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Abstract 

 

A robust calibration model was created using Near Infrared Spectroscopy (NIR) 

and by minimizing the correlation between the active pharmaceutical ingredient (API) 

and components in a pharmaceutical process. An experimental model was used to 

minimize correlation and create a calibration model to detect API in a mixture. A design 

of experiment (DoE) was prepared using six components. A total of nine placebos were 

prepared using different concentrations of each component.  

A series of mixtures were prepared using placebo, granulation and API or using 

placebo and API. The correlation between components when using granulation, placebo 

and API was of 99% because concentrations followed a pattern: if API concentration 

increased, components concentrations decreased. To break that pattern and to 

decrease the high correlation, only placebo and API were used and the concentrations 

of the components were modified. 

With the new approach, if the concentration of API increases, not all of the 

concentrations of the components will decrease. A more robust model was then created 

because of the change in correlation. 

The predictions obtained from the calibration model show a very robust model 

which was achieved by reducing the high correlation presented originally. 
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Resumen 

 

Se creó un modelo de calibración robusto utilizando la espectroscopia de 

infrarrojo cercano (NIR) y minimizando la correlación entre el ingrediente farmacéutico 

activo (API, por sus siglas en ingles) y los componentes que se encuentran en un 

proceso farmacéutico. Un modelo experimental fue utilizado para minimizar la 

correlación y para crear un modelo de calibración que pudiera detectar el contenido de 

droga en una mezcla. Se preparó un Diseño Experimental (DoE, por sus siglas en 

ingles) utilizando 6 componentes. Un total de nueve placebos fueron preparados 

utilizando diferentes concentraciones de cada componente. 

Dos tipos de mezclas fueron preparadas: 1) utilizando placebo, una mezcla de 

API + componentes y API (con una correlación de 99%), 2) utilizando placebo y API 

solamente (con una correlación de 95%). La correlación del 99% fue observada debido 

a que las concentraciones seguían un patrón: si la concentración de API aumentaba, la 

concentración de todos los componentes disminuía. Para poder romper este patrón, 

solo se utilizo la mezcla en la que se utilizaba placebo y API y las concentraciones de 

los componentes fueron modificadas. 

Con este nuevo acercamiento, si la concentración de API aumenta, no todas las 

concentraciones de los componentes disminuyen. Debido al cambio que ocurrió en la 

correlación, se pudo crear un modelo de calibración más robusto. 

Las predicciones que se obtuvieron del modelo de calibración muestran un 

modelo bien robusto lo cual fue logrado al reducir la alta correlación en la mezcla 

presentada originalmente. 
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Chapter 1 

1.1 Summary 

 

 This thesis describes the development of a calibration model for a pharmaceutical 

formulation. A careful experimental design was followed to develop a model capable of 

responding to changes in the drug content. Several tests were performed to challenge the 

model and the results are described here. 
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1.2 Introduction 

 When developing a calibration model, it is important to make it as robust as possible. 

According to the International Conference on Harmonisation (ICH) guidelines for the Validation 

of Analytical Methods: Definitions and Terminology, robustness is the measure of the capacity 

of an analytical procedure to remain unaffected by small variations in method parameters1. The 

robustness of, for example, a calibration model, indicates its reliability when being used2. The 

evaluation of robustness can be done during the development of the analytical method but it 

could also be assessed after the method has been developed3. This evaluation has to 

demonstrate how reliable is the method developed with respect to the changes of the 

parameters2. As a consequence of the evaluation of robustness, some parameters have to be 

controlled to guarantee that whenever the method is used, these parameters won’t affect the 

results3. 

 One way of developing a calibration model as robust as possible is to have the least 

compositional correlation possible between all the components used. The use of software to 

design an experiment can be very helpful but additional steps may be necessary to provide the 

least possible correlation between components. This research describes the use of a novel 

approach to minimize compositional correlation.  

The concentration of active pharmaceutical ingredient (API) in a pharmaceutical 

formulation is usually determined by high performance liquid chromatography (HPLC), which is 

time-consuming, sample destructive, and often requires significant volume of solvent. Near 

Infrared (NIR) spectroscopy allows the determination of physical and chemical parameters of 

API in a pharmaceutical process using a very fast, and non destructive approach without 

sample preparation4,5. NIR is a method extensively used in the pharmaceutical industry 

because of its ability to provide monitor important quality attributes in real time. However, 
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because of the wide overlapping bands of NIR spectra, the construction of multivariate models 

is often required6.   

A Design of Experiment (DoE) can be generated using software as one of the initial 

steps in developing a new NIR calibration model. Some advantages of creating a DoE are that 

the software will provide the concentrations needed for each component, the correlations 

between components, samples needed, the maximum information for a minimum number of 

experiments, and the identification of interactions among process parameters, thus, providing 

an assurance of quality7. 

 Several aspects have to be considered to obtain the least possible correlation between 

components. For example, if a mixture of A + B is prepared, their percentages will be 100 

because when one increases, the other one decreases, which will cause them to have a 100% 

correlation. On the contrary, when preparing a mixture of A + B + C, their percentages can be 

modified to break the correlations between them and make them as minimal as possible. 

However, if one or two components have a high concentration then the correlation cannot be 

completely eliminated.  

The purpose of this work is to determine API concentration for a formulation with a high 

concentration of an active pharmaceutical ingredient (API). Six components were mixed to 

generate nine placebos, following a DoE. A placebo is an inactive substance or preparation that 

contains no API; in this case, it only contains components such as fillers, binders, disintegrants, 

lubricants, glidants, and/or surfactants. From these placebos, 41 mixtures were prepared in a 

range of concentrations from 45% to 85% of API, thus, minimizing the correlation. This 

innovative approach provided a decrease in the compositional correlation between components 

and API when working with high drug concentrations. 



4 
 

Chapter 2 

2.1 Previous Works 

 

Powder blending is the method most commonly used to manufacture tablets or capsules, 

and more than three-quarters of all pharmaceuticals are manufactured in this form8. Blending of 

powder materials is a common pharmaceutical manufacturing unit operation for many industrial 

and consumer products. The blending process is used with the goal of a uniform distribution of 

all the components in the end product9. To obtain a proper solid dosage, it is important to 

ensure a mixture that is as homogeneous as possible of the API and the components of that 

mixture10. The variation of the mixture composition must be monitored in order to characterize, 

optimize and control the mixing process11.  

It is difficult to accurately measure mixture composition in an efficient and non-

destructive fashion. This limitation can result in the rejection of up to standard quality batches 

and the release of product containing incorrect amounts of active ingredients. Statistical 

measures and sampling protocols normally assume a random distribution within the mixture 

which can lead to the erroneous conclusion that the blends are accurate. Another invalid 

conjecture is that a sample obtained with a thief sampler is indicative of the composition of the 

mixture at that location8. Powder mixtures are typically analyzed by removing small amounts of 

samples from the bulk mixture and analyzing them. The most common techniques use a thief 

sampler12. These devices extract a quantity of material from the bulk mixture, and then the 

extracted mixture is subdivided into smaller samples and analyzed. The use of a stream 

sampler is an alternative of using a thief sampler. An advantage of this technique is that it 

collects more samples than the thief sampling. Because stream sampling uses the process of 

flow of the blend from a bin when the compression of the tablet occurs, it could indicate 
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segregation problems related to the emptying of the blender in contrast with the thief sampling 

which is unable to do it13. Some disadvantages that the use of sampling thieves has is that the 

insertion of a probe could disrupt the powder mixture, that the powder tends to segregate as 

they flow into the cavities of the sampling thief, and that it is not practical to take a lot of 

samples at the same time since it doesn’t characterize the whole mixture14. 

NIRS has been a widely used method since it requires no reference method and 

because it determines, simultaneously, physical and chemical parameters in a rapid, non-

destructive manner4. Of the physical parameters of a mixture, one of the few that has a big 

effect on the NIR spectra is particle size which, as a consequence, causes a change in 

baseline15. NIR also analyses samples in a non-invasive manner and requires no sample 

preparation6. A number of qualitative and quantitative methods of analysis have been 

developed by using NIRS in conjunction with multivariate algorithms6. For this reasons, NIRS 

has become one of the favorite methods of use to determine the active principal ingredient in 

pharmaceutical mixtures and tablets16.  

A Statistical Design of Experiments (DoE) is a method extensively used to help in the 

development of calibration models. Some advantages that this method exhibits are that it helps 

in the understanding of multidimensional interactions of parameters in a process7, determines 

the relationships found between factors that can affect a process, and provides maximum 

information from a minimum number of experiments7. By using a DoE, a multivariate calibration 

model can be developed. 

 Multivariate calibration has been previously done using the NIR region for quantitative 

analysis17. In previous works, the API content has been determined by using PLS models 

constructed from calibration sets4,6,17. To construct a robust, accurate, and precise calibration 

model, physical and chemical variability have to be included4.  
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 The pre-treatments commonly used to construct calibration models are Standard Normal 

Variate (SNV), and 1st and 2nd derivatives4,6,18,19. The SNV correction is used to remove the 

effects of scattering, the 1st derivative is used to remove the background, and the 2nd derivative 

is used to enhance the resolution by overlapping peaks and correcting the baseline18. 

 After the development of a calibration model, comparisons of prediction results have to 

be made to choose the best model. The optimal prediction of a calibration model developed is 

evaluated in terms of its Relative Standard Error of Prediction (RSEP). To verify the quality of a 

model, the average value of residuals (Bias) and the Standard Error of Prediction (SEP) are 

normally calculated16,18.  
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2.2 Materials and Methods 

2.2.1 Materials 

 

 All components, including the API, were received from a pharmaceutical company in 

Puerto Rico. The components consisted of a filler, a binder, a disintegrant, a lubricant, a glidant, 

and a surfactant.  
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2.2.2 Design of Experiments  

 

The Design of Experiments (DoE) is a method extensively used7,20 to develop calibration 

models to detect drug content in pharmaceutical mixtures. The utility of DoE is based on the 

fact that it helps in the determination of the relationships that exist between excipients and drug, 

before developing the calibration model. It also allows the selection of the most significant 

factors on a response and to acquire their optimal values21. Before choosing a specific 

experimental design, it is important to have in mind the quantity of factors needed, the nature of 

the study7, the interactions between the components, and the resources available to create the 

calibration model. One of the most important things to assess is the calibration model 

robustness.  

The objective of developing a robust model is to produce a model that cannot be 

affected by variations in samples. Some variations that can occur are variations in parameters, 

and environmental and fabrication changes. When the effect of these factors is reduced to a 

minimum, then a robust model is created.  
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2.2.3 D-Optimal Design  

 

D-optimal design is done using computer algorithms that correlate all the components 

used to create it. It was used in this work because it offers the maximum information with the 

best quality and with the smallest number of experiments used22. This form of design chooses 

the optimal set of design runs depending on the specified model and the total number of 

treatment runs.  
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2.2.4 NIR Spectrometer  

 

Near infrared reflectance spectroscopy (NIRS) is a fast, noninvasive, non-destructive 

technique that enables the analysis of complex matrices without requiring sample 

preparation6,18. NIRS has been widely used because of its ability to provide chemical and 

physical properties of samples4,6,16,18,19,23. NIR spectra depend on the physical and chemical 

properties of samples because it results from absorption and scattering processes. Scattering is 

the process in which the particles are randomly diverted after a collision. It is related to particle 

size, and has a multiplicative effect on the amount of light that the sample absorbs24. 

NIR spectroscopy offers the possibility of remote sampling with fiber optic probes and is 

also a practical analytical technique used to evaluate pharmaceutical powder blends. NIR 

spectroscopy is often applied as an alternative to the use of sample thieves. It is possible to 

obtain physical information from flowing powders because the spectra in NIRS are markedly 

affected by scattering. NIR radiation penetrates into the powder and NIR reflection 

spectroscopy thus gives information not only on the surface properties of the sample but also 

on the bulk composition. 
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Chapter 3 

3.1 Development of DoE 

 

A design of experiment was obtained using the Modde software Version 9 (from 

Umetrics, Umeå Sweden). The experiment was set to be designed with two different 

percentages (5%, 10%) for the maximum variation that could be found in the concentrations of 

the components in the final product. Two approaches were followed: 1) using granulation, 

active pharmaceutical ingredient (API), and placebo and 2) using placebo and API. The use of 

granulation was attempted because it had been prepared in a pharmaceutical environment with 

the process as it was supposed to occur for the preparation of the final mixture. 

When the DoE (D-Optimal Design) was created, there was a high correlation between 

the components if using granulation, drug, and placebo make the mixtures as shown in Table 

3.1. This high correlation occurs because the granulation mix contains the two major 

components that are also found in the placebo. After this analysis, it was decided to use the 

information when using a binder as filler at 10%, as the maximum variation found. With this 

information an equation was created to calculate the quantities of placebo and pure drug 

needed to obtain the % of drug desired in the final product. The equation is as follows: 

 

             ( )
100*%

WPlaceboWAPI

WAPI
API

+Σ
=

         (1) 

 

Where WAPI represents the weight of drug used, and WPlacebo represents the weight of the 

placebo used.  
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Table 3.1. Correlation of components using an API mixture, drug and placebo following  

      initial D-Optimal Design.  

 

 

After performing all the calculations, the correlation between all the components was 

found to be above the 99% which shows to be a high percentage of correlation between the 

principal components of the mixture. The equation to obtain correlation is: 

 

            (2) 

 
 

  Placebo Components 

Correlation API Filler Binder Disintegrant 
Binder 

II 
Lubricant Glidant Surfactant 

API % 1.00        

Filler -0.99 1.00       

Binder -1.00 0.99 1.00      

Disintegrant -0.98 0.97 0.98 1.00     

Binder II -0.56 0.47 0.53 0.58 1.00    

Lubricant -0.96 0.93 0.95 0.98 0.62 1.00   

Glidant -1.00 0.99 0.99 0.99 0.58 0.97 1.00  

Surfactant -0.96 0.93 0.95 0.98 0.62 1.00 0.97 1.00 
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Where N is the number of pairs of scores,  is the sum of the products of paired 

scores,  is the sum of x scores,  is the sum of y scores,  is the sum of squared x 

scores, and  is the sum of squared y scores. The symbol r is used to stand for the 

correlation. Correlation (r) will always be between -1.0 and +1.0. If correlation is negative, there 

is a negative relationship; if it's positive, the relationship is positive.  

Because this high correlation was not desired, a different approach was followed. The 

experimental design was then calculated using different fillers and comparing the correlation 

charts obtained. After analyzing all the charts, it was decided that the product would be mixed 

using only API and placebo, and using a binder as the filler at 10%. This was done to break the 

correlation between the major components of the mixture, and lead to a reduction in correlation: 

from 99% to 95% (Table 3.2). 
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Table 3.2. Correlation of components using drug and placebo 

 Placebo Components 

Correlation API Filler Binder Disintegrant Lubricant Glidant Surfactant 

API 1       

Filler -0.104 1      

Binder -0.038 0 1     

Disintegrant -0.958 -0.154 -0.097 1    

Lubricant 0 0 0 0 1   

Glidant 0 0 0 0 1 1  

Surfactant 0 0 0 0 1 1 1 

 
 
 

 By using placebo and API, a smaller correlation can be obtained (95%). If only one 

placebo is used, correlation between the components would be high because all of them would 

be directly related: if one increases, the other one will decrease.  The use of more than one 

placebo is applied so that when API increases, not all of the excipients will have a decrease in 

concentration in the same way. This approach makes it a more sensitive method, when related 

to changes in drug concentration. 
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3.2 Sample Preparation 

 

Nine different placebos, as shown in Table 3.3 and 3.4, were needed in order to have 

the minimum correlation possible. Of all the components that are in the placebos, the lubricant, 

glidant, and surfactant were fixed because the quantities used in each one were so small that 

they wouldn’t make a change in concentration. Each placebo, with its corresponding 

components, was placed in a methacrylate eight quart V-blender for 12 minutes at 15 

revolutions per minute (Figure 1). After that period, a lubricant was added and the complete 

mixture was blended for another 3 minutes at 15 revolutions per minute. 

 

Table 3.3. Weight of excipients in each of the placebos prepared 

 

Placebo 
Filler 
(g) 

Binder 
(g) 

Disintegrant 
(g) 

Lubricant 
(g) 

Glidant 
(g) 

Surfactant 
(g) 

Total 
(g) 

1 326.342 71.706 85.957 7.509 6.507 2.007 500.028 

2 398.850 71.700 13.457 7.508 6.507 2.046 500.068 

3 326.355 87.652 70.070 7.510 6.504 2.084 500.174 

4 382.902 87.648 13.443 7.504 6.503 2.006 500.005 

5 382.902 87.648 13.443 7.504 6.503 2.006 500.005 

6 326.345 79.682 77.990 7.507 6.501 2.081 500.106 

7 362.582 71.710 49.639 7.502 6.512 2.001 499.946 

8 390.880 79.674 13.451 7.520 6.504 2.072 500.101 

9 358.534 79.684 45.501 7.507 6.539 2.032 499.797 
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Table 3.4. Percentages of each of the excipients in the placebos prepared 

Placebo’s Percentages (%) 

Placebo Filler Binder Disintegrant Lubricant Glidant Surfactant Total 

1 65.26% 14.34% 17.19% 1.50% 1.30% 0.40% 100 

2 79.77% 14.34% 2.69% 1.50% 1.30% 0.41% 100 

3 65.27% 17.52% 14.01% 1.50% 1.30% 0.42% 100 

4 76.58% 17.53% 2.69% 1.50% 1.30% 0.40% 100 

5 76.58% 17.53% 2.69% 1.50% 1.30% 0.40% 100 

6 65.27% 15.93% 15.59% 1.50% 1.30% 0.42% 100 

7 72.51% 14.34% 9.93% 1.50% 1.30% 0.40% 100 

8 78.17% 15.93% 2.69% 1.50% 1.30% 0.41% 100 

9 71.70% 15.94% 9.10% 1.50% 1.31% 0.41% 100 
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Figure 3.1. V-blender used to mix the placebos with NIR infrared spectrometer attached.  

 

A total of 41 mixtures were prepared. These mixtures consisted of API and placebo4,16,19 

(all the components from the final mixture except the API). The matrix of concentrations of the 

mixtures have a design that covers from 45% to 85% w/w (±20%25 relative over 65% w/w) and 

contains API and determined quantities of each of the nine placebos that were prepared. This 

concentration range was used to introduce the chemical composition variability found in the 
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samples4,19. With this approach, it can be ensured that the determination of the production 

samples will be accurate. 

The final mixtures were prepared adding different quantities of API and of one of the 

placebos and mixing them in a 1 liter plastic bottle with a total of 10 revolutions (Table 3.5). 
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Table 3.5. Quantities of drug and placebo for the mixtures prepared 

Placebo Sample Drug Concentration API (g) Placebo (g) Total (g) 

1 

1 45 45 55 100 

10 54 172 146.5 318.5 

19 63 137 80 217 

28 72 180 70 250 

37 81 114 27 141 

2 

2 46 101 118 219 

11 55 89 73 162 

20 64 109 61 170 

29 73 134 50 184 

3 

3 47 93 105 198 

12 56 147 115.5 262.5 

21 65 173 93 266 

30 74 96 34 130 

38 82 195 43 238 

4 

4 48 54 58.5 112.5 

13 57 59 45 104 

22 66 98 50 148 

31 75 189 63 252 

5 

5 49 76 79 155 

14 58 110 80 190 

23 67 88 43 131 

32 76 143 45 188 

39 83 133 27 160 

6 

6 50 60 60 120 

15 59 78 54 132 

24 68 198 93 291 

33 77 159 47.5 206.5 

40 84 166 32 198 

7 

7 51 70 67 137 

16 60 162 108 270 

25 69 177 80 257 

34 78 127 36 163 

41 85 99 17.5 116.5 

8 

8 52 87 80 167 

17 61 149 95 244 

26 70 122 52 174 

35 79 191 51 242 

9 

9 53 55 49 104 

18 62 85 52 137 

27 71 105 43 148 

36 80 100 25 125 
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Of the 41 mixtures prepared with placebo and API, 29 samples were used for the 

calibration set (Table 3.6) and 12 for the prediction set (Table 3.7). The range of concentrations 

(from 45% to 85%) was chosen to differentiate the variation in drug concentration that can be 

found in a blending process in the pharmaceutical industry26.The calibration set covers the 

whole spectra range and was chosen randomly as shown in the PCA scores plot shown in 

Figure 3.2. 
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Table 3.6. Composition of calibration set samples.  

Sample Number Concentration Number of Placebo Used 

1 45 1 

3 47 3 

4 48 4 

5 49 5 

7 51 7 

8 52 8 

10 54 1 

11 55 2 

13 57 4 

14 58 5 

15 59 6 

17 61 8 

19 63 1 

20 64 2 

21 65 3 

22 66 4 

23 67 5 

25 69 7 

26 70 8 

27 71 9 

29 73 2 

31 75 4 

32 76 5 

33 77 6 

35 79 8 

37 81 1 

38 82 3 

40 84 6 

41 85 7 
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Table 3.7. Composition of Prediction Set samples  

Sample Number Concentration 
Number of Placebo 

Used 

2 46 2 

6 50 6 

9 53 9 

12 56 3 

16 60 7 

18 62 9 

24 68 6 

28 72 1 

30 74 3 

34 78 7 

36 80 9 

39 83 5 
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Figure 3.2.  Selection of Calibration (black squares) and Prediction (white squares) Sets  
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Five samples (validation samples) of an API mixture + API (doped samples) were 

prepared using an API mixture, as obtained from a pharmaceutical industry, and different 

quantities of API to obtain the variation in drug concentration shown in Table 3.8. Each sample 

consisted of 95 grams of an API mixture plus different quantities of API. The drug concentration 

in these samples ranged from 64 – 68 % (w/w). 

 
 

Table 3.8. Quantities of granulation and API used to prepare the Doped Samples 

Sample 
Granulation 

(g) 
API 
(g) 

API 
Concentration 

Doped Sample #1 95.2377 2.79257 64.0 

Doped Sample #2 95.4931 5.76268 65.0 

Doped Sample #3 95.0415 8.91149 66.0 

Doped Sample #4 95.0377 12.26721 67.0 

Doped Sample #5 95.0959 15.83742 68.0 
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Eight formulation mixes were prepared to validate the calibration model created (Table 

3.9). These samples consisted of an API mixture, as received from a pharmaceutical plant, and 

the compression mix done in the laboratory. The compression mixes were prepared mixing the 

API mixture, a filler, a binder, a disintegrant, a glidant, and a surfactant in a methacrylate lab 

scale V-blender for 12 minutes at 15 rpm. The lubricant used was then added and the mixture 

was left in the blender for another 3 minutes at 15rpm. Approximately, one hundred grams were 

prepared of each compression mix.  
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Table 3.9. Quantities of API and each of the excipients used to prepare the Formulation Samples 

 

 
 

Sample 
# 

API 
(g) 

Filler 
(g) 

Disintegrant 
(g) 

Lubricant 
(g) 

Glidant 
(g) 

Surfactant 
(g) 

Total (g) 
Concentration 

(% API) 

1 102.50 0.98 0.58 0.60 0.20 0.16 105.02 63.0 

2 102.50 0.98 0.58 0.60 0.20 0.16 105.02 63.0 

3 102.50 0.98 0.58 0.60 0.20 0.16 105.02 63.0 

4 102.50 0.98 0.58 0.60 0.20 0.16 105.02 63.0 

5 101.00 0.35 0.25 0.60 0.20 0.16 102.56 64.0 

6 99.00 1.20 0.83 0.60 0.20 0.16 101.99 65.0 

7 101.00 1.06 0.30 0.60 0.20 0.16 103.32 63.7 

8 101.00 1.16 0.58 0.60 0.20 0.16 103.70 63.3 
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A total of 15 samples of an API mixture were prepared to be used as a validation set for the 

calibration model created (Table 3.10). Each sample consisted of 100 grams of an API mixture as obtained 

from a pharmaceutical industry.  

 

Table 3.10. API Mixtures (granulation samples) used to validate the Calibration Model 

Sample 
API Concentration 

%(w/w) 

1 65.0 

2 65.0 

3 65.0 

4 65.0 

5 65.0 

6 65.0 

7 65.0 

8 65.0 

9 65.0 

10 65.0 

11 65.0 

12 65.0 

13 65.0 

14 65.0 

15 65.0 

 

A PCA comparison of the calibration model versus the three sets of samples used to validate the 

model is shown in Figure 3.3. The pretreatments Smooth + 1st derivative were applied because these were 

the pretreatments chosen for the calibration model. 
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Figure 3.3. PCA comparison of the calibration model (green squares) versus the three sets of samples 

used to validate the calibration model (purple squares). 
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3.3 Acquisition of NIR Spectra 

 

NIR spectra were acquired with a Blend Uniformity Monitor (CDI, South Bend, IN). This instrument 

uses an InGaAs diode array detector covering the 908 – 1687 nm spectral range. Spectra were acquired 

with 32 average samples and the fill buffer show average command, an integration time of about 0.003 

seconds. They were stored in .spc format with the CDI Spec 32 software, and were then analyzed by using 

Pirouette 4.0 software (Infometrix, Bothell, WA).  The spectral data was transposed using the Origin 

software to Excel 2003 (Microsoft Corporation, Seattle,WA) software, and graphs representing significant 

spectral regions were made. All spectra were mean centered for principal component analysis (PCA). 

Samples were placed close to the NIR window by using 8 stainless steel plates as shown in Figure 

3.4. All spectra were obtained using metal plates. The objective of this application is to predict samples in 

real-time during the preparation of the compression mix. The V-blender has a sapphire window through 

which the spectra are taken during mixing; hence, spectra were obtained in close proximity to simulate the 

future real-time determination of drug content. 
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Figure 3.4. Set up used to acquire spectra for development of calibration model 
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Chapter 4 

 
4.1 Calibration Model Samples 

 

 Nine placebos were prepared to achieve the minimum correlation possible. A total of 41 mixtures 

were prepared consisting of API and placebo in a concentration range of 45% to 85%. Of these 41 

mixtures, 29 were used for the calibration set and 12 for the prediction set. An additional 5 samples were 

prepared containing an API mixture plus more API with a concentration range of 64% to 68%. These 

additional 5 samples were used to validate the calibration model prepared. 
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4.2 Model Development 

 

Various pretreatments were performed to obtain an efficient calibration model. The pretreatments 

performed were SNV, 1st derivative, 2nd derivative4,6,7,16,18, smooth, and some of the possible combinations 

that result from these pretreatments (SNV + 1st derivative, SNV + 2nd derivative, smooth + SNV, smooth + 

1st derivative, smooth + 2nd derivative, smooth + SNV+ 1st derivative, smooth + SNV+ 2nd derivative). 

Second derivative was applied to enhance the resolution by removing the overlapping peaks and 

correcting the baseline18 and the Standard Normal Variate (SNV) correction was applied to remove the 

major effects of light scattering18. SNV as well as the derivatives were applied so that the physical 

properties of the samples would not affect the predictions of the model15. These pretreatments were done 

using different spectral ranges. The different spectral ranges were used in order to only observe changes 

in spectra related to changes in concentration of API. If the whole spectra range were used to create the 

calibration model (Table 4.1), it would take into consideration spectral ranges that do not show changes in 

concentration and also areas with high noise near the detector cut-off.  

After the calibration set was used to predict the prediction set, all of the samples were used to 

create the final calibration model. The spectral range chosen was 1123 – 1422 and the pretreatment used 

was smooth (5 points) + First Derivative.  The same pretreatment was used to verify the model chosen 

when predicting the prediction set. The region 1123 – 1422 was chosen because the spectral change that 

takes place in those areas is directly related to changes in API concentration as is shown in Figure 4.1.  
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Figure 4.1. Changes in API concentration to show spectral range 

 

Usually, the whole spectrum range is used to develop a PLS regression, but sometimes it is more 

useful to use smaller wavelengths. These smaller regions are usually chosen because of their high 

regression coefficient values, which summarize the relationship between all the predictors and a specific 

response17. 
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Table 4.1. Samples used to create the Calibration Model 

Sample Number Concentration Number of Placebo Used 

1 45 1 

2 46 2 

3 47 3 

4 48 4 

5 49 5 

6 50 6 

7 51 7 

8 52 8 

9 53 9 

10 54 1 

11 55 2 

12 56 3 

13 57 4 

14 58 5 

15 59 6 

16 60 7 

17 61 8 

18 62 9 

19 63 1 

20 64 2 

21 65 3 

22 66 4 

23 67 5 

24 68 6 

25 69 7 

26 70 8 

27 71 9 

28 72 1 

29 73 2 

30 74 3 

31 75 4 

32 76 5 

33 77 6 

34 78 7 

35 79 8 

36 80 9 

37 81 1 

38 82 3 

39 83 5 

41 85 7 
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The goodness of the predictions were assed using the Relative Standard Error of Prediction 

(RSEP)6.  The equation used is as followed: 

                       ∑
∑ −

=
2

2)(

ref

predref

C

CC
RSEP

                                              (3) 

Where Cref is the concentration used as reference and Cpred is the concentration predicted. 

The quality, as previously done in other works16,18,19, was checked by calculating the residual error 

(Bias), PRESS, and the Standard Error of Prediction (SEP), with the following equations: 

                                n

CC
BIAS

predref∑ −
=

2)(

                                   
(4) 

Where Cref is the concentration used as reference, Cpred is the concentration predicted and n is 

number of samples. 

                            ∑ −= 2)( predref CCPRESS
                                      

(5) 

 Where Cref is the concentration used as reference, Cpred is the concentration predicted. 

                                n

PRESS
SEP =

                
(6) 

Where n is number of samples. 

It was found that 3 of the samples (#14 – 84% API, #33 – 64% API, #15 – 85% API) were out of 

range (not well predicted) with the pretreatment previously chosen as shown in Figure 4.2 in the Y-Fit Plot 

obtained with Pirouette.  
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Figure 4.2. Y-Fit Plot showing the samples found that fall out of range (are not well predicted). 
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Several parameters were evaluated to determine whether the samples could be considered as 

outliers and eliminated from the model. After evaluating the Mahalanobis distance and the Studentized 

Residual, shown in Figure 4.3, it was decided that sample #14 (84% drug) could be eliminated because it 

had a small Mahalanobis distance and it was out of the studentized residual range (ranges from -2 to 2).  

 

 
 

Figure 4.3. Mahalanobis Distance and Studentized Residual used to evaluate the three samples that were not 

well predicted 

By eliminating this sample it was found that the other two samples that were not well predicted now 

fell into the same range and could be left in the calibration model as demonstrated in Figure 4.4 with the Y-

Fit Plot obtained from Pirouette.  
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Figure 4.4. Y-Fit Plot without sample #14 (84% API). As it shows, when eliminating sample #14, the other 

two samples that were not well predicted before, now fall in range with  the remaining samples. 
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None of the other two samples could be eliminated because sample #33 was inside the studentized 

residual and sample #15 had a big Mahalanobis distance. Experimentation also showed that none of the 

other two samples can be eliminated because they have a big impact on the rest of the samples used in 

the calibration model (Figures 4.5 and 4.6). The elimination of this outlier is accepted because an 

approach that is based on the mean and the sample covariance matrix of the data is very sensitive to 

outliers  and because methods based on this covariance matrix do not give good results in the presence of 

outlying measurements. 

 
 
Figure 4.5. Y-Fit Plot without sample #15 (85% API) 
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Figure 4.6. Y-Fit Plot without sample #33 (64% API) 
 

Results on Table 4.2 show the predicted concentration for each sample in the calibration model 

which was developed using the leave-one-out cross validation method 4,16,18,19,27,28. The bias (average 

residual value) for the predictions is -0.0065% which indicates that the predicted value is very similar to the 

predicted concentration for each sample used to validate the calibration model.  
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Table 4.2 Predictions with the calibration model (Leave-one-out Cross Validation) 

 Sample 
Concentration 

Measured 
Y 

Predicted 
Value 

Sample 
Concentration 

Measured 
Y 

Predicted 
Value 

45% 45.00 44.83 65% 65.00 64.95 

46% 46.00 47.12 66% 66.00 65.86 

47% 47.00 49.20 67% 67.00 66.17 

48% 48.00 47.61 68% 68.00 65.46 

49% 49.00 49.03 69% 69.00 69.44 

50% 50.00 50.84 70% 70.00 69.93 

51% 51.00 51.89 71% 71.00 71.58 

52% 52.00 51.57 72% 72.00 71.82 

53% 53.00 53.72 73% 73.00 71.74 

54% 54.00 55.29 74% 74.00 73.89 

55% 55.00 54.25 75% 75.00 74.52 

56% 56.00 56.73 76% 76.00 75.91 

57% 57.00 56.53 77% 77.00 76.70 

58% 58.00 56.92 78% 78.00 79.10 

59% 59.00 59.78 79% 79.00 79.38 

60% 60.00 59.08 80% 80.00 78.92 

61% 61.00 60.26 81% 81.00 81.68 

62% 62.00 62.08 82% 82.00 80.33 

63% 63.00 62.89 83% 83.00 84.35 

64% 64.00 62.23 85% 85.00 87.68 

RES VAL PRESS RSEP %RSEP 

-0.0065 42.21 1.03 1.57 
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4.2.1 Mahalanobis Distance 

 

The Mahalanobis Distance is one of the most commonly used distance measures of the multivariate 

techniques. It can be calculated in the original variable space and in the principal component space and 

takes into account the correlation in the data, since it is calculated using the inverse of the variance – 

covariance matrix of the data set of interest. 

The Mahalanobis Distance can also be calculated using a smaller number of latent variables 

obtained after the principal component analysis, instead of the original variables. In multivariate calibration, 

the Mahalanobis Distance is used to detect outliers, amongst other things, which can be observed on the 

regression line. Two types of outliers can be investigated before building the regression model. The first 

type of outliers (outliers in y), can be detected by only using the information in the y-axis. In this first case it 

is not necessary to use the Mahalanobis Distance to detect them. The second type (outliers in x), are 

identified using the information in the x-axis. The most used way of calculating outliers in the x-axis is by 

computing the squared Mahalanobis Distance between each point and the mean of the training set in the 

original variable space. 

On the other hand, a studentized residual is the quotient resulting from division of a residual by an 

estimate of its standard deviation. Typically the standard deviations of residuals in a sample vary greatly 

from one data point to another even when the errors all have the same standard deviation, particularly in 

regression analysis; thus it does not make sense to compare residuals at different data points without first 

studentizing. It is a form of a Student's t-statistic, with the estimate of error varying between points. This is 

a very important technique used to detect outliers. 
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4.2.2 Validation of the Calibration Model 

 

 A total of 3 validation sets were prepared in order to validate the calibration model with different 

types of mixtures. One set of validation samples were prepared using doped samples. These predictions 

are very precise since the residual error is very small (-0.336), as shown in Table 4.3.  

 

Table 4.3 Validation of Calibration Model Using Doped Samples 

Sample 
API 

Concentration 
Prediction 
(% API) 

Doped Sample #1 64.0 64.81 

Doped Sample #2 65.0 65.50 

Doped Sample #3 66.0 66.33 

Doped Sample #4 67.0 66.76 

Doped Sample #5 68.0 68.43 

Average 66.36 

Bias (residual error) -0.366 

PRESS 1.26 

RMSEP 0.501 

RSEP (%) 0.760 

 

 A second validation of the calibration model was done using granulation mixtures. Table 4.4 shows 

the predicted concentration for each sample. The results obtained are very encouraging. 

Table 4.4 Validation of Calibration Model using Granulation mixtures 
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Sample 
Concentration 

%(w/w) 
Ibuprofen 

Prediction 
(% API) 

Granulation #1 65.0 65.1 

Granulation #2 65.0 62.2 

Granulation #3 65.0 64.4 

Granulation #4 65.0 61.6 

Granulation #5 65.0 63.4 

Granulation #6 65.0 62.4 

Granulation #7 65.0 63.2 

Granulation #8 65.0 64.3 

Granulation #9 65.0 64.0 

Granulation #10 65.0 62.9 

Granulation #11 65.0 65.9 

Granulation #12 65.0 63.7 

Granulation #13 65.0 64.0 

Granulation #14 65.0 62.9 

Granulation #15 65.0 63.6 

Average 63.6 

Bias (average residual error) 1.44 

PRESS 48.6 

RMSEP 1.80 

RSEP (%) 2.77 

 
  

 

A third validation of the calibration model was done using formulation mixtures. These Formulation 

mixtures were prepared by mixing all of the components and the API, following the process that occurs in 

the pharmaceutical industry. Table 4.5 shows the predicted concentration for each sample. 
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Table 4.5 Validation of Calibration Model using Formulation mixtures 

Sample API Concentration (%) API Prediction (%) 

Formulation #1 62.0 61.85 

Formulation #2 62.0 62.96 

Formulation #3 62.0 61.84 

Formulation #4 62.0 61.08 

Formulation #5 63.0 61.99 

Formulation #6 64.0 62.54 

Formulation #7 62.7 61.81 

Formulation #8 62.3 61.56 

Average 61.95 

Bias (Average Residual Error) 0.546 

PRESS 6.31 

RMSEP 0.888 

RSEP % 1.42 

 

As a way to verify sample with 84% (w/w) API, it was predicted with the calibration model. The 

results obtained were that the model predicted that this sample had a concentration of 76.74% API. The 

residual of this prediction is 7.26, which confirms that this sample was, in fact, compromised and can not 

be used in the calibration model. 
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Chapter 5 

 

5.1 Comparison of Spectra inside and outside of V-Blender 

 This part is an additional study to validate the calibration model. These spectra include granulation, 

doped samples and formulation as shown in Table 5.1 with its respective concentrations. The comparison 

was made in order to show that the spectra used to validate the calibration model do not differ from the 

spectra taken inside the v-blender. 

 

Table 5.1 Granulation, Doped Samples and Formulation samples used in the validation set 

Sample Concentration 

Formulation #1 62.0 

Formulation #2 62.0 

Formulation #3 62.0 

Formulation #4 62.0 

Formulation #5 63.0 

Formulation #6 64.0 

Formulation #7 62.7 

Formulation #8 62.3 

Granulation #1 65.0 

Granulation #2 65.0 

Granulation #3 65.0 

Granulation #4 65.0 

Granulation #5 65.0 

Granulation #6 65.0 

Granulation #7 65.0 

Granulation #9 65.0 

Granulation #10 65.0 

Granulation #11 65.0 

Granulation #12 65.0 

Granulation #13 65.0 

Granulation #14 65.0 

Granulation #15 65.0 

Doped Sample #1 64.0 

Doped Sample #2 65.0 

Doped Sample #3 66.0 

Doped Sample #4 67.0 

Doped Sample #5 68.0 
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According to its definition, to dope is to affect with drugs or to apply or treat with dope. In this case, 

when doped samples are presented, they make reference to mixtures created with granulation (containing 

excipients and API previously prepared by the pharmaceutical that provided us with the samples) and 

different quantities of API, added in a specific way to achieve the concentration wanted. The 

concentrations of these doped samples ranged from 64 – 68 % (w/w). 

 Initially, all spectra were obtained in the static mode outside the v-blender but in this part, the 

spectra of the validation set were obtained inside the v-blender in static mode. The spectra were obtained 

by holding the blends against the window as shown in Figure 5.1 and against the sapphire window in 

interface coupling the V-blender and NIR spectrometer (Figure 5.2). 

 

 

 

Figure 5.1 Method used to obtain spectra inside v-blender in static mode.  

 
 



48 
 

 
 
 
Figure 5.2 Sapphire window in interface coupling the V-blender and NIR spectrometer.  
 
 
 
 



49 
 

An initial comparison is shown in Figure 5.3. These spectra show the comparison made between 

the spectra recorded outside the v-blender and the spectra recorded inside the v-blender without the use 

of a pretreatment. 

 

 
 

Figure 5.3 Spectra of samples taken inside and outside of v-blender in static mode 
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 In these spectra, differences are observed between the spectra taken inside the V-blender and the 

spectra taken outside the v-blender when comparing the extremes. Another noticeable difference between 

the data can be seen in the baseline of the spectra. 

 To eliminate the baseline differences, a Standard Normal Variate (SNV) pretreatment was applied. 

The spectra taken outside of the v-blender is shown in Figure 5.4 using SNV as the pretreatment. This 

figure contains only the spectra taken outside the v-blender in static mode.  

 
 

 
 

Figure 5.4 SNV Spectra of samples taken outside of v-blender in static mode 
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The spectra taken inside of the v-blender are shown in Figure 5.5 using SNV as the pretreatment. 

This figure contains only the spectra taken inside the V-blender in static mode.  

 
 
 

 
 

Figure 5.5 SNV Spectra of samples taken inside of v-blender in static mode 
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Figure 5.6 shows the spectra taken outside and the spectra taken inside the V-blender. The 

pretreatment used was SNV in order to eliminate their differences in baseline and be able to see the 

possible differences between the spectra. As can be seen, both sets of spectra are very similar. The 

marked differences between both set of spectra can be seen at the high wavelengths (detector cut off). 

The relative small differences between the rest of the spectra can be due to the sapphire crystal found 

inside the v-blender which goes between the NIR and the sample. 

 

 
 

Figure 5.6 SNV Spectra of samples taken outside and inside of v-blender in static mode 

Wavelength (nm) 

A
b
s
o
rb
a
n
c
e
 



53 
 

If the extremes of the spectra are cut, the differences are minimized between the two sets of 

samples as can be seen in Figure 5.7. 

 

 
 

Figure 5.7 SNV Spectra outside and inside of v-blender without extremes 
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 By comparing the spectra taken inside the V-blender and the spectra taken outside the v-blender, it 

can be deduced that there are no significant differences between them. This implies that the calibration 

model created using the spectra of the samples taken outside the v-blender can be used to predict the 

spectra of the samples taken inside the v-blender. 

The visual comparison already indicated that the differences between the spectra taken inside the 

V-blender and the spectra taken outside the v-blender are not significant. To corroborate this information it 

is necessary to do a quantitative comparison. The spectra taken outside the v-blender was already used to 

validate the calibration model. After comparing the spectra inside versus the spectra outside of the 

blender, the spectra obtained inside the v-blender was predicted in order to compare quantitatively both 

sets of spectra. 
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5.1.1 Validation of the Calibration Model using samples inside of v-blender 
 
 
 The spectra taken inside the v-blender was predicted using the spectral range from 1123 – 1422 

and the pretreatment used for the calibration model was PLS + Smooth + First Derivative with two factors. 

The samples used consisted of granulation (Table 5.1.1), doped samples (Table 5.1.2) and formulation 

(Table 5.1.3).  

 
Table 5.1.1 Concentration and prediction of the Granulation Samples using the Calibration Model 

developed 

 
 

Sample 
API Concentration 

(% w/w) 
Prediction 

(% API) 

Granulation #1 65.0 60.2 

Granulation #2 65.0 63.4 

Granulation #3 65.0 60.1 

Granulation #4 65.0 62.1 

Granulation #5 65.0 62.7 

Granulation #6 65.0 65.1 

Granulation #7 65.0 65.0 

Granulation #8 65.0 65.4 

Granulation #9 65.0 65.4 

Granulation #10 65.0 67.3 

Granulation #11 65.0 66.3 

Granulation #12 65.0 64.7 

Granulation #13 65.0 60.7 

Granulation #14 65.0 66.1 

Granulation #15 65.0 66.3 

Average 65.0 64.0 
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Table 5.1.2 Quantities of Doped Samples and their prediction using the Calibration Model developed 

 

Sample Granulation (g) 
API  

(g) 

API 

Concentration 

(% w/w) 

Prediction 

 (% API) 

Doped Sample #1 95.2377 2.79257 64.0 60.6 

Doped Sample #2 95.4931 5.76268 65.0 64.6 

Doped Sample #3 95.0415 8.91149 66.0 65.1 

Doped Sample #4 95.0377 12.26721 67.0 65.2 

Doped Sample #5 95.0959 15.83742 68.0 70.4 

Average N/A N/A N/A 65.2 

 



57 
 

 

Table 5.1.3 Quantities used to prepare the Formulation Samples and their predictions using the Calibration Model 

developed 

 
 

Sample 
API Base Granulation 

(g) 
Filler 
(g) 

Disintegrant 
(g) 

Lubricant 
(g) 

Glidant 
(g) 

Surfactant 
(g) 

Total (g) 
Concentration 

(% API) 
Prediction 
(% API) 

1 102.50 0.98 0.58 0.60 0.20 0.16 105.02 62.0 57.44 

2 102.50 0.98 0.58 0.60 0.20 0.16 105.02 62.0 56.49 

3 102.50 0.98 0.58 0.60 0.20 0.16 105.02 62.0 58.71 

4 102.50 0.98 0.58 0.60 0.20 0.16 105.02 62.0 59.05 

5 101.00 0.35 0.25 0.60 0.20 0.16 102.56 63.0 61.79 

6 99.00 1.20 0.83 0.60 0.20 0.16 101.99 64.0 59.54 

7 101.00 1.06 0.30 0.60 0.20 0.16 103.32 62.7 60.57 

8 101.00 1.16 0.58 0.60 0.20 0.16 103.70 62.3 60.63 

Average N/A N/A N/A N/A N/A N/A N/A N/A 59.28 
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A deeper analysis was made by comparing the prediction of API in each of the samples 

inside and outside the v-blender using the data obtained previously (Tables 5.1.4, 5.1.5, 5.1.6) 
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Table 5.1.4 Comparison of Prediction of Granulation Samples inside and outside of the V-Blender 

 

Sample 

Concentration 
% (w/w) 
Ibuprofen 

Prediction 
Outside V-
Blender 
(%API) 

Prediction 
Inside V-
Blender 
(%API) 

Residual 
Between 
Prediction 
Outside and 
Inside V-
Blender 

Residual 
Between 

Concentration 
and 

Prediction 
Outside V-
Blender 

Residual 
Between 

Concentration 
and 

Prediction 
Inside V- 
Blender 

 

Granulation #1 65.0 65.1 60.2 4.9 -0.1 4.8 

Granulation #2 65.0 62.2 63.4 -1.3 2.8 1.6 

Granulation #3 65.0 64.4 60.1 4.4 0.6 5.0 

Granulation #4 65.0 61.6 62.1 -0.4 3.4 2.9 

Granulation #5 65.0 63.4 62.7 0.7 1.6 2.3 

Granulation #6 65.0 62.4 65.1 -2.7 2.7 -0.1 

Granulation #7 65.0 63.2 65.0 -1.8 1.8 0.1 

Granulation #8 65.0 57.1 65.4 -8.3 7.9 -0.4 

Granulation #9 65.0 64.0 65.4 -1.5 1.0 -0.4 

Granulation #10 65.0 62.9 67.3 -4.4 2.1 -2.3 

Granulation #11 65.0 65.9 66.3 -0.4 -0.9 -1.3 

Granulation #12 65.0 63.7 64.7 -0.9 1.3 0.4 

Granulation #13 65.0 64.0 60.7 3.3 1.0 4.3 

Granulation #14 65.0 62.9 66.1 -3.2 2.1 -1.1 

Granulation #15 65.0 63.6 66.3 -2.7 1.4 -1.3 

Average 65.0 63.1 64.0 -1.0 1.9 1.0 

Bias 1.4 1.0 

PRESS 48.6 92.1 

RMSEP 1.8 2.5 

RSEP % 2.8 3.8 
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Table 5.1.5 Comparison of Prediction of Doped Samples inside and outside of the V-Blender 

Sample 

API 

Concentration Prediction 

Outside V-

Blender 

(%API) 

Prediction 

Inside V-

Blender 

(%API) 

Residual 

Between 

Prediction 

Outside and 

Inside V-Blender 

Residual 

Between 

Concentration 

and Prediction 

Outside V-

Blender 

Residual 

Between 

Concentration 

and Prediction 

Inside V- 

Blender 

(% w/w) 

 

Doped Sample #1 64.0 64.8 60.6 4.2 -0.8 3.4 

Doped Sample #2 65.0 65.5 64.6 0.9 -0.5 0.4 

Doped Sample #3 66.0 66.3 65.1 1.2 -0.3 0.9 

Doped Sample #4 67.0 66.8 65.2 1.5 0.2 1.8 

Doped Sample #5 68.0 68.4 70.4 -1.9 -0.4 -2.4 

Average -------------- 66.4 65.2 1.2 -0.4 0.8 

Bias -0.4 0.8 

PRESS 1.3 21.2 

RMSEP 0.5 2.1 

RSEP % 0.8 3.1 
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Table 5.1.6 Comparison of Prediction of Formulation Samples inside and outside of the V-Blender 

Formulation 

Sample 

API 

Concentration Prediction 

Outside 

V-Blender 

(%API) 

Prediction 

Inside V-

Blender 

(%API) 

Residual 
Between 
Prediction 
Outside and 

Inside V-Blender 

Residual 
Between 

Concentration 
and Prediction 
Outside V-
Blender 

Residual 
Between 

Concentration 
and Prediction 

Inside V- 
Blender 

(% w/w) 

 

Sample #1 62.0 61.9 57.4 4.4 0.2 4.6 

Sample #2 62.0 63.0 56.5 6.5 -1.0 5.5 

Sample #3 62.0 61.8 58.7 3.1 0.2 3.3 

Sample #4 62.0 61.1 59.1 2.0 0.9 3.0 

Sample #5 63.0 62.0 61.8 0.2 1.0 1.2 

Sample #6 64.0 62.5 59.5 3.0 1.5 4.5 

Sample #7 62.7 61.8 60.6 1.2 0.9 2.1 

Sample #8 62.3 61.6 60.6 0.9 0.7 1.7 

Average ------------- 62.0 59.3 2.7 0.6 3.4 

Bias 0.5 3.2 

PRESS 6.3 99.4 

RMSEP 0.9 3.5 

RSEP % 1.4 5.6 
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The quantitative comparison shows differences between the results for spectra taken 

inside the v-blender and the spectra taken outside the v-blender. The differences found 

between the predictions obtained from the spectra taken inside the v-blender and the spectra 

taken outside the v-blender are relatively small since the average of them is ±3. These 

differences could be attributed to the positioning of the samples against the sapphire crystal 

inside the v-blender. 
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Chapter 6 

 
Conclusions         
 
  In formulations where the concentrations of the components are high, there is always 

going to be a high correlation between two of the components, usually the two that have the 

highest concentrations. Since the total sum of the percent for each sample is 100, at least one 

of the percentages is linearly dependent on the others. 

  The decrease in correlation permitted the development of a calibration model in which 

components were not highly related one to another. This provided the necessary tools to 

develop a robust model to detect drug concentrations in a pharmaceutical process. 

The calibration model provided promising results for the spectra taken inside of the V-

Blender.
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