

SRE: Search and Retrieval Engine of the TerraScope Database Middleware
System

By
Enna Z. Coronado-Pacora

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in
COMPUTER ENGINEERING

(Software Engineering)

UNIVERSITY OF PUERTO RICO
MAYAGÜEZ CAMPUS

2003

Approved by:

____________________________ __________________
Bienvenido Velez-Rivera, Ph.D. Date
Member, Graduate Committee

____________________________ __________________
Pedro Rivera-Vega, Ph.D. Date
Member, Graduate Committee

____________________________ __________________
Manuel Rodriguez-Martinez, Ph.D. Date
Chairperson, Graduate Committee

____________________________ __________________
Freya Toledo, M.S. Date
Representative of Graduate Studies

____________________________ __________________
Jose L. Cruz, Ph. D. Date
Chairperson of the Department

 ii

Abstract

Our research emerged from the need to know how to recover and to visualize

graphical/textual information of images that are stored in multiple data sources. We are

focused on a system for recovering, merging, and displaying data, metadata, and images

from heterogeneous distributed data sources for purposes of providing end-users with an

unique entry point to those data sources. We present the Search and Retrieval Engine

(SRE) developed as part of TerraScope, a Web-based Earth Science Database

Middleware System. SRE is the execution engine based on Java Servlet technology and

the Peer–to–Peer architecture that makes possible the transformation of the server into a

client of data at any moment. SRE allows for the communication among others Web

Servers, such that multiple data sources can be integrated into a coherent system. SRE

also supports the execution of different queries that gather useful data from each

distributed data source.

 iii

Resumen

Nuestra investigación emergió de la necesidad de saber cómo recuperar y visualizar

información gráfica/textual de imágenes que se encuentran almacenadas en diversas

fuentes de datos. Nos enfocamos en un sistema de recuperación, visualización de datos e

imágenes que se encuentran distribuidas heterogéneamente en las diferentes fuentes de

datos proveyendo al usuario con un único punto de acceso a dichas fuentes de datos.

Presentamos Search and Retrieval Engine (SRE) desarrollado como parte de TerraScope,

un Sistema de Base de Datos Distribuido de Ciencia de la Tierra basado en Web. SRE es

el motor de ejecución basado en tecnología Java-Servlet y en Arquitectura Punto a Punto,

donde el servidor puede convertirse en cliente en cualquier momento. SRE nos permite la

comunicación entre otros Servidores Web, donde diversas fuentes de datos pueden ser

integrados en un sistema coherente, y apoyar la ejecución de diferentes peticiones que

comparten datos útiles.

 iv

Acknowledgements

There are many people to whom I must thank for their direct or indirect support they have

given to me and which have enabled me to carry out this thesis.

I would like to thank infinitely my advisor Dr. Manuel Rodriguez-Martinez for giving me

the opportunity to work with him, for his continuous support, dedication and help in this

project and for his friendship during all these years.

Thanks to my dissertation committee members for their comments and suggestions on my

research work: Dr. Bienvenido Velez-Rivera, Dr. Pedro Rivera-Vega, and Professor

Freya Toledo.

I also want to thank all family; my gratitude to all for their understanding, and for their

sacrifices, especially when they wanted me to be with them and I was far from home. I

must thank my parents, Wilma and Eduardo, for all their love, understanding, advice, and

for always believe in me; without them maybe I would not be able to go on. Also I want

to thank my sisters Zaira Karina and Zulman Omaira, my brother Paul Eduardo, and my

nephew Jean Pierre, for their confidence in me, for the strength and words of courage that

they give me every day.

My complete and deepest feeling of gratitude I dedicate to Jairo, my husband, whose love

has been always the sustenance of all my work. His support and infinite patience has been

the key for this work to become a reality.

I must extend my gratitude to all my friends of the Electrical and Computer Engineering

Department that at many moments encourage me to follow ahead this thesis and to make

my stay enjoyable here, at the University of Puerto Rico at Mayagüez; Carlos Acuña,

 v

Hillary Caituiro, Carlos Huallparimachi and Idalides Vergara. To all of them, I give my

thanks for their sincerity and amiability towards with me.

Finally, I would like to thank the Department of Electrical and Computer Engineering at

University of Puerto Rico-Mayagüez Campus for this great opportunity to follow

graduate studies in this prestigious university. I would like to thank the project CenSSIS

(NSF award number EEC-9986821) for their financial support during this project.

 vi

Table of Contents

List of Tables ...viii
List of Figures.. ix

Introduction.. 1

1.1 The Problem .. 1
1.2 The Solution .. 3
1.3 Research Objectives .. 4
1.4 Summary of Contributions .. 5
1.5 Structure of this Thesis .. 6

Survey of Related Work .. 7
2.1 Distributed Database Systems and Database Middleware Systems 7
2.2 Peer – to – Peer (P2P)... 8
2.3 Spatial and Object Relational Databases - PostgreSQL ... 9

2.3.1 Index R – Tree Access Methods Spatial .. 9

Overview of the SRE Prototype System... 11
3.1 Introduction .. 11
3.2 Overview of the Architecture of SRE... 11

3.2.1 Client Application .. 13
3.2.2 Web Server... 13
3.2.3 Database System .. 17

3.3 Components of SRE ... 20
3.3.1 Scenario of Communication... 21
3.3.2 Messaging Communication.. 24

Peer – to - Peer Architecture... 27
4.1 Overview of what is Peer – to – Peer (P2P) System... 27
4.2 Comparison between Conventional Distributed Systems and Peer – to – Peer (P2P) .29
4.3 SRE’s Peer – to – Peer Architecture... 29

 vii

Experiments and Results... 39
5.1 Introduction .. 39
5.2 Methodology... 39

5.2.1 Equipment .. 39
5.2.2 Tools Used ... 41

5.3 Development of the Experiments ... 42
5.3.1 Centralized Architecture .. 42
5.3.2 Decentralized Architecture... 45

Conclusions... 59
Future Work... 60

 viii

List of Tables

Table 5-1 Result obtained using a Centralized Architecture ... 43
Table 5-2 Result obtained using Decentralized Architecture .. 46
Table 5-3 Result obtained using a second structure of Decentralized Architecture 51
Table 5-4 Result obtained using a third structure of Decentralized Architecture 54
Table 5-5 Result obtained using a fourth structure of Decentralized Architecture........................ 57

 ix

List of Figures

Figure 1-1 Problem 1: How to extract and to visualize graphical/textual information of images? .2
Figure 1-2 Centralized Architecture .. 2
Figure 1-3 Excessive Data Movement and Centralization... 3
Figure 3-1: Communications with a Servlet .. 12
Figure 3-2 Document of Configuration Terrascope.xml ... 14
Figure 3-3 Example of a Document of Configuration ... 15
Figure 3-4 Document of Configuration Broker.xml .. 16
Figure 3-5 Example of a Broker.xml ... 16
Figure 3-6 Overlap relationship ... 18
Figure 3-7 Architecture SRE - Schema Experimental Design... 20
Figure 3-8 Scenery of Communication.. 21
Figure 3-9 Communication between Client Access Servlet and Data Broker Servlet................... 22
Figure 3-10 Communication between Data Broker Servlets of the others Web - Server (Peers) .. 23
Figure 3-11 Communication between Data Broker Servlet and Information Gateway Servlet..... 24
Figure 3-12 Schema of the Request in XML format ... 25
Figure 3-13 Schema of the Response in XML format ... 26
Figure 4-1 Client – Server Model .. 28
Figure 4-2 Peer to Peer Architecture.. 30
Figure 4-3 IdGenerator Class... 31
Figure 4-4 Setting Class... 32
Figure 4-5 Id_Query process ... 33
Figure 4-6 Times - to - Life (ttl) .. 35
Figure 4-7 Data Broker Servlet Class .. 36
Figure 4-8 Information Gateway Servlet Class.. 37
Figure 5-1 Schema to process request in Centralized Architecture ... 42
Figure 5-2 Results of a Centralized Architecture... 44
Figure 5-3 Schema to process request in Decentralized Architecture Peer – to - Peer.................. 45
Figure 5-4 Results of our Decentralized Architecture Peer–to-Peer.. 47
Figure 5-5 Results obtains between both Architectures... 48
Figure 5-6 Second structure of Decentralized Architecture... 50

 x

Figure 5-7 Result obtained with the second structure of a Decentralized Architecture................. 52
Figure 5-8 Third structure of a Decentralized Architecture... 53
Figure 5-9 Result obtained with the third structure of a Decentralized Architecture 55
Figure 5-10 Fourth structure of Decentralized Architecture.. 56
Figure 5-11 Result obtained with the fourth structure of a Decentralized Architecture 58

1

Chapter One

Introduction

1.1 The Problem

In today’s world we have the necessity of obtaining information in a quick, precise

and instantaneous way, regardless of the geographical localization of the given

information. Distributed Database systems that already exist have experienced an

important growth in the volume of data to process.

The use of Distributed Database Systems, allows sharing and accessing information

stored on local or remote databases in an easy and transparent way for the user, the easy

management of temporal and spatial information, and offer an intuitive query language

for data manipulation.

Currently, there exist many institutions, research centers, universities and

government's agencies that allow us to access some data sources, obtain data and

metadata of images that are stored in different data centers (Figure 1-1). Generally, they

have a Web site to allow us to review some types of images, their spatial data and

metadata. However, these solutions face scalability problems when heterogeneous data

and computational resources need to be integrated to support applications that carry out

an analysis of the different types of data sources stored by research centers.

We have found such occurrence in data centers such as TCESS (Tropical Center for

Earth and Space Studies), CENSSIS (Center for Subsurface Sensing and Imaging

Systems), or some sensors such as MODIS, Landsat, RadarSat among others.

2

Figure 1-1 Problem 1: How to extract and to visualize

graphical/textual information of images?

Also, our research is motivated by the drawbacks of the existing solution where there

are many distributed systems with a centralized architecture. This architecture (Figure 1-

2) has an integration server with a catalog that has the information and address of the

others remote servers that are connected to this.

Figure 1-2 Centralized Architecture

How can we make the client easily
and seamlessly access all these data? Client

Application

CenSSIS UPRM TCESS NASA Goddard

RadarSat Modis Landsat

XML

TranslatorTranslator

Integration
Server

Catalog

MySQLOracle

TranslatorTranslator TranslatorTranslator

CenSSIS UPRM TCESS UPRM NASA Goddard

XML

TranslatorTranslator

XML

TranslatorTranslator

Integration
Server

Catalog

MySQLOracle

TranslatorTranslator TranslatorTranslator

CenSSIS UPRM TCESS UPRM NASA Goddard

Integration
Server

CatalogIntegration
Server

CatalogIntegration
Server

Integration
Server

Catalog

MySQLOracle

TranslatorTranslator TranslatorTranslator

CenSSIS UPRM TCESS UPRM NASA Goddard

MySQLOracle

TranslatorTranslator TranslatorTranslator

CenSSIS UPRM TCESS UPRM NASA Goddard

MySQLOracle

TranslatorTranslator TranslatorTranslator

MySQLOracle

TranslatorTranslator

Oracle

TranslatorTranslator TranslatorTranslator

CenSSIS UPRM TCESS UPRM NASA Goddard

3

For this reason, this type architecture has several disadvantages (Figure 1-3). First,

there exists too much data movement exist over the network making query processing

very slowly, because the integration server does most of the processing. Second, there is

a reliability problem; if the main server fails the entire system fails, thus this server

becomes a single point of failure.

Figure 1-3 Excessive Data Movement and Centralization

1.2 The Solution

The proposed solution of this research is to develop a system that allows us to obtain

information about images and their metadata that are distributed and stored in different

data sources. For this reason we present the Search and Retrieval Engine (SRE) as part of

TerraScope that is an Earth Science Middleware Database System based on the Web.

SRE is a spatial distributed database system and it has a distributed query execution

engine based on the Java Servlet Technology that can respond quickly to each query

request. It has methods that make it possible for the user to search the wanted information

based on temporal data, geographical area, data sources or sensor type.

XML

TranslatorTranslator

Integration
Server

Catalog

MySQLOracle

TranslatorTranslator TranslatorTranslator

CenSSIS UPRM TCESS UPRM NASA Goddard

XML

TranslatorTranslator

XML

TranslatorTranslator

Integration
Server

Catalog

MySQLOracle

TranslatorTranslator TranslatorTranslator

CenSSIS UPRM TCESS UPRM NASA Goddard

Integration
Server

CatalogIntegration
Server

CatalogIntegration
Server

Integration
Server

Catalog

MySQLOracle

TranslatorTranslator TranslatorTranslator

CenSSIS UPRM TCESS UPRM NASA Goddard

MySQLOracle

TranslatorTranslator TranslatorTranslator

CenSSIS UPRM TCESS UPRM NASA Goddard

MySQLOracle

TranslatorTranslator TranslatorTranslator

MySQLOracle

TranslatorTranslator

Oracle

TranslatorTranslator TranslatorTranslator

CenSSIS UPRM TCESS UPRM NASA Goddard

4

Also, SRE is based on a scalable and decentralized Peer-to-Peer architecture where

multiple data sources can be integrated in a coherent system. It receives requests from

the users, and accesses each database that is distributed in different data source. It can

support the execution of different queries that make it possible to gather information that

are stored in each data center where the users of TerraScope can visually manipulate

spatial data local and remotely stored.

In short, SRE is designed to support spatial indexes, distributed data recovery and

visualization of images. It does not require existing data sources to be removed, and their

data re-ingested into a new storage server.

The system SRE is composed of:

• Web Server - responds to HTTP requests submitted by the clients, and where SRE

will be installed as part of the Servlets deployment infrastructure.

• Database System - where the data and metadata corresponding to each of the

images are stored.

1.3 Research Objectives

The main objective is to develop a Peer-to-Peer Web-based middleware engine that

can handle search operations, spatial queries, and other operations on data sets stored on

different data sources. The system shall a decentralized architecture that minimizes the

likelihood that a single component can become a system bottleneck or cause a major

system failure.

The specific objectives of the Search and Retrieval Engine are listed as follows:

• To develop a prototype server with capabilities for search and recovery of data

and/or metadata from different sources, for instance, TCESS, CENSSIS, NASA

and others.

5

• Peer-to-Peer architecture to retrieve Remote Sensing Images. By using peer-to-

peer architecture, there are simple access points to the system, which will allow us

to add other sites and metadata accordingly as the system grows.

• To increase the performance in the recovery of spatial objects with the use of

spatial R-tree indexes, which provide the most efficient access to spatial data.

• To have a portable system, using Java Servlet Technology, where the ingestion

component transforms the metadata of several data sources into a single XML

document. The XML language is ideal to describe data based on ASCII because a

lot of metadata of earth science are in an ASCII format that can be easily handled.

1.4 Summary of Contributions

The major contributions of this thesis can be summarized as follows:

1. Development of the SRE system to enable a Web server to become a database

middleware engine for processing data and metadata related with satellite

images. The SRE is implemented with Java Servlets Technology, and our

work serves as evidence for the feasibility of this approach.

2. The development of a the SRE system based on a Decentralized Peer-to-Peer

Architecture, that allow us have access to different data sources that are

located in different locations and can obtain the data and metadata referent to

images satellites. The system allows access to any available data source from

a single point of entry.

3. A performance evaluation that show that our architecture is more efficient

than the centralized architectures used in previous systems.

6

4. Finally, other of my major contributions was the publication and presentation

of a paper wrote to the Conference of IASTED CST (Computer Science and

Technology) – 2003, realized in Cancun, Mexico in May 19 to 22 at present

year.

1.5 Structure of this Thesis

The reminder of this thesis is organized as follows, Chapter 2 presents a survey of

related arranged in three subtopics: i) Database Distributed System and Database

Middleware Systems; ii) Peer – to – Peer Architecture; and iii) PostgreSQL R-Tree

Index. Chapter 3 presents an overview of the SRE Architecture, discussing its main

components. Chapter 4 presents the Peer – to – Peer Architecture of our SRE, describing

and analyzing its operational behavior. Chapter 5 presents the performance experiments

and the results obtained. Finally, Chapter 6 presents the final conclusions and future

work.

7

Chapter Two

Survey of Related Work

We present a review of the research literature most relevant to the work done for this

thesis. We only consider here the work upon which this thesis is based.

2.1 Distributed Database Systems and Database Middleware Systems

Researchers in the area of Distributed Database Systems have concentrated on the

problems of heterogeneous data integration [12, 13], distributed query processing [14]

distributed transaction processing [15], and data dissemination systems. Database

Middleware Systems are used to integrate collections of data sources distributed over a

computer network [1].

The MARIPOSA distributed database management system is a research prototype

developed at the University of California at Berkeley [3, 4]. Mariposa addresses

fundamental problems in the standard approach to distributed data management.

Mariposa allows DBMSs which are far apart and under different administrative domains

to work together to process queries, and provides powerful mechanisms for specifying

the behavior of each site. However, Mariposa require data to be removed from their

existing server applications, and re-ingested into the federated database engine.

Database Middleware differs from Network Middleware such as CORBA, .NET and

RMI, since the latter is used as an infrastructure layer to provide applications access to

the network. Database Middleware is at a higher layer, and can leverage on the Network

Middleware for connectivity purposes. Database Middleware Systems follow an

architecture centered on a data integration server, which provides client applications with

a uniform view and a uniform access mechanism to the data available in each source.

8

MOCHA is a novel database middleware system designed to interconnect hundreds

of data sources distributed over a wide area network. The purpose of MOCHA is to

integrate collections of data sources distributed over wide-area computer networks such

as the Internet [1]. MOCHA is a database middleware system that provides client

applications with a uniform view and access mechanism to the data collections available

in each source. It provided the ability to ship Java code implementing user-defined types

and operations to remote data sites, but have a problem of scalability as new sites are

added to the system and a single site must manage system-wide interactions. In contrast

our Search and Retrieval Engine of TerraScope is based in peer to peer architecture

that ameliorates this problem.

TERRASERVER is the largest public repository of aerial, satellite and topographic

data based on a simple client - server model. TerraServer needs the data of interest to be

fetched from remote sites into the client site, where most of the processing occurs. The

data processing options are limited to the client or the server site. In contrast, the Search

and Retrieval Engine has more options for data processing and the data can be moved to

sites appropriately.

MERCURY is based on a simple client-server model that requires the data of interest

to be fetched from remote sites into the client site, where most of the processing occurs.

Mercury only gives access to the metadata for data products. The actual image data must

be obtained by other means such as FTP or HTTP. In contrast, SRE provides a common

interface to access both data and metadata available in some image repository.

2.2 Peer – to – Peer (P2P)

The use of P2P architectures opens up new dimensions of handling and managing the

information facilitating the exchange of the most recently created and highly distributed

information. The most frequently used applications include file sharing systems, such as

Napster, Gnutella, among others. It has a decentralized control able to cope with

challenges such as metadata, cost sharing and security.

9

The decentralized P2P system gives them the potential to be robust to faults or

intentional attacks, making them ideal for long-term storage.

2.3 Spatial and Object Relational Databases - PostgreSQL

PostgreSQL is a traditional relational database management system (DBMSs) that

support a data model consisting of a collection of named relations, containing attributes

of a specific type. In current commercial systems, possible types include floating point

numbers, integers, character strings, money, and dates. The relational model successfully

replaced previous models in part because of its "Spartan simplicity". However, as

mentioned, this simplicity often makes the implementation of certain applications very

difficult.

Although PostgreSQL has some object-oriented features such as object data–types, it

is firmly in the relational database world. In fact, some commercial databases have

recently incorporated features pioneered by Postgres.

2.3.1 Index R – Tree Access Methods Spatial

A Spatial Database System is a database System able to manage spatial information

such points, lines, and polygons in 2D, 3D, or any other type of n-dimensional Euclidean

space. These systems also offer a query language for the manipulation of these spatial

entities, particularly operators to perform operations such overlaps, intersection and

containment queries. The objective of a spatial database management system is providing

efficient access methods and algorithms for the processing of queries over the spatial

attributes of the data sets [Güt94].

The most traditional methods of this type were not devised to be used for three (3)

dimensions and only recently structures thought for a high dimensionality have arisen.

For that reason, the spatial access methods are going to be those build mainly to store

geometric objects.

10

The pioneering structure is R-Tree [Gut84] that has served as a base for many other

methods that arose by trying to improve some aspects of the basic R-tree. An R-tree is a

multidimensional tree balanced in height that represents one hierarchy of rectangles

representing regions of the minimal bounding box (MBRs – Minimum Bounding

Rectangle) that cover some object X in the target Euclidean space.

In order to increase the performance of the query processing system, access methods

have been developed [GaG98]. The one-dimensional index (data structure with unique key)

are B-Tree [BaM72] and its derivatives B+-Tree, B*-Tree, etc. A group of derived index

from B-Tree to manage multidimensional index is known as R-Trees (trees data

structures based on minimal rectangles (MBRs)). The MBRs in R-trees are defined by

two points, forming a rectangle that encloses the object to be indexed. There are many

variations of the original R-Tree: R+-Tree, R*-Tree, and X-Tree. Each of these variations

uses a different algorithm to partition the space, split tree nodes, or merge tree nodes in

order to keep the tree balanced.

11

Chapter Three

Overview of the SRE Prototype System

3.1 Introduction

Search and Retrieval Engine (SRE) is a spatial database middleware system that is

composed for a group of servlets developed with Java Servlets Technology, capable of

communication between them through XML syntax. Each Servlets has a different

function to help process each request sent by the client through the Client Application

obtaining a final result from the diverse data sources that our server has access to. The

servlets implement a distributed data processing engine that will enable operations that

extract and process data from multiple sites. We can install our SRE as part of the Web –

Server infrastructure available at a given site that is holding an image repository.

To enable access a data source that provides access to image data and metadata, we

have worked and created the databases using PostgreSQL because it allows us to manage

spatial indexes that facilitate the search. In PostgreSQL, we have created databases where

the data and metadata about images are stored correspondingly.

3.2 Overview of the Architecture of SRE

SRE is based on Java Servlet Technology and on Decentralized Peer-to-Peer

architecture, where the clients can customize their own view of the system to define the

remote data and computational services they wish to export. They can control which of

their services and data products they are willing to share with others.

The Servlet are programs in Java that are executed on a Web Server, and that receive

and respond to request from the clients. The client can invoke the Http Protocol (Figure 3

-1). Any given servlet can communicate with others servlets to help in its work or

facilitate the access to a database. A Servlet is secure and portable because of its

12

execution on the java virtual machine, the mechanism for exception handling, and the use

of the java security infrastructure.

The API of the servlets used for servlet programming includes two packages: i)

javax.servlet which defines the interface for all servlet and the implementation a

GenericServlet class. Here are we find defined the methods of the servlet Life cycle, and

also the interfaces ServletRequest and ServletResponse, that define a client’s request and

response; ii) javax.servlet.http, which includes servlet interfaces and classes for use with

the protocol http. This package defines the class HttpServlet that is one extension of

GenericServlet; also include the interfaces HttpServletRequest and HttpServletResponse,

which are extensions of ServletRequest and ServletResponse.

Figure 3-1: Communications with a Servlet

The reason behind our decision to work with the Java Servlet Technology is that it

allows us run our SRE in different platforms; our execution is multithread where each

request creates a thread instance that is executed independently. Also, a servlet allow us

invoke to other servlets located locally or on a remote site. Our system is organized in

three tiers: a) Client Application, b) Web Servers, and c) Database System. We now give

more details on these elements.

Communication – Java
Client

Application

Explorer Servlet

Request HTTP

Response HTTP

13

3.2.1 Client Application

The client application is the graphical user interface where there are multiple options

for doing the search of images that are stored in different data sources. This application is

done in Macromedia Flash that was realized for other student of the group of research.

3.2.2 Web Server

The Web Server is the most important part in any Internet site, and it constitutes the

next step in the evolution of the distributed object-oriented technology, in charge of new

distributed architectures such as peer-to-peer. The Web Server takes care of responding

to HTTP requests submitted by the clients, and facilitating the growth of the system by

adding new sites and their metadata, without having to change the structure of the system.

Our SRE system is installed as part of each Web Server that are running on the different

data sources.

The Web server that we used to support Java Servlets is Tomcat, which is a Servlet

Container. We used the Java Web Service Developer Pack (JWSDP) that have the

Tomcat Server that allows us run our servlets. JWSDP is easy to obtain, free cost and

offers us the best ratio of ease-of-use/communications cost. An applet runs in a web

browser, performing actions it requests through a specific interface. A servlet does the

same type action, but the servlet is running on the web server. The requests from clients

are sent through a graphical client (GUI) encoded with XML format, and sent to the web

server via a URL.

Each SRE is installed as part of the web-server and has three main components: i)

Client Access Servlet - that interacts directly with the petitions requested by the clients; ii)

Data Broker Servlet - its main functions are processing, controlling and coordinating the

communication process between all the others Data Broker Servlets that are located or

distributed in the others web-servers, independently of the level of connectivity (remote

or local); and finally iii) Information Gateway Servlet - that allows us to access and

retrieve data requests from its associate database.

14

For our SRE to work correctly we have to follow some steps:

• First, we install SRE in the WEB-INF subdirectory of the jwsdp directory. This

is:

- jwsdp

- webapps

- ROOT

- WEB-INF

• Second, to configure two (2) main documents that are in the ROOT directory, and

that are part of our SRE.

a) Terrascope.xml. (See Figure 3–2). This document is a configuration

document own by each Web server where SRE will run. It has some

specifications such as: hostname and port where SRE is running, the hostname

where SRE is installed, the controlling number of hops (called ttl), JDBC

database driver name and address of the database, the user name and password

of person what have access to the database.

Figure 3-2 Document of Configuration Terrascope.xml

15

For a major understanding, we show in Figure 3–3 how to configure this

document for this case. In this case, the hostname where we installed our SRE is

called icarus.ece.uprm.edu and the port where it will run is the 9090, then the

addresses of our three main servlet are shown below. Since the database belongs

to PostgreSQL then the driver name also belongs to org.postgresql.Driver.

Figure 3-3 Example of a Document of Configuration

We can see that each tag has a different function. The three first tags belong to

addresses located in our three main servlets. The next tag is the address where the

document broker.xml is located in the ROOT. Then, the tags such as driverName,

user, password, databaseName are referring to handling and access operations of

the database.

b) Broker.xml. As shown in Figure 3–4, Broker.xml contains only the addresses

of the other Data Brokers (tag Name_Source) which are part of the Peer – to –

Peer system. Using this list one peer had the ability to forward information

about of the request sent by the client.

16

Figure 3-4 Document of Configuration Broker.xml

For example, in the Figure 3–5 we can see that our server recognized three peers

(friends) namely: TCESS, CenSSIS and NASA. In order to request information

from them, our server must add them into the Broker.xml document as it is shown

in the figure below.

Figure 3-5 Example of a Broker.xml

17

3.2.3 Database System

Our spatial databases were created for storing the data and metadata for each one of

the images. It is formed of various tables where information that corresponds to each of

images will be stored. Our current implementation is based on the PostgreSQL database

system because it allows us to manipulate and create spatial indexes, particularly R-tree

indexes.

3.2.3.1 Spatial Access Methods

The R - Trees is a tree data structure, balanced in height, similar to the B - Tree;

however, instead of value ranges, R-trees are associated with Minimum Bounding

regions (MBRs) with each node of the tree. Each MBR encloses either an individual

object in the tree, or a collection of two or more MBRs of smaller size. Each leaf tree

node corresponds to a data page. In the nodes leaf, an identifier for each object and the

MBR that contains it is stored and the internal nodes represent a succession of minimal

rectangle regions, each one of which it controls a node in the inferior level. The regions

of the same level can be overlapped and its union not necessarily covers the complete are

universe of spatial positions.

One of the methods that allow us to handle overlaps regions is the R-Tree and

PostgreSQL allow us create this index type. PostgreSQL allows us to use a data type

called polygon where each one is represented internally as a collection of points. Our

databases allow us to build B-trees as well as R-tree indexes in order to do spatial

searches to obtain an efficient answer to this type of requirement. For this reason, we

used the method of R-Tree index because is can cover areas in multidimensional spaces

that are not well represented by locations points.

A spatial database consists of a collection of tuples (records) representing spatial

objects where each tuple (record) has a unique identifier that can be used to retrieve its

leaf nodes R-Tree contains index record entries of the form (I, id_tuple) where “I” is an

18

n-dimensional rectangle which is the bounding box of the spatial object indexed and

“id_tuple” is a tuple in the database.

Figure 3-6 Overlap relationship

In Figure 3-6 we show overlapping relationships that can exist between spatial

searches. Spatial searches are represented in picture 3-6 as a rectangle. Spatial searches

are achieved using spatial indexes or polygons that overlap in a given range. Those

queries require the use of a spatial index because it will result extremely difficult in a

system with a single support B-tree. The use of the operator "&&” in a query formulated

with the Structured Query Language (SQL) will allow us to bring all images that are

overlapped inside a selected range, and finally recursive queries allows us to bring the

images belonging to a certain geographical point.

R2
R7

R1
R4

R4 R3

R2

R9

R10

R6
R15

R15

R5
R12

 R14

R11

R12

R
17

R16

Images

19

3.2.3.2 Connection with the Database

SRE use the JDBC (Java DataBase Connectivity) Standard to access the Database.

The JDBC API makes the access to database knowing which server to access (Oracle,

PostgreSQL, Informix and others). It allows us the connection with a database, to send a

SQL query and to process the results. JDBC’s main advantage is that an application (in

Java) can interoperate with multiple data sources, and connect to different databases with

a similar set of operations.

3.2.3.3 Supported Queries

SRE has some methods that will make it possible to the user to search information

from any image, obtaining its respective data and metadata, provide a quality of service

semantics to the data sites involved in query execution and to assure resource sharing,

reliability, performance and security. The main characteristic of SRE is the capacity of

processing spatial data that are stored in multiple data sources. SRE provides for the

efficient management of those data is response to related queries with spatial properties.

 The queries can be expressed in terms of:

• Spatial Data. It is an exact query that looks for spatial objects determined by their

location. For this, we use the R-tree indexing tool available with PostgreSQL.

• Sensor type or some other characteristics.

• Temporal Data

• Data Sources.

The final result of the query is send to the user by means of an XML result set that

contains the data and metadata with its respective URL where the corresponding images

are stored. The client application receives the XML results and presents the data to the

end user.

20

3.3 Components of SRE

Search and Retrieval Engine (SRE) is the main search engine and it is conformed of a

group of servlets that communicate between them, where each servlet has a different

function to process each request sent by the client obtaining a final result from the diverse

data sources that our server has access to. The Servlets implement a distributed data

processing engine that will enable operations that extract and process data from multiple

sites.

In the Figure 3-7 we show our implementation design scheme of our research. We

can see that each Web Server contains a group of the main servlets that cooperate

between them, forming the SRE.

Figure 3-7 Architecture SRE - Schema Experimental Design

WEB-SERVER

Broker.xml

Information
Gateway
Servlet

Client Access
Servlet

Data Broker
Servlet

Meta
data

Data

Terrascope.xml

21

3.3.1 Scenario of Communication

Consider for example, as represented in Figure 3-8, what happens when an user

requests the following query through to the client application: “Get all the Radarsat

Images of CENSSIS acquired between 03/16/2001 and 03/20/2001”. Our SRE system

will act as a data and resource broker for the application, where the client application will

send this request to the Web - Server.

 Request

 Response

Figure 3-8 Scenery of Communication

Each one of the components behaves as follows:

a. The Client Access Servlet (CAS) is in charge of interacting directly with the

requests made by the client, as shown in Figure 3-9. The CAS receives the requests sent

by the client. The requests are encoded using a XML format which is interpreted and

validated by the CAS using a proper parsing function. This servlet verifies the query type

that the user has chosen and determines if the query results are already stored in a

memory cache data structure, or if the query is a new query not in the cache. If is the

results are stored in memory, CAS will send the response to the end-user without making

Client Application

Information
Gateway
Servlet Radarsat

Data

Client Access
Servlet

Data Broker
Servlet

Radarsat
Metadata

SRE – Execution Engine

Java
Servlet

Technology

22

further effort; otherwise, CAS will make the connection with the next servlet, the Data

Broker, and forward to it the request.

CAS extends the HttpServlet class provided by the Java Web Service Developer Pack

(JWSDP) that receives the requests of multiple clients in and prevents the use of a port

that a Firewall could block.

 Request

 Response

Figure 3-9 Communication between Client Access Servlet and Data
Broker Servlet

b. The Data Broker Servlet (DBS) receives the client's requests from the CAS in a

more precise and detailed way, as shown in Figure 3-10. DBS processes the information,

and also controls and coordinates the communication that exists between the others Data

Broker Servlets that are installed in each one of the others peer sites. DBS determines a

strategy to solve the queries in a quick and precise way; it verifies what data sources have

been invoked by the clients, consulting in a catalog stored in XML.

The broker also determines the remote peer sites where the query request will be sent

to extract the data and metadata of a group of images. Once the DBS has found groups of

peer sites, it will negotiate with them for access rights, and then it will send the query

request to be resolved. Otherwise, if no specific data sources are found in the local

catalogs, then the data broker will request to others peers information leading to solve the

SRE

Client Application

Client Access
Servlet

Data Broker
Servlet

23

query at hand. In this latter case, we assume that some peer site might have knowledge of

the target data sources, and provide the required images.

Figure 3-10 Communication between Data Broker Servlets of the

others Web - Server (Peers)

SRE

Data Broker
Servlet

NASA

CenSSIS UPRM

SRE

Data Broker
Servlet

SRE

TCESS UPRM

Client Access
Servlet

Data Broker
Servlet

24

c. The Information Gateway Servlet (IGS) will receive the query request that the

Client sends through the CAS and DBS, as shown in Figure 3-11. IGS is the elements

that control access to the database, and extracts the significant information according to

the queries received, creating a new XML document with the final result containing the

respective data and metadata. Thus, IGS provides access to other members of the system

to the data sets maintained by a given source site.

Figure 3-11 Communication between Data Broker Servlet and

Information Gateway Servlet

3.3.2 Messaging Communication

The communication between the servlets is performed through XML messages,

which are a new technology for web applications. XML is a World Wide Web

Consortium standard that lets you create your own tags to enclosed data that will be

exchanged between sites. Thu, XML can be used a language for communications can is

understood and processed by the server applications (namely the Servlets). Hence, XML

provides both data and semantics for the data, which can be exploited by the applications

since they can find the data of interest by looking for the tags that enclosed the data.

XML applications provide many advantages. XML's strongest point is its ability to do

data interchanges and make it easy to send structured data across the web so that nothing

gets lost in translation.

SRE

Data Broker
Servlet

Information
Gateway

Radarsat
Data

Radarsat
Metadata

25

3.3.2.1 Schema of the Query Request in XML

This schema shown in Figure 3-12 is an XML document containing the request

placed through the Client Application. The corpus of the XML document is composed by

detailed information such as data sources name, range of searching coordinates, and

dates. This format will be used by the client to send a message, through a URL to the

Web Server where our Search and Retrieval Engine (SRE) is running, and then this

request is received and parsed by our first Servlet, the Client Access Servlet.

Figure 3-12 Schema of the Request in XML format

26

3.3.2.2 Schema of the Response in XML

Figure 3-12 shows a format that we have developed for responses to queries. This

format is a XML document containing all the query results found in either local or remote

databases.

Figure 3-13 Schema of the Response in XML format

The body of this XML document is composed of important data for the user such as a

url where the images are stored, satellite status (ascending or descending), creation date,

time, images coordinates, source, and other data that will be sent to the Client

Application who will parser this format, extract the data and metadata, and show these

results to the user.

27

Chapter Four

Peer – to - Peer Architecture

This chapter presents the peer-to-peer architecture used by our SRE information

system. First we have an overview about of what is a Peer – to – Peer architecture, a

comparison with the conventional systems, and finally we presents our Decentralized

Peer – to – Peer Architecture.

4.1 Overview of what is Peer – to – Peer (P2P) System

Peer-to-Peer (P2P) is a model that promotes a global system that allows the direct

collaboration between computers with emphasis in the capitalization and show of

resources. For defining P2P architecture is important to first comment what is

client/server model (Figure 4 – 1). It is the more common model for communication in

Internet, where there exist a client that knows how to realize a request of information, and

how to put this request on a server. On the other hand, the server knows how to perform

some service (e.g. provide a weather forecasts), and how to give the results to the client.

This model has two entity of execution:

• Server, it offers some service X.

• Client, it uses the service X.

The interaction occurs under the form of exchange of two messages: i) Request,

specification of the requirement services, parameters, others; ii) Response, results or

indicator of some error.

28

Figure 4-1 Client – Server Model

When we talk of Peer - to - Peer system we refers to a type of communications

exchange in which any given applications can act as: a) client that uses a service form

other server, or b) a server that provides some service. Thus, each application has a dual

role as client or server, and can switch from these roles during normal operating

conditions. For a given application X, its peers are the other applications that provide

service to X. In turn, peers of X can receive services from X itself. This is what

characterizes peer-to-peer systems. Peer-to-Peer systems are decentralized by nature,

since every peer to start a data processing operation. There is no central authority that

controls query execution. The Internet Domain Name Service (DNS) is a Peer-to-Peer

architecture that has demonstrated a capacity for auto-structure and scalability.

The use of this architecture is important because, it enables a computer to behave as a

client or server in any moment and establish a direct connection with one or more peers.

All nodes in this model can be client or server of services at same time.

Send the Requirement
Read the result

Process the Requirement
Send the result

Request

Response

29

4.2 Comparison between Conventional Distributed Systems and Peer

– to – Peer (P2P)

The conventional distributed systems have one centralized and dedicated

infrastructure, central administration. The clients rely on this central site to consume

services; making it difficult to extend the system, because of the possibility of restriction

by the central administration.

A distributed system featuring ease-of-evolution was desired, where all the

responsibility is not deposited on a centralized infrastructure. There is where the

necessity to implement a P2P system arises. P2P provides users with a decentralized

infrastructure, devoid of problems with a central administration.

A P2P application is different to client – server model because in the latter, the roles

of client and server are fixed in the application’s logic. In contrasts, in P2P systems the

application can act as a client or server, it have capacity to ask information to others peer

(servers), and also have the ability of acting like a server to service the requests of the

others clients.

4.3 SRE’s Peer – to – Peer Architecture

Currently, there exist different systems that search information about of the satellite

images that are stored in different data sources. But these systems are complex because

they are not in an integrated system. Moreover, most of these previous systems work with

a centralized architecture which also represents a performance bottleneck due to the

excessive movement of data to the central site.

The architecture that we proposed in this thesis is a decentralized Peer - to - Peer

Architecture, that allow us to obtain information from local or/and remote databases at

the same time. Our SRE is built around this architecture. In our system the clients can

customize their own view of the system to define the remote data and computational

30

services they wish to access. In the Figure 4-2, we show a decentralized peer–to–peer

architecture that enables SRE to integrate four different data sources: CenSSIS UPRM,

CenSSIS RPI, NASA and TCESS, all of which are located in different sites.

Clients

Peers

Database

Figure 4-2 Peer to Peer Architecture

Each one of those peers has installed our SRE as part of its web-server, and each peer

acts like client or server when searching information about some images. Ours peers are

capable to work like clients when sending a request to others peers and also can be

capable of working like a server when processing the requirement and sending the results.

In our architecture there are some important issues such as:

i) That a query request “X” can be received by a peer site more than once and we do

not want to reply more than once; Our solution to this issue is that each peer gives an ID

CenSSIS
RPI

TCESS

Data Meta-
Data

Data Meta-
Data

CenSSIS
UPRM

Data Meta-
Data

Data Meta-
Data

NASA

31

to query request. Each peer needs to keep track of these IDs, and reject request with IDs

already seen. In our scheme, we call this ID the Id_Query.

The Id_Query contains the URL or IP address of the CAS servlet that originally

received the query from the client, plus a sequence number assigned for each request

received. The Id_Query is stored in a table created in each database site running the SRE.

For this we have created an IdGenerator class (Figure 4-3) that contains five (5) different

methods that allows us opens the database, create a new Id_Query, and save this in the

database.

package edu.uprm.adm.imagegrid.server;

public abstract class IDGenerator

{

public static Database openDB(HttpServlet sl)

public static String nextID (HttpServlet sl)

public static boolean containsID(HttpServlet sl, String id) throws

Exception

public static void saveID (HttpServlet sl, String id)

public static void purge(HttpServlet sl)

 }

Figure 4-3 IdGenerator Class

For a better understanding of our scheme for managing Id_Query, we provide a

scenario of communication in our SRE:

First, the client or user sent a request to our system. After that client establish a

connection with the first servlet, Client Access (CAS), and sent its request, CAS assign a

new Id_Query number for this request that allow us to have a better control of all the

request that enters, avoiding executing the same request more than two times, and send

32

forward with the same request plus the Id_Query assigned to next servlet, Data Broker

Servlet (DBS).

To realize this communication, we had created another class called Setting, shown in

Figure 4 – 4, inside a package server that contains the method that allows us to extract of

each of the tag of the address that corresponds to the next servlet as follows:

package edu.uprm.adm.imagegrid.server;

public abstract class Settings
{
 public static final String filename = "/terrascope.xml" ;

 public static String get (HttpServlet sl , String tag)

 {

 String path = sl.getServletContext().getRealPath(filename);

 return TSParser.parse(path , tag);
 }
 }

Figure 4-4 Setting Class

Next, the DBS receives the user’s request, it will solve the query with local and

distributed data; but first, it verifies if this request was attended before by comparing if

the Id_Query that it have received is already stored in its database. If this Id_Query exist,

then it will send a message that indicates that this request was attended before and it will

not attend this again. Otherwise, if this query was not attended before then it save this

new Id_Query in its own database, and send the request forward to next servlet, the

Information Gateway Servlet (IGS) in order to extract the local data from the local

database.

33

In the Figure 4–5, we show where TCESS receive a new request sent by the user.

Figure 4-5 Id_Query process

Id_Query Value
url_servlet+123
url_servlet+345
url_servlet+894

CAS

DBS

CAS

DBS

CAS

DBS

CAS

DBS

url_servlet+894

Id_Query Value
url_servlet+123
url_servlet+345
url_servlet+894

Id_Query Value
url_servlet+123
url_servlet+345
url servlet+894 *

SRE-NASA

Id_Query Value
url_servlet+123
url_servlet+345
url_servlet+894

SRE-CenSSIS RPI

SRE-TCESS

SRE-CenSSIS UPRM

34

Then, CAS creates and save a new Id_Query in its database and DBS forward the

same request to others peers with the Id_Query generated. Each peer attends the request

and store and mark Id_Query as attended.

But for example, TCESS receive a request of the client; TCESS’ CAS verify if this

request is new or not, like is new then assign a new Id_Query for this request and TCESS

forward the same request plus Id_Query to others peers (friends) that this know. In this

case, TCESS send the request to NASA and CenSSIS RPI, each search in its database if

this Id_Query was attended before, if not was attended then each stored this new

Id_Query and attend the request, and marked it as attended.

The same happens when NASA forwards the request to CenSSIS UPRM, but when

CenSSIS RPI send the same request again to CenSSIS UPRM then it is not attended

again because this request was marked as attended.

ii) Other issue is that we need to control the number of hops that is the number of

peers that we will sent the same request. Our solution is to keep a counter on the message

indicating how many times it can be forwarded. For this we created a counter called

Time-to-Life (ttl). Each server (peer) has to check if its time - to – life (ttl) is not expired

(i.e. reached 0); if ttl is not expired, then it attends the request and decrement ttl by one

(ttl = ttl – 1) and it will connect to the next servlet, Information Gateway Servlet (IGS), to

search information and it will forward the request to the others peers. After that, the Data

Broker Servlet will forward the query to its peers in order to get results from them. The

results from the remote sites are merged with the results from the local database.

The ttl is refereed to the number hops that a server has to search in others peers. In

other words, if we said that the first server has a ttl of three then it means that the server

will search in three levels, not three peers or servers. In this case (shown in Figure 4-6),

it will only search until level three. This ttl can change according to the configuration

type that the administrator assigns.

35

Figure 4-6 Times - to - Life (ttl)

To make this possible, our Data Broker Servlet Class has a group of methods that are

show in the Figure 4-7.

1st Level

2nd Level

3rd Level

4th Level

5th Level

Send Request

36

package edu.uprm.adm.imagegrid.server;

public class DataBrokerServlet extends HttpServlet

{

 public void init(ServletConfig config) throws ServletException

 public void destroy()

 protected void doGet(HttpServletRequest request, HttpServletResponse response) throws

 ServletException, java.io.IOException

 protected void doPost(HttpServletRequest request, HttpServletResponse response) throws

 ServletException, java.io.IOException

 protected void processRequest(HttpServletRequest request , HttpServletResponse response)
 throws ServletException, java.io.IOException

 private boolean alreadyAttended(TSQuery tsq)

 private String acceptRequest(TSQuery tsq)
 private String denyRequest(TSQuery tsq)

 private void markAsAttended(TSQuery tsq)

 private String getRequestFromMyGW(TSQuery tsq)

 public URLConnection getURLConnection(String source) throws Exception

 public Vector getRequestFromDataBrokers(TSQuery tsq)

 public String getRequestFromDataBroker(TSQuery query , String source)

 public void sendResponseToClientAccess(HttpServletResponse response , String tsrl)

}

Figure 4-7 Data Broker Servlet Class

Finally we have the next servlet; Information Gateway Servlet (IGS) who receive the

request and extract the data that contributes to the solution of the query. It allows us to

access its database locally to search the information required by the user. In the Figure

4–8, we show methods that contain Information Gateway Servlet and that make this

search possible.

37

Package edu.uprm.adm.imagegrid.server;

public class GatewayServlet extends HttpServlet

{

 public void init(ServletConfig config) throws ServletException

 public static Database openDB(HttpServlet sl)

 protected void doPost (HttpServletRequest request, HttpServletResponse response)

 throws ServletException, java.io.IOException

 protected void doGet(HttpServletRequest request, HttpServletResponse response) throws

 ServletException, java.io.IOException

protected void processRequest(HttpServletRequest request, HttpServletResponse

 response) throws ServletException, java.io.IOException

 public TSQuery getRequestFromDataBroker(HttpServletRequest request)

 public TSResultSet getRequestFromDatabase(TSQuery tsquery) throws Exception

public void sendResponseToDataBroker(HttpServletResponse response, TSResultSet

 resultset)

private TSResultSet queryToResultList(Query query,TSQuery tsquery) throws Exception

private TSResultSet parsePolygon (String bounds)

private TSResultSet queryToResult(Query query , TSQuery tsquery) throws Exception

}

Figure 4-8 Information Gateway Servlet Class

When the query is solved, it packs the result and sends this to its local DBS who

verifies the results and merges these local results with all the results obtained from the

others peers.

Each DBS that received a request will connect to other remote peer DBS to ask them

for this data. Each remote DBS will do the same independently: ask its local IGS to get

data and also talk to other peer DBS.

38

Our P2P solution has the following goals:

• It is possible add new peers to the system without central control. Each peer can

communicate with others peers or servers to search information.

• To easily share content with other partners. It can share information after it has

been discovered.

The benefits of the P2P Architecture are to be a single point of access to the system

where the growth system can be adding sites and metadata.

39

Chapter Five

Experiments and Results

5.1 Introduction

We conducted some experiments to show the benefits of our Peer-to-Peer SRE

system versus previous centralized systems. To demonstrate that the speed to process a

query in a decentralized architecture is better and faster, we had executed some tests

where were run the same queries on both types of architectures. Our experiments show

that SRE provides a more efficient architecture than previous solutions.

5.2 Methodology

The methodology used in the development of the project SRE is divided in equipment

and tools used.

5.2.1 Equipment

We used four servers: three (3) that run under Linux and other that run under Windows XP

where we installed our SRE. The descriptions of our equipment are:

• Three servers (3) under Linux:

o Host Name: icarus.ece.uprm.edu

MachType i686-pc-linux-gnu

OSType Linux-gnu

Host Type i686

Memory 512 MHz

Speed_CPU 930 MHz

40

o Host Name: crl2.ece.uprm.edu

MachType sparc-sun-solaris2.9

OSType Solaris 2.9

Host Type sparc

Memory 1GB

Speed_CPU 440 MHz

o Host Name: db3.ece.uprm.edu

MachType i686-pc-linux-gnu

OSType Linux-gnu

Memory 128

Speed_CPU 500 MHZ

• 1 PC – DELL

o Host Name: llws04.ece.uprm.edu

RAM 1.0 GB

Processor Pentium 4

OSType Windows XP

Speed_CPU 2.4 GHz

• A TCP/IP communication network of 100 Mb/s

• Clients Applications (12) - To realize our test we used twelve workstations

installed in the laboratory Amadeus of the Electrical and Computer Engineering

Department that are identify with different Caciques’ name just as: Dehostos,

Betances, Cofresi, Lascasas, among others. Each one of the workstations has the

following features:

41

o PC – DELL

RAM 2.0GB

Hard disk 20GB

Processor Intel Pentium 4

Speed 2.4GHz

OSType OS Windows XP.

5.2.2 Tools Used

Among the tools used for realized our SRE project we had considered the follows:

• Sun ONE Studio 4 EC

• Java Version 1.4.0

• Java ™ Web Services Developer Pack 1.0.

• JDK 1.2 or bigger, to be able to compile the classes and to execute the server.

• PostgreSQL 7.3.2 for UNIX and vs.7.2.1 Windows XP.

• PgAdminII vs. 1.4.2. It is a graphic tools to work with PostgreSQL under

Windows and easy used and manage.

Our project was developed in Java Servlet because they are more efficient, easier to

user, more powerful, more portable, safer and cheaper than traditional CGI and many

alternative CGI like technology.

• Efficient, because with the use of the servlet, the java virtual machine stays

running and handles each request with a light weight java thread. With servlet

there would be N threads but only a single copy of the servlet class would be

loaded.

• Convenient, because this technology makes for more reliable and reusable code

than does Visual Basic, C++ among others.

• Powerful, because it can to talk directly to the web-server.

• Portable, because it is written in the java programming language.

42

5.3 Development of the Experiments

To continue we show the realization of our experiments that was based in both

architecture types: centralized and decentralized peer–to–peer architecture in order to

measure the execution time to process a request.

5.3.1 Centralized Architecture

 In the Figure 5–1 we have TCESS as a central server, and which only this server has

a catalog with the location of others peers such as: CenSSIS UPRM, NASA, CenSSIS

RPI; the others server do not know themselves.

 …………

 TCESS

 CenSSIS NASA CenSSIS UPRM

Figure 5-1 Schema to process request in Centralized Architecture

WEB-SERVER - Central
SRE

CAS

DBS

IGS

WEB-SERVER -
I SRE

CA

DB

IG

WEB-SERVER -
I SRE

CA

DB

IG

WEB-SERVER -
I SRE

CA

DB

IG

Catalog

C1 C2 C3 Cn

No. Clients

43

Cn is the clients’ number of each client being used. For this architecture we had done

some test where we connected twelve clients to TCESS central server. Each client sends

a query to system, and we measure the time it takes to get the answer. We repeated this

experiment four times and we show average values. These results are shown in the

following table: (Table 5–1)

C=1 C=2 C=3 C=4 C=5 C=6
2216 3820.00 4481.33 6920.25 7546.20 7363.83
2135 3650.00 4235.67 5913.25 5967.40 7169.00
2419 3529.00 3940.67 5791.25 5278.40 8416.83
2035 3844.50 3833.33 6001.00 5930.20 8146.50

2,201.25 3,710.88 4,122.75 6,156.44 6,180.55 7,774.04

C=7 C=8 C=9 C=10 C=11 C=12
8707.43 10592.25 11478.00 11196.90 13464.82 13728.50

10278.43 9927.75 10651.33 12853.10 12591.18 17135.17
8792.14 9214.88 11622.11 13179.60 14421.55 15800.75

12168.14 11548.63 13813.44 14845.50 14792.91 15857.67

9,986.54 10,320.88 11,891.22 13,018.78 13,817.62 15,630.52

Table 5-1 Result obtained using a Centralized Architecture

It can be seen that when added a new client the execution time to process the same

query is increases; for example the time average that takes one client to search

information about of a query determined was 2,201.25 millisecond that equivalent to 2

seconds; but if we have twelve clients concurrent making the same query, the time

average increase to 15,630.52 milliseconds that equivalent to 15 seconds. To continue,

we shows a plot in the Figure 5–2 that corresponds to the previous table where each one

of the results obtained is showed.

44

Figure 5-2 Results of a Centralized Architecture

We can see that we obtained an almost lineal graphic, where the average time to

process a query executed with twelve clients concurrent was near of 16 seconds

approximately. We can see that each time that we increment a number of the clients the

average time to process a query increases linearly.

Features of Centralized Architecture

• There exist only one main server that contain a catalog with all the address of

others server.

• There exists only one central point to access the entire system.

• Each request is sent by the central server to each of the remote database servers,

causing that the transfer of information but in a very inefficient way.

Centralized Architecture

0.00

2,000.00

4,000.00

6,000.00

8,000.00

10,000.00

12,000.00

14,000.00

16,000.00

18,000.00

1 2 3 4 5 6 7 8 9 10 11 12

Number of Clients

A
ve

ra
ge

 -
Ex

ec
ut

io
n

Ti
m

e
(m

ill
is

ec
on

d)

Centralized

45

5.3.2 Decentralized Architecture

We used various peer configurations in our decentralized architecture with the same

servers that are located in different places, to demonstrate that the results obtained are, in

general, better that the results obtained in a centralized architecture. Each server is

capable of the receiving queries, process them, connect with others peers they know to

get more information, and collaborate to give the final results to the client.

In the Figure 5–3 our Decentralized Peer–to–Peer Architecture has the same peers

and the same number of concurrent clients, and the structure in this case is ring type. This

architecture allows us have many concurrent clients connected to different peers.

 TCESS CENSSIS UPRM

 NASA

Figure 5-3 Schema to process request in Decentralized

Architecture Peer – to - Peer

N
-
C
L
I
E
N
T

WEB-SERVER - I
SRE

CAS

DBS

IGS

WEB-SERVER - III
SRE

CAS

DBS

IGS

WEB-SERVER - III
SRE

CAS

DBS

IGS

WEB-SERVER - II
SRE

CAS

DBS

IGS

46

In this schema we have the same clients connect to different servers, where:

• The same request is send to each server where is connect.

• The Execution Time that each server takes for resolve the request is measured.

• Each experiment was repeated four times, and the results shown are averages

of these values.

In the Table 5-2 we show the query execution result obtained in this test, and we can

see that the results are better that those obtained in the centralized architecture.

For example, when one client is connect to a peer the execution time was of 2,047.50

that equivalent to 2 seconds, but when we used more clients (twelve) in an architecture

like this, then we get an average time to obtain the information of 6,911.06 milliseconds

that is equivalent to about 7 seconds.

C=1 C=2 C=3 C=4 C=5 C=6
1921 2407.50 3369.33 2931.25 3341.20 4300.33
2275 2314.50 3289.33 3155.50 3876.40 5025.55
1979 2372.00 3506.00 3156.25 3866.00 4378.00
2015 2882.00 3081.33 2904.75 3709.80 4151.17

2,047.50 2,494.00 3,311.50 3,036.94 3,698.35 4,463.76

C=7 C=8 C=9 C=10 C=11 C=12
5023.71 5610.88 4991.11 5589.00 6700.64 7263.67
4519.00 4850.50 5444.67 6221.10 6489.82 6575.08
5173.71 4929.75 5293.56 6142.40 6432.09 6645.08
5216.00 4858.00 5171.22 6036.50 6212.64 7160.42

4,983.11 5,062.28 5,225.14 5,997.25 6,458.80 6,911.06

Table 5-2 Result obtained using Decentralized Architecture

47

For a major understanding we show the Figure 5–4 where are each one of the results

obtains in this architecture are presented in a graph.

Figure 5-4 Results of our Decentralized Architecture Peer–to-Peer

We can see that the Execution Time in our Decentralized Peer – to – Peer

Architecture was smaller (hence better) than the one obtained in a Centralized

Architecture, using the same query in both cases and the same number of clients.

When the request is sent for one client the execution time for this process is

approximately of 2 seconds; but when there are connected twelve clients to the different

servers the execution time for this process is greater but minor with respect to the

centralized architecture.

Decentralized Architecture

0.00

1,000.00

2,000.00

3,000.00

4,000.00

5,000.00

6,000.00

7,000.00

8,000.00

1 2 3 4 5 6 7 8 9 10 11 12

Number of Clients

A
ve

ra
ge

 -
Ex

ec
ut

io
n

Ti
m

e
(m

ill
is

ec
on

d)

Decentralized

48

To continue, we show the Figure 5-5 where we make a comparison between both

architectures. We can see that the time of execution differ totally, and the P2P

decentralized system solves the queries in less time than the centralized one.

Figure 5-5 Results obtains between both Architectures

When we compare the results from the Tables 5–1 and 5–2, we can see that the

average execution time between both architecture differed in nearly of 44%. This is

demonstrated with the follow equation:

AVG Max (centralized) 100 %

 AVG Max (decentralized) X

Comparison between Centralized and Decentralized
Architecture

0.00

2,000.00

4,000.00

6,000.00

8,000.00

10,000.00

12,000.00

14,000.00

16,000.00

18,000.00

1 2 3 4 5 6 7 8 9 10 11 12

Number of Clients

A
ve

ra
ge

 -
Ex

ec
ut

io
n

Ti
m

e
(m

ill
is

ec
on

d)

Centralized Decentralized

49

 Then, we have that in a centralized architecture the execution time that took was of

15,630.52 milliseconds (about 16 seconds) and our decentralized architecture the

execution time was 6,911.06 milliseconds (about 7 seconds). It is to say:

 If 16 sec 100%

 7 sec X

 Then, X = (7 * 100)

16

 X = 43.75 %

Then we can say that our architecture was near of 44 % more efficient and faster in

process a request, which the average time took in the first architecture.

Also, we can see that in the range of six (6) to twelve (12) clients connects

concurrently, the time to process one request incremented near of 8 seconds more in a

centralized architecture; but we can see that in our decentralized architecture the time to

process the same request in the same range, incremented approximately 2 seconds.

Next, we show in the Figure 5-6 other structure or peer configuration for our

decentralized architecture that indicate us that we can configure or distribute the SRE

peers in different manners. We realized the same experiments, with location different

where demonstrate us that the results obtained are better that to use a Centralized

Architecture. Thus, SRE can be configured in different ways, and can get excellent

performance.

50

Figure 5-6 Second structure of Decentralized Architecture

CenSSIS RPI

NASA

CenSSIS UPRM TCESS

WEB-SERVER - I

SRE

CAS

DBS

IGS

WEB-SERVER - II

SRE

CAS

DBS

IGS

WEB-SERVER - III

SRE

CAS

DBS

IGS

WEB-SERVER - III

SRE

CAS

DBS

IGS

C1

C2

C3

Cn
..

51

In this structure we have the same clients; with the same servers but each server have

a different distribution. The connection is not ring type like the first case. With this

structure, we realized the same test where obtained the follows results:

C=1 C=2 C=3 C=4 C=5 C=6
2,232.00 3,077.50 3,202.00 3,823.75 4,692.60 5,731.33
2,404.00 3,085.50 3,036.67 3,891.25 4,540.40 5,404.33
2,348.00 3,097.50 3,248.67 4,131.25 4,363.80 5,123.67
2,308.00 3,135.00 3,255.33 4,286.75 4,449.60 5,634.00

2,323.00 3,098.88 3,185.67 4,033.25 4,511.60 5,473.33

C=7 C=8 C=9 C=10 C=11 C=12
6,116.43 6,680.38 7,658.44 8,370.90 8,524.64 8,686.42
6,148.29 6,563.25 7,851.56 8,038.00 8,922.82 9,304.58
6,128.57 6,764.38 7,473.67 8,176.50 8,530.00 8,913.83
6,466.14 6,391.25 7,095.78 8,379.20 8,237.91 9,034.92

6,214.86 6,599.82 7,519.86 8,241.15 8,553.84 8,984.94

Table 5-3 Result obtained using a second structure of Decentralized Architecture

We can compare the above results with the first structure and can see that the results

are different, but also better than the Centralized Architecture. To continue we show in

the Figure 5-7 the graphic obtain that corresponding to Table 5-3.

52

Figure 5-7 Result obtained with the second structure of a
Decentralized Architecture

We can see that the Execution Time obtained in this second structure of a

Decentralized Peer–to–Peer Architecture was faster than the one obtained in a

Centralized Architecture. However, it used a little more of time that the first structure

because in this structure each peer know the existence only one other peer. Notice than in

this structure we used the same query with the same number of clients as in previous

experiments.

To continue, we present a third structure (Figure 5-8) for the scenario, where we used

the same servers but with other distributing of the peer sites.

Second Structure - Decentralized Architecture Peer to Peer

0.00

2,000.00

4,000.00

6,000.00

8,000.00

10,000.00

12,000.00

14,000.00

16,000.00

18,000.00

1 2 3 4 5 6 7 8 9 10 11 12

Number of Clients

Av
er

ag
e

- E
xe

cu
tio

n
Ti

m
e

(m
ill

is
ec

on
d)

Decentralized Centralized

53

Figure 5-8 Third structure of a Decentralized Architecture

CenSSIS RPI

NASA

CenSSIS UPRM

TCESS

WEB-SERVER - I
SRE

CAS S

DBS

IGS

WEB-SERVER - II
SRE

CAS

DBS

IGS

WEB-SERVER - III
SRE

CAS

DBS

IGS

WEB-SERVER - III
SRE

CAS

DBS

IGS

CenSSIS RPI

…
C1 C2 C3 Cn

54

In this figure we can see that scheme changed; now there exist one server that know

two peers, other two that only know the existence of one peer. For this structure we also

realized the same tests with the same workstations or clients, and the same query as

before. The query execution times results obtained were as follows:

C=1 C=2 C=3 C=4 C=5 C=6
2,322.00 2,379.00 2,958.00 3,096.00 3,177.00 3,680.00
2,125.00 2,177.00 2,472.33 3,551.50 3,701.20 3,126.00
2,410.00 2,020.50 2,810.67 3,409.50 3,456.40 3,783.83
2,200.00 2,155.50 2,713.00 2,741.50 3,682.00 3,909.83

2,264.25 2,183.00 2,738.50 3,199.63 3,504.15 3,624.92

C=7 C=8 C=9 C=10 C=11 C=12
4,307.14 4,158.75 4,673.44 4,546.40 5,479.73 5,586.42
3,980.57 3,748.88 4,770.89 4,435.40 4,999.36 5,555.92
4,196.43 4,158.75 4,323.78 4,949.70 4,845.27 5,169.00
3,804.57 4,288.25 4,052.33 4,681.70 5,325.91 5,438.42

4,072.18 4,088.66 4,455.11 4,653.30 5,162.57 5,437.44

Table 5-4 Result obtained using a third structure of Decentralized Architecture

We can compare the above results with the first structure and can see that the results

also are different, but also is better that to use a Centralize Architecture. The time to

response the same request was lower that the obtained in the first and second

decentralized architecture. This expressed in percent was near of 31.25%. To continue we

show in the Figure 5-9 the graphic obtain that corresponding to Table 5-4.

55

Figure 5-9 Result obtained with the third structure of a
Decentralized Architecture

Also we can see that the Execution Time obtained in this third structure of a

Decentralized Peer – to – Peer Architecture was faster that the obtained in a Centralized

Architecture. Also the time of the response was fasters that the first and second

decentralized architecture.

Finally, we realized other fourth structure with a design of distributed similar to third

structure. This is shown in the Figure 5-10.

Third Structure - Decentralized Architecture Peer to Peer

0.00

2,000.00

4,000.00

6,000.00

8,000.00

10,000.00

12,000.00

14,000.00

16,000.00

18,000.00

1 2 3 4 5 6 7 8 9 10 11 12

Number of Clients

A
ve

ra
ge

 -
Ex

ec
ut

io
n

Ti
m

e
(m

ill
is

ec
on

d)
Decentralized Centralized

56

Figure 5-10 Fourth structure of Decentralized Architecture

NASA

CenSSIS UPRM

TCESS

WEB-SERVER - I
SRE

CAS

DBS

IGS

WEB-SERVER - II
SRE

CAS

DBS

IGS

WEB-SERVER - III
SRE

CAS

DBS

IGS

WEB-SERVER - III
SRE

CAS

DBS

IGS

CenSSIS RPI

Cn C3 C1 C1

57

In this figure we have the same servers, the same workstations or clients connects, but

with the different structure. Here, also we realized the same test where obtained the

follows results:

C=1 C=2 C=3 C=4 C=5 C=6
2,988.00 2,888.00 3,492.00 4,178.00 4,761.20 4,537.67
2,650.00 2,902.50 3,748.67 4,202.00 4,057.40 5,177.33
2,730.00 2,903.50 3,685.67 4,014.50 5,143.40 5,690.33
2,728.00 3,356.00 3,392.00 4,140.50 4,290.60 4,978.50

2,774.00 3,012.50 3,579.59 4,133.75 4,563.15 5,095.96

C=7 C=8 C=9 C=10 C=11 C=12
5,918.57 6,144.63 7,365.67 8,572.20 8,271.45 9,041.25
5,861.14 6,981.38 7,147.22 8,728.20 9,197.82 9,646.25
5,580.86 5,918.00 7,555.78 7,902.50 9,164.45 9,864.42
5,918.57 6,952.00 7,074.11 7,909.40 8,911.91 9,032.08

5,819.79 6,499.00 7,285.70 8,278.08 8,886.41 9,396.00

Table 5-5 Result obtained using a fourth structure of Decentralized Architecture

In this Table 5-5 we can follow comparing that the results also were different that the

obtained in the centralized architecture and that the results obtained using the first,

second and third structure. Also we can see that this structure is similar to the third

structure, but the times of response were totally different. For a better understanding to

continue we show in the Figure 5-11 the graphic corresponds to Table 5-5.

58

Figure 5-11 Result obtained with the fourth structure of a
Decentralized Architecture

We can see that the Execution Time obtained in this fourth structure of a

Decentralized Peer–to–Peer Architecture was faster that the one obtained in a Centralized

Architecture. But, when comparing with the time of the responses was slowest that the

first, second and third decentralized architectures shown before.

In summary, our experiments show a trend that indicates the decentralized

architecture of SRE is more efficient that the centralized schemes in the previous

systems.

Third structure - Decentralized Architecture Peer to Peer

0.00

2,000.00

4,000.00

6,000.00

8,000.00

10,000.00

12,000.00

14,000.00

16,000.00

18,000.00

1 2 3 4 5 6 7 8 9 10 11 12

Number of Clients

A
ve

ra
ge

 -
E

xe
cu

tio
n

Ti
m

e
(m

ill
is

ec
on

d)

Decentralized Centralized

59

Chapter Six

Conclusions

Our research was designed to support spatial indexing, hypertext based image

visualization, and distributed data retrieval and query processing.

In this research our major contribution is the development of the Search and Retrieval

Engine (SRE), a Peer-to-Peer Middleware System for data and metadata manipulation for

satellite images. The benefits of SRE are: 1) can be run as part of the Web Server

infrastructure available at a research site; 2) reduces infrastructure costs; 3) reduces the

cost of application development; 4) reduces the effort in deployment and maintenance

since it leverages on the widespread use of the Web Technology and the wealth of

experience already acquired by many enterprises. The administrators simply need to

install Search and Retrieval Engine (SRE) into their Web servers and update the two

documents of the configurations.

SRE is implemented with the Java Servlets Technology and it is based on a scalable

and decentralized Peer-to-Peer (P2P) Architecture where individual sites dynamically

select specific data and computational resources to share, enabling a more user-oriented

operation and removing the burden of centralized management. SRE will enable

cooperative sites to exchange system metadata and incrementally learn about the services

available on a given federation of satellite image databases deployed over the Internet.

We conducted various experiments and tests using both a centralized and a P2P

decentralized Architecture, to demonstrate that the use a Decentralized Peer-to-Peer

Architecture is a better option, it is faster and more efficient than using a Centralized

Architecture. To demonstrate this, we used several different structures, clients and peer

configurations of SRE and a centralized schema, and we compared each one these.

60

In our first experiment we used a centralized architecture, where the average time to

execute a request was of 16 seconds proximally. In our second experiment we used a

decentralized peer-to-peer architecture, where the average time of execute the same was

near 7 seconds approximately. Then we had a comparison between both centralized and

decentralized architectures where we can see that our decentralized architecture is more

efficient and faster than a centralized architecture by a factor of 44%.

Also, we conducted several others experiments using different kinds of peer

configurations. In these experiments, the results yield a better performance when using a

decentralized peer-to-peer architecture.

The results obtained vary depending of the type of configuration used to arrange the

peers. Depending of the type of configuration, the average time of execution for a given

query, compared with the results for the same query in a centralized architecture, will be

reduced between by a factor of 31% to 56% approximately.

In summary, our experiments show a trend that indicates the decentralized

architecture of SRE is more efficient than the centralized schemes in the previous

systems.

Future Work

We have some future work to realize in order to improve the quality of the system:

i) We must develop a cost model that allows a site to choose its peers in a

dynamic fashion. This cost model must use factors such computing power,

network speed, and quality of available data to enable a peer X to decide

whether or not to have site Y as its peer.

61

ii) Allow synchronization and recycling of the Id_Query. With synchronization

we could assure that in the case that two requests reach the same peer at the

very same time, the peer will be able to process only one of them at the time.

If recycling could be applied, we could reuse id numbers after pre-defined

times have passed.

iii) Implement fault tolerance into our system. This will allow an aborted query

to be restarted automatically without user intervention. This feature will be

required in environment where queries than take hours to complete.

iv) To execute further experiments where can use more server, more clients and a

Wide-Area environment to give stronger evidence about the benefits of SRE

over centralized approaches.

62

Bibliography

[1] M. Rodríguez and N. Roussopoulus. “MOCHA: A Self - Expandable Database

Middleware System for Distributed Source Dates,” in Technical Report

UMIACS-TR 2000-05, CS-TR4105, University of Maryland, January 2000.

[2] M. Stonebraker and J. Dozier. “THE SEQUOIA 2000: Storage Benchmark,” in

proceedings ACM SIGMOD Conference, Washington, D.C. 1993

[3] M. Stonebraker, P. Aoki, R. Devine, W. Litwin and M. Olson. “Mariposa: A New

Architecture for Distributed Data,” University of California Berkeley, California.

[4] M. Stonebraker, P. Aoki, A. Pfeffer, A. Sah, J. Sidell, C. Staelin and A. Yu.

“Mariposa: A Wide-Area Distributed Database System,” in VLDB Journal, 1996

[5] M. Stonebraker, R. Devine, M. Kornacker, W. Litwin, A. Pfeffer, A. Sah and C.

Staelin. “An Economic Paradigm for Query Processing and Data Migration in

Mariposa,” University of California Berkeley, California.

[6] J. Sidell, P. Aoki, A. Sah, C. Staelin, C. Stonebraker and A. Yu. “A Data

Replication in Mariposa,” in proceeding 12th ICDE Conference, New Orleans,

Louisiana, 1996.

[7] R. Yang, F. Kafatos and X. Wang. “Managing Scientific Metadata Using XML,”

July – August 2002.

[8] M. Echevarria-Martines. “La Infraestructura de Datos Espaciales. Experiencias en

su Implementación,” September – October 2001.

63

[9] A. Coral-Liria. “Tésis Doctoral: Algoritmos para el Rendimiento de Consultas

Espaciales utilizando R-Tree. La Consulta de los Pares más Cercanos y su

Aplicación en Base de Datos Espaciales,” Almería January – 2002.

[10] D. Dewitt, N. Kabra, J. Luo, J. Patel and J. Yu. “Client Server PARADISE,”

University Wisconsin, Madison.

[11] Microsoft’s TerraServer

[Online] Available at: http://terraserver-usa.com/

[12] R. Ahmed and E. Al. “The Pegasus Heterogeneous Multi Database System,” in

IEEE Computer, 19-27, December 1991.

[13] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J.

Ullman and J. Widom. “The TSIMMIS Project: Integration of Heterogeneous

Information Sources,” in proceeding of IPSJ Conference, Tokyo, Japan, 1994.

[14] M. Franklin, B. Jonsson and D. Kossmann. “Performance Tradeoffs for Client-

Server Query Processing,” in proceeding ACM SIGMOD Conference, pp. 149-

160, Montreal, Quebec, Canada, 1996.

[15] C. Mohan, B. Lindsay and R. Obermarck. “Transaction Management in the R*

Distributed Database Management System,” TODS. 11(4), 378-396.

