 
59,817 (53.48%) 
84,143 (66.06%) 
109,085 (78.46%) 

 
148,903 (98.33%) 

 
 

12,487 (39.5%) 
24,776 (59.98%) 
38,562 (81.13%) 

 
47,069 (92.76%) 



 
 

 
 

CHAPTER 7.  CONCLUSIONS 
 

The work outlined in this thesis presents a computational methodology for the fatigue life 

assessment of sandwich composite hulls subject to repeated slamming loads. The approach included the 

following objectives and conclusions:  

 

1) The investigation of the hydrodynamic pressure and structural deformation during the impact: 

Two theoretical models were selected from the literature and used for validation purposes. The Zhao and 

Faltinsen model [6] was used to predict the pressure distribution in the contact region of rigid hulls. The 

pressure distribution was characterized by a concentrated peak which propagated from the keel to the 

chine following the contact point. The magnitude of the pressure showed to be related to the deadrise 

angle and impact velocity. The time required for the pressure peak to reach the chine of the hull (impact 

stage) was used to determine the simulation time of FE models. Additionally, the width of the pressure 

peak showed to expand during the impact which indicated that an expanding mesh was required in order 

to capture the pressure peak with sufficient accuracy. The study of slamming on metallic hulls was based 

on the hydroelastic model developed by Korobkin [8, 9]. This model combines an elastic structural 

formulation with Wagner’s theory to predict hull deflections. The method was programmed using 

MATLAB and the resulting first order ODE system was solved using the Runge-Kutta algorithm. Results 

demonstrated that hull deflections can be successfully approximated using only the first three dry mode 

shapes. Maximum deflections occurred between the end of the impact stage and the beginning of the 

penetration stage. 

 

2) The development and validation of FE models to obtain stress time histories for a single impact 

event: the modeling included the multimaterial ALE formulation and the penalty based contact algorithm. 

The results of the analysis showed to be highly dependent on the mesh density and not on the contact 

stiffness and damping. The pre-knowledge of the expanding pressure peak was used to determine the FE 

mesh within the fluid domain. As a result, the fluid domain was divided into two domains: 1) an interior 

domain located near the keel, where high mesh density was required, and 2) an exterior domain located 

beyond the influence of the impact. The interior domain was meshed with a uniform element size while 

within the exterior domain an expanding mesh toward the model boundaries was used. High mesh density 

was required to capture the pressure peak in rigid hull impacts. Later, it was demonstrated that hull 

deflections and stresses can also be accurately predicted using coarser meshes because the effect of the 

pressure peak on the dynamic response of the hull structure was not very important. This notably reduced 

the computational cost of the simulations. FE models showed to under-predict impact pressure and 
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structural deformations when compared with analytical results. However, FE results showed better 

correlation with experimental data than analytical results. During the penetration stage of elastic hulls, a 

damped oscillatory response was observed and cyclic stresses were obtained. Based on these stresses, 

critical locations were selected for lifing assessment. The predominant mode of failure of the hull’s 

material under flexural cyclic loading was also considered for the selection of critical locations, maximum 

bending stresses for metallic hulls and maximum core shear for sandwich composite hulls. Then, Peak 

Over Threshold (POT) analysis was conducted to extrapolate stresses time histories. Exceedances were 

numerically predicted by assuming that they follow a gamma distribution.  

 

3) The implementation of existing damage accumulation models to predict fatigue life of metallic 

and sandwich composite hulls: the Rainflow cycle counting method was used to reduce the complex 

slamming loading to a series of simple cyclic loadings. For each load level, the degree of cumulative 

damage induced in the structure was calculated from the S-N curves and the individual contributions were 

combined using a damage accumulation model. For metallic hulls, linear Miner’s rule was used. Damage 

results demonstrated to be highly dependent on the selection of the threshold levels during the 

extrapolation analysis. Using the proposed approach, the fatigue life at the critical location of a steel hull 

with deadrise angle  = 10 and impact velocity V = 5 m/s was estimated between 850,000 and 1,250,000 

impacts. Unfortunately, up to this point of this investigation, there was no experimental data available to 

verify these results. For sandwich composite hulls two damage models were applied: Miner’s rule, based 

on number of cycles, and non-linear stiffness degradation approach, based on reduction of fatigue (shear) 

modulus. Non-linear damage models are dependent on loading sequence; a high-low loading sequence is 

more damaging than a low-high loading sequence. To consider the load sequence effect, the stresses were 

sorted in descending order previous to damage calculation. Miner’s rule showed to be very conservative 

for small number of impacts, but eventually, the stiffness degradation model predicted a significantly 

lower fatigue life. In this case, damage results were also highly dependent on the selection of the 

threshold levels. As a consequence of low probability high stresses, non-linear damage predictions were 

very scattered and, in some cases, apparently inconsistent with the set of results. In order to eliminate 

those outliers and improve the reliability of our damage results a simple but effective iterative approach 

was proposed and implemented. This approach was based on damage mean value calculation for a 

particular number of impacts. As a result, fatigue life at selected critical locations of the sandwich hull 

was estimated. The limiting location was found to occur within the sandwich core near the chine with a 

fatigue life between 12,500 and 38,500 impacts. 
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4) The validation of the proposed fatigue life prediction approach using comparative results from 

experimental tests: Ultimately, fatigue life predictions presented in this thesis were intended to be 

validated with previous results published in [24]. However, the author concluded that a comparative 

analysis of results was not possible due to the following reasons: a) The experimental setup of the 

slamming tests was incompatible with the boundary conditions assumed in the FE modeling of the 

problem. For instance, the test specimens were simply supported in the impact direction (direction of 

pressure peak propagation) and not in the perpendicular direction. A very different modeling approach 

was followed in this thesis, boundary conditions were always assumed at the keel and at the chine of the 

hull. In this way, the problem could be modeled using two dimensional symmetric models. This has been 

the usual approach in the numerical modeling of impacts of elastic hulls [8, 9, 10, and 17]. To reproduce 

the same impact conditions as in [24], more complex three dimensional models are required, which are 

beyond the scope of this thesis.  b) Some material properties required for the proposed life prediction 

model were not provided in [24], in particular for the foam core. Therefore, they were assumed based on 

data published in the literature for similar materials. These properties included the static shear modulus, 

static shear strength, and material constants (A and C), among others. Consequently, fatigue life results 

reported in this thesis have not been experimentally validated.  
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CHAPTER 8.  RECOMMENDATIONS 
 
 
8.1 SCOPE AND LIMITATIONS OF THE APPROACH 
 

Fatigue life predictions obtained as a result of the proposed approach are primary intended to be 

used for design of structural components on ship hulls subject to repeated loading. Additionally, fatigue 

life results may be used for other applications, such as maintenance planning and damage inspection 

scheduling of possible critical locations. Thus, fatigue initialization can be detected at early stages and 

parts can be repaired or replaced before catastrophic failure. However, the methodology presented in this 

thesis is limited to those cases in which the simplified models and assumptions apply. The success of the 

approach also depends on the engineering judgment and experience of the user. Therefore, the resulting 

fatigue life may differ from actual values and some variations of the method may be required. To address 

these limitations, the following topics are recommended as additional work. 

   

 
8.2 PROPOSED FUTURE WORK 
 

The author strongly recommends that further investigation related to the fatigue life assessment 

presented in this thesis should include: 

 

 Perform 3D FE analysis using actual ship hull geometries. 

 Extend FE simulations to include several impact events and different conditions (deadrise 

angle and impact velocity). 

 Develop regression models based on FE results to predict high stresses at critical 

locations for non-simulated impact conditions. 

 Improve high stress exceedances models using experimental data measured on actual 

structural components under similar sea loading conditions to obtain more representative 

stress time histories. 

 Include in the proposed approach other modes of failure such as core tearing and local 

buckling to identity additional critical locations in sandwich composite hulls for life 

assessment. 

 Validate the methodology presented in this thesis using experimental fatigue life results. 

 Incorporate a crack growth and propagation model to estimate fracture life on sandwich 

composites hulls. 
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APPENDIX A: MATLAB CODES 
 

 

% ------------------------- Program FatigueLifev2.m --------------------- % 
%                                                                         % 
% Calcultes fatigue life of a steel structure.                            % 
%                                                                         %                         
% ----------------------------------------------------------------------- % 
% Andres Cecchini                                                         % 
% Civil Engineering Department - Mayaguez. University of Puerto Rico      %                         
% ----------------------------------------------------------------------- % 
  
clc; clear all; format short g; close all; 
  
% ------------------------ Results from LS-DYNA ------------------------- % 
  
disp(' ---> Initializing ...') 
  
path = 'C:\Andres\UPRM\Thesis\Matlab Programs\Fatigue Analysis\'; 
  
filename = 'stresses';  
  
[NUM,TXT] = xlsread([path filename]); 
  
disp(' ---> Reading input data ...') 
  
[m n] = size(NUM); 
  
t  = NUM(:,1);                                 % time vector: ms 
tf = t(length(t));                             % final time: ms 
dt = t(2)-t(1); 
  
ssi = NUM(:,3)*1e3;                            % single impact stresses MPa 
  
% ------------ Impact Deadrise Angle and Impact Velocity ---------------- % 
  
V   = 5;                               % impact velocity: m/s 
be  = 10;                              % wedge deadrise: degrees 
msr = 5;                               % minimum stress range to count: MPa 
  
% ------------------------ Number of Impacts ---------------------------- % 
  
num_imp = 10000; 
Bf_imp  = 1;  
     
ni = num_imp; 
Bf = Bf_imp; 
  
% ------------------------- Threshold Levels ---------------------------- % 
  
smax = 150; 
smin = 20; 
  
% ------------------------ (Multiple Impacts) --------------------------- % 
  
disp(' ---> Extracting turning points ...') 
  
ssi = ssi + 1e-6; 
tmi = t(1):dt:ni*tf+(ni-1)*dt; 
smi = repmat(ssi,ni,1); 
  



85 
 

 

[tp tpt] = sig2ext(smi,dt); 
ntp = tp.*logical([1;abs(diff(tp)) >= msr]); 
ind = find(ntp ~= 0); 
  
ntp  = ntp(ind); 
ntpt = tpt(ind);  
  
% ----------------- (Extrapolation of Turning Points) ------------------- % 
  
disp(' ---> Extrapolating stresses for defined number of impacts ...') 
  
zmax = ntp - smax; 
zmin = ntp - smin; 
  
logimax = logical(zmax > 0); 
logimin = logical(zmin < 0); 
  
zmax = zmax.*logimax; 
zmin = zmin.*logimin; 
  
indmax = find(zmax); 
indmin = find(zmin); 
  
indmaxe = isempty(indmax);              
indmine = isempty(indmin);              
  
if (indmaxe == 0); 
mean_val1 = zmax(indmax(1)); 
else 
indmax = 1; 
mean_val1 = 0; 
end 
  
if (indmine == 0); 
mean_val2 = zmin(indmin(1)); 
else 
indmin = 1; 
mean_val2 = 0; 
end 
  
mmax = mean(zmax(indmax))*logimax; 
mmin = mean(zmin(indmin))*logimin; 
 
% ---------------------- Gamma function parameters ---------------------- % 
  
k = 9; 
theta = 0.12; 
  
entp1 = mmax.*random('gam',k*logimax,theta*logimax);   
entp2 = -mmin.*random('gam',k*logimin,theta*logimin);  
  
entp = ntp; 
  
if (indmaxe == 0); 
entp(indmax) = smax; 
else 
end 
if (indmine == 0); 
entp(indmin) = smin; 
else 
end 
  
entp = entp + entp1 - entp2; 
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entp = repmat(entp,Bf,1); 
ntp  = repmat(ntp,Bf,1); 
ntpt_c = ntpt; 
  
if (Bf == 1) 
else 
for kk = 2:Bf; 
ntpt_a = ntpt+ntpt_c(end); 
ntpt_c = cat(1,ntpt_c,ntpt_a); 
end 
end 
  
% ----------------- (Cycle Counting of Turning Points) ------------------ % 
  
disp(' ---> Applying Rainflow cycle counting ...') 
  
% entpm = sig2ext(entp); 
rf = rainflow(entp); 
  
sa = rf(1,:);                             % stress amplitudes 
sm = rf(2,:);                             % stress means 
Nc = rf(3,:);                             % number of cycles or half cycles 
  
% -------------------- Fatigue Life Calculation ------------------------- % 
%                (Material: Steel AISI 1015 normalized)                   % 
  
su = 415;                                          % ultimate strength: MPa 
sf = 976;       
b  = -0.14;     
  
sam = sa./(1-(sm/su).^2);                          % Gerber's equation 
  
Nf = 0.5*((1/sf)*(sam)).^(1/b);                    % number of cycles to  
                                                   % failure using Gerber's 
                                                   % equation 
cNf = isreal(Nf); 
  
[Dt_sort Dt_ind] = sort(Nc./Nf,2,'descend'); 
  
sa_sort = sa(Dt_ind); 
sm_sort = sm(Dt_ind); 
Nc_sort = Nc(Dt_ind); 
  
Dt_sort_ind = find(Dt_sort > 1e-7); 
  
sa_rfa = sa_sort(Dt_sort_ind); 
sm_rfa = sm_sort(Dt_sort_ind); 
Nc_rfa = Nc_sort(Dt_sort_ind); 
  
clear rfa; 
  
rfa(1,:) = sa_rfa;                              
rfa(2,:) = sm_rfa;                              
rfa(3,:) = Nc_rfa;   
  
disp(' ---> Computing total damage accumulation ...') 
  
if (cNf == 1) 
Dt = sum(Nc./Nf);                                  % damage accumulation 
else 
Dt = 0; 
end 
disp(' ---> Analysis competed ...') 
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disp(' ') 
disp('Total Accumulated Damage for # Number of Impacts') 
disp('-------------------------------------------------------------------') 
disp(' ') 
disp(['Number of impacts = ' num2str(ni*Bf)]) 
disp(['Predicted damage accumulation = ' num2str(Dt)]) 
disp(['Critical damage (Failure) = 1.0']) 
disp(' ') 
  
% -------------------------------- Plot --------------------------------- % 
  
figure(1); 
p3 = plot ( ntpt_c, entp, 'b-', ... 
            ntpt_c, smin*ones(length(ntpt_c),1), 'k--', ... 
            ntpt_c, smax*ones(length(ntpt_c),1), 'k--'); 
set (p3, 'Linewidth', 1.0, 'Markersize', 6 ,'MarkerFaceColor','w' ); 
xlabel('Time  (ms)'); 
ylabel('Turning Points  (MPa)'); 
title(['Hull stresses - Repeated impacts - V = ' num2str(V) ...  
       ' m/s - \beta = ' num2str(be) '^o']); 
legend(['Extrapolated Time History'],['Threshold Levels'], ... 
        'Location','SouthEast');  
axis([0 ntpt_c(end) -100 400]) 
set(gca,'PlotBoxAspectRatio',[5 2 1]) 
  
figure(2); 
rfmatrix(rfa,20,20); 
set(gca,'PlotBoxAspectRatio',[1 1 1]) 
  
% -------------------------------- End ---------------------------------- % 
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% ------------------------ Program FatigueLifev3.m ---------------------- % 
%                                                                         % 
% Calcutes fatigue life of foam core sandwich composites                  % 
%                                                                         %                         
% ----------------------------------------------------------------------- % 
% Andres Cecchini                                                         % 
% Civil Engineering Department - Mayaguez. University of Puerto Rico % 
% ----------------------------------------------------------------------- % 
  
clc; clear all; format short g; close all; 
  
% ------------------------ Results from LS-DYNA ------------------------- % 
  
path = 'C:\Andres\UPRM\Thesis\Matlab Programs\Fatigue Analysis\'; 
  
filename = 'stresses_core';  
  
[NUM,TXT] = xlsread([path filename]); 
  
[m n] = size(NUM); 
  
t  = NUM(:,1);                                 % time vector: ms 
tf = t(length(t));                             % final time: ms 
dt = t(2)-t(1); 
  
ssi = NUM(:,3)*1e3;                            % single impact stresses MPa 
  
disp(' ') 
disp('                  <predicted>     <convergence>                    ') 
disp('                   <damage>          <value>            <residual> ') 
disp(' ----------------------------------------------------------------- ') 
disp(' Starting damage iteration ...                                     ') 
  
% ------------ Impact Deadrise Angle and Impact Velocity ---------------- % 
  
V   = 5;                               % impact velocity: m/s 
be  = 10;                              % wedge deadrise: degrees 
msr = 0.020;                           % minimum stress range to count: MPa 
  
min_iter = 1;                          % minimum number of iterations 
  
% ------------------------ Number of Impacts ---------------------------- % 
  
num_imp = 34000; 
  
counter = 1; 
  
for count = 1:1e3; 
     
ni = num_imp;  
Bf = 1; 
  
% ------------------------- Threshold Levels ---------------------------- % 
  
smax = 1.7; 
smin = 0.10; 
  
% ------------------------ (Multiple Impacts) --------------------------- % 
  
clear tmi smi tp tpt ntp ind ntp ntpt  
  
ssi = ssi + 1e-6; 
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tmi = t(1):dt:ni*tf+(ni-1)*dt; 
smi = repmat(ssi,ni,1); 
  
[tp tpt] = sig2ext(smi,dt); 
  
ntp = tp.*logical([1;abs(diff(tp)) >= msr]); 
ind = find(ntp ~= 0); 
  
ntp  = ntp(ind); 
ntpt = tpt(ind);  
  
ntpt = repmat(ntpt,Bf,1); 
  
% ----------------- (Extrapolation of Turning Points) ------------------- % 
  
clear zmax zim logimax logimin indmax indmin indmaxe indmine mmax mmin  
clear ent entp1 entp2 
  
zmax = ntp - smax; 
zmin = ntp - smin; 
logimax = logical(zmax > 0); 
logimin = logical(zmin < 0); 
  
zmax = zmax.*logimax; 
zmin = zmin.*logimin; 
indmax = find(zmax); 
indmin = find(zmin); 
indmaxe = isempty(indmax);              
indmine = isempty(indmin);              
  
if (indmaxe == 0); 
mean_val1 = zmax(indmax(1)); 
else 
indmax = 1; 
mean_val1 = 0; 
end 
  
if (indmine == 0); 
mean_val2 = zmin(indmin(1)); 
else 
indmin = 1; 
mean_val2 = 0; 
end 
  
mmax = mean(zmax(indmax))*logimax; 
mmin = mean(zmin(indmin))*logimin; 
  
entp = ntp; 
  
if (indmaxe == 0); 
entp(indmax) = smax; 
else 
end 
if (indmine == 0); 
entp(indmin) = smin; 
else 
end 
 
% ---------------------- Gamma function parameters ---------------------- % 
  
k = 9; 
theta = 0.12; 
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entp1 = mmax.*random('gam',k*logimax,theta*logimax); 
entp2 = -mmin.*random('gam',k*logimin,theta*logimin); 
  
entp = entp + entp1 - entp2; 
  
entp = repmat(entp,Bf,1); 
ntp  = repmat(ntp,Bf,1); 
  
ntpt_c = ntpt; 
  
if ( Bf == 1) 
else 
for kk = 2:Bf; 
ntpt_a = ntpt+ntpt_c(end); 
ntpt_c = cat(1,ntpt_c,ntpt_a); 
end 
end 
  
% ----------------- (Cycle Counting of Turnin Points) ------------------- % 
  
clear rf sa sm Nc  
  
rf = rainflow(entp); 
  
sa = rf(1,:)';                            % stress amplitudes 
sm = rf(2,:)';                            % stress means 
Nc = rf(3,:)';                            % number of cycles or half cycles 
  
% -------------------- Fatigue Life Calculation ------------------------- % 
                                                                         
clear sam r r_ind ra nra Nca nif A B C Nf 
  
su = 2.30;                                % shear strength: MPa 
G0 = 9.00;                                % shear modulus: MPa 
  
sam = sa./(1-(sm/su).^2);                 % Gerber's equation 
  
r = sam/su;                               % stress ratio 
  
[r r_ind] = sort(r,1,'descend'); 
  
Nc = Nc(r_ind); 
  
[ra nra] = count_unique(r); 
cnra = cumsum(nra); 
  
Nca = zeros(length(ra),1); 
cindex = 1; 
for index = 1:length(ra); 
Nca(index,1) = sum(Nc(cindex:cnra(index))); 
cindex = cnra(index)+1; 
end 
  
r = ra; 
Nc = Nca; 
  
nif = zeros(length(r),1);                  % cycles to damage initiation 
 
% ----------------------- Material Constants ---------------------------- % 
 
A = 0.0014*exp(8.497*r);                  % parameter A 
B = G0./A;                                % parameter B 
C = (5e-7)*exp(13.656*r);                 % parameter C 
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% -------------------------- Damage Model ------------------------------- % 
 
Nf = nif + (1./C).*log(B.*(1-r));         % number of cycles to failure 
  
dam = 0;                                  % damage model = 0: exponential                        
                                                          -1: linear                             
if (dam == 1) 
  
Da = Nc./Nf;                              % linear damage model 
Dt = cumsum(Da);                          % damage accumulation 
  
nir(counter,1) = ni; 
Dtr(counter,1) = Dt(end); 
  
else 
  
Ne = zeros(1,length(r)); 
Dt = zeros(1,length(r)); 
  
for j = 1:length(r)-1; 
Dt(j)  = (exp((Nc(j)+Ne(j))*C(j)))/ ...   % non-linear damage model 
         (exp(Nf(j)*C(j))); 
Ne(j+1) = log(Dt(j)*exp(Nf(j+1)*C(j+1)))/C(j+1); 
end 
Dt = Dt'; 
  
nir(counter,1) = ni; 
Dtr(counter,1) = Dt(j-1); 
  
end 
  
mean_Dtr(counter) = mean(Dtr); 
std_Dtr(counter)  = std(Dtr); 
  
mean_Dtr(counter); 
  
if (counter <= 2) 
else 
  
iter = counter-2; 
 
 
% ----------------------- Convergence Check ----------------------------- % 
 
residual = abs(mean_Dtr(counter)-mean_Dtr(counter-1)); 
  
conv_val = (1e-3)*mean_Dtr(counter-1); 
  
  
disp([ ' iter --->  ' num2str(iter,'%6.0f') '       ' 
num2str(mean_Dtr(counter),'%6.5f') '       ' ... 
num2str(conv_val,'%6.5e') '       ' num2str(residual,'%6.5e')]) 
  
if ( residual <= conv_val); 
break 
else 
end 
     
end 
counter = counter + 1; 
  
end 
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disp(' Damage iteration completed. ') 
  
x1 = linspace(min(Dtr),max(Dtr),10); 
[n1,xout1] = hist(Dtr,x1); 
  
figure(1); 
bar(x1,n1,'b') 
hold on; 
p4 = plot(mean_Dtr(end)*[1 1],max(n1)*[0 1],'g-'); 
set (p4, 'Linewidth', 1.0, 'Markersize', 6 ,'MarkerFaceColor','w' ); 
axis([min(Dtr) max(Dtr) 0 max(n1)+1]) 
      
% -------------------------------- Plot --------------------------------- % 
  
figure(1); 
p0 = plot(1:1:length(mean_Dtr),mean_Dtr,'bo', [0 length(mean_Dtr)], ... 
mean_Dtr(end)*[1 1], 'r--');  
set (p0, 'Linewidth', 1.0, 'Markersize', 6 ,'MarkerFaceColor','w' ); 
axis([0 length(mean_Dtr)+1 0 1.2]) 
  
% -------------------------------- End ---------------------------------- % 
 
 

 

 
 


