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ABSTRACT 

 

This work presents a reduced mathematical model using a practical numerical 

formulation of the thermal behavior of an Integrated Power Electronics Module (IPEM). 

This model is based on the expanded Lumped Thermal Capacitance Method (LTCM), in 

which the number of variables involved in the analysis of heat transfer is reduced only to 

time.  By applying this procedure a simple, non-spatial, but highly non-linear model is 

obtained.  Transient results of the model were validated using FLOTHERM 3.1TM, a 

thermal analysis software tool. Two experimental set-up, for low- and high-speed 

thermal response, were developed. Comparisons between thermal model results and 

experimental data are also presented to demonstrate the need to obtain the electrical 

performance and to make the electrothermal coupling.  The development of this model 

presents an alternative to reduce the complexity level developed in commercial 

multidimensional and transient thermal analysis software tools. 
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RESUMEN 

 

Este trabajo presenta un modelo matemático reducido usando una formulación 

numérica práctica del comportamiento térmico de un Módulo Integrado de Electrónica 

de Potencia (IPEM). Este modelo está basado sobre la expansión del Método de la 

Capacitancia Térmica de un Conglomerado (LTCM), en el cual el número de las 

variables envueltas en el análisis de transferencia de calor es reducido  a solo el tiempo. 

Aplicando este método, un modelo simple, no espacial, no lineal es obtenido. Los 

resultados transitorios del modelo son validados contra resultados de un software de 

análisis térmico, FLOTHERM 3.1TM. Dos arreglos experimentales, para respuestas 

térmicas de baja y alta velocidad, fueron desarrollados. Comparaciones entre los 

resultados del modelo térmico y los datos experimentales son también presentados para 

demostrar la necesidad de obtener el comportamiento eléctrico y hacer el acople 

electrotérmico en el análisis electrotérmico. Se demuestra en esta investigación que la 

metodología desarrollada presenta una alternativa para reducir el nivel de complejidad 

desarrollado en softwares comerciales de análisis térmico transitorio y multidimensional. 
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CHAPTER 1 

 
INTRODUCTION 

 

1.1 Introduction 

 Power electronics may be defined as the application of electronics for the control 

and conversion of electric power in a form that is optimally suited for user loads (with 

highest efficiency, high availability, and high reliability with the lowest cost, smallest 

size and weigh). Power electronics is based on the extensive use of inductors, capacitors 

and, mainly, of power semiconductor devices operating as switches. These devices can 

be fabricated in discrete form or as integrated circuits (ICs). 

 

The growth of the power electronic field has permitted the development of 

several applications; in consequence, today it is possible to build power supplies, battery 

chargers, electric drives, DC transmission systems, and high frequency and power 

converters, among others. These power electronic applications require the use of 

electronic power converter: rectifier (transform voltage from ac to dc), inverter (from dc 

to dc), chopper or a switch-mode power supply (from dc to dc), and cycloconverter and 

cycloinverter (from ac to ac).  

 

Current technology used for energy conversion with power electronic, like all 

energy transformations, is not completely 100% efficient due to losses in switching and 

energy storage devices. These losses are in the form of heat dissipated. The operation of 
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all power electronic devices is highly temperature dependent. In fact, an electrical and 

thermal interdependence exists; electrical characteristics of the power device depend on 

the device temperature, and the device temperature depends on the device losses. In 

consequence, the design of power electronic systems requires the characterization of this 

codependence in order to describe the actual system operation. Most failures in power 

electronic systems are due to thermal mechanisms, thus, the thermal behavior analysis 

of power systems has become an increasingly important issue in the design and 

operation of the power electronic systems. 

 

The electrical design at the system level for power electronic modules has 

significantly progressed over the past years. The electronic industry demands systems 

more compact: with an increasingly higher number of integrated components into the 

system, combined with more capacity of converted power, and higher switching 

frequencies. However, the components integration in a system increases the complexity 

of the thermal process due to interactive heating of the system components. This way, 

the imperative need of an accurate thermal study, in the general analysis of power 

electronic systems, is accentuated. There are tools that can be employed to characterize 

the thermal behavior in electronic packages based on computational fluid dynamic 

techniques, or implementing a specific thermal model in a simulator. Nonetheless, there 

are cases where commercial software tools and established models in the simulator are 

not suitable in the early design stage because they do not have the enough accuracy or 
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because it takes long time to obtain a result. In the later case, the use of fast and simple 

model may be a better choice.  

 

When commercial software tools are used for the description of the 

electrothermal behavior of power systems, it is requires multiple commercial software 

tools, since no single package can currently be used to perform all this modeling and 

analysis by itself. It is necessary to make independent analyses in each software tool 

that, later, can be integrated to another specialized software tool. This is due to the fact 

that at the development of power system requires the integration of mechanical and 

electrical modeling and analysis activities to represent the existing electrothermal 

interaction. Therefore, computational fluid dynamics and heat transfer simulation must 

be completed in parallel with the electrical design in order to obtain the overall optimal 

analysis. For example, FLOTHERMTM or I-DEASTM simulators can be used to make the 

thermal analysis, SABERTM and MAXWELLTM simulators can be used to make the 

electrical analysis, and iSIGHTTM software can be used to control the simulations. At 

this point, it is clear that many important details required by the system in its real 

operation are lost in the information exchange between the different software tools.  In 

addition, it is evident that each simulation requires great effort from both the designer 

and the simulator software to show reasonable results, resulting in long design cycles 

that unduly increase cost and time to market. 
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Reduced-order models to describe the thermal behavior of power electronic 

systems are an alternative to surpass limitations when software tools are used. Currently, 

these models are generated using simplified semi-empirical formulas of the thermal 

resistances and capacitances of simple shapes [1-4], or using finite element (FE) 

simulation data in equivalent circuit topology [5], or using the thermal impedance of a 

equivalent circuit [6]. However, these thermal reduced-order models can be highly 

complicated, because traditionally they are based on a conduction analysis through the 

heat transfer equation’s use. This implies the development of methodologies that require 

a significant effort. The objective of this work is to provide a simple technique that 

allows an accurate description of thermal behavior of any electronic package. Here is 

presented a simple methodology that can be used to describe the thermal performance of 

the Generation II IPEM, based on the Lumped Thermal Capacitance Method (LTCM) 

[7-9], which neglect the conduction effect and instead considers other forms of heat 

transfer through energy balance.   

 

1.2 Power Electronic Overview 

The electronic devices used in power electronic systems are based on 

semiconductor technology. That is to say, the devices are constituted by semiconductor 

materials, such as pure silicon, silicon with impurities (for example, boron, indium, 

arsenic or phosphorus added), and compound semiconductors (for example, gallium 

arsenide or indium antimonite) [7]. All with specific atomic configuration that allow a 

determined electron flow (current) through the device.  
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 According to [10], the atoms inside a crystal (a single crystal is formed by 

atoms bound together in an orderly structure), in a semiconductor material, are 

constantly vibrating due to their thermal energy. Under equilibrium conditions, these 

vibrations define the temperature of the crystal.  

 

If a electrical current is applied to the material, the electron flow interaction with 

the crystalline structure results in heat which increases thermal vibrations of atoms and 

the bound electrons begin to gain energy. Some of these electrons gain enough energy to 

jump across the energy gap εg between the valence and conduction bands, creating a 

new free electron-hole pair that is available to conduct electrical charge. As the 

temperature increases, more and more electrons make this transition, being created an 

electric field that produces an average drift velocity and then a current flow is observed. 

Thus, when increasing the temperature, the current also increases. In the absence of the 

applied external voltage, the electron motions are random and cancel one another.  

 

For the case of an applied voltage to the material, processes of electron 

excitation and recombination are shown in Figure 1.1. Here, when an electron leaves its 

valence state, the host atom is left short an electron, producing an ion. The ion tends to 

reach out and captures an electron from a nearby atom, leaving this neighbor now short 

an electron. The process repeats itself, and the missing electron location moves around 

in the crystal, this is the excitation process. The inverse process is named recombination. 
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Figure 1.1. Electron excitation and recombination processes. 

 

The previous electronic process is valid for any semiconductor device. However, 

each electronic application requires a specific electronic process, depending of 

semiconductor material and, obviously, of the device task.  

 

Power electronic systems process large amounts of power that only one 

particular type of device can achieve. In that case, it is necessary to rely on 

semiconductors with conductivity precisely controlled and relatively constant over a 

wide temperature range.  For this, it is necessary to add carefully measured amounts of 

certain impurities to the material. There are two types of impurities: donor and acceptor; 

and two corresponding classes of doped semiconductors: n-type and p-type. Generally, 

the devices are created by forming a junction between n- and p-type materials from a 

single crystal, that allows to the carriers to move it across the boundary region. An 

example is shown in Figure 1.2, to fabricate the p-n junction diode, or junction 

semiconductor diode, one end of the crystal is doped with donor material and the other 

end is doped with acceptor material.  

εg 

- - -

+ + + 

Excitation Recombination 

εc 

εv 

ε
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Figure 1.2. PN junction diode. 

 

When more than two doped semiconductor materials are joined, the device takes 

another name: transistor. A transistor is an active semiconductor device with three or 

more terminals [11]. Each terminal is a doped semiconductor.  A regular transistor 

includes a middle material called base region, and other materials on either side of the 

middle, called the collector and the emitter since their function is to emit and collect 

charge carriers (electrons). 

 

Some transistor types are the bipolar junction transistor (BJT), the insulated gate 

bipolar transistor (IGBT), field effect transistor (FET), and metal oxide semiconductor 

field effect transistor (MOSFET), among others. The transistor of interest for this 

investigation is the MOSFET. 

 

Consistent with [12], in the MOSFET, wells of highly doped n-type silicon 

called source and drain are diffused or implanted into a p-type substrate. A conducting 

gate is insulated from the silicon by a thin layer of SiO2. The MOSFET is physically 

symmetric, with source and drain ultimately defined by the current direction. In 

P material N material 

Battery

Holes Electrons

      Current Carrier

+     V     -
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operation, the positive charge is placed on the gate by an external source. This source 

attracts electrons from the wells into the region just beneath the oxide, creating a 

conducting channel between source and drain. The physical current in the channel is an 

electron flow, thus one terminal is considered as the source of electrons that flow 

through the channel to the drain when external voltage is applied (see Figure 1.3).  

 

 
Figure 1.3. N-channel MOSFET: (a) physical structure; (b) schematic symbol. 
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It is evident that temperature changes will have a significant effect on the device 

electrical properties. For example, the transistor normal operating voltages and currents 

will result in heat dissipation, which in turn will increase temperature. This increase in 

temperature will produce changes in the electrical characteristic not only of these 

devices in the vicinity. When there are systems that include one or more transistors, the 

thermal analysis is extremely necessary given that the device’s temperature sensitivity is 

the focal point.  

 

Now, the present technology provides the continuous development of new 

semiconductor materials, which in turn allow the development of power electronic 

system innovations for several applications.  

 

The next step is to get integrated systems, more powerful, durable, smaller, 

lighter, and less costly to the consumer. An Engineering Research Centers Program 

sponsored by the National Science Foundation, Center for Power Electronics Systems 

(CPES), is developing such systems. CPES’ Integrated Power Electronics Modules 

(IPEM) are systems whose principal characteristic is to have high integration levels of 

power semiconductor devices (transistors), gate drivers, and control circuitry for a wide 

range of power electronics applications. Figure 1.4 presents a picture of the Generation 

II IPEM a half bridge switch. A detailed description of the Generation II IPEM is given 

in [13, 14]. Two power semiconductor devices (MOSFETs) and a hybrid gate driver 

constitute this IPEM. MOSFETs are buried in a ceramic frame (that constitutes the base 
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substrate and its material is aluminum oxide) and covered by dielectrics with holes on 

the aluminum pads of the chips. The power devices are interconnected to other circuits 

by metal deposition, which additionally provides thermal paths for the devices. 

 

 

Figure 1.4. Picture of generation II IPEM. 

 

The operation of these systems encloses an amount of heat generated that must 

be dissipated. If the temperature of such systems is allowed to rise with no control, the 

electronic performance of the device may be degraded or the component looses its 

physical integrity. This is an operational limitation for these components. Thereby 

changes in the temperature and its distribution inside the device can affect drastically the 

device’s electrical performance. According to [15], as soon as the temperature inside the 

devices rises, two effects can occur: thermal runaway or self-heating. In thermal 

runaway, the electrical energy dissipated causes a temperature rise over an extended 
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area of a device resulting in an increase of dissipated power. When the self-heating takes 

place, the device temperature increases, which leads to a catastrophic device failure. 

Nevertheless, an equilibrium situation can be reached by placing the device in contact 

with a lower temperature solid or fluid, which facilitates heat flow away from the 

component. In consequence, it is extremely necessary to have a good grasp of the 

thermal process for reliability and optimum performance. Thermal conduction, 

convection, radiation, interface effects, as well as phase change processes are necessary 

to explain the thermal behavior of any device or system. 

 

Often the temperature effect on the device can be described by finding how the 

voltage changes with the temperature for a constant current. The temperature effect 

makes necessary the characterization of the thermal process, in order consequently to 

represent the electrothermal performance of any IPEM. For the design of any IPEM it is 

desired to simulate the electrothermal phenomenon, to now and understand how the 

system performance is affected by thermal effects. Electrothermal simulations in the 

design stage can be useful to evaluate performance, to analyze IPEM reliability, to 

optimize the package design, among other uses.  

 

Several methodologies can be used to model the thermal behavior of power 

electronic systems. These include: three-dimensional finite difference and finite element 

simulation [1-4], the lumped concept or empirical extraction of thermal network element 

values from the measured thermal step response [3, 4, 6, 16], reduced model techniques 
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[17, 18], the method of images which uses Green’s function approach to obtain the 

resulting temperature distribution from a heat source [19], integrated analysis with 

design tools [20], among others. All these methods require a very exhaustive and 

complex mathematical analysis, because they are based on the three-dimensional heat 

diffusion equation. This limitation represents a computational “straight-jacket”, because 

it restricts the easy addition of new elements, as occurs, for example, with specific 

software used by the electronic industry like FLOTHERMTM, ANSYSTM and IDEASTM. 

 

The need to reduce the transient 3D thermal analysis, using a simple 

methodology, fueled the present research project. Since in CPES such technical analysis 

has not yet been implemented, this point can be considered as the major justification for 

this research work.  

 

The main rationale of this research is the development, validation and 

implementation of a reduced mathematical model using a practical numerical 

formulation of the thermal behavior of a typical active IPEM, from geometrical IPEM 

data (Generation II IPEM). This model is based on the expanded Lumped Thermal 

Capacitance Method (LTCM) [7-9]. Applying this procedure a simple, non-spatial, 

highly non-linear model is obtained.  With the LTCM model and using a circuit 

simulator, such as SABERTM, it is possible to obtain the electrothermal interaction.  
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The SABERTM circuit simulator possesses model libraries to simulate the 

electrical behavior of electronic devices and of other components, making the 

electrothermal coupling more accessible. The LTCM model is coupled with SABER’sTM 

electrical model for different components. In the electrothermal simulation, SABERTM 

solves for the temperature distribution (using the implemented LTCM model) as well 

temperature dependent electrical parameters of the device simultaneously. The LTCM 

model is implemented in SABERTM, the corresponding electrothermal simulation results 

are comparated with experimental data and with results from a commercial package, 

FLOTHERM 3.1TM, under the same simulation conditions.  

 

At the end of the research project, a clear understanding of the interactions of the 

electrical and thermal behavior and vice versa was developed. In the same way, a full 

and easy modeling methodology to simulate the dynamic electrothermal performance of 

the Generation II IPEM has been developed, which will be used for virtual prototyping 

of IPEMs. 

 

The subsequent chapters of this thesis are organized as follows. Chapter 2 

presents a background on previous work in thermal simulation in the electronics area 

conducted with different concepts: traditional three-dimensional finite difference and 

finite element, the lumped concept or empirical extraction of thermal network element 

values from the measured thermal step response, reduced model techniques, and 

integrated analysis with design tools such as specific software, among others. Chapter 3 
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describes the reduced thermal model from LTCM, also this chapter shows the validation 

of the LTCM model and the thermal analysis software FLOTHERM 3.1TM with constant 

power. Chapter 4 describes the data acquisition systems, based on LabWindows/CVITM 

from National Instrument, and the experimental setup used to acquire the data from low- 

and high-speed thermal response experiments, some comparisons between low speed 

thermal response experiment data and the LTCM results are also presented in Chapter 4. 

Chapter 5 presents the model implementation in the circuit simulator SABERTM to 

obtain the active electrothermal model from the LTCM model and SABERTM tools, in 

this chapter the comparison of the high speed thermal response experiment data with 

SABERTM simulations is also presented. Finally, Chapter 6 gives a summary and 

conclusions of the research with recommendations for future efforts. 
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CHAPTER 2 

 
BACKGROUND 

 

This chapter presents the diverse types of modeling approaches to describe the 

electrothermal behavior of microelectronic devices and packages. According to 

analyzed components in different simulations, an appropriate categorization of previous 

work is as follows: (i) semiconductor devices analysis, those based on the thermal or 

electrothermal analysis of diverse semiconductor devices; (ii) electronic packages 

analysis, those simulation techniques used to describe the electrothermal behavior of 

packages; (iii) IPEMs analysis, those that describe the electrothermal analysis used to 

study IPEMs operation. 

 

2.1 Power Semiconductor Devices Analysis 

The first study of the semiconductor devices described here corresponds to work 

of Hefner in [1]. He developed, based on the lumped concept (or thermal networks), a 

dynamic electro-thermal model for the Insulated Gate Bipolar Transistor, IGBT, from 

the temperature-dependent IGBT silicon chip. The temperature-dependent IGBT 

electrical model describes the instantaneous electrical behavior in terms of the 

instantaneous temperature of the IGBT silicon chip surface. The instantaneous power 

dissipated in the IGBT is calculated using the electrical model and determines the 

instantaneous rate of heat applied to the surface of the silicon chip. The electrothermal 

model of the IGBT was implemented in SABERTM, and is available in the SABERTM 
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components library. Although this technique to describe the electrothermal behavior of a 

semiconductor device is a reduced-order model, the approach still complex and possibly 

inaccurate, since it is based in heat diffusion equation (which entails to the 

multidimensional analysis and to reduce the boundary conditions to only convection). 

 

In [6], also from the lumped concept and from a thermal multidimensional 

analysis, Codecasa et al. describe the thermal response of electronic devices by means 

of the thermal impedance. The derivation developed to obtain this parameter is based on 

very general electrical equations, so that the electrothermal behavior of semiconductor 

devices is described through an equivalent electrical network, implemented in SPICETM. 

They define an electrothermal network where the thermal impedance is reported, 

through a transformation matrix, at the electrical terminals. Then a purely electrical 

compact model embedding the thermal effects is obtained. 

 

A more general study of the semiconductor devices is presented by Min et al. in 

[19]. where a full and nontraditional analysis of a chip is presented. They developed an 

analytical three-dimensional transient temperature solution of a two-layer semi-infinite 

plate structure with embedded heat sources. In this solution, the thermal behavior of a 

typical semiconductor device from the thermal diffusion equation is described. It 

employs the method of images, which uses Green’s function approach to obtain the 

resulting temperature distribution from a heat source. In addition, the principle of 

superposition is applied in order to adjust the correct boundary conditions. This solution 
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technique has been programmed and is particularly useful for devices operating under 

pulsed or switching conditions. 

 

2.2 Package Analysis 

The study selected as a starting point in this section, is the one corresponding to 

Adams et al. in [21]. It provides a study of the thermal complex interactions between the 

components of a enclosure with horizontal narrow aspect ratio: heat sources, substrate, 

and enclosure.  The authors examined the thermal behavior of this array from 

conservation equations for continuity, momentum and energy in the three-dimensional 

problem, considering natural convection in air, coupled with conjugate conduction and 

radiation within an enclosure, and assuming constant properties. Those models were 

solved using a finite volume method. The study determines which physical effects and 

level of detail are necessary to accurately predict thermal performance of discretely 

heated enclosures.  

 

Numerical solutions have also been chosen to solve the electrothermal models of 

electronic packages. The first one was presented by Adams et al. in [22]. They 

suggested a methodology for the validation of geometric and physical compact thermal 

models implemented in computational tools (in this case FLOTHERMTM) with simple 

but realistic conditions. This validation is made by comparing the geometric reduced 

model of an electronic package accomplished in the software with experimental data of 
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the real package. Here, the importance of reducing the complexity of the many problems 

that to obtain design tools more accessible using existing software is visible. 

 

Another numerical lumped concept methodology is given by Hsu and Vu-Quoc 

in [16]. They presented a rational approach for constructing thermal circuit networks, 

equivalent to the discretization of the thermal diffusion equation using the finite element 

method. These thermal circuit networks are connected to the electrical networks of 

power electronic systems to provide complete electrothermal models that can be 

conveniently used in any circuit simulator package. Later, in [17], two reduced model 

techniques are applied to the previously obtained models, Modal Superposition Method 

(MS) and Component Mode Synthesis (CMS). In the first, the governing differential 

equations for the reduced model are uncoupled so they can be easily solved. In the 

second, the idea is to find reduced models for various substructures independently, and 

to use compatibility conditions to connect these reduced substructure models. Both 

techniques were implemented in the SABERTM simulator.  

 

In similar fashion, Lee and Allstot in [18] presented another reduced-order 

modeling technique to simulate the transient electrothermal performance of integrated 

circuits. From an efficient macromodeling method, based on the Asymptotic Waveform 

Evaluation (AWE), the time domain response of a linear circuit is efficiently evaluated 

in terms of a few dominant poles and residues. In general, from the heat diffusion 
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equation, the thermal behavior is represented by an equivalent thermal circuit, and is 

coupled with the electrical model in the SPICETM simulator. 

 

Following the reduced-order model approach, a new methodology to describe 

the dynamic electrothermal behavior of power electronic circuits and systems is given 

by Hefner and Blackburn in [2]. They proposed, developed, and validated a typically 

space technique that consists of defining the temperature at various positions within any 

package from the heat diffusion equation for various three-dimensional coordinate 

system symmetry conditions and include the nonlinear thermal conductivity of silicon 

and nonlinear convection heat transfer. Later, the resulting models are discretized into a 

finite number of first-order ordinary differential equations (using finite differences). The 

thermal component models include the nonlinear thermal conductivity of silicon and 

nonlinear convection heat transfer.  The model solutions define a thermal network. 

 

Hefner and Blackburn’s work in [3] explain how the interconnection between the 

electrical network and the thermal network can be represented through electrothermal 

models. The electrical and thermal networks are coupled through the electrothermal 

models for the semiconductor devices. The electrothermal models for semiconductor 

devices and other components (with electrical interaction) have electrical terminals that 

are connected to the electrical network and a thermal terminal that is connected to the 

thermal network. The thermal nodes in the thermal network have units of temperature 

across the nodes and units of power flowing through and across. Whereas the through 
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and across variable for electrical network are current and voltage. The thermal network 

is represented using thermal network component models so that the thermal models for 

different packages and heatsinks can be readily interconnected in the same way that the 

electrical network components are connected. The thermal network models for power 

modules and heatsink contain multiple terminals and account for the thermal coupling 

between the adjacent semiconductor devices. The SABERTM circuit simulator is used 

for electrothermal network simulation. The models are formulated such that the 

components of power flow between the thermal nodes are expressed in terms of the 

node temperature. 

 

From Hefner’s work and following with the lumped concept, Digele et al. in [23] 

developed a fully coupled dynamic electrothermal simulation on chip and circuit level, 

implemented in SABERTM. The approach in this work was to discretize the chip in three 

dimensions and build these equations like a behavioral model into SABERTM, using 

finite difference methods (FDM) for the heat diffusion equation. The contribution of that 

research is the attainment of the isolines of temperature at a critical time step during the 

simulation or under steady state condition. The temperature isolines at every simulation 

time step can be drawn, which helps to identify the temperature dependence 

components.  
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2.2.1 IPEMs Analysis 

 Chen et al. [20] provide an integrated analysis of IPEMs from several software 

tools: mechanical CAD software I-DEASTM, MaxwellTM Q3D Parameter Extractor, FEA 

software FLOTHERMTM and SABERTM, for modeling of thermal and electrical 

behavior of those systems. Each software has a specific analysis technique. The 

exchange of geometry information among the resulting models, from each software, was 

achieved.   I-DEASTM is used to model the physical layout and material information of 

IPEM. It is possible to use that information to calculate the parasitic inductance of 

module layout using Maxwell. Later, these inductances are included in the SABERTM 

simulation for electrical performance evaluation.  With the power loss calculated in 

SABERTM and geometry translated from the I-DEASTM model, the thermal analysis is 

performed using FLOTHERMTM. Finally, with the aid of all the software tools, 

tradeoffs between electrical performance and thermal management are investigated.  

 

 Rodriguez et al. [4] described with a certain degree of detail the general features 

of the lumped parameter thermal model for electrothermal analysis of a commercial 

IGBT power electronic module from ToshibaTM. This model was obtained using the 

analysis methodology developed in [2].  The previous thermal network component 

models [3] are not applicable for high power modules because high power devices 

contain multiple chips within the same package, inducing heat conduction through the 

electrical insulator layers, and are typically used with large multi-module heat sinks that 

have a highly non-uniform surface temperature. However, in this work the thermal 
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model is formulated similarly to the single silicon chip thermal model except that the 

expressions used to calculate the thermal resistances, thermal capacitances, and the heat 

energies are different. The model describes the two-dimensional lateral heat spreading, 

the die attachment thermal resistance, and the heat capacity of the commercial IPEM 

periphery. The lateral heat spreading in the commercial IPEM results in an effective 

heat flow area that increases with depth into this electronic package.  

 

In the Rodriguez’s model, the effective heat flow area at each depth into the 

commercial IPEM is obtained by combining the components of heat flow area due to the 

cylindrical heat spreading along the edges of the chip, the spherical heat spreading at the 

corners of the chip, and the rectangular coordinate component of heat flow directly 

beneath the chip. 

 

They developed an experimental system to validate the electrothermal models of 

commercial IPEMs [26]. The system consisted of a computer-based data acquisition 

system based on LabWindows/CVI from National Instrument with digital multimeters 

and recorders. The system acquires temperature at different points in the three-phase 

inverter and voltages at the module inputs. Communication between instruments and the 

computer is based on the GPIB protocol.  

 

Recently Pang et al. [14] developed a methodology to optimize the three-

dimensional geometrical design layout of an active IPEM by considering both electrical 
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and thermal performance. The thermal analysis was made using a commercial finite 

element and computational fluid dynamic (CFD) solver, I-DEASTM, in steady state. 

Then, a parametric study was conducted to determine the thermal performance of 

several design layouts and a sensitivity analysis was performed to determine the overall 

uncertainty of the simulations. Using this integrated design analysis three alternatives of 

geometric configuration were achieved, according to electrical and thermal 

requirements. From this study, Generation II IPEM design was obtained. This IPEM is 

the module used in this thesis. 

 

It can be concluded through this literature review that the study of the 

electrothermal behavior of semiconductor devices and, mainly, power electronic 

packages has been only described by means of a few methodologies ranging from heat 

diffusion equation, neglecting the radiation but, in many cases, including convection 

effects.  

 

Few full descriptions reporting a couple electrothermal analyses have used 

multidimensional approaches requiring a large amount of effort and computational 

resources.  It is therefore necessary to develop a simple but efficient methodology for 

the design and analysis of the next generation of power electronics modules such as 

IPEMs.  As described in detail in the next chapter, this method is based on a reduced 

thermal model that incorporates the coupled thermal and electrical performances.  This 

is the main objective of the work presented in this thesis. 
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CHAPTER 3 

 
REDUCED-ORDER THERMAL MODEL 

 

3.1 Introduction 

Traditionally, computational fluid dynamics (CFD) simulations of electronic 

system with detailed modeling of the electronic devices and conjugate heat transfer 

interactions are utilized to predict the thermal state in electronic applications. Despite 

large variability in length scales at the device and system levels results the demand 

considerable computational requirements, which is translated in an expense in design 

time. In that case, compact or reduced modeling of electronic components without the 

use of system CFD simulations may be a viable alternative to meet the design process 

requirements [1]. 

 

A reduced-order thermal model of a component is a model that has modest 

complexity, but captures the main thermal features for a particular analysis. This 

moderate complexity improves computational efficiency, allowing thermal simulations 

of the electronic system to be completed, using personal computers (PCs) or 

workstations, in reasonable time. 

 

The main characteristic of an IPEM is the high component integration level. The 

new packaging method employed in IPEM manufacturing eliminates wire bonds, which 

lead to potential benefits from both the electrical and thermal prospective [14]. 
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Nevertheless, components layout of this package do not permit an easy thermal analysis 

implementation in a typical software, because they require a complex configuration at 

the same time. This way, the use of some reduced model that allows the fast and simple 

analysis of all elements that compose the IPEM is necessary. 

 

From this point, there are many possibilities to develop reduced models, each 

one with specific applicability in the thermal analysis of the electronic components, such 

as the lumped concept. However, until now such components have not been described 

using a methodology of non-spatial analysis. All have started from the heat diffusion 

equation (HDE), which generally are multidimensional. This fact increases the 

magnitude of the analysis since it makes necessary the employment of the complex 

techniques to discretize the HDE, for example finite element or volume, some matricial 

technique, etc. 

 

It is the final goal to develop a simple mathematical model that describes the 

thermal behavior of a typical IPEM. In most cases, in some unsteady situations the use 

of the lumped capacitance theory greatly simplifies the analysis. The lumped 

capacitance theory assumes that the temperature within a solid is spatially uniform at 

any instant throughout an unsteady heat dissipation process. Thus, the reduced thermal 

model is based on the Lumped Thermal Capacitance Method (LTCM), also named 

Lumped Capacitance Method or Lumped Capacitance Heating and Cooling [7-9]. The 

use of this model implies that the unsteady heat transfer analysis only depends on the 
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time, representing spatial thermal distribution by the physical and thermal characteristics 

of the IPEM.  

 

3.2 Lumped Thermal Capacitance Method (LTCM) 

In order to determine the validity of the LTCM approach, certain criterion must 

be satisfied. The Biot number (Bi), a dimensionless parameter, relates the internal 

conduction resistance to the external convection resistance during transient heat transfer. 

This dimensionless parameter is used to test for the validity of the LTCM approach. The 

Biot number is defined as the ratio of temperature differences across the solid itself 

(conduction heat transfer), and between the solid and fluid (convection heat transfer). It 

is given by [7-9]:   

k/hLBi = , (3.1) 

The reader is referred to the nomenclature section for the definition of the 

symbols used throughout this text.  

 

Values of the Biot number larger than 1 imply that the heat conduction inside the 

body is slower than at its surface, and temperature gradients are non-negligible inside it. 

On the contrary,  a Biot number value lowest than 1 suggest that LTCM approach can be 

used to describe the transient heat transfer phenomenon. This way, to validate the 

LTCM approach it is necessary that [7-9]: 

1.0Bi <<  
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Unless previous requirement is satisfied, the method will be inaccurate. A small 

Biot number is an indication of a very efficient conduction heat transfer inside the body, 

and temperature variations can be neglected inside the body. Whenever the 

nondimensional parameter is smaller of the stipulated value, the condition of minimum 

temperature variations could be used for most power electronic modules.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1. Generation II IPEM: (a) geometry model; (b) lumped decomposition. 

 

LTCM allows to deal with the heat transfer between the body and the ambient 

fluid by convection, between the body and surroundings by radiation, thermal contact 

and spreader resistance effects, and transient effects. In order to obtain the temperature 

profile of the Generation II IPEM, each material is treated as a control volume or 

lumped, as shown in Figure 3.1. A mathematical model of the IPEM is constituted by 
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several lumped. Applying an energy balance in each lumped, the temperature at each 

lumped is,  

outjinj

.

gjstj E     E      E       E
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−+= , (3.2) 
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where 

.

stjE
•

 is the stored energy in the lumped, 

.

gjE
•

 is the generated energy inside lumped, 

inj

.

E
•

 is the input energy to lumped, 

outjE
•

 is the output energy from lumped. 

 

In Equation 3.2, the generated energy (in heat form) within the lumped 

corresponds to the electrical power dissipated by the device, this parameter must be 

calculated in the electrical circuit analysis and constitutes the input to the thermal 

model. In some cases, this power is null because many lumped do not have a dissipated 
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power. Generally the lumped that dissipate power are those associated to semiconductor 

devices. In addition, Equation 3.2 considers the heat that enters the lumped through 

thermal contact and spreader resistances with adjacent devices. The heat that leaves the 

lumped is due to mostly convection, radiation, and, in some cases, due to the 

phenomenon of heat exchange between lumped through thermal contact and spreader 

resistances. Finally, the stored heat is due to the variation of the lumped internal energy. 

 

According to Equation 3.3, the full model of a typical IPEM includes the form of 

heat dissipation that generally appears in electrothermal processes from the devices 

(power semiconductor devices and gate driver). These heat forces are: 

1) Free or forced convection of each lumped with the surrounding ambient. 

2) Radiation between lumped and between each lumped and the surrounding 

environment. 

3) Heat spreading due to conduction in the direction of the contact surface. 

4) Thermal contact resistances. 

5) Transient effects. 

 

The energy balance applied to each lumped can contain some or all the 

expressions that appear the Equation 3.3. For example, in the case of the convection, if 

this affects a lumped vertical as much as horizontally, then the convection expression 

must be specified similar to the Equation 3.3’s expression; in the contrary case, only 
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will appear the convection form that is present. The same happens to the remaining 

expressions contained in the corresponding energy balances.  

 

3.3 Model Description 

The validity of the LTCM was verified by calculating the Biot number for each 

lumped. According to the Equation 3.1, this parameter is function of the temperature 

since the heat transfer coefficient depends of the temperature. Likewise, in order to 

calculate the Biot number, the used characteristic or equivalent length must be defined 

so that it corresponds to the heat transfer thickness according to the heatflow direction 

(airflow direction for each lumped is shown in Table 3.1).    In the transient analysis, for 

the IPEM under study, this parameter varies between 4.75x10-6 and 3.73x10-4 (see 

Figure 3.2). The Biot numbers presented in Figure 3.2 were calculated from transient 

temperature of each lumped assuming devices’ dissipated power of 1, 7 and 12W for 

gate drive, left and right chip, respectively.  
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Figure 3.2. Corroboration of Biot parameter condition. 
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From the properties of each lumped material, the model can be used to calculate 

the energy balance of each lumped from Equation 3.3 resulting in a set of simultaneous 

non-linear ordinary differential equations that can be solved by means of an efficient 

numerical integration method, such as the fourth order Runge Kutta method [24]. The 

solution using fourth-order Runge Kutta method can be obtained as follows: 

( ) t KK2K2K
6
1 T  T 4321)i(Lj)1i(Lj ∆++++=+ , (3.4) 
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After many previous divisions of the Generation II IPEM to find the number of 

appropriate lumped, this IPEM was dividing in eleven parts or lumped and a significant 

change in the IPEM temperature distribution was not observed. With less lumped 

number, the model do not catch the real temperature distribution. With greater lumped 

number the model require more computational time to obtain the temperature 

distribution without considerable temperature changes in the IPEM’s thermal profile.  

 

Since the IPEM under study consists of eleven lumped, the assembly can be 

modeled by eleven energy balance equations, which correspond to temperature profile 

of the IPEM. These equations are listed in Table 3.1.  
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Table 3.1. Model Expanded for each IPEM’s Lumped 
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3.4 Physical and Geometric Properties of the Generation II IPEM 

In the previous set of equations, only the temperatures are unknown, all of 

remaining parameters are known values that are obtained from the physical and 

geometric features of the Generation II IPEM.  

 

For convection heat transfer, in this study the natural convection will be the only 

component to be considered, because in the experiments there is a considerable airflow 
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(from a fan) that acts on the package. There are several empirical correlations to obtain 

heat transfer coefficient values. However, for free convection on vertical and horizontal 

plates, two empirical correlations can be used (based on the studies of Churchill & Chu 

and McAdams [8, 9], respectively), since they provide the necessary precision in this 

case. From vertical and horizontal plates exposed to air at atmospheric pressure, these 

correlations are determined by [8, 9], 

[ ]
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, (3.17) 

where the Nusselt number, Nu, defines the heat transfer coefficient from: 

k
hLNu

____
= , (3.18) 

These empirical equations can be reduced, as shown in [8], and to give results 

approximated to the ones obtained when previous equations are used (see Figures 3.3(a) 

and 3.3(b)). The simplified equations for the convective coefficient for horizontal and 

vertical plates are given by [7, 8]:  
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, (3.19) 

For microelectronics applications, this coefficient is acceptable within the 

following range [1]: 

1 W/m2 K <   h   < 15 W/m2 K 
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Comparison of Vertical Heat Transfer
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Comparison of Horizontal Heat Transfer Coefficients
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Figure 3.3. Comparison of correlations used to calculate the heat transfer coefficients of the gate 

driver (Lumped 1): (a) on a vertical side; (b) on a horizontal side. 

 

According to Figure 3.3, the use of simplified correlations (Equation 3.19) is 

valid because the behavior of convective coefficients is identical to the extended 

equations (Equation 3.17). 
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The thermal contact resistance is a combination of the contact surface and heat 

spreading effects. The first is given by [25],  
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This empirical correlation is valid for the types of materials used in typical 

IPEMs. The heat spreading effects are calculated from [8, 9]:  
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The total thermal contact resistance is 

 jnextj spreader jnextj contjnextj RRR −−− += , (3.22) 

On the other hand, for radiation, in the case of those lumped that only have 

radiation heat transfer with the environment, the geometry factors are calculated from 

direct estimation. In the cases of radiation exchange between lumped surfaces, such 

factors are calculated using: the Reciprocity Relationship, the Summation Rule, tables 

and curves (in [8, 9]) corresponding to geometry factors for rectangles with a common 

edge, and also using direct estimation. The expressions used to define the Reciprocity 

Relation and Summation Rule are, respectively:  
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Table 3.2. Physical Properties of the Generation II IPEM 

No. Description Material
Kj, 

W/m.K
Cpj, 

J/kg.K
ρj, 

kg/m3 εj 
Volume, 

m3 

Equivalent
Length, m 

1 Gate Driver Silicon 124 702 2329 0.86 1.14E-07 2.54E-04 

2 Left Chip Silicon 124 702 2329 0.86 5.70E-08 8.89E-04 

3 Right Chip Silicon 124 702 2329 0.86 5.70E-08 8.89E-04 

4 Metallization Layer Copper 386 390 8900 0.05 1.01E-07 1.24E-02 

5 Metallization Layer Copper 386 390 8900 0.05 1.48E-08 3.56E-03 

6 Metallization Layer Copper 386 390 8900 0.05 1.01E-07 1.24E-02 

7 Metallization Layer Copper 386 390 8900 0.05 1.48E-08 3.56E-03 

8 DBC Traces Copper 386 390 8900 0.05 2.05E-07 2.54E-04 

9 Ceramic Substrate Al2O3 26 850 3900 0.34 5.72E-07 8.89E-04 

10 DBC Ceramic Layer Al2O3 26 850 3900 0.34 5.13E-08 6.35E-04 

11 DBC Base Copper 386 390 8900 0.05 2.05E-07 2.54E-04 

 
 

Table 3.3. Geometrical Properties for Convection Effects 
 Tranversal Length Area 

Number Shorizontal, m Svertical, m Ahorizontal, m2 Avertical, m2 

Lumped 1 2.11E-02 2.54E-04 1.79E-04 1.50E-05 

Lumped 2 7.19E-03 ---- 6.36E-05 ---- 

Lumped 3 7.19E-03 ---- 6.36E-05 ---- 

Lumped 4 4.90E-03 2.54E-04 4.86E-05 9.72E-06 

Lumped 5 4.06E-03 1.14E-03 1.49E-05 6.66E-06 

Lumped 6 4.90E-03 2.54E-04 4.86E-05 9.72E-06 

Lumped 7 4.06E-03 1.14E-03 1.49E-05 6.66E-06 

Lumped 8 ---- 1.14E-03 ---- 3.25E-05 

Lumped 9 3.00E-02 8.89E-04 5.16E-04 9.04E-05 

Lumped 10 ---- 6.35E-04 ---- 7.23E-05 

Lumped 11 ---- 2.54E-04 ---- 2.89E-05 

 
 

 

To calculate the previous parameters the material physical properties shown in 

Table 3.2 are used.  The dimensions of the Generation II IPEM are given in Appendix 
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A. The calculated parameters are presented in Tables 3.3 and 3.4. For each variation of 

the number of lumped, it is necessary to recalculate all parameters, until the Biot 

number condition is satisfied. The system of eleven equations is the result of that 

iteration.  

 
 

Table 3.4. Geometrical Properties for Radiation and Contact Resistance Effects 
RADIATION CONTACT RESISTANCE 

Factor Area Rj-jnext Value, K/W 

Fj-jnext value Aj-jnext
 value, m2 R1-9 3.61 

F1-∞ 9.9E-01 A1-∞ 1.94E-04 R2-8 12.85 

F2-∞ 9.4E-01 A2-∞ 3.64E-05 R3-8 12.85 

F3-∞ 9.6E-01 A3-∞ 3.64E-05 R2-9 12.46 

F4-∞ 1.0E+00 A4-∞ 5.84E-05 R3-9 12.46 

F5-∞ 1.0E+00 A5-∞ 3.39E-05 R2-4 10.39 

F6-∞ 1.0E+00 A6-∞ 5.84E-05 R3-6 10.39 

F7-∞ 1.0E+00 A7-∞ 3.39E-05 R9-8 11.71 

F8-∞ 1.0E+00 A8-∞ 4.49E-05 R5-9 11.77 

F9-∞ 1.0E+00 A9-∞ 6.06E-04 R7-9 11.77 

F10-∞ 1.0E+00 A10-∞ 7.23E-05 R8-10 11.24 

F11-∞ 1.0E+00 A11-∞ 2.89E-05 R10-11 10.51 

F1-2 4.9E-03 A1-2 5.35E-06 R4-5 16.59 

F1-3 5.2E-03 A1-3 5.35E-06 R6-7 16.59 

F2-1 5.8E-02 A2-1 3.64E-05 R5-8 11.96 

F3-1 4.6E-02 A3-1 3.64E-05 R7-8 11.96 

 

 

3.5 Numerical Model Implementation and Some Simulation Results  

In order to facilitate the solution of the numerical scheme, it was programmed in 

FORTRAN allowing variable properties, variable convective coefficient, and adaptive 

time step.  The program is presented in Appendix B. The generated code, first verifies 
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that Bi<<0.1. If this is satisfied, then the program reads an external file to obtain the 

required properties values. The final step is to solve the model’s simultaneous equations. 

The program will abort if Bi>>0.1 since the model will not be accurate. A flowchart of 

the strategy is shown in Figure 3.4, bellow.  

  

Figure 3.4. Flowchart of the generated FORTRAN code for the solution of the reduced thermal model. 

 

The coded model was executed using the values of power dissipated for the gate 

driver and silicon devices given for the Generation II IPEM.  The constant dissipated 

powers by the gate driver (lumped 1), the leftmost (lumped 2) and rightmost (lumped 3) 

START 

Enter necessary  
information to solve  

    the equations of each  
  lumped. 

Constant values: geometric and material properties, 
power dissipated, airflow conditions. 
Variable values: heat transfer coefficient, Biot 
number, temperature of each lumped.  

Calculate heat transfer 
coefficient and Biot 
number. 

If Bi<<0.1 

Yes 

      Display temperature  
      of each lumped. 

END 

No 
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semiconductors were 1 W, 7 W and 12 W, respectively. These values were specified 

into the design stage of this IPEM [5, 21]. A first approach was to expand the model of 

the Generation II IPEM, with the data presented in the tables, varying the time step to 

study the model solution stability. Figures 3.5, 3.6 and 3.7 present few results for time 

step increments. In Figure 3.8, it is observed that for a time increment of 1 sec, the 

lumped reaches quickly the steady state, whereas for greater time increments, over 4 

sec, the transient state range is extended, this is because the method of solution of the 

model for small time steps is quite stable.  No significant change was observed below 

time steps of one second (see Figure 3.9).       
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Figure 3.5. Transient curves of the power devices for a time step of 1 sec. 
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Power Device Temperatures with Time Step of 4 sec
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Figure 3.6. Transient curves of the power devices for a time step of 4 sec.  

 
 
 

Power Device Temperatures with Time Step of 5 sec
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Figure 3.7. Transient curves of the power devices for a time step of 5 sec.  
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Right Power Chip (Lumped 3) Temperature for 
Different Time Steps
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Figure 3.8. Study of the model's stability to the time step integration. 
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Left Si-Chip (Lumped 2) Temperature at Time Steps 
less that 1 sec

20

30

40

50

60

70

0 50 100 150 200 250 300

Time, sec

Te
m

pe
ra

tu
re

, °
C

Time Step = 0.25 sec Time Step = 0.50 sec
Time Step = 0.75 sec Time Step = 1.0   sec  

(b) 
 

 

Right Si-Chip (Lumped 3) Temperature at Time Steps 
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Figure 3.9. Transient curves of the power devices for time steps less that 1 sec: (a) gate driver; (b) left Si-
chip; (c) right Si-chip.  

 
 

For the right chip (Lumped 3) the maximum temperature in steady state was 

88.95°C for each of the runs at different time intervals, as is observed in Figure 3.8. For 
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time steps between 1 and 4 seconds, the transient curves for this power device are 

uniform. In this chart, the optimal time step corresponds to two seconds (this was the 

final time step used in the full thermal analysis), where the lumped reaches quickly 

steady state.  

 

An additional interesting feature investigated was the impact of the radiation and 

convective effects on the electrical performance of the IPEM.  Figure 3.10 shows the 

effects of increased heat dissipation. The convection effects are more import than the 

radiation effects in general.  
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Figure 3.10. Radiation and Convection Effects on Electrical Performance of the Generation II IPEM. 

 

In the Generation II IPEM, when the dissipated power of one of the devices 

exceeds the 14 W, the radiation starts to be of considerable importance (see Figure 

3.10). However, in actual operation, the left and right chip does not exceed the 7 and 
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12W, and the total dissipated power by the devices together is 20 W (including the gate 

driver with 1W), and the temperature of them does not surpass the 100°C (a suitable 

criterion to consider that the radiation is relevant). It could then be said that the radiation 

effects are not significant in this work. Maybe in other applications, where the power 

goes over the actual power of the devices, the electrical functionality of the package 

could be influenced. Here the radiation has been considered because it is desired to 

demonstrate the generality of the model from the proposed methodology. 

 

3.6 Validation of the Reduced Thermal Model using FLOTHERMTM 

Commonly, some CFD simulations are used for the thermal analysis of any 

electronic component. However, in most instances, such analysis is not simple due to 

the complexities of components, or their operational conditions, which may result in  

large computational efforts. For that reason, the use of the reduced model is appropriate. 

The CFD simulation is used here to demonstrate the validity of the reduced model. 

 

The CFD solver selected to verify reduced model results is FLOTHERM 3.1TM, 

which is specially designed for the electronics industry. FLOTHERM 3.1TM takes into 

account all modes of heat transfer: convection, conduction, and radiation effect, 

according to the following analysis capabilities: 

6) Two and three-dimensional. 

7) Steady state and transient. 

8) Laminar and turbulence flows. 
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9) Forced, natural and mixed convection. 

10) Internal and external flow. 

11) Buoyancy and viscous effects. 

12) Conduction only, flow only or flow and heat transfer. 

 

Regularly, the steps for every FLOTHERM simulation are to: define the 

geometry (geometry model acquisition and addition of physical properties and modeling 

parameters), configure the mathematical model (modeling type and boundary 

conditions), add the grid, solve, and analyze the results.  

  

Geometry Model 

The graphical view of the model data can be obtained from imported solids 

(from others graphical software and introduced directly into FLOTHERM) using the 

FLO/MCAD tool, or creating it from FLOTHERM facilities (using the Drawing Board).  

 

In order to build the geometrical model from FLOTHERM, it is necessary to use 

a rectangular coordinate method for modeling electronic systems and then all the 

geometry is constructed from fundamental cuboids and prism shapes. The number of 

cuboids and prisms utilized in an approximate representation determines how accurately 

the object is represented. Nonetheless, there is a trade-off between modeling accuracy 

and computer efficiency, as the greater the number of modeling components, the greater 

the storage requirements and longer the solution time. 
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From the given dimensions for the Generation II IPEM [21], the corresponding 

geometric model built in FLOTHERM (into the determined solution domain) is 

acquired and it is shown in Figure 3.1a. 

 

After the geometry has been described, the next step is defining and adding the 

physical properties and modeling parameters. Each created primitive element in 

FLOTHERM must have attached attributes such as material, thermal, surface, surface 

exchange, equivalent thermal resistance for some applications and source. Modeling 

parameters should also be assigned to the developed project such as, grid constrain, 

radiation or not, steady state or transient, and temperature solution option, and solution 

parameter for the convergence, among others. The simulation uses attached attributes 

shown in Table 3.2, the dissipated powers used were the same employed in the reduced 

model, thus the conditions and properties were the same for both cases. 

  

Mathematical Model Configuration 

The FLOTHERM 3.1TM solution activates the CFD algorithms, which provides 

an integration of the fluid flow and heat transfer equations (Navier-Stokes equations) 

within the solution domain. In the CFD technique used by FLOTHERM, the 

conservation equations (set of coupled, non-linear, second order, partial differential 

equations) are discretized by sub-division of the domain of integration within a set of 

non-overlapping, contiguous finite volumes (or grid cells if the analysis is two-
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dimensional) that when are associated to the respective boundary conditions result in a 

set of algebraic expressions.  

 

From available modeling options in the software, the corresponding 

mathematical model (using FLOTHERM 3.1TM) of the IPEM can be acquired, which 

includes tree-dimensional conduction, radiation effects, free convection with the 

surrounding, and transient analysis, using the same initial and operational conditions 

from the reduced LTCM model. Only the energy equation was used in this simulation, 

since the thermal analysis proposed with the LTCM model for the Generation II IPEM 

just involves the heat transfer phenomenon.  

  

Grid and Solution 

The grids are spatial locations where the software solves the equations in the 

computational domain. When the geometry is created, a default grid is also generated. 

Nevertheless, it is convenient to define a specific grid number according to an 

appropriate solution accuracy and convergence. For this work, simulations showed that 

for a grid size greater than 8315 elements the solution does not vary, defining this 

element number as the optimal grid. In order to obtain the optimal grid size, it was 

necessary to make many simulations monitoring temperatures corresponding to gate 

driver, left and right power chip (lumped 1, 2 and 3, respectively). The process to obtain 

the optimal grid size is presented in Table 3.5. 
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Table 3.5. Optimal Grid Size at FLOTHERMTM Simulations 
GRID 
SIZE 

GATE DRIVER 
TEMPERATURE, ºC 

LEFT POWER CHIP 
TEMPERATURE, ºC 

ROGHT POWER CHIP 
TEMPERATURE, ºC  

COMPUTATIONAL 
TIME 

17528 48.95 67.10 84.01 11 hours, 10 minutes 

9012 48.39 66.93 83.11 5 hours, 58 minutes 

8315 48.96 67.06 83.77 5 hours, 17 minutes 

7054 41.54 63.18 82.96 4 hours, 48 minutes 

6842 46.30 70.59 89.23 3 hours, 55 minutes 

 

 

The transient simulation duration must be divided into time steps.   It is 

important to correctly define this time step. Small time steps are required to capture 

details when there is a rapid rate of change in any variable, as is the case here. A 

sensitivity analysis was performed to determine the incidence of time step on the 

problem solution and its computational time. With the established optimal grid size 

(8315 elements) and considering the optimal time step obtained in the LTCM model’s 

analysis (whole value is 1.75 sec), several sensitivity runs were done (using grid size 

small, medium and great), varying the time step. The option used, with each grid size, 

was to run each simulation with a different the time step. According to the LTCM 

model’s stability analysis, an appropriate time step must be established between 0 and 3 

seconds (see Figure 3.8), then considering these range, the used values for this 

parameter were 0.5, 1.75 and 3 seconds.  

 

Table 3.6 summarizes the steady state temperature values of the right Si-chip 

(lumped 3), as well as the corresponding computational times required to reach each 

steady state temperature. Here it can be seen that the simulations are sensible to changes 
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in time step and that the optimal time step corresponds to the value obtained in the 

LTCM model’s stability analysis, which one was of 1.75 seconds. When the time step is 

small the computational time is very large, and when it is large the steady state 

temperature is not accurate.  

 

Some important computational characteristics are presented in Table 3.7. The 

FLOTHERM simulation was made in a workstation with UNIX operative system, and 

the LTCM model was implemented in a personal computer with Windows 95 operative 

system. The FLOTHERM solution must be as a reference to compare the LTCM model 

solution in steady state conditions. This is, because FLOTHERM solution uses a very 

different thermal model to define the thermal transient behavior of the package under 

study (it is based on multidimensional conduction basically), while the LTCM model is 

based on thermal contact resistances and heat spreader effects, neglecting the 

temperature distribution in a specific volume (lumped). However, the simplicity of the 

analysis by using the LTCM model is clearly manifested, according to the values shown 

in Table 3.7. 

 

Table 3.6. Steady State Temperatures and Computational Times in the Sensitivity 
Analysis 

GRID SIZE TIME STEP 
sec 6842 8315 17528 

0.50 ≈87ºC / 4.5 hours ≈84ºC / 6.8 hours ≈84ºC / 16.3 hours 

1.75 ≈89ºC / 3.9 hours ≈84ºC / 5.3 hours ≈84ºC / 11.2 hours 

3.00 ≈64ºC / 2.3 hours ≈93ºC / 3.9 hours ≈80ºC / 8.1 hours 
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Table 3.7. Computational Quality Evaluation of Both Solutions 
 FLOTHERM LTCM 

Computational Time 5 hours, 17 minutes 21 minutes 

Step size 1.75 sec 1.75 sec 

Number of grids 8315 11 lumped 

 

 

Figure 3.11 shows the upper surface temperature distribution of the Generation 

II IPEM obtained from the developed simulation in FLOTHERM using a time step of 

1.75 seconds and a grid size of 8315 elements. In concordance with the solution 

obtained with the LTCM model, FLOTHERM solution also report the highest 

temperature at the right power chip (lumped 3), this device is the principal heat 

dissipation element. 

 
Figure 3.11. IPEM Visualization surface from FLOTHERM. 
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The conduction phenomenon dominate the thermal transient obtained from 

FLOTHERM, whereas in the case of the LTCM model, the heat spreader effects and 

thermal contact resistance represent such heat transfer mechanism, then it is to hope that 

the resulting transients from both analysis will tend to be different. In Figures 3.12, 3.13 

and 3.14 the comparisons between the FLOTHERM simulation and the reduced model 

for the power devices are illustrated. Considering the existing differences in both 

analyses, simulation results from FLOTHERM compare very favorably with the LTCM 

model. The validation of the reduced model against simulation data for gate driver, left 

power chip and right power chip generated average errors (for the steady state 

temperature) of 4.75%, 3.79% and 5.37%, respectively. The remaining IPEM’s 

comparison points are presented in Table 3.8. In FLOTHERM, first the lumped were 

identified and in each one was placed a monitor point (at the center of mass), which 

collects the steady state temperature for that lumped. 
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Figure 3.12. LTCM vs. FLOTHERM for Lumped 1, with a Power Density of 5.574x103 W/m2. 
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Comparison Between Reduced Thermal Model and 
FLOTHERM Simulation For Left Chip (Lumped 2)
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Figure 3.13. LTCM vs. FLOTHERM for Lumped 2, with a Power Density of 1.101x105 W/m2. 
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FLOTHERM Simulation For Right Chip (Lumped 3)

20

30
40

50

60

70
80

90

100

0 50 100 150 200 250 300

Time, sec

Te
m

pe
ra

tu
re

, °
C

LTCM Model
FLOTHERM

 
Figure 3.14. LTCM vs. FLOTHERM for Lumped 3, with a Power Density of 1.888x105 W/m2. 
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Table 3.8. Steady State Temperature Errors between FLOTHERM and LTCM 

Component (Lumped) LTCM Model 
SS Temp, ºC 

FLOTHERM 
SS Temp, ºC % Error 

Left Cu - metallization layer (Lumped 4) 6378 61.38 3.91 

Left Cu - metallization frame (Lumped 5) 58.24 55.86 4.27 

Right Cu - metalliz. layer (Lumped 6) 79.49 75.19 5.73 

Central Cu - Metalliz. frame (Lumped 7) 67.44 63.61 6.01 

DBC copper trace (lumped 8) 50.39 46.56 8.23 

Al2O3 - ceramic substrate (Lumped 9) 61.51 57.24 7.46 

Al2O3 – DBC ceramic layer (Lumped 10) 44.72 41.06 8.92 

Copper base (Lumped 11) 43.11 39.44 9.29 

 

 

According to Table 3.8, the tendency is that the resulting comparisons in the 

lumped close to hot points are more accurate. Meanwhile for the points far from the 

power devices is not as accurate. The cause of this discrepancy is that in the point far 

from the hot point the heat conduction becomes more relevant. Then, the LTCM model 

may be not appropriate to compare the steady state temperature and, of course, the 

transient thermal analysis with the software tool solution in such points. However, the 

fact that LTCM is not as accurate for cold points as for hot spots, it does not imply that 

the LTCM is not adequate or that it cannot be used to obtain preliminary temperature 

values in such points, since the maximum error was 9.29% (a large error is considered a 

error value over 10%). The lumped position affect the LTCM model accuracy, this is, 

each lumped must be defined so that this one have enough contact area and heat 

spreader effect compared with its adjacent lumped. For example the central lumped have 

small steady state temperature errors, lumped 2, 4 and 5, while for the lumped 3, 6 and 

7, with the same geometries and adjacent lumped, large errors are achieved.  
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CHAPTER 4 

 
EXPERIMENTAL MODEL VALIDATION 

 

4.1 Introduction 

An important component in electrothermal model validation is the comparison 

with actual data. It is essential to develop a tool that allows having a real description of 

the interaction between thermal and electrical parameters (within the package under 

study), where these parameters can be extracted and analyzed.  An experimental system 

can be such a tool.   
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Figure 4.1. Experimental testbed for low-speed thermal response: (a) set-up picture; (b) IPEM picture. 
 

Two experimental set up, for low- and high-speed thermal responses, were 

developed. The first one is employed to validate the LTCM-heat sink model with 

constant input (simulated using the program developed in FORTRAN), and the second 

one is used to validate the electrothermal data from the implemented model in SABER 

simulator (based on LTCM with a variable input, which is established for the electrical 

component).   

 

4.2 Experimental System for Low-Speed Thermal Response 

The experimental set-up consists of a computer-based data acquisition interface 

based on LabWindows/CVI from National Instrument with digital power supplies, 

multimeters and switches, as shown in Figure 4.1. 

 

  

 (b)
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Basically, the experiment works in the following form: Power is supplied (HP 

6030A Power Supply), separately, to each MOSFET; this power produces temperature 

changes (inside the device and the other components of the package) that are collected 

by five thermocouples, placed in specific points (gate driver, MOSFETs, DBC base and 

heat spreader). Gathered data from thermocouples are received by a multiplexer thermal 

card (Keithley 7014 Card) inside a switch system (Keithley 7001 Switch System). A 

multimeter (Keithley 2000 Multimeter) reads temperature data from the switch system 

and stores them temporarily. The data acquisition system (the project was named 

“transient ipem”) reads temperature values, from the multimeter, and store them, for 

later display and to plotting in a computer window. In the same way, whenever 

thermocouples collect a set of values, the power supply acquires the voltage and current 

values and sends them to the transient ipem program, where the values are stored, 

displayed and plotted in a computer window, see Figure 4.1a. 

 

4.2.1 Data Acquisition System (Transient IPEM Program) 

LabWindows/CVI is an integrated interactive development environment with 

development tools that allows easy creation, configuration, and display of measurements 

on a graphical user interface (GUI). LabWindows/CVI is used to create virtual 

instruments (combination of hardware and software that provide complete flexibility of 

designing and controlling the elements of stand alone or embedded instruments from a 

computer system) to acquire, analyze, and display data from an experiment. The virtual 

instrumentation application is created using all features of the American National 
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Standard Institute (ANSI) C programming language along with LabWindows/CVI built-

in tools and libraries. 

 

LabWindows/CVI contains a drag and drop editor for creating user interfaces, 

tools for automatic code generation, and a complete multithreaded ANSI C environment 

for building test, measurement, control, and automation applications. Multithreading is a 

method of programming in which a program can perform more than one operation at a 

time. The used methodology by LabWindows/CVI to make any data acquisition system 

is very simple: 

• Creating the graphical user interface (GUI) with defined controls for a specific 

application.  

• Making the source code, in C++, required to define the control functions at the 

created GUI. 

• Obtaining or making instrument driver codes (also in C++) of each one of the 

instruments used in the experiment, with which the program has communication. 

• Establishing the communication between the program and instruments. The 

communication is based on the General Purpose Interface Bus (GPIB) protocol. 

 

LabWindows/CVI program acquires temperature at different points in the 

Generation II IPEM through the use of thermocouples, at the same time it collects the 

changes in voltage and current into power chips. The developed program at 

LabWindows/CVI for this experiment was named “transient ipem”, and the transient 
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ipem program panel is shown in the Figure 4.2. The complete C code can be found in 

Appendix C of this document. 

 

 
Figure 4.2. Data acquisition system program created in LabWindows/CVI. 

 

In the transient ipem program panel (see Figure 4.2), the first box (named SET 

INSTRUMENTS) is used to fix program input parameters (voltage, current, waveform 

frequency and amplitude), in addition to establishing the final time of the experiment, it 

is to say, the required time that the device needs to reach the steady state temperature. 

The central box, named THERMOCOUPLE MEASUREMENTS, is used to define 

which thermocouples will be measured (which points with thermocouple measurements: 
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gate driver, left and/or right power chip, DBC base, and/or heat spreader). When 

measurement points are selected (putting “on” or “off” to each thermocouple), those 

points in “on”, display actual point temperatures in each time step. All temperatures are 

stored until the final time is reached. Similarly, in the next box named ELECTRICAL 

MEASUREMENTS, the option to acquire electrical parameters, such as voltage and 

current (and with these the power), in each time step is available. 

 

The main function is defined by the RUN button. With this button, program 

input parameters are set and the program run in order to acquire temperatures of selected 

points. In the same box, the RESET button is located, which is used to return to off-

conditions.  

 

The last box, at the right side, is used for other functions, such as load, display, 

and save the data, and to clear graphics. The buttons in this box allow to manipulate 

measured or file data. The program acquire and store three types of datasets: 

temperature, power, and voltage-current.  The data can be analyzed from the panel or 

extracted to analyze it in an excel file.  

 

4.2.2 Results 

With the experimental testbed used both thermal and electrical transient curves 

were obtained. In each run, temperature, voltage, and current were acquired at each time 
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step. From the input voltage and current, the power dissipated by the device can be 

calculated.  

 

According to Figure 4.1.a, each device is supplied by an electrical source, but it 

cannot be made simultaneously. It is necessary that while a device is turned on, the other 

remains as a passive thermal element, that is to say, the other device only conducts the 

generated heat in the turned on device. In view of that, a set of experiments with 

different electrical sources (below the allowed maximum value by device) applied to left 

power chip, and other set of experiments from the right power chip, were made. In total, 

fourteen experimental runs were made, seven of them corresponding to the left power 

chip and the remaining seven to the right power chip.  

 

 

 

 

 

 

 

 

 

 
Figure 4.3. Localization of thermocouples at the Generation II IPEM. 
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In each experimental sample the temperature were read and stored in five 

specific places of IPEM, as shown in Figure 4.3. 
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Left Chip's Thermal Transient Curves at Different Electrical Inputs
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Figure 4.4. Left power chip’s transient curves: (a) electrical; (b) thermal. 
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Right Chip's Power Curves with Different Electrical Inputs
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Figure 4.5. Right power chip’s transient curves: (a) electrical; (b) thermal. 
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In Figure 4.4, thermal and electrical transient curves of the left chip with diverse 

electrical inputs are presented. Here, it is possible to observe the device electrical 

nonlinearity with respect to the temperature dependency. In Figure 4.4.a, when the input 

provided power is low, the electrothermal process can be considered as only thermal, 

such as in the case of the input of 1.5A – 1.0V (equivalent to 1.5W). But as the input 

power increases, the thermal effects become more evident when a specific temperature 

value is reached. Likewise, Figure 4.5 shows, for the right silicon-chip, the power and 

temperature variation with respect to time.  

 

In order to compare the experimental data with simulated data, it is necessary 

that the simulation considers a heat sink effect, because until this moment, in the LTCM 

model it has not been necessary to include it. In the experiment, the Generation II IPEM 

is mounted on a heat sink. A simple heat sink analysis was developed and included in 

the LTCM model (see Appendix D).  

 

Consequently, the average power value of each experimental sample was plotted 

against the steady state temperature value. In the same way, using the LTCM model 

steady state temperatures were obtained from the average experimental power values. 

Figure 4.6 shows the incidence of the power on the steady state temperature in the 

thermal analysis. In the experimental curves, there are some values where the behavior 

is irregular (peak points), this can be due to external factors such as the power supply 

performance, or air flow variation. In general terms, both curves compare very well.  
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Variation of the Left Chip's Steady State Temperature with 
Respect to the Average Power
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(b)  

Figure 4.6. Comparison between experimental and simulated values of the steady state temperature 

against average power for: (a) left Si-chip; (b) right Si-chip. 
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Using the Figure 4.6, it is possible to choose the simulations that better compare 

with the experimental curves, for the same input conditions in the left and right power 

chips. As a result, for the left chip the selected average power inputs are 1.58, 3.7 and 

6.98W, and for the right chip are 7.71, 5.13 and 7.35W. The comparisons of 

experimental data with simulations results are presented from Figure 4.7 to Figure 4.12.  
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Figure 4.7. Experimental data and the LTCM-heat sink model results for 1.58W left chip power input. 
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Comparison of Experimental v.s. Model Curves for an  Input of 
3.7W at Left Chip
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Figure 4.8. Experimental data and the LTCM-heat sink model results for 3.7W left chip power input. 
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Figure 4.9. Experimental data and the LTCM-heat sink model results for 6.98W left chip power input.  
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Comparison of Experimental v.s. Model Curves for an Input of 
1.71W at Right Chip
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Figure 4.10. Experimental data and the LTCM-heat sink model results for 1.71W right chip power input. 
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Figure 4.11. Experimental data and the LTCM-heat sink model results for 5.13W right chip power input.  

 

 



 

 

69

Comparison of Experimental v.s. Model Curves for an Input of 
7.35W at Right Chip
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Figure 4.12. Experimental data and the LTCM-heat sink model results for 7.35W right chip power input.  

 

The previous curves show that for the left chip the comparisons are better, this is 

because the left chip is in the center of the IPEM and the heat dissipation is more 

symmetric, therefore the presumption of an uniform temperature in some areas (LTCM) 

is more realistic, whereas for the right chip the transient curves are less accurate. 

However in both cases the steady state temperatures compare very well.  

 
Table 4.1. Steady State Temperature Error Percentage of the Chip Turned On 

Power Input, W % Error - SS Temp Power Input, W % Error - SS Temp 
1.58 0.53 1.71 1.06
3.70 1.96 5.13 1.08
6.98 0.76 7.35 1.84

Left Chip Right Chip

  
 

Table 4.1 presents the steady state temperature errors for the turned on device. In 

general the error increases when the power input is increased, but in the case of the 

power input of 3.7W applied to the left chip the error is irregular maybe because the 



 

 

70

experimental curve is not very uniform. In Table 4.1 and in Figure 4.7 it is shown that 

for a low constant power input the comparison is favorable.  It is important to emphasize 

that in the experiment the power vary whereas in the simulations the power is constant 

(corresponding to the average power in the experiment), due to this fact all experimental 

curves reveal a moderate power incidence that is not present in the simulations. Figure 

4.13 shows all experimental temperature profiles for Generation II IPEM obtained from 

the set up of the low-speed thermal response experiment. 
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Experiment 5: Right Chip's Input of 
6.75W
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Experiment 11: Left Chip's Input of 
4.1W
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Figure 4.13. All experimental temperature profiles measured from five thermocouples in the IPEM. 
 

4.3 Experimental System for Hight-Speed Thermal Response 

In the previous experiment the process is essentially thermal, because the 

temperature incidence on the electrical parameters is very insignificant, as it is observed 

in Figures 4.4a and 4.5a, basically the power stays approximately constant throughout 

the measurements. Then, in order to obtain the electrothermal interaction inside the 

package it is necessary to suggest and implement a different experimental system type in 
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which the electrothermal interface can be observed and measured. Under this 

experiment, the device thermal response will be measured due to a continuously applied 

electrical stimulus. This way, accurate measurements of chip heating under high-power 

transient conditions can be observed. However, at the experimental level it is very 

difficult to acquire this parameter, since it is impossible to place a thermocouple in the 

power device junction (point between the device and the copper metallization layer) due 

to the component dimensions, or the module geometry configuration. To measure the 

chip operation temperature there are few diverse methods: infrared microradiometry, the 

use of liquid crystal, thermographic phosphors, among others.  Nonetheless, all these 

methods require the semiconductor chip to be exposed to chemical substance at its 

surface. A simple method (that does not require the use of those substances) utilizes a 

temperature-sensitive electrical parameter (TSEP) of the device as a thermometer [26, 

27], given a single average temperature value for the chip, which is very appropriate in 

this case.    

 

This method consists of choosing a TSEP to obtain the device junction 

temperature. Using the TSEP, the electrical measurement of the temperature is done in 

two stages: the calibration phase and the measurement phase. In this case, the emitter-

base voltage of the MOSFET (IPEM’s power device) has been chosen as the TSEP, and 

then the emitter-base voltage value is established at various MOSFET temperatures. 

This is accomplished by an externally device heating (such as a temperature-controlled 

hotplate) and measuring the emitter-base voltage with a constant current passing through 
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the chip. The constant current must be very small as it is assumed that the device is at 

the same temperature as the hotplate which requires that no power be dissipated in the 

device, or at least minimum power [27]. This is the calibration phase. A curve is 

obtained from this phase, the MOSFET’s emitter-base voltage against its device 

operation temperature. But the required curve is the thermal transient, which is obtained 

in the next phase, the measurement phase.  

 

In the measurement phase, the chip is self-heated by dissipating power at a much 

larger power than that at which the calibration was done. In order to measure the 

temperature, the device must be switched from the heating condition (high power) to the 

measurement condition (the same low current and power at which the calibration was 

done).  Both phases of the high-speed thermal response were developed thanks to the 

collaboration of Dr. Allen Hefner at the National Institute of Standard and Technology 

(NIST).  

  

4.3.1 Calibration Phase 

The experimental system is composed of a data acquisition system (from 

LabWindows/CVI), an oscilloscope, a waveform generator, a current generator in the 

state-of-the-art (“Black Box”) designed at NIST, a temperature controller, power 

supplies, and multimeters, as is presented in Figure 4.14. 
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(a) 

 

 
(b) 

 
Figure 4.14. Experimental testbed for the calibration phase of the high-speed thermal response developed 

at NIST: (a) schematic of experiment; (b) picture of actual set-up. 

IPEM 
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In essence, the calibration experiment operates in the following manner: the first 

step is to set the input parameters (as frequency, wave amplitude, duty cycle, etc) at the 

waveform generator through the data acquisition system (calibration program), as well 

as other parameters in the remaining instruments. The previously defined wave is used 

for the black box as trigger to generate the same current wave, but the current magnitude 

must be manually fixed in each experimental sample. When the parameters in these 

equipments are ready, a heat exchanger (placed under the hotplate) extracts the existing 

heat in the IPEM until the chip operation temperature reaches the minimum temperature 

established from the calibration program to the temperature controller. In other cases it 

was necessary to warm up (using the DC-power supply of 100V) the hotplate to obtain 

the required temperature. Now, with the temperature range fixed in the program and a 

specific temperature interval (also defined in the program), from the minimum 

temperature the voltage measurements are made (by means of a signal sent to the 

oscilloscope, which takes the voltage values) for each temperature defined (when the 

temperature controller read the temperature corresponding to the fixed value, through a 

thermocouple placed in the IPEM, in the program automatically this temperature is 

stored and voltage is read and stored). This process is repeated until the device operating 

temperature reaches its maximum value fixed in the program (less than the boiling point 

of water inside the heat exchanger), see Figure 4.14a. Similarly to the “transient ipem 

program”, here the calibration curve values (voltage against temperature) are stored, 

displayed and plotted in a computer window. These data can be extracted to analyze it in 

an excel file.  
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Figure 4.15. Calibration data acquisition system program created by Parrilla et al. [26]. 

 

4.3.1.1 Data Acquisition System (Calibration Program) 

This data acquisition system program was developed and presented by Parrilla et 

al. in [26]. This program is used to obtain the voltage at the emitter-base of the IPEM’s 

MOSFETs at different device operation temperatures. The changes in temperature are 

done through a temperature controller and a 100VDC power supply and the module is 

place in a close heater where is expected that the whole module will reach the same 

temperature. Then the voltages are measured and saved. The calibration program panel 

is shown in Figure 4.15. According to [26] and the Figure 4.15, the program description 

is: 

1) This blue box contains the display for the voltages measured. 
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2) What is included in this box are buttons to set the temperature of the 

temperature controller (set temp) and to obtain the temperature measured by 

the temperature controller (acquire temp). The Acquire Voltages button 

obtains the module to a certain temperature and then measure voltages and 

display them. 

3) The text boxes are for the user to specify the first and last temperature at 

which voltages will be measured; this is used to set the temperature 

controller. The increment is the difference between the temperatures after the 

initial temperature. By pressing the Loop button starts a cycle where the 

temperature is varied and voltage is measured until the final temperature is 

reached. Basically what it does is that wait until the next temperature is 

reached and stays there the time indicated by the user. This is a way of 

waiting for the whole module to be at the same temperature. Finally, the 

voltages are measured and displayed. This is done for every temperature 

reached. 

4) Here the user set the voltages and the current that will be supplied by the DC 

Power Supply. 

5) In this box are the buttons for saving and loading the data and also for 

exiting the program. 

 

 

 



 

 

79

4.3.1.2 Results 

The calibration curves must have a linear behavior, since in the experiment the 

device voltage was increased proportional to a device operation temperature increase, as 

it is indicated in [26]. Many calibration experimental samples were made, but some 

measurements were neglected, because the resulting calibration curves had too many 

fluctuating points and therefore such curves were unreliable. In some cases, some curves 

had a shifting with respect to an existing curve at the same initial conditions of electrical 

parameters and temperature (maybe because the instruments were not in a stable 

operation point, or because connections between points and instruments were broken, or 

because the controller could not take the reading of temperature well, etc), then those 

curves were ignored.  
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Figure 4.16. Calibration curves for: (a) left power device; (b) right power device. 

 

For the left and right power devices, the number of obtained acceptable 

calibration curves was of six and seven, respectively. The calibration curves for the 

devices are presented in Figure 4.16. Here, as in [26], all curves tend to be parallel, with 

approximately equal slopes. Both figures (“a” and “b”) shown that for high input power 

conditions the curves have better linear behavior, whereas for low inputs the curves are 

more fluctuating.  

 

4.3.2 Transient Measurement Phase 

In this stage, the same instruments employed in the calibration phase with the 

exception of the 100VDC Power Supply and the Temperature Controller are used, as it is 

observed in Figure 4.17. 
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Figure 4.17. Schematic of the experimental testbed for the thermal measurement phase of the high-speed 
thermal response developed at NIST. 

 

With a constant temperature of the hotplate (25ºC) and knowing the temperature 

and voltage ranges obtained from the calibration phase for a determined initial condition 

of voltage and current, it was possible to establish the required power pulse. For 

example if a calibration measurement was made at 100V and 5A, then it is necessary to 

define the voltage range, as it is shown in Figure 4.18 (in the figure, that curve 

corresponds to the calibration curve for 100V and 5A), for that the voltage tip in the 

oscilloscope do not exceed the fixed range, avoiding exceed the maximum operating 

temperature for the device. 
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Figure 4.18. Example of the how to obtain the power pulse in the thermal measurement phase. 

 
 

Excluding the oscilloscope and the DC power supply parameters, all initial 

parameters of the instruments were set manually.  Therefore, with 0V and 0A in the 

sources, a pulse in the pulse generator is fixed, posterior it is fixed the current in the 

specified values (in this case 5A) and then, considering the wave given by the 

oscilloscope (making sure that this one did not exceed the fixed voltage range), the 

voltage is increased in small increments in the source from 0V until an approximated 

maximum value (for the example this value is approximately 100V). The objective was 

to obtain a voltage transient curve near 300mV of wide but never reaching this value, 

since when exceeding the 300mV the device could be burned. If the pulse is not enough 

to obtain the maximum operation temperature given by the calibration curve, then it is 

necessary to redefine the pulse (in others words, the frequency) and again set the current 

and the power in the sources until an appropriate frequency is found that provides the 

maximum operation temperature value of the device given by the calibration curve. For 

the mentioned example, the strategy was to lower the frequency so that the time interval 

-4.6 

20 

ºC

V

25 94

-4.3 

0.3V of difference 



 

 

83

in which the pulse was turned on was greater, with the intention of allowing more chip 

heating in that time interval. 

 

When the optimal wave was obtained for the voltage and temperature ranges 

fixed in the calibration, then the oscilloscope data (voltage against time) is acquired 

from the program developed in the CVI platform (thermal transient program). With 

these data, using the thermal transient program, the transition between voltage and 

temperature is done using the calibration curves. It is to say, each voltage value is 

introduced in the calibration curve to interpolate it or to extrapolate it, according to the 

case. The full C code is presented in Appendix E. 

 

  
Figure 4.19. Thermal transient program created for the high-speed thermal response in the transient 

measurement phase. 
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4.3.2.1 Data Acquisition System (Thermal Transient Program) 

The data acquisition system used here is named the thermal transient program 

and is presented in Figure 4.19 [28]. The structure of the thermal transient program is as 

follows: 

1) This box set the voltage and current in the DC power supply, and determine 

the acquisition mode (as well as the sample numbers) of the signal that will 

be read by the oscilloscope. 

2) In this section the oscilloscope channels are turned on in order to establish 

communication between the instrument and the computer. For each channel, 

the scale of the data acquired from the equipment is defined here. 

3) This part is used to load, display and save three types of data: current data 

from oscilloscope, data file from oscilloscope, thermal file. 

4) Here, the transition between the voltage data and the temperature data is 

made. First it is necessary to obtain the desired calibration curve (using the 

“ACQUIRE DATA CAL” button) to compare it with the measurement made 

in the oscilloscope (which is accessed using the “ACQUIRE DATA OSC” 

button). With the “TRANSIENT” button the change from voltage to 

temperature is made, introducing each voltage value to the loaded calibration 

curve for interpolation or extrapolation, and this way to acquire the 

electrothermal transient. 

5) This GUI section is used to exit off the program. 
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4.3.2.2 Results 

From the measurement, phase two type of curves are obtained, one electrical and 

one thermal. In the electrical curves, the MOSFET’s transient emitter-base voltages are 

acquired from several electrical conditions. In the thermal case, the curves are acquired 

making the interface between the calibration information and the electrical 

measurements through the “thermal transient program”. In Figures 4.20 and 4.21 all 

voltage measurements for the left and right power devices (MOSFETs) are given. Each 

plot includes a transient voltage zoom (expanded from the oval)   which demonstrates 

the temperature incidence on the electrical parameters (in this case the MOSFET’s 

emitter-base voltage). 
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(b) 
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Figure 4.20. Left MOSFET’s transient emitter-base voltages with input electrical parameters of: (a) 100V-

5A; (b) 100V-10A; (c) 200V-10A. 
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(d) 
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(g) 

 

 

 

 

 

 

 

Figure 4.21. Right MOSFET’s transient emitter-base voltages with input electrical parameters of: (a) 
100V-10A; (b) 100V-2.5A; (c) 100V-5A; (d) 100V-7.5A; (e) 200V-2.5A; (f) 200V-5A; (g) 50V-5A.  

 

Figures 4.22 and 4.23 show all transient temperature curves obtained from the 

calibration and voltage data (Figures 4.16, 4.20 and 4.21) for left and right chip, 

respectively. The number of curves of voltage and temperature for the left chip is less 

than for the right chip because during the experiment the left chip was burned and only 

three curves of each type were obtained. The next step is to compare these data with the 

electrothermal model output. This task was developed using a commercial circuit 

simulator and the details are shown in the next chapter. 
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(c) 

Figure 4.22. Left device’s transient operation temperature with input electrical parameters of: (a) 100V-
5A; (b) 100V-10A; (c) 200V-10A.  
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Figure 4.23. Right device’s transient operation temperature with input electrical parameters of: (a) 100V-
10A; (b) 100V-2.5A; (c) 100V-5A; (d) 100V-7.5A; (e) 200V-2.5A; (f) 200V-5A; (g) 50V-5A.  
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CHAPTER 5 

 
ELECTROTHERMAL MODEL IMPLEMENTED IN SABERTM SIMULATOR 

 

5.1 Introduction 

In order to acquire the electrothermal performance of the Generation II IPEM, 

the LTCM model was implemented in SABERTM, a circuit simulator capable of 

coupling electrical and thermal signals, between others. Its versatility and ease of model 

implementation makes it an attractive platform for the simulation of the electrothermal 

interactions inside the electronic package. It also eliminates the process of having to 

exchange data between different simulations, because both electrical and thermal 

models run in the same simulator.  

 

SABERTM simulator is a mathematical engine that solves the network of 

equations represented by models and their interconnections in a circuit or system. 

Simulator access is via a highly-interactive and easy-to-use graphical user interface for 

analyzing designs, operating the simulator, and obtaining and viewing results. This 

simulator is designed to perform simulations based on very few preconceptions about 

the target system. Consequently, the simulator can analyze designs containing multiple 

technologies, using the analysis units native to these technologies:  

1) Electronic. 

2) Power electronics. 
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3) Thermal management.  

4) Electro-mechanical.  

5) Mechanical. 

6) Electro-optical. 

7) Optical. 

8) Hydraulic. 

9) Control systems.  

10) Sample-data systems. 

 

The simulator has an extensive list of models for different types of component 

included in its parts library. All SABER’s TM models were written in MAST language, 

the unique programming language reserved for this simulator. MAST is a mixed-signal 

(analog-digital) hardware description language (HDL) that allows the description (or 

modeling) of hardware that performs a continuous-time function, for example electrical 

sources, resistors, transistors, capacitors, hydraulic and digital systems, among others.  

 

When a device is not contained in the simulator’s parts library and if the device 

behavior can be expressed in first order mathematical terms, SABERTM  simulator can 

model and simulate it (up to the system level) with an accurate representation of 

interactivity between the technologies. Given this capability, models can be created 

directly using the actual equations and relationships that govern the behavior of devices, 
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not only electrical macromodel equivalents. With SABERTM  simulator, any mix of 

technologies can be simulated, and all simulation results will be presented with their 

corresponding units. The new model (of analog system or element) also must be built in 

MAST language, which can be defined in terms of nonlinear “lumped” algebraic or 

differential equations that eventually will be solved by the simulator using numerical 

method (the simulator contain two numerical solution methods: Newton-Raphson and 

Katzenelson, in this case the most appropriate to solve our set of equations is Newton-

Raphson). Each component or system model (new or existing) must be stored in a text 

file named template (which have a specific internal structure), in which is included the 

model code in MAST language, in order that the simulator can recognize it. In addition, 

each component or system’s template must be associated to a symbol (new or existing) 

in the SABER’s TM graphical user interface (Sketch tool). 

 

5.2 LTCM Model Template 

The initial task is to convert the thermal model at hand into a MAST template.  

The FORTRAN program, presented in Chapter 3, can be used because SABERTM can 

use foreign routines as extensions of the MAST language. This means that the simulator 

uses the FORTRAN file as a function in a MAST template. However, this option is 

most complicated than building the new template based uniquely in MAST language. 

 

In order to begin, the template file must be identified by the form filename.sin so 

that the simulator may read it. Also a symbol must be created for the template with the 
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same connections stated in the first line of the template which is described in the 

following paragraph.  This symbol is presented in Figure 5.1.  

 

Figure 5.1. Symbol of the IPEM’s LTCM model.  

 

The script commences with the template definition or the header (see Figure 

5.2). This is a line necessary in the script for SABERTM to be able to identify the 

connections of the template, and to identify the template to a symbol. 

 

  

Figure 5.2. Template header.  

 

The header starts with the word template and then the name of the template, in 

this case ltcm_ipem. Followed by this and separated by spaces are the names of the 
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connections to the template, as they would appear named on the symbol. The IPEM’s 

template model have two connections or terminals, the top terminal is employed by the 

template as input point to the model of the external power from the devices or sources, 

the bottom terminal is used to obtain the constant temperature from the assumed 

hotplate (the hotplate is assumed as a temperature constant source at 25ºC). After this 

first line, the template connections are defined. In this template all connections are 

thermal and expressed in degrees Celsius, therefore the connections are declared as 

thermal_c. This is so because in those terminals there are power-temperature interaction 

with other components, this connection declaration include, watts as power unit. 

Declaring a thermal connection such as the above implies that the simulator will 

automatically declare through and across values for these connections. This will be 

described more in detail ahead. The template body is constituted by a parameters 

declaration (both numbers and variables) and three sections, each one with a specific 

function (the sections can be written in any order, because the simulator can identify and 

execute them according to its internal structure). The sections are: values, control  and 

equation section.  

  

Values Section 

This section is used to transform variables into the form needed in the equation 

section, as it is shown in Figure 5.3. In this case, in the value section the heat transfer 

coefficients are calculated. In this section, also a terminal’s external value is assigned to 

variables defined into the template, that later will be used in other sections, like in the 
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case of the terminal named isotherm, which passes its value to a variable defined before 

(Tisoth).  

 
Figure 5.3. Template value section. 

 

Control Section 

This section declares specific information to the simulator that does not fit in 

other template and that will be used by the simulator to expand the created model. Here, 

the initial conditions are defined for the solution of the model (see Figure 5.4).  

 

 
Figure 5.4. Template control section. 
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Equation Section 

This is the most important section of the template. This part describes the analog 

characteristics at the terminals of the element being modeled, it is to say, this section 

describes the dependent through variable (power) of the system in terms of the across 

variable (temperature), according to Kirchoff’s circuit law.  Here, the model is 

developed and it also defines its external power input, as is presented in Figure 5.5.  

 

 
Figure 5.5. Template equation section.  

 

The full Generation II IPEM model code in MAST modeling language is 

accessible in the Appendix F. The model implemented in the simulator was corroborated 

comparing the results with the model developed in FORTRAN (see Figure 5.6). While 

the FORTRAN model is solved using Runge-Kutta, the SABER model uses Newton-

Raphson to solve the equations, and there is a very small discrepancy among results. 
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(a) 

 
(b) 

Figure 5.6. Comparison between FORTRAN and SABERTM solution for the chips: (a) left; (b) right.  
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5.3 Simulated System Electrothermal Coupling 

The second step in the development of the electrothermal model is the 

construction of an electrical circuit that holds similar characteristics to those of the high-

speed thermal response experiment. However, a good option for simulating the 

experiment’s similar condition is to use a schematic as that one shown in Figure 5.7. 

This schematic suggests that the electrothermal modeling is “one way”, in other words, 

the full interaction between the electrothermal parameters is incomplete. The thermal 

model has no incidence on the pulse generator’s model, but the power supplied by this 

electrical component affects the IPEM’s transient temperatures. A fully electrothermal 

modeling of any package would have interaction between the electrical parameters 

(provided for electrical component models) and the component temperatures (from the 

thermal models) making it a cyclic process.   

 

  
Figure 5.7. Simulated schematic in SABERTM.  
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The coupling of the electrical components with the thermal model is quite 

simple. A pulse is directly applied to the thermal model (instead of to the devices). The 

thermal connections of the thermal power source – pulse (this SABER’s TM element is a 

combination of a power supply and a pulse generator) are connected to the thermal 

connections of the ltcm_ipem element (that contain the reduced-order thermal model). 

The hotplate is simulated as a constant temperature source (at 25ºC), and connected to 

the isotherm terminal of the thermal model. The remaining connections of the thermal 

model are connected to thermal ground to serve as reference for the temperature signals 

generated in the model. 

 

5.4 Comparison of the Simulation with Experimental Data 

For the right power device, the experimental curves are more adequate to 

validate the simulations at the corresponding values of 100V-2.5A, 100V-5A, 200V-

2.5A and 200V-5A. The comparisons between simulation and experimental data are 

presented in Figures 5.8, 5.9, 5.10 and 5.11, respectively. The comparisons are very 

favorable, maybe an inclusion of the device in the simulation could have improved the 

transients. It is evident that for low power the trajectory of the curves are more different, 

but for medium and high power the curves compare very well, in fact all curves achieve 

the experimental steady state temperature. 
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 Figure 5.8. SABERTM and experimental comparison for the right semiconductor device using inputs of 
1Hz, 100V and 2.5A.  

 

 Figure 5.9. SABERTM and experimental comparison for the right semiconductor device using inputs of 
2Hz, 100V and 5A.  
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Figure 5.10. SABERTM and experimental comparison for the right semiconductor device using inputs of 

2Hz, 200V and 2.5A.  

 
Figure 5.11. SABERTM and experimental comparison for the right semiconductor device using inputs of 

6Hz, 200V and 5A.  
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CHAPTER 6 

 
CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Summary 

The major findings from this research study are the following: 

 

• A simplified reduced-order model has been developed based on LTCM, using the 

energy balances and physical and geometry properties of each lumped. The model 

consists of a set of nonlinear differential equations, which were discretized using 

fourth-order Runge-Kutta method. This solution has been programmed using 

FORTRAN language. 

• The model developed in FORTRAN establishes, with a satisfactory degree of 

agreement, the dynamic temperature variations inside the Generation II IPEM.  

• Comparisons between a commercial software tool and the LTCM model reveal that 

the model is very truthful and useful to predict the thermal behavior of the working 

package.    

• The thermal validation, with constant power input, is made using a slow thermal 

response testbed. The process in the experiment is merely thermal, because the 

electrical parameters do not have some thermal influence on them.   

• The IPEM’s electrical performance can be obtained using existing description of 

electrical components in a circuit simulator. The coupling of the LTCM model with 

component electrical models can also be made in the simulator platform. 
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• The electrothermal interaction within the working IPEM requires the experimental 

validation. 

• The electrothermal validation, with dynamic interaction between thermal and 

electrical parameters, implicates the use of a fast thermal response experiment that 

includes an efficient data acquisition system.  

 

6.2 Conclusions 

A reduced-order model for the Generation II Integrated Power Electronics 

Modules (IPEM), based on the LTCM, has been developed in this work.  IPEMs 

represent the new generation of power electronic modules that are significantly smaller 

in size and capable of handling large current densities.  This scalability has brought new 

challenges in thermal management that requires immediate attention.  One of the main 

challenges is to generate better simulation and design tools so they can be more efficient 

computationally without sacrificing reliability and accuracy.   

 

The model was validated against a full 3-D finite volume approach 

demonstrating that the proposed methodology is very efficient and accurate. The 

validation of LTCM model using FLOTHERMTM showed the reduced-order model 

advantages on the software tool. The computational time is visibly reduced, as well as 

the problem definition in terms of geometry construction, heat transfer, and grid 

solution. The new methodology established in this work provides a fast and accurate 

tool to quickly analyze the thermal behavior of any IPEM. 
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Two data acquisition system were developed (in UPRM and NIST), using 

LabWindows/CVI platform, to implement the low- and high-speed thermal response 

experiments. These programs can be used to obtain the transient temperature of any 

electronic package (obviously, including the IPEMs). The experimental set ups have 

also been built to acquire the experimental data used in the LTCM model validations. 

Using the low-speed thermal response experiment data, comparisons between 

experimental and FORTRAN-expansion simulation data have been made. The thermal 

model with constant power input compare favorably with the experiment at low and 

medium power input. 

 

A full electrothermal model for the IPEM could be obtained utilizing the 

SABERTM’ electrical component models library and the reduced-order thermal model 

implemented in the simulator. The resulting electrothermal coupling’s data compare 

favorably with the experimental data (which represent the dynamic electrothermal 

interface of the devices within the package) from the high-speed thermal response 

testbed.  

 

An important thermal model issue is the effect of the thermal contact resistance 

on the model operation. When the model is used with the purpose of obtaining a thermal 

transient based only in a thermal process (this is, there are not external factors that 

influences the model solution, for instance, some electrical parameter), those resistance 

must have high values, as it happens in the slow thermal experiment, where the transient 



 109

is obtained increasing the electrothermal parameters in small increments resulting in a 

purely thermal process. This way, the model requires that the lumped number agrees 

with the required volumes so that such resistances have sufficiently high values. The 

contrary case is when there are external factors that incident on the model (a dynamic 

power input), as it happens in the fast thermal experiment, where the temperature have a 

effect on the device voltage, and this one vary constantly in a short enough time interval, 

then in order that the model can capture the thermal transient this one must have 

relatively low resistances. Low resistances can be obtained increasing the lumped’s 

contact surfaces (in the contact surface parameter) or increasing the lumped’s volumes 

(in the heat spreading effects parameter).  

 

6.3 Recommendations 

In case that future research continues along the lines of the topic presented in 

this thesis, the following recommendations are suggested that could improve the quality 

of the results to be obtained. 

 

• Improve the LTCM model resolution by increasing the lumped numbers to obtain a 

better temperature distribution of the IPEM.    

 

• Develop an IPEM’s general electrical model that can be implemented in any 

simulator and/or platform, and this way the full electrothermal can be obtained. 
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• Create an interface between the reduced-order thermal model and some M-CAD tool 

to automate and facilitate the power electronic package division in lumped 

(according to the Biot parameter validation) and the geometry and physical 

properties extraction process. 

 

• Improve the experimental curves from high-speed thermal response testbed.  

Develop more calibration curves for the left chip. 

 

• Include the MOSFET’s electrical model in the SABERTM simulation to obtain better 

curves to compare with the experimental data, like the transient voltages that allow 

the electrical validation of the electrothermal model. 
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APPENDIX A 

DIMENSIONS AND CALCULATION OF SOME PROPERTIES USED IN THE 
THERMAL MODELING 

 

A.1 Generation II IPEM’s Dimensions 
 

 
Figure A.1. Identification of layer materials and thicknesses. 
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Figure A.2. Generation II IPEM’s structural schematic. 
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Table A.1. Coordinates (x, y, z) for the Locations of the IPEM Layout Schematic 
Depicted in Figure A.2. (All dimensions are given in centimeters)  

 
 Coordinates   Coordinates 

Point x y z  Point x y z 
1 0.0000 0.0000 0.0762  38 1.4732 1.1491 0.2159 
2 0.3048 0.0000 0.1892  39 1.5953 1.1760 0.1029 
3 2.8448 0.0000 0.1892  40 0.6098 1.2268 0.1892 
4 0.3048 0.1346 0.2159  41 1.4732 1.2888 0.2159 
5 1.4478 0.1346 0.2159  42 1.4937 1.2268 0.1892 
6 0.0508 0.2032 0.1029  43 1.7475 1.2888 0.2159 
7 1.5956 0.2032 0.1029  44 0.6096 1.3472 0.2159 
8 0.0508 0.3061 0.2159  45 0.0508 1.4277 0.2159 
9 0.3048 0.3061 0.2159  46 0.3048 1.4277 0.2159 

10 0.4572 0.3251 0.2159  47 0.4064 1.4277 0.2159 
11 0.6098 0.3048 0.1892  48 1.3462 1.4412 0.2159 
12 1.4478 0.3251 0.2159  49 1.7475 1.4412 0.2159 
13 1.4937 0.3048 0.1892  50 0.0508 1.7363 0.1029 
14 0.6096 0.4244 0.2159  51 0.3184 1.7363 0.1029 
15 1.7475 0.4244 0.2159  52 1.3462 1.6698 0.2159 
16 1.3462 0.5260 0.2159  53 0.0508 1.8417 0.1029 
17 1.7475 0.5260 0.2159  54 0.3184 1.8417 0.1029 
18 1.7983 0.4895 0.2527  55 0.6604 1.8324 0.2159 
19 2.6492 0.4895 0.2527  56 1.2395 1.8324 0.2159 
20 0.0508 0.7125 0.2159  57 0.3048 1.8527 0.2159 
21 0.3048 0.7112 0.2159  58 0.3556 1.8527 0.2159 
22 1.3462 0.7571 0.2159  59 0.0508 1.9373 0.2159 
23 0.0508 0.8147 0.1029  60 0.3048 1.9373 0.2159 
24 0.3567 0.8147 0.1029  61 0.5348 1.9811 0.1029 
25 0.0508 0.9197 0.1029  62 0.6098 1.9456 0.1892 
26 0.2911 0.9197 0.1029  63 1.4937 1.9456 0.1892 
27 0.6096 0.9146 0.2159  64 1.5953 1.9811 0.1029 
28 1.1887 0.9146 0.2159  65 0.5348 2.0697 0.1029 
29 0.0508 1.0213 0.2159  66 0.0508 2.3437 0.2159 
30 0.3048 1.0213 0.2159  67 0.3048 2.3437 0.2159 
31 0.3556 1.0213 0.2159  68 0.0508 2.4513 0.1029 
32 0.6098 1.0236 0.1892  69 0.5348 2.4513 0.1029 
33 1.4937 1.0236 0.1892  70 1.7983 2.5977 0.2527 
34 0.5588 1.0744 0.1029  71 2.6492 2.5977 0.2527 
35 1.5956 1.0744 0.1029  72 0.0000 2.7315 0.0762 
36 0.5047 1.1760 0.1029  73 0.3048 2.7315 0.1892 
37 0.6096 1.1491 0.2159  74 2.8448 2.7315 0.1892 
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A.2 Calculation of Properties used in the Modeling 

Some parameters can be estimated directly from the IPEM’s dimensions, such as 

the diverse areas and volumes, the transversal length for the heat transfer coefficient 

estimation, the equivalent length for the Biot number evaluation, among others. Other 

parameters must be calculated from some expression, such as contact surface resistance, 

the heat spreading effect resistance, the geometry factors for the radiation, , among 

others. 

 

Thermal contact resistance 

Five resistances were given by Pang in [14], these resistance are of the type of 

thermal coupling and correspond to these one: the interface between the gate driver and 

the ceramic frame (R1-9), the interface between the silicon chips and the ceramic frame 

(R2-9 and R3-9), the interface between silicon chips and the etched copper trace (R2-8 and 

R3-8). The remaining resistances are calculated from the equations 3.20, 3.21 and 3.22.  

 

The following example shows how to calculate the resistances associated to the 

interfaces between the silicon chips and the copper metallization layers (R2-4 and R3-6). 

First, the contact surface resistance is calculated using the Equation 3.20, where Acont. = 

3.49x10-5 m2, kSi = 124 W/m.K, kCu = 386 W/m.K, m = 0.24, σ = 2.86x10-6 m, (P/Hc) = 

1.5x10-2, kf = 28x10-3 W/m.K, Y = 3.78x10-7 m and M = 3.0049x10-7 m. From Equation 

3.20, these resistances are: 
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The same values of the effective mean absolute asperity slope of the interface 

(m), thus as effective surface roughness (σ), the relationship between the contact 

pressure and the surface microhardness (P/Hc) (this parameter is named the relative 

contact pressure), the thermal conductivity of the air in the gap (kf), the effective gap 

thickness (Y) and the gas-surface parameter (M) (this parameter represent the 

rarefaction effects), are used in order to find the remaining resistances. Now, the 

resistance by heat spreading effects must be determined from the Equation 3.21, where 

∆xSi = 4.45x10-3 m and ∆xCu = 1.27x10-3 m, this way, 
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The total thermal contact resistance is calculated using the Equation 3.22, then: 

63/42 spreader63/42 cont6-342 R R RR −−−−− +==  

W/K )12.127.9( RR 63-42 +==−  

W/K 39.10 RR 63-42 ==−  

The values of all resistances by thermal contact resistance are consigned in the 

Table 3.3.   

 

Geometry factors 

All geometry factors of the IPEM under study are given in the Table 3.3. In 

order to facilitate the calculations of these parameters in the model, in the Figure A.3 the 

areas “A” and “B” have been neglected, because, in comparison with the other areas 

involved, these ones are very smalls. 

 

 

Figure A.3. Calculations of some geometry factors (F21, F31, F12, F13, F1∞, F2∞ and F3∞). 

 

Gate Driver (lumped 1) 
Area “A” (1.43x10-6m2) 

Left Chip 
      (Lumped 2) 

Right Chip 
      (Lumped 3) 

Area “B” (2.25x10-6m2) 

2.108x10-2m

6.77x10-5m

2.54x10-4m

8.84x10-3m
7.19x10-3m 7.19x10-3m
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If the two chips and the area “B” are considered as a single area (which can be 

named “Achips+B”), then, using Figure A.3 and the corresponding curves to the geometry 

factor for perpendicular rectangles with a common edge (see Figure A.4), it is possible 

to find some factors. This way,  
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Figure A.4. Geometry Factor for Perpendicular Rectangles with a Common Edge from Incropera in [9] 
(Figure 13.6, pp. 755) 

 

Since the area “B” can be ignored, then the area Achips+B = Achips = A2 + A3, and 

A2 = A3, therefore Achips+B = 2A2. Similarly, it can be considered that the half of the 

energy that leaves area “Achips+B” towards the gate driver (lumped 1), corresponds to the 
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energy that leaves each chips (left chip-lumped 2 and right chip-lumped 3) and flows to 

the gate driver, this is 
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APPENDIX B 

THERMAL MODEL EXPANDED USING FORTRAN 

 

      implicit none 
                  
c-- constant values 
       
******Dissipated Powers         
      real    q1, q2, q3   
       
**    CONVECTION 
******Heat Transfer Coefficients 
      real    h1h, h1v, h2h, h3h, h4h, h4v, h5h, h5v, h6h, h6v, h7h, h7v,   
     &        h8v, h9h, h9v, h10v, h11v 
******Environment Temperature  
      real    Tinf 
******Convection Lengths   
      real    L1h, L1v, L2h, L3h, L4h, L4v, L5h, L5v, L6h, L6v, L7h, L7v, 
     &        L8v, L9h, L9v, L10v, L11v  
******Convection Areas  
      real    Ac1h, Ac1v, Ac2h, Ac3h, Ac4h, Ac4v, Ac5h, Ac5v, Ac6h, 
     &        Ac6v, Ac7h, Ac7v, Ac8v, Ac9h, Ac9v, Ac10v, Ac11v 
 
**    RADIATION 
******Boltzmann's Constant 
      real    sigma        
******Emisivities 
      real    emi1, emi2, emi3, emi4, emi5, emi6, emi7, emi8, emi9, 
     &        emi10, emi11 
******Geometry Factors 
      real    F1inf, F2inf,  F3inf, F4inf, F5inf, F6inf, F7inf, F8inf,  
     &        F9inf, F10inf, F11inf, F12, F13, F21, F31  
******Radiation Areas 
      real    A1inf,  A2inf, A3inf, A4inf, A5inf, A6inf, A7inf, A8inf, 
     &        A9inf, A10inf, A11inf, A12, A13, A21, A31 
 
**    CONTACT RESISTENCE 
      real    R19, R28, R38, R29, R39, R24, R36, R98, R59, 
     &        R79, R810, R1011, R45, R67, R58, R78 
      
**    TRANSIENT EFFECTS 
******Densities 
      integer d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11 
******Volumes 
      real    v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11 
******Heat Capacities 
      integer cp1, cp2, cp3, cp4, cp5, cp6, cp7, cp8, cp9, cp10, cp11 
 
**    TIME STEP 
      real    deltat 
       
**    BIOT'S VARIABLES 
******Heat Flow Thickness 
      real    L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11 
******Thermal Conductivies 
      integer kd1, kd2, kd3, kd4, kd5, kd6, kd7, kd8, kd9, kd10, kd11 
 
      integer n 
 
c-- variables 
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**    BIOT NUMBER 
      real    Bi  
 
**    LUMPED TEMPERATURES 
      real    T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11 
      real    T1next, T2next, T3next, T4next, T5next, T6next, T7next, 
     &        T8next, T9next, T10next, T11next 
      
**    RUNGE-KUTTA'S VARIABLES   
      real    k1, k2, k3, k4 
             
      sigma = 5.67E-8               !W/m**2.K**4    
      deltat = 1.0                       !sec 
                                              
c--   Call all files that contain the necessary data                                              
      open (unit=10, file='lconv.dat', status='unknown') 
      open (unit=11, file='kcond.dat', status='unknown') 
      open (unit=12, file='length.dat', status='unknown') 
      open (unit=13, file='tamb.dat', status='unknown') 
      open (unit=14, file='power.dat', status='unknown') 
      open (unit=15, file='emi.dat', status='unknown') 
      open (unit=16, file='factor.dat', status='unknown') 
      open (unit=17, file='aconv.dat', status='unknown') 
      open (unit=18, file='arad.dat', status='unknown') 
      open (unit=19, file='contact.dat', status='unknown') 
      open (unit=20, file='density.dat', status='unknown') 
      open (unit=21, file='volume.dat', status='unknown') 
      open (unit=22, file='cp.dat', status='unknown')   
      open (unit=24, file='temp.dat', status='unknown') 
      open (unit=30, file='resultados.dat', status='unknown') 
       
c--   First, we get the given information 
                                             
      read (10,10)  h1h, h1v, h2h, h3h, h4h, h4v, h5h, h5v, h6h, h6v, h7h, h7v,   
     &         h8v, h9h, h9v, h10v, h11v 
10    format (17F6.4)       
       
      read (11,55) kd1, kd2, kd3, kd4, kd5, kd6, kd7, kd8, kd9, kd10, kd11 
55    format (11I3) 
                     
      read (12,25) L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11 
25    format (11F6.4)   
                                              
      read (13,70)  Tinf 
70    format (F6.2) 
                                  
      read (14,50)  q1, q2, q3 
50    format (3F4.1)       
                     
      read (15,45)  emi1, emi2, emi3, emi4, emi5, emi6, emi7, emi8, emi9, 
     &                   emi10, emi11 
45    format (11F5.3)       
                  
      read (16,30)  F1inf, F2inf,  F3inf, F4inf, F5inf, F6inf, F7inf, 
     &                   F8inf, F9inf, F10inf, F11inf, F12, F13, F21, F31  
30    format (15F6.4)      
                     
      read (17,75)  Ac1h, Ac1v, Ac2h, Ac3h, Ac4h, Ac4v, Ac5h, Ac5v, Ac6h, 
     &         Ac6v, Ac7h, Ac7v, Ac8v, Ac9h, Ac9v, Ac10v, Ac11v  
75    format (17F10.8) 
                      
      read (18,80)  A1inf,  A2inf, A3inf, A4inf, A5inf, A6inf, A7inf, 
     &                   A8inf, A9inf, A10inf, A11inf, A12, A13, A21, A31  
80    format (15F9.7) 
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      read (19,35)  R19, R28, R38, R29, R39, R24, R36, R98, R59, 
     &         R79, R810, R1011, R45, R67, R58, R78 
35    format (16F7.4)       
                   
      read (20,20)  d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11 
20    format (11I4)       
                      
      read (21,40)  v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11 
40    format (11F12.10)       
                 
      read (22,55)  cp1, cp2, cp3, cp4, cp5, cp6, cp7, cp8, cp9, cp10, cp11 
                          
      read (24,60)  T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11 
60    format (11F6.2)   
                      
 
c--   Here start the loop that develops the Runge-Kutta method on each lumped 
 
      do n = 1, 30 
        
**    FOR THE LUMPED 1 
 
c--   Calculates the heat transfer coefficients        
       h1h=1.32*(((T1-Tinf)/L1h)**0.25) 
       h1v=1.42*(((T1-Tinf)/L1v)**0.25) 
        
c--   calculates the Biot number        
       Bi=(h1h*L1)/kd1 
               
       if (Bi .GT. 0.1) then 
        stop 
       end if 
        
       T1next = T1 
       k1= (1/(d1*v1*cp1))*(q1-((T1next-Tinf)*((h1h*Ac1h)+(h1v*Ac1v))) 
     &     -(emi1*sigma*F1inf*A1inf*((T1next**4)-(Tinf**4))) 
     &     -(emi1*sigma*F12*A12*((T1next**4)-(T2**4))) 
     &     -(emi1*sigma*F13*A13*((T1next**4)-(T3**4))) 
     &     +(emi2*sigma*F21*A21*((T2**4)-(T1next**4))) 
     &     +(emi3*sigma*F31*A31*((T3**4)-(T1next**4))) 
     &     -((T1next-T19)/R19)) 
        
       print*, 'k1=', k1 
       pause 
        
       T1next = T1+(deltat*k1/2) 
       
       print*, 'T1next', T1next 
       pause 
               
       k2= (1/(d1*v1*cp1))*(q1-((T1next-Tinf)*((h1h*Ac1h)+(h1v*Ac1v))) 
     &     -(emi1*sigma*F1inf*A1inf*((T1next**4)-(Tinf**4))) 
     &     -(emi1*sigma*F12*A12*((T1next**4)-(T2**4))) 
     &     -(emi1*sigma*F13*A13*((T1next**4)-(T3**4))) 
     &     +(emi2*sigma*F21*A21*((T2**4)-(T1next**4))) 
     &     +(emi3*sigma*F31*A31*((T3**4)-(T1next**4))) 
     &     -((T1next-T19)/R19))  
        
       T1next = T1+(deltat*k2/2) 
                    
       k3= (1/(d1*v1*cp1))*(q1-((T1next-Tinf)*((h1h*Ac1h)+(h1v*Ac1v))) 
     &     -(emi1*sigma*F1inf*A1inf*((T1next**4)-(Tinf**4))) 
     &     -(emi1*sigma*F12*A12*((T1next**4)-(T2**4))) 
     &     -(emi1*sigma*F13*A13*((T1next**4)-(T3**4))) 
     &     +(emi2*sigma*F21*A21*((T2**4)-(T1next**4))) 
     &     +(emi3*sigma*F31*A31*((T3**4)-(T1next**4))) 
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     &     -((T1next-T19)/R19)) 
      
       T1next = T1+(deltat*k3) 
        
       k4= (1/(d1*v1*cp1))*(q1-((T1next-Tinf)*((h1h*Ac1h)+(h1v*Ac1v))) 
     &     -(emi1*sigma*F1inf*A1inf*((T1next**4)-(Tinf**4))) 
     &     -(emi1*sigma*F12*A12*((T1next**4)-(T2**4))) 
     &     -(emi1*sigma*F13*A13*((T1next**4)-(T3**4))) 
     &     +(emi2*sigma*F21*A21*((T2**4)-(T1next**4))) 
     &     +(emi3*sigma*F31*A31*((T3**4)-(T1next**4))) 
     &     -((T1next-T19)/R19))    
        
c--   The solution for the fourth order equation for Lumped 1 will be 
 
       T1next = T1 + (deltat/6)*(k1+(2*k2)+(2*k3)+k4) 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
 
        
**    FOR THE LUMPED 11 
 
c--   Calculates the heat transfer coefficients    
       h11v=1.42*(((T11-Tinf)/L11v)**0.25) 
        
c--   calculates the Biot number        
       Bi=(h11h*L11)/kd11 
               
       if (Bi .GT. 0.1) then 
        stop 
       end if 
                   
       k1= (1/(d11*v11*cp11))*(-( h11v*Ac11v* (T11next-Tinf)) 
     &     -(emi11*sigma*F11inf*A11inf*((T11next**4)-(Tinf**4)))  
     &     +((T10-T11next)/R1011)) 
        
       T11next = T11+(deltat*k1/2) 
               
       k2= (1/(d11*v11*cp11))*(-( h11v*Ac11v* (T11next-Tinf)) 
     &     -(emi11*sigma*F11inf*A11inf*((T11next**4)-(Tinf**4)))  
     &     +((T10-T11next)/R1011))  
        
       T11next = T11+(deltat*k2/2) 
                    
       k3= (1/(d11*v11*cp11))*(-( h11v*Ac11v* (T11next-Tinf)) 
     &     -(emi11*sigma*F11inf*A11inf*((T11next**4)-(Tinf**4)))  
     &     +((T10-T11next)/R1011)) 
      
       T11next = T11+(deltat*k3) 
        
       k4= (1/(d11*v11*cp11))*(-( h11v*Ac11v* (T11next-Tinf)) 
     &     -(emi11*sigma*F11inf*A11inf*((T11next**4)-(Tinf**4)))  
     &     +((T10-T11next)/R1011))             
        
c--   The solution for the fourth order equation for Lumped 11 will be 
 
       T11next = T11 + (deltat/6)*(k1+(2*k2)+(2*k3)+k4)  
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       T1 = T1next 
       T2 = T2next        
       T3 = T3next 
       T4 = T4next 
       T5 = T5next 
       T6 = T6next 
       T7 = T7next        
       T8 = T8next 
       T9 = T9next 
       T10 = T10next 
       T11 = T11next 
        
       write (30,65)  T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11  
65    format (1X, 11F12.4) 
               
      end do 
       
      end 
       
c-------------------------------------------------------------- 
 



 126

APPENDIX C 

FULL C++/CVI CODE OF THE TRANSIENT IPEM PROGRAM DEVELOPED 
FOR SLOW THERMAL RESPONSE EXPERIMENT  

 
 
#define TRUE  1 
#define FALSE  0 
/* Used in selecting state of the termocouples to plot curves */ 
#define on   1 
#define off   0 
/* Used in selecting data options to load, display and save    */ 
#define TT   0 
#define ET   1 
#define MEAS  2 
/* Used in selecting output electrical data to save        */ 
#define VI   0 
#define PWR  1 
 
/*=============================FUNCTION DECLARATION==========================*/ 
void SelectTC (int, int, int, int, int, int, int, int); 
void ClearBuff(char[]); 
/*=============================VARIABLE DECLARATION==========================*/ 
static double tc1[10000],tc2[10000],tc3[10000],tc4[10000],tc5[10000],tcair[10000]; 
static double tp1[10000],tp2[10000],tp3[10000],tp4[10000],tp5[10000],tpair[10000]; 
static double temp1[10000],temp2[10000],temp3[10000],temp4[10000],temp5[10000],tempair[10000]; 
static double time_array[10000],time_meas[10000,time[10000],voltms[10000],currms[10000],watts[10000]; 
static double volt[10000],curr[10000],voltage[10000],current[10000],pwr[10000],power[10000]; 
static double meas1,meas2,meas3,meas4,meas5,measair,measvolt,meascurr,meastime; 
static double initial_time,current_time,no_of_samples; 
static char filin[512]; 
static int status1,status2,status3,status4,status5,statusair,elec_meas,keit2001,hp6030a,err,pts; 
int h_i=0,m_i=0,s_i=0,h_a=0,m_a=0,s_a=0,time_i=0,time_a=0,time_t=0,sampling_interval; 
int actual_sample_no,i; 
/*================================MAIN PROGRAM==============================*/ 
main() { 
double freq,ampl,frequency,voltios,amper; 
char buf[21]; 
int int1,int2,c,i,j,id,points,pt,max_pt,panel,handle,flhand,loader,display,saver,elect_option; 
int grap_t1,grap_t2,grap_t3,grap_t4,grap_t5,grap_air,grap_all; 
short int waveform; 
panel = LoadPanel (0, "ipem2_2.uir", PNL); 
if (panel < 0) { 
   FmtOut ("Unable to load the required panel from the resource file.\n"); 
   return; 
   } //end if 
DisplayPanel (panel); 
//Initialize switch system 
kei7001_init (7, 1, 1, &int1); 
//Initialize DMM 
kei2001_init (16, 1, &int2); 
keit2001 = ibdev (0, 16, NO_SAD, T10s, 1, 0); 
//Initialize Waveform Generator    
//hp33120a_init (10, 1, 1, &waveform); 
//hp33120 = ibdev (0, 10, NO_SAD, T10s, 1, 0); 
//Initialize Power Supply instrument 
hp6xxxa_init ("GPIB::5::INSTR", 1, 1, 0, &hp6030a); 
//Configure to read temperature 
kei7001_conf_slots (1, 2, 26, 1);   //OJO VERIFICAR SLOT (yo elegi el 2) Y 7014!!! 
kei2001_change_func (1, 7); 
kei2001_conf_temp (1, -1.0, 0, 2, 0, 2);//OJO DEBO VERIFICAR EL TIPO DE TC!!! 
while (TRUE) { 
 GetUserEvent (TRUE, &handle, &id); 
 switch (id) { 
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  case PNL_LOAD : 
   SetCtrlVal (panel, PNL_BUSY, 1); 
   GetCtrlVal (panel, PNL_STATUS, &loader); 
   switch (loader) { 
    //Load thermal transient data from file 
    case TT : 
     err = FileSelectPopup ("therm_file", "*.dat", "", "Load Window", 
              VAL_LOAD_BUTTON, 0, 0, 1, 1, filin); 
     if (err!=0){ 
      flhand = OpenFile (filin, 1, 2, 1); 
      ClearBuff (buf); 
      ScanFile (flhand, "%s>%i", &c); 
      ScanFile (flhand, "%s>%i", &pt); 
      Clear1D (temp1, pt); 
      Clear1D (temp2, pt); 
      Clear1D (temp3, pt); 
      Clear1D (temp4, pt); 
      Clear1D (temp5, pt); 
      Clear1D (tempair, pt); 
      Clear1D (time, pt); 
      for (i=0; (i<pt); i++) { 
       for (j=0; (j<c); j++) { 
         switch (j) { 
            case 0 : 
               ScanFile (flhand, "%s>%f", &temp1[i]); 
               break; 
             case 1 : 
                ScanFile (flhand, "%s>%f", &temp2[i]); 
                break; 
             case 2 : 
                ScanFile (flhand, "%s>%f", &temp3[i]); 
                break; 
             case 3 : 
                ScanFile (flhand, "%s>%f", &temp4[i]); 
                break; 
             case 4 : 
                ScanFile (flhand, "%s>%f", &temp5[i]); 
                break; 
             case 5 : 
                ScanFile (flhand, "%s>%f", &tempair[i]); 
                break; 
             case 6 : 
                ScanFile (flhand, "%s>%f", &time[i]); 
                break;  }   } } 
      err = CloseFile (flhand); } //end if (err!=0) 
     break; //end case TT 
    //Load electrical transient data from file 
    case ET : 
     err = FileSelectPopup ("elect_file", "*.dat", "", "Load Window", 

         
                           VAL_LOAD_BUTTON, 0, 0, 1, 1, filin); 

     if (err!=0){ 
      flhand = OpenFile (filin, 1, 2, 1); 
      ClearBuff (buf); 
      ScanFile (flhand, "%s>%i", &pt); 
      Clear1D (power, pt); 
      Clear1D (time, pt); 
      for (i=0; (i<pt); i++) { 
       ScanFile (flhand, "%s>%f", &power[i]); 
       ScanFile (flhand, "%s>%f", &time[i]); 
       } 
      err = CloseFile (flhand); 
      } //end if (err!=0) 
     break; //end case ET 
    } /*end switch (loader) */ 
   SetCtrlVal (panel, PNL_BUSY, 0); 
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   break; //end case LOAD 
  case PNL_DISPLAY :  
   SetCtrlVal (panel, PNL_BUSY, 1); 
   GetCtrlVal (panel, PNL_STATUS, &display); 
   switch (display) { 
    //Display the loaded thermal transient data from file 
    case TT : 
     DeleteGraphPlot (panel, PNL_CURVE, -1, 1); 
     SetCtrlVal (panel, PNL_LEDT1, 1); 
     PlotXY (panel, PNL_CURVE, time, temp1, pt, VAL_DOUBLE, 

VAL_DOUBLE, VAL_THIN_LINE, VAL_EMPTY_SQUARE, 
VAL_SOLID, 1,VAL_RED); 

     SetCtrlVal (panel, PNL_LEDT2, 1); 
     PlotXY (panel, PNL_CURVE, time, temp2, pt, VAL_DOUBLE, 

VAL_DOUBLE, VAL_THIN_LINE, VAL_EMPTY_SQUARE, 
VAL_SOLID, 1,VAL_BLUE); 

     SetCtrlVal (panel, PNL_LEDT3, 1); 
     PlotXY (panel, PNL_CURVE, time, temp3, pt, VAL_DOUBLE, 

VAL_DOUBLE, VAL_THIN_LINE, VAL_EMPTY_SQUARE, 
VAL_SOLID, 1,VAL_YELLOW); 

     SetCtrlVal (panel, PNL_LEDT4, 1); 
     PlotXY (panel, PNL_CURVE, time, temp4, pt, VAL_DOUBLE, 

VAL_DOUBLE, VAL_THIN_LINE, VAL_EMPTY_SQUARE, 
VAL_SOLID, 1,VAL_GREEN); 

     SetCtrlVal (panel, PNL_LEDT5, 1); 
     PlotXY (panel, PNL_CURVE, time, temp5, pt, VAL_DOUBLE, 

VAL_DOUBLE, VAL_THIN_LINE, VAL_EMPTY_SQUARE, 
VAL_SOLID, 1,VAL_WHITE); 

     SetCtrlVal (panel, PNL_LEDTair, 1); 
     PlotXY (panel, PNL_CURVE, time, tempair, pt, VAL_DOUBLE, 

VAL_DOUBLE, VAL_THIN_LINE, VAL_EMPTY_SQUARE, 
VAL_SOLID, 1,VAL_CYAN); 

     SetCtrlVal (panel, PNL_BUSY, 0); 
     break; //end case TT 
    case ET : 
     DeleteGraphPlot (panel, PNL_CURVELECTRIC, -1, 1); 

PlotXY (panel, PNL_CURVELECTRIC, time, power, pt, 
VAL_DOUBLE,VAL_DOUBLE, VAL_THIN_LINE, 
VAL_EMPTY_SQUARE, VAL_SOLID, 1,VAL_DK_BLUE); 

     break; //end case ET 
    case MEAS : 
     DeleteGraphPlot (panel, PNL_CURVE, -1, 1);   
     GetCtrlVal (panel, PNL_T1, &status1); 
     if (status1==1) {  
      SetCtrlVal (panel, PNL_LEDT1, 1); 

PlotXY (panel, PNL_CURVE, time_array, tc1, pts, 
VAL_DOUBLE,VAL_DOUBLE, VAL_THIN_LINE, 
VAL_EMPTY_SQUARE, VAL_SOLID, 1, VAL_RED);   } 

     GetCtrlVal (panel, PNL_T2, &status2); 
     if (status2==1) { 
      SetCtrlVal (panel, PNL_LEDT2, 1); 

PlotXY (panel, PNL_CURVE, time_array, tc2, pts, 
VAL_DOUBLE, VAL_DOUBLE, VAL_THIN_LINE, 
VAL_EMPTY_SQUARE, VAL_SOLID, 1, VAL_BLUE);
  } 

     GetCtrlVal (panel, PNL_T3, &status3); 
     if (status3==1) { 
      SetCtrlVal (panel, PNL_LEDT3, 1); 

PlotXY (panel, PNL_CURVE, time_array, tc3, pts, 
VAL_DOUBLE, VAL_DOUBLE, VAL_THIN_LINE, 
VAL_EMPTY_SQUARE, VAL_SOLID, 1, VAL_YELLOW);
  } 

     GetCtrlVal (panel, PNL_T4, &status4); 
     if (status4==1) { 
      SetCtrlVal (panel, PNL_LEDT4, 1); 
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PlotXY (panel, PNL_CURVE, time_array, tc4, pts, 
VAL_DOUBLE, VAL_DOUBLE, VAL_THIN_LINE, 
VAL_EMPTY_SQUARE, VAL_SOLID, 1, VAL_GREEN);
  } 

     GetCtrlVal (panel, PNL_T5, &status5); 
     if (status5==1) { 
      SetCtrlVal (panel, PNL_LEDT5, 1); 

PlotXY (panel, PNL_CURVE, time_array, tc5, pts, 
VAL_DOUBLE, VAL_DOUBLE, VAL_THIN_LINE, 
VAL_EMPTY_SQUARE, VAL_SOLID, 1, VAL_WHITE);
  } 

     GetCtrlVal (panel, PNL_Tair, &statusair); 
     if (statusair==1) { 
      SetCtrlVal (panel, PNL_LEDTair, 1); 

PlotXY (panel, PNL_CURVE, time_array, tcair, pts, 
VAL_DOUBLE, VAL_DOUBLE, VAL_THIN_LINE, 
VAL_EMPTY_SQUARE, VAL_SOLID, 1, VAL_CYAN);
  } 

     DeleteGraphPlot (panel, PNL_CURVELECTRIC, -1, 1); 
     GetCtrlVal (panel, PNL_MEASELECT, &elec_meas); 
     if (elec_meas==1) { 
      SetCtrlVal (panel, PNL_LEDELECT, 1); 

PlotXY (panel, PNL_CURVELECTRIC, time_array, pwr, pts, 
VAL_DOUBLE, VAL_DOUBLE, VAL_THIN_LINE, 
VAL_EMPTY_SQUARE, VAL_SOLID, 1,VAL_DK_BLUE);
 } 

     break; //end case MEAS } /*end switch (display) */ 
   SetCtrlVal (panel, PNL_BUSY, 0); 
   break; //end case DISPLAY  
  case PNL_CLEAR : 
   SetCtrlVal (panel, PNL_BUSY, 1); 
   SetCtrlVal (panel, PNL_LEDT1, 0); 
   SetCtrlVal (panel, PNL_LEDT2, 0); 
   SetCtrlVal (panel, PNL_LEDT3, 0); 
   SetCtrlVal (panel, PNL_LEDT4, 0); 
   SetCtrlVal (panel, PNL_LEDT5, 0);  
   SetCtrlVal (panel, PNL_LEDTair, 0); 
   SetCtrlVal (panel, PNL_LEDELECT, 0); 
   DeleteGraphPlot (panel, PNL_CURVE, -1, 1); 
   DeleteGraphPlot (panel, PNL_CURVELECTRIC, -1, 1); 
   SetCtrlVal (panel, PNL_BUSY, 0); 
   break; //end case CLEAR    
  case PNL_SAVE : 
   SetCtrlVal (panel, PNL_BUSY, 1); 
   GetCtrlVal (panel, PNL_STATUS, &saver); 
   switch (saver) { 
    //Save the measured thermal transient data 
    case TT : 
     err = FileSelectPopup ("save_therm", "*.dat", "", "Save Window", 
                             VAL_SAVE_BUTTON, 0, 0, 1, 1, filin); 
     if (err!=0) { 
      flhand = OpenFile (filin, 2, 0, 1); 
      ClearBuff (buf); 
      c=7; 
      err = Fmt (buf, "%s<%i", c); 
      err = WriteLine (flhand, buf, 7); 
      ClearBuff (buf); 
      err = Fmt (buf, "%s<%i", pts); 
      err = WriteLine (flhand, buf, 7); 
      for (i=0; (i<pts); i++) { 
       ClearBuff (buf); 
       err = Fmt (buf, "%s<%f", tc1[i]); 
       err = WriteFile (flhand, buf, 15); 
       ClearBuff (buf); 
       err = Fmt (buf, "%s<%f", tc2[i]); 
       err = WriteFile (flhand, buf, 15); 
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       ClearBuff (buf); 
       err = Fmt (buf, "%s<%f", tc3[i]); 
       err = WriteFile (flhand, buf, 15); 
       ClearBuff (buf); 
       err = Fmt (buf, "%s<%f", tc4[i]); 
       err = WriteFile (flhand, buf, 15); 
       ClearBuff (buf); 
       err = Fmt (buf, "%s<%f", tc5[i]); 
       err = WriteFile (flhand, buf, 15); 
       ClearBuff (buf); 
       err = Fmt (buf, "%s<%f", tcair[i]); 
       err = WriteFile (flhand, buf, 15); 
       ClearBuff (buf); 
       err = Fmt (buf, "%s<%f", time_array[i]); 
       err = WriteLine (flhand, buf, 7); 
       } //end for 
      CloseFile (flhand); 
      } //end if (err!=0) 
     break; //end case TT 
    //Save the measured electrical transient data 
    case ET : 
     GetCtrlVal (panel, PNL_SAVELECT, &elect_option); 
     switch (elect_option) { 
         //Save the voltage and current data 
        case VI : 

err = FileSelectPopup ("save_vi", "*.dat", "", "Save 
Window",VAL_SAVE_BUTTON, 0, 0, 1, 1, filin); 

      if (err!=0) { 
       flhand = OpenFile (filin, 2, 0, 1); 
       ClearBuff (buf); 
       err = Fmt (buf, "%s<%i", pts); 
       err = WriteLine (flhand, buf, 7); 
       for (i=0; (i<pts); i++) { 
        ClearBuff (buf); 
        err = Fmt (buf, "%s<%f", volt[i]); 
        err = WriteFile (flhand, buf, 15); 
        ClearBuff (buf); 
        err = Fmt (buf, "%s<%f", curr[i]); 
        err = WriteLine (flhand, buf, 15);  }
        CloseFile (flhand); } //end if (err!=0) 
       break; //end case VI 
      //Save the power and time data 
        case PWR : 

err = FileSelectPopup ("save_power", "*.dat", "", "Save 
Window",VAL_SAVE_BUTTON, 0, 0, 1, 1, filin); 

      if (err!=0) { 
       flhand = OpenFile (filin, 2, 0, 1); 
       ClearBuff (buf); 
       err = Fmt (buf, "%s<%i", pts); 
       err = WriteLine (flhand, buf, 7); 
       for (i=0; (i<pts); i++) { 
             ClearBuff (buf); 
             err = Fmt (buf, "%s<%f", pwr[i]); 
             err = WriteFile (flhand, buf, 15); 
             ClearBuff (buf); 
             err = Fmt (buf, "%s<%f", time_array[i]); 
             err = WriteLine (flhand, buf, 15);   }  
       CloseFile (flhand);  } //end if (err!=0) 
      break; //end case PWR }  
     break; //end case ET }  
   SetCtrlVal (panel, PNL_BUSY, 0); 
   break; //end case SAVE 
  case PNL_RUN : 
   SetCtrlVal (panel, PNL_BUSY, 1); 
   GetCtrlVal (panel, PNL_VOLT, &voltios); 
   GetCtrlVal (panel, PNL_AMP, &amper); 
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   //Set voltage and current from panel 
   hp6xxxa_volt_curr (hp6030a, voltios, amper, 1); 
   //GetCtrlVal (panel, PNL_FREQ, &freq); 
   //GetCtrlVal (panel, PNL_AMPLIT, &ampl); 
   //frequency=freq*1000; 
   //Set amplitude and frequency from panel 
   //hp33120a_wf_config (waveform, 2, "", frequency, ampl, 0, 0.0, 50); 
   //Initialize the timer control 
   //GetCtrlVal (panel, PNL_TIMER1, &initial_time); 
   GetCtrlVal (panel, PNL_SAMPLING_INTERVAL, &sampling_interval); 
   SetCtrlAttribute (panel, PNL_TIMER1, ATTR_INTERVAL, sampling_interval+0.0); 
   GetCtrlVal (panel, PNL_NO_OF_SAMPLES, &no_of_samples); 
   actual_sample_no=0; 
   //Make the first measurement at time 0 
   //Make electrical measurements from power supply 
   GetCtrlVal (panel, PNL_MEASELECT, &elec_meas); 
   if (elec_meas==1) { 
    hp6xxxa_read_output (hp6030a, 1, &measvolt, &meascurr); 
    SetCtrlVal (panel, PNL_VOLTMEAS, measvolt); 
    SetCtrlVal (panel, PNL_CURRMEAS, meascurr); 
    voltms[actual_sample_no]=measvolt; 
    currms[actual_sample_no]=meascurr; 
    watts[actual_sample_no]=measvolt*meascurr;  } 
    //Make calibration for thermal measurement 
    kei7001_opn_cls_ch_lst (1, 2, "");    //open all channels 
    kei7001_opn_cls_ch_lst (1, 0, "2!1"); //close channel 1 from Slot 2 
    Delay (0.01); 
    ibwrt (keit2001, ":TEMP:RJUN1:RSEL REAL", 21); 
    ibwrt (keit2001, ":TEMP:RJUN1:REAL:TCO 0.0002", 27); 
    ibwrt (keit2001, ":TEMP:RJUN1:REAL:OFFS 0.05463", 29); 
    ibwrt (keit2001, ":TEMP:RJUN1:ACQ", 15); 
    Delay (0.10); 
    //Make measuret for thermocouple 1 from channel 2 
    GetCtrlVal (panel, PNL_T1, &status1); 
    if (status1==1) { 
     kei7001_opn_cls_ch_lst (1, 2, "");   //open all channels 
     kei7001_opn_cls_ch_lst (1, 0, "2!25"); //close chan 25 from Slot 2 
    kei2001_sing_meas (1, 2, 0, &meas1);  //take measurement 
     SetCtrlVal (panel, PNL_INDICATOR_T1, meas1); 
     tp1[actual_sample_no]=meas1;  //put temperature 1 in its array      } 
    //Make measuret for thermocouple 2 from channel 3 
    GetCtrlVal (panel, PNL_T2, &status2); 
    if (status2==1) { 
     kei7001_opn_cls_ch_lst (1, 2, "");   //open all channels 
     kei7001_opn_cls_ch_lst (1, 0, "2!16"); //close chan 16 from Slot 2 
     kei2001_sing_meas (1, 2, 0, &meas2);  //take measurement 
     SetCtrlVal (panel, PNL_INDICATOR_T2, meas2); 
     tp2[actual_sample_no]=meas2;  //put temperature 2 in its array      }  
    //Make measuret for thermocouple 3 from channel 4 
    GetCtrlVal (panel, PNL_T3, &status3); 
    if (status3==1) { 
     kei7001_opn_cls_ch_lst (1, 2, "");   //open all channels 
     kei7001_opn_cls_ch_lst (1, 0, "2!26"); //close chan 26 from Slot 2 
     kei2001_sing_meas (1, 2, 0, &meas3);  //take measurement 
     SetCtrlVal (panel, PNL_INDICATOR_T3, meas3); 
     tp3[actual_sample_no]=meas3;  //put temperature 3 in its array     }  
    //Make measuret for thermocouple 4 from channel 5 
    GetCtrlVal (panel, PNL_T4, &status4); 
    if (status4==1) { 
     kei7001_opn_cls_ch_lst (1, 2, "");   //open all channels 
     kei7001_opn_cls_ch_lst (1, 0, "2!15"); //close chan 15 from Slot 2 
    kei2001_sing_meas (1, 2, 0, &meas4);  //take measurement 
     SetCtrlVal (panel, PNL_INDICATOR_T4, meas4); 
     tp4[actual_sample_no]=meas4;  //put temperature 4 in its array     } 
   //Make measuret for thermocouple 5 from channel 6 
    GetCtrlVal (panel, PNL_T5, &status5); 
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    if (status5==1) { 
     kei7001_opn_cls_ch_lst (1, 2, "");   //open all channels 
     kei7001_opn_cls_ch_lst (1, 0, "2!35"); //close chan 35 from Slot 2 
     kei2001_sing_meas (1, 2, 0, &meas5);  //take measurement 
     SetCtrlVal (panel, PNL_INDICATOR_T5, meas5); 
     tp5[actual_sample_no]=meas5;  //put temperature 5 in its array    } 
    //Make measuret for thermocouple 5 from channel 6 
    GetCtrlVal (panel, PNL_Tair, &statusair); 
    if (statusair==1) { 
     kei7001_opn_cls_ch_lst (1, 2, "");   //open all channels 
     kei7001_opn_cls_ch_lst (1, 0, "2!6"); //close channel 6 from Slot 2 
     kei2001_sing_meas (1, 2, 0, &measair);  //take measurement 
     SetCtrlVal (panel, PNL_INDICATOR_Tair, measair); 
     tpair[actual_sample_no]=measair;     }  
    //Record the starting time according to the system clock 
            GetSystemTime(&h_i,&m_i,&s_i); 
            time_i = h_i*3600 + m_i*60 + s_i; 
      
    //Record the time at which the actual first iteration sample was taken 
    GetSystemTime(&h_a,&m_a,&s_a); 
    time_a = h_a*3600 + m_a*60 + s_a; 
    //Find out how much time has transcurred since the initial starting time 
    time_t = time_a - time_i; 
    time_meas[actual_sample_no] = time_t; 
    SetCtrlVal (panel, PNL_MEASTIME, time_t+0.0); 
    //SetCtrlVal (panel, PNL_MEASTIME, meastime); 
    SetCtrlVal (panel, PNL_SAMPLE, actual_sample_no+1.0); 
    actual_sample_no = actual_sample_no + 1; 
    //Let the timer do the rest of the measurements 
    SetCtrlAttribute (panel, PNL_TIMER1, ATTR_ENABLED,TRUE);  
    break; //end case RUN  
  case PNL_RESET : 
   SetCtrlVal (panel, PNL_BUSY, 1); 
   SetCtrlVal (panel, PNL_VOLT, 0.00); 
   SetCtrlVal (panel, PNL_AMP, 0.00); 
   SetCtrlVal (panel, PNL_NO_OF_SAMPLES, 0.00); 
   SetCtrlVal (panel, PNL_LEDT1, 0); 
   SetCtrlVal (panel, PNL_T1, 0); 
   SetCtrlVal (panel, PNL_INDICATOR_T1, 0.00); 
   SetCtrlVal (panel, PNL_LEDT2, 0); 
   SetCtrlVal (panel, PNL_T2, 0); 
   SetCtrlVal (panel, PNL_INDICATOR_T2, 0.00); 
   SetCtrlVal (panel, PNL_LEDT3, 0); 
   SetCtrlVal (panel, PNL_T3, 0); 
   SetCtrlVal (panel, PNL_INDICATOR_T3, 0.00); 
   SetCtrlVal (panel, PNL_LEDT4, 0); 
   SetCtrlVal (panel, PNL_T4, 0); 
   SetCtrlVal (panel, PNL_INDICATOR_T4, 0.00); 
   SetCtrlVal (panel, PNL_LEDT5, 0); 
   SetCtrlVal (panel, PNL_T5, 0); 
   SetCtrlVal (panel, PNL_INDICATOR_T5, 0.00); 
   SetCtrlVal (panel, PNL_LEDTair, 0); 
   SetCtrlVal (panel, PNL_Tair, 0); 
   SetCtrlVal (panel, PNL_INDICATOR_Tair, 0.00); 
   SetCtrlVal (panel, PNL_LEDELECT, 0); 
   SetCtrlVal (panel, PNL_MEASELECT, 0); 
   SetCtrlVal (panel, PNL_VOLTMEAS, 0.00); 
   SetCtrlVal (panel, PNL_CURRMEAS, 0.00); 
   SetCtrlVal (panel, PNL_MEASTIME, 0.00); 
   Clear1D (tc1, pts);  
   Clear1D (tc2, pts); 
   Clear1D (tc3, pts); 
   Clear1D (tc4, pts); 
   Clear1D (tc5, pts); 
   Clear1D (tcair, pts); 
   Clear1D (time_array, pts); 
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   Clear1D (volt, pts);  
   Clear1D (curr, pts); 
   Clear1D (pwr, pts); 
   DeleteGraphPlot (panel, PNL_CURVE, -1, 1); 
   DeleteGraphPlot (panel, PNL_CURVELECTRIC, -1, 1); 
   SetCtrlVal (panel, PNL_BUSY, 0); 
   break; //end case RESET 
  case PNL_EXIT : 
   hp6xxxa_volt_curr (hp6030a, 0.000, 0.000, 1); 
   return; 
   break; } //end switch (id)  } //end while (TRUE) } // end main 
 
/*=================================FUNCTIONS===================================*/ 
void ClearBuff (b) 
char b[20]; { 
 int i; 
 /*--------------------------------------------------------------------------------*/ 
 /* Clear buffer in memory                  */ 
 /*-------------------------------------------------------------------------------- */ 
 for (i=0; (i<20); i++) 
  b[i]=' ';  } //end ClearBuff function 
// When the RUN button is pressed, the timer is activated and the measurements are taken 
int CVICALLBACK timer_activado (int panel, int control, int event,void *callbackData, int eventData1, 

             int eventData2)  { 
 switch (event)  { 
  case EVENT_TIMER_TICK: 
   if (actual_sample_no < no_of_samples){ 
   //Make electrical measurements from power supply 
    GetCtrlVal (panel, PNL_MEASELECT, &elec_meas); 
    if (elec_meas==1) { 
     hp6xxxa_read_output (hp6030a, 1, &measvolt, &meascurr); 
     SetCtrlVal (panel, PNL_VOLTMEAS, measvolt); 
     SetCtrlVal (panel, PNL_CURRMEAS, meascurr); 
     voltms[actual_sample_no]=measvolt; 
     currms[actual_sample_no]=meascurr; 
     watts[actual_sample_no]=measvolt*meascurr;  } 
    //Make calibration for thermal measurement 
    kei7001_opn_cls_ch_lst (1, 2, "");    //open all channels 
    kei7001_opn_cls_ch_lst (1, 0, "2!1"); //close channel 1 from Slot 2 
    Delay (0.01); 
    ibwrt (keit2001, ":TEMP:RJUN1:RSEL REAL", 21); 
    ibwrt (keit2001, ":TEMP:RJUN1:REAL:TCO 0.0002", 27); 
    ibwrt (keit2001, ":TEMP:RJUN1:REAL:OFFS 0.05463", 29); 
    ibwrt (keit2001, ":TEMP:RJUN1:ACQ", 15); 
    Delay (0.10); 
    //Make measuret for thermocouple 1 from channel 2 
    GetCtrlVal (panel, PNL_T1, &status1); 
    if (status1==1) { 
     kei7001_opn_cls_ch_lst (1, 2, "");   //open all channels 
     kei7001_opn_cls_ch_lst (1, 0, "2!25"); //close chan 25 from Slot 2 
     kei2001_sing_meas (1, 2, 0, &meas1);  //take measurement 
     SetCtrlVal (panel, PNL_INDICATOR_T1, meas1); 
     tp1[actual_sample_no]=meas1;  //   } //end if (status) 
    //Make measuret for thermocouple 2 from channel 3 
    GetCtrlVal (panel, PNL_T2, &status2); 
    if (status2==1) { 
     kei7001_opn_cls_ch_lst (1, 2, "");   //open all channels 
     kei7001_opn_cls_ch_lst (1, 0, "2!16"); //close chan 16 from Slot 2 
     kei2001_sing_meas (1, 2, 0, &meas2);  //take measurement 
     SetCtrlVal (panel, PNL_INDICATOR_T2, meas2); 
     tp2[actual_sample_no]=meas2;    } //end if (status) 
    //Make measuret for thermocouple 3 from channel 4 
    GetCtrlVal (panel, PNL_T3, &status3); 
    if (status3==1) { 
     kei7001_opn_cls_ch_lst (1, 2, "");   //open all channels 
     kei7001_opn_cls_ch_lst (1, 0, "2!26"); //close chanl 26 from Slot 2 
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     kei2001_sing_meas (1, 2, 0, &meas3);  //take measurement 
     SetCtrlVal (panel, PNL_INDICATOR_T3, meas3); 
     tp3[actual_sample_no]=meas3;    } //end if (status) 
    //Make measuret for thermocouple 4 from channel 5 
    GetCtrlVal (panel, PNL_T4, &status4); 
    if (status4==1) { 
     kei7001_opn_cls_ch_lst (1, 2, "");   //open all channels 
     kei7001_opn_cls_ch_lst (1, 0, "2!15"); //close chan 15 from Slot 2 
     kei2001_sing_meas (1, 2, 0, &meas4);  //take measurement 
     SetCtrlVal (panel, PNL_INDICATOR_T4, meas4); 
     tp4[actual_sample_no]=meas4;    } //end if (status) 
    //Make measuret for thermocouple 5 from channel 6 
    GetCtrlVal (panel, PNL_T5, &status5); 
    if (status5==1) { 
     kei7001_opn_cls_ch_lst (1, 2, "");   //open all channels 
     kei7001_opn_cls_ch_lst (1, 0, "2!35"); //close chan 35 from Slot 2 
     kei2001_sing_meas (1, 2, 0, &meas5);  //take measurement 
     SetCtrlVal (panel, PNL_INDICATOR_T5, meas5); 
     tp5[actual_sample_no]=meas5;    } //end if (status)  
    //Make measuret for air thermocouple from channel 6 
    GetCtrlVal (panel, PNL_Tair, &statusair); 
    if (statusair==1) { 
     kei7001_opn_cls_ch_lst (1, 2, "");   //open all channels 
     kei7001_opn_cls_ch_lst (1, 0, "2!6"); //close channel 6 from Slot 2 
     kei2001_sing_meas (1, 2, 0, &measair);  //take measurement 
     SetCtrlVal (panel, PNL_INDICATOR_Tair, measair); 
     tpair[actual_sample_no]=measair;    } //end if (status) 
     //Record the time at which the actual iteration samples were taken 
     GetSystemTime(&h_a,&m_a,&s_a); 
     time_a = h_a*3600 + m_a*60 + s_a; 
     time_t = time_a - time_i; 
     time_meas[actual_sample_no] = time_t; 
     //time_meas[points] = meastime; 
     SetCtrlVal (panel, PNL_MEASTIME, time_t+0.0); 
     //SetCtrlVal (panel, PNL_MEASTIME, meastime); 
     SetCtrlVal (panel, PNL_SAMPLE, actual_sample_no+1.0);   
     actual_sample_no = actual_sample_no + 1; }  
   //GetCtrlVal (panel, PNL_TIMER1, &current_time); 
    //} //end while (points) 
   else{  
    pts=no_of_samples; 
    for (i=0; (i<pts); i++) { 
     tc1[i]=tp1[i]; 
     tc2[i]=tp2[i]; 
     tc3[i]=tp3[i]; 
     tc4[i]=tp4[i]; 
     tc5[i]=tp5[i]; 
     tcair[i]=tpair[i]; 
     time_array[i]=time_meas[i]; 
     volt[i]=voltms[i]; 
     curr[i]=currms[i]; 
     pwr[i]=watts[i];  } 
    SetCtrlVal (panel, PNL_BUSY, 0); 
    hp6xxxa_volt_curr (hp6030a, 0.000, 0.000, 1); 
    SetCtrlAttribute (panel, PNL_TIMER1, ATTR_ENABLED,FALSE);      } 
   break;  } 
 return 0;   } 
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APPENDIX D 

HEAT SINK MODEL DESCRIPTION 

 

A simple heat sink model can be based on thermal component networks [2, 3], 

where the lumped concept is used. In this case, an electrical-thermal analogy is used to 

elaborate the IPEM heat sink model.  Heat transfer inside the heat sink is modeled from 

several thermal resistances and capacitances, as is shown in Figure D.1.  

 
 

 

 

 

 

 

 

 

Figure D.1. Finite difference model as the thermal modeling approach. 

 

Here, the heat diffusion equation is used to define the thermal behavior, which is 

discretized using finite difference methods (FDM). In general, the model considers a 

quasi-one-dimensional heat transfer process using the rectangular coordinates: 
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with boundary conditions, 
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According to IPEM-LTCM model is assumed a natural convection using the heat 

transfer coefficient given by Hefner et al. in [1-4]: 
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where Afin is the total heat sink fin area, and wfin is the heat sink fin height (or 

orientation parameter). Finally, the initial condition is given by, 
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For various symmetry conditions, the heat equation for the rectangular 

coordinate system with x- and y-axis symmetry is 
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This equation can be discretized into a finite number of first-order ordinary time-

dependent differential equations of the form 
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In the discretization process of the heat diffusion equation, it is assumed that the 

temperature gradient and thermal conductivity do not vary substantially between 

adjacent grid points. The model accuracy is determined by the number and location of 

the nodes within the heat sink.  

 

In general terms, the heat sink is divided in many nodes, each node represent a 

volume (in this case, all node are cubes, because the real heat sink can be represented by 

many of this form), in others words, a lumped, as is observed in the Figure D.2. Each 

lumped inside the heat sink is defined by the discretized equation (using FDM). In the 

case of the surface nodes, these nodes include both conduction and convection 

resistance, according to previous description of such resistances. 
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 Figure D.2. Heat sink’s grid used in the analysis. 
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All dimensions are in centimeters. 
The heat sink has eight fins.  

Figure D.3. Heat sink’s dimensions. 
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APPENDIX E 

FULL C++/CVI CODE OF THE THERMAL TRANSIENT PROGRAM 
DEVELOPED FOR FAST THERMAL RESPONSE EXPERIMENT  

 
#define  TRUE    1 
#define  FALSE  0 
#define  ON         1 
#define  OFF       0 
#define  VV         2 
#define  XY1       1 
#define  XY2       2 
#define  XY3       3 
#define  XY4       4 
/* Used in selecting curve to save                                             */ 
#define  ALL_SC   0   /* Save all scope channel             */ 
#define  DISP_SC  1   /* Default: scope channel displayed     */ 
#define  TRAN       2   /* Save transient                      */ 
/* Used in selecting waveform input source (load function)    */ 
#define  SCP           0   /* Default: TDS644A              */ 
#define  SCPFILE  1   /* Oscilloscope File                    */ 
#define  TRAFILE 2   /* Transient  File                     */ 
#define  SAM          0 
#define  ENV          1 
#define  AVE          2 
/*Used in selecting curve to display                         */ 
#define  SCPCURV  0   /* Default: Scope loaded                    */ 
#define  TRANCURV 1   /* Transient file loaded                    */ 
/*Used in selecting mode transient                             */ 
#define  TRUN     0   /* Default: Truncated transient         */ 
#define  EXTR     1   /* Extrapolated transient               */  
/*========================FUNCTION DECLARATION=========================*/ 
void Makechan (double[], double, int); 
void Makexy (double[],double[],int,double[],double[]); 
void CalcWaveforms (int,int, int, int, int, int, int, int, int); 
void Makefile (int,int,int,int,int,int,int,double[],double[],double[],double[],double, double[], double[]); 
void ClearBuff(char[]); 
/*========================VARIABLE DECLARATION=========================*/ 
static double wavein1[2000],wavein2[2000],wavein3[2000],wavein4[2000]; 
static double wave1[2000],wave2[2000],wave3[2000],wave4[2000]; 
static double wave1s[2000],wave2s[2000],wave3s[2000],wave4s[2000],wavex[2000],wavey[2000]; 
static double wavetime[2000],timescp[2000],voltscp[2000],tempscp[2000]; 
static double voltcal [200],tempcal [200],volt_igbt[200],temp_igbt[200];  
static double voltscp_max,voltscp_min, voltcal_max,voltcal_min,c_strt,x_incr, x_strt,ch1_scale; 
static char filin[512]; 
static int tk644,cnt,tek644,count,err,pts,hp6035a; 
/*============================MAIN PROGRAM=============================*/ 
main() { 
double difference,sfr1,sfr2,sfr3,sfr4,cvxmult,cvymult,cvamp,cvvolt,slope,intercept,mse,output[2000]; 
double voltios, amper, set_temp; 
char bf[21],aqmode[21],str[320],colon[2],ch[2],str2[21]; 
char buf[21]; 
int c,calpoints,indice,ij,i,j,k,larg,flhand,filout,saval,x,y,loader,display,option,id,panel,handle; 
int chan1,chan2,chan3,chan4,chan5,cvpts,samp,acmode,envp,fhand; 
pts = 2000;  
panel = LoadPanel (0, "transient.uir", SCOPE);   
if (panel < 0){ 
  FmtOut("Unable to load the required panel from the resource file.\n"); 
  return;  } 
DisplayPanel(panel); 
//Initialize Power Supply instrument 
hp6xxxa_init ("GPIB::8::INSTR", VI_OFF, VI_OFF, 4, &hp6035a); 
//Initialize Oscilloscope 
tk644 = ibdev (0, 9, NO_SAD, T3s, 1, 0); 
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tek644a_init (9, 0, 0, &tek644); 
tek644a_wvfm_acquisition (tek644, 1, &cnt); 
ibwrt (tk644, "HOR:RECO 2000",13); 
/* Determine the current acqusition mode.        */ 
ibwrt (tk644, "ACQ:MOD?",8); 
ClearBuff(aqmode); 
ibrd (tk644,aqmode,10); 
if (aqmode[0]=='S')acmode=SAM; 
if (aqmode[0]=='E')acmode=ENV; 
if (aqmode[0]=='A')acmode=AVE; 
switch (acmode) { 
 case SAM : 
   SetCtrlIndex (panel, SCOPE_ACQMODE, SAM); 
   break; 
 case ENV : 
   SetCtrlIndex (panel, SCOPE_ACQMODE, ENV); 
/* Read the number of envelopes being taken        */ 
      ibwrt (tk644, "ACQ:NUME?",9); 
      ibrd (tk644,bf,15); 
      Fmt (&envp, "%i<%s",bf); 
      SetCtrlVal (panel, SCOPE_SAMPS, envp); 
      break; 
    case AVE : 
      SetCtrlIndex (panel, SCOPE_ACQMODE, AVE); 
/* Read the number of samples being taken        */ 
      ibwrt (tk644, "ACQ:NUMAV?",10); 
      ibrd (tk644,bf,15); 
      Fmt (&samp, "%i<%s",bf); 
      SetCtrlVal (panel, SCOPE_SAMPS, samp); 
      break; } 
while (TRUE){ 
  GetUserEvent (TRUE, &handle, &id); 
  switch (id) { 
 case SCOPE_ST :  
   SetCtrlVal (panel, SCOPE_WORK, 1);   
      GetCtrlVal(panel, SCOPE_VOLT_SUPPLY, &voltios); 
      GetCtrlVal(panel, SCOPE_AMP_SUPPLY, &amper); 
      //Set Voltage and Current from panel 
      hp6xxxa_volt_curr (hp6035a, voltios, amper, 1); 
   //Set Oscilloscope Mode from panel 
   err = GetCtrlVal (panel, SCOPE_ACQMODE, &acmode); 
   err = GetCtrlVal (panel, SCOPE_SAMPS,&ij); 
   switch (acmode) { 
  case SAM : 
    tek644a_acquisition_setup (tek644, 1, ij, 1); 
    tek644a_wvfm_acquisition (tek644, 1, &err); 
    break; 
  case ENV : 
    tek644a_acquisition_setup (tek644, 2, ij, 1); 
    tek644a_wvfm_acquisition (tek644, 1, &err); 
    break; 
  case AVE : 
    tek644a_acquisition_setup (tek644, 3, ij, 1); 
    tek644a_wvfm_acquisition (tek644, 1, &err); 
    break;  } 
   SetCtrlVal(panel,SCOPE_WORK,0); 
   break; 
 // Load oscilloscope data displayed, an oscilloscope data file  or a transient data file 
 case SCOPE_LOAD : 
   SetCtrlVal(panel,SCOPE_WORK,1); 
   GetCtrlVal(panel,SCOPE_LD,&loader); 
   switch (loader) { 
  //Load oscilloscope data displayed 
  case SCP : 
    /* Initialize the tds644 A/C/D Digitizing Oscilloscope */ 
    /* Determine the current acquisition mode.        */ 
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     //Stop the acquisition for data transfert. 
          tek644a_wvfm_acquisition (tek644, 0,&count ); 
    ibwrt (tk644, "ACQ:MOD?",8); 
    ClearBuff(aqmode); 
    ibrd (tk644,aqmode,10); 
    if (aqmode[0]=='S')acmode=SAM; 
    if (aqmode[0]=='E')acmode=ENV; 
    if (aqmode[0]=='A')acmode=AVE; 
    switch (acmode) { 
      case SAM : 
        SetCtrlIndex (panel, SCOPE_ACQMODE, SAM); 
        break; 
      case ENV : 
                     SetCtrlIndex (panel, SCOPE_ACQMODE, ENV); 
        // Read the number of envelopes being taken         
        ibwrt (tk644, "ACQ:NUME?",9); 
        ibrd (tk644,bf,15); 
        Fmt (&envp, "%i<%s",bf); 
        SetCtrlVal (panel, SCOPE_SAMPS, envp); 
        break; 
      case AVE : 
                     SetCtrlIndex (panel, SCOPE_ACQMODE, AVE); 
        // Read the number of samples being taken    
        ibwrt (tk644, "ACQ:NUMAV?",10); 
        ibrd (tk644,bf,15); 
        Fmt (&samp, "%i<%s",bf); 
        SetCtrlVal (panel, SCOPE_SAMPS, samp); 
        break;  } 
    // Check if each channel is on, and get waveform from each channel 
    ibwrt (tk644, "SEL:CH1?", 8); 
    ibrd (tk644,bf,10); 
    Fmt (&k, "%i<%s",bf); 
    if (k != 0) 
        tek644a_read_wvfm_array (tek644, 1, 0, 1, 2000, wavein1, &pts, &x_strt, &x_incr); 
    ibwrt (tk644, "SEL:CH2?", 8); 
    ibrd (tk644,bf,10); 
    err = Fmt (&k, "%i<%s",bf); 
    if (k != 0) 
        tek644a_read_wvfm_array (tek644, 2, 0, 1, 2000, wavein2, &pts,&x_strt, &x_incr); 
    ibwrt (tk644, "SEL:CH3?", 8); 
    ibrd (tk644,bf,10); 
    Fmt (&k, "%i<%s",bf); 
    if (k != 0) 
        tek644a_read_wvfm_array (tek644, 3, 0, 1, 2000, wavein3, &pts, &x_strt, &x_incr); 
    ibwrt (tk644, "SEL:CH4?", 8); 
    ibrd (tk644,bf,10); 
    Fmt (&k, "%i<%s",bf); 
    if (k != 0) 
        tek644a_read_wvfm_array (tek644, 4, 0, 1, 2000, wavein4, &pts, &x_strt, &x_incr); 
    tek644a_wvfm_acquisition (tek644, 1,&count );//Restart Scope after data transfert. 
    for (i=0; (i<pts); i++) { 
         wavetime[i]=i*x_incr; 
         wave1[i]=wavein1[i]; 
         wave2[i]=wavein2[i]; 
         wave3[i]=wavein3[i]; 
         wave4[i]=wavein4[i];         } 
    break; 
     //Load an oscilloscope data file, add Popup file selection from oscilloscope files   
     case SCPFILE: 
    err = FileSelectPopup ("Last_data", "*.dat", "", "Load Window", 
                VAL_LOAD_BUTTON, 0, 0, 1, 1, filin);  
    if (err!=0){ 
        flhand = OpenFile (filin, 1, 2, 1); 
        ClearBuff(buf); 
        ScanFile (flhand, "%s>%i", &c); 
        ScanFile (flhand, "%s>%i", &pts); 
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        Clear1D(wavein1,pts); 
        Clear1D(wavein2,pts); 
        Clear1D(wavein3,pts); 
        Clear1D(wavein4,pts); 
        for (i=0; (i<pts);i++) { 
             for (j=0; (j<c);j++) { 
                  switch (j) { 
                    case 0 : 
         ScanFile (flhand, "%s>%f", &wavetime[i]); 
             break; 
               case 1 : 
                     ScanFile (flhand, "%s>%f", &wavein1[i]); 
                      break; 
                    case 2 : 
         ScanFile (flhand, "%s>%f", &wavein2[i]); 
             break; 
               case 3 : 
                     ScanFile (flhand, "%s>%f", &wavein3[i]); 
                      break; 
                    case 4 : 
         ScanFile (flhand, "%s>%f", &wavein4[i]); 
             break;             }              }            } 
        for (i=0; (i<pts); i++) { 
             wave1[i]=wavein1[i]; 
             wave2[i]=wavein2[i]; 
             wave3[i]=wavein3[i]; 
             wave4[i]=wavein4[i];           } 
        err = CloseFile (flhand);      } 
    break; 
  //Load a transient data file, add Popup file selection from transient files  
    case TRAFILE : 
            err=FileSelectPopup ("newfile", "*.dat", "", "Load Window", VAL_LOAD_BUTTON, 

            0, 0, 1, 1, filin);  
               if (err!=0){ 
                        flhand = OpenFile(filin, 1, 2, 1); 
                        ClearBuff(buf); 
                       ScanFile(flhand, "%s>%i", &pts); 
                       Clear1D(timescp, pts); 
                       Clear1D(tempscp, pts); 
                        for (i=0; (i<pts);i++) { 
                    ScanFile(flhand, "%s>%f", &timescp[i]); 
                             ScanFile(flhand, "%s>%f", &tempscp[i]);              } 
                   err = CloseFile (flhand);           } 
                   break;   } /* end switch (loader) */ 
   SetCtrlVal(panel,SCOPE_WORK,0); 
   break; 
 case SCOPE_DISP : 
   SetCtrlVal(panel,SCOPE_WORK,1); 
   GetCtrlVal(panel,SCOPE_DP,&display); 
   switch (display)  { 
     //Display curve from oscilloscope 
     case SCPCURV : 
       //Query the panel for each channel selection and calculate the waveform for each channel 
       GetCtrlVal(panel,SCOPE_CH1,&chan1); 
       GetCtrlVal(panel,SCOPE_CH2,&chan2); 
       GetCtrlVal(panel,SCOPE_CH3,&chan3); 
       GetCtrlVal(panel,SCOPE_CH4,&chan4); 
       GetCtrlVal(panel,SCOPE_CH5,&chan5); 
       GetCtrlVal(panel,SCOPE_CH5X,&x); 
       GetCtrlVal(panel,SCOPE_CH5Y,&y); 
       CalcWaveforms(panel,chan1,chan2,chan3,chan4,chan5,x,y,pts); 
       //Clear the graph of its current plots. Plot the waveform selected for each channel 
       //Light the LED for each active channel 
       DeleteGraphPlot(panel,SCOPE_GRAPH, -1, 1); 
       if (chan5 != OFF) { 
          if (y==1) 
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                 err = SetCtrlVal(panel, SCOPE_Y, " Channel    1 "); 
          if (y==2) 
                 err = SetCtrlVal(panel, SCOPE_Y, " Channel    2 "); 
                  if (y==3) 
                 err = SetCtrlVal(panel, SCOPE_Y, " Channel    3 "); 
                  if (y==4) 
                err = SetCtrlVal(panel, SCOPE_Y, " Channel    4 "); 
                          if (x==1) 
                            err = SetCtrlVal(panel, SCOPE_X, "Channel  1   "); 
                             if (x==2) 
                err = SetCtrlVal(panel, SCOPE_X, "Channel  2   "); 
        if (x==3) 
                err = SetCtrlVal(panel, SCOPE_X, "Channel  3   "); 
        if (x==4) 
                err = SetCtrlVal(panel, SCOPE_X, "Channel  4   "); 

       PlotXY(panel,SCOPE_GRAPH,wavex,wavey,pts,VAL_DOUBLE,VAL_DOUBLE, 
     VAL_THIN_LINE,VAL_EMPTY_SQUARE, VAL_SOLID,1, DOSColorToRGB   (13));      } 

if (chan1 != OFF)          
PlotXY(panel,SCOPE_GRAPH,wavetime,wave1,pts,VAL_DOUBLE,VAL_DOUBLE,VAL_THIN_LINE,VAL_E
MPTY_SQUARE, VAL_SOLID,1,DOSColorToRGB (15)); 
if (chan2 != OFF)           
PlotXY(panel,SCOPE_GRAPH,wavetime,wave2,pts,VAL_DOUBLE,VAL_DOUBLE,VAL_THIN_LINE,VAL_E
MPTY_SQUARE, VAL_SOLID,1,DOSColorToRGB (2)); 
if (chan3 != OFF)           
PlotXY(panel,SCOPE_GRAPH,wavetime,wave3,pts,VAL_DOUBLE,VAL_DOUBLE,VAL_THIN_LINE,VAL_E
MPTY_SQUARE, VAL_SOLID,1,DOSColorToRGB (14)); 
if (chan4 != OFF)           
PlotXY(panel,SCOPE_GRAPH,wavetime,wave4,pts,VAL_DOUBLE,VAL_DOUBLE,VAL_THIN_LINE,VAL_E
MPTY_SQUARE, VAL_SOLID,1,DOSColorToRGB (9)); 

       if (chan5 == OFF) { 
           SetCtrlVal(panel, SCOPE_Y, "Voltage V  "); 
           SetCtrlVal(panel, SCOPE_X, " Time (s)    ");       } 
       SetCtrlVal(panel,SCOPE_STATE1,chan1); 
       SetCtrlVal(panel,SCOPE_STATE2,chan2); 
       SetCtrlVal(panel,SCOPE_STATE3,chan3); 
       SetCtrlVal(panel,SCOPE_STATE4,chan4); 
       SetCtrlVal(panel,SCOPE_STATE5,chan5); 
       SetCtrlVal(panel,SCOPE_WORK,0); 
       break; 
     //Display curve from transient file 
     case TRANCURV : 
       DeleteGraphPlot (panel, SCOPE_CURVE, -1, 1); 
       PlotXY (panel, SCOPE_CURVE, timescp, tempscp, pts, VAL_DOUBLE,VAL_DOUBLE, 

      VAL_THIN_LINE, VAL_EMPTY_SQUARE, VAL_SOLID, 1,VAL_WHITE); 
       break;   }//end switch (display) 
   SetCtrlVal(panel,SCOPE_WORK,0); 
   break; 
    case SCOPE_SAVE : 
   SetCtrlVal(panel,SCOPE_WORK,1); 
   GetCtrlVal(panel,SCOPE_CURV,&saval); 
   GetCtrlVal(panel,SCOPE_SF1,&sfr1); 
   GetCtrlVal(panel,SCOPE_SF2,&sfr2); 
   GetCtrlVal(panel,SCOPE_SF3,&sfr3); 
   GetCtrlVal(panel,SCOPE_SF4,&sfr4); 
   for (i=0; (i<pts); i++) { 
     wave1[i] = wavein1[i] * sfr1; 
     wave2[i] = wavein2[i] * sfr2; 
     wave3[i] = wavein3[i] * sfr3; 
     wave4[i] = wavein4[i] * sfr4; 
     } 
   //Save data displayed from one channel, data all channels or data displayed from transient curve     
Makefile(pts,chan1,chan2,chan3,chan4,saval,panel,wave1,wave2,wave3,wave4,x_incr,timescp,tempscp); 
   SetCtrlVal(panel,SCOPE_WORK,0); 
   break; 
 //Acquire data from oscilloscope file 
   case SCOPE_OSCIL : 
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      SetCtrlVal(panel,SCOPE_WORK,1);   
      err=FileSelectPopup("Oscilloscope", "*.dat", "", "Load Window", VAL_LOAD_BUTTON,0, 0, 1, 1, 

             filin);  
      if (err!=0){ 
          flhand = OpenFile(filin, 1, 2, 1); 
          ClearBuff(buf); 
          ScanFile(flhand, "%s>%i", &c); 
          ScanFile(flhand, "%s>%i", &pts); 
          Clear1D(wavein1,pts); 
          Clear1D(wavein2,pts); 
          Clear1D(wavein3,pts); 
          Clear1D(wavein4,pts); 
          for (i=0; (i<pts);i++){ 
            for (j=0; (j<c);j++) { 
                 switch (j) { 
                case 0 : 
           ScanFile(flhand, "%s>%f", &wavetime[i]); 
               timescp[i] = wavetime[i]; 
               break; 
           case 1 : 
                            ScanFile(flhand, "%s>%f", &wavein1[i]); 
                            voltscp[i] = wavein1[i]; 
                            break; 
                 case 2 : 
            ScanFile(flhand, "%s>%f", &wavein2[i]); 
                voltscp[i] = wavein2[i]; 
                break; 
                 case 3 : 
                             ScanFile(flhand, "%s>%f", &wavein3[i]); 
                             voltscp[i] = wavein3[i]; 
                             break; 
                    case 4 : 
            ScanFile (flhand, "%s>%f", &wavein4[i]); 
            voltscp[i] = wavein4[i]; 
                break;             }          }             } 
           err = CloseFile(flhand);          } 
      SetCtrlVal(panel,SCOPE_WORK,0);   
      break; 
    //Acquire data from calibration file 
    case SCOPE_IGBTCALIB : 
      SetCtrlVal(panel,SCOPE_WORK,1); 
      err=FileSelectPopup("calibra", "*.tsp", "", "Load Window", VAL_LOAD_BUTTON,0, 0, 1, 1, filin);  
      if (err!=0){ 
          flhand = OpenFile(filin, 1, 2, 1);  
          ClearBuff(buf); 
          ScanFile(flhand, "%s>%i", &calpoints); 
          for (i=0; (i<calpoints);i++) { 
               ScanFile(flhand, "%s>%f", &temp_igbt[i]);  
               tempcal[i] = temp_igbt[i]; 
               ScanFile (flhand, "%s>%f", &volt_igbt[i]);  
               voltcal[i] = volt_igbt[i];               } 
               err = CloseFile (flhand);          } 
      SetCtrlVal(panel,SCOPE_WORK,0);   
      break; 
    // Compare and change the data from oscilloscope and calibration to transient. There are two ways to    
       obtain transient: Truncate and Extrapolation 
    case SCOPE_CHANGE : 
      SetCtrlVal(panel,SCOPE_WORK,1); 
      //Compare and obtain the maximun and minimun values from oscilloscope data with calibration data 
     LinFit (tempcal, voltcal, calpoints, output, &slope, &intercept, &mse); //With this command the slope 

       and intercept is obtained 
     GetCtrlVal (panel, SCOPE_OPTION, &option); 
     //Define transient way 
     switch (option) { 
               // The truncated transient way 
 case TRUN : 
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   for (i=0; (i<pts);i++) { 

indice = 0; 
difference = 10000000.0; 

                 for (j=0; (j<calpoints);j++) { 
                           if (fabs (voltscp[i] - voltcal[j])<difference) { 

indice = j; 
                        difference = fabs(voltscp[i] - voltcal[j]);       }             } 
                   //Obtain the correct temperature for each oscilloscope voltage 
                    if ((voltscp[i]>voltcal[0]) && (voltscp[i]<voltcal[calpoints-1])) 
                            tempscp[i] = ((((voltscp[i] - voltcal[indice-1])/(voltcal[indice+1] - voltcal[indice-1]))* 
                                             ((tempcal[indice+1]) - (tempcal[indice-1]))) + tempcal[indice-1]); 
                   else 
                     tempscp[i] = tempcal[indice];               } 

  DeleteGraphPlot(panel, SCOPE_CURVE, -1, 1); 
   PlotXY (panel, SCOPE_CURVE, timescp, tempscp, pts, VAL_DOUBLE, VAL_DOUBLE, 
  VAL_THIN_LINE, VAL_EMPTY_SQUARE, VAL_SOLID, 1, VAL_DK_RED); 
   break; 
               // The Extrapolated transient way 
              case EXTR : 
                for (i=0; (i<pts);i++) {  
                //Inside calibration range  
                if ((voltscp[i]>voltcal[0]) && (voltscp[i]<voltcal[calpoints-1])) { 
                   indice = 0; 
                   difference = 10000000.0; 
                   for (j=1; (j<calpoints);j++) { 
                        if (fabs (voltscp[i] - voltcal[j])<difference) { 
                            indice = j; 
                            difference = fabs(voltscp[i] - voltcal[j]);          }                } 
                    //Obtain the correct temperature for each oscilloscope voltage 
                    if ((voltscp[i]>voltcal[0]) && (voltscp[i]<voltcal[calpoints-1])) { 
                          tempscp[i] = ((((voltscp[i] - voltcal[indice-1])/(voltcal[indice+1] - voltcal[indice-1]))* 
                                               ((tempcal[indice+1]) - (tempcal[indice-1]))) + tempcal[indice-1]);       }       } 
                   //Outside calibration range (extrapolation) 
                   else 
                           tempscp[i] = ((voltscp[i] - intercept) / (slope));           } 
              DeleteGraphPlot(panel, SCOPE_CURVE, -1, 1); 
              PlotXY (panel, SCOPE_CURVE, timescp, tempscp, pts, VAL_DOUBLE, VAL_DOUBLE, 
           VAL_THIN_LINE, VAL_EMPTY_SQUARE, VAL_SOLID, 1, VAL_DK_RED); 
              break;  }/* end switch (option) */   
           SetCtrlVal(panel,SCOPE_WORK,0);   
           break; 
    case SCOPE_QUIT : 
      return; 
      break;    }/* end switch (id) */   }/* end switch while */   }/* end main */ 
/*===========================CALCULATE WAVEFORMS=======================*/ 
void CalcWaveforms (pan,chan1, chan2, chan3, chan4, chan5,cx,cy,pts) 
int pan,pts,chan1,chan2,chan3,chan4,chan5,cx,cy;  { 
  int i; 
  double s1,s2,s3,s4; 
  /*-----------------------------------------------------------------------*/ 
  /*  Determine if channel 1 is to dislplay or has been             */ 
  /*  turned off.                                                                      */ 
  /*-----------------------------------------------------------------------*/ 
  GetCtrlVal(pan,SCOPE_SF1,&s1); 
  GetCtrlVal(pan,SCOPE_SF2,&s2); 
  GetCtrlVal(pan,SCOPE_SF3,&s3); 
  GetCtrlVal(pan,SCOPE_SF4,&s4); 
  for (i=0; (i<pts); i++)    { 
    wave1s[i]=wavein1[i]*s1; 
    wave2s[i]=wavein2[i]*s2; 
    wave3s[i]=wavein3[i]*s3; 
    wave4s[i]=wavein4[i]*s4;    } 
  switch (chan1) { 
    case ON : 
        for (i=0; (i<pts); i++)          { 
           wave1[i]=wave1s[i];         } 
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        Makechan(wave1,0,pts); 
        break; 
    case OFF : 
        Clear1D(wave1,pts); 
        break;} 
  /*-----------------------------------------------------------------------*/ 
  /*  Determine if channel 2 is to dislplay or has been             */ 
  /*  turned off.                                                                      */ 
  /*-----------------------------------------------------------------------*/ 
  switch (chan2) { 
    case ON : 
        for (i=0; (i<pts); i++)         { 
               wave2[i]=wave2s[i];    } 
         Makechan(wave2,0,pts); 
         break; 
    case OFF : 
          Clear1D(wave2,pts); 
          break;   } 
  /*-----------------------------------------------------------------------*/ 
  /*  Determine if channel 3 is to dislplay or has bee               */ 
  /*  turned off.                                                                   */ 
  /*-----------------------------------------------------------------------*/ 
  switch (chan3) { 
    case ON : 
        for (i=0; (i<pts); i++)         { 
           wave3[i]=wave3s[i];        } 
        Makechan(wave3,0,pts); 
        break; 
    case OFF : 
        Clear1D(wave3,pts); 
         break;   } 
  /*-----------------------------------------------------------------------*/ 
  /*  Determine if channel 4 is to dislplay or has been             */ 
  /*  turned off.                                                                        */ 
  /*-----------------------------------------------------------------------*/ 
  switch (chan4) { 
    case ON : 
        for (i=0; (i<pts); i++)         { 
           wave4[i]=wave4s[i];         } 
        Makechan(wave4,0,pts); 
        break; 
    case OFF : 
        Clear1D(wave4,pts); 
        break;    } 
  /*-----------------------------------------------------------------------*/ 
  /*  Determine if channel 5 is to dislplay                                */ 
  /*  or if it has been turned off.                                               */ 
  /*-----------------------------------------------------------------------*/ 
  switch (chan5) { 
    case ON : 
      switch (cx) { 
        case XY1 : 
          Makexy(wave1s,wavey,pts,wavex,wavey); 
        break; 
        case XY2 : 
          Makexy(wave2s,wavey,pts,wavex,wavey); 
        break; 
        case XY3 : 
          Makexy(wave3s,wavey,pts,wavex,wavey); 
        break; 
        case XY4 : 
          Makexy(wave4s,wavey,pts,wavex,wavey); 
        break;        } 
      switch (cy) { 
        case XY1 : 
          Makexy(wavex,wave1s,pts,wavex,wavey); 
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        break; 
        case XY2 : 
          Makexy(wavex,wave2s,pts,wavex,wavey); 
        break; 
        case XY3 : 
          Makexy(wavex,wave3s,pts,wavex,wavey); 
        break; 
        case XY4 : 
          Makexy(wavex,wave4s,pts,wavex,wavey); 
        break;        } /* end switch (cy) */ 
      break; 
    case OFF : 
      Clear1D(wavey,pts); 
      Clear1D(wavex,pts); 
      break;     }  } 
/*===================MAKE scaled WAVE=====================*/ 
void Makechan (waveform, offset,pt) 
double waveform[]; 
double offset; 
int pt;  { 
  int i; 
  double scale_val; 
  scale_val = 1.0; 
  for (i=0; (i < pt); i++) 

 waveform[i] = offset + waveform[i]*scale_val; } 
  void Makexy (waveform1,waveform2,ps,waveform3,waveform4) 
  double waveform1[],waveform2[],waveform3[],waveform4[]; 
  int ps;  { 
  int i; 
  for (i=0; (i<ps); i++)    { 
     waveform3[i]=waveform1[i]; 
     waveform4[i]=waveform2[i];    }  } 
  //Making the function to save the several options 
  void Makefile (pt,c1,c2,c3,c4,saver,pan,wavef1,wavef2,wavef3,wavef4,incr,timescp,tempscp) 
  int pt,c1,c2,c3,c4,saver,pan; 
  double wavef1[2000],wavef2[2000],wavef3[2000],wavef4[2000]; 
  double incr,timescp[2000],tempscp[2000];  { 
  int i,fhand,c; 
  char filin[512]; 
  char buff[20]; 
  double rl; 
  err = FileSelectPopup ("savedata", "*.dat", "", "Save Window", VAL_SAVE_BUTTON, 0, 0, 1, 1, filin); 
  if (err!=0){ 
    fhand = OpenFile (filin, 2, 0, 1); 
    switch (saver)  { 
          case ALL_SC : 
        ClearBuff(buff); 

c=5; 
err = Fmt (buff, "%s<%i",c); 
err = WriteLine (fhand,buff, 6); 
ClearBuff(buff); 
err = Fmt (buff, "%s<%i",pt); 
err = WriteLine (fhand,buff, 6); 
for (i=0; (i<pt); i++)        { 
       ClearBuff(buff); 
       rl = i*incr; 
       err = Fmt (buff, "%s<%f",rl); 
       err = WriteFile (fhand,buff,15); 
       ClearBuff(buff); 

                 err = Fmt (buff, "%s<%f",wavef1[i]); 
       err = WriteFile (fhand,buff,15); 
       ClearBuff(buff); 
       err = Fmt (buff, "%s<%f",wavef2[i]); 
       err = WriteFile (fhand,buff,15); 
       ClearBuff(buff); 

                 err = Fmt (buff, "%s<%f",wavef3[i]); 
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                 err = WriteFile (fhand,buff,15); 

       ClearBuff(buff); 
       err = Fmt (buff, "%s<%f",wavef4[i]); 

                 err = WriteLine (fhand,buff,15);       } 
      break; 
          case DISP_SC : 
        c=1; 
        if (c1 != OFF) 
             c=c+1; 
               if (c2 != OFF) 

    c=c+1; 
               if (c3 != OFF) 
                  c=c+1; 
               if (c4 != OFF) 
                  c=c+1; 
               if (pt == 0) 
                  c=0; 
               ClearBuff(buff); 
               err = Fmt (buff, "%s<%i",c); 
               err = WriteLine (fhand,buff, 6); 
               ClearBuff(buff); 
               err = Fmt (buff, "%s<%i",pt); 
               err = WriteLine (fhand,buff, 6); 
               for (i=0; (i<pt); i++)       { 
                 ClearBuff(buff); 
                 rl=i*incr; 
                 err = Fmt (buff, "%s<%f",rl); 
                     err = WriteFile (fhand,buff,15); 
                     if (c1 != OFF) { 
             ClearBuff(buff); 
             err = Fmt (buff, "%s<%f",wavef1[i]); 
             err = WriteFile (fhand,buff,15);           } 
                if (c2 != OFF) { 
             ClearBuff(buff); 
             err = Fmt (buff, "%s<%f",wavef2[i]); 
             err = WriteFile (fhand,buff,15);           } 
                if (c3 != OFF) { 
             ClearBuff(buff); 
            err = Fmt (buff, "%s<%f",wavef3[i]); 
             err = WriteFile (fhand,buff,15);           } 
                if (c4 != OFF) { 
             ClearBuff(buff); 
             err = Fmt (buff, "%s<%f",wavef4[i]); 
             err = WriteFile (fhand,buff,15);           } 
               WriteLine (fhand," ",1); } 
      break; 
     case TRAN : 
       ClearBuff(buff); 
       err = Fmt(buff, "%s<%i",pt); 
       err = WriteLine(fhand,buff,6); 
       for (i=0; (i<pt); i++) { 
            ClearBuff(buff); 
            err = Fmt(buff, "%s<%f",timescp[i]); 
            err = WriteFile(fhand,buff,15); 
            ClearBuff(buff); 
            err = Fmt(buff, "%s<%f",tempscp[i]); 
            err = WriteLine(fhand,buff,15);            } 
       break;   } /* end switch (saver) */ 
  CloseFile (fhand); } } 
void ClearBuff(b) 
char b[20]; { 
int i; 
for (i=0; (i<20); i++) 
  b[i]=' ';  } 
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APPENDIX F 

FULL MAST CODE OF THE THERMAL TEMPLATE DEVELOPED IN 
SABERTM 

 
#***************************************************************************** 
# THERMAL MODEL OF GENERATION II IPEM                                        * 
# Description: This template develop the reduced thermal model, based on     * 
#              LTCM, of Generation II IPEM. Here, this IPEM is divided in    * 
#              several lumped (each one with a mathematical expression that  * 
#              describe its thermal behavior) which conform a set nonlinear  * 
#              equation system. The implemented model is an array of eleven  * 
#              equations with eleven variables.                              * 
# Filename : "ltcm_ipem.sin"                                                 * 
# NOTE : The material of Gate Driver was assumed as Silicon (Si), all        * 
#        properties correspond to that material. Also, the power dissipated  * 
#        by the gate driver is simulated as a constant.            *               
# ====================== Template and Header Declaration ===================== 
template ltcm_ipem l2 
 
# Declaration of connections 
thermal_c l2 
external number temp      # Ambient temperature function from netlist 
# ============================= Template's Body ============================== 
{                         # Start of template body 
<units.sin 
# CONSTANT VALUES 
 
# For CONVECTION 
 
# Convection Lengths (m) 
number   l1h = 2.108e-2,  # Horizontal convection length of Lumped 1 
   l1v = 2.54e-4,   # Vertical convection length of Lumped 1 
   l2h = 7.19e-3,   # Horizontal convection length of Lumped 2 
   l3h = 7.19e-3,   # Horizontal convection length of Lumped 3 
   l4h = 4.902e-3,  # Horizontal convection length of Lumped 4 
   l4v = 2.54e-4,   # Vertical convection length of Lumped 4 
   l5h = 4.06e-3,   # Horizontal convection length of Lumped 5 
   l5v = 1.143e-3,  # Vertical convection length of Lumped 5 
   l6h = 4.902e-3,  # Horizontal convection length of Lumped 6 
   l6v = 2.54e-4,   # Vertical convection length of Lumped 6 
   l7h = 4.06e-3,   # Horizontal convection length of Lumped 7 
    l7v = 1.143e-3,  # Vertical convection length of Lumped 7 
   l8v = 1.143e-3,  # Vertical convection length of Lumped 8 
   l9h = 3.0e-2,    # Horizontal convection length of Lumped 9 
   l9v = 8.89e-4,   # Vertical convection length of Lumped 9 
  l10v = 6.35e-4,   # Vertical convection length of Lumped 10 
  l11v = 2.54e-4,   # Vertical convection length of Lumped 11 
  l12h = 5.07e-2,   # Horizontal convection length of Lumped 12 
  l12v = 4.0e-3     # Vertical convection length of Lumped 12 
 
# Convection Areas (m**2)  
number   A1h = 1.79e-4,   # Horizontal convective area of Lumped 1 
   A1v = 1.5e-5,    # Vertical convective area of Lumped 1 
   A2h = 6.36e-5,   # Horizontal convective area of Lumped 2 
   A3h = 6.36e-5,   # Horizontal convective area of Lumped 3 
   A4h = 4.86e-5,   # Horizontal convective area of Lumped 4 
   A4v = 9.72e-6,   # Vertical convective area of Lumped 4 
   A5h = 1.49e-5,   # Horizontal convective area of Lumped 5 
   A5v = 6.66e-6,   # Vertical convective area of Lumped 5  
   A6h = 4.86e-5,   # Horizontal convective area of Lumped 6 
   A6v = 9.72e-6,   # Vertical convective area of Lumped 6 
   A7h = 1.49e-5,   # Horizontal convective area of Lumped 7 
   A7v = 6.66e-6,   # Vertical convective area of Lumped 7 
   A8v = 3.25e-5,   # Vertical convective area of Lumped 8 
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   A9h = 5.16e-4,   # Horizontal convective area of Lumped 9 
   A9v = 9.04e-5,   # Vertical convective area of Lumped 9 
  A10v = 7.23e-5,   # Vertical convective area of Lumped 10 
  A11v = 2.89e-5,   # Vertical convective area of Lumped 11 
  A12h = 9.67e-4,   # Horizontal convective area of Lumped 12 
  A12v = 6.86e-3    # Vertical convective area of Lumped 12 
 
 
# For RADIATION 
 
# Emisivities 
number  emi1 = 0.86,      # Emisivity of Lumped 1 
  emi2 = 0.86,      # Lumped 2 
  emi3 = 0.86,      # Lumped 3 
  emi4 = 0.052,     # Lumped 4 
  emi5 = 0.052,     # Lumped 5 
  emi6 = 0.052,     # Lumped 6 
  emi7 = 0.052,     # Lumped 7 
  emi8 = 0.052,     # Lumped 8 
  emi9 = 0.335,     # Lumped 9 
 emi10 = 0.335,     # Lumped 10 
 emi11 = 0.052,     # Lumped 11 
 emi12 = 0.052     # Lumped 12 
 
# Geometry Factors 
number  F1inf = 0.99,      # Geometry factor for radiation between Lumped 1 
                           # and environment 
  F2inf = 0.94,      # Between Lumped 2 and environment 
  F3inf = 0.96,      # Between Lumped 3 and environment 
  F4inf = 1.0,       # Between Lumped 4 and environment 
  F5inf = 1.0,       # Between Lumped 5 and environment 
  F6inf = 1.0,       # Between Lumped 6 and environment 
  F7inf = 1.0,       # Between Lumped 7 and environment 
  F8inf = 1.0,       # Between Lumped 8 and environment 
  F9inf = 1.0,       # Between Lumped 9 and environment 
       F10inf = 1.0,       # Between Lumped 10 and environment 
       F11inf = 1.0,       # Between Lumped 11 and environment 
       F12inf = 1.0,       # Between Lumped 12 and environment 
    F12 = 4.9e-3,    # Between Lumped 1 and Lumped 2 
    F13 = 5.2e-3,    # Between Lumped 1 and Lumped 3 
    F21 = 5.8e-2,    # Between Lumped 2 and Lumped 1 
    F31 = 4.6e-2     # Between Lumped 3 and Lumped 1 
 
# Radiation Areas (m**2) 
number  A1inf = 1.943e-4,  # Radiation area between Lumped 1 and ambient 
  A2inf = 3.638e-5,  # Between Lumped 2 and ambient 
  A3inf = 3.638e-5,  # Between Lumped 3 and ambient  
  A4inf = 5.836e-5,  # Between Lumped 4 and ambient 
  A5inf = 3.393e-5,  # Between Lumped 2 and ambient 
  A6inf = 5.836e-5,  # Between Lumped 6 and ambient 
  A7inf = 3.393e-5,  # Between Lumped 7 and ambient 
  A8inf = 4.491e-5,  # Between Lumped 8 and ambient 
  A9inf = 6.063e-4,  # Between Lumped 9 and ambient 
       A10inf = 7.229e-5,  # Between Lumped 10 and ambient 
       A11inf = 2.892e-5,  # Between Lumped 11 and ambient 
       A12inf = 7.823e-3,  # Between Lumped 12 and ambient 
    A12 = 5.354e-6,  # Between Lumped 1 and Lumped 2 
    A13 = 5.354e-6,  # Between Lumped 1 and Lumped 3 
    A21 = 3.638e-5,  # Between Lumped 2 and Lumped 1 
    A31 = 3.638e-5   # Between Lumped 3 and Lumped 1 
 
# Boltzmann's Constant 
number  sigma = 5.67e-8    # (W/m**2.K**4) 
 
 
# For THERMAL CONTACT RESISTANCE (K/W) 
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number    R19 = 0.15614,    # Thermal contact resistance between Lumped 1 and 
                            # Lumped 9 
    R28 = 0.1585,     # Between Lumped 2 and Lumped 8 
    R38 = 0.1585,     # Between Lumped 3 and Lumped 8 
    R29 = 0.1546,     # Between Lumped 2 and Lumped 9 
    R39 = 0.1546,     # Between Lumped 3 and Lumped 9 
    R24 = 0.1539,     # Between Lumped 2 and Lumped 4 
    R36 = 0.1539,     # Between Lumped 3 and Lumped 6 
    R98 = 0.1571,     # Between Lumped 9 and Lumped 8 
    R59 = 0.1577,     # Between Lumped 5 and Lumped 9 
    R79 = 0.1577,     # Between Lumped 7 and Lumped 9 
   R810 = 0.1524,     # Between Lumped 8 and Lumped 10 
  R1011 = 0.1551,     # Between Lumped 10 and Lumped 11 
    R45 = 0.1559,     # Between Lumped 4 and Lumped 5 
    R67 = 0.1559,     # Between Lumped 6 and Lumped 7 
    R58 = 0.1596,     # Between Lumped 5 and Lumped 8 
    R78 = 0.1596,     # Between Lumped 7 and Lumped 8 
  R1112 = 0.1538,     # Between Lumped 11 and Lumped 12 
     R12isoth = 0.1597      # Between Lumped 12 and the isothermal plate 
 
 
# For TRANSIENT EFFECTS 
 
# Volumes (m**3) 
number     v1 = 1.14e-7,    # Lumped 1 - gate driver 
     v2 = 5.7e-8,     # Lumped 2 - left Si-chip 
     v3 = 5.7e-8,     # Lumped 3 - right Si-chip 
     v4 = 1.01e-7,    # Lumped 4 - Cu-metallization layer portion 
     v5 = 1.48e-8,    # Lumped 5 - Cu-metallization layer portion 
     v6 = 1.01e-7,    # Lumped 6 - Cu-metallization layer portion 
     v7 = 1.48e-8,    # Lumped 7 - Cu-metallization layer portion 
     v8 = 2.05e-7,    # Lumped 8 - copper trace layer 
     v9 = 5.72e-7,    # Lumped 9 - Al2O3-DBC ceramic layer 
    v10 = 5.13e-7,    # Lumped 10 - Al2O3-DBC ceramic base 
    v11 = 2.05e-7,    # Lumped 11 - copper base layer  
    v12 = 7.098e-6    # Lumped 12 - copper heat spreader 
 
# Densities (kg/m**3) 
number     d1 = 2329, 
     d2 = 2329, 
     d3 = 2329,        
     d4 = 8900, 
     d5 = 8900, 
     d6 = 8900, 
     d7 = 8900, 
     d8 = 8900, 
     d9 = 3900, 
    d10 = 3900, 
    d11 = 8900, 
    d12 = 8900 
 
# Heat Capacities (J/kg.C) 
number    cp1 = 702, 
    cp2 = 702, 
    cp3 = 702, 
    cp4 = 390, 
    cp5 = 390, 
    cp6 = 390, 
    cp7 = 390, 
    cp8 = 390, 
    cp9 = 850, 
   cp10 = 850, 
   cp11 = 390, 
   cp12 = 390 
 
# Isothermal plate (Kelvin degree) 
number Tisoth = 296.15 
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# VARIABLE / VALUES 
 
# To calculate Heat Transfer Coefficients of each lumped 
val nu h1h, h1v, h2h, h3h, h4h, h4v, h5h, h5v, h6h, h6v, h7h, h7v, h8v, h9h,    
       h9v, h10v, h11v, h12h, h12v 
 
# To calculate Lumped Temperatures in Celcius degree 
var tk     T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12 
 
# Dissipated power by the Gate Driver (W) 
var p heat2 
 
values { 
 # Obtains heat transfer coefficients 
 h1h = 1.32*((abs(T1 - (temp+273.15))/l1h)**0.25) 
 h1v = 1.42*((abs(T1 - (temp+273.15))/l1v)**0.25) 
 h2h = 1.32*((abs(T2 - (temp+273.15))/l2h)**0.25) 
 h3h = 1.32*((abs(T3 - (temp+273.15))/l3h)**0.25) 
 h4h = 1.32*((abs(T4 - (temp+273.15))/l4h)**0.25) 
 h4v = 1.42*((abs(T4 - (temp+273.15))/l4v)**0.25) 
 h5h = 1.32*((abs(T5 - (temp+273.15))/l5h)**0.25) 
 h5v = 1.42*((abs(T5 - (temp+273.15))/l5v)**0.25) 
 h6h = 1.32*((abs(T6 - (temp+273.15))/l6h)**0.25) 
 h6v = 1.42*((abs(T6 - (temp+273.15))/l6v)**0.25) 
 h7h = 1.32*((abs(T7 - (temp+273.15))/l7h)**0.25) 
 h7v = 1.42*((abs(T7 - (temp+273.15))/l7v)**0.25) 
 h8v = 1.42*((abs(T8 - (temp+273.15))/l8v)**0.25) 
 h9h = 1.32*((abs(T9 - (temp+273.15))/l9h)**0.25) 
 h9v = 1.42*((abs(T9 - (temp+273.15))/l9v)**0.25) 
 h10v = 1.42*((abs(T10 - (temp+273.15))/l10v)**0.25) 
 h11v = 1.42*((abs(T11 - (temp+273.15))/l11v)**0.25) 
 h12h = 1.32*((abs(T12 - (temp+273.15))/l12h)**0.25) 
 h12v = 1.42*((abs(T12 - (temp+273.15))/l12v)**0.25) 
 
      } # end of value section 
 
 
control_section { 
   initial_condition(T1,temp+275.15) 
   initial_condition(T2,temp+275.15) 
   initial_condition(T3,temp+275.15) 
   initial_condition(T4,temp+275.15) 
   initial_condition(T5,temp+275.15) 
   initial_condition(T6,temp+275.15) 
   initial_condition(T7,temp+275.15) 
   initial_condition(T8,temp+275.15) 
   initial_condition(T9,temp+275.15) 
   initial_condition(T10,temp+275.15) 
   initial_condition(T11,temp+275.15) 
   initial_condition(T12,temp+275.15) 
   
  } # end of control_section 
 
equations{ 
T1:   d_by_dt(T1) = (-((T1-(temp+273.15))*((h1h*A1h)+(h1v*A1v)))- 
          (emi1*sigma*F1inf*A1inf*((T1**4)-((temp+273.15)**4)))- 
          (emi1*sigma*F12*A12*((T1**4)-(T2**4)))- 
          (emi1*sigma*F13*A13*((T1**4)-(T3**4)))+ 
          (emi2*sigma*F21*A21*((T2**4)-(T1**4)))+ 
          (emi3*sigma*F31*A31*((T3**4)-(T1**4)))- 
          ((T1-T9)/R19))/(d1*cp1*v1) 
 
T2:   d_by_dt(T2) = (heat2-(h2h*A2h*(T2-(temp+273.15)))- 
          (emi2*sigma*F2inf*A2inf*((T2**4)-((temp+273.15)**4)))- 
          (emi2*sigma*F21*A21*((T2**4)-(T1**4)))+ 
          (emi1*sigma*F12*A12*((T1**4)-(T2**4)))- 
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          ((T2-T4)/R24)-((T2-T8)/R28)-((T2-T9)/R29))/(d2*cp2*v2) 
 
T3:   d_by_dt(T3) = (-(h3h*A3h*(T3-(temp+273.15)))- 
          (emi3*sigma*F3inf*A3inf*((T3**4)-((temp+273.15)**4)))- 
          (emi3*sigma*F31*A31*((T3**4)-(T1**4)))+ 
          (emi1*sigma*F13*A13*((T1**4)-(T3**4)))- 
          ((T3-T6)/R36)-((T3-T8)/R38)-((T3-T9)/R39))/(d3*cp3*v3) 
 
T4:   d_by_dt(T4) = (-((T4-(temp+273.15))*((h4h*A4h)+(h4v*A4v)))- 
          (emi4*sigma*F4inf*A4inf*((T4**4)-((temp+273.15)**4)))+ 
          ((T2-T4)/R24)-((T4-T5)/R45))/(d4*cp4*v4) 
 
T5:   d_by_dt(T5) = (-((T5-(temp+273.15))*((h5h*A5h)+(h5v*A5v)))- 
          (emi5*sigma*F5inf*A5inf*((T5**4)-((temp+273.15)**4)))+ 
           ((T4-T5)/R45)-((T5-T8)/R58)-((T5-T9)/R59))/(d5*cp5*v5) 
 
T6:   d_by_dt(T6) = (-((T6-(temp+273.15))*((h6h*A6h)+(h6v*A6v)))- 
          (emi6*sigma*F6inf*A6inf*((T6**4)-((temp+273.15)**4)))+ 
          ((T3-T6)/R36)-((T6-T7)/R67))/(d6*cp6*v6) 
 
T7:   d_by_dt(T7) = (-((T7-(temp+273.15))*((h7h*A7h)+(h7v*A7v)))- 
          (emi7*sigma*F7inf*A7inf*((T7**4)-((temp+273.15)**4)))+ 
          ((T6-T7)/R67)-((T7-T8)/R78)-((T7-T9)/R79))/(d7*cp7*v7) 
 
T8:   d_by_dt(T8) = (-(h8v*A8v*(T8-(temp+273.15)))- 
          (emi8*sigma*F8inf*A8inf*((T8**4)-((temp+273.15)**4)))+ 
          ((T9-T8)/R98)+((T5-T8)/R58)+((T2-T8)/R28)+ 
           ((T7-T8)/R78)+((T3-T8)/R38)-((T8-T10)/R810))/(d8*cp8*v8) 
 
T9:   d_by_dt(T9) = (-((T9-(temp+273.15))*((h9h*A9h)+(h9v*A9v)))- 
          (emi9*sigma*F9inf*A9inf*((T9**4)-((temp+273.15)**4)))+ 
          ((T1-T9)/R19)+((T2-T9)/R29)+((T3-T9)/R39)- 
          ((T9-T8)/R98)+((T5-T9)/R59)+((T7-T9)/R79))/(d9*cp9*v9) 
 
T10:      d_by_dt(T10) = (-(h10v*A10v*(T10-(temp+273.15)))- 
          (emi10*sigma*F10inf*A10inf*((T10**4)-((temp+273.15)**4)))+ 
          ((T8-T10)/R810)-((T10-T11)/R1011))/(d10*cp10*v10) 
 
T11:      d_by_dt(T11) = (-(h11v*A11v*(T11-(temp+273.15)))- 
          (emi11*sigma*F11inf*A11inf*((T11**4)-((temp+273.15)**4)))+ 
          ((T10-T11)/R1011))/(d11*cp11*v11) 
 
T12:      d_by_dt(T12) = (-((T12-(temp+273.15))*((h12h*A12h)+(h12v*A12v)))- 
          (emi12*sigma*F12inf*A12inf*((T12**4)-((temp+273.15)**4)))+ 
          ((T11-T12)/R1112)-((T12-Tisoth)/R12isoth))/(d12*cp12*v12) 
 
  p(l2) += heat2 
  heat2: tc(l2) = T2 - 273.15 
 
   } # end of equation section 
 
} # end of Template's Body 
 
 


