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ABSTRACT 

In this contribution, Brownian dynamics simulations of spherical, thermally blocked, 

magnetic nanoparticles under applied shear and magnetic fields were studied. Equilibrium and 

dynamical properties as well as rheological properties and energy dissipation rates of a dilute 

system were obtained. The algorithm describing the change in the magnetization and 

magnetoviscosity of the suspension was derived from the stochastic angular momentum equation. 

Simulation results were compared with the predictions of suspension-scale models based on 

three magnetization relaxation equations for different situations: i) constant magnetic field and 

shear flow, ii) transient response of magnetic and shear flow, iii) oscillatory shear flow with 

constant magnetic fields, and iv) alternating magnetic field for energy dissipation rate 

determination. For all the conditions studied, excellent agreement is observed between 

simulation results and the predictions of an equation due to Martsenyuk, Raikher, and Shliomis. 

From simulation results at constant magnetic field over a wide range of conditions, master curves 

were obtained using a newly defined Mason number based on the balance of hydrodynamic and 

magnetic torques. From the transient response studies, both simulations and analysis show that 

the transient approach to a steady state magnetoviscosity can be either monotonic or oscillatory 

depending on the relative magnitudes of the applied magnetic field and shear rate. Simulations 

for the dynamic properties of ferrofluids under oscillatory shear and constant magnetic fields 

show an apparent elastic character to the rheology of these suspensions. Energy dissipation rates 

were obtained from the dynamical magnetization properties and compared with Rosensweig’s 

energy dissipation model. Results show that Rosensweig’s original analysis is strictly limited to 

low magnetic field amplitude and frequency. Finally, a Brownian dynamics simulation algorithm 

for interacting particles was developed. Simulation results for the equilibrium properties of 

magnetized particles show agreement with theoretical models, but fail to predict dynamic 

properties.  
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 RESUMEN 

En esta contribución, simulaciones de  dinámica browniana de partículas esféricas,  con 

dipolos fijos en su estructura, bajo campos magnéticos y esfuerzos cortantes han sido estudiadas. 

Se obtuvieron propiedades magnéticas en equilibrio y dinámicas, así como las propiedades 

reológicas y la razón de disipación energética del sistema en el límite de dilución. El algoritmo 

que describe el cambio en la magnetización y magnetoviscosidad de la suspensión se deriva de la 

ecuación de momento angular estocástica. Resultados de la simulación fueron comparados con 

las predicciones de modelos a escala en suspensión sobre la base de tres ecuaciones que 

describen la relajación de magnetización en diferentes condiciones: i) flujo y campo magnético 

constante, ii) la respuesta transitoria del campo magnético y de flujo, iii) flujo de corte 

oscilatorio a campo magnético constante y iv) campo magnético alternante para la determinación 

de la disipación de energía. Para todas las condiciones estudiadas, un excelente acuerdo fue 

observado entre los resultados de la simulación y las predicciones de la ecuación desarrollada por 

Martsenyuk, Raikher y Shliomis. De los resultados de simulación en campo magnético constante 

en un amplio intervalo de condiciones, curvas maestras fueron obtenidas utilizando una nueva 

definición del número de Mason basado en el balance de torque hidrodinámico y magnético. De 

los estudios de respuesta transitoria, tanto simulaciones como el análisis matemático muestran 

que el estado transitorio a una magnetoviscosidad en estado estacionario puede ser monótona o 

oscilatoria en función de las magnitudes relativas del campo magnético aplicado y la velocidad 

de flujo. Simulaciones para las propiedades dinámicas de ferrofluidos bajo campos magnéticos 

constantes y esfuerzos oscilatorios muestran un carácter elástico aparente en las propiedades 

reológicas de estas suspensiones. La razón de disipación de energía fue obtenida de las 

propiedades dinámicas de la magnetización y fue comparada con el modelo de Rosensweig de 

disipación de energía. Los resultados muestran que el análisis original de Rosensweig es 

estrictamente limitado a campos magnéticos y frecuencia bajas. Por último, simulaciones de 
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dinámica browniana para partículas que interactúan fue desarrollado. Resultados de la 

simulaciones para las propiedades de equilibrio de las partículas magnetizadas muestran estar en 

acuerdo con los modelos teóricos, pero no para predecir las propiedades dinámicas. 
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1 
1 INTRODUCTION      

 Fluids that can be effectively controlled by magnetic fields of moderate strength are a 

challenging subject for scientists interested in the basics of fluid mechanics as well as for practical 

applications in engineers. Due to the fact that no natural liquids offer these features, the starting 

point of the field of magnetic fluid research can be found in theoretical treatments of magnetically 

controlled heat transfer machines. Since these early ideas already showed that a liquid material 

with controllable magnetic properties would provide a wide range of development possibilities, 

significant efforts have been undertaken to synthesize such fluids. After the first stable synthesis 

of a magnetically controlled fluid in the early 1960’s, the development of the so-called ferrofluids 

has provided a high potential for new research and the development of the field of 

ferrohydrodynamics. Several hundred scientific publications per year and thousands of patents 

document ferrofluid research as an emerging field, as shown in Figure 1.1. In this Chapter we 

present definitions and concepts to provide an understanding of the topic. 
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1.1 FERROFLUIDS 

Ferrofluids are suspensions of magnetic nanoparticles in an ordinary non-conducting non-

magnetic liquid. Typically, the fluid in which the particles are dispersed is water or an organic 

solvent. The particles in a ferrofluid typically consist of single magnetic domains and have an 

average diameter of ~10 nm (see Figure 1.2). In addition, they are coated with a surfactant to 

prevent the particles from aggregating due to magnetic and van der Waals attraction. The 

repulsion due to the surfactants must be strong enough to prevent agglomeration even when a 

magnetic field is applied. The magnetic nanoparticles in ferrofluids are commonly magnetite, 

maghemite (-Fe2O3), and magnetic ferrites, such as cobalt ferrite or manganese ferrite and the 

surfactants used vary depending on the application [1, 2].  

 

Figure 1.1 a) Papers per year and b) cited articles per year with the keyword ferrofluid 

according to Web of knowledge 

 Since the invention of magnetic fluids in 1964, ferrofluids have been considered as a 

promising material for many applications, ranging from mechanical applications such as dampers, 

seals, and heat transfer fluids [3-6], to biomedical applications such as cancer treatment by 

magnetic hyperthermia [7, 8] and drug delivery [9-11]. The use of magnetic fluids has attracted 
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attention over the last decades because they exhibit functional magnetic [12-14] and rheological 

properties [15-23], when subjected to an external magnetic field. Several phenomena such as 

viscosity increases in constant magnetic fields [24, 25], the so-called “negative viscosity effect” 

[26-29] in oscillating magnetic fields, and field induced flow in uniform rotating magnetic fields 

[30-33] have been observed, leading to open a wide range of possibilities in many applications in 

science and engineering, as is evident from the increment in publications during the last decades, 

as shown in Figure 1.1. 

 

Figure 1.2 a) TEM image of cobalt ferrite particles. b) Sketch of the magnetic nanoparticles 

in the ferrofluid. 

1.2 MAGNETIC PROPERTIES OF A FERROFLUID 

When a constant magnetic field, H, is applied to a ferrofluid, it exerts a torque 

 0m  T H , where 0  is the permeability of free space, tending to align the magnetic 

moments of the particles orient along the field direction.  In a gradient field the whole fluid 

responds as a homogeneous magnetic liquid, moving to the region of highest magnetic flux. This 

implies that ferrofluids can be precisely positioned and controlled by external magnetic fields. 
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The torque exerted on the particles tends to align their magnetic dipole moment, m, which can be 

calculated from 

 
1

1
,

n

i

iV 

 m   (1.1) 

with the applied magnetic field. Here V is the volume of the suspension and n is the number of 

particles. In the absence of a magnetic field, the magnetic moments of the particles are randomly 

distributed and the fluid has no net magnetization.  In order to describe the behavior of ferrofluids 

under certain conditions of magnetic and flow fields various theories have been developed such as 

the Langevin function, to determine the equilibrium magnetization of the suspension, and Debye’s 

theory, which describes the dynamic magnetization of a suspension of spherical particles 

suspended in a Newtonian fluid. Because of their relevance in subsequent chapters, these theories 

are described below. 

1.2.1 EQUILIBRIUM MAGNETIZATION AND THE LANGEVIN FUNCTION 

 In the absence of an applied magnetic field, the particles are randomly oriented and the 

suspension has no net magnetization. When the suspension is subjected to an external magnetic 

field the magnetic dipole moments of the particles tend to align along the direction of the applied 

magnetic field either by particle rotation or by dipole moment rotation within the particle. For low 

field strengths this tendency is partially overcome by thermal agitation, but as the magnetic field 

strength increases the magnetic dipoles of the particles become increasingly aligned with the field 

direction, until achieving a saturation state where the dipoles are almost completely aligned with 

the magnetic field.  
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 Consider a collection of single domain magnetic particles suspended in a nonmagnetic 

carrier fluid. The magnitude of the torque on each particle exerted by an external magnetic field is 

given by 

 
0 sin . T μH  (1.2) 

In Eqn  (1.2),   is the angle between  and H in orientation space (which is represented by a 

unit sphere). The energy necessary to turn the dipole to an angle  is 

  0
0

1 cos ,W Td H


       (1.3) 

where W is the work stored as potential energy. Thermal agitation opposes this alignment, thus, 

Boltzmann statistics describes the number of dipoles having energy W as [1] 

   cos, ,
4 sinh

d
d

N
n e 

 
 

  (1.4) 

where
dN is the total number of dipoles, 0

B

H
k T

 
  , being

Bk the Boltzmann’s constant, 

and T the absolute temperature. We are interested just in particles with their dipoles forming an 

angle  with the field; then, integrating (1.4) over  , we get that 

   cos .
2sinh

d
d

N
n e 




  (1.5) 

 The effective magnetic dipole moment of a particle is its component along the field 

direction, i.e. cos  . Therefore, the average value of cos  is given by 

 
 

 

0

0

cos sin 1
cos coth .

sin

d

d

n d

n d





    
   

  

 
   

 




 (1.6) 

Let n be the number of particles in a unit volume of fluid, then, the magnetization m along the 

magnetic field direction is cosm n   , and its saturation value
sm , in terms of the dipole of 
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the particles, is
sm n . Therefore, from Eqn (1.6), the dimensionless magnetization of the 

suspension becomes 

  
1

coth ,
s

m
m L

m
 


     (1.7) 

where  L  denotes the Langevin function and  is the Langevin parameter. The magnetization 

curve, shown in Figure 1.3 compare with simulations for equilibrium magnetization, saturates at 

high values of  where the magnetic field dominates the Brownian torque, resulting in particles 

with their magnetic dipole moments almost aligned in the field direction. On the other hand, at 

low  , the rotational Brownian motion dominates and the particles have random orientations as 

shown in Figure 1.4.    

 

Figure 1.3 Dimensionless equilibrium magnetization as a function of Langevin parameter 
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Figure 1.4 Orientation of the distributions of the magnetic dipole moments of the magnetic 

particles of a)  = 0 and b)  = 100.0. Each dot corresponds to a particle with its magnetic 

dipole aligned with the corresponding point in the unit sphere. 

1.2.2 DYNAMIC MAGNETIZATION AND THE DEBYE MODEL 

 There are two mechanisms by which the particle’s magnetic dipole moment may relax in a 

ferrofluid: Brownian relaxation and Néel relaxation [1]. Brownian relaxation occurs if the 

magnetic moment of the particle is fixed in its crystal structure while in Néel relaxation the 

magnetic moment may rotate inside the particle [34]. In Brownian Relaxation, particles imply 

rotation of the whole particle and is characterized by a Brownian relaxation time having 

hydrodynamic origin. In order to obtain a model for this relaxation mode of the magnetization, it 

is necessary to solve the Smoluchowski equation for the orientational distribution function f of the 

magnetic dipole moments, which in vectorial form is written as [35] 

    1 .r m r

f
f f

t
 

  


     


D T    (1.8) 

In (1.8) 
 is the differential operator in orientation space, Dr is the rotational diffusion tensor 

given by the generalized Stoke-Einstein equation as   1

r Bk T D  , and  is the rotational 

hydrodynamic resistance dyadic. We are only interested in solutions that are dependent on the 
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zenithal angle  because it alone enters into the potential energy of the permanent dipole in the 

external field, as shown in Section 1.2.1. For the particular case of isotropic particles, the 

rotational hydrodynamic resistance is expressed by only one constant
r . Thus, for a constant 

magnetic field
0 ,zHH i and Eqn (1.8) would be written as 

 
 

 0 0 21 1
sin sin .

sin sin

r

B B

Hf f
f

k T t k T

 
 

    

    
  

    
 (1.9) 

Solving Eqn  (1.9) for small values of the Langevin parameter 1  , the expression for the mean 

dipole of the system, cos cos sin ,f d        is used to obtain the dimensionless 

magnetization of the suspension  
cos

zm t
 


 . Two special situations are readily 

obtained: (i) relaxation upon switching off the field, and (ii) response to an oscillating field. In the 

first case, we assume that the system is at equilibrium with an external magnetic field at 0t   , 

and suddenly the field is turned off,
0 0 ,H  for 0t  . At 0t  the distribution function is given 

by Eqn (1.5) 

   cos0 ,
2sinh

f t e 


   (1.10) 

where (1.10) can be expanded to first order in the Langevin parameter as 

    2 01 cos
0 1 cos 1 .

2 2 B

f t O
k T

   
  



 
        

 
 (1.11) 

This suggests an orientation distribution function in Eqn (1.9) of the form 

  01 cos
1 .

2 B

f g t
k T

   
  

 
 (1.12) 
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Since
0 0H  for 0t  , and substituting Eqn (1.12) in Eqn (1.9) we obtain that B

t

g e 


 , where

 2
r

B
Bk T


  is called the Debye (or Brownian) relaxation time. This result for the function g

is then used to obtain the dimensionless magnetization, along the magnetic field direction, of the 

suspension 

 
1

exp
3

z
B

tm 


   
 

. (1.13) 

 In the case of a weak external oscillating magnetic field,  0 cos ,zH t H i the dipole 

moment of the particles follows the oscillations of the magnetic field with a phase lag between the 

field and the particles. The z-component of the dimensionless magnetization is then 

      
1 1

ˆRe 'cos ''sin ,
3 3

j t

zm e t t       
         
   

 (1.14) 

where ˆ ' ''j    is the dimensionless complex susceptibility. Nondimensional in-phase and 

out-of-phase susceptibilities ', ''  respectively are frequency dependent 

 
 

 

 
2 2

1
' , '' .

1 1


 

 


 

   
 (1.15) 

 On the other hand, in Néel relaxation, the magnetic moment aligns without physical 

rotation of the particle. This kind of relaxation takes place if the thermal energy overcomes the 

energy barrier provided by the magnetocrystalline anisotropy of the magnetic material. The Néel 

relaxation time is typically modeled using the expression: 

 0 exp ,c
N

B

KV

k T
 

 
  

 
 (1.16) 

where
0  is a decay time between 10

-10
 to 10

-8
 sec., K is the magnetocrystalline anisotropic 

constant, and
cV  is the volume of the magnetic core of the particle. It is important to note that 
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both relaxation mechanisms are particle size dependent, and thus, for a monodisperse suspension, 

the effective magnetic relaxation time  will follow the shorter process, according to 

 .B N

B N

 


 



 (1.17) 

 As shown in Figure 1.5, the transition from Néel to Brownian relaxation time may be 

considered to take place for particles with a size sd obtained by equating 
B  and

N  ; thus, 

8.5sd   nm for iron and 4sd  nm for cobalt [1]. Although, the Néel mechanism is not 

considered further in this thesis (we assume a suspension of magnetic particles with particle-

locked magnetic dipole moments), it is valuable to review some of the work on both mechanisms 

in the ferrofluid literature to obtain a better understanding of the relevance of the relaxation 

mechanism. 

 

Figure 1.5 Relaxation times as function of the particle radius of magnetite for a anisotropy 

constant equal to 14 kJ m
-3

 and a water viscosity of 0.002 kg/m
2
 s at room temperature of 

298 K 
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1.2.3 ANALYSIS OF SIMULTANEOUS BROWNIAN AND NÉEL RELAXATION 

MECHANISMS IN FERROFLUIDS 

 A long-standing problem in the theory of magnetic relaxation of ferrofluids is how the 

Néel mechanism of relaxation ( i.e. internal rotation of the magnetic dipole moment with respect 

to the crystalline axes inside the particle) and the Brownian relaxation (due to physical rotation of 

the ferrofluid particle in the carrier fluid) may be treated in the context of a single model 

comprising both relaxation processes [34]. This question was answered in part by Shliomis and 

Stepanov [36, 37], who showed that for uniaxial anisotropy, for weak applied magnetic fields and 

in the non-inertial limit, the equations of motion of the ferrofluid particle incorporating both the 

internal and the Brownian relaxation processes decouple from each other. Thus the reciprocal of 

the greatest relaxation time is the sum of the reciprocals of the Néel and Brownian relaxation 

times. Scherer and Matuttis [38] proposed another treatment using a generalized Lagrangian 

formalism; however, in the discussion of the applications of their method they limited themselves 

to a Néel and a Brownian mechanism independently. Coffey and Fannin [39] re-examined the 

Shliomis and Stepanov model taking into consideration the ratio between Néel and Brownian 

relaxation times. With this assumption they demonstrated that the Langevin equation for the 

Brownian rotational motion of the particle itself reduces to that describing Debye relaxation in the 

applied field but is coupled to the magnetic motion via the external field.   

 Because there is no full understanding of the relaxation mechanism, it is commonly 

accepted that the magnetization of a ferrofluid relaxes from one equilibrium value to another 

through a combination of Brownian and Néel mechanisms. If one assumes both processes occur 

in parallel the result is that the effective relaxation time is dominated by the faster of the two 

processes, as shown in Eqn (1.17). As the number of applications of ferrofluids in time varying 

magnetic fields increases it becomes increasingly important to understand, in a quantitative 



12 

 

manner, how the relaxation time of a suspension of magnetic nanoparticles depends on the 

intrinsic, nanoscale properties of the particles. Relaxation times of ferrofluids have been utilized 

for quantification of biological binding processes, efficiency of magnetic inductive hyperthermia, 

and magnetic resonance imaging. In addition, the rate of magnetization relaxation is a crucial 

parameter to consider feasibility in magnetic data storage applications [40, 41]. Simulations 

become an important tool to understand the relaxation mechanism.    

 Several simulation studies have explored relaxation mechanisms in ferrofluids using 

Brownian dynamics simulation [42-45]. In the modeled system, the nanoparticles are so diluted 

that the magnetic interparticle interaction is negligible. In general, these simulations assume that 

the effective relaxation time is due to contributions of Brownian and Néel mechanism; assuming 

that the dominant mechanism of magnetization of a particle will be that which has the shortest 

relaxation time. Otherwise they just assume that particles relax through just one mechanism. 

1.2.4 MAGNETIZATION OF UNIAXIAL SWITCHING PARTICLES 

 As explained before the two mechanisms responsible for magnetic relaxation in 

nanoparticles are the physical rotation of the individual particles in the fluid (Brownian 

relaxation) and the collective rotation of the atomic magnetic moments within each particle (Néel 

relaxation). We have developed a Brownian Dynamics algorithm to model the Brownian and Néel 

relaxation mechanisms in a suspension of non-interacting magnetic nanoparticles by assuming 

that the time scale for the Néel mechanism is much faster than that for Brownian relaxation.  

 If it is assumed that the dipole within each particle switches instantaneously along the easy 

axis such that the dipole always has a positive component along the field direction, in the 

condition in which the external field is equal to zero the behavior of a collection of particles will 
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be discontinuous. For 0H  the magnetization will be zero not yet for infinitesimal H  it will not 

be zero. The orientation distribution of the particles is a function solely of the zenithal angle  in a 

spherical coordinate system wherein the radial vector is z re e . Under such conditions one 

obtains 

 
( ) ˆ ˆm mE Ef f  

 
   


 

 
, (1.18) 

where the magnetostatic energy Em is given by 

 

 

0

0 0

cos 0

cos 0

0 0

m

mH if

E mH if

if

 

  




    
 

z z

z z

z z

e i

m H e i

e i

. (1.19) 

The equilibrium orientation distribution must therefore be 

 

exp( cos )
2

( ) exp( cos )
2

0
2

c for

f c for

for

  

   



  



 





 (1.20) 

The normalization constant is obtained from 

 

0

( )sin 1f d



     (1.21) 

to obtain that  

 
1

2 (exp( ) 1)
c







. (1.22) 

The equilibrium orientation distribution is obtained as 
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exp( cos )

22 exp( ) 1

exp( cos )
( )

22 exp( ) 1

0
2

for

f for

for

   


    





 




 


 



 (1.23) 

Then, the mean magnetization of a collection of particles is given by 

 
cos exp( ) (1 )

(1 exp( ))

zm

m

  

 

  


 
. (1.24) 

In the limit that → the model agrees with Langevin at high fields.  

 If Eqn (1.24) is compared with the Langevin function as shown in Figure 1.6, it is seen 

that the magnetization curve saturates at high field,  > 10, where the magnetic field dominates 

the Brownian forces resulting in particles with their magnetic dipole moments almost aligned in 

the field direction.  

 

Figure 1.6 Dimensionless equilibrium magnetization from simulations of Néel and Brownian 

particles as function of the Langevin parameter compared with Langevin function and Eqn 

(1.24) 
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1.3 THE MAGNETOVISCOUS EFFECT 

One of the most attractive properties of ferrofluids is the possibility of exerting an 

influence on their flow and physical properties by means of moderate magnetic fields. So long as 

there is no external magnetic field and the particle concentration is not too high the properties of 

the suspension are close to the properties of the suspending liquid, and the viscosity satisfies the 

formula obtained by Einstein 

 
0

5
1

2
  

 
  

 
. (1.25) 

Here 0 stands for the viscosity of the carrier liquid,  for the viscosity of the suspension in the 

absence of a magnetic field, and  denotes the volume fraction of all suspended material. If a 

magnetic field is applied to the suspension the particles will rotate relative to the fluid resulting in 

a change in viscosity and the Einstein result is no longer applicable. 

 

Figure 1.7 Schematic diagram of the origin of rotational viscosity in a ferrofluid 

 In a suspension of magnetic particles with particle-locked magnetic dipole moments, i.e. 

particles relaxing by the Brownian relaxation mechanism, if a magnetic field is applied to the 

suspension under shear, there are two situations of interest (see Figure 1.7). First, we can consider 

that the applied field is perpendicular to the vorticity of the flow. In this situation the magnetic 
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field will tend to align the magnetic moment with the field direction while the viscous torque 

exerted by the flow tends to rotate the particle and thus will produce a misalignment of magnetic 

moment and field. This misalignment will give rise to a magnetic torque to realign the moment 

and thus counteracting the viscous torque preventing the free rotation of the particle in the flow 

and giving rise to an apparent increase of the fluid viscosity. The second case has the field applied 

collinear with vorticity. In this case the magnetic moments will be aligned in the direction of the 

field and because it is identical to the axis of rotation of the particle no field influence on the 

rotation of the particle will be observed. 

 The first experimental report of changes in viscosity due to a magnetic field was published 

by Rosensweig et al. in 1969 [46], who carried out experiments over a wide range of variables 

such as solvent viscosity, ferric induction, particle diameter, temperature, applied field, shear rate, 

and number concentration. They observed viscosity increments in ferrofluids under shear and 

magnetic fields. The viscosity of the fluid in a magnetic field was also estimated by dimensional 

analysis and verified experimentally. Subsequently, McTague [47] described the magnetoviscosity 

of a highly dilute colloidal suspension of cobalt particles with a mean diameter of at least 6 nm in 

a Hagen-Poiseuille flow. Shortly thereafter, a theoretical explanation of the magnetoviscosity as 

well as the basis of ferrohydrodynamics was developed by Shliomis [48-51]. These theories, 

formulated several decades ago, neglect any kind of particle interaction; hence these theories are 

used only in the highly dilute limit. In addition, these models often differ in the assumptions made 

for the so-called magnetization relaxation equation. These theories will be discussed in detail in 

Chapter 2. Regarding the magnetoviscous effects we only mention the results of Rosensweig and 

McTague but alert the reader of books [1, 52] that give a detailed treatment of the rheology of 

ferrofluids in a magnetic field. Other books [53-55] have been published as a series of lecture 
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notes that cover specific areas and theories. Besides these references no general treatment of the 

whole field of ferrofluids is currently available. 

 Despite all the research in the past decades, the controversy surrounding the equation 

describing the rate of change of ferrofluid magnetization has not been settled preventing deeper 

understanding of the magnetoviscous effect. Computational simulations [42, 56-63] can play a 

valuable role in explaining the response of ferrofluids to DC and AC magnetic fields. As such, 

this is the focus of the present work.       

1.4 LANGEVIN DYNAMICS SIMULATIONS 

 There are several formulations for the stochastic equations of motion that may be used to 

perform non-equilibrium, Brownian and Hydrodynamics simulations. However, here we will only 

cover a small part of this area that is particularly useful for simulating the dynamic behavior of 

dilute and semidilute ferrofluids.  

 The Langevin equation is a stochastic differential equation describing the motion of 

Brownian particles in which two force terms have been added to Newton's second law to 

approximate the effects of neglected degrees of freedom. These two forces experienced by the 

Brownian particle are a systematic force (viscous drag) and a rapidly fluctuating force (thermal 

drag). The systematic force represents the hydrodynamic friction experienced by the particle. The 

random or fluctuating force is due to random collisions of the molecules of the liquid on the 

particle, also called white noise.  

 For a spherical particle, physical and magnetic properties are most naturally written in a 

cartesian coordinate system with axes aligned with the principal axis, (primed axis), rather than 

relative to the coordinate axes of the laboratory space, (unprimed axis), as shown in Figure 1.8. 
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Figure 1.8 Particle model and coordinate axis 

Here we consider that the magnetic dipole moment of the particle, ',  is directed along 

the z’-axis. In addition, the magnetic field, H, is assumed to be applied in the yz-plane and that 

the simple shear flow is along the y-axis.  

The system under consideration is assumed to be of infinite extent; we will ignore the 

effect of boundaries and transients associated with momentum (both linear and angular) diffusion. 

As such, all spatial derivatives are zero, except for those of the translational velocity. If the shear 

rate is denoted by , then the unperturbed flow velocity v, and the local angular velocity of the 

fluid ,f  are given by 

    
1 1

,
2 2

.
y x

t z t    v i v i  (1.26) 

The translational and rotational motion of a particle is described by classical mechanics as 

 h m b

d
M

dt


v
F + F + F  (1.27) 

 h m b

d
I

dt


T + T + T =  (1.28) 
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where
d

dt



 is the angular velocity of the particle,  the rotation vector, I the moment of 

inertia, M the mass, and F and T are the forces and torques acting on the particle which are of 

three kinds; ,h hF T due to hydrodynamic effects, ,m mF T due to magnetic effects, and ,B BF T due 

to Brownian motion.  

1.4.1  BROWNIAN DYNAMICS 

 Brownian dynamics simulations are based on the integration of the stochastic angular 

momentum equation in order to obtain the evolution with time of the particle orientation. Because 

of the small sizes and low masses of nanoparticles in a ferrofluid, moment of inertia of the 

particle is negligible. Therefore, the time scale / rI   for the angular velocity correlation is short 

compared to the natural observation time for Brownian motion, and when the inertial term in the 

equation of motion can be neglected, hence (1.28) is simplified to, 

 ' ' '

h m b F + F + F 0  (1.29) 

 ' ' '

h m bT + T + T = 0  (1.30) 

The prime indicates a vector with respect to particle locked coordinates. We are only 

interested in the rotational motion; hence we only evaluate Eqn (1.30).  

The torque due to hydrodynamic forces is given by 

 ' ' ' '

0 ( )h r f= K    T   . (1.31) 

Here
0 is the viscosity of the fluid carrier, ' 38rK r  the hydrodynamic resistance coefficient, 

and  ' and  '

f are the angular velocity for the particle and the fluid, respectively. The magnetic 

torque is given by 
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  ' ' '

m 0=  T H . (1.32) 

Here 
0 is the permeability of free space, H' = A H is the applied magnetic field and it is 

transformed to the body fixed axis using the transformation matrix A. The transformation matrix 

is an operator which acts on the components of a vector in a coordinate system, yielding the 

components of the vector in another coordinate system. Because only three coordinates are 

necessary to specify the orientation of a rigid body, the Euler angles have been the most common 

set of coordinates to form a proper orthogonal transformation matrix. However, the Euler angles 

are difficult to use in numerical solutions because the trigonometric functions involved could lead 

to a singular problem [64]. To avoid those singularities in the algorithm the transformation matrix 

is then expressed in terms of the Euler parameters, e0, e1, e2, and e3, as 

 

   

   

   

2 2 2 2

0 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2

1 2 0 3 0 1 2 3 3 2 0 1

2 2 2 2

1 3 0 2 3 2 0 1 0 1 2 3

2 2

2 2

2 2

e e e e e e e e e e e e

e e e e e e e e e e e e

e e e e e e e e e e e e

     
 

      
      

A  (1.33) 

in which the quaternions must satisfy the relation 2 2 2 2

0 1 2 3 1e e e e    . 

The Brownian torque is represented by a stochastic term 

 ,

r r

B i i i T w . (1.34) 

Using the fluctuation dissipation theorem [65] the matrix r

i  satisfies: 

    
1rr r r T

ii B i ik T  


  . (1.35) 

The vector rw is a random vector, which follows a Gaussian distribution with mean and 

covariance given by 

 0, 2r r r rr

i i i ii t  w w w D . (1.36) 

In order to reduce the number of variables in the angular momentum equation, time is non-
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dimensionalized with respect to the rotational diffusion coefficient,  
1

0r B rD k T K


 , and the 

vector variables are non-dimensionalized with respect to their corresponding magnitudes, 

 

'' ' '
' ' ' ', , ,

f

f

rH D 
   

  
    . (1.37) 

Setting ' 'd dt  where 'd is the infinitesimal rotation vector, integrating from time t to

t t  using a first-order forward Euler method and applying the fluctuation-dissipation theorem 

to the Brownian term, we obtain 

  ' ' ' ' ' 'Pe .ft t       H B w    (1.38) 

The algorithm proceeds from a starting configuration by calculating the change in orientation at 

each time step by evaluating and using 
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, (1.39) 

to evaluate the change in quaternion parameters. After each time step the quaternion parameters of 

each particle are normalized. 

1.5 MAGNETOVISCOSITY CALCULATION OF BROWNIAN DYNAMICS 

SIMULATIONS FOR A SEMI-DILUTE SUSPENSION 

The viscous (or deviatoric) stress tensor  for a suspension of dipolar particles subjected 

to an external field is characterized by both a symmetric and an antisymmetric part 

 s a    . (1.40) 

The antisymmetric component a arises from the angular slip velocity between the local angular 

velocity of the suspension and the average angular velocity of the particles [66]. This slip velocity 
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appears as a result of hindered rotation of the particles due to external couples, resulting in a 

greater rate of mechanical energy dissipation, and hence, a larger apparent viscosity. 

 The antisymmetric component of the viscous stress tensor due to the action of magnetic 

couples in a dilute suspension can be obtained from 

 
2

a

m

n
  T  , (1.41) 

in which n is the number density of particles,  is the alternating unit tensor, and
mT  is the 

magnetic torque referred to space fixed axes. The term in brackets on the right-hand side of Eqn 

(1.41) denotes an average over the ensemble of particles in the suspension. We are interested in 

the influence of the asymmetry of the particles on the magnetoviscosity of the suspension when it 

is under an external magnetic field. For the simple shear flow given in Eqn (1.26), the apparent 

viscosity of the suspension due to the antisymmetric part of the viscous stress tensor is given by

m

zym

zy





, which is referred to as the magnetoviscosity of the suspension. For a dilute suspension, 

the intrinsic magnetoviscosity m

zy   is defined as 
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m
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



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Combining Eqn (1.41) and Eqn (1.42) the magnetoviscosity equation in dimensionless form is 

then 

  3m

zy
zyPe


       H  . (1.43) 

The equation shows m

zy   as function of the Langevin parameter, ,  and Péclet number,

Pe . Using the transformation matrix presented in Eqn (1.33), the magnetoviscosity equation is 

express in terms of the quaternion parameters. The equation is then 
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Eqn (1.44) furnishes m

zy   as a function of the Langevin parameter, the dimensionless shear-rate 

expressed as a rotational Péclet number, and the average orientation of the particles.  

1.6 OVERVIEW OF THE THESIS AND MOTIVATION 

 The main objective of this dissertation is to apply Brownian dynamics simulations to study 

the magnetic and rheological properties of a ferrofluid suspension composed of spherical particles 

in the dilute and semi dilute limit subjected to direct current (dc) and alternating current (ac) 

magnetic field and constant and oscillating shear flow. The simulations were performed under 

several conditions of magnetic field and shear flow. In addition, numerical and analytical 

solutions of the magnetization relaxation equations were obtained and compared with our 

simulation results to validate which equation describes the considered situation appropriately.   

 Chapter 2 presents a study of the intrinsic magnetoviscosity of a magnetic fluid composed 

of non-interacting spherical permanently magnetized particles and subjected to a magnetic field 

and shear flow using Brownian dynamics simulations. We compare the results with predictions of 

continuum level models for the validation of the various magnetization relaxation equations in 

describing the so-called magnetoviscosity. We also study the effect of the angle between the 

magnetic field and the vorticity on the magnetoviscosity. Finally, simulation results over a wide 

range of conditions are collapsed into master curves which provide insight into the scaling laws 

relating magnetoviscosity, magnetic field strength, and shear rate, introducing a new rotational 

Mason number. The work presented here was published in the journal Physical Review E in 2010. 

 Chapter 3 focuses on the study of the transient response of dilute ferrofluids to step 
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changes in the applied magnetic field and rate of shear deformation applying Brownian dynamics 

simulations of the rotational dynamics of magnetic nanoparticles. Additionally, a simple analysis 

based on the phenomenological magnetization equations is applied to demonstrate that these 

equations capture the observed phenomena. The work presented in this chapter was published in 

the Journal of Magnetism and Magnetic Materials in 2011. 

 Chapter 4 presents a dynamic magnetoviscosity of a ferrofluid subjected to a constant 

magnetic field and an oscillatory shear flow. Rheological properties were obtained and compared 

with the predictions obtained from the ferrohydrodynamic equations using the kinetic 

magnetization equation of Martsenyuk, Raikher, and Shliomis. The work presented was published 

in the Journal of Physical Review E in 2011. 

 Chapter 5 presents energy dissipation studies for non interacting particles subjected to an 

oscillating magnetic field. Dynamic susceptibility was obtained and compared with the 

predictions of the magnetization relaxation equation of Martsenyuk, Raikher, and Shliomis 

(MRSh). In addition, energy dissipation was obtained from simulations and compared with the 

Rosensweig theory and the predictions used the MRSh equation. Results are summarized in terms 

of a non-dimensional energy dissipation rate, which is a function of the applied field amplitude, 

parameterized by the Langevin parameter, and the product of field frequency and relaxation time. 

 Chapter 6 presents results for an algorithm that considers particle-particle magnetic 

interactions. Equilibrium and dynamic properties of semidilute suspensions subjected to dc and ac 

magnetic fields are shown.  

 Finally, the relevant contributions of the thesis are summarized in Chapter 7. 

Complementary data and copies of algorithms are included in the Appendix.    



 

 

2 
2 MAGNETOVISCOSITY IN DILUTE FERROFLUIDS FROM ROTATIONAL 

BROWNIAN DYNAMICS SIMULATIONS 

Prior work on modeling the behavior of ferrofluids has focused on using 

phenomenological suspension scale continuum equations. A disadvantage of this approach is the 

controversy surrounding the equation describing the rate of change of the ferrofluid 

magnetization, the so-called magnetization relaxation equation. In this contribution the viscosity 

of dilute suspensions of spherical magnetic nanoparticles suspended in a Newtonian fluid and 

under applied shear and constant magnetic fields is studied through rotational Brownian dynamics 

simulations. Simulation results are compared with the predictions of suspension-scale models 

based on three magnetization relaxation equations. Excellent agreement is observed between 

simulation results and the predictions of an equation due to Martsenyuk, Raikher, and Shliomis. 

Good qualitative agreement is observed with predictions of other equations, although these 

models fail to accurately predict the magnitude and shear rate dependence of the magnetic field 

dependent effective viscosity. Finally, simulation results over a wide range of conditions are 

collapsed into master curves using a newly defined Mason number based on the balance of 

hydrodynamic and magnetic torques. 
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2.1 INTRODUCTION 

The first experimental report of changes in viscosity due to a magnetic field was published 

by Rosensweig et al. in 1969 [46], who carried out experiments over a wide range of variables 

such as solvent viscosity, ferric induction, particle diameter, temperature, applied field, shear rate, 

and number concentration. They observed viscosity increments in ferrofluids under shear and 

magnetic fields. The viscosity of the fluid in a magnetic field was also estimated by dimensional 

analysis and verified experimentally. Subsequently McTague [47] described the magnetoviscosity 

of a highly dilute colloidal suspension of cobalt particles in a Hagen-Poiseuille flow.  

Suspension-scale models to describe the effect of magnetic fields on the viscosity of ferrofluids 

have been developed by Shliomis [49, 51], Martsenyuk et al. [48], Felderhof [67],  and others [68, 

69]. These models often differ in the assumptions made for the so-called magnetization relaxation 

equation [48, 49, 51, 67, 69, 70], underscoring the controversy found in the macroscopic 

description of ferrofluid flow, even in the infinitely dilute limit. The most commonly used 

magnetization equation was developed by Shliomis in 1972 [49]. Shliomis’s analysis stems from 

the use of a macroscopic, ad hoc phenomenological magnetization equation obtained as a 

modification of the Debye relaxation equation and given by 

 
   0

1 1

6B

d

dt  
      

M
M M M M M H . (2.1) 

Here M stands for the ferrofluid magnetization under the magnetic field H and the flow vorticity

1

2
  v . In Eqn (2) 

3
B

B

V
k T

   stands for the characteristic Brownian relaxation time of 

rotational particle diffusion, since the particles are assumed to possess particle-locked magnetic 

dipoles. At equilibrium in a stationary field, M0 is described well by the Langevin function 
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where m is the magnetic dipole moment of a single particle, n is the number density of the 

particles, and  is the Langevin parameter. Considering rotational motion of the particles relative 

to the carrier liquid and Eqn (2.2), Shliomis derived an equation for the rotational viscosity in 

planar Poiseuille or Couette flow under the influence of a constant uniform magnetic field. The 

result is 

 0

1

4
r M H   (2.3) 

where 
2

2 ( )

B
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


 
 


 is the relaxation time of the transverse (to the field) component of the 

magnetization. According to Shliomis [49], in the limit of low shear rate and short magnetization 

relaxation time, 
B << 1, the rotational viscosity is given by 
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 





, (2.4) 

where   is the angle between field and vorticity. 

Shortly thereafter, Martsenyuk and collaborators [48] proposed another magnetization 

equation (MRSh) derived microscopically from the Fokker-Planck equation. They employed for 

this purpose an effective-field method which results in closure of the first moment of 

magnetization. The MRSh magnetization equation is then 
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
 are the parallel and transverse relaxation times. Using 

Shliomis’s definition for the rotational viscosity, Eqn (2.3), Martsenyuk et al. [48] obtained for the 
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rotational viscosity 
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Tsebers [62] compared the Sh’72 and MRSh equations using numerical simulations of the 

Brownian motion of ferromagnetic particles to study the field dependence of the magnetization 

relaxation time. These simulations indicated that the MRSh equation provides an excellent 

description of the dynamics of fluid magnetization in the absence of shear. Although this work 

was an important step in evaluating these equations, further work is needed to understand the 

effect of shear and compare predictions for the magnetoviscosity for both equations. 

Several years later Shliomis [51] proposed yet another magnetization equation derived 

from irreversible thermodynamics and employed it in the calculation of the rotational viscosity in 

a magnetic field. This third magnetization equation is 

    
1 1

6

e
e e e

d

dt  
      

H
H H H H M H . (2.7) 

 In Eqn (2.7) the effective field 
eH  is that corresponding to the nonequilibrium magnetization, 

obtained from the inverse Langevin function. For low field strength, Eqn (2.7) predicts the same 

dependence, described by Eqn (2.4), of rotational viscosity on the magnetic field strength as Eqn 

(2.1). 

It will be seen in the simulations discussed below that the shear rate , parameterized 

through the rotational Péclet number /r rPe D  where Dr is the rotational diffusivity of the 

magnetic particles, has a significant effect on the magnetoviscosity. Hence, it is important to 

know the predictions of the above mentioned relaxation equations for the shear rate dependence 

of the magnetoviscosity. In order to obtain the shear rate dependence of the rotational viscosity 

predicted by the various magnetization equations it is convenient to pass from the fields H and He 
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to their nondimensional values of  and  . According to Shliomis [51], both Eqn (2.1) and Eqn 

(2.7) admit a steady solution in which the effective field tracks the true field with lag angle . The 

dependence of the effective field,  and , and true field, , upon  for Eqn (2.1) is given by 

 2 2
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2
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 (2.8) 

Taking in consideration Eqn (2.3) and Eqn (2.8), the rotational viscosity is then 
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Similarly for the MRSh equation, Eqn (2.5), the effective field   and field   are related by 
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which results in the following expression for the rotational viscosity 
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Finally, for the third relaxation equation, Eqn (2.7), the effective field   and field  are related by 
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which results in 
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Several researchers [22, 71-74] have experimentally investigated the rheological properties of 

ferrofluids using rotational rheometers.  Most of these studies compared experimental results with 

theoretical models of the magnetic viscosity [22, 24, 75, 76]. For example, Patel et al. [77] 

compared the viscosity of a magnetic fluid obtained experimentally with the MRSh and Felderhof 

[67] magnetoviscosity expressions. However, in contrast with most analyses, in Patel et al.’s work 
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the magnetic field was applied perpendicular to the axis of the capillary viscometer; hence the 

direction of the field was not uniformly perpendicular to the vorticity of the flow. In analyzing 

their data, Patel et al. assumed the magnetoviscosity depends on the angle  between the 

vorticity and magnetic field according to Eqn (2.4), that is, with a correction factor of 2sin  , 

and used this correction factor to compare the predictions of Sh’72 [49], MRSh [48], and 

Felderhof [67] to their measurements using a capillary tube. Note that although the 2sin 

dependence in Eqn (2.4) for the Sh’72 magnetization relaxation equation was derived analytically, 

this result is only applicable for small fields and shear rates, and the predicted 2sin  is not 

necessarily applicable for the other equations tested by Patel et al. Whether this assumed 

dependence is correct is subject to further inquiry and is discussed below. 

Because ferrofluids are opaque, measurement of bulk flow profiles is challenging [12, 78]. 

On the other hand, there are no methods to measure the average rate of spin of the particles (the 

so-called spin velocity). In addition, it is not always possible to orient the direction of the applied 

field uniformly in a direction that is perpendicular or parallel to the vorticity of the flow. Also, 

most ferrofluids used in experiments contain high particle concentrations, resulting in particle-

particle magnetic interactions such as chaining, the effects of which are not captured by the 

preceding theories. Finally, because most ferrofluids consist of nanoparticles suspended in low 

viscosity carrier fluids the shear rates typically obtained in experiments are not sufficient to 

explore the full shear rate dependence predicted by theory. The preceding experimental limitations 

make direct particle-scale simulations an attractive tool to improve understanding of the 

macroscopic behavior of dilute ferrofluids, exploring the applicability and limitations of 

suspension scale governing and constitutive equations, and developing new applications. 

The rheological properties of ferrofluids have been studied by numerical simulations such 
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as in the work of Morimoto et al. [29], who studied the so-called negative viscosity effect 

predicted theoretically by Shliomis and Morozov [27]. Morimoto studied this effect in a 2D 

magnetic fluid composed of disc-like particles subjected to shear flow and alternating magnetic 

fields. They found the rotational viscosity is high when the frequency of the magnetic field is low 

and it becomes negative in an intermediate frequency range. Satoh studied the influence of the 

magnetic field strength, shear rate, and rotational Brownian motion on transport coefficients such 

as viscosity and diffusivity in dilute suspensions of rodlike [79] and spherocylinder [80] particles. 

The results in both cases show that the orientation distribution is dependent on the relative ratio of 

magnetic field and shear rate. Sánchez and Rinaldi [59] used rotational Brownian dynamics 

simulations to study the rheological properties of ellipsoidal particles in magnetic and shear flow 

fields. They found that ellipsoidal particles show a significant effect of aspect ratio on the intrinsic 

magnetoviscosity of the suspension. In addition, they also found that it is possible to fit the data 

for ellipsoids to a master curve by defining an effective Péclet number
, ,max ,( / )r eff r r r effPe Pe D D , 

where 
,r effD is obtained from averaging the rotational diffusion tensor, '

rD , around the magnetic 

axis of the particle. More recently, Sánchez and Rinaldi [81] used Brownian dynamics simulations 

to study the effect of alternating and rotating magnetic fields on the viscosity of magnetic 

nanoparticle suspensions. These simulations demonstrated that the so-called negative viscosity 

effect is more pronounced under the application of rotating magnetic fields when the field co-

rotates with the vorticity of the flow. 

The purpose of this chapter is to offer additional insight into ferrohydrodynamics and the validity 

of the various magnetization relaxation equations in describing the so-called magnetoviscosity. In 

the present work we study the intrinsic magnetoviscosity of a magnetic fluid composed of non-

interacting spherical permanently magnetized particles and subjected to a magnetic field and shear 
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flow by Brownian dynamics simulations and compare the results with predictions of continuum 

level models. We also study the effect of the angle between the magnetic field and the vorticity on 

the magnetoviscosity. Finally, simulation results over a wide range of conditions are collapsed 

into master curves which provide insight into the scaling laws relating magnetoviscosity, 

magnetic field strength, and shear rate, introducing a new rotational Mason number.  

2.2 ROTATIONAL BROWNIAN DYNAMICS SIMULATIONS 

2.2.1 ALGORITHM FORMULATION 

 The algorithm follows the process explained in Chapter 1, Section 1.5. It proceeds from a 

starting configuration by calculating the change in orientation at each time step. After each time 

step the quaternion parameters of each particle are normalized. All runs were performed starting 

from a random configuration, using 10
5
 non-interacting particles, a time step of t = 0.01, 

Langevin parameters of 0.1 100.0  , and dimensionless shear rates of 0.1 100.0rPe  . Angles 

between the magnetic field and vorticity varied between 0 .
2

 
 

2.3 RESULTS 

2.3.1 COMPARISON WITH CONTINUUM LEVEL MODELS 

 Figure 2.1 shows the intrinsic magnetoviscosity of a suspension of spherical particles as a 

function of the Langevin parameter   and for different values of the rotational Péclet number 

[82]. At high values of  the intrinsic magnetoviscosity approaches a saturation value, indicating 

that the magnetic dipole moments of the particles are aligned with the magnetic field due to the 
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preponderance of the magnetic torque over the Brownian and hydrodynamic torques. Moreover, 

the simulations do not predict a hysteresis of the magnetoviscosity at high shear and high field as 

calculated by Shliomis [49]  and He et al. [25] using the ferrohydrodynamics equations and the 

Sh’72 magnetization relaxation equation. 

 

Figure 2.1 Intrinsic magnetoviscosity of an infinitely dilute suspension of spherical particles 

with embedded dipoles, as a function of the dimensionless magnetic field magnitude for 

different values of the dimensionless shear rate. 

Now we proceed to compare the predictions for the magnetoviscosity of the various 

magnetization relaxation equations to the results of our simulations. In the case of 4rPe  , 

corresponding to  << 1 in Shliomis and MRSh’s analyses 
4

rPe


 
  
 

, Eqn (2.4), obtained 

from the Sh’72 and Sh’01 equations, agrees with results obtained from our simulations at low and 

high   but deviates from our results at intermediate values of  , as shown in Figure 2.2. On the 

other hand, Eqn (2.6), obtained using the MRSh magnetization equation, is in excellent agreement 

with our results over the whole range of  , which indicates that the introduction of the concept of 

an effective field is a good approximation to the behavior of dilute ferrofluids.    
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When the ferrofluid is subjected to a sufficiently large shear rate, 1  , the flow 

induces demagnetization since the magnetic particles tend to be rotated out of alignment with the 

magnetic field. Formally, this effect results in decreasing the parameter   determined by Eqn 

(2.8), Eqn (2.10), and Eqn (2.12). Results for different values of  for the Sh’72 equation, 

Eqn (2.9), the MRSh equation, Eqn (2.11), and the Sh’01 equation, Eqn (2.13), are also shown in 

Figure 2.2, compared with our simulation results. As seen from the Figure, the higher the shear 

rate the larger the discrepancy between viscosity values predicted by the Sh’72 and Sh’01 

equations and our results. On the other hand, the MRSh equation is in excellent agreement with 

our results under all conditions tested.  

One might argue that for the commonly-used low viscosity ferrofluids it is difficult to 

achieve shear rates sufficient to see the effects of Figure 2.2, however this is not always the case. 

High viscosity ferrofluids can be prepared for which the shear rate range typically accessible in 

rheometers should be sufficient to see these effects. More importantly and practically, ferrofluids 

are applied in fluid bearings such as in hard drive shafts. In such applications very high shear 

rates can be experienced by the ferrofluid. For example, in the work of Miwa et al. [83] 

ferrofluids are subjected to nominal shear rates as high as 10
8
 s

-1
. For a typical ferrofluid with 10 

nm diameter nanoparticles and a base fluid viscosity of 10 cP this would correspond to a 

rotational Péclet number greater than 1000. Finally, the important point of the result of Figure 2.2 

is the demonstration that of the three magnetization relaxation equations being evaluated here it is 

only the MRSh equation which yields results in quantitative agreement with direct simulations of 

the rotational dynamics of non-interacting Brownian magnetic nanoparticles over a wide range of 

values of the shear rate and magnetic field strength. The Sh’72 and Sh’01 only yield results in 

qualitative agreement with the direct simulations. We note further that although the Sh’01 



35 

 

equation seems to be in better agreement with our simulations than the Sh’72 equation, the Sh’01 

magnetization relaxation equation fails to correctly predict the relaxation dynamics of a ferrofluid 

from an applied equilibrium magnetic field, as shown in Appendix A. 

 Figure 2.3 shows the intrinsic magnetoviscosity of the suspension as a function of the 

magnetic field for different values of the angle   between the magnetic field and vorticity. 

Clearly, the factor 2sin   in Eqn (2.4) is not uniformly valid. This indicates, for example, that in 

the work of Patel et al. [77] the assumed relationship between the angle   and the 

magnetoviscosity is incorrect, except for very low or very high magnetic fields and shear rates. 

The fact that the often assumed 2sin   dependence of the magnetoviscosity on the angle   is 

incorrect has important implications for experiments aimed at determining the magnetic field 

dependent rheology of ferrofluids, as it indicates that experiments must be carried under 

conditions such that the vorticity and magnetic field are perpendicular throughout the sample. 

This constraint is particularly important if accurate determinations are desired under moderate 

magnetic fields and shear rates. 
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Figure 2.2 Intrinsic magnetoviscosity as a function of the dimensionless magnetic field 

magnitude for different values of the dimensionless shear rate, compared with the 

predictions of the Sh’72, Sh’01 and MRSh magnetization relaxation equations. 

 

 

Figure 2.3 Intrinsic magnetoviscosity normalized with respect to 2sin   as a function of the 

dimensionless magnetic field magnitude for different values of the dimensionless shear rate 

and of the angle between the magnetic field and vorticity. 
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2.3.2 SCALING OF THE MAGNETOVISCOSITY USING A TORQUE-BASED 

MASON NUMBER 

As it has been seen above, our direct simulations of the rotational dynamics of magnetic 

nanoparticles in shear and magnetic fields demonstrate that the continuum equations including the 

MRSh magnetization relaxation equation adequately describe the shear rate and magnetic field 

dependence of the magnetoviscosity of dilute ferrofluids. Another approach to the interpretation 

of the shear and magnetic field dependence of the viscosity of ferrofluids is the use of 

characteristic dimensionless parameters that capture the basic physics of the phenomena. In the 

closely related field of magnetorheological fluids recent work has demonstrated that 

magnetorheological measurements over a wide range of conditions can be collapsed into master 

curves though the introduction of an appropriately defined Mason number [84]. This approach has 

also been adopted with respect to inverse ferrofluids [85]  and magnetite based ferrofluids [21, 

72]. In all these cases the working hypothesis is that the shear and magnetic field dependence of 

the viscosity of the suspension arises due to chain formation, with the magnetic field promoting 

chain formation and the shear field tending to destroy these chains. In these cases the particles are 

magnetizable; that is, their magnetic dipole moments are aligned with the local magnetic field and 

rotate freely within the particle. Chains form because of dipole-dipole interactions pulling 

particles together such that their dipoles align end-to-end. On the other hand, the shear field exerts 

a hydrodynamic force tending to pull the particles apart. On the basis of this balance of forces the 

Mason number is defined as 

 
H

F
Mn

F


 , (2.14) 

where F
 is the hydrodynamic force due to the shear and 

HF is the magnetic force between 

dipoles. Using this definition of the Mason number the following expression is obtained [86-88] 
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where    0 0/ 2 1         is the magnetic contrast factor. 

 Although the Mason number defined according to Eqn (2.14) and Eqn (2.15) has been 

appropriate for magnetorheological fluids and semi-dilute to concentrated ferrofluids composed 

of magnetic nanoparticles, it should be clear that it cannot be suitable to describe the magnetic 

field and shear dependence of the viscosity of infinitely dilute ferrofluids consisting of 

suspensions of nanoparticles with permanent magnetic dipoles (i.e., Brownian ferrofluids), for 

which Eqn (2.4) and Eqn (2.6) apply. This is because in the infinitely dilute limit chains cannot 

form. However, as will be shown below, the magnetic field and shear dependence of the viscosity 

of these fluids can be adequately described using a Mason number defined as the ratio of 

hydrodynamic and magnetic torques on the particles. 

 For the following it will make more sense to recast the results shown in Figure 2.1 as 

intrinsic magnetoviscosity as a function of dimensionless shear rate Per. This is shown in Figure 

2.4, wherein it is seen that the intrinsic magnetoviscosity for low
rPe has a plateau value which 

is a function of the magnetic field strength, parameterized by  . With increasing
rPe the 

intrinsic magnetoviscosity is seen to decrease, that is the fluid shear thins. It is seen that the 

critical
rPe for shear thinning is a function of  , however the curves for each  have similar 

shape, suggesting that an appropriate scale may exist that collapses the data. Here we show how 

this can be done using a Mason number defined as the ratio of magnetic to hydrodynamic torques 

on the particles. 

 Figure 2.5 illustrates the orientation distribution of the magnetic dipoles for a series of 

simulations at a constant value of the parameter  . The value of 30   was chosen as this 
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produces a shaper distribution around an average orientation. It is seen that as 
rPe increases from 

0.1 to 60 the average orientation of the particles increases from an angle of almost 0 to close to 90 

with respect to the direction of the magnetic field. This range of values of 
rPe correspond to the 

plateau region of the intrinsic magnetoviscosity for 30  , shown in Figure 2.4, and to the 

situation in which the dipoles do not, on average, rotate due to the balance of hydrodynamic and 

magnetic torques. On the other hand for 60rPe 
 

the particles begin to rotate as the 

hydrodynamic torque exceeds the magnetic torque. These ranges of values of the Péclet number 

correspond to the shear thinning region of the intrinsic magnetoviscosity for 30  , shown in 

Figure 2.4. These observations suggest that an angle of 90 between the average particle 

orientation and the magnetic field corresponds to the critical condition for which shear thinning 

occurs in the fluid. 

 

Figure 2.4 Intrinsic magnetoviscosity of a suspension of spherical particles as a function of 

rotational Péclet number for different values of the Langevin parameter 
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Figure 2.5 Orientation distributions of the magnetic dipole moments of the magnetic 

particles of a) Per = 1.0 b) Per = 20.0 c) Per = 40.0 d) Per = 50.0 e) Per = 60 f) Per = 75 and  = 

30.0. Each dot corresponds to a particle with its magnetic dipole moment aligned with the 

corresponding point in the unit sphere. The directions of the magnetic field H and vorticity 

of the flow 
f  are shown. 

 As discussed above, the magnetic field and shear dependence of the viscosity of 

magnetorheological and chain-forming ferrofluids can be described using the so-called Mason 

number. Here we obtain a new Mason number based on the balance of hydrodynamic and 

magnetic torques on the particles. We proceed by recognizing that the source of the 

magnetoviscosity in an infinitely dilute suspension of Brownian nanoparticles is the hindered 

rotation arising from the tendency to align the particle’s dipoles with the applied magnetic field. 

Such hindered rotation results in increased energy dissipation in the fluid surrounding the 

particles, and hence in an increased suspension-scale viscosity. The magnetic torque hindering the 

particle’s rotation is opposed by the hydrodynamic torque exerted by the fluid on the particles. A 

shear-dependent decrease in the magnetoviscosity of the ferrofluid (shear thinning) is observed 
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when the hydrodynamic torque exceeds the maximum magnetic torque on the particles, and hence 

the particles begin to rotate with the surrounding fluid. We define a torque-based Mason number,

TMn , for this case as 

 T

H

T
Mn

T


 , (2.16) 

where T
 is the hydrodynamic torque exerted by the surrounding fluid on the particle, given by 

 3

08
2

T r


  , (2.17) 

and 
HT  is the maximum magnetic torque, corresponding to the condition when the particle’s 

dipole is perpendicular to the applied magnetic field, given by 

 
0HT H  . (2.18) 

Substituting Eqn (2.17) and Eqn (2.18) in Eqn (2.16) yields 

 

3

0

0

8

2 2

r
T

r Pe
Mn

H

  

  
  .  (2.19) 

Comparing Eqn (2.15) and Eqn (2.19) it is interesting that both depend on the relative magnitudes 

of the shear rate   and magnetic field H. Both Mason numbers are linear in the shear rate, 

however, the force-based Mason number in Eqn (2.15) is proportional to the inverse square of the 

magnetic field whereas the torque-based Mason number in Eqn (2.19) is proportional to the 

inverse of the magnetic field.  

 The results for the magnetoviscosity for all of our simulations in which the magnetic field 

and vorticity are perpendicular are plotted as a function of the torque-based Mason number in 

Figure 2.6. For comparison purposes the predictions of the MRSh equation are shown as solid 

lines for selected values of Per.  It is evident from this Figure that for each value of the 
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dimensionless shear rate, 
rPe , the intrinsic magnetoviscosity is initially constant and equal to 3/2 

and then decreases as a power law for high values of 
TMn , wherein 2m

zy TAMn     , with A being 

a 
rPe dependent proportionality factor. Note that for large values of 

rPe the results collapse into a 

single master curve, that is, A eventually asymptotes to a constant value. 

 

Figure 2.6 Intrinsic magnetoviscosity as a function of the torque-based Mason number for 

various values of the dimensionless shear rate 
rPe . The solid lines correspond to the 

predictions of the MRSh equation for Per =0.25, 0.75, 2, and 75, from left to right. 

 A critical Mason number
,T critMn can be defined to characterize the transition between 

approximately constant intrinsic magnetoviscosity and shear thinning following power law 

behavior. This is done by extrapolating the power law region to intercept the line corresponding to 

3

2

m

zy    , resulting in the relationship 

 2

,

3

2
T critAMn . (2.20) 

Note that this definition of 
,T critMn  implies 
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zy
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Mn

Mn


 
     

 
, (2.21) 

 in the shear thinning region, which allows us to determine the values of
,T critMn . 

 Figure 2.7 illustrates the 
rPe dependence of the critical Mason number

,T critMn . There it 

is seen that the critical Mason number initially increases linearly with
rPe but eventually 

saturates to a value of 0.85. Interestingly, the calculated values of
,T critMn follow a curve 

reminiscent of the Langevin function, with 

  ,

1
0.85 0.85 cothT crit r r

r

Mn L Pe Pe
Pe

 
   

 
 (2.22) 

Combining Eqn (2.21) with Eqn (2.22) yields the as-of-yet ad hoc expression 

 
 

2

2.1
rm

zy

T

L Pe

Mn


 
     

 
 (2.23) 

for the shear thinning region. 

 

Figure 2.7 Critical Mason number
,T critMn as a function of the applied dimensionless shear 

rate Per. The solid line correspond to the Langevin function with argument Per , from Eqn 

(2.22). 
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 Figure 2.8 shows how Eqn (2.23) can be used to reduce all of the simulation results into a 

single master curve describing the magnetic field and shear rate dependence of the 

magnetoviscosity of dilute ferrofluids, by plotting the intrinsic magnetoviscosity as a function of 

 /T rMn L Pe . By combining the observation that for low
TMn the magnetoviscosity is given by 

3

2

m

zy    , whereas for large values of
TMn it is given by Eqn (2.23) results in the following 

correlation for the magnetoviscosity over the complete range of
TMn and for all values of Per in 

the simulations 

 

 

2

3
2

1 1.4

m

zy

T

r

Mn

L Pe

   
 

  
 

. (2.24) 

The predictions of Eqn (2.24) are shown as a solid line in Figure 2.8, showing excellent 

agreement with all of the simulation results. 

 

Figure 2.8 Intrinsic magnetoviscosity from all simulations reduced to a single master curve 

using the dimensionless parameter
 

1 1.4
T

r

Mn

L Pe


 
 
 

as y-axis. The solid line corresponds to 

Eqn (2.24). 
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2.4 CONCLUSIONS 

The rheology of dilute suspensions of spherical magnetic nanoparticles suspended in a 

Newtonian fluid and under applied shear and constant magnetic fields was studied through 

rotational Brownian dynamics simulations. For suspensions of spherical particles, excellent 

agreement was observed between predictions of the Martsenyuk, Raikher, and Shliomis (MRSh) 

relaxation equation and our direct simulations. The intrinsic magnetoviscosity calculated from 

Shliomis’ 1972 equation deviates from the results of our simulations for intermediate values of the 

Langevin parameter. The use of an approximate phenomenological equation (Sh’72) for the 

change in magnetization results in the discrepancies observed. Similarly, the equation obtained 

from irreversible thermodynamics, Sh’01, presents good qualitative agreement with our results, 

but not quantitative agreement. Furthermore, we note that this equation incorrectly predicts the 

field dependence of the relaxation from equilibrium magnetization of a collection of magnetic 

dipoles (see Appendix A) hence this equation cannot provide an accurate representation of the 

behavior of dilute ferrofluids. Our simulations also show that the assumed 2sin  dependence of 

the magnetoviscosity on the angle  between the vorticity and the magnetic field is only valid 

for low fields and high shear rates. Finally, it was shown that the magnetoviscosity of dilute 

ferrofluids can be described using a newly defined rotational Mason number given by

2

r
T

Pe
Mn



 
  , which collapses the simulation results into a single master curve. According 

to this analysis, there is a critical ratio of
rPe and  for which the suspension becomes shear 

thinning. This critical ratio is initially a linear function of
rPe and then saturates for high values 

of
rPe . Furthermore, in the shear thinning region the magnetoviscosity is seen to possess power 

law dependence on
TMn with an exponent of 2 . Combining these observations yields a 
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correlation for the calculated magnetoviscosity in the complete simulated
TMn and

rPe range 

with the single dimensionless parameter  /T rMn L Pe , where   coth 1/r r rL Pe Pe Pe  . 

 

 



 

 

3 
3 TRANSIENT MAGNETOVISCOSITY OF DILUTE FERROFLUIDS  

 The magnetic field induced change in the viscosity of a ferrofluid, commonly known as 

the magnetoviscous effect and parameterized through the magnetoviscosity, is one of the most 

interesting and practically relevant aspects of ferrofluid phenomena. Although the steady state 

behavior of ferrofluids under conditions of applied constant magnetic fields has received 

considerable attention, comparatively little attention has been given to the transient response of 

the magnetoviscosity to changes in the applied magnetic field or rate of shear deformation. Such 

transient response can provide further insight into the dynamics of ferrofluids and find practical 

application in the design of devices which take advantage of the magnetoviscous effect and which 

inevitably must deal with changes in the applied magnetic field and deformation. In this 

contribution Brownian dynamics simulations and a simple model based on the 

ferrohydrodynamics equations are applied to explore the dependence of the transient 

magnetoviscosity for two cases: (I) a ferrofluid in a constant shear flow wherein the magnetic 

field is suddenly turned on, and (II) a ferrofluid in a constant magnetic field wherein the shear 

flow is suddenly started. Both simulations and analysis show that the transient approach to a 

steady state magnetoviscosity can be either monotonic or oscillatory depending on the relative 

magnitudes of the applied magnetic field and shear rate. 
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3.1 INTRODUCTION 

 Under the effect of an applied constant magnetic field, the magnetic particles in a 

ferrofluid respond by aligning their dipoles in the direction of the applied field. The resulting 

hindered rotation of the suspended particles leads to an increase in the rate of energy dissipation 

of the flowing suspension and hence an increase in the effective viscosity of the suspension. This 

is the most basic form of the so-called magnetoviscous effect, which in addition to the mechanism 

explained above can result due to formation of chains which further deform the fluid streamlines 

and lead to increased energy dissipation. The increase in viscosity of a ferrofluid under such 

conditions is typically parameterized through the so-called magnetoviscosity. This phenomenon 

was first observed experimentally by McTague [47] and subsequently theoretically described by 

Shliomis[48-51]. Since then it has been the subject of a wide range of studies and technological 

applications of ferrofluids, as described in the book by Odenbach [53]. 

 Despite the long history of fundamental and applied research on the magnetoviscous 

effect, there have been no studies which describe the transient response of a ferrofluid as it 

achieves the steady state magnetoviscosity. This is the case, even as it should be realized that such 

transient behavior can provide important insight into the dynamics of ferrofluids and practically 

relevant information in the design of devices which take advantage of the magnetoviscous effect. 

In this chapter we apply Brownian dynamics simulations of the rotational dynamics of magnetic 

nanoparticles to study the transient response of dilute ferrofluids to step changes in the applied 

magnetic field and rate of shear deformation. Additionally, a simple analysis based on the 

ferrohydrodynamics equations is applied to demonstrate that these equations capture the observed 

phenomena. For simplicity, the linear limit of magnetization (i.e., low applied magnetic fields) is 

considered here. The practically relevant non-linear magnetization regime will be considered in a 
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future contribution. In addition we discuss simulations and compared with our mathematical 

model based on the ferrohydrodynamics equations. 

3.2 SIMULATION ALGORITHM AND PARAMETERS  

 The algorithm proceeds from a starting configuration by calculating the change in 

orientation at each time step. After each time step the quaternion parameters of each particle are 

normalized. All runs were performed starting from a random configuration, using 10
5
 

noninteracting particles, a time step of t = 0.01, Langevin parameters of α = 1, 5, 10, and 

dimensionless shear rates of Pe = 1, 5, 10. The intrinsic magnetoviscosity m

zy    for a dilute 

suspension was evaluated as in [89]. 

 

 Figure 3.1 Schematic sketch of the two processes develops. a) Constant shear flow is applied 

to the system and the magnetic field is suddenly turned on. b) Constant magnetic field 

applied to the system and the shear flow is suddenly started 
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3.3 RESULTS 

3.3.1 COMPUTATIONAL SIMULATIONS 

 Figure 3.2 shows calculated magnetoviscosity transients for the case in which the 

ferrofluid is subjected to a constant dimensionless shear rate of Pe = 1.0, 5.0, and 10.0 and the 

magnetic field is switched at t = 0 from   = 0 to   = 1.0. At constant shear rate in the absence of 

a magnetic field the particles can freely rotate relative to the fluid, hence the magnetoviscosity is 

zero for t < 0. It is interesting to note that depending on the value of the applied non-dimensional 

shear rate the magnetoviscosity is seen to monotonically approach the steady state value (for Pe = 

1.0) or is seen to overshoot and then oscillate towards the steady state value (for Pe = 5.0 and 

10.0). 

 Figure 3.3 show the results for the case where a constant magnetic field   = 1.0, 5.0, and 

10.0 is applied and the ferrofluid is subjected to a step change in shear rate at t = 0, from Pe = 0 to 

Pe = 10. It is seen that depending on the conditions, the magnetoviscosity first overshoots and 

then oscillates towards the steady state value. However, here it is seen that increasing values of 

the applied field damp these oscillations, until for high enough fields (e.g.,   = 10) the 

magnetoviscosity approaches the steady state value monotonically. 
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Figure 3.2 Transient magnetoviscosity transients for the case in which the ferrofluid is 

subjected to a constant dimensionless shear rate of Pe = 1.0, 5.0, and 10.0 and the magnetic 

field is switched at t = 0 from  = 0 to   = 1.0 

 

Figure 3.3 Transient magnetoviscosity for the case where a constant magnetic field   = 1.0, 

5.0, and 10.0 is applied and the ferrofluid is subjected to a step change in shear rate at t = 0, 

from Pe = 0 to Pe = 10 
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3.3.2 MATHEMATICAL ANALYSIS BASED ON THE 

FERROHYDRODYNAMIC EQUATIONS 

 In this section we derive a simple model for the situations of start-up of an applied 

magnetic field on a ferrofluid in a simple shear flow and start-up of simple shear flow on a 

ferrofluid subjected to a constant magnetic field. For simplicity the analysis is limited to small 

magnitudes of the magnetic field, in order to linearize the governing equations. For ferrofluids 

consisting of particles with rigidly-locked magnetic dipoles, so-called thermally blocked particles, 

in the infinitely dilute limit the commonly accepted governing equations are 

 · =0v , (3.1) 

 
0

2=µ · - +2 × + e

D
p

Dt
   

v
M H v    , (3.2) 

 
0 +2 -4

D
I

Dt


     M H v , (3.3) 

  
1

eq
t





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

M
v M M M M . (3.4) 

Here v is the mass average velocity, ρ is the fluid density, M is the suspension magnetization, 

H is the magnetic field, p is the fluid pressure, ζ is the so-called vortex viscosity, ω is the 

ferrofluid spin velocity, 
e    is an effective viscosity with η the shear viscosity of the 

ferrofluid, I is the specific moment-of-inertia density, 1

0/ 2 3 /r BD V k T   is the 

characteristic Brownian relaxation time of the ferrofluid, and eqM is the equilibrium 

magnetization the ferrofluid would achieve in the absence of the disturbances of flow. Note that 

we are using the magnetization relaxation equation due to Shliomis [49] for simplicity. The 

analysis can be extended to other magnetization relaxation equations, however the one used here 

should be able to capture the qualitative aspects of the behavior of the ferrofluid. In addition to 
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the governing equations in Eqn (3.1) - (3.4), Maxwell's equations in the magnetoquasistatic limit 

are obeyed; however, these are trivially satisfied by the imposed magnetic field and flow. 

 The system under consideration will be assumed to be of infinite extent, that is, we will 

ignore the effect of boundaries and transients associated with momentum (both linear and 

angular) diffusion. As such, all spatial derivatives are zero, except for those of the translational 

velocity, which satisfies the condition of simple shear flow 

    
1 1

,
2 2

.
y x

t z t    v i v i  (3.5) 

Under these considerations the governing equations reduce to 
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



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

M
M M M  (3.8) 

Now, typically for ferrofluids the moment-of-inertia density is negligible, hence we assume

0I . In the following, we will limit attention to the case of a unidirectional applied magnetic 

field,   .z zH tH i  In this case the simple shear flow will result in a magnetization which lies in 

the yz plane, hence we have    y y z zM t M t M i i , with the spin velocity in the orthogonal 

direction x, hence  x xt  i . Finally, as stated previously, we will limit attention to the case 

of small applied field magnitudes; hence the equilibrium magnetization is given by the linear 

relation eq iM H . These relations are substituted in Eqn (3.6) - (3.8) to obtain 

 00 2 4x x x     M H i i , (3.9) 
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or, in component form 
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In order to simplify the analysis and allow comparisons with the results of simulations we 

introduce the dimensionless quantities 
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to obtain 

 10 ( ) ( ) 2 ( ) 4 ( )Mn f t h t k t t   , (3.15) 

 ( ) ( ) 2 ( )
f

Pe t g t f t
t




  


, (3.16) 

 ( ) ( ) 2 ( ) 2 ( )
g

Pe t f t g t h t
t




  


. (3.17) 

Equation (3.15) can be solved for ( )t  

        11 1

4 2
t Mn f t h t k t   , (3.18) 

and the result substituted in (3.16) and (3.17) to obtain 
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However, we take note that 0

3

2
   with   the volumetric fraction of particles in the ferrofluid, 

and that
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  , hence the product 1PeMn is shown to be proportional to the Langevin 

parameter 
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Thus Eqn (3.19)  and Eqn (3.20) reduce to 
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 Now, in considering the regime of linear magnetization we have tacitly assumed that

1  and neglected terms of order higher than α, hence, without incurring in any 

inconsistency of our assumptions we may neglect the terms proportional to α² to obtain 
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 In what follows we will be interested in evaluating the intrinsic magnetic viscosity, 

applicable for an infinitely dilute ferrofluid. This is the quantity obtained from the simulations 

discussed above, and on the basis of the continuum ferrohydrodynamic governing equations is 

obtained from 
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 Also, for comparison purposes we reduce Shliomis's expression for the magnetoviscosity 

[49] to the following expression for the intrinsic magnetoviscosity 

 
,

3 tanh
.

2 tanh
m Sh

 


 





 (3.27) 

With the simplified Eqn (3.24), (3.25), and (3.26) we now proceed to consider the two cases 

described in the introduction. 

3.3.3 CASE 1: THERE IS SIMPLE SHEAR FLOW IN THE ABSENCE OF 

MAGNETIC FIELD AND THE MAGNETIC FIELD IS THEN SUDDENLY 

TURNED ON 

 This case corresponds to the parameters (k(t) = 1, h(t > 0) = 1, f(0) = 0, g(0) = 0). In this 

case we have 
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This is a system of inhomogeneous linear differential equations with constant coefficients. It can 

be integrated to obtain 
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Then the intrinsic magnetoviscosity for this case would be 
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For small Péclet number this expression reduces to 
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which would look like a monotonic approach towards a steady state value. For comparison, 

Shliomis's expression for small values of α reduces to 

  2 2

,

1

4
m Sh O    , (3.35) 

hence our steady state solution agrees with Shliomis's expression in the long-time small  and Pe 

limit. 

For large Péclet Eqn (3.33)  reduces to 

 
 2

2

2

1 cos
4

t

m

e Pet

Pe
 


 , (3.36) 

which would correspond to an exponential approach to steady state with superimposed 

oscillations. These results are illustrated in Figure 3.4. 

3.3.4 CASE II: THERE IS A CONSTANT INITIAL MAGNETIC FIELD AND 

ZERO SHEAR AND THEN THE SHEAR IS SUDDENLY STARTED  

 This case corresponds to the parameters:  k(t > 0) = 1, h(t) = 1, f(0) = 0, g(0) = 0. The 
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solution for this case is very similar to Case I and as such we only show the final result for the 

magnetoviscosity 

 

2 2

2

2

4 4 cos 4 sin
2 2

16

t t

m

Pet Pet
e Pee

Pe
 

     
     

    


. (3.37) 

As in Case I, depending on the relative magnitudes of  and Pe this solution predicts either a 

monotonic or oscillatory approach of the magnetoviscosity to a steady state value, as illustrated in 

Figure 3.5. 

 

Figure 3.4 Mathematical analysis for the case in which the ferrofluid is subjected to a 

constant dimensionless shear rate and the magnetic field is turned on.  
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Figure 3.5 Mathematical analysis for the case in which the ferrofluid is subjected to a 

constant magnetic field and the dimensionless shear rate is suddenly on. 

3.4 CONCLUSIONS 

 Although the magnetoviscous effect in ferrofluids has received considerable attention, the 

associated problem of the transient approach to the steady state remains largely unexplored, even 

as it should provide interesting insight into the dynamics of ferrofluids and should be relevant in 

application development. We have applied the Brownian dynamics simulation method to study the 

transient behavior in the magnetoviscosity of a dilute ferrofluid in response to step changes in 

shear rate and magnetic field. For comparison purposes, a simple mathematical analysis based on 

the ferrohydrodynamics equations in the linear magnetization limit was also derived. In both 

cases it was observed that the approach of the magnetoviscosity to the steady state value can be 

either monotonic or oscillatory depending on the particular values of magnetic field amplitude 

and shear rate. Such observations are relevant in the operation of devices which take advantage of 

the magnetoviscous effect, as oscillatory response can lead to instability in device performance. 



 

 

4 
4 OSCILLATORY SHEAR RESPONSE OF DILUTE FERROFLUIDS: 

PREDICTIONS FROM ROTATIONAL BROWNIAN DYNAMICS SIMULATIONS 

AND FERROHYDRODYNAMICS MODELING 

 The response of ferrofluids to constant shear and magnetic fields has received a lot of 

attention, but the response of ferrofluids to oscillatory shear remains largely unexplored. In the 

present work we used rotational Brownian dynamics to study the dynamic properties of 

ferrofluids with thermally blocked nanoparticles under oscillatory shear and constant magnetic 

fields. Comparisons between simulations and modeling using the ferrohydrodynamics equations 

were also made. Simulation results show that for small rotational Péclet number the in-phase and 

out-of-phase components of the complex viscosity depend on the magnitude of the magnetic field 

and frequency of the shear, following a Maxwell-like model with field dependent viscosity and 

characteristic time equal to the field-dependent transverse magnetic relaxation time of the 

nanoparticles. Comparison between simulations and the numerical solution of the 

ferrohydrodynamic equations shows that the oscillatory rotational magnetoviscosity for an 

oscillating shear field obtained using the kinetic magnetization relaxation equation quantitatively 

agrees with simulations for a wide range of Péclet number and Langevin parameter, but has 

quantitative deviations from the simulations at high values of the Langevin parameter. These 

predictions indicate an apparent elastic character to the rheology of these suspensions, even 

though we are considering the infinitely dilute limit in which there are negligible particle-particle 

interactions and as such chains do not form. Additionally, an asymptotic analytical solution of the 

ferrohydrodynamics equations, valid for Pe << 2, was used to demonstrate that the Cox-Merz rule 
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applies for dilute ferrofluids under conditions of small shear rates. At higher shear rates the Cox-

Merz rule ceases to apply. 

4.1 INTRODUCTION 

The magnetorheology of ferrofluids has been an active area of experimental [26, 46, 47, 

90-92] and theoretical [21, 48, 49, 93-95] research for decades. The focus of most work has been 

the steady state response of dilute and semi-dilute ferrofluids to imposed constant shear and 

magnetic fields [24-26, 47, 50, 59, 67, 81, 96, 97]. There has also been some work on response of 

ferrofluids to oscillating [15, 26-28, 81, 98, 99] and rotating [12, 30, 32, 81, 88, 100, 101] 

magnetic fields, however here again a steady flow has been considered. Recently, the dynamics of 

the transient magnetoviscous effect has received attention [16, 102] with emphasis on response of 

ferrofluids to step changes in the applied magnetic or shear fields.  

Surprisingly, the response of ferrofluids to oscillating shear fields seems to have received 

little attention, even though oscillatory shear experiments are common rheological tools to study 

complex fluids[103-105]. In these measurements both stress and strain vary cyclically with time, 

with sinusoidal variation being the most commonly used. The cycle time, or frequency of 

oscillation, defines the time scale of the test. Thus, by observing material response as a function 

of frequency, mechanical properties can be probed at different time scales. Klingenberg [106, 

107] used molecular dynamics to study the oscillatory shear response of electrorheological 

suspensions composed of dielectric spheres in a Newtonian fluid between parallel-plate 

electrodes. The response obtained was described by frequency dependent moduli determined by a 

competition between hydrodynamic and electrostatic interactions that dominate chain formation, 

deformation, and breakage. Similar response was predicted for magnetorheological  fluids (MR), 
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concentrated suspensions of micron-sized magnetizable particles,  and  expressed as a relation 

between magnetic and hydrodynamic forces using the so-called Mason number [86]. Kanai and 

Amari [108] studied flocculated suspensions of micron-sized ferric oxide particles in mineral oil. 

They found strain-thickening behavior one decade larger than in the non-magnetic base oil, which 

they attributed to particle-particle interactions. Li et al. [109] studied the dynamic behavior of 

magnetorheological (MR) fluids under oscillatory shear. Linear viscoelastic behavior was 

observed in these fluids only at very small strain amplitudes, and the response could be captured 

using a Pipkin diagram describing the rheological behavior as a function of strain amplitude and 

frequency. Claracq et al.[105] used micron-sized colloidal magnetic particles coated with latex to 

study the viscoelastic behavior of MR fluids subjected to small deformations. They related the 

magnetic force to the elastic modulus using a Mason number and compared their results with 

those obtained by Klingenberg [106, 107] using simulations. They found that the application of a 

magnetic field causes aggregation of the particles into chains in the magnetic field direction and 

that these were destroyed when high shear rates perpendicular to the magnetic field were applied. 

de Gans et al. [110] investigated a MR fluid consisting of colloidal silica spheres suspended in an 

organic ferrofluid, a so-called inverse ferrofluid. They found that the storage modulus, G', was an 

order of magnitude larger than the loss modulus, G", at all magnetic fields studied. In addition, a 

model considering a collection of non-interacting spherical particles was derived for the high 

frequency limit of the storage modulus. Ramos et al. [111] also used a silica-based inverse 

ferrofluid to study the magnetorheology behavior under small amplitude oscillatory shear in the 

presence of an external magnetic field. Their results were compared with those of de Gans et. al 

[85, 110] and chain models and excellent agreement was obtained.  

 For many systems the steady state viscosity is difficult to measure at high shear rate. Data 
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obtained from oscillatory experiments are usually more reliable and the Cox-Merz rule has been 

used to predict the viscosity at a steady shear rate,    , from oscillatory measurements. 

Although only partial justification for the Cox-Merz rule has been provided [112] the Cox-Merz 

rule has been found to hold for many polymer melts, and concentrated and semi-dilute solutions 

[103]. Recently, Chae and collaborators [113] demonstrated that the Cox-Merz rule was 

inapplicable to concentrated dispersions of asymmetric magnetic particles. However, they studied 

a magnetic dispersion of particles with average length of 350 nm which tends to form aggregates 

and clusters which are difficult to destroy even at high shear rates. Thus the applicability of the 

so-called Cox-Merz rule to ferrofluids remains an open question. 

As the reviewed literature indicates, oscillatory shear experiments have resulted in 

important insight into the dynamics of magnetorheological fluids and flocculated suspensions for 

which the viscoelastic moduli seem to depend primarily on the dynamics and mechanics of chain 

formation, deformation, and breakage. Surprisingly, oscillatory shear experiments have received 

little application in the study of ferrofluids, even though chain formation, deformation, and 

breakage are also important processes that determine the magnetorheological properties of 

ferrofluids [53]. Recently, Pinho et al. [114] reported a series of oscillatory shear measurements 

with commercial ferrofluids in applied magnetic fields. They only reported viscous damping of 

the force on an oscillating plate in contact with ferrofluid subjected to a constant magnetic field. 

The viscous damping and associated viscosity increased with magnetic field and monotonically 

decreased with oscillation frequency, which was limited to 10-50 Hz. Under the conditions of this 

study the ferrofluid apparently did not display an elastic contribution in the response to the 

oscillatory shear.  Furthermore, the authors did not provide detailed physical or magnetic 

characterization of the fluid, making interpretation of their results difficult, and did not attempt to 
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model the observed behavior. Still their contribution is significant as it appears to be the first 

application of oscillatory techniques to the study of ferrofluids.           

In this contribution we study the dynamic magnetoviscosity of a ferrofluid, composed of 

non-interacting spherical permanently magnetized particles, subjected to a constant magnetic field 

and an oscillatory shear flow described by 

  0 sin
yd v

t
d z

    . (3.38) 

 To do so we apply rotational Brownian dynamics simulations in the inertialess limit and 

compare these to predictions obtained from the ferrohydrodynamic equations using the kinetic 

magnetization equation of Martsenyuk, Raikher, and Shliomis [48].  

 For this simulation the unperturbed flow velocity, v , and the vorticity of the fluid f are 

given by 

        1 1
0 02 2
sin ; siny y f x xt z t z t t          v i i i i . (3.39) 

Applying the same process as in Section 1.5 and using Eqn (3.39) we obtain 

  ' ' ' ' 'Pe sin( ) ft t t       H w   . (3.40) 

The algorithm proceeds from a starting configuration by calculating the change in 

orientation at each time step. After each time step the quaternion parameters of each particle are 

normalized. All runs were performed starting from a random configuration, using 10
5
 

noninteracting particles. The system is stabilized at constant magnetic field and zero shear until it 

reaches equilibrium, typically after t 10. At this point the oscillatory shear is turned on. A time 

step of t = 0.0005 was used in order to observe the fastest processes in the system in a frequency 

range of 0.01 100.0  . Langevin parameters of α = 0.1, 1.0, and 10.0, and dimensionless 

shear rates of Pe = 1.0, 5.0, and 10.0 were used. 
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Because an oscillating shear is applied one would expect a time-periodic 

magnetoviscosity. When  and Pe are small (i.e., not far from equilibrium) one would expect the 

response for a sinusoidal shear such as Eqn (3.38) to be equally sinusoidal but with a phase lag. 

On the other hand, for large values of  and Pe one would expect deviations from sinusoidal 

response but still time-periodic behavior. To parameterize the dynamic magnetoviscosity we 

introduce the n
th

-order in-phase '

n  and out-of-phase ''

n  viscosities using a Fourier series 

representation of the time dependent pseudo-steady intrinsic magnetoviscosity  

    sin cosm ' ''
zy m ,n m ,n

n n

n t n t  

 

 

        
1 1

. (3.41) 

The n-th order in-phase and out-phase dynamic viscosities can be obtained from 

            ' ' '

, ,

1 1
sin , cos .m n m nt n t d t t n t d t

 

 

   
 

 

        (3.42) 

  For low values of  and Pe we expect purely sinusoidal behavior and as such 

' ''0, 0n n   for 1.0n  . However, for large  and Pe we expect deviations from sinusoidal 

behavior, captured by 
'

, 0m n  and
''

, 0m n  with 1.0n  . Although Eqn (3.42) defines
'

,m n and

''

,m n for any order of n we will focus only on 1n  when analyzing the simulation results, as 

these are the quantities typically measured in oscillatory shear experiments. In that case we write

'

m and ''

m for the components of the dynamic magnetoviscosity. 

4.2 CONTINUUM MODELING 

For ferrofluids consisting of particles with rigidly-locked magnetic dipoles suspended in 

an incompressible fluid in the infinitely dilute limit, the commonly accepted governing 
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ferrohydrodynamics equations are [1] 

 =0v ,  (3.43) 

 0

2= +2 × + e

D
p

Dt
   

v
M H - v    , (3.44) 

 
00 = +2 × -4 .   M H v  (3.45) 

Here v is the mass average velocity, ρ is the fluid density, M is the suspension magnetization, H is 

the magnetic field, p is the fluid pressure,  is the so-called vortex viscosity,   is the ferrofluid 

spin velocity, and 
e    is an effective viscosity with η the shear viscosity of the ferrofluid. 

Note that in Eqn (3.44) we have left out the term corresponding to the couple stress and the 

controversial spin viscosity [12, 30, 78, 100, 115, 116]. This is justified as we are here considering 

the limit of infinite dilution for which there are no particle-particle magnetic or hydrodynamic 

interactions and hence no mechanism for transport of internal angular momentum. We have also 

left out the term corresponding to the moment of inertia density of the nanoparticles, which is a 

good assumption owing to the small particle size typical of ferrofluids. 

Martsenyuk, Raikher, and Shliomis [48] proposed a magnetization relaxation equation, 

denoted here as the MRSh equation, derived microscopically from the Fokker-Planck equation. 

This equation has been found to describe well the magnetic field and shear rate dependence of the 

magnetoviscosity of dilute ferrofluids [96]. The equation is derived using an effective-field 

method which results in closure of the first moment of magnetization, yielding 

 
   

2 2
.

eqd

dt H H 

        
H H M M H M HM

M  (3.46) 

Here M stands for the ferrofluid magnetization due to the magnetic field H and the flow vorticity

1

2
  v . At equilibrium in a stationary field eqM is described by the Langevin function 
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 L  , 

    1cotheq s znmL M
H

     
H

M i ;
B

mH

k T
  ;   1coth ,L       (3.47) 

where m is the magnetic dipole moment of an individual particle, n is the number density of the 

particles, and  is the Langevin parameter.  

The parallel   and transverse 
 relaxation times of Eqn (3.46) are given by 

 
   

 

ln 2
,

ln

d L L

d L

 
  

  
 


, (3.48) 

with 

 
3

B

V

k T


  , (3.49) 

being the characteristic Brownian relaxation time of rotational particle diffusion. 

 The system under consideration will be assumed to be of infinite extent; that is, we will 

ignore the effect of boundaries and transients associated with momentum diffusion. As such, all 

spatial derivatives are zero, except for those of the translational velocity which satisfies the 

condition of simple shear flow in Eqn (3.39). In the following, we will limit attention to the case 

of a unidirectional applied magnetic field,
0 zHH i and the oscillating simple shear flow of Eqn 

(3.39). Maxwell's equations in the magnetoquasistatic limit are obeyed; however, these are 

trivially satisfied by the imposed magnetic field and flow. In this case the simple shear flow will 

result in a magnetization which lies in the yz plane, hence we have    y y z zM t M t M i i . 

Therefore, in component form Eqn (3.46) becomes 

        
   1 1

; .
2 2

z sy y z
z y

M t M LM M M
t M t t M t

t t


 

 

        
 

 (3.50) 
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In order to facilitate the analysis and comparisons with the results of Brownian dynamics 

simulations we introduce the dimensionless quantities 

 

         

0

0 0

, , , Pe 2 ,
2 2 2 2

, , Mny z

s s s
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  



   


    
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, (3.51) 

where Mn  is a form of the Mason number, the ratio between the viscous and magnetic stresses 

[87, 117]. Substituting Eqn (3.51) in Eqn (3.50) we obtain 

 
1 1

sin( ) ( ) ( ) ;  sin( ) ( ) ( ) 1
f g

t g t f t t f t g t
t t

 
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 
         

 
  (3.52) 

with the initial conditions  0 0f t   and  0 1g t   . In general, Eqn (3.52) has to be solved 

numerically. However, first we obtain an asymptotic analytical solution in order to gain physical 

insight.  

4.2.1 REGULAR PERTURBATION SOLUTION 

To solve Eqn (3.52) analytically we apply a regular perturbation expansion in the small 

parameter 1
2

Pe   , with the form 

 
0 0

( ) ( ) ; ( ) ( ) .n n

n n

n n

f t f t g t g t 
 

 

    (3.53) 

Eqn (3.53) is introduced into Eqn (3.52) and each term expanded to obtain an equation in power 

series of  . The thn order problem corresponds to the terms multiplied by n . Each of these 

problems can be solved in turn and the solutions added to obtain a power series approximation to 

the actual solution.  

The zeroth order problem is given by 
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1 1
( ) , (0) 0 ; ( ) 1 , (0) 1 ,
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f t f g t g

t t 

 
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 
 (3.54) 

with the solution 

 
0 0( ) 0 ; ( ) 1,f t g t   (3.55) 

corresponding to equilibrium. The transient approach to this pseudosteady equilibrium state could 

be obtained, but is not relevant as we seek to understand the pseudosteady response at long times.  

The first order problem is given by 

 1 1
1 1 1 1
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This system of equations is solved to obtain 
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The second order problem is given by 
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which results in 
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Similarly for the third order problem we have 

 

3 3
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This is solved to obtain 
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where  
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From the solutions to the zeroth to third order problems we may infer that 0nf   if n is 

odd and 0ng  if n is even. Then according to Eqn (3.53) we have 
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We are interested in evaluating the intrinsic magnetoviscosity, defined as in [59] and 

which is given by  

 1
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3
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m
m f t






  . (3.67) 

Substituting (3.66) in (3.67) the intrinsic magnetoviscosity can be expressed as 
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Next we recognize that in the infinitely dilute limit 

  
1

1 Mn Pe
Mn 2

2
L  


   . (3.69) 

Substituting Eqn s. (3.47), (3.49), and (3.69) in (3.68) and keeping only the first term in the 

regular perturbation solution, we obtain 
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. (3.70) 

Applying Eqn (3.41) we obtain the following forms for the nondimensional in-phase '  and out-

phase ''  dynamic magnetoviscosity 
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    

      
 (3.71) 

 In obtaining Eqn (3.71) from Eqn (3.68) we have chosen to keep, for simplicity, only the 

leading order term  O    . In this case the response is seen to be purely sinusoidal. However, we 

note that inspection of Eqn (3.68) demonstrates that deviations from purely sinusoidal behavior 

are predicted as Pe increases. These deviations are seen as additional harmonic contributions 

[terms with  cos 3 t and  sin 3 t in Eqn (3.68)] which would correspond to higher order 

 1n   in-phase
'

,m n and out-of-phase
''

,m n magnetoviscosities. 
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 These expressions in Eqn (3.71) for the in-phase and out-phase components of the 

magnetoviscosity are similar to the model for the dynamic viscosity of a Maxwell fluid, but with 

field dependent relaxation time given by Eqn (3.48) and field dependent viscosity equal to 

23 ( )

2 ( )
m

L

L

 
 

 



. The Maxwell model describes the viscoelastic behavior of a material using 

simple mechanical elements such a spring and a dashpot. This model is acceptable as a first 

approximation to relaxation behavior. If we use the same model to interpret our results, it is clear 

that the magnetic torque corresponds to the spring while the rotational fluid drag corresponds to 

the dashpot, and the characteristic time is equal to the field-dependent transverse relaxation time 

of the nanoparticles. 

4.2.2 NUMERICAL SOLUTION 

 The numerical solution of Eqn (3.52) was obtained using the ODE45 function in 

MATLAB. This function implements a Runge-Kutta method with a variable time step for efficient 

computation. The algorithm solves the equations and yields the time-dependent magnetoviscosity. 

The dynamic in-phase and out-of-phase magnetoviscosities were obtained through numeric 

implementation of Eqn (3.42) using the trapezoidal rule. This was found to give satisfactory 

values owing to the small time step size used for numerical output  0.001t  . 

4.3 COMPARISON OF SIMULATIONS AND CONTINUUM MODELING 

 The dynamic magnetoviscosity as a function of shear oscillation frequency for different 

Langevin Parameters and for Pe = 1.0 is shown in Figure 4.1. First, it is noticeable that the 

dynamic magnetoviscosity increases with increasing magnetic field. Also, as the magnetic field 
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increases there is a displacement of the crossover frequency for the in-phase and out-of-phase 

dynamic viscosities to higher frequencies, indicating a decrease of the ferrofluid relaxation time 

with increasing magnetic field. At frequencies below the crossover ' dominates, indicating 

viscous behavior, but at higher frequencies ' ' dominates indicating an elastic character to the 

magnetoviscosity. A comparison with the analytical solution of MRSh is also shown for  = 0.5. 

The solution agrees with the simulation results for all Langevin parameters, but deviations are 

seen at higher frequencies for 0.1  . For Pe < 1 we do not see a significant effect of Pe on the 

simulated dynamic viscosity, consistent with Eqn (3.71). 

 Another approach for the interpretation of the shear and magnetic field dependence of the 

dynamic viscosity of ferrofluids is the use of characteristic dimensionless parameters that capture 

the basic physics of the phenomena. As shown in Figure 4.2, using the transverse relaxation time, 

Eqn (3.48), it is possible to define a new scaled frequency 2     with which all the 

simulation results for Pe < 1 collapse into a single curve. 
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Figure 4.1 In-phase and out-phase magnetoviscosity for different Langevin parameters and 

Pe = 1.  For the in-phase dynamic magnetoviscosity: open circles ()  = 0.1, open squares 

()  = 1.0, and open triangles ()  = 10.0. For the out-of-phase dynamic magnetoviscosity, 

closed circles ()  = 0.1, closed squares ()  = 1.0, and closed triangles ()  = 10.0. The 

straight line () corresponds to Eqn (3.71). 

 

Figure 4.2 Normalized in-phase,

'

m

m




, and out-phase,

' '

m

m




, dynamic magnetoviscosity for Pe 

= 1 reduced to a master curve using the dimensionless effective frequency,  . 
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 The oscillatory rheological behavior of the ferrofluid at high shear is shown in Figure 4.3 

for Pe = 5 and Figure 4.4 for Pe = 10. For both Péclet values it is found that the crossover point 

shifts to higher frequencies as the magnetic field increases, indicating a decrease of the 

characteristic time of the ferrofluid response to the oscillatory shear. However, if we interpret the 

frequency of the peak in '

m  as an inverse relaxation time we find that the field dependence of 

this relaxation time is no longer given by Eqn  (3.48) for 
. For Pe = 10.0 (Figure 4.4), before 

the '

m and ' '

m crossover, there is a clear peak in the '

m curve and ' '

m becomes higher in 

magnitude than '

m , indicative of a viscous-elastic transition with respect to frequency. A 

comparison with the numerical solution for Eqn (3.52) is also shown. It is appreciable that the 

magnetoviscosity obtained by numerical solution of the governing equations using the MRSh 

equation quantitatively agrees with simulations for both Péclet numbers and different Langevin 

parameters. It also predicts the viscous-elastic transition shown for Pe = 10. However, as the 

Langevin parameter increases there is a quantitative deviation of the numerical solution compared 

with the simulation results in the '

m curve, indicating that the MRSh magnetization relaxation 

equation is no longer able to quantitatively predict dilute ferrofluid behavior in an oscillating 

shear flow. 

 Breakdown of agreement between simulations and predictions using the MRSh equation is 

further evident when comparing the time dependence of the magnetoviscosity predicted using the 

two approaches, as shown in Figures 4.5 to 4.8. Figure 4.5 illustrates oscillatory but not 

sinusoidal response to the sinusoidal shear flow for Pe = 5.0 and  =1.0. It also shows that 

sinusoidal response in the magnetoviscosity is recovered at higher applied fields  10.0  . In 

Figure 4.5 and Figure 4.6 the agreement between simulations and numerical solution using the 
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MRSh equation is such that the two curves superimpose. This is also true in Figure 4.7 for Pe = 

10.0 and  =1, where again it is seen that the magnetoviscosity response is not sinusoidal under 

these conditions. Sinusoidal response is again recovered for higher applied fields, as shown in 

Figure 4.8 for Pe=10 and  =10, however this Figure also shows deviation between the 

predictions of simulations and numerical solution. Interestingly, Figures 4.5 and 4.7 correspond to 

Mn > 1 whereas Figures 4.6 and 4.8 correspond to Mn < 1. As noted before the Mason number 

represents the ratio of viscous to magnetic stresses, hence these observations indicate that when 

the viscous stresses dominate the magnetic stresses deviations may occur from purely sinusoidal 

magnetoviscous response of a dilute ferrofluid to a sinusoidal oscillating shear flow.   
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Figure 4.3 In-phase and out-of-phase magnetoviscosity at Pe = 5 for different Langevin 

parameters for simulation and numerical results 
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Figure 4.4 In-phase and out-of-phase magnetoviscosity for Pe = 10 at different Langevin 

parameters for simulation and numerical results 
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Figure 4.5 Magnetoviscosity as a function of time for Pe = 5 and  = 1.0  and for a)  = 0.1 

and b)  = 1.5. 
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Figure 4.6 Magnetoviscosity as a function of time for Pe = 5 and  = 10.0 and for a)  = 10.0 

and b)  = 20.0. 
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Figure 4.7 Magnetoviscosity as a function of time for Pe = 10 and  = 1.0 and for a)  = 1.0, 

b)   = 3.0. 
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Figure 4.8 Magnetoviscosity as function of time for Pe = 10 and  = 10.0 and for a)  = 0.4 

and b)  = 20.0 

4.4 CONSIDERATION OF THE COX-MERZ RULE FOR DILUTE FERROFLUID 

The Cox-Merz rule [118] states that    *    when   , where    is the 

viscosity at a steady shear rate, and  *  is the dynamic viscosity at oscillating frequency  . 

The dynamic viscosity is obtained from the in-phase and out-of-phase viscosities using 
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2 2 2* ' ''

m m m    
  

. (3.72) 

Note that using the MRSh equation the steady state magnetoviscosity in a constant magnetic field 

and shear flow is precisely given by [48] 
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In our case, using Eqn (3.71) in Eqn (3.72) it can be easily shown that  
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, (3.74) 

demonstrating that the Cox-Merz rule applies for dilute ferrofluids under conditions for which Pe 

<< 2. 

However, under these conditions the magnetoviscosity is independent of shear rate, 

making the result rather trivial. Next we consider the applicability of the Cox-Merz rule for higher 

shear rates by comparing the simulation results of the present contribution to those of our 

previous work [61] for the steady shear magnetoviscosity. To do so we consider the case where 

the oscillatory shear flow is given by 

  0 sin t    . (3.75) 

Note that this is the same as Eqn (3.38) with
0 0   , hence the rotational Péclet number is now

0Pe    and the frequency is non-dimensionalized with respect to the rotational diffusion 

coefficient,
rD . The frequency varied from 0.1 to 100.0 and the Langevin parameters used were

[0.1,1.0, 3.0, 5.0,10.0,15.0, 20.0, 30.0]  . Figure 9 shows the complex viscosity calculated 

from Eqn  (3.73) as a function of frequency and the steady state viscosity (from [61]) as a 

function of shear rate. It is shown that in the limit of low shear rate and low frequency the 
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dynamic viscosity and the steady state viscosity are similar, indicating the Cox-Merz rule applies 

under these conditions. However, as the frequency increases the complex viscosity decreases 

faster than the steady state magnetoviscosity as a function of Pe. Thus, at higher shear rates the 

Cox-Merz rule ceases to apply.   

 

Figure 4.9 Steady shear magnetoviscosity and complex magnetoviscosity as a function of 

shear rate (Pe) and frequency   , respectively. Open symbols are for the steady state 

magnetoviscosity while closed symbols are for the complex magnetoviscosity. 

4.5 CONCLUSIONS 

 The dynamic properties of dilute ferrofluids under oscillatory shear and constant magnetic 

fields were studied using Brownian dynamic simulations and continuum modeling using the 

ferrohydrodynamics equations. Results show that the in-phase and out-of-phase components of 

the complex magnetoviscosity depend on both magnetic field strength and the frequency and 

magnitude of the sinusoidal oscillatory shear wave. Even though we are considering the infinitely 

dilute limit in which there are negligible particle-particle interactions (and therefore no particle 

chaining) the results indicate an apparent elastic character to the rheology of these suspensions. At 
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small rotational Péclet number a regular perturbation solution of the continuum equations shows 

that the response of the magnetoviscosity follows a Maxwell-like model with field dependent 

viscosity and characteristic time equal to the field-dependent transverse relaxation time. A 

numerical solution of the ferrohydrodynamics equations was also obtained. Comparison between 

the numerical solution and simulations shows that the magnetoviscosity obtained using the kinetic 

magnetization relaxation equation agrees with simulations for a wide range of Péclet number and 

Langevin parameter, but deviates from the simulations at high values of the Langevin parameter. 

The Cox-Merz rule for dilute ferrofluids was evaluated using an asymptotic analytical solution of 

the ferrohydrodynamics equations, valid for Pe << 2. It was demonstrated that the Cox-Merz rule 

applies for dilute ferrofluids under conditions of small shear rates but does not apply at higher 

shear rates. 

  



 

 

5 

5 NONLINEAR ENERGY DISSIPATION OF MAGNETIC NANOPARTICLES IN 

OSCILLATING MAGNETIC FIELDS 

     Heating effects in ferrofluids subjected to alternating magnetic fields are important for 

many emerging applications. Despite the many applications in which this heating effect is 

relevant, it appears that heating of colloidal magnetic fluid due to time varying magnetic field 

has not been significantly studied from a fundamental perspective. The heat dissipation rate was 

described by Rosensweig for a collection of non-interacting particles. However this analysis was 

limited to small applied magnetic field amplitude and frequency due to the use of the 

phenomenological magnetization relaxation equation derived by Shliomis. This implies that the 

expression derived by Rosensweig should only be applicable to values of the Langevin 

parameter less than unity and frequencies below the inverse relaxation time. In this contribution 

we approach this problem from an alternative phenomenological point of view by solving the 

phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic 

field amplitude and frequency and by solving the magnetization relaxation equation of 

Martsenyuk, Raikher, and Shliomis numerically. We also used Brownian dynamics simulations 

of non interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate 

the rate of energy dissipation and compare the results of the phenomenological theories to the 

particle-scale simulations. The results are summarized in terms of a non-dimensional energy 

dissipation rate and show that Rosensweig’s expression provides an upper bound on the energy 

dissipation rate achieved at high field frequency and amplitude.  



87 

 

5.1 INTRODUCTION 

Suspensions of magnetic nanoparticles, the so-called ferrofluids, are attractive in a wide 

range of applications because of their ability to respond to a magnetic field. An important 

characteristic of this kind of complex fluid is that in the presence of an alternating magnetic field 

the suspension can generate heat [119-121]. This effect has been used in promising applications 

such as cancer treatment by magnetic hyperthermia [8, 122-130], which take advantage of the 

greater sensitivity of tumor tissue to heat than normal temperature. It is desirable to maximize the 

energy dissipation rate of the magnetic material in order to reduce the amount of material that 

need to be delivered to the intended tissue. In contrast to this application that takes advantage of 

heat dissipation of the magnetic particles, there are other applications [117, 131-134] where the 

temperature increase due to the presence of an alternating field is counter-productive as in the 

case of loudspeakers [3] in which a layer of ferrofluid is held in place by the permanent magnet 

in the loudspeaker, replacing the air gap between magnet and voice coil. In contrast with the 

wide range of emerging applications of ferrofluids, there are just a few theoretical and 

experimental [135-138]  studies of the heat dissipation mechanism. 

The heating power of magnetic nanoparticles is determined by several factors including 

particle type, the frequency of the alternating magnetic field, and the magnetic field intensity. 

Namely, the two mechanisms most responsible for magnetic relaxation in nanoparticles and 

subsequently of the heat dissipated by nanoparticles in ferrofluids, are the physical rotation of the 

individual particles in the fluid (Brownian relaxation) and the collective rotation of the atomic 

magnetic moments within each particle (Néel relaxation) [34]. For Brownian relaxation the rate 

of magnetization reorientation is determined by viscosity and particle size, and is determined by 
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were  is the fluid viscosity, V the volume of a single particle,
B
k is the Boltzmann constant, 

and T the absolute temperature, whereas the Néel relaxation time is determined by 
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 where K denotes the magnetocrystalline anisotropy constant and 0 is a time constant. Both of 

these relaxation mechanisms are single particle effects and the shortest relaxation time dominates 

the process. In a ferrofluid the Brownian or Néel mechanisms both lead to an apparent 

superparamagnetic behavior, described by the same Langevin function 

  0 sM M L   (4.3) 

If the field, 0 ,zHH i is suppressed, the magnetization relaxes to a new equilibrium state. 

However, in considering dynamic aspects of magnetic nanoparticle suspension, the rate of 

relaxation can become an important variable. In the case of an external oscillating magnetic field,

 0 cos zH t H i , the dipole moment of the particles follows the oscillations of the magnetic 

field with a phase-lag between the field and the particle. The magnetization expressed in terms of 

the complex susceptibility of the particles is 

     0( ) 'cos ''sinM t H t t      (4.4) 

where 
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 Here ' is the in-phase component and '' the out-of-phase component of the dynamic 
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susceptibility,  , and
max

1 


, where max is the frequency at which '' is a maximum. 

Experimental techniques for measuring the frequency dependent complex susceptibility have 

been used to determine the brownian relaxation time and hence the particle size of magnetic 

fluids composed of spherical particles [139-142]. However, most of the experimental studies on 

the role of Brownian and Néel mechanisms for determining the power dissipated as magnetic 

heating in ferrofluid have relied on immobilizing nanoparticle rotation by adding some materials 

to irreversibly solidify the sample [122, 130, 143]. Hence, Brownian contributions to AC losses 

are eliminated.   

The principles underlining the heating of magnetic nanoparticles in a ferrofluid, was 

reviewed by Rosensweig [144], but it is limited to small applied magnetic field amplitude and 

frequency due to the use of the phenomenological magnetization relaxation equation, derived by 

Shliomis in 1972 [49], in the linear magnetization limit. These limitations led Raikher and 

Stepanov [145] to investigate the absorption of AC field energy in suspensions of magnetic 

dipoles using a formulation based on solution of the Fokker-Planck equation, predicting that the 

expression due to Rosensweig ceases to be valid for large values of the applied field frequency.  

In this contribution, we approach this problem from an alternative phenomenological 

point of view by solving the phenomenological magnetization relaxation equation of Shliomis 

[49] exactly for the case of arbitrary magnetic field amplitude and frequency and by solving the 

magnetization relaxation equation of Martsenyuk, Raikher, and Shliomis (MRSh) [48] 

numerically, the latter has been found to accurately describe the magnetic field and shear rate 

dependence of the magnetoviscosity of dilute ferrofluids [61, 62, 146]. Brownian dynamics 

simulations of non interacting particles subjected to an oscillating magnetic field are compared 

with these solutions of the phenomenological models. The results are summarized in terms of a 
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non-dimensional energy dissipation rate, which is a function of the applied field amplitude, 

parameterized by the Langevin parameter, and the product of field frequency and relaxation time.  

5.2 FORMULATION FOR THE ENERGY DISSIPATION RATE  

5.2.1 ROSENSWEIG’S ANALYSIS   

According to Rosensweig, for a constant volume adiabatic system in which the work 

done by the system is due to a magnetic forces, and considering the First law of thermodynamics, 

the change in internal energy is equal to the magnetic work  

 .dU W  (4.6) 

In (4.6) the differential magnetic work is , H is the magnetic field and B is the 

magnetic induction. The average energy dissipation rate,
2

cQ U



  , for a cycle of a time 

periodic magnetic field is given by 
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However, it will be easier to consider this in terms of dimensionless variables, which we define 

as 
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In that case, we obtain for the average energy dissipation rate 
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Finally, we define the dimensionless rate of energy dissipation as 

dW =H ×dB
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First, we consider a sinusoidal magnetic field H of amplitude
0H small enough that the response 

of the suspension is linear. Under such conditions the magnetic field and magnetization are given 

by 
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where the in-phase and out-of-phase components follow (4.5). Then the dimensionless rate of 

energy dissipation can be obtained from 
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or, in dimensionless form 
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Recasting in dimensional form this is equivalent to 
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which is the Rosensweig result [135]. Equation (4.14) predicts a linear relation between the 

dissipated power and the out-of-phase susceptibility of the ferrofluid and, a power of 2 

dependence on magnetic field. 
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5.2.2 NONLINEAR ENERGY DISSIPATION RATE ACCORDING TO THE 

SHLIOMIS 1972 PHENOMENOLOGICAL MAGNETIZATION 

EQUATION 

 According to Shliomis, the time rate of change of the magnetization of a suspension of 

non interacting magnetic nanoparticles (a ferrofluid) obeys 

     01 1
; coth ; d

s

dM M VH
M M L L

dt kT


   

 
        (4.15) 

Here L() is the so-called Langevin function, and the argument  is the Langevin parameter. For 

small values of  the Langevin function reduces to the linear magnetization relaxation equation 

used to obtain the starting point equations in Rosensweig’s analysis. Here we consider arbitrary 

values of  . In dimensionless form, and for an applied sinusoidal magnetic field, Shliomis’s 

equation can be written as 
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where 0 0
0 .dM V H

kT


  Eqn (4.16) is a non-linear ordinary differential equation. However, 

because the magnetization response must be time-periodic in the pseudo-steady state, the 

magnetization can be represented through a Fourier series 
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For which the spectral coefficients A
n
 and B

n
 are given by  

 
   0 0

2 2 2 2

1 1
; ,

1 1

n n

n n

n F F
A B

n n

 

 


 

   
 (4.18) 

where  
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Now, for 1n  , the dimensionless energy dissipation rate becomes 
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Hence the average rate of energy dissipation for the phenomenological magnetization equation of 

Sh’72 is  

  12
'72 1

c
Sh

Q F 





. (4.21) 

5.2.3 NONLINEAR ENERGY DISSIPATION RATE ACCORDING TO THE 

MRSH MAGNETIZATION RELAXATION EQUATION 

 A more exact (and albeit more complicated) equation to describe the time rate of change 

of the magnetization of a suspension of magnetic nanoparticles was derived by Martsenyuk, 

Raikher, and Shliomis [48] 
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where 
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are the parallel and transverse relaxation times. For the simple case of co-linear magnetization 

and magnetic field, this equation can be shown to reduce to the set of equations (in 

dimensionless form) 
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 The physical significance of He is that it is the magnetic field which would be in 

equilibrium with the local magnetization at any given instant. This non-linear set of equations 

can be solved numerically and the corresponding dimensionless average rate of energy 

dissipation can be calculated from 

 
0

2
sin .

p

c
MRSh

Q M tdt
p


   (4.25) 

which indicates that the dimensionless average rate of energy dissipation is directly the first 

order out-of-phase susceptibility multiplied by a constant factor.  

 Eqn (4.21) and (4.25) were solved numerically using the ODE45 function in MATLAB 

which implements a Runge-Kutta method with a variable time step for efficient computation. 

The algorithm solves the equations and yields the time-dependent magnetization. The dynamic 

in-phase and out-of-phase susceptibilities were obtained through numeric implementation of Eqn 

(4.5) using the trapezoidal rule. 

5.3 BROWNIAN DYNAMICS SIMULATIONS OF A DILUTE SUSPENSION OF 

MAGNETIZED PARTICLES SUBJECTED TO AC MAGNETIC FIELD 

Brownian dynamics simulations are based on the integration of the stochastic angular 

momentum equation in a way to obtain the orientation of each particle in the inertialess limit  

 
h m bT + T + T = 0  (4.26) 

where the three torques acting on the particle are: hT due to hydrodynamic effects, mT due to 

magnetic effects, and BT  due to Brownian motion. The torque due to hydrodynamic effects is 
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given by 

 0h r= KT  . (4.27) 

In (4.27) 0  is the viscosity of the fluid carrier, 38rK r  the hydrodynamic rotational 

resistance coefficient, and  is the angular velocity of the particle. The magnetic torque is given 

by 

  m 0= μ T m H , (4.28) 

where 0 is the permeability of free space, mm μ , and the magnetic field is  0 cos zH t H i . 

In order to reduce the number of variables in the angular momentum equation, time was non-

dimensionalized with respect to the rotational diffusion coefficient  
1

0r B rD k T K


 , and the 

vector variables were non-dimensionalized with respect to their corresponding magnitudes. 

Substituting Eqn (4.27), (4.28) into Eqn (4.26) and setting d dt  where d is the 

infinitesimal rotation vector, integrating from time t to t t  using a first-order forward Euler 

method, and applying the fluctuation-dissipation theorem to the Brownian term, the resulting 

equation is   

    t      H w    . (4.29) 

The vector w is a random vector which follows a Gaussian distribution with mean and 

covariance given by 

 0,i i i t  w w w I . (4.30) 

 The algorithm proceeds from a starting configuration, using 10
5
 non-interacting particles, 

by calculating the change in orientation at each time step. All runs were performed with a time 

step of t = 0.01, Langevin parameters of 0.1 100  and magnetic field frequencies of
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0.1 100.  

 Because an oscillating magnetic field is applied one would expect a time-periodic 

magnetization. When  is small we would expect the response for a sinusoidal magnetic field to 

be equally sinusoidal but with a phase lag. On the other hand, for large values of  one would 

expect deviations from sinusoidal response but still time-periodic behavior. To describe the 

dynamic magnetization we introduce the n
th

-order in-phase '

n  and out-of-phase ''

n  

susceptibility using a Fourier series representation of the time dependent pseudo-steady 

magnetization  

    cos sin' ''m n t n t
z n n

n n

  
 

    
 

1

3 1 1
. (4.31) 

Here 1n  denotes the fundamental susceptibility. Then the in-phase and out-of-phase 

susceptibility can be obtained from 
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 

        (4.32) 

 As mentioned above, the energy dissipation rate has been describe according to the 

thermodynamic analysis and the corresponding dimensionless average rate of energy dissipation 

can be calculated from (4.10) using simulations results of (4.29) and expressing magnetization as 

(4.31).  

5.4  RESULTS 

 Figure 5.1 shows in-phase and out-of-phase components of the complex susceptibility as 

a function of the dimensionless frequency. As the magnetic field increases the in-phase 

susceptibility curve flattens and the out-of-phase susceptibility curve becomes wider. In addition, 
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the peak moves to higher frequencies. Moreover, the crossover of the curves occurs at higher 

frequencies indicating a shift in the effective relaxation time, which is illustrated in Figure 5.2 

and Figure 5.3. 

 As shown in Figure 5.2, as the magnetic field increases faster effective relaxation times 

are observed. Physically, there exists a phase-lag between the magnetization and the magnetic 

field. At low frequency the magnetic field has a characteristic time longer than the effective time 

of the particles hence the magnetization is able to follow the oscillating behavior in phase with 

the magnetic field. As the frequency increases the characteristic time of the magnetic field is 

lower than the effective time of the particles and the magnetization is no longer in phase with the 

oscillating behavior of the magnetic field. This effect is observed in the Brownian dynamics 

simulations and in the numerical solution of the MRSh magnetization equation. MRSh results 

show in agreement with our simulation except for highest Langevin parameters (i.e.  > 100) 

where it failed to predict the ferrofluids behavior as shown in Figure 5.3 even though effective 

relaxation times from simulations and the numerical solution are in agreement but differ from the 

perpendicular relaxation time predicted by MRSh as shown in Figure 5.4.   

 We now investigate the influence of frequency and magnetic field on the energy 

dissipation due to non-interacting particles relaxing by the Brownian mechanism. As theory 

shows, the energy dissipation from a nanoparticle depends upon its magnetic susceptibility 

which in turn depends on the magnetic field frequency and amplitude. As shown in Figure 5.5, 

simulations indicate higher energy dissipation rates for higher frequencies and lower magnetic 

fields. A comparison of average energy dissipation obtained from Rosensweig’s analysis, our 

solution of the Shliomis 72 magnetization equation and MRSh magnetization equations, and 

Brownian dynamics simulations are shown in Figure 5.6. Rosensweig’s analysis predicts a linear 
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dependence of energy dissipation with Langevin parameter. Solutions of the Sh72 and MRSh 

magnetization relaxation equations results agree with Rosensweig’s analysis in the limit of low 

magnetic field intensity and frequency. However, at intermediate frequencies and high fields the 

energy dissipation deviates from the prediction of Rosensweig’s analysis. Explicitly, it is seen 

that the energy dissipation rate predicted by solution of the Sh’72 and MRSh equations is lower 

than predicted by Eqn (4.13). Interestingly, the MRSh equation predicts agreement again with the 

results of Rosensweig for very high applied field frequency. Predictions from Brownian 

dynamics simulations similarly agree with the Rosensweig result for low field amplitudes, agree 

with the MRSh results for intermediate field amplitudes, and predict an even lower rate of energy 

dissipation for the highest applied magnetic field amplitudes.          

 

Figure 5.1 Real and imaginary components of the dimensionless complex susceptibility as a 

function of dimensionless frequency. 
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Figure 5.2 Real and imaginary components of the dimensionless complex susceptibility as a 

function of dimensionless frequency obtained from simulations compared with 

susceptibility obtained from the MRSh magnetization equation  

 

Figure 5.3 Dimensionless out-of-phase susceptibility as a function of dimensionless 

frequency. Circles ()  = 0.1, squares ()  = 1.0, upward triangles ()  = 10.0, and 

downward triangles ()  = 100.0. The straight line () corresponds to out-of-phase 

susceptibility obtained from the MRSh magnetization equation for the different values of 

the Langevin parameters. 
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Figure 5.4 Relaxation time comparison between perpendicular relaxation predicted by 

MRSh, simulations and numerical solution 

 

Figure 5.5 Energy dissipation rates obtained from Brownian dynamic simulations as a 

function of dimensionless frequency and Langevin parameter 
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Figure 5.6 Non dimensional energy dissipation rate as a function of the Langevin 

parameter 

5.5 CONCLUSIONS 

 Dynamic magnetization behavior was studied by Brownian dynamics simulations. 

Results show that as the magnetic field intensity increases, the crossover of the susceptibility 

curves moves to higher frequencies indicating a decrease in the effective relaxation time. 

Because energy dissipation from ferrofluids depends upon their complex magnetic susceptibility, 

which in turn is related to the ferrofluid relaxation time, we also obtain energy dissipation rate 

from the simulations and by obtaining a numerical solution of the Shliomis’72 and MRSh 

phenomenological magnetization equations. We showed that Rosensweig’s original analysis is 

strictly limited to low magnetic field amplitude and frequency, owing to the limitations imposed 

by the use of Shliomis’s magnetization relaxation equation and a linear form of the equilibrium 
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magnetization. However, using the more exact equation due to MRSh and use of Brownian 

dynamics simulations; we demonstrate that Rosensweig’s expression surprisingly provides an 

upper bound on the energy dissipation rate achieved at high field frequency and amplitude. The 

results of our analysis should allow for rigorous testing of the underlying models using 

experiments and should permit more accurate estimation of energy dissipation rates in ferrofluids 

under typical application conditions of moderate magnetic fields. Although account of particle 

size polydispersity is not given here, this can be obtained through ensemble averaging using an 

appropriate size distribution model. Consideration of the effect of particle-particle interactions is 

left to a future contribution.  

  



 

 

6 
6 BROWNIAN DYNAMICS SIMULATIONS OF MAGNETICALLY INTERACTING 

MAGNETIZED PARTICLES IN D.C. AND A.C. MAGNETIC FIELDS 

 Brownian motion of magnetized interacting spherical particles suspended in Newtonian 

fluid, under applied d.c. and a.c. magnetic field was studied using Brownian dynamics 

simulations, including the effect of magnetic dipole-dipole interactions. The algorithm describing 

the change in the suspension magnetization was obtained from the stochastic angular momentum 

equation with the reaction field method for the long range dipolar interactions. We investigate 

magnetization curves, complex susceptibility in various concentrations and particle dipole 

moment ranges. Simulation results are in agreement with the Langevin function for equilibrium 

magnetization. Dynamic susceptibilities were obtained from the response to oscillating magnetic 

fields at different frequencies. Deviations from Debye’s model were observed even for low 

dipolar interaction strength.    
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6.1 INTRODUCTION 

 Considerable interest has been given in the past decades to the dynamic magnetization of 

ferrofluids in the presence of applied magnetic fields and the corresponding complex magnetic 

susceptibility. This increased interest in a better understanding of the behavior of these materials 

is related to their renewed technological importance, with various applications such as drug 

targeting, and cancer treatment by magnetic hyperthermia [4, 147]. For this reason, magnetic 

properties of ferrofluids have been extensively studied for its dependence with particle size, 

composition, frequency, and magnitude of the applied magnetic field.  

 Experiments [53, 148] demonstrate that magnetodipolar particle-particle interactions 

significantly affect both the equilibrium and dynamical  properties of ferrofluids. However, there 

is no clear and definitive answer to several key points. Theoretical models of dynamical 

properties of dilute ferrofluids with vanishing interparticle interactions have been proposed [48-

51, 97]. These models lead to accurate results for highly dilute ferrofluids but cannot explain 

properties and behavior of ferrofluids where the particle interactions are significant. At present 

there is no general theory to predict, quantitatively, the properties of ferrofluids under typical 

experimental conditions. Normally, researchers consider different dynamical phenomena in 

ferrofluids separately, creating a combination of models that serve as a basis of constructing 

theories of real magnetic fluids [107, 149-154]. To seek further understanding of the interaction 

effects in particle systems, computer simulations [21, 94, 152, 153, 155, 156] become an 

important tool, whose main advantage is the easy way by which it is possible to vary parameters 

such as the relative strength of interactions. 

 In this contribution ac-susceptibility and magnetic relaxation measurements have been 

used to probe the concentration effects in the dynamic properties of ferrofluids using Brownian 
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dynamics simulations with the reaction field method used to calculate the long range dipolar 

interactions. It is considered that the magnetic moment of the particles is fixed with respect to the 

particle itself. The effects of the interactions are scrutinized by studying the change in the 

magnetic relaxation going from a non-interacting system to a system significant with particle 

interactions. 

6.2 ALGORITHM FORMULATION 

 In section 1.4 we discussed how a magnetic field exerts a torque on the magnetic particles 

in the ferrofluid, influencing their free rotation in the shear flow. The theory used to describe the 

related phenomena explicitly excludes any interaction, resulting basically in a single particle 

model. In reality, the motion of each particle in a ferrofluid suspension is affected by interactions 

with the molecules of the solvent and with other magnetic particles, the flow of the solvent, and 

the action of the external magnetic field, resulting in interesting rheological and magnetic 

properties. Hence, the theory used in Chapter 2, 3 and 4, to describe the related phenomena is no 

longer applicable and both Eqn (1.29) and (1.30) have to be considered.  

Ferrofluids are rather complicated systems colloids, because there exist several different 

interactions between the ferrofluid particles: (i) short-range repulsive interaction due to the 

presence of the coating layer on (ideally) each ferrofluid particle; (ii) long-range magnetodipolar 

interaction between magnetic moments of ferrofluid particles; and (iii) long-range hydrodynamic 

interactions arising because each moving particle induce a perturbation flow in the surrounding 

fluid and this flow acts on all other particles. In this work we do not consider hydrodynamic 

interactions.  

The short range steric particle repulsion is the simplest interaction from the simulation 
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point of view, because the calculation of any short-range force for the whole system requires only

~ N operations where N is the particle number, due to the possibility to introduce a final cut-off 

radius,
cutR , for such an interaction. The two most commonly used forms are the Lennard-Jones 

potential and the Yukawa exponential form. The Lennard-Jones potential was suggested a long 

time ago simply to accelerate the computation of the short-range potential. The Yukawa potential 

can in principle be derived from the interaction potential of an electric double layer and the 

Debye-Huckel theory of strong electrolytes, but neither of these justifications if valid at least for 

an organic solvent based ferrofluids with magnetic particles are coated by a neutral polymer shell. 

Because the actual form of repU  is unknown, we choose to model interactions between particles

i and j by the Lennard Jones potential [157]. The potential is given by 
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ij ij
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r r

 
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 (5.1) 

Here
ijr is the distance between the center of the particles i and j, and D is a constant parameter 

that represents attraction effects between particles. The Lennard-Jones potential is purely 

repulsive for = 0B .  

Magnetodipolar interaction, in contrast to steric repulsion, is a long-range interaction. This 

means that the cut-off of this interaction is not allowed. The problem of the evaluation of the 

long-range dipolar field is especially difficult for a ferrofluid because it represents a disordered 

particle system. The most widely used and accepted method in this context is the Ewald 

summation technique [56, 158] where the lattice sums over Coulomb or dipolar interactions are 

split into a real space part involving only particles within the central simulation cell, and a Fourier 

part involving a sum over reciprocal lattice vectors. The convergence of these parts is then 
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controlled by a few parameters such as the parameter  determining the range of the real-space 

potentials, and the number of reciprocal lattice vectors, maxa , taken into account in the evaluation 

of the Fourier part. Since these parameters are not independent of each other, the challenge in any 

practical application of Ewald sums consist of finding optimal values such that each partial sum 

converges towards a pre-described accuracy while at the same time the computational effort is 

minimized. The disadvantage of this method is the unrealistic way an instantaneous dipolar 

fluctuation of charge in the simulation box is duplicated in the infinite replica system.  

In the case of dipole-dipole interaction, another method is the reaction field method. In 

this method, the field on a dipole in the simulation consists of two parts: the first is a short range 

contribution from molecules situated within a cutoff sphere or cavity,  , and the second arises 

from molecules outside the cavity which are considered to form a dielectric continuum, s , 

producing a reaction field within the cavity (see Figure 6.1). The size of the reaction field acting 

on molecule i is proportional to the moment of the cavity surrounding i , 
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where the summation extends over the molecules in the cavity, including i , and cr is the radius of 

the cavity. The contribution to the energy from the reaction field is
1

2
i i  . The torque on 

molecule i from the reaction field is i i . 

 We consider the magnetic effects for particles that interact with each other are of two 

types: those due to the external magnetic field, given by Eqn (1.32), and those due to interaction 

between particles. The magnetic forces due to particle interactions can be calculated from the 

dipole-dipole interaction energy 
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Figure 6.1 A cavity and reaction field. Molecules 2, 3, and 4 interact directly with molecule 1. 

The continuum polarized by the molecules in the cavity produces a reaction field at 1.  
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The force on particle i is then derived from
, , ,m i i dipole iU F where , ,dipole i dipole j

j

U U is the 

energy of particle i in the field of the other particles. The torque exerted by other particles on 

particle i is obtained from  , 0m i i i  T H , where the magnetic field 
iH is given by

 , 0dipole i i iU    H . 

 Brownian forces are represented by stochastic terms of the form ,

t t

B i i i F w , in which

t

i and t

iw have the same relation as Eqn (1.35) and Eqn (1.36) . 

The translational and rotational Langevin equations of motion of particle i are given by  
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where
iM and

iI are the mass and inertia tensor of the particle,
t and

r are the translational 

and rotational friction constants, respectively. The Brownian force and torque follow the same 

properties as Eqn (1.34). The equations presented in Eqn (5.4) are the complete set of equations 

for the study of interacting and interacting magnetic particle suspensions. 

Introducing the dipolar and short-range terms into Eqn (5.4) the dimensionless equations 

of motion can now be written as 
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Here the variables are given in dimensionless form, reduced by the following units: length

*r r , dipole moment  *2 2 3

0
4m m , moment of inertia  * 2I I M , time

  
1

* 2 2t t M , the friction constants     
1

* 2 2

t t
M , and     

1
* 2 2

r r
M , 

magnetic field     
1

* 3 2

0
4H H  as well as temperature *

B
T k T . The values of the 

dimensionless friction constant do not affect the equilibrium properties. 

 The investigated ferrofluid system consists of 1000N  spherical particles of diameter

 distributed in a cubic simulation box of side length L . Each particle has a permanent point 

dipole moment im at its center. The solvent of the ferrofluid is not considered explicitly. Instead, 

it is assumed that collisions keep the particles in thermal equilibrium with the solvent. To model 

this effect, Brownian forces are added to the equations of motion. We used periodic boundary 

conditions in all space directions and the reaction field method explained. In this work focusing 

on the magnetic properties of the suspension, hydrodynamic interactions are neglected.  

 The simulations were performed at constant reduced temperature * 1T  and a reduced 
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time step * 0.0025t  .The runs were started from initial configurations with random particle 

positions and dipole moment orientations. For each case, the system was first equilibrated for a 

period of 50 000 time steps. The magnetization properties were then calculated from the data for 

another period of at least 500 000 steps. The volume fractions were in the range 0.001 0.07.   

6.3 RESULTS 

 Simulations were performed for a wide range of volume fractions varying between

0.001 0.07  and different dipolar interactions. We compared the simulation results with the 

theoretical Langevin function. The magnetization of the magnetic suspensions for the equilibrium 

simulations are shown in Figure 6.2. Results are in good agreement with theory for low volume 

fractions which indicates that the algorithm is capable to describing the equilibrium properties of 

a suspension of interacting particles. 

 

Figure 6.2 Reduced magnetization for interacting particle suspension compared with the 

Langevin function at different dipolar interaction strength and volume fraction.  
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6.4 PROPOSED WORK  

 In real ferrofluids the understanding of changing of specific properties such as 

microstructure or apparent density, viscosity, birefringence, among other due to the presence of an 

applied magnetic field has attracted considerable interest. However, there is no clear and 

definitive answer on several points, in particular the possible control of the formation of chains. 

Therefore, the role of the magnetic dipolar interactions in the structural and dynamic properties of 

these magnetic fluids becomes a possible area of study. One of the interests of this study is that it 

is possible to compare with experimental results obtained by the synthesized and characterization 

of particles by the same research group, which make a direct relation in the control parameter 

such as magnetic field, concentration, temperature, among others of both experiments and 

simulations.  

 Brownian dynamics simulations with particle interactions are able to provide not only the 

structural properties of the suspension but also the dynamical behavior of the particles. In 

addition, most of the theory of ferrohydrodynamics was developed for ferrofluids in the highly 

dilute limit, i.e. particle interaction is not considered. Then, simulations considering low dipolar 

interactions and low concentrations could study the limit at which theory is capable to predict 

ferrofluids behavior.   

      



 

 

7 
 

7 CONCLUDING REMARKS AND DISSERTATION CONTRIBUTION 

 The aim of this dissertation was to contribute to the understanding of the magnetic and 

rheological properties of dilute and semi-dilute suspensions of spherical magnetic nanoparticles 

suspended in Newtonian fluids and under applied shear and constant magnetic fields by rotational 

Brownian dynamics simulations. Prior work on modeling the behavior of ferrofluids has focused 

on using phenomenological suspension scale continuum equations, but there is a controversy 

regarding which equation correctly describes the rate of change of the ferrofluid magnetization. 

Our work found that for suspensions of spherical particles, excellent agreement was observed 

between predictions of the Martsenyuk, Raikher, and Shliomis (MRSh) relaxation equation and 

our direct simulations.  

 It was shown that the magnetoviscosity of dilute ferrofluids could be described using a 

newly defined rotational Mason number, which collapses the simulation results into a single 

master curve. Moreover, results also show that the assumed 2sin   dependence of the 

magnetoviscosity on the angle  between the vorticity and the magnetic field is only valid for 

low fields and high shear rates. 

 The Brownian dynamics simulation method was used to study the transient behavior in the 

magnetoviscosity of a dilute ferrofluid in response to step changes in shear rate and magnetic 

field. For comparison purposes, a simple mathematical analysis based on the ferrohydrodynamic 

equations in the linear magnetization limit was derived. In both, simulations and mathematical 
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solution, it was observed that the approach of the magnetoviscosity to the steady state value can 

be either monotonic or oscillatory depending on the particular values of magnetic field amplitude 

and shear rate. Such observations are relevant in the operation of devices which take advantage of 

the magnetoviscous effect, as oscillatory response can lead to instability in device performance. 

 The dynamic properties of dilute ferrofluids under oscillatory shear and constant magnetic 

fields were studied using Brownian dynamics simulations and continuum modeling using the 

ferrohydrodynamics equations. Results show that the in-phase and out-of-phase components of 

the complex magnetoviscosity depend on both magnetic field and frequency of the sinusoidal 

oscillatory shear wave. Even though we are considering the infinitely dilute limit in which there 

are negligible particle-particle interactions, and therefore no particle chaining, the results indicate 

an apparent elastic character to the rheology of these suspensions. At small rotational Péclet 

number a regular perturbation solution of the continuum equations shows that the response of the 

magnetoviscosity followed a Maxwell-like model with field dependent viscosity and 

characteristic time equal to the field-dependent transverse relaxation time.  A numerical solution 

of the ferrohydrodynamics equations was also obtained and compared with simulation results, 

which shows that the magnetoviscosity obtained using the kinetic magnetization relaxation 

equation agrees with simulations for a wide range of Péclet number and Langevin parameter, but 

deviates from the simulations at high values of the Langevin parameter. In addition we 

determined if the Cox-Merz rule apply for dilute ferrofluids using an asymptotic analytical 

solution of the ferrohydrodynamics equations, valid for Pe << 2. It was demonstrated that the 

Cox-Merz rule applies for dilute ferrofluids under conditions of small shear rates but does not 

apply at higher shear rates even though ferrofluids shows an apparent viscoelastic property.  

 Because energy dissipation from ferrofluids depends upon their magnetic susceptibility, 
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Brownian dynamics simulations for magnetic nanoparticles subjected to an alternating magnetic 

field were performed. Simulation results, as well as numerical solution of the MRSh 

magnetization equation, showed that Rosensweig’s original analysis is strictly limited to low 

magnetic field amplitude and frequency, owing to the limitations imposed by the use of 

Shliomis’s magnetization relaxation equation. However, use of the more exact equation due to 

MRSh demonstrates that Rosensweig’s expression provides an upper bound on the energy 

dissipation rate achieved at high field frequency and amplitude but more complex behavior is 

observed for intermediate values. 

 Finally, an algorithm that includes dipolar interaction was developed and shown to predict 

correctly the equilibrium properties of ferrofluids in a wide range of dipolar interaction 

parameters and volume fraction of particles. In addition, using this algorithm, it is proposed to 

study the validation of the constitutive magnetization equations as well as structure formations 

with and without applied magnetic fields.    

 

 



 

 

APPENDIX A: PREDICTIONS OF THE VARIOUS MAGNETIZATION RELAXATION 

EQUATIONS 

Differences between the magnetization relaxation equations are also manifested in their 

predictions for the relaxation from equilibrium magnetization in a quiescent ferrofluid after the 

external field is suddenly switched off. In that case the transient magnetization of the suspension 

is such that 0 and both M and eH are always parallel to H . Under these conditions Eqn (2.1) 

reduces to 

 0( )dM M M

dt 


  , (A.1) 

whereas the MRSh Eqn (2.5) and the Sh’01 Eqn (2.7) reduce to 

 1
e

dM H M

dt H 

 
   

 
, (A.2) 

 
 ee
H HdH

dt 


  , (A.3) 

respectively. These equations were integrated numerically and the predicted relaxation is shown in 

Figure A.1. For Eqn (A.1) and Eqn (A.2) the decay in reduced magnetization follows exponential 

behavior, while Eqn (A.3) only predicts exponential behavior in the limit of 1 . Direct solution 

of the particle orientational distribution function for the case of non-interacting particles yields 

exponential decay regardless of the magnitude of the initial field [159], hence indicating that the 

Sh’01 equation incorrectly predicts the dynamic response of dilute ferrofluids to a step decrease 

in the magnetic field strength.   
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Figure A.0.1-Transient magnetization for an infinitely dilute ferrofluid according to the Sh’72, MRSh, and 

Sh’01 magnetization relaxation equations. The Sh’72 and MRSh equations both predict exponential decay 

regardless of the magnitude of the initial equilibrium magnetic field, whereas the Sh’01 equation only predicts 

exponential decay for small values of the initial equilibrium magnetic field (small values of  ). 
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