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ABSTRACT 
 

This thesis evaluates the stability of cylindrical above-ground steel tanks under 

imposed support settlements and wind pressures. The tanks considered are representative 

of tanks constructed in Puerto Rico and in the Caribbean Islands. Typical tanks are 

constructed with a cylindrical shell with variable thickness and a conical roof supported 

by rafters. The behavior of these tanks is evaluated by means of computational 

experiments performed using finite element models developed with ABAQUS.  

The influence of support settlements on the out-of-plane displacements in the 

cylindrical shell is investigated considering an elastic material behavior and using 

different types of analyses. Results are presented for geometric linear, geometric non-

linear and bifurcation buckling analyses. Linear results provide a poor indication of the 

real displacements in the shell, so that geometric non-linearity is included in the analysis 

for working loads. Results show that the equilibrium path is highly non-linear and that 

the shell displays a stable symmetric bifurcation behavior. 

The lower bound approach for the buckling load of imperfection-sensitive shells 

is implemented in this thesis. Initially, the formulation is presented in a way to highlight 

what computations can be done following a reduced energy model. Then, a proposed 

methodology is used in conjunction with a general purpose finite element program to 

compute the lower bound buckling load for tanks with different geometric and load 

configurations. Results show that the proposed reduced energy model can predict the 

lower bound load for cylindrical shells under uniform pressure distributions, but cannot 

estimate the lower bound for wind pressures. 

The dynamic stability of an empty tank under wind pressures is investigated. An 

assumed space variation of pressures, and a simplified deterministic model of time 

fluctuating pressures due to wind, are applied. The response is calculated using explicit 

integration of the equations of motion and the dynamic buckling load is identified 

through a qualitative criterion. The response is analyzed in the time and in the frequency 

domain in order to recognize the nature of the problem. Results show that pressure 

fluctuations do not induce resonance of the structure, so that simpler pressure models 

may be used in practical analyses. 
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RESUMEN 
 

Esta tesis estudia la estabilidad estructural de tanques cilíndricos de acero bajo la 

acción de desplazamientos impuestos en los apoyos y de presiones de viento. Los tanques 

analizados son representativos de los que se encuentran en Puerto Rico y en otras islas 

del Caribe. Éstos están compuestos típicamente de una cáscara cilíndrica de espesor 

variable y un techo cónico con su estructura de soporte. El comportamiento se evalúa por 

medio de modelos de elementos finitos desarrollados en ABAQUS. 

El efecto del descenso de apoyos en los desplazamientos normales a la superficie 

de la cáscara cilíndrica se evalúa a través de análisis estáticos que consideran linealidad y 

no linealidad geométrica, y por medio de análisis clásicos de bifurcación. En todos los 

casos se considera que el material se comporta elásticamente. Los resultados muestran 

que los análisis lineales no predicen correctamente los desplazamientos reales en la 

cáscara cilíndrica y que es necesario incluir los efectos no lineales geométricos para 

amplitudes de descenso típicas. La cáscara cilíndrica muestra un comportamiento 

altamente no lineal caracterizado por una bifurcación simétrica estable. 

En esta tesis se implementa el concepto de límite inferior de cargas de pandeo en 

cáscaras sensibles a imperfecciones a través de un modelo de energía reducida. 

Inicialmente se identifican las operaciones necesarias para determinar ese límite en el 

modelo de energía reducida y luego se ejecutan en un modelo de elementos finitos. La 

metodología propuesta se aplica a distintas configuraciones de tanques, en los cuales los 

resultados muestran que el modelo de energía reducida propuesto predice bien el límite 

inferior de carga de pandeo en los modelos sometidos a presión uniforme, pero no puede 

hacerlo correctamente en los modelos bajo presiones de viento. 

Se evalúa la estabilidad dinámica de un tanque vacío sometido a presión de 

viento. Se asume una distribución espacial y se introduce un modelo determinístico 

simplificado para tener en cuenta las fluctuaciones temporales de las presiones de viento. 

La respuesta se calcula por medio de integración explícita de las ecuaciones de 

movimiento y  la carga dinámica de pandeo se determina usando un criterio cualitativo. 

La respuesta se analiza en el dominio del tiempo y de las frecuencias para reconocer la 

naturaleza del problema. Los resultados muestran que las fluctuaciones temporales no 
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llevan la estructura a resonancia, con lo cual para efectos prácticos es posible usar 

modelos simplificados de presiones. 
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1 CHAPTER 1 

INTRODUCTION 
 
 
 
 
 
 
 
 
 
 
 
 
1.1 MOTIVATION 
 

Above ground storage tanks are vital facilities in Puerto Rico and in the 

Caribbean Islands.  Large thin-walled tanks are employed by various industries to mainly 

store oil, water, and petrochemical products. Tanks are complex structures, frequently 

built with a cylindrical body clamped at the base, a roof, and an additional structure to 

support the roof. Usually, they have a fixed conical or dome roof. It is also common to 

find floating roofs or tanks open at the top. Tanks are frequently constructed as part of 

“tank farms” or large industrial plants with dozens or even hundreds of tanks. Figures 1.1 

and 1.2 show typical tank farm configurations in Puerto Rico and Saint Lucia. 

Typical designs of tanks make use of very thin shells, with ratios between the 

radius of the cylinder and the wall thickness of the order of 1,500-2,000, and height to 

diameter ratios on the order of 0.15 to 1.0. For short tanks such ratio is less than 0.5. The 

cylindrical part of a tank is constructed by welding steel plates in courses of eight feet 

(2.4 m) and is designed to perform under internal or wind pressures, temperature 
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differentials and earthquake actions. Tanks may be anchored or unanchored at the base 

depending on the soil conditions, which may vary at a particular site. Figures 1.3 to 1.5 

show typical cone roof cylindrical tanks located in Puerto Rico. 

 

 
Figure 1.1. Aerial view of a tank farm located in Puerto Rico (Caribbean 

Petroleum). 
 

 
Figure 1.2. Tank farm located in Saint Lucia, during construction. 
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Figure 1.3. Tank farm located in Puerto Rico (Caribbean Petroleum). 

 

 
Figure 1.4. Cone roof tanks connected to pipelines (Caribbean Petroleum). 

 

 
Figure 1.5. Cylindrical tanks in Yabucoa, Puerto Rico. 
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Damage in steel tanks has been identified each time a hurricane affects the 

Caribbean. During hurricane Hugo (1989), severe damage and collapse of oil tanks were 

detected in St. Croix (Figure 1.6) with consequences for the production, the local 

economy, and the environment. Damage of tanks in Antigua occurred during hurricane 

Luis in 1995, followed a week later by hurricane Marilyn leading to damage of a number 

of tanks in St. Thomas. Hurricane Georges (1998) produced local buckling of tanks in 

Yabucoa and Guayanilla, in southern Puerto Rico. Although damage was not severe, 

repairing was needed to reestablish the storage capacity and optimal operation conditions. 

Figure 1.7 illustrates some examples of local buckling of the cylindrical shell and 

collapse of a dome roof in Puerto Rico. 

During hurricanes, the occurrence of moderate damage to total failure was mainly 

associated to buckling of the cylindrical shell of the tank. In some cases, the top 

enclosure of a water storage tank failed and left the short cylindrical shell to resist wind 

loading, so that a second failure occurred in the form of buckling of the top part of the 

shell. Buckling was detected in St. Croix during hurricane Hugo, with large distortions in 

the shape of the shell (Figure 1.6). 

Most studies on the effect of wind pressures on cylindrical shell have been carried 

out in short open top tank models or in silos that are taller than the tanks previously 

described. It has been usual to assume that the wind pressure is constant in time. In 

previous studies models were analyzed using static approaches and did not pay attention 

to the possibility of dynamic effects induced by wind. Observing the damaged tanks, one 

may wonder if wind gusts with very high speeds associated to hurricanes are capable of 
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inducing transient vibrations in the shell during short times, which may eventually lead to 

dynamic buckling. This is one of the questions that this thesis attempts to answer. 

Other identified source of failure in tanks is the loss of the soil foundation 

strength. Such failure is sometimes due to severe windstorms with heavy rains or to 

excessive compressibility of the soil deposit due to other reasons. This leads into 

differential settlements in some part at the base circumference affecting, not only the tank 

bottom, but also the cylindrical shell. 

 

 
Figure 1.6. Collapsed tanks in St. Croix after hurricane Hugo (1989). 

 

 
Figure 1.7. Local buckling and collapsed dome roof tank after Georges (1998), 

Puerto Rico. 
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Such differential settlements in tanks may have several consequences and there 

are many reasons to be concerned about stresses and distortions generated by the local 

settlements. Reported studies on shell structures under support settlement are restricted to 

linear analysis despite of large out-of-plane displacements identified in the field and in 

laboratory experiments. Most of the studies are focused in reinforced concrete cooling 

towers and equivalent studies in steel tanks are restricted to open tanks models. This is 

another research topic that motivated this thesis. The goal is to find displacement patterns 

induced by vertical settlements in cylindrical tanks and to investigate if they occur in the 

geometrically linear range, as suggested in previous studies. 

The evaluation of accurate buckling loads in shell structures has been of great 

concern in the past, motivated by the continuous use of shell structures not only in civil 

engineering, but also in aeronautical, space and naval engineering. In all these 

engineering fields, shell structures have to be stable under different load conditions and 

the designer is required to determine a critical load for a specific load condition. Much of 

the research effort has been oriented to find such critical load given that in most cases, 

experimental tests predicted lower critical loads than those computed with analytical 

models.  

For shell structures like cylindrical tanks, it is known that imperfections play an 

important role in reducing the load carrying capacity. Different techniques have been 

used to make the analytical results closer to the experimental ones. They include complex 

non-linear models implemented in numerical test or most recently, energy based models 

as the lower bound theory, which may be an adequate tool to estimate safe critical loads. 

However, those techniques have only been applied to problems using complex analytical 
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solutions or else special purpose programs developed for a particular case. A more 

extensive application of the lower bound theory by engineers will only be possible if 

general purpose finite element codes may be used without any need to develop special 

computer subroutines. This is another motivation of this thesis and it is generated by the 

need to generalize ways to implement the lower bound theory for cylindrical tanks. 

 
1.2 IMPORTANCE 
 

During field inspections around Puerto Rico and other islands, it was common to 

find tank farms where tanks were not isolated from other parts in an industrial plant, and 

have pipes and connections to other facilities that may be damaged due to the vertical 

displacements. Even if the pipelines are not affected by such vertical displacements, the 

cylindrical shell may significantly change its original geometric configuration. There are 

several reasons to be concerned about such changes in the geometry. First, direct 

structural failure may occur. Second, imperfection-sensitivity is increased by a damaged 

geometry and may trigger an early failure under further loads. Indeed, it is well known 

that Caribbean islands are prone to hurricanes several months a year and tanks may be 

exposed to extreme wind conditions recurrently for which the presence of geometric 

distortions would affect the buckling capacity. Third, operational problems may arise due 

to distortions of the cylindrical shell, particularly in floating roof tanks; excessive 

displacements of the cylindrical shell may affect the normal roof operation. There is a 

huge economic loss for each day that a tank does not operate due to structural problems, 

in which case the owner of the tank, the oil or water supplier companies, the consumers, 
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the insurance companies, and the environmental protection agencies may start an 

investigation. 

Design codes for wind loads requires considering wind gusts of at least 3 seconds 

at 10 m above ground surface. According to the region, maximum wind gust velocities 

for design in Puerto Rico during a hurricane are about 145 miles per hour. Probably such 

speed was exceeded by far in coastal zones where many damaged tanks were located. 

Typical wind records store wind speeds at 3 second intervals as minimum time between 

two consecutive records. Then, there is limited or no information about the fluctuation of 

the wind velocity for intervals smaller than 3 seconds. Preliminary studies in silos using 

wind pressures in the form of a rectangular impulse with 3 seconds duration appear to 

indicate that the dynamic effects are not significant in terms of the buckling capacity of 

the shell. However, the question remains if pressure fluctuations due to wind speed 

fluctuations within a 3 sec impulse may have a more damaging effect on the stability of 

the shell, and thus, if this justifies the need to obtain more detailed information in the 

records with less than 3 seconds intervals. 

For buckling analysis, particularly in wind buckling analysis of tanks, it is not 

possible to find analytical (closed-form) solutions, so that computational mechanics is 

often the only choice to model the behavior under critical load conditions. However, 

there are different levels of complexity in the available tools that requires advanced skills 

and additional resources, not always necessary or available at the preliminary stages of 

the design. Considering that most tanks are designed by engineering firms that have 

standard finite element computer packages (including linear/non-linear static analysis, 

bifurcation-buckling analysis, and non-linear dynamic analysis), the implementation of a 
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reliable methodology to find lower bound critical loads, would contribute not only to the 

understanding of the mechanics of the problem, but also to its solution using common 

practice engineering tools. 

 
1.3 SCOPE 
 

This thesis considers cylindrical above-ground steel tanks with cone roof or open 

at the top. Height to diameter ratios considered are in the range of 0.17 to 1.0 and the 

general structural configuration adopted is similar of what was observed in field 

inspections in Puerto Rico. The analyses are restricted to isolated tanks and the 

interaction with surrounding structures and topographic effects are not considered. The 

theme structures are analyzed under three loads configurations: localized support 

settlements, uniform lateral pressure and wind fluctuating pressures. 

 
1.4 OBJECTIVES 
 

The main objective of this thesis is: 

● To evaluate the stability of cylindrical above-ground tanks under imposed 

support settlements and wind pressures. 

 
The specific objectives of this thesis are:  

• To evaluate the behavior of cylindrical cone roof steel tanks under different 

configurations of support settlements. 

• To determine the effect of fluctuations in pressures and the importance of 

inertial effects on the behavior of cylindrical tanks. 
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• To find the deflected patterns due to dynamic pressures associated to hurricane 

wind speeds. 

• To evaluate the effect of imperfections in the critical wind pressures. 

• To develop a reduced energy approach in cylindrical tanks under uniform lateral 

pressures and wind pressures. 

 
1.5 METHODOLOGY 
 

The work reported in this thesis is carried out within the frame of computational 

mechanics. In order to reach the proposed objectives, computational experiments are 

performed using general purpose finite element codes. The effects of support settlements 

are analyzed using classical linear bifurcation, geometrically linear and non-linear static 

analysis. Additionally, in the evaluation of the behavior of the cylindrical tank under 

support settlements, experiments in small-scale-model are performed to confirm the 

computational results. 

Deterministic fluctuations of wind pressures applied to cylindrical tanks are 

studied using geometric non-linear dynamic analysis. Wind pressures distributions 

available from previous research are adopted in the modeling. 

 The reduced energy method is implemented using classical linear bifurcation 

analysis and static linear analysis, in conjunction with geometric non-linear analysis to 

validate the results. 
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1.6 ORGANIZATION 
 

This thesis is divided in seven chapters and two Appendixes. Chapter 1 introduces 

the theme structures investigated in this work, i.e. cylindrical above-ground steel tanks. 

The motivation, scope, the main objectives and the methodology employed in this thesis 

are also presented in this chapter. 

Chapter 2 gives an introduction to the buckling of tanks in the context of the 

theory of elastic stability. This chapter provides a conceptual framework for the 

following chapters and facilitates the explanation of the results of the computational 

experiments. 

Chapters 3 to 6 constitute the central chapters of this thesis. Chapter 3 analyzes 

the effect of support settlements on a tank with a conical roof. Results using linear, 

geometric non-linear and bifurcation analysis are presented for a typical tank and for a 

small-scale model. 

Chapter 4 introduces a methodology proposed in this thesis to compute lower 

bound buckling loads for different cylindrical tank configurations under uniform external 

pressure. The reduced energy method to find the knock-down factor that reduces the 

classical critical load is described and implemented in this chapter. Results are compared 

with analytical and numerical results available to validate the applicability of the new 

proposed procedure. 

Chapter 5 is a continuation of the topics discussed in Chapter 4, in which the 

proposed reduced energy method is implemented for tanks similar to those considered in 

Chapter 4, but under a different load configuration. That chapter presents the results for 
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wind pressures acting in different tank geometries, in order to find the variation of the 

knock-down factor as the geometry changes. Appendixes A and B are directly related to 

Chapters 4 and 5, and contains detailed derivations of the constitutive model 

implemented in the reduced energy approach. 

Chapter 6 describes the results of computational experiments to evaluate the 

importance of dynamic effects on the theme structure under wind loads. A simplified 

time variation of wind gusts applied in conjunction with an adopted spatial variation, are 

used to compute the non-linear dynamic response. The effect of imperfections and 

damping are evaluated and results in the frequency domain are presented as an alternative 

way to explain the effect of inertial forces. 

Finally, general conclusions and topics for future work are presented in Chapter 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

2 CHAPTER 2 

         BASIC CONCEPTS ON 
BUCKLING OF TANKS 

 
 
 
 
 
 
 
 
 
 
 
 
2.1 INTRODUCTION 
 

This chapter presents an introduction to the buckling of tanks in the context of the 

theory of elastic stability. The main purpose of the following sections is to provide a 

conceptual framework to facilitate the explanation of the results obtained in the next 

chapters. Fundamental concepts are presented in a simple way without using complex 

formulation and information is presented emphasizing the aspects related to the buckling 

of tanks. Additional and expanded treatment of each topic presented in this chapter may 

be found in Godoy (2000), Brush and Almorth (1975), Croll and Walker (1972), Yamaki 

(1984) and others texts. 

The outline of the chapter is as follows: the concept of buckling is introduced in 

Section 2.2. A notion of equilibrium paths and critical states are presented in Section 2.3. 

The effect of the presence of imperfections is introduced in Section 2.4. Section 2.5 

introduces plastic buckling. Section 2.6 introduces the minimum potential energy 
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criterion. Section 2.7 gives some notions on dynamic structural instabilities. Section 2.8 

summarizes ways to evaluate buckling loads using finite element packages. 

 
2.2 WHAT IS BUCKLING? 
 

A structural system is formed by a structure and the loads acting on it. There are 

two main properties that make a structure withstand loads: 

● The constitutive material, and 

● The geometric shape. 

Every structure is designed with a specific shape and it is expected that it should 

retain this shape during the service life. For example, a tank that is designed with a 

circular shape and a conical roof is expected to retain this shape under the loads 

considered in the design. 

Buckling is a process by which a structure cannot withstand loads with its original 

geometry, so that it changes this shape in order to find a new equilibrium configuration. 

This is an undesired process (from the point of view of the engineer), and occurs for a 

well-defined value of the load. The consequences of buckling are basically geometric: 

There are large displacements in the structure, to such an extent that the shape changes. 

There may also be consequences for the material, in the sense that deflections in the tank 

may induce plasticity in the walls of the structure. Figure 2.1 shows a buckled tank. 

Buckling is associated not just to a structure, but to the complete structural 

system. To visualize a buckling process it is necessary to consider the load-deflection (P- 

∆) diagrams, as shown in Figure 2.2. Here we plot the equilibrium states of the structure 

in terms of the load applied (P) and the deflection (∆) obtained. Depending on the 
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structure behavior, diagram shown in Figure 2.2(a) or 2.2(b) will be discussed in the next 

section. Of course, there are deflections in almost every point of the structure. Therefore, 

it is necessary to choose a convenient point and follow the process by looking at the 

displacements of this specific point. 

 

 
 

Figure 2.1. A tank that buckled in Peñuelas, Puerto Rico. 
 

 
 

Limit Point

 
    (a)    (b) 
 
Figure 2.2. Load deflection diagrams showing equilibrium paths (a) limit point, and 

(b) bifurcation point. 
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2.3 EQUILIBRIUM PATHS AND CRITICAL STATES 
 

The sequence of equilibrium points in the P-∆ diagrams shown in Figure 2.2 is 

known as an equilibrium path. The equilibrium path emerging from the unloaded 

configuration is called the fundamental or primary path, also the pre-buckling path. This 

path may be linear (or almost linear) or may be non-linear depending on the structural 

system. 

The load level in which there is a change of the shape is called buckling load PC, 

and the emerging geometry is called the buckling mode. There are several ways in which 

this process may occur: 

● In “snap buckling”, the fundamental path is non-linear and reaches a maximum 

load, when the tangent to the path is horizontal. This state is called limit point (Figure 

2.2(a)). The change in the shape occurs in a violent way. 

● In “bifurcation buckling”, the fundamental path may be linear and it crosses 

another equilibrium path, which was not present at the beginning of the loading process 

(Figure 2.2(b)). The state at which both paths have intersection is called a bifurcation 

point. Both limit and bifurcation points are called critical points or critical states. 

Buckling is associated to a property of the equilibrium states known as stability. A 

stable equilibrium state is one in which if there is a small disturbance to the system at the 

same load level, then the system oscillates but returns to the original state after a while. If 

the system does not return to the original state and moves to a new state, perhaps far from 

the original one, then the original was an unstable equilibrium state. At a critical point, 

the stability changes from stable to unstable. 
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The process that occurs following buckling is called post-buckling:  

● There are structures with a load capacity in their post-buckling behavior, which 

can adjust to changes in shape and resist additional loads after buckling. Thus, there is a 

post-buckling equilibrium path, which may be stable.  

● Other structures do not have stable post-buckling equilibrium states, so that the 

critical load is the maximum load of the structure. 

Koiter (1945) showed that the critical states of bifurcation might be of the 

following types (see Figure 2.3): 

● Stable symmetric bifurcation. The post-buckling path (also called secondary 

path) has a horizontal tangent at the critical point, and the path is stable, so that the 

structure can carry further load increments (Figure 2.3(a)). This behavior is found in 

columns and plates. 

● Unstable symmetric bifurcation. The post-buckling path has a horizontal 

tangent at the critical point, but the energy path is unstable, so that the structure cannot 

carry further load increments (Figure 2.3(b)). This behavior is typically found in shells. 

● Asymmetric bifurcation. The post-buckling path has a non-horizontal tangent at 

the critical point, and the path is stable on one side and unstable on the other, depending 

of the displacements (Figure 2.3(c)). Then, the structure can carry further load increments 

only on the stable branch. This behavior is found in frames. 

The type of behavior of Figure 2.3 occurs whenever there is an isolated critical 

state, also called distinct critical point. This means that the critical state is associated to 

just one buckling mode. 
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(a)                                       (b)                                         (c) 

 
Figure 2.3. Three basic types of bifurcation for isolated modes. 

 

There are also cases in which there are two modes associated to the same critical 

load, and this is known as a “coincident critical state”, or a “compound critical point” (P1
c 

= P2
c) This situation is shown in Figure 2.4. The case of almost coincident critical loads is 

presented in Figure 2.4(a), while coincident critical loads are shown in Figure 2.4(b).  

 

 
(a)                                                                    (b) 

 
Figure 2.4. (a) Almost-coincident and (b) coincident critical states: Two or more 

critical modes are associated to the same critical load. 
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There are two reasons to explain how two or more modes can be coincident (or 

almost coincident): 

● Due to the selection of some design parameters, two modes that may otherwise 

take different values of critical load, could result coincident. In this case, coincidence is 

the exception, not the rule. 

● Due to a problem of the structure and the loading considered. For example, 

cylindrical shells under axial load or spherical shells under uniform external pressure 

(two common geometries in the design of tanks) develop many coincident modes for the 

lowest critical state. In this case,  it does not matter how we design the shell, it will have 

coincident critical states, and coincidence is the rule, not the exception. 

Two or more coincident (or almost coincident) critical states may have mode-

coupling to form a new equilibrium path, different from the isolated equilibrium paths. 

For example, in Figure 2.4(a), the coupling of two modes produces a new secondary 

bifurcation state and a new tertiary equilibrium path. Not all coincident states couple, and 

there are several ways in which they may couple. 

In many cases at the critical state the structure has a critical mode, and as the 

structure follows the post-critical equilibrium path the mode of deflections change. This 

is called “mode-jumping”. 

 
2.4 INFLUENCE OF IMPERFECTIONS 
 

Many structural systems (including tanks under lateral loads) are sensitive to the 

influence of small imperfections. Examples of imperfections are geometric deviations of 
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the perfect shape, eccentricities in the loads, local changes in the properties, and others. 

An imperfection is usually characterized by its variation in space and its amplitude ξ. 

An imperfection destroys a bifurcation point, and a new equilibrium path is 

obtained for each imperfection amplitude ξ. As the amplitude of the imperfection 

increases, the paths deviate more from the path of the perfect system. This is shown in 

Figure 2.5. 

● Structural systems that display stable symmetric bifurcations have a non-linear 

path due to imperfections, and the bifurcation point is not reached (Figure 2.5(a)).  

● Systems with unstable symmetric bifurcation in the perfect configuration, when 

an imperfection is included, have a non-linear path with a maximum in the load, after 

which the path descends (Figure 2.5(b)). Thus, the maximum load that the system can 

reach depends on the amplitude of the imperfection, and this maximum is lower than 

what would be computed using the perfect geometry.  

● Finally, systems with asymmetric bifurcation have a maximum load on the 

unstable branch, leading to a maximum load (Figure 2.5(c)). 

 

 
(a)                                           (b)                                    (c) 

 
Figure 2.5. Influence of imperfections on bifurcation behavior of structural systems. 
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A typical plot is made showing the maximum load versus the amplitude of the 

imperfection; that is known as an imperfection-sensitivity plot. An example is shown in 

Figure 2.6. Some structures have a loss of buckling-carrying capacity of 50 % or more, 

including cylinders under axial load and spheres under pressure; they have high 

imperfection sensitivity. Other structures have moderate sensitivity, like cylinders under 

lateral pressure, which have a loss of about 20-30 %. Finally, there are structures with 

small sensitivity, like arches under transverse loads. 

Problems with coincident (or almost coincident) critical states that have mode 

coupling may display high imperfection-sensitivity. This occurs in the cylinder and the 

sphere. In other cases (for example, an I-column under compression), there is mode-

coupling but the imperfection-sensitivity is moderate. 

 
Pmax 

 
 

Figure 2.6. Imperfection sensitivity plot showing how the maximum load decreases 
with the amplitude of an imperfection. 
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2.5 PLASTIC BUCKLING 
 

Figure 2.1 illustrates a frozen image of the buckled tank. Perhaps the steel was 

elastic at the onset of buckling, but as post-critical deflections grew the material had 

plastic deformations. The material properties during the buckling process are very 

important: 

● Elastic buckling: is a process that initiates at the critical states with elastic 

material properties. Thus, instability occurs before plasticity: when the structure reaches 

plastic deformations it already experienced buckling. This occurs in most thin-walled 

shells, such as tanks.  

● Plastic buckling: is a process that initiates with plastic deformations. Thus, 

plasticity occurs before instability: when the structure reaches a buckling load it already 

had plastic deformations. This occurs in thick shells. 

● Elastic-plastic buckling: This occurs when plasticity and instability occur 

almost at the same load level. This occurs in moderately thin shells. 

 
2.6 THE MINIMUM POTENTIAL ENERGY CRITERION 
 

In the field of elastic stability, it is common to adopt the point of view expressed 

by Hutchinson and Koiter (1970): “The energy criterion of stability for elastic systems 

subject to conservative loadings is almost universally accepted by workers in the field of 

structural stability. A positive definite second variation in the potential energy about a 

static equilibrium state is accepted as a sufficient condition for stability of that state. 

Numerous attempts to undermine these two pillars of structural stability theory have been 

made, but confidence in them remains undiminished. Whit a proper shoring-up of certain 
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aspects of these criteria, they will undoubtedly continue to serve as the foundation of 

elastic stability theory”. 

The potential energy criterion has been the basis of almost all the structural 

stability investigations that are known. This criterion has found widespread application 

because, in general, it leads to results that have been verified by experience. The lack of 

correlation of theory and practice has been in the analysis of what are now termed 

‘imperfection-sensitive structures’. Such structures are not stable at the critical or 

buckling load (the equilibrium points), and their proper analysis requires the inclusion of 

non-linear effects. 

The total potential energy Π  of a stressed body under load is defined as: 

UΠ = + Ω                                                         (2.1) 

where U is the internal strain energy and Ω is the load potential. The internal strain 

energy in a thin walled element is composed by membrane and bending contributions 

given by: 

mU U U= b+                                                       (2.2) 

where Um is the membrane contribution and Ub is the bending contribution. 

Slender and thin-walled structures (like tanks) which are prone to buckling are not 

modeled using three-dimensional elasticity. For those structures it is usual to employ 

technical theories, particularly thin-shell structures are often studied by means of the 

Love-Kirchhoff hypothesis. For a cylindrical shell of radius R and length l, membrane 

and bending contributions to the total strain energy are expressed in terms of stress 

resultants and deformations as: 
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2

0 02

l

m ij ij
R

U N
π

dxdε θ= ∫ ∫                                              (2.3) 

2

0 02

l

b ij ij
R

U M d
π

xdκ θ= ∫ ∫                                              (2.4) 

Here, Nij are the in-plane stress resultant; εij are the membrane strains in the mid-surface; 

Mij are the components of moments; κij are the changes in curvatures of the mid-surface. 

For thin walled structures shear components are assumed that produce negligible strain 

energy. 

 The load potential depends on the type of load acting on the shell structure. For a 

cylindrical shell under uniform lateral pressures, the load potential is: 

2

0 0

l

R pw dxd
π

θΩ = − ∫ ∫                                                 (2.5) 

where p is the unit pressure and w is the out-of-plane displacement. Throughout this 

thesis it is assumed that the forces are increased in the same rate. So that there is only one 

parameter λ that controls the increments of all loads components. With this assumption, 

the load potential given in equation 2.5 takes the form: 

2

0 0

λ
l

R pw dxd
π

θΩ = − ∫ ∫                                             (2.6) 

Substituting equations 2.3, 2.4 and 2.6 in equation 2.1 we get the total potential energy 

for cylindrical shell under uniform pressures, that is:  

2 2

0 0 0 0

(
2

) λ
l l

ij ij ij ij
R

M N dxd R pw dxd
π π

κ ε θ= + −
⎡ ⎤

Π ⎢ ⎥
⎣ ⎦

∫ ∫ ∫ ∫ θ                    (2.7) 
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In equation 2.7 it is necessary to introduce kinematic relations that include linear 

and non-linear contributions to each strain εij and curvature κij components. In the 

evaluation of stability it is usual write the kinematic relations for an incremental state 

with respect to the critical state (an incremental state has incremental displacements or 

buckling modes). In such state, the increments in the displacements are not associated to 

increments in the external load. The strains in the incremental state are expressed in terms 

no linear kinematic relations which relate variations in the displacements with variations 

in the coordinates. Kinematic relations proposed by Donnell (1976) allow separating the 

contributions to the total strain in: strains due to the displacements in the fundamental 

state, linear strains in the incremental state, and quadratic strains in the incremental state. 

As an example, for x coordinate in equation 2.7, the total strain can be expressed as: 

'F ''
x x xE E xε ε= + +                                                 (2.8) 

where F
xE  is the deformation due to displacements in the fundamental state, '

xε is the 

linear strain due to displacements in the incremental state, and ''
xε  is the quadratic strain 

due to displacements in the incremental state. Total resultant forces can be expressed in a 

similar way as:  

'F ''
x x xN N n nx= + +                                                 (2.9) 

where F
xN  is the resultant force in the fundamental state, '

xn is the linear resultant force in 

the incremental state, and ''
xn  is the quadratic resultant force in the incremental state. 

Appling the same decomposition for the other coordinates and replacing in equation 2.7, 

we have: 
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                       (2.10) 

Introducing in equation 2.10 the decomposition given in equations 2.8 and 2.9 for all 

coordinate components, we have the total potential energy for the incremental state. As 

example of this substitution, for x coordinate we have: 

2
' '' ' ''

0 0

2
' '

0 0

( )( )
2

( )( )
2

.....

l
F F
x x x x x x

l
F F
x x x x

R
N n n E dxd

R
M m dxd

π

π

ε ε θ

κ θ

Π = + + + +

+ + Κ + +

∫ ∫

∫ ∫

                         (2.11) 

Substituting for the other coordinates and expanding equation 2.11, the total potential 

energy takes the form: 

0 1 2 3 ......Π =Π + Π + Π + Π +                                  (2.12) 

where only includes terms in the fundamental state, 0Π 1Π  includes linear terms in the 

incremental state,  includes quadratic terms in the incremental state and so on. Here 

the term  represents the potential energy in the primary or fundamental path. The term 

2Π

0Π

1 δΠ ≡ Π  represents the first variation of the fundamental state. This term satisfy 

equilibrium, so it must be zero, then 1 0δΠ ≡ Π = . The term 2
2 δΠ ≡ Π  represents the 

second variation of the potential energy of the fundamental state and normally is not zero. 

Reminding the stability criterion presented at the beginning of this section, we have that: 

 

 



 27

2 0δ Π > If the second variation is positive, then the state is stable. 

2 0δ Π < If the second variation is negative, then the state is unstable. 

2 0δ Π = If the second variation is zero, then it is a critical state of stability. 

Incremental displacements and loads that satisfy the last condition, determine a 

critical state which can be evaluated equating the second variation to zero and neglecting 

the non-linear contributions in the secondary o post-critical path. This generates a new 

eigenproblem in which the eigenvalues are used to compute the resultant forces in the 

fundamental path. Expanded computations for this state can be found in Godoy (2000).  

For simple geometric and load configurations it is possible evaluate the stability 

of the system computing the strain energy and the second variation analytically. For 

complex structures, like tanks analyzed in this thesis, such computations are performed 

numerically in finite element models. 

Some remarks regarding the total potential energy criterion are (Godoy, 2000): 

● The energy criterion of stability is based on a global measure, the energy of the 

complete body, and not in local measures like stresses. 

● The applicability of this criterion is restricted to elastic behavior. The stability 

evaluation in plastic states cannot be determined using this criterion. 

 
2.7 DYNAMIC STRUCTURAL INSTABILITIES 
 

The occurrence of dynamic instability phenomena in engineering structures may 

be caused by time-dependent or time-invariant loads. For dynamic stability analysis, 
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uniform computer-oriented stability criteria become more required as the various 

analytical methods that can only be employed to ‘simple’ structures. 

Time-invariant responses are depicted in Figure 2.7. There, the sequence of points 

of equilibrium is called time-invariant structural response. From the response we 

distinguish primary, secondary and high order response paths separated by:  

● Bifurcation points, in particular simple, multiple and tangent bifurcation points. 

● Limit points, in particular snap-through and snap-back points. 

● Isolated or multiple critical equilibrium points. 

Response shows non-linearities which can be physical (associated to the material) 

or geometrical (associated to the kinematic of the problem). 

 
P 

 
Figure 2.7. Time invariant instability phenomena. 
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Figure 2.8(a) depicts. 
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● State-space diagrams, where the displacement is plotted versus the velocity, in 

this case the time is a parameter along the path, as Figure 2.8(b) shows. 

However, with both diagrams depicted in Figure 2.8 in general it is not possible to 

decide whether a response is linear or non-linear, stable or unstable. Compared with the 

static case, the classification of kinetic instabilities is neither fundamental nor straight 

forward. Most phenomena are grouped together with those which are governed by similar 

mathematical equations or methods (Krätzig and Niemann, 1996). In a relatively 

superficial manner we distinguish kinetic instabilities caused by: 

● Parametric resonance. 

● Impulsive loading. 

● Circulatory loads. 

● Aeroelastic problems. 

 

0

Displacement Displacement 

VelocityTime

(b)  (a) 
 

Figure 2.8. (a) Motion as time history; (b) Motion plotted in the phase space. 

 

Particularly, impulsive loading is a case of interest in this work. In the evaluation 

of the stability of structures under transient loading, there are two situations of interest: 
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● Impulse or short term loading, as depicted in Figure 2.9(a), and 

● Long term loading such as a suddenly applied load, which remains constant as 

Figure 2.9(b) shows. 

The first could be associated to an impact loading and the second is the rapid 

application of a nominally quasi-static load. The second case has particular importance 

for this thesis because previous studies on dynamic wind effects have considered such 

type of loading. For this loading type, Doyle (2001) recognizes three situations in which 

the stability is evaluated: 

 

 
 

Figure 2.9. Limiting situations of blast loading (a) Impulse like, short duration; (b) 
Steady like, long duration. 

 

I – Stiff systems, identified as those that exhibit increasing stiffness with 

increasing deformation. These are globally stable when the loads are applied quasi-

statically. 

II – Bifurcational systems, identified as those systems which have a primary 

loading path that does not change in the bifurcated degrees of freedom. Examples of 

these cases are Euler buckling columns and flat plates. 
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III – Limit point systems, in contrast to the bifurcational systems, the limit-point 

systems show change of deformation in the degrees of freedom along the primary loading 

paths. Snap-through buckling of a shallow arch is an example, but also is the buckling 

way of shells. Particularly for this situation, Budiansky and Roth (1962) proposed a 

“…qualitative, but fairly well defined, criterion…” for determining dynamic buckling 

load. This criterion is based in computing the time-dependent response for gradually 

raising load amplitudes. When response, measured in a control point, shows a very steep 

rise in the maximum amplitude for a very small change in the load amplitude, it is said 

that the dynamic buckling load is identified. Such critical pressure corresponds, 

qualitatively, to a transition from moderate to severe deformations. 

Given the complexity of the structures analyzed in this work, it is not possible to 

obtain an analytic exact solution. Instead, finite element models in conjunction with non-

linear geometric effects and explicit integration of the equations of motions are employed 

to determine the dynamic buckling load, so that a criterion as described above is helpful 

in the evaluation of the dynamic stability of tanks under time-variant loads. 

 
2.8 APPROACHES TO EVALUATE BUCKLING 
 

At present, most structures are analyzed using a finite element model, and more 

specifically, a commercial computer package is employed like ABAQUS, ALGOR, 

ADINA, ANSYS, and others. There are basically three ways in which buckling may be 

evaluated using a finite element program: 

● Bifurcation analysis. The program performs first a static analysis of a linear 

fundamental equilibrium path, and then computes the eigenvalues and eigenvectors of the 
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system using the stiffness and the load-geometry matrices. The results are the buckling 

load and the buckling mode. No information is provided regarding the post-buckling path 

or sensitivity analysis. 

● Non-linear analysis. A step-by-step analysis is performed considering an initial 

imperfection and geometrical and material non-linearity. Only limit points can be 

detected, and bifurcations are not taken into account. Sometimes the program may fail to 

detect a bifurcation state. The results are a list of load and displacement configurations.  

● Initial post-critical analysis. Koiter (1945) developed a theory in which the 

stability of the critical state provides information about the post-critical states close to the 

critical point. A perturbation analysis is performed to compute the initial post-critical 

secondary path. Commercial computer programs do not have this capability, and it has 

been incorporated into many special purpose finite element programs for shells. 

 

 

 

 

 

 

 

 

 

 

 

 



 

3 CHAPTER 3 

LOCALIZED SUPPORT SETTLEMENTS 
OF THIN‐WALLED STORAGE TANKS 

 
 
 
 
 
 
 
 
 
 
 
 
3.1 INTRODUCTION 
 

Thin-walled metal tanks may be supported in various forms, including compact 

soil foundation, ring walls, slabs or pile-supported foundations. The support may be lost 

in some part of the base circumference affecting the cylindrical shell and the tank bottom. 

The causes of such differential settlements may include “non homogeneous geometry or 

compressibility of the soil deposit, non uniform distribution of the load applied to the 

foundation, and uniform stress acting over a limited area of the soil stratum” (Marr, et al, 

1982). Heavy rains, such as those that happen during tropical storms and hurricanes, may 

aggravate the situation. The differential settlements in tanks may have several 

consequences: 

(a) Out-of-plane displacements are induced into the shell in the form of buckling 

under a displacement-controlled mechanism; 

(b) High stresses develop at the base of the shell and in the region of the 
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settlement; 

(c) High stresses develop in the tank bottom. 

There are many reasons to be concerned about such stresses and distortions. First, 

tanks are not isolated from other parts in an industrial plant and have pipes or connections 

to other facilities that may be damaged due to the vertical displacements. Second, 

excessive displacements of the cylindrical shell affect the normal operation of a floating 

roof. Third, a geometric distortion greatly affects the buckling resistance of the shell 

under wind pressure. Fourth, plasticity may occur in parts of the shell wall.  

In this chapter, the geometrically linear and non-linear behavior of thin-walled 

tanks under localized settlements is considered. Experiments on a small-scale acetate 

model of a tank with a flat roof, and the computer analysis carried out to validate the 

geometrically non-linear behavior of this model are discussed. 

The outline of the chapter is as follows: A revision of previous research on the 

topic is presented in Section 3.2. The case studied is described in Section 3.3. Results for 

this case are presented in Section 3.4. Experimental and computational results for a small 

scale model are presented in Section 3.5 and 3.6, respectively. Finally, some conclusions 

are presented in Section 3.7. 

 
3.2 LITERATURE REVIEW 
 

The settlement of the foundation in large, thin walled shells has been of great 

concern in the past. Studies on large reinforced concrete cooling towers shells 

constructed in the form of hyperboloids of revolution indicate ratios of maximum 

amplitude of the out-of-plane displacement versus the vertical settlement of the support 
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between 3.5 and 6. See for example Gould (1972), Koluza and Mateja (1976), Croll and 

Billington (1979) and Lu, et al. (1986). Equivalent studies for thin-walled tanks are also 

found in Bell and Iwakiri (1980), Brown and Peterson (1964), Green and Hight (1964) 

and Clark (1969). However, all the computer simulations carried out by those authors 

employed a geometrically linear formulation in spite of the fact that significant 

displacements were identified. Myers (1997) indicates a possible mechanism of 

settlement at the base of tanks, but does not provide information regarding actual 

displacements in the shell. An interesting observation in the change from reinforced 

concrete cooling towers to steel tanks is that there is a shift of interest from the evaluation 

of stresses to the assessment of radial deflections. 

According to D’Orazio and Duncan (1987), “…examination of the settlement 

measured for the tanks… shows one fact clearly: steel tank bottoms can undergo a wide 

variety of types of distortion as they settle”. However, most analytical studies concentrate 

on just one type of distortion: a vertical displacement pattern at the base of the shell that 

follows a harmonic shape. D’Orazio et al. (1989) report: “Because their walls have 

significant stiffness and ability to span local soft spots, the settlement profiles of tank 

walls tend to be smooth and free of sharp variations. Through examination of measured 

settlement profiles and approximate theoretical analysis, the writers have concluded that 

for the tanks studied, which are typical floating-roof oil-storage tanks, significant 

distortion will not occur over circumferential distances shorter than about 20 to 30 m” 

(D’Orazio, et al. 1989, pp. 875). For a tank with R = 25.6 m, as the authors considered, 

the central angle associated to 20 m is 45º or 1/8 of the circumference.  
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Failures of tanks have been reported in the literature; see for example Marr et al. 

(1982), Bell and Iwakiri (1980), Clark (1969) and D’Orazio et al. (1989). Remarkable is 

the report of the failure of a 26.15 m radius shell storing hot oil in Japan in 1974. The 

consequences of this failure were multiple: “The contents flooded much of the refinery 

property and flowed into the adjacent inland sea causing severe damage to the fishing 

industry. As a result, the 270,000 bbl/day refinery was shut down for about nine months, 

largely because of public reaction. By the time the refinery was permitted to resume 

operation, the accident had cost the refinery more than $ 150,000,000” (Bell and Iwakiri, 

1980).  

Because of dramatic cases as described before, there is a need to establish some 

criteria to limit support settlements to admissible values. Such criteria do not consider 

buckling of the shell: “We assume that buckling resulting from differential settlement 

would occur in the top course, would not rupture the shell and would not result in loss of 

oil. However, failure by buckling requires more studies” (Marr et al., 1982, pp. 1028 and 

Jonaidi and Ansourian, 1998). 

To evaluate the distortions in the cylindrical part of the tank, various models have 

been proposed. One of them is the use of a harmonic shape to account for the vertical 

displacement at the base and written in the form: 

cos( )nu u nϕ=                                                     (3.1) 
 

where φ is the angle around the circumference and n is the wave number. Malik, et al. 

(1977) used an inextensional theory of shells and derived the relation 

2(H/R)nw n= nu                                                   (3.2) 
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where wn is the maximum amplitude of the out-of-plane displacement induced by the 

settlement, H is the height and R the radius of the cylinder. This equation has many 

drawbacks: it is independent of the thickness of the shell, it does not account for localized 

settlements, and it is based on a simplified and linear shell theory. Kamyab and Palmer 

(1989) derived another expression based on linear membrane shell theory, i.e 

2

ratio

1
= (H/R)   [ ]

(1+  I )n nw n u
α

                                       (3.3) 

 
where α is function of the wave number n, the thickness t and of the Poisson’s relationν. 

Iratio is the ratio between the circumferential bending stiffness of a ring stiffener on the top 

and the bending stiffness of the cylindrical shell. Jonaidi and Ansourian (1998) argued 

that errors in the range of 10-18% are obtained from the use of this membrane model.  

More refined analysis have used finite element models for the shell and assumed 

harmonic settlement including more realistic features such as tapering wall thickness and 

the influence of the top ring stiffener (wind girder) as reported by Jonaidi and Ansourian 

(1998). These authors used ABAQUS (2002) to evaluate out-of-plane displacements, 

bending and membrane stress resultants as a function of the wave number n. Their 

numerical results showed that there is a critical value of n (close to 8) and central angle of 

45°, for which the displacements wn reach a maximum value. 

Experiments on small scale models have been done by D’Orazio et al. (1989) for 

an open cylinder supported on eight points around the perimeter, and the settlement in the 

laboratory model are related to wall movements in real tanks by: 

real real s modelw  = (H/R)  K  (w R/H)                                 (3.4) 
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where w is the change in radius and Ks is a factor of scale. Again, these expressions are 

independent of the slenderness of the shell and represent a linear relation.  

Tests were also reported by Jonaidi and Ansourian (1998) on steel open cylinders 

with variable thickness and a simulation of the top ring. The mean wall slenderness is R/t 

= 375 and R/H = 1.88. The tests were performed at low amplitude settlements, consistent 

with the linear shell theory, and also for large deflection, the main purpose being the 

evaluation of stress mechanisms. Most of these studies refer to open tanks. “Little data 

and few analyses exist to set a criterion for the validity of coned-roof tanks” (Marr et al., 

1982, pp. 1024). 

 
3.3 CASE STUDIED 
 

For the current study, a specific tank with a conical roof shown in Figure 3.1, 

which was found at several locations in Puerto Rico, was investigated to study the radial 

deflections due to settlements over part of the shell foundation. The geometric parameters 

for this structure are shown in Figure 3.2, and are H = 12.191 m, D = 30.48 m (H/D = 

0.40), with a tapered thickness as in the real structure in which the first course of the tank 

is built with t1 = 11.4 mm, the second course has   t2 = 9.5 mm and the remaining three 

top courses have t3 = 7.9 mm, such that, the average R/t is about 1,700. The tank is made 

of steel with a modulus of elasticity E = 206 GPa and a Poisson’s ratio ν = 0.3. The 

thickness of the conical roof is 12.5 mm and for this chapter the details of the stiffeners 

on the roof were not included in the model. An empty tank is assumed fixed at the base, 

except for an arc where a settlement is imposed. 
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Figure 3.1. A typical tank considered for the analysis. 
 
 

 
Figure 3.2. Geometry of the tank considered in the computations. 

 

It is assumed that the settlement occurs on a small central angle of the 

circumference at the bottom of the tank, with a symmetric pattern and a linear variation 

between the point of maximum settlement and the edge of the region. Typical 

configurations covered a range of central angle between 6° and 150°. 
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The finite element computer package ABAQUS (2002) was used in this research 

to obtain displacements of the shell under vertical settlement. Quadrilateral shell elements 

with eight nodes (S8R5) were used to model the cylinder and most of the shell roof, 

while triangular elements (STRI65) were required for the center of the roof. Figure 3.3(b) 

shows the finite element mesh used for the discretization of half of the shell, with 1,500 

elements for the cylindrical part and 1,200 for the roof (of which 1,140 are S8R5 

elements and 60 are STRI65 elements).  

Static analyses were performed under imposed displacements in the vertical 

direction at certain nodes in the circumference. Several settlement configurations were 

studied in each case, including a linear variation of the vertical displacements up to a 

maximum value at the center of the zone of settlement. The main parameters controlling 

the response are the central angle θ of the zone of settlement and the maximum amplitude 

of the vertical displacement. Figure 3.3(a) illustrates a scheme of the arc of applied 

vertical settlements and Figure 3.3(b) shows the linear variation in the amplitude.   

 

θ 

Semi part 
modeled 

Arc of differential 
settlements 

 
 
 
 
 
 
 
 
 
 
 
 
   (a)      (b) 

Figure 3.3. (a) Scheme of central angle with support settlements. (b) Finite element 
mesh used for the discretization of half of the structure and configuration of 

imposed displacements. 
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3.4 RESULTS FOR THE CASE STUDIED 

3.4.1 GEOMETRIC LINEAR ANALYSIS 
 

Three types of analysis are reported in this chapter: a linear analysis, a 

geometrically non-linear analysis and a bifurcation buckling analysis. All models 

considered linear constitutive relations. 

First, the structure was studied with a geometrically linear analysis. A plot of the 

maximum out-of-plane displacement wmax (normalized with respect to umax) is shown in 

Figure 3.4 for several values of central angle of the region of settlement. This type of 

sensitivity analysis was performed previously by other authors (see for example Joinadi 

and Ansourian, 1998) for harmonic settlement, and they showed that there is a value of 

the arc (associated to the wave number n) from which the radial displacements reach a 

maximum. 

The results obtained in the current study, indicate that for small central angles the 

shell does not notice the effect, while for large angles the influence tends to vanish, but 

there is a range of angles up to about 45º in which a significant distortion is computed in 

the shell response. The maximum in this case was computed for an angle of 15º and 

reached values of wmax /umax of 12. The linear results predicted values of displacements 

much higher than what was observed in the experiments, and with a different pattern of 

deflections. Because of the large displacements computed using the linear analysis, it is 

expected that geometrically non-linearity plays a significant role in this problem. Notice 

that the trend in tanks and other shells has been to employ linear analysis for the 

settlement, as reviewed in Section 3.2. 
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Figure 3.4. Linear results: Maximum out-of-plane displacements for different values 
of central angle of settlement. 

 

For a maximum settlement umax, the shell deflects with out-of-plane displacements 

wmax that are several times larger than the imposed displacements. Drawings of the 

pattern of linear displacements are shown in Figure 3.5 for three central angles: θ = 15°, θ 

= 30° and θ = 45°.  
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(a) 

 

 
(b) 

 

 
(c) 

 
Figure 3.5. Deflected shapes and contours of out-of-plane displacements for 

geometrical linear results: (a) θ = 15°; (b) θ = 30° and (c) θ = 45°.  
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3.4.2 GEOMETRIC NON‐LINEAR ANALYSIS 
 

A geometrically non-linear analysis was carried out. Three settlement 

configurations were considered, with central angles of 15º, 30º and 45º. Results for a 

central angle of 15º, which was identified as the most critical case in the linear model, is 

reported first in Figure 3.6(a). For small values of umax, the linear and non-linear plots are 

relatively close, but as the settlement reaches half the thickness of the shell (if one takes 

the smallest thickness as a reference value, t3 = 7.9 mm), the out-of-plane deflections tend 

to increase in a plateau. This seems to be a clear sign of instability of the shell. To better 

understand the behavior, the settlement umax is increased up to about 2.0 times the 

thickness (i. e. umax / t3 = 2.0), and the results of Figure 3.6(b) show a stable, stiffening 

path with very large deflections. For example, for umax / t3 = 2.25, the maximum out-of-

plane normalized displacement is wmax / t3 =35. The results show that there is a small 

range in which it may be reasonable to employ linear analysis, and this is for values of 

umax / t3 < 0.5. 

The patterns of deflections of the shell are presented in Figure 3.7; this is 

significantly different from what may be obtained in the linear analysis and shows a V-

shape with outward displacements on the meridian of symmetry and inward 

displacements for the meridian at the edge of the zone of settlement. 
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(b) 

Figure 3.6. Geometrically non-linear results for central angle θ = 15º. (a) Initial part 
of the equilibrium path; (b) Equilibrium path up to umax=20mm. 

 

 
 

Figure 3.7. Deflection pattern of the shell for central angle θ = 15°. 
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Figure 3.8 shows that the behavior for a central angle of 30º is similar to the 

previous case, with a maximum less than 4 mm (umax / t3 ≈ 0.5). For 45º the results are 

plotted in Figure 3.9. The slope in the linear response is different in each case, with a 

maximum for 30º and lower slopes are obtained for larger angles. However, the actual 

value at which the plateau is detected remains almost constant and close to the value of 4 

mm (or umax / t3 ≈ 0.5), as shown in Figure 3.9. This indicates that the high sensitivity in 

the response with respect to the central angle, detected in the lineal model of Figure 3.4, 

is not detected for the levels of settlement leading to instability. 
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 (b) 

Figure 3.8. Geometrically non-linear results for central angle θ =  30º: (a) Initial 
part of the equilibrium path; (b) Deflection pattern of the shell for central angle 30º. 
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Figure 3.9. Geometrically non-linear results for central angle θ = 45º: (a) Initial part 

of the equilibrium path; (b) Deflection pattern of the shell for central angle 45º. 
 

3.4.3 BIFURCATION ANALYSIS 
 

The identification of an unstable behavior in the non-linear model indicates that a 

bifurcation analysis may be a good representation of the shell behavior under settlement. 

This bifurcation model has not been considered by other authors in the context of support 

settlement of shells. For the linearized fundamental equilibrium path, the control 

parameter is the settlement with a value of 2 mm. The bifurcation buckling was 
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investigated by means of an eigenvalue analysis, in which the eigenvalue was the 

multiplier scaling the initial value of 2 mm. For the same central angles considered 

previously, the lowest eigenvalues are shown in Table 3.1, and the critical settlement 

obtained is compared in each case with the onset of instability in the non-linear analysis 

in Figure 3.10. The critical settlement depends on the central angle, with lower values for 

larger angles. The buckling modes are shown in Figure 3.11. Comparing each mode 

bifurcation analysis (Figure 3.11) with those obtained using non-linear analysis (Figures 

3.7 to 3.9), it is seen that they have comparable deflection patterns. 

 

Table 3.1. Lowest eigenvalues leading to bifurcation buckling under support 
settlements 

 

CENTRAL 
ANGLE EIGENVALUE 

IMPOSED 
SETTLEMENT 

[m] 

CRITICAL 
SETTLEMENT 

[m] 

NON-
LINEAR 

PLATEAU  
[m] 

15° 4.0236 0.002 0.008047 0.004504 
30° 2.5673 0.002 0.005135 0.003924 
45° 2.3051 0.002 0.004610 0.004388 
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Figure 3.10. Normalized critical and non-linear settlements for different values of 

central angle of settlement. 
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(a) 

 

 
 (b) 

 

 
(c) 

 
Figure 3.11. Bifurcation modes for central angle θ (a) 15º, (b) 30º, (c) 45º. 
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3.5 EXPERIMENTAL RESULTS ON SMALL‐SCALE 
MODEL 

 
A small-scale elastic model was tested to observe the main features of the 

behavior of the shell as the supports settle. The small-scaled tank was constructed using 

an acetate sheet, which was curved to form a cylinder, and a circular plate of acetate was 

cut to make the roof. The experiments did not use similitude theory so that only the 

phenomenological behavior was identified from the test. The dimensions were H = 90 

mm, D = 226 mm and t = 0.2 mm, leading to ratios H/D = 0.39 and D/t = 1130. This 

model is about 135 times smaller than several tanks that have been constructed in Puerto 

Rico. Because of the difficulties in constructing a conical roof, only cases of flat roof 

were tested. The object of the test was to induce a vertical displacement at the base (over 

an arc covering 30º of the circumference) in order to measure the out-of-plane 

displacements of the shell and to obtain the general pattern of displacements. 

The mechanical properties of the material were approximately E = 0.464 GPa and 

ν = 0.3. The cylinder was fixed to a rigid wooden base (with dimensions 600 × 400 × 12 

mm) by means of a ring with an “L” cross section in order to maintain the circular shape 

of the tank at the base, but this ring was discontinued over a central angle of 30º to allow 

for the vertical displacements. Small holes were drilled on the cylinder at the base in the 

region chosen for the settlement, so as to fix a set of fine threads that were pulled down to 

produce the settlement. An arc of 30º was cut in the base to allow for vertical 

displacement of the shell. The displacements were induced by hand using the set-up 

shown in Figure 3.12, so that it was possible to measure the vertical displacement at each 

point. 
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Figure 3.12. Experimental set-up to induce vertical displacements at the base of the 
shell. 

 

The buckled pattern of the shell is shown in Figure 3.13, for a maximum vertical 

displacement of umax = 1 mm, or umax / t = 5. A grid formed by squares with sides of 2.5 

mm, was attached to the shell in order to identify the location of the points during the 

test. Dial gauges were used to obtain the radial displacement at different location in the 

shell, and photographs of the displacement pattern were obtained for different values of 

vertical displacements. The error in the measured radial displacement is estimated to be 

in the order of half of the shell thickness, i.e. ± 0.1 mm. 

Results were obtained for various configurations and amplitudes of settlement 

patterns u.  The pattern change as the settlement is increased, displaying a geometric non-

linear behavior. The displacements shown in Figure 3.14 were obtained for umax = 1 mm 

and are shown for two meridians, one located in coincidence with the meridian of 

maximum settlement, θ = 0º, and a second one for a meridian at θ = 30º. For θ = 0º, the 

radial displacements are positive (outward direction) with a maximum at about H/3 and 

with w/u = 1.2. Larger displacements (inward direction) are obtained for θ = 30º, with 

values in the order of w/u = 6 at an elevation of about H/2. Such large displacements are 
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clearly outside a linear theory of shell. The pattern of displacements follow a “V” shape, 

with a large inward displacement along a diagonal at 45º with respect to a horizontal 

plane, and almost zero displacement at the top of the shell, where the roof restrains the 

radial deflections. 

 

 
 
Figure 3.13. Deflected shape of the experimental model with a settlement of umax=1 

mm. 
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                              (a)                                  (b)                                    (c) 
Figure 3.14.  (a) Radial displacement for θ = 0°; (b) Radial displacement for θ = 30°; 
(c) Maximum radial displacement in FEM and experimental model (for θ = 18° and 

umax = 1 mm). 
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3.6 FINITE ELEMENT MODEL OF THE SMALL‐SCALE 
TEST 

 
The finite element computer package ABAQUS (2002) was used to obtain the 

displacements of the shell under vertical settlement. To build the mesh, quadrilateral shell 

elements with eight nodes (S8R5) were used to model the cylinder and most of the shell 

roof (about 2,640 elements), while triangular elements (STRI65) were required for the 

center of the roof (about 60 elements). The finite element mesh used in the model is 

shown in Figure 3.15. Static analyses were performed under displacements in the vertical 

direction at certain nodes. Several settlement configurations were studied in each case, 

including a linear variation of the vertical displacements up to a maximum value at the 

center of the zone of settlement.  

First, the structure was studied with geometric linear analysis, and the results 

predicted values of displacements much higher than what was observed in the 

experiments, with a different pattern of deflections. Second, a geometric non-linear 

analysis was carried out. For this non-linear models, plots of maximum vertical 

settlement (the control parameter) and the out-of-plane displacements (response 

parameter) are shown in Figure 3.16(a) and Figure 3.16(b) for two meridians at θ = 0º 

and θ = 18°, respectively. 

The radial displacements seems to follow the linear response up to a value of the 

order of the thickness of the shell, both at θ = 0º and θ = 18º. But for further increases in 

the control parameter, the results show that the out-of-plane displacements departed 

significantly from the linear solution. The equilibrium path shown in Figure 3.16(b) 

display a non-linear behavior similar to a stable symmetric bifurcation; however, there is 
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only one branch of equilibrium.  The tangent to the path becomes almost zero for 

approximately u/t = 1, then it increases for higher values of u. The results suggest that the 

shell buckles for a small value of the control parameter, and then deflects into a post-

buckling mode. 

 
 

Figure 3.15. Finite element mesh for the small-scale model. 
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                                       (a)                                                                       (b) 
 

Figure 3.16. Equilibrium paths at: a) θ = 0º and b) θ = 18°. 
 

The pattern of radial displacement w is compared with experimental values in 

Figures 3.14(a), (b) and (c). A good agreement is found at the meridian θ = 0º, for umax = 
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1 mm, and larger differences are found at θ = 30º. However, if one considers the profile 

of maximum radial displacement in both the experiment and the computation, Figure 

3.14(c), then the results are in reasonable agreement. 

A sequence of deflected shapes as the control parameter umax is increased is 

shown in Figure 3.17 and the complete pattern of deflections computed using ABAQUS 

(2002) is shown in Figure 3.18, for umax = 1 mm. The deflected shape is very similar to 

what was obtained in the experiments, as shown in Figure 3.13. 

 

 
            umax =  0.197 mm                     umax = 0.217 mm                    umax = 0.233 mm 

 
            umax = 0.525 mm                      umax = 0.834 mm                    umax = 1.0 mm 
 

Figure 3.17. Sequence of deflected shapes. 
 
 

 
Figure 3.18. Complete deflected shape for the computational model with a 

settlement of umax = 1 mm. 
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3.7 CONCLUSIONS 
 

The computer analysis carried out in this research, as well as the tests performed 

on a small scale model reported in Sections 3.5 and 3.6, show that the deflection patterns 

in thin-walled shells due to localized settlements of the foundation are due to a highly 

non-linear behavior of the shell. The patterns of displacements in the shell are identified, 

and they are different from those found in buckling of the same shells under wind load or 

internal vacuum. See for example Godoy and Méndez, (2001) and Godoy, et al. (2002). 

Also, the results for one tank configuration show that the buckling displacements are 

almost independent of the central angle of the zone affected by settlement as depicted in 

Figure 3.10. 

The equilibrium paths showed in Figures 3.5 to 3.8 display a non-linear behavior 

with a plateau, which is a clear sign of instability.  The tangent to the equilibrium path 

becomes zero for approximately umax / t3 = 0.5 for the cone roof tank and u / t = 1 for the 

small-scale model, then it increases for higher values of umax / t3 or u / t. 

For the small-scale model of a cylindrical tank with a flat roof as well as for the 

cone roof tank model, the behavior seems to be similar to a stable symmetric bifurcation, 

but with only one branch. The results suggest that the shell buckles for a small value of 

the control parameter, and then deflects into a post-buckling mode.  

Based in the results obtained, notice that in the non-linear analysis it is not 

necessary to include imperfections. This is due to the fact that the non-linear equilibrium 

paths, for the cone roof model as well as for the small-scale model are stable. In other 

words, paths after a small linear behavior have a transition plateau in which begins a 
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constantly raising non-linear path. In the new stable configuration, the shell can withstand 

further vertical displacements with an increase in the amplitude of the post-buckling 

mode.  

Bifurcation analysis has been shown to give a reasonable approximation to the 

problem. A linear fundamental equilibrium path is seen to occur, before buckling 

develops into a new shape for the shell. Modes obtained with bifurcation analysis are in 

close agreement with those obtained in non-linear analyses. 

Regarding the engineering importance of this effect, one has to look at the 

displacement amplitudes: the out-of-plane displacements computed using a geometric 

non-linear theory of shells are much larger than the linear values, so that it does not seem 

wise to establish tolerance criteria for settlements based on linear shell models. Thus, it 

seems that one should question the results obtained by many authors in the past, which 

are restricted to a linear analysis and would thus reflect unstable states along a linear 

fundamental path.  

 

 

 

 

 

 

 

 

 

 



 

4 CHAPTER 4 

 COMPUTATION OF LOWER‐BOUND 
BUCKLING LOADS USING GENERAL‐
PURPOSE FINITE ELEMENT CODES 

 
 
 
 
 
 
 
 
 
 
 
4.1 INTRODUCTION 
 

Buckling is a non-linear phenomenon, in which the structure cannot take further 

load with the same geometry and changes its shape in order to find alternative 

equilibrium positions (Godoy, 2000). The usual computational tools in the buckling of 

shells are eigenvalue analysis to identify bifurcation of equilibrium paths, and non-linear 

analysis to follow equilibrium paths up to (and beyond) a critical state. For complex 

problems, such as those of interest in this thesis, both types of analysis should be 

employed. Furthermore, the buckling behavior of shells may be sensitive to initial 

imperfections, which produce a drop in the critical load (Koiter, 1945). This drop may be 

moderate, as in laterally loaded cylinders and cylindrical panels, or severe, as in axially 

loaded cylinders and pressurized spherical shells. 

There are alternative ways to account for imperfection-sensitivity, and one of the 
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most interesting approaches oriented to shell design has been the lower bound theory 

based on a reduced-energy model of the shell (also known as reduced-stiffness model) 

developed by Croll and collaborators (Croll, 1975 and 1995). In the reduced energy 

approach it is important to identify the energy components of the shell in the classical 

eigenmodes, including membrane and bending components as well as load potentials. 

Depending on the shell and load system, some of the contributions to the second variation 

of the total potential energy are positive and others are negative, which means that they 

are stabilizing or de-stabilizing components. The main hypothesis is that stabilizing 

(positive) components may be lost in the shell due the presence of imperfections. Thus, 

the reduced energy approach uses a simplified energy version in which some stabilizing 

components are eliminated from the initial post critical condition. This lower bound 

theory has been validated extensively for many shell forms; see for example Croll and 

Batista, (1981), Yamada and Croll, (1989, 1993 and 1999), Croll and Ellinas, (1983) and 

others. 

This chapter is restricted to cylindrical shells under uniform lateral pressure, for 

which previous studies have shown that the membrane energy contributes to the stability 

of the shell, and that this energy may be lost due to imperfection sensitivity, so that it is 

eliminated in a lower bound analysis (Batista, 1979). 

In most problems investigated in the literature, an analytical solution has been 

implemented or else a special purpose program was written; however, a more extensive 

application of the approach by engineers will only be possible if general purpose finite 

element codes may be used without any need to develop special computer subroutines. 
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The motivation of this research is triggered by this need to generalize ways to implement 

a lower bound approach. 

The outline of the chapter is as follows: A review of previous work is presented in 

Section 4.2. Classical and modified ways to perform buckling analysis are described in 

Section 4.3. The main shell elements available in ABAQUS (2002) are presented in 

Section 4.4. Results of the implementation of the proposed reduced energy analysis for a 

benchmark cylinder are presented in Section 4.5. Results for an open top cylindrical tank 

are presented in Section 4.6 and for a cone roof tank in Section 4.7. Finally, some 

conclusions are presented in Section 4.8. 

 
4.2 LITERATURE REVIEW 
 

Since the pioneering work of Koiter (1945), studies on the elastic stability of 

structures have shown that shells can be highly sensitive to even small deviations from 

the as-designed geometry. This imperfection sensitivity has the consequence that a 

bifurcation analysis of the shell, carried out with a perfect geometry, leads to higher 

buckling loads than a more realistic non-linear analysis of the shell with imperfections. 

At the end of the sixties there was a great interest in understanding the buckling of 

shells due to wind loads, perhaps stimulated by the collapse of three reinforced concrete 

cooling towers in Ferrybridge, England, during a storm. Since that time, there had been 

numerous studies dedicated to calculate the critical lateral pressure in cooling towers and 

in other axi-symmetric structures, like the tanks described in previous chapters. 

Essentially, most research efforts were oriented to develop analytical and experimental 

models in order to reach a better understanding of the behavior of shell structures. 
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However, the discrepancies between experimental and analytical results motivated that 

researchers attempted to incorporate the physics of the problem to explain the differences 

in the results (Croll, 1975, 1995). 

The classical bifurcation models soon were confirmed not to be accurate in 

predicting the critical load. In most cases, the load predicted by the bifurcation model was 

higher than the loads obtained experimentally, so that the eigenvalues were an upper limit 

and were not safe for design purposes. 

Batista and Croll (1979) proposed a method based on the observation that the 

buckling process of shell structures is a function of the changes in the membrane 

resistance of the shell. If the shell has small initial imperfections, then there is interaction 

of modes in post-critical equilibrium states with the consequence that a fraction or all the 

membrane resistance used by the shell to carry the external load can be eroded in the 

critical state. This leads to a reduction in the buckling load. This conceptualization of the 

behavior is known as the “reduced stiffness” or “reduced energy” model and has been 

used by several authors to find what is known as a “lower limit” of the buckling loads. 

The reason why this was called a lower limit is because the model can predict a lower 

envelope of the loads obtained experimentally.  

Under this concept, many analytical tests were developed since 1979 in order to 

validate the methodology. For example, Croll and Batista (1981) used this concept to find 

the lower limit in the buckling load of isotropic cylinders under axial loads. The goal of 

that research was to find the minimum safe load used for the design as a function of the 

geometric characteristics of the models grouped in only one parameter, known as the 

Batdorf parameter. Similarly, Croll and Ellinas (1983) studied the behavior of axially 
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loaded orthotropic cylinders. In both studies, the analyses were based in energy 

formulations in which the membrane stiffness components, or their equivalent in terms of 

energy, were identified and eroded in the critical state to produce a drop in the buckling 

load. In both cases, the results obtained using this concept were in good agreement 

compared with non-linear analysis and with available experiments. 

Zintilis and Croll (1982) investigated toroidal and hyperbolical geometries with 

different Gauss curvatures representatives of cooling towers under lateral pressure. The 

authors only considered uniform external pressure, but expected that their results should 

also be valid for wind pressures, which are non-uniform in the circumferential direction 

of the shell. They used one-dimensional shell finite elements to model just a meridian of 

an axial-symmetric model under an axi-symmetric load. They also analyzed the influence 

of different curvatures and boundary conditions, and compared the results with non-linear 

analysis including imperfections finding good agreement between them. In other study, 

the same authors (Zintilis and Croll, 1983), analyzed similar models under the combined 

action of axial and lateral load. Again, there was good agreement with the non-linear 

results. 

Yamada and Croll (1989) applied the lower bound concept to cylindrical panels 

under uniform lateral pressure. Although the behavior of these panels is different from 

the behavior of a complete cylinder, the model of reduced stiffness can predict a lower 

limit of buckling load reasonably closer to those calculated using geometrically non-

linear models with imperfections. The same authors analyzed cylinders under uniform 

lateral pressure (Yamada and Croll, 1993), and axially loaded cylinders (Yamada and 

Croll, 1999, Gavrilenko and Croll, 2001) using a Ritz approximation to compute non-
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linear paths. The minimum levels of loads obtained were quite similar to those found 

with the reduced energy concept. From the different cases analyzed by Yamada and 

Croll, it is possible to conclude that the reduced energy or reduced stiffness methods 

derived from the classical buckling theory provide a simple and safe tool to find the 

design elastic buckling load. Additionally, the comparison between the results obtained 

from the modified classical analysis and the non-linear results, allows one to reach a 

better understanding of the phenomenon than considering each one separately. 

Pandey and Sherbourne (1991) used the concept of reduced energy in cylinders 

constructed with composite materials. Specifically, they analyzed axially loaded 

cylinders formed by laminated shells modeled using the classic laminate theory. The 

reduced energy concept was introduced, and the computations could be performed 

without the need of sophisticated analytical tools.  

The concept of reduced energy or reduced stiffness is nowadays acknowledged as 

a useful tool to determine lower bound buckling loads. This concept has been validated 

several shell forms under typical loads, and the results were confirmed using non-linear 

analysis and experimental tests. However, up to now there are no reports of using this 

method with conventional computational tools, like general-purpose finite element 

programs. This is a limitation for the analyst, because the development of non-linear 

models requires advanced technical skills and additional resources, not always necessary 

or available at the preliminary stages of the design. 
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4.3 BUCKLING ANALYSIS 

4.3.1 CLASSICAL BIFURCATION ANALYSIS 
 

Let us consider the steps in a bifurcation analysis using a general purpose finite 

element code. First, the fundamental equilibrium path is computed using linear geometric 

behavior, in the form: 

F  +λ  = 0 K a P                                                          (4.1) 

where K is the linear stiffness matrix of the shell, which can be written as the sum of two 

contributions from membrane Km and bending Kb mechanisms in the shell: 

m +K = K Kb                                                             (4.2) 

The solution aF is the displacement response along the fundamental equilibrium path, for 

a load system defined by a load vector P and scaled by a load parameter λ. We take here 

λ = 1 for the fundamental state. This value of aF is then used to compute the initial 

membrane stress resultants in the shell along the fundamental path, denoted as NF. 

The initial stresses are used in the second step to construct the initial stress or 

geometric matrix at an element level, given by (Brush and Almorth, 1975): 

G T F = β   β dA∫k N                                                    (4.3) 

where β is the vector of rotations. Finally, the following eigenvalue problem is solved: 

C G F[ λ ( ) ] 0− Φ =K K N                                                (4.4) 

where the initial-stress or geometric matrix KG is assembled from element contributions 

containing the initial stresses and rotations (equation 4.3). The scalar parameter λC is the 
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eigenvalue (the critical load of the problem) and vector Ф is the eigenvector (the critical 

mode or deflected shape associated to λC). 

 

4.3.2 REDUCED STIFFNESS ANALYSIS 
 

The three main postulates of the lower bound approach to elastic buckling of 

imperfection-sensitive shells under lateral loads have been summarized by Croll (1995) 

as: 

(a) The non-linear geometric behavior of the shells is associated to changes in the 

membrane energy and membrane resistance. 

(b) For a shell to exhibit imperfection-sensitivity, it must have a membrane 

contribution to the energy in the initial post-buckling behavior. 

(c) This membrane energy may be eroded due the presence of imperfections and 

leads to a lower buckling load. Thus, the reduced energy approach uses an eigenvalue 

analysis but eliminates the membrane contribution to the eigenproblem.  

To account for the reduced contribution of membrane stiffness in the initial post 

buckling behavior, the same linear problem in equation 4.1 should be solved, but changes 

need to be introduced in the eigenproblem of equation 4.4. The second term in equation 

4.4 remains the same, but considering equation 4.2, the problem is here written in the 

form: 

m b G F1
[( ) λ' ( )] '
α

0+ − ΦK K K N =                                         (4.5) 
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Here α  is the reduction factor applied to the membrane stiffness Km (dimensionless value 

> 1), λ’ and Ф’ are the new eigenvalue and eigenvector of the reduced stiffness system. 

In order to have a more systematic control of the numerical process, the membrane 

stiffness in equation 4.5 has not been initially eliminated, but notice that α should be a 

large number. As α → ∞, then the contribution of Km tends to zero and the lower bound, 

characterized by λ* and Ф*, is obtained: 

b G F[ λ* ( )] * 0− Φ =K K N                                               (4.6) 

Figure 4.1 illustrates the process along the fundamental equilibrium path P1, in which the 

shell is assumed to respond with its complete stiffness and leads to λC in equation 4.4. 

For the reduced stiffness, a lower value λ’ is obtained, and in the limit for α → ∞ then α 

→ λ*. 

ā a1

λ = 1 

λ” 
λ* 
λ’ 
λC 

P2 
P1 λ 

a  
 

Figure 4.1. Critical load for different load paths. 
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Notice that if the eigenvalue problem was solved with the reduced membrane 

stiffness since the beginning (equations 4.1 and 4.4), then an eigenvalue λ” along another 

path P2 would be obtained, and this would be an unjustified conservative estimate. Thus, 

one needs to separate both steps in the analysis and compute each one with different 

values of Km. 

 

4.3.3 REDUCED ENERGY ANALYSIS 
 

An alternative computation of the lower bound is to use a knock-down factor η 

(Croll, 1995) in which: 

λ* = η λC     and     η = 
2b

2b 2m

U

U U+
                                                 (4.7) 

Here, U2b is the bending strain energy in the critical mode and U2m is the membrane strain 

energy. To show the equivalence between the reduced stiffness and reduced energy 

approaches, we may compute the energy in the form: 

T m b C G F[( ) λ ( )] 0Φ + − ΦK K K N =                                         (4.8) 

for the classical eigenproblem. For the reduced energy, we writes: 

T m b G F1
' [( ) λ' ( )] '

α
Φ + − ΦK K K N 0=

0=

                                        (4.9) 

In the limit, as α → ∞, we get: 

T b G F* [ λ* ( )] *Φ − ΦK K N                                             (4.10) 

Equations 4.8 and 4.10 may be written as: 
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T m b C T G F[( )] λ [ ( )]Φ + Φ = ΦK K K N Φ

ΦN

                                    (4.11) 

T b T G F* [ ] * λ* * [ ( )] *Φ Φ = ΦK K                                     (4.12) 

For cases in which the eigenmodes are almost the same as the buckling mode found in 

experiments or in a geometrically non-linear analysis, then we can assume that Ф * = Ф. 

If α → ∞, then Km vanishes. Dividing equations 4.12 by 4.11 we get: 

* T b *

T m b

*

C
[ ]

[ ]

λ η
λ

Φ Φ

Φ + Φ
= =

K

K K
                                             (4.13) 

where: 

T m2mU Φ Φ= K                                                     (4.14) 

T b2bU Φ Φ= K                                                      (4.15) 

Clearly, equation 4.13 is the same as equation 4.7. 

 

4.3.4 PROPOSED METHODOLOGY FOR LOWER BOUND 
ANALYSIS 
 

The implementation of this procedure can be done as follows: First, the classical 

eigenvalue problem is solved using the complete equation 4.4, in order to obtain the 

classical eigenmode Ф and λC. Second, the eigenmode Ф is used as an initial 

displacement field, instead of the external load defined in equation 4.1, and the strain 

energy is computed as: 

T m b 2m 2[( )] U UΦ + Φ = +K K b                                     (4.16) 
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This is the complete energy mobilized by the shell in displacing to the shape of the 

eigenmode Ф. Third, the eigenmode Ф is used as an initial displacement in equation 

4.16, but with the reduction factor α affecting the membrane stiffness: 

T m b 2m[( )] U U
1 1
α α

Φ + Φ = +K K 2b                                 (4.17) 

As α increase, the membrane contribution tends to vanish and the remaining bending 

contribution is used to compute the knock-down factor with equation 4.7. One may tray 

several increasing values of α in equation 4.17 until the knock-down factor computed 

with equation 4.7 converge to a constant value, which is used to find the reduced critical 

load. 

Notice that these indirect computations are necessary because all general purpose 

programs, such as ABAQUS (2002), do not allow for separate computations of 

membrane and bending energies. 

 
4.4 SHELL ELEMENTS AVAILABLE IN ABAQUS 
 

A key feature in the reduced energy approach is that it needs to model a structural 

type which is not quite a shell with its complete energy, but deals with an equivalent shell 

in which part of the energy is only lost at the initial post-buckling state. A finite element 

model of this approach is a difficult test for any finite element code because it takes the 

shell well outside the conditions for which it was formulated, and considers a deflected 

shape that would not be present in the linear analysis.  In this research, we employ 

ABAQUS (2002) to model the proposed approach using the shell elements available in 
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the program. A brief description of the shell elements in ABAQUS (2002) is presented 

next. 

ABAQUS/Standard identifies shell elements using the following nomenclature: S 

indicates shell element; TRI indicates triangular element; 3 o 4 indicate the number of 

nodes per element; R after the number of nodes indicates reduced integration; and 6 or 5 

indicate the degrees of freedom per node available in the element. The program has a 

library of shell elements divided in three main categories: general-purpose elements, thin 

and thick elements. We are here interested only in three dimensional general-purpose and 

thin elements. From those, general-purpose elements include elements S3, S4, S3R, and 

S4R. All of them include transverse shear deformation. They use thick shell theory as the 

shell thickness increases and become discrete Kirchhoff thin shell elements as the 

thickness decreases. The transverse shear deformation becomes very small as the shell 

thickness decreases. 

Thin shell elements are identified as: S4R5, S8R5, S9R5, STRI3 and STRI65. 

These elements are in turn classified as those that solve thin shell theory (the Kirchhoff 

constraint is satisfied analytically), such as the STRI3 element; and those that should 

converge to thin shell theory as the thickness decreases (the Kirchhoff constraint are 

satisfied numerically), such as elements S4R5, STRI65, S8R5, and S9R5. 

For our analysis, it is convenient to separate quadratic elements (S8R5, S9R5 and 

STRI65) from linear elements (S3, S3R, STRI3, S4, S4R and S4R5). All those shell 

elements use bending strain measures that are approximations to the Koiter-Sanders shell 

theory (Budiansky and Sanders, 1963). 
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4.5 RESULTS FOR A CYLINDRICAL SHELL SIMPLY 
SUPPORTED AT THE ENDS UNDER UNIFORM 
PRESSURE 

 
To illustrate the computational procedure proposed in Section 4.3.4, a case similar 

to one solved by Batista and Croll (1979) and Yamada and Croll (1999) has been 

considered in this section. This is a cylindrical shell with radius R = 100 mm, height H = 

200 mm, and thickness t = 0.247 mm, thus having R/t = 405 and R/L = 0.5. The Batdorf 

parameter given by:  

2
2H

Z (1
R t

)ν= −                                                   (4.18) 

For this shell, Z = 1545. The boundaries conditions at the ends are: radial displacements 

restrained allowing only axial displacements. The load is a uniform external pressure 

with unit amplitude. 

 

4.5.1 ANALYTICAL RESULTS 
 

To validate the computational results, an analytical solution was obtained as in 

Batista and Croll (1979), but using a reduction factor α on the membrane energy 

contribution to the eigenproblem, rather than eliminating it at once. The results are shown 

in Figure 4.2. From the results, it may be seen that the solution becomes independent of α 

for a value of α = 100. The energy contributions for each mode considered in the reduced 

energy analysis and for several values of α, are shown in Figure 4.3. As α increases, the 

total energy shows a minimum until it gets close to the curve of bending energy; 
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however, such minimum has no interest. Following Croll (1995), the analysis here 

assumes that the eigenmode in the classical analysis with the full energy Ф is the same as 

the mode Ф* associated to the lower bound λ*. 
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Figure 4.2. Analytical results for a cylindrical shell under uniform pressure. 
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4.5.2 

ck-down factor η shown in Figure 4.2 

using A

atrix for each element is given by: 

COMPUTATIONAL RESULTS 
 

Our main interest here is to obtain the kno

BAQUS/Standard (ABAQUS, 2002). The first part of the analysis is the classical 

eigenproblem to compute the buckling mode Ф and λC. Next, a linear static analysis is 

carried out using the eigenmode Ф as a prescribed displacement field, in order to 

compute the strain energy. This second part is carried out with a discretization of the shell 

as a composite laminate.  

The constitutive m

T

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭ ⎣ ⎦ ⎩ ⎭M B D κ
                                               (4.19) 

where A is a 3×3 membrane sub-matrix given by: 

= A A 0
0 0 A

N A B ε

11 12A A 0⎡

21 22

33

⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A                                                 (4.20) 

and D is the 3×3 bending sub-matrix given by: 

0
= D D 0

0 0 D

11 12D D⎡

21 22

33

⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

D                                                 (4.21) 

B is the bending-extension coupling matrix, which is a null matrix for symmetric 

laminates, as assumed in the present case. Just one orthotropic lamina is employed in the 

analysis. A detailed description of the properties of the orthotropic single lamina used 

here is presented in Appendix A. The membrane reduction is applied in the form: 
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1'
α

=A A                                                     (4.22) 

where all the coefficients in A are affected by α. Computation of the energy in the 

eigenmode, with α = 1, leads to (U2m + U2b), while for α > 1, we get (U2m / α + U2b). 

The finite element mesh employed in the eigenvalue analyses use different 

available quadrilateral and triangular elements in order to analyze the behavior of the 

proposed procedure as the type of element and mesh density change. Convergence 

studies show that the solution tends to the theoretical eigenvalue with a mesh of 128×40 

= 5120 quadrilateral elements and 128×40×2 = 10240 triangular elements. Appendix B 

contains detailed information on the input files used in the proposed reduced energy 

approach. 

The results in terms of knock-down factors η are shown in Figure 4.4 for different 

values of α. Two families of curves are initially obtained, say for α < 100, linear 

elements initially converge to η = 0.668, while quadratic elements converge to η = 0.809. 

But for α > 500, a decreasing trend is observed and the results are not independent of α 

(as in the analytical solution). This shows that the convergence to the correct solution is 

not attained with most elements as α increase. The only exception in Figure 4.4 is the 

result for the triangular element STRI3 (a fully integrated and linear element), which 

follows the quadratic elements up to α = 100 and then continues with the same value of η 

even for very large values of α. The conclusion at this point is that the only element that 

passes the test is the three-node faceted triangle based in the formulation originally 

developed by Batoz et al. (1980). 
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Figure 4.4. Variation of η for different shell elements. 

 

Figure 4.5 compares analytical and numerical results obtained with STRI3. For 

the analytical model, with all the membrane contributions reduced, the knock-down 

factor tends to η = 0.808; while the computational model with the same reduction in the 

membrane contributions, the knock-down tends to η = 0.803. The difference between 

both models is less than 1%. 
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Figure 4.5. Comparison of η for analytical and numerical model. 
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The reasons why all elements diverge from the correct solution may be associated 

to membrane locking of the elements, but the full description of this effect is outside the 

scope of this research. A key difference between the successful element STRI3 and all 

the others is the Discrete Kirchhoff Constraint. In element STRI3 this is imposed 

analytically, while in the other elements it is imposed numerically. Similar problems were 

encountered using equivalent elements available in SAP2000 (Computer and Structures, 

2002). 

 
4.6 RESULTS FOR A CYLINDRICAL TANK CLAMPED 

AT THE BASE AND FREE AT THE TOP UNDER 
UNIFORM PRESSURE 

 
As a second case of analysis, an open top cylindrical tank was considered. This 

type of tank is typically found in the Caribbean islands (Portela and Godoy, 2005) and the 

specific structure investigated has a diameter D = 30.48 m, height HT = 13.10 m (HT/D = 

0.43), and variable thickness as indicated in Figure 4.6. The model is considered as 

opened at the top and clamped at the base. The entire cylinder is subjected to uniform 

pressure. The material of the cylinder is steel, with an elastic modulus E = 206 GPa and a 

Poisson ratio ν = 0.3. 

 
 

d = 30.48 m

H
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t3 = 0.0079 m    H3 = 8.240 m
 

t2 = 0.0095 m    H2 = 2.435 m
 
t1 = 0.0127 m    H1 = 2.435 m
 

 
Figure 4.6. Geometric properties of the open tank. 
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At the present, there is no analytical solution to calculate the knock-down factor 

for this class of very short cantilever shell. Non-linear analyses including imperfections 

were performed to validate the results obtained with the proposed approach of 

eliminating the membrane resistance using α. The finite element mesh used in this case 

was constructed with STRI3 elements with a high mesh density (26,880 elements) 

required to achieve convergence in the classical critical load.  

Figure 4.7(a) shows the deflected first eigenmode and Figure 4.7(b) shows the 

expanded modes at the top of the tank for the first eigenmode, the non-linear mode 

corresponding to the maximum load found by means of a geometrically non-linear 

analysis using ABAQUS (2002) and the mode for an advanced deflected shape for which 

the post-critical loads reach a minimum. Although there is a slight difference in the 

normalized amplitude, the number and distribution of waves are similar for the modes 

calculated from the eigenvalue analysis and from the geometrically non-linear analysis 

including imperfections. Thus, the assumption of similarity of the modes in the pre-

critical and post-critical states (Ф = Ф*) for the proposed approach is fully justified. 
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 Figure 4.7. (a) Deflected shape from classical eigenvalue analysis; (b) Expanded 
modes at the top of the open tank model. 
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The knock-down factors η for this case are shown in Figure 4.8 for different 

values of α. For α > 100 the solution converges to a constant value η = 0.77. Figure 

4.9(a) shows equilibrium paths computed for different amplitudes of imperfections. For 

those analyses, the imperfection was generated by adding to the initial geometry of the 

tank, the first eigenmode calculated in the classical eigenvalue analysis scaled by the 

factor ξ to represent the amplitude of the imperfection in terms of the minimum thickness 

of the tank. The imperfection analysis shows that the critical load tends to decrease to a 

constant value of approximately λ = 0.76 as the imperfection amplitudes increase. Thus, 

there is good agreement between the non-linear and lower bound analyses, with 

differences in the order of 1%. 
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Figure 4.8. Open tank model: knock-down factors η for different values of α. 
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   (a)      (b) 
Figure 4.9. (a) Non-linear paths for different level of imperfections; (b) Imperfection 

sensitivity curve. 
 

4.7 RESULTS FOR CONICAL ROOF TANKS UNDER 
UNIFORM PRESSURE 

 
The third case considered is a set of cylindrical tanks with conical roof similar to 

those analyzed by Virella (2004) under earthquake loads. This set of tanks have a 

constant diameter D = 30.48 m and variable height and thickness calculated according to 

the API Standard 650, Section 3.6.3 (API-650, 1988). Table 4.1 summarizes the 

dimensions and H/D ratios, and Table 4.2 shows the thicknesses adopted in the design for 

different models. The material properties are the same as those used in the open tank. The 

conical roof is supported by rafters and at the center of the cone there are boundary 

conditions that simulate the presence of a central column. Here again, the finite element 

models were constructed using STRI3 elements. The models were loaded with uniform 

unit pressure (1 KPa) in the cylindrical part as well as in the cone roof. Figure 4.10 shows 

the relative proportions of the three models analyzed. 
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The computations are divided in three stages. First, the critical load is calculated 

by solving the classical eigenproblem. Second, the proposed methodology of reduced 

energy described in Section 4.3.4 is implemented for the models specified here. Finally, 

non-linear analyses with geometric imperfections are carried out to compare the results 

with those obtained in stage two.  

Results from the classical eigenvalue problem show that the eigenvalues are 

almost the same for all the models studied. The buckled zone for Model 1 covers almost 

all the cylindrical part of the tank. But, as the ratio H/D increases, as in Model 3, the 

deflected mode displays large deflections in the zone of small thicknesses. In all cases the 

cone roof stands almost undistorted. This feature is depicted in Figure 4.11. 

Table 4.1. Dimensions adopted of the cylindrical part of the model. 
Dimensions Model 1 Model 2 Model 3 

H [m] 12.19 19.20 28.96 
D [m] 30.48 30.48 30.48 
H/D 0.40 0.63 0.95 

 

Table 4.2. Thickness adopted for each model. 
Model 1 Model 2 Model 3 Course 
t design [m] t design [m] t design [m] 

1 0.0127 0.0206 0.0286 
2 0.0111 0.0175 0.0254 
3 0.0079 0.0159 0.0254 
4 0.0079 0.0127 0.0222 
5 0.0079 0.0111 0.0206 
6  0.0079 0.0191 
7  0.0079 0.0159 
8  0.0079 0.0127 
9   0.0111 

10   0.0079 
11   0.0079 
12   0.0079 
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H/D = 0.95H/D = 0.63H/D = 0.40 

Model 3 

Model 2

Model 1 

Figure 4.10. Relative proportions of the models with conical roof. 
 

 

λC = 2.159    λC = 2.323       λC = 2.314 
 

 

       Model 1                                  Model 2                                    Model 3 
    (H/D = 0.40)                           (H/D = 0.63)                           (H/D = 0.95) 

 
Figure 4.11. First classical eigenmodes for all the models considered. 
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In the next stage of the computations, the knock-down factor η was estimated. 

The variation of η was obtained using the first eigenmode given in the previous step and 

computing the energy for different levels of reduction of the membrane stiffness. For 

each relation H/D and for α > 100 the solution converges to a constant value of the 

knock-down factor. For Model 1, this value is η = 0.774, for Model 2, η = 0.739, and 

finally, for Model 3, η = 0.744. Figure 4.12 shows the variation of the knock-down factor 

as the reduction factor of membrane stiffness α increases. 

 

0.50

0.60

0.70

0.80

0.90

1.00

1 10 100 1000 10000

α

K
no

ck
-d

ow
n 

fa
ct

or
  η

Model 1 - H/D = 0.40

Model 2 - H/D = 0.63

Model 3 - H/D = 0.95

 
Figure 4.12. Knock-down factor calculated using the first eigenmode in the reduced 

energy method. 
 

To compare the lower bound results with those obtained in the previous classical 

analysis, extensive non-linear imperfection sensitivity analyses were carried out. For 

these analyses, all the models were analyzed including small amplitude imperfections 

following the shape of the first eigenmode. The amplitudes of the imperfections vary 

from 0.10 tmin to 1.0 tmin, where tmin is the smallest shell thickness of each cylinder. 

Typical non-linear equilibrium paths for the mentioned levels of imperfections are shown 
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for all the models at the left side of Figure 4.13. The imperfection sensitivity curves 

shown at the right side in Figure 4.13 were generated by plotting the normalized critical 

load λ / λmax for each imperfection level, versus the dimensionless imperfection 

amplitude ξ / tmin. From this graph it is possible to observe that for imperfection 

amplitudes larger than 0.5 tmin, the non-linear equilibrium paths tend to be stable, so the 

imperfection sensitive curves are plotted up to the maximum for such level of 

imperfection. In this way, the lower bound obtained via non-linear analysis tends to η = 

0.73, which is close to the results computed using the reduced energy approach. This 

behavior is similar for the three models, so that it seems that the proposed method is able 

to predict reasonably well the lower bound for this kind of tanks under uniform pressure. 

Figure 4.14 summarizes the imperfection sensitivity curves for all the models. 

Notice that the non-linear modes at the maximum load are quite similar to those 

corresponding to the classical eigenvalue analysis and here again, the assumption that the 

modes in the pre-critical and post-critical states are similar is also well satisfied, as shown 

in Figure 4.15. 

 
 
 
 
 
 
 
 
 
 
 
 

 



 84

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.10 0.20 0.30 0.40 0.50
Normalized imperfection ξ / tmin

N
or

m
al

iz
ed

 p
re

ss
ur

e 
   

λ 
/ λ

m
ax

A

B

C

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.01 0.02 0.03 0.04 0.05
Displacement [m]

N
or

m
al

iz
ed

 p
re

ss
ur

e 
   

λ 
/ λ

m
ax

0.10 tmin
0.25 tmin
0.50 tmin
1.00 tmin

A

B

C

 

(a) Model 1 (H/D = 0.40) 
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(b) Model 2 (H/D = 0.63) 
 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.10 0.20 0.30 0.40 0.50
Normalized imperfection ξ / tmin

N
or

m
al

iz
ed

 p
re

ss
ur

e  
λ 

/ λ
m

ax

A

B

C

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.01 0.02 0.03 0.04 0.05
Displacement [m]

N
or

m
al

iz
ed

 p
re

ss
ur

e 
   

λ 
/ λ

m
ax

0.10 tmin
0.25 tmin
0.50 tmin
1.00 tmin

A

B

C

 

(c) Model 3 (H/D = 0.63) 
 

Figure 4.13. Non-linear equilibrium paths and imperfection sensitivity curves for all 
models. 
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Figure 4.14. Imperfection sensitivity curves for all models. 
 
 
 
 

 
(a)                                                                   (b) 

 
Figure 4.15. Eigenmodes of Model 1 for: (a) classical buckling analysis; (b) 

imperfection sensitivity analysis for ξ / tmin = 0.5 at maximum load. 
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4.8 CONCLUSIONS 
 

In this chapter a numerical procedure to calculate the knock-down factor for 

cylindrical shells under uniform lateral pressure has been proposed. This procedure has 

been implemented to estimate the lower bound pressures with standard tools available in 

the general purpose finite element code ABAQUS (2002). 

First, a test case was considered for which an analytical solution of the knock-

down factor has been used and compared with the proposed numerical solution. The 

results show that the proposed procedure can approximate reasonably well the analytical 

solution satisfying all the assumptions with a small error. 

The open top cylindrical tank analyzed as a second case shows that the reduced 

energy approach is also able to predict the lower bound pressure with a small error 

compared with the non-linear imperfection sensitivity results. Finally, the proposed 

reduced energy approach has been implemented for three conical roof tanks, and the 

results display very good agreement with those obtained by using non-linear analysis. In 

all cases, the error is less than 5%. Here, if one compares the computational cost of 

performing non-linear analysis versus implementing the proposed approach, evidently 

there is a significant advantage in the second procedure. This is so because the 

computation of classical static buckling analysis and energies for prescribed 

displacements are computationally less costly than performing incremental non-linear 

analysis to obtain the drop in the buckling load due to imperfection sensitivity. 

The next step is the implementation of this reduced energy approach for other 

important loading conditions, such as wind, and this is the subject of Chapter 5. 

 



 

5 CHAPTER 5 

 COMPUTATION OF LOWER‐BOUND 
BUCKLING LOADS FOR TANKS 

UNDER WIND PRESSURES 
 
 
 
 
 
 
 
 
 
 
 
 
5.1 INTRODUCTION 
 

The studies in this chapter deal with two tank configurations: conical roof tanks 

and open top tanks. For both tank configurations, several geometric relations were 

considered in order to cover a range of typical tanks found in the field. Six conical roof 

tank models are studied, of which three are similar to those analyzed by Virella (2004). 

The tank walls are designed according to the API-650 code (API-650, 1988) and loaded 

with a non uniform wind load around the cylinder and on the roof. The open tank models 

considered in this chapter were selected because there are useful geometrically non-linear 

results obtained by Godoy and Flores (2002), which allow direct comparison with the 

results obtained in the current study. 

In both tank configurations, the proposed reduced energy method has been 
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implemented to compute a lower bound for critical wind pressures. Some of the results 

are compared with static non-linear analysis carried out on the same models. 

Section 5.2 deals with conical roof tank models, while Section 5.3 describes the 

results for open top tank models. An analysis and discussion of the results are presented 

in Section 5.4 and finally, some conclusions are addressed in Section 5.5. 

 
5.2 CONICAL ROOF TANKS UNDER WIND PRESSURE 

5.2.1 GEOMETRY AND LOAD DESCRIPTION 
 

This section describes the conical roof tanks considered to compute lower bound 

buckling loads under wind pressures. The six models (here identified as MC1, MC2, 

MC3, MC4, MC5 and MC6) chosen for the analysis have in common the diameter of 

30.48 m (100 ft) and are built using 2.438 m (8 ft) steel courses. The cylindrical part of 

the models has variable height, ranging from H/D = 0.24 to H/D = 0.95, with tapered 

thickness calculated according the 1-foot method specified in the API Standard 650, 

Section 3.6.3 (API-650, 1988). Models MC2, MC4 and MC6 are the same as those 

analyzed by Virella (2004) under earthquake loads. 

 All the models have a conical fixed roof supported by 32 rafters with a roof slope 

of 3/16. The cylinder is assumed to be fixed at the base and it is assumed that each model 

is isolated, so that the pressures applied on the shell and on the roof are not perturbed by 

other surrounding tanks. Table 5.1 and Table 5.2 summarize all the information regarding 

the dimensions adopted for the models. Figure 5.2 shows the geometry of all the models 

considered in this section.  
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The space variation of pressures in the cylindrical part of the tank is taken in this 

section as constant in elevation and variable around the circumference, as in other 

research works in the field. For the pressures acting on the roof, this chapter considers the 

wind-tunnel pressures obtained by Mac Donald et al. (1988) which are similar to those 

reported by Portela and Godoy (2005). The maximum pressure in the reference case is 

taken as 1 KPa acting on the windward meridian on the cylindrical part of the shell. For 

the stability analysis, the values of the pressures acting on the complete shell are scaled 

using the load parameter λ. The circumferential pressure distribution is assumed in the 

form (Rish, 1967): 

6

0
λ cos( )i

i
p c iθ

=
= ∑                                                     (5.1) 

where the Fourier coefficients are: c0 = 0.387, c1 = -0.338, c2 = -0.533, c3 = -0.471, c4 = -

0.166, c5 = 0.066, c6 = 0.055. Figure 5.1(a) shows the pressure distribution used in the 

conical roof and Figure 5.1(b) shows the wind pressure distribution assumed around the 

circumference. 
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Figure 5.1. (a) Pressure distribution used in the conical roof. (b) Wind pressure 

distribution assumed around the circumference. 
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Table 5.1. Dimensions adopted of the cylindrical part of the model. 
 MC1 MC2 MC3 MC4 MC5 MC6 

H [m] 7.32 12.19 17.07 19.20 24.08 28.96 
D [m] 30.48 30.48 30.48 30.48 30.48 30.48 
H/D 0.24 0.40 0.56 0.63 0.79 0.95 

 
 

Table 5.2. Thickness adopted for each model. 
MC1 MC2 MC3 MC4 MC5 MC6 Course 

t design [m] t design [m] t design [m] t design [m] t design [m] t design [m] 
1 0.0095 0.0127 0.0175 0.0206 0.0254 0.0286 
2 0.0079 0.0111 0.0159 0.0175 0.0222 0.0254 
3 0.0079 0.0079 0.0127 0.0159 0.0206 0.0254 
4  0.0079 0.0111 0.0127 0.0175 0.0222 
5  0.0079 0.0095 0.0111 0.0159 0.0206 
6   0.0079 0.0079 0.0127 0.0191 
7   0.0079 0.0079 0.0111 0.0159 
8    0.0079 0.0079 0.0127 
9     0.0079 0.0111 

10     0.0079 0.0079 
11      0.0079 
12      0.0079 
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Figure 5.2. Relative proportions of the models with conical roof. 
 
 
 
 
 
 

 



 91

5.2.2 COMPUTATIONAL MODEL FOR CLASSICAL BUCKLING 
ANALYSIS 
 

All the tanks investigated were modeled using triangular finite elements STRI3 

with adequate mesh density to obtain convergence. The computations were divided in 

three stages: First, the critical load was calculated by solving the classical buckling 

eigenproblem. Second, the proposed methodology of reduced energy described in 

Chapter 4 was implemented for the models specified here. Third, non-linear analyses 

with geometric imperfections were carried out to compare the results with those obtained 

in stage two. The applicability of the reduced energy method in the models described 

above, will be discussed by comparing the results with those predicted using 

imperfection-sensitivity analysis.  

Results for the classical eigenvalue problem show that the eigenvalues for the first 

and second modes are almost the same for all the models studied. The shortest model 

seems to be more rigid and the classical critical loads in the other models tend to a 

constant value as the relation H/D increases. However, the classical critical loads for 

these tanks are highly dependent on the set of thicknesses adopted in the design. A 

change in the thickness, especially in the zone of the buckling mode or in the transition to 

the thicker thickness, produces a change in the eigenvalue. Table 5.3 summarizes the 

eigenvalues for the modes 1 and 2, and the variation in the eigenvalues for all the models 

is depicted in Figure 5.3 for the set of thickness specified in Table 5.2. 
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Table 5.3. Critical pressures for wind loaded tanks. 
Critical pressure [kN/m2] Model 
Mode 1 Mode 2 

Critical wind gust speed 
[Km/h] (mph) 

MC1 H/D = 0.24 3.854 3.881 294 (183) 
MC2 H/D = 0.40 2.480 2.481 236 (147) 
MC3 H/D = 0.56 2.916 2.926 256 (159) 
MC4 H/D = 0.63 2.537 2.547 239 (148) 
MC5 H/D = 0.79 2.558 2.568 240 (149) 
MC6 H/D = 0.95 2.478 2.485 236 (147) 
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Figure 5.3. Eigenvalues for the geometric configurations of Figure 5.2. 

 
 

In order to relate the critical pressures indicated in Table 5.3 with the wind speed, 

it is possible to use ASCE-7-02 (2002) to calculate wind speed for the critical pressures 

obtained: 

20.613 Vz zt dp K K K I=                                            (5.2) 

where p is the pressure of the wind in (N/m2), V is the basic wind speed (m/s), Kz is the 

exposition factor, Kzt is the topographic factor, Kd is the directionality factor and I is the 

importance factor. It is assumed that the tanks are placed in flat terrain, so Kzt = 1. 

Category II structure gives the importance factor I = 1, the directionality factor is Kd = 1 

and Kz = 0.94, then equation 5.2 becomes:  
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20.576Vp =                                                           (5.3) 

The wind speeds in Table 5.3 were calculated using Equation 5.3. 

From the analysis of the modes it may be seen that the buckled shape has 

displacements which are concentrated in the zone of windward positive pressures. It 

seems that the suctions (negative pressures) in the leeward zone and in the conical roof 

do not have strong influence on the mode shape. The first and second modes are almost 

identical in shape in all the models investigated. The difference between the modes is that 

the first mode is asymmetrical and the second is symmetrical with respect to a vertical 

axis. In all the models, the buckled zone is concentrated in the thinner courses of the 

cylinder. Furthermore, the negative pressures (suctions) acting on the conical roof do not 

play an important role in the buckling process. The negative pressures of the loads do not 

seem to affect the load and mode of buckling. Numerical tests performed without 

including suction pressures predict almost the same buckling results. However, in order 

to be consistent, all the results presented in this section are computed for pressures acting 

on over the complete cylindrical shell and on the cone roof. Figure 5.4 and Figure 5.6 

show the first mode and Figure 5.5 and Figure 5.7 illustrate the second mode for all the 

models considered. 
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MC1 (H/D = 0.24)                    MC2 (H/D = 0.40)                     MC3 (H/D = 0.56) 

 
Figure 5.4. First classical buckling mode, models MC1, MC2, MC3. 
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     MC1                         MC2                             MC3 
    λC = 3.881         λC = 2.481            λC = 2.926 

 

 
MC1 (H/D = 0.24)                    MC2 (H/D = 0.40)                     MC3 (H/D = 0.56) 

 
Figure 5.5. Second classical buckling mode, models MC1, MC2, MC3. 
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    MC4            MC5                           MC6 
   λC = 2.537         λC = 2.558            λC = 2.478 

 

 
MC4 (H/D = 0.63)                    MC5 (H/D = 0.79)                     MC6 (H/D = 0.95) 

 
 

Figure 5.6. First classical buckling mode, models MC4, MC5, MC6. 
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 MC4                                       MC5                                       MC6 
    λC = 2.547       λC = 2.568       λC = 2.485 

 
MC4 (H/D = 0.63)                    MC5 (H/D = 0.79)                     MC6 (H/D = 0.95) 

 
 

Figure 5.7. Second classical buckling mode, models MC4, MC5, MC6. 
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5.2.3 COMPUTATIONAL MODEL FOR REDUCED ENERGY 
ANALYSIS 
 

The next stage in the computations is the implementation of the reduced energy 

method. In this step, the lower bound wind pressure is calculated using the first mode of 

the eigenvalue analysis as an imposed displacement pattern. Additionally, the second 

mode is also used to compute the lower bound. Every part of the shell that forms the 

whole cylinder (all courses) undergoes simultaneous reductions in the membrane stiffness 

while the scaled mode is imposed as a prescribed initial displacement. In that 

configuration, the energy used by the structure to reach that deflected configuration is 

calculated. With the calculated energy for each reduction factor α eroding the membrane 

stiffness, and having calculated the energy without reduction in its stiffness for the same 

load conditions, we are able to determine the loss in the buckling capacity to support 

additional load. The knock-down factor η, as previously defined, is the relation between 

the energy computed for different levels of reduction in the membrane stiffness and the 

energy computed with all the membrane stiffness, say η = Ub / (Um + Ub). 

It is found that the knock-down factor η tends to a constant value as the reduction 

factor α increase. The results of these computations are illustrated in Figure 5.8(a) for the 

first eigenmode and in Figure 5.8(b) for the second eigenmode.  From these plots, it 

seems that the knock-down factor has a small dependence on the H/D relations. All the 

models show a similar trend and the differences in η between the shortest and the tallest 

models are of only 4%. 
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Figure 5.8. Knock-down factors calculated using the reduced energy method for: (a) 
first eigenmode, and (b) second eigenmode.  

 

5.2.4 LOWER BOUND VIA NON‐LINEAR ANALYSIS 
 

To compare the lower bound results with those obtained in the previous classical 

analysis, non-linear imperfection sensitivity analyses were carried out. For these 

analyses, all the models were analyzed including small amplitude imperfections 

following the shape of the first and the second eigenmodes. The amplitudes of the 
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imperfections vary from 0.10 tmin to 1.0 tmin, where tmin is the smallest shell thickness of 

each cylinder. For each imperfection level, non-linear equilibrium paths are computed 

using the Riks technique (Riks, 1972 and 1979), so that the structure may display its post-

critical behavior. For small amplitude imperfections, the non-linear post-critical path is 

unstable. This means that the shell can withstand a maximum load for a relatively small 

displacement. Beyond that maximum, the shell cannot take additional loads and it has 

large deflections. 

For imperfection amplitudes larger than 1.0 tmin, the equilibrium path has very 

large deflections, becomes stable and constantly raising. This is an indication that the 

shape of the shell has changed so much that the behavior is quite different from the 

behavior of the original perfect shell. This level of imperfection settles on the lower limit 

of load that the structure is able to support with small deviations from the original form. 

After that limit, the deflected structure behaves in a different way. 

Typical non-linear equilibrium paths for the mentioned levels of imperfections are 

shown for the models MC2, MC4 and MC6 in Figure 5.9. The imperfection sensitivity 

curves shown in the right side in Figure 5.9 were generated by plotting the normalized 

critical load λ / λmax for each imperfection level versus the dimensionless imperfection 

amplitude ξ / tmin. Figure 5.10 summarizes all those curves for all the models analyzed 

and they show the lower limit to which the pressure loads tend as the imperfection levels 

increase. In this way, the knock-down factor η = λ / λmax is directly comparable with the 

results obtained using the reduced energy method. 
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(a) MC2 (H/D = 0.40); Imperfection shape: first mode. 
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(b) MC4 (H/D = 0.63); Imperfection shape: first mode. 
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(c) MC6 (H/D = 0.95); Imperfection shape: first mode. 

 

Figure 5.9. Non-linear equilibrium paths and imperfection sensitivity curves for 
selected models. 
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Second eigenmode as imperfection
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(b) 

Figure 5.10. Knock-down factor calculated with non-linear imperfection sensitivity 
analysis using as imperfection shape: (a) First eigenmode, and (b) Second 

eigenmode. 
 

From Figure 5.9 it is possible to see that the imperfection-sensitivity is practically 

the same for all the models. This feature may be justified by the fact that in all the models 

the buckling mode deflections are concentrated in the zone of lower shell thickness. That 

thickness is the minimum required by the design in all models and at least the last three 
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courses at the top of the cylinder have the minimum thickness. Probably, that is why the 

classic eigenvalues indicated in Figure 5.3 have small variations as the H/D ratio 

increases. 

 

5.2.5 DISCUSSION 
 

Notice that the knock-down factor in Figure 5.10 does not approach clearly a 

plateau, as obtained in the reduced energy method. The first mode shows more a slight 

tendency to a plateau than the second mode. Comparing the results displayed in Figures 

5.8 and 5.10, the reduced energy method predicts a higher limit than the actual 

imperfection sensitivity analysis. In the reduced energy method, the curves tend to values 

of η ranging from η = 0.758 to η = 0.785, while in the non-linear analysis method, for 

the maximum imperfection amplitude considered (ξ / tmin = 1.00), the lower limit 

considering both modes, seems to be between η = 0.6 and η = 0.7.  

Clearly, the values predicted by the proposed reduced energy method for wind 

pressures cannot be considered a safe lower limit. The main reason for the discrepancy 

seems to be associated to the different deflection modes obtained in the classical 

eigenvalue and the non-linear analyses. The mode obtained in the classical eigenvalue 

computations (and then used in the reduced energy method) is not quite the same as the 

mode found in the non-linear analysis with an imperfection. This difference affects the 

assumptions made previously and consequently the accuracy in the computations. The 

following sections deal with open tank models, where the discrepancies are even more 

evident. 
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5.3 OPEN TANKS UNDER WIND PRESSURE 

5.3.1 GEOMETRY AND LOAD DESCRIPTION 
 

The models analyzed in this section are the same as those considered by Godoy 

and Flores (2002). They are four cantilever cylinders with different geometric relations 

studied in order to emphasize the differences in the behavior according to changes in their 

geometric relations. These models represent tanks clamped at the base and free at the 

upper edge without any reinforcing ring and with constant thickness. The material is 

steel, with elastic modulus E = 206 GPa and Poisson ratio ν = 0.3. The main geometric 

properties for the models are summarized in Table 5.4. 

 

Table 5.4. Geometric properties. 

Diameter  Height Thickness Non-dimensional parameters 
Model 

D [m] H [m] t [m] H/D R/t Z 

M1 24.0 4.0 0.006 0.17 2000 212 

M2 14.0 3.5 0.004 0.25 1750 417 

M3 9.0 4.5 0.003 0.50 1500 1431 

M4 5.0 5.0 0.002 1.00 1250 4770 

 
In Table 5.4, Z is the Batdorf parameter given by: 

2
2H

Z (1
R t

)ν= −                                                        (5.4) 

where H is the height, R the radius, t the thickness and ν the Poisson coefficient. The 

Batdorf parameter is a measure of the slenderness of the cylindrical shell and as its value 

increases, the slenderness of the shell increases. From Table 5.4, note the significant 

changes in the radius and the thickness, keeping the height with relatively small 
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variations. Figure 5.11 provides a graphical representation of the geometries. The 

discretization of the shells is carried out using STRI3 finite elements and the load 

distribution in the cylindrical shell is the same as that used for the conical roof tanks. 

 

 

 

 
 

 

 

 

 

M3 
H/D = 0.50 

Z =1431 
M2 

H/D = 0.25
Z = 417 

M4 
H/D = 1.00
Z = 4770 

M1 
H/D = 0.17

Z = 212 
H 

D

Figure 5.11. Comparison between the model geometries investigated. 
 

5.3.2 COMPUTATIONAL MODEL FOR CLASSICAL BUCKLING 
ANALYSIS 
 

This section reports the results for classical linear buckling analysis for each 

model. Then, the first eigenmode obtained is imposed as a prescribed initial 

displacements field to calculate the lower bound load according to the reduced energy 

method. These results are compared with those reported by Godoy and Flores (2002), 

based on non-linear analysis with imperfections. However, here it was necessary to repeat 

the non-linear analysis for reasons that will be explained in the following paragraphs. 
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For the wind pressures given by equation 5.1, the classical critical pressures were 

calculated and contrasted with the results reported by Godoy and Flores (2002). To 

understand the influence of the specific finite element employed, the critical values were 

also calculated using S8R5 elements. The results obtained with the proposed 

discretization using STRI3 elements predict values which are close to those calculated 

with S8R5 elements, and they are in good agreement with the previously reported results. 

Table 5.5 summarizes this part of the study. Here again, the critical wind speeds for the 

same conditions described in Section 5.2.2, and corresponding to the first mode for the 

STRI3 discretization, are calculated in Table 5.5. 

 

Table 5.5. Classical critical loads (eigenvalue analysis). 

Non-dimensional parameters λc [kN/m2] 
Model 

H/D R/t Z Godoy-Flores 
(2002) S8R5 STRI3 

Critical Wind Gust 
Speed 

[Km/h] (miles/h) 

M1 0.17 2000 212 2.282 2.201 2.225 225 (139) 

M2 0.25 1750 417 - 2.107 2.137 220 (136) 

M3 0.50 1500 1431 - 1.683 1.694 196 (121) 

M4 1.00 1250 4770 1.558 1.500 1.518 186 (115) 

 

5.3.3 LOWER BOUND USING REDUCED ENERGY METHOD 
 

Let us consider the buckled mode for each model using element STRI3. First, as 

in the conical roof models, the deflections in the buckled mode are concentrated in the 

windward zone and the suction has almost no effect on the deflected shape. As the 

slenderness increases, the number of waves decreases and the deflected shape 

concentrates in the upper zone of the cylinder. ABAQUS (2002) normalizes the mode 
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using the maximum displacement, so that the maximum normalized displacement is equal 

to one. Figure 5.12 illustrates the first mode for all the models. 

 

M1 
H/D = 0.17

M2 
H/D = 0.25

M3 
H/D = 0.50

M4 
H/D = 1.0 

Figure 5.12. First classical buckling modes for all models. The amplification factor is 
one for all four cases. 

 

Those normalized first modes were used to calculate the lower bound pressures 

using the reduced energy method. For convenience, a scaling factor 1/1000 was used for 

the modes, although using other scaling factors leads to identical results. The reduction in 

the membrane stiffness is done according to the procedure detailed in Appendix A. The 

knock-down factor η = Ub / (Um + Ub) calculated for each model is illustrated in Figure 

5.13. In that figure, the knock-down factor converges to a constant value for α larger than 

100, and is almost independent of the model geometry. 
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Figure 5.13. Lower bound estimate for open tank models. 

 

5.3.4 LOWER BOUND VIA NON‐LINEAR ANALYSIS 
 

According to the results reported by Godoy and Flores (2002), the knock-down 

factor should lead to different lower bounds as the geometry of the tank changes. 

However, Figure 5.13 shows that all the models tend to approximately the same lower 

limit. For example, consider just two extreme cases, model M1 (H/D = 0.17) and model 

M4 (H/D = 1.00): the reduction factors according to results reported by Godoy and Flores 

(2002) are approximately ηM1 = 0.60 and ηM4 = 0.95. Those results have been reproduced 

with the models used here (see Figure 5.14), using element STRI3 and geometrically 

non-linear analysis. Clearly, the lower bound estimates shown in the previous section are 

not in good agreement with the non-linear results. Alternatives for overcoming such 

differences are proposed in the next sections. 
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(a) M1 (H/D = 0.17); Imperfection shape: first mode. 
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 (b) M4 (H/D = 1.00); Imperfection shape: first mode. 

 

Figure 5.14. Results of non-linear imperfection sensitivity analysis. 
 
 
5.4 ALTERNATIVES FOR IMPROVING THE LOWER 

BOUND COMPUTATIONS 

5.4.1 CHANGE IN THE BUCKLING MODE 
 

In sight of the results described in the previous sections, it is apparent that the 

traditional lower bound approach has not been able to capture the expected behavior 

displayed in the non-linear analysis; thus it is necessary to explain the differences. An 

attempt to find an answer to the discrepancies is to reconsider the mode used as 

prescribed displacements in the energy computations. Looking the non-linear equilibrium 
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paths (Figure 5.14), for imperfections of the order of twice the shell thickness, it is 

possible to see that the non-linear paths are unstable and there are relatively small 

differences between the maximum load and the loads reached in the post-critical path. 

This means that, for that level of imperfection, the shell is close to reaching the lower 

load without changing the configuration dramatically. For imperfections larger than twice 

the thickness (not shown in Figure 5.14), the non-linear equilibrium paths become stable, 

but in such case, the shell behavior is different due to the very large deflections. 

It seems appropriate to use the mode corresponding to the maximum load reached 

in the non-linear analysis for the mentioned level of imperfection, and use that mode to 

compute the energy Ub in the reduced energy method. However, the mode extracted from 

the non-linear analysis to compute Ub needs to be normalized in the same way as in mode 

used to compute Um + Ub. Notice that, the non-linear mode has small displacement 

components associated to the leeward pressures, which are almost inexistent in the mode 

calculated in the classical buckling analysis.  

With these considerations, the reduced energy method was implemented in the 

models M1 and M4 using the new mode to compute Ub. Figure 5.15 shows the results for 

this case. Both models show similar trends, but with an even small lower bound 

compared with the previous results. Evidently, the discrepancies between both attempts 

using different modes and the non-linear results, makes one to think again about the 

implementation of the proposed method for wind loads.  
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Figure 5.15. Lower bound calculated using non-linear mode. 
 

Figure 5.16(a) compares modes obtained in the classical buckling analysis and in 

the non-linear analysis, clearly they are not exactly the same mode. That difference is not 

only in the amplitudes, even normalized, but also in the wave configuration for each 

model. This difference in the modes is more clearly visualized by superposing the 

deflected shape for both modes at the free top of the shell as in Figure 5.16(b). From 

Figure 5.16(b), the waves in the non-linear modes for the maximum load and for an 

advanced buckled state are not in phase with waves in the classical mode. In addition, the 

amplitude even using the same criteria in the normalization is dominated by the classical 

mode, which implies that the energies computed for each case would be different. 
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Figure 5.16. Mode comparison for model M1. 
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5.4.2 CHANGE IN THE MODE NORMALIZATION TO 

 the discrepancies in the results, we write the classic 

eigenva

                                             (5.5) 

where Ф1
T is the first eigenmode in the classic eigenv

(N )] 0Φ =K                                         (5.6) 

Next, the membrane stiffness is eroded in the reduced eig

Φ =K K                                            (5.7) 

where Ф*T is the mode in the lower bound state and λ* i

1                                  (5.8) 

Φ                                      (5.9) 

It is possible to compute the left term in equation 5.8, which is the energy with the 

COMPUTE THE ENERGY 
 

To understand the reasons of

lue problem as:  

T C G F
1 1[ λ (N )] 0Φ − Φ =K K

alue analysis, K is the stiffness 

matrix, KG is the geometric matrix assembled with the contributions of the initial stresses 

NF in the fundamental state; λC is the classical critical load. Matrix K has a membrane 

(Km) and a bending (Kb) component, thus: 

T m b C[( ) λΦ + −K K G F
1 1

enproblem, so that the lower 

bound should be computed as: 

*TΦ b * G F *[( ) +λ (N )] 0

s the reduced critical load. Both 

expressions can be written in terms of computable energies as:  

T m b C T G F[ ] = λ [ (N ) ]Φ + Φ Φ ΦK K K1 1 1

*T b * * *T G F *[ ]  = λ [ (N )]Φ Φ ΦK K

complete membrane and bending stiffness. For the same equation, but in the right term, it 

is possible to obtain the classical eigenvalue λC by solving the eigenproblem. The energy 

term involving the geometric matrix is not easy to compute because, although the modes 
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are known from the classical eigenproblem, the geometric matrix KG is not explicitly 

available in ABAQUS (2002). In this case, a different normalization of the eigenvector, 

similar to what is used in structural dynamics, is to let Ф1
T [KG (NF)] Ф1 = 1. Before the 

normalization the scalar 

T G F
1 1[ (N ] =  ) ψΦ ΦK                                                  (5.10) 

is used to normalize this term in a way that the energy involving the geometric matrix 

becomes one. Thus, equation 5.8 takes the following form: 

T m b C
1 1[ ] =  λ ψΦ + ΦK K                                               (5.11) 

After normalization, we get a mode 1 1 / ψΦ = Φ
_

, and: 

TΦ m b C1 1[ ] =  λ
ψ ψ

Φ
+K K                                                (5.12) 

From equation 5.12, ABAQUS (2002) can compute the energy Ф1
T [Km + Kb] Ф1, as 

well as λC; then, the normalization factor ψ is calculated from those values as: 

T m b[ ]Φ + ΦK K1 1
Cλ

ψ =                                               (5.13) 

Repeating the same procedure in equation 5.9, we get: 

T G F* [ (N )] * =  ρΦ ΦK                                               (5.14) 

Then, the reduced eigenproblem in equation 5.9 becomes: 

 *T b * *[ ]  = λ ρΦ ΦK                                                    (5.15) 

or else: 
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*T *
b *[ ]  = λ

ρ ρ

Φ Φ
K                                                    (5.16) 

Notice that the normalization factors ρ and ψ are quite different (ρ ≠ ψ), as will be 

shown in Figures 5.17 and 5.18. There are two unknowns in equation 5.15: The reduced 

eigenvalue λ*, which is the lower bound and the mode Ф* for such reduced eigenvalue. 

Notice that the main objective of this proposed procedure is to find λ* as well as Ф* 

without using non-linear imperfection analysis. Then, with these unknowns it is not 

possible to find the energy in both sides of equation 5.15.  

First, let us assume that the reduced eigenmode Ф* is available from the non-

linear analysis. Then, the left side of equation 5.15 can be computed. However, in the 

other side, even with the assumed Ф*, ρ is also a function of matrix KG. This matrix is 

the same as that used in equation 5.8 because the lower bound must occur along the same 

fundamental path as the classical critical load, so that the initial stresses in both states 

must be the same (See Figure 4.1 in Chapter 4). But, as mentioned before, KG is not 

directly available, thus becoming an obstacle to the computations and keeping the value 

of ρ as an unknown.  

The most important unknown is still the reduced eigenvalue λ* and although the 

term Ф*T [Kb] Ф* in equation 5.15 can be computed, the absence of λ* or ρ does not 

allow to proceed with the computations. An additional condition is needed to overcome 

that restrictive situation. The key limitation is that ABAQUS (2002) does not allow the 
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user to compute KG individually and extract that result separately. Regardless of this 

limitation, the knock-down factor can be expressed in the form: 

* *T b

C T m b
1 1

λ [ ]
η

λ [ ]

ψ

ρ

Φ Φ
= =

*

Φ + Φ

K

K K
                                      (5.17) 

From this last equation, except for ρ, it is possible to compute all the other terms and the 

reduction factor would be only a function of a constant multiplied by the inverse of ρ, 

that is: 

*

C

λ 1
η

λ
C

ρ
= =                                                     (5.18) 

where the constant C is: 

*T b *

T m b
1 1

[ ]

[ ]
C ψ

Φ Φ
=

Φ + Φ

K

K K
                                        (5.19) 

Graphically, equation 5.18 is an hyperbola and contains the values of the normalization 

factors ψ and ρ. If we rewrite the constant C remembering that:  

m b1
α

+ →⎛ ⎞
⎜ ⎟
⎝ ⎠

K K Kb  as α →  ∞                            (5.20) 

Substituting equation 5.20 into 5.19, we get: 

*T m b *

T m b
1 1

1
[ ]
α
[ ]

C ψ
Φ + Φ

=
Φ + Φ

K K

K K
                                  (5.21) 

Equation 5.21 substituted into equation 5.18 leads to a family of hyperbolas for different 

values of the reduction factor α, which are illustrated in Figures 5.17 and Figure 5.18 for 

models M1 and M4 respectively. For our purposes, it is interesting to find the limiting 
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values of ψ and ρ to predict accurate values of η as geometry changes. In the graphs, ψC 

indicates the value for which C is computed with α equal to one, say with no membrane 

stiffness reduction. ρC indicates the value of C for a large reduction in the membrane 

stiffness, say α → ∞. Then, ρ* must be between these two values, which is the value that 

satisfies equation 5.18 for a correct lower bound critical load. 
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Figure 5.17. Variation of η as a function of ψ, ρ and the membrane reduction 

coefficient α, for model M1. 
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Figure 5.18. Variation of η as a function of ψ, ρ and the membrane reduction 

coefficient α, for model M4. 
 

As previously mentioned, an additional condition is needed to find that value in 

absence of the capability of computing using KG and the assumed mode Ф*, but this 

condition is not available from the formulation. However, from Figures 5.17 and 5.18, in 

the range ψC – ρC, every value of ρ can be normalized as:  

C

C C

ρ ρ
ρ

ψ ρ

−
=

−
                                                          (5.22) 
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Particularly, for ρ* there is a normalized value *ρ , given by: 

*
*

C

C C

ρ ρ
ρ

ψ ρ

−
=

−
                                                           (5.23) 

This normalized coefficient indicates how distant is ρ* from ρC according the model and 

it is computed for open tank models in order to see if it changes as the geometry and the 

knock-down factor change. 

For open tank models, from Table 5.6 and Figure 5.19(a), it is seen that *ρ is 

about 0.13 and seems to be almost constant for different geometries (described by Z or 

H/D) and for expected values of η obtained from the geometric non-linear analysis. 

Normalized hyperbolas for all the open tank models are depicted in Figure 5.19(b), where 

each model is characterized by a different curve and a different knock-down factor. 

However, for all the curves, the normalizing factor is defined by an almost constant value 

of *ρ . 

The same normalization was implemented in three models of cone roof tanks. 

Particularly, for models MC2, MC4 and MC6, Table 5.7 and Figure 5.20(a) summarize 

the computed values of *ρ  which remain almost constant at about 0.32 for all models. 

Different from the case of the open tanks models, notice that in Table 5.7, the knock-

down factor η is practically the same. Additionally, the normalized hyperbolas shown in 

Figure 5.15(b) are almost coincident. The cause may be that the models considered have 

similar deflected patterns in the buckled zone, which in turns has the same thickness 

configuration and lead to almost identical classical eigenvalues. Also, the non-linear 

behavior is similar for the three models as illustrated previously in Figure 5.6 
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Table 5.6. Normalized factor for open tank models. 

Model H/D Z η *ρ  

M1 0.17 212 0.598 0.1228 
M2 0.25 417 0.647 0.1324 
M3 0.50 1431 0.718 0.1379 
M4 1.00 4770 0.904 0.1248 
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Figure 5.19. (a) Variation of *ρ  as a function of H/D and Z. (b) Variation of η as a 
function of *ρ , for all open tank models. 
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Table 5.7. Normalized factor for cone roof tank models. 

Model H/D η *ρ  

MC2 0.63 0.606 0.3082 
MC4 0.79 0.603 0.3316 
MC6 0.95 0.605 0.3205 
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Figure 5.20. (a) Variation of *ρ  as a function of H/D. (b) Variation of η as a 
function of *ρ , for selected cone roof tank models. 
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From this proposed normalization in the range of ψC – ρC, it is possible to see 

that the change from the classical eigenmode to the reduced eigenmode (obtained in this 

case from a geometrically non-linear analysis) follows a uniform pattern described by the 

uniformity in the values of *ρ . These values indicate the fraction necessary to add to the 

classical ρC to obtain the true ρ* and consequently the right knock-down factor η for 

each model. 

Clearly, in this alternative procedure to improve the results obtained previously 

for wind pressures, it is necessary to compute a non-linear path for a high amplitude 

imperfection (typically ξ / t = 1 or 2) in order to determine the mode and the maximum 

load reached for that level of imperfection. Furthermore, the procedure requires 

computing the energy for the reduced membrane stiffness in addition to computing 

energies using the classical eigenmode. All these operations were done here to 

understand the reason for the differences in the results on models under wind loads, but 

they cannot be implemented as a standard simple procedure to find the knock-down 

factor for the classical buckling load. This is a limitation of the method and it restricts its 

applicability to those cases in which the classical mode is quite similar to the reduced 

mode. 

 
5.5 CONCLUSIONS 
 

From the results obtained in the previous sections using a general purpose finite 

element code and a lower bound buckling formulation, it is possible to obtain a 

preliminary general conclusion. The proposed reduced energy method is not able to 
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estimate the lower bound for wind pressures. The errors are smaller in the cone roof tank 

models than in the open top tank models. In the former, the non-linear imperfection-

sensitivity analysis shows results that are similar for all models, but with a tendency to 

estimate a lower critical load than the predicted by the reduced energy method. Although 

the differences in the knock-down factors are not significant (about 10%), the lower 

bound predicted by the reduced energy method is unsafe for design. 

The differences in the results for open top models are more important. Significant 

discrepancies were found in comparison with a non-linear analysis, and this suggests that 

the method is not capable of distinguishing changes in the geometry, and consequently 

changes in the slenderness. The main source of the discrepancies seems to be the shape of 

the mode used in the computations of the energy. This feature was verified from the 

geometrically non-linear analysis, and it is seen that the modal shape changes from the 

full membrane stiffness configuration to the reduced membrane configuration. This 

change in the modal shapes invalidates one of the main assumptions made in the 

formulation of the reduced energy method, as originally formulated by Croll (1975, 

1995), namely that the buckling mode in the lower bound is the same as in the unreduced 

membrane stiffness state. Considering those observations, an attempt to apply an 

alternative way to improve the method using a code like ABAQUS (2002) requires at 

least one additional condition to find the correct knock-down factor. However, such 

condition is not available from the proposed formulation or requires additional 

computations which are useful to understand the differences in the results, but are beyond 

of the purpose of implementing the reduced energy method for wind loads in a simple 

way. 

 



 

6 CHAPTER 6 

 NON‐LINEAR DYNAMICS OF ABOVE‐
GROUND THIN‐WALLED TANKS 

UNDER FLUCTUATING PRESSURES 
 
 
 
 
 
 
 
 
 
 
 
 
6.1 INTRODUCTION 
 

This chapter investigates the non-linear dynamic behavior and buckling of thin-

walled steel tanks with a fixed conical roof under a deterministic simulation of wind 

pressures. Typical designs of short tanks make use of very thin shells, with ratios between 

the radius of the cylinder and the wall thickness (R/t) of the order of 1,500-2,000, and 

height to diameter ratios (H/D) of less than 0.5. Because of the slenderness of the shell, 

buckling has been reported under high winds or hurricanes (Flores and Godoy, 1998 and 

Flores and Godoy, 1999), and it is a major constraint in the design.  

Most studies reported in the technical literature of buckling of tanks under wind 

are restricted to open tanks. In addition, the studies consider a static analysis of the 

problem and do not account for the possibility of any dynamic effect due to wind. 

However, wind gusts induce transient vibrations in the shell during short times, which 
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may eventually lead to dynamic buckling. 

In the design of tanks in the United States, wind gusts of 3 sec at 10 m above 

ground surface are considered, with wind velocities of 64 m/s in the Eastern Coast 

(ASCE-7-02, 2002). Preliminary results using wind pressures in the form of a rectangular 

impulse with 3 sec duration seem to indicate that the dynamic effects are not significant 

in terms of the buckling capacity of the shell. However, the question remains if pressure 

fluctuations within a 3 sec impulse may have a more damaging effect on the stability of 

the shell, and thus justify an numerical investigation of such fluctuations in wind records. 

This chapter addresses this question by means of a non-linear dynamic analysis of a 

specific tank with a conical roof. 

The outline of the chapter is as follows: A revision of previous works is described 

in Section 6.2. The model of fluctuating pressure adopted in this work is described in 

Section 6.3. Such pressure model is applied to a theme structure described in Section 6.4. 

Section 6.5 deals with the dynamic response of the structure in the time domain, and in 

Section 6.6 the analysis is carried out in the frequency domain. Finally, conclusions are 

presented in Section 6.7. 

 
6.2 LITERATURE REVIEW 
 

There are numerous studies concerning the behavior of cylindrical shells under 

wind pressures. Most of them are focused in cylindrical tanks, open at the top and fixed at 

the base and they do not consider any type of conical, spherical or flat roof. 

Gopalacharyulu and Johns (1973) developed an analytical model based in the 

Donell’s shell theory to find functions of displacements, stresses and moments acting in 
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the cylindrical shell due wind pressures applied statically. They used the analytical 

pressure distribution developed by Rish (1967) based on wind tunnels experiments in 

open cylinders under uniform speed winds, given by the equation: 

0P cos(  )n
n

p a n θ= ∑                                                   (6.1) 

 
where p0 is the pressure amplification factor at the windward meridian (θ = 0º); and an 

are the Fourier decomposition factors for the n terms of the expansion series. This 

equation is considered valid through the complete height of the cylinder. With this 

pressure distribution, the author of that work calculated the variation of the top 

displacement for different radius to thickness (R/t) ratios. They also obtained the 

variation of stresses and strains along the height for the same radius to thickness ratios. 

Kundurpi et al. (1975) evaluated the instability in scaled models due to wind 

pressures generated in a wind tunnel. They developed an analytical tool to find the 

buckling critical pressure based on the second variation of the potential energy of the 

system. In this study, as well as in the one mentioned before, the authors did not 

considered non-linearity, dynamic effects or imperfections in the shell. The results 

reported are only for critical pressures using different radius to thickness ratios. The 

values found were slightly higher than the pressures obtained experimentally which 

results an overestimation of the critical load based in the design criteria at that time. 

Other study on instability of cylindrical shells is due to Jerath and Sadid (1985). 

These authors developed an analytical model to evaluate the static instability of 

orthotropic cylindrical shells (representative of corrugated steel shells) under lateral wind 
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pressures. They analyzed open and closed at the top tanks using the following wind 

pressure distribution:  

∑ ∑=
m n

n mx )(cosPP mn0r θρ                                          (6.2) 
 

This pressure was assumed to act radially on un-deformed cylinder.  P0 is a reference 

pressure given by P0 = γV2/ 2g; V is the wind velocity; x is the axial coordinate and ρmn 

are the pressure coefficients taken from the studies of Maderpach and Kamat, (1979) and 

Purdy et al. (1967), for open and closed cylinders, respectively. 

Several of the most recent studies on instability of tanks come mainly from 

Europe, particularly from England and Germany. Among them, Greiner (1998) collected 

the results on pressures distributions obtained by many researchers for a variety of 

cylindrical configurations. Such collections included the incidence of conical and 

spherical roofs, and cover not only the pressure on the cylinder, but also on the roof. 

Although most of the results reported are for silos, which are higher and slender than the 

tanks considered in this work, it is interesting to consider the distributions of wind 

pressures on the roof considering the lack of information available on this feature. 

Greiner (1998) also analyzed the difference between the models of instability as a 

function of the height of the shell and the inclusion or not of the non-linear geometry in 

the formulations. He concluded that its addition significantly changed the buckling mode 

in higher cylinders (like silos), but it practically had not a great effect on short cylinders 

like the typical tanks considered here. 

Flores and Godoy (1998) evaluated the instability of open tanks under hurricane 

wind pressures using finite element models. They considered the deterministic wind 

distribution given by the equation developed by Rish (1967) with its coefficients and the 
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coefficients given by the code ACI-ASCE (1995), and did not observe significant 

changes in the results. In that study, the evaluation of the critical pressure using classical 

bifurcation analysis predicted similar results than those calculated using non-linear static 

analyses. However, the introduction of imperfections in the non-linear analysis produced 

a drop in the critical load. They performed non-linear dynamic analyses in order to 

evaluate the influence of inertia effects for constant amplitude pressure. Considering the 

studies to be carried out in this chapter, it is interesting the criteria employed by the 

authors to find the dynamic buckling load. Particularly, they used the criteria proposed by 

Budiansky and Roth (1962) and obtained the response in the time domain by integrating 

explicitly the non-linear equations of motion.  Through this procedure, they showed that 

inertial effects do not influence the response of the structure and that the inclusion of 

imperfections did not significantly change the response. 

In other work, Godoy and Flores (2002) reported the results for short open tanks 

under wind loads. There again, the study was restricted to static analyses, including 

classical bifurcation and non-linear procedures to find the lowest critical pressure as a 

function of the shell geometry. 

For the work in this chapter, are interesting the results obtained recently by 

Portela and Godoy (2005). They reported wind tunnel experiments done to find wind 

pressure distributions on small scale tanks similar to those considered here, as well as the 

results obtained using the measured distributions in computational models of the same 

structures. 

From this revision arises that the availability of studies on tanks with any type of 

roof are few or limited in their considerations regarding the influence of the roof on the 
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behavior of the shell, or the behavior of the roof itself as a function of the wind 

distribution considered. On the other side, there are no results regarding the influence of 

fluctuations in the pressures due the variations in the wind speed. The few previous 

studies on this topic are restricted to constant amplitude loads. It is interesting to establish 

if the conclusions of Flores and Godoy (1998) can be extended to the case of closed tanks 

under non uniform spatial pressures. 

 
6.3 WIND ACTION 
 

Typical wind records measure wind velocity every 3 sec. Since no information is 

obtained for intervals of less than 3 sec, any fluctuations in the velocity (and in the 

consequent pressures on the structure) are eliminated from the data. Such information is 

not relevant for most types of structures, but for thin-walled tanks, it may be important in 

order to understand the nature of buckling. From the information provided by wind 

records, it seems that an adequate load configuration would be an impulsive pressure with 

3 sec duration. The only studies reported in the literature including wind as an impulsive 

pressure on tanks have considered a constant pressure during 3 sec, or else a step 

variation (see for example Flores and Godoy, 1998 and 1999).  

At present, there are no extensive records regarding the values or the nature of 

pressure fluctuations for periods less than 3 seconds, and the question remains open if it 

is necessary to obtain such data because it may have a significant influence on the 

behavior of a tank structure. To investigate the influence of such fluctuations on the 

dynamic response of the shell one can resort to computer simulations. This chapter 

reports the result of studies using geometrically non-linear dynamic analysis under 
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impulsive loads with fluctuations in the pressure. The pressure fluctuations within a gust 

considered in this chapter are shown in Figure 6.1. There are two parameters involved in 

the definition of such pressures. First, the pressure fluctuation amplitude, Pf, and second, 

the fluctuation period, Tf. Non-dimensional quantities may be defined as τ = Tf / T3 and φ 

= Pf / P3, where T3 = 3 sec and P3 is the average value of the wind gust pressure. 
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Figure 6.1. Model of pressure variation with time. Rectangular impulse with 
fluctuations. Tf: period of the fluctuation; T3: 3 sec interval; Pf: fluctuation 

amplitude of the; P3: average amplitude pressure. 
 

To carry out the computations, it is necessary to assume a pressure distribution on 

the roof and in the cylindrical shell. For the roof, a pressure distribution reported by 

Macdonald et al. (1988), which was obtained from wind-tunnel experiments, has been 

adopted. Figure 6.2(b) shows the original contours for the pressure distribution on the 

tank roof and Figure 6.2(d) shows simplified contours of the roof pressures used in the 

computations. For the cylindrical shell there are several distributions reported by 

Macdonald et al. (1988) and Sabransky and Melbourne (1987), but their pressure 
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distributions are for higher H/D relations than those used in this study. An alternative 

distribution is given by Rish (1967), and has also been used by Flores and Godoy (1998). 

This was adopted here for the computations. Portela and Godoy (2005) reported new 

pressure distributions for cylindrical shell with H/D = 0.43 as well as for the conical roof 

(Figure 6.2(c)). However, those pressure distributions are less demanding in terms of 

pressure than those adopted initially here. Figure 6.2(a) shows a comparison between the 

pressure coefficients (Cp) distributions reported by other researchers and the one used in 

this study.  

The current model assumes that the pressures are applied simultaneously on the 

complete surface of the structure. This investigation considers pressures on an isolated 

tank in an open terrain. It is worthwhile to mention that several factors influence wind 

pressures in real tanks, such as topographic effects, roughness of the terrain, interaction 

with other tanks, etc. The influences of such factors are topics for future research. 

Additionally, a more refined model should include the change in pressures as wind flows 

on the surface of the shell; however, this refinement is outside of the scope of the present 

investigation.  
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Figure 6.2. (a) Pressure coefficient distributions on the cylindrical shell (b) Contours 
of pressure coefficient distribution on the conical roof reported by Macdonald et al. 
(1988) (c) Contours of pressure coefficient distribution on the conical roof reported 

by Portela and Godoy (2005); (d) Contours of wind pressures coefficient used in 
computations. 
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6.4 THEME STRUCTURE AND COMPUTATIONAL 
MODEL 

 
The theme tank investigated in this chapter is representative of typical tanks found 

in the Caribbean Islands and in the eastern coast of the United States. Their geometry and 

dimensions are shown in Figure 6.3(a). The same geometry has been employed by Godoy 

and Sosa (2003) for the analysis of static buckling due to support settlement,. 

The tank is modeled by means of a finite element discretization. Approximately 

12,000 quadrilateral and triangular linear shell elements are used to model both the 

cylindrical shell with a tapered wall and the conical roof. Additionally, the rafters that 

support the conical shell are included in the model; they have the shape and dimensions 

found in usual real tanks. Specifically, in this research a W8×13 steel section according to 

AISC (2001) code was used to model the rafters. The rafters were modeled with 

quadrilateral linear shell elements and placed in a radial configuration supporting the 

conical roof as shown in Figure 6.3(b). The tank is assumed to be fixed at the base and 

has additional boundary conditions at the top of the conical roof. To simulate the 

presence of a central column a series of constraints in the vertical displacements of the 

rafters are placed, which allow free translations in the horizontal plane and free rotations. 

The junction between the cylindrical wall and the conical roof is continuous. 

Geometrical non-linear dynamics analyses have been carried out to evaluate the 

response of the tank to spatial and temporal variation of the pressure. For this kind of 

analysis, explicit integration of the equation of motion is performed using 

ABAQUS/Explicit (ABAQUS, 2002). Very small time increments are necessary to make 
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the algorithm stable. The constitutive material is elastic with modulus of elasticity E = 

206 GPa, Poisson's ratio ν = 0.3, and density ρ = 7800 kg/m3. 
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Figure 6.3. Details of the tank considered in the analyses: (a) Dimensions; (b) 
Overview of conical shell and configuration of the rafters. 
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6.5 NON‐LINEAR DYNAMIC RESPONSE 

6.5.1 RESULTS FOR PERFECT GEOMETRY WITHOUT 
DAMPING 
 

The dynamic buckling criterion employed in this work is due to Budiansky and 

Roth (1962). This is a qualitative criterion and requires the computation of the transient 

geometrically non-linear response of the shell for different levels of dynamic pressures. 

The main variables involved in the criterion are the dynamic pressure and a displacement 

(or a displacement component). Dynamic buckling occurs if, for a small increment in the 

load, there is a large increment (at least one order of magnitude) in the transient 

displacements at a given time. In other words, dynamic buckling occurs at the lowest 

pressure level that produces a fast transition from small to large transient displacements. 

This criterion requires expensive computations, i.e. the geometrically non-linear transient 

response of a system with many degrees of freedom, and many trials are necessary to find 

the dynamic buckling load. Other publications have adopted this criterion for the 

evaluation of a dynamic buckling load in tanks (see for example Flores and Godoy, 1998 

and 1999, and those cited there). 

First, let us consider a pressure distribution without any fluctuation, and with a 3 

sec time of application of the load. The space distribution of pressures coefficients is 

shown in Figure 6.2. To increase the values of pressures at all points, a non-dimensional 

scalar parameter λ is used. The pressure configuration in Figure 6.2 is for λ = 1. The 

relation between velocity and pressure is that given by ASCE-7-04 (2004). Figure 6.4(a) 

shows the non-linear dynamic response computed numerically. For λ = 2.50 and λ = 2.51 
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the oscillations have small amplitude and will vanish in the presence of material 

damping. The lowest value of λ for which divergent oscillations are computed is λ = 

2.515 (or wind gust velocity of about 64.4 m/s or 144 mph), in which there are small 

amplitude oscillations up to a time t = 2.16 sec, and then the amplitude increases by two 

orders of magnitude (increasing from 7mm to 150mm). As the load is increased, i.e. λ = 

2.52 or λ = 2.60, the structure becomes unstable at earlier times. According to the 

criterion of Budiansky and Roth (1962), the dynamic buckling load is λD = 2.515 and 

finding this value involves a sequence of computations for different load levels. The 

deflected shape of the shell, as it becomes unstable at the load λD, is shown in Figure 

6.4(b) at the onset of instability (t = 2.16 sec), and at an advanced buckled state (t = 3 

sec) in Figure 6.4(c). The practical significance of the wind velocities computed depends 

on the location of the tank, and these are not uncommon velocities in the Caribbean 

region and in the eastern coast of the United States where hurricane winds can reach 

considerable high values. 

Second, to examine the influence of the fluctuations in time of the pressure, let us 

consider the case with φ = 0.1 and τ = 0.25. The procedure to identify dynamic buckling 

was repeated and yielded a value of λD = 2.315 (or wind velocity of about 61.3 m/s or 

137 mph), that is, a smaller multiplier than in the first case. For a given value of η, the 

value of λD is seen to be dependent on τ, so that it becomes important to understand the 

relation between λD and τ.  
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Figure 6.4. Tank under constant impulsive load: (a) Time response for different load 
levels (b) Deflected shapes at four instant times. 
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The natural frequencies of the tank were computed with ABAQUS/Standard 

(ABAQUS, 2002) and are listed in Table 6.1. For the present case, the highest period 

(lower frequency) is TN = 0.3562 sec, which is smaller than the period of the excitation of 

both cases considered previously. Thus, a fluctuation having Tf = TN (τ = 0.3562/3 = 

0.1187 and φ = 0.1) would be an unfavorable load case for the structure, since there is 

coupling between the frequencies of the load and the structure. The results of transient 

displacements for Tf = TN are plotted in Figure 6.5(a). The dynamic buckling modes at 

the onset of instability and for an advanced buckled state are given in Figure 6.5(b) and 

6.5(c) respectively. The dynamic buckling load results in λD = 2.34 (or a wind velocity of 

about 61.8 m/s or 138 mph), which is smaller than the value obtained for constant 

amplitude pressure model, but larger than the value for the second model with φ = 0.1 

and τ = 0.25. 

 

Table 6.1. Natural frequencies and periods of the tank model. 
Mode f [Hz] T [sec] Mode f [Hz] T [sec] Mode f [Hz] T [sec] 

1 2.8077 0.3562 11 3.7563 0.2662 21 4.7698 0.2097 

2 2.8134 0.3554 12 3.7784 0.2647 22 4.8082 0.208 

3 2.9323 0.341 13 3.7801 0.2645 23 4.8694 0.2054 

4 2.9349 0.3407 14 3.7853 0.2642 24 4.8974 0.2042 

5 2.9642 0.3374 15 4.074 0.2455 25 4.9036 0.2039 

6 2.9704 0.3367 16 4.107 0.2435 26 4.904 0.2039 

7 3.1703 0.3154 17 4.3774 0.2284 27 4.9177 0.2033 

8 3.1808 0.3144 18 4.416 0.2264 28 4.9191 0.2033 

9 3.4571 0.2893 19 4.6372 0.2156 29 4.9591 0.2016 

10 3.4661 0.2885 20 4.6706 0.2141 30 4.9638 0.2015 
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Figure 6.5. (a) Time response of tank with impulsive load and fluctuation with Tf = 
TN and φ = 0.1; (b) Deflected shapes at four instant times. 
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A more complete picture of the problem may be obtained from a parametric study 

in which τ is changed and the transient response is computed. The results are plotted in 

Figure 6.6 in terms of λD versus τ. First, it seems that the changes are not as drastic as 

one may imagine: the variations in λD are of the order of 10% with respect to the value 

for a rectangular pressure impulse. Second, the lowest values of λD are not necessarily 

associated to the lowest natural frequency of the shell. This is because the pressure 

pattern applied to the shell yields deflections that are not coincident with the fundamental 

mode of vibration of the tank. 
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Figure 6.6. Critical dynamic load λD for different normalized load periods τ = Tf / T3 

using φ = 0.1. 
 

6.5.2 RESULTS INCLUDING DAMPING 
 

All previous computations did not include damping. It is important to understand 

the influence of damping on the response. In the explicit integration of the equations of 

motion, it is useful to use the Rayleigh damping:  
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2 2
R iR

i

β ωα
ζ

ω
= +                                                      (6.3) 

 
It is usual to assume that the damping in this kind of structures is proportional to the mass 

matrix. In this case βR can be considered null and the mass-proportional coefficient is: 

2R iα ω ζ=                                                            (6.4) 
 
To consider the influence of modes of frequencies up to ω25 = 4.9036 Hz (30.81 rad/sec) 

in a cylinder mode, and assuming the usual damping coefficient for steel structures of ζ = 

3 %, the mass proportional coefficient is αR = 1.848. For the pressure constant in time 

reported in Figure 6.4, the dynamic buckling load increased from 2.515 to 2.53, or a 0.6% 

increment. For the fluctuating pressure case shown in Figure 6.5, the effect of damping 

increased the dynamic buckling load from 2.34 to 2.40 (a 2.78% change). Because the 

influence is so small, it was decided to perform all the computations using zero damping. 

 

6.5.3 RESULTS INCLUDING IMPERFECTIONS 
 

The imperfection-sensitivity of buckling loads has not been addressed up to now. 

However, it is well known that imperfections play an important role in reducing the 

buckling load in static problems of tanks (Godoy and Flores, 2002 and Greiner and 

Derler, 1995). Small geometric imperfections, with an amplitude of the order of the 

minimum thickness of the shell (tmin = 7.9 mm), have been included in the analysis. The 

geometry of the imperfections was taken with the shape of the displacement pattern at the 

onset of dynamic buckling, which is significant only in the buckled region. For the 

imperfect shells, the non-linear dynamic buckling studies under fluctuating pressures 
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were repeated for the same parameters (Tf = 0.3562 seg or τ = 0.1187 and φ = 0.1) used 

in Figure 6.5. A summary of the results is presented in Figure 6.7. The reduction in 

buckling load depends on the maximum amplitude of the imperfect shape, and for an 

amplitude equal to the top shell thickness (tmin = 7.9 mm), the reduction is about 30%. 

The shell under pressure constant in time and under fluctuating pressures is equally 

affected by the imperfections. 
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Figure 6.7. Summary of analysis of sensitivity to imperfections of λD for φ = 0.1 and 

Tf = 0.3562 seg. 
 

The influence of the imperfections on the maximum dynamic load can be 

analyzed using the representation proposed by Budiansky and Roth (1962). This 

representation consists in taking the maximum displacement at the first cycle for different 

load levels and plotting such displacement versus the load that produced the maximum 

value. In this way, for low amplitude pressures, the maximum displacement has small 

values, but when the load increases, the maximum value increases to a point in which the 
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difference between the maximum displacement produced by one load level compared 

with the maximum generated with a slightly lower load level is considerable great. One 

can perform this representation for different imperfections levels as indicated in Figure 

6.8 and arrive to the lowest load that the structure is able to support without severe 

modifications in its original configuration. However, an imperfection of the order of the 

¾ of the thickness of the shell is enough to produce an important drop in buckling 

strength (about 30%, as mentioned before). This is denoted in Figure 6.9 in which at the 

same time that the imperfection amplitude increases the maximum load decreases.  

From Figure 6.9 it is possible to also see that the plateau that defines the dynamic 

buckling load is broad for small amplitude imperfections and as the imperfections 

amplitudes increase, the plateau tends to narrow. This feature can be observed in the time 

domain response for two levels of imperfections. For instance, Figure 6.8(a) shows the 

response for ξ / tmin = 0.25 and Figure 6.8(b) for ξ / tmin = 1.00. From these pictures, it is 

possible to see that the presence of imperfections modifies the way in which the shell 

vibrates. In Figure 6.8(a) the identification of the dynamic buckling load is practically 

evident, however in Figure 6.8(b) that is not possible. This behavior is represented in 

Figure 6.9 in a compact style. 
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Figure 6.8. Time response for two levels of imperfections for a tank with impulsive 
load plus a fluctuation with Tf = TN and φ = 0.1. 
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Figure 6.9. Dynamic buckling load for different levels of imperfections. 
 

6.6 FREQUENCY DOMAIN ANALYSIS 
 

A frequency domain analysis of the perfect shell for two time variations of the 

load has been carried out. They are rectangular impulse of 3 sec and λ = 2.515, and a 

fluctuating pressure with λ = 2.34 and Tf = 0.3562 sec (equivalent to an excitation 

frequency of 2.807 Hz, that is, the lowest natural frequency of the tank). These chosen 

pressures for the analysis made in this section are the lowest values for which the shell 

buckles before the 3 sec period. 

The shell response computed for the duration of 10 sec is shown in Figure 6.10 at 

the location of maximum radial displacements of the shell. For the rectangular impulse, 

the shell has large oscillations when the load is removed and the oscillations continue in 

the absence of damping. Under a fluctuating load, on the other hand, there are two clearly 

identified stages: small amplitude oscillations when the load is applied until buckling 

occurs and oscillations about the deflected shape once the load is removed. 
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Figure 6.10. Maximum response of Node A recorded during 10 sec for constant 

load:  — λD = 2.515 and fluctuating load: – – – λD = 2.34 (φ = 0.1,  Tf = 0.3562 sec). 
 

The Fast Fourier Transform (FFT) for the complete history of displacements is 

shown in Figure 6.11 (for rectangular impulse) and in Figure 6.12 (for fluctuating 

pressure). In the studies reported in this section, the cutting frequency for ∆t = 0.03 sec is 

fc = 16.66 Hz, so that a broad range of natural frequencies of the tank may be taken into 

account. The natural frequencies have been computed from an eigenvalue analysis using 

ABAQUS/Standard (ABAQUS, 2002) and are included in Table 6.1. However, the 

results have been plotted up to a frequency of 5 Hz because for higher frequencies the 

amplitudes are negligible and do not provide additional information. Figures 6.11(a) and 

6.12(a) show the FFT of the response, while Figure 6.11(b) and Figure 6.12(b) show the 

FFT of the acting loads. In both loading cases, the highest contribution to the 
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displacement response is at the zero frequency with small peaks occurring for frequencies 

smaller than 0.5 Hz in Figure 6.11(a) 

The FFT of the response for constant pressure with limited duration shows peaks 

for low frequencies that may be due to the period of the oscillations after the tank has 

buckled. This period is 2.78 sec (frequency 0.35 Hz) and this is what can be observed for 

the third peak in Figure 6.11(a). The FFT of the response for the fluctuating pressure is 

shown in Figure 6.12(a) following buckling, the period of oscillation is 0.85 sec (1.43 

Hz), which the FFT shows a small peak. 

The possibility of coupling between the excitation and the natural frequency of 

the structure has been considered, but it seems that only for frequency zero there is a 

strong coupling and there are only minor effects for higher frequencies. This suggests that 

even for the case of fluctuating load, resonance does not occur as Figure 6.12(a) and (b) 

illustrate. 

An alternative analysis was to split the response to distinguish between the pre-

buckling and the post-buckling transient displacements, and to compute the FFT for each 

part separately. The results are drawn in Figure 6.13(a) for the rectangular impulse and in 

Figure 6.13(b) for the fluctuating load. Again, it can be seen that the maximum response 

occurs at zero frequency and that there are no peaks with large amplitude for higher 

frequencies. 
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Figure 6.11. FFT of (a) Response to a constant amplitude pressure in time; (b) 
Constant amplitude load function. 
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Figure 6.12. FFT of (a) Response to a fluctuating load; (b) Fluctuating load function. 
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Figure 6.13. FFT of the response in the buckled state considered separately: (a) 
Constant load, high amplitude oscillations; (b) Fluctuating load, high amplitude 

oscillations. 
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6.7 CONCLUSIONS 
 

The time domain results computed in this chapter indicate that for a deterministic 

model of velocity and pressure variations, variations in the period of oscillations do not 

produce a significant change in the dynamic buckling load. 

For pressure fluctuations with small periods, the dynamic buckling load is close to 

the value obtained with a rectangular impulse of the same duration, and for periods 

longer than the natural period of the structure the same situation occurs. The coincidence 

of the period of excitation with the natural period of the tank does not induce large 

changes in the buckling strength.  

The simpler pressure model based on a 3 sec rectangular impulse yields dynamic 

buckling loads only 5% higher than the worst situation considering pressure fluctuations. 

The small changes in the buckling load of short tanks due to a wide range of fluctuations 

seem to suggest that it would not be necessary to obtain a more refined record of wind 

velocities to account for wind changes at intervals less than 3 sec for this class of 

structures. The inclusion of Rayleigh damping in the model did not change the results by 

more than 1% for a modal damping ratio of 3%. Imperfections were found to play an 

important role. For imperfections with the shape of the buckling mode, the dynamic 

buckling load was reduced following a pattern similar to static buckling problems, with 

reductions of 30% for imperfections of the order of the thickness. This effect, however, is 

not due to the fluctuating load and is associated with the sensitivity of the shell itself; in 

other words, the same sensitivity is detected for tanks under pressure and analyzed 

statically. 
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The results computed in the frequency domain illustrate the close similarity 

between the FFT of the load and the response, for both rectangular impulse and 

fluctuating load. In all cases, the peaks in the FFT of load and response occur for 

frequency zero. For higher frequencies, within the range of the lowest natural frequencies 

of the tank, the peaks in the load have small amplitudes so that resonance may be ruled 

out as a likely effect. 

The results discussed previously indicate that dynamic effects do not dominate the 

response for short tanks, so that static buckling models may provide a reasonable 

approximation to the buckling strength of the shell under deterministic wind simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

7 CHAPTER 7 

CONCLUSIONS 
 
 
 
 
 
 
 
 
 
 
 
 
7.1 SUMMARY OF CONTENTS 
 

A brief summary of the results presented in this thesis is given here before 

conclusions are drawn. Chapter 1 describes the theme structures investigated in this work, 

i.e., cylindrical above-ground steel tanks. The chapter described their typical 

configuration, including conical roof, cylindrical shell and foundations. Motivation, 

scope, main objectives and methodology employed in this thesis were also presented in 

Chapter 1. 

Chapter 2 gave an introduction to the buckling of tanks in the context of the 

theory of elastic stability. This chapter provided a conceptual framework to the following 

chapters and facilitated the explanation of the results of the computational experiments. 

Chapters 3 to 6 constitute the central chapters of this thesis. Chapter 3 analyzed 

the effect of support settlements on a tank with a conical roof. Results using linear, 

geometric non-linear and bifurcation analysis were presented for a typical tank and for a 

small-scale model. 
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Chapter 4 introduced a methodology proposed in this thesis to compute lower 

bound buckling loads for different cylindrical tank configurations under uniform external 

pressure. This chapter introduced the reduced energy method to find the knock-down 

factor that reduces the classical critical load. Results were compared with analytical and 

numerical results available to validate the applicability of the proposed new procedure. 

Chapter 5 is a continuation of the topics discussed in Chapter 4, in which the 

proposed reduced energy method was implemented for tanks similar to those considered 

in Chapter 4, but under a different load configuration. That chapter presented the results 

for wind pressures acting in different tank geometries, in order to find the variation of the 

knock-down factor as the geometry changes. Alternative ways to implement the reduced 

energy method were presented to improve the results obtained with the proposed 

methodology. Appendix A and B are directly related to Chapters 4 and 5, and contains 

detailed derivations of the constitutive model and illustrative input files used to 

implement the reduced energy approach. 

Chapter 6 presented the results of computational experiments to evaluate the 

importance of dynamic effects on the theme structure under wind loads. A simplified 

time variation of wind gusts applied in conjunction with an adopted spatial variation, 

were used to compute the non-linear dynamic response. The effect of imperfections and 

damping were evaluated and results in the frequency domain were presented as an 

alternative way to explain the effect of inertial forces. 
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7.2 MAIN CONCLUSIONS 
 

The results presented in this thesis show that small amplitude settlements produce 

large out-of-plane displacements in above-ground tanks. The buckling behavior is a 

stable symmetric bifurcation with only one branch, in which the post-critical path out-of-

plane displacements increase with the amplitude of the vertical settlement. The results 

suggest that the shell buckles for a small value of the control parameter, and then deflects 

into a post-buckling mode that is different from what is found for buckling under pressure 

loads. This behavior under imposed settlements is attributed to the geometric non-linear 

behavior of the shell. Therefore, it does not seem adequate to establish tolerance criteria 

for settlements based on linear shell models, as the current engineering practice suggests. 

The present research has shown that it is possible to implement a reduced energy 

method to estimate lower bound buckling pressures in tanks using a general purpose 

finite element code. The approach is accurate in predicting the knock-down factor for 

uniform pressures applied to different shell configurations. However, the same proposed 

methodology is not adequate to predict the lower bound buckling loads of tanks under 

wind pressures. This limitation is due to the change of the reduced critical deflected mode 

compared with respect to the classical critical mode. Such change in the critical modes 

was observed mainly in the cases for wind loads but it is almost inexistent under uniform 

pressures. Thus, the proposed reduced energy method can predict the lower bound load 

for cylindrical shells under uniform pressure distributions, but it cannot estimate the 

lower bound for wind pressures. The explanation is that a change in the modal shapes 

invalidates one of the principal assumptions made in the formulation of the reduced 
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energy method, as originally formulated by Croll (1975), which assumes that the mode in 

the lower bound is the same as in the classical bifurcation analysis using the full 

membrane stiffness of the shell. 

Concerning the influence of inertial effects on the buckling under wind pressures, 

it was found that changes in the period of fluctuations of the applied load do not produce 

significant changes in the dynamic buckling loads. The small changes in the buckling 

load of short tanks due to a wide range of fluctuations seem to suggest that it would not 

be necessary to obtain a more refined record of wind velocities to account for wind 

changes at intervals less than 3 sec. The inclusion of damping in the model did not 

change the results significantly. However, imperfections were found to play an important 

role, producing a drop of about 30% in the buckling load. Such drop is associated to the 

static imperfection sensitivity of the shell, as it is observed in tanks under pressure which 

are analyzed using static methods. Frequency domain results show that in all cases the 

peaks in the FFT of the load and response occur for frequency zero. For higher 

frequencies, within the range of the lowest natural frequencies of the tank, the peaks have 

small amplitudes so that resonance may be discarded as a likely effect. Thus, it is 

concluded that dynamic effects do not dominate the response for short tanks, so that static 

buckling models may provide a reasonable approximation to the buckling strength of the 

shell under deterministic wind simulations. 
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7.3 ORIGINAL CONTRIBUTIONS OF THIS THESIS 
 

The main original contributions of this work are:  

1- The implementation of the reduced energy method using a general purpose 

finite element code for cylindrical shells under uniform and wind pressures. 

2- The interpretation of the response of cylindrical tanks under deterministic 

fluctuating loads in frequency domain. 

3 - The understanding of the buckling behavior of cylindrical tanks under support 

settlements, and the identification of the importance of geometric non-linearity in this 

problem. 

 
7.4 RECOMMENDATIONS FOR FUTURE WORK 

7.4.1 ON THE REDUCED ENERGY METHOD 
 

The reduced energy method proposed and implemented in this thesis can be 

applied to investigate cylindrical panels under uniform pressure. This type of structure 

has been studied by Yamada and Croll (1989), who reported an analytical solution to 

compute the lower bound buckling loads using the reduced energy method. In the 

implementation of the method they state that “…the eigenvalue analysis in this case is 

identical with the classical critical analysis of a complete cylinder simply supported at 

this ends…” (pp. 333). Such cylinder has been the benchmark of the proposed 

methodology in this thesis, reporting good agreement with the theoretical solution. 

Furthermore, for the cylindrical panel, Yamada and Croll state that “…a reduced stiffness 

critical pressure is defined as that for which all the initially stabilizing membrane energy 

 



 158

has been eroded from the classical critical buckling mode…” (pp. 334), which is the same 

assumption adopted for the cases studied in Chapters 4 and 5 of this thesis. Probably the 

most important assumption stated by Yamada and Croll for this structures is that “…the 

out-plane critical mode to be unchanged…” (pp.335) in the solution of the reduced 

eigenvalue problem. Clearly, this seems to be a good case to be implemented using a 

general purpose finite element code with the methodology presented here. 

 

7.4.2 ON FLUCTUATING LOADS IN TANKS 
 

Concerning the consideration of fluctuations in wind loads, and since it was found 

in Chapter 6 that inertial effects do not play an important role in the behavior of empty 

tanks for short duration wind gusts, future work may be oriented to consider the 

fluctuations of wind loading as a stationary random process, in which the mean 

component is separated from the fluctuation component and applied to the structure as an 

equivalent quasi static or static wind loading. Introducing an influence coefficient to 

account for the time dependency and spatial variation of wind loads, it would be possible 

to represent more realistically the effect of fluctuations on the behavior of relatively large 

structures like the tanks considered in this thesis. Holmes and Kasperski (1996) state that 

for wind loads “…in some respects the dynamic effects are similar to earthquake loading; 

however there are two significant differences: a) in most windstorms and for most 

structures the frequencies of the dynamic wind forces are lower than the natural 

frequencies of the structures; b) the lack of correlation of the fluctuating forces which 

results in spatial variations in the forces acting on structures of significant dimensions…” 
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(pp. 1). For our purposes, windstorms are associated to hurricanes, and some of the tanks 

considered in this thesis may be considered structures of significant dimensions. 

Holmes and Kasperski suggest that “…for the majority of the structures the 

resonant response is either significant but not dominant, or is negligible. For these 

structures the sub-resonant fluctuating loading is important and for those with significant 

tributary areas, the correlation effect, as described previously above is significant…” (pp. 

1) Sub-resonant or ‘background’ wind loading is the quasi-static loading produced by 

fluctuations due to turbulence, but with frequencies too low to excite any resonant 

response. Considering the fluctuations of wind loading as a stationary random process in 

which the mean component is separated from the fluctuation component, Holmes and 

Kasperski (1996), also suggest a procedure in which “…the equivalent static peak 

loading distributions can be separately derived for the following three components: 1-

Mean component; 2-Background or sub-resonant component; and 3-Resonant 

component…” (pp. 2). These researchers proposed several expressions to compute each 

component, assuming that the peak response is dominated by the first mode of vibration. 

For cylindrical tanks, Virella (2003) reported that in cone roof tanks the first modes of 

vibrations are cylinder modes. Considering that significant deflections occur in the 

cylindrical shell during hurricanes, the method proposed by Holmes and Kasperski may 

be implemented to compute the maximum response taking into account the fluctuations 

in the pressure. 

Other alternative to analyze in future work is the consideration of longer wind 

gusts than studied in this thesis. The same procedure used in Chapter 6 to model short 

duration wind gusts can be extended to analyze the influence in the dynamic buckling 
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load of longer wind gusts (> 3 sec) with the same proposed pattern of fluctuations and to 

examine if tanks are sensitive to load applied during a relatively extended period of time. 

 

7.4.3 OTHER TOPICS 
 

Considering other topics studied in this thesis, future work in the area of modeling 

the tank support may be oriented to model the support including the metal floor and the 

contact with the compacted soil foundation. During the construction of a tank, the 

structure is not fully restrained by the soil foundation. Sudden pressures, such as wind 

loads may be highly destructive, not only for the shell itself but also for the foundation. 

Detailed models of the foundation and of the tank floor may be useful to determine the 

optimal configuration to avoid a premature buckling, as reported by Jaca and Godoy 

(2003). 

 

 

 

 

 

 

 

 

 

 

 

 



 

8 APPENDIX A 

CONSTITUTIVE RELATION FOR THE 
REDUCED ENERGY METHOD 

 
 
 
 
Classical lamination theory, based on Kirchhoff hypothesis, gives force N and moment M 

resultants by the following constitutive relation: 

N

M

ε

κ
=

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎨ ⎬ ⎨⎢ ⎥⎩ ⎭ ⎣ ⎦ ⎩ ⎭

A B

B D
⎬                                                      (A.1) 

The constitutive matrix in equation A.1 is a 6 × 6 matrix usually called [ABD] matrix. 

This matrix is composed by three sub matrices [A], [B] and [D] and each one is 3 × 3 in 

size and symmetric. Sub matrices have different functions in [ABD] matrix, they are:  

• Matrix [A] is called in plane stiffness matrix because it directly relates in 

plane strains ε to in plane forces N. This matrix is also called stretching 

matrix.  

• Matrix [B] is the coupling matrix and relates in plane strains to bending 

moments and curvatures to in plane forces. This coupling effect does not exist 

for homogeneous plates. This matrix is also called bending-extension coupling 

matrix. 

• Matrix [D] is the bending stiffness matrix because it relates curvatures κ to 

bending moments M. 

The coefficients Aij, Bij and Dij of each sub matrix, are functions of the thickness, 
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orientation, stacking sequence, and material properties of the layers. Matrix [ABD] can 

be expressed in an expanded form as: 

11 12 16 11 12 16

12 22 26 12 22 26

16 26 66 16 26 66

11 12 16 11 12 16

12 22 26 12 22 26

16 26 66 16 26 26

x x

y y

xy x

x x

y y

y

xy x

N A A A B B B

N A A A B B B

N A A A B B B

M B B B D D D

M B B B D D D

M B B B D D D y

ε

ε

γ

κ

κ

κ

=

⎧ ⎫ ⎧⎡ ⎤
⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪⎢ ⎥
⎨ ⎬ ⎨⎢ ⎥
⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪⎢ ⎥

⎣ ⎦⎩ ⎭ ⎩

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

                  (A.2) 

where each term of the sub matrices are given by: 

( ) ( )1
1 1

( ) , 1,
n n

ij ij k k ij k
k kk k

A Q z z Q t i j−
= =

= − =∑ ∑ 2,6=         (A.3) 

( ) ( )2 2
1

1 1

1
( ) , 1,

2

n n

ij ij k k ij k k
k kk k

B Q z z Q t z i j−
= =

= − =∑ ∑ 2,6=         (A.4) 

( ) ( )
3

3 3 2
1

1 1

1
( ) , 1,

3 1

n n
k

ij ij k k ij k k
k kk k

t
D Q z z Q t z i j−

= =

= − = +
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑ 2,6
2

=          (A.5) 

In equations A.3 to A.5, zk is the coordinate of each layer, tk is the thickness of each layer, 

kz  is the distance to the middle surface of the kth layer, and ijQ  are the components of the 

transformed reduced stiffness matrix. Those components relate strains and stresses of a 

lamina in plane state of stress. Explicitly, they are: 

 4 2 2
11 11 12 66 22cos 2( 2 )sin cos sinQ Q Q Q Q 4θ θ θ= + + + θ                (A.6) 

2 2 4 4
12 12 12

ˆ sin cos (sin cos )Q Q Qθ θ θ= + + θ                                    (A.7) 

4 2 2
22 11 12 66 22sin 2( 2 )sin cos cosQ Q Q Q Q 4θ θ θ= + + + θ               (A.8) 
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3 3
16 16 26

ˆ ˆsin cos sin cosQ Q Qθ θ θ= + θ                                              (A.9) 

3
26 16 16

ˆ ˆsin cos sin cosQ Q Q 3θ θ θ= + θ                                            (A.10) 

2 2 4 4
66 66 66

ˆ sin cos sin cos )(Q Q Qθ θ θ= + θ                                     (A.11) 

where 

12 11 22 66
ˆ 4Q Q Q Q= + −                                                                  (A.12) 

16 11 12 66
ˆ 2Q Q Q Q= − −                                                                  (A.13) 

26 12 22 66
ˆ 2Q Q Q Q= − +                                                                  (A.14) 

66 11 22 12 66
ˆ 2 2Q Q Q Q Q= + − −                                                       (A.15) 

Each Qij in equations A.6 to A.15 are the plane-stress reduced stiffness coefficients given 

by: 

1
11

12 211
E

Q
ν ν

=
−

                                                                             (A.16) 

12 2
12

12 211
E

Q
ν

ν ν
=

−
                                                                             (A.17) 

2
22

12 211
E

Q
ν ν

=
−

                                                                             (A.18) 

66 12Q G=                                                                                        (A.19) 

Notice that the plane stress-reduced stiffness coefficients involve four independent 

material constants, E1, E2, ν12 and G12. In the implementation of the proposed reduced 

energy method, described in Chapter 4, a single layer laminate is used to represent the 

cylindrical shell. This single lamina has its local principal axis (1) coincident with axis of 
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revolution of the cylindrical shell considered. (θ = 0). With that orientation the 

coefficients given by equations A.6 to A.15 are: 

1
11

12 211
E

Q
ν ν

=
−

                                                                             (A.20) 

12 2
12

12 211
E

Q
ν

ν ν
=

−
                                                                             (A.21) 

2
22

12 211
E

Q
ν ν

=
−

                                                                             (A.22) 

66 12Q G=                                                                                        (A.23) 

16 26 0Q Q= =                                                                                  (A.24) 

Coefficients given in equations A.20 to A.24 are introduced in equations A.3 to A.5 and 

the resultant [ABD] matrix has the following particularities: the assumed single lamina is 

symmetric with respect to its mid plane, so that the bending-coupling coefficients Bij are 

zero. According to equation A.24, coefficients A16, A26, D16 and D26 are zero. The 

resultant laminate is a quasi-isotropic laminate that do not behave exactly like an 

isotropic plate. However, a quasi-isotropic laminate can approximate reasonable well an 

isotropic laminate by using a symmetric balanced laminate 0/90 and ±θ layers and a large 

number of layers. With such design, using orthotropic laminas with different engineering 

constants in each local direction, bending coefficients are approximately D11 ≈ D22 and, 

D16 and D26 must be as small as possible (Barbero, 1998). Other alternative is assuming 

the same engineering constants for each local direction of a single lamina, i.e. E1 = E2 = 

E, ν12 = ν21 = ν and G12 = G = E / 2 (1+ ν). This second option was used in this work and 

the resultant [ABD] matrix is: 
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In [ABD] matrix given by equation A.25, the coefficients Aij are associated to membrane 

stiffness and coefficients Dij are associated to bending stiffness. In the proposed reduced 

energy method introduced in Chapter 4, the membrane stiffness is eroded in the critical 

state introducing a reduction factor α to reduce gradually the membrane stiffness. Such 

reduction factor affects only to Aij terms and the membrane stiffness decreases as α 

increase. Then, the modified constitutive matrix to account the reduction in the 

membrane stiffness is: 

11 12
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66
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0 0 0 0
α α
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α α
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0 0 0 0

0 0 0 0
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                               (A.26) 

ABAQUS (2002) allows to the user to introduce as direct input the upper triangle part of 

[ABD] matrix. Using this feature requires to define the shell property as *SHELL 

GENERAL SECTION and assigning such property to all shell elements that are part of 

the cylindrical shell. All computations described in Chapters 4 and 5 were performed 
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using this constitutive model. In those cases in which the cylindrical shell is formed by 

courses of different thickness, for each one, a [ABD] matrix was computed and 

introduced in the model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

9 APPENDIX B 

INPUT FILES FOR THE PROPOSED 
REDUCED ENERGY METHOD 

 
 
 
 
This appendix presents input files used in ABAQUS (2002) in the implementation of the 

proposed reduced energy method. The computation of the knock-down factor defined in 

Chapter 4 is divided in two stages: 

● First a classical eigenvalue analysis is performed to extract the critical buckling 

load and the critical mode. For this stage the material is defined as elastic isotropic. 

● Next, from the first stage, the critical eigenmode is extracted and imposed as 

prescribed displacements in a second analysis where the strain energy is calculated for 

different levels of reductions in the membrane stiffness. The constitutive relation for the 

material at this stage of computations is defined by the [ABD] matrix described in 

Appendix A.  

Next two pages show illustrative input files for both computation stages. 
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*HEADING 
First Stage: Classical eigenvalue problem [N/m] 
**GEOMETRY DEFINITION 
*Node 
1,12.,0.,0. 
… 
**ELEMENT DEFINITION 
*Element, type=STRI3 
1,506,4 ,5 
2,522,20,21 
… 
**NODE AND ELEMENT SETS DEFINITION 
*Nset, Nset =DESP 
*Nset, Nset =BASE 
*Elset,Elset=CILI 
… 
**SECTION AND MATERIAL DEFINITION 
*Shell Section, Elset=CILI, material=STEEL 
0.006, 5 
*Material, name=STEEL 
*Elastic 
 2.06e+11, 0.3 
** 
**ANALYSIS DEFINITION 
*Step, name=BKL, perturbation 
*Buckle, Eigensolver=Lanczos 
2, 0.001, 
**BOUNDARY CONDITIONS 
*Boundary, op=NEW, load case=1 
BASE, ENCASTRE 
*Boundary, op=NEW, load case=2 
BASE, ENCASTRE 
**LOADS DEFINITION 
*Dsload 
CILI, P, 1000. 
**OUTPUT REQUESTS 
*Node File, Nset=DESP, Global=yes 
U 
*Node Print, Nset=DESP 
U1, U2, U3 
*End Step 
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*HEADING 
Second Stage: Energy computations [N/m] 
**GEOMETRY DEFINITION 
*Node 
1,12.,0.,0. 
… 
**ELEMENT DEFINITION 
*Element, type=STRI3 
1,506,4 ,5 
2,522,20,21 
… 
**NODE AND ELEMENT SETS DEFINITION 
*Nset, Nset =DESP 
*Nset, Nset =BASE 
*Elset,Elset=CILI 
… 
**MATERIAL DEFINITION-ABD MATRIX 
*Shell Gener
|A/alpha 0| 

al Section, Elset=CILI 

|0       D| 
**BOUNDARY CONDITIONS 
*Boundary 
BASE, ENCASTRE 
*AMPLITUDE, NAME=FMODAL,VALUE=RELATIVE,DEFINITION=TABULAR 
0.0,0.0,1.0,0.001 
** 
**ANALYSIS DEFINITION: Imposed displacements 
*STEP 
*STATIC 
*Boundary, type=displacement, amplitude=FMODAL 
2,1,1, 4.7684e-003 
2,2,2, 1.0000e+000 
2,3,3, 4.5672e-003 
… 
**OUTPUT REQUESTS 
*Energy Print, Elset=CILI 
*End Step 
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