
OPTIMIZATION OF WAMDAS: A WEB SERVICE-BASED

WIRELESS ALARM MONITORING AND DATA ACQUISITION

SYSTEM FOR PHARMACEUTICAL PLANTS

By

Edith Quispe Holgado

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
In

COMPUTER ENGINEERING

UNIVERSITY OF PUERTO RICO
MAYAGÜEZ CAMPUS

2008

Approved by:

Manuel Rodríguez Martinez, Ph.D.
President, Graduate Committee

Date

Pedro I. Rivera Vega, Ph.D.
Member, Graduate Committee

Date

Bienvenido Vélez Rivera, Ph.D.
Member, Graduate Committee

Date

William Hernández Rivera, PhD
Representative of Graduate Studies

Date

Isidoro Couvertier, Ph.D.
Chairperson of the Department

Date

ii

ABSTRACT

This thesis presents a novel infrastructure which allows the Web Service-Based

Wireless Alarm Monitoring and Data Acquisition System for Pharmaceutical Plants

(WAMDAS) to be a more portable, reliable, secure, and robust system. This infrastructure

provides a reliable alarm management mechanism and a functionality to have a pool of

available web services to respond the requests on time. Likewise, a Windows-based

application is provided to configure dynamically all system information and parameters.

Furthermore, the handheld device application was improved with a strong security

mechanism to access the system, a system usage control, and a redesign of the user interfaces.

The results of the experiments show that the system protocols were optimized when

using Stored Procedures instead of in-Line SQL Statements and Message Queues instead of

TCP/IP Sockets. And the usability evaluation shows a high level of effectiveness and user

satisfaction of WAMDAS at the pharmaceutical plant.

iii

RESUMEN

Esta tesis presenta una novedosa infraestructura que permite a WAMDAS (el sistema

inalámbrico basado en Servicios Web para monitoreo de alarmas y adquisición de datos para

plantas farmacéuticas) ser un sistema más portátil, confiable, seguro y robusto. Esta

infraestructura proporciona un mecanismo confiable de administración de alarmas y una

funcionalidad para mantener los Servicios Web disponibles para responder peticiones de

servicio oportunamente. Así mismo, se proporciona una aplicación Windows para configurar

dinámicamente toda la información y parámetros del sistema. Además, la aplicación para

dispositivos portátil fue mejorada con un mecanismo sólido de seguridad para accesar al

sistema, un control de uso del sistema, y un rediseño de las interfaces de usuario.

Los resultados de los experimentos muestran que los protocolos del sistema fueron

optimizados usando Procedimientos Almacenados en vez de Sentencias SQL dentro del

código y Colas de Mensajes en vez de Sockets TCP/IP. Y la evaluación de usabilidad

muestra un alto nivel de eficacia y satisfacción del usuario de WAMDAS en la planta

farmacéutica.

iv

Copyright © 2008

By

Edith Quispe Holgado

v

To my great family

vi

ACKNOWLEDGEMENTS

 I would like to thank God for his blessings and for giving me the strength to

accomplish this work.

 Also, I would like to thank my advisor and president of my graduate committee, Dr.

Manuel Rodriguez, for his support and guidance throughout my master studies and the

development of the present thesis. As well, thanks to INDUSOFT for giving me the support

for the development of this research project.

 Thanks to Edilberto García for his valuable contribution and help throughout the

development of this work. Also, thanks to Pfizer, Vega Baja Inc. for the collaboration in the

development and evaluation of WAMDAS.

In addition, I want to thank the other members of my graduate committee, Dr.

Bienvenido Velez and Dr. Pedro Rivera for their comments and suggestions.

Besides, my complete gratitude to the Department of Electrical and Computer

Engineering of the University of Puerto Rico at Mayagüez for giving me the opportunity and

support to pursue my master studies.

Finally, I would like to thank to Dr. Ingrid Padilla and the U.S Department of Energy

– Savanna River for giving me the support to complete this work.

vii

Table of Contents

ABSTRACT...II

RESUMEN .. III

ACKNOWLEDGEMENTS... VI

TABLE OF CONTENTS ...VII

TABLE LIST.. IX

FIGURE LIST ...X

ABBREVIATION LIST..XII

1 INTRODUCTION...1

1.1 OVERVIEW...1
1.2 PROBLEM STATEMENT ..3
1.3 OBJECTIVES..3
1.4 CONTRIBUTIONS ...5
1.5 THESIS STRUCTURE ...7

2 LITERATURE REVIEW ...8

2.1 PREVIOUS WORK...8
2.1.1 Previous System Architecture ..8
2.1.2 Previous System Protocols ..10

2.2 THEORETICAL BACKGROUND...12
2.2.1 Web Services ...12
2.2.2 Relational Databases ...15
2.2.3 Messages Queues ...18

3 WAMDAS ARCHITECTURE ...21

3.1 SYSTEM ARCHITECTURE ...21
3.2 SYSTEM PROTOCOLS ...24

3.2.1 Status Services Protocol ...24
3.2.2 Alarm Services Protocol ...25

4 WAMDAS IMPLEMENTATION ..30

4.1 WEB SERVICES IMPLEMENTATION..30
4.1.1 The Data Broker Web Service (DBR) ..30
4.1.2 The Registration Web Service (RS) ...34

viii

4.1.3 The Alarm and Data Acquisition Web Service (ADAS) ...36
4.1.4 The Alarm Notification Web Service (ANS) ..38

4.2 SYSTEM PROTOCOLS IMPLEMENTATION ..40
4.2.1 Status Services Protocol Implementation ...41
4.2.2 Alarm Services Protocol Implementation..44

4.3 WAMDAS’S RELATIONAL DATABASE..52
4.4 ADMINISTRATOR MODULE...59
4.5 HANDHELD DEVICE MODULE..66

5 EXPERIMENTS AND RESULTS ...76

5.1 EVALUATION SCENARIO...76
5.2 STATUS SERVICES PROTOCOL EVALUATION ..77
5.3 ALARM SERVICES PROTOCOL EVALUATION ..82
5.4 USABILITY EVALUATION ..90

6 CONCLUSIONS AND FUTURE WORK ...94

6.1 SUMMARY AND CONCLUSIONS ..94
6.2 FUTURE WORK ..96

APPENDIX A. MSMQ IMPLEMENTATION ...100

APPENDIX A1. SERVER SIDE IMPLEMENTATION ..100
APPENDIX A2. CLIENT SIDE IMPLEMENTATION ...102

APPENDIX B. USABILITY EVALUATION..106

APPENDIX B1. TASK LISTS ..106
APPENDIX B2. USER EVALUATION QUESTIONNAIRES ...108

ix

Table List

Tables Page

Table 2.1 Symbols used in E-R Diagrams 17
Table 5.1 Average number of queries to measure the Response Time of Equipment Status

Query - WAMDAS previous version 78
Table 5.2 Average number of queries to measure the Response Time of Equipment Status

Query - WAMDAS new version 80
Table 5.3 Average number of alarms to measure the Alarm Delivery Time - WAMDAS

previous version 83
Table 5.4 Average number of alarms to measure the Alarm Delivery Time - WAMDAS new

version 84
Table 5.5 Average number of alarms to measure the Response Time of Alarm

Acknowledgement - WAMDAS new version 86
Table 5.6 Fault tolerance of the Alarm Services Protocol – WAMDAS previous version 88
Table 5.7 Fault tolerance of the Alarm Services Protocol – WAMDAS new version 89
Table 5.8 Evaluation of the Handheld Device Module 91
Table 5.9 Evaluation of the Administrator Module 93

x

Figure List

Figures Page

Figure 1.1 Pharmaceutical Plant Environment ... 1
Figure 1.2 WAMDAS Solution .. 6
Figure 2.1 Previous WAMDAS Architecture... 9
Figure 2.2 Previous Status Services Protocol ... 11
Figure 2.3 Previous Alarm Services Protocol... 12
Figure 3.1 WAMDAS Architecture.. 22
Figure 3.2 Status Services Protocol .. 24
Figure 3.3 Alarm Services Protocol.. 26
Figure 3.4 Alarm Acknowledgement Process .. 28
Figure 4.1 Status Services Protocol Implementation.. 42
Figure 4.2 Alarm Services Protocol Implementation ... 45
Figure 4.3 Alarm Acknowledgement Process Implementation .. 49
Figure 4.4 Entity-Relationship Diagram for WAMDAS Database .. 54
Figure 4.5 Administrator Module - User Login.. 59
Figure 4.6 Administrator Module - Main Window... 60
Figure 4.7 Administrator Module – Alarm Management ... 62
Figure 4.8 Administrator Module – User-to-Alarm Mapping .. 63
Figure 4.9 Administrator Module – Handheld Devices.. 64
Figure 4.10 Administrator Module – Parameters ... 65
Figure 4.11 Administrator Module – Web Services ... 65
Figure 4.12 Handheld Device Module - User Login .. 67
Figure 4.13 Handheld Device Module - Operational Shift Start .. 67
Figure 4.14 Handheld Device Module – Main Window... 67
Figure 4.15 Handheld Device Module - Application Exit.. 67
Figure 4.16 Handheld Device Module - User Logout .. 68
Figure 4.17 Handheld Device Module - Turb_A Generator Status Information.................... 69
Figure 4.18 Handheld Device Module - Turb_B Generator Status Information 69
Figure 4.19 Handheld Device Module - Turb_A Engine Status Information......................... 70
Figure 4.20 Handheld Device Module - Turb_C Engine Status Information......................... 70
Figure 4.21 Handheld Device Module - Turbines Data Source Status Information............... 71
Figure 4.22 Handheld Device Module - RO Status Information .. 71
Figure 4.23 Handheld Device Module – Alarms Handling Main Window............................ 72
Figure 4.24 Handheld Device Module - Alarm Notification.. 72
Figure 4.25 Alarm Acknowledgement Result Notification - Case 1 73
Figure 4.26 Alarm Acknowledgement Result Notification - Case 2 73
Figure 4.27 Alarm Acknowledgement Result Notification - Case 3 74

xi

Figure 4.28 Handheld Device Module - Historic Acknowledged Alarms.............................. 74
Figure 4.29 Handheld Device Module - Friendly Error Message .. 75
Figure 4.30 Handheld Device Module - Specific Error Message... 75
Figure 5.1 Experiments Scenario.. 77
Figure 5.2 Average response time of equipment status query - WAMDAS previous version79
Figure 5.3 Average response time of equipment status query - WAMDAS new version 80
Figure 5.4 Average response time of equipment status query - Stored procedures vs. In-Line

SQL statements ... 81
Figure 5.5 Average time of alarm delivery - WAMDAS previous version............................ 83
Figure 5.6 Average time of alarm delivery - WAMDAS new version................................... 84
Figure 5.7 Average time of alarm delivery - MSMQ vs. TCP/IP Sockets 85
Figure 5.8 Average response time of alarm acknowledgement - WAMDAS new version.... 87
Figure 5.9 Fault tolerance of alarm services protocol - WAMDAS previous version 88
Figure 5.10 Fault tolerance of alarm services protocol - WAMDAS new version................. 89
Figure 5.11 User satisfaction of WAMDAS handheld device module vs. Actual system 92

xii

Abbreviation List

ADAS Alarm and Data Acquisition Service

ADO ActiveX Data Objects

ANS Alarm Notification Service

API Application Programming Interface

DBMS Database Management System

DBR Data Broker

COM Component Object Model

HMI Human Machine Interface

IP Internet Protocol

LAN Local Area Network

MAC Media Access Control

MSMQ Microsoft Message Queue

PDA Personal Digital Assistant

PLC Programmed Logical Controller

RDBMS Relational Database Management System

RO Reverse Osmosis

RS Registration Service

SCADA Supervisory Control and Data Acquisition

SOAP Simple Object Access Protocol

SQL Structured Query Language

TCP/IP Transmission Control Protocol / Internet Protocol

TKIP Temporal Key Integrity Protocol

UDDI Universal Description, Discovery and Integration of Web Services

URL Uniform Resource Locator

Wi-Fi Wireless Fidelity

WPA Wi-Fi Protected Access

WSDL Web Services Description Language

XML Extensible Markup Language

1

1 INTRODUCTION

1.1 Overview

Highly regulated manufacturing plants require up-to-date equipment status

information and operational readings, all of which are used to monitor the entire production

process. This task is often achieved by connecting Programmable Logic Controllers (PLCs)

to the equipment instrumentation. The data gathered from the PLCs are then extracted and

visualized using Supervisory Control and Data Acquisition (SCADA) systems and Human-

Machine Interface (HMI) systems (see Figure 1.1).

Figure 1.1 Pharmaceutical Plant Environment

2

Equipment in these environments must operate within normal operational set points and

status levels. Any unmanaged deviation or equipment failure can result in larger

malfunctioning events, loss of the active production in the plant, or even multi-million dollar

fines from regulatory agencies. As a result, many manufacturers recruit operators and

engineers whose main job is to watch over the equipment, as opposed to provide equipment

maintenance services. Hence, these operators and engineers devote their time to watch

equipment operational status over computer monitors, and to make periodic trips around the

manufacturing plant, physically inspecting the instrumentation and logging data.

This operational scheme increases production costs and is prone to human errors.

Clearly, an automated monitoring system is necessary to guarantee that the equipment status

information and alarm messages are received in real-time to enable correcting actions.

Furthermore, the solution should be wireless to simplify the deployment at the plant. Such

system will enable operators to leave the secluded monitoring rooms and spend their time

servicing equipment.

In response to this necessity, WAMDAS (Web Service-Based Wireless Alarm

Monitoring and Data Acquisition System for Pharmaceutical Plants) has been developed [1]

[2]. This system is designed and implemented with capabilities to monitor equipment status

information and to manage equipment alarms. We define an alarm as an incident triggered

by contingencies that occur while the equipment is in use under normal operational

conditions; and this incident needs attention and must be corrected at a given time.

3

1.2 Problem Statement

During the testing and deployment of the previous version of WAMDAS in a real

manufacturing environment, it was identified the need for WAMDAS to be dynamically

configured to reduce the difficulty incurred in deploying the system. Since new equipment is

frequently added and removed from the manufacturing plant, it became important to simplify

the configuration of the alarms associated with each piece of equipment, and the delivery

methods necessary to disseminate such alarms. Notice that even the personnel in charge of

handling the alarms changes, thus the system must be able to cope with these changes on a

daily basis. Clearly, timely delivery of alarms is critical to successful system operation, so it

became necessary to have a mechanism to guarantee this process. Finally, we realized that it

was necessary to seamlessly manage situations in which system web services were handling

extreme workloads and system or network failures occurred.

Taking into account all the new requirements stated above, WAMDAS needed to be

extended and optimized in order to completely satisfy these necessities of the dynamic and

critical environments of pharmaceutical plants.

1.3 Objectives

The general objective of this thesis is to build an infrastructure which allows

WAMDAS to be a more portable, reliable, and robust wireless web service-based

middleware system.

4

This infrastructure will provide an alarm management mechanism that guarantees the alarm

delivery according with a well-defined alarm configuration schema. Also it will provide a

functionality to have a pool of available web services to respond to the requests on time.

Likewise, this new infrastructure will provide a functionality to configure dynamically all

system information and parameters. Moreover a security mechanism to access the system and

a system usage control will be provided as well.

The specific objectives of this thesis which must be achieved to attain the general

objective cited above are as follows:

1. Implement a mechanism to define a configuration schema for the alarms triggered by

the equipment that is in use under normal operational conditions. This mechanism

must consider the severity of each alarm and the set of users who will receive them.

2. Implement an alarm management mechanism that does not allow alarms to get lost,

and guarantees the delivery of all the alarms to the users authorized to receive them.

3. Implement a dynamic configuration of all system Web Services’ IP/URL to avoid

recompiling their source code every time they are moved to other servers. Also

implement an easy way to add new instances of these web services to the system

when it is required.

4. Implement a functionality to provide all system Web Services the capacity to handle

extreme workloads and be fault tolerant and consequently to allow the normal

operation of the system under these circumstances.

5

5. Extend the functionalities of the system’s handheld device module, so that it provides

a security mechanism to access the system and a system usage control.

6. Provide to the system the necessary capacities for a smooth deployment task in the

pharmaceutical plant environments.

7. Conduct a series of experiments to test the WAMDAS system in terms of

performance and fault tolerance.

1.4 Contributions

In this thesis, we present a novel infrastructure which allows WAMDAS to be a more

portable, reliable, secure, and robust wireless web service-based middleware system (see

Figure 1.2). This infrastructure provides a reliable alarm management mechanism to

guarantee that alarms are sent to and received by the handheld devices used by operators.

Moreover, this alarm delivery process obeys a configuration scheme for alarms, which

defines the mapping between the Real Alarms (alarms triggered by equipment) and the

WAMDAS Alarms (alarms defined in the system). Likewise our new approach guarantees

that alarm acknowledgments are sent to and received by the alarm notification server. It also

guarantees that acknowledgement results are sent to and received by the handheld devices.

WAMDAS now provides a new functionality to have a pool of available web services

to respond to requests on time, even under unexpected circumstances such as extreme

workloads and system or network failures.

6

Figure 1.2 WAMDAS Solution

Likewise, a Windows-based application module is provided to permit system

administrators to dynamically configure all system information and parameters, as well as

define the configuration scheme for alarm management.

Furthermore, the handheld device application was improved with a strong security

mechanism to access the system. WAMDAS can only run on authorized handheld devices,

and only authorized users can log into the system. We also implemented a mechanism to

control the system usage through operational shifts. Moreover, we redesigned the user

7

interface in order to provide the users all the equipment status and alarm information in a

very intuitive and feature-rich manner.

In addition, WAMDAS is a widely applicable system; it can be used in

pharmaceutical plants and in any other type of manufacturing plants such as electric energy

industry, metalworking, telecommunications, textile, construction, transportation, and others.

In general, WAMDAS can be used in any environment where is necessary to monitor

equipment status information and to manage equipment alarms.

1.5 Thesis Structure

This chapter has addressed the introduction of this thesis; the reminder of the

document is organized as follows: Chapter 2 discusses the literature review that serves to

develop this thesis. Chapter 3 presents the WAMDAS architecture and the Status and Alarms

Services Protocols. Chapter 4 presents a detailed description of WAMDAS implementation.

Chapter 5 presents the experiments and results of the WAMDAS evaluation. Finally, Chapter

6 presents the conclusions and future work related to WAMDAS.

8

2 LITERATURE REVIEW

This chapter provides a literature review of the previous work of this thesis, and the

theoretical background of some related areas relevant to this research.

2.1 Previous Work

The previous work of this thesis is WAMDAS: A web service-based wireless alarm

monitoring and data acquisition system for pharmaceutical plants [1] [2], which was

developed as a master thesis at the University of Puerto Rico. WAMDAS is a prototype of a

wireless web service-based middleware system, which monitors status information from the

remote equipment (e.g., Turbines, Reverse Osmosis Systems and Water Chillers) deployed in

a pharmaceutical plant. The information collected from this equipment includes equipment

operational mode, component temperature, chlorine concentration, header pressure, and

others. Also, WAMDAS processes critical alarms triggered by contingencies that occur while

the equipment is in use under normal operational conditions.

2.1.1 Previous System Architecture

WAMDAS has a decentralized architecture (see Figure 2.1). It has four types of

server components implemented as XML Web Services. The purpose of each web service is

as follows:

9

Figure 2.1 Previous WAMDAS Architecture

1. Data Broker (DBR). – This web service was implemented to receive query requests

about equipment status information from the PDA clients. Also, it receives the alarm

messages from the ANS. The DBR processes an alarm message by searching in its

local database for online PDA clients. After that, it proceeds to send the alarm

message to all online PDA clients.

2. Registration Service (RS). – This web service provides up-to-date status of any

member of WAMDAS.

3. Alarm and Data Acquisition Service (ADAS). – This web service monitors any

possible alarm information from all system components. When an alarm message is

generated, the ADAS broadcasts this message to the ANS for forwarding and

acknowledgement actions.

10

4. Alarm Notification Service (ANS). – This web service is responsible for forwarding

the alarm messages and for processing the alarm acknowledgements.

Each web service has a local database (MS SQL Server) on which it stores the necessary

information to accomplish its tasks.

 The client side of the WAMDAS is a PDA client application, which helps the

operators to request equipment status information and also to receive the alarm notification

messages and acknowledge them.

2.1.2 Previous System Protocols

WAMDAS has two protocols, one to get status information from the equipment and

one to process the alarm information. The description of the protocols is as follows:

1. Status Services Protocol. – This protocol works as follows (see Figure 2.2): The

PDA client issues a query that the DBR will handle. The DBR will send a message to

the RS to find the URL for each of the available data sources to resolve the query.

Then the DBR will be responsible for sending the query to the ADAS running on the

target data source site(s). The ADAS retrieves the information from the database

where that data source information is stored through in-Line SQL statements. Finally

the DBR collects the query results and forward these to the PDA client.

11

Figure 2.2 Previous Status Services Protocol

2. Alarm Services Protocol. – This protocol works as follows (see Figure 2.3): After

the ADAS receives an alarm message from any equipment of a remote data source; it

will broadcast this message to the ANS. The ANS will communicate with the RS to

find out the URLs of the DBR’s clients that are interested in the alarm. Then, the

ANS will forward the alarm information to all DBR’s client applications that are

connected, and will continue to do so until an acknowledgment message is received

back from one or more PDA clients. The DBR sends the alarm notification message

to the PDA clients through client TCP/IP Sockets.

12

Figure 2.3 Previous Alarm Services Protocol

2.2 Theoretical Background

This research is related to the areas of Web Services, Relational Databases, and

Messages Queues. Each of them will be described briefly in the following subsections.

2.2.1 Web Services

A web service is an application logic that is accessible using Internet standards. There

have been many technologies for exposing application logic, but usually these were based on

difficult to implement and often proprietary protocols. Internet standards, such as XML, have

simplified the building of a distributed application [3].

13

Web services are another distributed technology; they allow us to create client/server

applications. A web service exposes an interface to invoke a particular activity on behalf of

the client; a client can access the web service through the use of Internet standards [4].

Information which is available through a web service will always be accessed by software,

never directly by a human.

In the web services architecture, many kinds of distributed systems can be

implemented. Examples include synchronous and asynchronous messaging systems,

distributed computational clusters, mobile networked systems, grid systems, and peer-to-peer

environments. The broad spectrum of requirements in program-to-program interactions

forces the web services protocol stack to be much more general-purpose than the first web

protocols [5]. Web services have certain advantages over other technologies; they are

platform independent and language independent, because they use standard XML languages.

The baseline specifications for web services are SOAP, WSDL, and UDDI, which are

described briefly as follows [3] [4] :

1. SOAP (Simple Object Access Protocol). – It is a protocol that enables machine to

machine communication over computer networks in very heterogeneous

environments with different platforms and operating systems [6]. SOAP describes

very simple XML-based packaging for exchanging messages between the web service

and the client. In the WAMDAS context, we use SOAP transported atop the HTTP

protocol.

14

2. WSDL (Web Services Description Language). – It is a XML-based service

description of how to communicate and make a request to a web service [7]. It relies

heavily on XSD schemas, and it is used to describe everything a SOAP service needs.

This includes the operations, the schema for each message in an operation, the SOAP

action headers and the URL end point of the service. An operation is a related set of

messages (e.g., the message that a client sends to a server and the reply message that

the client receives).

3. UDDI (Universal Description, Discovery and Integration). – It is an industry-

standard centralized directory service that can be used to advertise and locate Web

services. UDDI is designed to be interrogated by SOAP messages and to provide

access to WSDL documents describing the protocol bindings and message formats

required to interact with the web services listed in its directory [8]. The users can

search for the web services using different criteria, including company name,

category, and type of web service. UDDI is not just for the Internet, a UDDI server

can be deployed within an enterprise. For companies that use different technologies

and platforms internally UDDI can be a cost-effective and deployable solution.

In the WAMDAS context we do not implement a UDDI server; we use a discovery

mechanism that consists of storing in and retrieving from the system database the URL of

the WSDL document of the system web services.

15

2.2.2 Relational Databases

A Database is a structured collection of data stored in an organized way. A Database

Management System (DBMS) is the software designed to assist in maintaining and utilizing

a database. Another alternative, besides using a DBMS is to store the data in files and write

application-specific code to manage it [9]. There are many types of DBMS but the dominant

type is the Relational DBMS (RDBMS) that support relational databases.

The relational model was introduced by Edgar F. Codd in 1970, and nowadays, it is

the most commonly used model in database applications [10]. This model is based in the

essential assumption that all data are represented as mathematical relations. A database is a

collection of one or more relations, and each relation is a table with rows and columns.

A relational database is a database that conforms to the relational model. It refers to a

database's data and schema. The database schema is the structure of how that data is set. The

relational database is the primary data model for commercial data-processing applications

because of its simplicity compared to earlier data models such as the network model or the

hierarchical model.

Relational database systems use a collection of tables to represent both data and the

relationships among those data. Most commercial relational database systems employ the

Structured Query Language (SQL); this language includes a Data Manipulation Language

(DML) and a Data Definition Language (DDL). The DML enables users to retrieve, insert,

delete, and update the information stored in the database. And the DDL allows defining

tables, integrity constraints, assertions, authorizations, and others [11].

16

Middleware is defined as the connectivity software layer between the operating

system and the applications on each site of a distributed system. Middleware is the

technology that enables the enterprise application integration. The access mechanisms to

RDBMSs used by middleware applications are JDBC [12], ODBC [13], and other vendor-

specific APIs.

The Entity - Relation (E-R) data model allows us to describe the data involved in a

real world that consists of a collection of basic objects, called entities, and the relationships

among these objects. It is widely used to develop an initial database design [9]. The entities

are described by a set of attributes; one of these attributes is called Primary Key, which is

used to uniquely identify the entities. An E-R diagram consists of the following major

symbols presented in Table 2.1 [11].

In a database design process, the initial phase is to fully characterize the data needs of

the prospective database users. Then these requirements are translated into a conceptual

schema (logical structure) for which the E-R model is typically used. The process continues

moving from an abstract model to the implementation of the database with two final design

phases: the logical design phase, which consists on mapping the conceptual schema into a

relation schema; finally the physical design phase in which the physical features of the

database are specified such as file organization and internal storage structures [11].

17

Table 2.1 Symbols used in E-R Diagrams

Symbol| Meaning

Entity set

Attribute

Relationship set

Primary key

Many-to-many relationship

Many-to-one relationship

One-to-one relationship

Total participation of entity

set in relationship

Specialization or

generalization

Role indicator

The necessity to protect the database is increasing; no matter what degree of security

is put in place, sensitive data in database are still vulnerable to attack. To avoid the risk

E

R

A

R

R

R

E R

A

ISA

E R
Role name

18

database encryption is an alternative; but encrypting all of database degrades the performance

of the database system significantly. In [14] a solution is presented to encrypt a database that

provides maximum security, while limiting the additional time cost of encryption and

decryption. The scheme considers two levels (L1 and L2) for public data. All users have

access to their own personal private data. And in addition, in L1 users have access only to

unclassified (non-sensitive) data, while in L2 they have access to both unclassified and

classified (sensitive) data. The database objects are classified into public (unclassified and

classified) and private objects. Classification for public objects is done at attribute level while

that for private objects is done at data element level. The proposed scheme makes use of

three sets of encryption keys: for classified data, private data, and controller’s master key.

And the data elements are encrypted/decrypted using Data Encryption Standard (DES)

technique.

2.2.3 Messages Queues

Microsoft Message Queue (MSMQ) is a Windows operating system service, and it is

used as a transport mechanism. MSMQ is Microsoft’s answer to the messaging middleware

market, for developing scalable, reliable and asynchronous messaging based applications.

MSMQ ensures guaranteed message delivery, efficient routing, security, fault-tolerance and

recovery against communication losses when the network fails [15].

MSMQ supports the following scenarios [16]:

19

1. Loosely coupled application. – The sending application can send messages to a

MSMQ without needing to know whether the receiving application is available to

process the message. The rate of sending messages to a MSMQ is not dependent on

the rate of processing the messages.

2. Failure isolation. – Applications sending or receiving messages to a queue can fail

without affecting each other. That is, if the receiving application fails, the sending

application can continue sending messages to the receiver’s MSMQ. When the

receiver is up again, it processes the received messages.

3. Load leveling. – The sending application could overwhelm the receiving application

with messages. MSMQ can manage unequal message production and consumption

rates so that a receiver is not overwhelmed.

4. Disconnected operations. – Operations of sending, receiving or processing can be

disconnected when the communication is over high-latency or limited-availability

networks (e.g. mobile devices). MSMQ allows these operations to continue even

when the endpoints are unavailable.

There are two types of MSMQ: system queues and application queues. The system

queues are used for administrative activities. And the application queues are created and used

by applications for the purpose of communicating between them.

The application queues fall into two categories: public and private. The distinction

primarily is their visibility. The public queues are registered in Active Directory so they can

be located by any MSMQ application that can search an Active Directory. Therefore, the

20

public queues work only on domain environments. On the other hand, the private queues are

registered only on the local computer, so they are not explicitly visible throughout the

network. Therefore private queues work on workgroup environments. Private queues can be

accessed only if a MSMQ application has specific prior knowledge that the queue exists, or if

a sending application provides the receiving application with the private queue name in a

message property, as a queue to which responses should be sent.

Other distinction between queues is: local and remote. A local queue is a queue

created in the local machine and a remote queue is a queue created in other machine in the

network. In particular, MSMQ for Windows CE, the Windows operating system for handheld

devices, only supports the creation of local private queues [15].

In the WAMDAS context, we work with application queues that are local and private,

for both the server side and the client side of the system.

21

3 WAMDAS ARCHITECTURE

3.1 System Architecture

WAMDAS is based on a decentralized and distributed architecture (see Figure 3.1).

This figure shows a deployment of WAMDAS on a hybrid network containing an Ethernet

backbone and a wireless sub network.

The server side of the system is implemented with four XML Web services; each of

them has the required web methods to provide WAMDAS an appropriate functionality and

scalability. The first web service is the Data Broker (DBR), which works on behalf of the

handheld device users to query equipment status information, to receive and acknowledge

alarm notifications, and to query for historic alarm acknowledgment information.

Next is the Registration Service (RS), which manages and coordinates the communication

between all other web services. The third web service is the Alarm and Data Acquisition

Service (ADAS), which begins the alarms processing stage, and communicates with the

databases where the equipment status information is stored.

The last web service is the Alarm Notification Service (ANS), which acts as a mediator for

the alarm processing and it is in charge of the alarm acknowledgment process. For example

when an alarm is triggered, it is first received by the ADAS, which requests to the RS to find

any online ANS. The ADAS then requests to the ANS, found in the previous step, to forward

the alarm message. The ANS in turn requests to the RS to find any online DBR. Once found,

22

the ANS requests to that DBR to process the alarm message. The DBR sends the alarm

message to all the handheld device users authorized to receive the alarm message.

Figure 3.1 WAMDAS Architecture

In the previous version of WAMDAS, each web service had a different database to

store the information needed to accomplish their tasks. In this new version we have a single,

integrated, and unified database named WAMDASdb that stores all system information

related to data sources, components, WAMDAS alarms, real alarms definitions, alarm events,

received alarms, handled alarms, users, positions, operational shifts, web services, handheld

devices, and parameters.

23

There can be multiple instances of each web service installed on different web servers

in order to guarantee a pool of available web services to respond to the requests on time, even

under unexpected circumstances such as extreme workloads and system or network failures.

If a web service ‘A’ wants to communicate with another web service ‘B’, then ‘A‘ requests

to the RS the Uniform Resource Locator (URL) of the first instance of the target web service

that is online and can respond to requests.

The client side of WAMDAS consists of two modules. The first one is a device

application that runs on handheld devices like Personal Digital Assistants (PDAs). This

application provides the functionalities to query the equipment status information, to receive

and acknowledge the alarm notifications, and to query for historic alarm acknowledgement

information. The second module is the administrator module, which is a Windows-based

application that runs on workstations. This application permits system administrators to

configure all the system information and parameters needed to make WAMDAS work

properly in a dynamic, scalable and flexible way.

We have implemented our new version of WAMDAS using Microsoft Visual Studio

2005 (.NET Framework 2.0 and .NET Compact Framework 2.0), the C# programming

language, and Microsoft SQL Server 2000 / 2005 as the database management system.

24

3.2 System Protocols

WAMDAS has two protocols, one for processing equipment status information

requests and another for managing alarms triggered by contingencies that occur while the

equipment is in use under normal operational conditions. Their description is as follows:

3.2.1 Status Services Protocol

This protocol is used to query equipment status information. The protocol is

described in terms of steps to denote the sequence of events in the process (see Figure 3.2).

These steps match with the figure’s enumeration, as we shall discuss next:

Figure 3.2 Status Services Protocol

25

���� In Step 1, a user on the handheld device asks for equipment status information, and a

request is sent to the DBR.

���� In Step 2, the DBR requests to the RS to find any online ADAS.

���� In Step 3, the DBR requests to the found ADAS to get the status information. The

ADAS verifies if the target data source is currently registered in the system.

���� Finally, in Step 4, the ADAS requests to the RS to get the data source information

location (server name and database name). With this information the ADAS calls a

stored procedure at the corresponding database to retrieve the status information.

Then the ADAS returns to the DBR the status query result. The DBR, in turn, returns

this result to the handheld device to be displayed to the user.

We optimized the status services protocol moving from In-Line SQL statements to

Stored Procedures to exploit their great benefits in performance, security, readability,

reusability and flexibility [17].

3.2.2 Alarm Services Protocol

This protocol is used to notify the alarms to the users. The protocol is described in

terms of steps to denote the sequence of events in the process (see Figure 3.3). These steps

match with the figure’s enumeration, as we shall discuss next:

26

Figure 3.3 Alarm Services Protocol

���� In Step 1, when an alarm is triggered by a piece of equipment, the console application

(implemented as an interface between MS SQL Server 2000 and the system web

services) is called to begin the process.

���� In Step 2, the console application requests to the ADAS to broadcast the alarm. The

ADAS first verifies if there is a WAMDAS alarm that maps to the received real alarm.

If so, the ADAS registers a new alarm event in the system.

���� In Step 3, the ADAS requests to the RS to find any online ANS.

27

���� During Step 4, the ADAS requests to the found ANS to forward the alarm to the

appropriate receivers.

���� In Step 5, the ANS requests to the RS to find any online DBR.

���� In Step 6, the ANS requests to the found DBR to process the alarm message, and the

DBR then retrieves the IP addresses of the handheld devices on which users

authorized to receive the alarm are currently logged into the system.

���� Finally, in Step 7, the DBR sends the alarm to those handheld devices’ message

queues assigned to receive alarm messages. If the handheld devices are online they

receive the alarm message immediately, if not, they will receive the alarm message

when they recover their online status.

We optimized the alarm services protocol by changing the transport mechanism to

deliver alarm messages from the DBR to the handheld devices. We switched from

connection-oriented TCP/IP sockets in favor of connection-less message queues

implemented via Microsoft Message Queues (MSMQ). With MSMQ, we get fault-tolerance

and recovery against communication loss when the network fails, the handheld device is out

of wireless network range, or the battery of the handheld device is discharged. Message

queuing ensures guaranteed message delivery, efficient routing, security, fast and reliable

asynchronous communication [15]. The types of message queues that were used in the

implementation are application queues that are local and private

The Alarm Acknowledgement process is used to acknowledge the alarms that were

received; it was also optimized using MSMQ. The way this process works is described also

28

in terms of steps to denote its sequence of events (see Figure 3.4). These steps match with the

figure’s enumeration, as we shall discuss next:

Figure 3.4 Alarm Acknowledgement Process

���� In Step 1, a user acknowledges an alarm notification on the handheld device, and an

acknowledgement message is sent to the MSMQ of a web server where a DBR is

hosted.

���� In Step 2, this DBR requests to the RS to find any online ANS.

���� Finally, in Step 3, the DBR requests to the found ANS to process the

acknowledgement message. The ANS retrieves information about the users who have

already acknowledged the alarm, and then it verifies if the alarm has already been

acknowledged from that handheld device. The ANS also verifies the number of

acknowledgements that have already been received to determine if the alarm was

29

already acknowledged by the predefined number of users. Then, the ANS registers

the acknowledgment message in the system. Finally, the DBR builds the

acknowledgement result message with the messages notified by ANS. The DBR

sends this result message to the handheld device’s MSMQ assigned for alarm

acknowledgement results. If the handheld device is online it receives the message

immediately, if not, it will receive the message when it recovers its online status.

30

4 WAMDAS IMPLEMENTATION

This chapter presents a detailed description of the WAMDAS system implementation,

both the server side and the client side of the system. First we describe the system web

services implementation; next we describe the system protocols implementation, then

WAMDAS’s relational database is described, after that we describe the administrator module

implementation, and finally, we describe the handheld device module implementation.

4.1 Web Services Implementation

We improved and extended the implementation of the previous version of system web

services. For each web service, we describe its purpose and its relevant web methods

implemented to accomplish its tasks.

4.1.1 The Data Broker Web Service (DBR)

This web service works on behalf of the users of the handheld device module to query

equipment status information, to receive and acknowledge alarm notifications, and to query

historic alarm acknowledgement information. Now, we describe the relevant web methods of

the DBR as follows:

31

1. ValidateOperatorDevice (MAC_Address, IP_Address)

This web method is called by the handheld device module to validate if a handheld

device is correctly registered in the system to run WAMDAS. This validation is

carried out through the handheld device’s MAC and IP addresses, which are received

by the web method as parameters.

2. UserLogin (UserName, Password)

This web method is called by the handheld device module to validate if a user is

correctly registered in the system. This validation is carried out through the user name

and password, which are received by the web method as parameters.

3. GetUsersInfo ()

This web method is called to retrieve the information of all the users registered in the

system. This information consists of the first name, last name, user name, email,

telephone, and status of each user.

4. RegisterShift (UserID, HandheldDeviceID, StartDateTime)

This web method is called by the handheld device module to register in the system a

new operational shift. The parameters that the web method receives are the user ID,

the handheld device ID and the start date time of the shift.

5. GetClientRequest (DataSourceID, ComponentID, QueryType, Date)

This web method is called by the handheld device module to serve the equipment

status information queries requested by users. The status information that this web

32

method will get corresponds to the data source and component with IDs equal to the

received parameters. The query type parameter specifies if the requested information

is about Generator, Engine or Reverse Osmosis (RO) system. And the method will

retrieve all the status information that was registered during the date received as

parameter, ordered by time.

6. ProcessAlarmMessage (AlarmEventID)

This web method processes the alarm messages forwarded by the ANS web service.

First, the web method retrieves the alarm information corresponding to the alarm

event with ID equal to the received parameter. Then it retrieves the information of the

handheld devices to which the alarm message must be sent. Finally, the web method

sends the alarm message to the handheld devices’ MSMQ.

7. RegisterReceivedAlarm (HandheldDeviceID, AlarmEventID, DateTime)

This web method is called by the handheld device module to register in the system

the alarms that were received by handheld devices. The parameters that the web

method receives are the handheld device ID, the alarm event ID, and the date and

time when the handheld device received the alarm.

8. AlarmAcknowledgementCompleted (AlarmEventID)

This web method is called by the handheld device module to verify if the required

number of acknowledgements for an alarm event has already been completed, in

33

order to conclude that the alarm event with ID equal to the received parameter has

been fully attended.

9. ClientAcknowledgement (HandheldDeviceID, Date)

This web method is called by the handheld device module to retrieve historic

information of the alarms which were acknowledged on the handheld device with ID

equal to the received parameter during the date equal to the received parameter.

10. CloseShift (ShiftID, DateTime, UserID, HandheldDeviceID)

This web method is called by the handheld device module to close in the system an

operational shift. The parameters that this method receives are the shift ID, the date

and time when the shift is ending, the user ID, and the handheld device ID.

11. VerifyIfDBRServiceIsOnLine ()

This web method is called by the RS to verify if the DBR is online and it can respond

to requests.

12. UpdateWebConfigFileRSURL (RSURL)

This web method is called by the administrator module to update the value of the

application setting in the ‘web.config’ file corresponding to the URL of the RS web

service. This update is made with the value received as parameter.

34

4.1.2 The Registration Web Service (RS)

This web service manages and coordinates the communication between all other web

services. Now, we describe the relevant web methods of the RS as follows:

1. GetAllDBRInfo ()

This web method retrieves the information of all instances of the DBR web service

that are registered in the system. This information consists of the name, description,

URL, server name, and the status of each instance.

2. GetAllRSInfo ()

This web method retrieves the information of all instances of the RS web service that

are registered in the system. This information consists of the name, description, URL,

server name, and the status of each instance.

3. GetAllADASInfo ()

This web method retrieves the information of all instances of the ADAS web service

that are registered in the system. This information consists of the name, description,

URL, server name, and the status of each instance.

4. GetAllANSInfo ()

This web method retrieves the information of all instances of the ANS web service

that are registered in the system. This information consists of the name, description,

URL, server name, and the status of each instance.

35

5. GetConfigurationParameterValue (ConfigParamName)

This web method is called by the system web services and the Administrator Module

to retrieve the value of the configuration parameter which name is equal to the

received parameter.

6. GetURLFirstOnlineDBRService ()

This web method is called by the system web services to get the URL of the first

element in a list of DBR web services which is available to respond to requests.

7. GetURLFirstOnlineADASService ()

This web method is called by the system web services to get the URL of the first

element in a list of ADAS web services which is available to respond to requests.

8. GetURLFirstOnlineANSService ()

This web method is called by the system web services to get the URL of the first

element in a list of ANS web services which is available to respond requests.

9. GetWAMDASDatabaseConnectionString ()

This web method is called by the system web services to get the connection string to

the WAMDASdb database. The connection string is built with the Server Name,

Database Name, User Name, and Password values retrieved from the Application

Settings section of the ‘web.config’ file of the RS web service.

36

10. GetDataSourceDatabaseConnectionString (DataSourceID)

This web method is called by the ADAS to get the connection string to the database

where the status information of the data source with ID equal to the received

parameter is stored. The connection string is built with the Server Name, Database

Name, User Name, and Password values retrieved from the WAMDASdb database,

where these values are stored as parameters.

11. VerifyIfRSServiceIsOnLine ()

This web method is called to verify if the RS web service is online and it can respond

to requests.

12. UpdateWebConfigFile (AppSettingName, AppSettingValue)

This web method is called by the administrator module to update in the ‘web.config’

file the value of the application setting with name equal to the received parameter.

The application settings stored in the ‘web.config’ file are the database server,

database name, user name, and password values that are used to build the connection

string to the WAMDASdb database.

4.1.3 The Alarm and Data Acquisition Web Service (ADAS)

This web service begins the alarms processing stage and communicates with the

databases where the equipment status information is stored. Now, we describe the relevant

web methods of the ADAS as follows:

37

1. AlarmBroadcast (RealAlarmIdentifier, AlarmValue, AlarmDateTime)

This web method is called by the console application to broadcast an alarm. First, it

verifies if a mapping to a WAMDAS alarm was defined for the real alarm with

identifier equal to the received parameter. If so, a new alarm event of the found

WAMDAS alarm is registered in the system with the alarm value and date time

received as parameters. Finally, the ANS web service is requested to forward this

alarm.

2. GetDataSourceInfo (DataSourceName, ComponentIdentifier, QueryType, Date)

This web method is called by the DBR to retrieve the equipment status information.

First, it verifies if the data source with name equal to the received parameter is

registered in the system. If so, the connection string parameters of the database where

the equipment status information is stored are retrieved from the WAMDASdb

database. Then the corresponding database stored procedure is called to retrieve the

status information for the component with identifier and query type equal to the

received parameters. The result status information corresponds to the status readings

made during the date equal to the received parameter, and they are retrieved ordered

by time.

3. VerifyIfADASServiceIsOnLine ()

This web method is called by the RS to verify if the ADAS is online and it can

respond to requests.

38

4. UpdateWebConfigFileRSURL (RSURL)

This web method is called by the administrator module to update the value of the

application setting in the ‘web.config’ file corresponding to the URL of the RS web

service. This update is made with the value received as parameter.

4.1.4 The Alarm Notification Web Service (ANS)

This web service acts as a mediator for the alarm processing and it is in charge of the

alarm acknowledgment process. Now, we describe the relevant web methods of the ANS as

follows:

1. ForwardAlarm (AlarmEventID)

This web method is called by the ADAS to forward to the DBR the alarm event with

ID equal to the received parameter.

2. AcknowledgementsNumberVerification (AlarmEventID)

This web method is called by the DBR and the ANS to process the

acknowledgements number verification. It first retrieves the number of

acknowledgements already made to the alarm event with ID equal to the received

parameter. Then it compares this result value with the configured Acknowledgement

Quantity Number corresponding to the severity of the instanced WAMDAS alarm.

39

The method returns a value of “false” if the alarm event requires more

acknowledgements; otherwise it returns a value of “true”.

3. ProcessAcknowledgement (AlarmEventID, HandheldDeviceID, DateTime)

This web method is called by the DBR to process the acknowledgement. It first

verifies if the alarm event with ID equal to the received parameter has already been

acknowledged on the handheld device with ID equal to the received parameter. If not,

the acknowledgements number verification is carried out, and finally the alarm

acknowledgement is registered in the system.

4. RetrieveUsersWhoHaveAlreadyDoneAkn (AlarmEventID)

This web method is called by the DBR to retrieve the information of the users who

have already acknowledged the alarm event with ID equal to the received parameter.

5. GetAlarmMessageInfo (HandheldDeviceID, Date)

This web method is called by the DBR to retrieve the historic information about the

alarm acknowledgements made on the handheld device with ID equal to the received

parameter and during the date equal to the received parameter.

6. VerifyIfANSServiceIsOnLine ()

This web method is called by the RS to verify if the ANS web service is online and it

can respond to requests.

40

7. UpdateWebConfigFileRSURL (RSURL)

This web method is called by the administrator module to update the value of the

application setting in the ‘web.config’ file corresponding to the URL of the RS web

service. This update is made with the value received as parameter.

4.2 System Protocols Implementation

In the implementation of the system protocols, we considered the following three

layers:

1. The client application layer. – This layer comprises the handheld device module and

the console application (which is an interface between MS SQL Server and the

ADAS web service).

2. The web services layer. – This layer comprises the four system web services: the

DBR, the RS, the ADAS, and the ANS.

3. The data layer. – This layer comprises the WAMDASdb database and the databases

where is stored the equipment status and alarms information.

The client application layer communicates with the web services layer through

messages using the SOAP communication protocol over HTTP transport protocol. And the

web services layer communicates with the data layer through ADO .NET API version 2.0

[18], [19].

41

Now, we describe the implementation of the Status Services and Alarm Services

protocols considering the three layers explained above.

4.2.1 Status Services Protocol Implementation

The implementation of the status services protocol is described in terms of steps to

denote the sequence of events in the process (see Figure 4.1). These steps match with the

figure’s enumeration, as we shall discuss next:

���� In Step 1, a user queries for equipment status information on the handheld device.

���� In Step 2, the handheld device application calls the GetClientRequest web method of

the DBR to get the requested information.

���� In Step 3, the GetClientRequest web method calls the

GetURLFirstOnlineADASService web method of the RS, to get the URL of the first

online ADAS instance.

���� In Step 3.1, the GetURLFirstOnlineADASService web method calls the

GetWAMDASDatabaseConnectionString web method of the RS, to get the

connection string to the WAMDASdb database.

���� In Step 3.2, the GetURLFirstOnlineADASService web method connects to the

WAMDASdb database to retrieve the information of all ADAS’s instances registered

in the system. Then, this web method finds the first ADAS that is online and available

to respond to requests. If the finding is successful, the URL of the found ADAS is

42

returned and the process continues with the step 4; if not, the process terminates with

a message noting that there is not any online ADAS.

Figure 4.1 Status Services Protocol Implementation

���� In Step 4, the GetClientRequest web method calls the GetDataSourceInfo web

method of the found ADAS instance.

43

���� In Step 4.1, the GetDataSourceInfo web method calls the

GetWAMDASDatabaseConnectionString web method of the RS, to get the

connection string to the WAMDASdb database.

���� In Step 4.2, the GetDataSourceInfo web method connects to the WAMDASdb

database to retrieve the information of the data source, of which the status

information was requested. If the data source is registered in the system, the process

continues with the step 5, if not, the process terminates with a message noting that the

data source is not registered in the system.

���� In Step 5, the GetDataSourceInfo web method calls the web method implemented to

get the connection string to the database where the data source status information is

stored. For the specific case of turbines data source, the

GetTurbinesDatabaseConnectionString web method is called.

���� In Step 5.1, the GetTurbinesDatabaseConnectionString web method calls the

GetConfigurationParameterValue web method to get the parameters to build the

connection string to the database where turbines status information is stored.

���� In Step 5.2, the GetConfigurationParameterValue web method connects to the

WAMDASdb database to retrieve the value of parameters requested by

GetTurbinesDatabaseConnectionString web method.

���� In Step 6, the GetDataSourceInfo web method connects to the database where the

data source status information is stored and calls the corresponding stored procedure

to get the status information query results. Then these results are sent back to the

44

GetClientRequest web method, and in turns, this web method sends back the query

results to the handheld device application.

���� Finally, in Step 7, the handheld device application displays to the user the resulting

equipment status information.

4.2.2 Alarm Services Protocol Implementation

The implementation of the alarm services protocol is described in terms of steps to

denote the sequence of events in the process (see Figure 4.2). These steps match with the

figure’s enumeration, as we shall discuss next:

���� In Step 1, when an alarm is triggered, a record is inserted into the alarms table of the

corresponding database where the data source alarms information is stored. In

response to that event, an after insert statement trigger [20] is executed. This trigger

calls the CallAlarmBroadcast console application to begin the alarm processing.

���� In Step 2, the CallAlarmBroadcast console application calls the AlarmBroadcast

web method of the ADAS, to broadcast the alarm.

���� In Step 3, the AlarmBroadcast web method calls the

GetURLFirstOnlineANSService web method of the RS, to get the URL of the first

online ANS instance.

���� In Step 3.1, the GetURLFirstOnlineANSService web method calls the

GetWAMDASDatabaseConnectionString web method of the RS, to get the

connection string to the WAMDASdb database.

45

Figure 4.2 Alarm Services Protocol Implementation

���� In Step 3.2, the GetURLFirstOnlineANSService web method connects to the

WAMDASdb database to retrieve the information of all ANS’s instances registered in

the system. Then, this web method finds the first ANS that is online and available to

respond to requests. If the finding is successful, the URL of the found ANS is

46

returned and the process continues with the step 4; if not, the process terminates with

a message noting that there is not any online ANS.

���� In Step 4, the AlarmBroadcast web method calls the

GetWAMDASDatabaseConnectionString web method of the RS, to get the

connection string to the WAMDASdb database.

���� In Step 4.1, the AlarmBroadcast web method connects to the WAMDASdb database

to retrieve the information about the real alarm received to verify if it has a mapping

to a WAMDAS alarm defined in the system. If the mapping is found, a new alarm

event is registered in the system and the process continues with the step 5, if not; the

process terminates with a message noting that a mapping for the real alarm has not

been defined.

���� In Step 5, the AlarmBroadcast web method calls the ForwardAlarm web method of

the ANS instance found in the step 3 to forward the alarm.

���� In Step 6, the ForwardAlarm web method calls the GetURLFirstOnlineDBRService

web method of the RS, to get the URL of the first online DBR instance.

���� In Step 6.1, the GetURLFirstOnlineDBRService web method calls the

GetWAMDASDatabaseConnectionString web method of the RS, to get the

connection string to the WAMDASdb database.

���� In Step 6.2, the GetURLFirstOnlineDBRService web method connects to the

WAMDASdb database to retrieve the information of all DBR’s instances registered in

the system. Then, this web method finds the first DBR that is online and available to

47

respond to requests. If the finding is successful, the URL of the found DBR is

returned and the process continues with step 7; if not, the process terminates with a

message noting that there is not any online DBR.

���� In Step 7, the ForwardAlarm web method calls the ProcessAlarmMessage web

method of the found DBR instance to process the alarm.

���� In Step 7.1, the ProcessAlarmMessage web method calls the

GetWAMDASDatabaseConnectionString web method of the RS, to get the

connection string to the WAMDASdb database.

���� In Step 7.2, the ProcessAlarmMessage web method connects to the WAMDASdb

database to retrieve the information of the IP addresses of the handheld devices on

which users authorized to receive the alarm are currently logged into the system.

���� In Step 8, the ProcessAlarmMessage web method sends the alarm message to those

handheld devices’ Alarms MSMQ. If the handheld devices are online they receive the

alarm message immediately, if not, they will receive the alarm message when they

recover their online status.

���� In Step 9, once a handheld device receives the alarm message, the handheld device

application peeks at the alarm message from the Alarms MSMQ and then calls the

RegisterReceivedAlarm web method of the DBR to register in the system that the

alarm message was received by that handheld device.

48

���� In Step 9.1, the RegisterReceivedAlarm web method calls the

GetWAMDASDatabaseConnectionString web method of the RS, to get the

connection string to the WAMDASdb database.

���� In Step 9.2, the RegisterReceivedAlarm web method connects to the WAMDASdb

database to register the reception of the alarm.

���� Finally, in step 10, the handheld device application displays the alarm notification to

the user.

For the specific implementation of the MSMQ in the alarm message processing see

Appendix A.

Now, we describe the implementation of the alarm acknowledgment process. The

way this process works is described also in terms of steps to denote its sequence of events

(see Figure 4.3). These steps match with the figure’s enumeration, as we shall discuss next:

���� In Step 1, a user acknowledges an alarm notification on the handheld device.

���� In Step 2, the handheld device application picks up the alarm message from the

Alarms MSMQ, removing it from the queue. After that, the handheld device

application sends an alarm acknowledgement message to the Alarm’s Ack. MSMQ

of a web server where a DBR is hosted. Once the alarm acknowledgement message is

received by the Alarm’s Ack. MSMQ, the QueueReceiveCompleted method of the

DBR is executed.

���� In Step 3, the QueueReceiveCompleted method picks up the alarm acknowledgement

message from the Alarm’s Ack. MSMQ, removing it from the queue. And then, the

49

QueueReceiveCompleted method calls the GetURLFirstOnlineANSService web

method of the RS, to get the URL of the first online ANS instance.

Figure 4.3 Alarm Acknowledgement Process Implementation

50

���� In Step 3.1, the GetURLFirstOnlineANSService web method calls the

GetWAMDASDatabaseConnectionString web method of the RS, to get the

connection string to the WAMDASdb database.

���� In Step 3.2, the GetURLFirstOnlineANSService web method connects to the

WAMDASdb database to retrieve the information of all ANS’s instances registered in

the system. Then, this web method finds the first ANS that is online and available to

respond to requests. If the finding is successful, the URL of the found ANS is

returned and the process continues with the step 4; if not, the process terminates with

a message noting that there is not any online ANS.

���� In Step 4, the QueueReceiveCompleted method calls the

RetrieveUsersWhoHaveAlreadyDoneAkn web method of the found ANS instance.

���� In Step 4.1, the RetrieveUsersWhoHaveAlreadyDoneAkn web method calls the

GetWAMDASDatabaseConnectionString web method of the RS, to get the

connection string to the WAMDASdb database.

���� In Step 4.2, the RetrieveUsersWhoHaveAlreadyDoneAkn web method connects to

the WAMDASdb database to retrieve the information of the users who have already

acknowledged the alarm.

���� In Step 5, the QueueReceiveCompleted method calls the ProcessAcknowledgement

web method of the ANS, to process the alarm acknowledgement.

51

���� In Step 5.1, the ProcessAcknowledgement web method calls the

GetWAMDASDatabaseConnectionString web method of the RS, to get the

connection string to the WAMDASdb database.

���� In Step 5.2, the ProcessAcknowledgement web method connects to the WAMDASdb

database to retrieve the information about the handled alarms, and it verifies if the

alarm has already been acknowledged from the handheld device. If so, the

ProcessAcknowledgement web method terminates sending back a message noting

that "An alarm can be acknowledged from a handheld device only once". If not, the

process continues with Step 5.3.

���� In Step 5.3, the ProcessAcknowledgement web method calls the

AcknowledgementsNumberVerification web method of the ANS.

���� In Step 5.3.1, the AcknowledgementsNumberVerification web method calls the

GetWAMDASDatabaseConnectionString web method of the RS, to get the

connection string to the WAMDASdb database.

���� In Step 5.3.2, the AcknowledgementsNumberVerification web method connects to

the WAMDASdb database to retrieve information about the number of

acknowledgements to the alarm that have already been registered and the pre-

configured number of acknowledgements needed according to the alarm severity; this

is done in order to determine if the alarm has already been fully attended. If so, the

alarm acknowledgement is registered in the system with status “Already

Acknowledged” and a message is sent back noting that “The alarm was already

52

acknowledged by the configured number of users”. If not, the alarm

acknowledgement is registered in the system with status “Acknowledged”.

���� After Step 5.3.2, the process control returns to the QueueReceiveCompleted method,

this method builds and acknowledgement result message with the messages notified

by the RetrieveUsersWhoHaveAlreadyDoneAkn and ProcessAcknowledgement web

methods.

���� In Step 6, the QueueReceiveCompleted method sends the acknowledgment result

message to the Alarm’s Ack. MSMQ of the handheld device. If the handheld device

is online it receives the message immediately, if not, it will receive when it recovers

its online status.

���� Once the handheld device receives the alarm acknowledgment result message, the

handheld device application picks it up from the Alarm’s Ack. MSMQ, removing it

from the queue.

���� Finally, in Step 7, the handheld device application displays the alarm

acknowledgment result message to the user.

For the specific implementation of the MSMQ in the processing of alarm acknowledgement

message, see Appendix A.

4.3 WAMDAS’s Relational Database

WAMDAS needs to manage relevant information about the data sources, the

components, the real alarms (which are triggered by contingencies that occur while these

53

components are in use), and the WAMDAS alarms which are defined as part of the

configuration scheme for alarm management. Before beginning the alarms processing, the

real alarms are mapped to WAMDAS alarms. Also WAMDAS needs to manage data about

the users who can use the system, the authorized handheld devices on which the users can log

into the system, and the operational shifts to control the system usage. Furthermore

WAMDAS requires managing information related to the alarms processing such as the alarm

events, the alarms received by the users, the handled alarms and the unhandled alarms.

Finally WAMDAS needs to manage information of the system web services and all the

configuration parameters. Hence the system includes a major database component to manage

all this information, such database is modeled by the Entity-Relationship (E-R) Diagram

shown in Figure 4.4

Now, we describe the E-R diagram for WAMDAS database, which is shown in the

Figure 4.4. First, we describe the entities; in general, as we can see, the names of the entity

attributes are auto descriptive, so most of them only are listed and we describe only those

which need further explanation for their understanding.

1. User. – This entity set represents the users of the WAMDAS system; they can log

into the two system modules: Handheld device module and the Administrator module.

The User entity has the following attributes: User ID, First name, Last name, User

name, Password, Email, Telephone, and Status. The status attribute is ‘online’ when

the user is logged into the handheld device module; otherwise it is ‘offline’.

54

Figure 4.4 Entity-Relationship Diagram for WAMDAS Database

55

2. Position. – This entity set represents the positions of the system users. These positions

are: Supervisor, Operator and System administrator. The supervisors and operators can

use the handheld device module and only the system administrators can use the

administrator module. The Position entity has the following attributes: Position ID,

Name, Description, and Level. The level attribute describes the hierarchy of the

position as follows: supervisor position has level equal to 1 and the operator position

has level equal to 2. Furthermore the position entity has two roles: Supervisor and

Supervisee.

3. Data Source. – This entity set represents the families of equipment such as Turbines,

Chillers and Boilers. The Data Source entity has the following attributes: Data source

ID, Name, and Description.

4. Component. – This entity set represents the members of an equipment family, for

example Turbine A and Turbine B are members of the Turbines family. The

components are the specific elements that WAMDAS will monitor to get their status

information and process all the alarms triggered by them. The Component entity has the

following attributes: Component ID, Name, Description, and Status.

5. Real Alarm. – This entity set represents the alarms that are triggered by contingencies

that occur while the equipment is in use. The Real Alarm entity has the following

attributes: Real alarm ID, Identifier and Description.

6. Alarm. – This entity set is also called WAMDAS Alarm, and represents the alarms

defined by the system administrators as part of the configuration scheme for alarms

56

management. The Alarm entity has the following attributes: Alarm ID, Description,

Low range value, and High range value.

7. Severity. – This entity set represents the values of the metric which measures how

dangerous and important an alarm is. The Severity entity has the following attributes:

Severity ID, Description, Akn Qty Number, and Akn Waiting Time.

The Akn Qty Number attribute is the number of acknowledgements needed to conclude

that an alarm has been fully attended. And the Akn Waiting Time is the maximum

waiting time for an alarm to be fully attended.

8. Alarm Event. – This entity set represents the instances of the WAMDAS alarms. An

alarm event is created after the real alarm is mapped to a WAMDAS alarm. The Alarm

Event entity has the following attributes: Alarm event ID, Value, and Date time.

9. Operator Device. – This entity set represents the handheld devices on which the users

can log into the system to monitor the equipment status information and to handle the

alarms notifications. The Operator Device entity has the following attributes: Operator

device ID, Description, Device Type, MAC Address, IP Address, Status, and Operative.

The Device Type attribute can have the following values: PDA, Cell phone or Smart

Phone. When the WAMDAS system is running on the handheld device the Status

attribute has ‘online’ value, otherwise it has ‘offline’ value. And the Operative attribute

can have the values ‘true’ or ‘false’.

10. Web Service. – This entity set represents the deployed instances of the four system

web services: DBR, RS, ADAS and ANS. The Web Service entity has the following

57

attributes: Web service ID, Name, Description, URL, Server Name, and Status. The

Server Name attribute is the name of the web server where the web service instance is

hosted.

11. Configuration. – This entity set represents the configuration parameters of the system.

The Configuration entity has the following attributes: Configuration ID, Name,

Description, and Value.

Following with the description of the E-R diagram for WAMDAS system database,

which is shown in the Figure 4.4, now we describe the relationships among the entities. In

general, as we can see, the names of the relationships attributes are auto descriptive, so most of

them only are listed and we describe only those which need further explanation for their

understanding.

1. Occupies. – This relationship is between the User and Position entities. A user must

occupy only one position, and a position can be occupied for many users.

2. Supervise. – This relationship is between the Position entity and itself. A supervisor

position can supervise many supervisee positions, and a supervisee position can be

supervised only by one supervisor position.

3. Shift. – This relationship is between the User and Operator Device entities. One user

must be involved only in an operational shift, and also one operator device must be

involved only in that shift. The Shift relationship has the following attributes: Star Date

Time and End Date Time.

58

4. Groups. – This relationship is between the Data Source and Component entities. One

data source can group many components, and a component must be grouped into only

one data source.

5. Corresponds. – This relationship is between the Alarm and Component entities. One

alarm must correspond only to one component, and one component can have many

corresponding alarms.

6. Map. – This relationship is between the Real Alarm and Alarm entities. One real alarm

can map only with one alarm, and one alarm can map with many real alarms.

7. Is Instance. – This relationship is between the Alarm and Alarm Event entities. One

alarm can have many alarm events, and one alarm event must instantiate only one alarm.

8. Has. – This relationship is between the Alarm and Severity entities. One alarm must

have only one severity, and a severity can be owned by many alarms.

9. Receives Alarm From. – This relationship is between the User and Data Source

entities. One user can receive the alarms generated by many data sources, and the

alarms generated by one data source can be received by many users.

10. Received Alarms. – This relationship is between the Operator Device and Alarm Event

entities. One operator device can receive many alarm events, and one alarm event can

be received on many operator devices. The Received Alarm relationship has the Date

Time attribute.

11. Handled Alarms. – This relationship is between the Operator Device and Alarm Event

entities. One operator device can handle many alarm events, and one alarm event can

59

be handled on many operator devices. The Handled Alarms relationship has the Date

Time and Status attributes.

4.4 Administrator Module

The Administrator Module is a Windows-based application that runs on workstations.

This module permits the system administrators to configure all system information and

parameters necessary that make WAMDAS run smoothly.

Only authorized administrators users can log into the module, which is validated

through a user name and password (see Figure 4.5).

Figure 4.5 Administrator Module - User Login

60

When the login is successful, the main window of the module is shown to the user (see Figure

4.6). This main window provides a menu with options, each one providing a particular

functionality described as follows:

1. User management. – This menu option permits the system administrators to register

the system users who will be authorized to log into the handheld device and

administrator modules of WAMDAS. Only the users with ‘administrator’ position are

authorized to log into the Administrator module. The status of a user is controlled

automatically; the system administrators do not manage it. When the user is logged

into the system, his/her status is ‘online’; otherwise it is ‘offline’.

Figure 4.6 Administrator Module - Main Window

61

2. Alarm management. – This menu option permits the system administrators to define:

1) the Data Sources, which model families of equipment, for example Turbines,

Chillers and Boilers; 2) the components, which are members of an equipment family,

for example Turbine A and Turbine B are members of the Turbines family. These

components are the specific elements that WAMDAS will monitor to get their status

information and process all the alarms triggered by contingencies that occur while these

components are in use under normal operational conditions. And 3) the alarms that

WAMDAS will manage, each alarm corresponds to a specific component. For each

alarm, it is necessary to specify a description; a low range value, a high range value,

and its severity (see Figure 4.7). For example the ‘Turb_B’ component, which belongs

to the ‘Turbines’ data source, triggers the alarms ‘Lube oil header temperature high’,

‘Oil cooler vibration’, ‘Lube oil tank level low’ and ‘Lube oil temperature high’.

3. Mapping between real alarms and WAMDAS alarms. – Each piece of equipment

has its own type of alarms, which we call real alarms. Since similar pieces of

equipment might differ in the representation and name of their real alarms, WAMDAS

permits system administrators to define their own configuration schema for alarms.

This enables a more uniform alarm management. It is necessary to map each real alarm

to a WAMDAS alarm (defined in the Alarm management menu option of the

Administrator module). When a real alarm is detected by the system, the web service

ADAS before beginning the alarm processing, first looks for the corresponding

WAMDAS alarm. If the alarm is found, then this ‘WAMDAS alarm’ is delivered to the

62

proper handheld devices. If not, an error message is sent noting that a mapping for the

real alarm has not been defined.

Figure 4.7 Administrator Module – Alarm Management

4. Alarm severity. – This menu option permits the system administrators to define the

severities for WAMDAS alarms. The severity metric measures the danger and

importance of the situation. For each severity, it is necessary to specify the number of

63

acknowledgements needed to conclude that an alarm has been fully attended, and the

maximum waiting time for an alarm to be fully attended.

5. User-to-Alarm Mapping. – This menu option permits the systems administrators to

assign to the users the WAMDAS alarms that they will receive, in order to provide a

user-based configuration scheme for alarms. This enables the system to dynamically

change who handles which alarms and when.

In figure 4.8, we can see that the user Pedro Perez, who has an operator position, is

authorized to receive the alarms of the Turbines and Boilers data sources.

Figure 4.8 Administrator Module – User-to-Alarm Mapping

64

6. Handheld Devices. – This menu option permits the system administrators to configure

the handheld devices authorized to run the handheld device module of WAMDAS (see

Figure 4.9). For a handheld device, it is necessary to specify a description, the device

type (e.g. PDA, Smart Phone), and its MAC and IP addresses. When a user executes the

handheld device module, the handheld device’s MAC and IP addresses is validated to

determine if it is authorized to run WAMDAS. The status of a handheld device is

controlled automatically; the administrator users do not manage it. The status is

‘online’ when WAMDAS is running on the handheld device; otherwise it is ‘offline’.

Figure 4.9 Administrator Module – Handheld Devices

7. Parameters – This menu option permits the system administrators to configure

parameters such as the name of the system database, names of databases storing the

status information about the data sources, the names of the servers where these

databases are hosted, and any other necessary parameters. In Figure 4.10, we can see

that for each parameter, it is necessary to specify its name, a description, and its value.

65

Figure 4.10 Administrator Module – Parameters

8. Web Services – This menu option permits system administrators to configure

dynamically the information of system web services, simplifying the cases in which

web services are moved to another web server, or new web service instances are added

to the system. In Figure 4.11, we can see that for a web service, it is specified its name,

a description, its URL, the server name where it is hosted, and its status.

Figure 4.11 Administrator Module – Web Services

66

4.5 Handheld Device Module

The Handheld device module is a handheld device application that runs on handheld

devices like PDAs. This module permits the users to query the equipment status information,

receive and acknowledge the alarms, and query for historic alarms acknowledgement

information.

This module was optimized to be more reliable, secure and robust. It provides a strong

security mechanism to access the system. The handheld devices use for connectivity a wireless

network with Wi-Fi Protected Access (WPA) for network authentication, and the Temporal

Key Integrity Protocol (TKIP) for data encryption. This is done to guarantee that only

authorized handheld devices can join the content network. When a user attempts to execute the

module on a handheld device, the MAC Address and the IP Address of the device are verified

to determine if the device is legally registered in the system. Thus, only registered handheld

devices are authorized to run WAMDAS.

Likewise, only authorized users can log into the system, which is validated through a user

name and password (see Figure 4.12). When the login is successful, an operational shift is

created in the system, registering the beginning date and time (see Figure 4.13), and the main

window of the module is shown to the user (see Figure 4.14). This main window provides a

menu with two main options: the option “Equipments” to query the equipment status

information, and the option “Event” to query for historic alarms acknowledgement information.

Finally, when the user exits from the application (see Figure 4.15); the operational shift is

closed in the system, registering the ending date and time (see Figure 4.16).

67

Figure 4.12 Handheld Device Module -
User Login

Figure 4.13 Handheld Device Module -
Operational Shift Start

Figure 4.14 Handheld Device Module –
Main Window

Figure 4.15 Handheld Device Module -
Application Exit

68

Figure 4.16 Handheld Device Module - User Logout

Likewise, the design of the interfaces of the handheld device module was improved to

provide the users all the equipment status and alarms information in a very intuitive and

feature-rich manner.

The user to query the equipment status information (see figure 4.17) must first select a

date and then must push the button ‘Query’. The information retrieved is shown ordered by the

reading time. Using the buttons ‘Next’ and ‘Previous’, the user can navigate through the

readings. The Figure 4.17 shows the Generator status information from the turbine ‘Turb_A’

for the date and time: 03/28/2008 13:58:29. And the Figure 4.18 shows the Generator status

information from the turbine ‘Turb_B’ for the date and time: 04/17/2008 21:53:47.

69

Figure 4.17 Handheld Device Module -
Turb_A Generator Status Information

Figure 4.18 Handheld Device Module -
Turb_B Generator Status Information

Likewise, the Figure 4.19 shows the Engine/Water/Fuel Ratio status information from the

turbine ‘Turb_A’ for the date and time: 04/02/2008 20:25:31. And the Figure 4.20 shows the

Engine status information from the turbine ‘Turb_C’ for the date and time: 04/08/2008

13:47:44.

70

Figure 4.19 Handheld Device Module -
Turb_A Engine Status Information

Figure 4.20 Handheld Device Module -
Turb_C Engine Status Information

The Figure 4.21 shows the status information from the turbines data source (i.e. the status

information from all its components), that is from ‘Turb_A’, ‘Turb_B’ and ‘Turb_C’ turbines

which are members of the turbines family. The turbines data source status information shown

in the figure is for the date and time: 03/18/2008 13:25:04. And finally, the Figure 4.22 shows

the status information from RO for the date and time: 03/28/2008 10:10:00.

71

Figure 4.21 Handheld Device Module -
Turbines Data Source Status

Information

Figure 4.22 Handheld Device Module - RO
Status Information

The Figure 4.23 shows the main window for the alarms handling, the top part of the window

shows the information of the received alarms, waiting to be acknowledged. If the user wants to

acknowledge an alarm, he/she must select the alarm and then push the “Akn” button. And, if

the user wants to acknowledge all the received alarms, he/she only must push the “Akn All”

button. The low part of the window shows the information of the acknowledged alarms, if the

user wants to clear this part of the windows, he/she must push the “Clear” button.

72

The Figure 4.24 shows an alarm being notified to the user, this notification displays the

following information: the data source, the component, the alarm name, the alarm value, the

date and time when the alarm occurred, and the alarm severity.

Figure 4.23 Handheld Device Module –
Alarms Handling Main Window

Figure 4.24 Handheld Device Module -
Alarm Notification

After a user acknowledges an alarm and the system processes the acknowledgement, he/she

receives an alarm acknowledgment result notification; there may be three different cases as

described as follows:

73

1. The alarm was acknowledged and there are no previous acknowledgements (see Figure

4.25).

2. The alarm was acknowledged and there are previous acknowledgements (see Figure 4.26).

3. The alarm was already acknowledged by the configured number of users (see Figure

4.27).

In the cases 2 and 3, the notification displays the information of the users who have already

acknowledged the alarm.

Figure 4.25 Alarm Acknowledgement
Result Notification - Case 1

Figure 4.26 Alarm Acknowledgement
Result Notification - Case 2

74

The user to query for historic alarms acknowledgement information (see figure 4.28)

must first select a date and then must push the button ‘Query’. The information retrieved is

displayed ordered by acknowledgement time.

Figure 4.27 Alarm Acknowledgement
Result Notification - Case 3

Figure 4.28 Handheld Device Module -
Historic Acknowledged Alarms

When an unexpected error occurs in the application, a friendly message is shown to the

user notifying the error (see Figure 4.29); in addition, a very specific error message is logged in

a log file for troubleshooting purposes (see Figure 4.30).

75

Figure 4.29 Handheld Device Module -
Friendly Error Message

Figure 4.30 Handheld Device Module -
Specific Error Message

The handheld device module can be deployed in handheld devices that support the

following Windows platforms: Pocket PC 2003, Windows Mobile 5.0, and later versions. The

module can be rewritten in other programming language of the Microsoft family such as Visual

Basic and Visual C++, using the .NET Compact Framework. However for rewriting the

module in Java or other programming languages, COM bridges or third party bridges must be

used to access to MSMQ.

,

76

5 EXPERIMENTS AND RESULTS

We conducted a series of experiments on our new version of WAMDAS to test

performance and fault tolerance of the system protocols, and also we conducted a usability

evaluation at a pharmaceutical plant.

5.1 Evaluation Scenario

The evaluation scenario used for the experiments is as follows (see Figure 5.1):

���� We used four workstations as web servers in which we deployed instances of the

system web services (DBR, ADAS, ANS and RS), the databases, and the Status Query

Simulator and Alarms Simulator programs. These workstations were Dell machines

with 2.8 GHz, Pentium IV CPU, 1 GB of RAM and 80 GB HD; all of them were

networked by a 100 Mbps Ethernet. And all of these machines were running Windows

XP Professional version 2002, and they also had configured the Internet Information

Services (IIS) version 5.1 and the .NET Framework version 2.0. We used Microsoft

SQL Server 2000 as the DBMS to manage the WAMDASdb system database and the

database where the status and alarms information were kept.

���� We used one laptop in which we deployed the WAMDAS Administrator module. This

laptop was a Dell machine with 1.73 GHz, Pentium IV CPU, 1 GB of RAM and 80 GB

HD; and it was connected to a Wi-Fi 802.11g network.

77

Figure 5.1 Experiments Scenario

���� Finally, we used three PDAs, two of them were HP iPAQ hx2495b running Window

Mobile 5.0 and the other was a Symbol MC50 running Pocket PC 2003. In these PDAs

we deployed our handheld device application. All PDAs were connected to a Wi-Fi

802.11g network.

5.2 Status Services Protocol Evaluation

To evaluate the status services protocol, we used a database of 278.63 MB size with

1,590,376 records which was a backup from the pharmaceutical plant database, and also the

78

Status Query Simulator program was used to generate queries randomly during different fixed

intervals of time, at low and high query workloads. The specific time intervals and the number

of queries that the program generates are approximately as follows:

���� 10 minutes and at least from 10 to 100 queries,

���� 30 minutes and at least from 30 to 300 queries, and

���� 60 minutes and at least from 65 to 660 queries.

The metric that we measured was the response time of equipment status query, which is

the elapsed time since a query of equipment status information is requested until the whole

query result is obtained. We measured this metric using the previous version of WAMDAS

implemented with in-Line SQL statements and the new version implemented with stored

procedures. For the previous version of WAMDAS, the Table 5.1 shows the average number of

queries generated by the simulator program and the Figure 5.2 shows the average response

time of status query, both of them for low and high query workloads during the three time

intervals cited above.

Table 5.1 Average number of queries to measure the Response Time of Equipment Status
Query - WAMDAS previous version

Average number of queries generated by the Status Query
Simulator program

Time interval (min) Low workload High workload

10 13 58

30 68 134

60 205 372

79

Average response time of equipment status query - WAMDAS
previous version

1.99

3.35

1.32
1.52

2.14
2.43

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Time interval (min)

A
ve

ra
ge

 r
es

po
ns

e
ti

m
e

(s
)

Low workload High workload

Low workload 1.32 1.52 1.99

High workload 2.14 2.43 3.35

10 30 60

Figure 5.2 Average response time of equipment status query - WAMDAS previous
version

And for the new version of WAMDAS, the Table 5.2 shows the average number of queries

generated by the simulator program and the Figure 5.3 shows the average response time of

status query, both of them for low and high query workloads also during the three time

intervals.

80

Table 5.2 Average number of queries to measure the Response Time of Equipment Status
Query - WAMDAS new version

Average number of queries generated by the Status Query
Simulator program

Time interval (min) Low workload High workload

10 10 39

30 70 213

60 139 317

Average response time of equipment status query - WAMDAS new
version

1.28

1.68

1.14

0.93

1.39

1.05

0.00

0.50

1.00

1.50

2.00

Time interval (min)

A
ve

ra
ge

 r
es

po
ns

e
ti

m
e

(s
)

Low workload High workload

Low workload 0.93 1.14 1.28

High workload 1.05 1.39 1.68

10 30 60

Figure 5.3 Average response time of equipment status query - WAMDAS new version

As we can see in Figure 5.4, the average response times of equipment status query with the

new version of WAMDAS are much lower than the average response times of equipment

81

status query with the previous version. The response time of equipment status query was

reduced by 41%. Thus, we can state that the response time of equipment status query was

optimized by our new implementation of the status services protocol using stored procedures.

Average response time of equipment status query - Stored Procedures
vs. In-Line SQL Statements

1.28

1.99

1.68

3.35

1.14

0.93

1.52

1.32 1.39

1.05

2.43

2.14

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

10 30 60

Time interval (min)

A
v

er
ag

e
re

sp
o

n
se

 t
im

e
(s

)

Low workload Stored Procedures Low workload In-Line SQL Statement

High workload Stored Procedures High workload In-Line SQL Statement

Figure 5.4 Average response time of equipment status query - Stored procedures vs. In-
Line SQL statements

82

5.3 Alarm Services Protocol Evaluation

To evaluate the alarm services protocol, we used an Alarms Simulator program that

generates alarms randomly during different fixed intervals of time, at low and high alarm

workloads. The specific time intervals and the number of alarms that the program generates are

approximately as follows:

���� 10 minutes and at least from 10 to 100 alarms,

���� 30 minutes and at least from 30 to 300 alarms, and

���� 60 minutes and at least from 65 to 660 alarms.

The first metric we measured was the alarm delivery time, which is the elapsed time

since a new alarm event is registered in the system until the alarm message is received by the

handheld devices. We measured this metric using the previous version of WAMDAS

implemented with TCP/IP sockets and the new version implemented with MSMQ.

For the previous version of WAMDAS, the Table 5.3 shows the average number of alarms

generated by the simulator program and the Figure 5.5 shows the average time of alarm

delivery, both of them for low and high alarm workloads during the three time intervals cited

above.

83

Table 5.3 Average number of alarms to measure the Alarm Delivery Time - WAMDAS
previous version

Average number of alarms generated by the Alarms Simulator
program

Time interval (min) Low workload High workload

10 24 95

30 75 254

60 115 366

Average time of alarm delivery - WAMDAS previous version

17.89

24.08

10.68

15.4415.88

19.51

0

5

10

15

20

25

30

Time interval (min)

A
ve

ra
ge

 d
el

iv
er

y
ti

m
e

(s
)

Low workload High workload

Low workload 10.68 15.44 17.89

High workload 15.88 19.51 24.08

10 30 60

Figure 5.5 Average time of alarm delivery - WAMDAS previous version

84

And for the new version of WAMDAS, the Table 5.4 shows the average number of alarms

generated by the simulator program and the Figure 5.6 shows the average time of alarm

delivery, both of them for low and high alarm workloads also during the three time intervals.

Table 5.4 Average number of alarms to measure the Alarm Delivery Time - WAMDAS
new version

Average number of alarms generated by the Alarms Simulator
program

Time interval (min) Low workload High workload

10 38 82

30 78 248

60 176 477

Average time of alarm delivery - WAMDAS new version

4.95

5.86

4.2

3.39

5.11

3.69

0

1

2

3

4

5

6

Time interval (min)

A
ve

ra
ge

 d
el

iv
er

y
ti

m
e

(s
)

Low workload High workload

Low workload 3.39 4.2 4.95

High workload 3.69 5.11 5.86

10 30 60

Figure 5.6 Average time of alarm delivery - WAMDAS new version

85

As we can see in Figure 5.7, the average times of alarm delivery with the new version of

WAMDAS are much lower than the average times of alarm delivery with the previous version.

The alarm delivery time was reduced by 73%. Thus, we can state that the alarm delivery time

was optimized by our new implementation of the alarm services protocol using MSMQ.

Average time of alarm delivery - MSMQ vs. TCP/IP Sockets

4.95

10.68

15.44

17.89

5.86

15.88

19.51

24.08

4.2
3.39

5.11

3.69

0

2

4

6

8

10

12

14

16

18

20

22

24

26

10 30 60

Time interval (min)

A
v

er
ag

e
d

el
iv

er
y

 t
im

e
(s

)

Low workload MSMQ Low workload TCP/IP Sockets

High workload MSMQ High workload TCP/IP Sockets

Figure 5.7 Average time of alarm delivery - MSMQ vs. TCP/IP Sockets

86

The second metric that we measured was the response time of alarm acknowledgement,

which is the elapsed time since an alarm is acknowledged until the handheld device receives

the alarm acknowledgement result message. This metric was measured using only the new

version of WAMDAS implemented with MSMQ, because the previous version does not have

this functionality.

The Table 5.5 shows the average number of alarms generated by the simulator program and the

Figure 5.8 shows the average response time of alarm acknowledgement, both of them for low

and high alarm workloads during the three time intervals (10, 30 and 60 min). As we can see,

our new version of WAMDAS performs well with average response time values less than or

equal to 2.08 seconds.

Table 5.5 Average number of alarms to measure the Response Time of Alarm

Acknowledgement - WAMDAS new version

Average number of alarms generated by the Alarms Simulator
program

Time interval (min) Low workload High workload

10 15 54

30 49 185

60 104 520

87

Average response time of alarm acknowledgement - WAMDAS new
version

1.131.06

2.08

0.8
0.93

1.69

0

0.5

1

1.5

2

2.5

Time interval (min)

A
ve

ag
e

re
sp

on
se

 t
im

e
(s

)

Low workload High workload

Low workload 0.8 0.93 1.13

High workload 1.06 1.69 2.08

10 30 60

Figure 5.8 Average response time of alarm acknowledgement - WAMDAS new version

The third metric that we measured was the fault tolerance of the alarm services protocol,

for this evaluation we simulated fault circumstances like network failures, PDAs going out of

wireless network range, and PDAs having their battery discharged. We measured this metric

using the previous version of WAMDAS implemented with TCP/IP sockets and the new

version implemented with MSMQ.

For the previous version of WAMDAS, the Table 5.6 and the Figure 5.9 show the number of

triggered alarms and the number of received alarms, both of them for low and high alarm

workloads during the three time intervals (10, 30 and 60 min).

88

Table 5.6 Fault tolerance of the Alarm Services Protocol – WAMDAS previous version

Fault tolerance of the alarm services protocol – WAMDAS previous version
Low workload High workload Time interval

(min) Number of
triggered alarms

Number of
received alarms

Number of
triggered alarms

Number of
received alarms

10 15 4 99 31

30 77 15 252 106

60 149 41 576 217

Fault tolerance of alarm services protocol - WAMDAS
previous version

15

77

149

4 15
41

99

252

31

106

217

576

-10
40
90

140
190
240
290
340
390
440
490
540
590

10 30 60

Time interval (min)

N
u

m
b

er
 o

f
T

ri
gg

er
ed

 a
la

rm
s

/
R

ec
ei

ve
d

 a
la

rm
s

Low workload triggered alarms Low workload received alarms

High workload triggered alarms High workload received alarms

Figure 5.9 Fault tolerance of alarm services protocol - WAMDAS previous version

89

And for the new version of WAMDAS, the Table 5.7 and the Figure 5.10 show the number of

triggered alarms and the number of received alarms, both of them for low and high alarm

workloads also during the three time intervals.

Table 5.7 Fault tolerance of the Alarm Services Protocol – WAMDAS new version

Fault tolerance of the alarm services protocol – WAMDAS new version
Low workload High workload Time interval

(min) Number of
triggered alarms

Number of
received alarms

Number of
triggered alarms

Number of
received alarms

10 13 13 115 115

30 90 90 222 222

60 138 138 604 604

Fault tolerance of alarm services protocol - WAMDAS new
version

13

90
138

13

90
138115

222

604

115

222

604

0

100

200

300

400

500

600

700

10 30 60

Time interval (min)

N
u

m
b

er
 o

f
T

ri
gg

er
ed

 a
la

rm
s

/
R

re
ce

iv
ed

 a
la

rm
s

Low workload triggered alarms Low workload received alarms

High workload triggered alarms High workload received alarms

Figure 5.10 Fault tolerance of alarm services protocol - WAMDAS new version

90

As we can see when we were running the previous version of WAMDAS and the fault

circumstances occurred, the alarms were lost; but when running the new version of WAMDAS,

even though the fault circumstances occurred, all the alarms were received successfully. Thus,

we can state that the alarms services protocol is more reliable and fault tolerant using MSMQ.

5.4 Usability Evaluation

We conducted a usability evaluation to measure the usability of the WAMDAS system

in terms of effectiveness and satisfaction from the end-users’ point of view. The end-users

were real operators working on regular shifts at a pharmaceutical plant. We prepared a task list

and a user evaluation questionnaire for both the handheld device module and administrator

module of WAMDAS (see Appendix B). First, the users were instructed on how to use the

handheld device and administrator modules. And then, the task lists were provided to the users

to be completed. After completing the task lists, the users were required to fill out the user

evaluation questionnaires.

In the evaluation of the handheld device module, three users participated, one Senior

Instrumentation technician, one Instrumentalist and one Operator. On average, they have been

working on their positions during 16.7 years. Similarly, they have around 11.7 years of

experience using computers. Only one of them has experience using a PDA for about 5 years.

And only one of them needs glasses to read. We show in Table 5.8, the average of the

91

punctuation (1 to 7 scale: 1 = not satisfied and 7= very satisfied) that the users gave to the

different aspects of the application during the evaluation.

Table 5.8 Evaluation of the Handheld Device Module

Evaluation of the Handheld Device Module Punctuation
average

General characteristics of the application

Size of the letters 7.00

Organization of the information on the screens 7.00

Clarity of the command buttons on the screens 6.00

Handling of the equipment alarms

Effectiveness of the alarm notification 6.00

Quality of the information received about the alarm 6.67

Handling of multiple alarms 6.67

Effectiveness in the alarm acknowledgement 6.67

Effectiveness in the acknowledgement of multiple alarms 6.33

Quality of the information received about the acknowledgement result 6.67

Handling of the equipment status information

Effectiveness in receiving the equipment status information 6.33

Effectiveness in receiving the status information of an equipment family 7.00

Quality of the information received about equipment status 6.67

General satisfaction

With the Handheld Device Module of WAMDAS 6.00

With the actual system (HMIs and SCADAs) 3.33

As we can see in Table 5.8, the punctuation average for all aspects of the handheld device

module is greater than or equal to 6 points. And in Figure 5.11, we can see that users preferred

WAMDAS by a margin of almost 2 to 1 compared with the actual system. In addition, in the

comments section of the questionnaire, the users stated that they would like to use the

92

application because it is a great tool, it would be of big help when they are out of the control

room doing other tasks, the application would help them to keep control and monitor the

equipment all the time. These results demonstrate a high level of effectiveness and user

satisfaction of our handheld device module at the pharmaceutical plant.

3.33

6

1

2

3

4

5

6

7

P
u
n

ct
u
at

io
n

 a
v
er

ag
e

Actual System WAMDAS

User safisfaction of WAMDAS handheld device
module vs. Actual system

User safisfaction

Figure 5.11 User satisfaction of WAMDAS handheld device module vs. Actual system

In the evaluation of the administrator module, two users participated; both of them

Process Control Engineers. On average, they have been working on their positions during 7

years. Similarly, they have around 12 years of experience using computers. We show in Table

5.9, the punctuation (1 to 7 scale: 1 = not satisfied and 7= very satisfied) that the users gave to

the different aspects of the application during the evaluation.

93

Table 5.9 Evaluation of the Administrator Module

Evaluation of the Administrator Module Punctuation
average

General characteristics of the application

Organization of the main menu of options 6.00

Organization of the information on the screens 6.00

Clarity of the command buttons on the screens 5.00

Usage of the main menu options

Effectiveness in searching existing information 7.00

Effectiveness in entering new information 7.00

Effectiveness in updating existing information 7.00

Effectiveness in deleting existing information 5.00

General satisfaction

With the Administrator Module of WAMDAS 6.00

As we can see in Table 5.9, the punctuation for all aspects of the administrator module is

greater than or equal to 5 points, and the user satisfaction punctuation is 6. In addition, in the

comments section of the questionnaire, the users stated that the application facilitates very

much the administration task of the WAMDAS system. These results demonstrate a high level

of effectiveness and user satisfaction of our administrator module at the pharmaceutical plant.

94

6 CONCLUSIONS AND FUTURE WORK

6.1 Summary and Conclusions

In this thesis, we have presented a novel infrastructure which allows the WAMDAS

system to be a more portable, reliable, secure and robust wireless web service-based

middleware system. This infrastructure provides a reliable alarm management mechanism to

guarantee that alarms are sent to and received by the handheld devices used by operators.

Moreover this alarm delivery process obeys a defined configuration scheme for alarms.

Likewise our new approach guarantees that alarm acknowledgements are sent to and received

by the alarm notification server. And, it also guarantees that acknowledgement results are sent

to and received by the handheld devices.

WAMDAS now provides a functionality to have a pool of available web services to

respond to the requests on time, even under unexpected circumstances such as extreme

workloads and system or network failures.

We presented our Windows-based application module, provided to dynamically

configure all system information and parameters, as well as to define the configuration scheme

for alarm management.

95

We discussed the improvements to the handheld device application, including the

strong security mechanism to access the system, the mechanism to control system usage and

the redesign of the user interfaces.

We conducted a series of experiments on our new version of WAMDAS to test

performance and fault tolerance of the system protocols, and also we conducted a usability

evaluation at a pharmaceutical plant. The status services protocol evaluation shows that the

response time of equipment status query was reduced by 41% when using stored procedures

instead of in-Line SQL statements. And the alarm services protocol evaluation shows that

when using MSMQ instead of TCP/IP sockets, the alarm delivery time was reduced by 73%,

the response time of alarm acknowledgement performs well with average response time values

less than or equal to 2.08 seconds, likewise, this protocol is more reliable and fault tolerant. All

of these results show that the system protocols were optimized. Moreover, the usability

evaluation shows a high level of effectiveness and user satisfaction of our WAMDAS system

at the pharmaceutical plant.

 Finally, WAMDAS is a widely applicable system; it can be used in pharmaceutical

plants and in any other type of manufacturing plants such as electric energy industry,

metalworking, telecommunications, textile, construction, transportation, and others. In general,

WAMDAS can be used in any environment where is necessary to monitor equipment status

information and to manage equipment alarms.

96

6.2 Future Work

This section presents ideas to improve and extend WAMDAS:

���� Implement a web-based version of the administrator module to make it more accessible;

allowing system administrators to use the module wherever they have access to a web

browser.

���� Provide to the status services protocol with fault-tolerance and recovery capabilities

against communication loss, which may occur when the network fails, the handheld

device is out of wireless network range, or the battery of the handheld device is

discharged.

���� Extend the alarms services protocol to consider that if an alarm A has not been fully

attended during a maximum waiting time; another alarm should be triggered notifying

that the alarm A has not been attended yet. Also consider the options of automatic mails

and automatic phone calls in order to guarantee that someone hears the alarm.

���� Extend the handheld device module in order to be deployed not only in PDAs, but also

in Smart Phones and Cell Phones.

97

REFERENCES

[1] E. García-Rodríguez. “WAMDAS: A Web Service-Based Wireless Alarm Monitoring and

Data Acquisition System for Pharmaceutical Plants”. Master Thesis, University of Puerto

Rico - Mayaguez, 2005.

[2] E. García-Rodríguez and M. Rodriguez-Martínez. WAMDAS: A Web Service-Based

Wireless Alarm Monitoring and Data Acquisition System for Pharmaceutical Plants.

Advanced International Conference on Telecommunications / International Conference on

Internet and Web Applications and Services 2006 (AICT-ICIW). IEEE. 19-25 Feb. 2006.

[3] K. Ballinger. .NET Web Services: Architecture and Implementation First edition. Addison

Wesley Professional. 2003.

[4] S. Short. Building XML Web Services for the Microsoft .NET Platform. First edition.

Microsoft Press. 2002.

[5] F. Cabrera and C. Kurt. Web Services Architecture and Its Specifications: Essentials for

Understanding WS. First edition. Microsoft Press. 2005.

[6] XML Protocol Working Group, Simple Object Access Protocol (SOAP) Version 1.2, W3C

Recommendation. www.w3.org/TR/soap/ . Jun 2003

[7] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description

Language (WSDL) Version 1.1. W3C Note. www.w3.org/TR/wsdl.html. Mar 2001

[8] UDDI Spec Technical Committee, UDDI Version 3.0.2.

 http://uddi.org/pubs/uddi-v3.0.2-20041019.htm. Oct 2004.

[9] R. Ramakrishnan and J. Gehrke. Database Management Systems. Third edition. McGraw-

Hill. 2003.

[10] Codd, E.F. A Relational Model of Data for Large Shared Data Banks. Communications of

the ACM. Jun 1970.

98

[11] A. Silberschatz, H. Korth, and S. Sudarshan. Database System Concepts. Fifth edition.

McGraw-Hill. 2006.

[12] JDBC Technology. www.java.sun.com/products/jdbc/ . Dec 2006.

[13] ODCB Basics. www.datadirect.com/developer/odbc/basics/index.ssp. Dec 2006.

[14] S. Sesay, Z. Yang, J. Chen, and D. Xu. A Secure Database Encryption Scheme. Second

Consumer Communications and Networking Conference 2005 (CCNC). IEEE. 3-6 Jan

2005.

[15] B. Hartman. Pocket PC: MSMQ for Windows CE Brings Advanced Windows Messaging

to Embedded Devices. The Microsoft Journal for Developers. MSDN Magazine. Dec 2001.

[16] MSDN Library. Queues in Windows Communication Foundation. Retrieved February 4,

2008, from Microsoft Corporation Web site:

http://msdn2.microsoft.com/en-us/library/ms731089.aspx

[17] C. Carpentiere. An Evaluation of Stored Procedures for the .NET Developer.

Microsoft .NET Development Technical Articles. MSDN Library. Mar 2004.

[18] D. Rothaus and M. Pizzo. ADO.NET for the ADO Programmer. .NET Development

Technical Articles. MSDN Library. Dec 2001.

[19] MSDN Library. ADO.NET. .NET Framework Developer's Guide. Retrieved May 5, 2008,

from Microsoft Corporation Web site:

http://msdn.microsoft.com/en-us/library/e80y5yhx(vs.80).aspx

[20] Wikipedia, the free encyclopedia. Database trigger. Retrieved May 7, 2008, from

Wikimedia Foundation, Inc web site:

http://en.wikipedia.org/wiki/Database_trigger

[21] A. Redkar, C. Walzer, S. Boyd, R. Costall, K. Rabold, and T. Redkar. Pro MSMQ:

Microsoft Message Queue Programming. First edition. Apress. 2004.

99

[22] D. Makofse, M. Donahoo, and K. Calvert. TCP/IP Sockets in C#: Practical Guide for

programmers. First edition. Morgan Kaufmann. 2004.

[23] R. Steele. A Web Services-based system for ad-hoc mobile application integration.

International Conference on Information Technology: Computers and Communications

(ITCC). IEEE. 28-30 Apr 2003.

 [24] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman,

and J. Widom. The TSIMMIS Project: Integration of Heterogeneous Information Sources.

IPSJ Conference.1994.

[25] M. Rodriguez-Martinez, and N. Roussopoulos. MOCHA: A Self-Extensible Middleware

System for Distributed Data Sources. 2000 ACM SIGMOD International Conference on

Management of Data. ACM. May 2000.

[26] M. Rodriguez-Martinez. Automatic Deployment of Application-Specific Functionality in

Database Middleware Systems. Department of Computer Science, University of Maryland,

College Park. 2001.

[27] M. Rodríguez-Martínez, JF. Enseñat, E. Pagan, JG. Arzola, M. Sotomayor, and E. Vargas.

Registration and Discovery of Services in the NetTraveler Integration System for Mobile

Devices. International Conference on Information Technology: Coding and Computing

 (ITCC). IEEE. 2004.

100

APPENDIX A. MSMQ IMPLEMENTATION

APPENDIX A1. SERVER SIDE IMPLEMENTATION

namespace DBRService
{

public class DBRService : System.Web.Services.WebService
{

.....
//Queue name to receive the acknowledgement messages from the handheld devices

private const string QueueName = @".\private$\mqServWamdasAkn";
//Message queue to receive the acknowledgment messages from the handheld devices

private MessageQueue mqAlarmsAkn;

public DBRService()
{

.....
//Create the message queue where acknowledgement messages will be stored

if (!MessageQueue.Exists(QueueName))
{

mqAlarmsAkn = MessageQueue.Create(QueueName);
}
else
{

mqAlarmsAkn = new MessageQueue(QueueName);
}
//Set the formatter to indicate that message body will be of String type

mqAlarmsAkn.Formatter = new XmlMessageFormatter(new Type[] { typeof(String) });
//Initiate the asynchronous reception operation by telling the message queue to begin

//receiving messages and notifies the event handler when finished

mqAlarmsAkn.ReceiveCompleted += new
ReceiveCompletedEventHandler(QueueReceiveCompleted);

mqAlarmsAkn.BeginReceive();
}

 //Web method that processes and sends to the handheld devices the alarm messages

 //forwarded by the ANS web service
public string ProcessAlarmMessage(int AlarmEventID)
{

…..
//Build the alarm message body ‘alarmMessageBody’

…..
//Retrieve the IP addresses of handheld devices to which the alarm will be sent

…..

101

//Send the alarm to the handheld devices
int i = 0;
while (i < ClientsNumberToSendAlarm)
{

…..
//Create an alarms queue instance of the handheld device with IP = ClientIP

MessageQueue deviceQueue = new MessageQueue (String.Format
(System.Globalization.CultureInfo.InvariantCulture,@"FORMATNAME:
DIRECT=TCP:{0}\private$\mqDevWamdasAlarm", ClientIP));

//Create the alarm message to be sent
Message alarmMessage = new Message (alarmMessageBody);
alarmMessage.Recoverable = true;
//Set the alarm message response queue to the server queue

alarmMessage.ResponseQueue = new MessageQueue (String.Format
(System.Globalization.CultureInfo.InvariantCulture,@"FORMATNAME:
DIRECT=TCP:{0}\private$\mqServWamdasAkn", ServerIP);

// Send the Message to the handheld device queue

deviceQueue.Send(alarmMessage);
i++;

}
…..

}

//Method that processes the completion of the ReceiveCompletedEventHandler
private void QueueReceiveCompleted(Object source, ReceiveCompletedEventArgs

asyncResult)
{

…..
//Pick up the received acknowledgement message from the server queue

Message alarmAknMessage =this.mqAlarmsAkn.EndReceive(asyncResult.AsyncResult);
string alarmAknMessageBody = (string) alarmAknMessage.Body;
//Process the alarm acknowledgement message body and build the body of the alarm

//acknowledgement result message ‘alarmAknResultMessageBody’

…..
//Create a new message for the alarm acknowledgement result

Message alarmAknResultMessage = new Message (alarmAknResultMessageBody);
//Send the alarm acknowledgement result message to the hand held device queue

alarmAknMessage.ResponseQueue.Send(alarmAknResultMessage);
//Begin the next asynchronous reception operation

this.mqAlarmsAkn.BeginReceive();
…..

 }
…..

}
}

102

APPENDIX A2. CLIENT SIDE IMPLEMENTATION

namespace WAMDAS_Cogen_Client
{

public partial class Form1 : Form
{

…..
//Variable for the instance of the DBR web service
DBRService wsDBR;
//Queue name to receive the alarm messages from the server

private const string AlarmQueueName = @".\private$\mqDevWamdasAlarm";
//Queue name to receive the alarm acknowledgement result messages from the server
private const string AlarmAknQueueName = @".\private$\mqDevWamdasAkn";
//Message queue to receive the alarm messages from the server

private MessageQueue mqAlarms;
//Message queue to receive the alarm acknowledgement result messages from the server
private MessageQueue mqAlarmsAkn;
//Thread to peek at the alarm messages
private Thread peekAlarmsThread;
//Thread to peek at the alarm acknowledgement result messages
private Thread peekAlarmsAknThread;
…..

//Method that starts the device queues
private void StartDeviceQueues()
{

…..
//Create the message queue where alarm messages will be stored
if (!MessageQueue.Exists(AlarmQueueName))
{

mqAlarms = MessageQueue.Create(AlarmQueueName);
}
else
{

mqAlarms = new MessageQueue(AlarmQueueName);
}
//Create message queue where alarm acknowledgement result messages will be stored
if (!MessageQueue.Exists(AlarmAknQueueName))
{

mqAlarmsAkn = MessageQueue.Create(AlarmAknQueueName);
}
else
{

mqAlarmsAkn = new MessageQueue(AlarmAknQueueName);
}
//Set the formatter to indicate that alarm message body will be of String type
mqAlarms.Formatter = new XmlMessageFormatter(new Type[] { typeof(String) });

103

//Set the formatter to indicate that alarm acknowledgement result message body will be of

//String type
mqAlarmsAkn.Formatter = new XmlMessageFormatter(new Type[] { typeof(String) });
…..

}

//Method that starts the threads which peek the messages from the queues
private void StartThreads()
{

…..
//Create and start the thread which peeks at messages from the alarm messages queue

peekAlarmsThread = new Thread(new ThreadStart(PeekAlarms));
peekAlarmsThread.IsBackground = true;
peekAlarmsThread.Start();
//Create and start the thread which peeks at messages from the alarm acknowledgement

//result messages queue

peekAlarmsAknThread = new Thread(new ThreadStart(PeekAlarmsAkn));
peekAlarmsAknThread.IsBackground = true;
peekAlarmsAknThread.Start();
…..

}

/Load event of the main window for alarm handling
private void Form1_Load(object sender, EventArgs e)
{

…..
//Create a new instance of the DBR web service

wsDBR = new DBRService();
//Start the device queues
StartDeviceQueues();
//Start the threads to peek at the messages from the queues
StartThreads();
…..

}

//Method that peeks at messages from the queue of alarm messages
protected void PeekAlarms()
{

//Create a dynamic list of all the messages in the queue

MessageEnumerator messageEnum = mqAlarms.GetMessageEnumerator();
//Advance the enumerator to the next message in the queue. If the enumerator is

//positioned at the end of the queue, MoveNext waits until a message is available or the

//given timeout expires.
while (messageEnum.MoveNext(new TimeSpan(168, 0, 0)))
{

//Show the alarm message to the user
ShowAlarmMessage((String)messageEnum.Current.Body, messageEnum.Current.Id);

104

}
…..

}

//Method that peeks at messages from the queue of alarm acknowledgement result

//messages
protected void PeekAlarmsAkn()
{

//Create a dynamic list of all the messages in the queue
MessageEnumerator aknMessageEnum = mqAlarmsAkn.GetMessageEnumerator();
//Advance the enumerator to the next message in the queue. If the enumerator is

//positioned at the end of the queue, MoveNext waits until a message is available or the

//given timeout expires.
while (aknMessageEnum.MoveNext(new TimeSpan(168, 0, 0)))
{

//Show the alarm message to the user

ShowAlarmAknMessage((String)aknMessageEnum.Current.Body,
aknMessageEnum.Current.Id);

}
…..

}

//Method that shows the alarm message body to the user, and then it removes the alarm

// message from the queue
protected void ShowAlarmMessage(String AlarmMessageBody, String QueueMessageId)
{

…..
//Verify if the number of acknowledgements for the alarm is completed

if (wsDBR.AlarmAcknowledgementCompleted(AlarmEventID))
{
 //Remove from the queue the message with ID equal to the received parameter

mqAlarms.ReceiveById(QueueMessageId);
}
else
{

 …..
//Register in the system that the operator device received the alarm message

wsDBR.RegisterReceivedAlarm(OperatorDeviceID, AlarmEventID,
ReceivedAlarmDateTime);

//Show the alarm message body to the user, which is the AlarmMessageBody value

//received as parameter

…..
}
…..

}

105

//Method that shows the alarm acknowledgement result message body to the user and then

//it removes the alarm acknowledgement result message from the queue
protected void ShowAlarmAknMessage(String AlarmAknResultMessageBody, String

QueueMessageId)
{

…..
//Show the alarm acknowledgement result message body to the user, which is the

//AlarmAknResultMessageBody value received as parameter

…..
//Remove from the queue the message with ID equal to the received parameter
mqAlarmsAkn.ReceiveById(QueueMessageId);
…..

}

//Method that processes the alarm acknowledgement after the user clicked the “Akn” or

//“Akn All” button in the Alarms Handling Main Window (See Figure 4.23)
public void AcknowledgeAlarm (String QueueAlarmMessageId, int AlarmEventID,

DateTime AlarmAknTime)
{

…..
//Pick up and remove the acknowledged alarm message from the alarm messages queue
Message alarmMessage = mqAlarms.ReceiveById(QueueAlarmMessageId);
//Build the alarm acknowledgement message body ‘alarmAknMessageBody’

…..
//Create the acknowledgement message to be sent to the server queue

Message alarmAknMessage = new Message (alarmAknMessageBody);
alarmAknMessage.Recoverable = true;
//Set the alarm acknowledgement message response queue to the device queue for alarm

//acknowledgement result messages

alarmAknMessage.ResponseQueue = new MessageQueue (String.Format
(System.Globalization.CultureInfo.InvariantCulture, @"FORMATNAME:DIRECT=
TCP:{0}\private$\mqDevWamdasAkn", HandheldDeviceIP));

//Send the alarm acknowledgement message to the server queue
alarmMessage.ResponseQueue.Send(alarmAknMessage);
…..

}
…..

}
}

106

APPENDIX B. USABILITY EVALUATION

APPENDIX B1. TASK LISTS

Lista de Tareas - WAMDAS Handheld Device Module

1. Hacer una consulta de información de status de Generator del equipo Turb_A para la

fecha 05-15-2008.

2. Hacer una consulta de información de status de RO del equipo Turb_A para la fecha

05-15-2008.

3. Hacer una consulta de información de status de Engine/Water/FuelRatio del equipo

Turb_B para la fecha 05-15-2008.

4. Hacer una consulta de información de status de Generator del equipo Turb_C para la

fecha 05-15-2008.

5. Hacer una consulta de información de status de RO para la fecha 05-15-2008.

6. Hacer una consulta de información de status de todas las tubinas para la fecha 05-15-

2008

7. Hacer Acknowledgement a una alarma recibida

8. Hacer Acknowledgement a todas las alarmas recibidas

9. Consultar la informacion histórica de alarmas que se hicieron Acknowledgements la

fecha 05-15-2008.

107

Lista de Tareas - WAMDAS Administrator Module

1. Elegir la opción “Alarm Management” del menu principal, e ingresar un nuevo data

source, components y alarms. Y probar las opciones de modificar y borrar.

2. Elegir la opción “Alarm's Mapping” del menu principal, y registrar una nueva alarma

real definiendo su mapeo a una alarm creada en el paso anterior (hacer uso de la

funcionalidad de busqueda para encontrar la alarma de WAMDAS).

3. Elegir la opción “Severity” del menu principal, y definir una nueva severidad, probar

las opciones de modificar y borrar.

4. Elegir la opción “User - Alarm” del menu principal, y asignar a un usuario un data

source existente (hacer uso de la funcionalidad de busqueda), para que reciba las

alarms de ese data source.

5. Elegir la opción “Handheld Devices” del menu principal, y registrar en el sistema un

nuevo handheld device, probar las opciones de modificar y borrar.

6. Elegir la opción “Parameters” del menu principal, y registrar en el sistema un nuevo

parámetro, probar las opciones de modificar y borrar.

7. Elegir la opción “Web Services” del menu principal, y registrar en el sistema un

nuevo web service, probar las opciones de modificar y borrar.

108

APPENDIX B2. USER EVALUATION QUESTIONNAIRES

Evaluación de WAMDAS Handheld Device Module

Por favor conteste las siguientes preguntas:

1. Puesto que ocupa:___

2. Tiempo que lleva en el puesto indicado: _____años.

3. Tiene experiencia utilizando computadoras: __ Si ___ No

4. Si contestó SI a la pregunta anterior indique cuantos años de experiencia tiene

utilizando computadoras: ____ años.

5. ¿Tiene experiencia o ha interactuado con computadoras portátiles inalámbricas

(PDAs)? ___Si ___No

6. Si contestó SI a la pregunta anterior indique cuantos años de experiencia tiene

utilizando computadoras portátiles inalámbricas (PDAs): ____ años.

7. Necesita lentes para leer? ___ Si ___No

Seleccione con un círculo el número que represente su nivel de satisfacción con los

siguientes aspectos (1 significa no satisfactorio, 7 significa muy satisfactorio):

Características generales de la aplicación

Tamaños de letras 1 2 3 4 5 6 7

Organización de la información en las pantallas 1 2 3 4 5 6 7

Claridad de los botones de comando provistos en las pantallas 1 2 3 4 5 6 7

Manejo de alarmas de equipos

Efectividad del aviso al recibir una alarma 1 2 3 4 5 6 7

Calidad de la información sobre la alarma 1 2 3 4 5 6 7

Manejo de múltiples alarmas 1 2 3 4 5 6 7

Efectividad en el “Acknowledgement” de una alarma 1 2 3 4 5 6 7

109

Efectividad en el “Acknowledgement” de múltiples alarmas 1 2 3 4 5 6 7

Calidad de la información sobre el resultado del “Acknowledgement” 1 2 3 4 5 6 7

Manejo de información de estatus de equipos

Efectividad en recibir información de estatus de un equipo 1 2 3 4 5 6 7

Efectividad en recibir información de estatus de varios equipos 1 2 3 4 5 6 7

Calidad de la información recibida sobre el estatus del(los) equipo(s). 1 2 3 4 5 6 7

Satisfacción general

Con el Handheld Device Module de WAMDAS 1 2 3 4 5 6 7

Con el sistema existente 1 2 3 4 5 6 7

Si tiene algún comentario u observación sobre la aplicación, por favor expréselo en el

siguiente espacio:

110

Evaluación de WAMDAS Administrator Module

Por favor conteste las siguientes preguntas:

1. Puesto que ocupa:___

2. Tiempo que lleva en el puesto indicado: _____años.

3. Tiene experiencia utilizando computadoras: __ Si ___ No

4. Si contestó SI a la pregunta anterior indique cuantos años de experiencia tiene

utilizando computadoras: ____ años.

Seleccione con un círculo el número que represente su nivel de satisfacción con los

siguientes aspectos (1 significa no satisfactorio, 7 significa muy satisfactorio):

Características generales de la aplicación

Organización del menu principal de opciones 1 2 3 4 5 6 7

Organización de la información en las pantallas 1 2 3 4 5 6 7

Claridad de los botones de comando provistos en las pantallas 1 2 3 4 5 6 7

Uso de las opciones del menu

Efectividad al buscar información existente 1 2 3 4 5 6 7

Efectividad al ingresar nueva información 1 2 3 4 5 6 7

Efectividad al actualizar información existente 1 2 3 4 5 6 7

Efectividad al borrar información existente 1 2 3 4 5 6 7

Satisfacción general

Con el Administrator Module de WAMDAS 1 2 3 4 5 6 7

Si tiene algún comentario u observación sobre la aplicación, por favor expréselo en el

siguiente espacio:
