
MODELING OF THE THERMAL BEHAVIOR OF A POWER ELECTRONIC
MODULE

By

Madelaine Hernández Mora

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

MECHANICAL ENGINEERING

UNIVERSITY OF PUERTO RICO
MAYAGÜEZ CAMPUS

2004

Approved by:

Nihad Dukhan, Ph.D. Date
Member, Graduate Committee

Miguel Vélez Reyes, Ph.D. Date
Member, Graduate Committee

Jorge E. González, Ph.D. Date
President, Graduate Committee

Jorge A. Cruz Emeric, Ph.D. Date
Representative of Graduate Studies

Paul Sundaram, Ph.D. Date
Chairperson of the Department

Jose A. Mari Mutt, Ph.D. Date
Director of Graduate Studies

 i

ABSTRACT

This work presents a reduced mathematical model using a practical numerical

formulation of the thermal behavior of an Integrated Power Electronics Module (IPEM).

This model is based on the expanded Lumped Thermal Capacitance Method (LTCM), in

which the number of variables involved in the analysis of heat transfer is reduced only to

time. By applying this procedure a simple, non-spatial, but highly non-linear model is

obtained. Transient results of the model were validated using FLOTHERM 3.1TM, a

thermal analysis software tool. Two experimental set-up, for low- and high-speed

thermal response, were developed. Comparisons between thermal model results and

experimental data are also presented to demonstrate the need to obtain the electrical

performance and to make the electrothermal coupling. The development of this model

presents an alternative to reduce the complexity level developed in commercial

multidimensional and transient thermal analysis software tools.

 ii

RESUMEN

Este trabajo presenta un modelo matemático reducido usando una formulación

numérica práctica del comportamiento térmico de un Módulo Integrado de Electrónica

de Potencia (IPEM). Este modelo está basado sobre la expansión del Método de la

Capacitancia Térmica de un Conglomerado (LTCM), en el cual el número de las

variables envueltas en el análisis de transferencia de calor es reducido a solo el tiempo.

Aplicando este método, un modelo simple, no espacial, no lineal es obtenido. Los

resultados transitorios del modelo son validados contra resultados de un software de

análisis térmico, FLOTHERM 3.1TM. Dos arreglos experimentales, para respuestas

térmicas de baja y alta velocidad, fueron desarrollados. Comparaciones entre los

resultados del modelo térmico y los datos experimentales son también presentados para

demostrar la necesidad de obtener el comportamiento eléctrico y hacer el acople

electrotérmico en el análisis electrotérmico. Se demuestra en esta investigación que la

metodología desarrollada presenta una alternativa para reducir el nivel de complejidad

desarrollado en softwares comerciales de análisis térmico transitorio y multidimensional.

 iii

DEDICATORIA

A mi amada Fanny, por su perseverante amor, a mi Daniel por iluminarme el

camino, a Alexei, Hugo, Jorge y Tony por su valiosa presencia en mi vida.

 iv

ACKNOWLEDGEMENTS

 This work was supported by the National Science Foundation Engineering

Research Centers Program under grant EEC-9731677. I thank to Dr. Allen Hefner to

give me the opportunity to work with him in the Semiconductor Division at the National

Institute of Standard and Technology, in a summer internship. I wish to express my most

sincere gratitude to Dr. Jorge E. González for his discussions and for giving me the

opportunity to work on this research. I sincerely acknowledge the guidance of Dr.

Miguel Vélez Reyes and thank him for his advise and support through out the course of

this study. I would like to recognize the help and discussions on electrical aspects by my

friend José Miguel Ortíz. My special thanks are due to Carlos Alicea for all the help

provided and support on Saber circuit simulator and my friends Hermes, Jairo, Zory and

Nilsa for their constant encouragement.

 v

TABLE OF CONTENTS

List of Tables…………………………………………………………………… vii

List of Figures…………………………………………………………………... viii

List of Appendices……………………………………………………………… xi

Nomenclature……………………………………………………………………

xii

Chapter 1: Introduction…………………………………………………………. 1

 1.1 Introduction……………………………………………………………… 1

 1.2 Power Electronic Overview……………………………………………...

4

Chapter 2: Background…...…………………………………………………….. 15

 2.1 Power Semiconductor Devices Analysis………………………………... 15

 2.2 Packages Analysis……………………………………………………….. 17

 2.2.1 IPEMs Analysis……………………………………………………

21

Chapter 3: Reduced-Order Thermal Model………………...…………………... 24

 3.1 Introduction……………………………………………………………… 24

 3.2 Lumped Thermal Capacitance Method (LTCM)………………………... 26

 3.3 Model Description……………………………………………………….. 30

 3.4 Physical and Geometric Properties of the Generation II IPEM…………. 33

 3.5 Numerical Model Implementation and Some Results…………………... 38

 3.6 Validation of the Reduced Thermal Model using FLOTHERMMT……...

45

Chapter 4: Experimental Model Validation…………..………………………… 55

 4.1 Introduction…………………………...…………………………………. 55

 4.2 Experimental System for Low-Speed Thermal Response………………. 56

 4.2.1 Data Acquisition System (Transient IPEM Program)…………….. 57

 4.2.2 Results…………….………………………………………………. 60

 4.3 Experimental System for High-Speed Thermal Response………………. 72

 vi

 4.3.1 Calibration Phase…………………………………………………. 74

 4.3.1.1 Data Acquisition System (Calibration Program)………… 77

 4.3.1.2 Results……………………………………………………. 79

 4.3.2 Transient Measurement Phase…………………………………….. 80

 4.3.2.1 Data Acquisition System (Thermal Transient Program)…. 84

 4.3.2.2 Results…………………………………………………….

85

Chapter 5: Electrothermal Model Implemented in SABERTM Simulator………. 94

 5.1 Introduction………………………………………...……………………. 94

 5.2 LTCM Model Template………….…………………...…………………. 96

 5.3 Simulated System Electrothermal Coupling………………...…………... 102

 5.4 Comparison of the Simulation with Experimental Data…...…………….

103

Chapter 6: Conclusions and Recommendations………………………………… 106

 6.1 Summary…………………………...……………………………………. 106

 6.2 Conclusions……………………………………………………………… 107

 6.3 Recommendations………………………………………………………..

109

Bibliography……………………………………………………………………..

111

 vii

LIST OF TABLES

Table 3.1. Model Expanded for each IPEM’s Lumped…………………………... 32

Table 3.2. Physical Properties of the Generation II IPEM…..…….……………… 37

Table 3.3. Geometrical Properties for Convection Effects…….…………………. 37

Table 3.4. Geometrical Properties for Radiation and Contact Resistance Effects... 38

Table 3.5. Optimal Grid Size at FLOTHERMTM Simulations……………………. 49

Table 3.6. Steady State Temperatures and Computational Times in the
 Sensitivity Analysis ………………………………………………...….

50

Table 3.7. Computational Quality Evaluation of Both Solutions………………… 51

Table 3.8. Steady State Temperature Errors between FLOTHERMTM and
 LTCM…………………………………….…………………….............

54

Table 4.1. Steady State Temperature Error Percentage of the Chip Turned On...... 69

Table A.1. Coordinates (x, y, z) for the Locations of the IPEM Layout Schematic
Depicted in Figure A.2………………………………………………...

115

 viii

LIST OF FIGURES

Figure 1.1. Electron excitation and recombination processes…………………….. 6

Figure 1.2. PN junction diode…………………….………………………………. 7

Figure 1.3. N-channel MOSFET: (a) physical structure; (b) schematic symbol…. 8

Figure 1.4. Picture of generation II IPEM …..…………………………………… 10

Figure 3.1. Generation II IPEM: (a) geometry model; (b) lumped decomposition. 27

Figure 3.2. Corroboration of Biot parameter condition…….…………………….. 30

Figure 3.3. Comparison of correlations used to calculate the heat transfer
coefficients of the gate driver (Lumped 1): (a) on a vertical side;
(b) on a horizontal side.……………………………..…………………

35

Figure 3.4. Flowchart of the generated FORTRAN code for the solution of the
 reduced thermal model…………...…………………………….……...

39

Figure 3.5. Transient curves of the power devices for a time step of 1 sec....……. 40

Figure 3.6. Transient curves of the power devices for a time step of 4 sec…..…... 41

Figure 3.7. Transient curves of the power devices for a time step of 5 sec……..... 41

Figure 3.8. Study of the model's stability to the time step integration…...……….. 42

Figure 3.9. Transient curves of the power devices for time steps less that 1 sec:
 (a) gate driver; (b) left Si-chip; (c) right Si-chip…………....…………

43

Figure 3.10. Radiation and Convection Effects on Electrical Performance of the
 Generation II IPEM…………………….…………….………………

44

Figure 3.11. IPEM Visualization surface from FLOTHERM……………………. 51

Figure 3.12. LTCM vs. FLOTHERM for Lumped 1, with a Power Density of
 5.574x103 W/m2……………………………………………………...

52

Figure 3.13. LTCM vs. FLOTHERM for Lumped 2, with a Power Density of
 1.101x105 W/m2………………………………………………...…....

53

Figure 3.14. LTCM vs. FLOTHERM for Lumped 3, with a Power Density of
 1.888x105 W/m2………...

53

Figure 4.1. Experimental testbed for low-speed thermal response: (a) set-up
picture; (b) IPEM picture……………………...………...…...

56

Figure 4.2. Data acquisition system program created in LabWindows/CVI……... 59

Figure 4.3. Localization of thermocouples at the Generation II IPEM.…………... 61

Figure 4.4. Left power chip’s transient curves: (a) electrical; (b) thermal.......…... 62

 ix

Figure 4.5. Right power chip’s transient curves: (a) electrical; (b) thermal…….... 63

Figure 4.6. Comparison between experimental and simulated values of the steady
 state temperature against average power for: (a) left Si-chip;
 (b) right Si-chip…………...…………….…...……………………….

65

Figure 4.7. Experimental data and the LTCM-heat sink model results for 1.58W
 left chip power input …………………………………..………...…...

66

Figure 4.8. Experimental data and the LTCM-heat sink model results for 3.7W
 left chip power input……………………………………...…………..

67

Figure 4.9. Experimental data and the LTCM-heat sink model results for 6.98W
 left chip power input……………………………………………….....

67

Figure 4.10. Experimental data and the LTCM-heat sink model results for 1.71W
 right chip power input……………………………………..………...

68

Figure 4.11. Experimental data and the LTCM-heat sink model results for 5.13W
 right chip power input…………...

68

Figure 4.12. Experimental data and the LTCM-heat sink model results for 7.35W
 right chip power input…………...

69

Figure 4.13. All experimental temperature profiles measured from five
 thermocouples in the IPEM………………………………..………...

72

Figure 4.14. Experimental testbed for the calibration phase of the high-speed
 thermal response developed at NIST: (a) schematic of experiment;
 (b) picture of actual set-up……………………...…………..……….

75

Figure 4.15. Calibration data acquisition system program created by Parrilla
 In et al. [26]………………...……………………………….……….

77

Figure 4.16. Calibration curves for: (a) left power device; (b) right power device. 80

Figure 4.17. Schematic of the experimental testbed for the thermal measurement
 phase of the high-speed thermal response developed at NIST……...

81

Figure 4.18. Example of the how to obtain the power pulse in the thermal
 measurement phase………………………………………………….

82

Figure 4.19. Thermal transient program created for the high-speed thermal
 response in the transient measurement phase………………………..

83

Figure 4.20. Left MOSFET’s transient emitter-base voltages with input electrical
 parameters of: (a) 100V-5A; (b) 100V-10A; (c) 200V-10A……...…

86

Figure 4.21. Right MOSFET’s transient emitter-base voltages with input
 electrical parameters of: (a) 100V-10A; (b) 100V-2.5A;
 (c) 100V-5A; (d) 100V-7.5A; (e) 200V-2.5A; (f) 200V-5A;

(g) 50V-5A…………………………………………………………..

89

 x

Figure 4.22. Left device’s transient operation temperature with input electrical
 parameters of: (a) 100V-5A; (b) 100V-10A; (c) 200V-10A…............

90

Figure 4.23. Right device’s transient operation temperature with input electrical
 parameters of: (a) 100V-10A; (b) 100V-2.5A; (c) 100V-5A;
 (d) 100V-7.5A; (e) 200V-2.5A; (f) 200V-5A; (g) 50V-5A..…….…..

93

Figure 5.1. Symbol of the IPEM’s LTCM model………………………………… 97

Figure 5.2. Template header……………………………………………………… 97

Figure 5.3. Template value section……………………………………………….. 99

Figure 5.4. Template control section……………………………………………... 99

Figure 5.5. Template equation section……………………………………………. 100

Figure 5.6. Comparison between FORTRAN and SABERTM solution for the
 chips: (a) left; (b) right……………...………………………………...

101

Figure 5.7. Simulated schematic in SABERTM…………………………………… 102

Figure 5.8. SABERTM and experimental comparison for the right semiconductor
device using inputs of 1Hz, 100V and 2.5A…………………………..

104

Figure 5.9. SABERTM and experimental comparison for the right
 semiconductor device using inputs of 2Hz, 100V and 5A…………...

104

Figure 5.10. SABERTM and experimental comparison for the right
 semiconductor device using inputs of 2Hz, 200V and 2.5A………....

105

Figure 5.11. SABERTM and experimental comparison for the right
 semiconductor device using inputs of 6Hz, 200V and 5A……….......

105

Figure A.1. Identification of layer materials and thicknesses..…………………… 114

Figure A.2. Generation II IPEM’s structural schematic..………………………… 114

Figure A.3. Calculations of some geometry factors (F21, F31, F12, F13, F1∞, F2∞
 and F3∞)...……………………………………………………………..

118

Figure A.4. Geometry Factor for Perpendicular Rectangles with a Common Edge
 from Incropera in [9] (Figure 13.6, pp. 755)……...…………………..

119

Figure D.1. Finite difference model as the thermal modeling approach………….. 135

Figure D.2. Heat sink’s grid used in the analysis…………………………………. 138

Figure D.3. Heat sink’s dimensions………………………………………………. 138

 xi

 LIST OF APPENDICES

Appendix A. Dimensions and Calculation of some Properties Used in the
 Thermal Modeling…………………………………………………...

114

Appendix B. Thermal Model Expanded Using FORTRAN……………………… 121

Appendix C. Full C++/CVI Code of the Transient IPEM Program Developed for
Slow Thermal Response Experiment……………..............................

126

Appendix D. Heat Sink Model Description…………………………..................... 135

Appendix E. Full C++/CVI Code of the Thermal Transient Program Developed
 for Fast Thermal Response Experiment ………………....................

139

Appendix F. Full MAST Code of the Thermal Template Developed in SABER... 149

 xii

NOMENCLATURE

English Characters

Acont Contact area (m2)

Ahor Horizontal convection area (m2)

Aver Vertical convection area (m2)

Aj-jnext Radiation area (m2)

Bi Biot number

Cpj Specific heat (J/m K)

Fj-jnext Geometry factor for the radiation between lumped

Hc The surface microhardness of the softer of the two contacting solids

(N/m2)

hhor Heat transfer coefficient on a horizontal plane (W/m2 K)

hver Heat transfer coefficient on a vertical plane (W/m2 K)

kj Lumped thermal conductivity (W/m K)

kf Fluid thermal conductivity (W/m K)

L Equivalent length (m)

m Effective mean absolute asperity slope of the interface

M Fluid parameter (m)

P Contact pressure (Pa)

qgen Power dissipated (W)

Rcont j-jnext Contact resistance from the contact surface phenomenon (K/W)

Rj-jnext Total thermal contact resistance (K/W)

Rspreader j-jnext Heat spreader resistance due the conduction to the contact surface

(K/W)

s Tranversal horizontal or vertical length to the convective flow (m)

T∞ Ambient temperature (K)

TLj Lumped temperature (K)

t Time (sec)

Vj Lumped volume (m3)

 xiii

xj Lumped equivalent length for spreader effects (m)

Y Effective gap thickness (µm)

Greek Characters

δ Effective surface roughness of the contacting asperities (µm)

εj Lumped emissivity

ρj Lumped mass density (Kg/m3)

σ Stefan-Boltzmann’s constant (W/m2 K4)

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

 Power electronics may be defined as the application of electronics for the control

and conversion of electric power in a form that is optimally suited for user loads (with

highest efficiency, high availability, and high reliability with the lowest cost, smallest

size and weigh). Power electronics is based on the extensive use of inductors, capacitors

and, mainly, of power semiconductor devices operating as switches. These devices can

be fabricated in discrete form or as integrated circuits (ICs).

The growth of the power electronic field has permitted the development of

several applications; in consequence, today it is possible to build power supplies, battery

chargers, electric drives, DC transmission systems, and high frequency and power

converters, among others. These power electronic applications require the use of

electronic power converter: rectifier (transform voltage from ac to dc), inverter (from dc

to dc), chopper or a switch-mode power supply (from dc to dc), and cycloconverter and

cycloinverter (from ac to ac).

Current technology used for energy conversion with power electronic, like all

energy transformations, is not completely 100% efficient due to losses in switching and

energy storage devices. These losses are in the form of heat dissipated. The operation of

 2

all power electronic devices is highly temperature dependent. In fact, an electrical and

thermal interdependence exists; electrical characteristics of the power device depend on

the device temperature, and the device temperature depends on the device losses. In

consequence, the design of power electronic systems requires the characterization of this

codependence in order to describe the actual system operation. Most failures in power

electronic systems are due to thermal mechanisms, thus, the thermal behavior analysis

of power systems has become an increasingly important issue in the design and

operation of the power electronic systems.

The electrical design at the system level for power electronic modules has

significantly progressed over the past years. The electronic industry demands systems

more compact: with an increasingly higher number of integrated components into the

system, combined with more capacity of converted power, and higher switching

frequencies. However, the components integration in a system increases the complexity

of the thermal process due to interactive heating of the system components. This way,

the imperative need of an accurate thermal study, in the general analysis of power

electronic systems, is accentuated. There are tools that can be employed to characterize

the thermal behavior in electronic packages based on computational fluid dynamic

techniques, or implementing a specific thermal model in a simulator. Nonetheless, there

are cases where commercial software tools and established models in the simulator are

not suitable in the early design stage because they do not have the enough accuracy or

 3

because it takes long time to obtain a result. In the later case, the use of fast and simple

model may be a better choice.

When commercial software tools are used for the description of the

electrothermal behavior of power systems, it is requires multiple commercial software

tools, since no single package can currently be used to perform all this modeling and

analysis by itself. It is necessary to make independent analyses in each software tool

that, later, can be integrated to another specialized software tool. This is due to the fact

that at the development of power system requires the integration of mechanical and

electrical modeling and analysis activities to represent the existing electrothermal

interaction. Therefore, computational fluid dynamics and heat transfer simulation must

be completed in parallel with the electrical design in order to obtain the overall optimal

analysis. For example, FLOTHERMTM or I-DEASTM simulators can be used to make the

thermal analysis, SABERTM and MAXWELLTM simulators can be used to make the

electrical analysis, and iSIGHTTM software can be used to control the simulations. At

this point, it is clear that many important details required by the system in its real

operation are lost in the information exchange between the different software tools. In

addition, it is evident that each simulation requires great effort from both the designer

and the simulator software to show reasonable results, resulting in long design cycles

that unduly increase cost and time to market.

 4

Reduced-order models to describe the thermal behavior of power electronic

systems are an alternative to surpass limitations when software tools are used. Currently,

these models are generated using simplified semi-empirical formulas of the thermal

resistances and capacitances of simple shapes [1-4], or using finite element (FE)

simulation data in equivalent circuit topology [5], or using the thermal impedance of a

equivalent circuit [6]. However, these thermal reduced-order models can be highly

complicated, because traditionally they are based on a conduction analysis through the

heat transfer equation’s use. This implies the development of methodologies that require

a significant effort. The objective of this work is to provide a simple technique that

allows an accurate description of thermal behavior of any electronic package. Here is

presented a simple methodology that can be used to describe the thermal performance of

the Generation II IPEM, based on the Lumped Thermal Capacitance Method (LTCM)

[7-9], which neglect the conduction effect and instead considers other forms of heat

transfer through energy balance.

1.2 Power Electronic Overview

The electronic devices used in power electronic systems are based on

semiconductor technology. That is to say, the devices are constituted by semiconductor

materials, such as pure silicon, silicon with impurities (for example, boron, indium,

arsenic or phosphorus added), and compound semiconductors (for example, gallium

arsenide or indium antimonite) [7]. All with specific atomic configuration that allow a

determined electron flow (current) through the device.

 5

 According to [10], the atoms inside a crystal (a single crystal is formed by

atoms bound together in an orderly structure), in a semiconductor material, are

constantly vibrating due to their thermal energy. Under equilibrium conditions, these

vibrations define the temperature of the crystal.

If a electrical current is applied to the material, the electron flow interaction with

the crystalline structure results in heat which increases thermal vibrations of atoms and

the bound electrons begin to gain energy. Some of these electrons gain enough energy to

jump across the energy gap εg between the valence and conduction bands, creating a

new free electron-hole pair that is available to conduct electrical charge. As the

temperature increases, more and more electrons make this transition, being created an

electric field that produces an average drift velocity and then a current flow is observed.

Thus, when increasing the temperature, the current also increases. In the absence of the

applied external voltage, the electron motions are random and cancel one another.

For the case of an applied voltage to the material, processes of electron

excitation and recombination are shown in Figure 1.1. Here, when an electron leaves its

valence state, the host atom is left short an electron, producing an ion. The ion tends to

reach out and captures an electron from a nearby atom, leaving this neighbor now short

an electron. The process repeats itself, and the missing electron location moves around

in the crystal, this is the excitation process. The inverse process is named recombination.

 6

Figure 1.1. Electron excitation and recombination processes.

The previous electronic process is valid for any semiconductor device. However,

each electronic application requires a specific electronic process, depending of

semiconductor material and, obviously, of the device task.

Power electronic systems process large amounts of power that only one

particular type of device can achieve. In that case, it is necessary to rely on

semiconductors with conductivity precisely controlled and relatively constant over a

wide temperature range. For this, it is necessary to add carefully measured amounts of

certain impurities to the material. There are two types of impurities: donor and acceptor;

and two corresponding classes of doped semiconductors: n-type and p-type. Generally,

the devices are created by forming a junction between n- and p-type materials from a

single crystal, that allows to the carriers to move it across the boundary region. An

example is shown in Figure 1.2, to fabricate the p-n junction diode, or junction

semiconductor diode, one end of the crystal is doped with donor material and the other

end is doped with acceptor material.

εg

- - -

+ + +

Excitation Recombination

εc

εv

ε

 7

Figure 1.2. PN junction diode.

When more than two doped semiconductor materials are joined, the device takes

another name: transistor. A transistor is an active semiconductor device with three or

more terminals [11]. Each terminal is a doped semiconductor. A regular transistor

includes a middle material called base region, and other materials on either side of the

middle, called the collector and the emitter since their function is to emit and collect

charge carriers (electrons).

Some transistor types are the bipolar junction transistor (BJT), the insulated gate

bipolar transistor (IGBT), field effect transistor (FET), and metal oxide semiconductor

field effect transistor (MOSFET), among others. The transistor of interest for this

investigation is the MOSFET.

Consistent with [12], in the MOSFET, wells of highly doped n-type silicon

called source and drain are diffused or implanted into a p-type substrate. A conducting

gate is insulated from the silicon by a thin layer of SiO2. The MOSFET is physically

symmetric, with source and drain ultimately defined by the current direction. In

P material N material

Battery

Holes Electrons

 Current Carrier

+ V -

 8

operation, the positive charge is placed on the gate by an external source. This source

attracts electrons from the wells into the region just beneath the oxide, creating a

conducting channel between source and drain. The physical current in the channel is an

electron flow, thus one terminal is considered as the source of electrons that flow

through the channel to the drain when external voltage is applied (see Figure 1.3).

Figure 1.3. N-channel MOSFET: (a) physical structure; (b) schematic symbol.

VDD

Lower portion of the channel

Oxide (insulating)
l

Depletion region

n* n*

p

n

E

IS

IDIG =0VGG

G
Metal layer

Increased carriers in the
upper portion of the channel

S
D

+ + +- - -

(a)

(b)

G

D

S

ID

 9

It is evident that temperature changes will have a significant effect on the device

electrical properties. For example, the transistor normal operating voltages and currents

will result in heat dissipation, which in turn will increase temperature. This increase in

temperature will produce changes in the electrical characteristic not only of these

devices in the vicinity. When there are systems that include one or more transistors, the

thermal analysis is extremely necessary given that the device’s temperature sensitivity is

the focal point.

Now, the present technology provides the continuous development of new

semiconductor materials, which in turn allow the development of power electronic

system innovations for several applications.

The next step is to get integrated systems, more powerful, durable, smaller,

lighter, and less costly to the consumer. An Engineering Research Centers Program

sponsored by the National Science Foundation, Center for Power Electronics Systems

(CPES), is developing such systems. CPES’ Integrated Power Electronics Modules

(IPEM) are systems whose principal characteristic is to have high integration levels of

power semiconductor devices (transistors), gate drivers, and control circuitry for a wide

range of power electronics applications. Figure 1.4 presents a picture of the Generation

II IPEM a half bridge switch. A detailed description of the Generation II IPEM is given

in [13, 14]. Two power semiconductor devices (MOSFETs) and a hybrid gate driver

constitute this IPEM. MOSFETs are buried in a ceramic frame (that constitutes the base

 10

substrate and its material is aluminum oxide) and covered by dielectrics with holes on

the aluminum pads of the chips. The power devices are interconnected to other circuits

by metal deposition, which additionally provides thermal paths for the devices.

Figure 1.4. Picture of generation II IPEM.

The operation of these systems encloses an amount of heat generated that must

be dissipated. If the temperature of such systems is allowed to rise with no control, the

electronic performance of the device may be degraded or the component looses its

physical integrity. This is an operational limitation for these components. Thereby

changes in the temperature and its distribution inside the device can affect drastically the

device’s electrical performance. According to [15], as soon as the temperature inside the

devices rises, two effects can occur: thermal runaway or self-heating. In thermal

runaway, the electrical energy dissipated causes a temperature rise over an extended

 11

area of a device resulting in an increase of dissipated power. When the self-heating takes

place, the device temperature increases, which leads to a catastrophic device failure.

Nevertheless, an equilibrium situation can be reached by placing the device in contact

with a lower temperature solid or fluid, which facilitates heat flow away from the

component. In consequence, it is extremely necessary to have a good grasp of the

thermal process for reliability and optimum performance. Thermal conduction,

convection, radiation, interface effects, as well as phase change processes are necessary

to explain the thermal behavior of any device or system.

Often the temperature effect on the device can be described by finding how the

voltage changes with the temperature for a constant current. The temperature effect

makes necessary the characterization of the thermal process, in order consequently to

represent the electrothermal performance of any IPEM. For the design of any IPEM it is

desired to simulate the electrothermal phenomenon, to now and understand how the

system performance is affected by thermal effects. Electrothermal simulations in the

design stage can be useful to evaluate performance, to analyze IPEM reliability, to

optimize the package design, among other uses.

Several methodologies can be used to model the thermal behavior of power

electronic systems. These include: three-dimensional finite difference and finite element

simulation [1-4], the lumped concept or empirical extraction of thermal network element

values from the measured thermal step response [3, 4, 6, 16], reduced model techniques

 12

[17, 18], the method of images which uses Green’s function approach to obtain the

resulting temperature distribution from a heat source [19], integrated analysis with

design tools [20], among others. All these methods require a very exhaustive and

complex mathematical analysis, because they are based on the three-dimensional heat

diffusion equation. This limitation represents a computational “straight-jacket”, because

it restricts the easy addition of new elements, as occurs, for example, with specific

software used by the electronic industry like FLOTHERMTM, ANSYSTM and IDEASTM.

The need to reduce the transient 3D thermal analysis, using a simple

methodology, fueled the present research project. Since in CPES such technical analysis

has not yet been implemented, this point can be considered as the major justification for

this research work.

The main rationale of this research is the development, validation and

implementation of a reduced mathematical model using a practical numerical

formulation of the thermal behavior of a typical active IPEM, from geometrical IPEM

data (Generation II IPEM). This model is based on the expanded Lumped Thermal

Capacitance Method (LTCM) [7-9]. Applying this procedure a simple, non-spatial,

highly non-linear model is obtained. With the LTCM model and using a circuit

simulator, such as SABERTM, it is possible to obtain the electrothermal interaction.

 13

The SABERTM circuit simulator possesses model libraries to simulate the

electrical behavior of electronic devices and of other components, making the

electrothermal coupling more accessible. The LTCM model is coupled with SABER’sTM

electrical model for different components. In the electrothermal simulation, SABERTM

solves for the temperature distribution (using the implemented LTCM model) as well

temperature dependent electrical parameters of the device simultaneously. The LTCM

model is implemented in SABERTM, the corresponding electrothermal simulation results

are comparated with experimental data and with results from a commercial package,

FLOTHERM 3.1TM, under the same simulation conditions.

At the end of the research project, a clear understanding of the interactions of the

electrical and thermal behavior and vice versa was developed. In the same way, a full

and easy modeling methodology to simulate the dynamic electrothermal performance of

the Generation II IPEM has been developed, which will be used for virtual prototyping

of IPEMs.

The subsequent chapters of this thesis are organized as follows. Chapter 2

presents a background on previous work in thermal simulation in the electronics area

conducted with different concepts: traditional three-dimensional finite difference and

finite element, the lumped concept or empirical extraction of thermal network element

values from the measured thermal step response, reduced model techniques, and

integrated analysis with design tools such as specific software, among others. Chapter 3

 14

describes the reduced thermal model from LTCM, also this chapter shows the validation

of the LTCM model and the thermal analysis software FLOTHERM 3.1TM with constant

power. Chapter 4 describes the data acquisition systems, based on LabWindows/CVITM

from National Instrument, and the experimental setup used to acquire the data from low-

and high-speed thermal response experiments, some comparisons between low speed

thermal response experiment data and the LTCM results are also presented in Chapter 4.

Chapter 5 presents the model implementation in the circuit simulator SABERTM to

obtain the active electrothermal model from the LTCM model and SABERTM tools, in

this chapter the comparison of the high speed thermal response experiment data with

SABERTM simulations is also presented. Finally, Chapter 6 gives a summary and

conclusions of the research with recommendations for future efforts.

15

CHAPTER 2

BACKGROUND

This chapter presents the diverse types of modeling approaches to describe the

electrothermal behavior of microelectronic devices and packages. According to

analyzed components in different simulations, an appropriate categorization of previous

work is as follows: (i) semiconductor devices analysis, those based on the thermal or

electrothermal analysis of diverse semiconductor devices; (ii) electronic packages

analysis, those simulation techniques used to describe the electrothermal behavior of

packages; (iii) IPEMs analysis, those that describe the electrothermal analysis used to

study IPEMs operation.

2.1 Power Semiconductor Devices Analysis

The first study of the semiconductor devices described here corresponds to work

of Hefner in [1]. He developed, based on the lumped concept (or thermal networks), a

dynamic electro-thermal model for the Insulated Gate Bipolar Transistor, IGBT, from

the temperature-dependent IGBT silicon chip. The temperature-dependent IGBT

electrical model describes the instantaneous electrical behavior in terms of the

instantaneous temperature of the IGBT silicon chip surface. The instantaneous power

dissipated in the IGBT is calculated using the electrical model and determines the

instantaneous rate of heat applied to the surface of the silicon chip. The electrothermal

model of the IGBT was implemented in SABERTM, and is available in the SABERTM

16

components library. Although this technique to describe the electrothermal behavior of a

semiconductor device is a reduced-order model, the approach still complex and possibly

inaccurate, since it is based in heat diffusion equation (which entails to the

multidimensional analysis and to reduce the boundary conditions to only convection).

In [6], also from the lumped concept and from a thermal multidimensional

analysis, Codecasa et al. describe the thermal response of electronic devices by means

of the thermal impedance. The derivation developed to obtain this parameter is based on

very general electrical equations, so that the electrothermal behavior of semiconductor

devices is described through an equivalent electrical network, implemented in SPICETM.

They define an electrothermal network where the thermal impedance is reported,

through a transformation matrix, at the electrical terminals. Then a purely electrical

compact model embedding the thermal effects is obtained.

A more general study of the semiconductor devices is presented by Min et al. in

[19]. where a full and nontraditional analysis of a chip is presented. They developed an

analytical three-dimensional transient temperature solution of a two-layer semi-infinite

plate structure with embedded heat sources. In this solution, the thermal behavior of a

typical semiconductor device from the thermal diffusion equation is described. It

employs the method of images, which uses Green’s function approach to obtain the

resulting temperature distribution from a heat source. In addition, the principle of

superposition is applied in order to adjust the correct boundary conditions. This solution

17

technique has been programmed and is particularly useful for devices operating under

pulsed or switching conditions.

2.2 Package Analysis

The study selected as a starting point in this section, is the one corresponding to

Adams et al. in [21]. It provides a study of the thermal complex interactions between the

components of a enclosure with horizontal narrow aspect ratio: heat sources, substrate,

and enclosure. The authors examined the thermal behavior of this array from

conservation equations for continuity, momentum and energy in the three-dimensional

problem, considering natural convection in air, coupled with conjugate conduction and

radiation within an enclosure, and assuming constant properties. Those models were

solved using a finite volume method. The study determines which physical effects and

level of detail are necessary to accurately predict thermal performance of discretely

heated enclosures.

Numerical solutions have also been chosen to solve the electrothermal models of

electronic packages. The first one was presented by Adams et al. in [22]. They

suggested a methodology for the validation of geometric and physical compact thermal

models implemented in computational tools (in this case FLOTHERMTM) with simple

but realistic conditions. This validation is made by comparing the geometric reduced

model of an electronic package accomplished in the software with experimental data of

18

the real package. Here, the importance of reducing the complexity of the many problems

that to obtain design tools more accessible using existing software is visible.

Another numerical lumped concept methodology is given by Hsu and Vu-Quoc

in [16]. They presented a rational approach for constructing thermal circuit networks,

equivalent to the discretization of the thermal diffusion equation using the finite element

method. These thermal circuit networks are connected to the electrical networks of

power electronic systems to provide complete electrothermal models that can be

conveniently used in any circuit simulator package. Later, in [17], two reduced model

techniques are applied to the previously obtained models, Modal Superposition Method

(MS) and Component Mode Synthesis (CMS). In the first, the governing differential

equations for the reduced model are uncoupled so they can be easily solved. In the

second, the idea is to find reduced models for various substructures independently, and

to use compatibility conditions to connect these reduced substructure models. Both

techniques were implemented in the SABERTM simulator.

In similar fashion, Lee and Allstot in [18] presented another reduced-order

modeling technique to simulate the transient electrothermal performance of integrated

circuits. From an efficient macromodeling method, based on the Asymptotic Waveform

Evaluation (AWE), the time domain response of a linear circuit is efficiently evaluated

in terms of a few dominant poles and residues. In general, from the heat diffusion

19

equation, the thermal behavior is represented by an equivalent thermal circuit, and is

coupled with the electrical model in the SPICETM simulator.

Following the reduced-order model approach, a new methodology to describe

the dynamic electrothermal behavior of power electronic circuits and systems is given

by Hefner and Blackburn in [2]. They proposed, developed, and validated a typically

space technique that consists of defining the temperature at various positions within any

package from the heat diffusion equation for various three-dimensional coordinate

system symmetry conditions and include the nonlinear thermal conductivity of silicon

and nonlinear convection heat transfer. Later, the resulting models are discretized into a

finite number of first-order ordinary differential equations (using finite differences). The

thermal component models include the nonlinear thermal conductivity of silicon and

nonlinear convection heat transfer. The model solutions define a thermal network.

Hefner and Blackburn’s work in [3] explain how the interconnection between the

electrical network and the thermal network can be represented through electrothermal

models. The electrical and thermal networks are coupled through the electrothermal

models for the semiconductor devices. The electrothermal models for semiconductor

devices and other components (with electrical interaction) have electrical terminals that

are connected to the electrical network and a thermal terminal that is connected to the

thermal network. The thermal nodes in the thermal network have units of temperature

across the nodes and units of power flowing through and across. Whereas the through

20

and across variable for electrical network are current and voltage. The thermal network

is represented using thermal network component models so that the thermal models for

different packages and heatsinks can be readily interconnected in the same way that the

electrical network components are connected. The thermal network models for power

modules and heatsink contain multiple terminals and account for the thermal coupling

between the adjacent semiconductor devices. The SABERTM circuit simulator is used

for electrothermal network simulation. The models are formulated such that the

components of power flow between the thermal nodes are expressed in terms of the

node temperature.

From Hefner’s work and following with the lumped concept, Digele et al. in [23]

developed a fully coupled dynamic electrothermal simulation on chip and circuit level,

implemented in SABERTM. The approach in this work was to discretize the chip in three

dimensions and build these equations like a behavioral model into SABERTM, using

finite difference methods (FDM) for the heat diffusion equation. The contribution of that

research is the attainment of the isolines of temperature at a critical time step during the

simulation or under steady state condition. The temperature isolines at every simulation

time step can be drawn, which helps to identify the temperature dependence

components.

21

2.2.1 IPEMs Analysis

 Chen et al. [20] provide an integrated analysis of IPEMs from several software

tools: mechanical CAD software I-DEASTM, MaxwellTM Q3D Parameter Extractor, FEA

software FLOTHERMTM and SABERTM, for modeling of thermal and electrical

behavior of those systems. Each software has a specific analysis technique. The

exchange of geometry information among the resulting models, from each software, was

achieved. I-DEASTM is used to model the physical layout and material information of

IPEM. It is possible to use that information to calculate the parasitic inductance of

module layout using Maxwell. Later, these inductances are included in the SABERTM

simulation for electrical performance evaluation. With the power loss calculated in

SABERTM and geometry translated from the I-DEASTM model, the thermal analysis is

performed using FLOTHERMTM. Finally, with the aid of all the software tools,

tradeoffs between electrical performance and thermal management are investigated.

 Rodriguez et al. [4] described with a certain degree of detail the general features

of the lumped parameter thermal model for electrothermal analysis of a commercial

IGBT power electronic module from ToshibaTM. This model was obtained using the

analysis methodology developed in [2]. The previous thermal network component

models [3] are not applicable for high power modules because high power devices

contain multiple chips within the same package, inducing heat conduction through the

electrical insulator layers, and are typically used with large multi-module heat sinks that

have a highly non-uniform surface temperature. However, in this work the thermal

22

model is formulated similarly to the single silicon chip thermal model except that the

expressions used to calculate the thermal resistances, thermal capacitances, and the heat

energies are different. The model describes the two-dimensional lateral heat spreading,

the die attachment thermal resistance, and the heat capacity of the commercial IPEM

periphery. The lateral heat spreading in the commercial IPEM results in an effective

heat flow area that increases with depth into this electronic package.

In the Rodriguez’s model, the effective heat flow area at each depth into the

commercial IPEM is obtained by combining the components of heat flow area due to the

cylindrical heat spreading along the edges of the chip, the spherical heat spreading at the

corners of the chip, and the rectangular coordinate component of heat flow directly

beneath the chip.

They developed an experimental system to validate the electrothermal models of

commercial IPEMs [26]. The system consisted of a computer-based data acquisition

system based on LabWindows/CVI from National Instrument with digital multimeters

and recorders. The system acquires temperature at different points in the three-phase

inverter and voltages at the module inputs. Communication between instruments and the

computer is based on the GPIB protocol.

Recently Pang et al. [14] developed a methodology to optimize the three-

dimensional geometrical design layout of an active IPEM by considering both electrical

23

and thermal performance. The thermal analysis was made using a commercial finite

element and computational fluid dynamic (CFD) solver, I-DEASTM, in steady state.

Then, a parametric study was conducted to determine the thermal performance of

several design layouts and a sensitivity analysis was performed to determine the overall

uncertainty of the simulations. Using this integrated design analysis three alternatives of

geometric configuration were achieved, according to electrical and thermal

requirements. From this study, Generation II IPEM design was obtained. This IPEM is

the module used in this thesis.

It can be concluded through this literature review that the study of the

electrothermal behavior of semiconductor devices and, mainly, power electronic

packages has been only described by means of a few methodologies ranging from heat

diffusion equation, neglecting the radiation but, in many cases, including convection

effects.

Few full descriptions reporting a couple electrothermal analyses have used

multidimensional approaches requiring a large amount of effort and computational

resources. It is therefore necessary to develop a simple but efficient methodology for

the design and analysis of the next generation of power electronics modules such as

IPEMs. As described in detail in the next chapter, this method is based on a reduced

thermal model that incorporates the coupled thermal and electrical performances. This

is the main objective of the work presented in this thesis.

24

CHAPTER 3

REDUCED-ORDER THERMAL MODEL

3.1 Introduction

Traditionally, computational fluid dynamics (CFD) simulations of electronic

system with detailed modeling of the electronic devices and conjugate heat transfer

interactions are utilized to predict the thermal state in electronic applications. Despite

large variability in length scales at the device and system levels results the demand

considerable computational requirements, which is translated in an expense in design

time. In that case, compact or reduced modeling of electronic components without the

use of system CFD simulations may be a viable alternative to meet the design process

requirements [1].

A reduced-order thermal model of a component is a model that has modest

complexity, but captures the main thermal features for a particular analysis. This

moderate complexity improves computational efficiency, allowing thermal simulations

of the electronic system to be completed, using personal computers (PCs) or

workstations, in reasonable time.

The main characteristic of an IPEM is the high component integration level. The

new packaging method employed in IPEM manufacturing eliminates wire bonds, which

lead to potential benefits from both the electrical and thermal prospective [14].

25

Nevertheless, components layout of this package do not permit an easy thermal analysis

implementation in a typical software, because they require a complex configuration at

the same time. This way, the use of some reduced model that allows the fast and simple

analysis of all elements that compose the IPEM is necessary.

From this point, there are many possibilities to develop reduced models, each

one with specific applicability in the thermal analysis of the electronic components, such

as the lumped concept. However, until now such components have not been described

using a methodology of non-spatial analysis. All have started from the heat diffusion

equation (HDE), which generally are multidimensional. This fact increases the

magnitude of the analysis since it makes necessary the employment of the complex

techniques to discretize the HDE, for example finite element or volume, some matricial

technique, etc.

It is the final goal to develop a simple mathematical model that describes the

thermal behavior of a typical IPEM. In most cases, in some unsteady situations the use

of the lumped capacitance theory greatly simplifies the analysis. The lumped

capacitance theory assumes that the temperature within a solid is spatially uniform at

any instant throughout an unsteady heat dissipation process. Thus, the reduced thermal

model is based on the Lumped Thermal Capacitance Method (LTCM), also named

Lumped Capacitance Method or Lumped Capacitance Heating and Cooling [7-9]. The

use of this model implies that the unsteady heat transfer analysis only depends on the

26

time, representing spatial thermal distribution by the physical and thermal characteristics

of the IPEM.

3.2 Lumped Thermal Capacitance Method (LTCM)

In order to determine the validity of the LTCM approach, certain criterion must

be satisfied. The Biot number (Bi), a dimensionless parameter, relates the internal

conduction resistance to the external convection resistance during transient heat transfer.

This dimensionless parameter is used to test for the validity of the LTCM approach. The

Biot number is defined as the ratio of temperature differences across the solid itself

(conduction heat transfer), and between the solid and fluid (convection heat transfer). It

is given by [7-9]:

k/hLBi = , (3.1)

The reader is referred to the nomenclature section for the definition of the

symbols used throughout this text.

Values of the Biot number larger than 1 imply that the heat conduction inside the

body is slower than at its surface, and temperature gradients are non-negligible inside it.

On the contrary, a Biot number value lowest than 1 suggest that LTCM approach can be

used to describe the transient heat transfer phenomenon. This way, to validate the

LTCM approach it is necessary that [7-9]:

1.0Bi <<

27

Unless previous requirement is satisfied, the method will be inaccurate. A small

Biot number is an indication of a very efficient conduction heat transfer inside the body,

and temperature variations can be neglected inside the body. Whenever the

nondimensional parameter is smaller of the stipulated value, the condition of minimum

temperature variations could be used for most power electronic modules.

Figure 3.1. Generation II IPEM: (a) geometry model; (b) lumped decomposition.

LTCM allows to deal with the heat transfer between the body and the ambient

fluid by convection, between the body and surroundings by radiation, thermal contact

and spreader resistance effects, and transient effects. In order to obtain the temperature

profile of the Generation II IPEM, each material is treated as a control volume or

lumped, as shown in Figure 3.1. A mathematical model of the IPEM is constituted by

 (a)

Lumped 1 (Gate Driver)

Lumped 2 (Left Chip)
Lumped 3 (Right Chip)

Lumped 4, 5, 6, & 7 (Cu - Metallization layer)

Lumped 9 (Al2O3 –
Ceramic Substrate)

Lumped 8 (DBC
Copper Trace)

Lumped 10 (Al2O3 –
DBC Ceramic layer)

Lumped 11
(Copper Base)

(b)

28

several lumped. Applying an energy balance in each lumped, the temperature at each

lumped is,

outjinj

.

gjstj E E E E
••••

−+= , (3.2)

or,

{

[]
444 3444 21444444 3444444 21

44444 344444 214434421

ResistanceSpreader
 andContact Thermal

j jnextj

LjnextLj

Radiation

j

4
Ljnext

4
Ljjnextjjnextjj

Convection

Ljververhorhor

devicespower
 fromHeat

.gen

EffectTransient

Lj
jp jj

R
)T(T

)T(TAF

)T-)(TAhA(h- q
dt

dT
CV

∑∑










 −
±−σε

±+=ρ

−
−−

∞

, (3.3)

where

.

stjE
•

 is the stored energy in the lumped,

.

gjE
•

 is the generated energy inside lumped,

inj

.

E
•

 is the input energy to lumped,

outjE
•

 is the output energy from lumped.

In Equation 3.2, the generated energy (in heat form) within the lumped

corresponds to the electrical power dissipated by the device, this parameter must be

calculated in the electrical circuit analysis and constitutes the input to the thermal

model. In some cases, this power is null because many lumped do not have a dissipated

29

power. Generally the lumped that dissipate power are those associated to semiconductor

devices. In addition, Equation 3.2 considers the heat that enters the lumped through

thermal contact and spreader resistances with adjacent devices. The heat that leaves the

lumped is due to mostly convection, radiation, and, in some cases, due to the

phenomenon of heat exchange between lumped through thermal contact and spreader

resistances. Finally, the stored heat is due to the variation of the lumped internal energy.

According to Equation 3.3, the full model of a typical IPEM includes the form of

heat dissipation that generally appears in electrothermal processes from the devices

(power semiconductor devices and gate driver). These heat forces are:

1) Free or forced convection of each lumped with the surrounding ambient.

2) Radiation between lumped and between each lumped and the surrounding

environment.

3) Heat spreading due to conduction in the direction of the contact surface.

4) Thermal contact resistances.

5) Transient effects.

The energy balance applied to each lumped can contain some or all the

expressions that appear the Equation 3.3. For example, in the case of the convection, if

this affects a lumped vertical as much as horizontally, then the convection expression

must be specified similar to the Equation 3.3’s expression; in the contrary case, only

30

will appear the convection form that is present. The same happens to the remaining

expressions contained in the corresponding energy balances.

3.3 Model Description

The validity of the LTCM was verified by calculating the Biot number for each

lumped. According to the Equation 3.1, this parameter is function of the temperature

since the heat transfer coefficient depends of the temperature. Likewise, in order to

calculate the Biot number, the used characteristic or equivalent length must be defined

so that it corresponds to the heat transfer thickness according to the heatflow direction

(airflow direction for each lumped is shown in Table 3.1). In the transient analysis, for

the IPEM under study, this parameter varies between 4.75x10-6 and 3.73x10-4 (see

Figure 3.2). The Biot numbers presented in Figure 3.2 were calculated from transient

temperature of each lumped assuming devices’ dissipated power of 1, 7 and 12W for

gate drive, left and right chip, respectively.

Variation with Time of the Biot Parameter

1.00E-06

1.01E-04

2.01E-04

3.01E-04

4.01E-04

5.01E-04

0 50 100 150 200 250 300
Time, sec

B
io

t P
ar

am
et

er

Bi - Lump 1
Bi - Lump 2
Bi - Lump 3
Bi - Lump 4
Bi - Lump 5
Bi - Lump 6
Bi - Lump 7
Bi - Lump 8
Bi - Lump 9
Bi - Lump 10
Bi - Lump 11

Figure 3.2. Corroboration of Biot parameter condition.

31

From the properties of each lumped material, the model can be used to calculate

the energy balance of each lumped from Equation 3.3 resulting in a set of simultaneous

non-linear ordinary differential equations that can be solved by means of an efficient

numerical integration method, such as the fourth order Runge Kutta method [24]. The

solution using fourth-order Runge Kutta method can be obtained as follows:

() t KK2K2K
6
1 T T 4321)i(Lj)1i(Lj ∆++++=+ , (3.4)

where,

t)KTt,f(tK

)
2
tKT,

2
tf(tK

)
2
tKT,

2
tf(tK

)T,f(t K

3)i(Lji4

2)i(Lji3

1)i(Lji2

)i(Lji1

∆+∆+=

∆
+

∆
+=

∆
+

∆
+=

=

, (3.5)

After many previous divisions of the Generation II IPEM to find the number of

appropriate lumped, this IPEM was dividing in eleven parts or lumped and a significant

change in the IPEM temperature distribution was not observed. With less lumped

number, the model do not catch the real temperature distribution. With greater lumped

number the model require more computational time to obtain the temperature

distribution without considerable temperature changes in the IPEM’s thermal profile.

Since the IPEM under study consists of eleven lumped, the assembly can be

modeled by eleven energy balance equations, which correspond to temperature profile

of the IPEM. These equations are listed in Table 3.1.

32

Table 3.1. Model Expanded for each IPEM’s Lumped
No Geometry Energy Balance Eq

1

9-1

914
1

4
31- 31- 33

4
1

4
21- 21- 22

4
3

4
13-13 - 11

4
2

4
12-12 - 11

44
1-1 - 11

111111
1

1p11

R
)T(T)T(TAF

)T(TAF)T(TAF

)T(TAF)T(TAF

)TT)(AhAh(q
dt

dTCV

−
−−σε+

−σε+−σε−

−σε−−σε−

−+−=ρ

∞∞∞

∞ververhorhorgen

3.6

2

R
)T(T

R
)T(T

R
)T(T)T(TAF

)T(TAF)T(TAF

)TT(Ahq
dt

dTCV

9-2

92

8-2

82

4-2

424
2

4
12-12 - 11

4
1

4
21-21- 22

44
2-2 - 22

2222
2

p222

−
−

−
−

−
−−σε+

−σε−−σε−

−−=ρ

∞∞∞

∞horhorgen

3.7

3

R
)T(T

R
)T(T

R
)T(T)T(TAF

)T(TAF)T(TAF

)TT(Ahq
dt

dTCV

9-3

93

8-3

83

6-3

634
3

4
13-13 - 11

4
1

4
31-31- 33

44
3-3 - 33

3333
3

p333

−
−

−
−

−
−−σε+

−σε−−σε−

−−=ρ

∞∞∞

∞horhorgen

3.8

4

R

)T(T
R

)T(T)T(TAF

)TT)(AhAh(
dt

dTCV

5-4

54

4-2

4244
4-4 - 44

44444
4

4p44

−
−

−
+−σε−

−+−=ρ

∞∞∞

∞ververhorhor
3.9

5

R

)T(T
R

)T(T

R
)T(T

)T(TAF

)TT)(AhAh(
dt

dT
CV

9-5

95

8-5

85

45

5444
5-5 - 55

55555
5

p555

−
−

−
−

−
+−σε−

−+−=ρ

∞∞∞

∞ververhorhor

3.10

6

R

)T(T
R

)T(T

)T(TAF

)TT)(AhAh(
dt

dT
CV

7-6

76

6-3

63

44
6-6 - 66

66666
6

p666

−
−

−
+

−σε−

−+−=ρ

∞∞∞

∞ververhorhor
3.11

33

7

9-7

97

8-7

87

7-6

7644
7-7 - 77

77777
7

p777

R
)T(T

R
)T(T

R
)T(T

)T(TAF

)TT)(AhAh(
dt

dT
CV

−
−

−
−

−
+−σε−

−+−=ρ

∞∞∞

∞ververhorhor

3.12

8

R
)T(T

R
)T(T

R
)T(T

R
)T(T

R
)T(T

R
)T(T

)T(TAF)TT(Ah
dt

dT
CV

10-8

108

8-3

83

8-7

87

8-2

82

8-5

85

8-9

89

44
8-8 - 88888

8
p888

−
−

−
+

−
+

−
+

−
+

−
+

−σε−−−=ρ ∞∞∞∞verver

3.13

9

R

)T(T
R

)T(T
R

)T(T
R

)T(T

R
)T(T

R
)T(T

)T(TAF

)TT)(AhAh(
dt

dT
CV

9-7

97

9-5

95

8-9

89

93-

93

9-2

92

9-1

9144
9-9 - 99

99999
9

9p99

−
+

−
+

−
−

−
+

−
+

−
+−σε−

−+−=ρ

∞∞∞

∞ververhorhor

3.14

10

 11-10

1110

108-

108

44
10-10 - 1010

101010
10

p101010

R
)T(T

R
)T(T

)T(TAF

)TT(Ah
dt

dTCV

−
−

−
+

−σε−

−−=ρ

∞∞∞

∞verver
3.15

11

R
)T(T

)T(TAF

)TT(Ah
dt

dTCV

11-10

1110

44
11-11 - 1111

111111
11

p111111

−
+

−σε−

−−=ρ

∞∞∞

∞verver
3.16

3.4 Physical and Geometric Properties of the Generation II IPEM

In the previous set of equations, only the temperatures are unknown, all of

remaining parameters are known values that are obtained from the physical and

geometric features of the Generation II IPEM.

For convection heat transfer, in this study the natural convection will be the only

component to be considered, because in the experiments there is a considerable airflow

34

(from a fan) that acts on the package. There are several empirical correlations to obtain

heat transfer coefficient values. However, for free convection on vertical and horizontal

plates, two empirical correlations can be used (based on the studies of Churchill & Chu

and McAdams [8, 9], respectively), since they provide the necessary precision in this

case. From vertical and horizontal plates exposed to air at atmospheric pressure, these

correlations are determined by [8, 9],

[]
4/1

hor

2

27/816/9

6/1_______

ver

Ra54.0Nu

Pr)/492.0(1
Ra387.0825.0Nu

=













+
+=

, (3.17)

where the Nusselt number, Nu, defines the heat transfer coefficient from:

k
hLNu

= , (3.18)

These empirical equations can be reduced, as shown in [8], and to give results

approximated to the ones obtained when previous equations are used (see Figures 3.3(a)

and 3.3(b)). The simplified equations for the convective coefficient for horizontal and

vertical plates are given by [7, 8]:

4/1

ver

4/1

hor

s
 T42.1h

s
 T32.1h







 ∆=







 ∆=

, (3.19)

For microelectronics applications, this coefficient is acceptable within the

following range [1]:

1 W/m2 K < h < 15 W/m2 K

35

Comparison of Vertical Heat Transfer
Coefficients

5

10

15

0 100 200 300
Time, s

He
at

 T
ra

ns
fe

r
C

oe
ff

ic
ie

nt
,

W
/m

2 K

h1 - Churchill and Chu [8, 9]

h1 - Simplified from Churchill and Chu's expression [7, 8]

(a)

Comparison of Horizontal Heat Transfer Coefficients

4

6

8

0 100 200 300
Time, sec

He
at

 T
ra

ns
fe

r
C

oe
ff

ic
ie

nt
, W

/m
2 K

h1 - McAdams [8, 9]

h1 - Simplified from McAdams's expression [7, 8]

(b)

Figure 3.3. Comparison of correlations used to calculate the heat transfer coefficients of the gate

driver (Lumped 1): (a) on a vertical side; (b) on a horizontal side.

According to Figure 3.3, the use of simplified correlations (Equation 3.19) is

valid because the behavior of convective coefficients is identical to the extended

equations (Equation 3.17).

36

The thermal contact resistance is a combination of the contact surface and heat

spreading effects. The first is given by [25],




















+
+















σ











+

=−

MY
k

H
Pm

k k
kk

2.5

1/A
 R

f

95.0

cjnextj

jnextj

.cont
jnextj cont ,

(3.20)

This empirical correlation is valid for the types of materials used in typical

IPEMs. The heat spreading effects are calculated from [8, 9]:










 ∆
+

∆
=−

jnext

jnext

j

j

cont
 jnextj spreader k

 x
k

 x
A

1R , (3.21)

The total thermal contact resistance is

 jnextj spreader jnextj contjnextj RRR −−− += , (3.22)

On the other hand, for radiation, in the case of those lumped that only have

radiation heat transfer with the environment, the geometry factors are calculated from

direct estimation. In the cases of radiation exchange between lumped surfaces, such

factors are calculated using: the Reciprocity Relationship, the Summation Rule, tables

and curves (in [8, 9]) corresponding to geometry factors for rectangles with a common

edge, and also using direct estimation. The expressions used to define the Reciprocity

Relation and Summation Rule are, respectively:

∑ =

=

−

−−

j
jnextj

jjnextjnextjnextjj

1F

FAFA
, (3.23)

37

Table 3.2. Physical Properties of the Generation II IPEM

No. Description Material
Kj,

W/m.K
Cpj,

J/kg.K
ρj,

kg/m3 εj
Volume,

m3

Equivalent
Length, m

1 Gate Driver Silicon 124 702 2329 0.86 1.14E-07 2.54E-04

2 Left Chip Silicon 124 702 2329 0.86 5.70E-08 8.89E-04

3 Right Chip Silicon 124 702 2329 0.86 5.70E-08 8.89E-04

4 Metallization Layer Copper 386 390 8900 0.05 1.01E-07 1.24E-02

5 Metallization Layer Copper 386 390 8900 0.05 1.48E-08 3.56E-03

6 Metallization Layer Copper 386 390 8900 0.05 1.01E-07 1.24E-02

7 Metallization Layer Copper 386 390 8900 0.05 1.48E-08 3.56E-03

8 DBC Traces Copper 386 390 8900 0.05 2.05E-07 2.54E-04

9 Ceramic Substrate Al2O3 26 850 3900 0.34 5.72E-07 8.89E-04

10 DBC Ceramic Layer Al2O3 26 850 3900 0.34 5.13E-08 6.35E-04

11 DBC Base Copper 386 390 8900 0.05 2.05E-07 2.54E-04

Table 3.3. Geometrical Properties for Convection Effects
 Tranversal Length Area

Number Shorizontal, m Svertical, m Ahorizontal, m2 Avertical, m2

Lumped 1 2.11E-02 2.54E-04 1.79E-04 1.50E-05

Lumped 2 7.19E-03 ---- 6.36E-05 ----

Lumped 3 7.19E-03 ---- 6.36E-05 ----

Lumped 4 4.90E-03 2.54E-04 4.86E-05 9.72E-06

Lumped 5 4.06E-03 1.14E-03 1.49E-05 6.66E-06

Lumped 6 4.90E-03 2.54E-04 4.86E-05 9.72E-06

Lumped 7 4.06E-03 1.14E-03 1.49E-05 6.66E-06

Lumped 8 ---- 1.14E-03 ---- 3.25E-05

Lumped 9 3.00E-02 8.89E-04 5.16E-04 9.04E-05

Lumped 10 ---- 6.35E-04 ---- 7.23E-05

Lumped 11 ---- 2.54E-04 ---- 2.89E-05

To calculate the previous parameters the material physical properties shown in

Table 3.2 are used. The dimensions of the Generation II IPEM are given in Appendix

38

A. The calculated parameters are presented in Tables 3.3 and 3.4. For each variation of

the number of lumped, it is necessary to recalculate all parameters, until the Biot

number condition is satisfied. The system of eleven equations is the result of that

iteration.

Table 3.4. Geometrical Properties for Radiation and Contact Resistance Effects
RADIATION CONTACT RESISTANCE

Factor Area Rj-jnext Value, K/W

Fj-jnext value Aj-jnext
 value, m2 R1-9 3.61

F1-∞ 9.9E-01 A1-∞ 1.94E-04 R2-8 12.85

F2-∞ 9.4E-01 A2-∞ 3.64E-05 R3-8 12.85

F3-∞ 9.6E-01 A3-∞ 3.64E-05 R2-9 12.46

F4-∞ 1.0E+00 A4-∞ 5.84E-05 R3-9 12.46

F5-∞ 1.0E+00 A5-∞ 3.39E-05 R2-4 10.39

F6-∞ 1.0E+00 A6-∞ 5.84E-05 R3-6 10.39

F7-∞ 1.0E+00 A7-∞ 3.39E-05 R9-8 11.71

F8-∞ 1.0E+00 A8-∞ 4.49E-05 R5-9 11.77

F9-∞ 1.0E+00 A9-∞ 6.06E-04 R7-9 11.77

F10-∞ 1.0E+00 A10-∞ 7.23E-05 R8-10 11.24

F11-∞ 1.0E+00 A11-∞ 2.89E-05 R10-11 10.51

F1-2 4.9E-03 A1-2 5.35E-06 R4-5 16.59

F1-3 5.2E-03 A1-3 5.35E-06 R6-7 16.59

F2-1 5.8E-02 A2-1 3.64E-05 R5-8 11.96

F3-1 4.6E-02 A3-1 3.64E-05 R7-8 11.96

3.5 Numerical Model Implementation and Some Simulation Results

In order to facilitate the solution of the numerical scheme, it was programmed in

FORTRAN allowing variable properties, variable convective coefficient, and adaptive

time step. The program is presented in Appendix B. The generated code, first verifies

39

that Bi<<0.1. If this is satisfied, then the program reads an external file to obtain the

required properties values. The final step is to solve the model’s simultaneous equations.

The program will abort if Bi>>0.1 since the model will not be accurate. A flowchart of

the strategy is shown in Figure 3.4, bellow.

Figure 3.4. Flowchart of the generated FORTRAN code for the solution of the reduced thermal model.

The coded model was executed using the values of power dissipated for the gate

driver and silicon devices given for the Generation II IPEM. The constant dissipated

powers by the gate driver (lumped 1), the leftmost (lumped 2) and rightmost (lumped 3)

START

Enter necessary
information to solve

 the equations of each
 lumped.

Constant values: geometric and material properties,
power dissipated, airflow conditions.
Variable values: heat transfer coefficient, Biot
number, temperature of each lumped.

Calculate heat transfer
coefficient and Biot
number.

If Bi<<0.1

Yes

 Display temperature
 of each lumped.

END

No

40

semiconductors were 1 W, 7 W and 12 W, respectively. These values were specified

into the design stage of this IPEM [5, 21]. A first approach was to expand the model of

the Generation II IPEM, with the data presented in the tables, varying the time step to

study the model solution stability. Figures 3.5, 3.6 and 3.7 present few results for time

step increments. In Figure 3.8, it is observed that for a time increment of 1 sec, the

lumped reaches quickly the steady state, whereas for greater time increments, over 4

sec, the transient state range is extended, this is because the method of solution of the

model for small time steps is quite stable. No significant change was observed below

time steps of one second (see Figure 3.9).

Power Device Temperatures with Time Step of 1 sec

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300
Time, sec

Te
m

pe
ra

tu
re

, °
C

Lumped 1 (Gate driver)
Lumped 2 (Left Si-Chip)
Lumped 3 (Right Si-Chip)

Figure 3.5. Transient curves of the power devices for a time step of 1 sec.

41

Power Device Temperatures with Time Step of 4 sec

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300
Time, sec

Te
m

pe
ra

tu
re

, °
C

Lumped 1 (Gate driver)
Lumped 2 (Left Si-Chip)
Lumped 3 (Right Si-Chip)

Figure 3.6. Transient curves of the power devices for a time step of 4 sec.

Power Device Temperatures with Time Step of 5 sec

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300
Time, sec

Te
m

pe
ra

tu
re

, °
C

Lumped 1 (Gate driver)
Lumped 2 (Left Si-Chip)
Lumped 3 (Right Si-Chip)

Figure 3.7. Transient curves of the power devices for a time step of 5 sec.

42

Right Power Chip (Lumped 3) Temperature for
Different Time Steps

20

30

40

50

60

70

80

90

100

0 15 30 45 60 75 90 10
5

12
0

13
5

15
0

16
5

18
0

19
5

21
0

22
5

24
0

25
5

27
0

28
5

30
0

Time, sec

Te
m

pe
ra

tu
re

, °
C Time Step = 1 sec

Time Step = 2 sec
Time Step = 3 sec
Time Step = 4 sec

Figure 3.8. Study of the model's stability to the time step integration.

Gate Driver (Lumped 1) Temperature at Time Steps

less that 1 sec

20

30

40

50

0 50 100 150 200 250 300

Time, sec

Te
m

pe
ra

tu
re

, °
C

Time Step = 0.25 sec Time Step = 0.50 sec
Time Step = 0.75 sec Time Step = 1.0 sec

(a)

43

Left Si-Chip (Lumped 2) Temperature at Time Steps
less that 1 sec

20

30

40

50

60

70

0 50 100 150 200 250 300

Time, sec

Te
m

pe
ra

tu
re

, °
C

Time Step = 0.25 sec Time Step = 0.50 sec
Time Step = 0.75 sec Time Step = 1.0 sec

(b)

Right Si-Chip (Lumped 3) Temperature at Time Steps
less that 1 sec

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300

Time, sec

Te
m

pe
ra

tu
re

, °
C

Time Step = 0.25 sec Time Step = 0.50 sec
Time Step = 0.75 sec Time Step = 1.0 sec

(c)

Figure 3.9. Transient curves of the power devices for time steps less that 1 sec: (a) gate driver; (b) left Si-
chip; (c) right Si-chip.

For the right chip (Lumped 3) the maximum temperature in steady state was

88.95°C for each of the runs at different time intervals, as is observed in Figure 3.8. For

44

time steps between 1 and 4 seconds, the transient curves for this power device are

uniform. In this chart, the optimal time step corresponds to two seconds (this was the

final time step used in the full thermal analysis), where the lumped reaches quickly

steady state.

An additional interesting feature investigated was the impact of the radiation and

convective effects on the electrical performance of the IPEM. Figure 3.10 shows the

effects of increased heat dissipation. The convection effects are more import than the

radiation effects in general.

Convection and Radiation Effects on Right Power
Chip (lumped 3)

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16
Qgen, W

C
on

ve
ct

io
n,

 W

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Ra

di
at

io
n,

 W

Convection
Radiation

Figure 3.10. Radiation and Convection Effects on Electrical Performance of the Generation II IPEM.

In the Generation II IPEM, when the dissipated power of one of the devices

exceeds the 14 W, the radiation starts to be of considerable importance (see Figure

3.10). However, in actual operation, the left and right chip does not exceed the 7 and

45

12W, and the total dissipated power by the devices together is 20 W (including the gate

driver with 1W), and the temperature of them does not surpass the 100°C (a suitable

criterion to consider that the radiation is relevant). It could then be said that the radiation

effects are not significant in this work. Maybe in other applications, where the power

goes over the actual power of the devices, the electrical functionality of the package

could be influenced. Here the radiation has been considered because it is desired to

demonstrate the generality of the model from the proposed methodology.

3.6 Validation of the Reduced Thermal Model using FLOTHERMTM

Commonly, some CFD simulations are used for the thermal analysis of any

electronic component. However, in most instances, such analysis is not simple due to

the complexities of components, or their operational conditions, which may result in

large computational efforts. For that reason, the use of the reduced model is appropriate.

The CFD simulation is used here to demonstrate the validity of the reduced model.

The CFD solver selected to verify reduced model results is FLOTHERM 3.1TM,

which is specially designed for the electronics industry. FLOTHERM 3.1TM takes into

account all modes of heat transfer: convection, conduction, and radiation effect,

according to the following analysis capabilities:

6) Two and three-dimensional.

7) Steady state and transient.

8) Laminar and turbulence flows.

46

9) Forced, natural and mixed convection.

10) Internal and external flow.

11) Buoyancy and viscous effects.

12) Conduction only, flow only or flow and heat transfer.

Regularly, the steps for every FLOTHERM simulation are to: define the

geometry (geometry model acquisition and addition of physical properties and modeling

parameters), configure the mathematical model (modeling type and boundary

conditions), add the grid, solve, and analyze the results.

Geometry Model

The graphical view of the model data can be obtained from imported solids

(from others graphical software and introduced directly into FLOTHERM) using the

FLO/MCAD tool, or creating it from FLOTHERM facilities (using the Drawing Board).

In order to build the geometrical model from FLOTHERM, it is necessary to use

a rectangular coordinate method for modeling electronic systems and then all the

geometry is constructed from fundamental cuboids and prism shapes. The number of

cuboids and prisms utilized in an approximate representation determines how accurately

the object is represented. Nonetheless, there is a trade-off between modeling accuracy

and computer efficiency, as the greater the number of modeling components, the greater

the storage requirements and longer the solution time.

47

From the given dimensions for the Generation II IPEM [21], the corresponding

geometric model built in FLOTHERM (into the determined solution domain) is

acquired and it is shown in Figure 3.1a.

After the geometry has been described, the next step is defining and adding the

physical properties and modeling parameters. Each created primitive element in

FLOTHERM must have attached attributes such as material, thermal, surface, surface

exchange, equivalent thermal resistance for some applications and source. Modeling

parameters should also be assigned to the developed project such as, grid constrain,

radiation or not, steady state or transient, and temperature solution option, and solution

parameter for the convergence, among others. The simulation uses attached attributes

shown in Table 3.2, the dissipated powers used were the same employed in the reduced

model, thus the conditions and properties were the same for both cases.

Mathematical Model Configuration

The FLOTHERM 3.1TM solution activates the CFD algorithms, which provides

an integration of the fluid flow and heat transfer equations (Navier-Stokes equations)

within the solution domain. In the CFD technique used by FLOTHERM, the

conservation equations (set of coupled, non-linear, second order, partial differential

equations) are discretized by sub-division of the domain of integration within a set of

non-overlapping, contiguous finite volumes (or grid cells if the analysis is two-

48

dimensional) that when are associated to the respective boundary conditions result in a

set of algebraic expressions.

From available modeling options in the software, the corresponding

mathematical model (using FLOTHERM 3.1TM) of the IPEM can be acquired, which

includes tree-dimensional conduction, radiation effects, free convection with the

surrounding, and transient analysis, using the same initial and operational conditions

from the reduced LTCM model. Only the energy equation was used in this simulation,

since the thermal analysis proposed with the LTCM model for the Generation II IPEM

just involves the heat transfer phenomenon.

Grid and Solution

The grids are spatial locations where the software solves the equations in the

computational domain. When the geometry is created, a default grid is also generated.

Nevertheless, it is convenient to define a specific grid number according to an

appropriate solution accuracy and convergence. For this work, simulations showed that

for a grid size greater than 8315 elements the solution does not vary, defining this

element number as the optimal grid. In order to obtain the optimal grid size, it was

necessary to make many simulations monitoring temperatures corresponding to gate

driver, left and right power chip (lumped 1, 2 and 3, respectively). The process to obtain

the optimal grid size is presented in Table 3.5.

49

Table 3.5. Optimal Grid Size at FLOTHERMTM Simulations
GRID
SIZE

GATE DRIVER
TEMPERATURE, ºC

LEFT POWER CHIP
TEMPERATURE, ºC

ROGHT POWER CHIP
TEMPERATURE, ºC

COMPUTATIONAL
TIME

17528 48.95 67.10 84.01 11 hours, 10 minutes

9012 48.39 66.93 83.11 5 hours, 58 minutes

8315 48.96 67.06 83.77 5 hours, 17 minutes

7054 41.54 63.18 82.96 4 hours, 48 minutes

6842 46.30 70.59 89.23 3 hours, 55 minutes

The transient simulation duration must be divided into time steps. It is

important to correctly define this time step. Small time steps are required to capture

details when there is a rapid rate of change in any variable, as is the case here. A

sensitivity analysis was performed to determine the incidence of time step on the

problem solution and its computational time. With the established optimal grid size

(8315 elements) and considering the optimal time step obtained in the LTCM model’s

analysis (whole value is 1.75 sec), several sensitivity runs were done (using grid size

small, medium and great), varying the time step. The option used, with each grid size,

was to run each simulation with a different the time step. According to the LTCM

model’s stability analysis, an appropriate time step must be established between 0 and 3

seconds (see Figure 3.8), then considering these range, the used values for this

parameter were 0.5, 1.75 and 3 seconds.

Table 3.6 summarizes the steady state temperature values of the right Si-chip

(lumped 3), as well as the corresponding computational times required to reach each

steady state temperature. Here it can be seen that the simulations are sensible to changes

50

in time step and that the optimal time step corresponds to the value obtained in the

LTCM model’s stability analysis, which one was of 1.75 seconds. When the time step is

small the computational time is very large, and when it is large the steady state

temperature is not accurate.

Some important computational characteristics are presented in Table 3.7. The

FLOTHERM simulation was made in a workstation with UNIX operative system, and

the LTCM model was implemented in a personal computer with Windows 95 operative

system. The FLOTHERM solution must be as a reference to compare the LTCM model

solution in steady state conditions. This is, because FLOTHERM solution uses a very

different thermal model to define the thermal transient behavior of the package under

study (it is based on multidimensional conduction basically), while the LTCM model is

based on thermal contact resistances and heat spreader effects, neglecting the

temperature distribution in a specific volume (lumped). However, the simplicity of the

analysis by using the LTCM model is clearly manifested, according to the values shown

in Table 3.7.

Table 3.6. Steady State Temperatures and Computational Times in the Sensitivity
Analysis

GRID SIZE TIME STEP
sec 6842 8315 17528

0.50 ≈87ºC / 4.5 hours ≈84ºC / 6.8 hours ≈84ºC / 16.3 hours

1.75 ≈89ºC / 3.9 hours ≈84ºC / 5.3 hours ≈84ºC / 11.2 hours

3.00 ≈64ºC / 2.3 hours ≈93ºC / 3.9 hours ≈80ºC / 8.1 hours

51

Table 3.7. Computational Quality Evaluation of Both Solutions
 FLOTHERM LTCM

Computational Time 5 hours, 17 minutes 21 minutes

Step size 1.75 sec 1.75 sec

Number of grids 8315 11 lumped

Figure 3.11 shows the upper surface temperature distribution of the Generation

II IPEM obtained from the developed simulation in FLOTHERM using a time step of

1.75 seconds and a grid size of 8315 elements. In concordance with the solution

obtained with the LTCM model, FLOTHERM solution also report the highest

temperature at the right power chip (lumped 3), this device is the principal heat

dissipation element.

Figure 3.11. IPEM Visualization surface from FLOTHERM.

 Temperature
 (deg C)

82 .2323

74.6326

67.0934

59.4342

51.8369

49.2357

44.6365

39.0373

31.4381

23.8389

Right Chip
Gate Driver

Left Chip

52

The conduction phenomenon dominate the thermal transient obtained from

FLOTHERM, whereas in the case of the LTCM model, the heat spreader effects and

thermal contact resistance represent such heat transfer mechanism, then it is to hope that

the resulting transients from both analysis will tend to be different. In Figures 3.12, 3.13

and 3.14 the comparisons between the FLOTHERM simulation and the reduced model

for the power devices are illustrated. Considering the existing differences in both

analyses, simulation results from FLOTHERM compare very favorably with the LTCM

model. The validation of the reduced model against simulation data for gate driver, left

power chip and right power chip generated average errors (for the steady state

temperature) of 4.75%, 3.79% and 5.37%, respectively. The remaining IPEM’s

comparison points are presented in Table 3.8. In FLOTHERM, first the lumped were

identified and in each one was placed a monitor point (at the center of mass), which

collects the steady state temperature for that lumped.

Comparison Between Reduced Thermal Model and
FLOTHERM Simulation For Gate Driver (Lumped 1)

20

25

30

35

40

45

50

55

0 50 100 150 200 250 300
Time, sec

Te
m

pe
ra

tu
re

, °
C

LTCM Model
FLOTHERM

Figure 3.12. LTCM vs. FLOTHERM for Lumped 1, with a Power Density of 5.574x103 W/m2.

53

Comparison Between Reduced Thermal Model and
FLOTHERM Simulation For Left Chip (Lumped 2)

20

30

40

50

60

70

80

0 50 100 150 200 250 300
Time, sec

Te
m

pe
ra

tu
re

, °
C

LTCM Model
FLOTHERM

Figure 3.13. LTCM vs. FLOTHERM for Lumped 2, with a Power Density of 1.101x105 W/m2.

Comparison Between Reduced Thermal Model and
FLOTHERM Simulation For Right Chip (Lumped 3)

20

30
40

50

60

70
80

90

100

0 50 100 150 200 250 300

Time, sec

Te
m

pe
ra

tu
re

, °
C

LTCM Model
FLOTHERM

Figure 3.14. LTCM vs. FLOTHERM for Lumped 3, with a Power Density of 1.888x105 W/m2.

54

Table 3.8. Steady State Temperature Errors between FLOTHERM and LTCM

Component (Lumped) LTCM Model
SS Temp, ºC

FLOTHERM
SS Temp, ºC % Error

Left Cu - metallization layer (Lumped 4) 6378 61.38 3.91

Left Cu - metallization frame (Lumped 5) 58.24 55.86 4.27

Right Cu - metalliz. layer (Lumped 6) 79.49 75.19 5.73

Central Cu - Metalliz. frame (Lumped 7) 67.44 63.61 6.01

DBC copper trace (lumped 8) 50.39 46.56 8.23

Al2O3 - ceramic substrate (Lumped 9) 61.51 57.24 7.46

Al2O3 – DBC ceramic layer (Lumped 10) 44.72 41.06 8.92

Copper base (Lumped 11) 43.11 39.44 9.29

According to Table 3.8, the tendency is that the resulting comparisons in the

lumped close to hot points are more accurate. Meanwhile for the points far from the

power devices is not as accurate. The cause of this discrepancy is that in the point far

from the hot point the heat conduction becomes more relevant. Then, the LTCM model

may be not appropriate to compare the steady state temperature and, of course, the

transient thermal analysis with the software tool solution in such points. However, the

fact that LTCM is not as accurate for cold points as for hot spots, it does not imply that

the LTCM is not adequate or that it cannot be used to obtain preliminary temperature

values in such points, since the maximum error was 9.29% (a large error is considered a

error value over 10%). The lumped position affect the LTCM model accuracy, this is,

each lumped must be defined so that this one have enough contact area and heat

spreader effect compared with its adjacent lumped. For example the central lumped have

small steady state temperature errors, lumped 2, 4 and 5, while for the lumped 3, 6 and

7, with the same geometries and adjacent lumped, large errors are achieved.

55

CHAPTER 4

EXPERIMENTAL MODEL VALIDATION

4.1 Introduction

An important component in electrothermal model validation is the comparison

with actual data. It is essential to develop a tool that allows having a real description of

the interaction between thermal and electrical parameters (within the package under

study), where these parameters can be extracted and analyzed. An experimental system

can be such a tool.

 Data Acquisition System
(LabWindows/CVI)

Keithley 7001
(Switch System)

Generation II IPEM

Right Chip (MOSFET)

Left Chip (MOSFET)

V

V

+

+

-

-

P
O
W
E
R

S
U
P
P
L
Y

Keithley 2000
(DMM/Scanner)

Electrical connection

Thermal connection

H
P

6
0
3
0
A

 G
a
t
e

 D
r
i
v
e
r

(a)

56

Figure 4.1. Experimental testbed for low-speed thermal response: (a) set-up picture; (b) IPEM picture.

Two experimental set up, for low- and high-speed thermal responses, were

developed. The first one is employed to validate the LTCM-heat sink model with

constant input (simulated using the program developed in FORTRAN), and the second

one is used to validate the electrothermal data from the implemented model in SABER

simulator (based on LTCM with a variable input, which is established for the electrical

component).

4.2 Experimental System for Low-Speed Thermal Response

The experimental set-up consists of a computer-based data acquisition interface

based on LabWindows/CVI from National Instrument with digital power supplies,

multimeters and switches, as shown in Figure 4.1.

 (b)

57

Basically, the experiment works in the following form: Power is supplied (HP

6030A Power Supply), separately, to each MOSFET; this power produces temperature

changes (inside the device and the other components of the package) that are collected

by five thermocouples, placed in specific points (gate driver, MOSFETs, DBC base and

heat spreader). Gathered data from thermocouples are received by a multiplexer thermal

card (Keithley 7014 Card) inside a switch system (Keithley 7001 Switch System). A

multimeter (Keithley 2000 Multimeter) reads temperature data from the switch system

and stores them temporarily. The data acquisition system (the project was named

“transient ipem”) reads temperature values, from the multimeter, and store them, for

later display and to plotting in a computer window. In the same way, whenever

thermocouples collect a set of values, the power supply acquires the voltage and current

values and sends them to the transient ipem program, where the values are stored,

displayed and plotted in a computer window, see Figure 4.1a.

4.2.1 Data Acquisition System (Transient IPEM Program)

LabWindows/CVI is an integrated interactive development environment with

development tools that allows easy creation, configuration, and display of measurements

on a graphical user interface (GUI). LabWindows/CVI is used to create virtual

instruments (combination of hardware and software that provide complete flexibility of

designing and controlling the elements of stand alone or embedded instruments from a

computer system) to acquire, analyze, and display data from an experiment. The virtual

instrumentation application is created using all features of the American National

58

Standard Institute (ANSI) C programming language along with LabWindows/CVI built-

in tools and libraries.

LabWindows/CVI contains a drag and drop editor for creating user interfaces,

tools for automatic code generation, and a complete multithreaded ANSI C environment

for building test, measurement, control, and automation applications. Multithreading is a

method of programming in which a program can perform more than one operation at a

time. The used methodology by LabWindows/CVI to make any data acquisition system

is very simple:

• Creating the graphical user interface (GUI) with defined controls for a specific

application.

• Making the source code, in C++, required to define the control functions at the

created GUI.

• Obtaining or making instrument driver codes (also in C++) of each one of the

instruments used in the experiment, with which the program has communication.

• Establishing the communication between the program and instruments. The

communication is based on the General Purpose Interface Bus (GPIB) protocol.

LabWindows/CVI program acquires temperature at different points in the

Generation II IPEM through the use of thermocouples, at the same time it collects the

changes in voltage and current into power chips. The developed program at

LabWindows/CVI for this experiment was named “transient ipem”, and the transient

59

ipem program panel is shown in the Figure 4.2. The complete C code can be found in

Appendix C of this document.

Figure 4.2. Data acquisition system program created in LabWindows/CVI.

In the transient ipem program panel (see Figure 4.2), the first box (named SET

INSTRUMENTS) is used to fix program input parameters (voltage, current, waveform

frequency and amplitude), in addition to establishing the final time of the experiment, it

is to say, the required time that the device needs to reach the steady state temperature.

The central box, named THERMOCOUPLE MEASUREMENTS, is used to define

which thermocouples will be measured (which points with thermocouple measurements:

60

gate driver, left and/or right power chip, DBC base, and/or heat spreader). When

measurement points are selected (putting “on” or “off” to each thermocouple), those

points in “on”, display actual point temperatures in each time step. All temperatures are

stored until the final time is reached. Similarly, in the next box named ELECTRICAL

MEASUREMENTS, the option to acquire electrical parameters, such as voltage and

current (and with these the power), in each time step is available.

The main function is defined by the RUN button. With this button, program

input parameters are set and the program run in order to acquire temperatures of selected

points. In the same box, the RESET button is located, which is used to return to off-

conditions.

The last box, at the right side, is used for other functions, such as load, display,

and save the data, and to clear graphics. The buttons in this box allow to manipulate

measured or file data. The program acquire and store three types of datasets:

temperature, power, and voltage-current. The data can be analyzed from the panel or

extracted to analyze it in an excel file.

4.2.2 Results

With the experimental testbed used both thermal and electrical transient curves

were obtained. In each run, temperature, voltage, and current were acquired at each time

61

step. From the input voltage and current, the power dissipated by the device can be

calculated.

According to Figure 4.1.a, each device is supplied by an electrical source, but it

cannot be made simultaneously. It is necessary that while a device is turned on, the other

remains as a passive thermal element, that is to say, the other device only conducts the

generated heat in the turned on device. In view of that, a set of experiments with

different electrical sources (below the allowed maximum value by device) applied to left

power chip, and other set of experiments from the right power chip, were made. In total,

fourteen experimental runs were made, seven of them corresponding to the left power

chip and the remaining seven to the right power chip.

Figure 4.3. Localization of thermocouples at the Generation II IPEM.

Lumped 1 (Gate Driver)

Lumped 2 (Left Chip)
Lumped 3 (Right Chip)

Lumped 4, 5, 6, & 7 (Cu - Metallization layer)

Lumped 9 (Al 2 O 3 –
Ceramic Substrate)

Lumped 8 (DBC
Copper Trace)

Lumped 10 (Al 2 O 3 –
DBC Ceramic layer)

Lumped 11
(Copper Base)

 Thermocouple reading left
chip temperature

Thermocouple reading right
chip temperature

Thermocouple reading gate driver temperature

Thermocouple reading
DBC layer temperature

Thermocouple reading heat
spreader temperature

62

In each experimental sample the temperature were read and stored in five

specific places of IPEM, as shown in Figure 4.3.

Left Chip's Power Curves with Different Electrical Inputs

0

2

4

6

8

0 3000 6000 9000

Time, s

Po
w

er
, W

Input 1.5A - 1.0V
Input 1.8A - 1.2V
Input 2.6A - 1.4V
Input 2.9A - 1.4V
Input 3.3A - 1.4V
Input 3.8A - 1.4V
Input 4.65A - 1.7V

(a)

Left Chip's Thermal Transient Curves at Different Electrical Inputs

27

32

37

42

47

52

57

62

67

0 3000 6000 9000

Time, s

Te
m

pe
ra

tu
re

, °
C Input 1.5A - 1.0V

Input 1.8A - 1.2V
Input 2.6A - 1.4V
Input 2.9A - 1.4V
Input 3.3A - 1.4V
Input 3.8A - 1.4V
Input 4.65A - 1.7V

(b)

Figure 4.4. Left power chip’s transient curves: (a) electrical; (b) thermal.

63

Right Chip's Power Curves with Different Electrical Inputs

0

2

4

6

8

10

12

0 3000 6000 9000
Time, s

Po
w

er
, W

Input 1.5A - 2.0V
Input 1.8A - 0.9V
Input 3.8A - 1.3V
Input 3A - 1.2V
Input 4.5A - 1.5V
Input 4A - 1.9V
Input 6A - 1.3V

(a)

Right Chip's Thermal Transient Curves at Different Electrical
Inputs

20

40

60

80

0 3000 6000 9000
Time, s

Te
m

pe
ra

tu
re

, °
C Input 1.5A - 2.0 V

Input 1.8A - 0.9V
Input 3.8A - 1.3V
Input 3A - 1.2V
Input 4.5A - 1.5V
Input 4A - 1.9V
Input 6A - 1.3V

(b)

Figure 4.5. Right power chip’s transient curves: (a) electrical; (b) thermal.

64

In Figure 4.4, thermal and electrical transient curves of the left chip with diverse

electrical inputs are presented. Here, it is possible to observe the device electrical

nonlinearity with respect to the temperature dependency. In Figure 4.4.a, when the input

provided power is low, the electrothermal process can be considered as only thermal,

such as in the case of the input of 1.5A – 1.0V (equivalent to 1.5W). But as the input

power increases, the thermal effects become more evident when a specific temperature

value is reached. Likewise, Figure 4.5 shows, for the right silicon-chip, the power and

temperature variation with respect to time.

In order to compare the experimental data with simulated data, it is necessary

that the simulation considers a heat sink effect, because until this moment, in the LTCM

model it has not been necessary to include it. In the experiment, the Generation II IPEM

is mounted on a heat sink. A simple heat sink analysis was developed and included in

the LTCM model (see Appendix D).

Consequently, the average power value of each experimental sample was plotted

against the steady state temperature value. In the same way, using the LTCM model

steady state temperatures were obtained from the average experimental power values.

Figure 4.6 shows the incidence of the power on the steady state temperature in the

thermal analysis. In the experimental curves, there are some values where the behavior

is irregular (peak points), this can be due to external factors such as the power supply

performance, or air flow variation. In general terms, both curves compare very well.

65

Variation of the Left Chip's Steady State Temperature with
Respect to the Average Power

30

40

50

60

70

1 2 3 4 5 6 7

Power, W

Te
m

pe
ra

tu
re

, °
C

Experiment

LTCM model

(a)

Variation of the Right Chip's Steady State Temperature with
Respect to the Average Power

35

50

65

80

1 3 5 7 9 11

Power, W

Te
m

pe
ra

tu
re

, °
C

Experiment
LTCM model

(b)

Figure 4.6. Comparison between experimental and simulated values of the steady state temperature

against average power for: (a) left Si-chip; (b) right Si-chip.

66

Using the Figure 4.6, it is possible to choose the simulations that better compare

with the experimental curves, for the same input conditions in the left and right power

chips. As a result, for the left chip the selected average power inputs are 1.58, 3.7 and

6.98W, and for the right chip are 7.71, 5.13 and 7.35W. The comparisons of

experimental data with simulations results are presented from Figure 4.7 to Figure 4.12.

Comparison of Experimental v.s. Model Curves for an Input of
1.58W at Left Chip

28

31

34

37

40

43

0 3000 6000 9000
Time, sec

Te
m

pe
ra

tu
re

, °
C T2 Model

T2 Experiment
T3 Model
T3 Experiment

Figure 4.7. Experimental data and the LTCM-heat sink model results for 1.58W left chip power input.

67

Comparison of Experimental v.s. Model Curves for an Input of
3.7W at Left Chip

27

36

45

54

0 3000 6000 9000
Time, sec

Te
m

pe
ra

tu
re

, °
C

T2 Model
T2 Experiment
T3 Model
T3 Experiment

Figure 4.8. Experimental data and the LTCM-heat sink model results for 3.7W left chip power input.

Comparison of Experimental v.s. Model Curves for an Input of
6.98W at Left Chip

28

34

40

46

52

58

64

0 3000 6000 9000Time, sec

Te
m

pe
ra

tu
re

, °
C

T2 Model
T2 Experiment
T3 Model
T3 Experiment

Figure 4.9. Experimental data and the LTCM-heat sink model results for 6.98W left chip power input.

68

Comparison of Experimental v.s. Model Curves for an Input of
1.71W at Right Chip

27

34

41

0 3000 6000 9000
Time, sec

Te
m

pe
ra

tu
re

, °
C

T2 Model
T2 Experiment
T3 Model
T3 Experiment

Figure 4.10. Experimental data and the LTCM-heat sink model results for 1.71W right chip power input.

Comparison of Experimental v.s. Model Curves for an Input of
5.13W at Right Chip

30

33

36

39

42

45

48

51

54

57

0 3000 6000 9000Time, sec

Te
m

pe
ra

tu
re

, °
C T2 Model

T2 Experiment
T3 Model
T3 Experiment

Figure 4.11. Experimental data and the LTCM-heat sink model results for 5.13W right chip power input.

69

Comparison of Experimental v.s. Model Curves for an Input of
7.35W at Right Chip

30

34

38

42

46

50

54

58

62

66

0 3000 6000 9000Time, sec

Te
m

pe
ra

tu
re

, °
C

T2 Model
T2 Experiment
T3 Model
T3 Experiment

Figure 4.12. Experimental data and the LTCM-heat sink model results for 7.35W right chip power input.

The previous curves show that for the left chip the comparisons are better, this is

because the left chip is in the center of the IPEM and the heat dissipation is more

symmetric, therefore the presumption of an uniform temperature in some areas (LTCM)

is more realistic, whereas for the right chip the transient curves are less accurate.

However in both cases the steady state temperatures compare very well.

Table 4.1. Steady State Temperature Error Percentage of the Chip Turned On

Power Input, W % Error - SS Temp Power Input, W % Error - SS Temp
1.58 0.53 1.71 1.06
3.70 1.96 5.13 1.08
6.98 0.76 7.35 1.84

Left Chip Right Chip

Table 4.1 presents the steady state temperature errors for the turned on device. In

general the error increases when the power input is increased, but in the case of the

power input of 3.7W applied to the left chip the error is irregular maybe because the

70

experimental curve is not very uniform. In Table 4.1 and in Figure 4.7 it is shown that

for a low constant power input the comparison is favorable. It is important to emphasize

that in the experiment the power vary whereas in the simulations the power is constant

(corresponding to the average power in the experiment), due to this fact all experimental

curves reveal a moderate power incidence that is not present in the simulations. Figure

4.13 shows all experimental temperature profiles for Generation II IPEM obtained from

the set up of the low-speed thermal response experiment.

Experiment 1: Right Chip's Input of

3W

27

31

35

39

43

0 2000 4000 6000

T ime, s
Gate Driver Left Chip Right Chip
DBC Base Heat Spreader

Experiment 2: Right Chip's Input of
1.62W

27

34

41

0 3000 6000 9000

T ime.s
Gate Driver Left Chip Right Chip
DBC Base Heat Spreader

Experiment 3: Right Chip's Input of
4.9W

27

32

37

42

47

52

57

0 3000 6000 9000

T ime,s
Gate Driver Left Chip Right Chip

DBC Base Heat Spreader

Experiment 4: Right Chip's Input of
3.6W

27

33

39

45

51

0 3000 6000 9000

T ime, s
Gate Driver Left Chip Right Chip
DBC Base Heat Spreader

71

Experiment 5: Right Chip's Input of
6.75W

27

35

43

51

59

67

0 3000 6000 9000

T ime, s
Gate Driver Left Chip Right Chip
DBC Base Heat Spreader

Experiment 6: Right Chip's Input of
7.6W

27

34

41

48

55

62

0 3000 6000 9000

T ime, s
Gate Driver Left Chip Right Chip
DBC Base Heat Spreader

Experiment 7: Right Chip's Input of
7.8W

27

37

47

57

67

77

0 3000 6000 9000

T ime, s
Gate Driver Left Chip Right Chip
DBC Base Heat Spreader

Experiment 8: Left Chip's Input of
1.5W

27

29

31

33

35

37

39

41

0 3000 6000 9000

T ime, s
Gate Driver Left Chip Right Chip
DBC Base Heat Spreader

Experiment 9: Left Chip's Input of
2.16W

27

29

31

33

35

37

39

41

43

0 3000 6000 9000

T ime, s
Gate Driver Left Chip Right Chip
DBC Base Heat Spreader

Experiment 10: Left Chip's Input of
3.64W

27

31

35

39

43

47

51

55

0 3000 6000 9000

T ime, s
Gate Driver Left Chip Right Chip
DBC Base Heat Spreader

72

Experiment 11: Left Chip's Input of
4.1W

27

31

35

39

43

47

51

55

59

0 3000 6000 9000

T ime, s
Gate Driver Left Chip Right Chip
DBC Base Heat Spreader

Experiment 12: Left Chip's Input of
4.6W

27

32

37

42

47

52

57

0 3000 6000 9000

T ime, s
Gate Driver Left Chip Right Chip
DBC Base Heat Spreader

Experiment 13: Left Chip's Input of
5.3W

27

31

35

39

43

47

51

55

59

0 3000 6000 9000

T ime, s
Gate Driver Left Chip Right Chip
DBC Base Heat Spreader

Experiment 14: Left Chip's Input of
6.9W

27
30
33
36
39
42
45
48
51
54
57
60
63
66

0 3000 6000 9000

T ime, s
Gate Driver Left Chip Right Chip
DBC Base Heat Spreader

Figure 4.13. All experimental temperature profiles measured from five thermocouples in the IPEM.

4.3 Experimental System for Hight-Speed Thermal Response

In the previous experiment the process is essentially thermal, because the

temperature incidence on the electrical parameters is very insignificant, as it is observed

in Figures 4.4a and 4.5a, basically the power stays approximately constant throughout

the measurements. Then, in order to obtain the electrothermal interaction inside the

package it is necessary to suggest and implement a different experimental system type in

73

which the electrothermal interface can be observed and measured. Under this

experiment, the device thermal response will be measured due to a continuously applied

electrical stimulus. This way, accurate measurements of chip heating under high-power

transient conditions can be observed. However, at the experimental level it is very

difficult to acquire this parameter, since it is impossible to place a thermocouple in the

power device junction (point between the device and the copper metallization layer) due

to the component dimensions, or the module geometry configuration. To measure the

chip operation temperature there are few diverse methods: infrared microradiometry, the

use of liquid crystal, thermographic phosphors, among others. Nonetheless, all these

methods require the semiconductor chip to be exposed to chemical substance at its

surface. A simple method (that does not require the use of those substances) utilizes a

temperature-sensitive electrical parameter (TSEP) of the device as a thermometer [26,

27], given a single average temperature value for the chip, which is very appropriate in

this case.

This method consists of choosing a TSEP to obtain the device junction

temperature. Using the TSEP, the electrical measurement of the temperature is done in

two stages: the calibration phase and the measurement phase. In this case, the emitter-

base voltage of the MOSFET (IPEM’s power device) has been chosen as the TSEP, and

then the emitter-base voltage value is established at various MOSFET temperatures.

This is accomplished by an externally device heating (such as a temperature-controlled

hotplate) and measuring the emitter-base voltage with a constant current passing through

74

the chip. The constant current must be very small as it is assumed that the device is at

the same temperature as the hotplate which requires that no power be dissipated in the

device, or at least minimum power [27]. This is the calibration phase. A curve is

obtained from this phase, the MOSFET’s emitter-base voltage against its device

operation temperature. But the required curve is the thermal transient, which is obtained

in the next phase, the measurement phase.

In the measurement phase, the chip is self-heated by dissipating power at a much

larger power than that at which the calibration was done. In order to measure the

temperature, the device must be switched from the heating condition (high power) to the

measurement condition (the same low current and power at which the calibration was

done). Both phases of the high-speed thermal response were developed thanks to the

collaboration of Dr. Allen Hefner at the National Institute of Standard and Technology

(NIST).

4.3.1 Calibration Phase

The experimental system is composed of a data acquisition system (from

LabWindows/CVI), an oscilloscope, a waveform generator, a current generator in the

state-of-the-art (“Black Box”) designed at NIST, a temperature controller, power

supplies, and multimeters, as is presented in Figure 4.14.

75

(a)

(b)

Figure 4.14. Experimental testbed for the calibration phase of the high-speed thermal response developed

at NIST: (a) schematic of experiment; (b) picture of actual set-up.

IPEM

76

In essence, the calibration experiment operates in the following manner: the first

step is to set the input parameters (as frequency, wave amplitude, duty cycle, etc) at the

waveform generator through the data acquisition system (calibration program), as well

as other parameters in the remaining instruments. The previously defined wave is used

for the black box as trigger to generate the same current wave, but the current magnitude

must be manually fixed in each experimental sample. When the parameters in these

equipments are ready, a heat exchanger (placed under the hotplate) extracts the existing

heat in the IPEM until the chip operation temperature reaches the minimum temperature

established from the calibration program to the temperature controller. In other cases it

was necessary to warm up (using the DC-power supply of 100V) the hotplate to obtain

the required temperature. Now, with the temperature range fixed in the program and a

specific temperature interval (also defined in the program), from the minimum

temperature the voltage measurements are made (by means of a signal sent to the

oscilloscope, which takes the voltage values) for each temperature defined (when the

temperature controller read the temperature corresponding to the fixed value, through a

thermocouple placed in the IPEM, in the program automatically this temperature is

stored and voltage is read and stored). This process is repeated until the device operating

temperature reaches its maximum value fixed in the program (less than the boiling point

of water inside the heat exchanger), see Figure 4.14a. Similarly to the “transient ipem

program”, here the calibration curve values (voltage against temperature) are stored,

displayed and plotted in a computer window. These data can be extracted to analyze it in

an excel file.

77

Figure 4.15. Calibration data acquisition system program created by Parrilla et al. [26].

4.3.1.1 Data Acquisition System (Calibration Program)

This data acquisition system program was developed and presented by Parrilla et

al. in [26]. This program is used to obtain the voltage at the emitter-base of the IPEM’s

MOSFETs at different device operation temperatures. The changes in temperature are

done through a temperature controller and a 100VDC power supply and the module is

place in a close heater where is expected that the whole module will reach the same

temperature. Then the voltages are measured and saved. The calibration program panel

is shown in Figure 4.15. According to [26] and the Figure 4.15, the program description

is:

1) This blue box contains the display for the voltages measured.

4

3

2

1

5

78

2) What is included in this box are buttons to set the temperature of the

temperature controller (set temp) and to obtain the temperature measured by

the temperature controller (acquire temp). The Acquire Voltages button

obtains the module to a certain temperature and then measure voltages and

display them.

3) The text boxes are for the user to specify the first and last temperature at

which voltages will be measured; this is used to set the temperature

controller. The increment is the difference between the temperatures after the

initial temperature. By pressing the Loop button starts a cycle where the

temperature is varied and voltage is measured until the final temperature is

reached. Basically what it does is that wait until the next temperature is

reached and stays there the time indicated by the user. This is a way of

waiting for the whole module to be at the same temperature. Finally, the

voltages are measured and displayed. This is done for every temperature

reached.

4) Here the user set the voltages and the current that will be supplied by the DC

Power Supply.

5) In this box are the buttons for saving and loading the data and also for

exiting the program.

79

4.3.1.2 Results

The calibration curves must have a linear behavior, since in the experiment the

device voltage was increased proportional to a device operation temperature increase, as

it is indicated in [26]. Many calibration experimental samples were made, but some

measurements were neglected, because the resulting calibration curves had too many

fluctuating points and therefore such curves were unreliable. In some cases, some curves

had a shifting with respect to an existing curve at the same initial conditions of electrical

parameters and temperature (maybe because the instruments were not in a stable

operation point, or because connections between points and instruments were broken, or

because the controller could not take the reading of temperature well, etc), then those

curves were ignored.

-5.8

-5.3

-4.8

-4.3
20 30 40 50 60 70 80 90 100

Device's Operation Temperature, ºC

D
ev

ic
e'

s
Em

itt
er

-B
as

e
Vo

lta
ge

, V

100V-5A 50V-10A 50V-20A 100V-10A 100V-20A 200V-10A

(a)

80

-5.5

-4.8

-4.1
20 30 40 50 60 70 80 90 100

Device's Operation Temperature, ºC

D
ev

ic
e'

s
Em

itt
er

-B
as

e
Vo

lta
ge

, V

100V-10A 100V-2.5A 100V-5A 100V-7.5A
200V-2.5A 200V-5A 50V-5A

(b)

Figure 4.16. Calibration curves for: (a) left power device; (b) right power device.

For the left and right power devices, the number of obtained acceptable

calibration curves was of six and seven, respectively. The calibration curves for the

devices are presented in Figure 4.16. Here, as in [26], all curves tend to be parallel, with

approximately equal slopes. Both figures (“a” and “b”) shown that for high input power

conditions the curves have better linear behavior, whereas for low inputs the curves are

more fluctuating.

4.3.2 Transient Measurement Phase

In this stage, the same instruments employed in the calibration phase with the

exception of the 100VDC Power Supply and the Temperature Controller are used, as it is

observed in Figure 4.17.

81

Figure 4.17. Schematic of the experimental testbed for the thermal measurement phase of the high-speed
thermal response developed at NIST.

With a constant temperature of the hotplate (25ºC) and knowing the temperature

and voltage ranges obtained from the calibration phase for a determined initial condition

of voltage and current, it was possible to establish the required power pulse. For

example if a calibration measurement was made at 100V and 5A, then it is necessary to

define the voltage range, as it is shown in Figure 4.18 (in the figure, that curve

corresponds to the calibration curve for 100V and 5A), for that the voltage tip in the

oscilloscope do not exceed the fixed range, avoiding exceed the maximum operating

temperature for the device.

82

Figure 4.18. Example of the how to obtain the power pulse in the thermal measurement phase.

Excluding the oscilloscope and the DC power supply parameters, all initial

parameters of the instruments were set manually. Therefore, with 0V and 0A in the

sources, a pulse in the pulse generator is fixed, posterior it is fixed the current in the

specified values (in this case 5A) and then, considering the wave given by the

oscilloscope (making sure that this one did not exceed the fixed voltage range), the

voltage is increased in small increments in the source from 0V until an approximated

maximum value (for the example this value is approximately 100V). The objective was

to obtain a voltage transient curve near 300mV of wide but never reaching this value,

since when exceeding the 300mV the device could be burned. If the pulse is not enough

to obtain the maximum operation temperature given by the calibration curve, then it is

necessary to redefine the pulse (in others words, the frequency) and again set the current

and the power in the sources until an appropriate frequency is found that provides the

maximum operation temperature value of the device given by the calibration curve. For

the mentioned example, the strategy was to lower the frequency so that the time interval

-4.6

20

ºC

V

25 94

-4.3

0.3V of difference

83

in which the pulse was turned on was greater, with the intention of allowing more chip

heating in that time interval.

When the optimal wave was obtained for the voltage and temperature ranges

fixed in the calibration, then the oscilloscope data (voltage against time) is acquired

from the program developed in the CVI platform (thermal transient program). With

these data, using the thermal transient program, the transition between voltage and

temperature is done using the calibration curves. It is to say, each voltage value is

introduced in the calibration curve to interpolate it or to extrapolate it, according to the

case. The full C code is presented in Appendix E.

Figure 4.19. Thermal transient program created for the high-speed thermal response in the transient

measurement phase.

1

2

3

4

5

84

4.3.2.1 Data Acquisition System (Thermal Transient Program)

The data acquisition system used here is named the thermal transient program

and is presented in Figure 4.19 [28]. The structure of the thermal transient program is as

follows:

1) This box set the voltage and current in the DC power supply, and determine

the acquisition mode (as well as the sample numbers) of the signal that will

be read by the oscilloscope.

2) In this section the oscilloscope channels are turned on in order to establish

communication between the instrument and the computer. For each channel,

the scale of the data acquired from the equipment is defined here.

3) This part is used to load, display and save three types of data: current data

from oscilloscope, data file from oscilloscope, thermal file.

4) Here, the transition between the voltage data and the temperature data is

made. First it is necessary to obtain the desired calibration curve (using the

“ACQUIRE DATA CAL” button) to compare it with the measurement made

in the oscilloscope (which is accessed using the “ACQUIRE DATA OSC”

button). With the “TRANSIENT” button the change from voltage to

temperature is made, introducing each voltage value to the loaded calibration

curve for interpolation or extrapolation, and this way to acquire the

electrothermal transient.

5) This GUI section is used to exit off the program.

85

4.3.2.2 Results

From the measurement, phase two type of curves are obtained, one electrical and

one thermal. In the electrical curves, the MOSFET’s transient emitter-base voltages are

acquired from several electrical conditions. In the thermal case, the curves are acquired

making the interface between the calibration information and the electrical

measurements through the “thermal transient program”. In Figures 4.20 and 4.21 all

voltage measurements for the left and right power devices (MOSFETs) are given. Each

plot includes a transient voltage zoom (expanded from the oval) which demonstrates

the temperature incidence on the electrical parameters (in this case the MOSFET’s

emitter-base voltage).

(a)

100V - 5A
-4.8

-4.2

-3.6

-3
0 0.001 0.002 0.003

Time, sec

D
ev

ic
e'

s
Em

itt
er

-B
as

e
Vo

lta
ge

, V

-4.76

-4.72

-4.68

-4.64
0.0003 0.0013 0.0023

86

(b)

(c)

Figure 4.20. Left MOSFET’s transient emitter-base voltages with input electrical parameters of: (a) 100V-

5A; (b) 100V-10A; (c) 200V-10A.

100V - 10A
-5.5

-5

-4.5

-4

-3.5

-3

-2.5
0 0.001 0.002 0.003

Time, sec

D
ev

ic
e'

s
Em

itt
er

-B
as

e
Vo

lta
ge

, V

-5.15

-5.1

-5.05

-5

-4.95

-4.9
0.0007 0.0014 0.0021 0.0028

200V - 10A
-6

-5

-4

-3

-2

-1

0
0 0.0004 0.0008

Time, sec

D
ev

ic
e'

s
Em

itt
er

-B
as

e
Vo

lta
ge

, V

-5.1

-5

-4.9

-4.8

-4.7
0.00006 0.00016 0.00026 0.00036 0.00046 0.00056

87

(a)

(b)

(c)

100V - 10A
-5.5

-5

-4.5

-4

-3.5

-3

-2.5
0 0.0005 0.001 0.0015 0.002

Time, sec

De
vi

ce
's

 E
m

itt
er

-B
as

e
V

ol
ta

ge
, V

-5.4

-5.3

-5.2

-5.1
0.00016 0.00046 0.00076 0.00106 0.00136

100V - 2.5A
-4.8

-4.5

-4.2

-3.9

-3.6

-3.3

-3
0 0.005 0.01 0.015 0.02

Time, sec

De
vi

ce
's

 E
m

itt
er

-B
as

e
V

ol
ta

ge
, V

-4.65

-4.6

-4.55

-4.5

-4.45

-4.4
0.0014 0.0044 0.0074 0.0104

100V - 5A
-5

-4.5

-4

-3.5

-3

-2.5
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

Time, sec

De
vi

ce
's

 E
m

itt
er

-B
as

e
V

ol
ta

ge
, V

-4.9

-4.8

-4.7

-4.6
0.0006 0.0016 0.0026 0.0036 0.0046 0.0056

88

(d)

(e)

(f)

100V - 7.5A
-5.5

-5

-4.5

-4

-3.5

-3

-2.5
0 0.001 0.002 0.003 0.004

Time, sec

De
vi

ce
's

 E
m

itt
er

-B
as

e
V

ol
ta

ge
, V

-5.15

-5.1

-5.05

-5

-4.95

-4.9

-4.85
0.0003 0.0009 0.0015 0.0021 0.0027

200V - 2.5A
-5

-4.5

-4

-3.5

-3

-2.5
0 0.002 0.004 0.006 0.008

Time, sec

De
vi

ce
's

 E
m

itt
er

-B
as

e
V

ol
ta

ge
, V

-4.65

-4.6

-4.55

-4.5

-4.45

-4.4

-4.35

-4.3
0.0006 0.0018 0.003 0.0042 0.0054

200V - 5A
-5.2

-4.8

-4.4

-4

-3.6

-3.2

-2.8

-2.4
0 0.0005 0.001 0.0015 0.002

Time, sec

De
vi

ce
's

 E
m

itt
er

-B
as

e
V

ol
ta

ge
, V

-5.1

-5

-4.9

-4.8

-4.7

-4.6

-4.5
0.0001 0.0005 0.0009 0.0013 0.0017

89

(g)

Figure 4.21. Right MOSFET’s transient emitter-base voltages with input electrical parameters of: (a)
100V-10A; (b) 100V-2.5A; (c) 100V-5A; (d) 100V-7.5A; (e) 200V-2.5A; (f) 200V-5A; (g) 50V-5A.

Figures 4.22 and 4.23 show all transient temperature curves obtained from the

calibration and voltage data (Figures 4.16, 4.20 and 4.21) for left and right chip,

respectively. The number of curves of voltage and temperature for the left chip is less

than for the right chip because during the experiment the left chip was burned and only

three curves of each type were obtained. The next step is to compare these data with the

electrothermal model output. This task was developed using a commercial circuit

simulator and the details are shown in the next chapter.

50V - 5A
-5

-4.5

-4

-3.5

-3
0 0.005 0.01 0.015 0.02

Time, sec

De
vi

ce
's

 E
m

itt
er

-B
as

e
V

ol
ta

ge
, V

-4.95

-4.9

-4.85

-4.8

-4.75

-4.7
0.0016 0.0046 0.0076 0.0106

90

100V - 5A
20

30

40

50

0.0003 0.0009 0.0015 0.0021 0.0027
Time, sec

C
hi

p
O

pe
ra

tio
n

Te
m

pe
ra

tu
re

, º
C

(a)

100V - 10A
20

28

36

44

52

60

68

76

84

0.0005 0.001 0.0015 0.002 0.0025 0.003
Time, sec

C
hi

p
O

pe
ra

tio
n

Te
m

pe
ra

tu
re

, º
C

(b)

200V - 10A
20

35

50

65

80

95

0 0.00005 0.0001 0.00015 0.0002 0.00025 0.0003 0.00035 0.0004 0.00045 0.0005
Time, sec

C
hi

p
O

pe
ra

tio
n

Te
m

pe
ra

tu
re

, º
C

(c)

Figure 4.22. Left device’s transient operation temperature with input electrical parameters of: (a) 100V-
5A; (b) 100V-10A; (c) 200V-10A.

91

100V - 10A
20

30

40

50

60

70

80

90

100

1.00E-04 3.00E-04 5.00E-04 7.00E-04 9.00E-04 1.10E-03 1.30E-03 1.50E-03
Time, sec

C
hi

p
O

pe
ra

tio
n

Te
m

pe
ra

tu
re

, º
C

(a)

100V - 2.5A
20

30

40

50

60

70

80

1.00E-03 3.00E-03 5.00E-03 7.00E-03 9.00E-03 1.10E-02 1.30E-02
Time, sec

C
hi

p
O

pe
ra

tio
n

Te
m

pe
ra

tu
re

, º
C

(b)

100V - 5A
20

32

44

56

68

80

92

5.00E-04 1.50E-03 2.50E-03 3.50E-03 4.50E-03 5.50E-03
Time, sec

C
hi

p
O

pe
ra

tio
n

Te
m

pe
ra

tu
re

, º
C

(c)

92

100V - 7.5A
0

15

30

45

60

75

3.00E-04 9.00E-04 1.50E-03 2.10E-03 2.70E-03
Time, sec

C
hi

p
O

pe
ra

tio
n

Te
m

pe
ra

tu
re

, º
C

(d)

200V - 2.5A
20

35

50

65

80

95

6.00E-04 1.40E-03 2.20E-03 3.00E-03 3.80E-03 4.60E-03 5.40E-03 6.20E-03
Time, sec

C
hi

p
O

pe
ra

tio
n

Te
m

pe
ra

tu
re

, º
C

(e)

200V - 5A
20

35

50

65

80

95

1.00E-04 4.00E-04 7.00E-04 1.00E-03 1.30E-03 1.60E-03 1.90E-03
Time, sec

C
hi

p
O

pe
ra

tio
n

Te
m

pe
ra

tu
re

, º
C

(f)

93

50V - 5A
20

45

70

1.80E-03 3.40E-03 5.00E-03 6.60E-03 8.20E-03 9.80E-03 1.14E-02 1.30E-02
Time, sec

C
hi

p
O

pe
ra

tio
n

Te
m

pe
ra

tu
re

, º
C

(g)

Figure 4.23. Right device’s transient operation temperature with input electrical parameters of: (a) 100V-
10A; (b) 100V-2.5A; (c) 100V-5A; (d) 100V-7.5A; (e) 200V-2.5A; (f) 200V-5A; (g) 50V-5A.

94

CHAPTER 5

ELECTROTHERMAL MODEL IMPLEMENTED IN SABERTM SIMULATOR

5.1 Introduction

In order to acquire the electrothermal performance of the Generation II IPEM,

the LTCM model was implemented in SABERTM, a circuit simulator capable of

coupling electrical and thermal signals, between others. Its versatility and ease of model

implementation makes it an attractive platform for the simulation of the electrothermal

interactions inside the electronic package. It also eliminates the process of having to

exchange data between different simulations, because both electrical and thermal

models run in the same simulator.

SABERTM simulator is a mathematical engine that solves the network of

equations represented by models and their interconnections in a circuit or system.

Simulator access is via a highly-interactive and easy-to-use graphical user interface for

analyzing designs, operating the simulator, and obtaining and viewing results. This

simulator is designed to perform simulations based on very few preconceptions about

the target system. Consequently, the simulator can analyze designs containing multiple

technologies, using the analysis units native to these technologies:

1) Electronic.

2) Power electronics.

 95

3) Thermal management.

4) Electro-mechanical.

5) Mechanical.

6) Electro-optical.

7) Optical.

8) Hydraulic.

9) Control systems.

10) Sample-data systems.

The simulator has an extensive list of models for different types of component

included in its parts library. All SABER’s TM models were written in MAST language,

the unique programming language reserved for this simulator. MAST is a mixed-signal

(analog-digital) hardware description language (HDL) that allows the description (or

modeling) of hardware that performs a continuous-time function, for example electrical

sources, resistors, transistors, capacitors, hydraulic and digital systems, among others.

When a device is not contained in the simulator’s parts library and if the device

behavior can be expressed in first order mathematical terms, SABERTM simulator can

model and simulate it (up to the system level) with an accurate representation of

interactivity between the technologies. Given this capability, models can be created

directly using the actual equations and relationships that govern the behavior of devices,

 96

not only electrical macromodel equivalents. With SABERTM simulator, any mix of

technologies can be simulated, and all simulation results will be presented with their

corresponding units. The new model (of analog system or element) also must be built in

MAST language, which can be defined in terms of nonlinear “lumped” algebraic or

differential equations that eventually will be solved by the simulator using numerical

method (the simulator contain two numerical solution methods: Newton-Raphson and

Katzenelson, in this case the most appropriate to solve our set of equations is Newton-

Raphson). Each component or system model (new or existing) must be stored in a text

file named template (which have a specific internal structure), in which is included the

model code in MAST language, in order that the simulator can recognize it. In addition,

each component or system’s template must be associated to a symbol (new or existing)

in the SABER’s TM graphical user interface (Sketch tool).

5.2 LTCM Model Template

The initial task is to convert the thermal model at hand into a MAST template.

The FORTRAN program, presented in Chapter 3, can be used because SABERTM can

use foreign routines as extensions of the MAST language. This means that the simulator

uses the FORTRAN file as a function in a MAST template. However, this option is

most complicated than building the new template based uniquely in MAST language.

In order to begin, the template file must be identified by the form filename.sin so

that the simulator may read it. Also a symbol must be created for the template with the

 97

same connections stated in the first line of the template which is described in the

following paragraph. This symbol is presented in Figure 5.1.

Figure 5.1. Symbol of the IPEM’s LTCM model.

The script commences with the template definition or the header (see Figure

5.2). This is a line necessary in the script for SABERTM to be able to identify the

connections of the template, and to identify the template to a symbol.

Figure 5.2. Template header.

The header starts with the word template and then the name of the template, in

this case ltcm_ipem. Followed by this and separated by spaces are the names of the

 98

connections to the template, as they would appear named on the symbol. The IPEM’s

template model have two connections or terminals, the top terminal is employed by the

template as input point to the model of the external power from the devices or sources,

the bottom terminal is used to obtain the constant temperature from the assumed

hotplate (the hotplate is assumed as a temperature constant source at 25ºC). After this

first line, the template connections are defined. In this template all connections are

thermal and expressed in degrees Celsius, therefore the connections are declared as

thermal_c. This is so because in those terminals there are power-temperature interaction

with other components, this connection declaration include, watts as power unit.

Declaring a thermal connection such as the above implies that the simulator will

automatically declare through and across values for these connections. This will be

described more in detail ahead. The template body is constituted by a parameters

declaration (both numbers and variables) and three sections, each one with a specific

function (the sections can be written in any order, because the simulator can identify and

execute them according to its internal structure). The sections are: values, control and

equation section.

Values Section

This section is used to transform variables into the form needed in the equation

section, as it is shown in Figure 5.3. In this case, in the value section the heat transfer

coefficients are calculated. In this section, also a terminal’s external value is assigned to

variables defined into the template, that later will be used in other sections, like in the

 99

case of the terminal named isotherm, which passes its value to a variable defined before

(Tisoth).

Figure 5.3. Template value section.

Control Section

This section declares specific information to the simulator that does not fit in

other template and that will be used by the simulator to expand the created model. Here,

the initial conditions are defined for the solution of the model (see Figure 5.4).

Figure 5.4. Template control section.

 100

Equation Section

This is the most important section of the template. This part describes the analog

characteristics at the terminals of the element being modeled, it is to say, this section

describes the dependent through variable (power) of the system in terms of the across

variable (temperature), according to Kirchoff’s circuit law. Here, the model is

developed and it also defines its external power input, as is presented in Figure 5.5.

Figure 5.5. Template equation section.

The full Generation II IPEM model code in MAST modeling language is

accessible in the Appendix F. The model implemented in the simulator was corroborated

comparing the results with the model developed in FORTRAN (see Figure 5.6). While

the FORTRAN model is solved using Runge-Kutta, the SABER model uses Newton-

Raphson to solve the equations, and there is a very small discrepancy among results.

 101

(a)

(b)

Figure 5.6. Comparison between FORTRAN and SABERTM solution for the chips: (a) left; (b) right.

 102

5.3 Simulated System Electrothermal Coupling

The second step in the development of the electrothermal model is the

construction of an electrical circuit that holds similar characteristics to those of the high-

speed thermal response experiment. However, a good option for simulating the

experiment’s similar condition is to use a schematic as that one shown in Figure 5.7.

This schematic suggests that the electrothermal modeling is “one way”, in other words,

the full interaction between the electrothermal parameters is incomplete. The thermal

model has no incidence on the pulse generator’s model, but the power supplied by this

electrical component affects the IPEM’s transient temperatures. A fully electrothermal

modeling of any package would have interaction between the electrical parameters

(provided for electrical component models) and the component temperatures (from the

thermal models) making it a cyclic process.

Figure 5.7. Simulated schematic in SABERTM.

 103

The coupling of the electrical components with the thermal model is quite

simple. A pulse is directly applied to the thermal model (instead of to the devices). The

thermal connections of the thermal power source – pulse (this SABER’s TM element is a

combination of a power supply and a pulse generator) are connected to the thermal

connections of the ltcm_ipem element (that contain the reduced-order thermal model).

The hotplate is simulated as a constant temperature source (at 25ºC), and connected to

the isotherm terminal of the thermal model. The remaining connections of the thermal

model are connected to thermal ground to serve as reference for the temperature signals

generated in the model.

5.4 Comparison of the Simulation with Experimental Data

For the right power device, the experimental curves are more adequate to

validate the simulations at the corresponding values of 100V-2.5A, 100V-5A, 200V-

2.5A and 200V-5A. The comparisons between simulation and experimental data are

presented in Figures 5.8, 5.9, 5.10 and 5.11, respectively. The comparisons are very

favorable, maybe an inclusion of the device in the simulation could have improved the

transients. It is evident that for low power the trajectory of the curves are more different,

but for medium and high power the curves compare very well, in fact all curves achieve

the experimental steady state temperature.

 104

 Figure 5.8. SABERTM and experimental comparison for the right semiconductor device using inputs of
1Hz, 100V and 2.5A.

 Figure 5.9. SABERTM and experimental comparison for the right semiconductor device using inputs of
2Hz, 100V and 5A.

 105

Figure 5.10. SABERTM and experimental comparison for the right semiconductor device using inputs of

2Hz, 200V and 2.5A.

Figure 5.11. SABERTM and experimental comparison for the right semiconductor device using inputs of

6Hz, 200V and 5A.

106

CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary

The major findings from this research study are the following:

• A simplified reduced-order model has been developed based on LTCM, using the

energy balances and physical and geometry properties of each lumped. The model

consists of a set of nonlinear differential equations, which were discretized using

fourth-order Runge-Kutta method. This solution has been programmed using

FORTRAN language.

• The model developed in FORTRAN establishes, with a satisfactory degree of

agreement, the dynamic temperature variations inside the Generation II IPEM.

• Comparisons between a commercial software tool and the LTCM model reveal that

the model is very truthful and useful to predict the thermal behavior of the working

package.

• The thermal validation, with constant power input, is made using a slow thermal

response testbed. The process in the experiment is merely thermal, because the

electrical parameters do not have some thermal influence on them.

• The IPEM’s electrical performance can be obtained using existing description of

electrical components in a circuit simulator. The coupling of the LTCM model with

component electrical models can also be made in the simulator platform.

 107

• The electrothermal interaction within the working IPEM requires the experimental

validation.

• The electrothermal validation, with dynamic interaction between thermal and

electrical parameters, implicates the use of a fast thermal response experiment that

includes an efficient data acquisition system.

6.2 Conclusions

A reduced-order model for the Generation II Integrated Power Electronics

Modules (IPEM), based on the LTCM, has been developed in this work. IPEMs

represent the new generation of power electronic modules that are significantly smaller

in size and capable of handling large current densities. This scalability has brought new

challenges in thermal management that requires immediate attention. One of the main

challenges is to generate better simulation and design tools so they can be more efficient

computationally without sacrificing reliability and accuracy.

The model was validated against a full 3-D finite volume approach

demonstrating that the proposed methodology is very efficient and accurate. The

validation of LTCM model using FLOTHERMTM showed the reduced-order model

advantages on the software tool. The computational time is visibly reduced, as well as

the problem definition in terms of geometry construction, heat transfer, and grid

solution. The new methodology established in this work provides a fast and accurate

tool to quickly analyze the thermal behavior of any IPEM.

 108

Two data acquisition system were developed (in UPRM and NIST), using

LabWindows/CVI platform, to implement the low- and high-speed thermal response

experiments. These programs can be used to obtain the transient temperature of any

electronic package (obviously, including the IPEMs). The experimental set ups have

also been built to acquire the experimental data used in the LTCM model validations.

Using the low-speed thermal response experiment data, comparisons between

experimental and FORTRAN-expansion simulation data have been made. The thermal

model with constant power input compare favorably with the experiment at low and

medium power input.

A full electrothermal model for the IPEM could be obtained utilizing the

SABERTM’ electrical component models library and the reduced-order thermal model

implemented in the simulator. The resulting electrothermal coupling’s data compare

favorably with the experimental data (which represent the dynamic electrothermal

interface of the devices within the package) from the high-speed thermal response

testbed.

An important thermal model issue is the effect of the thermal contact resistance

on the model operation. When the model is used with the purpose of obtaining a thermal

transient based only in a thermal process (this is, there are not external factors that

influences the model solution, for instance, some electrical parameter), those resistance

must have high values, as it happens in the slow thermal experiment, where the transient

 109

is obtained increasing the electrothermal parameters in small increments resulting in a

purely thermal process. This way, the model requires that the lumped number agrees

with the required volumes so that such resistances have sufficiently high values. The

contrary case is when there are external factors that incident on the model (a dynamic

power input), as it happens in the fast thermal experiment, where the temperature have a

effect on the device voltage, and this one vary constantly in a short enough time interval,

then in order that the model can capture the thermal transient this one must have

relatively low resistances. Low resistances can be obtained increasing the lumped’s

contact surfaces (in the contact surface parameter) or increasing the lumped’s volumes

(in the heat spreading effects parameter).

6.3 Recommendations

In case that future research continues along the lines of the topic presented in

this thesis, the following recommendations are suggested that could improve the quality

of the results to be obtained.

• Improve the LTCM model resolution by increasing the lumped numbers to obtain a

better temperature distribution of the IPEM.

• Develop an IPEM’s general electrical model that can be implemented in any

simulator and/or platform, and this way the full electrothermal can be obtained.

 110

• Create an interface between the reduced-order thermal model and some M-CAD tool

to automate and facilitate the power electronic package division in lumped

(according to the Biot parameter validation) and the geometry and physical

properties extraction process.

• Improve the experimental curves from high-speed thermal response testbed.

Develop more calibration curves for the left chip.

• Include the MOSFET’s electrical model in the SABERTM simulation to obtain better

curves to compare with the experimental data, like the transient voltages that allow

the electrical validation of the electrothermal model.

111

BIBLIOGRAPHY

1. Hefner Jr. A. R., 1994, “A Dynamic Electro-Thermal Model for the IGBT”, Industry

Applications, IEEE Transactions on, 30, Issue 2, pp. 394–405.

2. Hefner A. R. and Blackburn D. L., 1992, “Simulating the Dynamic Electro-Thermal

Behavior of Power Electronic Circuits and Systems”, Computers in Power
Electronics, IEEE Workshop on 1992, pp. 143-151.

3. Hefner A. R. and Blackburn D. L., 1994, “Thermal Component Models for

Electrothermal Network Simulation”, Components, Packaging, and Manufacturing
Technology, Part A, IEEE Transactions on [see also Components, Hybrids, and
Manufacturing Technology, IEEE Transactions on], pp. 413-424.

4. Rodriguez J., Parrilla Z., Vélez-Reyes M., Hefner A., Berning D., Reichl J. and Lai

J., 2002, “Thermal Component Models for Electrothermal Analysis of Multichip
Power Modules”, Industry Applications Conference, 37th IAS Annual Meeting,
Conference Record of the , pp. 234-241, vol. 1.

5. Bikdash M., Pang Y. P. and Scott E. P., 2002, “Generation of Equivalent Models

from Simulation Data of a Thermal System”, ASME International Mechanical
Engineering Congress & Exposition, pp 323-330, vol. 1.

6. Codecasa L., D’Amore D. and Maffezzoni P., 2002, “Modeling the Thermal

Response of Semiconductor Devices through Equivalent Electrical Networks”,
Circuits and Systems - I, IEEE Transactions on, 49, Issue 8, pp. 1187-1197.

7. Tummala R. R., 2001, “Fundamentals of Microsystems Packaging”, McGraw-Hill,

pp. 239-262.

8. Holman J. P., 2001, “Heat Transfer”, McGraw-Hill Science/Engineering/Math,

Ninth edition, pp. 226-244

9. Incropera F. and DeWitt D., 2002, “Introduction to Heat Transfer”, John Wiley and

Sons, Fourth edition, pp. 751-766.

10. Mitchell F. H. Jr. and Mitchell F. H., 1988, “Introduction to Electronic Design”,

Prentice Hall, pp. 259-268.

11. Dorf R. and Svoboda J., 1996, “Introduction to Electric Circuit”, John Wiley and

Sons, Third edition, pp. 154-205.

112

12. Malik N., 1995, “Electric Circuit: Analysis, Simulation and Design”, Prentice Hall,
pp. 245-268.

13. Liang Z., Lee F. C., Wyk V. and Lu G. Q., 2001, “Embedded Power Technology for

IPEMs Packaging Applications”, Applied Power Electronics Conference and
Exposition, APEC 2001. Sixteenth Annual IEEE, pp. 1057-1061 vol.2.

14. Chen J., Pang Y. F., Boroyevich D., Scott E. and Thole K., 2002, “Electrical and

Thermal Layout Design Considerations for Integrated Power Electronics Modules”,
Industry Applications Conference, 37th IAS Annual Meeting, Conference Record of
the , pp. 242-246 vol.1.

15. Selberherr S., 1984, “Analysis and Simulation of Semiconductor Devices”,

Springerverlang, pp. 123-138.

16. Hsu J. T. and Vu-Quoc L., 1996, “A Rational Formulation of Thermal Circuit

Models for Electrothermal Simulation – Part I: Finite Element Method”, Circuit and
Systems - I, IEEE Transactions on, 43, Issue 9, pp 721-732.

17. Hsu J. T. and Vu-Quoc L., 1996, “A Rational Formulation of Thermal Circuit

Models for Electrothermal Simulation - Part II: Model Reduction Techniques”,
Circuit and Systems - I, IEEE Transactions on, 43, Issue 9, pp 733-744.

18. Lee S. S. and Allstot D., 1993, “Electrothermal Simulation of Integrated Circuits”,

IEEE Journal of Solid-State Circuits, 28, Issue 12, pp. 1283-1293.

19. Min Y. J., Palisoc A. and Lee C. C., 1990, “Transient Thermal Study of

Semiconductor Devices”, Components, Hybrids, and Manufacturing Technology,
IEEE Transaction on, 13, Issue 4, pp. 980-988.

20. Chen J. Z., Wu Y., Borojevich D. and Bohn J. H., 2000, “Integrated Electrical and

Thermal Modeling and Analysis of IPEMs”, Computers in Power Electronics, 2000,
COMPEL 2000, The 7th Workshop on, pp. 24–27.

21. Adams V. H., Joshi Y. and Blackburn D. L., 1999, “Three-Dimensional Study of

Combined Conduction, Radiation, and Natural Convection From Discrete Heat
Sources in a Horizontal Narrow-Aspect-Ratio Enclosure”, Journal of Heat Transfer,
121, pp. 992-1001.

22. Adams V. H., Blackburn D. L., Joshi Y. K. and Berning D. W., 1997, “Issues in

Validating Package Compact Thermal Models for Natural Convection Cooled
Electronic Systems”, Components, Packaging, and Manufacturing Technology, Part
A, IEEE Transactions on [see also Components, Hybrids, and Manufacturing
Technology, IEEE Transactions on] ,Volume: 20 , Issue: 4 , pp. 420-431.

113

23. Digele G., Lindenkreuz S. and Kasper E., 1997, “Fully Coupled Dynamic
Electrothermal Simulation”, Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on , Issue: 3 , pp. 250 – 257, vol. 5.

24. Chapra S. C and Canale R. P., 1999, “Numeric Method for Engineers”, McGraw

Hill, Second edition, pp. 159-168.

25. Yovanovich M. M., Culham J. R. and Teertstra P., 1997, “Calculating interface

resistance”,
http://www.electronicscooling.com/Resources/EC_Articles/MAY97/article3.htm

26. Parrilla Z., Rodriguez J.J., Hefner A., Velez-Reyes M. and Berning D., 2002, “A

Computer-Based System for Validation of Thermal Models for Multichip Power
Modules”, Computers in Power Electronics, Proceedings, 2002 IEEE Workshop
on, pp. 42 – 46.

27. Blackburn D. L., 1988, “A Review of Thermal Characterization of Power

Transistors”, Semiconductor Thermal and Temperature Measurement Symposium,
SEMI-THERM IV, Fourth Annual IEEE, pp. 1-7.

28. Berning D., Reichl, J., Hefner A., Hernandez M., Ellenwood C. and Lai J. S., 2003,

“High Speed IGBT Module Transient Thermal Response Measurements for Model
Validation”, Industry Applications Conference, 38th IAS Annual Meeting.
Conference Record of the , pp. 1826 – 1832, vol.3.

29. Khalid S. F., 2002, “Advanced Topics in LabWindows/CVI”, National Instrument

Virtual Instrumentation Series, Prentice Hall, pp. 35-243.

30. FLOTHERM User Manual Version 3.2, Flomerics, Ltd., Marlborough, MA,

http://www.flomerics.com

31. Saber Designer User Guide Release 5.1, Analogy Inc., Beaverton, OR,

http://www.analogy.com

 114

APPENDIX A

DIMENSIONS AND CALCULATION OF SOME PROPERTIES USED IN THE
THERMAL MODELING

A.1 Generation II IPEM’s Dimensions

Figure A.1. Identification of layer materials and thicknesses.

1 2 3
4 5

6 7

8 9
10 11

12

13

14

15

16
17

18 19

42
41

40

393837
36

2827
2625

2423
22

2120

3534
3332

313029

50

49
48

47
4645 44

43

57

56555453

5251

64

636261
60

58

59

7372

7170
6968

6766

65

74

Figure A.2. Generation II IPEM’s structural schematic.

x

y

 115

Table A.1. Coordinates (x, y, z) for the Locations of the IPEM Layout Schematic
Depicted in Figure A.2. (All dimensions are given in centimeters)

 Coordinates Coordinates

Point x y z Point x y z
1 0.0000 0.0000 0.0762 38 1.4732 1.1491 0.2159
2 0.3048 0.0000 0.1892 39 1.5953 1.1760 0.1029
3 2.8448 0.0000 0.1892 40 0.6098 1.2268 0.1892
4 0.3048 0.1346 0.2159 41 1.4732 1.2888 0.2159
5 1.4478 0.1346 0.2159 42 1.4937 1.2268 0.1892
6 0.0508 0.2032 0.1029 43 1.7475 1.2888 0.2159
7 1.5956 0.2032 0.1029 44 0.6096 1.3472 0.2159
8 0.0508 0.3061 0.2159 45 0.0508 1.4277 0.2159
9 0.3048 0.3061 0.2159 46 0.3048 1.4277 0.2159

10 0.4572 0.3251 0.2159 47 0.4064 1.4277 0.2159
11 0.6098 0.3048 0.1892 48 1.3462 1.4412 0.2159
12 1.4478 0.3251 0.2159 49 1.7475 1.4412 0.2159
13 1.4937 0.3048 0.1892 50 0.0508 1.7363 0.1029
14 0.6096 0.4244 0.2159 51 0.3184 1.7363 0.1029
15 1.7475 0.4244 0.2159 52 1.3462 1.6698 0.2159
16 1.3462 0.5260 0.2159 53 0.0508 1.8417 0.1029
17 1.7475 0.5260 0.2159 54 0.3184 1.8417 0.1029
18 1.7983 0.4895 0.2527 55 0.6604 1.8324 0.2159
19 2.6492 0.4895 0.2527 56 1.2395 1.8324 0.2159
20 0.0508 0.7125 0.2159 57 0.3048 1.8527 0.2159
21 0.3048 0.7112 0.2159 58 0.3556 1.8527 0.2159
22 1.3462 0.7571 0.2159 59 0.0508 1.9373 0.2159
23 0.0508 0.8147 0.1029 60 0.3048 1.9373 0.2159
24 0.3567 0.8147 0.1029 61 0.5348 1.9811 0.1029
25 0.0508 0.9197 0.1029 62 0.6098 1.9456 0.1892
26 0.2911 0.9197 0.1029 63 1.4937 1.9456 0.1892
27 0.6096 0.9146 0.2159 64 1.5953 1.9811 0.1029
28 1.1887 0.9146 0.2159 65 0.5348 2.0697 0.1029
29 0.0508 1.0213 0.2159 66 0.0508 2.3437 0.2159
30 0.3048 1.0213 0.2159 67 0.3048 2.3437 0.2159
31 0.3556 1.0213 0.2159 68 0.0508 2.4513 0.1029
32 0.6098 1.0236 0.1892 69 0.5348 2.4513 0.1029
33 1.4937 1.0236 0.1892 70 1.7983 2.5977 0.2527
34 0.5588 1.0744 0.1029 71 2.6492 2.5977 0.2527
35 1.5956 1.0744 0.1029 72 0.0000 2.7315 0.0762
36 0.5047 1.1760 0.1029 73 0.3048 2.7315 0.1892
37 0.6096 1.1491 0.2159 74 2.8448 2.7315 0.1892

 116

A.2 Calculation of Properties used in the Modeling

Some parameters can be estimated directly from the IPEM’s dimensions, such as

the diverse areas and volumes, the transversal length for the heat transfer coefficient

estimation, the equivalent length for the Biot number evaluation, among others. Other

parameters must be calculated from some expression, such as contact surface resistance,

the heat spreading effect resistance, the geometry factors for the radiation, , among

others.

Thermal contact resistance

Five resistances were given by Pang in [14], these resistance are of the type of

thermal coupling and correspond to these one: the interface between the gate driver and

the ceramic frame (R1-9), the interface between the silicon chips and the ceramic frame

(R2-9 and R3-9), the interface between silicon chips and the etched copper trace (R2-8 and

R3-8). The remaining resistances are calculated from the equations 3.20, 3.21 and 3.22.

The following example shows how to calculate the resistances associated to the

interfaces between the silicon chips and the copper metallization layers (R2-4 and R3-6).

First, the contact surface resistance is calculated using the Equation 3.20, where Acont. =

3.49x10-5 m2, kSi = 124 W/m.K, kCu = 386 W/m.K, m = 0.24, σ = 2.86x10-6 m, (P/Hc) =

1.5x10-2, kf = 28x10-3 W/m.K, Y = 3.78x10-7 m and M = 3.0049x10-7 m. From Equation

3.20, these resistances are:

 117




















−

+














σ








+

= −
−−

MY
k

H
Pm

k k
kk

2.5

1/A
 R R

f

95.0

cCuSi

CuSi

42
63 .cont42 .cont

Substituting the corresponding values,

() 















−

+














+

=

−
−

−

−

m)10x0049.3(3.78x10
 W/m.K28x1010x5.1

m10x86.2
0.24

 W/m.K386)(124
(W/m.K) 386)*(1242.5

)m1/(3.49x10 R

77-

3-
95.02

6

2

2-5

42cont

K/W 9.27 R R 63 .cont42 .cont == −−

The same values of the effective mean absolute asperity slope of the interface

(m), thus as effective surface roughness (σ), the relationship between the contact

pressure and the surface microhardness (P/Hc) (this parameter is named the relative

contact pressure), the thermal conductivity of the air in the gap (kf), the effective gap

thickness (Y) and the gas-surface parameter (M) (this parameter represent the

rarefaction effects), are used in order to find the remaining resistances. Now, the

resistance by heat spreading effects must be determined from the Equation 3.21, where

∆xSi = 4.45x10-3 m and ∆xCu = 1.27x10-3 m, this way,








 ∆
+

∆
==

−
−−

Cu

Cu

Si

Si

42
63 spreader42 spreader k

 x
k

 x
A

1RR









+=

−−

− K.m/W 386
 m10x27.1

K.m/W 124
m10x45.4

m3.49x10
1R

33

25-42 spreader

K/W 1.12 R R 63spreader42 spreader == −−

 118

The total thermal contact resistance is calculated using the Equation 3.22, then:

63/42 spreader63/42 cont6-342 R R RR −−−−− +==

W/K)12.127.9(RR 63-42 +==−

W/K 39.10 RR 63-42 ==−

The values of all resistances by thermal contact resistance are consigned in the

Table 3.3.

Geometry factors

All geometry factors of the IPEM under study are given in the Table 3.3. In

order to facilitate the calculations of these parameters in the model, in the Figure A.3 the

areas “A” and “B” have been neglected, because, in comparison with the other areas

involved, these ones are very smalls.

Figure A.3. Calculations of some geometry factors (F21, F31, F12, F13, F1∞, F2∞ and F3∞).

Gate Driver (lumped 1)
Area “A” (1.43x10-6m2)

Left Chip
 (Lumped 2)

Right Chip
 (Lumped 3)

Area “B” (2.25x10-6m2)

2.108x10-2m

6.77x10-5m

2.54x10-4m

8.84x10-3m
7.19x10-3m 7.19x10-3m

 119

If the two chips and the area “B” are considered as a single area (which can be

named “Achips+B”), then, using Figure A.3 and the corresponding curves to the geometry

factor for perpendicular rectangles with a common edge (see Figure A.4), it is possible

to find some factors. This way,

1.0F 42.0
10x108.2
10x84.8

X
Y and 012.0

10x108.2
10x54.2

X
Z

1-B)(chips2

3

2

4

=⇒==== +−

−

−

−

Figure A.4. Geometry Factor for Perpendicular Rectangles with a Common Edge from Incropera in [9]
(Figure 13.6, pp. 755)

Since the area “B” can be ignored, then the area Achips+B = Achips = A2 + A3, and

A2 = A3, therefore Achips+B = 2A2. Similarly, it can be considered that the half of the

energy that leaves area “Achips+B” towards the gate driver (lumped 1), corresponds to the

 120

energy that leaves each chips (left chip-lumped 2 and right chip-lumped 3) and flows to

the gate driver, this is

0.05(0.1)
2
1FFF

2
1

13121)Bchips(==== −−−+

Using the reciprocity relation,

49.0
A
FAFF

1

122
3121 === −

−−

By the summation rule,

213121-1111312111 F21)FF(1F 0F where,1FFFF −−−∞−∞−−−− −=+−=⇒==+++

02.0)49.0(21F1 =−=∞−

05.01F1FF 0FF where,1FFFF 123-232222322212 −=−==⇒===+++ −∞−∞−−∞−−−−

95.0FF 32 == ∞−∞−

 121

APPENDIX B

THERMAL MODEL EXPANDED USING FORTRAN

 implicit none

c-- constant values

******Dissipated Powers
 real q1, q2, q3

** CONVECTION
******Heat Transfer Coefficients
 real h1h, h1v, h2h, h3h, h4h, h4v, h5h, h5v, h6h, h6v, h7h, h7v,
 & h8v, h9h, h9v, h10v, h11v
******Environment Temperature
 real Tinf
******Convection Lengths
 real L1h, L1v, L2h, L3h, L4h, L4v, L5h, L5v, L6h, L6v, L7h, L7v,
 & L8v, L9h, L9v, L10v, L11v
******Convection Areas
 real Ac1h, Ac1v, Ac2h, Ac3h, Ac4h, Ac4v, Ac5h, Ac5v, Ac6h,
 & Ac6v, Ac7h, Ac7v, Ac8v, Ac9h, Ac9v, Ac10v, Ac11v

** RADIATION
******Boltzmann's Constant
 real sigma
******Emisivities
 real emi1, emi2, emi3, emi4, emi5, emi6, emi7, emi8, emi9,
 & emi10, emi11
******Geometry Factors
 real F1inf, F2inf, F3inf, F4inf, F5inf, F6inf, F7inf, F8inf,
 & F9inf, F10inf, F11inf, F12, F13, F21, F31
******Radiation Areas
 real A1inf, A2inf, A3inf, A4inf, A5inf, A6inf, A7inf, A8inf,
 & A9inf, A10inf, A11inf, A12, A13, A21, A31

** CONTACT RESISTENCE
 real R19, R28, R38, R29, R39, R24, R36, R98, R59,
 & R79, R810, R1011, R45, R67, R58, R78

** TRANSIENT EFFECTS
******Densities
 integer d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11
******Volumes
 real v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11
******Heat Capacities
 integer cp1, cp2, cp3, cp4, cp5, cp6, cp7, cp8, cp9, cp10, cp11

** TIME STEP
 real deltat

** BIOT'S VARIABLES
******Heat Flow Thickness
 real L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11
******Thermal Conductivies
 integer kd1, kd2, kd3, kd4, kd5, kd6, kd7, kd8, kd9, kd10, kd11

 integer n

c-- variables

 122

** BIOT NUMBER
 real Bi

** LUMPED TEMPERATURES
 real T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11
 real T1next, T2next, T3next, T4next, T5next, T6next, T7next,
 & T8next, T9next, T10next, T11next

** RUNGE-KUTTA'S VARIABLES
 real k1, k2, k3, k4

 sigma = 5.67E-8 !W/m**2.K**4
 deltat = 1.0 !sec

c-- Call all files that contain the necessary data
 open (unit=10, file='lconv.dat', status='unknown')
 open (unit=11, file='kcond.dat', status='unknown')
 open (unit=12, file='length.dat', status='unknown')
 open (unit=13, file='tamb.dat', status='unknown')
 open (unit=14, file='power.dat', status='unknown')
 open (unit=15, file='emi.dat', status='unknown')
 open (unit=16, file='factor.dat', status='unknown')
 open (unit=17, file='aconv.dat', status='unknown')
 open (unit=18, file='arad.dat', status='unknown')
 open (unit=19, file='contact.dat', status='unknown')
 open (unit=20, file='density.dat', status='unknown')
 open (unit=21, file='volume.dat', status='unknown')
 open (unit=22, file='cp.dat', status='unknown')
 open (unit=24, file='temp.dat', status='unknown')
 open (unit=30, file='resultados.dat', status='unknown')

c-- First, we get the given information

 read (10,10) h1h, h1v, h2h, h3h, h4h, h4v, h5h, h5v, h6h, h6v, h7h, h7v,
 & h8v, h9h, h9v, h10v, h11v
10 format (17F6.4)

 read (11,55) kd1, kd2, kd3, kd4, kd5, kd6, kd7, kd8, kd9, kd10, kd11
55 format (11I3)

 read (12,25) L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11
25 format (11F6.4)

 read (13,70) Tinf
70 format (F6.2)

 read (14,50) q1, q2, q3
50 format (3F4.1)

 read (15,45) emi1, emi2, emi3, emi4, emi5, emi6, emi7, emi8, emi9,
 & emi10, emi11
45 format (11F5.3)

 read (16,30) F1inf, F2inf, F3inf, F4inf, F5inf, F6inf, F7inf,
 & F8inf, F9inf, F10inf, F11inf, F12, F13, F21, F31
30 format (15F6.4)

 read (17,75) Ac1h, Ac1v, Ac2h, Ac3h, Ac4h, Ac4v, Ac5h, Ac5v, Ac6h,
 & Ac6v, Ac7h, Ac7v, Ac8v, Ac9h, Ac9v, Ac10v, Ac11v
75 format (17F10.8)

 read (18,80) A1inf, A2inf, A3inf, A4inf, A5inf, A6inf, A7inf,
 & A8inf, A9inf, A10inf, A11inf, A12, A13, A21, A31
80 format (15F9.7)

 123
 read (19,35) R19, R28, R38, R29, R39, R24, R36, R98, R59,
 & R79, R810, R1011, R45, R67, R58, R78
35 format (16F7.4)

 read (20,20) d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11
20 format (11I4)

 read (21,40) v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11
40 format (11F12.10)

 read (22,55) cp1, cp2, cp3, cp4, cp5, cp6, cp7, cp8, cp9, cp10, cp11

 read (24,60) T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11
60 format (11F6.2)

c-- Here start the loop that develops the Runge-Kutta method on each lumped

 do n = 1, 30

** FOR THE LUMPED 1

c-- Calculates the heat transfer coefficients
 h1h=1.32*(((T1-Tinf)/L1h)**0.25)
 h1v=1.42*(((T1-Tinf)/L1v)**0.25)

c-- calculates the Biot number
 Bi=(h1h*L1)/kd1

 if (Bi .GT. 0.1) then
 stop
 end if

 T1next = T1
 k1= (1/(d1*v1*cp1))*(q1-((T1next-Tinf)*((h1h*Ac1h)+(h1v*Ac1v)))
 & -(emi1*sigma*F1inf*A1inf*((T1next**4)-(Tinf**4)))
 & -(emi1*sigma*F12*A12*((T1next**4)-(T2**4)))
 & -(emi1*sigma*F13*A13*((T1next**4)-(T3**4)))
 & +(emi2*sigma*F21*A21*((T2**4)-(T1next**4)))
 & +(emi3*sigma*F31*A31*((T3**4)-(T1next**4)))
 & -((T1next-T19)/R19))

 print*, 'k1=', k1
 pause

 T1next = T1+(deltat*k1/2)

 print*, 'T1next', T1next
 pause

 k2= (1/(d1*v1*cp1))*(q1-((T1next-Tinf)*((h1h*Ac1h)+(h1v*Ac1v)))
 & -(emi1*sigma*F1inf*A1inf*((T1next**4)-(Tinf**4)))
 & -(emi1*sigma*F12*A12*((T1next**4)-(T2**4)))
 & -(emi1*sigma*F13*A13*((T1next**4)-(T3**4)))
 & +(emi2*sigma*F21*A21*((T2**4)-(T1next**4)))
 & +(emi3*sigma*F31*A31*((T3**4)-(T1next**4)))
 & -((T1next-T19)/R19))

 T1next = T1+(deltat*k2/2)

 k3= (1/(d1*v1*cp1))*(q1-((T1next-Tinf)*((h1h*Ac1h)+(h1v*Ac1v)))
 & -(emi1*sigma*F1inf*A1inf*((T1next**4)-(Tinf**4)))
 & -(emi1*sigma*F12*A12*((T1next**4)-(T2**4)))
 & -(emi1*sigma*F13*A13*((T1next**4)-(T3**4)))
 & +(emi2*sigma*F21*A21*((T2**4)-(T1next**4)))
 & +(emi3*sigma*F31*A31*((T3**4)-(T1next**4)))

 124
 & -((T1next-T19)/R19))

 T1next = T1+(deltat*k3)

 k4= (1/(d1*v1*cp1))*(q1-((T1next-Tinf)*((h1h*Ac1h)+(h1v*Ac1v)))
 & -(emi1*sigma*F1inf*A1inf*((T1next**4)-(Tinf**4)))
 & -(emi1*sigma*F12*A12*((T1next**4)-(T2**4)))
 & -(emi1*sigma*F13*A13*((T1next**4)-(T3**4)))
 & +(emi2*sigma*F21*A21*((T2**4)-(T1next**4)))
 & +(emi3*sigma*F31*A31*((T3**4)-(T1next**4)))
 & -((T1next-T19)/R19))

c-- The solution for the fourth order equation for Lumped 1 will be

 T1next = T1 + (deltat/6)*(k1+(2*k2)+(2*k3)+k4)
.
.
.
.
.
.
.
.
.
.
.

** FOR THE LUMPED 11

c-- Calculates the heat transfer coefficients
 h11v=1.42*(((T11-Tinf)/L11v)**0.25)

c-- calculates the Biot number
 Bi=(h11h*L11)/kd11

 if (Bi .GT. 0.1) then
 stop
 end if

 k1= (1/(d11*v11*cp11))*(-(h11v*Ac11v* (T11next-Tinf))
 & -(emi11*sigma*F11inf*A11inf*((T11next**4)-(Tinf**4)))
 & +((T10-T11next)/R1011))

 T11next = T11+(deltat*k1/2)

 k2= (1/(d11*v11*cp11))*(-(h11v*Ac11v* (T11next-Tinf))
 & -(emi11*sigma*F11inf*A11inf*((T11next**4)-(Tinf**4)))
 & +((T10-T11next)/R1011))

 T11next = T11+(deltat*k2/2)

 k3= (1/(d11*v11*cp11))*(-(h11v*Ac11v* (T11next-Tinf))
 & -(emi11*sigma*F11inf*A11inf*((T11next**4)-(Tinf**4)))
 & +((T10-T11next)/R1011))

 T11next = T11+(deltat*k3)

 k4= (1/(d11*v11*cp11))*(-(h11v*Ac11v* (T11next-Tinf))
 & -(emi11*sigma*F11inf*A11inf*((T11next**4)-(Tinf**4)))
 & +((T10-T11next)/R1011))

c-- The solution for the fourth order equation for Lumped 11 will be

 T11next = T11 + (deltat/6)*(k1+(2*k2)+(2*k3)+k4)

 125
 T1 = T1next
 T2 = T2next
 T3 = T3next
 T4 = T4next
 T5 = T5next
 T6 = T6next
 T7 = T7next
 T8 = T8next
 T9 = T9next
 T10 = T10next
 T11 = T11next

 write (30,65) T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11
65 format (1X, 11F12.4)

 end do

 end

c--

 126

APPENDIX C

FULL C++/CVI CODE OF THE TRANSIENT IPEM PROGRAM DEVELOPED
FOR SLOW THERMAL RESPONSE EXPERIMENT

#define TRUE 1
#define FALSE 0
/* Used in selecting state of the termocouples to plot curves */
#define on 1
#define off 0
/* Used in selecting data options to load, display and save */
#define TT 0
#define ET 1
#define MEAS 2
/* Used in selecting output electrical data to save */
#define VI 0
#define PWR 1

/*=============================FUNCTION DECLARATION==========================*/
void SelectTC (int, int, int, int, int, int, int, int);
void ClearBuff(char[]);
/*=============================VARIABLE DECLARATION==========================*/
static double tc1[10000],tc2[10000],tc3[10000],tc4[10000],tc5[10000],tcair[10000];
static double tp1[10000],tp2[10000],tp3[10000],tp4[10000],tp5[10000],tpair[10000];
static double temp1[10000],temp2[10000],temp3[10000],temp4[10000],temp5[10000],tempair[10000];
static double time_array[10000],time_meas[10000,time[10000],voltms[10000],currms[10000],watts[10000];
static double volt[10000],curr[10000],voltage[10000],current[10000],pwr[10000],power[10000];
static double meas1,meas2,meas3,meas4,meas5,measair,measvolt,meascurr,meastime;
static double initial_time,current_time,no_of_samples;
static char filin[512];
static int status1,status2,status3,status4,status5,statusair,elec_meas,keit2001,hp6030a,err,pts;
int h_i=0,m_i=0,s_i=0,h_a=0,m_a=0,s_a=0,time_i=0,time_a=0,time_t=0,sampling_interval;
int actual_sample_no,i;
/*================================MAIN PROGRAM==============================*/
main() {
double freq,ampl,frequency,voltios,amper;
char buf[21];
int int1,int2,c,i,j,id,points,pt,max_pt,panel,handle,flhand,loader,display,saver,elect_option;
int grap_t1,grap_t2,grap_t3,grap_t4,grap_t5,grap_air,grap_all;
short int waveform;
panel = LoadPanel (0, "ipem2_2.uir", PNL);
if (panel < 0) {
 FmtOut ("Unable to load the required panel from the resource file.\n");
 return;
 } //end if
DisplayPanel (panel);
//Initialize switch system
kei7001_init (7, 1, 1, &int1);
//Initialize DMM
kei2001_init (16, 1, &int2);
keit2001 = ibdev (0, 16, NO_SAD, T10s, 1, 0);
//Initialize Waveform Generator
//hp33120a_init (10, 1, 1, &waveform);
//hp33120 = ibdev (0, 10, NO_SAD, T10s, 1, 0);
//Initialize Power Supply instrument
hp6xxxa_init ("GPIB::5::INSTR", 1, 1, 0, &hp6030a);
//Configure to read temperature
kei7001_conf_slots (1, 2, 26, 1); //OJO VERIFICAR SLOT (yo elegi el 2) Y 7014!!!
kei2001_change_func (1, 7);
kei2001_conf_temp (1, -1.0, 0, 2, 0, 2);//OJO DEBO VERIFICAR EL TIPO DE TC!!!
while (TRUE) {
 GetUserEvent (TRUE, &handle, &id);
 switch (id) {

 127
 case PNL_LOAD :
 SetCtrlVal (panel, PNL_BUSY, 1);
 GetCtrlVal (panel, PNL_STATUS, &loader);
 switch (loader) {
 //Load thermal transient data from file
 case TT :
 err = FileSelectPopup ("therm_file", "*.dat", "", "Load Window",
 VAL_LOAD_BUTTON, 0, 0, 1, 1, filin);
 if (err!=0){
 flhand = OpenFile (filin, 1, 2, 1);
 ClearBuff (buf);
 ScanFile (flhand, "%s>%i", &c);
 ScanFile (flhand, "%s>%i", &pt);
 Clear1D (temp1, pt);
 Clear1D (temp2, pt);
 Clear1D (temp3, pt);
 Clear1D (temp4, pt);
 Clear1D (temp5, pt);
 Clear1D (tempair, pt);
 Clear1D (time, pt);
 for (i=0; (i<pt); i++) {
 for (j=0; (j<c); j++) {
 switch (j) {
 case 0 :
 ScanFile (flhand, "%s>%f", &temp1[i]);
 break;
 case 1 :
 ScanFile (flhand, "%s>%f", &temp2[i]);
 break;
 case 2 :
 ScanFile (flhand, "%s>%f", &temp3[i]);
 break;
 case 3 :
 ScanFile (flhand, "%s>%f", &temp4[i]);
 break;
 case 4 :
 ScanFile (flhand, "%s>%f", &temp5[i]);
 break;
 case 5 :
 ScanFile (flhand, "%s>%f", &tempair[i]);
 break;
 case 6 :
 ScanFile (flhand, "%s>%f", &time[i]);
 break; } } }
 err = CloseFile (flhand); } //end if (err!=0)
 break; //end case TT
 //Load electrical transient data from file
 case ET :
 err = FileSelectPopup ("elect_file", "*.dat", "", "Load Window",

 VAL_LOAD_BUTTON, 0, 0, 1, 1, filin);

 if (err!=0){
 flhand = OpenFile (filin, 1, 2, 1);
 ClearBuff (buf);
 ScanFile (flhand, "%s>%i", &pt);
 Clear1D (power, pt);
 Clear1D (time, pt);
 for (i=0; (i<pt); i++) {
 ScanFile (flhand, "%s>%f", &power[i]);
 ScanFile (flhand, "%s>%f", &time[i]);
 }
 err = CloseFile (flhand);
 } //end if (err!=0)
 break; //end case ET
 } /*end switch (loader) */
 SetCtrlVal (panel, PNL_BUSY, 0);

 128
 break; //end case LOAD
 case PNL_DISPLAY :
 SetCtrlVal (panel, PNL_BUSY, 1);
 GetCtrlVal (panel, PNL_STATUS, &display);
 switch (display) {
 //Display the loaded thermal transient data from file
 case TT :
 DeleteGraphPlot (panel, PNL_CURVE, -1, 1);
 SetCtrlVal (panel, PNL_LEDT1, 1);
 PlotXY (panel, PNL_CURVE, time, temp1, pt, VAL_DOUBLE,

VAL_DOUBLE, VAL_THIN_LINE, VAL_EMPTY_SQUARE,
VAL_SOLID, 1,VAL_RED);

 SetCtrlVal (panel, PNL_LEDT2, 1);
 PlotXY (panel, PNL_CURVE, time, temp2, pt, VAL_DOUBLE,

VAL_DOUBLE, VAL_THIN_LINE, VAL_EMPTY_SQUARE,
VAL_SOLID, 1,VAL_BLUE);

 SetCtrlVal (panel, PNL_LEDT3, 1);
 PlotXY (panel, PNL_CURVE, time, temp3, pt, VAL_DOUBLE,

VAL_DOUBLE, VAL_THIN_LINE, VAL_EMPTY_SQUARE,
VAL_SOLID, 1,VAL_YELLOW);

 SetCtrlVal (panel, PNL_LEDT4, 1);
 PlotXY (panel, PNL_CURVE, time, temp4, pt, VAL_DOUBLE,

VAL_DOUBLE, VAL_THIN_LINE, VAL_EMPTY_SQUARE,
VAL_SOLID, 1,VAL_GREEN);

 SetCtrlVal (panel, PNL_LEDT5, 1);
 PlotXY (panel, PNL_CURVE, time, temp5, pt, VAL_DOUBLE,

VAL_DOUBLE, VAL_THIN_LINE, VAL_EMPTY_SQUARE,
VAL_SOLID, 1,VAL_WHITE);

 SetCtrlVal (panel, PNL_LEDTair, 1);
 PlotXY (panel, PNL_CURVE, time, tempair, pt, VAL_DOUBLE,

VAL_DOUBLE, VAL_THIN_LINE, VAL_EMPTY_SQUARE,
VAL_SOLID, 1,VAL_CYAN);

 SetCtrlVal (panel, PNL_BUSY, 0);
 break; //end case TT
 case ET :
 DeleteGraphPlot (panel, PNL_CURVELECTRIC, -1, 1);

PlotXY (panel, PNL_CURVELECTRIC, time, power, pt,
VAL_DOUBLE,VAL_DOUBLE, VAL_THIN_LINE,
VAL_EMPTY_SQUARE, VAL_SOLID, 1,VAL_DK_BLUE);

 break; //end case ET
 case MEAS :
 DeleteGraphPlot (panel, PNL_CURVE, -1, 1);
 GetCtrlVal (panel, PNL_T1, &status1);
 if (status1==1) {
 SetCtrlVal (panel, PNL_LEDT1, 1);

PlotXY (panel, PNL_CURVE, time_array, tc1, pts,
VAL_DOUBLE,VAL_DOUBLE, VAL_THIN_LINE,
VAL_EMPTY_SQUARE, VAL_SOLID, 1, VAL_RED); }

 GetCtrlVal (panel, PNL_T2, &status2);
 if (status2==1) {
 SetCtrlVal (panel, PNL_LEDT2, 1);

PlotXY (panel, PNL_CURVE, time_array, tc2, pts,
VAL_DOUBLE, VAL_DOUBLE, VAL_THIN_LINE,
VAL_EMPTY_SQUARE, VAL_SOLID, 1, VAL_BLUE);
 }

 GetCtrlVal (panel, PNL_T3, &status3);
 if (status3==1) {
 SetCtrlVal (panel, PNL_LEDT3, 1);

PlotXY (panel, PNL_CURVE, time_array, tc3, pts,
VAL_DOUBLE, VAL_DOUBLE, VAL_THIN_LINE,
VAL_EMPTY_SQUARE, VAL_SOLID, 1, VAL_YELLOW);
 }

 GetCtrlVal (panel, PNL_T4, &status4);
 if (status4==1) {
 SetCtrlVal (panel, PNL_LEDT4, 1);

 129
PlotXY (panel, PNL_CURVE, time_array, tc4, pts,
VAL_DOUBLE, VAL_DOUBLE, VAL_THIN_LINE,
VAL_EMPTY_SQUARE, VAL_SOLID, 1, VAL_GREEN);
 }

 GetCtrlVal (panel, PNL_T5, &status5);
 if (status5==1) {
 SetCtrlVal (panel, PNL_LEDT5, 1);

PlotXY (panel, PNL_CURVE, time_array, tc5, pts,
VAL_DOUBLE, VAL_DOUBLE, VAL_THIN_LINE,
VAL_EMPTY_SQUARE, VAL_SOLID, 1, VAL_WHITE);
 }

 GetCtrlVal (panel, PNL_Tair, &statusair);
 if (statusair==1) {
 SetCtrlVal (panel, PNL_LEDTair, 1);

PlotXY (panel, PNL_CURVE, time_array, tcair, pts,
VAL_DOUBLE, VAL_DOUBLE, VAL_THIN_LINE,
VAL_EMPTY_SQUARE, VAL_SOLID, 1, VAL_CYAN);
 }

 DeleteGraphPlot (panel, PNL_CURVELECTRIC, -1, 1);
 GetCtrlVal (panel, PNL_MEASELECT, &elec_meas);
 if (elec_meas==1) {
 SetCtrlVal (panel, PNL_LEDELECT, 1);

PlotXY (panel, PNL_CURVELECTRIC, time_array, pwr, pts,
VAL_DOUBLE, VAL_DOUBLE, VAL_THIN_LINE,
VAL_EMPTY_SQUARE, VAL_SOLID, 1,VAL_DK_BLUE);
 }

 break; //end case MEAS } /*end switch (display) */
 SetCtrlVal (panel, PNL_BUSY, 0);
 break; //end case DISPLAY
 case PNL_CLEAR :
 SetCtrlVal (panel, PNL_BUSY, 1);
 SetCtrlVal (panel, PNL_LEDT1, 0);
 SetCtrlVal (panel, PNL_LEDT2, 0);
 SetCtrlVal (panel, PNL_LEDT3, 0);
 SetCtrlVal (panel, PNL_LEDT4, 0);
 SetCtrlVal (panel, PNL_LEDT5, 0);
 SetCtrlVal (panel, PNL_LEDTair, 0);
 SetCtrlVal (panel, PNL_LEDELECT, 0);
 DeleteGraphPlot (panel, PNL_CURVE, -1, 1);
 DeleteGraphPlot (panel, PNL_CURVELECTRIC, -1, 1);
 SetCtrlVal (panel, PNL_BUSY, 0);
 break; //end case CLEAR
 case PNL_SAVE :
 SetCtrlVal (panel, PNL_BUSY, 1);
 GetCtrlVal (panel, PNL_STATUS, &saver);
 switch (saver) {
 //Save the measured thermal transient data
 case TT :
 err = FileSelectPopup ("save_therm", "*.dat", "", "Save Window",
 VAL_SAVE_BUTTON, 0, 0, 1, 1, filin);
 if (err!=0) {
 flhand = OpenFile (filin, 2, 0, 1);
 ClearBuff (buf);
 c=7;
 err = Fmt (buf, "%s<%i", c);
 err = WriteLine (flhand, buf, 7);
 ClearBuff (buf);
 err = Fmt (buf, "%s<%i", pts);
 err = WriteLine (flhand, buf, 7);
 for (i=0; (i<pts); i++) {
 ClearBuff (buf);
 err = Fmt (buf, "%s<%f", tc1[i]);
 err = WriteFile (flhand, buf, 15);
 ClearBuff (buf);
 err = Fmt (buf, "%s<%f", tc2[i]);
 err = WriteFile (flhand, buf, 15);

 130
 ClearBuff (buf);
 err = Fmt (buf, "%s<%f", tc3[i]);
 err = WriteFile (flhand, buf, 15);
 ClearBuff (buf);
 err = Fmt (buf, "%s<%f", tc4[i]);
 err = WriteFile (flhand, buf, 15);
 ClearBuff (buf);
 err = Fmt (buf, "%s<%f", tc5[i]);
 err = WriteFile (flhand, buf, 15);
 ClearBuff (buf);
 err = Fmt (buf, "%s<%f", tcair[i]);
 err = WriteFile (flhand, buf, 15);
 ClearBuff (buf);
 err = Fmt (buf, "%s<%f", time_array[i]);
 err = WriteLine (flhand, buf, 7);
 } //end for
 CloseFile (flhand);
 } //end if (err!=0)
 break; //end case TT
 //Save the measured electrical transient data
 case ET :
 GetCtrlVal (panel, PNL_SAVELECT, &elect_option);
 switch (elect_option) {
 //Save the voltage and current data
 case VI :

err = FileSelectPopup ("save_vi", "*.dat", "", "Save
Window",VAL_SAVE_BUTTON, 0, 0, 1, 1, filin);

 if (err!=0) {
 flhand = OpenFile (filin, 2, 0, 1);
 ClearBuff (buf);
 err = Fmt (buf, "%s<%i", pts);
 err = WriteLine (flhand, buf, 7);
 for (i=0; (i<pts); i++) {
 ClearBuff (buf);
 err = Fmt (buf, "%s<%f", volt[i]);
 err = WriteFile (flhand, buf, 15);
 ClearBuff (buf);
 err = Fmt (buf, "%s<%f", curr[i]);
 err = WriteLine (flhand, buf, 15); }
 CloseFile (flhand); } //end if (err!=0)
 break; //end case VI
 //Save the power and time data
 case PWR :

err = FileSelectPopup ("save_power", "*.dat", "", "Save
Window",VAL_SAVE_BUTTON, 0, 0, 1, 1, filin);

 if (err!=0) {
 flhand = OpenFile (filin, 2, 0, 1);
 ClearBuff (buf);
 err = Fmt (buf, "%s<%i", pts);
 err = WriteLine (flhand, buf, 7);
 for (i=0; (i<pts); i++) {
 ClearBuff (buf);
 err = Fmt (buf, "%s<%f", pwr[i]);
 err = WriteFile (flhand, buf, 15);
 ClearBuff (buf);
 err = Fmt (buf, "%s<%f", time_array[i]);
 err = WriteLine (flhand, buf, 15); }
 CloseFile (flhand); } //end if (err!=0)
 break; //end case PWR }
 break; //end case ET }
 SetCtrlVal (panel, PNL_BUSY, 0);
 break; //end case SAVE
 case PNL_RUN :
 SetCtrlVal (panel, PNL_BUSY, 1);
 GetCtrlVal (panel, PNL_VOLT, &voltios);
 GetCtrlVal (panel, PNL_AMP, &er);

 131
 //Set voltage and current from panel
 hp6xxxa_volt_curr (hp6030a, voltios, amper, 1);
 //GetCtrlVal (panel, PNL_FREQ, &freq);
 //GetCtrlVal (panel, PNL_AMPLIT, &l);
 //frequency=freq*1000;
 //Set amplitude and frequency from panel
 //hp33120a_wf_config (waveform, 2, "", frequency, ampl, 0, 0.0, 50);
 //Initialize the timer control
 //GetCtrlVal (panel, PNL_TIMER1, &initial_time);
 GetCtrlVal (panel, PNL_SAMPLING_INTERVAL, &sampling_interval);
 SetCtrlAttribute (panel, PNL_TIMER1, ATTR_INTERVAL, sampling_interval+0.0);
 GetCtrlVal (panel, PNL_NO_OF_SAMPLES, &no_of_samples);
 actual_sample_no=0;
 //Make the first measurement at time 0
 //Make electrical measurements from power supply
 GetCtrlVal (panel, PNL_MEASELECT, &elec_meas);
 if (elec_meas==1) {
 hp6xxxa_read_output (hp6030a, 1, &measvolt, &meascurr);
 SetCtrlVal (panel, PNL_VOLTMEAS, measvolt);
 SetCtrlVal (panel, PNL_CURRMEAS, meascurr);
 voltms[actual_sample_no]=measvolt;
 currms[actual_sample_no]=meascurr;
 watts[actual_sample_no]=measvolt*meascurr; }
 //Make calibration for thermal measurement
 kei7001_opn_cls_ch_lst (1, 2, ""); //open all channels
 kei7001_opn_cls_ch_lst (1, 0, "2!1"); //close channel 1 from Slot 2
 Delay (0.01);
 ibwrt (keit2001, ":TEMP:RJUN1:RSEL REAL", 21);
 ibwrt (keit2001, ":TEMP:RJUN1:REAL:TCO 0.0002", 27);
 ibwrt (keit2001, ":TEMP:RJUN1:REAL:OFFS 0.05463", 29);
 ibwrt (keit2001, ":TEMP:RJUN1:ACQ", 15);
 Delay (0.10);
 //Make measuret for thermocouple 1 from channel 2
 GetCtrlVal (panel, PNL_T1, &status1);
 if (status1==1) {
 kei7001_opn_cls_ch_lst (1, 2, ""); //open all channels
 kei7001_opn_cls_ch_lst (1, 0, "2!25"); //close chan 25 from Slot 2
 kei2001_sing_meas (1, 2, 0, &meas1); //take measurement
 SetCtrlVal (panel, PNL_INDICATOR_T1, meas1);
 tp1[actual_sample_no]=meas1; //put temperature 1 in its array }
 //Make measuret for thermocouple 2 from channel 3
 GetCtrlVal (panel, PNL_T2, &status2);
 if (status2==1) {
 kei7001_opn_cls_ch_lst (1, 2, ""); //open all channels
 kei7001_opn_cls_ch_lst (1, 0, "2!16"); //close chan 16 from Slot 2
 kei2001_sing_meas (1, 2, 0, &meas2); //take measurement
 SetCtrlVal (panel, PNL_INDICATOR_T2, meas2);
 tp2[actual_sample_no]=meas2; //put temperature 2 in its array }
 //Make measuret for thermocouple 3 from channel 4
 GetCtrlVal (panel, PNL_T3, &status3);
 if (status3==1) {
 kei7001_opn_cls_ch_lst (1, 2, ""); //open all channels
 kei7001_opn_cls_ch_lst (1, 0, "2!26"); //close chan 26 from Slot 2
 kei2001_sing_meas (1, 2, 0, &meas3); //take measurement
 SetCtrlVal (panel, PNL_INDICATOR_T3, meas3);
 tp3[actual_sample_no]=meas3; //put temperature 3 in its array }
 //Make measuret for thermocouple 4 from channel 5
 GetCtrlVal (panel, PNL_T4, &status4);
 if (status4==1) {
 kei7001_opn_cls_ch_lst (1, 2, ""); //open all channels
 kei7001_opn_cls_ch_lst (1, 0, "2!15"); //close chan 15 from Slot 2
 kei2001_sing_meas (1, 2, 0, &meas4); //take measurement
 SetCtrlVal (panel, PNL_INDICATOR_T4, meas4);
 tp4[actual_sample_no]=meas4; //put temperature 4 in its array }
 //Make measuret for thermocouple 5 from channel 6
 GetCtrlVal (panel, PNL_T5, &status5);

 132
 if (status5==1) {
 kei7001_opn_cls_ch_lst (1, 2, ""); //open all channels
 kei7001_opn_cls_ch_lst (1, 0, "2!35"); //close chan 35 from Slot 2
 kei2001_sing_meas (1, 2, 0, &meas5); //take measurement
 SetCtrlVal (panel, PNL_INDICATOR_T5, meas5);
 tp5[actual_sample_no]=meas5; //put temperature 5 in its array }
 //Make measuret for thermocouple 5 from channel 6
 GetCtrlVal (panel, PNL_Tair, &statusair);
 if (statusair==1) {
 kei7001_opn_cls_ch_lst (1, 2, ""); //open all channels
 kei7001_opn_cls_ch_lst (1, 0, "2!6"); //close channel 6 from Slot 2
 kei2001_sing_meas (1, 2, 0, &measair); //take measurement
 SetCtrlVal (panel, PNL_INDICATOR_Tair, measair);
 tpair[actual_sample_no]=measair; }
 //Record the starting time according to the system clock
 GetSystemTime(&h_i,&m_i,&s_i);
 time_i = h_i*3600 + m_i*60 + s_i;

 //Record the time at which the actual first iteration sample was taken
 GetSystemTime(&h_a,&m_a,&s_a);
 time_a = h_a*3600 + m_a*60 + s_a;
 //Find out how much time has transcurred since the initial starting time
 time_t = time_a - time_i;
 time_meas[actual_sample_no] = time_t;
 SetCtrlVal (panel, PNL_MEASTIME, time_t+0.0);
 //SetCtrlVal (panel, PNL_MEASTIME, meastime);
 SetCtrlVal (panel, PNL_SAMPLE, actual_sample_no+1.0);
 actual_sample_no = actual_sample_no + 1;
 //Let the timer do the rest of the measurements
 SetCtrlAttribute (panel, PNL_TIMER1, ATTR_ENABLED,TRUE);
 break; //end case RUN
 case PNL_RESET :
 SetCtrlVal (panel, PNL_BUSY, 1);
 SetCtrlVal (panel, PNL_VOLT, 0.00);
 SetCtrlVal (panel, PNL_AMP, 0.00);
 SetCtrlVal (panel, PNL_NO_OF_SAMPLES, 0.00);
 SetCtrlVal (panel, PNL_LEDT1, 0);
 SetCtrlVal (panel, PNL_T1, 0);
 SetCtrlVal (panel, PNL_INDICATOR_T1, 0.00);
 SetCtrlVal (panel, PNL_LEDT2, 0);
 SetCtrlVal (panel, PNL_T2, 0);
 SetCtrlVal (panel, PNL_INDICATOR_T2, 0.00);
 SetCtrlVal (panel, PNL_LEDT3, 0);
 SetCtrlVal (panel, PNL_T3, 0);
 SetCtrlVal (panel, PNL_INDICATOR_T3, 0.00);
 SetCtrlVal (panel, PNL_LEDT4, 0);
 SetCtrlVal (panel, PNL_T4, 0);
 SetCtrlVal (panel, PNL_INDICATOR_T4, 0.00);
 SetCtrlVal (panel, PNL_LEDT5, 0);
 SetCtrlVal (panel, PNL_T5, 0);
 SetCtrlVal (panel, PNL_INDICATOR_T5, 0.00);
 SetCtrlVal (panel, PNL_LEDTair, 0);
 SetCtrlVal (panel, PNL_Tair, 0);
 SetCtrlVal (panel, PNL_INDICATOR_Tair, 0.00);
 SetCtrlVal (panel, PNL_LEDELECT, 0);
 SetCtrlVal (panel, PNL_MEASELECT, 0);
 SetCtrlVal (panel, PNL_VOLTMEAS, 0.00);
 SetCtrlVal (panel, PNL_CURRMEAS, 0.00);
 SetCtrlVal (panel, PNL_MEASTIME, 0.00);
 Clear1D (tc1, pts);
 Clear1D (tc2, pts);
 Clear1D (tc3, pts);
 Clear1D (tc4, pts);
 Clear1D (tc5, pts);
 Clear1D (tcair, pts);
 Clear1D (time_array, pts);

 133
 Clear1D (volt, pts);
 Clear1D (curr, pts);
 Clear1D (pwr, pts);
 DeleteGraphPlot (panel, PNL_CURVE, -1, 1);
 DeleteGraphPlot (panel, PNL_CURVELECTRIC, -1, 1);
 SetCtrlVal (panel, PNL_BUSY, 0);
 break; //end case RESET
 case PNL_EXIT :
 hp6xxxa_volt_curr (hp6030a, 0.000, 0.000, 1);
 return;
 break; } //end switch (id) } //end while (TRUE) } // end main

/*=================================FUNCTIONS===================================*/
void ClearBuff (b)
char b[20]; {
 int i;
 /*--*/
 /* Clear buffer in memory */
 /*-- */
 for (i=0; (i<20); i++)
 b[i]=' '; } //end ClearBuff function
// When the RUN button is pressed, the timer is activated and the measurements are taken
int CVICALLBACK timer_activado (int panel, int control, int event,void *callbackData, int eventData1,

 int eventData2) {
 switch (event) {
 case EVENT_TIMER_TICK:
 if (actual_sample_no < no_of_samples){
 //Make electrical measurements from power supply
 GetCtrlVal (panel, PNL_MEASELECT, &elec_meas);
 if (elec_meas==1) {
 hp6xxxa_read_output (hp6030a, 1, &measvolt, &meascurr);
 SetCtrlVal (panel, PNL_VOLTMEAS, measvolt);
 SetCtrlVal (panel, PNL_CURRMEAS, meascurr);
 voltms[actual_sample_no]=measvolt;
 currms[actual_sample_no]=meascurr;
 watts[actual_sample_no]=measvolt*meascurr; }
 //Make calibration for thermal measurement
 kei7001_opn_cls_ch_lst (1, 2, ""); //open all channels
 kei7001_opn_cls_ch_lst (1, 0, "2!1"); //close channel 1 from Slot 2
 Delay (0.01);
 ibwrt (keit2001, ":TEMP:RJUN1:RSEL REAL", 21);
 ibwrt (keit2001, ":TEMP:RJUN1:REAL:TCO 0.0002", 27);
 ibwrt (keit2001, ":TEMP:RJUN1:REAL:OFFS 0.05463", 29);
 ibwrt (keit2001, ":TEMP:RJUN1:ACQ", 15);
 Delay (0.10);
 //Make measuret for thermocouple 1 from channel 2
 GetCtrlVal (panel, PNL_T1, &status1);
 if (status1==1) {
 kei7001_opn_cls_ch_lst (1, 2, ""); //open all channels
 kei7001_opn_cls_ch_lst (1, 0, "2!25"); //close chan 25 from Slot 2
 kei2001_sing_meas (1, 2, 0, &meas1); //take measurement
 SetCtrlVal (panel, PNL_INDICATOR_T1, meas1);
 tp1[actual_sample_no]=meas1; // } //end if (status)
 //Make measuret for thermocouple 2 from channel 3
 GetCtrlVal (panel, PNL_T2, &status2);
 if (status2==1) {
 kei7001_opn_cls_ch_lst (1, 2, ""); //open all channels
 kei7001_opn_cls_ch_lst (1, 0, "2!16"); //close chan 16 from Slot 2
 kei2001_sing_meas (1, 2, 0, &meas2); //take measurement
 SetCtrlVal (panel, PNL_INDICATOR_T2, meas2);
 tp2[actual_sample_no]=meas2; } //end if (status)
 //Make measuret for thermocouple 3 from channel 4
 GetCtrlVal (panel, PNL_T3, &status3);
 if (status3==1) {
 kei7001_opn_cls_ch_lst (1, 2, ""); //open all channels
 kei7001_opn_cls_ch_lst (1, 0, "2!26"); //close chanl 26 from Slot 2

 134
 kei2001_sing_meas (1, 2, 0, &meas3); //take measurement
 SetCtrlVal (panel, PNL_INDICATOR_T3, meas3);
 tp3[actual_sample_no]=meas3; } //end if (status)
 //Make measuret for thermocouple 4 from channel 5
 GetCtrlVal (panel, PNL_T4, &status4);
 if (status4==1) {
 kei7001_opn_cls_ch_lst (1, 2, ""); //open all channels
 kei7001_opn_cls_ch_lst (1, 0, "2!15"); //close chan 15 from Slot 2
 kei2001_sing_meas (1, 2, 0, &meas4); //take measurement
 SetCtrlVal (panel, PNL_INDICATOR_T4, meas4);
 tp4[actual_sample_no]=meas4; } //end if (status)
 //Make measuret for thermocouple 5 from channel 6
 GetCtrlVal (panel, PNL_T5, &status5);
 if (status5==1) {
 kei7001_opn_cls_ch_lst (1, 2, ""); //open all channels
 kei7001_opn_cls_ch_lst (1, 0, "2!35"); //close chan 35 from Slot 2
 kei2001_sing_meas (1, 2, 0, &meas5); //take measurement
 SetCtrlVal (panel, PNL_INDICATOR_T5, meas5);
 tp5[actual_sample_no]=meas5; } //end if (status)
 //Make measuret for air thermocouple from channel 6
 GetCtrlVal (panel, PNL_Tair, &statusair);
 if (statusair==1) {
 kei7001_opn_cls_ch_lst (1, 2, ""); //open all channels
 kei7001_opn_cls_ch_lst (1, 0, "2!6"); //close channel 6 from Slot 2
 kei2001_sing_meas (1, 2, 0, &measair); //take measurement
 SetCtrlVal (panel, PNL_INDICATOR_Tair, measair);
 tpair[actual_sample_no]=measair; } //end if (status)
 //Record the time at which the actual iteration samples were taken
 GetSystemTime(&h_a,&m_a,&s_a);
 time_a = h_a*3600 + m_a*60 + s_a;
 time_t = time_a - time_i;
 time_meas[actual_sample_no] = time_t;
 //time_meas[points] = meastime;
 SetCtrlVal (panel, PNL_MEASTIME, time_t+0.0);
 //SetCtrlVal (panel, PNL_MEASTIME, meastime);
 SetCtrlVal (panel, PNL_SAMPLE, actual_sample_no+1.0);
 actual_sample_no = actual_sample_no + 1; }
 //GetCtrlVal (panel, PNL_TIMER1, ¤t_time);
 //} //end while (points)
 else{
 pts=no_of_samples;
 for (i=0; (i<pts); i++) {
 tc1[i]=tp1[i];
 tc2[i]=tp2[i];
 tc3[i]=tp3[i];
 tc4[i]=tp4[i];
 tc5[i]=tp5[i];
 tcair[i]=tpair[i];
 time_array[i]=time_meas[i];
 volt[i]=voltms[i];
 curr[i]=currms[i];
 pwr[i]=watts[i]; }
 SetCtrlVal (panel, PNL_BUSY, 0);
 hp6xxxa_volt_curr (hp6030a, 0.000, 0.000, 1);
 SetCtrlAttribute (panel, PNL_TIMER1, ATTR_ENABLED,FALSE); }
 break; }
 return 0; }

 135

APPENDIX D

HEAT SINK MODEL DESCRIPTION

A simple heat sink model can be based on thermal component networks [2, 3],

where the lumped concept is used. In this case, an electrical-thermal analogy is used to

elaborate the IPEM heat sink model. Heat transfer inside the heat sink is modeled from

several thermal resistances and capacitances, as is shown in Figure D.1.

Figure D.1. Finite difference model as the thermal modeling approach.

Here, the heat diffusion equation is used to define the thermal behavior, which is

discretized using finite difference methods (FDM). In general, the model considers a

quasi-one-dimensional heat transfer process using the rectangular coordinates:

t
TC

s
Tk p2

2

∂
∂

ρ=
∂
∂

 136

with boundary conditions,

0) t0,(s)TT(h
s
Tk- 1 >=−=
∂
∂

∞

0) tL,(s)TT(h
s
Tk 2 >=−=
∂
∂

∞

According to IPEM-LTCM model is assumed a natural convection using the heat

transfer coefficient given by Hefner et al. in [1-4]:

35.0
fin

fin4
i w

A10x84.4h −=

where Afin is the total heat sink fin area, and wfin is the heat sink fin height (or

orientation parameter). Finally, the initial condition is given by,

L)s (0)s(F)0,s(T <<=

For various symmetry conditions, the heat equation for the rectangular

coordinate system with x- and y-axis symmetry is

t
TCA

z
Tk

z
A p ∂

∂
ρ=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

This equation can be discretized into a finite number of first-order ordinary time-

dependent differential equations of the form

td
dH

R
T-T

R
T-T i

i1,-i

1-ii

1ii,

i1i =−
+

+

where

 137

iii TCH =

ipiii VCC ρ=

ii

i1i
i kA

zzR −
= + (conduction case)

35.0
ii

i)TT(h
1R

∞−
= (convection case)

In the discretization process of the heat diffusion equation, it is assumed that the

temperature gradient and thermal conductivity do not vary substantially between

adjacent grid points. The model accuracy is determined by the number and location of

the nodes within the heat sink.

In general terms, the heat sink is divided in many nodes, each node represent a

volume (in this case, all node are cubes, because the real heat sink can be represented by

many of this form), in others words, a lumped, as is observed in the Figure D.2. Each

lumped inside the heat sink is defined by the discretized equation (using FDM). In the

case of the surface nodes, these nodes include both conduction and convection

resistance, according to previous description of such resistances.

 138

T11

i+1 i i-1

 Figure D.2. Heat sink’s grid used in the analysis.

6.3 5.9

2.4
2.1

0.2

All dimensions are in centimeters.
The heat sink has eight fins.

Figure D.3. Heat sink’s dimensions.

 139

APPENDIX E

FULL C++/CVI CODE OF THE THERMAL TRANSIENT PROGRAM
DEVELOPED FOR FAST THERMAL RESPONSE EXPERIMENT

#define TRUE 1
#define FALSE 0
#define ON 1
#define OFF 0
#define VV 2
#define XY1 1
#define XY2 2
#define XY3 3
#define XY4 4
/* Used in selecting curve to save */
#define ALL_SC 0 /* Save all scope channel */
#define DISP_SC 1 /* Default: scope channel displayed */
#define TRAN 2 /* Save transient */
/* Used in selecting waveform input source (load function) */
#define SCP 0 /* Default: TDS644A */
#define SCPFILE 1 /* Oscilloscope File */
#define TRAFILE 2 /* Transient File */
#define SAM 0
#define ENV 1
#define AVE 2
/*Used in selecting curve to display */
#define SCPCURV 0 /* Default: Scope loaded */
#define TRANCURV 1 /* Transient file loaded */
/*Used in selecting mode transient */
#define TRUN 0 /* Default: Truncated transient */
#define EXTR 1 /* Extrapolated transient */
/*========================FUNCTION DECLARATION=========================*/
void Makechan (double[], double, int);
void Makexy (double[],double[],int,double[],double[]);
void CalcWaveforms (int,int, int, int, int, int, int, int, int);
void Makefile (int,int,int,int,int,int,int,double[],double[],double[],double[],double, double[], double[]);
void ClearBuff(char[]);
/*========================VARIABLE DECLARATION=========================*/
static double wavein1[2000],wavein2[2000],wavein3[2000],wavein4[2000];
static double wave1[2000],wave2[2000],wave3[2000],wave4[2000];
static double wave1s[2000],wave2s[2000],wave3s[2000],wave4s[2000],wavex[2000],wavey[2000];
static double wavetime[2000],timescp[2000],voltscp[2000],tempscp[2000];
static double voltcal [200],tempcal [200],volt_igbt[200],temp_igbt[200];
static double voltscp_max,voltscp_min, voltcal_max,voltcal_min,c_strt,x_incr, x_strt,ch1_scale;
static char filin[512];
static int tk644,cnt,tek644,count,err,pts,hp6035a;
/*============================MAIN PROGRAM=============================*/
main() {
double difference,sfr1,sfr2,sfr3,sfr4,cvxmult,cvymult,cvamp,cvvolt,slope,intercept,mse,output[2000];
double voltios, amper, set_temp;
char bf[21],aqmode[21],str[320],colon[2],ch[2],str2[21];
char buf[21];
int c,calpoints,indice,ij,i,j,k,larg,flhand,filout,saval,x,y,loader,display,option,id,panel,handle;
int chan1,chan2,chan3,chan4,chan5,cvpts,samp,acmode,envp,fhand;
pts = 2000;
panel = LoadPanel (0, "transient.uir", SCOPE);
if (panel < 0){
 FmtOut("Unable to load the required panel from the resource file.\n");
 return; }
DisplayPanel(panel);
//Initialize Power Supply instrument
hp6xxxa_init ("GPIB::8::INSTR", VI_OFF, VI_OFF, 4, &hp6035a);
//Initialize Oscilloscope
tk644 = ibdev (0, 9, NO_SAD, T3s, 1, 0);

 140
tek644a_init (9, 0, 0, &tek644);
tek644a_wvfm_acquisition (tek644, 1, &cnt);
ibwrt (tk644, "HOR:RECO 2000",13);
/* Determine the current acqusition mode. */
ibwrt (tk644, "ACQ:MOD?",8);
ClearBuff(aqmode);
ibrd (tk644,aqmode,10);
if (aqmode[0]=='S')acmode=SAM;
if (aqmode[0]=='E')acmode=ENV;
if (aqmode[0]=='A')acmode=AVE;
switch (acmode) {
 case SAM :
 SetCtrlIndex (panel, SCOPE_ACQMODE, SAM);
 break;
 case ENV :
 SetCtrlIndex (panel, SCOPE_ACQMODE, ENV);
/* Read the number of envelopes being taken */
 ibwrt (tk644, "ACQ:NUME?",9);
 ibrd (tk644,bf,15);
 Fmt (&envp, "%i<%s",bf);
 SetCtrlVal (panel, SCOPE_SAMPS, envp);
 break;
 case AVE :
 SetCtrlIndex (panel, SCOPE_ACQMODE, AVE);
/* Read the number of samples being taken */
 ibwrt (tk644, "ACQ:NUMAV?",10);
 ibrd (tk644,bf,15);
 Fmt (&samp, "%i<%s",bf);
 SetCtrlVal (panel, SCOPE_SAMPS, samp);
 break; }
while (TRUE){
 GetUserEvent (TRUE, &handle, &id);
 switch (id) {
 case SCOPE_ST :
 SetCtrlVal (panel, SCOPE_WORK, 1);
 GetCtrlVal(panel, SCOPE_VOLT_SUPPLY, &voltios);
 GetCtrlVal(panel, SCOPE_AMP_SUPPLY, &er);
 //Set Voltage and Current from panel
 hp6xxxa_volt_curr (hp6035a, voltios, amper, 1);
 //Set Oscilloscope Mode from panel
 err = GetCtrlVal (panel, SCOPE_ACQMODE, &acmode);
 err = GetCtrlVal (panel, SCOPE_SAMPS,&ij);
 switch (acmode) {
 case SAM :
 tek644a_acquisition_setup (tek644, 1, ij, 1);
 tek644a_wvfm_acquisition (tek644, 1, &err);
 break;
 case ENV :
 tek644a_acquisition_setup (tek644, 2, ij, 1);
 tek644a_wvfm_acquisition (tek644, 1, &err);
 break;
 case AVE :
 tek644a_acquisition_setup (tek644, 3, ij, 1);
 tek644a_wvfm_acquisition (tek644, 1, &err);
 break; }
 SetCtrlVal(panel,SCOPE_WORK,0);
 break;
 // Load oscilloscope data displayed, an oscilloscope data file or a transient data file
 case SCOPE_LOAD :
 SetCtrlVal(panel,SCOPE_WORK,1);
 GetCtrlVal(panel,SCOPE_LD,&loader);
 switch (loader) {
 //Load oscilloscope data displayed
 case SCP :
 /* Initialize the tds644 A/C/D Digitizing Oscilloscope */
 /* Determine the current acquisition mode. */

 141
 //Stop the acquisition for data transfert.
 tek644a_wvfm_acquisition (tek644, 0,&count);
 ibwrt (tk644, "ACQ:MOD?",8);
 ClearBuff(aqmode);
 ibrd (tk644,aqmode,10);
 if (aqmode[0]=='S')acmode=SAM;
 if (aqmode[0]=='E')acmode=ENV;
 if (aqmode[0]=='A')acmode=AVE;
 switch (acmode) {
 case SAM :
 SetCtrlIndex (panel, SCOPE_ACQMODE, SAM);
 break;
 case ENV :
 SetCtrlIndex (panel, SCOPE_ACQMODE, ENV);
 // Read the number of envelopes being taken
 ibwrt (tk644, "ACQ:NUME?",9);
 ibrd (tk644,bf,15);
 Fmt (&envp, "%i<%s",bf);
 SetCtrlVal (panel, SCOPE_SAMPS, envp);
 break;
 case AVE :
 SetCtrlIndex (panel, SCOPE_ACQMODE, AVE);
 // Read the number of samples being taken
 ibwrt (tk644, "ACQ:NUMAV?",10);
 ibrd (tk644,bf,15);
 Fmt (&samp, "%i<%s",bf);
 SetCtrlVal (panel, SCOPE_SAMPS, samp);
 break; }
 // Check if each channel is on, and get waveform from each channel
 ibwrt (tk644, "SEL:CH1?", 8);
 ibrd (tk644,bf,10);
 Fmt (&k, "%i<%s",bf);
 if (k != 0)
 tek644a_read_wvfm_array (tek644, 1, 0, 1, 2000, wavein1, &pts, &x_strt, &x_incr);
 ibwrt (tk644, "SEL:CH2?", 8);
 ibrd (tk644,bf,10);
 err = Fmt (&k, "%i<%s",bf);
 if (k != 0)
 tek644a_read_wvfm_array (tek644, 2, 0, 1, 2000, wavein2, &pts,&x_strt, &x_incr);
 ibwrt (tk644, "SEL:CH3?", 8);
 ibrd (tk644,bf,10);
 Fmt (&k, "%i<%s",bf);
 if (k != 0)
 tek644a_read_wvfm_array (tek644, 3, 0, 1, 2000, wavein3, &pts, &x_strt, &x_incr);
 ibwrt (tk644, "SEL:CH4?", 8);
 ibrd (tk644,bf,10);
 Fmt (&k, "%i<%s",bf);
 if (k != 0)
 tek644a_read_wvfm_array (tek644, 4, 0, 1, 2000, wavein4, &pts, &x_strt, &x_incr);
 tek644a_wvfm_acquisition (tek644, 1,&count);//Restart Scope after data transfert.
 for (i=0; (i<pts); i++) {
 wavetime[i]=i*x_incr;
 wave1[i]=wavein1[i];
 wave2[i]=wavein2[i];
 wave3[i]=wavein3[i];
 wave4[i]=wavein4[i]; }
 break;
 //Load an oscilloscope data file, add Popup file selection from oscilloscope files
 case SCPFILE:
 err = FileSelectPopup ("Last_data", "*.dat", "", "Load Window",
 VAL_LOAD_BUTTON, 0, 0, 1, 1, filin);
 if (err!=0){
 flhand = OpenFile (filin, 1, 2, 1);
 ClearBuff(buf);
 ScanFile (flhand, "%s>%i", &c);
 ScanFile (flhand, "%s>%i", &pts);

 142
 Clear1D(wavein1,pts);
 Clear1D(wavein2,pts);
 Clear1D(wavein3,pts);
 Clear1D(wavein4,pts);
 for (i=0; (i<pts);i++) {
 for (j=0; (j<c);j++) {
 switch (j) {
 case 0 :
 ScanFile (flhand, "%s>%f", &wavetime[i]);
 break;
 case 1 :
 ScanFile (flhand, "%s>%f", &wavein1[i]);
 break;
 case 2 :
 ScanFile (flhand, "%s>%f", &wavein2[i]);
 break;
 case 3 :
 ScanFile (flhand, "%s>%f", &wavein3[i]);
 break;
 case 4 :
 ScanFile (flhand, "%s>%f", &wavein4[i]);
 break; } } }
 for (i=0; (i<pts); i++) {
 wave1[i]=wavein1[i];
 wave2[i]=wavein2[i];
 wave3[i]=wavein3[i];
 wave4[i]=wavein4[i]; }
 err = CloseFile (flhand); }
 break;
 //Load a transient data file, add Popup file selection from transient files
 case TRAFILE :
 err=FileSelectPopup ("newfile", "*.dat", "", "Load Window", VAL_LOAD_BUTTON,

 0, 0, 1, 1, filin);
 if (err!=0){
 flhand = OpenFile(filin, 1, 2, 1);
 ClearBuff(buf);
 ScanFile(flhand, "%s>%i", &pts);
 Clear1D(timescp, pts);
 Clear1D(tempscp, pts);
 for (i=0; (i<pts);i++) {
 ScanFile(flhand, "%s>%f", ×cp[i]);
 ScanFile(flhand, "%s>%f", &tempscp[i]); }
 err = CloseFile (flhand); }
 break; } /* end switch (loader) */
 SetCtrlVal(panel,SCOPE_WORK,0);
 break;
 case SCOPE_DISP :
 SetCtrlVal(panel,SCOPE_WORK,1);
 GetCtrlVal(panel,SCOPE_DP,&display);
 switch (display) {
 //Display curve from oscilloscope
 case SCPCURV :
 //Query the panel for each channel selection and calculate the waveform for each channel
 GetCtrlVal(panel,SCOPE_CH1,&chan1);
 GetCtrlVal(panel,SCOPE_CH2,&chan2);
 GetCtrlVal(panel,SCOPE_CH3,&chan3);
 GetCtrlVal(panel,SCOPE_CH4,&chan4);
 GetCtrlVal(panel,SCOPE_CH5,&chan5);
 GetCtrlVal(panel,SCOPE_CH5X,&x);
 GetCtrlVal(panel,SCOPE_CH5Y,&y);
 CalcWaveforms(panel,chan1,chan2,chan3,chan4,chan5,x,y,pts);
 //Clear the graph of its current plots. Plot the waveform selected for each channel
 //Light the LED for each active channel
 DeleteGraphPlot(panel,SCOPE_GRAPH, -1, 1);
 if (chan5 != OFF) {
 if (y==1)

 143
 err = SetCtrlVal(panel, SCOPE_Y, " Channel 1 ");
 if (y==2)
 err = SetCtrlVal(panel, SCOPE_Y, " Channel 2 ");
 if (y==3)
 err = SetCtrlVal(panel, SCOPE_Y, " Channel 3 ");
 if (y==4)
 err = SetCtrlVal(panel, SCOPE_Y, " Channel 4 ");
 if (x==1)
 err = SetCtrlVal(panel, SCOPE_X, "Channel 1 ");
 if (x==2)
 err = SetCtrlVal(panel, SCOPE_X, "Channel 2 ");
 if (x==3)
 err = SetCtrlVal(panel, SCOPE_X, "Channel 3 ");
 if (x==4)
 err = SetCtrlVal(panel, SCOPE_X, "Channel 4 ");

 PlotXY(panel,SCOPE_GRAPH,wavex,wavey,pts,VAL_DOUBLE,VAL_DOUBLE,
 VAL_THIN_LINE,VAL_EMPTY_SQUARE, VAL_SOLID,1, DOSColorToRGB (13)); }

if (chan1 != OFF)
PlotXY(panel,SCOPE_GRAPH,wavetime,wave1,pts,VAL_DOUBLE,VAL_DOUBLE,VAL_THIN_LINE,VAL_E
MPTY_SQUARE, VAL_SOLID,1,DOSColorToRGB (15));
if (chan2 != OFF)
PlotXY(panel,SCOPE_GRAPH,wavetime,wave2,pts,VAL_DOUBLE,VAL_DOUBLE,VAL_THIN_LINE,VAL_E
MPTY_SQUARE, VAL_SOLID,1,DOSColorToRGB (2));
if (chan3 != OFF)
PlotXY(panel,SCOPE_GRAPH,wavetime,wave3,pts,VAL_DOUBLE,VAL_DOUBLE,VAL_THIN_LINE,VAL_E
MPTY_SQUARE, VAL_SOLID,1,DOSColorToRGB (14));
if (chan4 != OFF)
PlotXY(panel,SCOPE_GRAPH,wavetime,wave4,pts,VAL_DOUBLE,VAL_DOUBLE,VAL_THIN_LINE,VAL_E
MPTY_SQUARE, VAL_SOLID,1,DOSColorToRGB (9));

 if (chan5 == OFF) {
 SetCtrlVal(panel, SCOPE_Y, "Voltage V ");
 SetCtrlVal(panel, SCOPE_X, " Time (s) "); }
 SetCtrlVal(panel,SCOPE_STATE1,chan1);
 SetCtrlVal(panel,SCOPE_STATE2,chan2);
 SetCtrlVal(panel,SCOPE_STATE3,chan3);
 SetCtrlVal(panel,SCOPE_STATE4,chan4);
 SetCtrlVal(panel,SCOPE_STATE5,chan5);
 SetCtrlVal(panel,SCOPE_WORK,0);
 break;
 //Display curve from transient file
 case TRANCURV :
 DeleteGraphPlot (panel, SCOPE_CURVE, -1, 1);
 PlotXY (panel, SCOPE_CURVE, timescp, tempscp, pts, VAL_DOUBLE,VAL_DOUBLE,

 VAL_THIN_LINE, VAL_EMPTY_SQUARE, VAL_SOLID, 1,VAL_WHITE);
 break; }//end switch (display)
 SetCtrlVal(panel,SCOPE_WORK,0);
 break;
 case SCOPE_SAVE :
 SetCtrlVal(panel,SCOPE_WORK,1);
 GetCtrlVal(panel,SCOPE_CURV,&saval);
 GetCtrlVal(panel,SCOPE_SF1,&sfr1);
 GetCtrlVal(panel,SCOPE_SF2,&sfr2);
 GetCtrlVal(panel,SCOPE_SF3,&sfr3);
 GetCtrlVal(panel,SCOPE_SF4,&sfr4);
 for (i=0; (i<pts); i++) {
 wave1[i] = wavein1[i] * sfr1;
 wave2[i] = wavein2[i] * sfr2;
 wave3[i] = wavein3[i] * sfr3;
 wave4[i] = wavein4[i] * sfr4;
 }
 //Save data displayed from one channel, data all channels or data displayed from transient curve
Makefile(pts,chan1,chan2,chan3,chan4,saval,panel,wave1,wave2,wave3,wave4,x_incr,timescp,tempscp);
 SetCtrlVal(panel,SCOPE_WORK,0);
 break;
 //Acquire data from oscilloscope file
 case SCOPE_OSCIL :

 144
 SetCtrlVal(panel,SCOPE_WORK,1);
 err=FileSelectPopup("Oscilloscope", "*.dat", "", "Load Window", VAL_LOAD_BUTTON,0, 0, 1, 1,

 filin);
 if (err!=0){
 flhand = OpenFile(filin, 1, 2, 1);
 ClearBuff(buf);
 ScanFile(flhand, "%s>%i", &c);
 ScanFile(flhand, "%s>%i", &pts);
 Clear1D(wavein1,pts);
 Clear1D(wavein2,pts);
 Clear1D(wavein3,pts);
 Clear1D(wavein4,pts);
 for (i=0; (i<pts);i++){
 for (j=0; (j<c);j++) {
 switch (j) {
 case 0 :
 ScanFile(flhand, "%s>%f", &wavetime[i]);
 timescp[i] = wavetime[i];
 break;
 case 1 :
 ScanFile(flhand, "%s>%f", &wavein1[i]);
 voltscp[i] = wavein1[i];
 break;
 case 2 :
 ScanFile(flhand, "%s>%f", &wavein2[i]);
 voltscp[i] = wavein2[i];
 break;
 case 3 :
 ScanFile(flhand, "%s>%f", &wavein3[i]);
 voltscp[i] = wavein3[i];
 break;
 case 4 :
 ScanFile (flhand, "%s>%f", &wavein4[i]);
 voltscp[i] = wavein4[i];
 break; } } }
 err = CloseFile(flhand); }
 SetCtrlVal(panel,SCOPE_WORK,0);
 break;
 //Acquire data from calibration file
 case SCOPE_IGBTCALIB :
 SetCtrlVal(panel,SCOPE_WORK,1);
 err=FileSelectPopup("calibra", "*.tsp", "", "Load Window", VAL_LOAD_BUTTON,0, 0, 1, 1, filin);
 if (err!=0){
 flhand = OpenFile(filin, 1, 2, 1);
 ClearBuff(buf);
 ScanFile(flhand, "%s>%i", &calpoints);
 for (i=0; (i<calpoints);i++) {
 ScanFile(flhand, "%s>%f", &temp_igbt[i]);
 tempcal[i] = temp_igbt[i];
 ScanFile (flhand, "%s>%f", &volt_igbt[i]);
 voltcal[i] = volt_igbt[i]; }
 err = CloseFile (flhand); }
 SetCtrlVal(panel,SCOPE_WORK,0);
 break;
 // Compare and change the data from oscilloscope and calibration to transient. There are two ways to
 obtain transient: Truncate and Extrapolation
 case SCOPE_CHANGE :
 SetCtrlVal(panel,SCOPE_WORK,1);
 //Compare and obtain the maximun and minimun values from oscilloscope data with calibration data
 LinFit (tempcal, voltcal, calpoints, output, &slope, &intercept, &mse); //With this command the slope

 and intercept is obtained
 GetCtrlVal (panel, SCOPE_OPTION, &option);
 //Define transient way
 switch (option) {
 // The truncated transient way
 case TRUN :

 145
 for (i=0; (i<pts);i++) {

indice = 0;
difference = 10000000.0;

 for (j=0; (j<calpoints);j++) {
 if (fabs (voltscp[i] - voltcal[j])<difference) {

indice = j;
 difference = fabs(voltscp[i] - voltcal[j]); } }
 //Obtain the correct temperature for each oscilloscope voltage
 if ((voltscp[i]>voltcal[0]) && (voltscp[i]<voltcal[calpoints-1]))
 tempscp[i] = ((((voltscp[i] - voltcal[indice-1])/(voltcal[indice+1] - voltcal[indice-1]))*
 ((tempcal[indice+1]) - (tempcal[indice-1]))) + tempcal[indice-1]);
 else
 tempscp[i] = tempcal[indice]; }

 DeleteGraphPlot(panel, SCOPE_CURVE, -1, 1);
 PlotXY (panel, SCOPE_CURVE, timescp, tempscp, pts, VAL_DOUBLE, VAL_DOUBLE,
 VAL_THIN_LINE, VAL_EMPTY_SQUARE, VAL_SOLID, 1, VAL_DK_RED);
 break;
 // The Extrapolated transient way
 case EXTR :
 for (i=0; (i<pts);i++) {
 //Inside calibration range
 if ((voltscp[i]>voltcal[0]) && (voltscp[i]<voltcal[calpoints-1])) {
 indice = 0;
 difference = 10000000.0;
 for (j=1; (j<calpoints);j++) {
 if (fabs (voltscp[i] - voltcal[j])<difference) {
 indice = j;
 difference = fabs(voltscp[i] - voltcal[j]); } }
 //Obtain the correct temperature for each oscilloscope voltage
 if ((voltscp[i]>voltcal[0]) && (voltscp[i]<voltcal[calpoints-1])) {
 tempscp[i] = ((((voltscp[i] - voltcal[indice-1])/(voltcal[indice+1] - voltcal[indice-1]))*
 ((tempcal[indice+1]) - (tempcal[indice-1]))) + tempcal[indice-1]); } }
 //Outside calibration range (extrapolation)
 else
 tempscp[i] = ((voltscp[i] - intercept) / (slope)); }
 DeleteGraphPlot(panel, SCOPE_CURVE, -1, 1);
 PlotXY (panel, SCOPE_CURVE, timescp, tempscp, pts, VAL_DOUBLE, VAL_DOUBLE,
 VAL_THIN_LINE, VAL_EMPTY_SQUARE, VAL_SOLID, 1, VAL_DK_RED);
 break; }/* end switch (option) */
 SetCtrlVal(panel,SCOPE_WORK,0);
 break;
 case SCOPE_QUIT :
 return;
 break; }/* end switch (id) */ }/* end switch while */ }/* end main */
/*===========================CALCULATE WAVEFORMS=======================*/
void CalcWaveforms (pan,chan1, chan2, chan3, chan4, chan5,cx,cy,pts)
int pan,pts,chan1,chan2,chan3,chan4,chan5,cx,cy; {
 int i;
 double s1,s2,s3,s4;
 /*---*/
 /* Determine if channel 1 is to dislplay or has been */
 /* turned off. */
 /*---*/
 GetCtrlVal(pan,SCOPE_SF1,&s1);
 GetCtrlVal(pan,SCOPE_SF2,&s2);
 GetCtrlVal(pan,SCOPE_SF3,&s3);
 GetCtrlVal(pan,SCOPE_SF4,&s4);
 for (i=0; (i<pts); i++) {
 wave1s[i]=wavein1[i]*s1;
 wave2s[i]=wavein2[i]*s2;
 wave3s[i]=wavein3[i]*s3;
 wave4s[i]=wavein4[i]*s4; }
 switch (chan1) {
 case ON :
 for (i=0; (i<pts); i++) {
 wave1[i]=wave1s[i]; }

 146
 Makechan(wave1,0,pts);
 break;
 case OFF :
 Clear1D(wave1,pts);
 break;}
 /*---*/
 /* Determine if channel 2 is to dislplay or has been */
 /* turned off. */
 /*---*/
 switch (chan2) {
 case ON :
 for (i=0; (i<pts); i++) {
 wave2[i]=wave2s[i]; }
 Makechan(wave2,0,pts);
 break;
 case OFF :
 Clear1D(wave2,pts);
 break; }
 /*---*/
 /* Determine if channel 3 is to dislplay or has bee */
 /* turned off. */
 /*---*/
 switch (chan3) {
 case ON :
 for (i=0; (i<pts); i++) {
 wave3[i]=wave3s[i]; }
 Makechan(wave3,0,pts);
 break;
 case OFF :
 Clear1D(wave3,pts);
 break; }
 /*---*/
 /* Determine if channel 4 is to dislplay or has been */
 /* turned off. */
 /*---*/
 switch (chan4) {
 case ON :
 for (i=0; (i<pts); i++) {
 wave4[i]=wave4s[i]; }
 Makechan(wave4,0,pts);
 break;
 case OFF :
 Clear1D(wave4,pts);
 break; }
 /*---*/
 /* Determine if channel 5 is to dislplay */
 /* or if it has been turned off. */
 /*---*/
 switch (chan5) {
 case ON :
 switch (cx) {
 case XY1 :
 Makexy(wave1s,wavey,pts,wavex,wavey);
 break;
 case XY2 :
 Makexy(wave2s,wavey,pts,wavex,wavey);
 break;
 case XY3 :
 Makexy(wave3s,wavey,pts,wavex,wavey);
 break;
 case XY4 :
 Makexy(wave4s,wavey,pts,wavex,wavey);
 break; }
 switch (cy) {
 case XY1 :
 Makexy(wavex,wave1s,pts,wavex,wavey);

 147
 break;
 case XY2 :
 Makexy(wavex,wave2s,pts,wavex,wavey);
 break;
 case XY3 :
 Makexy(wavex,wave3s,pts,wavex,wavey);
 break;
 case XY4 :
 Makexy(wavex,wave4s,pts,wavex,wavey);
 break; } /* end switch (cy) */
 break;
 case OFF :
 Clear1D(wavey,pts);
 Clear1D(wavex,pts);
 break; } }
/*===================MAKE scaled WAVE=====================*/
void Makechan (waveform, offset,pt)
double waveform[];
double offset;
int pt; {
 int i;
 double scale_val;
 scale_val = 1.0;
 for (i=0; (i < pt); i++)

 waveform[i] = offset + waveform[i]*scale_val; }
 void Makexy (waveform1,waveform2,ps,waveform3,waveform4)
 double waveform1[],waveform2[],waveform3[],waveform4[];
 int ps; {
 int i;
 for (i=0; (i<ps); i++) {
 waveform3[i]=waveform1[i];
 waveform4[i]=waveform2[i]; } }
 //Making the function to save the several options
 void Makefile (pt,c1,c2,c3,c4,saver,pan,wavef1,wavef2,wavef3,wavef4,incr,timescp,tempscp)
 int pt,c1,c2,c3,c4,saver,pan;
 double wavef1[2000],wavef2[2000],wavef3[2000],wavef4[2000];
 double incr,timescp[2000],tempscp[2000]; {
 int i,fhand,c;
 char filin[512];
 char buff[20];
 double rl;
 err = FileSelectPopup ("savedata", "*.dat", "", "Save Window", VAL_SAVE_BUTTON, 0, 0, 1, 1, filin);
 if (err!=0){
 fhand = OpenFile (filin, 2, 0, 1);
 switch (saver) {
 case ALL_SC :
 ClearBuff(buff);

c=5;
err = Fmt (buff, "%s<%i",c);
err = WriteLine (fhand,buff, 6);
ClearBuff(buff);
err = Fmt (buff, "%s<%i",pt);
err = WriteLine (fhand,buff, 6);
for (i=0; (i<pt); i++) {
 ClearBuff(buff);
 rl = i*incr;
 err = Fmt (buff, "%s<%f",rl);
 err = WriteFile (fhand,buff,15);
 ClearBuff(buff);

 err = Fmt (buff, "%s<%f",wavef1[i]);
 err = WriteFile (fhand,buff,15);
 ClearBuff(buff);
 err = Fmt (buff, "%s<%f",wavef2[i]);
 err = WriteFile (fhand,buff,15);
 ClearBuff(buff);

 err = Fmt (buff, "%s<%f",wavef3[i]);

 148
 err = WriteFile (fhand,buff,15);

 ClearBuff(buff);
 err = Fmt (buff, "%s<%f",wavef4[i]);

 err = WriteLine (fhand,buff,15); }
 break;
 case DISP_SC :
 c=1;
 if (c1 != OFF)
 c=c+1;
 if (c2 != OFF)

 c=c+1;
 if (c3 != OFF)
 c=c+1;
 if (c4 != OFF)
 c=c+1;
 if (pt == 0)
 c=0;
 ClearBuff(buff);
 err = Fmt (buff, "%s<%i",c);
 err = WriteLine (fhand,buff, 6);
 ClearBuff(buff);
 err = Fmt (buff, "%s<%i",pt);
 err = WriteLine (fhand,buff, 6);
 for (i=0; (i<pt); i++) {
 ClearBuff(buff);
 rl=i*incr;
 err = Fmt (buff, "%s<%f",rl);
 err = WriteFile (fhand,buff,15);
 if (c1 != OFF) {
 ClearBuff(buff);
 err = Fmt (buff, "%s<%f",wavef1[i]);
 err = WriteFile (fhand,buff,15); }
 if (c2 != OFF) {
 ClearBuff(buff);
 err = Fmt (buff, "%s<%f",wavef2[i]);
 err = WriteFile (fhand,buff,15); }
 if (c3 != OFF) {
 ClearBuff(buff);
 err = Fmt (buff, "%s<%f",wavef3[i]);
 err = WriteFile (fhand,buff,15); }
 if (c4 != OFF) {
 ClearBuff(buff);
 err = Fmt (buff, "%s<%f",wavef4[i]);
 err = WriteFile (fhand,buff,15); }
 WriteLine (fhand," ",1); }
 break;
 case TRAN :
 ClearBuff(buff);
 err = Fmt(buff, "%s<%i",pt);
 err = WriteLine(fhand,buff,6);
 for (i=0; (i<pt); i++) {
 ClearBuff(buff);
 err = Fmt(buff, "%s<%f",timescp[i]);
 err = WriteFile(fhand,buff,15);
 ClearBuff(buff);
 err = Fmt(buff, "%s<%f",tempscp[i]);
 err = WriteLine(fhand,buff,15); }
 break; } /* end switch (saver) */
 CloseFile (fhand); } }
void ClearBuff(b)
char b[20]; {
int i;
for (i=0; (i<20); i++)
 b[i]=' '; }

 149

APPENDIX F

FULL MAST CODE OF THE THERMAL TEMPLATE DEVELOPED IN
SABERTM

#***
THERMAL MODEL OF GENERATION II IPEM *
Description: This template develop the reduced thermal model, based on *
LTCM, of Generation II IPEM. Here, this IPEM is divided in *
several lumped (each one with a mathematical expression that *
describe its thermal behavior) which conform a set nonlinear *
equation system. The implemented model is an array of eleven *
equations with eleven variables. *
Filename : "ltcm_ipem.sin" *
NOTE : The material of Gate Driver was assumed as Silicon (Si), all *
properties correspond to that material. Also, the power dissipated *
by the gate driver is simulated as a constant. *
====================== Template and Header Declaration =====================
template ltcm_ipem l2

Declaration of connections
thermal_c l2
external number temp # Ambient temperature function from netlist
============================= Template's Body ==============================
{ # Start of template body
<units.sin
CONSTANT VALUES

For CONVECTION

Convection Lengths (m)
number l1h = 2.108e-2, # Horizontal convection length of Lumped 1
 l1v = 2.54e-4, # Vertical convection length of Lumped 1
 l2h = 7.19e-3, # Horizontal convection length of Lumped 2
 l3h = 7.19e-3, # Horizontal convection length of Lumped 3
 l4h = 4.902e-3, # Horizontal convection length of Lumped 4
 l4v = 2.54e-4, # Vertical convection length of Lumped 4
 l5h = 4.06e-3, # Horizontal convection length of Lumped 5
 l5v = 1.143e-3, # Vertical convection length of Lumped 5
 l6h = 4.902e-3, # Horizontal convection length of Lumped 6
 l6v = 2.54e-4, # Vertical convection length of Lumped 6
 l7h = 4.06e-3, # Horizontal convection length of Lumped 7
 l7v = 1.143e-3, # Vertical convection length of Lumped 7
 l8v = 1.143e-3, # Vertical convection length of Lumped 8
 l9h = 3.0e-2, # Horizontal convection length of Lumped 9
 l9v = 8.89e-4, # Vertical convection length of Lumped 9
 l10v = 6.35e-4, # Vertical convection length of Lumped 10
 l11v = 2.54e-4, # Vertical convection length of Lumped 11
 l12h = 5.07e-2, # Horizontal convection length of Lumped 12
 l12v = 4.0e-3 # Vertical convection length of Lumped 12

Convection Areas (m**2)
number A1h = 1.79e-4, # Horizontal convective area of Lumped 1
 A1v = 1.5e-5, # Vertical convective area of Lumped 1
 A2h = 6.36e-5, # Horizontal convective area of Lumped 2
 A3h = 6.36e-5, # Horizontal convective area of Lumped 3
 A4h = 4.86e-5, # Horizontal convective area of Lumped 4
 A4v = 9.72e-6, # Vertical convective area of Lumped 4
 A5h = 1.49e-5, # Horizontal convective area of Lumped 5
 A5v = 6.66e-6, # Vertical convective area of Lumped 5
 A6h = 4.86e-5, # Horizontal convective area of Lumped 6
 A6v = 9.72e-6, # Vertical convective area of Lumped 6
 A7h = 1.49e-5, # Horizontal convective area of Lumped 7
 A7v = 6.66e-6, # Vertical convective area of Lumped 7
 A8v = 3.25e-5, # Vertical convective area of Lumped 8

 150
 A9h = 5.16e-4, # Horizontal convective area of Lumped 9
 A9v = 9.04e-5, # Vertical convective area of Lumped 9
 A10v = 7.23e-5, # Vertical convective area of Lumped 10
 A11v = 2.89e-5, # Vertical convective area of Lumped 11
 A12h = 9.67e-4, # Horizontal convective area of Lumped 12
 A12v = 6.86e-3 # Vertical convective area of Lumped 12

For RADIATION

Emisivities
number emi1 = 0.86, # Emisivity of Lumped 1
 emi2 = 0.86, # Lumped 2
 emi3 = 0.86, # Lumped 3
 emi4 = 0.052, # Lumped 4
 emi5 = 0.052, # Lumped 5
 emi6 = 0.052, # Lumped 6
 emi7 = 0.052, # Lumped 7
 emi8 = 0.052, # Lumped 8
 emi9 = 0.335, # Lumped 9
 emi10 = 0.335, # Lumped 10
 emi11 = 0.052, # Lumped 11
 emi12 = 0.052 # Lumped 12

Geometry Factors
number F1inf = 0.99, # Geometry factor for radiation between Lumped 1
 # and environment
 F2inf = 0.94, # Between Lumped 2 and environment
 F3inf = 0.96, # Between Lumped 3 and environment
 F4inf = 1.0, # Between Lumped 4 and environment
 F5inf = 1.0, # Between Lumped 5 and environment
 F6inf = 1.0, # Between Lumped 6 and environment
 F7inf = 1.0, # Between Lumped 7 and environment
 F8inf = 1.0, # Between Lumped 8 and environment
 F9inf = 1.0, # Between Lumped 9 and environment
 F10inf = 1.0, # Between Lumped 10 and environment
 F11inf = 1.0, # Between Lumped 11 and environment
 F12inf = 1.0, # Between Lumped 12 and environment
 F12 = 4.9e-3, # Between Lumped 1 and Lumped 2
 F13 = 5.2e-3, # Between Lumped 1 and Lumped 3
 F21 = 5.8e-2, # Between Lumped 2 and Lumped 1
 F31 = 4.6e-2 # Between Lumped 3 and Lumped 1

Radiation Areas (m**2)
number A1inf = 1.943e-4, # Radiation area between Lumped 1 and ambient
 A2inf = 3.638e-5, # Between Lumped 2 and ambient
 A3inf = 3.638e-5, # Between Lumped 3 and ambient
 A4inf = 5.836e-5, # Between Lumped 4 and ambient
 A5inf = 3.393e-5, # Between Lumped 2 and ambient
 A6inf = 5.836e-5, # Between Lumped 6 and ambient
 A7inf = 3.393e-5, # Between Lumped 7 and ambient
 A8inf = 4.491e-5, # Between Lumped 8 and ambient
 A9inf = 6.063e-4, # Between Lumped 9 and ambient
 A10inf = 7.229e-5, # Between Lumped 10 and ambient
 A11inf = 2.892e-5, # Between Lumped 11 and ambient
 A12inf = 7.823e-3, # Between Lumped 12 and ambient
 A12 = 5.354e-6, # Between Lumped 1 and Lumped 2
 A13 = 5.354e-6, # Between Lumped 1 and Lumped 3
 A21 = 3.638e-5, # Between Lumped 2 and Lumped 1
 A31 = 3.638e-5 # Between Lumped 3 and Lumped 1

Boltzmann's Constant
number sigma = 5.67e-8 # (W/m**2.K**4)

For THERMAL CONTACT RESISTANCE (K/W)

 151
number R19 = 0.15614, # Thermal contact resistance between Lumped 1 and
 # Lumped 9
 R28 = 0.1585, # Between Lumped 2 and Lumped 8
 R38 = 0.1585, # Between Lumped 3 and Lumped 8
 R29 = 0.1546, # Between Lumped 2 and Lumped 9
 R39 = 0.1546, # Between Lumped 3 and Lumped 9
 R24 = 0.1539, # Between Lumped 2 and Lumped 4
 R36 = 0.1539, # Between Lumped 3 and Lumped 6
 R98 = 0.1571, # Between Lumped 9 and Lumped 8
 R59 = 0.1577, # Between Lumped 5 and Lumped 9
 R79 = 0.1577, # Between Lumped 7 and Lumped 9
 R810 = 0.1524, # Between Lumped 8 and Lumped 10
 R1011 = 0.1551, # Between Lumped 10 and Lumped 11
 R45 = 0.1559, # Between Lumped 4 and Lumped 5
 R67 = 0.1559, # Between Lumped 6 and Lumped 7
 R58 = 0.1596, # Between Lumped 5 and Lumped 8
 R78 = 0.1596, # Between Lumped 7 and Lumped 8
 R1112 = 0.1538, # Between Lumped 11 and Lumped 12
 R12isoth = 0.1597 # Between Lumped 12 and the isothermal plate

For TRANSIENT EFFECTS

Volumes (m**3)
number v1 = 1.14e-7, # Lumped 1 - gate driver
 v2 = 5.7e-8, # Lumped 2 - left Si-chip
 v3 = 5.7e-8, # Lumped 3 - right Si-chip
 v4 = 1.01e-7, # Lumped 4 - Cu-metallization layer portion
 v5 = 1.48e-8, # Lumped 5 - Cu-metallization layer portion
 v6 = 1.01e-7, # Lumped 6 - Cu-metallization layer portion
 v7 = 1.48e-8, # Lumped 7 - Cu-metallization layer portion
 v8 = 2.05e-7, # Lumped 8 - copper trace layer
 v9 = 5.72e-7, # Lumped 9 - Al2O3-DBC ceramic layer
 v10 = 5.13e-7, # Lumped 10 - Al2O3-DBC ceramic base
 v11 = 2.05e-7, # Lumped 11 - copper base layer
 v12 = 7.098e-6 # Lumped 12 - copper heat spreader

Densities (kg/m**3)
number d1 = 2329,
 d2 = 2329,
 d3 = 2329,
 d4 = 8900,
 d5 = 8900,
 d6 = 8900,
 d7 = 8900,
 d8 = 8900,
 d9 = 3900,
 d10 = 3900,
 d11 = 8900,
 d12 = 8900

Heat Capacities (J/kg.C)
number cp1 = 702,
 cp2 = 702,
 cp3 = 702,
 cp4 = 390,
 cp5 = 390,
 cp6 = 390,
 cp7 = 390,
 cp8 = 390,
 cp9 = 850,
 cp10 = 850,
 cp11 = 390,
 cp12 = 390

Isothermal plate (Kelvin degree)
number Tisoth = 296.15

 152

VARIABLE / VALUES

To calculate Heat Transfer Coefficients of each lumped
val nu h1h, h1v, h2h, h3h, h4h, h4v, h5h, h5v, h6h, h6v, h7h, h7v, h8v, h9h,
 h9v, h10v, h11v, h12h, h12v

To calculate Lumped Temperatures in Celcius degree
var tk T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12

Dissipated power by the Gate Driver (W)
var p heat2

values {
 # Obtains heat transfer coefficients
 h1h = 1.32*((abs(T1 - (temp+273.15))/l1h)**0.25)
 h1v = 1.42*((abs(T1 - (temp+273.15))/l1v)**0.25)
 h2h = 1.32*((abs(T2 - (temp+273.15))/l2h)**0.25)
 h3h = 1.32*((abs(T3 - (temp+273.15))/l3h)**0.25)
 h4h = 1.32*((abs(T4 - (temp+273.15))/l4h)**0.25)
 h4v = 1.42*((abs(T4 - (temp+273.15))/l4v)**0.25)
 h5h = 1.32*((abs(T5 - (temp+273.15))/l5h)**0.25)
 h5v = 1.42*((abs(T5 - (temp+273.15))/l5v)**0.25)
 h6h = 1.32*((abs(T6 - (temp+273.15))/l6h)**0.25)
 h6v = 1.42*((abs(T6 - (temp+273.15))/l6v)**0.25)
 h7h = 1.32*((abs(T7 - (temp+273.15))/l7h)**0.25)
 h7v = 1.42*((abs(T7 - (temp+273.15))/l7v)**0.25)
 h8v = 1.42*((abs(T8 - (temp+273.15))/l8v)**0.25)
 h9h = 1.32*((abs(T9 - (temp+273.15))/l9h)**0.25)
 h9v = 1.42*((abs(T9 - (temp+273.15))/l9v)**0.25)
 h10v = 1.42*((abs(T10 - (temp+273.15))/l10v)**0.25)
 h11v = 1.42*((abs(T11 - (temp+273.15))/l11v)**0.25)
 h12h = 1.32*((abs(T12 - (temp+273.15))/l12h)**0.25)
 h12v = 1.42*((abs(T12 - (temp+273.15))/l12v)**0.25)

 } # end of value section

control_section {
 initial_condition(T1,temp+275.15)
 initial_condition(T2,temp+275.15)
 initial_condition(T3,temp+275.15)
 initial_condition(T4,temp+275.15)
 initial_condition(T5,temp+275.15)
 initial_condition(T6,temp+275.15)
 initial_condition(T7,temp+275.15)
 initial_condition(T8,temp+275.15)
 initial_condition(T9,temp+275.15)
 initial_condition(T10,temp+275.15)
 initial_condition(T11,temp+275.15)
 initial_condition(T12,temp+275.15)

 } # end of control_section

equations{
T1: d_by_dt(T1) = (-((T1-(temp+273.15))*((h1h*A1h)+(h1v*A1v)))-
 (emi1*sigma*F1inf*A1inf*((T1**4)-((temp+273.15)**4)))-
 (emi1*sigma*F12*A12*((T1**4)-(T2**4)))-
 (emi1*sigma*F13*A13*((T1**4)-(T3**4)))+
 (emi2*sigma*F21*A21*((T2**4)-(T1**4)))+
 (emi3*sigma*F31*A31*((T3**4)-(T1**4)))-
 ((T1-T9)/R19))/(d1*cp1*v1)

T2: d_by_dt(T2) = (heat2-(h2h*A2h*(T2-(temp+273.15)))-
 (emi2*sigma*F2inf*A2inf*((T2**4)-((temp+273.15)**4)))-
 (emi2*sigma*F21*A21*((T2**4)-(T1**4)))+
 (emi1*sigma*F12*A12*((T1**4)-(T2**4)))-

 153
 ((T2-T4)/R24)-((T2-T8)/R28)-((T2-T9)/R29))/(d2*cp2*v2)

T3: d_by_dt(T3) = (-(h3h*A3h*(T3-(temp+273.15)))-
 (emi3*sigma*F3inf*A3inf*((T3**4)-((temp+273.15)**4)))-
 (emi3*sigma*F31*A31*((T3**4)-(T1**4)))+
 (emi1*sigma*F13*A13*((T1**4)-(T3**4)))-
 ((T3-T6)/R36)-((T3-T8)/R38)-((T3-T9)/R39))/(d3*cp3*v3)

T4: d_by_dt(T4) = (-((T4-(temp+273.15))*((h4h*A4h)+(h4v*A4v)))-
 (emi4*sigma*F4inf*A4inf*((T4**4)-((temp+273.15)**4)))+
 ((T2-T4)/R24)-((T4-T5)/R45))/(d4*cp4*v4)

T5: d_by_dt(T5) = (-((T5-(temp+273.15))*((h5h*A5h)+(h5v*A5v)))-
 (emi5*sigma*F5inf*A5inf*((T5**4)-((temp+273.15)**4)))+
 ((T4-T5)/R45)-((T5-T8)/R58)-((T5-T9)/R59))/(d5*cp5*v5)

T6: d_by_dt(T6) = (-((T6-(temp+273.15))*((h6h*A6h)+(h6v*A6v)))-
 (emi6*sigma*F6inf*A6inf*((T6**4)-((temp+273.15)**4)))+
 ((T3-T6)/R36)-((T6-T7)/R67))/(d6*cp6*v6)

T7: d_by_dt(T7) = (-((T7-(temp+273.15))*((h7h*A7h)+(h7v*A7v)))-
 (emi7*sigma*F7inf*A7inf*((T7**4)-((temp+273.15)**4)))+
 ((T6-T7)/R67)-((T7-T8)/R78)-((T7-T9)/R79))/(d7*cp7*v7)

T8: d_by_dt(T8) = (-(h8v*A8v*(T8-(temp+273.15)))-
 (emi8*sigma*F8inf*A8inf*((T8**4)-((temp+273.15)**4)))+
 ((T9-T8)/R98)+((T5-T8)/R58)+((T2-T8)/R28)+
 ((T7-T8)/R78)+((T3-T8)/R38)-((T8-T10)/R810))/(d8*cp8*v8)

T9: d_by_dt(T9) = (-((T9-(temp+273.15))*((h9h*A9h)+(h9v*A9v)))-
 (emi9*sigma*F9inf*A9inf*((T9**4)-((temp+273.15)**4)))+
 ((T1-T9)/R19)+((T2-T9)/R29)+((T3-T9)/R39)-
 ((T9-T8)/R98)+((T5-T9)/R59)+((T7-T9)/R79))/(d9*cp9*v9)

T10: d_by_dt(T10) = (-(h10v*A10v*(T10-(temp+273.15)))-
 (emi10*sigma*F10inf*A10inf*((T10**4)-((temp+273.15)**4)))+
 ((T8-T10)/R810)-((T10-T11)/R1011))/(d10*cp10*v10)

T11: d_by_dt(T11) = (-(h11v*A11v*(T11-(temp+273.15)))-
 (emi11*sigma*F11inf*A11inf*((T11**4)-((temp+273.15)**4)))+
 ((T10-T11)/R1011))/(d11*cp11*v11)

T12: d_by_dt(T12) = (-((T12-(temp+273.15))*((h12h*A12h)+(h12v*A12v)))-
 (emi12*sigma*F12inf*A12inf*((T12**4)-((temp+273.15)**4)))+
 ((T11-T12)/R1112)-((T12-Tisoth)/R12isoth))/(d12*cp12*v12)

 p(l2) += heat2
 heat2: tc(l2) = T2 - 273.15

 } # end of equation section

} # end of Template's Body

